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Abstract 

The emergence of agent-based modelling from the field of artificial intelligence (Al) presents a 

new and alternative approach to geographical modelling. The vast potential offered by agent-based 

models in representing distributed complex systems, coupled with the increase in available com- 

puting power has resulted in agent-based models becoming an increasingly popular and powerful 
tool within geographical applications. These models offer distinct advantages over traditional em- 

pirical techniques through their characteristics of autonomy, flexibility and adaptability. There 
is an emerging recognition that the power of agent-based systems is enhanced when integrated 

with other AI-based and conventional approaches. The resulting hybrid models are powerful tools 

that combine the flexibility of the agent-based methodology with the strengths of more traditional 

modelling. 
This research examines the application of a hybrid agent-based model to the case study of the 

retail petrol market. Detailed analysis of the real data was first performed before the construction 

of an agent-based model. Model performance was evaluated against real data from the UK for a 
three month period in 1999. On the basis of this evaluation, the agent model was further developed 

to incorporate consumer behaviour by the inclusion of a spatial interaction (SI) model and a net- 

work model. Suitable parameters for these models were derived through detailed analysis of the 

real data, numerical experimentation and experimentation on the real data. These developments 

improved the performance of the model. A genetic algorithm (GA) was constructed to provide an 

objective approach to deriving optimal parameters. There was a close agreement in the values se- 
lected by the GA and those derived by hand. This research clearly demonstrates that agent-based 
modelling has the ability to improve on existing geographical models. Further investigation is 

needed if this potential is to be fully realised for a range if geographical problems. 
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Chapter 1 

Introduction 

1.1 Aims and Objectives of the Research 

There are a range of geographical problems that are spatially and temporally complex. Often 

within human geographical systems, these problems have a distributed network of, for example, 

people or companies making decisions that have an impact on others within the system. A good 

example of this can be found within retail markets. Here, companies make decisions on pricing 

whilst consumers make decisions on where to purchase one or more commodities. The compe- 
tition between retailers to attract customers, and therefore make profit, results in complex spatial 
interactions between all participants within the market. 

With such a high degree of complexity within geographical systems, it is unsurprising that 

traditional empirically-based techniques have failed to produce realistic representations of human 

behaviour. Many geographical systems possess highly non-linear relationships amongst a large 

number of variables and are also characterised by high degrees of imprecision and uncertainty. 
Cavezzali and Rabino (2003) argue that there is a need for new models to represent phenomena 

with high complexity whose structure is not entirely known or not mathematically expressible. 
In recent years, the field of artificial intelligence (AI) has produced several problem solving 

algorithms inspired by natural genetic evolution and by human interactions (reviewed in Open- 

shaw and Openshaw, 1997). The general methodologies and heuristics of AI can potentially add 

more intelligence to current geographical models which may ultimately lead to better geographical 

representations of the world (See, 1999). 

Agent-based modelling is one of several new technologies that has emerged from the field of 
Al. Due to the advantages that they offer over traditional approaches, agent-based models have be- 

come an increasingly popular and powerful tool within geographical applications (O'Sullivan and 
Haklay, 2000). The agent paradigm offers the possibility to represent individuals, their behaviour 

and their interactions. This makes it possible to analyse a phenomenon as the result of interactions 

of autonomous entities (the agents). 
This type of decomposition is a natural metaphor for complex systems that are always dis- 

tributed with numerous autonomous decision making parts. The agent framework is particularly 
applicable to geographical systems, such as those described above, that are characterised by com- 
plex spatial and temporal dynamics. Multi-agent simulation makes it possible to create artificial 



environments that mimic real systems. The behaviour of the agents at the individual level is spec- 
ified and through their interactions, large-scale features emerge. Furthermore, when different AI 

techniques, for example genetic algorithms (GAs), are fused with the power of agent-based mod- 

els the result is a hybrid approach that often produces better solutions than the use of an agent 
techniques alone. 

This thesis will examine a complex geographical system to assess the potential for hybrid 

agent-based systems in actually reproducing these complexities. The retail petrol market has been 

chosen as a case-study for several reasons. This market has the advantage of selling a single 
homogeneous product. This means that it does not possess any of the complex trade-offs in both 

pricing and consumer's purchases that are found in many retail markets, for example the grocery 

market. In addition, the retail petrol market is an important system in its own right. Petrol is 

a ubiquitous commodity valued by retailers and customers alike. Consumer sensitivity to petrol 

prices was clearly demonstrated in the UK during August and September 2000 when there was a 
"Petrol Crisis" consisting of consumer blockages of refineries and protests in reaction to soaring 
fuel taxes. Over the summer of 2004, the issue of petrol prices has again been in the news, this 

time due to rises in the price of crude oil resulting from a combination of political instabilities (the 

Iraq war, Nigerian rebels, Venezuelan strikes) and natural disasters (hurricanes in the Caribbean). 

Typical approaches to modelling retail markets have involved the use of empirically based 

models, for example regression models and spatial interaction models. However, these methods 

are static and require geographically aggregated data. These techniques are also unable to model 
the impact of individual retailer or consumer behaviour at more than one scale. However, build- 

ing an agent-based model would be computationally very intensive. Using traditional methods 

provides an easy way to incorporate well understood behaviour. Can a model be successfully de- 

veloped and applied that combines the flexibility of the agent-based methodology along with the 

strengths of traditional modelling? 
The overall aim of this research is to examine the ways in which agent-based models can be 

applied to modelling a dynamic, locally interacting retail market. To achieve the aim of this thesis, 

the following research objectives were formulated: 

1. Review and discuss the current state of agent-based applications in the petrol market high- 

lighting potential areas for research. 

2. Analysis of the real market data to look for evidence of spatial and temporal variabilities 
and investigation of the suitability of empirical techniques to explain these variations. 

3. Use agent technology to build a model to simulate the spatial and temporal variations in 

price observed in a single commodity retail market. 

4. Assess model responses to different configurations, initial conditions and rule sets using 
both idealised and real data. 

5. Investigation of objective techniques to select optimal values for the parameters in the agent 
model. 

6. Provide recommendations for future work in the form of a research agenda. 



1.2 Organisation of the Thesis 

Table 1.1 presents an overview of the thesis. This relates the 6 research objectives to each of the 

chapters. 

Objective Chapter 

1: Review and discuss the current state of agent- 2: Retail Petrol Market 
modelling and the modelling of the petrol market 3: Agent-Based Models 
highlighting potential areas for research. 

2: Analysis of the real market data to look for ev- 
idence of spatial and temporal variabilities and 4: Real Data Analysis And Traditional 
investigation of the suitability of empirical tech- Modelling 

niques to explain these variations. 

3: Use agent technology to build a model to sim- 5: Agent Model Development 
ulate the spatial and temporal variations in price 6: Hybrid Model Development 
observed in a single commodity retail market. 

5: Agent Model Development 
4: Assess model responses to different configura- 7: Experimentation With Idealised 
tions, initial conditions and rule sets using both Data 
idealised and real data. 8: Experimentation With Real Data 

5: Investigation of objective techniques to select 9: Optimisation Using A Genetic 
optimal values for the parameters in the agent Algorithm 
model. 

6: Provide recommendations for future work in 10: Conclusions And Recommend- 
the form of a research agenda. ations For The Future 

Table 1.1: The relationship of the research objectives to the chapters. 

Objective 1: Review and discuss the current state of agent-modelling and the modelling of 

the petrol market highlighting potential areas for research. 

Chapters 2 and 3 provide a detailed assessment of the petrol price market and a review of agent- 
based modelling. Chapter 2 examines available information on the retail petrol market and reviews 

current and past modelling approaches. The criticisms of these approaches leads to the introduc- 

tion and review of agent-based modelling in Chapter 3. The basic introduction presented here 

provides the necessary building blocks for the development of the pure agent model in Chapter 5. 
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Objective 2: Analysis of the real market data to look for evidence of spatial and tempo- 

ral variabilities and investigation of the suitability of empirical techniques to explain these 

variations. 

Chapter 4) fulfils objective 2 by presents a detailed analysis of the real data used within the thesis. 

Identification of general patterns within the data and price variation within different geographical 

areas and station categories are also presented. Classifications for analysis of model results were 

also derived along with study areas. These will be used within subsequent chapters for detailed 

assessment of the hybrid and network hybrid models' (Chapter 8) performance. In addition, sim- 
ilar empirical techniques to those used within the literature were applied to the data. This work 

showed both the limitations and unsuitability of using such techniques for modelling the retail 

petrol market. 

Objective 3: Using agent technology to build a model to simulate the spatial and temporal 

variations in price observed in a single commodity retail market. 

The third objective of this thesis covers Chapters 5 and 6. The pure agent model is constructed 
in Chapter 5 and initial experimentation undertaken with individual parameters and separate rule 

sets. This an agent-based equivalent to the traditional modelling methods highlighted in Chapter 

2 that do not take consumers into account. This model represents an attempt to build a pure agent 

solution. Despite both operating successfully and performing sensibly, the agent model is limited 

by the lack of any consumer behaviour. 

Chapter 6 details the construction of a spatial interaction model for reproducing the behaviour 

of consumers. A simple network model was also developed to re-distribute the population on 

the basis of journey to work data. These additional models are linked to the agent model from 

Chapter 5 to provide a hybrid and network hybrid model which included more realistic consumer 

and market behaviour. 

Objective 4: Assess model responses to different configurations, initial conditions and rule 

sets using both idealised and real data. 

The fourth objective of this thesis is concerned with testing and validating the hybrid and hybrid- 

network models. This has already been partly undertaken in Chapter 5, the rest is presented in 

Chapters 7 and 8. A comparison of the performance of each of the three models is undertaken 

with robustness and sensitivity testing using both idealised (Chapter 7) and real data (Chapter 8). 

Chapter 7 presents the experimentation with idealised data. By standardising the geography 

and population, the behaviour and sensitivity of the hybride model were tested through a series 

of experiments. These experiments were designed to assess whether the model would produce 

variations similar to those observed within the real market. Additional experimentation examined 
the sensitivity of the system to small changes in individual parameters. This work also served to 

validate part of the model performance. 

I The hybrid model is the spatial interaction model linked to the agent model. The network hybrid model is a 
combination of the network, spatial interaction and agent model. 

2As the population and geography were idealised, the network part of the model within this chapter was redundant. 



Within Chapter 8 the performance of the pure agent, hybrid and network hybrid models are 
compared. The network hybrid model is used to perform more validation of the model by further 

experimentation with data from different geographical and temporal periods. Diffusion experi- 
ments are also performed to examine the sensitivity and robustness of the system when using the 

real data. 

Objective 5: Investigation of objective techniques to select optimal values for the parameters 
in the agent model. 

The fifth objective of this thesis is covered by Chapter 9. This chapter reviews various optimi- 
sation strategies and justifies the choice of a genetic algorithm (GA) for this application. The 
development of a genetic algorithm to couple to the hybrid and network hybrid models is detailed. 
This GA produces optimal values for each of the parameters used within the model. The optimal 
solution produced by the GA is compared with those derived in Chapter 8 and further tested on 
data from different geographical and temporal periods. 

Objective 6: Provide recommendations for future work in the form of a research agenda. 

The final objective of this thesis is covered by the last chapter. In Chapter 10 the main research 
findings are summarised and a set of generic guidelines for the application of hybrid agent-based 

modelling methods to geographical systems are presented. The chapter concludes with a set of 
recommendations for future research. 



Chapter 2 

The Retail Petrol Market 

2.1 Introduction 

One of the objectives of this thesis is to develop a model that can accurately represent the processes 

and dynamics of the petrol market. A vital component of this is a thorough understanding of 

the behaviour of retailers and consumers as well as other processes that may influence petrol 

prices. The first half of this chapter is concerned with presenting a breakdown of the petrol market, 
its structure, components of pump prices and published information on consumer and retailer 

behaviour. The second half of this chapter will provide a context to this research by reviewing the 

current literature on spatial and temporal price variations and spatial competition. The chapter will 

conclude with a discussion of the scope and limitations of the methods reviewed for modelling the 

retail petrol market. 

2.2 The Retail Petrol Market 

Petrol is one of the most valuable oil derived commodities, valued by retailers and customers 

alike. Despite pressures on natural resources there is a rising demand for petrol associated with an 

ever increasing individual mobility. At the end of 2002, there were 11,707 sites retailing over 36 

billion' litres of motor fuel in the UK. This equates to an average of approximately 1,350 litres of 
fuel consumed by each car and van per annum. Consumers are becoming ever more aware of petrol 

prices. Internet sites such as the AA Petrol Busters (AA, accessed 2004) enable the consumer to 

have almost perfect knowledge of prices within their area. This has created a highly competitive 

and sensitive market, with organisations employing various strategies to maximise profits. This 

sensitivity to petrol prices was fully borne out in the UK during August - September 2000 with the 

"Petrol Crisis" and the associated fuel protests that were precipitated by soaring fuel taxes. 

2.2.1 Structure of the Retail Petrol Market 

The petrol retailing market in the UK is tightly controlled by a small number of companies. The 

"major players" can be distinguished by a high degree of vertical integration, i. e. activity at all 
IAlthough a UK billion is a million million, the figure quoted here is a US billion, a thousand million (Source: 

OED). 
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stages of the petroleum supply chain, from exploration and drilling to extraction, pipelines, refin- 
ing and processing. The sale of petrol at either company-owned forecourts or franchise/licence 

agreements is the public face of these companies' operations. 
In 1999 - 2000 there were three "players" that dominated the UK petrol scene, Esso, BP and 

Shell (Table 2.1). Between them, they accounted for a combined share of 47% of volume sales. 
Texaco, Jet and Total/Fina/Elf formed a second tier within the market giving these five companies 
62% of the retail petrol market. In addition to the standard petrol retailers, supermarkets and 
hypermarkets have a 26% share of volume sales in 2000, compared to 20% in 1996. The remaining 
8% of the market was made up of smaller operators and independents. Of these, the most notable 

are Save and Q8, both with an estimated 1.5% of sales in 2000 (not tabulated), and Repsol and 
Murco, who both have I% (not tabulated). 

1996 % 1998 % 2000 % % 
Change 

ESSO 6.20 17 6.66 18 6.65 18 +7.3 
BP/Mobil 6.20 17 6.29 17 5.55 15 -10.5 
Shell 5.11 14 5.55 15 5.18 14 +1.4 
Texaco 2.55 7 2.99 8 2.96 8 +16.1 
Total/Fina/Elf - - - - 2.95 7 n/a 
Jet (Conoco) - - - - 1.48 4 n/a 
Supermarkets/ 7.29 20 8.14 22 9.61 26 +31.8 
Hypermarkets 
Others 9.12 25 7.40 20 2.96 8 -67.5 
Total 36.47 100 37.02 100 36.97 100 +1.4 

Table 2.1: Petrol and diesel retailers' brand shares in the UK, 1996 - 2000. Figures are in millions 
of litres. (Source: Mintel Intelligence Group Report, 2003). 

2.2.2 Components of Petrol Pump Prices 

There are several factors that control the price of petrol at the pump before any commercial pricing 

strategy is enacted. These include government tax and duty; the cost of petrol on the open market 
(crude oil prices and exchange rates) and the costs and profits of the wholesaler and retailer. The 

relative influences that these factors exert will be briefly reviewed in the following sections. 

Fuel Tax and Duty 

There are two purposes to the road fuel tax and duty in the UK. The first is an attempt to change 
travel behaviour i. e. reduce the amount that people use their cars in order to protect the environ- 
ment; the second is to raise revenue. In 1999-2000, fuel duties (excluding VAT) raised 22.3 billion 

pounds in the UK. This represented 6 per cent of total government revenue (HM Treasury, 2000). 
Together, duty and tax currently make up approximately 75 - 80% of the pump price. 



Cost of Petrol on the Open Market 

In the Competition Commission (1990) report, BP, Esso and Shell were all asked to comment 

on the relationship of the petrol pump price and internationally-traded Brent crude oil. Each 

company acknowledged that there was a strong relationship between the two (only BP said that 

this relationship was direct). Both Esso and Shell stated that the relationship was close but not 

exact being subject to supply and demand pressures, time-lags and other competitive forces at 

various stages of the supply chain. 
Quantifying this relationship between petrol prices and crude oil has been the focus of numer- 

ous studies. There is still no universal agreement on the precise relationship, but it is generally 

agreed that while an increase in crude oil prices quickly leads to an increase in petrol pump prices, 

a decrease in crude oil prices leads to a gradual decrease in petrol prices. This phenomenon is 

known as the "rockets and feathers" effect (Bacon, 1991). This effect will be examined in more 
detail in §2.5.2. 

Exchange Rates 

Crude oil is generally traded in US Dollars. The US Dollar/Pound Sterling exchange rate has 

varied between $1.40 = £1 and $1.67 = £1 since 1998. This variation alone would cause a 20% 

fluctuation in the pre-tax price of petrol in the UK when expressed in pence per litre. In times of 
fluctuation, the influence of exchange rates can therefore be considerable. 

Wholesaler and Retailer Costs 

Petrol retailing is an extremely competitive business. Breaking down a petrol price of 74.9p; 57p 

accounts for the duty and tax, 13.9p covers the cost of the product and the remaining 4p goes 

to the retailer, referred to as the gross margin (Mintel Intelligence Group Report, 2003). From 

this 4p, the wholesaler has to cover the costs of transporting the product from the refinery to the 

distribution terminal and storage. The retailer also has to meet such costs as running the site, 

employing staff and marketing. 

2.3 Retailer Behaviour 

The petrol industry is highly commercial with little published information detailing company 

strategies or profit margins. One of the central aims of this research is to build a model that 

can replicate the main processes and drivers of this system. This lack of information is a limitation 

that will be addressed at several stages throughout this thesis. 
However, there are two sources of published information that can be exploited. The first is the 

Competition Commission's (1990) report covering all aspects of the petroleum industry. Despite 

being published in 1991, this weighty document contains invaluable information on price setting, 

sensitivity and possible strategies that retailers employ. The second source is the recent research 
by Ning and Haining (2003). Part of this work involved surveying both retailers and consumers 

about their respective behaviour. 
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The following sections will use these two studies to provide a synopsis of retailer behaviour. 

Consumer behaviour will be reviewed in §2.4. 

2.3.1 Local Competitive Environment 

When questioning retailers about the most important factor in setting their prices, Ning and Rain- 

ing (2003) found that local competitor price levels were the most important influence. In a survey 

of 42 stations in and around Sheffield over 85% of stations said that they had one or more ref- 

erence stations for setting a price. For 83% of stations, this reference station was the nearest 

neighbour, normally located on the same road. A similar finding was made by the Competition 

Commission report. They found that 42%2 of petrol stations had competition located within 1/4 

mile; 60% had competition within 1/2 mile and of these stations, 82% said that they knew their 

nearest competitor's price. 
Examining price differences between neighbours (defined by a straight line distance) showed 

that in 60% of cases, the differences were less than Ip and in 82.7% of cases, differences were less 

than 2p per litre (Ning and Haining, 2003). Few stations had price differences of 3p and where 
these did occur, neighbouring stations were not located on the same road. 

Supermarket stations were found to take other supermarkets as their main reference. One site 

manager commented: 

"If in a 3-4 mile radius there was another supermarket, this would be the main refer- 

ence station. " (Site manager interview, Ning and Haining, 2003). 

Some multinationals consider supermarkets as a basic reference in price setting: 

"Esso stations aim to be within 2p per litre of Safeway. " (Site manager interview, 

Ning and Haining, 2003). 

However, if supermarkets are located at a distance, neither multinationals nor minors (smaller 

chains of stations and independents) consider their price in setting their own. 

2.3.2 Influence of Locality 

The location of a petrol station was identified by both studies as exerting a significant influence 

on price. For example, according to the Competition Commission's report, a typical rural station 
has an average throughput of I million litres per year. This is in contrast to 4 million litres at a 

station located on an average busy road site and 8 million litres at a busy supermarket. Stations 

with these lower throughputs require higher margins to cover operating costs such as increased 

delivery charges. This results in the setting of higher pump prices to recover overheads. 
The amount of throughput is directly related to the number of potential consumers that sta- 

tions have. Rural stations have a much smaller market than urban stations. Analysing potential 

consumers in urban areas, Ning and Haining (2003) found that supermarkets have the greatest 

number of potential consumers. Many of these consumers visit supermarket petrol stations as part 
2The sample size is not given. 
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of a "one-stop shop" or because of the incentives and discounts offered linked to their grocery 

purchase. As a result of this, supermarkets were found to have the lowest median price and a nar- 

rower price range than other stations. The median price of petrol stations on main roads (in urban 

areas) was found to be lower than those on minor roads. City centres were also found to have the 

narrowest price spread as most sites charged the same price. 

2.3.3 Price Setting 

For many brand name and franchised corporations, it is the parent company that is responsible for 

pricing on the forecourt. However, in the case of supermarkets, distributors have no say and the 

pricing decisions are taken by the head office. For example, the Morrisons supermarket chain buys 

its petrol from Shell, but prices are not influenced by the distributor: 

"Even if Shell's petrol price goes up, we would stick at the lower price. " (Site manager 
interview, Ning and Haining, 2003) 

The Competition Commission report questioned several petrol brands about price setting. BP 

commented that prices were determined by competition, the effectiveness of which was shown by 

the low levels of profitability earned. They added that: 

"... individual wholesalers find it difficult to raise their prices above the level set by 

market forces because to do so, would lead to a sharp loss of sales volume. No 

company wants to put prices up because of the potential sales loss. " 

Therefore, when prices were increased, there was a natural tendency to "hang onto prices" as 
the input costs (typically crude oil prices) fell away. This response was representative of all the 

stations questioned. 
However, neither of the resources surveyed contained any information on possible aggressive 

company strategies in pricing schemes. 

2.3.4 Price Sensitivity 

Price is obviously an important factor in determining sales volume and therefore profit. However, 

at what level would an increase or decrease in price at a competitor cause a station to also increase 

or decrease their price? Ning and Haining (2003) investigated this and the results are presented in 

Table 2.2. 

Price change (pence per litre) Not Total 
0.5 11.0 11.5 2.0 relevant 

Number responding to price increases 6 17 16 12 42 
Number responding to price decreases 7 15 17 12 42 

Table 2.2: Reactions to competitors' price increase or decrease per litre, (From Ning and Haining, 
2003). 
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From Table 2.2, it can be seen that most stations ignore a 0.5p per litre price difference and start 

responding to match the price increase when price differences reach approximately 1. Op per litre. 

A similar trend can be found in the downward shift in prices. Stations that selected "not relevant" 

can be divided into two categories; (1) supermarket stations that see themselves as "price leaders" 

offering the lowest price so other stations follow them; (2) franchised stations, where the site does 

not share any profit or bear any costs for a price increase or decrease. Site managers in these 

stations are not allowed to change prices without orders from the head office. 

Supermarkets and Loyalty Schemes 

Supermarkets are now a significant force in petrol and diesel retailing. In 2000, Tesco was the 

leading supermarket in terms of petrol station forecourts with 332 sites (in England and Wales), 

followed by Sainsbury's (223), Safeway (178) and Asda (146). Supermarkets have seen a gradual 
increase in market share as highlighted in Table 2.3. 

Year % Petrol % Diesel 
1996 21.8 15.4 
1997 22.7 16.7 
1998 24.0 17.5 
1999 25.6 18.7 

Table 2.3: Supermarket/hypermarket share of retail deliveries, by volume, 1996 - 1999 (Source: 
Department of Trade and Industry). 

Initially offering established branded forecourts, the establishment of "own-label" forecourts 

was accompanied with a marketing strategy that focused on undercutting the competition. This 

ploy was a dual success both attracting customers to purchase fuel and helping to expand sales 
for the supermarket. This resulted in the major players, for example Esso, BP and Shell respond- 
ing with enhanced loyalty schemes and price-matching policies, the most prominent of which 

was Esso's "Price Watch" 3 introduced in 1996. Table 2.4 highlights some of the current loyalty 

schemes offered by different supermarkets in response. 
The effectiveness of such schemes are beginning to decline, apparently driven by a desire to 

obtain the best price at the pump. This can be seen through the announcement of Asda to abandon 
its loyalty card scheme and concentrate on promoting lower fuel prices (Independent on Sunday, 

10th Feb, 2002). 

2.4 Consumer Behaviour 

Retailers aim to be as competitive as possible within their local area. The pricing level itself 

is dependent on external factors such as crude oil prices, type of station (e. g. multinational or 

supermarket) and location. The motivation behind this competitiveness is profit. This comes from 

consumers patronising a particular station. However, is a competitive price the main motivating 
factor for a consumer or do other factors come into consideration? 

3ESSO promise to match any competitor's price within 3 miles. 
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Place Scheme 
Asda No specific price scheme. Competitive prices in line 

with other supermarkets. 
Morrisons Earn 15 Morrisons' miles every full litre. Collect 

4995 miles, get £5 shopping vouchers (equivalent to 
saving of 1.5p per litre). 

Safeways Petrol Payback: Save 2p per litre when spend £20 
in-store; 5p when spend £50; 8p = £75; 12p = £100; 
20p = £150. 

Sainsburys Nectar card scheme; earn 1 nectar point for every 
litre of fuel bought. Vouchers (500 nectar points 
min) enable different rewards. 

Tesco Earn one clubcard point for every £1 spent on petrol. 
150 points = vouchers. 

Table 2.4: Examples of petrol incentive schemes operated at different supermarkets (Source: In- 
ternet survey, April 2003). 

2.4.1 Consumer Sensitivity 

Ning and Haining (2003) surveyed households in the Sheffield area and asked whether they 

thought that there was a difference in quality between brands. Only 20% replied that they be- 

lieved this to be the case. This leaves considerable scope for consumers to make decisions on 

where to buy petrol based on a range of other criteria. Factors that rated highly were price and 

convenience. The sensitivity of consumers was also tested. Households were asked to estimate 
the price difference per litre that would be necessary for them to switch to buying at a different 

station. 50% claimed to be sensitive to a 3p per litre or smaller differential (although the amount 

of this differential was not specified). 
This work raises an interesting point about consumer knowledge. To react to prices, consumers 

would have to have perfect knowledge of the prices within their locality. However Brannon (2003) 

highlights that as consumers are unable to search costlessly for the lowest price in a market, perfect 
knowledge is unlikely (see also Dudey, 1990). This statement is, to a degree, invalidated by the 

rise of internet sites such as the AA Petrol Busters. However perfect knowledge in this context 

assumes that each household has access to the internet and knowledge of the site. 

2.4.2 Consumer Petrol Purchasing 

Further work by Ning and Haining (2003) revealed that petrol was most frequently bought as 

part of a trip to work. Shopping trips and social or recreational trips also accounted for a large 

proportion of journeys where petrol was bought. Very few respondents regularly bought petrol 
on school trips or made special trips to buy petrol. When asked where consumers purchase their 

petrol, the most common answer was the station nearest the consumer's home. No figures were 
presented on the number of people who buy petrol at supermarkets and no comment was made 

about the possible influence of loyalty schemes. However, the work of Haining (1986) indicated 

that consumers do not show high levels of loyalty to particular brands. 
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2.5 Approaches to Modelling the Petrol Market 

The aim of the work presented here is to provide an understanding of the nature and scope of the 

methodologies used in current and previous research modelling the petrol market. Approaches 

can be divided into two broad areas; research that seeks to explain variations in price and studies 
concerned with analysing the impact of competition strategies. The following sections will provide 
an overview of both these areas using a mixture of theory and applications. Due to the considerable 
size of literature on spatial regression modelling and spatial competition, the following sections 

will be tightly focused on the petrol market. For detailed synopsis of spatial regression modelling 

and spatial competition, the reader is referred to Haining (1985); Norman (1986) and Greenhut 

et al. (1987). 

In addition, this work is not meant to be a comprehensive review of all aspects of petrol mod- 
elling and will not cover areas that are not directly relevant to this thesis. For example, high 

frequency cycles (whether there is a weekly or monthly variation within petrol prices) and de- 

mand models occupy a substantial amount of the literature and will only be briefly referred to. For 
further information on these areas, the reader is directed to Castanias and Johnson (1993), Noel 

(2002) and Eckert (2002,2003). 

2.5.1 Spatial Regression Modelling 

Spatial regression modelling is concerned with attempting to explain observed variations in price 
by seeking empirical relationships with other important variables such as crude oil price and pop- 
ulation density. The following sections will present an overview of spatial regression modelling 
focusing in particular on its applications to the retail petrol market. 

Early Work 

In early "spaceless" models, spatial price variation in integrated markets was often explained by 

transport cost differences (Takayama and Judge, 1964). For example, the work of Samuelson 
(1952) grouped buyers and sellers into regions (the only spatial concession), but attributed price 
differences to varying supply and demand conditions and transport costs between markets. Other 

reasons put forward within the literature to explain spatial price variation were market power of 
producers and imperfect information on the part of the consumers. 

Incorporating a spatial aspect allows individual buyers and sellers to occupy specific locations 
in bounded or unbounded (infinite) space. By taking this approach, sellers can locate in strategic 

places within the market and in relation to other sellers. Relationships between the market bound- 

ary and other sellers can then be defined in terms of either transport networks or straight line 
distances. As Fik and Mulligan (1991) highlight, these locations, for example, whether situated at 
the edge of the market or near other sellers, will have price implications. Consumers will vary both 
in their knowledge of the sellers (in terms of convenience and cost) and in their social-economic 
profile. Together, these different elements will characterise the geography of the market area and 
thus influence the magnitude and spatial distribution of price variations (Ning and Haining, 2003). 

There has been a considerable amount of work on spatial variation. Faminow and Benson 
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(1990) showed that evidence for market integration is affected as soon as the market is specified 

in spatial terms (where sellers compete only with near neighbours and where consumers consider 

only nearby sellers). Haining (1983a) constructed a supply-side model for spatial pricing in a 

market in which sellers only compete with near neighbours. This model showed how prices would 

vary spatially as a consequence. Sheppard et al. (1992) developed a model in which consumers had 

choice sets that underlay the inter-site competitive structure in the market. In a later development 

of this model, Haining et al. (1996) demonstrated how prices vary spatially under different profit 

objectives given different assumptions about the choice-set structure linking the sites. This choice 

set also reflected the road network of the urban area, an aspect of spatial competition also studied 

by Fik (1991a). 

Spatial price variation studies are dominated by empirical studies, the most common of which 

have focused on groceries (see Campbell and Chisholm, 1970; O'Farrell and Poole, 1972; Parker, 

1974). However, studying groceries can be complicated as consumers rarely buy just one product. 

This means that there can be complex trade-offs in both pricing and in what consumers purchase. 

When explaining price variation, it can be difficult to disentangle product inhomogeneity from 

effects associated with location and the local competitive environment of the retailer (Ning and 

Haining, 2003). One of the advantages of modelling the retail petrol market is that it is relatively 

simple. It is a single homogeneous product and thus does not exhibit any of the trade-offs seen in 

the grocery market. This homogeneity may also explain why, despite marketing efforts, consumers 

tend not to show high levels of loyalty4 (Haining, 1986). 

Applications to the Retail Petrol Market 

Almost all of the work examining price variations for petrol has stressed competitive factors. For 

example, Claycamp (1966) showed the importance of local competition effects in a metropolitan 

area of southeastern USA. Slade (1992) presented similar evidence from his study of petrol prices 
in Vancouver. Other studies exploring the effects of local competition and price wars on price 

setting include those by Allvine and Patterson (1972) and Schendel and Balestra (1969). More 

recently, Haining (1983b) fitted a regression model to petrol price data in southwest Sheffield 

during an intensive price war and Ning and Haining (2003) examined supply and demand side 

variables in interdependent retail petrol markets. The study of Haining (1983b) and a similar 

study by Plummer et al. (1998) on St Cloud Minnesota found site and location variables were 

important. Prices were lowest at sites that concentrated only on selling petrol, had a relatively 
large number of pumps, sold non-branded petrol and enjoyed a high level of accessibility within 

the urban area. 
Clustering of firms near the centre of a bounded market is often found wherever consumers 

have limited information on prices, where the acquisition of such information is not costless, and 

where competition is not intense (Dudey, 1990; Economides, 1993). This characterises many 

types of retailing activity in urban areas and has implications for spatial price variation. In the 

context of grocery retail pricing, Fik (1988) remarks 

4Although there is no evidence, it is likely that people have preferences for supermarkets due to in-store discounts 
linked to food purchases. 
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"... spatial structure and firm density are the predominant forces which shape the ge- 

ography of price. " 

The more isolated a retailer, the higher the price. This is presumably because the retailer is 

providing convenience and overall lower costs to a geographically defined subset of consumers. 
Fik (1991b) observed that the clustering of retailers promotes lower overall prices and that price 

patterns reflect the relative location of firms and the distance to the nearest and next-nearest rivals. 
The larger the number of intermediate sellers between any two sellers the weaker the linkage 

between their prices indicating more than a simple distance decay effect in the structure of spatial 

competition (Mulligan, 1989). When assessing maps of petrol retailers Ning and Haining (2003) 

found that there are typically tight clusters (at intersections of roads), strings (along principal 

routes) and isolated sites (on side roads). This suggests that petrol retailing only partially meets the 

conditions that induce clustering within an urban market. When exploring spatial price variation, 

the petrol market can be viewed as having an added spatial complexity. 

2.5.2 Temporal Price Variations 

In addition to examining spatial variations, there has also been a focus on the variations in the 

petrol market over time due to a variety of internal and external factors. Some of these factors 

have already been highlighted in §2.2.2, for example fuel tax, duty and crude oil prices. Exam- 

ining pricing asymmetries over time has formed a significant part of the work on temporal price 

variations. According to Galoetti et al. (2003), these studies generally differ in one or more of the 
following aspects; the country under scrutiny (most often the UK and USA); the time frequency 

and period of data used; the focus on wholesale and retail gas prices or oil and gasoline prices and 
finally the dynamic model employed in the empirical investigation. 

The hypothesis that petrol prices increase at a faster rate than they decrease in times of tur- 
bulence within international crude oil markets was first investigated by Bacon (1991) on the UK 

market and termed the "rockets and feathers" effect. In every recurring period of tension in the 

price of oil, there has been renewed interest about the level of petrol prices, the magnitude of its 

cost components (including retailers' margin), and the taxes that contribute to keep those prices 
high and sluggish. The debate centres on the fact that petrol prices do not decrease at the same 

rate as crude oil prices. 
Manning (1991) further investigated this effect by assessing the impact of changes in oil prices 

on UK petrol retail prices. The results showed some evidence of this phenomenon. Karrenbrock 

(1991) examined the empirical relationship between the wholesale and retail petrol prices whilst 
Shin (1994) related the average wholesale price of oil products to the price of oil; both studies 
based on data from the US market. More recent studies have focused on the development of the 
dynamic model and the incorporation of improved data. Borenstein and Cameron (1997) used 
weekly data to confirm that retail petrol prices react more quickly to increases in crude oil prices 
than to decreases. Reilly and Witt (1998) re-investigated the UK market emphasising the role 

of the $-£ exchange rate and potential asymmetries associated with it. Evidence was found to 

confirm a positive relationship. 
Mitchell et al. (2000) took a slightly unusual perspective by investigating the effects of sea- 
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son, holiday and the weather on petrol prices. The results were intriguing; February to May 

had the lowest prices, no apparent holiday effect was distinguished and a relationship between 

mood/weather and petrol buying was apparent in two of the four cities investigated. Unfortu- 

nately, the degree of influence that inflation may impose is not investigated. 

The most recent work on this area was undertaken by Galoetti et al. (2003). His work differed 

from those above by using comparable data to assess different international markets; application 

of a suitable dynamic regression model allowed distinction between short-lived variations and 

asymmetries. Finally, unlike Reilly and Witt (1998), the exchange rate was explicitly accounted 
for. The results found overwhelmingly that the rockets and feathers effect dominates the price 

adjustment mechanism of petrol markets in many European countries. 
The models referred to above are all empirically based using mean price, not variance and dis- 

regarding spatial effects. The work of Reilly and Witt (1998) is representative of such approaches. 
This model was developed for examining the relationship between the net retail price, crude oil 

price and exchange rate. In its simplest form it can be expressed as: 

Opt = a+ßldcXACI+020cr+ß3dxxAxr+ 

04AXI +YlPr-I +72Cr-I +Y3xr-I +19+£r (2.1) 

where: 

"C is the crude oil price. 

"P is the UK retail petrol price. 

"X is the dollar/sterling exchange rate. 

"0 is the first difference operator. 

" et is an error term. 

The small letters denote the natural log of the variable with a capital letter, e. g. c= log(C). The 

set of l coefficients gives information on the short-run effects of crude oil prices, the exchange 

rates and the net retail price of petrol. Long terms effects are monitored by y parameters. Two 

binary variables, dc and dx, are defined to be I when the growth in related variable c or x is 

positive and 0 when it is negative. The coefficients are found by fitting the equation to the data. If 

the coefficients (i t and ß3 are found to be non-zero then there is an asymmetry in the price changes. 
The term /a is a deterministic time trend included to capture the effects of other costs on the retail 

petrol price. t is the time and y is a constant. 
The research on temporal price variations serves to emphasise an important point: successful 

modelling of petrol prices cannot be undertaken in isolation (i. e. by just looking at the relationship 
between two variables); account must be taken of both internal and external factors. The retail 

petrol market is complex and for accurate modelling, account must also be taken of other factors, 

for example, company strategies, effects of geography and consumer behaviour. 
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2.5.3 Spatial Competition 

Spatial competition can be defined as the attempts of retailers within a geographical area to be 

more successful (by cheaper prices, marketing strategies etc) than their competitors in the local 

neighbourhood. The study of spatial competition has attracted many researchers since Hotelling 

(1929) published his much quoted paper. The various modifications and extensions of the orig- 
inal model have introduced alternative cost structures (d'Aspremont et al., 1979; Economides, 

1986), examined circular and two dimensional markets (Salop, 1979; Tabuchi, 1994; Veendorp 

and Majee, 1995), markets with non-uniform customer distributions (Tabuchi and Thisse, 1994) 

and markets with multiple firms (Eaton and Lipsey, 1975; De Palma et al., 1987). Except for a 
few papers (e. g. Precott and Visscher, 1977; Neven, 1987; Gupta, 1992), most studies on spatial 

competition assumed that firms choose locations simultaneously, that locations can be changed in- 

stantly and with little cost and that market demand is fixed, thus ignoring some important strategic 
dimensions of the location decision. 

A vast amount of the reviewed literature has been directed at location analysis, choosing sites 

and suitable strategies to optimise profits (see Tabuchi, 1999; Zhou and Vertinsky, 2001; de Frutos 

et al., 2002; Brekke and Straume, 2004; Camacho-Cuena et al., 2004). These approaches use 
idealised environments and are typical of many of the models used within spatial competition. For 

example, they have uniform pricing, consumer distribution and demand. The environment that 

they compete within is normally a derivative of Hotelling's linear city (competitors equally spaced 

along a line) or Salop's (1979) circular market (competitors equally spaced around a circle). The 

work of Zhou and Vertinsky (2001) is unusual in considering some dynamic aspects by looking 

at a growing market where demand increases with time. Although this is an advancement, this 
is still a highly idealised problem. Many of these studies are also concerned with the wholesale 

market (one company selling to another) rather than the retail market (one company selling to 

many individual buyers). 

Research on spatial competition within retail markets generally differs in scope, but works are 
linked by the following two issues; what determines the equilibrium pattern of locations of firms 

and what are the properties of the equilibrium prices if there is spatial competition between firms? 

Two conclusions are generally reached; retail shops have a tendency to be densely located in areas 

with a high population density and equilibrium prices tend to be lower if there is a high density of 

sellers (Fik, 1991b; Clemenz and Gugler, 2002). 

2.5.4 Spatial Competition and the Retail Petrol Market 

In an attempt to place the spatial modelling of prices onto a sounder theoretical basis, concepts 
have been borrowed from economics. These ideas provide a useful framework within which to 
begin modelling retail markets. For example, economists usually begin an analysis of a particular 
market by assuming that it resembles the standard, perfectly competitive model. Here the goods 
sold are homogeneous, there are many atomistically small buyers and sellers who have perfect 
price information, and prices are perfectly flexible. The theoretical implications of a perfectly 

competitive market are that firms will earn no economic profit and operate at an efficient level 

(Greenhut et al., 1987). 
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No market contains all of the characteristics of the perfectly competitive ideal (d' Aspremont, 

2000). The retail petrol market lacks several of these characteristics. For example, while there are 

many different buyers of petrol, there are relatively few sellers in a given market. Each station does 

have some degree of market power, meaning that it is not constrained to charge the same price as 

its rivals. While the petrol is itself largely homogeneous, firms can distinguish their product in 

other ways by offering a superior location or services such as cheap car washes or location next to 

a supermarket. This allows each seller of petrol a modicum of market control. 
An important feature of spatial competition is the assumption that each consumer will make 

purchases at the shop where total costs (consisting of price and transport costs) are the smallest. 

This is also based on the assumption that the consumer has perfect knowledge. Despite adver- 

tising boards and postings, neither customers nor retailers ever have perfect information at any 

time. Brannon (2003) highlights that consumers cannot costlessly search for the lowest price in a 

market5 and firms also expend resources trying to find their competitors prices as well. 

Consequently, each shop has a local monopoly whose geographical size depends on the prices 

charged by the nearest competitors and the transport costs consumers have to incur at different 

shops in a given area (Clemenz and Gugler, 2002; Ning and Haining, 2003). With increasing dis- 

tance from competitors, petrol stations are able to charge higher prices (Competition Commission 

Report, 1990). These higher prices are also dependent on the availability of a local market. This 

trend is particularly evident in rural areas. 
Brannon (2003) highlights that most empirical research undertaken on petrol markets suggests 

that the primary problem in the market is not predatory pricing, but rather a propensity towards 

price collusion. Borenstein and Shepard (1993) and Borenstein and Cameron (1997) suggest that 

in an oligopolistic setting where there is uncertainty about competitors' costs, prices may be sticky 
downwards because retailers engage in focal point pricing. This argument is a refinement of 

the "trigger price" model of oligopolistic coordination proposed by Green and Porter (1984). In 

response to a negative cost shock, a firm may be reluctant to change its price before its competitors 
have, implying that the old price offers a focal point. Retailers are not assumed to exercise similar 

restraint after a positive shock. This last mode of behaviour is described as the "rockets and 
feathers" effect (described earlier in §2.5.2). 

Modelling the Retail Petrol Market 

There are comparatively few studies concerned with modelling the petrol market. One of the 

exceptions to this comes from the work of Sheppard et al. (1998). This study exemplifies how 

spatial competition methods use highly idealised conditions. Sheppard et al. (1998) empirically 

experimented with different strategies for attaining profit. Firms were uniformly distributed, each 

with a sub-market (the part of the city which is the nearest to them). Demand was uniform and the 

share that each firm received dependent on their pricing relative to their neighbours or the other 
firms within their market. Using this situation, Sheppard et al. (1998) assigned different strategies 
for maximising the rate of profit or the total profit. The results showed that maximising the rate of 

5Development of web-based price awareness sites for example the AA Petrol Busters (AA, accessed 2004), partly 
invalidate this statement. Customers are able to search within their locality for the cheapest petrol at little expense or 
inconvenience to themselves. 
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profit gave better results than attempting to maximise the total profit. 
This approach carries several criticisms. No account was taken of any geographical influences, 

all the stations operate the same rules and the market is assumed uniform. It would be impossible 

to apply a model this idealised to a real market. 
Another example of using spatial competition to model the petrol market comes from the 

work of Chan et al. (2003). Chan et al. examined the location of petrol stations and pricing 

within Singapore using two empirical models. The island was divided into grids and the potential 
demand (based on factors such as population, median income and number of cars) was calculated 

using one model. Stations were located where the demand was greatest. The various parameters 

were adjusted so the location of the predicted stations matched the actual station locations. The 

second model assessed the market share. The amount each station sold was dependent on various 
factors such as distance between stations, market conditions and price. To set the price, one of 
two possible profit strategies was used. The first strategy allowed each station to maximise its 

own profit, the second enabled a chain of petrol stations to maximise their profits. The various 

parameters for different strategies were estimated based on the real data. The conclusion reached 

was that market share is positively influenced by price, location and number of pumps. 
The models presented by Chan et al. (2003) and Sheppard et al. (1998) are both steady state 

models. Both make assumptions about the probabilistic distribution of market share based on 
factors such as price and distance and use this to calculate profit levels. As a result of this approach, 
both models are specific to a certain set of locations and markets. They can be used to model the 
impact of a station closing, but could not be applied to dynamic real data scenarios, for example 
the consequences of a rapid increase in crude oil prices. 

2.5.5 Artificial Intelligent Approaches to Petrol Price Modelling 

The petroleum industry has been amongst one of the first to use Al techniques, for example DIP- 

METER ADVISOR and PROSPECTOR are often mentioned as being examples of early classic 

systems (Alvarado et al., 2004). The focus of these systems are strategic with multi-agent architec- 
tures being found in applications where distributed decision-making is advantageous, for example 
flexible manufacturing control, planning and scheduling, diagnosis, process design, modelling and 
diagnosis and supply chain management (Braunschweig and Gani, 2002; Sheremetov et al., 2004; 

Sherstuk, 2004). Of the literature surveyed, there was no published work on the application of 

artificial intelligence to modelling any aspect of the retail petrol market. 
Several conclusions can be drawn from this. The focus of many of the empirical studies was 

to quantify the relationship between petrol price and one other variable. There are no attempts 
to model the processes surrounding price setting or interaction between stations in a competitive 

neighbourhood. This tight focus in empirical studies could simply be a result of a lack of detailed 

data and suitable computing resources. Whatever the reason for this focus, both data and compu- 
tational resources have greatly improved and there is now the opportunity to use new techniques 

to explore previously barren areas. 
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2.6 Conclusion 

The purpose of this chapter has been to present an overview of the retail petrol market and demon- 

strate how previous research has attempted to model it. A detailed synopsis has been supplied on 
the structure of the market, the main players and the components that contribute towards petrol 

prices. With information drawn from Ning and Haining (2003) and the Competition Commission 

(1990) report on consumer and retailer behaviour, the petrol market can be viewed as being a com- 

plex system with many processes combining at different spatial and temporal levels towards the 
final price. The information gathered provides a firm basis on which to construct a model that is 

suitable for modelling the intricacies of petrol pricing. 
Current approaches taken towards modelling the petrol price market were reviewed. These 

were presented in two main sections, spatial regression modelling and spatial competition. The 

limitations associated with each approach were neatly summarised by Plummer (1996) who com- 

mented that: 

"Typically, these models are largely confined to aggregate inter-regional and inter- 

sectoral long-run analyses or are limited to a range of institutional structures in which 
firms are considered to act as if they were independent entities operating in spatial 

markets". 

