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Corrections and Response to Examiners

I would like to thank the examiners for providing me with very constructive feedback. Below

is a list of the corrections made in response to the examiners comments.

Chapter 1

1. An extra section on the philosophy behind Bayes theorem and its applicability to the

problems contained in this thesis is presented

2. Much of the wording relating to the introduction of the parentage analysis techniques

has been changed to make it more clear. Terms related to ‘null alleles’ and ‘phenotypes’

are now defined in the correct places and an more explanation has been given to the

differences between the different marker types

3. Typographical errors have been corrected

Chapter 2

1. Mistakes in mathematical notation have been corrected

2. Misplaced text appearing in results section has now been moved to the correct location

and the results section has been expanded

3. The megagametophyte dataset has been released as part of the ecomodtools package for

the R statistical platform on the R-Forge repository

4. A section has been added to the chapter explaining why it is not appropriate to rerun the

analysis for the joint distribution of the allele frequencies and the error model parame-

ters when comparing the outputs to a metric of ‘truth’ that is also dependent upon the

observation model

5. Quantification of the convergence has been added using the multivariate scale reduction

factor

6. Extra sections added to the discussion highlighting the fundamental underpinning of allele

frequency estimates to many analyses in population genetics. Reiterate the improvements

that the described method provides to the field

7. Typographical errors corrected

Chapter 3

1. Errors in mathematical notation has been corrected
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2. The zebrafinch dataset currently has an embargo on it until it is published. When it

becomes publically available, I will distribute it with the ecomodtools package for the R

statistical platform on the R-Forge repository

3. Added analysis of the observation model error estimates and parentage under vague and

informative priors

4. Typographical errors corrected

Chapter 4

1. Algorithms rewritten for clarity

2. Corrections made to algorithms that were mis-specified

3. The kernel smoothing particle filter replaced with a Reversible Jump MCMC particle

filter that has substantially reduced bias

4. Typographical errors corrected

Chapter 6

1. The last section has been expanded to give a more thorough example of a situation where

employing all the methods described in this thesis would bring extra benefit. I have used

the example of the cane toads invasion of Australia

2. Typographical errors corrected

Other Corrections

1. Computational code for all chapters has been included as part of the ecomodtools package

for the R statistical platform on the R-Forge repository. This can be accessed at https:

//r-forge.r-project.org/projects/ecomodtools/

2. An extra chapter has been added for the scaling up of dispersal from individual-level

dispersal kernels to population-level measures of habitat connectivity

3. Upon initial analysis, the Melancholy thistle dataset had some very complex issues to ad-

dress. Lots of evidence of clonal as well as seed dispersal. Needed to develop a framework

to account for these phenomena and this looked likely to be far too complex for used as a

simple example of deriving estimates of dispersal kernels from paternity analysis. I have

instead included an addendum to chapter 3 that describes the mathematical framework

for the estimation of population parameters from parentage data. This should provide

the necessary link to chapter 4
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General Abstract

A current trend in population biology is the increasing realisation of the effect of individual

variability on some of the big patterns of population dynamics. Simultaneously, the field of

population genetics continues to develop a sophisticated theoretical basis for the inference of

large-scale population dynamics from information derived from the smallest ecological unit,

that of the gene.

This thesis aims to contribute to the synthesis of these two fields by outlining a series of

novel methods that can be used in the scaling up of genetic information to individual dynamics,

and, eventually, to inference of patterns of the population. A critical feature of the methods

described here is the preservation and propagation of uncertainty in estimates at each stage of

the analysis. The thesis begins by introducing an estimation procedure for the calculation of

allele frequencies when observation error means that frequencies cannot be directly observed.

Genotyping errors can also prove troublesome in the field of parentage analysis, the basis of

many models of inference of population-level processes. Any assignment errors made at this

stage can be disastrous for any inference build upon these assignments. I describe a novel

method of conducting parentage analysis, extend these methods for a series of common marker

types and arbitrary ploidy, and show how uncertainty in parentage allocations can be propa-

gated robustly to further stages of analysis.

I review a set of new methods that may prove useful for the fitting of individual-based models

to real data. I describe how these methods can be applied in the context of individual-based

modelling and describe an extension of the methods to efficiently handle common data used to

parametrise individual-based models. I discuss that individual-based models may provide a key

bridging discipline between the field of traditional population ecology and population genetics.

Finally, I describe a method to use information on dispersal collected at the individual-level

to inform population-level estimate of immigration and emigration rates of spatially-explicit

models of population dynamics.
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CHAPTER 1

General Introduction

The application of theories of population genetics is an application of reductionism. The field of

population genetics aims to infer the highest level single-species phenomena, the structure and

dynamics of populations, from the smallest units of ecological information, that of molecular

genetics. This can be interpreted as a two-stage model where the characteristics of individuals

are inferred from their genetics and the characteristics of populations are inferred from the

characteristics of individuals. Figure 1.1 illustrates how each level in the hierarchy informs

the next, allowing the combination of genetic information across loci and individuals to infer

properties of the population as a whole.

The study of population genetics does not demand that all population level phenomena need

necessarily be reducible to molecular equivalents. Indeed, some authors such as Hull (1974) ar-

gue that this is impossible. However, the careful analysis of genetic data can reveal some facets

of population structure, both present and historic. For example, population bottlenecks leave

genetic fingerprints in the form of reduced genetic diversity, both in terms of reduced heterozy-

gosity (Wright, 1931, 1938; Nei et al., 1975; Chakraborty & Nei, 1977) and fewer unique allele

types (Leberg, 1992; Brookes et al., 1997).

Inferences made about the individual from its genetics have some level of uncertainty at-

tached to them however. Scaling up from the individual to the population requires that we

1
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Figure 1.1: Illustration of the direction of inference in studies of population genetics. At each
stage it is necessary to propagate any uncertainty in the inference robustly.
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account for all uncertainties in the inferred attributes for each individual when we derive prop-

erties about the population. For example, parentage analysis could be employed, using the

observed genotypes, to assign offspring to parent pairs and calculate the breeding success for

each individual (Williams & DeWoody, 2009; Gopurenko et al., 2007). These estimates may

be combined to form population-level estimates of growth rates and used in models of popula-

tion dynamics (Kendall & Wittmann, 2010). However, if there is uncertainty in the estimates

of individual reproductive success then, to assess the validity of the composite estimates of

population growth rate, this uncertainty must also be incorporated into the estimates of the

variation in population growth rates.

Most methods of error propagation focus on the recalculation of a variance after transfor-

mation of a random variable with a known variance. In many studies, estimates for a variable,

X, are often given as the sample mean with a confidence interval, standard error, standard

deviation, or some other simple function of the variance, σ2
X . If we were to use the estimate

of X to calculate another value of interest, Z, say by some sort of linear transform, then it is

important to ensure that any uncertainty in the original estimate for X is carried through in

calculation of the variance of Z, σ2
Z . Say that X is known or assumed to have been drawn from

a normal distribution. Consequently, the entire distribution of X can be described by the first

two moments, the mean and the variance. From the known result that random variables that

are linear transformations of a normally distributed random variable are themselves normally

distributed, it has been shown that σ2
Z is also a linear transform of σ2

X . Bevington & Robinson

(2002) give a number of key results in error propagation for functions that have a number of

inputs when each of the input estimates are assumed to be normally distributed.

The standard results of Bevington & Robinson (2002) have limited applicability for the sorts

of problems involved in scaling up from genetic data to population parameters however. The

types of model that I describe in this thesis are complex and the input variables are combined

in non-linear ways. Except for a limited set of circumstances, see Goodman (1960), non-linear

error propagation can usually only be achieved by using standard results on linearised approxi-

mations, such as Taylor expansions. The necessary truncation of the approximating Taylor se-

ries means that any estimates of propagated uncertainty can only be calculated approximately.

Moreover, the distributions of input variables described in this project are rarely normal and so

the full distribution of the input variable cannot be adequately described by the first two mo-

ments alone. Indeed, the only way to describe the uncertainty in these situations is to update the



CHAPTER 1. GENERAL INTRODUCTION 4

full probability density or mass function for the variable of interest at each stage of the analysis.

This thesis describes a series of methods to update the uncertainty surrounding key at-

tributes of a population derived from data drawn from molecular techniques. It is shown how

Bayesian techniques can be employed to update the distribution of key model parameters at

each stage of analysis, and, when analytical methods fail, how Monte Carlo methods can be

employed to draw samples from the distribution.

1.1 Bayesian Inference

When confronted with a set of data, D, our first instinct as natural scientists is to find a model,

M , that will explain the most variation that we see in the data. Either the investigator can

choose from an existing suite of models or one can be constructed for this purpose. Once we

have selected a model, we can then ask questions such as: ‘if my model is true, what is the

probability that it would generate the set of data that I have observed?’. Any given model can

also have a set of parameters, θM , that determine its behaviour. This time our question of the

data can be a little nuanced: ‘if my model is true, and its parameters are equal to θM , then what

is the probability that it would generate the set of data that I have observed?’. More formally,

we are interested in deriving an equation for the probability, P (D|M, θM ). This quantity is

known as the ‘likelihood’ (sensu Fisher, 1922). It is common practise to find the values of θM

that give the maximum value for the likelihood, These are the ‘maximum-likelihood estimators’.

Unfortunately the likelihood alone is not useful when the objective is to propagate parameter

uncertainty. Under these circumstances the investigator is more interested in the quantity

P (M, θM |D): the probability that model M is the true model with set of parameters θM given

the information gleaned from the data, or in Bayesian parlance, the ‘posterior’. This quantity

is related to the likelihood by Bayes’ Theorem (Bayes, 1763) where:

P (M, θM |D) =
P (D|M, θM )P (M, θM )

P (D)
(1.1)

The denominator of the right-hand term of equation 1.1 is a normalising constant that ensures

the probability of the posterior sums to one across all possible values for the model parameters.

The numerator of the right-hand term of equation 1.1 has two is the product of the likelihood

and the prior (P (M, θM )). The prior represents the probability that model M is true with
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parametrisation θM before the data are taken into account. It can be a subject of controversy

how this prior distribution is set (see Suppes, 2007), but for the most part it can be considered

an amalgam of knowledge drawn from previous experiments and observations. In this sense

it is possible to daisy-chain multiple Bayesian analyses together where the posterior from set

of analyses can form the prior for the next set of analysis. This allows us to feed data from

multiple data sources to draw inference on the same set of parameter values. We will make

substantial use of Bayesian inference in this thesis as this property lends itself very well to the

propagation of information from one ecological scale to the next.

Unfortunately the posterior probability density/mass function is often difficult to derive

directly. This is because the normalising constant, P (D), cannot often be described in a closed-

form. Whilst, we may not be able to describe the posterior probability density function in a

useful form, we can use a number of specialised algorithms such as the Metropolis-Hastings

algorithm (Metropolis et al., 1953; Hastings, 1970; Chib & Greenberg, 1995) or the Gibbs

sampler (Casella & George, 1992) to sample from it. Chapters 2, 3, and 4 all describe specific

sampling algorithms tailored to their particular application.

1.2 Allele Frequencies and Population Structure

1.2.1 Hardy-Weinberg Frequencies

One of the key elements of classical population genetics is the description of allele frequencies

in and between populations. Early pioneers in the field, Hardy (1908) and Weinberg (1908,

translated in Weinberg 1963), were the first to describe the expected distribution of alleles

in a population where allele proportions and genotype proportions are in equilibrium. They

describe a diploid system with two alleles, A1 and A2, with proportional frequencies, f1 and f2

respectively. They show that if alleles are allowed to recombine freely then we would expect

the genotype frequencies to follow

qA1 A1 = f21 (1.2)

qA1 A2 = f1f2 (1.3)

qA2 A2 = f22 (1.4)

where qA1 A1 , qA1 A2 , and qA2 A2 are the relative genotype frequencies of an A1 homozygote, a

heterozygote, and an A2 homozygote respectively.
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By defining the vector G to be a genotype frequency vector with each element, Gi, repre-

senting the quantity of allele type i present in the genotype, it is then possible to generalise

the Hardy-Weinberg law to incorporate polyallelic and polyploidal systems. Here qG is the

expected proportion of genotype frequency vector G found in the population under conditions

of Hardy-Weinberg equilibrium. The assumption of random mating and assortment of alleles

present in Hardy-Weinberg equilibrium means that the genotype frequency vector can be as-

sumed to be drawn from a multinomial distribution with probability vector parameter equal to

the vector of relative frequencies present in the population, f , such that

qG =


C!∏
i Gi!

∏
i

fi
∑
i

Gi = C

0 otherwise

(1.5)

where C is the system ploidy.

The application of Hardy-Weinberg equilibrium concepts makes many assumptions about

the population however. Sampling for the genotype frequency vector G is taken with replace-

ment and so for the multinomial approximation to hold then the population must be large. If

the population drops to a small size, sampling alleles for G from the population with replace-

ment becomes a bad approximation to the process, the genotypes of individuals can no longer

be assumed independent, and the distribution of a single individuals genotype, conditional on

the set of genotypes present in the rest of the sampled individual, instead follows a multivariate

hypergeometric distribution. Alleles must be randomly mixing and so must not exhibit any

significant frequency stratification, such as in sub populations (Wahlund, 1928, translated in

Wahlund 1975) or sexual segregation (although see extensions detailed in Moree, 1950; Stark,

1976). There are a number of phenomena that could disrupt Hardy-Weinberg equilibrium

such as assortative mating, immigration and emigration, mutation, or selection acting on the

phenotype associated with the alleles. This sensitivity of the theory to common assumption

violations has prompted the development of a number of formal statistical tests for deviation

from Hardy-Weinberg equilibrium (Wigginton et al., 2005; Guo & Thompson, 1992; Emigh,

1980).

1.2.2 Wright’s F Statistics

Wright (1951) describes a ‘fixation index’ to describe divergences from Hardy-Weinberg equi-
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librium. Here, departures from the theoretical equilibrium are exemplified by differences in the

expected homozygote to heterozygote ratio. In the simple biallelic diploid case we can respecify

the derivation of qA1 A1 , qA1 A2 , and qA2 A2 :

qA1 A1 = (1 − F ) f21 + Ff1 (1.6)

qA1 A2 = (1 − F ) 2f1f2 (1.7)

qA2 A2 = (1 − F ) f22 + Ff2 (1.8)

where F is the fixation index. The value of F has an upper value of 1 but a complex lower

bound that is dependent upon the allele frequencies (Zhivotovsky, 1999, and chapter 2) but is

in all cases less than or equal to zero. As F tends towards 1 the relative frequency of homozy-

gotes increases and eventually results in complete fixation, where no heterozygotes exist in the

population, indicative of an inbred population. Conversely, values for F that are less than zero

produces an excess of heterozygotes. In this sense it is possible to interpret deviations of F

from zero as deviations from Hardy-Weinberg equilibrium (Wright, 1922).