For example, in spatial regression modelling, detailed geography and customer behaviour are gen- 

erally disregarded, whilst the models used in spatial competition are highly idealised with uniform 

pricing, demand and consumer distribution. None of the approaches reviewed sought to model 
the full complexities of the system, for example temporal asymmetries in pricing were researched 

with no account of geographical factors. 

Such models as those reviewed are mathematically based and as such present certain general 

problems (Pave, 1994). For example, empirical models link up parameters that are all on the 

same scale of analysis. It is not possible to make the behaviours executed at the `micro' level 

correspond with the global variables measured at the `global' level. Equations used within these 

models are generally complex, containing large numbers of parameters that are both difficult to 

estimate and lacking realism. These models also tend to be over calibrated to the degree that they 

are essentially large regression equations with more meaning in the coefficients than the variables. 
By their nature, mathematical models only consider quantitative parameters. Valuable information 

can be input to a model by use of qualitative data. 

Finally, it is difficult to take into account the actions of individuals and therefore the modifica- 
tions to the environment which results from their behaviour. As Ferber (1999) highlights, 

"If we consider actions only in terms of their measurable consequences at the global 
level, or of their probability of appearance, it will be difficult to explain phenomena 
emerging from the interaction of these individual behaviours, in particular all those 

relating to intra- and inter-specific cooperation. " 

Retail markets are extremely important, but economists have few practical tools for analysing 
the way dispersed buyers and sellers affect the properties of markets. There is a need to both 
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improve and extend current approaches if the retail petrol price market is to be successfully mod- 
elled. An alternative technique that will hopefully rectify many of the problems highlighted will 
be introduced in Chapter 3. 
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Chapter 3 

Agent-Based Systems 

3.1 Introduction 

Chapter 2 presented an overview of the petrol price market. In particular the characteristics of the 

market were described along with a review of current modelling approaches. The conclusion was 
drawn that the retail petrol market is a complex system with various parameters exerting different 

levels of influence. None of the research reviewed took account of this, rather the emphasis was on 

modelling the relationship between petrol prices and one other variable, normally crude oil prices. 
Although the research of Ning and Haining (2003) identified spatial factors as being an important 

part in determining petrol pricing, almost none of the models took this into account. The empirical 
basis of many of these models prohibits individual stations being modelled. This means that the 
impact of different pricing strategies at different geographical scales cannot not be assessed. 

Chapter 2 ended with a call for a different modelling perspective for the petrol price market 
that would rectify the limitations of previous empirically-based approaches. There are a number 

of software paradigms that are available for modelling complex systems. These include object- 

orientation (Booch, 1994) and component-ware (Szyperski, 1998). However, when it comes to 

modelling complex systems as typified by the petrol market, they fall short in two ways. The re- 
lationships between computational entities are too rigidly defined and there are insufficient mech- 

anisms available for representing the systems' inherent organisational structures (see Jennings, 

2000, for further details). 

One technique which avoids many of these problems is the use of agents. Agents are a rela- 
tively new paradigm for developing software applications. The origins of the concept evolved from 

the Concurrent Actor model of Hewitt (1977). This model proposed the concept of self-contained 
"actors" that communicated with other concurrently executing actors through messages. Their vast 

potential in designing and building complex systems (Jennings, 2000) coupled with the increase 
in computing power and the advantages that they offer over traditional approaches has resulted 
in agent-based models becoming an increasingly popular and powerful tool within geographical 
applications (O'Sullivan and Haklay, 2000). Current applications can be found within the scope of 
commercial (shopbots, Greenwald and Stone, 2001), industrial (air traffic control systems, Kinny 

and Georgeff, 1996) and geographic applications (Transims, (Los Alamos National Laboratory, 

accessed 2004) and Sprawlsim, (Torrens, accessed 2004)). This section presents a brief overview 
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of the nature of agents, their suitability for modelling complex systems and a brief review of cur- 
rent agent applications. 

3.2 Definition 

There is no universally agreed definition of an agent (see Franklin and Graesser, 1996, for addi- 
tional discussion) with researchers continually debating whether definition should be by an agent's 
application or environment (Goodwin and Wright, 1993; Brenner et al., 1998). With an ever- 
increasing list of agents appearing (Nwana, 1996), the most useful characterisation comes from 

Wooldridge and Jennings (1997): 

"An agent is an encapsulated computer system that is situated in some environment 
and that is capable of flexible, autonomous action in that environment in order to meet 
its design objectives. " 

Autonomy is a fundamental notion for agents (Castelfranchi, 2001). All agents are inherently 

endowed with autonomy (Ferber, 1999). Autonomy allows agents to function as an indepen- 

dent unit performing a variety of actions necessary to achieve its objectives whilst responding to 

changes in both other agents and its environment (Castelfranchi, 2001; Roozemond, 2001). This 

is extremely useful as it allows the agents to take into account local and updated information 

providing them a firmer basis on which to make future decisions. 
Jennings et al. (1998) widened Wooldridge's definition to include the following characteristics: 

- Social ability: communication with other agents. 

- Reactivity: perceiving their environment and reacting to changes in it. 

- Proactiveness: capability to exhibit goal-directed behaviour by taking the initiative. 

These characteristics, along with the definition of Wooldridge and Jennings (1997) empha- 
sising autonomy and flexibility, provides a set of attributes that should be present within a single 
software entity to provide the power of the agent paradigm. They distinguish agent systems from 

related, and often integrated, software paradigms such as object-oriented systems, distributed sys- 
tems, and expert systems (see Jennings, 2000, for a discussion). This is not to say that this list 
is exclusive; within an application each agent could potentially have a different set of attributes 
but would contain the essential characteristics outlined by Wooldridge and Jennings above. How- 

ever, some agents may have additional characteristics and for certain types of applications, some 
attributes will be more important than others (Jennings et al., 1998). This means that there can be 

many different types of agents within one simulation. 

3.3 Agent Architectures 

An agent architecture is a particular methodology for building agent systems that specifies how 

agents may be decomposed into component modules, and how these modules interact with their 

environment via sensory input (Roozemond, 2001). This definition differs from the architecture 
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of a collection of agents where the focus is on the communication, coordination and cooperation 
between agents. The most common architecture used is a Multi-Agent System (MAS) (see Stone 

and Veloso, 1998; Ferber, 1999, for a discussion of other architectures). MAS are concerned with 
the behaviour of agents aiming at solving a given problem (Jennings, 2000). MAS can be defined 

as a loosely coupled network of problem solvers that work together to solve problems that are 
beyond the individual capabilities or knowledge of each problem solver (Sen et al., 1998). These 

problem solver agents are autonomous and may be heterogeneous in nature. 
MAS have several defining characteristics. Each agent has incomplete information, or capa- 

bilities for solving the problem (i. e. each agent has a limited viewpoint), there is usually no global 

system control, data is decentralised and computation is asynchronous. In addition, as Tsvetovat 

and Carley (2002) have highlighted, these architectures inherently possess the following properties 

that are invaluable in simulating complex systems: 

- Spatial realism: Many artificial intelligence (AI) based simulations are built on the concept 

of agents or cellular automata operating on a grid of a specified shape. Interactions are based 

on the concept of proximity, defined by distance between agents on the grid. However, the 

choice of grid shape and type of neighbourhood is often arbitrary and often does not carry 

any recognition of realism. Within MAS the agents are governed by the formal structure of 

the organisation and the agents' beliefs about the informal structure. This allows modelling 

of ideas and concepts to be based on what is observed in reality. 

- Temporal realism: The majority of simulations are synchronous - based on the idea of time 

periods and "turn-taking". This provides an adequate approximation of simple interactions, 

but does not model simulations of protracted interactions. More realistically, real world 
interactions are of an asynchronous nature. MAS structures allow this behaviour. 

- Information flow realism: In MAS, agents do not have perfect knowledge about the world. 
The way for them to obtain knowledge is to ask other agents - or obtain the information 

via an exchange interaction. This type of behaviour is especially important in a simulation 

where the agents are competitive. 

- Task realism: To be successful in modelling a complex system and completing an as- 

signed task, the MAS must accurately represent the processes present in the real system. In 

modelling emergent phenomena such as market behaviour, a simulation environment that 

contains large numbers of agents is required. If the agents are too "simple", not possessing 

enough knowledge of processes within the system, they will not be able to replicate the 

observed behaviour. 

Using a MAS architecture brings the advantages of robustness, efficiency and the ability to solve 

problems in which data, expertise, or control is distributed (Jennings, 2000). This is of particular 

use within applications that are geographical (i. e. spatially distributed) in nature. 
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3.4 Interactions 

Using an agent perspective requires multiple agents to represent the decentralised nature of the 

problem. This requires interaction, either to achieve the objectives or manage dependencies that 

ensue from being in a common environment (Jennings, 2000; Castelfranchi, 2001). Interactions 

develop out of a series of actions whose consequences in turn have an influence on the future 

behaviour of the agents (Ferber, 1999). These interactions can range from simple information 

exchanges to cooperation, coordination and negotiation in order to arrange independent activities 

and are a central feature of an agent (Batty et al., 2003). There are numerous ways in which inter- 

actions can be organised, for example message-passing systems and blackboards (see Haverkamp 

and Gauch, 1998; Ferber, 1999, for a detailed discussion). Implementation of these organisations 
is dependent on the application under consideration. Agents can simply operate by passing or 

requesting information between themselves as required. 
Jennings (2000) conceptualises these interactions as taking place at the knowledge level where 

the interactions form some sort of passing of information. As these interactions form part of 

some wider goal, there is typically some underpinning organisational context between them which 
defines the nature of their relationship and consequently their behaviour (Cavezzali and Rabino, 

2003). In many cases these relationships are subject to ongoing change. The social interaction be- 

tween agents means that existing relationships evolve and new relations are created. This flexibil- 

ity and partial control is quite different from hard-wired engineering that can be found in non-agent 

approaches. 

3.5 Agent Behaviour 

Each agent in an agent architecture has internal states and behavioural rules. The internal state 

could relate to variables associated with the agent, for example, "I am thirsty" while the be- 

havioural rules simply dictate the procedure of behaviour to be taken e. g. "I am thirsty. Go to 
the tap, fill up a glass of water and drink it". Some of these states can be fixed over the life of the 

agent while others change through interaction with other agents or with the external environment 
(Epstein, 1996). This allows many different systems to be represented. For example, shopbots 

are electronic agents whose primary function is to search for information on products and mer- 

chants on the Internet (Kephart et al., 2000), Doran (2003) created agents with beliefs to model 
the interaction of groups with different religious views and Axelrod and Scott Bennett (1997) used 
agents to examine cooperation and competition to determine which nations would aggregate into 

alliances. 
Additionally, agents can simply be the facilitators of decisions made by other models or use 

information from other models to help inform their decision. For example, Sprawlsim (Torrens, 

accessed 2004) was partly developed as a MAS to help researchers and public planners experiment 
with ideas about suburban sprawl. The model is built in a hybrid fashion; top-down dynamics are 
handled by traditional aggregate land-use and transportation models while bottom-up dynamics 

are simulated with cellular automata (for urban infrastructure) and MAS (representing population 
dynamics). Beltratti et al. (1997) constructed an agent-based model for market simulation that 
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used artificial neural networks to inform the agents about the state of the market. The research of 
Parsons and Wooldridge (2002) focused on using game theory to allow the agents to make the best 

decision based on information available to it. 

Giving agents the ability to learn allows them to modify their behaviour and maintain their 

performance in a dynamic environment. Learning can be achieved through symbolic (rule based) 

or sub-symbolic (connectionist based) mechanisms that define how and what they learn. If an 

agent exists in a dynamic environment, or is tasked with learning concepts, it may be necessary 
for the agent to modify its learning behaviour in order to maintain its performance. The work of 
Holland and Miller (1991) on modelling the stock market emphasised the importance of allowing 

agents to learn. They used genetic algorithms and classifier systems to generate the best possible 

strategies for the agents to take. This approach was also taken by Palmer (1994). 

3.6 Environments 

As the definition of Wooldridge and Jennings (1997) states, agents are situated in some sort of 

environment. There are many types of environment ranging from distributed to highly centralised 
(Ferber, 1999) and just as there can be many different types of agent in a simulation, there can 

also be many environments (Batty and Jiang, 1999). Russell and Norvig (1995) suggested the 

following environmental properties: 

- Accessible v inaccessible: Accessible environments are where the agents obtain current 
information about the environment. Most real-world environments (physical world and the 
Internet), are not accessible in this sense. 

- Deterministic v non-deterministic: A deterministic environment is one where any action 
has a single guaranteed effect; there is no uncertainty about the state that will result from 

performing an action. 

- Static v dynamic: Static environments are assumed to remain unchanged, except by the 

performance of the agent. With dynamic environments, processes other than the agent con- 
trol the outcome. 

- Discrete v continuous: Discrete environments have a fixed number of actions and percep- 
tions within it. 

It is simpler to construct an agent if the environment is accessible, the quality of the agents 
depends on the quality of the information available. 

The non-deterministic environment captures several important aspects of environment. Firstly, 

agents have a limited sphere of influence (partial control over their environment) and secondly, 

actions performed by agents are done with the aim to bring about some desired state of affairs. 
Non-determinism captures the fact that some agents can fail. Almost all realistic environments are 

non-deterministic because of their complexity. 
Dynamic environments have two important properties for agents. An agent trying to decide 

on a course of action at time tl cannot assume that the environment is the same as it was at an 
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earlier time, to. Even if the state of the agent is the same at both times the decision on a course 
of action may be different because of the different environment. This means that for an agent 
to perform an appropriate action, it must perform information gathering actions to determine the 

state of the environment. Wooldridge (2002) argues that static environments are easier to design 
for because the agents only need to perform information gathering once. If the information that 

an agent gathers is correct and it correctly understands the effects of its actions, it can accurately 
predict the effects of its actions. In a static environment, the agent never needs to worry about 
coordinating or synchronising its actions with other processes. 

Discrete environments are seen to be easier to design agents for than continuous environments. 
This is for several reasons; digital computers are discrete-state systems, they can simulate contin- 

uous systems, but have some degree of mismatch - information that a discrete state agent uses in 

order to select an action in a continuous environment will be made on the basis of information that 
is inherently an approximation. 

3.7 Suitability for Modelling Complex Systems 

A crucial aspect of any research design is using the most appropriate model for the problem. There 

can be many different options, but within software design Jennings (2000) outlines that the most 

powerful abstractions are: 

"those that minimise the semantic distance between the units of analysis that are in- 

tuitively used to conceptualise the problem and the constructs present in the solution 
paradigm" 

Of course, the degree of conceptualisation will depend on the complexity of the system under 

examination. 
Agent-orientated approaches advocate the decomposition of problems into small components. 

Decomposition is a natural metaphor for real complex systems that are always distributed and have 

multiple loci of control (Meyer, 1988). Agents are autonomous, they know when they should be 

acting and when they should update their state. This self-awareness reduces control complexity 

since the system's control "know-how" is taken from a centralised repository and localised in- 

side each individual problem solving component (Jennings, 2000). Additionally, as decisions are 
made by the agents about what actions should be performed, this allows decision making to be 

responsive to the agent's actual state of affairs, rather than some external entity's perception of 
this state. 

The retail petrol market was introduced in Chapter 2. This system can be viewed as being 

complex. In simplistic terms, changes in petrol prices at a local level are influenced by location 

and number of competitors and amount of custom. At a regional or national level, influences such 
as taxation and crude oil prices become significant. Company policies for large chains of stations, 
for example Esso, are also likely to act at this level. All these factors interact to form the final 

price. 
This type of system lends itself to being represented by an agent structure. As Batty and Jiang 

(1999) comment, 
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"agent-based simulation is perhaps most appropriate where local spatial operations 

are the focus" 

This is then particularly appropriate for the petrol pricing market where the presence of the 
local competitive environment (see Chapter 2) appears to be a driving factor. Jennings (2000) 

emphasises this strong relationship between "notions of subsystems and agent organisations". The 

agent structure is concerned with the interaction of a number of components and their role in 

solving the problem. Complex systems also involve changing relationships between different 

parts of the system; this requires that various components are treated as a single conceptual unit. 
Using a distributed approach allows individual areas of expertise to be encoded into particular 

agents, thus modelling the real-world problem in an "intuitive, modular and therefore expandable 

manner" (Anumba et al., 2002). An agent-mindset provides a suitable abstraction for managing 

and representing organisational relationships. 

3.8 Potential Drawbacks 

Agent-based systems have a great deal to offer the modelling of complex real-world systems such 

as the retail petrol market. However, the nature of the agent paradigm leads to a number of prob- 
lems that are common to all agent-based applications. 

Firstly, there may be no overall system controller (Jennings et al., 1995). An agent based 

solution may not be appropriate for domains where global constraints have to be maintained, for 

example, in domains where a real-time response must be guaranteed. Secondly, there are no global 

perspectives. This is due to an agent's action being determined by its local state. However, since in 

almost any realistic agent system, complete global knowledge is not a possibility, this may mean 
that agents make globally sub-optimal decisions. 

Decisions about the number, pattern and timing of interactions depend on a complex interplay 

of the agent's internal state. For example, the agent's perception of the environment and organ- 
isational context that exists when the decision is made. A combination of these factors makes it 
difficult to predict the outcomes of the behaviour. This relates closely to the degree of variability 
that the agent may request and what the result is; the nature and outcome of an interaction can- 

not be determined at the onset. Another source of unpredictability in agent-orientated systems is 

due to emergent behaviour. The end behaviour of agents cannot be deconstructed in terms of the 
behaviour of the individual components (Ferber, 1999). 

However, depending on the application, some of these disadvantages can be avoided by using 
interaction protocols. These can include mechanisms such as game theory, whose properties can 
be formally analysed by adopting rigid and preset organisational structures. The aim of this type 

of procedure is to reduce the unpredictability of the system. However, the drawback is that the 

power of the agent based approach becomes limited (Jennings, 2000). 

3.9 Application Domains 

Agents are autonomous entities that can act independently or with other agents depending on their 
task. They can therefore encapsulate a wide variety of entities from humans to robots to software 
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agents (Batty and Jiang, 1999). This is reflected in the variety of current agent applications. Many 

examples can be found including air traffic control (Kinny and Georgeff, 1996), planning and 

scheduling (Sheremetov et al., 2004) and creating special effects in the film industry, for example 
the Massive program (Massive Ltd, accessed 2004) used to generate battles in the Lord of the 
Rings films. 

The following sections will provide an overview of some of the current applications within 

geographical and economic research areas. 

3.9.1 Geographical 

The use of agent-based systems in geographical applications is ever increasing. Unlike the earlier 

generation of quantitative models in geography (for example spatial interaction models), software 
development is guiding agent formulation (Batty and Jiang, 1999). There has been, and is still 

ongoing, a considerable effort to provide easy to use software platforms. Tobias and Hofmann 

(2004) critiqued numerous platforms and produced a list of four that they felt were sufficiently 

optimised towards social science applications. These platforms are RePast (University of Chicago 

Social Science Research Computing, accessed 2003), SWARM (Swarm development group, ac- 

cessed 2003), Quicksilver (Burse, accessed 2003) and VSEit (Brassel, accessed 2003). Each of 

these platforms allowed agents to be modelled as free and complex objects (for other details on 

selection criteria see Tobias and Hofmann, 2004). However, despite the increasing usability of 
these systems, many applications use custom built agent-systems. This is partly due to the ab- 

sence of one widely accepted platform and the difficulties associated with customisation for the 

requirements of different applications. 
The main bulk of agent research within geographical applications can be found within the 

scope of "human" geography. For example, Schelhorn et al. (1999) developed STREETS, an 

agent-based model of pedestrian movement in urban environments utilising the SWARM plat- 
form. Research at the Centre for Applied Spatial Analysis has produced models for simulating 
the movement of pedestrians around the Tate Gallery and Notting Hill carnival (CASA, accessed 
2004). The work of Beneson et al. (2001) used an agent model to examine the movement of house- 

holds within Tel Aviv for socio-economic reasons. Barros and Sobreira (2002) adopted a similar 

approach by using an agent-based model to focus on the process of consolidation of inner-city 

squatter settlements within a peripherisation process. 
The concept of simulating patterns at an individual level is not solely restricted to pedes- 

trian movements and migration patterns. The TRansportation ANalysis SIMulation System (Los 

Alamos National Laboratory, accessed 2004) models, at an individual level, simulations of traffic 
flow. Its overall aim is to produce a more realistic simulation to enable changes to transportation 

networks. In a similar manner, the Urban Traffic Control (UTC) system developed by Roozemond 
(2001) used agents to adjust traffic control systems. 

In addition to these applications, agent-based models are also being used to model processes 
at large or multiple spatial scales, thereby allowing researchers to experiment with different ideas. 

Sprawlsim (Torrens, accessed 2004) is such a tool, developed to enable researchers and planners to 

experiment with urban sprawl at a city scale. Evans and Kelley (2004) developed an agent-based 
model to perform multi-scale analysis of landcover change and Parry et al. (2004) are currently 
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developing an agent model to simulate insect movements over varying geographical scales. 

3.9.2 Economic 

One of the niches in which the use of agents is rapidly increasing is that of electronic commerce 
(Crabtree, 1998; Guttman et al., 1998). Here, economic applications involving agents can be 

broadly divided into two main areas; the exchange of information and bulk market simulations. 
Kephart et al. (2000) claims that within the next decade, the Internet could be populated with 

billions of agents exchanging information goods and services with one another and people. In 

these applications, agents help to "grease the wheels" that must turn in order that goods and 

services can be bought and sold across the Internet (Parsons and Wooldridge, 2002). The most 

popular and well researched class of wheel-greasing agents are shopbots, agents which search 

the Internet on behalf of consumers, comparing prices across dozens of web sites (Kephart et al., 
2000; Markopoulos and Kephart, 2002). Shopbots are valuable to both consumers and suppliers 

alike. For consumers, costs (in terms of both time and money) are cut, for suppliers the costs of 

advertising etc are reduced. As a result of the success of these agents and their potential to affect 

the ways markets operate, further research has investigated the impact of shopbots in single com- 

modity markets, modelling the behaviour of both buyers and sellers using game theory techniques 

(Kephart et al., 2000). 

The use of game theory to analyse complex interactions in MAS is an area that, although not 
directly relevant to the work within this thesis, should be briefly alluded to. Game theory is a 
branch of mathematical analysis developed to study decision making in conflict situations. There 

is a considerable amount of work on developing optimal game plans and strategies for electronic 

markets. In particular, this research has been directed at auctions (Tesauro and Bredlin, 2001) 

and dynamic pricing (Greenwald and Stone, 2001). Typically, this research uses multiple complex 

games to produce optimal strategies (Walsh et al., 2002). This is only a small part of the ongoing 

research. For more information on the application of game theory, the reader is referred to Kreps 

(1990). For information on applications with MAS, the work of Kraus (2002) provides a good 
introduction. 

With the increase in popularity of economic agents such as shopbots, there has been a corre- 

sponding increase in the number of electronic "market-places" and related research into electronic 

agents. Table 3.1 summarises the main functions or roles of such agents and the corresponding 
business examples or research projects. 

The information presented in Table 3.1 shows that the major market players of electronic 

commerce are buyers, sellers, and intermediaries. Within these applications, agent technologies 

are applied to a range of aspects of market places including using agents to model demand, sales 

and the exchange of information. 

The main literature within this application area is concerned with electronic commerce. As 

such, these applications model the market aspect, but neglect spatial effects. In contrast the geo- 

graphical applications reviewed are successful at modelling the spatial aspects of the given prob- 
lem. However, there were no geographical examples that involved retail markets. Finally, there are 

no examples within the literature surveyed of economic agent-based models that take into account 

spatial and temporal effects. 
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Main Function or Roles 
1 Search for information on products and merchants; Mysimon. com, Auc- 

tionwatch. com, Shopbinder. co. kr 
2 Filter unimportant commercial messages; Adsubtract. com 
3 Gather and Analyse information on customers and merchants; Ffly. com 
4 Match qualified commerce party; Kabash, Fastparts. com 
5 Notify and Push event; Digitialimpact. com 
6 Monitor and Report creation, change, and deletion of information; Net- 

mind. com, Books. com 
7 Support Communication between business and customers; Artificial- 

life. com, 
8 Personalise and recommend interface, contents, products and services; 

Personalogic. com, Technoagent. co. kr, My. yahoo. com 
9 Make or support a decision on bidding, pricing and negotiation; Auc- 

tion. bot, eMediator 
10 Network among consumers, merchants and manufacturers; Napster. com, 

OPEN4U. co. kr 

Table 3.1: Main functions and examples of agents in electronic commerce from Jin and Lee (2001) 

3.9.3 Hybrid Agent-Based Systems 

The agent framework by itself provides a powerful methodology for modelling complex systems. 
However, when combined with other techniques, this framework can be enhanced. MAS can be 

combined with both traditional and artificial intelligence (Al) techniques as desired. There are 
two strong reasons to hybridise a MAS. Firstly, to improve the strategies implemented by the 

agents through learning and secondly to incorporate well known system behaviour such as market 
processes. For these reasons, there is considerable ongoing research into exploiting these hybrid 

systems. Several different applications are briefly highlighted here to provide an idea of the scope 
and nature of these applications. 

There are many examples of the use of additional techniques (both traditional and Al) for 
improving the learning of agents. Holland and Miller (1991) and Palmer (1994) used genetic al- 
gorithms (GAs) and classifier systems to generate the best possible strategies for agents to take. 
Beltratti et al. (1997) employed artificial neural networks (ANNs) to enable his agents to learn 

about markets more quickly. Parsons and Wooldridge (2002) further developed this idea by incor- 

porating game theory into their model to enable agents to make strategic decisions based on the 
available information. In a similar vein, He et al. (2002) employed heuristic fuzzy rules and fuzzy 

reasoning mechanisms in order to determine the best bid for an agent to make given the state of 
the marketplace. 

Incorporating specific behaviour usually involves hybridising the agent model with a "tradi- 
tional" technique. Within geographical applications, there are few applications that use traditional 
models alongside agent technology. Haff (2001) developed an "intelligent" model of hillslope 
development linking empirical models to agents. Sprawlsim (Torrens, accessed 2004) used tra- 
ditional landuse and transportation models as part of its methodology. These traditional models 
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are often used because they represent well understood dynamics of individual processes. They 

can just be dropped into the model, leaving the agents to represent the more complicated and less 

understood interactions between different parts of the system. The sparsity of hybrid agent models 

within geographical applications indicates an area ripe for further development. 

3.10 Conclusion 

A review has been presented of agent-based systems and their suitability for modelling complex 

systems. Through the brief summary of current applications, their adaptability and flexibility 

have been demonstrated. These characteristics, coupled with the ability to model at an individual 

level and the autonomous behaviour of the agents, make agent-based systems a powerful tool for 

modelling the retail petrol price market which overcome many of the problems associated with 

empirical models (see Chapter 2). 

Of the architectures reviewed, a multi-agent system (MAS) provides the most natural metaphor 
to use for simulating the processes in the petrol retail market. Within a MAS, independent agents 
(petrol stations) can be created and assigned individual rule sets (corporate policy). Co-operation 

between agents for sharing information (reacting to local prices) can also be built in as required. 
Ideas of spatial variability, local competition, autonomous behaviour and imperfect knowledge 

are naturally incorporated in a MAS and so this makes an ideal framework for this application. 
These ideas will be developed further in Chapter 5 where the construction of the agent model is 

presented 
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Chapter 4 

Real Data Analysis and Traditional 

Modelling 

4.1 Introduction 

The aim of this thesis is to examine the ways in which agent-based models can be applied to 

modelling a dynamic, locally interacting retail market. The review of the literature performed 
in Chapter 2 revealed that due to the commercial nature of the petrol price market, there is very 
little published information on pricing strategies or factors that are taken into consideration when 

setting petrol prices. This creates a situation where there is a great deal of data, but no information 

on potential strategies; the only exception to this is the Esso Price Watch (see §2.3.4). The most 
useful indicators come from the Competition Commission report on petrol pricing (Competition 
Commission, 1990). Part of this report questioned petrol retailers on the factors that played a part 
in setting prices. In their responses they highlighted movements in international prices, changes in 

competitors' prices and the experience and judgement of those making decisions. Further research 
within the report identified distance to nearest competitor, price differences between neighbours, 
awareness of competitors' prices and locality as important factors. Almost all of these factors can 
be quantified through close examination of the real data. However, without detailed information, 

it is virtually impossible to model an individual's decision to change the price. 
It could be speculated that this lack of information about the processes that contribute to the 

setting of petrol prices has shaped current research into petrol price modelling. Certainly, the bulk 

of research has centred on using empirically based models, generally regression, to investigate 

the relationship between price and one other variable, normally crude oil prices. Part of the work 
within this chapter will be to extend this regression modelling using variables flagged as important 

from both the Competition Commission's report and real data analysis. 
This chapter will be divided into three main sections. The first section will provide a prelimi- 

nary examination of the data and construction of petrol station classifications. These will be used 
for further investigation in the second section and in subsequent chapters. The second section will 
provide a thorough investigation of the real data quantifying important factors cited by the Com- 

petition Commission's report. The final section will use this information in the construction of a 
regression model. 
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4.2 Data Preparation 

4.2.1 Description of Data Set 

The data set was provided by GMapi. It consists of daily petrol price readings taken throughout 

the months of July, August and September 1999. Geographically, the data set covers the UK and 

includes the main petrol retailers, for example internationals such as Esso, BP, Texaco and Shell; 

supermarket garages such as Sainsbury's, Asda, Tesco and Morrisons, and numerous "indepen- 

dents". The prices of the four main petrol types (unleaded, super unleaded, diesel and four star) 

are recorded; in total, there are over 16,000 data points. 

4.2.2 Data Selection 

The geographical coverage of the data set is quite substantial. Study areas will therefore be se- 

lected for exploration. These will be West Yorkshire (Figure 4.1) and a larger area comprising of 

West, South and North Yorkshire (Figure 4.2). This area will be termed the Yorkshire region. The 

bulk of the analysis will be performed upon West Yorkshire with further validation carried out on 

the Yorkshire region. The Yorkshire region was chosen because of the geographical differences 

between counties. For example, both West and South Yorkshire have motorways and a mixture of 

urban and rural areas. In contrast, North Yorkshire contains no motorways and is predominantly 

a rural county. These differences will be further examined in §4.5. Using both the West York- 

shire and Yorkshire regions in experimentation will provide suitable tests of the model behaviour, 

robustness and sensitivity of parameters as well as helping to provide validation of the model. 

Each petrol station can potentially sell four types of fuel (four star, diesel, unleaded and super 

unleaded). Unleaded is the largest data set; it is sold at every petrol station within the study area 

(Figure 4.2). Simulations will concentrate solely on unleaded petrol; other fuel types will not be 

examined. 

4.3 Visualisation using GIS 

The data set is both spatial and temporal. To understand the patterns and processes occurring 

suitable visualisation techniques need to be employed. The geographical information system (GIS) 

software of ArcGIS will used be to used to map results. In addition, a suite of statistical tests will 

be used to quantify the model results. These will be further detailed in §5.3.7. 

The use of a GIS in a project containing spatial information is very helpful. High quality 

maps containing additional layers of contextual information can be produced for interpretation. A 

second advantage that a GIS package such as ArcGIS can offer is the creation of an interpolated 

price surface. The motivation for using interpolated price maps is to create a surface that may 
be easier to interpret than different coloured points on a map. It also gives some idea, albeit 

qualitative, of the petrol prices that a consumer is likely to pay in one particular area. The GIS can 

then be used to overlay several maps and produce an overall image (in ArcMap) of the area with 

IA GIS consultancy company based in Leeds: www. gmap. com 
21-lumberside/East Yorkshire was not included as North, West and South Yorkshire possessed all the characteristics 

required for further analysis. These were a large geographical coverage and a mixture of rural-urban areas. 
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Figure 4.1: Location of urban areas, motorways and spatial distribution of petrol stations selling 

unleaded petrol within West Yorkshire. 

useful information such as location of petrol stations, motorways and A-roads. An example of one 

of these maps is presented in Figure 4.3. 

The interpolation technique used was Inverse Distance Weighting (IDW). Experimentation 

revealed that visually, the number of points used in the interpolation did not effect the appearance 

of the final map. As can be seen from Figure 4.3, the price surface does not cover the entire 

study area. It was decided that only the points that fall within the study areas would be used for 

interpolation. The main criticism with taking this approach is that the system has many drivers, for 

example, local competition and population density. Stations located at the edge of the study area 

will not have the same degree of influences as those located in the centre. However, these stations 

are typically situated in rural areas and would therefore not be expected to exert considerable 

influence. An approach that could have been taken would be to create a buffer of a given size 

around the study area. This would provide the edge stations with a higher amount of influences. 

However, as the system is dynamic and the degree of the system drivers cannot be easily quantified, 

the question would then become how large a buffer should be created. The effects of only using 

the petrol stations within West Yorkshire will be investigated in §5.4.2. 

4.4 Real Data Analysis 

The following sections present the results of analysis performed on the real data. In building a 

model to represent a system as complex as the petrol market, it is important to have as much 
knowledge about the characteristics of the data as possible to avoid assumptions and generalisa- 

County Boundary A-Road A 
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Figure 4.2: Location of urban areas, motorways and spatial distribution of petrol stations selling 
unleaded petrol within the Yorkshire region. 

tions from having to be made. Chapter 2 presented known information about the petrol market 
detailing factors that are influential in the setting of petrol prices. These included the effect of 
local competition and the influence of locality. 

The analysis undertaken within the following sections will be on two levels. The first prelimi- 

nary analysis will be aimed at identifying broad patterns and possible limitations within the data. 

Classifications will then be developed and discussed. These will be used within the second, more 

rigorous section of analysis. This will aim to formalise a number of the influences that have been 

identified as important. This will include an analysis of price variations within the real data as 

well as calculation of the metrics representing price change, distance to neighbours and number of 
neighbours. 
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Figure 4.3: Example of interpolated price surface map for July 27th, West Yorkshire. 

Information from these analyses will be of great value in determining suitable rule sets and 

model parameters. 

4.4.1 Mean and Standard Deviation (SD) Analysis 

Throughout this thesis considerable use is made of the mean value and standard deviation (SD) of 

a variable in assessing trends in the data and comparing real data with model results. For a variable 

x with n measured values x; the mean, x, and standard deviation , ß, are defined as 

- Exi 
x=- (4.1) 

n 

and 

6_ 
E(x; - x)2 (4.2) 

(n 1) 

The mean price of a given area gives an overall metric of the pricing in that area. Figure 4.4 

shows that over time, the mean prices for both (a) West Yorkshire and (b) Yorkshire region follow 

the same pattern. The initial trend of the mean price decreases over the first few days (27th July 

- 30th July) from 71p to 70.5p. This is followed by an increase of approximately 2.5p over the 

period 5th August - 19th August with the prices peaking around the 23rd August at 73p. The 

prices then remain almost constant (with only minor fluctuations) until the end of the data set. The 

initial standard deviation (SD) on 27th July for West and Yorkshire region is large, indicating that 

at the beginning of the period, there is a larger spread of prices. This suggests that the stations in a 

neighbourhood are not being very competitive in pricing or that there are large variations in price 

between different parts of the study area. This variation may be the result of the system being in 

a state of flux with not all stations changing their prices on the same day. After the price increase 
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(5th August - 19th August), the SD decreases showing that the prices are more competitive, i. e. 
within a small range of each other. The SD decreases slightly over the following days as the prices 
gradually settle before another slight fluctuation on the 26th August. 

The consistency of the price is not surprising; unleaded petrol is sold at all stations and is 

therefore more reactive to the dampening effects of competition. The increase in price over the 

study period could be the result of one or more influences. §2.2.2 identified three main factors 

that control the price of fuel at the pump; government tax and duty, the cost of petrol on the open 
market and the costs and profits of the wholesaler and retailer. Determining the importance of the 
latter of these factors is impossible. This information is commercially sensitive and not available 
in the public domain. However, government tax and duty as well as crude oil prices are published. 
Over the course of the study period, crude oil prices increased by $8 per barrel, tax and duty 

remained static. This does suggest that crude oil prices are responsible for the rise in petrol prices. 
However, without a more detailed analysis of the data, it is impossible to conclude whether this, 

an aggressive pricing strategy by one or more stations or some other effect is responsible for the 

price increase. 

4.4.2 Limitations within the Data Set 

During initial analysis, several limitations with the data set became apparent. These could have 

important influences on model development and results. These limitations are summarised below: 

- Although comprehensive in spatial coverage, temporally there are large gaps within the 
data (see Figure 4.4). This makes identification of patterns and rules quite difficult. Even 

on days when measurements are recorded there may not be information for every station. 
However, it will be shown that despite this, the general patterns are still apparent from the 
data available. 

- Within the middle of the data set (6th August - 19th August), the prices rise sharply in a 
period where there are no recordings. These rises are not generally characteristic of petrol 
prices; this renders this section of the data unsuitable for studying typical near equilibrium 
conditions. However, when the prices stabilise again, the data remains steady and can be 

used. To this end, the data set will be split into two sections. Initial analysis with the model 
will use the first half of the data (27th July - 6th August) and the second half (23rd August 

-1 September) will be used to further test and validate final model versions. 

- There are a few significant errors within the prices recorded between each day, for example 
within 24 hours, the price of unleaded can rise 25p at the same station! To counter this, two 
approaches will be taken. Where there is sufficient data, an average of the previous three 
days' prices will be used. On days where this is not possible, a filter will be built into the 
model that will remove these anomalies. Deciding at which price to filter out the data will 
be difficult as price differences of 4p over one day (based on initial analysis) may not be 

unreasonable. There is a danger that valuable data maybe removed. This will be discussed 
further in § 5.3.4. 
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Figure 4.4: Mean price and standard deviation (indicated by the vertical bars) of real data over 
time for (a) West Yorkshire and (b) Yorkshire Region. The gaps in the data series are explained in 
§4.4.2. 

4.5 Data Classification 

Dividing the data into different classifications will contribute towards understanding patterns and 

trends within the data as well as further model development. The data was segregated in two ways 
based on geographical location and the "type" of petrol station. The criteria used to create these 

divisions are outlined in Table 4.1. Table 4.2 gives the breakdown of stations in each cateobory 
for West Yorkshire and the Yorkshire region. 

Geographically, petrol stations were divided according to location, i. e. motorways or within 

urban or rural areas as shown in Figure 4.5. (1ligher resolution snaps of West Yorkshire showing 
both classifications can be found in Appendix A. ) 11'a station was located in a rural or urban area 

and was on a motorway, it was classified as a motorway station. "These classifications represented 

the main geographic characteristics of the area. Figure 4.5 shows that North Yorkshire has a much 
lower density of petrol stations than West or South Yorkshire. The stations are predominately 
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Classification Validation 

Urban and Rural Derived from the 1991 Urban settlement bound- 
aries produced by the government. All areas 
that fell within the urban extent were classified 
urban. Points located outside of this area were 
classified rural. 

Motorway Petrol stations located within 0.5km of a motor- 
way and those located on the Al. This distance 
should hopefully include services that are located 
slightly away from the motorway. 

Multinational Selection by a list b of multinational companies. 
Supermarket Selection by a list c of supermarkets. 
Minor All the remaining petrol stations. 

aThis data came from the Office of National Statistics (www. ons. gov. uk) 
bhttp: //en. wikipedia. org/ 
`http: //en. wikipedia. org/ 

Table 4.1: Explanation of classifications for the geographical and petrol station "type" categories. 

West Yorkshire Yorkshire Region 

Classification Number of % of Total Number of % of Total 
stations stations 

Urban 434 84 710 76 
Rural 63 12 189 20 
Motorway 20 4 36 4 

Multinational 265 51 483 52 
Supermarket 31 6 62 7 
Minors 221 43 309 33 
Total' 517 100 935 100 

aThis is the total number of stations, including obsolete and out of industry. 

Table 4.2: % of petrol stations within each classification for West Yorkshire and the Yorkshire 

region. 

rural with a few urban and motorway (Al) stations. West Yorkshire contains the largest number 

of stations. These are mainly urban with a few rural stations on the edge of the county and several 

motorway stations. The greatest proportion of stations within South Yorkshire are urban. 
The petrol stations were also split according to whether they were multinationals, supermarkets 

or minor stations (Figure 4.6). Figure 4.6 shows that North Yorkshire has the fewest supermarket 

stations, but a wide coverage of minor stations, especially in the more remote areas. The multi- 

national stations appear to cluster around urban areas. West and South Yorkshire have the largest 

number of urban centres. Within or close to these centres are the highest density of supermarket 

stations. Multinationals are again clustered around the urban centres in both counties. Minors 

have the greatest spatial distribution, being located in both rural and urban areas. 
In total there are 517 petrol stations within West Yorkshire and 935 within the Yorkshire region. 

However, many of the petrol stations do not have a price recorded or are registered as "obsolete" 

or "out of industry". These stations total 89 for West Yorkshire and 231 for the Yorkshire region. 
Additionally, discrepancies within the original data set between postal address and geographical 
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Figure 4.5: Division of petrol stations in the Yorkshire region according to the geographical clas- 
sifications. 

county, meant that a small number of garages (24) were actually located outside of the West 

Yorkshire boundary (52 outside of the Yorkshire region boundary). Stations such as these are not 
included in the figures below which show only the stations which are used in the model runs. 

These numbered (with the removal of the obsolete stations), 428 for West Yorkshire and 704 for 

the Yorkshire region. 

4.5.1 Limitations 

Creating different classifications within the data set is, to a degree, subjective. The criteria used to 

segregate the data will obviously influence the results. For the current classification, the limitations 

are outlined below: 
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Figure 4.6: Division of petrol stations in the Yorkshire region according to the petrol station "type" 

categories. 

- The classification of the urban - rural divide is based on settlement and population size as 

utilised by the UK government3. This is one of many ways available to classify these areas. 

- The lack of classification of national and independent petrol stations is a limitation. There 

was no information within the database to indicate whether a petrol station was indepen- 

dent or otherwise. Rather than making an arbitrary divide which might not be correct, these 

smaller national chains and independent stations were classified together in the minors cat- 

egory. 
3The website is www. statistics. gov. uk/geography/ urban_rural. asp 
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4.6 Price Variations within the Data 

Figure 4.7 gives an overview of the spatial variations in price on July 27th and August 19th (the 

beginning of each of the two data sets). Visual interpretation indicates that there is a spatial price 
differentiation, with urban areas (indicated by the city names) sustaining lower price than rural 

areas. A good example of this is the lower prices shown around the city of York which contrast 

with the higher prices of the rural surroundings. Another observation that can be made is that the 

prices on August 19th are higher throughout the region than on July 27th. This ties in with the 

remarks made in §4.4.1. However, such observations are qualitative. The following sections will 

aim to examine in detail any trends and patterns found within the data using quantitative methods. 

4.6.1 Geographical Station Type Analysis 

Geographical analysis of the first half of the data set (July 27th - August 6th) shows that within 
West Yorkshire and the Yorkshire region, the cheapest priced petrol stations are found in the urban 

areas (Figure 4.8(a), (b)). These stations also have the lowest variation with price (indicated by 

the vertical bars showing standard deviation). Low prices in urban areas are expected as typically 

this is where the densest concentration of stations and fiercest competition is found. One other 

point of note is that the mean price for the urban stations is almost identical to the total mean 

price. As the urban category is the largest with 434 station (84% of the total), this trend is not 

unexpected. The most expensive petrol and greatest variation within price is found at rural and 

motorway stations. In comparison to the urban centres, these stations are characterised by having 

larger catchment areas and little competition. This results in stations being able to sustain higher 

prices. Additionally, rural stations are often smaller and do not have the advantage of bulk buying 

and thereby reducing costs. 
The later section of the data set (August 23rd - September 1st) exhibits similar trends (Figure 

4.8(a), (b)). Urban stations remain the cheapest with little variation within prices, whilst motor- 

ways and rural areas sustain the highest prices and greatest variation. 

Price Distribution 

The distribution of petrol prices within each category cannot be solely learnt from an analysis of 

the mean and standard deviation. Calculating the mean of the prices will result in any extreme 

values being masked. Quantifying the price distribution allows firmer conclusions to be drawn 

about internal pricing structures. For example, are rural stations much more expensive than urban 

stations? Frequency graphs were used to plot the price distribution of rural, urban and motorway 

stations for July 27th and August 19th in the West and Yorkshire study areas (Figure 4.9). 

The results for July 27th (Figure 4.9(a) and (c)) shows a clear bimodal distribution in prices 

with the majority of stations being either 69p or 71p. Urban stations dominate the price structure, 
but as noted in §4.6.1, this category contains the most stations. This category also has the greatest 

number of stations with the lowest prices (67p and 68p). Conversely, a higher proportion of rural 

and motorway stations have prices of 72p, 73p and 74p. 

By August 19th (Figure 4.9(b) and (d)), all the prices have increased (the majority of stations 
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Figure 4.7: Interpolated price surface for the Yorkshire region on (a) 27th July and (b) l 9th August. 

are now either 71p or 72p and a greater number have increased their price to 73p or 74p). The 

distribution has changed to unimodal, possibly a reaction to the increase in petrol prices. It is 

possible that the prices are not stable at this point. Figure 4.4 shows that is likely to be the case, as 

the petrol prices continue to rise after August 19th. 
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Figure 4.8: Graph showing the trends of the mean price within the different geographical classifi- 
cations throughout data set. Standard deviation is represented by vertical bars. Results are shown 
from West Yorkshire (a) and the whole Yorkshire region (b). 

4.6.2 Petrol Station Type Analysis 

Figure 4.10 shows that within the West Yorkshire and Yorkshire regions between July 27th - Au- 

gust 6th, the most expensively priced petrol stations are found within the minor category. This 

category also had the largest price variation. Supermarkets were consistently the cheapest and had 

the smallest standard deviation (with an average value of Ip over the duration of the study period), 

showing that they are competitively priced. They are also the most affected by the rise in price (i. e. 

their prices increase the most, but they are still the cheapest). The multinational category mirrored 

the total price. As found with the urban category in §4.6. I, this category is the largest with 265 

stations (51 % of the total). 

The trends within the later section of the data set (August 23rd - September Ist) are the same 
for the two study regions (Figure 4.10(a), (b)) and mirrored the patterns found in the early data set 
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Figure 4.9: Frequency charts showing the price distribution of rural, urban and motorway stations 
for July 27th and August 19th for West Yorkshire (a), (b) and the Yorkshire region (c), (d). 

(July 27th - August 6th). The most expensive stations were found within the minor category, the 

cheapest in the supermarket category. The minor category still had the greatest variation in price 

with supermarkets remaining competitive (indicated by a small SD). 

Price Distribution 

The results from July 27th (Figure 4.11 (a) and (c)) show a marked similarity to those presented in 

§4.6.1. There is a clear bimodal distribution with the majority of prices 69p or 71 p. The largest 

category, multinational stations, dominate the pricing structure. Overall, the supermarket class is 

the cheapest with the majority of stations priced at 69p or less. The minor category is the most 

expensive group with a large proportion of the other stations 71p or more. These results correlate 

with Figure 4.10 which shows the supermarket and minor categories as the cheapest and most 

expensive respectively. 

The distribution on August 19th has become unimodal (Figure 4.11(b) and (d)). The same 

pattern was found in the analysis of the geographical classifications. Again, the reason for this 

change in price distribution may be related to the increase in prices. 
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Figure 4.10: Graph showing the trends of the mean price within the different petrol station clas- 
sifications throughout data set (July 27th - September 1st). Standard deviation is represented by 

vertical bars. Results are shown from West Yorkshire (a) and the Yorkshire region (b). 

4.7 Further Analysis 

Statistics collated by the Competition Commission (1990) gave valuable information about factors 

that influence the size of the price differential between stations. These statistics included infor- 

mation on, for example, location to nearest competitor and price differences between competitors 

(see §2.3.1). The purpose of this section is to perform analysis on the real data to find out the 

distance to the nearest competitor, average price changes and average number of neighbours. This 

information will be invaluable when deciding on parameters and rules within model development. 

4.7.1 Average Price Change 

The average price change per day (how much all the stations change on average) and the absolute 

price change per day (the magnitude of the changes at the stations that are changing) were both 
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Figure 4.11: Frequency charts showing the price distribution of multinational, supermarket and 
minor stations for July 27th and August 19th for West Yorkshire (a), (b) and the Yorkshire region 
(c), (d). 

calculated. Using a combination of these values can be useful. For example, the average price 

change could be zero (thereby masking large changes), whereas the absolute value will show 

exactly how much the price is changing on average per day. 

The values for the Yorkshire region were very similar to those seen in West Yorkshire. The 

discussion will therefore concentrate on West Yorkshire. The values for the Yorkshire region are 

tabulated in Appendix B. 

Table 4.3 shows that the mean price change for West Yorkshire ranges between -0.03p to 0.30p. 

On a given day only about 1 /5 of the stations actually change price. The mean absolute price is 

higher, ranging between 0.06p - 0.42p. This suggests that it is not simply a case of all prices 

rising or falling on a given day. The changes that do occur appear to be extreme, for example, the 

maximum price change that occurs between July 27th - July 28th is 4.6p. Some of these maximum 

changes are sufficiently large to be a little suspicious. This information is useful, but provides no 
insight into any spatial patterns in variation. 

67 68 69 70 71 72 73 74 
Price (p) 

(c) July 27th, Yorkshire Region 
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Day 1 Day 2 Number 
Changing 

Mean Change 
Change 
(p/day) 

Mean Absolute 
Change 
(p/day) 

Max Price 
Change 
(p/day) 

SD RMS 

Jul 27 Jul 28 43 0.08 0.27 4.6 0.76 0.77 
Jul 28 Jul 29 53 0.17 0.36 4.4 0.90 0.92 
Jul 29 Jul 30 43 0.13 0.25 4.5 0.72 0.73 
Aug 05 Aug 06 86 -0.30 0.42 3.0 0.73 0.78 
Aug 23 Aug 24 40 0.02 0.23 4.1 0.67 0.67 
Aug 24 Aug 25 34 0.08 0.21 3.1 0.62 0.62 
Aug 25 Aug 26 31 -0.01 0.17 3.0 0.57 0.57 
Aug 26 Aug 27 31 0.03 0.17 2.0 0.52 0.52 
Aug 31 Sep 01 7 -0.03 0.06 2.0 0.32 0.32 

Table 4.3: Mean and mean absolute price change at petrol stations per day for West Yorkshire 
throughout the duration of the data set. 

4.7.2 Average Distance to Neighbours 

What is the distance to the nearest competitor? Are there great variations in each of the classi- 
fications? The distance at which a station is located from its neighbour can have an important 

influence on the price. For example, a station situated in an urban area surrounded by a high den- 

sity of other stations is more likely to have a lower price to remain competitive than stations in 

rural areas with fewer competitors. Analysis was performed using the classifications on July 27th 

for West Yorkshire and the Yorkshire region. The patterns for both regions were very similar with 
the main difference being the distance between stations. This is a reflection of the inclusion of the 

predominately rural and geographically larger county of North Yorkshire. Due to the similarity 
in results, only those pertaining to the main study area of West Yorkshire will be discussed. The 

values for the Yorkshire region are tabulated for reference. 
Table 4.4 shows that the greatest distance between stations for West Yorkshire occurs in rural 

areas (an average of 1122.41m) with a much smaller distance in the urban category (638.06m). 

The average distance between a motorway station and its neighbour is 482.41m. This figure is 

perhaps lower than expected. However, when examining the distribution and density of the stations 

within the geographical classification (see Figure 4.5) it is apparent that the motorways within 
West Yorkshire are closely located to urban areas. 

The average distance between a multinational station and its neighbour is 666.64m. This is 

greater than the distance of the urban station to its neighbour. Multinationals are located through- 

out West Yorkshire (see Figure 4.6) and this large distribution produces the largest mean in the 

petrol station type category. The supermarkets' average distance is smaller than the multinationals 
(467.33m); these stations tend to be located around urban areas with a higher density of stations. 
The minor category, with a similar distribution, yet a higher density of stations, has a similar value 
to that of the multinationals. 



50 

Classification Average D istance (m) 
West Yorkshire I Yorkshire Region 

Urban 638.06 793.99 
Rural 1122.41 1817.09 
Motorway 482.41 1079.84 
Multinational 666.64 963.94 
Supermarket 467.33 574.94 
Minor 775.04 1247.96 
Total 701.04 1056.62 

Table 4.4: Average distance in metres between petrol stations in each of the classifications for 
West Yorkshire and the Yorkshire region. 

4.7.3 Average Number of Neighbours 

The number of neighbours within a neighbourhood is a useful indicator of likely degree of compet- 
itiveness. For example, Esso have a Price Watch policy that states that they will match the lowest 

price of any station within 3 miles (5km). In parameterising a model, it would be useful to know 

how many stations are in a neighbourhood. Table 4.5 shows that with an increasing neighbourhood 

size, the number of neighbours also increases. For a given size, neighbourhoods in West Yorkshire 

contain more stations on average than the Yorkshire region as a whole. This reflects the more 
urban nature of West Yorkshire compared to North Yorkshire. Only for very large neighbourhoods 
(40km or more) is this no longer true. This is simply because these neighbourhoods stretch well 
beyond West Yorkshire and thus include additional stations from North and South Yorkshire. The 
figures in Table 4.5 shows that for Esso to keep their Price Watch promise, they have to check the 

prices of approximately 18 neighbouring stations every day within West Yorkshire and 14.8 in the 
Yorkshire region. 

Neighbourhood (km) Mean Number of Neighbours 
West Yorkshire I Yorkshire Region 

1 2.0 1.8 
2 4.4 3.8 
5 18.0 14.8 
10 56.1 43.2 
15 110.0 81.8 
20 162.0 123.0 
25 203.8 163.9 
30 233.1 204.4 
40 257.1 282.2 
50 261.6 360.1 

Table 4.5: Average number of neighbours within a given sized neighbourhood for the West and 
Yorkshire region. 
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4.7.4 Neighbourhood Statistics 

The average distance to the nearest neighbour and number of neighbours in a given area has been 

calculated. These give invaluable information on the spatial distribution of stations but neither of 

these techniques indicate whether there are any strong price differentials within a neighbourhood. 
To understand this, the mean price and range of prices (represented by the standard deviation 

(SD)) will be calculated for different neighbourhood sizes. The analysis will be performed on 
West Yorkshire for both July 27th and August 19th. 

Around each station, a circular neighbourhood will be taken of a given radius and the mean 

price and SD calculated in this neighbourhood. The results should indicate the presence of any 

strong price differentials. This approach is entirely objective. Each station has a neighbourhood 

within which other stations are assumed to exert the largest influence. The downside with this 

method is that a proportion of the stations will be duplicated. An alternative approach would be 

to place grids of varying sizes over the study area and calculate the SD and mean price. The 

pitfall with adopting this technique is that there is a chance that the stations which exert the largest 

influence will be omitted. 
Figures 4.12(a) and (c) show the mean price in each neighbourhood. Due to the price rise be- 

tween the early and late data sets, the mean prices on August 19th are much higher than July 27th. 

Other than this, the patterns found are the same. Within the smaller neighbourhoods (10km and 
below) the majority of the mean prices are between 70p - 72p. It could be hypothesised that this 

is caused by the urban stations. There is also a large number with means of 68.5p (possibly super- 

markets) and 74p (possibly rural areas). With an increase in neighbourhood size, these extremes 

are averaged out and once the scale goes beyond 25km, there is little further variation. 
The SD's (Figures 4.12(b) and (d)) for July 27th and August 19th show that for smaller neigh- 

bourhoods (below 10km), there is a larger range of prices. As found with the mean price, the 

majority of SD's are concentrated between two values (0.5 - 1.5). Within these neighbourhoods, 

all the prices would be expected to be within a lp range. Some of these smaller neighbourhoods 
have a larger range (2.0 - 3.0), these could be indicative of rural areas or stations located towards 

the edge of the study area. With an increase in scale, extreme values are averaged out. From 30km 

- 50km, there is little change in the amount of variation. 
This work has been useful in indicating the spatial scale at which variation occurs within the 

real data. If a scale larger than 25km is used, variations are smoothed out. West Yorkshire is 60km 

in width, using a 25km neighbourhood (50km in total) therefore takes in almost all of the area. 
Most of the variability in price are apparent at a scale of l0km and less. If the system was driven 

by solely distance and price, little variation would be expected within smaller neighbourhoods. 
Some small neighbourhoods do have a small SD showing that there is little variability in price. 
However, there are also a few neighbourhoods with high SD and hence large price variations. This 

shows that there are other factors at work, for example, customer loyalty and different pricing 

strategies. These local variations in price will be further investigated in the following sections. 
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Figure 4.12: Mean price and standard deviation of petrol station neighbourhoods plotted as a 
function of neighbourhood size on July 27th and August 19th for West Yorkshire. 

4.7.5 Analysis of Esso Stations 

The Esso Price Watch policy provides the only published information on a petrol retailer's strategy. 
In Chapters 5,7,8 and 9, the Esso stations will be assigned the Price Watch rules as part of the 

experimentation. Figure 4.13 shows the mean price of all of the stations (except Esso) and the 
Esso stations. It can be seen that Esso sustain a lower price (by approximately Ip) than the other 

stations. This is not surprising as the Price Watch policy means Esso stations are keeping in check 

with the lowest prices in their neighbourhood. The SD is also smaller than the rest of the stations 
indicating that the Esso prices show less variation, presumably because they are more competitive 

on price. 
Figure 4.14(a) shows that the Esso stations on July 27th have a unimodal distribution. This 

peak corresponds to the lower of the peaks of the bimodal distribution of the all the other stations. 
This provides further evidence of Esso's competitive behaviour as a result of the Price Watch 

Policy. On August 19th (Figure 4.14(b)), the prices at the Esso stations in common with all the 

other stations, has risen. There are now two peaks rather than a single peak in the price of Esso 

stations, with a split between 71p and 72p. However, the Esso stations remain competitive; for 

example, there are almost as many Esso stations selling petrol at 69p as the rest of the stations and 

very few Esso stations are selling petrol at more than 73p. 

40 50 0 I0 
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Figure 4.13: Mean price against time over the period July 27th to August 6th for West Yorkshire. 
The vertical bars indicate the standard deviation in the price. Results are shown for all stations and 

also just for the Esso stations. 

Figure 4.15 presents statistics from the neighbourhood of 5km around the Esso stations (5km 

equates to the 3 miles cited in the Price Watch policy). The mean neighbourhood price is plotted 

against the price of the Esso station. The line shows where these two prices are equal. With the 

exception of two stations, the price at each Esso stations is cheaper than the mean price of its 

competitors. This provides good evidence that implementation of the Esso Price Watch results in 

cheaper prices at Esso stations. 

4.7.6 Visual Evidence of Behaviour 

Several conclusions have been made about the real data based on the above analysis and review of 

the literature. For example, stations react to price changes in their local neighbourhoods, super- 

market stations are the cheapest, there is a great deal of price variation within urban areas and so 

on. The aim within this section is to provide snapshots of the real data to support such statements. 

Figure 4.7 showed that there is clear price differential between rural and urban areas. However, 

it failed to highlight the variation that exists within urban areas. Figure 4.16 shows this variation 

within two cities, Bradford and Wakefield. Although both cities are cheaper than rural areas, the 

prices can range between 3-4p. Figure 4.16 also shows that high prices are sustained on the main 

arterial roads leading into urban areas. This is particularly prominent around Wakefield. 

Statistical analysis of the real data identified urban and supermarkets as the cheapest stations 

(see §4.6.2). Figure 4.17 shows the prices of petrol stations in the city of Leeds over a3 day 

period (July 27th - July 29th). The supermarket stations (green) are cheaper than all of the other 

stations with the exception of Esso (red). These stations, operating the Price Watch policy, are 

very competitively priced. Over the course of this 3 day period, the supermarkets do not react to 

changes in price at neighbouring stations. Esso however, do remain competitively priced but react 

to changes in the prices of nearby stations. 

To prove that stations do react to their neighbours, Figure 4.18 shows the reaction of several 

stations to a price change in their neighbour over 3 days (all the stations fall under the minor 

All 0 
Esso ý <- - 
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Figure 4.14: Frequency charts showing the price distribution of Esso and non-Esso stations for 
July 27th (a) and August 19th (b) for West Yorkshire. 
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Figure 4.15: Mean price in a 5km (3 mile) neighbourhood of each Esso station plotted against the 

price at the Esso station for the West Yorkshire data on July 27th. 
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classification)4. On July 27th, station 1 and 3 are more expensive than their mutual neighbour, 

station 2. On July 28th, station 2 has reacted to this price difference by increasing its price to 

73.9p, higher than station 1 or 3. Station 3, however has reacted to the lower price set by station 
4 and dropped its price. By July 29th, station 1 and 2 have dropped their prices, but station 3 has 

increased again. The behaviour exhibited by these stations is interesting. They are all within a few 

kilometres of each other and clearly aware of their neighbours' prices. The varying prices seen 

each day could be a result of a time lag, for example, station 2 increases then decreases it price in 

possible reaction to station 3 (which appears to be reacting in the same manner to station 2). This 

example also shows that some stations do increase and decrease their price by several pence per 

day to remain competitive. 

F, 
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Figure 4.18: Example of neighbouring stations reacting to changes in price. Data is shown for 

July 27th - July 30th for several stations in Leeds. 

4.8 Summary of Data Characteristics 

This study of the characteristics of the petrol price data sets brings up several points which may 

be of importance in attempting to model the system. One particularly important point is that 

there is clear evidence of the non-linearity of the system. Changes in petrol price are observed to 

occur as step changes, often of ±1 p or of multiples of this. This means that petrol prices do not 

4Station I is Fina; station 2 is SAVE; station 3 is UK; station 4 is Repsol and station 5 is unbranded. 
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vary continuously which may make them harder to model mathematically. It also means that a 

very small change in the system may make a larger difference to the price, perhaps the difference 

between a price increase of lp or no change in the price. 
The findings also show the strong spatial nature of the data. Price variations across the study 

area are clear, with cheaper prices in urban areas compared to rural areas. Even within a given 

area there may be significant price variations indicating the importance of other factors. A brief 

investigation of Esso stations suggests that the Esso Price Watch does have a marked influence 

on petrol prices on a local scale. Consideration of individual behaviour for different brands and 

station types may therefore be necessary to accurately represent fuel prices in any model. 

4.9 Multiple Regression Modelling 

Previous attempts to model petrol prices have been undertaken with the use of empirical models. 
An example of a typical model was presented and discussed in §2.5.2 (Equation 2.1). This model 

was developed for examining the relationship between the net retail price, crude oil price and 

exchange rate (Reilly and Witt, 1998). This is essentially a standard multiple regression model 
(see e. g. Ebdon, 1985) of the form 

y= a+ bixi + b2x2 + b3x3 + ... (4.3) 

where 

-y= dependent variable 

- xI, x2, x3 ... = independent variables 

- a, bl, b2, b3... = regression coefficients. 

The dependent variable will be price and the independent variables will be factors that the price 
is thought to vary with. The standard method of measuring the goodness of fit of a regression is 

to calculate the extent to which the regression accounts for the variation in the observed values of 
the dependent variable (Ebdon, 1985). This is generally calculated using an r2 test, 

r2 _' -y_)Z 
, (v; -yý2 

(4.4) 

where r2 is the coefficient of determination, y; is the predicted value of the dependent variable at 

station i, y; is the measured value at station i and y is the mean value of the y1. 
Performing multiple regression modelling on a data set will produce regression coefficients. 

The coefficient for each variable is an indication of the effect of the corresponding value, i. e. if 

this value is large, the variable has a significant impact in determining the price. 
The root mean square error (RMSE) could also be used as a method of assessing the perfor- 

mance of various models in comparison with the experimental data. The RMSE is defined as 

17-vi n-Y; )2 
(4.5) 
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where n is the total number of stations. One disadvantage of the RMSE is that it can be difficult to 

compare values from different experiments if the mean values of they, are very different in each 

case. To avoid this problem the standardised root mean square error (SRMSE) will be used. This 

is 
(I(/, - Yj) )In 

(4.6) 
Y 

i. e the RMSE divided by the mean value of the y;, and is thus a normalised representation of the 

error between the model and real data. This provides a useful measure of the model performance 

in predicting the observed values and will be used in this and subsequent chapters as a method of 

comparing model results. 

4.9.1 Choice of Parameters 

Variables that were identified as important from the literature and real data analysis were incorpo- 

rated into the regression model. These will be identified and validated in the following sections. 

§2.2.2 listed several external factors that play a part in the setting of petrol prices. These 

include the cost of crude oil, fuel tax and exchange rates. Each of these factors have a temporal 

impact on the data, e. g. the increase of crude oil price has a slight time lag before impacting on 

the petrol price. None of these variables will be included within the model. The results of the 

regression will be a snapshot of one day and the focus is to examine factors that may be linked to 

spatial variations, not temporal ones. 
The multiple regression analysis was performed using SPSS 11.0 for Windows. 

4.9.2 Population Density and Distance to Neighbour 

To account for the influence of geography, two surrogate variables were used. These were pop- 

ulation density (from each ward) and the proximity to the nearest station5. Population density is 

hypothesised to relate closely to the urban - rural divide. For example, urban areas have a higher 

population density than rural areas and sustain lower petrol prices (see §2.3.2 and §4.6 for further 

discussion). §2.3.1 and §4.7.2 identified a station's proximity to its nearest neighbour as a useful 
indicator of the degree of competition between stations and the resulting price. Esso, for example, 

set their prices to match the lowest within a3 mile proximity. 
For each petrol station, the population density of its ward was taken and the distance to the 

nearest neighbour calculated. The real data for West Yorkshire from July 27th was used. The 

regression equation was taken as 

P; =axD; +bxX, +c (4.7) 

where 

- P; = price at station i 

5Although these two parameters are measuring slightly different features (one is measuring the number of petrol 
stations and the other is measuring people) there is likely to be some correlation between them. This should be consid. 
ered when assessing the results. The coefficients maybe smaller than expected because the effect of the population is 

shared between the two parameters. 
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- a, b, c =constants 

- D; = population density around station i 

- X; = distance to nearest neighbour of station i (straight-line). 

The performance of the regression was poor, the r2 value was 0.033 with a standard error of 
1.04. The SRMSE was 0.140. The coefficients (Table 4.6) show that the constant is the most 
important factor in the equation. This represents the large proportion of the cost of the petrol 
that is from factors such as crude oil, taxation and transportation. These are the same for all of 
the stations. The variation in price between stations caused by geographical and other factors is 

only a small part of the total price. The population density coefficient is negative, showing that 

a high population density will reduce the price and vice versa. This supports the evidence for 

urban stations being cheaper than rural stations. However, this coefficient value is very low and 
therefore only exerts a small influence on the price. The distance coefficient is even smaller. The 

value is positive indicating that the greater the distance to the nearest neighbour, the larger the 

price. Evidence from the real data suggested that stations located close together (urban areas) are 

more likely to have lower prices. 

Coefficient Value 
Constant 71.09 
Population density -0.0001175 
Distance 6.921 x 10-5 

Table 4.6: Regression coefficient values from the regression analysis with population density and 
distance for West Yorkshire on July 27th. 

It has been hypothesised that population density and distance between stations are important 

indicators of the urban - rural divide. The results from this regression would suggest that these 

alone are not sufficient to explain the observed variations. There could be several reasons for 

these results. Firstly, the regression takes a snap shot of the data, the stations may not be in 

equilibrium. Instability could be caused by an increase in crude oil prices, for example the rockets 
and feathers effect (Bacon, 1991). The analysis of the real data above brought to light not only 
the price differential between rural and urban areas, but also the large amount of variation within 
urban areas (see Figure 4.8). There are obviously other factors at play that the model is not taking 

account of. These other factors could be the pricing strategies operated by different types of 
stations or decisions taken by individuals based on experience and judgement. This point will be 

extended in the following section. 

4.9.3 Supermarkets, Motorways and Esso 

In the absence of detailed and commercially sensitive knowledge, it is impossible to understand 
how individual stations may determine prices. Evidence from the literature and real data anal- 
ysis suggested that several groups of stations operated distinct pricing rules. These were Esso, 

supermarket and motorway stations. Esso has the widely publicised Price Watch; §4.6.2 identified 
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supermarkets as being cheaper (by 1.2p on average) and more competitive than other classifica- 

tions (Figure 4.11 showed that supermarket stations have consistent pricing across a region). The 

analysis undertaken in §4.6.1 showed that motorway petrol stations had higher prices and a larger 

SD than the other categories. Based on these observations and the recent work by McFarland 

(2003) highlighting that motorway stations respond as a separate system, motorways were given 

a separate category. The rest of the classifications were not included as either no such published 
information was available or there was no clear evidence from the real data that individual rules 

were operated. 
The same data for West Yorkshire from July 27th was used but new indicators were added to 

the regression model, 

P; =axD; +bxX; +cxS; +dxM; +exEI+f (4.8) 

where 

-S= supermarkets indicator (1=supermarket, 0=other) 

-M= motorways indicator (1=motorway, 0=other) 

-E= Esso indicator (1=Esso, 0=other) 

- d, e, f= additional regression coefficients. 

Adding the supermarkets, motorways and Esso to the population density and distance variables 

produced a considerable improvement in the performance of the regression model. The r2 test gave 

a result of 0.253 with a standard error of 0.926. The SRMSE was 0.0135. Table 4.7 shows that both 

the population density and distance variables have further decreased in importance. However, the 

supermarket and Esso coefficients are both large and negative. This indicates that these stations are 

much cheaper than the other stations included within the regression. The motorway coefficient is 

smaller and therefore less important. Surprisingly it is negative indicating that motorway stations 

are cheaper than the other stations. The selection criteria for motorway stations (see Table 4.1) 

incorporated stations that were located within 0.5km of a motorway. Within West Yorkshire, this 
includes stations that are located in urban areas. This factor will obviously have impact on the 
importance of this variable. 

Coefficient Value 
Constant 71.337 
Population density -9.30 x 10-5 
Distance 3.599 x 10-5 
Supermarket -1.281 
Motorway -0.263 
Esso -1.164 

Table 4.7: Constant and coefficient results from the regression analysis with population density, 
distance, supermarkets, motorways and Esso indicators. 
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The inclusion of the supermarket, motorway and Esso stations as separate indicators obviously 

made an important contribution to the predicted price. However, the results are not encouraging. 
An r2 of 0.253 means that the variables are only explaining 25% of the variation. The multiple 

regression model gave results that indicated that geography was not a significant factor, despite 

strong evidence from both the literature and analysis of the real data. Multiple regression does 

not take into account the complex and non-linear effects of locality, the inclusion of these may 
improve the results. 

4.10 Geographically Weighted Regression (GWR) 

Geographically weighted regression (GWR) is an extension to multiple linear regression which 

adds in a spatial element (Brunsdon et al., 1998a, b). Equation (4.3) shows a typical multiple 
linear regression model. GWR extends this by making the coefficients, a and b;, a function of 

position so 
y= a(s) + bi(s)x1 + b2(s)z2 + b3(s)z3 + ... 

(4.9) 

where s is the position at which the variable is being estimated. This spatial variation is included 

by weighting the contribution, wij, to the regression at point i from the data at point j according 

to the distance d; J between the two points. A parameter b, the bandwidth, is used to set a distance 

scale over which the weighting decreases. 

The variation in the regression coefficients means that the regression model can take into 

account spatial variations in the relationship between the x, and y caused by other spatial factors 

which are not included in the regression model through the x;. This is particularly useful if the 

system under analysis is thought to be significantly influenced by its locality or other points within 
it. Use of this technique will hopefully improve upon the results of the multiple regression. The 

GWR was performed using the package developed by Fotheringham et al. (2002) at the University 

of Newcastle6. The reader is directed to Fotheringham et al. (2002) for a detailed synopsis. 
Price was again selected as the dependent variable. Population density, distance, supermarkets, 

motorways and Esso were input as the independent variables. The data from July 27th for West 

Yorkshire was used. The fixed and adaptive bandwidths (number of data points used to perform 
the regression at any one point) were both experimented with. The adaptive bandwidth was used 
in the final regression as this gave a slightly better r2 value because it gave a larger neighbourhood 

search in areas that contained fewer petrol stations. 166 stations were used within the regression; 

although this is a large figure, only those stations nearest the regression point will have a large 

weighting and thereby a significant impact. In addition to this, the standard weighting function 

was used. This is a bisquare function where the weighting function wig is given by 

wi _ 
(1-d, 2j/b2)2 (did < b) 

(4.10) i0 (d; j > b) 

The bandwidth b is chosen adaptively by the GWR code to minimise the r2 value. 
GWR does not produce global coefficients. Instead, comparison with the multiple regression 
6Details on the software can be found at www. ncl. ac. uk/geps/research/geography/gwr/. 
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model will be achieved through r2. The r2 for the GWR was calculated at 0.323 (with a standard 

error of 0.903). This is an improvement on the results from the multiple regression modelling 

(an r2 of 0.253). This translates to a SRMSE of 0.0133, again better than the multiple regression 

models. This suggests that spatial distribution of the petrol stations does have an effect on price 

setting within West Yorkshire in addition to the density and nearness metrics, if not as important 

as originally suggested. Other factors appear to exert more influence. For example, the multiple 

regression analysis identified both supermarkets and Esso as having a significant impact on the 

price. 
Figure 4.19 shows spatially the results of the multiple regression and GWR on the July 27th 

data (the real data is included for comparison). The multiple regression (Figure 4.19(b)) has iden- 

tified some of the lower priced areas, but has failed to detect a large amount of the variation. The 

GWR (Figure 4.19(c)) has improved on the multiple regression model performance by identifying 

more of the spatial differentiation in prices. 
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Figure 4.19: Real data from July 27th (a) compared with the results from the multiple regression 
(b)and GWR (c). 

4.11 Summary 

The results of both the multiple regression analysis and GWR suggest that the factors controlling 

price are more complex than can be identified through a regression equation. For example, neither 

the multiple regression model or the GWR can incorporate potentially important factors such as 

market strategy or competition. One of the interesting results that came to light was the lack of 



63 

influence that geography appears to have. The coefficients from the multiple regression model 

gave little significance to population density and distance to neighbour, but a high significance to 

the effect that different brands of stations exert. GWR did improve on the results of the multiple 

regression model. This improvement suggests that locality does play some part in the final price. 
One of the largest criticisms of mathematical models is that it is difficult to take into account 

the actions of individuals and therefore the modifications to the environment which result from 

their behaviour. This makes it impossible to examine, for example, the effects of the Esso Price 

Watch policy or the constrained pricing of supermarkets at more than more one spatial level. As 

Ferber (1999) highlights, 

"If we consider actions only in terms of their measurable consequences at the global 
level, or of their probability of appearance, it will be difficult to explain phenomena 

emerging from the interaction of these individual behaviours, in particular all those 

relating to intra- and inter-specific cooperation. " 

It is the interaction of these individual behaviours that are believed to exert an important influence 

on the price and this is therefore a grave failing of these empirical models. 
The final criticism that can be addressed at empirical models is that by their nature, they only 

consider metric parameters. Vast amounts of valuable information can be input to a model by 

use of behavioural data. This could be for example, that the supermarket group Sainsbury's are 

offering a discount on petrol to customers who shop at their stores. 

4.12 Conclusion 

An important focus of this research is the establishment of rules that are able to represent the 

reality of the petrol pricing market. As previously stated, there is a vast amount of data, but little 

published information concerning what rules govern the system. One of the aims of this chapter 
has been to thoroughly analyse the real data to provide more information about which factors 

control the system and the magnitude of their impact. This information will be invaluable when 
constructing and testing a model. 

Two methods of classifying the data have been presented. Additionally, statistical methods 

of comparing predicted model prices with real data have been described in the context of the 

regression models. These methods, along with the classifications, will be used to analyse the 

performance of the model output in subsequent chapters. 
Based on the real data analysis presented within this chapter, the petrol price market has been 

characterised as strongly non-linear with step changes in price. There is a strong spatial element to 

the pricing of the petrol with a clear rural-urban divide. Different market strategies implemented 

by different brands were evident, for example the Esso Price Watch and the aggressive pricing of 
supermarkets. 

An attempt to incorporate these factors into regression models was made. Using multiple 
and geographically weighted regression to model the prices gave relatively poor results. The 

conclusion was drawn that for the petrol price market, empirical models are not appropriate. They 
do not account for all of the spatial variations observed in the real data nor can they represent 
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changes in the system over time. In the following chapter, an agent-based model will be developed 

which attempts to address some of these failings. 
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Chapter 5 

Agent Model Development 

5.1 Introduction 

Chapter 2 highlighted the traditional empirical approaches that have been used to model the petrol 

price market. Two such methods (multiple regression and geographically weighted regression 
(GWR)) were applied in Chapter 4 to the real data to investigate their suitability. Neither technique 

performed well and the conclusion was drawn that there were severe limitations in their application 
to the petrol price market. The focus shifted to using a different type of technique, agent-based 

modelling. Agents were introduced in Chapter 3, their strengths discussed and through the variety 

of applications detailed, their flexibility highlighted. 

Agents overcome many of the problems associated with more traditional empirical techniques. 
For example, agent architectures can be decomposed into small blocks with individual tasks that 
together fulfil their purpose. These tasks could be unique rule sets (i. e. pricing policies) applied to 

an individual or group of stations. The impact of assigning these policies can be analysed on both 

a small scale (immediate neighbourhood) and larger scale (regional level). This type of analysis 

cannot be performed using empirical models. 
This chapter describes the conceptual and technical construction of an agent model based on 

the non-consumer empirical models discussed in Chapter 3. This is followed by the development 

of a rule set and testing of performance against the real data. Individual rule sets are assigned and 
the results discussed. 

5.2 Agent Model Framework 

The agent model is designed to represent as accurately as possible the reality of the petrol price 
market. The conceptual framework, architecture and structure of the agents has drawn heavily on 
the available literature and analysis performed on the real data in Chapter 4. The following sections 
will provide details of the conceptual framework adopted. Details of the technical construction are 
provided in §5.3. 
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5.2.1 Conceptual Framework 

As outlined in Chapter 3, agent models consist of subsystems, subsystem components, interactions 

and organisational relationships. For example, in simplistic terms, changes in petrol prices at a 
local level are thought to be influenced by location of competitors and amount of custom. At 

a national level, influences such as taxation and crude oil prices become significant. All these 
factors interact in some way to affect the final price. In this thesis, the focus is more towards local 

variations which have been much less extensively studied. 
The main notion behind the agent model is to emulate as closely as possible the rules which 

are perceived to govern the way petrol prices are set in reality. This approach contrasts sharply 

with traditional statistical methods that search for patterns or trends in the data. The results of two 

such empirical techniques (multiple regression and GWR) were examined in Chapter 4 (see §4.9 

and §4.10). The conclusion was drawn that these techniques are largely unsuitable for modelling 

a complex system such as the petrol price market. 
Conceptually, petrol stations can be seen as discrete objects with a degree of control over 

their own pricing. Evidence from the literature (see Chapter 2) and detailed analysis of the real 
data (Chapter 4) suggests that there are several important factors that control petrol prices. Of 

these, rules dictated by corporate policy are perhaps the most important. These rules react to the 
behaviour of competitors, normally within a local neighbourhood' aiming to both retain compet- 
itiveness and maximise profit. The Competition Commission (1990) identified several variables 

that form the basis of these rules, for example, size of neighbourhood, price change per day, un- 
dercutting and overpricing amount. Analysis of the real data in Chapter 4 enabled several of these 

parameters to be assigned a range of potential values. 
External factors, for example crude oil prices, exchange rates and fuel tax were also identified 

in Chapter 2. Unlike the effects of corporate rule sets and local competition, these factors are 
thought to have an equal effect on all of the stations regardless of geographical location or station 

type. 
Multi-agent systems (MAS) were introduced in §3.3. MAS are a natural metaphor for mod- 

elling the petrol price market. Within a MAS, independent agents (petrol stations) can be created 

and assigned individual rule sets (corporate policy). Co-operation between agents for sharing in- 
formation can also be built in (reacting to local prices) as required. In addition, an agent method- 

ology is particularly suited to this application for the following reasons: 

- Flexibility, i. e. different rule sets can be assigned to different stations. 

- Potential to link to other techniques to optimise a solution (e. g. Evolutionary Algorithms). 

- It agrees well with the conceptual idea of how the prices are set in real life; theoretically it 
is a good representation. 

- The agent framework can give temporal variations, enabling assessment of the time period 
required for the system to reach a steady state. 

(According to Ning and Haining (2003) a local neighbourhood is the distance from a station to one or more 
"reference stations". 
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- It is easy to add external influences into the model, e. g. oil prices. 

These advantages overcome many of the problems related with traditional, empirical tech- 

niques. For example agent models allow examination of the impact of unique behaviours at differ- 

ent geographical scales and over time. Other criticisms with empirical techniques are summarised 
in §2.6. 

5.2.2 Agent Structure 

There are numerous definitions of what an agent is (see §3.2 for further details). The "petrol" 

agents created within this model will be defined by the requirements of the application. This 

follows the mode of definition proposed by Brenner et al. (1998). 

The agents are heterogeneous; despite having fixed locations, each station can potentially have 

a different rule set and price; communicative and cooperative (though not anti-competitive) with 

pricing and location information shared between the agents for competition and reactive, making 
decisions and changing their prices based on information supplied to them. The structure is multi- 

agent in the sense that different groups of petrol stations for example, Esso, can be assigned their 

own unique rule set while the rest of the petrol stations operate an entirely different one. Figure 

5.1 presents the mechanism for an individual agent. 

For each neighbour { 
get price of neighbour() 
get distance to neighbour() 

} 

Calculate new price based on pre-defined rules; 
Repeat until simulation finished. 

Figure 5.1: Pseudo code for an individual petrol agent 

5.2.3 Choice of Architecture 

There are an ever increasing number of agent architectures available. Of the architectures outlined 
in §3.3, multi-agent systems (MAS) are the most appropriate (see also §3.7). Figure 5.2 shows 

a schematic of the MAS that will be implemented. This architecture was chosen because of the 

modularity and flexibility that it will bring to the model. This is ideal for modelling complexity and 
large systems. Different agents (petrol stations) may use different rules depending on their location 

and corporate policy. For example, allowing the agent to assess prices of other stations within its 

neighbourhood, under-cutting competition etc. A key requirement in modelling competition in an 
economic system is that the agents are reactive (i. e. they maintain an ongoing relationship with 
their environment). Use of a MAS allows the agents to be reactive. 
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Petrol Agent Petrol Agent 

Get neighbours Get neighbours 

Implement rules Implement rules 

Set new price Set new price 

Information Information 
Network ~ Network 

Petrol Agent Petrol Agent 

Get neighbours Get neighbours 

Implement rules Implement rules 

Set new price Set new price 

Information Information 
Network t_ . Network 

Figure 5.2: A set of petrol agents (following the style of Tsvetovat and Carley (2002)) 

5.2.4 Knowledge within the System 

The petrol agents possess knowledge that enables them to complete their tasks. They are aware 

of their neighbours' location and fuel prices on the current (t) and previous day (t - 1), additional 
data can be fed in as required. Feeding the agents the previous day's price was implemented to 

provide the system with knowledge of the current trend in price changes as well as the current 

price. However, two implementation problems arose with this approach. The readings for each 

petrol station on each day are not complete, i. e. not every station has a reading every day (i. e. at 
the start of a model run). In cases where there are such absences, the price at t was used as t -1. 
Secondly, the data set itself is not continuous: there are several gaps within the data set limiting 

the number of days that the simulation can be compared with reality. This problem was overcome 
by using days at the beginning of a run of consecutive days (e. g. 27th July for the early part of the 
data set). 

5.2.5 Rules 

A crucial stage in the development of the model is building an appropriate rule set that models 
reality. To this end, combinations of rules will be implemented in §5.5 and their performance 

assessed against the real data in §5.6. The rule sets will be based around the variables detailed 
in Table 5.1. These variables were chosen on the basis of industry knowledge supplied from the 
literature2 and detailed analysis of the real data undertaken in Chapter 4. Figure 5.3 shows how 

these rules might be implemented by an individual agent while Figure 5.4 illustrates how the model 

in particular, the Competition Commission (1990) and research undertaken by Ning and Haining (2003). 
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would operate including this agent behaviour. 

Rule I Explanation 

Maximum undercutting price The amount by which petrol stations can undercut 
competitors, e. g. lp, 2p. 

Maximum overprice The amount by which petrol stations can be more 
expensive than their neighbours without becoming 
uncompetitive and being forced to cut their price. 

Maximum priceChange The amount by which petrol stations can change 
their price per day. 

Neighbourhood The distance that the petrol stations will treat as their 
neighbourhood e. g. 2km, 3km. 

Type of brand Which group of petrol stations is to be used e. g. su- 
permarkets. 

Type of petrol Which type of petrol is to be assessed. 
Region Selection of particular area, e. g. county, for analysis. 

Table 5.1: Summary of the rules that can be potentially implemented by the agent model. 

5.3 Construction of the Agent Model 

The following work presents the technical construction of the agent model. An overview of the 

model classes are supplied along with details of other issues, for example reading data in, design 

of the graphical user interface (GUI) and visualisation of initial results. The section finishes with 
details of statistical methods used in assessing the performance of the agent model. Experiments 

are undertaken to assess the impact on the results of the model of using data from various sized 

geographical regions. 

5.3.1 Development Environment 

An object orientated language such as C++ or Java is particularly suitable for the development 

of an agent code because they both possess a similar conceptual basis. It is natural to implement 

an agent as an object. Java possesses the advantages of being easy to develop, multi-platform 

and readily available. Furthermore, it is also easy to link to other programs, for example, GIS 

software, web-based packages and other AI techniques (Heppenstall, 2001). For these reasons, 
Java was chosen as the programming language for this project. 

5.3.2 Overview of Model Implementation 

In keeping with the philosophy of agent-based modelling, a modular approach was taken in the 

design and implementation of the model. Classes were created to contain various distinct parts of 

the model, for example, the user interface and the agents. 
The model can be run in two modes. The first is an interactive mode with a GUI to allow 

the user to select the input files and specify all the model parameters. The second mode is non- 
interactive with all the parameters being read from a control file. This mode is run from the 
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Figure 5.3: Flowchart illustrating operation of rules within the petrol agent during one iteration. 
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Start 

Is my price more 
expensive than my YES 

neighbours? 

Reduce price to 
neighbours price. 

NO 

Is my price more 
than yp cheaper YES 

than my neighbour? 

Set price to 
neighbours - yp. 

NO 

"Is my price larger 
than the maximum YES 

price change 
allowed? 

Limit price change 
to maximum allowed. 

NO 

' Is my new price YES less than the minimum 
allowed? 

Set the new price to 
equal this. 

NO 

Finish 

Figure 5.4: Flowchart illustrating how the model runs with a typical rule set. 
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command line and does not require the GUI so it is suitable for running a batch of pre-defined 

model runs, running on a remote system or linking with other software (see e. g. Chapter 9). 
Figure 5.5 presents a unified modelling language (UML) schematic of the interactions between 

the methods and classes of the agent model (variables are not included). The two operational 

modes are implemented through a set of classes. The GUI class creates and controls the windows 

and dialogs necessary for the graphical user interface. The Control class is an alternative to the 
GUI class and reads in all the parameters from a specified control file. Both of these classes create 

an instance of the Simulation class and set the initial conditions and parameters for the model. 
The Simulation class contains the various data and methods needed to coordinate and run the 

simulation. The Simulation class also creates an instance of the Petrol class for each agent (petrol 

station). The Petrol class contains the data and methods pertaining to each station, for example 
the variable containing the petrol price and the methods to get and set that price. There are other 

ancillary classes, such as the GlobalRules and Rules classes which contain details of the rule set 
in operation. 

The full source code and a compiled version of the model can be found on the CD included 

with this thesis. 

5.3.3 Graphical User Interface (GUI) 

The GUI was designed to enable the user to easily select the required data, the rule sets and 

simulation parameters. Figure 5.6 (a) shows the menu designed for selection of data. The dialog 

used for assigning rule sets is shown in Figure 5.6 (b). Parameters can be set as default or specified. 
Parameters can also be turned off. This provides a very powerful framework for the agent model to 

work within. Figure 5.6 (c) shows the dialog box used for setting the simulation time and intervals 

to save data at. 

5.3.4 Reading in Initial Data 

The data was originally supplied in two separate files in mbd (Microsoft Access) format. The 
first file contained the day of the month with petrol prices and ID number, whilst the second 
contained additional information such as the location and type of each petrol retailer. These files 

were exported as csv files (comma separated values) which could be read into the agent model. 
The data from the two files had to be matched up by ID to create a complete record for pro- 

cessing. To ensure that only complete data was fed into the model, data from one file was not used 
if it did not match up with the second file. 

Once the data had been read into the model, a subset of the data can be selected based on a 
variety of conditions, for example, petrol station type (e. g. Esso) or geographical area (e. g. West 
Yorkshire). This filtering is done purely based on matching the relevant field in the second input 
file containing the petrol stations' details. Several lots of data can be read in; for example all the 
Esso stations could be read in first and then all the Shell stations. The agents are created and 
initialised using this filtered data. 

Some additional consistency checks are made to ensure the petrol prices are reasonable. A 

visual inspection of the database showed that there were some errors in the recorded petrol prices 
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at a few stations. These would be characterised by a very high or low petrol price, often only 

on one day with sensible values on the previous and subsequent days. To eliminate these points 

only unleaded fuel prices in the range 65-75p were accepted when reading in data. Values outside 

this range were ignored and the station was treated as if there was no recorded price for that day. 

This range was taken so that it fully included the observed range of prices, whilst eliminating the 

suspect values. 

5.3.5 Model Output Files 

During and after the simulation, data is output into files for subsequent analysis. After set intervals 

(specified by the user), the price of fuel at each station is saved to an ASCII data file. At the end of 
the simulation, a file is created that shows the maximum, minimum, mean and standard deviation 

(SD) of the prices for each day of the simulation. 

5.3.6 Visualisation: Model Panels 

In addition to the data files, it is extremely useful to be able to visualise the results of the simula- 

tions. These results will ultimately be visualised by use of interpolation within a GIS (as detailed 

in Chapter 4). However, interpolating the results of every simulation would be a time consuming 

process. Creating two visual outputs within the model provides a simple and fast indication of 

the spatial results of a simulation. A "before" panel displays the real data and the "after" panel 

displays the last day of the simulation (Figure 5.7). A colour scale is used to differentiate between 

high and low prices (green: low - red: high). Black points represent the stations that do not sell that 

brand of petrol. In the software, moving the cursor over a station will display the coordinates and 

the fuel price in the status bar. 
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Figure 5.7: Example of "before" (a) and "after" (b) model panels displaying the location of petrol 
stations and their prices. 
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5.3.7 Statistical Analysis of Model Data 

The model can output prices at each time step. Statistical methods will be used to assess the 

performance of the model in comparison to the real data. The mean, standard deviation (SD) 

(see §4.4.1) and the standardised root mean square error (SRMSE) (see §4.9) will be used. A 

combination of these techniques will provide a measure of how the model is performing. 
Two scripts were written to assess the differences in the real and model data at the same 

geographical point, these are: 

- DIFFS. SH: To calculate the difference in price between the real and model data at each 

petrol station on a given day. 

- STATS. AWK: Using the output from the DIFFS. SH, this script calculates the mean, SD, 

Root Mean Square Error (RMSE) error and the SRMSE of the differences between the real 

and model data at each petrol station. This can also be used for the prices as well as price 
differences. 

These scripts can be found in Appendix C. 

5.4 Details of Model Simulations 

This section will briefly provide details of the set up of the simulations. This will include a 
description of the data that will be used and the initial conditions. 

5.4.1 Model Inputs 

In Chapter 4, the data was described in spatial and temporal terms. Geographically, the data set 

covers the UK. This was felt to be too large an area to sensibly experiment with. Smaller areas 

were therefore chosen; these were West Yorkshire and the Yorkshire region (see §4.2.2 for further 

details). At this experimental stage, the smaller of the two study areas, West Yorkshire will be 

used. 
After analysis of the temporal coverage of the data (see §4.4), the data was divided into two 

continuous sections termed the early data set (covering July 27th - August 6th) and late data set 
(August 19th - September 1st). Within this chapter, only the early data set will be used. 

Table §5.1 identified several parameters that will be experimented with. These included brand 

and region. Brand refers to the group of stations that will be used in simulations for example, 

supermarkets. Theoretically, every station could have an individual rule set. However, at this 

stage running the model with all the agents operating separate rule sets would be unnecessarily 

complicated. Assigning the same rule set to all the agents whilst varying parameters will enable a 

clear indication of the impact of each variable. Individual rule sets will be assigned in §5.8. 