A common tactic in population biology is to use allele frequencies and zygosities to find or

show genetic structure within a population. For example, suppose that there exists a priori a

criterion, or set of criteria, with which a population can be feasibly subdivided. The next step of

the analysis would involve testing the putative subdivisions for genetic differentiation. Wright

(1951) developed this idea further, defining three related fixation indices for the examination

of population structure: FIS , FST , and FIT . FIS is a measure of the within-sub population

divergence from Hardy-Weinberg equilibrium, a measure of the zygosity of individuals relative

to the sub population. FST describes the zygosity of the sub populations relative to the total

population. Finally, FIT is defined as the a measure of relative zygosity from individual to

total population. Unfortunately multiple definitions of the so-called F -statistics, particularly

FST , has led to some confusion in the literature. For clarity, we use the more widely accepted

definition of Holsinger & Weir (2009). Under this definition, the F -statistics of Wright (1951)

are linked to the genotype frequencies in sub populations S1 and S2 according to the following
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relationships:

q
(S1)
A1 A1

=
(

1 − F
(S1)
IS

)
f
(S1)
1

2
+ F

(S1)
IS f

(S1)
1 (1.9)

q
(S1)
A1 A2

=
(

1 − F
(S1)
IS

)
2f

(S1)
1 f

(S1)
2 (1.10)

q
(S1)
A2 A2

=
(

1 − F
(S1)
IS

)
f
(S1)
2

2
+ F

(S1)
IS f

(S1)
2 (1.11)

q
(S2)
A1 A1

=
(

1 − F
(S2)
IS

)
f
(S2)
1

2
+ F

(S2)
IS f

(S2)
1 (1.12)

q
(S2)
A1 A2

=
(

1 − F
(S2)
IS

)
2f

(S2)
1 f

(S2)
2 (1.13)

q
(S2)
A2 A2

=
(

1 − F
(S2)
IS

)
f
(S2)
2

2
+ F

(S2)
IS f

(S2)
2 (1.14)

q
(T )
A1 A1

= π2 + FITπ (1 − π) (1.15)

q
(T )
A1 A2

= 2π (1 − π) (1 − FIT ) (1.16)

q
(T )
A2 A2

= (1 − π)
2

+ FITπ (1 − π) (1.17)

(1 − FIT ) =
[
1 − cF

(S1)
IS − (1 − c)F

(S2)
IS

]
(1 − FST ) (1.18)

where π = cf
(S1)
1 + (1 − c) f

(S2)
1 and c is the proportion of individuals sampled from sub popu-

lation S1. q
(S1)
· , q

(S2)
· , and q

(T )
· represent the relevant genotype proportions at sub population

S1, sub population S2, and the total population (T ) respectively. F
(S1)
IS and F

(S2)
IS are the sub

population specific inbreeding coefficients.

A number of alternative test statistics for fixation have also been proposed (Slatkin, 1995;

Spitze, 1993; Excoffier et al., 1992; Nei, 1973; Fisher, 1949; Pearl, 1917) but all are closely

related to the F -statistics described here (Holsinger & Weir, 2009; Wright, 1951). Moreover, all

statistics used to infer population structure require the accurate assessment of allele frequencies

and genotypes.

The genotype, the underlying genetic basis of an individual, is never directly available how-

ever. The visible expression of the genotype is referred to as its phenotype. The usage of the

term phenotype is often considered to be related to the physical attributes of the individual

concerned but, in the realm of population genetics, this term is usually used more specifically to

relate to the visible alleles in a genetic assay. From a statistical standpoint it is apt to consider
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the genotype as a hidden state which expresses itself through an imperfect observation process

as the phenotype.

One commonly encountered form of imperfect observation comes in the form of ‘null’ al-

leles. Null alleles are alleles that can only be observed in homozygous individuals (which we

will henceforth refer to as ‘homozygous nulls’). In hetorozygous individuals with at least one

null allele preset (henceforth referred to as null heterozygtes), the presence of a null allele can

make the individual appear homozygous for the non-null allele when it is in fact cryptically

heterozygous. Dominant markers such as Amplified Fragment Length Polymorphisms (AFLPs;

Vos et al., 1995) or Random Amplified Polymorphic DNA (RAPDs; Williams et al., 1990) only

have two allele types denoting a band presence (positive allele) or a band absence (negative

allele) at a given locus. If a positive allele is present then a band appears at the respective

place on the assay. It is therefore impossible to distinguish a heterozygote individual from a

homozygote individual with multiple copies of the positive allele when employing these marker

types. In this sense the negative allele is a ‘null’ allele although for these marker types the term

‘recessive’ is more commonly used.

Even markers that are normally codominant, such as microsatellites or Single Nucleotide

Polymorphisms (SNPs), can include ‘null’ alleles (Dakin & Avise, 2004). These alleles usually

result from a mutation at a primer binding site resulting in a failure to amplify the respective

marker. A number of methods exist for the estimation of null allele frequencies in dominant

markers (see Foll et al., 2008; Holsinger et al., 2002; Hill & Weir, 2004; Zhivotovsky, 1999;

Lynch & Milligan, 1994; Stewart Jr & Excoffier, 1996). Chapter 2 extends these methods to

also incorporate allele frequency estimations for codominant, polyallelic markers that can be

used to directly estimate fixation indices. Chapter 2 also includes an option to incorporate other

forms of genotyping error into estimates of allele frequency, thus allowing for uncertainty related

to both genotyping errors and dominancy to be included in estimates of allele frequencies, and,

furthermore, in statistics that rely on these estimates of allele frequencies.

1.3 Parentage Analysis and Population Parameter Esti-

mation

The use of methods of parentage analysis to derive information regarding population-level rel-

evant parameters is not a new field. Many otherwise cryptic facets of a species’ breeding
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strategy can be diagnosed with the application of paternity analysis, including, but not limited

to, the frequency of extra-pair copulations (Zheng et al., 2010; Wojczulanis-Jakubas et al., 2009;

McEachern et al., 2009; Uller & Olsson, 2008; Simmons et al., 2007), diagnosis of assortative

mating (Bos et al., 2009), and variances in breeding success (Seamons & Quinn, 2010; Doerksen

& Herbinger, 2008; Tatarenkov et al., 2008). These distributions of individual breeding success

can be used to infer effective population size (Bouteiller & Perrin, 2000; Hill, 1972), or included

as a variable in more complex models of breeding strategy (for example Vanpé et al., 2009a).

If information pertaining to the location of samples is also available to the investigator then

it is also possible, once parentage is established, to formulate model to describe the geograph-

ical spread of genetic information (Saenz-Agudelo et al., 2009). This application of parentage

analysis allows assessment of the inter-generational movement between patches in a network of

habitats (Botsford et al., 2009; Saenz-Agudelo et al., 2009; Stow & Sunnucks, 2004). If accurate

point-to-point distance estimates can be made between the parent individuals and the offspring,

then it is possible to construct a probability distribution of dispersal distances from the mother

to the offspring (Broquet & Petit, 2009; Robledo-Arnuncio & Garca, 2007), otherwise known as

the (maternal) dispersal kernel. It is also possible to calculate the distance over which paternal

contributions can be made, such as the distance of pollen dispersal in plants (Robledo-Arnuncio

& Gil, 2005).

Paternity analysis methods falls into three broad categories: exclusion methods, likelihood

methods, and fractional methods. Exclusion methods exclude potential parent pairs based on

genotype incompatibilities between the putative parents and the offspring. Exclusion meth-

ods fail when the number of loci are few, or exhibit low polymorphism as to be insufficient

to exclude all but one parent pair. Conversely, mutations, genotype errors, or the presence

of recessive alleles may result in the erroneous exclusion of the true parent pair under these

methods (Cifuentes et al., 2006). Likelihood methods such as those employed by Meagher &

Thompson (1986) or Marshall et al. (1998) allow the weighting of the non-excluded parent pairs

based on the probabilities of the observed parental genotypes resulting in the observed offspring

genotype. However, these methods when implemented are often simply used to assign pater-

nity to the most likely parent pair. This ignores the uncertainty associated with the parentage

assignment and may bias subsequent analyses for which parentage assignments form the basis.

Fractional methods provide the best mechanism for retaining uncertainties in parentage as-
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signments. Here no absolute assignment is made and different parentage pairs are weighted

according to their likelihood (Devlin et al., 1988) or the posterior probability output from a

Bayesian analysis such as that implemented in the R package MasterBayes (Hadfield et al.,

2006). This allows the investigator to weight the conclusions of subsequent analyses according

to the probabilities of the set of parentage assignment on which they are based.

Whilst many of the current methods of parentage allow for some degree of genotyping

error (see Jones & Ardren, 2003), most employ observation models that are only suitable for

codominant markers. Moreover, even if codominant markers are being used, very few methods

of parentage analysis allow for the incorporation of null alleles. Chapter 3 describes a series

of observation models to link a true genotype to an observed phenotype. This allows the

implementation of a new method of fractional parentage analysis that allows for the joint

inference of parentage from mixtures of different marker types for systems of arbitrary ploidy.

1.4 Individual-Based Models in Population Modelling

We have already discussed how estimates of indices of population structure are determined by

estimates of allele frequencies, for which an example allele frequency estimation framework is

described in chapter 2. We have also discussed how parentage analysis techniques, such as

those described in chapter 3, can be employed to derive estimates of population parameters.

The next step is to produce a method by which this information can be used to model popula-

tion dynamics.

One method is to simply enter the garnered values of the parameters into models of popu-

lation dynamics, ensuring that sensitivity of the outputs over the credible range of parameter

estimates given their uncertainty is taken into account. Another method gaining popularity

is individual-based modelling ( Lomnicki, 1999; Grimm et al., 1999; DeAngelis et al., 1994).

Here individuals are described separately, either mathematically or, more commonly, in the

context of a simulation model, and population-level phenomenon emerge from the interactions

of individuals with themselves and the environment. The draw of individual-based modelling

comes with the ability to model much more of the complexity of the system. For example, the

Soda model of Bennett et al. (2009) permits the assessment of human disturbance on relatively

complex individual-level behaviour that would be difficult to assess using standard population

models.
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The added complexity of this so-called individual-based ecology is also its curse however.

The data generation mechanism of individual-based models cannot typically be expressed in a

closed analytical form and so the probability of observing a data set given a set of parameter

values, the likelihood, is difficult to calculate. The combination of the absence of a likelihood

function and the fact that individual-based models commonly have a higher parameter load

than their simple analytical equivalents means that they are notoriously difficult to fit to real

data and analyse (Murdoch et al., 1992; Beissinger & Westphal, 1998). Some authors have

suggested a ‘pattern-orientated’ approach (Grimm et al., 1996; Wiegand et al., 2003; Grimm

et al., 2005) where potential parameter values are filtered according to their ability to reproduce

patterns of interest in the data. Pattern oriented modelling has yet to adopt a rigorous statistical

framework however, and currently there exists no mechanism for the assessment of the relative

probability of different parameter values. Some promise has been made on this front with the

advent of methods to apply approximate Bayesian techniques to models for which there is no

likelihood (see Beaumont et al., 2002; Sisson et al., 2007; Marjoram et al., 2003; Toni et al.,

2009). Chapter 4, introduces these methods to the field of individual-based modelling and

extends these methods to incorporate scenarios where dynamics models are being fitted to a

data time series.

1.5 Scaling up Further to Metapopulation Models

Individual-based models can provide very useful and detailed descriptions of how individuals

move and interact with their environment but their application to large scale problems can

be limited. At the very large scales it can be computationally prohibitive to simulate enough

individuals to truly represent the population of interest. Under these situations it is common

for the investigator to rephrase the individual-based model as a metapopulation model or a

lattice-based population model. If however you have used the techniques outlined in chapters

2, 3, and 4 to produce a wonderfully parameterised individual-based model, then how can you

make use of this parameterisation when stepping up to the next ecological scale?

Some parameters are easier to scale-up than others. Estimates of individual-level fecundity

and mortality can be related to the growth parameter in most population growth models (see

Law et al., 2003; Murrell et al., 2004). Dispersal can be a very difficult process to scale ap-

propriately however. Firstly a dispersal process that is specified at the level of the individual,
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and in continuous space, can be difficult to translate into a dispersal mechanism described

in terms of an artificial geometry placed upon the landscape (Holland et al., 2007). Whilst

lattice-based models do exist (Chesson & Lee, 2005), these models are not described in terms

of individual movements and it may be difficult to see how the parameters of the two models

match. Chapter 5 describes four different methods for the approximation of individual-level

and continuous-space dispersal on a grid. The chapter details how to use the derived cell-to-

cell transition probabilities to estimate connectivity between nodes in a metacommunity, thus

providing the last step in scaling from gene to population.



CHAPTER 2

The unknown genotype: estimating recessive allele frequency in the

presence of observation error

Summary

1. The non-expression of recessive alleles in the presence of their dominant counterparts

results in the presence of cryptic heterozygotes.

2. High incidence of cryptic heterozygotes can result in significant biases in the calculation

of indices of population structure. Moreover, zygosity misdiagnosis can result in the

erroneous exclusion of true parentage pairs in paternity analysis.

3. Methods exist to estimate the frequencies of the recessive allele type but none take into

account the extra complications arising from errors of genotyping.

4. We describe here a method for calculating allele frequencies for alleles with expression

hierarchies, even in the presence of genotyping error. The method is applied to the

expressed phenotype of RAPD megagametophyte data for the eastern white pine (Pinus

strobus) and black spruce (Picea mariana) and for which individual haploid runs can

provide accurate estimates of recessive allele frequency.

5. The methods described in this chapter provide reliable estimates of the null allele fre-

quency over a range of different genotyping error rates. Unlike existing methods, we show

14
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that our estimates are accurate even when the null allele frequency is low.

6. We discuss possible extensions to the algorithm for the joint calculation of the inbreeding

coefficient, FIS , and outline some of the difficulties in achieving this.

2.1 Introduction

Molecular methodologies have far expanded the potential field of inference for ecological prob-

lems. The otherwise cryptic assessment of differentiation between populations, made possible

by the tools developed in the now mature discipline of quantitative population genetics, of-

fers insights into dispersal and historic vicariance events and allows estimation of the level

of inbreeding and assortative mating occurring within populations. Where sufficient data are

available, such examinations can be supplemented by the use of parentage analysis techniques:

the assignment of paternity, and often jointly, maternity, to an offspring can elucidate the

mechanisms that drive the geographic diffusion of genes. This in turn allows differentiation of

the contributions of gamete transfer and post-natal dispersal to gene flow in addition to the

estimation of other population parameters critical to conservation biology (Haig, 1998).

The application of such methods can be problematic when some individuals have genotypes

containing alleles that are not expressed using conventional molecular techniques. Biallelic

markers, such as Amplified Fragment Length Polymorphism (AFLPs: Vos et al., 1995) or Ran-

dom Amplified Polymorphic DNA (RAPD: Williams et al., 1990), exhibit one of only two

possible phenotypes: either a band is present at a given loci, or it is absent. At the genotypic

level, the allele responsible for band presence is dominant and a positive phenotype can, in the

absence of observation error, arise from both homozygous positive and heterozygous genotypes.