The largest amount of data available is for unleaded petrol, simulations will therefore be run 

using this data. Each model experiment will be run to equilibrium. As the real data is daily, the 

model is run with one price change equalling one day. For comparison with the real data, the 10th 

day of the model run will be compared with day 10 of the real data (6th August). 
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In summary, unleaded fuel prices from West Yorkshire covering July 27th - August 6th will be 

used. The agents will all operate the same rule set. 

5.4.2 Study Area Size 

§4.3 and §5.4.1 stated that only those stations contained within the West Yorkshire boundary would 
be used during experimentation. This section will assess how much information could be lost by 

using this technique. The most obvious place for loss of data is at the edge of the study area. 
However, will the overall pricing patterns and those in specific locations, e. g. the cities located 

next to the boundary be affected? The purpose of this section will therefore be to assess the impact 

of varying the number of points in the interpolation, not an examination of how well the model is 

performing. 
The agent model was initialised with the real data from July 27th and simulations ran with 

the default parameters. These were neighbourhood: 5km; undercutting: lp; overpricing: lp and 

maximum priceChange: lp (experimentation with these parameters is undertaken in §5.5). Table 

5.2 summarises the geographical areas included within each model run: 

Model Run Geographical Areas Used 

a West Yorkshire 
b Yorkshire Region 

c Surrounding Counties 

Table 5.2: Summary of the geographical extent of data included within each model run. 

For comparative reasons, each model run was interpolated after 10 days. 

Figure 5.8 shows that inclusion of all the petrol station data surrounding West Yorkshire (Fig- 

ure 5.8(c)) has had the greatest impact on the highly priced stations on the edges of the study area. 

With the presence of competitive neighbours, these stations are now approximately 3-4p cheaper. 

The impact of the Yorkshire region data (Figure 5.8(c)) is not as great with the increase in price of 

several of the edge stations by approximately lp. 

Away from the edges, there are no significant differences in the price of petrol between the 

three simulations. The only discernible difference between the surrounding counties (Figure 5.8 

(c) and West Yorkshire (Figure 5.8 (a)) can be seen in the eastern petrol stations (marked with an 

arrow) where the stations in the surrounding counties have a slightly higher price (of a magnitude 

of approximately 0.5p). 

In summary, using data from all the surrounding counties instead of just West Yorkshire or 

the Yorkshire region has had the effect of eliminating some of the highly priced edge stations. 
However, there are no significant differences in the spatial pricing trends. West Yorkshire will be 

continued to be used. 

5.5 Building a Rule Set 

One of the main objectives of this research is to model reality of the petrol price market as we 

understand it, i. e. the main processes and drivers of a system as identified through the literature 
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Figure 5.8: Interpolation of model output after 60 days for West Yorkshire using (a) points within 
West Yorkshire (b) Yorkshire Region and (c) all the surrounding counties. The arrows indicate 

regions of interest discussed within the text. 

and detailed analysis undertaken in Chapter 4. The precise rule set used and the parameter values 

within the rules will be adjusted to best represent the real data. A crucial element of this is testing 

that the model is performing sensibly. Adjustment of parameters to sensible values can be achieved 

via industry knowledge and experimentation by drawing on available industry knowledge and real 
data analysis. 

The following sections will experiment with parameters that can be adjusted to reflect the 

characteristics of the data. These parameters are: neighbourhood size, price undercutting amount, 

maximum overpricing amount and maximum priceChange. Basic definitions of these parameters 

can be found in §5.2.5; an explanation of the significance of each parameter will be supplied as 
they are adjusted. Examining the impact of parameters will be achieved by initialising the model 
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on the first day of the data set (day 0) and comparing the output of this simulation on day 10 with 

the equivalent real data. This gives an accurate indication of how the model is performing over 

time in comparison with the real data. After experimentation with each parameter, the value that 

performs best will be used in subsequent simulations. In Chapter 9, this "one variable at a time" 

approach is replaced and strengthened using an Evolutionary Algorithm approach. 

5.5.1 Effect of Neighbourhood Size Variation 

It is hypothesised that stations look at the prices of competitors within a certain distance (their 

neighbourhood region) when setting their own price. When examining the local competitive en- 

vironment, Ning and Haining (2003)'s study found that 83% of the respondents to their survey 

considered the price at the nearest station when setting prices. This station was termed the "ref- 

erence" station and over 85% of surveyed stations had one or more reference stations for setting 

a price. The Competition Commission (1990) found that 82% of stations knew the price of their 

local competitor and 60% of these competitors were within 1/2 mile. The local neighbourhood 

is therefore an important factor within the local competitive environment. Analysis of the real 

data for West Yorkshire showed that the average distance between neighbouring stations ranged 

between 482m - 1122m depending on the category of station (see Table 4.4), with the average 

distance calculated at 701m. 

The agent model was initialised with the real data on July 27th from West Yorkshire. The 

neighbourhood parameter was varied by lkm, tkm, 3km, 5km and 10km. The other parameters 

(undercutting, overpricing and priceChange) were set to a default value of Ip. 

Figure 5.9 shows that the size of the neighbourhood has a significant effect on the performance 

of the model. The larger the neighbourhood, the worse the performance of the model became. 

The best performance was found with a neighbourhood of lkm. Within smaller neighbourhoods, 

changes affect fewer garages and take longer to propagate through the model. This means the final 

conditions do not change greatly from the initial ones. In larger neighbourhoods the prices are 

being over-predicted. Stations are reacting to competitors located at a distance. These competitors 

may be, for example in different geographical areas and subject to different natural variations in 

prices. As the neighbourhood size increases the price differences get closer to the mean price 
difference presumably because the variations in the price differences are averaged out. This leads 

to a smaller standard deviation (SD) even though the mean price difference actually increases. 

There is a relatively large error with little variation. 

5.5.2 Effect of Price Undercutting 

The undercutting parameter sets the maximum amount by which a station should attempt to un- 
dercut the other stations in its neighbourhood. If it is more than this amount cheaper than its 

competitors it can raise its price to the undercut level to increase its profit while still remaining 

cheaper. This introduces realistic behaviour into the model by allowing stations to remain both 

competitive and to increase their profit. The experimentation within this section will determine 

how a neighbourhood reacts if a competitor lowers its prices. Will price changes diffuse through- 

out the area, or will they remain static? To test this, the undercutting parameter was set to 0.5p, 
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Figure 5.9: Effect of different neighbourhood sizes on the mean price difference and SD of the 
price differences (represented by vertical bars). Maximum undercutting price set to lp; maximum 
overprice lp and maximum priceChange Ip. 

Ip, 2p, 3p and 5p. These values were chosen after Ning and Haining (2003)'s research found that 

in over 66% of cases, price differences were less than lp per litre, and in 82.7% of cases differ- 

ences were less than 2p. The neighbourhood size was set to lkm; undercutting value to 0.5p and 

maximum priceChange to I p. 
Figure 5.10 shows that unlike the neighbourhood differences, where clearly a smaller neigh- 

bourhood improved the model performance, changing the undercutting price appears to make little 

difference. The mean price difference and SD remain almost identical throughout all the different 

model runs. This shows that the price undercutting rule is not having an effect, most likely because 

the real data is already competitive, i. e. no station is significantly cheaper than the others. Unless 

there are stations which are significantly cheaper this rule will not have a great impact. 

5.5.3 Effect of Maximum Overprice 

The maximum overprice is the maximum amount by which a station is can be more expensive than 
its competitors before it has to drop its prices. By operating this behaviour, stations are forced to 

remain competitive. This is necessary for them to maintain petrol sales. The research of Ning and 
Haining (2003) found that stations are never more than lp - 2p different in price. This provides a 

range of likely overprice values. 
The results of varying the maximum overprice were interesting (Figure 5.11). Altering the 

amount by 0.5p did not make any difference, but increasing the amount by lp had the effect of 
improving the results; this correlates with the observations of Ning and Haining (2003). However, 

a maximum overprice value of 5p produced the best results. These results can be explained by 

the fact that the greater the maximum overprice, the fewer petrol stations are changing price. The 
higher overprice is only affecting the petrol stations with higher prices, such as those found on 
motorways and in rural areas. These results show that the model is operating in a sensible manner; 
it is not expected that larger price differences will have a great effect in urban areas. Most petrol 
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stations will, on average, have a maximum overprice of 1 or 2p. For further simulations, this value 
will be kept at 1.5p. This is because there was a significant improvement in the model between I 

- 1.5p. After this, the improvement was marginal. 
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5.5.4 Effect of Maximum PriceChange 

The maximum priceChange is the amount in pence that the station may change its price by each 
day. By setting this constraint, the model cannot create huge price differences. For example, if 

one station has a starting price of 75p and the others in its neighbourhood have a price of 68p, 

12345 
Undercutting amount (p) 

12345 
Overpricing amount (p) 
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the station with the price of 75p will not drop to 68p in one day. Instead the price change will be 

gradual, calming fluctuations. Large price changes are generally not observed in real petrol prices, 

possibly because of the adverse reaction of consumers. The price difference observed between 

stations within the literature is 1- 2p. 

Figure 5.12 shows that increasing the maximum priceChange increases the mean price differ- 

ence and standard deviation. The best results came from a priceChange set at 0.1p, the worst at 
l Op. From these results, it can be concluded that prices change slowly and none of the stations are 

changing their prices more than 0.1p per day. This is not surprising; the changes within the model 

are continuous and not as abrupt as found within the real data where prices can, in rare circum- 

stances, change by a few pence per day. Additionally, it is possible that there are other factors that 

could dampen price changes in reality, e. g. aggressive marketing scheme by a competitor, effect 

of crude oil prices etc. 
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Figure 5.12: Log graph showing the effect of the maximum priceChange on the mean price dif- 
ference and SD in price difference (represented by vertical bars). The undercutting parameter is 

set to 0.5p; maximum overprice 1.5p and neighbourhood size tkm. 

5.6 Comparison of the Agent Model with Real Data 

Work has so far concentrated on building up a set of rules that will enable the petrol price market 
to be modelled. Based on the parameters in Table 5.3 and the results of experimentation, the rules 
that each agent will operate can be summarised as: 

- Assess my neighbours price within a 1km radius. 

- If they are more expensive than I am, raise my price up to 0.5p of theirs. 

- If I am more than 1.5p expensive than they are, lower my price to match theirs. 

- Do not change my price by more than O. lp per day. 



83 

In the analysis of the real data, variations over time and in different geographical regions were 
identified. Will the agent model reproduce rural-urban variations? How accurate will the results 
be? The geographical and petrol station type classifications introduced in Chapter 4 will be applied 
here (see §4.5 for explanations). This will allow a comprehensive examination of the performance 

of the model; an overall poor performance of the model could be due to an under or over-prediction 

within one of the classifications. 

Parameter Value 

Neighbourhood 1 km 
Undercutting 0.5p 
Overprice 1.5p 
PriceChange 0.1p 

Table 5.3: Summary of optimal parameter values for the agent model. 

5.6.1 Spatial and Temporal Robustness 

Figure 5.13 shows that the agent model does not follow the trend of the real data accurately. 

Over the course of the simulation, the average price remained firmly around 71p (+0.01p) whilst 

the average price of the real data decreased to 70.5p before steadily increasing to just over 71p 

by August 6th. However, the variation of the real data was preserved (as indicated by the SD) 

throughout the simulation. 

Despite these results, it is difficult to assess whether the model is spatially and temporally 

robust. The model hit equilibrium after only a few days which is clearly not enough time to 

build a price distribution based on the rule set. The variations within the real data were maintained 

suggesting that the agent model was not modifying the real prices, merely preserving its variations. 
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Figure 5.13: Comparison of mean price per day between the agent model and real data over time 
within West Yorkshire. The SD is indicated by the vertical bars. 
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5.6.2 Comparison of Performance with Regression Models 

The standardised root mean square error (SRMSE) is a standardised method of comparing the 

agreements between a model run and real data. A low value indicates a good fit, a value of zero 

would be a perfect match. The SRMSE for the multiple regression, geographically weighted 

regression (GWR) and agent models were calculated by comparing the predicted value with the 

real data on day 10 (August 5th). The results are presented in Table 5.4. 

Model SRMSE 
Constant Data 0.0131 
Multiple Regression 0.0135 
GWR 0.0133 
Agent 0.0128 

Table 5.4: Comparison of the SRMSE for each of the models. For comparative purposes, the 
SRMSE of the data if nothing had changed (constant data), was also calculated. 

Table 5.4 shows that the agent model produced the best SRMSE results and was an improve- 

ment on not doing anything (i. e. the real data was kept constant). The GWR slightly outperformed 
the multiple regression. Unlike multiple regression, GWR takes into account geographical factors 

weighting neighbouring stations more highly than those located at a distance. 

The results reflect the different ways in which the regression and agent models work. The 

regression model attempts to fit a pattern to all of the data. This would allow the price of an extra 

station to be predicted. It does not attempt to model the temporal evolution or local competitive 
behaviour. 

5.7 Analysis with Classifications 

In Chapter 4, the real data was divided into geographical and "petrol station type" classifications. 
Analysis performed using the geographical classification identified spatial price variation between 

rural and urban areas. Price differentials were also found within the petrol type classifications, for 

example, supermarkets were on average cheaper than multinationals and minors. By calculating 
statistics for each of these classifications, an assessment can be made of how well the agent model 

performs in individual categories as well as the overall agent model. This may suggest where 
improvements or adjustments in the rule sets have to be made to improve the performance of the 

model. 
The model was initialised with the real data for West Yorkshire from July 27th. The parameters 

summarised in Table 5.3 were used. The mean price and SD were calculated up to August 6th on 
days where both real and agent model data were available. 

5.7.1 Geographical Analysis 

Figure 5.14 (a) shows quite clearly that the agent model is only modifying the initial data a small 
amount. Pricing structures and variation apparent within the real data (Figure 5.14 (b)) are pre- 
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served. The rural category, for example, sustains the highest average prices, the urban classifica- 

tion the lowest. The SD, represented by vertical bars, in all categories remains almost identical to 

the initialisation day (July 27th). 
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Figure 5.14: Graph showing a comparison of the trends of the mean price within the different 

geographical classifications of the agent model (a) and real data (b). Vertical bars show the SD. 

Results are shown from West Yorkshire for the data initialised on July 27th. 

Akin to the real data, the agent model predicts an increase in price over the time difference, 

however the magnitude of the increase is much smaller in the model (0.05p in comparison to the 

real increase of 0.4p). The best results come from the urban category. The average price decreases 

slightly before a gradual increase between July 30th - August 6th, a pattern found within the real 
data. Results from the motorway and rural areas were both poor. The average price and SD of the 

rural classification remained constant throughout the simulation. Despite an increase in price (and 

slight decrease in SD), the prices at the motorway stations were consistently lower than the real 
data. 
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These results suggest that the model rules have had the most impact on the motorway and 

urban stations and the least on the rural category. The urban stations are the largest category (84% 

of the total). It is reasonable to suppose that any modifications that the agent model has made 
has fallen on stations within this category. Despite being the smallest (4% of the total), the agent 

model has had a discernible impact on the motorway category. The majority of these stations are 

located near urban areas. It is possible that the impact of the agent model on the urban stations 

has been passed onto the motorway stations. The agent model has not significantly modified any 

of the rural stations (12% of the total) whose average price and SD remains constant throughout. 

These rural stations tend to be more isolated and thus less affected by their neighbours. 

Interpolating the petrol prices over the study area provides an alternative method of assessing 

the patterns produced by the agent model. Figure 5.15 shows the difference between the real and 

model data at each station on day 10 (August 6th). If the model was predicting the real data 

perfectly (i. e. no difference between the real and model data), the map would be completely light 

green-blue. 
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Figure 5.15: Interpolated surface of the price difference between the agent model prediction and 
the real data on day 10 (August 6th). The geographical classification of each petrol station is 
overlaid. 

Figure 5.15 shows that petrol stations in the urban areas are generally over predicting the real 
data (indicated by red areas), a pattern echoed by the motorway stations. The majority of rural 

stations are located in light green-blue areas. A few are situated in areas that are under-predicted, 

such variations will have been masked when calculating the mean price per day in Figure 5.14. 

Figure 5.15 shows quite clearly the large amount of spatial price variation that has been preserved 



87 

by the agent model. 

5.7.2 Petrol Station Type Analysis 

Within the real data (Figure 5.16 (b)), the supermarkets and minors were the lowest and highest 

priced stations respectively. These pricing patterns have been preserved by the agent model (Fig- 

ure 5.16 (a)). Whilst the variation within the supermarkets (indicated by the vertical bars) has 

increased, both the multinationals and minors have experienced a reduction. Together, the multi- 

nationals and minors comprise the largest category (94% of the total). The smaller category of 

supermarkets (6% of the total) appear to be the most altered by the agent model. Both the average 

price and SD have increased over the time period. This could be a reflection of the large price 
increase that is evident within the real data (a rise of over Ip). The supermarkets also tend to have 

much lower prices because of their aggressive pricing strategies (see §4.6.2), but this is not taken 

into account by the agent model which is purely interested in price rather than profit or market 

share. 
In the real data, both the multinationals' and minors' average price decreases immediately be- 

fore a gradual increase over the remainder of the study period. Whilst the increase is distinguished 

in the model results (but on a smaller scale), the decrease seen in the real data is not. The super- 

markets do increase in price slightly, but the poor performance shows that this behaviour is not 
being fully accounted for. Assignment of an individual rule set may improve the performance of 

this category and that of the whole model. 
Interpolation of the difference in prices (Figure 5.17) highlights that a couple of the supermar- 

kets are over predicting the real data price. This accounts for the increase in variation over the 

study period. Multinationals sustain both the largest price variations with differences covering the 
full range (-1.9p to 3.6p) and contain the largest number of stations that are accurately predicting 
the real data. The majority of the cases of the multinationals under predicting the real data price 

are in areas where there are a high density of stations of this type. Multinational stations in more 

rural areas tend to over-predict the real data. The minor stations echo the large variation in price 
difference seen in the multinational category. 

5.7.3 Summary 

Analysis of the classifications has shown that the impact of the agent model has been limited. The 

average price and variation (indicated by SD) in all of the categories remained almost constant, 
the largest impact was evident within the supermarkets class. This trend was found in §5.6.1 with 

an examination of the spatial and temporal robustness of the model performance. The model does 

not significantly alter the data from its initial values and it is this rather than the agent rules which 
lead to the spatial variations in the end results. The real data shows temporal variations in price 

which are not captured by the agent model. 
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Figure 5.16: Graph showing a comparison of the trends of the mean price within the different 

petrol station classifications of the agent model (a) and real data (b). Vertical bars show the SD. 

5.8 Case-Studies 

To date, the agent model has only operated with an identical rule set applied to all the agents. The 

purpose of this has been to test the stability of the model and to build an operational rule set based 

on reality. However, this does not fully exploit one aspect of the functionality of a MAS, i. e. the 

ability to specify individual rule sets for different "categories". Use of a separate assignment of 

rules for different types of stations may enable the system to better model reality by accounting 

for the differences in behaviour. This could improve the performance of categories, for example 

supermarkets, thereby improving the global model performance. 

The following sections examine the results of application of different rule sets to the supermar- 

ket category and Esso stations. From the real data analysis performed in Chapter 4 and evidence 

in the literature, supermarkets were identified as being competitive and tightly priced. These char- 
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Figure 5.17: Interpolated surface of the price difference between the agent model prediction and 
the real data on day 10 (August 6th). The petrol station type classification of each petrol station is 

overlaid. 

acteristics allow the formation of a reliable rule set. The Esso stations will be assigned a separate 

rule set based on the published Price Watch policy. Again, this provides an opportunity to assign 

a reliable rule set and assess the impacts on the agent model performance. 

5.8.1 Supermarket Competitiveness 

Supermarkets are generally more aggressive on price than other petrol stations. This was illus- 

trated in §4.6.2, where it was found that supermarkets are the most cheaply priced and competitive 

(as indicated by their small SD). This trend was also recently seen in May 2002 when both Mor- 

risons and Asda lowered their prices after earlier rises due to conflicts in the Middle East. From 

this example of behaviour, it can be assumed that these stations will not let themselves be over- 

priced. To investigate the impact of this behaviour, the undercutting parameter will be set to 2p 

on supermarkets and Ip on all others. The neighbourhood is set to 1 km and overprice parameter 

to 1.5p. All the other stations were run on the optimal parameters outlined in Table 5.3. 

Figure 5.18 shows that the mean price difference decreases with an increase in the under- 

cutting amount. However, once the undercutting parameter reaches 1.5p there is little further 

change in the mean or SD. Since supermarkets tend to operate an aggressive price policy and un- 
dercut other stations in the area, they might be expected to have a price difference of a penny or 

more. Making the maximum undercutting parameter too small restricts this aggressive price be- 

haviour and leads to the model over predicting the supermarket prices. Increasing the undercutting 
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parameter results in the supermarket stations never being much cheaper than the other stations 
leading to this rule never coming into play. 
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Figure 5.18: Effect of varying undercutting parameter on the mean price difference and SD (rep- 

resented by vertical bars) at supermarkets stations. 

5.8.2 Esso Price Watch: Tiger or Pussy Cat? 

The Esso Price Watch pledge states that they will match any price within the surrounding 3 miles. 
To attempt to test whether this is the case, the Esso brand was selected and given its own rules. 
The neighbourhood size varied by lkm, 3km, 5km3 and 10km and the maximum overprice was 

set to Op. This option enables the user to specify a threshold difference at which the price will 

change in line with other prices; i. e. if it is set to Op, Esso will drop its prices to the lowest around 
it. This is in line with the Price Watch policy. The undercutting and priceChange parameters for 

the Esso stations were given the optimal values of 0.5p and 0.1p respectively. All the other stations 

were run on the optimal parameters outlined in Table 5.3. 

Figure 5.19 shows that changing the neighbourhood size of the Esso stations does not make 

much difference as a whole to the mean and SD of the error of the data set. The error is highest 

for the tkm and 3km neighbourhoods, with the values for lkm, 5km and 10km almost identical. 

Comparing the SRMSE from the model with all stations using the same rules (0.91p) and with 
Esso stations operating different Price Watch rules on a 5km neighbourhood (1.00p) shows no 

clear sign of improvement with the inclusion of the more complicated Esso rules. From these 

results, it cannot really be determined whether the Price Watch is working (i. e. including it in 

the agent model does not significantly improve the agreement with the real data). The parameter 

changed (maximum overprice) is only affecting the Esso stations and these may only be a playing 

a small part in the system as a whole. 
The mean price difference and SD were calculated for all the stations with and without the 

Esso rules turned on. The rules showed that using the Esso Price Watch did not improve the 

35km is equivalent to 3 miles. 
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Figure 5.19: Effect of varying neighbourhood size on the mean price difference and SD at Esso 

stations. 

performance of the overall results. The results are in Appendix D. 

5.9 Recreation of Spatial Patterns 

Experimentation undertaken has led to the conclusion that the agent model is merely preserving 

variations within the data and not implementing the rule sets. This is partly backed up by the short 

time that the agent model took to reach equilibrium (between 2-3 days). By initialising the model 

with constant prices, the ability to generate rather than preserve variations within the data is tested. 

The agent model was run with all the petrol stations assigned the same initial prices. The 

average price on July 27th (71p) was chosen and the model run to equilibrium. Figure 5.20 shows 

that no changes were observed. The agent model has assumed that the situation was stable and hit 

equilibrium immediately. 

5.10 Conclusion 

This chapter has focused on the construction of a MAS to model the behaviour (patterns and 

trends) of the petrol price market. This model incorporated no consumer behaviour, instead only 

operating by stations comparing their price to others in the neighbourhood. "Petrol agents" have 

been designed to share information for mutual benefit and react in a competitive manner to the 

actions of the stations around them. A rule set based on industrial information was built and 

applied to all of the agents (petrol stations). 
Comparison of the results spatially, temporally and within different classifications was under- 

taken. The results showed that the model was stable; there was no irrational behaviour. It was clear 
through the analysis performed on the results that instead of modifying the real data, the model 

was largely preserving its variations. Analysis using the classifications showed that the model was 
having an impact on the categories containing the largest number of stations. Attempts were made 

0123456789 10 11 
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Figure 5.20: Comparison of the price distributions of (a) the real data and (b) agent model 10 days 

initialised with all stations at 71p. 

to improve the results by assigning separate rule sets to the supermarket and Esso stations. No 

improvement was noted. 
The model presented within this was chapter is simply an agent version of the non-consumer 

models reviewed in Chapter 2. The goal of the system was to simulate real petrol stations by being 

competitive, i. e. assessing the price of the nearest neighbours and undercutting them. This mode 

of application has not been entirely successful. However, the use of a MAS has brought valuable 

functionality that is not available using traditional empirical techniques. Regression models do not 

attempt to model the temporal evolution or local competitive behaviour. Neither can they model 

the impact of assigning individual rule sets to stations at a local or regional level. 

An avenue of research that could be investigated is the implementation of alternative modes 

of behaviour. This approach would make use of the agent methodology, for example, the use of 

different strategies at individual petrol stations depending on what is occurring in the immediate 

environment. These strategies need to be driven towards a common goal. The assumption can be 

made that the petroleum industry, akin to any business, is driven by profit; one potential goal of 

each petrol station could be maximisation of profit. This does assume that profit maximisation 

and not other strategies, for example, attainment of market share is dominant. However, a model 

driven by profit maximisation would be more realistic than a model just based on competition. 

The agent model does not account for the behaviour of customers. Consumers are obviously 

vital for any business. Petrol stations must attract customers in order to sell petrol. Pricing is an 

important part of a consumer's decision on where to buy their fuel. Any realistic model of petrol 

pricing must account for this. A technique that would be suited to calculating the flows of people 

to a service is spatial interaction modelling. The potential of this technique will be explored in 

Chapter 6. 

(a) Real Data (b) Agent Model 
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Chapter 6 

Hybrid-Model Development 

6.1 Introduction 

The work within this chapter aims to extend and improve the agent model presented in Chapter 5. 

One of the main criticisms levelled at the agent model was that it did not take the influence of con- 

sumers into account. In this respect, it was very similar to the business centred regression models 

presented in Chapter 3. Each station operated a strategy that enabled it to be more competitive 
than its neighbours. This was felt to be too simple and the incorporation of new strategies were 

needed. 
Spatial interaction modelling was suggested as a possible method to enable consumers to be 

modelled and thereby allow the inclusion of more sophisticated strategies. Use of a MAS for 

modelling consumers was rejected due to computational requirements. The typical ward in West 

Yorkshire has a population of 20,000 and so modelling the consumers at the level of the individual 

rather than at the ward level would, at a rough guess, take at least 104 times more storage and 

computational time than the approach described here. This is not currently realistic. Additionally, 

the data requirements for constructing a knowledge set for the consumers would be immense. For 

example, detailed information would be required on buying patterns such as frequency of visit, 
amount purchased and impact of marketing strategies etc. 

This chapter presents a brief review of the main developments and approaches within spatial 
interaction modelling. This is followed by a discussion centred on which is the most suitable model 
for this application. The specifics of the spatial interaction model and strategies are presented 

along with an alternative method of distributing the sales. Testing and evaluation of this new 
hybrid model is undertaken in Chapter 7 and Chapter 8. 

6.2 Spatial Interaction Modelling 

Spatial interaction models are used to facilitate the explanation and prediction of human and eco- 
nomic interactions over geographical space. These interactions can be, for example, the movement 
of goods, information or people. These models have been used extensively within geographical 
applications (see Birkin et al., 2002, for a discussion). 

The first spatial interaction models can be grouped under the generic heading of gravity mod- 
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els. These models were characterised by attempting to represent the behaviour of demand or 
supply segments, rather than that of individual firms (Roy and Thill, 2004). The 1960s and 1970s 

were marked by a huge outpouring of both theoretical and empirical work (see Fischer et al., 2003, 
for a review). The gravity analogy was replaced by the general concepts of entropy (a statistical 
framework borrowed from physics) and work by Stouffer, Isard and Wilson filled regional sci- 

ence journals with their theoretical and methodological contributions (Isard, 1960; Stouffer, 1960; 

Wilson, 1971,1974,1981). With the exception of the work by Fotheringham (1983b), very lit- 

tle further theoretical progress was made in spatial interaction modelling between the 1970's and 
1990's. However, in recent years with the rise of technological innovations, powerful computing 

and data rich environments, researchers have returned to spatial interaction theory. The literature 

reflects this with articles published on the use of evolutionary computation to breed new forms of 

spatial interaction models (Openshaw, 1988; Turton et al., 1997) and network-based approaches to 

spatial interaction leading to neural spatial interaction models (Openshaw, 1993; Reggiani et al., 
2001; Fischer et al., 2003). 

The following sections will present a brief review on spatial interaction modelling with a 

view to identifying a suitable model for the research requirements. This is not meant to be a 

comprehensive review, rather a concise overview. For a more detailed review of the evolution of 
this field, the reader is directed to Sen and Smith (1995) and Roy and Thill (2004). 

6.3 Early Development, Wilson and Family 

One of the main theories that dominated studies in the latter half of the nineteenth century was 
Newton's Theory of Universal Gravitation. Many of the ideas put forward to explain patterns 
in human activity between separate entities drew inspiration from Newton's theories. The first 

applications of Newton's theory arose in the mid-1ß50s. These applications saw gravitational force 

replaced with intensity of interaction between two areas (expressed as the number of trips) with 
the purpose of attempting to explain migration choices (see Roy and Thill, 2004, for discussion). 

It was not until the 1960's with the work of Isard (1960) that gravity models were recom- 
mended as a tool within regional science. This was a reaction to the growth of large regional 
shopping centres where competition between spatial entities needed to be accounted for. Huff 
(1963) reacted to this need and developed a probabilistic retail model which evaluated the choices 
of alternative shopping centres by sets of shoppers. This model moved away from the rigidity of 
the Newtonian model by allowing the gravity exponent to be calibrated and treating time rather 
than distance as the separation component. 

These early attempts at spatial interaction modelling coincided with the early years of the 

quantitative revolution. This period saw the rigorous mathematical formalisation of spatial inter- 

action models culminating in the development of the family of models proposed by Alan Wilson. 
The work of Wilson (1967,1970,1971) was a major step in the development of the spatial in- 

teraction model. His "family" is designed around three basic assumptions drawn from Newtonian 
laws of gravitational attraction. These state that the magnitude of any flow between an origin and 
destination is: 

1. directly proportional to the trip-generation capacity of the origin 0j. 
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2. directly proportional to the trip-attraction capacity of the destination D. 

3. inversely proportional to the distance or travel cost C; j between the two zones, also referred 

to as the distance decay effect. 

From these assumptions, the basic unconstrained model was developed as 

Tj=kO1DjCg; k=I ITýred, 
j 

j jbs, (6.1) 
i=1j=1 i=1j=1 

where 

- T"j is the flow or trip intensity. 

- i(1= 1, n) is an origin zone. 

-j (j = 1, m) is a destination zone. 

"ß is an exponent which controls the rate at which the flow decreases with increased distance 

or travel cost. 

-k is an optional scaling set to constant to ensure that the total number of predicted interac- 

tions is equal to the total number of observed flows. 

However, in many applications, the need for consistency between observed and predicted trips 

became apparent. For example, work by Huff (1970) and Wilson (1974) identified the need to 

equate either origin and destination totals (or both) across observed and predicted trip volumes. 

Consequently, this led to the family of spatial interaction models being extended to include some 

form of constraint on trip totals at the origin, destination or both. These new models can be written 

as 
_I 

Tj = A; O; DjC ; Ai = Dj C, j (6.2) 

(6.3) Tip = Bj O; Dj C; ý; Bj = OjCjýa 
1-1 li=ý 

and 

Tj = A; O; BjDjC, ja; A; _L BjDjCl-jp Bj _ 
[AiOici]ýp 

(6.4) 

Equation (6.2) represents the model that has come to dominate the literature, the origin- or production- 

constrained model (Fotheringham et al., 2001). This model can estimate the ability of destinations 

to attract a share of known total flows from an origin. The constraint Al serves to equate the origin 

totals across both observed and predicted trip matrices. The destination or attraction constrained 

model is shown in Equation (6.3). The constraint Bj ensures that the actual and predicted destina- 

tion totals are equal, such as in a residential location model where the number of workers living 

in each origin zone is fixed. The doubly-constrained model, Equation (6.4), incorporates the con- 

straints of both and is most widely used in transportation studies. After the model is chosen for a 

particular application, it must then be calibrated on a data set to determine the appropriate value 

of the distance decay parameter P. 
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6.4 Further Developments 

A great deal of work has been undertaken to improve the basic specifications of gravity models 
either by modifying the mathematical structure or by the addition of further variables. This section 

of work will concentrate on detailing entropy maximisation, intervening opportunities and the 

competing destinations models. It is acknowledged that this omits work carried out using statistical 

models, for example, log linear (Willekins, 1983), Poisson (Flowerdew, 1991; Yano, 1993) and 

multinomial logit (Ben-Akiva, 1985) modelling approaches. The reader is referred to Sen and 
Smith (1995) for more detailed specifics. 

6.4.1 Entropy Maximisation 

One of the initial modifications to the early spatial interaction models was the incorporation of the 

statistical concept of entropy maximisation (Wilson, 1971). This analogy with statistical models 

answered previous criticisms that individual behaviour was not accounted for (Huff, 1961), and 
the models had no sound theoretical basis (Foot, 1981). This was achieved by making it possible 
to calculate the most probable interaction matrix that will arise from a maximisation of individual 

trips without having to explain the behaviour of individuals at the micro level. The results of 

applying entropy maximisation to the derivation of spatial interaction models was to change the 
form of the cost function from a negative power in the travel cost within the system. An origin- 

constrained entropy maximising spatial interaction model can therefore be written as 

In 
T, "j =A; O; Wjexp(-(3C, j); Al =ý Wjexp(-(3Cij) 

-1 
(6.5) 

-1 

Each member of the spatial interaction family can be modified in this way to reflect entropy max- 
imisation. 

6.4.2 Intervening Opportunities 

First developed by Stouffer (1940) and refined by Schneider (1960) for modelling journey-to- 

work in the Chicago Area Transportation Study, the intervening opportunities model was an early 
alternative to gravity models. This model formalisation took into account the existence of multiple 
origins or destinations. For each origin zone i, the possible destination zones j as j; m are ranked 
in order m of their proximity to zone i, where the closest zone to i is denoted by m=1. Tim 
is the number of trips from zone i stopping at the mth ordered destination j out from i. 01 is the 

number of commuters available at zone i. Approximating the difference equations by a differential 

equation, Tim the intervening opportunities model can be given as 

Tj =k101[exp(-(pWijm-1))-exp(-pWj m)], (6.6) 

in which W, "ým is the total number of jobs passed up to and including ji,,,. However, this model 
has two key limitations: (i) the inability to satisfy destination constraints and (ii) the fact that 
destinations can be distributed over 360 degrees surrounding the origin zone i, implying that the 
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opportunities in successive destinations at increasing distance out from 1 may not be truly inter- 

vening (Guldmann, 1999)1. 

6.4.3 Competing Destinations 

A major contributor to the development of spatial interaction modelling is the notion of the choice 

set formation (Thill, 1992)2. Fotheringham (1983a, b, 1984,1985,1986) and Fotheringham et al. 
(2001) successfully used the notion of choice sets within the development of the competing des- 

tinations model. - An origin-constrained spatial interaction model with a competing destinations 

component can be written as: 

Tj=A; O; D jQ/Z exp(_01Ci j) Ai =I Qa2 eXP\-ß1Cij) 

n 
Q; j =± Dk/Cjk (6.7) 

k=1, k34J 

where Q; j is an extra variable for accessibility of a destination as perceived by individuals, and 
it reflects the competition between destinations for interactions. Dk is the attractiveness of other 
destinations in the system and ßl and P2 are parameters which are determined through calibration. 
The parameter (32 has special theoretical significance in that when ß2 is greater than 0.0, com- 

petitive effects dominate. When ß2 is less than 0.0, agglomerative effects dominate and when P2 

equals 0.0, the competing destinations model becomes a conventional entropy maximising origin- 
constrained equation (Fotheringham, 1984). 

6.4.4 Artificial Intelligence Approaches 

With the increase in availability of interaction data and powerful computing resources, it has been 

possible to apply inductive Al tools (in particular evolutionary computing and artificial life) to 

spatial interaction modelling. These techniques have arrived at a convenient time with the difficul- 

ties associated with further theoretical model development and traditional deductive approaches 
limiting the advances made to spatial interaction modelling. 

Diplock (1996) built on work by Openshaw (1994) demonstrating that genetic algorithms (GA) 

can provide very good solutions to the spatial interaction model calibration problem, especially 
when calibrating complex multi-parameter models. Diplock and Openshaw (1996) also demon- 

strated that it is possible to breed spatial interaction models that outperform conventional models 
using GAs. 

Artificial neural networks (ANNs) have been applied extensively to the problem of modelling 
flows. They have an advantage over conventional spatial interaction methods because they make 
no assumptions on the form or distributional properties of interaction data and predictors. This 

! This can be overcome by introducing an extra route index along which opportunities "directly" intervene (Roy, 
1999). 

2This represents the decision-making processes within the model specification. Conventional models assume that 
the individual considers every possible opportunity when deciding where to travel. 
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allows spatial interactions to be modelled even when the only data available is noisy or statistically 
ill-conditioned (Roy and Thill, 2004). Empirical evidence reported by Openshaw (1993); Fischer 

and Gopal (1994); Reggiani and Tritapepe (2002) showed that they can outperform conventional 

spatial interaction methods. Neural network techniques however still work by recognising patterns 
in the supplied data, whereas the intention in this thesis is to model the processes which produce 

these patterns. Neural networks will therefore not be discussed any further. 

Fuzzy logic and fuzzy hybrid techniques have also been used to improve the performance 

of spatial interaction models. Initial work was described by Openshaw and Openshaw (1997); 

Openshaw et al. (1998) with research by See (1999) demonstrating the vast potential of fuzzy 

hybrid spatial interaction models. Here, fuzzy logic was used to optimise the spatial interaction 

model instead of traditional calibration methods. The focus here is not to improve the spatial 
interaction model, rather to use the spatial interaction model to feed into another model, in this 

case, the multi-agent system (MAS). 

However, no evidence could be found within the literature at the time of writing for the hy- 

bridisation of spatial interaction models and MAS. Perhaps this is not surprising as much of the 

recent research into spatial interaction modelling with Al techniques has been focused on improv- 

ing the performance of the spatial interaction model. The research within this thesis does not seek 

to improve the theoretical basis of spatial interaction models, rather to use these models to improve 

the performance of a MAS. By taking this approach, this thesis creates a new avenue of potential 

research for both areas. 

6.5 Discussion 

The main purpose of the spatial interaction model is to account for customer behaviour, thereby 

providing local controls within the system. In short, the spatial interaction model will alter the fuel 

sales at each station as customers react to changes in fuel prices at different locations. This lends 

a more realistic behaviour pattern to the overall model. However, which of the models reviewed 

above is the most appropriate for use within this research? This decision will be based on the 

requirements of the system and ease of implementation. 

The market interdependencies between petrol stations are hypothesised to be dependent upon 
the daily activities of consumers, such as price awareness, the spatial configuration of the mar- 
ket, company pricing policies and external influences such as crude oil prices. For example, the 

study area (West Yorkshire) is divided into numerous wards i containing N petrol stations at fixed 

locations. Within their ward3, consumers must decide where to make their purchases based on 
knowledge of a subset of petrol stations. Consumers residing in any market i are conceptualised as 
having familiarity with a subset of petrol stations and are limited in the volume that they can buy 

each day. The sale of petrol within ward i is shared by several stations j. There is no constraint on 
the amount of petrol that each station can sell per day. The market share per station depends on 
factors such as fuel price and proximity to I. 

The constraints on the system are at the origin; consumers can only buy x amount of petrol 

per day. The natural approach would be to use Wilson's origin-production constrained model 
3Consumers are not necessarily resident in a ward; they maybe passing through to their ultimate destination. 
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(Equation 6.2). However, it is desirable for stations located closer to the ward centroid to have 

a higher attractiveness than petrol stations located at a distance. A cost function is required that 

allows this. One choice would be Wilson's entropy maximisation model. Use of this model would 
fit well into the model formulation. 

6.6 Construction of the Spatial Interaction Model 

The following sections outline the construction of the spatial interaction model, specifically de- 

tailing the formulae and strategies used. 

6.6.1 Components of the Spatial Interaction Model 

The spatial interaction model that will be used is based on Wilson's origin-production constrained 

model (see §6.3) and entropy maximisation model (see §6.4.1). The amount of fuel required by 

each ward, O;, is assumed to be H, F, where H; is the number of households in ward i and F is the 

average amount of fuel required per household. The assumption is made that prices do not rise 

sufficiently to reduce consumption in the short term. Wj is modelled as e-'pi where pj is the price 

of the fuel at station j, so that stations with a high price are less attractive to consumers. The cost 
function Cij is the distance d, j between ward 1 and station j. In the entropy formulation, the cost 
function is used through the exponential e' 1'J so that the amount of fuel sold decays with distance 

from the station. 0 and ? are coefficients that determine how the fuel sales vary with distance from 

the station and the fuel price (further details of their choice can be found in Chapter 7). This gives 
the formula 

SU = 
(H; F)(e_4i) (e-Pdd) 

(6.8) SU 
Y-j e-%'Je-lit'/ 

for the fuel, S, j, sold by station j to ward i. This is for a single fuel type; however, it can be applied 
to different fuel types with potentially different values of pj, F, P and X. The sum on the bottom 

of the fraction represents the normalising process to ensure that the total volume of each fuel sold 
to each ward equals the demand H, F. 

The probability that a consumer will purchase petrol from any of the stations is hypothesised 

to depend on the price of petrol in that sub-market relative to the prices charged at the other sites. 
There are two elements to petrol prices, the cost of the petrol and the transportation costs incurred 

by the consumer going to the garage. This model assumes that these transportation costs are 

negligible. This can be justified where journeys are short and other purchases are being made. 
Plummer et al. (1998) hypothesise that this is the case for most petrol purchases because they are 
made in the consumer's immediate neighbourhood during the course of other activities rather than 

as the result of special trips. Evidence from Ning and Haining (2003) supports this assertion. 

6.7 Potential Problems 

Spatial interaction models have been thoroughly formalised from a theoretical perspective. How- 

ever, for successful application of these models, there are a series of important design and im- 
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plementation issues. The following sections outline the main considerations and actions taken to 

overcome them. 

6.7.1 Data 

Lack of sufficient data can have great consequences for the model (Openshaw, 1976). To avoid 

this, data of a suitable precision and accuracy were entered into the model (Table 6.1). The only 
data that had to be estimated was the different petrol types bought per household per week; no 
breakdown was given. The figures utilised were; 15% of sales are leaded petrol; 10% are super 

unleaded and 75% unleaded4. Due to these approximations, stations may make less profit, but the 

overall patterns should not be affected. 

Data I Source 
Ward Boundaries 
Population per enumeration district 

Number of households per ward 

Number of cars per ward 

Total amount of petrol sold per week 

Taken from UK Borders (accessed 2002) 
Derived from the UK census (Office for National 
Statistics, 1991) a. 
Derived from the UK census (Office for National 
Statistics, 1991). 
Derived from the UK census (Office for National 
Statistics, 1991). 
Derived from household expenditure survey (Office 
for National Statistics, 1998). 

°The 2001 census data was not available at the time of development and experimentation. 

Table 6.1: Data sources used in the spatial interaction model. 

Using household data makes an implicit assumption that a consumer's journey started at their 
home. The distance to the petrol station was calculated from this point. This ignores the fact that 

people may buy petrol during the course of other journeys (see §6.6.1). This will be investigated 

further in §6.9. 

6.7.2 Size of Areal Unit 

The model is based on UK ward geography. The choice of size and configuration of these units 

will affect model performance (Thomas and Huggett, 1980). This is due to the modifiable areal 

unit problem (Openshaw, 1983; Fotheringham, 1981). This problem describes the incidence of 
different model results occurring for alternative spatial configurations of zones and also at different 

levels of spatial aggregation. Areal zones should ideally be as small and homogeneous as possible 
to avoid this problem. This is particularly important for the calculation concerning the spatial 
interaction model as consumers are assumed to live at the geographical centroid of the unit. Use 

of a small geographical region will reduce the distance between the consumer and petrol station 
(a factor that is important to the calculation of ß and ? in Equation (6.8)). This should provide a 
better resolution of data. Figure 6.1 illustrates the two choices available, wards and enumeration 

4The total fuel sales of petrol and diesel are known. The estimates for leaded, unleaded and super unleaded are 
based on consumer information (Office for National Statistics, 1998). 
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districts (ED). Ideally, the smaller of the two, EDs would be used. These are composed of about 
200 households (approximately 450 people). Wards are considerably larger; the average number 

of people within wards in West Yorkshire is 20,000. This figure varies across England. The main 
benefit of using wards is that there are fewer of them and therefore the number of calculations to 

be performed would be smaller than if EDs were used. 

Figure 6.1: Illustrative diagram comparing the geographical extent of wards and EDs within a 
section of West Yorkshire. 

A compromise that draws on some of the benefits of using the smaller EDs while retaining the 

computational efficiency of using wards is a population weighted centroid. Each ward is divided 

into its constituent EDs (Figure 6.1). The population within these EDs can be used to calculate a 

new location for the ward centroid. 

Comparing the locations of the population weighted and geographical centroids, the greatest 
differences can be seen within the rural wards (Figure 6.2). These areas are characterised by being 

both geographically large and possessing low population densities. Using the population method 
has pulled the ward centroid nearer to the populated areas of the ward. Within the urban areas, 
there is little change in the position of the population and geographical ward centroids. This is 

expected as urban wards are geographically small and more uniformly densely populated. 

6.8 Linking the Spatial Interaction and Agent Model 

Linking the spatial interaction model to the agent model was undertaken by building two new 

classes in the model code; Wards and SIM. A Ward object was created for each ward of the study 

area; this contains information on the number of cars, ward population etc. One SIM object was 

created; this contains Equation (6.8). The SIM object collects all the information from the Ward 

and Petrol classes (containing price and location of the other petrol stations) objects and calculates 
the flow matrix containing the fuel sales for each station. These sales figures are passed hack to 

the Petrol objects. New rules can be inserted into the Petrol object to make use of this intormation. 

Key 
Ward Boundary 

A 

25 1 25 0 
ED Boundary 

Uni-lc, 
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Figure 6.2: Location of the geographical and population weighted centroids within a selection of 

wards within the study area. 