Only a homozygous negative genotype produces an absent band phenotype. Even co-dominant

markers such as microsatellites may still exhibit a ‘null’ allele which only becomes expressed in

the homozygous case (Dakin & Avise, 2004).

Null alleles can cause a number of problems in paternity analysis. The simulations of Dakin

& Avise (2004) show that, for realistic incidence rates of null alleles, the confusion of null het-

erozygotes for non-null homozygotes will result in a small under-estimation of exclusion power.

More importantly, the misdiagnosis of a heterozygous offspring with one null allele (or more

in a polyploidal system) as a non-null homozygote could result in the erroneous exclusion of

a parent pair if both were also null heterozygotes but also misdiagnosed as differing non-null
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homozygotes. The potential for null allele presence to incorrectly assign parentage is worry-

ing, indeed Dakin & Avise (2004) state probabilities of excluding an actual parent as high as

15% when null allele frequencies were are around 20%: the upper end of null allele frequency

reported in the literature they review. Commonly used paternity analysis software such as

Cervus (Marshall et al., 1998), Famoz (Gerber et al., 2003), Papa (Duchesne et al., 2002)

and Parente (Cercueil et al., 2002), do not treat null alleles as a special case and assume

that the frequency is sufficiently low as to not affect assignment, or argue that the genotyping

error models allow for enough flexibility to counteract a modest null allele load (see Jones &

Ardren, 2003). Cervus does include a method of assessing loci for the presence of null alleles

by calculating departures from Hardy-Weinberg equilibrium (Marshall et al., 1998) but such

departures can also arise from many phenomena unrelated to null allele frequency including

inbreeding and Wahlund effects (Chakraborty et al., 1992; Dakin & Avise, 2004).

Several metrics for the assessment of population structure from genetic data require approx-

imations of allele frequency. The popular FST statistic of Wright (1951), for the calculation of

population subdivision, requires knowledge of mean allele frequencies across all populations as

well as the variance between them (Weir & Cockerham, 1984). Similarly, the genetic distance

statistic, D, of Nei (1972), the basis of which was later developed into the statistics DST , GST

and RST among others (Nei, 1973), require calculations relating to the probability of picking

identical alleles from pools of potential alleles for which estimates of allele frequencies are essen-

tial. In the case of null alleles, simply adding up the number of observed homozygotes, ignoring

a potentially large number of cryptic alleles present in heterozygotes, and multiplying the total

by the ploidy will obviously result in downward biases in allele frequency estimates, and hence,

biases in the calculation of statistics of population structure.

An early attempt to estimate null allele frequency, as applied in Stewart Jr & Excoffier

(1996), involved simply taking the square root of the null homozygote frequency. This tech-

nique, in its most basic form, requires the assumption of Hardy-Weinberg equilibrium, but, if

an estimate of the inbreeding coefficient is known, then it is possible to extend this method to

populations exhibiting significant inbreeding (or outbreeding in the case of negative inbreeding

coefficients). The main problem with this technique is that, especially at low allele frequen-

cies, estimates tend to exhibit a strong downward bias. Lynch & Milligan (1994) present an

asymptotically unbiased estimator for null allele frequency, but this requires the exclusion of

loci with less than three null homozygotes, creating a sampling bias of loci that exhibit high
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null allele frequencies (Isabel et al., 1995, 1999; Szmidt et al., 1996; Zhivotovsky, 1999). More

recent estimators fare much better: the popular estimator described by Zhivotovsky (1999) and

demonstrated on the dataset of Isabel et al. (1995) was shown to exhibit a much reduced bias

compared to the estimators of Lynch & Milligan (1994) and Stewart Jr & Excoffier (1996),

although the relative performance of all estimators is not always pronounced for all data sets

(see Krauss, 2000). Further developments, such as the moment estimation technique of Hill &

Weir (2004) and Markov Chain Monte Carlo (MCMC) sampler of Holsinger et al. (2002), have

incorporated the joint estimation of both the null allele frequency and indices of population

structure. In some cases the Holsinger et al. (2002) estimator has been shown to perform quite

poorly for null allele estimation but a reformulation by Foll et al. (2008) may have gone some

way to correcting these biases.

The calculation for null allele estimation is further confounded by the incidence of errors in

the genotype scoring process. Aside from the incidence of true null homozygotes, where mu-

tations arising at primer annealing sites result in non-amplification (Kwok et al., 1990), there

are many ways in which insidious fake null homozygotes can arise. Insufficient quantity or poor

quality template can, in some cases, lead to a failed amplification and incorrect diagnosis of

a null-homozygote (Dakin & Avise, 2004). None of the null allele frequency estimation tech-

niques described above take into account genotyping error. Although most parentage analysis

programs incorporate some form of genotyping error (Jones & Ardren, 2003), those that at-

tempt to identify loci with high null allele incidence do not allow for such error when calculating

departure from Hardy-Weinberg equilibrium.

We present here a theoretical extension of the work of Zhivotovsky (1999) to allow the

calculation of null allele frequencies in the presence of genotyping error. This extension allows

for estimation of not only of biallelic recessive allele frequencies, but also null allele frequencies

in codominant markers. We describe how to robustly propagate uncertainty in such estimates

to indices of population structure, allowing for departures from Hardy-Weinberg equilibrium,

even when uncertainty exists in the coefficient of inbreeding.
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2.2 Materials and Methods

2.2.1 Genotype Probabilities

We first define the vector, fj , as an allele frequency vector with each element, fja , equal to the

proportional frequency of allele a at locus j of the source population from which the samples

have been made. The vector fj is a list of exhaustive possible allele frequencies including the

null allele such that
∑

a fja = 1. From this vector it is then possible to calculate the probability

that an individual, i, drawn at random from a large population in Hardy-Weinberg equilibrium

(HW ) exhibits genotype, Gij , at locus j:

PHW (Gij) =

Cj∏
k=1

∑
a

fjaωa (vijk) (2.1)

ωa (vijk) is an indicator function which equals one when the allele at position k is the same as

the value of allele a, and zero at all other times. Here the ‘value’ of an allele is left to be defined

appropriately to the marker system used in the analysis: in dominant, biallelic marker systems

the usual nomenclature is to denote the dominant allele with a + and the recessive allele with

a −. In codominant, polyallelic marker systems, such as microsatellites and RFLPs, it is usual

that allele values be simply represented by the fragment length. Cj denotes the ploidy of locus

j. In most analyses Cj will be held constant between loci.

Continuing from both Lynch & Milligan (1994) and Zhivotovsky (1999), we extend the

calculation of expected diploid genotype frequencies for populations that exhibit some degree

of departure from Hardy-Weinberg equilibrium in the biallelic case to also include polyallelic

marker systems. In a biallelic marker with alleles M and m, we start with the assertion that

the probabilities of selecting an individual at random in a large inbreeding or outbreeding (IO)

source population with the each of the genotypes below are the following:

PIO (Gij = MM) = (1 − FIS)PHW (Gij = MM) + fjMFIS (2.2)

PIO (Gij = Mm ∪Gij = mM) = (1 − FIS)PHW (Gij = Mm ∪Gij = mM) (2.3)

PIO (Gij = mm) = (1 − FIS)PHW (Gij = mm) + fjmFIS (2.4)

Here, FIS is the coefficient of inbreeding. Values of FIS approaching unity denote populations

exhibiting extreme inbreeding and heterozygote deficiency. Values of FIS that are negative may

include outbred populations with an excess of heterozygotes. A source population in Hardy-
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Weinberg equilibrium is a special case of the inbreeding/outbreeding model with FIS = 0. From

this basis it is a simple conceptual step to include polyallelic marker systems:

PIO (Gij) =

 (1 − FIS)PHW (Gij) + fjaFIS if homozygous for allele a

(1 − FIS)PHW (Gij) if heterozygous
(2.5)

which, using the result of equation 2.1, equates to the following:

PIO (Gij) =


(1 − FIS) (fja)

Cj + FISfja if homozygous for allele a

(1 − FIS)

Cj∏
k=1

∑
a

fjaωa (vijk) if heterozygous
(2.6)

The lower bound of FIS is related to the allele frequency vector, fj , of each locus. To avoid

negative homozygote probabilities and heterozygote probabilities greater than one when FIS is

negative, any potential values for fij and FIS must conform to certain restrictions. To ensure

that PIO ≥ 0 for the homozygous case of allele a at locus j of sample i then

FIS ≥ − (fja)
Cj−1

1 − (fja)
Cj−1

(2.7)

Equally, to ensure that PIO ≤ 1 in the heterozygous case, the following inequality must also

hold:

FIS ≥ 1 − 1∏Cj

k=1

∑
a fjaωa (vijk)

(2.8)

It is important to note that, under this specification, genotype probabilities are location spe-

cific; a heterozygote with genotype Mm is not the same as mM and to calculate the probability

of either genotype occurring, it is necessary to sum the relevant probabilities such that:

P· (Gij = Mm ∪Gij = mM) = P· (Gij = Mm) + P· (Gij = mM) (2.9)

P· (x) denotes the probability of the genotype, x, being drawn from a large population in either

under Hardy-Weinberg equilibrium (HW ), or, from the more general inbreeding/outbreeding

source population (IO).

2.2.2 Including Observation Error

Equations 2.1 and 2.5 describe the likelihood of a genotype at a given locus. However, even in the

absence of genotyping errors, the existence of null alleles ensures that the observed phenotype

is not always an accurate representation of the genotype. Indeed, for any given phenotype there
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may be a number of possible genotypes that will provide the same observation. In order to

calculate the likelihood of observing a phenotype, Oij , at allele j and individual i given the

allele frequencies of the source population and the inbreeding coefficient it is therefore necessary

to integrate over all genotype possibilities. If we let Hj denote the set of possible genotypes

then:

P (Oij |fj , FIS ,βββij) =
∑

Gij∈Hj

P (Oij |Gij ,βββij)P (Gij |fj , FIS) (2.10)

where P (Gij |fj , FIS) is the likelihood of drawing genotype Gij from a large population with

allele frequencies, fj , and inbreeding coefficient FIS . Crucially, the probability of observing a

phenotype, Oij , given the ‘true’ genotype, Gij , or P (Oij |Gij), is the observation model. Here

it is possible to specify any mechanism that results in partial observation of the genotype such

as the masking of recessive alleles, or genotype scoring errors. The vector, βββij , is a set of pa-

rameters for the observation model for the marker at locus j of sample i. In most analyses the

observation model will not be locus or sample specific; the value of βββij will not vary between

samples and loci. We include the notation here to allow departure from this simple case for

when markers of different types are to be jointly analysed or, in the rare case where particular

samples are known a priori to exhibit different error rates.

For biallelic markers in systems of low ploidy the set of possible genotypes at locus j, Hj ,

is very small. For example, a diploid AFLP marker has only four genotypic states: ++, +−,

−+ and −−. In general, the number of genotype combinations (Nj) possible under any given

marker system at locus j is given by Nj = A
Cj

j , where the allele total, Aj , includes any null

alleles. However, it is not inconceivable that the set of genotypes can, for some markers, become

very large and theoretically infinite. For marker systems where alleles are defined by their frag-

ment sizes, there is no upper bound to the number of alleles. Although theoretically this may

be the case, practically it is only possible to observe fragment sizes defined within the bounds

that the experimental protocol defines. Moreover, the alleles present in the sampled population

are limited to those present in the source population. Obviously, it is impossible to know the

full set of alleles present in the source population, but, for practical purposes, it may be suffi-

cient to assume that all possible alleles are present in the sampled population. An alternative

way to address this problem is to include an extra co-dominant allele type that represents all

unsampled alleles in the source population and estimate the frequency of the unsampled allele

like any other allele.
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By assuming that each individual i is an independent sample, and that, within this indi-

vidual, the genotypes at each locus are independent from the genotypes at the other loci, it

is possible to calculate the joint likelihood of observing the entire set of phenotypes across

all samples and loci, O. If we let f represent the set of allele frequencies across all loci,

{f1, . . . , fj , . . . , fL}, and βββ represent the set of observation model parameters across all samples

and loci, {βββ11, . . . ,βββij , . . . ,βββSL}, where L is the number of loci sampled, and S, the number of

samples, then:

P (O|f , FIS ,βββ) =
∏
j

∏
i

P (Oij |fj , FIS ,βββij) (2.11)

By simple application of Bayes theorem:

P (f , FIS ,βββ|O) =
P (O|f , FIS ,βββ)P (f , FIS ,βββ)y

VfFISβββ

P (O|f , FIS ,βββ)P (f , FIS ,βββ) df dFIS dβββ
(2.12)

where VfFISβββ is a joint volume of integration for the parameters to be estimated. If some

information, derived independently from the data used in the study, already exists on known

distributions or values of model parameters then this previous knowledge can be expressed

through the prior, P (f , FIS ,βββ). For the most part, little or nothing can be inferred about the

model parameters before the analysis takes place and so, in most applications, the prior is set

to be minimally informative. It is important to note that, whatever prior is used, the allele

frequencies and the value for the inbreeding/outbreeding coefficient, FIS , are not independent

and must be treated as such in specification for the prior functional form. For all loci, any

values for allele frequencies which do not sum to one, or values of FIS that, given the allele

frequencies, do not adhere to the conditions specified in equations 2.7 and 2.8, must be given a

zero weight for the probability calculations to be valid.

Estimates for allele frequency, FIS and parameters of the phenotype observation model can

be achieved using techniques to evaluate equation 2.12. Simple methods of Monte Carlo in-

tegration (see Fishman, 1996) to approximate the denominator will not work in this instance.

The requirement that allele frequencies for each locus sum to one, alongside the fact that the

lower bound of FIS is dependent upon these frequencies, complicates the generation of sample

values for these parameters with uniform support over the volume of integration, a necessary

step in Monte Carlo integration. Some flavours of Monte Carlo integration, such as those that

implement importance sampling (Oh & Berger, 1993), relax the requirement to generate sam-

ple values with uniform support. Even on application of these methods, cases where there
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are a large number of loci, the volume of integration is likely to be highly dimensional and

the convergence of Monte Carlo methods of integration for estimation of the constant on the

denominator of equation 2.12 may be slow. Where no finite bounds exist for the parameters of

the observation model, it is not possible to use these techniques, regardless of loci dimensionality.

Whilst it may be difficult to compute the probability density function of the posterior

distribution directly, it is possible to sample from the posterior distribution using Markov

Chain Monte Carlo (MCMC) sampling (Gilks et al., 1996). The Metropolis-Hastings algorithm

(Metropolis et al., 1953; Hastings, 1970; Chib & Greenberg, 1995) generates samples from the

target distribution by taking a set of possible parameter values, θθθ, and proposing new values,

θθθ∗, according to a proposal density, K (θθθ∗|θθθ). Either θθθ or θθθ∗ is chosen randomly as a sample

from the posterior distribution with relative acceptance probability weighted according to the

relative likelihood of observing the data using the parameters, their prior probability, and the

probability that they were proposed. The algorithm is repeated, taking θθθ as the most recently

accepted sample each time. As the number of repeats becomes large the density of the set of

samples generated from the algorithm converges on the probability density function given by

the posterior distribution.