6.8.1 Profit/Strategy 

The lack of evidence surrounding the strategies employed by petrol companies has been high- 

lighted on several occasions throughout this thesis. It is important to reiterate this point as one of 

the central objectives of this thesis is to attempt to recreate the reality of the petrol price market. 

Given the absence of this information (with the exception of Esso's Price Watch), assumptions 

have to based on inferences from analysis of the real data and evidence from the literature. A 

basic assumption that can be made is that the dominant strategy employed by petrol stations is to 

maintain and maximise their profit. Taking this approach does however discount other potential 

motivations that could be of importance, for example attainment of market share or implementa- 

tion of a pricing policy such as Esso's Price Watch 5. 

A simple guide would therefore be to state that companies can either increase or decrease their 

prices to maintain their profit levels. Which ofthese strategies will give the best results'? Ifstations 

increase their prices, they will increase their profit levels at the potential expense of their sales. 
Decreasing their price may initially reduce profit, but in the long-term this may increase sales 

and thus profit. An indicator of the likely behaviour of stations can be seen through the "rockets 

and feathers" ettect. Although this refers to the reaction of stations to an external increase in 

crude oil prices, the rapid response of stations to higher prices may also be evident within a local 

neighbourhood. 

`The Price Watch policy may not be the optimal policy for maximisation ot'profit levels. 
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Which behaviour is optimal may depend on several factors including the availability of local 

competition, the price of neighbouring stations and the sensitivity of the market to price. The 

strategy that will be implemented in the model will attempt to take these factors into account. 
The strategy is to change the price each day by an amount given by the variable priceChange. 

To determine the new strategy (and price) the stations implement the following: 

1. If (profit is falling) or (profit is negative and priceChange = 0), implement a new strat- 

egy. This new strategy is obtained as follows. If (priceChange != 0) then priceChange = 

-priceChange, i. e. the strategies are swapped. Otherwise, the new strategy is determined 

using the getStrategy() method (see below for details). 

2. If the change in profit is small then the policy is to keep the price constant. 

3. If neither 1 or 2 applies, the current strategy is maintained. 

4. After applying the pricing strategy the remaining rules6 are applied to limit the price at the 

station. 

The getStrategyO method works as follows. The mean of the neighbourhood is calculated. If 

the price of the station is more than the mean (or the sales are very small), the initial strategy is to 

decrease the price. If this is not the case, the initial strategy is to increase the price. The rationale 

behind this is that if a station's price is already high (in relation to its surrounding area), it cannot 

afford to further increase its price without risking loss of sales. Similarly, if the sales are very 
low, the station cannot risk losing even more sales. In these cases, the best strategy is to decrease 

the price. However, if the price is low, the station is already competitive and decreasing the price 
further may only serve to deplete profits even if there is an increase in sales7. 

To account for the strategies, three equations were built into the model. The income for station 

j from fuel type m is given by 
D7 =Sp. % (6.9) 

where 

- Dý is the amount of money that station j takes from fuel m. 

- S7) is the amount of fuel bought by ward i from station j. 

- pjm is the price of fuel m at station j. 

The total cost of production is 

where 

cj =ýSP7(0)+Q7 (6.10) 

- Cý is the amount that it costs the station j to produce the petrol. 

6For example, the amount that the stations can overprice and undercut by. These are the rules developed for the 
pure agent model (see Chapter 5). 

7A simpler strategy was not used because experimentation with a fixed initial strategy (either to increase or decrease 

prices) was not effective. 



104 

- PT 
j 

(0) is the cost per litre to produce and sell fuel m at station j. 

- QjI is the fixed cost to the station of selling fuel m at station j. This might include for 

example the cost of staffing the station and maintaining the buildings which do not depend 

on the amount of fuel sold. 

The amount of profit of fuel m at station j is 

Ar, --(Di -C ) 

where 

- AP is the profit made by station j selling fuel m. 

6.8.2 Interaction Between the Agent and Spatial Interaction Model 

The interaction between the agents and the SI model can be summarised as: 

1. The pure agent model is initialised with the real data (Day 0). 

2. Additional data e. g. ward data is read in. 

3. The fuel price and station location data is passed to the SI model. 

4. The flow matrix is calculated. 

(6.11) 

5. The flow matrix values are used to "inform" the agents how much fuel has been sold each 
day. Stations can use this information to calculate their profit and set their strategy (see 
§6.8.1 for a detailed outlined of strategies implemented). 

6. The SI model gets the new prices from each station and the simulation returns to step 4 until 

completion. 

Where a particular fuel type is not sold at a station, the SI model ignores it and the value 
is set to zero. Figure 6.3 diagrammatically represents the procedure of the SI model and agent 
interaction. 

The full source code and a compiled version of this hybrid model can be found on the CD 

accompanying this thesis. 
Given the addition of profit, several new strategy variables could be added over and above 

those of the pure agent model (Table 6.2). Values for these new parameters will be calculated in 
Chapters 7 and 8. To allow selection of these additional parameters at the same time as the agent 
rules, the graphical users interface (GUI) was enhanced (Figure 6.4). This creates a very powerful 
and flexible framework within which detailed rule sets can be assigned to, for example all stations 
or particular brands or categories. 
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Simulation. java SIM. java Petrol. java Ward. java 

Simulation feeds information to Petrol and Werde 
e. g. Initial prices, location of neighbours etc. 

Reads In data. Creates 

Petrol, Ward and SIM 
objects. 

Petrol and Wards feed Information 
to SIM. 

Called if the SIM is being 2 Calculates 3 Fuel sales info 
used. amount of fuel passed to the 

being sold. garages. 

4ý Each garage told to work 
out its price. 

5 Garage knows 
amount sold. 

1 Asks neighbours 
g their price. Uses 

this to calc new 
price for the next 

day (using 
predefined rules). 

16 

Save Information. If Updates new 
simulation not finished, prices 
go to 8. If finished, 9. END OF DAY. 

9 

END SIMULATION 

Figure 6.3: Integration of the spatial interaction model into the Java classes. 

6.9 Redistribution of the Population 

One criticism that could be levelled at this approach is the assumption that consumers only buy 

petrol from the ward that they live in. Research undertaken by Ning and Haining (2003) suggests 

that this is an unrealistic premise. Part of this research surveyed households about their petrol 
buying habits. Responses showed that petrol was most frequently bought as part of a trip to work. 
Shopping trips and social or recreational trips also accounted for a large proportion of trips where 

petrol was bought. Very few respondents made special trips to purchase petrol. 
To account for this behaviour within the system, a method is required that will allow the 

population to be redistributed around the study area based on journeys made. An intervening 

opportunities or competing destinations model would require detailed data on the travel paths for 
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Table 6.2: New par, 

Coefficient controlling the influence of price. 
The amount per litre that it costs the station to pro- 
duce and sell the petrol. 
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Figure 6.4: Screenshots of the enhanced dialogs in the GUI allowing the specification of rules for 

the SI model 

the whole population within the study area. Unfortunately, data of this resolution is not available 

(see below). 

An approach that would fit in the overall framework of the model and data availability is a 

network model. By implementing this technique, an alternative method of distributing the sales is 

created. The theory and construction of this model are detailed in the following sections 8 

8This work was undertaken with David O'Sullivan and James MacGill within the Geovista Centre, Pennsylvania 
State University. The work formed part of a exchange program funded by the World University Network (WUN). 
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6.9.1 Data 

The data used for redistributing the population was a database of travel to work data derived from 
WICID (1991) based on the 1991 UK census. It is drawn from a 10% sample of the population 
and is non-cascading (i. e. only the origin i and destination j of the consumers are known, the route 
taken is unknown). The data is based on journeys to work including movement between wards. 
The flows represent the number of cars travelling to work, not the number of people. There are 
two problems with data of this nature. Firstly, the data for each ward is not complete, but is just a 
10% sample of the population. However, assuming the sample is representative, this should give a 
fair indication of population movements. Secondly, and potentially more seriously, the assumption 
has to be made that, in the absence of any other information, consumers will take the shortest path 
between the centroids of wards i and j. This is something of a generalisation given that people 

will be distributed across both source and destination wards and no account is taken of the road 

network. An algorithm will have to be implemented to work out the optimal route between the 

origin and destination. This is a classical shortest path problem of graph theory. 

6.9.2 Graphs 

A graph, G, consists of a finite non-empty set V(G) = {v; } of vertices (or nodes) and a finite 

non-empty set E(G) = {ei} of distinct unordered pairs of distinct elements in V, called edges. The 

number of elements, n, in V is in the degree of G. The number of edges in G is denoted by m. The 

edge from vi to vj may be denoted by {v;, vj} or e; j. Figure 6.5 shows a typical small graph with 
V(G) = {A, B, C, D}, E(G) = {AC, BC, BD, CD}, n =4 and m=4. A weighted graph is one that 
has values associated with each edge, for example, the length of road between two wards. 

B 

D 

Figure 6.5: A typical graph (after O'Sullivan, 2000) 

In graph theory, the shortest path problem is the following: Given a weighted graph, that is 

a set N of nodes, a set E of edges and a real-valued function (f :E --+ IR), and given further two 

elements nI, n2 of N, find a path P from nl to n2, so that 

11(r) 
pEP 

(6.12) 

is minimal among all paths connecting nj to nZ. One of the most important algorithms for solving 
this problem is Dijkstra's algorithm (Dijkstra, 1959). 
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6.9.3 Dijkstra's Algorithm 

Dijkstra's algorithm solves the shortest path problem for the case where the weighting of the graph 

edges are all non-negative. For example, if the vertices of the graph represent the centre of a ward 

and the edge weights represent driving distances between wards, Dijkstra's algorithm can be used 
to find the shortest route between two wards. The condition on the graph weighings being non- 

negative has to be satisfied as the algorithm assumes that path lengths increase as the number of 

nodes in the path increases. This is obviously the case when the weights are the distances between 

wards. 
The algorithm (see Wikipedia, 2003) works by keeping for each vertex v the length d[v] of the 

shortest path found so far. Initially, this value is 0 for the source vertex s and infinity for all other 

vertices, representing the fact that we do not know any path leading to those vertices. When the 

algorithm finishes, d[v] will be the length of the shortest path from s to v or infinity, if no such path 

exists. 

The basic operation of Dijkstra's algorithm is edge relaxation: if there is an edge from u to 

v, then the shortest known path from s to u can be extended to a path from s to v by adding edge 
(u, v) at the end. This path will have length d[u] +w(u, v). If this is less than d[v], we can replace 

current value of d[v] with the new value. 
Edge relaxation is applied until all values d[v] represent the length of the shortest path from 

s to v. The algorithm is organised so that each edge (u, v) is relaxed only once, when d [u] has 

reached its final value. 
The algorithm maintains two sets of vertices S and Q. Set S contains all vertices for which 

we know that the value d[v] is already the length of the shortest path and set Q contains all other 

vertices. Set S starts empty, and in each step one vertex is moved from Q to S. This vertex is 

chosen to be the one with the lowest value of d[u]. When a vertex u is moved to S, the algorithm 

relaxes every outgoing edge (u, v). 
There are limitations with using this approach. The algorithm used for determining the short- 

est path between i and j is based on the calculation of distance and direction. Movement of 

consumers between i and j assumes that the journeys are made without detours and the consumers 

are aware of the shortest route and take it. Overall, this may not produce an appropriate distance. 

Ideally, if the appropriate data was available, the edges would be journey time, not distance. This 

approach also assumes that the population lives at the centre of the ward, in reality they would be 

distributed throughout the ward. Furthermore, in "real life" movements would normally be made 

along roads, and while the road network is dense in the UK, there will be some variation from the 
direct distance. 

6.9.4 Nodes and Edges 

To re-distribute the population around West Yorkshire using Dijkstra's algorithm, nodes and edges 
have to be established. The nodes can be represented by the population weighted centroids de- 

veloped in §6.7.2 and connections between neighbouring wards can be represented by weighted 

edges (Figure 6.6). The weights represent the distance between neighbouring nodes. 
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1`. 

Network Connection 

Figure 6.6: Example of a weighted graph network. 

6.10 Running the Network Model 

The basic network model is run before any of the interactions between the agent and spatial in- 

teraction model take place to calculate the customer's location data. The shortest path between 

each pair of wards is calculated. Each route in the journey to work data is taken as the shortest 

path between the start and end wards. The model takes each route in the journey to work data and 

redistributes the people from the origin ward taking this route equally amongst each ward the route 

passes through. This creates a redistributed population surface that is fed to the spatial interaction 

model in Stage 3 (see the interactions detailed between the agent and spatial interaction model in 

§6.8). The network model is not run again during the course of the simulation. 
The full source code and a compiled version of the hybrid model (including the network ex- 

tensions) can be found on the CD accompanying this thesis. 

6.10.1 Re-distribution of Consumers 

What effect has running this network model had on the performance of the hybrid spatial interaction- 

agent model? The distribution of consumers before and after the application of the networking was 

calculated (Figure 6.7). Figure 6.7 (a) clearly shows that before the networking was applied, high 

densities of consumers were found predominately in the centre of the study area. This area cov- 

ers the West Yorkshire conurbation of Leeds, Bradford, Wakefield, I luddersield and I Ialilax. In 

the suburban areas of Leeds and Bradford, the density of consumers is at its highest. After the 

networking has been applied (Figure 6.7 (b)), all of the city areas, not just the suburbs are charac- 

terised by having an even higher density of consumers. This increase in population within the city 

Ward Boundary 

Population Weighted Centroid 



110 

centres is simply a reflection of the number of people who live within the suburbs, but work in the 

cities. 

Consumer Density 
- 0.0 -250.0 

250.0 -500.0 
500.0 -1000.0 
1000.0 -1500.0 

- 1500.0 -3000.0 

N 
A 

10 50 10 

(b) Network Kilometers 

Figure 6.7: Distribution of consumer density before (a) and after (b) application of the networking. 

The impact of using this alternative method of population redistribution will be tested out 

using the real data for West Yorkshire in Chapter 8. 

6.11 Conclusion 

One of the main criticisms levelled at the pure agent model presented in Chapter 5 was the lack 

of customer behaviour. This chapter has seen the development of a spatial interaction model to 

address this problem. Wilson's origin-production constrained model was selected as the most 

appropriate of the models reviewed and linked to the pure agent model. The resulting hybrid 

model is not only entirely novel, but provides a powerful framework for experimentation. The 

addition of the spatial interaction model has also allowed a new set of sophisticated strategies 
based on stations' profit to be implemented. 

However, this "hybrid" approach is not without its criticisms. Consumers were assumed to 

buy petrol from the ward that they lived in. Research by Ning and Haining (2003) showed this not 

to be the case. A network model grounded in graph theory was constructed to provide alternative 

method of redistributing the population based on journey to work data. The robustness and perfor- 

mance of this new hybrid model will be tested out in Chapter 7. Application to the real data and 

comparison against the agent model will take place in Chapter 8. 

(a) No Network 
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Chapter 7 

Experimentation with Idealised Data 

7.1 Introduction 

Chapter 6 presented the extension of the agent framework to incorporate consumer behaviour. 

This was achieved by developing and linking a spatial interaction model to the agent system. A 

simple network model was developed to provide an alternative method of redistributing the sales. 
The aim of this chapter is to examine the behaviour of this hybrid model. However, as seen 
in the analysis of the real data in Chapter 4, population density and petrol station distribution 

are not uniform across the study area. This presents an added complication when attempting to 

understand the behaviour of the model and the effect of individual parameters. By standardising 

the geography and population through idealised data, the behaviour of the model can be more 

easily understood. A thorough understanding of the behaviour and sensitivity of the hybrid model 
in idealised situations is essential before application to the more complex real system. 

The work within this chapter is divided into four sections. Each section is linked by the 

common aim of improving knowledge of the model behaviour. The first section uses simulations 

to investigate the sensitivity of the spatial interaction model parameters. Following this, a series 

of diffusion experiments will be presented. These simple experiments have a dual purpose, they 

provide a test of the model behaviour whilst allowing the influence of individual parameters to be 

noted. Experiments investigating the effect of varying population and petrol station distribution 

will follow this. Finally, the sensitivity of the model to perturbing parameters will be examined. 
Conclusions drawn from these experiments will be used in Chapter 8 with the investigation of the 

real data. 

7.2 Sensitivity Analysis with Spatial Interaction Model Parameters 

Chapter 6 provided an overview of spatial interaction models and detailed the construction of 

one such model. This was linked to the agent model to account for consumer behaviour. This 

section uses numerical experimentation to evaluate the contribution of the spatial interaction model 

parameters of ß, X, fixedCosts and costToProduce. To isolate the effect of the spatial interaction 

model from the rest of the hybrid model a version of the spatial interaction model was constructed 
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within an Excel spreadsheet using a 20km x 20km grid' (Figure 7.1). Petrol stations were located 

at nodes equally spaced at 2.0km. Each square represents a ward (the ward centre is located at 

the centre of the square) and contains a population of 2000 and 1000 cars. Each station is at the 

junction of four wards. 

" Petrol Station 
x x x x x x 

" Centre Station 

x x x x x x0 Corner Station 

Ward Centroid 

x x x x x 
x 

x 

x x x x x x 

x x x x x x 

x x x x x x 

Figure 7.1: Example of the type of grid used within the idealised simulations. 

One of the constraints with using such a small grid is that there will be a noticeable difference 

in the amount of profit that stations located at the centre and edge of the grid will make. This is 

shown by Figure 7.2 which quantifies the effect of the edges on sales at each station for a given 
P. The stations at the centre of the grid are surrounded by more potential consumers than those 

situated at the edge of the grid and so sell more fuel. The profit at the centre station (61) and an 

edge station (1) will be compared in some of the subsequent experiments to quantify this effect. 

7.2.1 Experimentation with ß 

The parameter (3 was introduced in the construction of the spatial interaction model (see Chapter 6; 

Equation (6.8)). This parameter determines how the fuel sales vary with distance from the station. 

The degree of influence that I exerts can be calculated. For example, if all the stations within 

the idealised grid were set to the same price, the amount that a petrol station, j, sells to ward i is 

proportional to e-1"". 

Re-arranging this equation, the spatial scale over which the stations are selling petrol can be 

calculated. Taking this as the distance at which the sales would halve gives 

eO. _1 2 
- log (2) 

d, 1 _ log(2). (7.1) 

For example, if (3 was set to a value of 0.0003, this would produce a distance scale of 2310m. 

This means that any consumer located more than 23 1 Om from the station would be half as likely 

to buy petrol from it as a consumer located adjacent to the station. All the stations are initialised 

'The size of the grid used was limited by the capacity of the spreadsheet (in particular, the number of columns that 

are allowed). 20km x 20km was the maximum grid size that could be computed. 
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Petrol Station 

" Sales (litres) 

.. "..... 26405 

........ ".. 20311 

Figure 7.2: Spatial distribution of the volume of sales (litres) across an idealised grid assuming 
constant prices produced by the spatial interaction model. The dots mark the location of the petrol 

stations at the corner of the wards. 

at 68p, ? is kept constant at 0.7 and the (3 is set to 0.03,0.003 and 0.0003. (Note: fixedCosts and 

costToProduce are not needed to calculate sales. ) The effects of varying ß were analysed for the 

centre station, i. e. examining how much petrol was sold by this central station to consumers within 

all the wards. Figure 7.3 clearly shows that with a smaller (3 value, distance is less of an influence 

on consumers (there is not a great difference in sales within wards located near to the centre station 

and those located at a distance). With (3 set to 0.0003 and 0.003, consumers are willing to travel 

greater distances to purchase petrol. This is seen in the distribution of the volume of sales over the 

entire grid. However, increasing ß to 0.03 increases the sensitivity of consumers to distance. 
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Figure 7.3: Figure showing the sales at the centre station as a function of distance from the con- 
sumer. Results are shown for different values of P. 
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Within West Yorkshire, a station with a 2km neighbourhood will have an average of 4 neigh- 
bouring stations. The average distance between these stations is approximately 700m (see §4.7.2). 

To estimate ß using Equation (7.1), an estimate of the distance at which sales would drop by 50% 

is required. This is because consumers are less inclined to travel large distances to purchase petrol 
(Ning and Haining, 2003). Supposing this distance is taken as 2100m (the average distance be- 

tween neighbours multiplied by three), there would be an average of at least 4 stations closer than 

2100m. This would ensure that price is an important factor in determining sales between these 

stations thereby producing a competitive market. Using Equation (7.1) with dj = 2100m, ß can 
be calculated at approximately 0.0003. This figure will be used within this Chapter, a separate 
figure will be derived for the real data in Chapter 8. 

7.2.2 Experimentation with ?, 

The ? coefficient controls the importance of price to consumers. The degree of influence that it 

has can also be calculated using 

e %a' =2 

-Xpj = -log(2) 

pj _ý 1og(2). (7.2) 

Assigning Xa value of 0.07 would mean that a 10p price increase at a station would result in 

the halving of its sales, i. e. custom would be lost to neighbouring competitors. 
The spatial interaction model spreadsheet described in §7.2.1 was reused to examine the influ- 

ence of ? upon the system. All the stations were set to 68p with the exception of the centre station 

(61) which was set to 67p. and ß was fixed at 0.0003. The total sales at each station were analysed 

for different values of ? to investigate how the sales are affected by the cheaper competition at 

station 61. Figure 7.4 shows a comparison of sales at the lower priced centre station (61) and its 

neighbour (station 62). 

The results show that increasing ? increases the influence of price on the consumers' decision 

on where to purchase petrol. For example, aX value of 0.3 results in a small difference in sales 
between station 61 and its neighbour, station 62. A larger value of 3.0 (increasing the importance 

of price to consumers) results in station 61 selling almost 20 times more petrol than station 62. 

Based on analysis of the real data in Chapter 4, the mean price difference between stations 
in West Yorkshire was calculated at 0.35p. This provides a scale for the price changes within the 

system. A 50% decrease in sales due to a price increase of 0.35p seems unrealistic. A price change 

of lp (approximately 3 times the mean price difference) will be used instead2. Substituting lp into 

Equation (7.2), X can be calculated at 0.7. 

2This value can be supported by the research of Ning and Haining (2003). They found that stations were never 
more than 1- 2p more expensive than their neighbours. 
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Figure 7.4: Comparison of the total daily sales (in litres) at station 61 and 62 for different values 
ofd,. 

7.2.3 Experimentation with Fixed Costs and Cost to Produce 

The fixedCosts variable represents the amount that the petrol station has to pay per day to keep 

running, for example, payment of staff. The costToProduce variable represents the amount per 
litre that it costs the station to produce the petrol. This includes crude oil prices and transportation 

costs. In practice part of the fixedCosts will actually be included in the costToProduce since, for 

example, a large station selling lots of petrol will be likely to employ more staff. The distinction 

between the two may therefore sometimes be a little hazy. It is also worth remembering that only 

a fraction of the fixedCosts are actually being considered since this thesis concentrates on just the 

unleaded petrol sales. Most stations will also generate income from sales of diesel and other fuels 

in addition to non-fuel sales from forecourt shops. The fixedCosts and costToProduce parameters 

will obviously exert influence on the amount of profit that the retailers make. The nature of the 

relationship between cost ToProduce, fixedCosts and profit will be examined within this section. It 

is hypothesised that a linear relationship will be evident, i. e. the amount of profit that each station 

makes will decrease with increasing costs. 

The 20km x 20km grid described in 7.2 was used with all the stations initialised at 68p. (3 was 

set to 0.0003 and X to 0.7. The fixedCosts variable was set to £50 when varying the costToProduce 

parameter. Similarly costToProduce was set to 60p when experimenting with fixedCosts. The 

value of £50 is likely to be smaller than the actual real fixed costs for the reasons discussed above. 
Figure 7.5 shows that both firedCosts and costToProduce show a strong linear relationship 

with profit. The amount of profit that each station makes decreases with increasing costs. In both 

cases, station 1 (located on the edge of the grid) makes less profit than station 61 (located at the 

centre of the grid). 
Increasing the fixedCosts at a station reduces the amount of profit by the same amount regard- 

less of the amount of petrol sold (Figure 7.5 (a)). This trend was not found with the costToProduce 

results (which are calculated per litre sold). As the costToProduce variable increases towards the 
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Figure 7.5: Results of varyingfixedCosts (a) and costToProduce (b) parameters on the amount of 
profit made by the centre and edge stations. 

retail price of the petrol, none of the stations will make a profit. On the other hand, as the cost- 
ToProduce decreases towards zero, the profit becomes increasingly dependent on the amount of 

petrol sold. As station 61 sells more petrol than station 1, a change in the costToProduce variable 

will have a larger absolute impact on its profit. This accounts for the different slopes of the cost 
functions in Figure 7.5 (b). 

In terms of sensitivity, varying fixedCosts does not have a great effect on the model. This is 

because the profit at each station is affected in the same way. The costs that this parameter includes 

are not affected by the amount of petrol that is sold i. e. the station has to remain open, maintain the 

site and employ workers. The model may be expected to be more sensitive to the costToProduce. 

Changing this variable leads to different changes in profit for petrol stations with different sales. 

Since changes in profit are the principal driving force in the model this might be expected to lead 

to different pricing patterns for different values of the variable. 

On the basis of these numerical experiments (and in the absence of any industry information), 

costToProduce will be set at £50 and fixedCosts to 60p in the following sections. These figures 

will be recalculated for application to the real data in Chapter 8. 

7.3 Diffusion 

Diffusion experiments provide a useful opportunity to examine the reaction of the system whilst 

adjusting individual parameters. This gives an understanding of how information is transmitted 

between stations. The experiments performed within this section use the hybrid model (see §6.6 

for further details). §6.9 saw the development of a network model that could provide an alternative 

method of redistributing the population. However, as the data is idealised, there is no need to 

redistribute the population, therefore this option will not be used. 

The use of the hybrid model introduces the parameters of neighbourhood size, overprice, 

undercut and priceChange (see §5.2.5; Table 5.1 for further details). Experiments will be carried 

out with each of these parameters investigating their influence and sensitivity. 
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For each of the experiments a 40km x 40km3 grid was constructed with stations spaced at tkm 

intervals. The size of the grid is equivalent to a substantial metropolitan area, for example the 

Leeds-Bradford conurbation. The population per ward was 2000 with 1000 cars. ß was fixed at 
0.0003; X: 0.7; fixedCosts at £50 and costToProduce at 60p. The optimal parameters derived for 

use within the pure agent model (see Chapter 5) were used unless otherwise stated. In summary, 

these values were neighbourhood: 5km; undercut: 0.5p; overprice: 1.5p and priceChange: 0. lp. 

7.3.1 Experimentation with Price Drop 

One of the simplest ways to test diffusion within the system is to drop the price of the centre station 
by varying amounts and examine if and how the cheaper price is transmitted through the network. 

It is hypothesised that the cheaper price at the centre station will diffuse through the system at 
different rates according to the amount that the centre station is dropped by. 

The stations were all initialised at 68p, except the centre station where the price was dropped 

by lp, 3p and 5p. In each case the initial price drop at the centre station was found to gradually 

spread out at an even rate to the surrounding area (Figure 7.6). The speed of the diffusion was 
found to be dependent on the size of the initial price drop. After 40 iterations, a lp price drop 

(Figure 7.6 (a)) had not diffused through the system to the same degree as the diffusion seen in 

the 3p and 5p price drops. The price drop has diffused out to a greater extent in the 5p than the 

3p, but in both cases, the cheaper price has affected all the system causing an overall lower price 

(indicated by the yellow colour). 
Figure 7.7 shows the total price change as a function of distance from the centre station at 

various times for the 5p price drop. This illustrates that for a given time there is a relatively 

sharp interface between the region which has been strongly affected by the price drop and the 

more distant region where there is only a small drop in price. The rate at which this interface 

propagates through the system is relatively constant for any given price drop with a value of about 
0.1 km per day in the case of a 5p drop. For distances less than the interface the price change is 

more or less constant at about -6.5p. At greater distances the price change slowly drops during 

the simulation, but in this case never reaches less than about -3p before the interface propagates 
beyond the bounds of the grid. As a result of the non-local formulation of the spatial interaction 

model (i. e. all stations are affected to some degree by changes at the centre station), a drop in 

price at the centre station will affect all stations throughout the domain immediately. Obviously, 

the more distant edge stations are affected less than those close to the centre. This leads to the slow 
decrease in price at all stations. Those stations within the neighbourhood of the centre station are 

much more strongly affected because of the undercutting and overpricing rules. The sphere of 
influence of these stations slowly moves out and it is this that causes a sharp interface between the 

central region of low prices and the outer regions that are less affected by the price drop. 

To objectively measure the position of the interface the data for each day is fitted to a hyper- 

bolic tangent curve of the form y(x) =a tanh(bx - c) + d. This shape was chosen since it closely 
fits the pattern of the data. The best fit curves are shown by the solid lines on Figure 7.7 and 

provide a good approximation to the data. The front position is taken as the midpoint of the tanh 

3The hybrid model was not run within Excel and therefore did not have the same grid constraints as the spatial 
interaction model. 
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Figure 7.6: Spatial diffusion of price changes across the grid after different numbers of days, t, 

using a lp, 3p and 5p price drop. 

curve, c/b. Figure 7.8 show the position of the diffusion interface from the best fit curves plotted 

against time. The graph shows that the data is well modelled by a straight line. The linear regres- 

sion line on the figure has a slope of 0.0989 corresponding to a speed for the propagation of the 
interface of approximately 0.1 km/day. 

7.3.2 Experimentation with Influence of Neighbourhood 

Increasing the price drop at the centre station has been proven to affect the rate of dispersion within 
the system. The size of the neighbourhood is also hypothesised to have an effect on the rate of 
information exchange between stations. The neighbourhood is the area within which the petrol 

station assess its competitors prices. It is taken as a circular area around the station with a given 

radius. The 40km x 40km grid was used with (3 and A. set at 0.0003 and 0.7; ixedCosts: £50 and 

costToProduce 60p . All the stations were initialised at 68p with the exception of the centre station 

which was set to 63p. The model was run with the neighbourhood parameter set to 3km, 5km and 
10km4. 

Figure 7.9 shows that the larger the neighbourhood size, the faster the diffusion of the price 
drop. The diffusion patterns within each of the simulations are similar. The rate at which the price 

41km was not used because the spacing of the petrol stations was tkm. A Ikm neighbourhood would therefore 
have no impact. 
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Figure 7.7: Plot of total price change against distance for various times, 1, in days using a 5km 

neighbourhood to illustrate the propagation of price changes throughout the system with an initial 
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Figure 7.8: Plot of interface position (in km) against time (in days) for the simulation show in 

Figure 7.7. The solid line is a linear best fit to the data with the equation y(x) = 0.0989x. 

drop diffuses out is proportional to the size of the neighbourhood. This can be seen more clearly 

in Figure 7.10 where the 10km neighbourhood precipitates a faster and spatially greater diffusion 

than either 3km or 5km (the stair effect is a result of the discretisation of the grid). This increase 

in diffusion rate is due to the greater number of stations within the larger neighbourhoods that can 

react to changes in petrol prices. 
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Figure 7.9: Spatial diffusion of price over time using a 3km (a), 5km (b) and 10km (c) neighbour- 
hood. 

7.3.3 Experimentation with Change in Profit 

To enable the model to settle to a steady solution, a changelnProfit parameter was created. This 

determines at what level of profit change the station will not change its price. For example, if 

it is set to £6 and the station profit changes by only £5.50, the model will keep the price fixed. 

This ensures that the model does not become unstable at the smallest fluctuation in profit. The 

sensitivity and influence of this parameter will be investigated. 

The experiments were performed using a 40 x 40km grid with (3 and X set to 0.0003 and 0.7, 

fixedCosts £50 and costToProduce 60p. All the stations were initialised at 68p with the exception 

of the centre station which was set to 63p. The price was dropped to create a situation where the 

system had to adjust. This enabled the changelnProfit parameter to be assessed. To understand 
behaviour across the system, the price at several stations will be examined as shown in Figure 

7.11. 

With changelnProfit values of £1 to £ 15 (Figure 7.12(a) - (d)), the effect upon the system is not 

entirely predictable. With a value of £1 (Figure 7.12(a)), the corner station (1) is cycling between 

prices (60p - 63p). Increasing the changelnProfit to £5, £ 10 and L15 precipitates an increase 

in price at this station, while the other stations decrease in price before reaching equilibrium. 
The price at which the other stations hit equilibrium varies and tends to increase with increased 

changelnProfit values, particularly at stations 211 and 421 which are the nearest stations to the 

edges. These results show that the system is very sensitive to the value of the changelnProfit. 
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Figure 7.10: Graph of the distance to the price drop interface from the centre station as a function 

of time. Results are shown for neighbourhood sizes of 3km, 5km and 10km. 

" Petrol Station 
" Station 1 
" Station 211 
" Station 421 

" Station 631 

Station 841 

Figure 7.11: Illustration of the idealised grid showing the relative positions of the stations used in 

the analysis. 

Increasing the changelnProfit variable to £20 - £25 results in most of the station prices decreas- 

ing and reaching an equilibrium after approximately 25 days (Figure 7.12(e), (f)). The exception to 

this is station 841 (the centre station) which fluctuates before hitting a steady solution. Increasing 

the changelnProfit further to £30 - £50 (Figure 7.12(g), (h)) results in all the stations remaining 

constant with the exception of station 841 (the station that has dropped its price). This station 

oscillates in price to in an attempt to increase its profit. The other stations are changing their price 

(by small amounts) in reaction to the fluctuations in price of 841. A changelnProfit variable of 

£30 - £50 only affects station 841, it is simply too large to affect any of the other stations. This 

type of reaction is similar to the behaviour observed within other chaotic systems, for example 

predator-prey systems (see Lokta, 1910; May, 1974,1976, for further details). 

Within the model, the changelnProfit variable controls the pricing strategy. In reality, it may 
be a combination of factors that determines pricing. This combination could include subjective 
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Figure 7.12: Plot of price against time for various stations on the idealised grid. Each graph 

corresponds to a different value of the changelnProfit parameter. 
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elements such as the perceived effect of price changes on the consumers. Human factors, such 

as the desire not to change price too frequently may act to dampen the unsteadiness seen in, for 

example, the £30 and £50 scenarios. 
The results presented above show that the changelnProfit parameter has an important effect on 

whether the system reaches a steady state. If the value is too low, the system is extremely sensitive 

and may not settle down to a solution. Conversely, if the value is too high, the majority of the 

stations are not affected and the system quickly hits equilibrium. The changelnProfit value has to 

be carefully selected. With these diffusion experiments, this variable has an important effect on 
how far the price drop diffuses outwards. 

7.3.4 Experimentation with Undercutting and Overprice 

The undercut parameter controls the amount that each station can be cheaper than its competitors. 
Overprice controls how expensive a station can be compared to it's neighbours. These variables 

were created to instill competitive behaviour into the model. Work within this section will assess 

the impact that the overprice and undercut parameters have on the model. 
The experiments were run using a 40km x 40km grid. The parameters 0 and a, were set at their 

default values, 0.0003 and 0.7; fixedCosts to £50; costToProduce to 60p; changelnProfit to £2. All 

the stations were initialised at 68p with the exception of the centre station which was set to 63p, 

thus creating a situation that the stations had to react to. The undercut and overprice parameters 

were independently varied with values of 0.1,0.5 and 1. Op (values selected after analysis of the 

real data). The impact of these varying values were assessed at several stations across the grid as 

shown in Figure 7.13. 

In each of the simulations presented in Figure 7.13, all the stations experienced an initial price 
drop. This is in reaction to the lower price at the centre station (841) at the start of the simulation. 
With an increasing undercut value (the amount that a station can be cheaper than its neighbour), 

there is a faster decrease in price. This can be seen when comparing Figure 7.13(a), (b) and (c) with 
(g), (h) and (i). In each simulation, the price decreases to approximately 60p. This corresponds to 

the costToProduce value: lower prices would result in stations losing profit. At this stage, there is 

evidence of periodic cycling in some of the experiments. This behaviour will be further examined 
in §7.5. 

As the overprice variable increases, for example in figures (a), (b) and (c), the mean price at 

which the model settles out increases, although the model does not reach equilibrium for these 

larger overprice values. 
Simulations performed with small overprice and undercut values result in a tighter constraint 

on the prices than those with larger values. For example, in Figure 7.13 (a), an overprice and 

undercut value of 0.1 results in a final price differential of approximately 0.1. In comparison, 
Figure 7.13 (i), with an undercut and overprice value of 1.0 has a much larger price differential of 

approximately lp. 

The undercut and overprice parameters can have a significant effect on the competitiveness of 
the stations. Suitable values lead to a correct balance in prices (i. e. a similar spread of prices to 

those found within the real data). Otherwise, inappropriate values can lead to a narrow price range 

with prices becoming either too high or low. 
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Figure 7.13: Time series of the fuel price at the analysis stations for various combinations of the 

undercut (UC) and overprice (OP) parameters. 

7.4 Simulations Introducing Geographical and Competitive Varia- 

tions 

Examination of the real data within Chapter 4 provided evidence of a rural - urban price difference. 

Within rural areas, the prices were generally more expensive than those of petrol stations located 
in urban areas. This is hypothesised to be related to the density (and therefore level of competition) 

of petrol stations within an area as well as the differing population densities across an area. Work 

within this section will focus on testing out these hypothesises. 

Unless otherwise stated, the following rules were used: ß: 0.0003; ?: 0.7; fixedCosts: £50; 

costToProduce: 60p; neighbourhood 5km; undercut 0.5p; overprice 1.5p and priceChange 0.1 p. 
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7.4.1 Experimentation with Different Population Densities 

The first simulation was run on a 20km x 20km grids (each square representing 4km2 with a 
population of 2000 per km2). Within the centre a 144km2 area (6x6 squares) was selected and 
the population was doubled to 4000 per km2 thus creating an artificial "city". Each of the (evenly 

spaced) petrol stations was assigned the same price (68p) and rules and the model was run to 

equilibrium. 
Figure 7.14 clearly shows that under idealised conditions and with the application of identical 

rules to all of the stations, a clear rural-urban divide is produced. The prices within the highly 

populated urban areas are much cheaper than those found within the less populated rural areas. 
However, one major criticism of this procedure is that it is difficult to distinguish between the 

rural and edge effects. The higher prices within the rural areas may in fact be due to these edge 

effects. To explore this further, a second idealised simulation was run on a larger grid (40km x 
20km) with two "cities". 

" Petrol Station 
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Price (p) 

68.29 

63.90 

Q 
City Outline 

0 

J 

Figure 7.14: Map of petrol prices on a 20km x 20km grid with one "city" illustrating the re-creation 
of the rural-urban divide. 

The patterns in Figure 7.15 are similar to those seen in Figure 7.14. However, the rural region 
situated between the two cities has a higher price than the centre of either city. As this region is 

also situated away from the edge of the grid, it can be confidently stated that the urban-rural divide 
is a result of the different population densities rather than the edge effects. 

7.4.2 Experimentation with Different Petrol Station Distributions 

What is the effect of varying the density and distribution of stations on the system? It is hypoth- 

esised that areas of high density stations (akin to urban areas) will sustain lower prices than the 

sparsely distributed petrol stations (rural areas). 

5The size of the grid used was limited by the amount of mnemory available on the PC. 
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Figure 7.15: Map of petrol prices on a 40km x 20km grid with two "cities" illustrating the re- 
creation of the rural-urban divide. 

The results within §7.4.1 showed that when using a 40km x 40km grid it was hard to distin- 

guish between genuine results and edge effects. To this end, only the 80km x 40km grid with two 

areas of dense (spaced tkm apart) and sparsely (spaced 4km apart) distributed petrol stations will 

be used (Figure 7.16). The population was uniformly distributed at 2000 people per km2. An 8km 

neighbourhood parameter was used. In sparser areas, 12 other stations would be contained in a sta- 

tions neighbourhood. With a 5km neighbourhood, there would only be 4 neighbours. Each petrol 

station was initialised with the same price (68p) and rules. The model was run to equilibrium. 
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Figure 7.16: Spatial distribution of the density and distribution of petrol stations on the grid used 
to investigate the effect of increased competition in two "cities". 

The results of the simulation (Figure 7.17) clearly shows a price divide between the sparsely 

and densely populated areas of stations. The prices within the sparse (rural) areas are much more 

expensive than those found within the denser (urban) areas. The region of sparse stations between 

the two dense areas has a higher price than the centre of either of the denser areas. As this situation 
is away from the edge of the grid, this suggests that the price divide is a result of the different 

petrol station densities rather than the edge effects. The increased competition in those areas with 
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a higher density of stations leads to a decrease in price in order to increase sales. 
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Figure 7.17: Maps of the petrol price after t days from simulations using the grid with varying 
densities of petrol stations. 

7.4.3 Experimentation with Different Petrol Station Types 

Varying population and station distributions influence the behaviour of the system. However, 

this work has been undertaken with the assumption that all the stations operate the same pricing 

strategy. This does not occur in the real system. Esso and supermarkets have been identified as 

operating distinct rules and have been previously experimented with (Chapter 5). The pricing be- 

haviour of both these stations are different and the effects can be easily understood using idealised 

conditions. 

Esso 

The often quoted Esso Price Watch aims to match any competitors' prices within a distance of 

3 miles (5km) with the exception of supermarkets. What would be the impact of this behaviour 

within an idealised environment? Will there be evidence of a large scale impact of imposing the 

Esso Price Watch policy on the Esso stations. Theoretically this might be expected to give rise to 

a tighter pricing structure. 

A 40km x 40km grid was constructed with every 4th node set as an Esso station (i. e I in 

every 16 stations are Esso); all the other stations were set as the same type (Figure 7.18). The 

population was evenly distributed with 2000 people per ward. All the stations were initialised at 

68p. The parameters (3 and A. were set at the default values (0.0003 and 0.7); fixedCosts set to £50; 

costToProduce 60p; changelnProfit U. 

The default stations were given a 10km neighbourhood and 1p value for undercut, overprice 

and priceChange rules. The Esso stations were given a 5km neighbourhood (anything smaller 

than this would only allow them to interact with its immediate neighbours) and a lp undercut 

and priceChange. The significant difference was that the Esso stations were given a Op overprice 

value, i. e. they were forced to match the prices of all other stations within their neighbourhood. 
Figure 7.19 (a) shows that initially all the Esso stations located within the centre of the grid 

are matching the prices of those around them. Only the stations towards the edge of the grid 
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Figure 7.18: Representation of the position of the Esso and default stations on the idealise grid. 

are dropping their price. This trend continues over time (Figures 7.19 (b) and (c)) with the Esso 

stations all dropping by lp at the edges by t= 15. All the stations are aiming to maximise their 

profit and, as outlined in §6.8.1, will implement price increases or decreases to achieve this. The 

stations at the edge of the grid are not surrounded by as much population as those in the centre. 

This means that there are not as many people buying petrol, thus causing a decrease in sales and 

profit. The Esso stations are therefore trying to "buy" market share at lower prices in order to 

increase profits. By t= 15 (c), the Esso stations within the centre area can also be distinguished 

by slightly lower prices. This is due to the effect of the Esso Price Watch. 
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Figure 7.19: Comparison of the petrol prices at Esso and default station prices after (a) t=5, (b) 

t= 10 and (c) t= 15 days. 

In terms of price distribution, there is only a 1.7p difference between the highest and lowest 

petrol station. Assigning the Esso stations their own rule set has resulted in a tighter distribution 

of prices within the system. 

Supermarkets 

Evidence from the literature and analysis undertaken in Chapter 4 have shown supermarkets to 
be the most competitively priced of all stations. In this section, some of the stations will be 

assigned rules similar to those that supermarkets are thought to operate and the impact on the 

system assessed. For example, we can assume that supermarket stations will not let themselves be 

overpriced and will readily undercut nearby stations. 
A 40km x 40km with every 4th node set as an supermarket station (i. e I in every 16 stations 
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are supermarkets); the remaining stations were set as default (see Figure 7.18). The population 

was evenly distributed with 2000 people per ward. All the stations were initialised at 68p. P 

and X were set at the default values (0.0003 and 0.7); fixedCosts set to £50; costToProduce 60p; 

changelnProfit £2; 10km neighbourhood, and lp value for undercut, overprice and priceChange 

rules. The supermarket stations differed in that they were given a Op overprice (forcing them to 

match competitors pricing) and 2p undercut (allowing them to be up to 2p cheaper than competi- 

tion). 

Figure 7.20 shows that at t=5, the supermarket and default stations on the edge of the grid are 
the first to lower their prices. These stations have fewer consumers surrounding them and therefore 
have to lower their prices to try and attract more custom to retain profit. At t= 10, the impact of the 

edge stations lowering their prices has affected all the stations in the grid. The centre stations have 

lowered their prices. By t 15, the system has settled down with the centre stations (with more 

potential consumers surrounding them) having the lowest prices. The supermarket stations are the 

most competitively priced within their neighbourhoods. These stations, due to their cheaper prices 

are also selling more petrol. For example, at t= 15, the centre station (a supermarket) is selling 
6400 litres per day whilst its neighbours (non-supermarkets) are only selling 5186 litres. A similar 
trend is seen at other supermarket stations. 
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Figure 7.20: Maps of petrol prices after t days from simulations in which the supermarkets were 
assigned a competitive rule set whilst the other stations operate the default rule set. 

7.5 Sensitivity of the System 

Some of the experiments undertaken have shown evidence of periodic and cyclical behaviour. In 

this section, the sensitivity of the system to small changes in parameters and initial conditions will 
be investigated further. The ramifications of this for the model will also be discussed. 

7.5.1 Periodic Cycling in Individual Parameters 

During experimentation with individual parameters, evidence of period cycling and chaotic be- 

haviour was seen. This was particularly evident in experimentation with the cosiToProduce and 

undercut and overprice parameters. The undercut and overprice simulations produced a variety of 
behaviour and these will be investigated here. The price over time (Figure 7.21 (a)) was plotted 

along with a corresponding phase diagram (Figure 7.21 (b)). The phase diagrams plot the price 
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Figure 7.21: Time series and phase diagrams of petrol price at the analysis stations for simulations 
with different undercut (UC) and overprice (OP) parameters. 

on day t against the price on day t+1 for stations 841,421 and 1 (the centre, middle and corner 

station; stations 211 and 631 were omitted to keep the diagram clear). The data was plotted after 
day 60 when the model had settled into a solution. Plotting the data in this manner allows periodic 
behaviour to be easily identified. 