The samples given from the Metropolis-Hastings algorithm are guaranteed eventual conver-

gence, regardless of the proposal density chosen, provided that the probability of proposing a

vector of parameter values is greater than zero for all values with some posterior support. The

choice of proposal density does however effect the rate of convergence and inappropriate choices

for the proposal density may mean that converge becomes too slow to be computationally fea-

sible.

2.2.3 An Observation Model for Dominant Markers

The model framework description presented here allows for the fitting of an application and/or

marker specific model of observation error. Here observation error can be split into two separate

components: firstly, laboratory errors such as those arising from contamination or failed am-

plification can produce errors in genotype assignment. Secondly, given a particular genotype,

misdiagnosed or not, some marker systems exhibit different hierarchies of dominance resulting

in the non-expression of recessive alleles.

We describe here a simple model for phenotype expression for dominant, biallelic markers
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Figure 2.1: Directed acyclic graph of the modelling framework described in this paper. Circular
nodes represent parameters to be estimated: FIS is the inbreeding coefficient, fj is the vector of
relative allele frequencies, and βββij is a vector of parameters for the observation model. Gij is the
true genotype of individual i at locus j whilst Oij is the observed phenotype, represented as a
rectangular node because data are available for the value of this parameter. Variables contained
within the outer frame, are, or can be, specified uniquely to each locus whilst variables also
contained with the inner frame, are, or can be, specified uniquely to each sample and locus
combination.



CHAPTER 2. ALLELE FREQUENCY ESTIMATION 24

with dominant allele, denoted by ‘+’, and a recessive allele, denoted by ‘−’. We define two

parameters, ϕj and ψj , that determine two sources of error. The first source of error, given by

ϕj , is the probability of misdiagnosis of a dominant gene at locus j as a recessive gene. This

can arise from non-amplification due to sample contamination by inhibitory agents (Opel et al.,

2010; Wilson, 1997), laboratory errors or low-quality or insufficiently populous template (Watts

et al., 2007; Gagneux et al., 1997; Broquet & Petit, 2004; Taberlet et al., 1996). ψj , the second

source of error, is the probability of misdiagnosing a null allele as a dominant type. This error

type, albeit rarer, can arise from sample contamination or errors of allele identification caused

by the confusion of background fluorescence in the gels as band presence (Whitlock et al., 2008).

Using this framework we can consider the number of truly positive homologous genes at

locus j of sample i that are correctly identified as such, as a random variable, Aij+, drawn from

a binomial distribution with parameters nij+, the number of truly positive homologous genes,

and trial success parameter, 1 − ϕj , the probability of correctly diagnosing a positive allele.

In a similar vein, we define the random variable, Aij−, as the number of recessive homologous

genes at locus j of sample i incorrectly identified as the dominant type. Aij− is assumed to be

drawn independently from Aij+ according to a binomial distribution with parameters ψj , the

probability of incorrectly diagnosing a recessive allele as its dominant analogue, and nij−, the

number of negative homologous genes such that Cj = nij+ + nij−. From this specification a

band absence can only be observed when all truly positive homologous genes are misdiagnosed

as negative (Aij+ = 0) and that all truly negative genes are correctly identified (Aij− = 0).

So, if

Aij+ ∼ Bin (nij+, 1 − ϕj) (2.13)

Aij− ∼ Bin (nij−, ψj) (2.14)

then

P (Oij |Gij , ϕj , ψj) =


1 − P (Aij+ = 0)P (Aij− = 0) if Oij = +

P (Aij+ = 0)P (Aij− = 0) if Oij = −
(2.15)

=


1 − ϕ

nij+

j (1 − ψj)
nij− if Oij = +

ϕ
nij+

j (1 − ψj)
nij− if Oij = −

(2.16)
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This observation model can be used in equation 2.10 to calculate the likelihood of the entire

set of observation data given a set of allele frequencies, value of FIS , and observation model

parameters (βββij = [ϕj ψj ]
T

).

2.2.4 An Example Dataset

To assess the accuracy of the methods described here we apply the model to two data sets from

which accurate estimates of allele frequencies can be made. The first dataset is that collected

from 75 individuals over five natural populations of the black spruce, Picea mariana, spread

throughout a 1000km part of its range in Québec, Canada. The laboratory protocol, sampling

regime and loci selection criteria are published in Isabel et al. (1995). The second dataset is

that of the eastern white pine, Pinus strobus. Again 75 individuals were sampled across five

populations according to the methods published in Isabel et al. (1999). Further details of the

sampled locations can be found in Beaulieu & Simon (1994) (locations sampled are indexed by

ANT, BRO, SCH, USB, and ZEP).

In both data sets a series of RAPD markers amplified from haploid sexual tissues (6 to

8 megagametophytes) are taken from each individual sampled. Because the gametic tissue

is haploid it is easier to make accurate inferences pertaining to the genotype of the sampled

individual because in each megagametophyte sample, recessive alleles are expressed without

possible masking from dominant alleles at the same locus. Inferences made from gamete tissues

are not entirely free from error however. When the number of gametic tissue samples are few

there may be sampling error associated with the inferred homozygotes. For example, in the

diploid case, an individual, i, with Mij+ positively identified megagametophytes at locus j and

no negatively identified megagametophytes (Mij− = 0) still has a
(
1
2

)M
probability of being

observed in a truly heterozygous individual for which the analogous allele has not been sampled.

Although in this instance it is possible to isolate and remove the aspect of observation error

that relates to hierarchies of allele dominance, gamete tissue is still susceptible to the types of

genotyping error discussed in this paper. Assuming the genotyping error process described in

the previous section, we can assign the probability of observing a positive allele at locus j from

a randomly selected megagametophyte of individual i, dij+, as the probability of sampling and

correctly identifying a megagametophyte with positive genotype plus the probability of sampling

a megagametophyte with a negative genotype but erroneously identifying it as positive such
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that

dij+ =
Zij+

Cj
(1 − ϕj) +

Cj − Zij+

Cj
ψj (2.17)

where Zij+ is the number of positive alleles in the true, non-gametic, genotype at locus j of

individual i. If we assume that each sample of a megagametophyte is an independent Bernoulli

trial with probability of observing a positive result, dij+, then the random variable, Mij+,

describing the number of observed positive megagametophytes is drawn from a binomial distri-

bution. If we let Kij be the number of megagametophytes sampled from individual i at locus

j it follows that

Mij+ ∼ Bin (Kij , dij+) (2.18)

and so

P (Mij+|Zij+,Kij , Cj , ϕj , ψj) =

 0 if Mij+ > Kij+ or Mij+ < 0(
Kij+

Mij+

)
d
Mij+

ij+ (1 − dij+)
Kij+−Mij+ otherwise

(2.19)

Equation 2.19 describes the likelihood of observing the number of positively identified

megagametophytes given a known zygosity. By application of Bayes theorem it is possible

to use this likelihood function to infer the number of positive alleles in the genotype at locus j

of individual i:

P (Zij+|Mij+,Kij , Cj , ϕj , ψj) =
P (Mij+|Zij+,Kij , Cj , ϕj , ψj)P (Zij+)

Cj∑
k=0

P (Mij+|k,Kij , Cj , ϕj , ψj)P (k)

(2.20)

For most applications no prior information is known on the probabilities of the positive allele

count at a locus and so we can use a non-informative formulation that reduces the second terms

on both the numerator and the denominator, P (Zij+) and P (k) respectively, to the constant

1
Cj

. This reduces equation 2.20 to the following:

P (Zij+|Mij+,Kij , Cj , ϕj , ψj) =
P (Mij+|Zij+,Kij , Cj , ϕj , ψj)
Cj∑
k=0

P (Mij+|k,Kij , Cj , ϕj , ψj)

(2.21)

The next step in the analysis of the megagametophyte data is to pool the information

from each of the samples to provide a locus specific estimate of dominant allele frequency. We

define the random variable Zj+, where 0 ≤ Zj+ ≤ CjS, as the total number of positive alleles
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across all S samples at locus j such that Zj+ = Z1j+ + · · · + Zij+ + · · · + ZSj+. If we let

ℓij (x) = P (x|Mij+,Kij , Cj , ϕj , ψj), the probability mass function of the number of positive

alleles in the genotype of the ith individual, then it is possible to define the probability mass

function of the random variable Zj+ as υj (x), where υj (x) = P (Zj+ = x|Mj+,Kj , Cj , ϕj , ψj),

Mj+ = {M1j+, . . . ,Mij+, . . . ,MSj+}, and Kj = {K1j , . . . ,Kij , . . . ,KSj} as the following:

υj (x) = (. . . (. . . ((ℓ1j ∗ ℓ2j) ∗ ℓ3j) · · · ∗ ℓij) · · · ∗ ℓSj) (x) (2.22)

where ∗ is a convolution operator such that

(ℓhj ∗ ℓij) (x) =

min{x,CjS}∑
τ=0

ℓhj (x− τ) ℓij (τ) (2.23)

The absence of a simple, closed form, of the probability mass function of Zj+, υj (x), for

an arbitrary number of loci requires that evaluation be performed numerically. Fortunately we

can adapt the algorithm published in Butler & Stephens (1993) to allow the precise evaluation

of the probability mass function at all possible values of Zj+. This function was originally

developed to calculate the exact probabilities of the resultant probability mass function of a

random variable that is sum of a set of random variables independently drawn from binomial

distributions with varying trial success probabilities. In this application, we keep the general

structure of the algorithm intact but instead change the steps that use the probability of the

mass function to use values calculated using equation 2.21 instead.

Algorithm 1: Exact calculation of the probability mass function for total frequencies of the

positive allele in biallelic markers taken from haploid gamete tissues

1. Initialise an array a with CjS + 1 elements and index starting at zero. For all elements

of a set

ak =

 ℓ1j (k) if k ≤ Cj

0 if k > Cj

(2.24)

2. Set the sample iterator i = 2.

3. Initialise an array b with CjS + 1 elements and index starting at zero. Initialise each

element of b to zero.

4. Initialise an array c with Cj + 1 elements and index starting at zero. For all elements of
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c set ck = ℓij (k).

5. Set the array iterator k = 0.

6. Set the probability iterator h = 0.

7. Increment the value of bk+h by akch.

8. Increment h. If h ≤ Cj then go to step 7.

9. Increment k. If k ≤ Cj (i− 1) then go to step 6.

10. Set each element of a to the value contained in corresponding element of b.

11. Increment i. If i ≤ S then go to step 3.

12. Take the values of element of array a as completed calculations of the probability mass

function of variable Zj+ evaluated at the relevant index such that υj (k) = ak.

The resultant array ak can be used to calculate the 95% credible interval of positive allele counts

at the relevant locus by taking the index values of the array at which the cumulative probabilities

first exceed the values of 0.025 and 0.975. These indices, k0.025 and k0.975 respectively, can be

converted into credible intervals of positive allele frequencies by simply dividing the index by

the maximum number of positive alleles, CjS.

2.2.5 Fitting the Model

In all analyses it is important to note that the allele frequencies at each locus and the value

of the inbreeding/outbreeding coefficient are not independent. Firstly, the frequencies of the

total set of possible allele values must sum to one at each locus ,and secondly, that the value

for FIS adheres to the conditions laid out in inequalities 2.7 and 2.8. For these conditions to

be correctly addressed it is important to give nil prior weight to values that do not conform

to these conditions. A simple density function that provides uniform support over the values

of fj and that satisfy the unit sum requirement is a special parameterisation of the Aj dimen-

sional Dirichlet distribution, where Aj is the number of allele types at locus j, with all shape

parameters set to one. This reduces to

P (fj) =

 Γ (Aj) if
∑

a fja = 1 and 0 ≤ fja ≤ 1 for all a

0 otherwise
(2.25)
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Figure 2.2: Figure illustrating the maximum and minimum values for FIS , denoted by the black
lines, at different allele frequencies for a given locus in the biallelic case. When multiple loci
are considered, values of FIS are restricted to values that satisfy the boundary conditions at
the allele frequencies of each individual locus.
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where Γ (x) is the gamma function.

The minimum for the range of possible values of FIS is dependent upon the values of the

allele frequency vector across all loci, f . For scenarios where the value of FIS is not fixed,

we propose the use of a distribution for FIS that is conditionally uniform given a set of allele

frequencies so that the minimum possible value of FIS satisfies the conditions in inequalities

2.7 and 2.22 for all possible genotypes at all loci so

P (f , FIS) = P (FIS |f)
∏
j

P (fj) (2.26)

where

P (FIS |f) =


1

1−z(f) if z (f) ≤ FIS ≤ 1

0 otherwise
(2.27)

and z (f) is a function that calculates the minimum value of FIS given a set of allele frequencies

such that

z (f) = max {z1, z2, . . . , zj , . . . , zL} (2.28)

zj = max


1 − 1

Cj∏
k=1

∑
a

fjaωa (vijk)

,−

(
fj1

)Cj−1

1 −
(

fj1

)Cj−1
,−

(
fj2

)Cj−1

1 −
(

fj2

)Cj−1
, . . . ,−

(
fjAj

)Cj−1

1 −
(

fjAj

)Cj−1


(2.29)

Figure 2.2 shows the possible boundaries of FIS in the simple, one locus, biallelic case.

The analyses contained in this paper used fixed values for the parameters, ϕ and ψ, in

the biallelic observation model but other applications may require an estimate of genotyping

error rates from the data. In most implementations, the prior support for the parameters

for the observation model can be considered independent of the vector of allele frequencies

and inbreeding/outbreeding coefficient. If we consider the parameter values of the observation

model at each locus to be also independent then the full joint prior for all inferred values is

simply

P (f , FIS ,βββ) = P (FIS |f)
∏
j

P (fj)P (βββj) (2.30)

In order to successfully implement the Metropolis-Hastings algorithm and generate samples
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from a distribution with density described by equation 2.12, we require the ability to evaluate

three density functions: a prior function (equation 2.30), a likelihood function (equation 2.11),

and a proposal function. For the sake of efficiency it is important that the proposal function

only propose new values for βββ, f , and FIS that have some prior support, which means proposed

values of FIS must fall within the acceptable range and that the unit sum requirement of f

is upheld. One way to ensure that these conditions are met is to generate proposed values

for allele frequencies, f∗, using a truncated normal distribution for each allele frequency in

turn except for the last with a location parameter (corresponding to the mean parameter in

a non-truncated normal distribution) set to the previous frequency of the relevant allele type

and a shape parameter (corresponding to the standard deviation parameter in a non-truncated

normal distribution) denoted by ϵ1. The truncated normal proposal distribution for each allele

type would have a zero lower bound and an upper bound equal to the greatest possible value

that could satisfy the unit sum requirement: one minus the sum of the frequencies of all alleles

that have been set. The last allele frequency to be set is not drawn from any distribution but

simply taken to be the remainder of the available frequency. The probability density function

for the proposal of each allele frequency is therefore

P
(
f∗j1 |fj1 , ϵ1

)
=


e

−(f∗j1
−fj1)

2

2ϵ21

ϵ1
√

2π
[
Φ
(

1−fj1
ϵ1

)
− Φ

(
−fj1
ϵ1

)] if 0 ≤ fj1 ≤ 1

0 otherwise

(2.31)

P
(

f∗ja |fja , ϵ1, f
∗
ja−1

, f∗ja−2
, . . . , f∗j1

)
=


e

−(f∗ja−fja)
2

2ϵ21

ϵ1
√

2π

[
Φ

(
−fja+

∑a−1
c=1 f∗jc

ϵ1

)
− Φ

(
−fja
ϵ1

)] if 0 ≤ fja ≤
a−1∑
c=1

f∗jc

0 otherwise

where 1 < a < Aj

(2.32)

P
(

f∗jAj
|f∗jAj−1

, f∗jAj−2
, . . . , f∗j1

)
=


1 if f∗jAj

= 1 −
Aj−1∑
c=1

f∗jc

0 otherwise

(2.33)

Gathering the probability density functions together gives the joint distribution for a proposed
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frequency vector

P
(
f∗j |fj , ϵ1

)
= P

(
f∗j1 |fj1 , ϵ1

)
P
(

f∗jAj
|f∗jAj−1

, f∗jAj−2
, . . . , f∗j1

)
Aj−1∏
a=2

P
(

f∗ja |fja , ϵ1, f
∗
ja−1

, f∗ja−2
, . . . , f∗j1

) (2.34)

In the biallelic case, equation 2.34 simplifies further, removing the product term. Treating the

proposal of allele frequency vectors independently across loci means that the joint probability

of all proposed allele frequency vectors is simply

P (f∗|f , ϵ1) =
∏
j

P
(
f∗j |fj , ϵ1

)
(2.35)

Finally, once a set of allele frequencies are proposed, a new value for FIS , F ∗
IS , can be

proposed given the restrictions set out in inequalities 2.7 and 2.8. Like the proposition of allele

frequencies, we propose values for F ∗
IS by drawing from a truncated normal distribution defined

between an upper value of one and a lower bound given by the lowest possible value of FIS for

which inequalities 2.7 and 2.8 hold, z (f). This distribution has location parameter given by

FIS and shape parameter, ϵ2, such that

P (F ∗
IS |FIS , ϵ2, f

∗) =


e

−(F∗
IS−FIS)2

2ϵ22

ϵ2
√

2π
[
Φ
(

1−FIS

ϵ2

)
− Φ

(
z(f∗)−FIS

ϵ2

)] if z (f∗) ≤ F ∗
IS ≤ 1

0 otherwise

(2.36)

Thus the joint proposal distribution is as follows:

P (F ∗
IS , f

∗,βββ∗|FIS , f ,βββ, ϵ1, ϵ2) = P (F ∗
IS |FIS , ϵ2, f

∗)P (f∗|f , ϵ1)P (βββ∗|βββ) (2.37)

where P (βββ∗|βββ) is a proposal density function for the parameters of the observation model. Here

ϵ1 and ϵ2 are tunable parameters determining proposal step length in the allele frequencies and

inbreeding/outbreeding coefficient respectively. The values used for ϵ1 and ϵ2 do not affect the

eventual convergence of samples drawn using the Metropolis-Hastings algorithm to the target

density but they can affect the efficiency of convergence. Larger steps result in a faster explo-

ration of possible parameter combinations, but steps that are too large result in the proposal of

many more low probability combinations, and hence, higher rejection rate (Chib & Greenberg,

1995). Note that it is an easy step to calculate the inverse-step probability of generating the ini-

tial set of parameter values from the proposed parameter values P (FIS , f ,βββ|F ∗
IS , f

∗,βββ∗, ϵ1, ϵ2):
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simply reverse the standard and stared forms of the parameters in equation 2.37 and the rele-

vant sub-formulae.

Algorithm 2: Implementation of the Metropolis-Hastings algorithm for joint estimation of

allele frequencies, FIS and observation model parameters

1. Initialise the allele frequency vectors (f), FIS and observation model parameters (βββ) using

arbitrary values (although these values must be within the support of the prior).

2. For each jth locus:

(a) Create a new vector of observation parameters at locus j, βββ∗
j from a supplied proposal

density. In this study the values of the observation parameters, ϕj and ψj are fixed

and equal across all loci. We include this step here to show the reader where it is

possible to allow observation error rates to be estimated from the data (although see

discussion).

(b) Set the remaining frequency counter c = 1.

(c) For each ath allele type at the jth locus except for the last:

i. Create a new proposal frequency for allele a at locus j, f∗ja , by drawing a value

from a truncated normal distribution with location parameter fja and shape

parameter ϵ1 (using algorithms such as those published in Robert, 1995). The

possible values for f∗ja are truncated between zero and c.

ii. Decrement c by f∗ja .

(d) Set the last element of f∗j , f∗jAj
= c.

3. Create a new proposal value for the inbreeding/outbreeding coefficient, F ∗
IS , by drawing

a random value from a truncated normal distribution with location parameter FIS and

shape parameter ϵ2. The possible values for F ∗
IS are truncated between z (f∗) and 1.

4. Calculate

u =
P (O|f∗, F ∗

IS ,βββ
∗)P (f∗, F ∗

IS ,βββ
∗)P (f , FIS ,βββ|f∗, F ∗

IS ,βββ
∗)

P (O|f , FIS ,βββ)P (f , FIS ,βββ)P (f∗, F ∗
IS ,βββ

∗|f , FIS ,βββ)
(2.38)

where the first term on the numerator and the denominator is the likelihood, given by

equation 2.11, of the proposed and current parameter values respectively. The second

term is the prior expectation of the proposed or current parameter values (see equation

2.30). The final term corresponds the step probabilities given by equation 2.37.
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5. Generate a random uniform value, α, between zero and one. If α < min {1, u} then set

the current parameter values, f , FIS , and βββ, to the proposed values, f∗, F ∗
IS , and βββ∗,

respectively.

6. Store the current values of f , FIS , and βββ as a sample from the target distribution.

7. Return to step 2.

2.2.6 Assessing Model Performance

In the previous sections we have shown how to generate credible intervals for allele frequencies

at each locus using the raw megagametophyte data of Isabel et al. (1995) and Isabel et al.

(1999). Because this megagametophyte data is much more reliable indicator of the zygosity of

each of the individuals tested than phenotype data, we can use the estimates derived using algo-

rithm 1 as a benchmark for the performance of the allele frequency estimates using phenotype

data alone. Obviously, in most applications, non-gametic tissue is used and multiple replicates

of haploid markers are not available. To simulate the common case, where only a single band

presence or absence at each sample and locus represents the total information available to the

investigator, we reduce the series of megagametophyte runs at each sample and locus to a sin-

gle positive or negative value to simulate the corresponding phenotypes of markers taken from

non-gametic DNA with the same genotype. Positive phenotypes are generated if any of the

megagametophytes of a particular sample exhibit a positive phenotype and, conversely, nega-

tive phenotypes are generated only if all the megagametophytes exhibit negative phenotypes.

We then fit the hierarchical model to this phenotype data using the methods described in the

previous section. This allows the comparison of the allele frequency estimates derived from

methods applied to the generated phenotypes to those estimates derived from the full informa-

tion contained in the megagametophytes.

So far, the description of this allele frequency estimation technique has assumed that the

investigator will perform a joint inference of the error parameters, ψ and ϕ, alongside the allele

frequencies. Whilst this is encouraged for a standard analysis where there may be some un-

certainty over the error rate parameters and where this uncertainty should be incorporated in

estimates of the allele frequency estimates, it does not make sense when testing the performance

of the model inference of the phenotype against the inference of the allele frequency estimates

drawn from the more informative megagametophytes. This is because both the estimate of the
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‘true’ allele frequencies derived from the full megagametophyte data using algorithm 1 and the

frequency estimates derived from the hierarchical model described in this chapter and fitted

to the generated phenotype data using algorithm 2 are dependant upon these error rate pa-

rameters. If we are to use the relatively narrow band of possible allele frequencies from the

megagametophyte data as a benchmark for the performance of those allele frequencies gener-

ated from a model trained from the phenotype data alone then it is much more sensible to

fix the error model parameters and assess the performance of the phenotype-only model in

recreating the information present in the megagametophyte allele frequency estimates at given

values for the error parameters. We repeat the analysis for each of three possible values for ϕ

and ψ: 0.01, 0.05, and 0.1. These values span the range of error rates that are likely in any

genetic study. It is important to note that this approach is not a peculiarity to the fact that we

are using megagametophyte data as our benchmark estimate for the allele frequencies. Even

if we had generated artificial data as our benchmark then we would still require the use of an

observation model to convert the simulated genotypes into phenotypes to use as inputs to the

phenotype-only model.

The allele estimation procedure described previously was preformed on the observed pheno-

types from all available loci of the Pinus strobus and Picea mariana data sets. Four separate

chains of the Metropolis-Hastings algorithm were run for a total of 130000 iterations each and

for each locus separately. Starting values for the allele frequencies at each locus were drawn

from a uniform distribution between zero and one to initialise each chain. The first 30000 sam-

ples were discarded to allow for ‘burn-in’. A simple random-walk proposal function truncated

between the values of zero and one was used to generate candidate allele frequencies. The

standard deviation of the step-length of the random walk proposal function was 0.1. Visual

inspection of the trajectory of allele frequency estimates and the mixing of the chains showed

ample convergence in each analysis. Moreover, the values for the multivariate scale reduction

factor convergence metric proposed by Brooks & Gelman (1998) calculated for each of the

analyses ranged from 1.033 to 1.211. Under this convergence criterion, values close to one are

indicative of sets of chains for which an increase in run time will not significantly alter the

estimation of the parameter values.
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2.3 Results

Figures 2.4 and 2.3 show the null allele frequencies estimated for each locus tested from pop-

ulations of Pinus strobus and Picea mariana respectively, using the megagametophyte data

directly and inferred from using the phenotype data only. The figures illustrate a clear general

agreement between the allele frequencies estimated using the phenotype-only model and the

more direct inference from the raw megagametophyte data. This relationship appears to hold

across the range of potential error values tested. Moreover, the range of the credible interval

generated from the phenotype-only model is reasonably narrow, with most allele frequency

estimates falling with a 5% band for most loci, even under high rates of observation error.

Given that the allele frequency estimates from the megagametophyte data rarely fall outside

this band, this suggests that even though information is lost when only phenotype data exists,

allele frequency estimates made using the phenotype-only model can still provide reasonable

estimates of allele frequency.

2.4 Discussion

This paper describes a novel method to estimate recessive allele frequencies. Unlike existing

techniques, the methods described here allow for the inclusion of uncertainty arising from geno-

typing errors, and, as we have shown, the allele frequency estimates are robust even when the

error rates are high. The quality of the estimation holds even for loci with extreme null allele

frequencies. This contrasts with the allele frequency estimator of Zhivotovsky (1999), which

can over-predict null allele frequencies when they occur in low frequencies, and the estimator of

Lynch & Milligan (1994) which requires that at least three recessive homozygotes are present

at a locus in order to calculate the recessive allele frequency.

Allele frequencies lie at the core of a many number of metrics and statistics of population

genetics. The FST metric of Wright (1951), the D index of Nei (1972) and the DST , GST ,

and RST statistics of Nei (1973) are all common measures of population subdivision and are

applied regularly to draw inference about the genetical structure of populations from molecular

data. Moreover, formal tests of population subdivision, such as the G log-likelihood ratio test

of Goudet et al. (1996) also require accurate estimates of allele frequency in order for the test

to be statistically robust. The presence of null alleles distorts the perception of the zygosity

and allele frequencies in the population, causing difficulty in interpreting the outputs of such

methods.



CHAPTER 2. ALLELE FREQUENCY ESTIMATION 37

(a) ϕ = 0.01 and ψ = 0.01
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(b) ϕ = 0.01 and ψ = 0.05
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(c) ϕ = 0.01 and ψ = 0.1
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(d) ϕ = 0.05 and ψ = 0.01
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(e) ϕ = 0.05 and ψ = 0.05
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(f) ϕ = 0.05 and ψ = 0.1
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(g) ϕ = 0.1 and ψ = 0.01
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(h) ϕ = 0.1 and ψ = 0.05
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(i) ϕ = 0.1 and ψ = 0.1
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Figure 2.3: Recessive allele frequency estimates for a selection of RAPD loci from Picea mariana.
Solid black lines represent the 95% credible interval derived from the raw megagametophyte
data. The dotted grey lines represent the 95% credible interval of the posterior allele frequency
estimates derived using the methods described in this chapter and taking for input the observed
phenotypes. The solid grey line is the median value of the allele frequencies sampled using the
MCMC sampler.
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(a) ϕ = 0.01 and ψ = 0.01
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(b) ϕ = 0.01 and ψ = 0.05
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(c) ϕ = 0.01 and ψ = 0.1
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(d) ϕ = 0.05 and ψ = 0.01
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(e) ϕ = 0.05 and ψ = 0.05
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(f) ϕ = 0.05 and ψ = 0.1
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(g) ϕ = 0.1 and ψ = 0.01
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(h) ϕ = 0.1 and ψ = 0.05
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(i) ϕ = 0.1 and ψ = 0.1
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Figure 2.4: Recessive allele frequency estimates for a selection of RAPD loci from Pinus strobus.
Solid black lines represent the 95% credible interval derived from the raw megagametophyte
data. The dotted grey lines represent the 95% credible interval of the posterior allele frequency
estimates derived using the methods described in this chapter and taking for input the observed
phenotypes. The solid grey line is the median value of the allele frequencies sampled using the
MCMC sampler.
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The prevailing approach to address such issues is to avoid the use of dominant marker types

or codominant marker loci with high null allele frequencies for these types of analyses. This

presents a number of added problems however. Much information is wasted in simply removing

certain loci from the analysis. Throwing away loci that contain null heterozygotes may artifi-

cially bias the analysis as it is those loci exhibiting high levels of homozygosity that are most

likely to be removed by this protocol. Null heterozygotes may still be present in the remaining

loci and so it is not clear that the allele frequencies derived from the phenotypes from the re-

maining loci will neccessarily be a good reflection of their genotype distribution even after this

removal. A much better approach is to estimate the frequency of null alleles in these loci rather

than remove them. The methods provided in this chapter have been shown to provide reliable

estimates for the null allele frequency even if these frequencies are extremely high or extremely

low and so they can be instrumental in avoiding the wasteful removal of data to perform basic

molecular analyses of population structure.