Figure 7.21 (a) shows the model settling down quickly to an equilibrium. The corresponding 

phase diagram (Figure 7.21 (b)) reflects this. The point is fixed, the price is constant at all of 

the plotted stations. Figures 7.21 (c) and (d) show a different type of behaviour. After the model 

settles down, a5 day periodic cycle appears. The stations follow the same cycle but, as Figure 

7.21 (c) shows, not all the stations have the same price at the same time. The behaviour displayed 

in Figures 7.21 (e) and (f) is even more complicated than the previous examples. There is evidence 
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of cyclical behaviour, but it is not quite periodic. The cycle in the prices is longer than the 5 days 

seen in Figures 7.21 (e) and (f). The price variations are also larger than the previous simulation. 

7.5.2 Initialisation Conditions: Stability 

The effect of varying individual parameters has been seen through the undercut and overprice 

parameters. However, how sensitive is the model to random variations? Would perturbing the 

initial conditions result in the same solution? To investigate this, three experiments were run. 
Run 1 used the following parameters; (3: 0.0003; X: 0.7; fixedCosts: £50; cosiToProduce: 60p; 

neighbourhood 5km; undercut 0.5p; overprice 1.5p and priceChange 0.1 p. Each station was 

initially priced at 68p. Runs 2 and 3 had a the same parameters, but a random perturbation of 

f0. lp was added to the initial prices of the stations in each case. 

Figure 7.22 shows the effects of these experiments on (a) station 841 (b) station 631, (c) 

station 421 and (d) station 211 (the position of these stations on the grid are illustrated in Figure 

7.11). Initially, all the stations display a similar pattern, prices decrease due to the price drop at 

station 841. However, the model soon settles down and different solutions appear. By the end 

of the simulation, the price difference between the runs differs from 0.5p at station 841 to 1. Op 

at station 211 (the station located near the edge of the grid). These variations are larger than the 
initial perturbations of f 0.1 p. The difference in these three experiments shows that the model is 

sensitive to initial conditions. 
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Figure 7.22: Time series of petrol price for three runs with similar initial conditions. Results are 
shown at 4 of the analysis stations. 
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The sensitivity of the model means that small random variations can significantly change 

which stations are the most successful. For example, if the threshold of the changelnProfit variable 
(the level of profit change at which the station will not change its price) is exceeded, the model 

will increase or decrease its price by xp. However, if the amount of profit made falls below the 

threshold, no change would be made. This can result in discontinuous behaviour, i. e. a small 

change in initial conditions may make the difference between a station changing price by xp and a 

station not changing price. Such behaviour is realistic, in the real market stations have a tendency 

to alter their prices in "jumps" (0.5p - Ip) rather than in small increments. This sensitivity of the 

model to small changes in the initial conditions and parameters can have a significant effect on the 

whole system. These idealised simulations are particularly sensitive to small changes in condi- 

tions because of the homogeneous distribution of stations and initial prices. The stations are only 
differentiated by small differences in sales and profit, therefore they are sensitive to small changes 
in the controlling parameters. In contrast, simulations using real initial data may be expected to be 

more robust because of the naturally occurring larger variation in sales, price and profit between 

stations. 

7.6 Conclusion 

Using idealised simulations has allowed the sensitivity and robustness of the system to be tested in 

a controlled environment. By use of simple diffusion experiments, the model was forced to react 

to changes in its environment. This provided an opportunity to examine if the rules were operating 

sensibly. Further work involved altering the underlying geography and population distribution of 

the grids. The purpose of this was to assess whether the model would produce variations similar 

to those observed in the real market. The results showed this to be the case. 
Assessing the behaviour of the system when individual parameters are perturbed showed that 

the system can be sensitive to small changes. This was particularly seen when experimenting with 
the changelnProfit variable, if this value is small enough, the model may never reach equilibrium. 
Perturbing all of the parameters showed that despite being sensitive, the system is stable (it reaches 

equilibrium). However, in these idealised simulations all the stations are more or less equal so a 

small random change or variation can make the difference between being increasing or decreasing 

profit, and these simulations are, therefore, more sensitive to small changes in parameters or initial 

conditions. 
In summary, through the experimentation within this chapter, the model was shown to produce 

sensible behaviour and produce stable solutions. The model can now be confidently tested on the 

real market data. 



133 

Chapter 8 

Experimentation with Real Data 

8.1 Introduction 

Chapter 7 was concerned with testing the behaviour of the model and model parameters under 
idealised conditions. This "standardised" approach removed the effect of geography, distribut- 
ing both population and petrol stations at equal intervals. By using diffusion experiments and 

recreating spatial variations, the behaviour, sensitivity and robustness of the system were tested. 
The results of these experiments concluded that the model, under idealised conditions, produced 
sensible results and was reasonably robust. 

The next step in testing and validating the model involves application to a more realistic sys- 
tem. Analysis of the real data in Chapter 4 highlighted the irregular spatial distribution of petrol 
stations (and population) within West Yorkshire and the Yorkshire region. The examination of 
the petrol market in Chapter 4 brought to light the complexity of the interaction of factors that 

contribute towards the setting of a petrol price. The availability of the real data provides an oppor- 
tunity to test the ability of the model to replicate patterns and trends that occur in the real world. 
This will be achieved by employing a mixture of diffusion and sensitivity tests similar to those 

used in Chapter 7. 

The construction of a spatial interaction model, linked to the agent model, to account for 

customer behaviour was detailed within Chapter 6 (the "hybrid model"). A simple network model 
(the "network hybrid model") was also constructed to distribute these consumers around the study 
area (based on non-cascading travel to work data). The network model was redundant within 
Chapter 7 as the population within the idealised experiments was uniform. The use of the real 
data provides the first opportunity to compare the performances of the pure agent model, hybrid 

model and network hybrid model. Does the inclusion of a consumer and network model improve 

the overall model performance? 
However, before the models can be compared, suitable values for the model parameters have 

to be derived. The work within this chapter will first focus on deriving suitable parameters, then 

comparing the performance of each model over time and its ability to recreate spatial variations. 
A series of diffusion and sensitivity experiments will then be performed on the model that gives 
the best performance. These will aim to examine the robustness of the model and its ability to 

produce sensible results under a variety of initial conditions. 
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8.2 Choice of Parameters 

The parameters used to run the hybrid model in Chapter 7 were derived through experimentation 

with the idealised data. This will render them largely unsuitable for application to data that is 

irregular both in terms of petrol station and population distribution. This section of work will draw 

on information gleamed from the literature in Chapter 2, the analysis of the real data presented in 

Chapter 4 and behavioural information about the model from Chapter 7. The parameters will 
be derived to fit the West Yorkshire data from July 27th. For all parameters, these are at best 

estimates. A more objective method of selecting parameters will be presented in Chapter 9 with 
the use of a genetic algorithm. 

8.2.1 (3 and X 

In West Yorkshire, the average distance from a petrol station to its nearest neighbour is 1423m (see 

§4.7.2, Table 4.4). Within a neighbourhood of this size, each petrol station would only have, on 

average, between 2 and 4 neighbours. For ß to exert an influence on the system, there needs to be 

significant price competition between stations. To enable this, 1000m was added onto the average 
distance giving a value of 2400m. This gives an average of 7 stations within the neighbourhood 
(see §4.7.3, Table 4.5). Taking this value, a consumer located 2400m from the garage would be 

half as likely to buy petrol at the station than from an equivalently priced station situated adjacent 
to the consumer. Using Equation (7.1), a distance of 2400m produces aß value of 0.0003. 

1 was calculated by using a combination of the average and maximum price change per day 
(§4.7.1), derived from the real data. The mean absolute price change (calculated over those stations 

where the price altered) was 0.27p per day, the maximum price change was 4.6p. The maximum 

value of 4.6p seem rather large, but on the other hand the maximum price change should be larger 

than the mean value. To this end, a higher figure of 1. Op will be used. Using Equation (7.2), 1.0p 

translates to aX value of 0.7. 

8.2.2 Fixed Costs and Cost to Produce 

In §7.2.3 it was concluded that profit decreases with increasing fixedCosts and costToProduce. In 

principle, these values could be known. However, data of this nature is commercially sensitive 
and not available within the public domain. It is known that the profit margin is very tight due 

to the constraining factors of fuel tax and duty (see §2.2.2). We can therefore conclude that the 

costToProduce will be a high proportion of the actual price. fixedCosts is the amount that it costs 
the station per day to keep running irrespective of the amount of petrol sold. This includes part of 
the maintenance of the site and payment of staff. The costToProduce parameter is the amount per 
litre that it costs to produce the petrol, for example transportation and refinery costs. In practice 
the costToProduce will also include a portion of the staff costs and maintance since a large garage 
selling a large volume of fuel will need more staff than a smaller garage. The values for the 
fixedCosts will also be lower than might be anticipated because this chapter is only considering 

unleaded fuel, whereas in reality a petrol station would also sell other types of fuel as well as often 
selling other goods. The profit from all these would also contribute towards the fixed costs. 
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§2.2.2 presented the breakdown of a petrol price of 74.9p; 57p accounts for the duty and tax, 

13.9p covers the cost of the product and the remaining 4p goes to the retailer. It can be assumed 

that the greater proportion of the 13.9p covers the costToProduce and the remainder covers the 

fixedCosts. This could be approximately 13p for costToProduce and 0.9p for fixedcosts. The total 

costToProduce in this example was 57p (tax) + 13p (costToProduce) = 70p (these are the variable 

costs). The remaining 0.9p covers the fixedCosts. The total fixedcosts is therefore, 0.9p x the 

amount in litres sold. This is on average about 8,000 litres (based on data from Catalist (accessed 

2003)). This gives £80. However petrol in the real data was, on average, 4p cheaper (see §4.4.1), 

therefore the costToProduce will be taken as 66p rather than 70p. The fixedCosts will remain at 

£80. 

8.2.3 Change In Profit 

Experimentation undertaken in §7.3.3 found the system to be very sensitive to variability in the 

changelnProfit value. This value controls how readily a station reacts to changes in its profit level. 

The model rapidly settled into a steady solution when parameterised with values over £30, and 

remained in flux with values under £15. This suggests that an appropriate value to use would 
fall between these two values. The results presented in Figure 7.12 showed that the results for 

changelnProfit values of £20 and £25 were almost identical with the system reaching equilibrium 

after approximately 25 days. 

However, these values are based on the idealised simulations and not necessarily appropri- 

ate for the real data. A useful guide for determining values for the real data is to compare the 

average profit made by each station in the real and idealised data. This was achieved by using 
Equation (6.8) (see §6.6.1) to calculate the average number of litres of unleaded petrol sold at 

each station per day. Using the 40x40 idealised grid (1681 stations), each station sold an average 

of 3675 litres of unleaded petrol per day. There are 517 petrol stations in West Yorkshire, but only 
262 of these are used in the experimentations on July 27th (the remaining 255 are either out of 
industry or do not have a price recorded for that day). Using Equation (6.8), these 262 stations 

were calculated as selling an average of 5959 litres of unleaded petrol per day. This is almost 
double the amount calculated for the idealised data. This suggests that the changelnProfit value 

used in the idealised simulations should be scaled accordingly for use in the real data simulations. 
Figures between £20 - £25 were suggested as the most appropriate for use within the idealised 

simulations (see §7.3.3). Values between £40 - £50 are therefore appropriate for the real data. As 

the real data contains more variation than the idealised data, this figure is a general guideline. A 

default value of £40 will be used in these experiments. 

8.2.4 Undercutting and Overpricing 

The undercut parameter controls how much a station can undercut the price of its competitor (in 

pence). Selecting a small value for this parameter may squash any variations that exist within the 

real data. Conversely, choosing a parameter that is too large may result in the rule having no effect 

even if an unrealistic price difference occurred. The standard deviation (SD) is an indicator of the 

amount of variation within the prices. From 27th July to 19th August for West Yorkshire, the SD 
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ranges between 0.32 - 0.90 (see Table 4.3). There are no significant differences from this range 
in any of the geographical classifications. An alternative approach to assessing suitable undercut 
values is to extend the neighbourhood analysis in §4.7.4 to find the cheapest and second cheapest 

stations in each neighbourhood. The difference between these two gives the maximum price by 

which the cheapest station undercuts the others in the neighbourhood. For a 5km neighbourhood 
size, 157 of the neighbourhoods had an undercut value of less than 1 p, 71 neighbourhoods had an 
undercut value of 1-1.9p, while only 30 had a values of 2-2.9p. None of the cheapest stations were 
more than 2p cheaper than the others in their neighbourhood. These two analyses suggests that 

an appropriate figure to use for the undercut would be 1.0p. This value is large enough to allow 

natural variations to exist, but not too large to be ineffectual. 

The overprice parameter determines the amount by which a station can be more expensive 
than its nearest competitors (in pence). As with the undercut parameter, choosing a value that 
is too large may result in the rule becoming ineffectual. If the value is too small, variations 

within the data will be suppressed. In the analysis of the real data, the maximum price change 
between 27th July to 19th August was found to range between 2.0 - 4.6p (Table 4.3). This suggests 
that the overprice variable should be set to at least 5p to maintain price variation. The choice 

of this parameter is substantiated by the calculation of the variation in price ranges with a 5km 

neighbourhood size. The price range in almost all of the neighbourhoods was less than 5p (Table 

8.1). Setting the overprice value to this amount will therefore prevent unrealistically large price 
variations in a neighbourhood without suppressing naturally occurring variations. 

Price Range (p) I Number of Neighbourhoods 
0.0 -0.9 7 
1.0 -1.9 11 
2.0 -2.9 74 
3.0 -3.9 64 
4.0 -4.9 89 
5.0 -5.9 12 
6.0 -7.0 4 

Table 8.1: Price range within a 5km neighbourhood for July 27th. 

8.2.5 Neighbourhood Size 

The neighbourhood is taken to be a fixed circular area around the petrol station with a given radius. 
In §4.7.2, the average distance between stations was calculated at 1423m. This equates to an 
average of 4 neighbours (see §4.7.3). Considering the varying distribution of stations throughout 
the study area (as shown in Figure 4.2), the neighbourhood needs to be significantly larger to 

ensure that even the rural stations have some neighbours to generate competition. 
Analysis of the real data in Chapter 4 (see 4.7.2) showed that a neighbourhood of 5km gives 

an average of 18 neighbours. Experimentation with different neighbourhood values (§7.3.2) using 
idealised conditions illustrated that using this neighbourhood size (containing about 20 stations) 
produced sensible results. 5km also corresponds to the neighbourhood size that is employed by 
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Esso in their Price Watch policy (see §2.3.4). This suggests that Esso consider prices within this 

distance to be important to competition. 

8.2.6 Summary 

A combination of numerical experiments, analysis of the real data and idealised simulations have 

been used to determine appropriate values for each of the parameters within the model for the first 

half of the data set (July 27th) for West Yorkshire. Table 8.2 presents a summary of these values: 

Parameter Value 
ß 0.0003 

0.7 
fixedCosts £80 
costToProduce 66p 
changelnProfit £40 

undercut lp 

overprice 5p 

neighbourhood 5km 

Table 8.2: Optimal values derived from the real data and literature for the model parameters. 

Unless otherwise stated, these values will be used in the following experimental sections and 

referred to as the default parameters. 

8.3 Comparison of Model Performances 

In this section, the agent, hybrid and network hybrid models will be initialised with the real price 

data from July 27th for West Yorkshire. The parameters summarised in Table 8.2 will be used. 

The output on day 10 from each model will be compared with day 10 of the real data (August 6th). 

This method of comparison has been previously detailed in §5.3.7. The comparisons will show 

which of the three models best predicts the values and spatial distributions of the real data prices. 

The second half of the data set (August 19th - September 1st) and the Yorkshire region will be 

used for further testing of the model's performance in §8.8. 

8.3.1 Visual and Statistical Comparisons 

Figure 8.1 shows the spatial distribution of price difference (in pence) between the real and model 

data on day 10. There are no great differences between the spatial distribution of the price differ- 

ences for the model output and real data (Figure 8.1 (a)). In general, positive price differences are 

found in urban areas with negative variations in rural areas. There is however, some variation in 

the magnitude of these price differences. The hybrid and network hybrid model (Figure 8.1 (c), 

(d)) both display almost identical price differences to the real data. The price differences in the 

agent model (Figure 8.1 (b)) are greater and more widely distributed across the study area. 
Assessing these spatial patterns is largely a qualitative exercise. Quantifying the degree of 

these differences can be achieved by using various statistical techniques such as mean and standard 
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Figure 8.1: Price difference between the real data (day 10) and model output for the (b) agent 

model (c) hybrid model and (d) network hybrid model for West Yorkshire. The difference between 

the real data (July 27th and August 6th) (a) is included for comparison. 

deviation (SD) of the price difference between the real and model data and standardised root mean 

square error (SRMSE). A detailed explanation of these techniques was presented in §4.9 and 
§5.3.7. 

Figure 8.2 (a) shows that the mean price differences are almost identical for the hybrid and 

network hybrid model. The SD of the hybrid model is marginally larger than that of the network 

hybrid model. However, both model results mirror the pattern of the real data almost perfectly. 

The agent model also follows the patterns of the real data, but exhibits a slightly larger mean price 

difference and SD that increases over time. 

Over time, Figure 8.2 (c) shows that all the models have similar values for the SRMSE and 

follow the trends displayed by the real data. From this Figure, it appears that the agent model is 

producing the closest fit to the real data. However, this is misleading. Investigation of the agent 

model in Chapter 5 concluded that any variations in the difference between real and model data 

were due to the changes in the real data (the agent model only took a few days to hit equilibrium, 

(b) Real Data (a) Agent Model 

(d) Network Hybrid Model (c) Hybrid Model 

County Boundary Price Difference (p) 

Motorway r 3.40 
A-Road 0.00 
Petrol Station 

-2.04 
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Figure 8.2: Comparison of (a) the mean price difference over time (SD is indicated by the vertical 
bars) and (b) the SRMSE between the real (day 10) and model data for the agent, hybrid and 
network hybrid model for West Yorkshire (Model initiated on July 27th). The real data differences 

are plotted for comparison. 
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clearly not enough time to operate a rule set). The similarities of the hybrid and network hybrid 

model to the agent model in Figure 8.1 suggests that a similar argument may also be applied. This 
is supported by the results of the mean price shown in Figure 8.2 (b) which show little change 
in the mean price of all of the models over the 10 days. Unlike the agent model, the hybrid and 

network-hybrid models forced a price change initially in the least profitable stations. However, in 

most cases this did not increase their profit and the model strategy reversed this change (see §6.8.1 

for details of model strategy). This suggests that the initial real data was in fact close to the model 

equilibrium in this case. 
However, §5.10 further concluded that alternative modes of behaviour needed to be incorpo- 

rated to the agent model, for example profit maximisation and the influence of consumers. The 

hybrid and network hybrid models both account for this type of behaviour. Both models are built 

on a sounder theoretical basis than the agent model having the ability to replicate real processes, 
for example profit maximisation. Figure 8.1 compounds this by illustrating that the hybrid and 

network hybrid models do a better job of recreating the spatial distribution of prices even if they 

are slightly less good based on the global statistical test. 

8.3.2 Recreation of Spatial Variations 

One possible criticism of the model runs initialised with real data might be that they are merely 

preserving the variations within the data. The constant price initial state tests the ability of the 

model to generate rather than merely preserve variations within the data. Examining whether the 

models generate realistic prices is a useful test for realism, an essential feature in any dynamic 

model. 
Each model was run with all the petrol stations assigned the same initial price. The average 

price of the real data on July 27th (71p) was chosen. The model was run to equilibrium. No 

price changes were observed with the agent model (Figure 8.3 (b)). This is because the rules used 

assumed that this was a stable situation. The hybrid model performed better (Figure 8.3 (c)) and is 

beginning to reproduce some price variations similar to those observed in the real data (Figure 8.3 

(a)), for example between high priced rural areas and cheaper urban areas. The network hybrid 

model (8.3 (d)) improved on the hybrid model performance, reproducing with greater accuracy the 

price differentiation within the rural and urban areas. 
However, neither the hybrid model nor the network hybrid model reproduce the range in prices 

present within the real data. Both the hybrid and network hybrid prices range from approximately 
70 - 72p, the range of the real data is 68 - 74p. The narrower range produced by the hybrid and 

network hybrid model suggests that the model is limiting the price range too much. Larger values 
for the undercut and overprice parameter might help with this. A more objective selection of the 

parameters in Chapter 9 will show whether this is the case. 
Based on the evidence presented here and in §8.3.1, the agent model has been comprehensively 

outperformed by both the hybrid and network hybrid model. A comparison of these two models 
identifies the network hybrid as the superior, reproducing the spatial trends of the real data with 
the greatest accuracy (Figure 8.3). This is reflected statistically, with the network hybrid model 
accurately modelling the prices over a 10-day period. Experimentation undertaken in the following 

sections will use only the network hybrid model. 
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Figure 8.3: Price distributions for the various models 30 days after runs started with all stations 
initialised at 71p: (b) agent model, (c) hybrid model and (d) network hybrid model. Data from day 

10 of the real data set (a) is included for comparison. 

8.4 Space-Time Diffusion 

The experiments performed here will follow the methodology used in the diffusion experiments 

in §7.3.1, but with the real distribution of petrol stations and data for West Yorkshire. One station 

will be dropped in price on the starting day and the impact on the system over subsequent days will 

be studied. Different experiments will use constant prices or real prices on July 27th to initialise 

the model. The parameters input are outlined in §8.2.6. The reaction of the real system in each 

of these situations will contribute important information about system behaviour, sensitivity and 

robustness as well as indicating how well the model performs. 

The station that will be dropped in price is 8537 (Figure 8.4). This station is located within the 

centre of Leeds. The central position of station 8537 in a neighbourhood of other urban stations 

will ensure some symmetry in the diffusion of the new price. The reaction of several stations 

to the price drop will be analysed (Figure 8.4). These stations were selected at roughly equal 

intervals on a north-west transect from station 8537. They are drawn from different geographical 

parts of the study area, e. g. cities, small towns and rural areas. With increasing distance from 

8537, the character of the area surrounding the stations changes from urban, through semi-urban 

to rural. Analysing the reaction of these stations to the price drop will increase understanding of 

the behaviour of the real system. 

Station 8537 will be dropped by 5p to initiate the diffusion. Experiments with the idealised 

data in §7.3.1 concluded that using 3p or 5p precipitated better diffusion patterns than I p. How- 

(a) Real Data 

(d) Network Hybrid Model (c) Hybrid Model 
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Figure 8.4: Spatial location of the stations to be used within the analysis. 

ever, as we are interested in the reaction of the real system, a price drop of 5p will force a response. 

Dropping the price by 1p or even 3p would produce a change that could be absorbed by surround- 
ing neighbours. A 5p difference is greater than any naturally occurring differences in the data but 

is still small enough to ensure that the stations continue to make some profit. 

8.4.1 Experimentation with Constant Initial Prices 

The model was initialised with all the stations set to 71 p except for station 8537 which was set 5p 

cheaper at 66p. The parameters summarised in Table 8.2 were used except for the changelnProfit 

which was set to £2. This was to prevent the system reaching equilibrium too rapidly before 

the price drop had time to make an impact on the model (see §7.3.3 for further details). Figure 

8.5 shows that the lower price gradually diffuses throughout the study area. By day 40, most 

of the stations have lowered their price by an average of 4p. Each of the selected stations in this 

simulation experience this 4p price drop, dipping under the price of 8537 before a gradual increase 

to a steady state (Figure 8.6 (a)). These differences are also reflected in the levels of profit made 
(Figure 8.6 (b)). The full impact of the price drop does not reach station 398 until day 40. By day 

46, this station has also settled into a steady state. From this point onwards, and in the absence of 

any external price changes, there are only small fluctuations within the system. 

The behaviour exhibited by the system is a direct result of the rules implemented. These 

in turn are directly linked to the profit maximisation strategy of the stations. Between days 10 

and 20, the stations closest in proximity to 8537 (stations 9683 (green) and 12370 (dark blue) in 

Figure 8.6) begin to lose profit due to this new aggressive pricing by station 8537 (Figure 8.6(b)). 

Their response is to drop their prices by up to ip per day (Figure 8.6 (a)) in an attempt to attract 

consumers back and thereby maximise profits. Over the course of the simulation, the effect of the 

price drop diffuses across the area triggering stations located further away from station 8537 to 
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Figure 8.5: Results of the spatial diffusion of prices over time with all stations initialised at a 
constant price of 71p except for station 8537 which experiences a price drop of 5p. 

implement the same strategy; for example, stations 9445 (pink) and 398 (light blue) between days 

20 to 45. 

At the same time, station 8537 has large sales but a low profit margin due to its cheap prices 

and so increases its price in an attempt to maximise profit levels. This price increase slows down 

around day 5 and then exhibits minor fluctuations until day 30. At this stage, the prices appear 

to converge at a point where all the stations are making profit. This happens around 66-67p (the 

costToProduce variable is set to 66p, any prices lower than this will precipitate negative profits; 

Figure 8.6(a)). With the absence of any external influences (e. g. rise in tax or crude oil prices) 

to force an upwards kick in the prices, the simulation exhibits little fluctuation in prices or profit 

from day 45 through to day 60. 

8.4.2 Experimentation with Real Initial Prices 

The model was initialised with the real data (July 27th) and the default values detailed in Table 8.2 

were used. Station 8537 was dropped by 5p (from 73p to 68p). 

Figure 8.7 shows a slightly faster diffusion of the new price throughout the study area than 

observed in §8.4.1. By day 20, most of the stations have lowered their prices by an average of 3 

- 4p (66 - 67p). On day 40, the price at the majority of stations has settled to approximately 66p 

and do not fluctuate again. Interestingly, in the south west corner of the study area, a genuinely 

occurring low price also precipitates a similar price drop diffusion across the study area (this is 
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Figure 8.6: Change in (a) price and (b) profit over time for the selected stations in the constant 
price experiment. 

particularly evident at t= 10). 

Figure 8.8 shows the reaction of the price and profit are almost identical to that seen in §8.4.1. 
The drop in price of station 8537 precipitates a decrease in the profit of the surrounding stations. 
This forces a price drop until a point is reached where all stations are making profit once again 
(around day 35). This similarity in behaviour to the diffusion experiment using the constant price 
data shows the network hybrid model to be relatively robust to variations within the system. 

8.4.3 Experimentation with Multiple Price Drops 

So far, only price drops at individual stations have been considered. It might be hypothesised that 

all the stations belonging to a particular brand may drop their prices simultaneously. A diffusion 

experiment was carried out to examine the reaction of the system to such a price drop. 
The model was initialised with the real data (July 27th) and the default values detailed in Table 

8.2 used. The Esso stations were all dropped in price by 5p at the beginning of the simulation. 
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Figure 8.7: Spatial diffusion of prices over time for a price drop of 5p. All stations are initialised 

with real prices from July 27th. 

The Esso group of stations were chosen due to their number and spatial distribution around the 

study area (see Figure 8.9). This would allow examination of the reaction of the system to multiple 

simultaneous changes. 
Figure 8.9 shows that the system responds rapidly to the drop in prices. By day 5, most of the 

non-Esso stations have dropped their prices by 3p-4p. The Esso stations remain fairly constant in 

price after the drop. This means that the range of prices decreases with time. For example, the 

price range is l lp on day 1,8p on day 5 and 6p on day 40. However, this appears to be the only 

discernible impact of the multiple drop on the entire study area. 

The reaction in price and profit of several different stations (non-Esso) was again analysed 

(Figure 8.10). These stations are the same as those used in §8.4 and form a transect moving out 

from the centre of Leeds. The graph showing the station prices as a function of time illustrates the 

rapid diffusion of the price drop out to these stations over a few days. After this the prices remain 

constant at values between 69 and 71p. The profit graph shows a sharp fall on day I as a result of 

the Esso stations attracting a large increase in sales with their cheaper petrol. As the price of the 

non-Esso stations falls they begin to attract back trade. This results in an increase in profits, even 

though their profit margins fall. The increase in profit continues up to about day 16 even though 

the price drop stops around day 5. This is presumably an indication that prices in other parts of 

the system are still adjusting, and affecting the sales around this area. From the maps in Figure 8.9 

the changes seem primarily to be in the very cheap regions around Leeds and Halifax at day 5 

(indicated by the light blue areas) which gradually increase in price through to around day 20. 
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Figure 8.8: Change in (a) price and (b) profit over time for the selected stations in the real data 
diffusion experiment. 

The work in this section illustrates several important features in the model. Stations react 

sensibly to price drops by reducing their prices; this shows that dropping the price can have a 

positive impact on profit. It also demonstrates the stability of the system with all the stations 

quickly reaching a steady equilibrium. 

8.4.4 Summary 

The purpose of the diffusion experiments was to examine the reaction of the system under several 
different conditions. This was achieved by using a constant price and real data to initialise the 

model. A price drop of 5p was used to force the system to react. The results from each experiment 

shared several common themes. The new price spread out through the surrounding areas trigger- 

ing pricing adjustments by neighbouring stations. The end result was a much narrow price range 

than initially observed in the real data. Finally, all the stations within each simulation experienced 

a decrease in profit and implemented sensible strategies to regain and maximise profit levels. Al- 
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Figure 8.9: Spatial patterns produced by the dropping of all of the Esso stations by 5p on the 
initialisation day. 

though the hetereogeneous distribution of petrol station and of population mean that the diffusion 

is less regular than the idealised experiments in Chapter 7, the general behaviour is very similar. 

Experiments in which every station of a particular brand was dropped in price, rather than just one 

station also showed a similar diffusion behaviour. The model reached a state where most of the 

prices had dropped far more rapidly because the prices were diffusing out from several different 

petrol stations. The similar patterns of behaviour observed in all these simulations indicate that 

the model is robust to changes within the initial conditions and is able to produce sensible results 

under a variety of different conditions. 

8.5 Analysis with Classifications 

In Chapter 4, the real data was divided into geographical and "petrol station type" classifications 

(see §4.5). Analysis performed using these classifications highlighted price variations within dif- 

ferent geographical locations, for example, variations between urban and rural stations. Price 

differentials were also found within the petrol station type classifications, for example supermar- 

kets were found to be cheaper than multinational and minor stations. By calculating the statistics 

per classification, we will be able to see how well the network hybrid model performs in each of 

the individual categories as well as the overall network hybrid model. This may suggest where 

improvements or adjustments in the rule sets have to be made. 

The output analysed in the following sections comes from the network hybrid model initiated 
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Figure 8.10: Change in (a) price and (b) profit over time for the selected stations in the experiment 

with a 5p initial price drop at all the Esso stations. 

with the real data from July 27th for West Yorkshire. The default parameters were used. The 

mean and SD of the price difference were calculated up to August 6th on days where both real and 

network hybrid model data were available. 

8.5.1 Geographical Classification 

In terms of mean price difference, the network hybrid model is performing well in all the classifi- 

cations, predicting to within ±0.5p. (Figure 8.11). The trend in the prices follows that of the real 

data. The best performance is found within the urban classification. The prices in this category are 

being slightly under predicted at the beginning of the simulation (-0.2p on July 30th). However 

this improves over time and by August 6th the prediction is accurate to +0.1 p. This is encouraging 

as this group accounts for the largest proportion of stations in the study area (84%). The size of 

the group is also reflected in the size of the standard deviation. By July 30th, this is the largest and 

remains so until day 10. In a group the size of the urban category, it is expected that there will be 
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Figure 8.11: Graph showing a comparison of the mean price difference (p) within the geographical 
classifications over time. SD is represented by the vertical bars. 

"extreme" values that will be to a degree masked in the mean price difference. 
The rural and motorway categories are also expected to sustain higher prices due to their loca- 

tion and suspected pricing strategies. In terms of mean price difference, the motorway category is 

consistently being over-predicted (+0.5p on August 6th) and the rural category under priced (-0.2p 

on August 6th). The influences upon stations in rural areas are partly included through population 
distributions and distance between neighbours. 

Both the rural and motorway categories exhibit a smaller SD than the urban classification. 
As they are more homogeneous categories, with similar high prices there is less variation in the 

price and hence a smaller standard deviation. On the other hand, urban areas often contain very 

competitive supermarkets as well as more expensive independent stations and therefore display a 
larger range of prices. 

8.5.2 Petrol Station Type Classification 

The largest category within the petrol classifications are the multinationals. They comprise 265 

stations (51%). Figure 8.12 shows that the mean price difference of this category mimics the 

pattern of the real data with a higher degree of accuracy than the supermarket and minor categories. 
In §8.5.1, the classification containing the most stations (urban) had the largest SD. This was also 
found to be the case with the multinational category (-0.3p on July 30th and 0.1 on August 6th). 

The network hybrid model over-predicted both the supermarket (I. Op on July 30th) and minors 
(0.3p on July 30th) categories. The SD of the supermarkets is less than that of the minors category. 
This is probably due to the fact that this category is the smallest: there are 31 supermarkets (6%) 

and 221 minors (43%). Analysis of the real data in Chapter 4 showed that the supermarkets 

were the most tightly and competitively priced. The poor prediction of the supermarkets clearly 
highlights that this behaviour is not being accounted for. Assignment of an individual rule set for 

the supermarket category may both improve their performance and that of the overall model. 
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petrol station classifications over time. SD is represented by the vertical bars. 

8.6 Further Experimentation with Rule Sets 

Geographical and petrol station type classifications were used in the previous sections to examine 

how the network hybrid model performed in each of the different categories. The motorway and 

supermarket categories were both identified as performing poorly. It was suggested that they may 

benefit from individual rule sets. The factors affecting motorway stations are more complicated, as 

research by McFarland (2003) determined. Their rules are closely linked to the volume of traffic 

on the motorway and they do not generally compete with the local non-motorway petrol stations 
(this is with the exception of the Esso stations that were found to match competitors within a3 mile 

neighbourhood). To test out whether assigning individual categories unique rule sets will improve 

the overall network hybrid model performance, experiments will be conducted with separate rule 

sets for the supermarket and Esso stations. 

8.6.1 Esso Price Watch Revisited 

In Chapter 5, the basic agent model was run to examine the effectiveness of imposing the Esso 

Price Watch (see §5.8.2). To re-cap, the Price Watch pledge states that Esso will match any price 

within the surrounding 3 miles (5km). Having this published rules information provides a useful 

opportunity to assign an accurate rule set and determine its impact on the model performance. The 

results with the agent model indicated that the size of the neighbourhood did not make a notable 
difference to the mean and SD. It was largely inconclusive as to whether this meant that the Price 

Watch policy was ineffective or the system was insensitive to changes within this parameter. 
The network hybrid model was used to re-visit the Esso case-study and reassess the impact 

of the Price Watch pledge within a more realistic profit maximising model. To enable compari- 

son with earlier simulations, the experiments were run on West Yorkshire. All the stations were 
initialised with the real data from July 27th. The default parameters (Table 8.2) were assigned to 

every station with the exception of the overprice parameter. Within the Esso stations rule set, this 

was set to O. Op to force the Esso stations to drop their price to match the lowest in its neighbour- 
hood. This reflects the Price Watch pledge. The main differences to the default rules are outlined 
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in Table 8.3. The neighbourhood parameter was also adjusted for the Esso rules to determine the 
impact of the neighbourhood size. 

Model Run neighbourhood (km) overprice (p) 

Esso 1km 1.0 0.0 
Esso 3km 3.0 0.0 
Esso 5km 5.0 0.0 
Default 5.0 5.0 

Table 8.3: Rule sets operated by the Esso stations in each model simulation. 

Figure 8.13 clearly shows that assigning the Esso stations their own Price Watch rules pro- 
duced a worse performance than initialising all the stations with the same rule set. The mean 

price difference and SD for each of the Esso runs increased over time (Figure 8.13 (a)) with each 

of the Esso simulations being 0.6-0.9p under priced by August 6th. This compares to the Up 

under price that the default run produced at the same point. Increasing the neighbourhood of the 

Esso stations produced an increasing error. The experiment using a 5km Esso neighbourhood (the 

equivalent of the 3 miles stated in the Price Watch Pledge) gave the worst performance along with 

the Esso 1 km experiment, by August 6th it was under predicting by 0.9p. 

The SRMSE over time (Figure 8.13 (b)) shows that each of the Esso simulations were per- 
forming well until July 30th (day 3 of the simulation). After this day, the errors become larger. 

The effects of the Esso Price Watch would take a few days to impact on the system. By August 6th 

(day 10), the Esso rule set is exerting an influence on the behaviour within the system. With the 

overprice parameter set to 0.0p, this tends to reduce the price of the Esso stations and hence the 

mean price. With these rules the system tends to reduce prices too aggressively so the agreement 

with the real data is less good. 
Table 8.4 shows the mean profit for all the Esso and non-Esso stations on day 10. Esso stations 

make more profit than the non-Esso stations, even in the default simulation. This suggests that the 
Esso stations are geographically well located. Further discussion of this point is given in §8.9. 
Since the Esso rules decrease the mean price, they also decrease the overall profitability of all 
the stations. However, in relative terms the Esso stations makes about 2.7 times more profit than 

the non-Esso stations under the Price Watch rules (Esso 5km) compared with 1.6 times more for 

the default rules. This suggests that although an aggressive pricing policy might affect a stations 

overall profit, it could affect competitors' profit levels more severely. 

Mean Model Run I Mean Profit Esso (£) I Profit Non-Esso (£) 
Esso tkm 209 63 
Esso 3km 183 101 
Esso 5km 176 65 
Default 285 176 

Table 8.4: Profits at Esso and non-Esso stations for simulations using separate Esso rules. 

The default parameters selected to run the network hybrid model with were determined in 

Table 8.2. These were partly based on experimentation with all the stations operating identical 
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Figure 8.13: Comparison of (a) the mean price difference and standard deviation (SD is indicated 
by the vertical bars) and (b) the SRMSE over time between the real and network hybrid model data 
for experiments with the Esso rule set. The study area is West Yorkshire and the network hybrid 

model was initialised with data from July 27th. 

rules. Assigning the Esso stations a unique rule set introduces new behaviour into the system. 

It seems reasonable that different default rules may be needed when running the network hybrid 

model with extra rule sets for particular categories of station. The other parameters may need to be 

slightly adjusted to account for the new Esso rules. This may partly explain why the simulations 

here underpredict the price when using the Esso rules. 

8.6.2 Supermarkets 

In the analysis of the real data in Chapter 4, supermarkets were identified as being both cheaply 

priced and competitive (see §4.6.2). This category was experimented with in Chapter 5 (§5.8.1) to 

see whether an individual rule set would improve the overall model performance. The undercut pa- 

rameter was varied to prevent other stations from pricing more competitively. The results showed 
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that assigning the undercut parameter values of between 1.5p - 5p improved the performance of 
the agent model. Varying the undercut parameter was the most effective way the supermarkets 

could be made more competitive in the agent model. However, the network hybrid model contains 

a costToProduce parameter. Varying the value of this parameter directly affects the profit margins 

of the stations. Decreasing the amount will allow the supermarkets to have a larger scope to cut 
their prices, be competitive and still make a profit. This variable will be used instead of the un- 
dercut parameter. The undercut variable will be set to lp, this is the amount calculated in §8.2.4 

based on analysis of the real data. 

The network hybrid model was used and experiments were carried out on West Yorkshire. All 

the stations were initialised with the data from July 27th. The default parameters were assigned 

to every station with the exception of the costToProduce parameter (see Table 8.2). The values 

assigned to this parameter are detailed in Table 8.5: 

Model Run costToProduce (p) 

Supermarket 63p 63 
Supermarket 64p 64 
Supermarket 65p 65 
Default 66 

Table 8.5: Values of the costToProduce parameter assigned for each supermarket simulation. 

Figure 8.14 shows that assigning supermarkets a lower costToProduce value has very little 

impact on the simulations over a ten day period. The best of the simulations was with the su- 

permarket 64p experiment with a final SRMSE of 0.01398 compared to the value of 0.01430 for 

the default run. This suggests that a costToProduce parameter of 64p is the optimal value. The 

supermarket 63p gave a SRMSE of 0.01403 and the supermarket 65p gave 0.01414. In practice 

these SRMSE values are so close as to make negligible impact on the overall model performance 

over ten days. Over longer periods these small differences may become more significant. 
Table 8.6 shows the mean profit for all the supermarket and non-supermarket stations on day 

10. The supermarket stations make more profit than the non-supermarket stations even with the 

default rules. This could be because supermarkets are generally located in urban areas with a large 

potential customer base nearby. Decreasing the costToProduce for supermarkets makes only a 

small difference to the overall pricing, therefore the non-supermarket stations make a comparable 

profit to the default rules. The profit levels for the supermarket stations obviously increase because 

their costToProduce values are less. 

Mean Model Run I Mean Profit Supermarket (£) I Mean Profit Non-Supermarket (£) 

Supermarket 63p 622 193 
Supermarket 64p 521 192 
Supermarket 65p 412 188 
Default 297 187 

Table 8.6: Profits at supermarket and non-supermarket stations for simulations using separate 
supermarket rules. 
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Figure 8.14: Comparison of (a) the mean price difference (SD is indicated by the vertical bars) and 
(b) the SRMSE over time between the real (day 10) and network hybrid model data for different 

model runs with the supermarket data. The study area is West Yorkshire (Model initiated on July 
27th). The real data differences are plotted for comparison. 

The assignment of a unique rule set for supermarkets introduced new behaviour into the sys- 

tem. As with the assignment of an individual rule set for Esso, this did not result in any significant 

improvement to the network hybrid model performance. The case was put forward with the Esso 

stations that when introducing new behaviour, new default parameters may have to be derived. A 

method for obtaining these parameters will be presented in Chapter 9. 

8.7 External Influences/Shocks 

§8.4 examined the reaction of the system to a sudden price decrease in one or more stations in 

several initialisation scenarios. The outcome of these experiments was a general decrease in price 

as the effects of the new, lower price diffused across the study area. The system reached a steady 
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solution and remained in this state with minor fluctuations. It was concluded that the system did 

not deviate from this steady state due to the absence of external influences to "shock" the system 
into different behaviour. Such shocks can be provided in the real system by increases in fuel 
duty or crude oil prices (see §2.2.2 for a list of factors). One of the common reactions to these 
influences is the rapid increase in prices followed by a slow fall back to the original price after the 

effect of the influence has diminished. This phenomenon is commonly referred to as the "rockets 

and feathers" effect (Bacon, 1991). An increase and decrease in crude oil prices will be mimicked 
within this section and the reaction of the system examined. 

The costToProduce parameter incorporates transportation costs, fuel duty and crude oil prices. 
Forcing an increase ("rockets") in this parameter will mimic a rise in one or all of these factors. 

This will have the effect of reducing the profit that each station is making, precipitating price 
adjustments in order to maintain profits. Decreasing the costToProduce ("feathers") will allow the 

stations to begin to act more competitively i. e. undercutting each other to maximise their profit 
levels. This is expected to be accompanied by a slow decrease in price. 

The experiment was undertaken for West Yorkshire using the real data from July 27th. The 

default parameter values outlined in Table 8.2 were used. After 40 days (as the model reached 

equilibrium) the costToProduce variable was increased from 66p to 68p. This was then decreased 

after 80 days from 68p to 66p. 

Figure 8.15 presents the price and profit over time for several different stations in West York- 

shire (the positions of these stations are shown in Figure 8.4). Figure 8.15 (a) shows the increase 

in price at the stations between day 40-60. This corresponds to the increase in the costToProduce 
parameter at day 40. At this point, the stations find themselves instantly making less profit and 
take action via a price increase to regain profit (Figure 8.15 (b)). Once this course of action has 

been taken by all of the stations and profit is being made, alternative strategies (decreasing the 

price) are implemented to maximise this amount. This behaviour is gradually transmitted across 
the study area and continues until an equilibrium is reached (days 60 - 80). 

On day 80, the costToProduce parameter is decreased by 2p to 66p. This results in a sharp 
increase in profit (Figure 8.15 (b)) followed by a gradual decrease in price (days 80 - 120). This 
decrease in price is a result of the stations employing competitive measures to attract more con- 
sumers, i. e. undercutting each other. The profit levels slowly decrease with the price, but the price 

remains above the costToProduce value and so the stations remain in profit. The price finally set- 
tles to approximately 68p - 69p. This is roughly the same variation in price that the system showed 
before the increase in costToProduce, on day 39 the price varied between 68 - 69.5p. 

8.8 Further Assessment of Model Performance 

Experimentation and analysis using the network hybrid model has to date, been undertaken by 

using the West Yorkshire study area initialised with the prices from July 27th. This is not a 
comprehensive test of the robustness of the model. Initialising the model with the second half 

of the data set and using a different region provides an opportunity to assess how well the model 
performs under different conditions. 

In Chapter 4, the data was described and divided into two clear temporal sections (July 27th 
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Figure 8.15: Mean price (a) and profit (b) plotted against time for simulations of the "rockets and 
feathers" effect using the West Yorkshire data. 

and August 19th data sets) and two geographical regions (West Yorkshire and the Yorkshire re- 

gion). §8.8.1 will investigate how well the model performs using data from August 19th and §8.8.2 

will assess the performance on the whole Yorkshire region rather than just West Yorkshire. 

8.8.1 19th August Data Set 

The network hybrid model was initialised with the real data from 19th August for West Yorkshire 

and run using the default model parameters (Table 8.2). The 19th August data spans a slightly 

longer period than the 27th July data (12 days instead of 10) and is on average, 2p higher. This 

is due to an increase in the price of crude oil between 6th August and 19th August. This price 

difference will be accounted for by increasing the costToProduce variable from 66p to 68p. The 

network hybrid model output will be compared against the real data on day 12 (September 1 st). 

This choice is determined by availability of data and provides some consistency with the analysis 

methods used for 27th July. 
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Figure 8.16 (b) shows that in general, the model is re-creating similar rural-urban patterns to 

those seen within the real data (Figure 8.16 (a)). The main difference is within the magnitude of 

the price differentiation. The cause of this in the network hybrid model data is what appears to be 

a "price war" occurring around the Halifax area. 

In the real data, there are several higher priced stations located next to stations that are a few 

pence lower. The presence of these stations along with the operation of the rule set and strategies 

within the network hybrid model creates a fierce competition to both retain and maximise profit. 

The higher priced stations decrease their prices to try to increase their sales and profit. The lower 

priced stations then react by decreasing their prices in an attempt to stop their profit losses. By 

day 12, the effect of this "price war" is diffusing out to the area surrounding Halifax. 

(a) Real Data 

Price County Boundary 
Difference (p) 

1.98 Petrol Station 

0.00 

- -4.91 

HALIFAX 

(b) Network Hybrid Model 

Price 
Difference (p) 

3.78 N 

20 10 0 20 

-4.91 Kilometers 

Figure 8.16: Price difference between the real (day 10) and model data for the network hybrid 

model (b) for West Yorkshire. The difference between the real data (August 19th and September 

1) (a) is included for comparison. 