In order to accommodate a wide range of situations, the modelling framework described

here allows for the joint estimation of allele frequencies, FIS , and parameters of the observation

model. Foll et al. (2008) point out that many different combinations of FIS and allele frequency

can result in the same expectation of allele frequencies expressed in the phenotype. Except when

the number of loci is large, methods which attempt a joint estimation of these parameters can

perform poorly (Bonin et al., 2007). However, only part of the problems associated with the

joint estimation of allele frequencies and FIS are due to colinearity of the parameters on the

likelihood surface. The latest manual of the software package Hickory (Holsinger et al., 2002)

describes an additional ascertainment bias in the joint calculation of FIS and allele frequency:

loci are chosen for their polymorphic properties as it is those loci that are the most informative

in the inference of population structure (Meudt & Clarke, 2007), not because they are indicative

of the total genomic difference between individuals or populations. Excluding non-polymorphic

loci results in a bias in the distribution of phenotypes which is used to inform estimates of FIS

(Foll et al., 2008). It is not always possible to correct this bias by retaining non-polymorphic

loci: RAPD and AFLP loci that express recessive phenotypes across the entire population are

impossible to identify.

Ascertainment bias can be partially addressed through the use of suitable priors for allele

frequencies or FIS . Zhivotovsky (1999), Foll et al. (2008), and Wright (1951) all talk about the

use of various parametrisation of a beta distribution, in the biallelic case, to describe the prior
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distribution of allele frequencies. Parameters for this prior can be fixed according to a theoretical

expectation of the status of the population (Wright, 1951) or themselves estimated as part of

the fitting process (Zhivotovsky, 1999; Foll et al., 2008). Both cases can be implemented within

this framework as an extra layer in the hierarchical model by adding an extra step where, if we

let αααij be the vector of parameters for the distribution describing allele frequencies at locus j

of sample i and ααα = {ααα11, . . . ,αααij , . . . ,αααSL}, the likelihood equation (equation 2.11) is replaced

by

P (O|f , FIS ,βββ,ααα) =
∏
j

∏
i

∑
Gij∈Hj

P (Oij |Gij ,βββij)P (Gij |fj , FIS)P (fj |αααij) (2.39)

Here P (fj |αααij) represents the probability of a vector of allele frequencies given a vector of pa-

rameters of the distribution controlling the allele frequencies. Samples are then drawn from the

following distribution instead of that of equation 2.12 using the Metropolis-Hastings algorithm:

P (f , FIS ,βββ,ααα|O) =
P (O|f , FIS ,βββ,ααα)P (f , FIS ,βββ)P (ααα)∫∫∫∫

VfFISβββααα

P (O|f , FIS ,βββ,ααα)P (f , FIS ,βββ)P (ααα) df dFIS dβββ dααα

(2.40)

P (ααα) is a hyperprior and describes the a priori distribution of ααα. In the biallelic case with beta

distributed prior described above, the vector ααα contains the two shape parameters of the beta

distribution, λ1 and λ2. The beta distribution is a very flexible distribution but when λ1 > 1

and λ2 > 1 the resultant unimodal distribution gives a zero probability weight to the extremes

of the allele frequencies. Given that it is loci with allele frequency extremes that are likely to

exhibit low polymorphism, and hence more likely to be excluded from the analysis, then by

restricting λ1 and λ2 to values that meet these conditions we are provided with a mechanism by

which ascertainment bias can be incorporated into the analysis. For markers with more than

two allele types, the ascertainment bias can be similarly addressed by specifying parameters

with values greater than one for a Aj dimensional Dirichlet distribution.

The addition of a genotyping error model further complicates this inference and has the ca-

pacity to extend the parameter likelihood colinearity into higher dimensions, creating problems

with parameter identifiability, and resulting in flat marginal posterior distributions for these

parameters. It is unlikely that one dataset alone will contain enough information to jointly

estimate the entire parameter space and so the authors stress the importance of either fixing

some parameters, hence making assumptions about the genotyping error rate or the level of

inbreeding or outbreeding, or assigning narrow priors for these parameters. In some cases it

may be possible to independently ascertain prior support for the parameters from information
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contained in other data sets, for example, as we have shown in this study, allele frequencies at

loci can be inferred from haploid gametic tissue.

It is important to note here that whilst we have treated null alleles specially, we have made

the strident assumption that they are of all the same type. A null allele can arise from a number

of different mutations, and it can be argued that two null alleles, whilst phenotypically indis-

tinct, may have a very different genetic basis. For parentage analysis, the presumed heritability

of ‘null’ without further division results in the non-exclusion of potential parentage pairs of a

given offspring where incompatible null genotypes are present. Metrics aimed at estimating

inter-population genetic dissimilarity may also exhibit downward biases as diversity in null al-

lele types cannot be incorporated into the analysis. Of course, for this issue to be addressed

correctly it is necessary to have some information on the null allele types. In the unlikely sce-

nario that this information exists for the loci of interest and that it is possible to express this

expectation as a prior, it is a small step of theoretical development to incorporate this within

the framework presented here. For all other occasions, the most parsimonious stance is to treat

all null alleles similarly. Adding weight to potentially erroneously allocated parents by creating

incompatible matches, when the assertion that null alleles types are differentiable is ground-

less, garners only questionable results from the application of parentage analysis techniques.

Moreover, in the realm of population genetics, the type I error of inferring that populations

are genetically distinct when in fact this is not the case is a much more grievous misdemeanour

than its type II equivalent: a situation that is encouraged if excessive, but fallacious, variability

from different possible null allele types is enforced on the data.

In order to analyse the RAPD data used to illustrate the methods described in this paper,

we have only described an observation model relevant to the case of biallelic dominant markers.

However, given the open nature for specification of the observation model, it is a simple exten-

sion to include observation models appropriate for the calculation of null allele rates amongst

codominant markers such as microsatellites or RFLPs. The extension to the codominant case

can be achieved most simply by using the bialleleic, dominant marker model described in this

paper but treating the null allele as the recessive ‘−’ allele and all other allele types as the

dominant ‘+’ allele. This method is only suitable if the only frequency of interest is that of

the null allele. Uncertainty in the frequency of the null allele necessarily means uncertainty

in the frequencies of all other allele types, and, in order to achieve a joint estimation of allele

frequencies, it is necessary to define a polyallelic observation model.
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Allele values in the codominant case are commonly defined by the fragment size and so the

component of the observation model that determines genotyping error must contain a mecha-

nism for the misdiagnosis of fragment length sizes. The error model described by Wang (2004)

and implemented in the parentage analysis programs MasterBayes (Hadfield et al., 2006) and

Colony (Jones & Wang, 2010) describes one such model. Here error rates are apportioned into

two types: class I types, those which involve the non-expression real allele types and equivalent

to the specification of the ϕ parameter of the model for bialleleic dominant markers described in

this paper, and class II types, where non-null allele types are replaced with a randomly selected

other non-null allele type.

Parentage analysis programs such as Cervus (Marshall et al., 1998; Slate et al., 2000) and

Parente (Cercueil et al., 2002) allow the incorporation of an error model whereby genotyp-

ing errors occur with a tunable rate parameter: where errors occur, the genotype at a locus

is replaced with a new genotype chosen either according to the expected frequencies under

Hardy-Weinberg equilibrium (using the observed allele frequencies), or according to the ob-

served phenotype frequencies of the sampled population (thus preserving population zygosity).

In the case of the ‘random relabelling’ error model which selects a replacement genotype based

on expected Hardy-Weinberg frequencies, the implicit assumption is made that allele frequen-

cies can be adequately estimated from the observed phenotype. This is patently not true for

dominant markers, but also, more insidiously, untrue for codominant markers containing null

alleles. Even in the absence of null alleles, errors related to scoring may introduce some uncer-

tainty into estimates of allele frequency. In addition, there is a logical inconsistency in the error

model specification of these programs: for any one genotype there is a possibility of error, and

given that an error occurs, a replacement is drawn from a population of genotypes or, in the

Hardy-Weinberg assumed case of Cervus, combination of alleles, with frequencies determined

by the sampled phenotypes which themselves are assumed to be free of error. Essentially each

genotype is treated as error prone but the population from which replacements are drawn is

inferred from the same genotypic information but with an error free assumption.

Aside from the logical inconsistency of these error models, it is difficult to envisage how

errors of the type implemented in Cervus would actually arise. None of the common genotyp-

ing errors described in the methods section of this paper would result in the replacement of a

single-locus genotype. Marshall et al. (1998) maintain that such an obfuscation in observation
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might arise from laboratory labelling errors, but in such an instance, we would expect that the

entire multilocus genotype would be replaced for the erroneous sample and not just the geno-

type at a single locus. Single locus genotype replacements may arise from data entry errors,

but, even in these cases, it would be more sensible to draw the replacement genotype from

the sample population, as implemented in Parente, and not from a theoretical population in

Hardy-Weinberg equilibrium.

The allowance for loci specific error models in equation 2.11 permits the joint estimation

of error parameters, FIS and allele frequencies from multiple marker types simultaneously.

Many studies of population genetics use multiple marker types in their inference. Whilst these

markers may not share error parameters they do share information pertaining to the inbreed-

ing/outbreeding of the population. The model described in this paper, alongside those of

Holsinger et al. (2002) and Foll et al. (2008) assume that estimates of allele frequencies are not

independent of the deviation of zygosity from Hardy-Weinberg equilibrium and so, under these

models, combined multilocus inference of FIS will result in better informed estimates of allele

frequencies.

In summary, errors in the genotyping process combined with the observation of recessive

alleles only in the homozygote case can result in significant biases in the estimation of allele

frequencies. We have described here a flexible method of allele frequency estimation, and,

through the example dataset used here, shown its efficacy in the biallelic case. We advocate the

use of an observation model that emulates the main sources of genotyping error and preserves

the hierarchy of allele dominance. Only then can true level of uncertainties relating to these

processes be expressed in estimates of population structure.



CHAPTER 3

A generalised parentage assignment method for mixtures of DNA

marker types and arbitrary ploidy levels

Summary

1. Genotyping errors and the presence of unobservable ‘null’ alleles can significantly bias

parentage assignment.

2. There have been a number of papers describing methods for incorporating genotyping

error into parentage analysis, but most place significant restrictions on the type of data

that can be analysed. Very few available programs can analyse information derived from

dominant markers, codominant markers with null alleles, or from markers that do not

exhibit standard Mendelian inheritance dynamics.

3. We present here a flexible Bayesian method to allow fractional parentage assignment from

a variety of molecular markers with many different modes of inheritance. We present a set

of marker-specific observation models that link the underlying true genotypes of samples

to the observed phenotypes for arbitrary ploidy.

4. We test the modelling framework in a population of Canary Island zebrafinch for which

the parentage is known.

5. We show that the marker specific observation models have the capability to better distin-

44
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guish parentage than generic random relabelling counterparts. We postulate that this may

be because of structural deficiencies in the random relabelling model which are unable to

account for errors of allelic dropout.

6. Parentage assignments can become poor when there is little prior information about the

genotyping error rates. However, even wide but reasonably bounded prior distributions

can markedly improve the performance of parentage assignment.

7. The framework presented here provides a novel method for the joint inference of paternity

from multiple marker types. The possible inheritance of recessive alleles for an appar-

ently homozygous parent pair is also explicitly calculated, avoiding fallaciously diagnosed

incompatibilities caused by the presence of null alleles that are unaccounted for in the

parental genotypes. This presents a substantial improvement over previous parentage

assignment methodologies.

3.1 Introduction

Many aspects of species’ ecology are influenced by patterns of parentage. The sexual behaviour

of species, including their degree of polyandry and polygamy and levels of inbreeding, are de-

termined directly by parentage relationships (Marker et al., 2008; Worthington Wilmer et al.,

1999; McEachern et al., 2009; Rourke et al., 2009; McLean et al., 2008; Efombagn et al., 2009;

Fernandes et al., 2008). When parentage patterns are combined with spatial information it

is possible to infer gene flow (Saenz-Agudelo et al., 2009), the movement of individuals and

gametes in space. This step is crucial, as it makes accessible the study of a broad range of

phenomena and elucidates the mechanisms that drive and constrain it; parentage analysis has

been applied to understanding the effects of home range (Martin et al., 2007), dispersal (Piotti

et al., 2009; Zeyl et al., 2009) and gamete transfer (Bacles & Ennos, 2008; Krauss et al., 2009;

Nakanishi et al., 2009) on gene flow and reproductive success. These processes, founded on

parentage patterns, in turn form the basis of population models. Developing an understanding

of the reproductive potential of a species, along with the inter-individual variation around it,

is an important component of population modelling (Williams & DeWoody, 2009) from which

follows estimates of population viability, growth and stability. At the metapopulation level,

parentage analysis can be instrumental in fitting models of dispersal and informing prediction

of patch occupancy dynamics (Botsford et al., 2009; Planes et al., 2009).
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The field of parentage analysis has seen a recent proliferation of techniques (see Jones &

Ardren, 2003). Early methods focused on the exclusion of potential mother and father combi-

nations through the observation of an offspring genotype at a locus that could not possibly arise

from the recombination of the candidate parent genotypes at said locus (Chakraborty et al.,

1974). However, in situations where the number of loci used in the analysis are less numerous,

or where each locus exhibits low polymorphism, it may be impossible to exclude all but one

parentage pair. Moreover, inter-generational mutations and genotype observation errors in may

result in the opposite, and potentially critical, problem of excluding the true parentage pair

(Cifuentes et al., 2006). Such situations have driven the theoretical development of parentage

analysis techniques.

For situations where simple exclusion analysis is unable to exclude all but one viable parent

pair, methods have been developed to weight the resultant possibilities: Meagher & Thompson

(1986) develop a likelihood-based method of weighting the probability of the offspring exhibit-

ing a genotype at a given locus given the parental genotypes. This weight is expressed as a ratio

relative to the probability that both parents are unrelated to the offspring. In their analysis

of a natural population of the perennial herb, Chamaelirium luteum, Meagher & Thompson

(1987) assigned parentage to the pair that provided the highest unique likelihood ratio. Whilst

this method allows for the diagnosis of parentage pairs when exclusion methods alone fail, the

output of such an analysis for any parentage pair is still a dichotomous variable where parent-

age allocation is reduced to possible and not possible outcomes. Indeed Meagher & Thompson

(1987) exclude all offspring from further analysis for which a unique parentage pair could not

be allocated, amounting to approximately 63 percent of the sampled seedlings. Furthermore,

in situations where a number of parentage likelihoods are similar, there does not exist enough

support to assume that the most likely pedigree is the correct one (Thomas, 2005). This un-

certainty in parentage allocation needs to represented in later analyses.

The alternative tactic of Devlin et al. (1988) instead relies on weighting a non-excluded par-

ent pair by its likelihood as a proportion of the likelihood of all non-excluded potential parent

pairs. This so-called ‘fractional’ assignment of parentage pairs can still result in situations where

definitive allocation of parentage is lacking, but here ambiguity in the data can be expressed

in quantitative terms. For cases where maternity is known, Nielsen et al. (2001) respecify the

likelihood equations derived in Devlin et al. (1988) in a Bayesian context to generate posterior

probabilities of paternity. These probabilities are used as fractional weights of paternity in the
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program Patri (Signorovitch & Nielsen, 2002).