What is causing this "price war"? A set of 4 adjacent stations forming a transect across Halifax 

were examined more closely (Figure 8.17). Figure 8.18 shows price and profit levels at these 

stations over the first 20 days of the simulation. Station 16070 initially has a high price but low 

profit. In an attempt to increase its profit, it begins to decrease its price (Figure 8.18 (a)). This 

ploy works as over the next 6 days the station sees an increase in profit of over £1000. At this 

point, station 16070 has affected the surrounding stations sufficiently that they react by dropping 

their prices in an attempt to compete. This results in an increase in their profit and a corresponding 

decrease in profit at station 16070 (Figure 8.18 (b)). Eventually, all the stations get close to the 

costToProduce value (66p) and therefore cannot reduce their prices further without going into 

negative profit. This produces a high mean price difference between the real and model data. 

Figure 8.16 is a qualitative assessment of the performance of the network hybrid model on 

one day. Based on this evidence alone, the network hybrid model is not seemingly predicting the 
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Figure 8.17: Location of the stations within Halifax used for further analysis. 

prices well. The use of statistical techniques, shown in Figure 8.19, provides a more rigorous 

assessment. The mean price difference over time (Figure 8.19 (a)) shows that the network hybrid 

model is replicating the trends of the real data accurately. The standard deviation increases slightly 

over time (as the price war begins), but mirrors the variation in the real data. Both the mean price 

difference and SD increase significantly on September 1 (day 12) reflecting the increase in prices 

around the Halifax area. 

Similar trends are also found within the SRMSE (Figure 8.19 (b)). Up to the 30th August, the 

SRMSE varies between 0.01 and 0.02 with both the model and constant data displaying similar 

results. On the 1st September both the constant and model SRMSE suddenly increase, this change 

in both models indicates movement in price within the real data. This is evident by assessing the 

decrease in mean price of the real data between August 30 - September 1 (Figure 8.19 (c)). Figure 

8.19 (c) also shows that the network hybrid model continually over-predicts the real data price 

changes throughout the simulation. 

The second half of the data set has been used to test the performance of the network hybrid 

model under slightly different conditions to those used to tune it. The only difference in parameters 

was an increase in the costToProduce to account for a real increase in costs over this period. The 

network hybrid model showed a good performance, reproducing the spatial variations existing 

within the real data. In terms of mean price difference and SD (price variation), the results were 

also promising with the network hybrid model predicting accurately to within +0.1p. Although 

the time period was slightly different, this case still had the same underlying spatial distribution of 

petrol stations as the July 27th case. 
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Figure 8.18: Comparison of the (a) price and (b) profit over time at stations in the price war area 
around Halifax. 

8.8.2 Yorkshire Region 

Testing the ability of the network hybrid model to generate rather than preserve variations within 

the data was first used in §8.3.2 on West Yorkshire. In this section, the Yorkshire region will be 

used. This will test the ability of the network hybrid model to recreate rural-urban patterns on a 

much larger geographical scale. The Yorkshire region contains a mixed variety of geographical 

characteristics (see Figure 8.20(a)). West Yorkshire is an urban conurbation surrounded by rural 

areas whilst North Yorkshire is a much larger, predominately rural county. South Yorkshire offers 

a mixture of rural and urban characteristics. This will provide an interesting test for the network 

hybrid model. 
The Yorkshire region petrol stations were initialised at a constant price of 71 p. The default 

parameter values summarised in Table 8.2 were used and the network hybrid model was run to 

equilibrium. One of the first observations that can be made from Figure 8.20(b) is that the network 

hybrid model has captured the main rural-urban trends within the region. The rural area of North 
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Figure 8.19: Comparison of the (a) mean price difference (b) SRMSE and (c) mean price over 
time between the real and network hybrid model data. The model was initialised with data from 

August 19th for West Yorkshire. SDs are represented by vertical bars. 
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Yorkshire is sustaining prices on average 2p higher than in the more urban areas of West and South 
Yorkshire. Within West Yorkshire, most of the intra-urban variations have been recreated by the 

network hybrid model, for example both Leeds and Huddersfield have lower prices than those in 

their suburban surroundings. This corresponds with the patterns found in the real data. However, 

prices in Bradford and Wakefield are slightly higher than expected. Within the real data, there is a 
higher priced rural area situated between Wakefield and Barnsley. This variation in price has been 

successfully captured by the network hybrid model. The intra-urban variations in South Yorkshire 
have also been produced with the prices in Barnsley, Doncaster and Sheffield all lower than in 

the surrounding areas. The results for North Yorkshire, although fairly accurate, do not reflect the 

variation that occurs within the real data. The range of prices that the model produces (68.7p - 
71.9p) is not as great as those naturally occurring within the real data (67.9p - 74.8p). The high 

prices found at one or two of the stations in North Yorkshire are characteristics of the real data; the 

model, initialised at a constant price, was not expected to recreate these anomalies. The network 
hybrid model did not possess a history of pricing patterns for any of the stations. 

The network hybrid parameters were derived using the West Yorkshire region. It is likely 

that, despite a reasonable performance, these parameters are not wholly suitable for the Yorkshire 

region. For example, the average number of neighbours within a 5km circular radius for West 

Yorkshire is 18.0. Within the Yorkshire region, the total is 14.8. This is a reflection of the rural ar- 

eas within North Yorkshire that make up a significant proportion of the Yorkshire region and need 
to be accounted for. Despite these potential problems, the network hybrid model does successfully 

reproduce the observed spatial variations in price over the Yorkshire region. 

8.9 Station Profitability 

The network hybrid model calculates the profit made at each station on each day. On the basis of 
the amount of profit made, the strategy of the station is determined. A test of how well the model 
is predicting these profit levels would be to assess whether stations with low profit levels are still 
open in 2004. It is hypothesised that stations with low or negative profit levels are most likely to 
have been driven out of business. A survey of stations within Leeds was taken in June 2004 (by 

simply driving around the area). This provided a list of stations that have closed since the original 
data was collected in 19991. These stations were overlaid on a profitability map generated by the 

network hybrid model initialised with the real data from July 27th 1999 and using the default rules 
in Table 8.2. Day 10 of the model run (August 6th) was plotted. This is the same day used to 

compare the model performance in §8.3.1. 

Of the 43 stations surveyed, 14 have closed since 1999. Figure 8.21 shows a strong correlation 
between sites that the model identified as not being profitable and stations that have closed. To 
formalise this correlation, a Wilcoxon rank sum test was performed. A null hypothesis tested 

was "there is no difference between the mean profits of stations that are open and closed". The 
Wilcoxon test gave a result of p=0.000812. This means that there is a smaller than 0.1 % chance of 
the null hypothesis being true. The null hypothesis can therefore be rejected. As clearly evident in 
Figure 8.21 there is a definite difference in the profit between stations that are open and closed. 

143 stations were surveyed out of a possible 51. 
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Figure 8.21: Map showing the profitability of stations in Leeds using the network hybrid model 

with data from 1999. Also shown for comparison are the status (open or closed) of the stations in 

2004. 

In §8.6.1, the assertion was made that Esso petrol stations are geographically well located in 

terms of maximising their profit. The results fron Figure show that this is overwhelmingly the 

case. Each of the Esso stations is located in an area of high profitability. Whether this is due 

to initial site research by the company or as a result of the success of the Price Watch policy is 

difficult to conclude. 

A more confident assertion can be made about supermarket stations. Figure 8.21 shows that 

these stations are also located at the high points of the profitability map. The original data pre-dates 

the appearance of the new supermarket stations at Kirkstall, Seacroft and near Osmondthorpe. 

Since the appearance of these stations a large number of their closest competitors have closed. 

This can be particularly seen when examining the sites surrounding the new supermarket stations 

at Seacroft and near Osmondthorpe. These now closed stations were identified by the model 

in 1999 as sustaining low profits. With the introduction of the supermarket stations with their 

aggressive pricing, the marginal profits of these stations would have plummeted thus resulting in 

their closure. This effect is not solely reserved for the low profit stations. At Osmondthorpe and 
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Kirkstall, stations that were situated in relatively profitable areas have also closed. This shows that 

the opening of new stations in an area can significantly affect the local competition dynamics. It 

is also interesting to note that only new supermarket petrol stations were observed to have opened 

since 1999 showing the shifting balance in the UK retail petrol market towards supermarkets as 
important petrol retailers. 

The results in this section provide an interesting alternative validation of the performance of 
the model. They suggest that the profit strategy adopted for the hybrid and network hybrid models 
is useful for predicting profitability as well as predicting fuel prices. 

8.10 Conclusions 

This chapter has had several aims; ascertaining which of the three models (agent, hybrid and 

network hybrid) has been the most successful; examining model behaviour and sensitivity and 

providing validation of the model using different spatial and temporal periods from the data set. 
The first section of this chapter concentrated on deriving suitable parameters for use within the 

hybrid and network hybrid model. Parameters were derived using a combination of numerical ex- 

periments, analysis of the real data and idealised simulations. The main criticism of this approach 
is that there is a degree of subjectivity in the selection of the parameters. The system is non-linear 

and it is not certain that deriving an optimal value for one parameter will be independent of the 

choices for the other parameters, which may impact on the one at a time approach used to deter- 

mine the parameters here. Chapter 9 will attempt to address both these issues by use of a genetic 

algorithm (GA). 

The hybrid and network hybrid model were both run using the selected parameters and the 

results compared with each other and with those from the agent model. Through visual and statis- 
tical comparison with the real data, the network hybrid model was found to be the most successful. 
The inclusion of the consumer and network models has resulted in a marked improvement on the 

original agent model performance. Attempts were made to further improve the performance of 
the model by assigning individual rules to the supermarket and Esso brands. However, this was 

not conclusive, suggesting that perhaps the introduction of new brand rules into the system would 

require the default parameters to be adjusted. This will be re-examined in Chapter 9 where the 

parameters will be objectively selected using a GA. 

The behaviour, sensitivity and robustness of the model were tested via a series of diffusion 

experiments. Similar patterns of behaviour were recorded for each of the experiments. This led to 

the conclusion that the model was robust to changes in the initial conditions and was able to repro- 
duce sensible results under a variety of environments. Further examination of the model behaviour 

was undertaken by increasing and decreasing the costToProduce parameter. This produced results 
that were analogous to the "rockets and feathers" phenomena first documented in Chapter 2. 

Finally, attempts were made at validating the performance of the model against other real 

pricing data. This was accomplished by running the model on different areas and for different time 

periods to those used in calibrating the model. A comparison was also made of the profitability 

of stations generated by the model for 1999 with a list of stations that were known to have closed 
between 1999 and 2004. This work showed that a high number of stations determined to be poor 
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earners in 1999 had closed over the period to 2004. Several factors are hypothesised to contribute 
to the poor performance of these stations including poor location, the increase of supermarket 

stations and the Esso Price Watch policy. 
In summary, the work within this Chapter has shown that the network hybrid model produces 

sensible results that reproduces the behaviour seen in the real petrol market. However, one of 
the weaknesses of this model is the subjectivity in the choice of the parameters. A GA will be 

introduced in Chapter 9 that will objectively evolve a set of optimal parameters for a given data 

set. 
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Chapter 9 

Optimisation using a Genetic Algorithm 

9.1 Introduction 

In Chapter 8, the network hybrid model was run with a set of parameters derived from the analysis 

of the real data in Chapter 4 and the idealised numerical simulations performed in Chapter 7. The 

performance of the model was tested with both idealised and real data. The results showed the 

model to be both robust and accurate at replicating processes within the real system. However, the 

method of selecting individual parameters is not entirely objective. The system is also non-linear 

and experimenting with one parameter at a time may not result in an optimal set of parameters. 
Initial investigations showed the system to be complex with multiple local minima suggesting that 

there are many different solutions available for the problem. 
Graphically, this can be represented by a series of mountains and valleys (see Figure 9.1). 

Finding the lowest point in a particular valley is relatively easy. A simple progression down the 

slope will generally give the local minimum. However, locating the global minimum is more 
difficult since there is no certain way of knowing which valley it is located within, or even how 

many valleys there are, without fully searching the whole of the parameter space. There are 

many techniques available that can be used for finding this global minima ranging from more 

conventional search techniques, for example hill-climbing and annealing to artificial intelligence 

techniques such as fuzzy logic and evolutionary algorithms. 
There are several issues to be considered when reviewing appropriate optimisation techniques. 

In this case, the research problem is complex, the system is non-linear and, as evident in Chapters 7 

and 4, changes in the SRMSE are not smooth since abrupt changes in price may occur. These 

features mean the function is not differentiable or even smooth and so it is not possible to calculate 

the derivatives (i. e. how the error changes as the parameters are changed). This invalidates several 

methods that rely on derivatives, for example conjugate gradient and variable metric methods (see 

Press et al., 1992, for a discussion). 

Techniques such as hill-climbing and annealing are often incapable of optimising non-linear, 

multi-modal functions (see Pham and Karaboga, 2000, for a detailed discussion). In such cases, a 

random method may be required. However, undirected search techniques are extremely inefficient 

for large domains. 

Evolutionary algorithms (EAs) are search methods that take their inspiration from natural 
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B 

Figure 9.1: Example of a function containing multiple maxima and minima to demonstrate the 

difference between local and global extrema. A and C represent local maxima; D and E are local 

minima; B is the global maximum and F is the global minimum. 

selection and survival of the fittest in the biological world. These algorithms can find the global 

optimal solution in complex multi-dimensional space. Different main schools of evolutionary 

algorithms have evolved during the last 30 years: genetic algorithms, mainly developed in the 

USA by Holland (1975), evolutionary strategies, developed in Germany by Rechenberg (1973) and 

Schwefel (1977) and evolutionary programming by Fogel et al. (1966). Each of these constitutes 

a different approach, however, they are inspired by the same principles of natural evolution. 

The specific type of EA that will be used in this thesis are genetic algorithms (GAs). GAs 

are useful for multidimensional optimisation problems in which the chromosome (set of rules) 

can encode the values for the different variables being optimised. This is of particular use for the 

research within this thesis. This chapter will be divided as follows. A brief literature review will 

provide an explanation of GAs and highlight the advantages of using this approach over traditional 

techniques. Following this, the construction of the GA will be detailed along with discussion of 

which genetic operator methods are to be used. This is followed by experimentation with optimal 

space parameters for the GA. The final sections of the chapter involve comparing the performance 

of the model using the best GA parameter values and the parameters devised in Chapter 8. This 

will focus on how well the GA derived rules replicate the trends in the real data and how well they 

perform on other parts of the real data, for example the Yorkshire region. Finally the Esso and 

supermarket case-studies will be revisited to answer the question of whether the GA can produce 

optimal rule sets for both these categories and thus improve the overall model performance. 

9.2 Genetic Algorithms 

Genetic Algorithms (GAs) are modelled on natural evolution, specifically, the operators it employs 

are inspired by natural evolutionary process. These processes, known as genetic operators, ma- 

nipulate individuals in a population over several generations to improve their fitness. A detailed 

introductory survey can be found in Reeves and Rowe (2003). 
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In a GA, the properties of each individual are represented in an encoded form known as a chro- 

mosome (or genome). Chromosomes are combined or mutated to breed new individuals. Recom- 

bination (or crossover) of two chromosomes models the sexual reproduction occurring in nature. 
Here, an offspring's chromosome is created by joining segments chosen alternately from each of 
two parents' chromosomes which are of fixed length. Selection is process of choosing the chro- 

mosomes to be recombined. Mutation is the alteration of one or more parts of the chromosome 

with a random probability. The order of these operators is illustrated in Figure 9.2. 

swap 

156342 

swap 
Parent 

1 
1115 6342 

1142 

swap 

Mutation 

146352 

1 

1 14 6352 Child 
1 

Crossover 

16254 Child 
2 

Figure 9.2: The crossover and mutation operators applied to candidate solutions of a combinatorial 
optimisation problem (after Flake, 2001). 

Figure 9.3 presents a simple schematic of how a GA operates. The algorithm is very simple, 

with the main functions contained in the innermost loop. These include the process of selection, 

recombination and mutation. 

Initialise the population P 
Repeat for some length of time 

Create an empty population, P1 
Repeat until P1 is full; 

SELECT two individuals from P based on some fitness criteria 
Optionally mate and RECOMBINE with offspring 
Optionally MUTATE the individuals 
Add the two individuals to P1 
Let P now be equal to P1 

Figure 9.3: Basic structure of an EA (after Flake, 2001). 

The terminology commonly associated with GAs are defined in Table 9.1. These terms will 
be used throughout this chapter. 
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Term Explanation 
Gene The parameter that is being optimised. 
Chromosome/Genome The combination of several genes representing an in- 

dividual. 
Fitness A measure of the success or failure of the gene. 
Selection The process of choosing the chromosomes to be re- 

combined. 
Recombination/Crossover The exchange of "biological information" to pro- 

duce offspring by the juxtaposition of the parents. 
Mutation The alteration of one or more of the genes in a chro- 

mosome with a random probability. 

Table 9.1: Explanation of terminology used in this chapter. 

9.3 Control Parameters 

The successful implementation of a GA is down to several factors. These include the initial size 

of population and the methods used for selection, recombination and mutation. These conditions 

vary due to the problem. A poor selection of control parameters can result in a corresponding 

poor performance in the GA. Several researchers have examined the effect of these parameters 

on the performance of a GA (Schaffer et at, 1989; Grefenstette, 1986; Fogarty, 1989). The main 

conclusions were: 

-A large population gives the simultaneous handling of many solutions and increases the 

computation time per iteration. However, as many samples from the search space are used, 
the probability of convergence to a global optimal solution is higher than when using a small 

population size. 

- Low crossover/recombination rates decrease the speed of convergence. High rates result in 

concentration around one solution. 

- High mutation rates introduce high diversity in the population and may cause instability. 

However, if the rate is too low, it can be very difficult for the GA to find a global optimal 

solution. 

There are a number of different selection, mutation and recombination conditions that are 

available. These will be reviewed within the following sections. 

9.3.1 Initial Population 

At the start of an optimisation, a GA requires a group of initial solutions. There are two ways 

of forming this initial population. First, randomly produced solutions can be generated. This is 

the preferred method for problems about which no a priori knowledge exists or for assessing the 

performance of an algorithm. The second method uses a priori knowledge about the problem. 
Using this knowledge, a set of requirements are collected to form an initial population. In these 

cases, the GA starts the optimisation with a set of approximately known solutions and therefore 

converges to an optimal solution in less time than with the first method. 
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9.3.2 Representation 

Most of the problems suitable for GAs involve identification of a set of parameters (whether for 

optimisation, combinatorial or other problems), which need to be represented to allow evolutionary 

operators to be effectively applied. As GAs are robust, there is little need to rigorously identify 

the "best" representation for a particular problem (Goldberg, 1989). There are two broad methods 

that can be used for representation; binary alphabets (Holland, 1975) and real numbers (Davis, 

1991; Beasley et al., 1993; Janikow and Michalewicz, 1991; Michaelewicz, 1992). 

There is no single "correct" coding method for encoding a problem, the mode of representa- 

tion is dependent on the problem. However, the coding sequence must adequately represent the 

problem to ensure that the optimal solution is available to the algorithm. For example, if the op- 

timal solution contains a value of 2.5, there is little use in developing a representation of a real 

number in the range ±2.0. 

9.3.3 Fitness and Selection 

In order to evolve better performing solutions, the fittest members of the population are selected 

and randomly exposed to mutation and recombination. This produces offspring for the next gen- 

eration. The least fit solutions die out through natural selection as they are replaced by new re- 

combined, fitter, individuals. Evaluation of the fitness of chromosomes involves some form of 

comparison between observed data and the results for a particular solution, or test to see if a 

particular solution meets certain criteria or constraints. 
There are number of possible ways for selection to take place. The following parental selection 

schemes that recur within the literature1 : 

- Ranking Selection: The population is sorted from best to worst. The number of copies that 

an individual receives is given by an assignment function and is proportional to the rank 

assignment of an individual. 

- Tournament Selection: A random number of individuals are selected from the population. 
The best individual from this group is chosen as a parent for the next generation. This 

process is repeated until the mating pool is filled. 

- Roulette Wheel Selection: Individuals are mapped to contiguous segments of a line, such 

that each individual's segment is equal in size to its fitness. A random number is generated 

and the individual whose segment spans the random number is selected. This process is 

repeated until the desired number of individuals is obtained. 

- Truncation Selection: Truncation sorts individuals according to their fitness (from best to 

worst). Only the best individuals are selected to be parents. 

Along with the selection method, the selective pressure parameter is critical (Hancock, 1994). 

This parameter measures the probability of the best individual being selected compared to the av- 

erage probability of selection. Essentially, this parameter drives the algorithm towards a solution; 
(There are a variety of other selection methods that are not listed here. These include stochastic remainder and 

stochastic universal selection. A comparative analysis of parental selection methods can be found in Goldberg and Deb 
(1991). 
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too large a value and the search will converge rapidly onto a solution (not necessarily optimal); 
too small and progress will be very slow. 

9.3.4 Recombination 

The main reproductive genetic operator is recombination (also known as crossover). This is the 

process by which new individuals are produced by combining the information from two parents 
(chromosomes). The resulting offspring inherits components from both parents. This allows the 
GA to explore new areas in the search space. Without recombination, the offspring are simply 
duplicates of the parents. This does not give any opportunity for improving the fitness of the 

population. 
There are several methods of recombination available, the suitability of the method is depen- 

dent on the type of gene (variable) stored on the chromosome. Only methods that can be applied 
to real value data will be detailed here2. These are the intermediate, line and extended line recom- 
bination methods. 

In intermediate recombination, the variable values of the offspring are randomly chosen from 

between the values of the the parents (see Figure 9.4(a)). Values of normally up to 25% outside 

this range can be used. The value of 25% is chosen to ensure that statistically a space covered by 

the recombinations does not decrease in size with time leading to a loss in diversity. The position 

of the variable chosen on the line determines how much each parent contributes to the offspring 

and is chosen uniformly at random for each gene. Line recombination is similar to intermediate 

recombination except that the same random number is used for selecting the value of every gene 
in a chromosome (see Figure 9.4(b)). Extended line recombination is different from the above 
techniques in that the variable range is not limited to a range around the parents. The probability 

of any particular value being taken is not uniform but varies with a high probability near the parents 

and a low probability far away from the parents. The probability distribution can also be chosen to 
favour the fitter parent. The value controlling the amount of the parent used is generated randomly 

and then used for selecting the value of subsequent genes (see Figure 9.4(c)). 

9.3.5 Mutation 

Mutation occurs after recombination has taken place. By mutating individual genes, the GA can 

exploit existing areas to find a near optimal solution. There are two parts to selecting the mutation 

method; the probability of mutating and the step-size. 
Several papers were reviewed for the optimal mutation rate used (De Jong, 1975; Schaffer 

et al., 1989; Grefenstette, 1986). The most commonly used mutation rate under a wide variety 

of test functions was 1 /n (n: number of variables of an individual). This means, that for every 

mutation only one gene per individual is on average mutated. The more genes one individual 

has, the smaller the mutation probability for an individual gene. The mutation rate is therefore 
independent of the size of the chromosome. 

2The main omission is binary recombination. The reader is directed to Reeves and Rowe (2003) for further details 
of this technique. 
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Figure 9.4: Illustration of (a) intermediate, (b) line and (c) extended line recombination. 

However, these recommendations for the mutation rate are only correct for separable functions. 

Most real world functions are not fully separable. For these functions no recommendations for the 

mutation rate were given, instead a mutation rate of 1 In was suggested in the absence of further 

information. 
The literature offers no strict guidelines for the selection of the size of the mutation step. The 

optimal step-size depends on the research problem and may even vary during the optimisation 

process. Small mutation steps are acknowledged in the literature as being successful, especially 

when the individual is already well adapted. However, large mutation steps can when successful, 

produce good results very quickly. A good mutation operator should therefore produce small 

step-sizes with a high probability and large step-sizes with a low probability. 

9.4 Using GAs for Optimisation 

There are several advantages to using GAs over traditional techniques for optimisation (Pharr and 
Karaboga, 2000). One of the most significant is parallelism. GAs are capable of considering 

many points at once during the search process. This reduces the chance of converging to local op- 
tima. During the search process, GAs use probabilistic rules, not deterministic. This allows them 

to outperform conventional optimisation techniques on difficult, discontinuous and multi-modal 
functions (Reeves and Rowe, 2003). Additionally, GAs do not require derivative information or 

other auxiliary knowledge; only the objective function and corresponding fitness levels influence 

the directions of search. 
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One of the strengths of using GAs is the ability to hybridise with other techniques. For exam- 

ple, GAs have been extensively used to optimise both the connection weights and the actual con- 

nectivity of a neural network (Whitley, 1989; Harp and Samad, 1991) whilst See (1999) demon- 

strated the use of GAs to optimise fuzzy logic models. An increasing amount of research has 

been directed at using GAs to optimise multi-agent systems (MAS). Examples can be found in 

a range of different applications. Choi et al. (2004) used a hybrid GA-MAS model to improve 

scheduling systems for supply chains. Dosi et al. (1999) showed how a GA can be successfully 

used to model learning in industrial environments, whilst Wu et al. (2003) used GAs to optimise 

agents' initial positions in land combat simulations. Finally, Laureano-Cruces et al. (2004) took a 
different perspective using agents to improve the GA, specifically the updating of sub-populations, 

thereby avoiding the problem of local minima. 
No examples were found in the literature of GAs being used to optimise the rule set of a MAS 

for determining petrol prices either as single model or as part of a hybridised application. 
Despite their unique and adaptive search capabilities, there are no guarantees that GAs will 

find the global solution; however, they can often find an acceptable one quickly (Goldberg and 
Deb, 1991). GA can provide a number of potential solutions to a given problem with the final 

choice being left to the user. 

9.5 Summary 

The purpose of this brief literature review is to present an overview of GAs to provide a basic 

understanding of their concepts and mechanisms. The importance of selecting suitable control 

parameters is of vital importance for successful implementation of a GA. The following sections 

will detail the selection of these parameters as well as outlining the construction of the GA. 

9.6 Construction of the GA 

In total, there are 8 genes (parameters) that will be optimised. These are ß, X, costToProduce, 

neighbourhood, fixedCosts, overprice, changelnProfit and undercut (see Chapter 6 and Chapter 7 

for definitions). All of these genes exert some influence over the performance of the model and 
have been previously experimented with in Chapters 5,7 and 8. The values associated with each 

parameter are continuous, and a range of allowed values will be assigned to each gene based on 

values obtained through prior experimentation. As highlighted in §9.3.2, the ranges have to be 

sensible if the GA is to operate successfully (populations will be initialised and reproduce using 

the values within these ranges). The range of values that will be used are summarised in Table 9.2. 

9.6.1 Operation of the GA 

Two new classes were built and linked to the network hybrid model to run the GA. The Genetic 

class contains the code to run the GA (i. e. it controls the order in which the operators are applied) 

and the Chromosome class contains the details of each chromosome, for example the values of 

the genes. Several new parameters were created, these are presented in Table 9.3. A flow chart 
illustrating the operation of the GA is given in Figure 9.5. 
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Gene Range 

fixedCosts 
costToProduce 
changelnProfit 
undercut 
overprice 
neighbourhood 

0.000003 - 0.003 
0.001-1.5 
loop - 10000. Op 
60. Op - 70. Op 
2000p - 5000p 
O. lp - 5.0p 
O. lp - 5. Op 
1000m - 10000m 

Table 9.2: Range of allowed values assigned to each gene in the GA. 

Parameter 

numChromosomes 
numKeep 

numGenes 
gmax, gmin 

minfit 
maxiter 
gmut 
converge 

cfact 

Number of chromosomes (population size) in each generation. 
Number of chromosomes kept at the end of each generation (the 
fittest chromosomes). 
Number of parameters that can be changed in each chromosome. 
Continuous range of values that are associated with each gene. 
Initial values are randomly assigned in this range. 
If the fitness is less than x amount, the simulation will stop. 
Maximum number of generations. 
The initial maximum size of the mutation. 
gmut is multiplied by this value to determine the maximum size of 
the mutation at the current generation. converge becomes smaller 
with each generation. 
Amount by which converge is multiplied each generation. Must 
be <1 to ensure that converge gets smaller with time. 

Table 9.3: Explanation of new parameters created for the GA. 

The model will terminate if one of two conditions are satisfied; if the number of generations 

set are reached or if the SRMSE value matches the minfit value. The converge and grout variables 

will be further explained in §9.7.4. 

The full source code and a compiled version of the network hybrid model with the GA exten- 

sion can be found on the CD accompanying this thesis. 

9.7 Selecting Control Parameters 

Several studies have concentrated on developing optimal parameter settings for GAs (see De Jong, 

1975; Schaffer et al., 1989; Grefenstette, 1986). Each study presents a different set of optimal pa- 

rameters showing that these optimal values vary for the problem under consideration. For example, 

suggested values for population size range from 50-100 (De Jong, 1975), 20-30 (Schaffer et al., 
1989) and 30 (Grefenstette, 1986). 

§9.3 showed that there are several alternative methods that can be used for each of the genetic 

operators. The following sections will briefly outline each of the options available before selecting 
the method that is the most appropriate for the application within this thesis. 
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Figure 9.5: Flow chart summarising the operation of the GA. 

9.7.1 Population Size and Initialisation 

There are no set guidelines as to what the optimal population size should be for a successful GA. 

However, the literature does suggest that a larger population is advantageous as this creates a big- 

ger search space and thus more potential solutions (Reeves and Rowe, 2003). This is particularly 

useful as the population will be randomly initialised. Random initialisation does not guarantee 

that the full genetic space will be represented, however, using a large population will increase the 

likelihood of this occurring. 
A common problem with GAs is premature convergence to non-optimal solutions. One of the 

ways to avoid this problem is to explore several different areas of the search space simultaneously 
by evolving different sub-populations of solutions in parallel (Pham and Karaboga, 2000). Within 

the GA, subpopulations will be created after the parents have mated (recombined) to produce an 

offspring. Each of the other children produced is a mutation of this initial recombination. The 

fitness of each of these new chromosomes is worked out and only the best one is kept to be a 

parent in the next generation. This prevents any one particular group of mutations dominating the 
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population at the next generation. 

9.7.2 Selection Method 

Holland (1975) commented that "the very essence of good GA design is retention of diversity". 

Selection, however, can have the effect of reducing diversity. Several methods of selecting parents 

were outlined in §9.3.3. Of these techniques, the ranking method will be used. Unlike approaches 

such as truncation, ranking gives any of the population the chance of becoming parents. The 

fitter the chromosomes, the more likely the chromosomes are to be parents (determined by a 

probabilistic distribution dependant on the ranking). Linear ranking is used. This means that 

the probability P of a chromosome being selected is linearly related to its ranking, k, (which is 

determined by its fitness) i. e. 

P(k) _ 
2-S+2(S-1)(k-1)/(N-1) 

(9.1) 
N 

where N is the number of chromosomes, k is the position in the ranking of the chromosome (k =1 
is the least fit, k=N is the most fit) and S is the selection pressure. The selection pressure is 

the probability of the best chromosome being selected compared to the average probability of a 

chromosome being selected. For the linear ranking used here S must be in the range [ 1,2]. A value 

of 2 ensures the maximum chance of the fittest chromosomes being selected. 

9.7.3 Recombination Method 

Of the techniques reviewed in §9.3.4, intermediate recombination will be used. In this method, 
the variable values of the offspring are randomly chosen from between the values of the parents. 
This prevents "super genes" from dominating i. e. one gene rapidly dominating the search space, 
thus producing a sub-optimal solution. Therefore, in producing any generation, the best numKeep 
solutions from the previous generations are copied across and the rest of the population is gener- 
ated from random recombinations of the previous generations. For each gene X the value of the 

offspring, Xo ff is 

X01f = aX, + (1 - a)X2 (9.2) 

where XI and X2 are the gene values of the parents and a is uniformly distributed in the range 
[-d :1+ d]. This means the offspring value for each gene is a linear combination of the two 

parent genes. A value of d=0 would ensure that the offspring value was somewhere between the 

two parents values however over time this results in a shrinkage of the range of values covered by 

the various chromosomes. A value of d=0.25 ensures (statistically) that the variable area of the 

offspring is the same as the variable area spanned by the variables of the parents and so this is the 

value used in this model. 

9.7.4 Mutation Method 

Mutations will be introduced by specifying an initial range of mutations for the gene. At each 

generation, the value of the gene will be multiplied by the convergence value. This will result in 

the mutations decreasing with each generation. 
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The grout parameter determines the amount that the population is initially mutated by (i. e. 
the maximum size of the mutation). The actual mutation is assigned randomly within this range. 
The size of the mutation is checked to ensure the gene value does not exceed the specified range 

of values. If it does then the mutation is truncated to keep it in range. If convergence at these 
boundary values appears early on, this suggests that the range of values for a parameter needs 
to be larger. The size of gmut for each gene is chosen to span the range of possible values so 
that initially mutations can cover the whole search space. The converge parameter is multiplied by 

gmut to determine the size of the mutation at each generation. The parameter grout is kept constant. 
The converge parameter is initially set to 1.0 and at each subsequent generation it is multiplied by 

the cfact parameter. The value of cfact has to be less than one to ensure that converge (the relative 

size of the mutations) gets smaller as the number of generations increases. The nearer cfact is 

to one, the more slowly the mutations will decrease in size. A greater value, for example 0.99 

would be used for large populations or running for many generations to prevent the mutation size 

shrinking too rapidly. This is the value that will be used. This means that after 100 generations, 
the mutation size will have decreased to 37% of the initial mutation size. 

The chance of each gene being mutated is l 1n, this value is chosen from recommendations 

made within the literature in §9.3.5. At each generation, several different mutated versions of each 

chromosome are created and their fitness calculated. Only the best mutation from each chromo- 

some is kept. The mutations allow for the possibility of each chromosome being improved. Since 

only the best mutation for each chromosome is kept, this algorithm prevents too rapid a loss of 
diversity within the population resulting from several similar genes becoming dominant. 

9.7.5 Statistical Measure of Fitness 

The standardised root mean square error (SRMSE) will be used to determine the fitness of each 

chromosome. This technique has been used throughout this thesis to assess model performance 

with various experiments. Use of the SRMSE will therefore allow a ready comparison with the 

results produced from previous chapters. 

9.7.6 Summary 

The methods and values (where appropriate) that will used in the initial experimentation with the 
GA are summarised in Table 9.4. 

Parameter I Method 

Population initialisation 
Population size 
Selection 
Selection Pressure 
Recombination 
Recombination Value 
Mutation 
Fitness 

Random. 
Large. To be determined through experimentation. 
Linear ranking. 
2.0. 
Intermediate recombination. 
0.25. 
Chance of mutation 1 In. 
SRMSE. 

Table 9.4: Summary of methods and parameters chosen for the GA. 
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9.8 Optimal Space for Solution 

One of the key factors in the success of GAs is finding the correct balance between the amount of 

exploration and exploitation needed (Flake, 2001). The following sections detail experimentation 
carried out with the different control parameters of population size (numChromosomes), number 
of mutations (numMutate) and number of generations (maxiter). The network hybrid model is not 
used within this section due to the additional computational time that would be required for the 

redistribution of the population. This omission will not have any significant effect on determining 

the best parameters for the GA. In §9.10 the GA will be run with the network hybrid model to 
determine optimal parameters for the network hybrid model. 

9.8.1 Default Benchmark Run 

In order to provide a comparison for future experiments, benchmark runs were undertaken with 

a set of default values outlined in Table 9.5. This provides a method of comparing the impact of 

altering the GA parameters. 

Parameter Value 
Number of generations (maxiter) 100 
Number of chromosomes (numChromosomes) 100 
Number to keep between generations (numKeep) 1 
Number of mutations to generate (numMutate) 3 
Convergence factor (cfact) 0.99 
Selection pressure (sp) 2 

Table 9.5: Parameters used for the benchmark (default) GA runs. 

Figure 9.6 shows the time series of the SRMSE for several different runs using these default 

parameters. There are several observations that can be made about Figure 9.6. All of the solutions 
rapidly converge after between 10 - 20 generations followed by a period of very slow improvement 

up to the 60th generation. After this point, there is very little further improvement indicating that 

the model has converged to a minimum. The exception to this is run if which experiences a 

sudden improvement between 50 - 55 generations. However, the figure also shows that there is a 

wide spread of values in the solutions. This indicates that there is more than one local minimum. 
Further experimentation will hopefully determine the presence of a global minimum. 

9.8.2 Experimentation with Population 

To investigate the effect of varying the population size, the GA was run using the default param- 
eters (Table 9.5) except for a differing number of chromosomes. Population sizes of 100,200, 
300 and 500 were used. Each experiment was repeated several times. The purpose was to deter- 

mine whether a larger population (and therefore a greater genetic search space) would improve the 

performance of the GA. 

Figure 9.7 shows that there are no significant differences in the final solutions. A population 
of 100 chromosomes produces similar results to a population of 300 or 500. The variation be- 
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Figure 9.6: Graph of the SRMSE against time for several runs using the benchmark GA parame- 
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Figure 9.7: Graph of the SRMSE against time for several runs using the benchmark GA parameters 

with different population sizes. 

tween runs with the same number of chromosomes is as great as the variation between those with 
different population sizes. There appears to be no strong benefit to using larger population sizes; 

therefore in future experimentation the GA will be set to run with 100 chromosomes. 

9.8.3 Experimentation with Generations 

To determine how many generations are necessary for the GA to reach a local minimum and 

whether running the GA for more generations will lead to an improvement on this minimum, the 

model was run for 500 generations using the default parameters in Table 9.5. This run was repeated 

5 times to assess the variation in the final solutions for the optimal parameters. The model was 

not run for more generations than this due to the length of time for computation, for example, 500 

iterations took approximately 23 hours (running on a 2.4GHz PC). 

Figure 9.8 shows that the GA converges quickly; after 50 iterations it is close to its final 

solution. From this point onwards, improvement is slow. Once a solution has been homed in 

on, most of the genes will occupy a similar region of the search space and the introduction of 
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Figure 9.8: Graph of the SRMSE against time for several runs using the benchmark GA parameters 
but run for 500 generations. 

new genetic material (through mutation) is unlikely to improve the results. On the basis of this, 

subsequent experiments are run with the GA set to run for 100 generations since there appears to 
be little benefit in using a larger number of generations. The additional computational power is 

better employed running a series of simulations with 100 generations each. 

9.8.4 Experimentation with Mutations 

Suboptimal convergence can occur when several highly fit (not optimal) individuals rapidly come 

to dominate the population. At this stage, mutation can be beneficial by widening the genetic 

search space (Goldberg, 1989). This reduces the algorithm to a slow random search. To avoid 

suboptimal convergence, the best solution can be kept at each generation with the remainder of 

the population generated by recombining the parents. This helps to retain genetic diversity. The 

selection of the best mutation from each chromosome at each generation rather than simply taking 

the best overall mutations also helps retain the diversity. Simulations within this section investigate 

the effect of varying the number of mutations of each chromosome tried at each generation. 
Figure 9.9 shows that mutation improves the performance of the GA. The simulations with no 

mutations (indicated by the red line) produce a poorer performance than those with 3 or 5 mutated 

chromosomes. There is almost no difference in the performance of the GA with 3 or 5 mutated 

chromosomes. Some level of mutation is required to ensure continual diversity in the population 

even at later stages in the simulation and hence produce a better solution. The difference between 

simulations with 3 and 5 mutations is smaller than the variation between repeated runs with fixed 

initial GA parameters. There appears to be no significant advantage in using 5 mutations and since 

this increases the computation all subsequent experiments will only use 3 different mutations of 

each chromosome. 

9.9 Model Parameter Variation 

The analysis to date has focused on the SRMSE value produced by the GA. In this section, the GA 

predicted parameter values for the hybrid model will be examined in more detail. Results from the 
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Figure 9.9: Graph of the SRMSE against time for several runs using the benchmark GA parameters 
but with different numbers of mutations following each recombination. 

series of GA runs using both the default GA parameters and variations on these parameters will 
be used. Many of these experiments have already been discussed in §9.8; however a summary of 

the details is given in Table 9.6. Each experiment was repeated at least 5 times to give an idea of 

the variability in the solution. 

Experiment Variation 

1 Default 
2 200 chromosomes 
3 50 generations 
4 500 generations 
5 0 mutations 
6 3 mutations 

Table 9.6: Summary of the various experiments conducted with the GA. In each case the default 
benchmark values are used except for the variation shown. 

Figure 9.10 shows each parameter value as a function of the SRMSE. For each parameter 

there is a wide range of possible solutions that correspond to different local minima (see §9.1 for 

discussion on local and global minima). In addition, each parameter value has a cluster of results 

situated around the lowest value of the SRMSE. This clustering around one particular value for 

each parameter suggests that there is indeed a global minimum for this problem. The number of 

points in the cluster also suggests that provided an experiment with a given set of GA parameters 
is repeated 5- 10 times, then there is a high probability that a good approximation to this minimum 

will be found. In general these clusters are not located near the edges of the allowed parameter 

range. This suggests that the specified ranges are wide enough so as not to interfere with the GA. 

9.10 Comparison of Optimal Model Parameters 

Research within this chapter has so far used the hybrid model with the GA. This was due to the 

additional computational time required to implement the network part of the model. (For a short 
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Figure 9.10: Variation in model parameters plotted against SRMSE for simulations with different 
GA control parameters. The various experiments are explained in Table 9.6. 
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run of 10 days the construction of the network routes can take well over half the computational 
time. A future enhancement to the model would be to alter the model so this routing was only done 

once at the start of each GA run. ) In Chapter 8, the performance of the hybrid and network hybrid 

models was compared (see §8.3.1). Statistically, the network hybrid model performed well and 
it reproduced the trends in the real data to a higher degree of accuracy than the hybrid model. In 

this section, the model parameters derived in Chapter 8 for the network hybrid model (henceforth 

referred to as the Chapter 8 parameter values) will be compared with the optimal parameters values 
for the network hybrid model derived here using the GA (see below). The purpose is to determine 

whether the optimal parameter values produced by the GA are similar to the optimal parameters 
derived in Chapter 8. 

The GA model was run 5 times and the best of these parameters were taken as the optimal 

parameters for the model. Figure 9.11 shows that the model parameters from the 5 simulations 

using the network hybrid model were very similar to those obtained using the hybrid model (see 

Figure 9.6). 
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Figure 9.11: Graph of the SRMSE against time for several runs with the benchmark GA parameters 

and using the network hybrid model. 

Table 9.7 details the optimal parameters derived in Chapter 8 (the same parameter values were 

used for the hybrid and network hybrid model) and the optimal parameters suggested by the GA. 

Also shown is the SD of the 5 GA runs to give an indication of the spread of values obtained using 

the GA. Figure 9.12 shows the spread of values for each parameters as a function of the SRMSE. 

The GA values for ß and were both reasonably close to the parameters derived in Chapter 8. 

As evident in Figure 9.12(a) and (b), neither of these values produced definite clusters for the 

hybrid model. This means that reasonable solutions can be produced from a wide range of values. 
Similar results are seen in Figure 9.10 for the hybrid model. The standard deviation values in 

Table 9.7 also support this conclusion. The SD for ß is the same size as the optimal value. For 

X the SD is smaller, but still 40% of the optimal value. The optimal values for ß and X can be 

converted into distance and price scales using Equations (7.1) and (7.2). This gives scales of 
3.5km and 1.7p over which the sales predicted by the Sl model be reduced by a half. 

The GA gave the neighbourhood parameter a slightly smaller value than the Chapter 8 values. 

The values are also slightly more clustered than those for ß and X, with a SD of I. 2km and an 
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Figure 9.12: Variation in model parameters plotted against SRMSE for simulations with different 
GA control parameters. The experiments (described in §9.10) are using the network hybrid model 
to develop rules. 
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Parameter Chapter 8 
Value 

GA Value SD 
(5 GA runs) 

0.0003 0.0002 2.04 x 10- 
0.7 0.4 0.176 

ftxedCosts (£) 80.00 12.73 15.9 
costToProduce (p) 66 65.75 2.27 
ch angelnProfit (£) 40 1 22.8 
overprice (p) 5 4.4 0.73 
undercut (p) 1 0.8 1.12 
neighbourhood (km) 5.0 3.6 1.21 

Table 9.7: Comparison of optimal model parameters from Chapter 8 and from the GA. 

optimal value of 3.6km (Figure 9.12(h)). The overprice parameter was also relatively well clus- 

tered and in good agreement with the Chapter 8 value (Figure 9.12(g)). With the hybrid model the 

value for undercut (Figure 9.10(h)) was also quite tightly clustered, but with the network hybrid 

model the clustering was less clear (Figure 9.12(f)). This may be a result of the relatively small 

sample size (5 runs) with the network hybrid model. The optimal value of 0.8p is still close to the 

value of lp used in Chapter 8. The optimal undercut parameter is much smaller than the overprice 

parameter, as suggested in Chapter 8. 

There is a large difference between the GA predicted value (£l) and the Chapter 8 value (£40) 

for the changelnProfit (Figure 9.12(e)). In the experimentation in Chapter 8, the aim was to select 

a large enough value for the changelnProfit to enable the solution to reach a steady state after 

approximately 25 days (see §7.3.3 and §8.2.3). However, the GA only runs the model for 10 days 

and therefore the long term equilibrium is not important in determining the optimal changelnProfit 

value. For short term model predictions, a smaller changelnProfit value provides a greater scope 
for stations to change their price in the model. There is also a very large SD (£22.80) for the 

parameter indicating a large degree of uncertainty in the optimal value. 
The costToProduce andfixedCosts parameters are closely linked (see §7.2.3) and will therefore 

be assessed together. The overall cost is a combination of these two values. The GA optimal value 
for costToProduce almost matched the Chapter 8 value. However, the GA values were not tightly 

clustered (Figure 9.10 (d)) with a SD of 2.27p, again suggesting that a reasonable solution can be 

obtained from a range of values. The costToProduce value is strongly related to the frxedCosts 

value. The GA predicted value (£12.73) is considerably smaller than the value derived for use in 

Chapter 8 (£80). This was one of the parameters that little information was known about. However, 

in Figure 9.10(c), the best solutions for the fixedCosts are not tightly clustered - they span a £20 

range). This suggests that this parameter does not have as great an effect on the overall solution. 
ThefixedCosts parameter will affect the profit level the same way at all stations and so it will have 

less effect on the changes in profit (which control the pricing strategy). 
In summary, the values derived on the basis of real data analysis (Chapter 4) and numerical 

experimentation (Chapter 7) provided a good set of parameter values for the network hybrid model 
in Chapter 8. The parameters produced by the GA are not constrained to agree with the Chapter 

8 parameters, they are merely chosen to minimise the SRMSE of the model. It is reassuring that 
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the parameters obtained by optimising the model using a GA are in close agreement with those 

obtained independently in Chapter 8 based on features of the real petrol market. This suggests 
that the model is behaving in a realistic manner and that the assumptions made in deriving the 

parameter values in Chapter 8 were reasonable. 

9.11 Performance on West Yorkshire 

Assessing the SRMSE and parameter values provides an indication of the performance of the 

model. However, the best test is to see whether the spatial variations within the real data are 

reproduced. The network hybrid model was initialised with the real data for July 27th and given 

the optimal parameters produced by the GA (detailed in Table 9.7). 

Figure 9.13 presents a comparison of the mean price differences of the real data (between 

July 27th (day 0) and August 6th), the network hybrid model (day 10 and August 6th) and the 

GA parameter values (day 10 and August 6th). A perfect match with the real data on August 6th 

would be indicated by a light blue surface across the entire area. 
Figure 9.13(c) shows that the GA parameters are reproducing price variation in the real data 

more accurately than the constant data or the network hybrid model (Figures 9.13(a) and (b)). 

For example, in urban areas, both the constant data and network hybrid model display positive 

price variations. The GA displays fewer price differentials within these areas. However, there are 

still areas, for example to the east and south-east of the study area, that are being over-predicted, 

possibly due to edge effects or other unknown factors. 

Assessment of the mean price over time (Figure 9.14(a)) shows that the Chapter 8 parameters 

are on average, performing better than the GA parameters. However, both solutions over-predict 

the real data. On day 9 (August 5th), the GA is over-predicting by approximately 0.4p (i. e. the 

model is 0.4p higher than the real data), whilst the Chapter 8 parameters are only 0.1 p overpriced. 
However, on day 10 (August 6th) the GA over-prediction price has fallen to 0.05p. This is due to 

a marked increase in price between August 5th and August 6th which results in the GA becoming 

closer to the real data at the end of the period than the Chapter 8 parameters. Since the GA 

assesses the fitness of the model parameters by comparing with the real data on August 6th it 

would be expected to perform well on that day. There is little difference in the standard deviations 

of the GA, real and Chapter 8 prices (denoted by the vertical bars). This indicates that a similar 

range of prices are being produced in each case. 
Figure 9.14(b) shows the SRMSE of the different parameter values over time. The overall 

model performance for the GA and Chapter 8 parameters are very similar over the first part of 

the 10 day period and also in close agreement with results assuming the prices remain constant 

at their values on July 27th (denoted by Constant price on the graph). However, after July 29th 

the SRMSE of the GA solution decreases and remains lower than the Chapter 8 parameter and the 

constant price data for the rest of the period. This indicates that the GA parameters are better at 

representing the real data than either of the other two sets of results. 
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between the first and last days (July 27th and August 6th) (a) is included for comparison. 
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9.12 Further Experimentation 

Chapter 2 highlighted the fact that there is little known information about the rules and strategies 
that different companies/brands operate. The only published information available is in the form 

of the Esso Price Watch policy. Supermarkets were identified in Chapter 4 as being both tightly 

and aggressively priced. The effect of the behaviour of these categories was experimented with 
in Chapters 5,7 and 8. Surprisingly, assigning supermarkets and Esso stations their own rules in 
Chapter 8 did not improve the performance of the model. The conclusion was drawn that since the 

parameters had been derived using the West Yorkshire data, introducing new behaviour into the 

system would require the parameters to be adjusted. 
The work within this section will focus on using the GA to develop optimal parameters for 

experiments where the Esso and supermarket categories have their own rules. The results will be 

compared both visually and statistically to see if the results of running the model with these extra 
rules will improve the overall agreement with the real data. 

9.12.1 Esso 

As Esso are known to have operated their Price Watch policy during the study period, it is expected 
that the optimal rules for these stations will differ from other stations. The work within this section 

will concentrate on assessing if this is the case and whether the GA can produce a better rule set 
for the Esso stations to operate. 

The model was initialised with data from July 27th for West Yorkshire. Two rule sets were 
created, an Esso rule set (for the Esso stations) and a default rule set (for the remainder of the 

stations). This created an additional set of parameters that the GA had to optimise (with the 

exception of (3 and X which apply to all the stations). The GA was run 10 times using the default 

GA parameters (see Table 9.8). The best run is used for the analysis within this section. Appendix 
E. 1 shows graphs of the optimal model parameters from the GA against SRMSE for all 10 of the 
GA runs undertaken in this section. 

Based on assessment of price differences across the area (Figure 9.15), the GA Esso parameters 
are performing better than the default GA parameters. In particular, the Esso GA reduces the price 
difference in several urban areas around Huddersfield and Wakefield. The largest difference is to 
the east of Leeds. The stations here are located on the edge, this poorer performance may therefore 
be due to an edge effect. 

Figure 9.16(a) shows that the mean price for the simulations with and without a specific Esso 

rule set are almost identical (on average 71p). The Esso stations have a much lower mean price 
(69.9p), this trend was evident in the analysis within Chapter 4 (see §4.7.5). Over the course of 
the simulation, this increases to around 70.5p. This is probably due to the higher price of the 

non-Esso stations. Under these rules, there is scope for the Esso stations to increase their prices 
(and hence profit) whilst still remaining cheaper than the competition. The range of prices are also 

similar as indicated by the vertical bars. The use of a separate rule set for the Esso stations is not 
having a large effect on the performance of the model. This is confirmed by the SRMSE. The total 
SRMSE for the GA derived parameters with and without separate Esso rules are almost identical; 

the default total is only slightly lower (Figure 9.16(b)). 
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Figure 9.15: Map showing mean price differences between real and model data on August 6th for 
model runs with (a) the same rules applied to all stations and (b) separate rules for Esso stations. 

Figure 9.16(c) shows the separate SRMSE for the Esso and non-Esso stations. The SRMSE 

of the Esso stations increases over the course of the simulation to 0.0175 on August 5th before 

dropping to around 0.012 on August 6th. This indicates that the Esso stations are giving a worse 

than average performance even with their own rule set. Conversely, the non-Esso stations are 

actually doing better than the default total, these stations are performing better with a rule set of 

their own. 
Table 9.8 presents a comparison of the best GA run with all stations using the same rules and 

the best GA run with Esso specific rules. On the whole, the parameter values for each of the rule 

sets are not entirely dissimilar. The largest difference is within the Esso rules, they have a larger 

fixedCosts and changelnProfit value than the other stations. This may be because the rules are 
being fitted to a small data set on one particular day. The changelnProjit value is also much higher 

than the other rules, this means that the stations are less likely to change price. The model doesn't 

run on absolute levels of profit, only the changes (relative levels), therefore the model may not be 

particularly sensitive to profit levels. 

The Esso Price Watch would operate a 5km distance scale (neighbourhood) and O. Op overprice 

value (to ensure it remains as cheap as its local neighbours). However, the results from the GA 

suggest that a better set of parameters to use (to maintain profit) would be a neighbourhood of 
2.1km and an overprice of 4.5p. These parameters are most likely a reflection of the location of 

the Esso stations (normally within urban areas with a number of competitors surrounding them). 

However, as seen within the assessment of the profitability map in Chapter 8 (see §8.9), the Esso 

stations are located at sites of high profitability. It can therefore be concluded that the Esso Price 

Watch is highly effective in reality even if it is not optimal in the model. Very large values for 
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Figure 9.16: Comparison of the (a) mean price difference and (b) total SRMSE over time and 
(c) SRMSE by station type between optimal results from GA runs with the same rules applied to 

all stations and from runs with separate rules for the Esso stations. In each case the model was 
initialised with the real data from July 27th. Standard deviations in the mean price are represented 
by vertical bars in (a). 

overprice are not necessarily indicative of more expensive petrol. If the Esso stations are always 

competitive this rule may never come into operation in which case its value is irrelevant. 

Esso are a much smaller category than the non-Esso's (49 stations compared to 214 stations 

where a price is recorded on July 27th) and so there tends to be more variability in the data as a 

change at one stations has a larger effect. This makes it more difficult to obtain optimal variables. 

In addition, examination of the price variation within the real data (Figure 9.17) shows that on a 

day to day basis, there is a considerable amount of variation in some of the Esso stations. Such 

frequent variations are not observed for other station types. These frequent variations, combined 

with the small number of Esso stations explain the large fluctuations in the SRMSE of the Esso 

stations seen in Figure 9.16(c). It is uncertain whether these fluctuations are the result of an 

aggressive price change policy (perhaps related to the Esso Price Watch) or whether they are a 

result of errors in the available data set. 
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Same rules Esso rules 
Parameter Default Default Esso 

0.0005283 0.0003246 
0.4105 0.3044 

frxedCosts (£) 20.53 21.30 44.37 
costToProduce (p) 65.80 64.68 66.73 
changelnProfit (£) 1.00 1.00 3.92 
undercut (p) 0.82 1.04 0.96 
overprice (p) 4.61 4.47 4.52 
neighbourhood (km) 3.59 2.95 2.13 

Table 9.8: Comparison of the best GA run with all stations using the same rules and the best GA 

run with Esso specific rules. 
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Figure 9.17: Price of unleaded petrol plotted against day for several Esso stations in West York- 

shire during the first half of the data set. 

9.12.2 Supermarkets 

In Chapter 8, a separate supermarket rule set was experimented with (see §8.6.2). Introducing this 

new behaviour did not improve the performance of the network hybrid model. As with the Esso 

experimentation, it was suggested that new parameters would have to be derived to account for 

this new behaviour. 

The procedure used in §9.12.1 is repeated here using supermarkets rather than Esso stations. 

The model was initialised with data from July 27th for West Yorkshire. The supermarket stations 

were assigned their own rule set with the rest of the stations assigned default rules. The GA was 

run 10 times and the best simulation used within this section. Appendix E. 2 shows graphs of the 

optimal model parameters from the GA against the SRMSE for all 10 of the GA runs. 

Figure 9.18 demonstrates that adding supermarket specific rules to the GA improves the overall 

results. This can be seen in particular around the Huddersfield and Wakefield areas. However, an 

area of high price differences still exists towards the east of the study area. 
Figure 9.19(a) shows that, as in the Esso run, the difference in the overall mean price between 

the two GA runs is very small. This is not totally surprising as the supermarket category is even 

Station 2518 --4-1- 
Station 2684 
Station 3357 
Cation 11985 -v 
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Figure 9.18: Map showing mean price differences between real and model data on August 6th for 

model runs with (a) the same rules applied to all stations and (b) separate rules for supermarket 

stations. 

smaller than the Esso category (only 26 stations with a price recorded on July 27th). The mean 

price and SD for the non-supermarket stations is also very similar to the totals. Since there are very 

few supermarkets, the non-supermarket category and the total category are almost the same. The 

supermarkets have a much smaller mean price than the non-supermarket stations. This trend was 

noted in Chapter 4 (see §4.6.2). The difference in mean price decreases over time (also observed 
in the real data in §4.6.2). The range of prices are also much smaller than the other categories, 

indicating that supermarkets are operating in a more competitive manner than the other stations. 

This reflects the findings in Chapter 4 and information from the literature (see §2.3.4). 

The SRMSE of the totals are almost identical (Figure 9.19(b)). This shows that assigning the 

supermarket category a separate set of rules does not significantly improve the overall performance 

of the model. The supermarket stations only form a small number of the total stations, even if the 

performance of these stations are improved, they will not have a great effect on the overall result. 
This is evident within Figure 9.19(c). There is almost no difference in the SRMSE between the 

rules sets for the non-supermarket stations. Both show a marked improvement in the model results 

on August 6th. With both models, the supermarkets perform better than the non-supermarkets. 
For most of the period the results obtained using the same rules for all stations show a better 

performance than using a specific rule set for the the supermarkets (as indicated by the blue and 

red lines). The situation reverses on August 6th however. The parameter fitness is solely being 

assessed on August 6th, the GA is tuning the model to perform well on this day, hence the lower 

SRMSE on the final day and the excellent visual performance in Figure 9.18. 
Table 9.9 presents a comparison of the optimal parameter values obtained from the GA using 

HUDDERSFIELD 

(b) Supermarkets 
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Figure 9.19: Comparison of the (a) mean price difference and (b) total SRMSE over time and (c) 
SRMSE by station type between optimal results from GA runs with the same rules applied to all 
stations and from runs with separate rules for the supermarket stations. In each case the model was 
initialised with the real data from July 27th. Standard deviations in the mean price are represented 
by vertical bars in (a). 

one set of rules for all stations and using separate rules for non-supermarket and supermarket 

stations. The parameter values for the GA (same rules) and the non-supermarket rules have similar 

values. However, the supermarket rules are considerably different for each parameter value. The 

undercut value for the supermarket is much higher than the other rules and the overprice is a little 

lower. This reflects the strongly competitive nature of the supermarkets as would be expected. 
The other values are counter-intuitive, the fxedCosts and costToProducc' would be expected to be 

much lower however they are higher than for the non-supermarket stations. This is likely to be for 

similar reasons to those given for the Esso stations above. 
The changelnProfit value is very high for the supermarket stations. This means that it is 

unlikely that the model will change its price much from its initial price regardless of the values of 

the other parameters. This is one of the problems associated with starting the model on the first 

day. An alternative approach would be to initialise the stations with the sane price and let them 

evolve to an equilibrium solution, then compare with the data for a given day. Since a simulation 
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make take 100 days or more to reach equilibrium (or indeed never reach equilibrium) this will take 

a lot longer than using real initial data running for a fixed time of 10 days. 

Same rules Supermarket rules 
Parameter Default Default Supermarket 

0.0005283 0.0 005778 
0.4105 0 . 3594 

fixedCosts (£) 20.53 17.74 59.70 
costToProduce (p) 65.80 65.10 69.67 
changelnProfit (£) 1.00 1.03 23.29 

undercut (p) 0.82 1.02 3.34 
overprice (p) 4.61 4.18 3.72 
neighbourhood (m) 3589 3444 5214 

Table 9.9: Comparison of the best GA run with all stations using the same rules and the best GA 

run with supermarket specific rules. 

9.13 Summary 

The assignment of individual rule sets to the Esso and supermarket stations did not result in an 
improvement to the overall model performance or within the individual categories (except for the 
last day in the supermarkets). In Chapters 5 and 8, individual rules for the supermarket and Esso 

stations were developed based on the available data and expected behaviour of these retailer types. 
However, these derived rules are markedly different to those generated by the GA. Unlike the 

rules developed for Esso stations in §8.6.1 the Esso rules developed by the GA did not reduce the 

performance of the model. 
The GA is ignorant of any specific corporate policies, all it takes into account is the known 

geographical distribution of these stations and the recorded price at each station. The fact that the 
Esso and the supermarket rules are different is a reflection of these geographical differences. 

The use of different rule set has generated some unexpectedly large values for the fixedCosts 

and costToProduce parameters in the Esso and supermarket categories. This may be a result 
of the model working on changes in profit rather than absolute profit levels. Alteration of the 

pricing strategies to incorporate an element of both may produce more realistic results for these 

parameters. 

9.14 Further Assessment of GA Performance 

The GA has to date been tested using the data for West Yorkshire from July 27th. Using the second 
part of the data (August 19th - September 1) to test the GA will provide a test of the robustness of 
the parameter performance under different conditions. In §9.14.2, the ability of the GA parameters 
to recreate the spatial patterns evident within the real data will be tested on the larger geographical 

area of the Yorkshire region. 
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9.14.1 Performance on August 19th 

The network hybrid model was initialised using data from August 19th. The model was run for 13 

days and compared with the real data from September Ist. The optimal parameters from the GA 

derived for July 27th (referred to as GA parameters (early)) and the parameters from Chapter 8 

(Chapter 8 parameters) were used in addition to the best parameters from a series of GA runs 
initialised using the August 19th data (GA parameters (late)). Table 9.10 presents each set of 

optimal parameters. 

Parameter Chapter 8 GA (early) GA (late) 
ß 0.00003 0.0005283 0.0006303 
% 0.7 0.4105 0.0840 
fixedCosts (f) 50.00 20.53 46.90 

costToProduce (p) 65.0 65.80 63.71 

changelnProfit (£) 40.00 1.00 36.50 

undercut (p) 1.0 0.82 0.22 

overprice (p) 1.0 4.61 2.85 

neighbourhood (km) 5.00 3.59 8.95 

Table 9.10: Comparison of the model parameters from Chapter 8 with the best parameters obtained 
from the GA using the early and late parts of the data set. 

Appendix E. 3 shows graphs of the optimal model parameters from the GA against the SRMSE 

for all 10 of the GA runs. 
Figure 9.20 shows that the best performance comes from the GA parameters (late). The GA 

parameters (late) are slightly over-predicting the prices, but on the whole, the prices do not vary 

more than 0.2p (Figure 9.20(d)). The exception to this is in the area around Halifax where the 

model over-predicts the prices by approximately 2p. In Chapter 8 (see §8.8.1), experimentation 

using the network hybrid model revealed a price war in this area. The parameters from the GA 

late shows this price war, but not to the same extent as either the Chapter 8 parameters (Figure 

9.20(b)) or the GA parameters (early) shown in Figure 9.20(c). 

Comparing the performance of the models statistically (Figure 9.21(a)) shows that the mean 

price for the Chapter 8 parameters is in reasonable agreement with the real data over the study 

period. However, the price range is much larger than in the real data. The GA parameters (early) 

start off similar to the real data but from the 23rd August show a downward spiral in price as a 

result of the price war in both Leeds and Halifax. Running the GA using the August 19th data to 

initialise it gives a much better performance with the mean price being only slightly less than the 

real data throughout the simulation. The range of values is also smaller than the real data as well 

as being smaller than the other simulations. 
The price war and the large range of prices in the Chapter 8 and GA parameters (early) results 

are reflected in the SRMSE values which become progressively larger with time. In contrast, the 

GA parameter (late) results exhibit a much lower SRMSE and are a definite improvement on the 

results using a constant price throughout the simulation. 
Unfortunately, because of the differences between the early and late data sets, the rules derived 

for one do not necessarily perform well on the other. This is perhaps not surprising since the 
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for model runs with (a) the real data (b) the Chapter 8 parameters, (c) the GA rules from the early 
data and (d) the GA rules from the late data. 

analysis in Chapter 4 showed a relatively steep rise in price between the two periods suggesting a 

change in the costs due to an increase in crude oil prices. 

9.14.2 Performance on Yorkshire Region 

In Chapter 8, the ability of the network hybrid model to recreate spatial variations was tested by 

initialising the model using constant price data (see 8.3.2). To test whether the parameter values 

produced by the GA can generate trends occurring in the real data, this experiment was repeated. 
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the SRMSE assuming the price remains constant at the August 19th value. Standard deviations in 
the mean price are represented by vertical bars in (a). 

The network hybrid model was initialised with the optimal GA parameters and all the prices set to 
71p. The model was run to equilibrium. 

Figure 9.22(c) shows that the GA parameter values are recreating the rural-urban divide seen in 

the real data (Figure 9.22(a)). For example, the petrol stations within the predominantly rural area 

of North Yorkshire are sustaining higher prices than West or South Yorkshire. The main difference 

lies in the magnitude of the prices. On average, the prices produced by the GA are approximately 
1-2p lower than the real data. 

The solution produced by the GA parameter values has improved on the network hybrid model 
by reproducing the lower prices surrounding Scarborough and Harrogate (Figure 9.22(b) and (c)). 

It has also successfully identified the lower priced areas (cities) within West and South Yorkshire 

and the area of higher prices between Wakefield and Barnsley. There is evidence of variation 

within urban areas, although this is not as prominent as within the real data. Based on assessment 

of Figure 9.22, the GA solution has improved on that produced by the Chapter 8 values. 

9.15 Conclusion 

The work within this chapter has sought to objectively select optimal parameter values for running 

the network hybrid model. A Genetic Algorithm (GA) was used due to its ability to optimise 

multi-dimensional problems with multiple local minima. The chapter provides an overview of this 

technique and the development of a GA to couple with the hybrid and network hybrid models pre- 

sented in Chapters 6-8. Experiments varying the parameters controlling the GA were conducted 
for the hybrid model and data from July 27th leading to the selection of a reasonable set of param- 

eters. Multiple runs of each experiment were undertaken to attempt to find the global minimum. 
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Examination of these runs revealed that, in terms of parameter space the best runs clustered to- 

gether. This provided an indication of the global minima and some evidence for the robustness 
of the GA approach. An optimal set of parameters from the GA were obtained for the network 
hybrid model and comparisons undertaken with the real data and Chapter 8 parameters for West 
Yorkshire from the July 27th data. 

The optimal GA and Chapter 8 parameters were found to be in close agreement. The Chapter 8 

parameters overall produced a slightly better result although the difference was small. However, 

on the day used for comparing the data (August 6th for data initialised with July 27th), the results 
for the GA parameters were much better than the Chapter 8 values. This is due to the fact that the 
GA currently assesses model performance solely by comparing the results on the last day (August 

6th). Despite the GA not performing quite as well statistically as the Chapter 8 parameters, it did 

outperform the Chapter 8 model in terms of reproducing the spatial trends in pricing. 
Further experimentation concentrated on evolving specific optimal rule sets for the Esso and 

supermarket categories. The purpose of this was to determine whether assigning these groups 
individual rules would improve the performance of the model. The results were mixed, the Esso 

stations did not perform particularly well (due to variability within the real data), but the GA 

supermarket rules did improve the model performance, particularly for the supermarkets. The 

only factor that differentiates the Esso stations from the supermarkets within the GA are their 

geographical location and real prices. Interestingly, the GA suggested different optimal rules for 
both categories suggesting that geography has a significant influence on the system as previously 
thought. 

The optimal GA parameters derived for West Yorkshire on July 27th were tested on the later 
data set (August 19th) and on the Yorkshire region. The GA parameters gave a reasonable perfor- 
mance on the August 19th data. Inconsistencies with the real data were due to increases in price 
in the real data (between July 27th and September Ist) and a small price war that occurred during 

the simulation. Optimal parameters were evolved using the August 19th data and these produced a 
better performance. The Yorkshire region was used to test the ability of the parameters to recreate 
spatial pricing trends. The results were very positive with the GA parameters reproducing more of 
the pricing variations within the real data than the Chapter 8 parameters. 

One issue did come to prominence within the analysis. This involved the method of assessing 
the model fitness in the GA. Different methods of assessing fitness have their own advantages and 
disadvantages. Assessing the model on one day did, on occasions, show the model in a better light 
by over-tuning the parameters for a particular day. Using a combination of techniques (i. e. not 
just comparing on the last day) may provide a fairer test of model performance. This is a point for 
further work. 

In summary, the parameters evolved by the GA did improve the performance of the network 
hybrid model while at the same time provide an objective justification for their values. These 

parameters were generally in close agreement with the Chapter 8 model suggesting that the argu- 
ments used there to derive suitable parameter values were justified. 
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Chapter 10 

Conclusions and Recommendations for 
the Future 

10.1 Introduction 

The work within this thesis is novel. Currently there are no other published examples of agent- 
based models being applied to the retail petrol market. More generally, there are no examples of 
agent models being linked to spatial interaction models, network models and genetic algorithms 
(GAs) in one application. Using this hybrid agent approach has enabled the modelling of both 

the temporal and spatial aspects of a complex system whilst charting the effects of an individual's 
behaviour at different scales of analysis (for example, individual, city, regional or national scales). 
The application of this methodology has been very successful and has produced a very powerful 
tool that can not only be applied to the petrol market, but also to other geographical problems. 

The work within this chapter concludes the thesis and fulfils the final research objective by 

summarising the research findings and highlighting the main discoveries made with reference to 
the research objectives stated in Chapter 1. A critique of the methodology is provided along 
with points for future research. The chapter ends by drawing attention to those areas where the 
applications of hybrid agent-based systems may potentially prove beneficial in the future. 

10.2 Summary of the Research Findings 

As originally stated in Chapter 1, the overall aim of the research was to examine the ways in which 
hybridised agent-based models can be applied to modelling a dynamic, locally interacting retail 
market (in this case, the petrol market). To complete this aim, several research objectives were 
designed. Each of these objectives will now be addressed with a discussion of the main research 
findings and the primary lessons learnt. 

Objective 1: Review and discuss the current state of agent-modelling and the modelling of 
the petrol market highlighting potential areas for research. 

The work within Chapters 2 and 3 provided much of the contextual background for this thesis. 
The retail petrol market was reviewed for two purposes; to gather information about trends and 
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strategies within the petrol industry and to understand how previous researchers have modelled 
this system. Several key findings were made which shaped the development of the thesis. Per- 

haps the most significant finding was the lack of published information available on strategies that 

companies may operate (the exception to this was the Esso Price Watch). It was concluded that 

this is due to the commercial sensitivity of the system. This absence of information meant that in 

subsequent chapters other methods of selecting retailer behaviour had to be employed. The com- 

plexity of the petrol price market was also identified through this review. In particular it was noted 
that pump prices are influenced by several interdependent factors, the most important of which ap- 

pear to be geographical location and local competition. These factors had to be considered when 
developing and validating the model. In addition, the review of previous modelling approaches re- 

vealed that these were empirically based (normally regression models examining the relationship 
between petrol price and one other variable), neglecting either spatial or temporal factors as well 

as being unable to model the impact of individual pricing schemes at any level. 

The criticisms of these "traditional" modelling techniques led to the discussion of agent-based 

models as an alternative methodology in Chapter 3. Through the review of these systems and 
thus the identification of key characteristics such as flexibility, adaptability and autonomy, these 

systems were identified as being highly appropriate for application to a complex system such 

as represented by the petrol price market. The agent paradigm advocates decomposition of the 

problem into small units, it is therefore possible to provide each agent (or petrol station) individual 

rule sets (strategies) and examine the effects spatially, temporally and at different scales. It was 

surmised that this technique could overcome problems associated with traditional approaches. 
This provided the foundations for the development of the pure agent model in Chapter 5. 

Objective 2: Analysis of the real market data to look for evidence of spatial and tempo- 

ral variabilities and investigation of the suitability of empirical techniques to explain these 

variations. 

One of the key findings in Chapter 2 was the absence of any information concerning strategies 
that petrol retailers may operate. In the absence of such information, a detailed analysis of the real 
data was carried out in Chapter 4. This involved examining price variations within different sized 

neighbourhoods, geographical areas and petrol station categories. This analysis was extremely 

valuable in providing an in-depth understanding of the system. 
From this analysis, conclusions could be formed about some of the behaviour within the mar- 

ket. For example, supermarket stations were identified as being both cheaply and competitively 

priced, rural stations sustained higher prices than the other stations and over the duration of the 
data set there was a marked increase in pump prices due to a rise in crude oil prices. 

Understanding these trends and patterns within the data enabled appropriate classifications 

and statistical tests to be employed for comparing prices at the same station over a period of time. 
These classifications and statistical tests were then used to evaluate the performance of the model 
throughout the thesis. 

Within Chapter 4 empirical models (based on those reviewed in Chapter 2) were built and 

applied to the real data to ascertain whether, for this data and research aim, these techniques would 
be sufficient. The results for both were poor, further cementing the statements made in Chapter 2 
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about the inadequacies of these approaches for modelling a complex system that is both spatially 

and temporally dynamic. 

Objective 3: Use agent technology to build a model to simulate the spatial and temporal 

variations in price observed in a single commodity retail market. 

On the basis of the work presented in Chapters 3 and 4, the pure agent-based model was con- 

structed in Chapter 5. This simple model shared some features with traditional modelling methods 
highlighted in Chapter 2. The agents (petrol stations) reacted to imposed prices rather than actively 

predicting them. Initial experimentation was undertaken with individual parameters and separate 

rule sets (for the Esso and supermarkets stations) assigned. The performance was sensible and 

the model operated successfully. However, after further analysis of the results it was concluded 

that the model suffered from an absence of realistic retailer and consumer behaviour: there was no 

competitiveness in the system and no attempt by retailers to maximise their profits. 
These shortfalls led to two further developments within Chapter 6, the spatial interaction model 

and the network model. Spatial interaction models are a well developed technique for modelling 
flows of information or people. This technique integrates well with the agent framework and 

combines the benefits of both traditional and artificial intelligence (Al) techniques. The spatial 
interaction model provided sales of fuel at the petrol stations based on distance to consumers and 

price. The agents representing each station could then use this information to calculate their profit 

and hence determine a suitable pricing strategy. The construction of the network model was a 

refinement to the model framework to account for the fact that petrol is often not bought on a 

special trip, but during the course of another journey such as travelling to work. Ideally, the data 

used would contain detailed information on all journeys (including on which journey petrol is 

purchased) and journey times. However the data available are based on a 10% journey to work 

sample, which meant that generalisations had to be made. 

Objective 4: Assess model responses to different configurations, initial conditions and rule 

sets using both idealised and real data. 

An important aspect of any model is the suitability of the parameters and their values. Of equal 
importance is an understanding of the model behaviour and its reaction to different rules and ini- 

tialisation conditions. This is easier to obtain in an idealised environment where the complications 

of heterogeneous populations and geography have been removed. In common with many other 

complex systems, the model responses are unlikely to depend linearly on the input parameters and 
initial conditions. Methods of validation used must take this into account. 

The first part of this validation involved assessing whether the hybrid model' performed sensi- 
bly under simple idealised cases. This was a necessary prerequisite before application to the more 
complex, real data. Within Chapter 7, sensible values for the parameters were derived and ex- 

periments run that showed the model successfully reproducing rural-urban divides for ideal cities 
and reacting appropriately in diffusion experiments. Sensitivity testing was also undertaken which 

1 Due to the standardised geography and population, the network part of the model was redundant in Chapter 7. 
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demonstrated the robustness of the system. There was some evidence of cyclic and chaotic be- 

haviour, however the parameter values chosen for further use were not in the range which produced 
this behaviour. 

After successful testing on the idealised data, the model was then applied to the more com- 

plicated real system in Chapter 8. Similar experiments to those performed in Chapter 7 were run. 
Experiments initialised with the data from July 27th and run for 10 days were in good agreement 

with observed prices on August 6th. Further validation of the model was obtained by using a larger 

geographical area and different temporal periods to test the performance of the model parameters. 
The results showed that the model successfully reproduced patterns found within the real data. As 

in the idealised simulations, the derived parameter values came from stable parts of the parameter 

space. 
The "rockets and feathers" concept was first introduced within Chapter 2. This effect was 

simulated in Chapter 8 using rapid changes in the costToProduce parameter. As observed in the 

real petrol market, an increase in costs led to a rapid rise in price with a slow decrease in price 

when the costs fall. This showed that the model can be used for reproducing temporal patterns in 

the data due to changes in the parameters as well as for generating spatial patterns. 
Most of the validation used in this thesis has involved direct comparisons of real and predicted 

prices at each petrol station. An alternative approach was also used in Chapter 8. The model was 

used to predict the profitability of stations in the Leeds areas using the 1999 data set. A comparison 

with data from 2004 (whether these stations were still operating) was then undertaken. The results 

showed a high correlation between stations predicted as having a low profitability in 1999 and 
those that have subsequently closed. This illustrates the potential of the technique for use in long 

term planning decisions. 

Objective 5: Investigation of objective techniques to select optimal values for the parameters 
in the agent model. 

One of the issues that arose within this thesis concerned selecting parameters objectively for the 

model. In Chapters 5,7 and 8, parameters for the models were selected by means of a combination 
of real data analysis and numerical experimentation. The system had already been identified as 
being non-linear, therefore experimentation with one parameter at a time may not result in an 
optimal set of parameters. Initial investigations showed the system to be complex with multiple 
local minima suggesting that there are many different solutions available for the problem. Genetic 

algorithms (GAs) were chosen due to their usefulness for multidimensional optimisation problems 
in which the chromosome (set of rules) can encode the values for the different variables being 

optimised. 
The optimal parameters obtained by the GA were quite close to those derived from the real 

data. This provides support for the arguments used to independently derive the parameters in 

previous chapters and suggests that the model is behaving in a realistic manner. The robustness 
of the GA parameters was tested by using different geographical and temporal data. The GA 

suggested some differences between optimal parameters for the first and second halves of the data 

set. This could be explained through differences in the underlying conditions such as a rise in the 

price of crude oil during the period. 



204 

10.3 Critique of Methodology 

This thesis has examined the application of hybrid agent-based models to the retail petrol market. 
This has proved to be a successful modelling strategy. The strengths of the agent framework have 

been successfully combined with embedded market behaviour represented by traditional methods. 
In contrast to empirical approaches to modelling the retail market, the model developed within this 
thesis has a sound theoretical grounding based on the idea of competition between petrol stations. 

One potential weakness of this model is that the agent approach has not been extended to the 

consumer. Consumers are modelled in an aggregate manner by the spatial interaction model. This 

approach can be justified when considering the detail of the available data. To implement a more 

sophisticated agent approach, data documenting specific purchasing habits would be required as 

well as access to powerful computing resources. An attempt was made to refine the data by 

redistributing the population on the basis of journey to work data. This refinement did have the 

effect of improving the results. 
An issue that arises with modelling consumer behaviour is how to deal with consumer knowl- 

edge. Chapter 2 made the case that consumers can have perfect knowledge of petrol prices within 
their area as a result of internet sites such as the AA (accessed 2004). However, in practice, it 
is expected that consumers will only know the prices of those stations along routes that they fre- 

quently take. How is this imperfect knowledge to be modelled? Perhaps this is an opening for 

fuzzy logic and probabilistic models? This is certainly an area for further development. 

The pricing strategy implemented was the same for each petrol station. This was based on the 

assumption that all petrol stations are individually aiming to make as much profit as possible. This 
is a reasonable assumption, even if a retailer is operating a company policy of some description, it 
is unlikely to allow a station to run at a loss. The model captured this in the profitability experiment 
carried out in §8.9. However, there may be other strategies at work, for example, collusion for 

market share, rate of profit maximisation as examined by Sheppard et al. (1998) or supermarket 
loyalty schemes which offer discounts on the pump price (cross-subsidising). As already alluded 
to, inclusion of this behaviour would require more detailed data. 

A similar argument to that presented above can be applied to the use of rule sets. With the 
exception of the Esso and supermarket groups, the same rule set was used by each petrol station. 
This assumption is plausible as the rule set enables the station to be competitive in order to max- 
imise its profit. If specific information on company strategy was available, assigning stations a 
combination of rules could potentially improve the model performance. 

A combination of standardised root mean square error (SRMSE), mean and standard deviation 
(SD) was used to assess the fitness of the model solutions in Chapters 5,7,8 and 9. These 

techniques were chosen because they are simple, but offer the advantages of producing an easy to 

understand measure of the overall model performance. Additionally, Knudsen and Fotheringham 
(1986) cited SRMSE as the most reliable technique for point to point analysis after a review of 
several different approaches. However, the downside to using these techniques is that they are 
unable to indicate whether particular geographical areas or brands are being modelled accurately. 
This limitation was overcome by the use of detailed geographical classifications and interpolated 

maps. 
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In Chapter 9, it was apparent that calculating the SRMSE on the final day of the simulation and 
comparing with the real data may have drawbacks. The results on the final day of several of the 

simulations indicated that the performance was good. However, this was in contrast to the results 
from the preceding days. An alternative approach that could rectify this situation is the calculation 

of the SRMSE on each day with the average value over the simulation taken as a measure of model 
fitness. 

10.4 Future Research Developments 

Having summarised the research achievements and limitations in the research, this section covers 

some areas for potential future investigation. Further developments of the model for application 
to the retail petrol market as well as to other geographical problems are discussed. 

An area ripe for further development is the construction and implementation of an agent-based 

consumer model. As highlighted in the previous section, this approach would require both detailed 

data and vast computational resources. In the absence of such information, the aggregate approach 

of the spatial interaction model could be improved by the use of regional data on car ownership 

and purchasing patterns to provide more detailed information on petrol sales at the ward level. 

Another area that has the potential to be developed is the method by which pricing strategies 

are devised. Currently these strategies are fixed for all stations throughout the course of the simu- 
lation. The GA could be developed to change strategies "on the fly". This would enable optimal 

strategies to be continuously used and would produce a dynamic, intelligent pricing function. This 

could be further improved in the long-term by the use of artificial neural networks (ANNs) to 

enable the agents to learn which strategies are successful or genetic programming (GP) to evolve 
entire rule sets. 

The experimentation within this thesis has been limited to using two study areas, West York- 

shire and the Yorkshire region. Within these two areas, the costs associated with transporting 

petrol and maintaining a site could reasonably be expected to be the same. One of the strengths 
of using the agent methodology is the ability to examine the impact of the model over different 

scales. Extending the experimentation to using larger regions such as England or Scotland may 
reveal larger scale variations that have not been fully accounted for. For example, transportation 

costs would be much higher in the Scottish Highlands than in Leeds. These extensions to the 

experimentation would require these costs, along with other important factors such as crude oil 
prices, to be dynamically fed into the model. This would further test the model's ability to cope 
with different spatial and temporal variations. 

As well as using different geographical areas, the experimentation could also be extended 
to using different temporal periods. This would require data covering a period greater than 3 

months. However, it would allow the ability of the model to make long term predictions to be 

rigourously investigated. In addition, data covering a longer period could be analysed for evidence 
of different company pricing strategies. The use of evolving rule sets, discussed above, might be 

useful for modelling prices over periods of months or years rather than just days. Over these long 
time periods there may also be evidence of homeostasis (the ability of a system to regulate itself 

and maintain an equilibrium) in the system. This is an interesting avenue of research for future 
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investigation. 

The framework developed within this thesis has the potential to be extended to other geo- 
graphical applications. To do this would require the production of a generic version of the model. 
Ideally, this would allow easy customisation for a particular application, for example allowing 

extensions such as the spatial interaction model to be bolted onto the basic agent model. Tech- 

nologies such as XML parsing could be used to make the input of model structures and data 

simpler. 

10.5 Applications of Hybrid Agent Modelling 

The work within this thesis has shown that the hybrid agent model is able to replicate the main 
trends and patterns observed in the retail petrol market. This success combined with the flexibility 

of the model suggests the potential for use in various applications. For example, the model could 
be used for planning decisions such as locating the best site for a new petrol station or deciding 

whether to close a station because it is no longer commercially viable. It could also be used by 

companies as a strategy tool for experimenting with different marketing strategies, for example the 
impact of implementing their own version of the Price Watch. The ability of the model to predict 
long-term patterns (as seen by the results of the profitability experiment in Chapter 8) as well as 

short term predictions makes this a powerful tool. 
This approach is not limited to the petrol price market. The agent methodology is very ap- 

propriate for human geography applications where people and companies are making autonomous 
decisions based on interactions between the various participants in an area. There are many other 

geographical systems that possess the characteristics of being both spatially and temporally dy- 

namic and are currently being modelled using empirical approaches. The approaches taken within 
this thesis could be readily applied to such diverse problems as modelling sub-glacial water pres- 

sure, epidemiology (spread of diseases), modelling the housing market or modelling crime. 

10.6 Concluding Remarks 

The aim of this thesis has been to examine the application of a hybrid agent-based model to the 

retail petrol market. Agent-based systems provide an ideal framework in which a retail market 
can be accurately described. Individual agents (petrol stations) can be successfully supplied with 
detailed knowledge of the market by the attachment of more specialised models, such as spatial 
interaction models. This type of model can be extremely valuable when modelling trends at a re- 
gional level. The outcome of local interactions can be easily seen at a global level and behavioural 

and quantitative data can be easily combined. This flexibility, coupled with the upsurge in read- 
ily available computing power makes agent based modelling a valuable tool for studying market 
forces and dynamics. 

This type of modelling is not just limited to application to the retail market. The range of 
applications that agent-based models are being applied to is ever increasing. It is to be hoped that, 
with further development, the ideas and framework developed within this thesis will be used to 
further our understanding of complex geographical systems. 
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Appendix A 

Higher Resolution Maps 

The following maps are higher resolution versions of the ones presented in §4.5 (Figures 4.5 and 
4.6). They show the geographical and petrol station type classifications within West Yorkshire. 

County Boundary " Urban N 
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Figure A. 1: Higher resolution maps of West Yorkshire detailing the geographical classification. 
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Figure A. 2: Higher resolution maps of West Yorkshire detailing the petrol station type classifica- 
tion. 
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Appendix B 

Mean and Mean Absolute Price 
Change: Yorkshire Region 

Table B. 1 shows the average price change per day (how much all the stations change on aver- 

age) and the absolute price change per day (the magnitude of the changes at the stations that are 

changing) for the Yorkshire region. This supplements the analysis presented on West Yorkshire in 

§4.7.1. 

Day 1 Day 2 Number 
Chang- 
ing 

Mean 
Change 
(p/day) 

Mean 
Absolute 
Change 
(p/day) 

Max 
Price 
Change 
(p/day) 

SD RMS 

Jul 27 Jul 28 77 0.12 0.26 4.6 0.70 0.71 
Jul 28 Jul 29 78 0.13 0.27 4.4 0.75 0.76 
Jul 29 Jul 30 73 0.13 0.22 4.5 0.67 0.68 
Aug 5 Aug 6 161 -0.28 0.41 6.1 0.77 0.82 
Aug 23 Aug 24 73 0.066 0.22 5.1 0.67 0.67 
Aug 24 Aug 25 61 0.014 0.20 5.1 0.65 0.65 
Aug 25 Aug 26 59 -0.0056 0.17 3 0.56 0.56 
Aug 26 Aug 27 56 0.013 0.14 2.1 0.48 0.48 
Aug 31 Sep 1 11 -0.018 0.036 2 0.24 0.24 

Table B. 1: Mean and mean absolute price change at petrol stations per day for Yorkshire through- 
out the duration of the data set. 
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Appendix D 

Esso Price Watch: Pure Agent Model 

Figure D. 1 shows the comparison of the mean price difference (p) and standard deviation of the 

Esso Price Watch rules and default rules. The results show that assignment of individual rules has 

not improved the overall performance of the agent model. 
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Figure D. 1: The mean price difference (in pence) and SD (denoted by vertical bars) were calcu- 
lated for Esso and non-Esso stations, with and without the Esso rules turned on. 
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Appendix C 

Shell Scripts Used in Data Analysis 

These shell scripts are used in the analysis of the real and model data results. 

C. 1 DIFFS. SH 

This script calculates the difference in price between the real and model data at each petrol station 
on a given day. 

/bin/sh 

if [ -z $1 ] 11 [ -z $2 ]; then echo "Syntax: diffs. sh REALFILE 

MODELFILE"; exit 0; fi 

# Extract required fields and sort ready to join. 

awk 'BEGIN {FS=", "; OFS=", "} {print $1, $2, $3, $4, $5}' $1 Isort > real. csv 
awk 'BEGIN {FS=", "; OFS=", "} {print $1, $2, $3, $4, $6, $8, $10}' $2 sort > 
model. csv 

# Join the two files togther - only keep the garages which appear in both 
join -t, -1 1 -2 1 model. csv real. csv > merged. csv 

# Now work out the differences and print them out. 

awk 'BEGIN {FS=", "; OFS=", "} 

{ 

if ($4>0 && $8>0) dl=$8-$4; else d1=10; 

if ($5>0 && $9>0) d2=$9-$5; else d2=""; 

if ($6>0 && $10>0) d3=$10-$6; else d3=""; 

if ($7>0 && $11>0) d4=$11-$7; else d4=""; 

print $1, $2, $3, dl, d2, d3, d4; 

}' merged. csv I sort -n 
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C. 2 STATS. AWK 

Using the output from the DIFFS. SH, this script calculates the mean, SD, Root Mean Square 

(RMS) error and the SRMSE of the differences between the real and model data at each petrol 

station. This can also be used for the prices as well as price differences. 

#! /usr/bin/awk -f 

BEGIN { 

FS=" "" 

OFS=', "; 

CONVFMT="%. 15g"; 

for (i=1; i<=4; i++) { 

n[il = 0; 

mean[i] = 0; 

meansq[i] = 0; 

stddev[i] = 0; 

line = 1; 
} 

{ 
for (i=1; i<=4; i++) { 

ii = i+3; 

price[line, i] _ $ii; 

if ($ii != "") { 

n [i] ++; 

mean [i] +=$ii; 
meansq[i]+=$ii*$ii; 

} 

} 

line++; 
} 

END { 

for (i=1; i<=4; i++) { 

if (n[i] > 0) { 

mean [i] = mean [i] /n [i] ; 

meansq[i] = sgrt(meansq[i]/n[i]); 
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} 
else { 

mean [i] 

meansq[i] _ ""; 

} 
} 
for (i=1; i<=4; i++) { 

if (n [i] > 1) { 

for (1=1; 1<line; l++) { 

if (price [1, i] != I'll) { 

stddev [i] += (price [1, i] -mean [i]) * (price [1, i] -mean [i]) ; 
} 

} 
stddev [i] = sqrt (stddev [i] / (n [i] -1)) ; 

} 

else { 

stddev(i] 
} 

} 

print 
mean[1], mean[2], mean[3], mean[4], stddev[1], stddev(2], stddev[3], 

stddev[4], meansq[1], meansq[2], meansq[3], meansq[4]; 
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Appendix E 

Parameter Space for GA Optimal 
Parameters 

E. 1 Optimal Parameters for Esso 

The GA model was run 10 times using the default GA parameters for the Esso rule set. The best 

of these parameters were taken as the optimal parameters for the model. Figure E. 1 shows the 

variation in model parameters for these simulations. 

E. 2 Optimal Parameters for Supermarket 

The GA model was run 10 times using the default GA parameters for the supermarkets. The best 

of these parameters were taken as the optimal parameters for the model. Figure E. 2 shows the 

variation in model parameters for these simulations. 

E. 3 Optimal Parameters for Late Data 

The GA model was run 10 times using the default GA parameters for the August 19th data. The 
best of these parameters were taken as the optimal parameters for the model. Figure E. 3 shows the 

variation in model parameters for these simulations. 
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Figure E. 1: Variation in model parameters plotted against SRMSE for simulations with different 
GA control parameters. The experiments (described in §9.12.1) are using the hybrid model to 
develop rules for both Esso and non-Esso stations. 
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Figure E. 2: Variation in model parameters plotted against SRMSE for simulations with different 

GA control parameters. The experiments (described in §9.12.2) are using the hybrid model to 
develop rules for both supermarket and non-supermarket stations. 
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Figure E. 3: Variation in model parameters plotted against SRMSE for simulations with different 
GA control parameters. The experiments (described in §9.14.1) are using the hybrid model to 
develop rules using the second half of the data set starting on August 19th. 