Whilst fractional methods provide a rigorous method of ranking non-excluded parentage

pairs, Patri, as currently implemented, does not provide a mechanism for incorporating geno-

typing error or mutation. Whilst inter-generational mutation is rare, with rates for microsatel-

lites varying between 10−3 and 10−4 per locus (Ellegren, 2000; Weber & Wong, 1993), cases

with sufficiently large samples or where analysed loci are numerous may encounter a small

number of mutation errors. Observation errors involving the mis-classification of genotypes

during the scoring process are expected to be a much more widespread problem for parentage

analyses. Marshall et al. (1998), and later revised in Kalinowski et al. (2007), extended the

likelihood equations of Meagher (1986) to allow for observation error. Under these methods

the number of possible parentage pairs for any given offspring is increased as some matches

that would otherwise be excluded are retained, albeit with often diminishing likelihood, on

the grounds that genetic mismatches may be the result of genotyping error. Unfortunately,

the dichotomous assignment of Marshall et al. (1998), and that implemented in the software

package Cervus, where one parentage pair must be exclusively assigned to each offspring, can

potentially undermine the benefits gained through the inclusion of genotype error (Hadfield

et al., 2006). This assertion can be exemplified in the case where a scoring error has occurred

at a single locus in the genotype of the true father and results in the observation of a geno-

type apparently incompatible with the offspring genotype given a maternal genotype. Cervus,

whilst performing better than exclusion methods in that it will assign some probability to the

event rather than none (although exclusion methods implemented in the software packages

Probmax of Danzmann 1997, and Newpat of Worthington Wilmer et al. 1999, do allow some

degree of flexibility by ranking compatibilities or specifying the degree of allowable mismatch

respectively), will only correctly diagnose the true father if the likelihood is a arbitrarily set

magnitude higher than the erroneous alternatives. Fractional methods, extended to include

genotype error, have the potential to fare much better in this regard. Although the ranking of

the posterior probability estimate of the true parentage versus the erroneous one would be likely

to be the same under this methodology, the fractional allocation of paternity would accurately

represent the added uncertainty due to genotyping error.

The MasterBayes package for the R statistical platform developed following the work

of Hadfield et al. (2006) satisfies many of the desirable criteria above. Like Patri, Master-

Bayes uses fractional paternity assignment, but, unlike Patri, MasterBayes also allows for
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the inclusion of genotyping errors in codominant markers, separating those resulting from allelic

dropout from stochastic scoring misdiagnoses (Wang, 2004). The strength of the MasterBayes

approach lies in the Bayesian calculation of the probability that a candidate parentage pair is

the true parentage of a given offspring. The ability to link together Bayesian models to form

hierarchical structures allows the parentage analysis to be easily embedded as part of a larger

modelling effort. In the case of MasterBayes, this allows non-genetic data such as spatial

location to inform parentage relationships. Given that parentage analysis is often conducted

as a means to determine other ecological parameters of interest (Haig, 1998) the extensibility

of the method used is of key importance. The probabilistic outputs of Bayesian parentage

analysis provide a robust technique of propagating uncertainty, such as that associated with

observation error or input factors, allowing assessment of the confidence in the derived values

of the parameters of interest.

Here, we describe an alternative framework for Bayesian parentage analysis that allows

the analysis of genotypes from a range of marker types (including various codominant and

dominant markers) to be incorporated into a single analysis using marker-specific observation

models. Our method is able to cope with arbitrary levels of ploidy, enabling its application

across a wide range of non-model taxa for which parentage analysis in currently problematic.

We show how the outputs of the parentage analysis can be used as part of a wider study and

how supplementary data can inform not just parameters in linked models that describe the

data, but also parentage.

3.2 Materials and Methods

3.2.1 Calculation of Parentage Likelihoods

When assessing a potential parent pair, the likelihood definition of greatest interest for the pur-

poses of parentage assignment is the likelihood of observing multilocus phenotype of offspring i,

Oi, if the potential parent pair, m and f (mother and father respectively) were the true parent

pair and had observed phenotypes, Om and Of . Specified using another terminology, we need

to define the probability of observing offspring genotype, Oi, given that the true mother, ♀i, and

true father, ♂i, for individual i are m and f respectively with observed genotypes, Om and Of ,

otherwise written as P (Oi|♀i = m,♂i = f,Om,Of ,βββ). Genotype observations are not perfect,

meaning that the observed genotype for any given locus may differ from the true underlying

genotypic state of the locus. Therefore in order to evaluate P (Oi|♀i = m,♂i = f,Om,Of ,βββ),
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where βββ is a vector of parameters controlling the observation process, we need to sum over the

full set of possible true, but unknown and unobservable, genotypes. We let Gi, Gm, and Gf

represent candidates for the true multilocus genotype across L loci of the offspring, mother,

and father respectively such that G· = {G·1,G·2, . . . ,G·j , . . . ,G·L}. G·j is the genotype of the

relevant individual at locus j, a vector of length Aj , the number of allele types recorded at locus

j. Each element of G·j represents the quantity of the appropriate allele present at locus j in the

genotype of the individual of interest. Consequently, the sum of the elements of the genotype

vectors at locus j,
∑

a G·ja , is equal to the ploidy at that locus Cj . Because the genotype is

only recorded as a quantity vector of alleles then it is impossible to distinguish between different

combinations of alleles that result in the same overall frequency; the vector [1 1]
T

, describing

the allele quantities of a biallelic marker, could represent a heterozygote diploid organism with

alleles on either of the two possible locations on the homologous chromosomes.

In a similar vein to the definition of the genotype allele frequency vector, O· = {O·1,O·2, . . . ,O·j , . . . ,O·L}

where each element of O·j is the frequency of the observation of the relevant allele. Note that

the observation allele frequency vector does not necessarily have to sum to the ploidy of the

system like the genotype allele frequency vector. Multiple incidences of the same allele value

will, in many marker systems, be hidden from the observer, resulting in a single observation

where many alleles of the relevant type exist in the true genotype. Similarly, dominance hierar-

chies in the marker used may also obstruct observation of the recessive allele. We later describe

a series of marker-specific observation models that link the vector of genotype allele frequencies

to a vector of observed phenotypes.

It is important to note here that no diagnosis of the true genotype is attempted, or even

desired. The probability of an observation depends upon the real state of the system that is

being observed. If the real state of the system is unknown, then it is necessary to integrate the

probability of our observation given a particular candidate state across all possible real states.

Assuming that the probabilities of inheritance and observation for each locus is independent,

that is, loci do not exhibit any form of linkage and that the observation process interrogates

each locus independently, then

P(Oi|♀i = m,♂i = f,Om,Of ,βββ) =∏
j

∑
Gmj

∑
Gfj

∑
Gij

P (Gmj |Omj ,βββmj)P (Gfj |Ofj ,βββfj)P (Gij |Gmj ,Gfj)P (Oij |Gij ,βββij) (3.1)



CHAPTER 3. PARENTAGE ANALYSIS 50

Here, the term P (Gij |Gmj ,Gfj) is the genotype transition probability of a mother with true

genotype Gmj and a father with true genotype Gfj producing an offspring with true genotype

Gij at locus j.

In this study, we use a simple Mendelian transition/segregation model with no inter-generational

mutation. In the diploid case, Mendelian transition probabilities are simple to calculate but

a generalisation to higher ploidy requires extensive calculation for the many different combi-

nations of gametic segregation and sexual recombination. We define Xmj and Xfj as random

allele frequency vectors at locus j of a randomly selected gamete of the putative mother and

father respectively. Like the genotype and phenotype vectors described previously, each of the

Aj elements of X·j denote the frequency of the respective allele. Mendelian gamete segregation

can be considered a form of sampling without replacement from the parental genotype where,

given a ploidy, Cj ,
Cj

2 alleles are chosen sequentially from the pool of remaining allele types. In

this sense, values for Xmj and Xfj are drawn from a multivariate hypergeometric distribution

with probability mass functions gm (Xmj) and gf (Xfj) respectively where

g· (X·j) =



∏
a

(
G·ja
X·ja

)
(
Cj

Cj

2

) if
∑
a

X·ja =
Cj

2

0 otherwise

(3.2)

The offspring genotype at a locus, Gij , is then simply the sum of the two random vectors,

Xmj and Xfj . The resultant probability mass function of the vector Gij is therefore the

multidimensional convolution of the probability mass functions of the parental gamete genotype

vectors, that is, the sum of the probabilities of all possible combinations of the gamete allele

frequency vectors that could combine to create the resultant genotype:

P (Gij |Gmj ,Gfj) = (gm ∗ gf ) (Gij)

=

Cj
2∑

ℓ1=1

Cj
2∑

ℓ2=1

· · ·

Cj
2∑

lAj
=1

gm (ℓℓℓ) gf (Gij − ℓℓℓ) (3.3)

where ℓℓℓ =
[
ℓ1 ℓ2 . . . ℓAj

]T
.

In equation 3.1 we make reference to the quantity, P (Oij |Gij ,βββij), the probability of ob-

serving offspring phenotype, Oij , at locus j given the true offspring genotype, Gij , or, in order
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words, the observation model. βββ in equation 3.1 is a set of vectors of parameters for each com-

bination of locus and sample, where βββ = {βββ11,βββ12, . . . ,βββ1L,βββ21,βββ22, . . . ,βββ2L, . . . ,βββSL}, that

control the observation model. For most applications there will be insufficient information a

priori or garnered from the data to support loci and/or sample specific parameters for the

observation model, and so it is likely that each vector in the set βββ will be equal. We however

include the relevant notation in this model description for completeness and to provide a point

of departure from the ideas contained within this paper for application to more complex sce-

narios where different loci may have vastly differing error rates. The two parental probabilities

of the form P (G·j |O·j ,βββ·j) can be written in terms of their observation model by application

of Bayes Theorem:

P (G·j |O·j ,βββ·j) =
P (O·j |G·j ,βββ·j)P (G·j)∑

ℓℓℓ P (O·j |ℓℓℓ,βββ·j)P (ℓℓℓ)
(3.4)

Usually, prior support for the true genotype allele frequency vector at locus j, element

P (G·j) in equation 3.4, is set to be uniform over the possible genotype combinations. For

any genotype allele frequency vector G·j at locus j, there may be a many number of different

combinations of genotypes that may give rise to a particular allele frequency. For example, in the

bialleleic diploid case, the genotype allele frequency vector [1 1]
T

for alleles a1 and a2, could

arise from either an a1 allele on the first homologous chromosome and an a2 allele on the second

homologous chromosome, or, vice versa. By treating the genotype allele frequency vector as a

description of a multiset, it follows that the number of potential combinations of alleles across

the homologous set for any genotype allele frequency vector corresponds to the multinomial

coefficient. Assuming uniform support across all combinations of all possible genotype allele

frequency vectors, the resultant prior distribution for any genotype allele frequency vector

becomes the proportional number of genotype combinations that can arise from the given

genotype allele frequency vector relative to the total number of combinations arising from all

possible genotype allele frequency vectors:

P
(
G·j
)

=

(
Cj !

G·j1 !G·j2 ! . . .G·jAj
!

)
(∑

ℓℓℓ

Cj !

ℓ1!ℓ2! . . . ℓAj !

) (3.5)

The number of potential true genotype combinations must be finite in order to calculate both

the normalising constant in the denominator of equation 3.4 and the summations of equation

3.1. The total number of potential true genotypes at a locus is equal to Aj
Cj . Related as it is

to both the total number of allele types identified at the locus and the ploidy, the total number
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of potential true genotypes is only finite if both of these quantities are also finite.

Biallelic markers such as amplified fragment length polymorphism markers (AFLP; Vos

et al., 1995) only have two observable states at a given locus: positive and negative. This is

commonly referred to as the phenotype although it can also be considered to be an imper-

fect observation of the true genotype. The pool of potential true genotypes is larger for all

non-haploids however, for example if we denote + as a presence of the marker on a particular

chromosomal copy and − as the absence of the marker, in the diploid case, the true genotype at

a given AFLP locus could be −−, −+, +− or ++. The number of potential true genotypes can

potentially be very high in polyploid systems but the fact that AFLP exhibit only two potential

allele values ensures that the number of potential genotype combinations is still finite.

Whilst the case for a finite number of potential true genotype combinations may be accurate

in the case of genetic markers that have a restricted allelic set, such as amplified fragment

length polymorphism or random amplified polymorphic DNA (RAPD; Williams et al., 1990),

it is more debatable for polyallelic markers such as microsatellites. The fragment length at a

microsatellite locus is theoretically unbounded but experimentally it is only possible to observe

fragment lengths between set limits. Only restricting the pool of potential alleles to values

that lie within experimentally defined limits can still result in a large, and computationally

infeasible set of combinations however. If some information is known about the schema of the

repeat unit then it is possible to further reduce the number of potential allele values to those

that are multiples of the repeat length. For the microsatellite loci used in this study, we assume

that the pool of potential allele values at a particular locus is restricted only to those lengths

observed in the genetic data across all individuals at the relevant locus.

3.2.2 Incorporating Genotyping Error

Random Replacement Methods

Early likelihood-based parentage methodologies discriminated between potential parent pairs

based solely on genotype recombination probabilities. This technique in its purest form assumes

that the observation of the genotypes is perfect: that no genotyping error occurs. The devel-

opments of Marshall et al. (1998), further revised in Kalinowski et al. (2007) and employed

in the parentage software CERVUS, allow for some degree of observation error by assuming

that all errors are the product of a random relabelling of genotypes at each locus. Under this
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specification, the observation model at the jth locus, P (O·j |G·j ,βββ·j), takes the form:

P (O·j |G·j ,βββ·j) =

 1 − ϵ·j
(
1 + pO·j

)
if O·j = G·j

ϵ·j
(
pO·j

)
otherwise

(3.6)

where ϵ·j denotes the probability of a genotype substitution, and pO·j , the proportional fre-

quency of phenotype O·j , at locus j. Here, βββ·j = [ϵ·j ]. If substitution occurs, the phenotype at

that locus is replaced by another randomly selected phenotype from the pool of observed phe-

notypes. The case O·j = G·j can transpire in one of two possible ways: either no substitution

takes place, with probability 1 − ϵ·j , or, substitution takes place but it is a silent replacement,

the phenotype is substituted for exactly the same phenotype with probability ϵ·j
(
pO·j

)
. The

case where O·j ̸= G·j can only result from a substitution for a non-equal phenotype in this

model.

An alternative specification of the model involves the replacement phenotype not being

drawn from the pool of observed phenotypes, but from the pool of genotypes expected under

Hardy-Weinberg assumptions with the same allelic frequencies observed in the sampled pop-

ulation. This implementation, whilst increasing the pool of potential genotype combinations

arising from a relabelling error, does so at the expense of assumptions of equilibrium. Sampled

individuals can now be the receivers of genotypes arising from a theoretical population, and

the scenario of alleles combining at a locus to generate new genotypes not represented in the

sample is now possible. This can be very problematic if the sampled individuals do not appear

to conform to this assumption of equilibrium; substitutions, when they happen, may be for

genotype frequencies exhibiting significant differences in zygosity.

The phenotype is only a partial expression of the underlying phenotype however. Random

relabelling of observations without regard to the genotypes that underlie the observation can

complicate, rather than elucidate, the mechanism that generates sampling errors. Random

relabelling models using substitution from a Hardy-Weinberg population will not work correctly

if the true allele frequencies cannot be ascertained from the observations. In a dominant marker

system such as AFLPs, a positive result only purports to a positive value occurring at least once

across the homologous chromosomal copies, and not, to the frequency of that allele. Further

methods, such as those of Zhivotovsky (1999), must be employed to infer the frequency of

the positive allele. Implemented in their most basic form, random relabelling models treat all
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dominant markers as haploid regardless of the actual ploidy. Even in codominant markers,

the existence of null alleles can make it difficult to differentiate between a homozygote and

a heterozygote with one or more copies of the null allele, creating bias in allele frequency

estimation.

Biallelic Dominant Markers

AFLPs and RAPDs No over-arching observation model will be suitable for all marker types

and so the first step for joint mixed-marker parentage analysis is to develop marker-specific

error models. In the case of dominant markers, it is important to address the two sources of

observation error: the possibility that an allele may be incorrectly diagnosed (a positive allele

may be observed as a negative and, more rarely, a negative allele may be observed as a positive)

and that dominance hierarchies will obscure the expression of recessive alleles. We define ϕ·j

as the probability that a positive allele at locus j is misdiagnosed as a negative. An error

that could arise through inability to extract enough high quality product (Watts et al., 2007;

Broquet & Petit, 2004; Gagneux et al., 1997; Taberlet et al., 1996) or through amplification

failure from contamination by inhibitory agents (Opel et al., 2010; Wilson, 1997). Similarly,

we define ψ·j as the probability that a negative allele at locus j is misdiagnosed as a positive

allele. Although much less common, this error could arise through sample contamination or

through the confusion of background fluorescence in the gels as band presence (Whitlock et al.,

2008). We define the random variables A·j+ and A·j− as the number of alleles diagnosed as the

dominant allele from the set of truly positive and negative alleles respectively. If we assume

that allelic states are independent then:

A·j+ ∼ Bin (n·j+, 1 − ϕ·j) (3.7)

and:

A·j− ∼ Bin (n·j−, ψ·j) (3.8)

where n·j+ and n·j− are the numbers of truly positive and negative alleles respectively at locus

j. It then follows that a positive phenotype can be observed (O·ij = +++ where +++ = [1 0]
T

)

either when at least one of the truly positive alleles are diagnosed as positive (A·j+ ≥ 1) or if
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at least one of the truly negative alleles are misdiagnosed as a positive (A·j− ≥ 1):

P (O·j = +++|G·j ,βββ·j) = P (A·j+ ≥ 1 ∪A·j− ≥ 1|βββ·j)

= 1 − P (A·j+ = 0|ϕ·j)P (A·j− = 0|ψ·j)

= 1 − ϕ
n·j+
·j (1 − ψ·j)

n·j− (3.9)

Similarly, the instance of negative observation (O·j = −−− where −−− = [0 1]
T

) can occur if all

truly positive alleles are misdiagnosed as negative alleles (A·j+ = 0) and all truly negative

alleles are correctly diagnosed (A·j− = 0):

P (O·j = −−−|G·j ,βββ·j) = P (A·j+ = 0 ∩A·j− = 0|βββ·j)

= ϕ
n·j+
·j (1 − ψ·j)

n·j− (3.10)

where βββ·j = [ϕ·j ψ·j ]
T

. Combining the results of equations 3.9 and 3.10, and substituting

n·j− = Cj − n·j+, we obtain

P (O·j |G·j ,βββ·j) =

 1 − ϕ
n·j+
·j (1 − ψ·j)

Cj−n·j+ if O·j = +++

ϕ
n·j+
·j (1 − ψ·j)

Cj−n·j+ if O·j = −−−
(3.11)

Polyallelic Codominant Markers

A very different tactic must be employed to model codominant markers, although there are

some parallels. More information pertaining to the genotype may be exposed in the phenotype

of codominant markers but there still may be a number of different mechanisms by which the

phenotype is observed given any true genotype. For example, the observation of one band in

a diploid organism could represent a homozygote of the relevant allele, or, it could represent

a heterozygote with one null allele. There are therefore a many number of possible vectors of

genotype allele frequencies that may produce an observed phenotype even in the absence of

errors of allele diagnosis. Here we define the potential observed genotype at locus j after allele

diagnosis errors are taken into account as M·j . This model formulation separates the obser-

vation process into two parts. The first process connects the true genotype allele frequency

vector, G·j , and the allele frequency vector after allele diagnosis errors have been made, M·j .

The second process describes the obscuring of multiple copies of the same allele type and the

non-expression of null alleles in all but homozygotes, linking the allele frequency vector M·j to

the phenotype frequency vector O·j . Figure 3.2 illustrates this two-stage process for a number
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of examples.

For the incorporation of errors of allele diagnosis, we define a series of vectors κκκ·ja , for each

of the Aj allele types, including any null alleles, at a locus. Each of the vectors are of length

Aj with each element of the vector κ·jab
containing the probability of diagnosing allele a as

allele b. Where a = b, the element of the relevant vector contains the probability of a correct

diagnosis. Where a ̸= b, a misdiagnosis has been made with probability κ·jab
. This formulation

allows flexibility in not only misdiagnoses rates but also allows the weighting of certain types

of misdiagnoses over others. Each copy of a given allele, a, present in the true genotype can be

interpreted as any of the Aj allele types. The resultant vector of allele frequencies, D·ja , after

allele diagnosis errors of the population of allele a in the true genotype (G·ja) have been taken

into account, can be considered to follow a multinomial distribution with vector of diagnosis

probabilities, κκκ·ja , with probability mass function

fa
(
D·ja

)
=


G·ja !

D·ja1
!D·ja2

! . . .D·jaAj

!
κ·ja1

κ·ja2
. . . κ·jaAj

if
∑

b D·jab
= G·ja

0 otherwise

(3.12)

Under this specification, the total vector of allele frequencies after diagnosis errors, M·j , is

the sum of the random diagnosis vectors for each allele type in the true genotype,
∑

a D·ja . The

probability mass function of M·j is therefore the multivariate convolution of the probability

mass function of the separate allele diagnosis vectors:

P
(
M·j |G·j ,κκκ·j1 ,κκκ·j2 , . . . ,κκκ·jAj

)
=
(
. . . ((f1 ∗ f2) ∗ f3) · · · ∗ fAj

)
(M·j) (3.13)

where ∗ is a convolution operator such that

(fa ∗ fb) (x) =

Cj∑
ℓ1=1

Cj∑
ℓ2=1

· · ·
Cj∑

ℓAj
=1

fa (x) fb (x− ℓℓℓ) (3.14)

and ℓℓℓ =
[
ℓ1 ℓ2 . . . ℓAj

]T
.

The absence of a closed form for equation 3.13 means that numerical techniques must be em-

ployed in order to calculate values for the probability mass function of M·j . Butler & Stephens

(1993) describe a numerical method to exactly calculate the values from the resulting proba-

bility mass function of a random variable that is the sum of a series of binomially distributed
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random variables with differing parameters controlling the probability of trial success. What

follows is a multivariate extension of the algorithm of Butler & Stephens (1993) suitable for

the calculation of random variable that is itself the sum of a series of multinomially distributed

random variables.

Algorithm 1: Exact calculation of the probability mass function of a vector of allele frequencies

of a potential phenotype after allele diagnosis error.

1. Initialise an Aj dimensional array λ with a length of Cj + 1 elements in each dimension

and array indices starting at zero in each dimension. Set all elements of λ to zero.

2. Initialise a vector of iterators ℓℓℓ of length Aj with all elements set to zero.

3. Initialise the iterator t1 to Aj .

4. If the sum of the vector of iterators ℓℓℓ equals G·j1 then set the element of λ at dimensional

coordinates ℓℓℓ, λ[ℓℓℓ], equal to f1 (ℓℓℓ).

5. Increment ℓt1 by one.

6. If t1 > 0 and ℓt1 > G·j1 then set ℓt1 to zero and decrement t1 by one before returning to

step 5.

7. If t1 > 0 then return to step 4.

8. Repeat for each value of a between 2 and Aj :

(a) Initialise an Aj dimensional array θ with a length of Cj+1 elements in each dimension

and array indices starting at zero in each dimension. Set all elements of θ to zero.

(b) Initialise a vector of iterators τττ of length Aj with all elements set to zero.

(c) Initialise the iterator t2 to Aj .

(d) If the sum of the vector of iterators τττ equals G·ja then

i. Set t1 equal to zero.

ii. Set all the elements of ℓℓℓ equal to zero.

iii. Increment the element θ[ℓℓℓ+τττ ] by fa (τττ)λ[ℓℓℓ].

iv. Increment ℓt1 by one.

v. If t1 > 0 and ℓt1 >
∑a−1

b=1 G·jb then set ℓt1 to zero and decrement t1 by one

before returning to step 8(d)iv.
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vi. If t1 > 0 then return to step 8(d)iii.

(e) Increment τt2 by one.

(f) If t2 > 0 and τt2 > G·ja then set τt2 to zero and decrement t2 by one before returning

to step 8e.

(g) If t2 > 0 then return to step 8d.

(h) Set the values of the elements of λ equal to the values of the respective elements of

θ.

9. Return the multidimensional array λ as the probability mass function of the random

vector M·j reading

P
(
M·j |G·j ,κκκ·j1 ,κκκ·j2 , . . . ,κκκ·jAj

)
= λ[M·j ] (3.15)

The final stage of the model is to link the possible genotypes after allele diagnosis errors, M·j ,

to the observed phenotype O·j . To do this, it is necessary to identify those combinations of

genotypes that could produce the phenotype of interest: the observation of a diploid species

with only one allele observation at a locus could result from either homozygosity of the observed

allele, or from a heterozygote with one null allele. More generally, any observations for which

fewer alleles are observed than the ploidy requires that there exist more than one possible

genotype allele frequency vector from which the phenotype would arise. Any extra unobserved

alleles could either be recessive in nature or repeats of those from the set of observed alleles.

If we denote the set of possible genotype allele frequency vectors at locus j as H·j , then to

incorporate this extra uncertainty into the model it is necessary to sum over the set of possible

genotypes, weighting each by its probability in light of allele diagnosis errors, to derive the final

probability of a given phenotype:

P
(
O·j |G·j ,κκκ·j1 ,κκκ·j2 , . . . ,κκκ·jAj

)
=

∑
M·j∈H·j

P
(
M·j |G·j ,κκκ·j1 ,κκκ·j2 , . . . ,κκκ·jAj

)
(3.16)

It is from these basic building blocks, using the algorithm described above to compute the

solutions to equation 3.13 and hence solve equation 3.16, that form the basis for a series of

models suitable for different kinds of codominant markers. Assuming particular functional

forms for the allele diagnosis probabilities leads to a series of specialisations suitable for use in

various marker-specific implementations.
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VNTRs and RFLPs In the case of alleles with quantitative traits such as fragment size, as

is the case when using microsatellite, ministaellites, or RFLP markers, there exists extra infor-

mation contained within the scoring process that can inform probabilities related to diagnostic

error rates. It is worth noting that if, for example, a heterozygote with fragments of length

130 and 140 are observed, neither necessarily have to be correctly diagnosed. Sources of error

here arise from confusion over the quantitative trait of an allele, simple misreading of fragment

location or the presence of disturbances such as ‘stutter bands’ present in some samples (Hoff-

man & Amos, 2005; Ginot et al., 1996), resulting in the mis-classification of alleles. Despite the

introduction of many automated technologies for band analysis, these error rates remain high

(Ewen et al., 2000; Ginot et al., 1996). Unlike the random relabelling model, an allele that has

been erroneously classified is likely have very similar quantitative traits to the allele that has

been falsely substituted for the true allele. A putative observation model for microsatellite allele

fragment length, might, for example, use a discrete implementation of the normal distribution

defined only over the possible fragment length values, so that the probability of confusing allele

a with allele b, p·jab
, given that they have lengths ζ·ja and ζ·jb respectively is given by

p·jab
=

Φ
[

1
σ·j

(
ζ·jb − ζ·ja + 1

2

)]
− Φ

[
1
σ·j

(
ζ·jb − ζ·ja − 1

2

)]
∑

k ̸=∅ Φ
[

1
σ·j

(
ζ·jk − ζ·ja + 1

2

)]
− Φ

[
1
σ·j

(
ζ·jk − ζ·ja − 1

2

)] (3.17)

Φ (x) is the normal distribution function. Here we use the notation ∅ to denote the null allele

so that the denominator of equation 3.17 is the summation over all non-null alleles. The pa-

Figure 3.2 (on the next page): Illustration of the possible combinations of codominant error
model outputs, (M·j), that can generate an observed allele frequency vector, (O·j), given a true
genotype allele frequency vector, (G·j) with three example scenarios from the diploid case given

a vector of fragment lengths that define the respective alleles (ζζζ ·j = [130 132 ∅]
T

where ∅ is a
null allele). The first scenario (a) describes the simple case of the observation of a heterozygous
phenotype, with one observed fragment of 132 base units and another at 130 base units. The
number of fragments observed is equal to the ploidy and so there is only one possible set of
alleles which would result in this observation (M·j = [1 1 0]

T
). The probability of observing

the phenotype given the true genotype is therefore the possibility that the alleles that make
up the genotype are diagnosed with frequency given by the one possible set of alleles (M·j).
The second scenario, (b), where a homozygous phenotype with allele length 130 is observed,

could result from either a genuine homozygous error model output (M·j = [2 0 0]
T

), or
from a heterozygote with one null allele (M·j = [1 0 1]). The probability of observing
allele frequency vector, O·j , given a genotype, G·j , is therefore the sum of the probabilities of

diagnosing alleles with frequencies [2 0 0]
T

or [1 0 1]
T

. Where one null allele is present in
the true genotype such as the third scenario (c), outcomes which require the misidentification of
the null allele are impossible (denoted by the dotted lines) in the observation models described
for codominant markers in this paper, leaving only one error model outcome that could produce
the observed phenotype.
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(a)

True Genotype Possible
Phenotypes

Recorded
Phenotype

(b)

(c)
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rameter σ·j controls the possible variation in fragment length observation: as σ·j → 0 the range

of fragment size errors diminishes until all probability weight is given to the correct diagnosis

where a = b. The distribution tends to a uniform distribution across the set of possible allele

values as σ·j → ∞.

Errors arising from fragment binning does not tell the whole story however. Like the model

for dominant markers, fragments can fail to be detected, either through amplification or extrac-

tion error, or through inhibition caused by contaminants. This random dropout rate can be

incorporated into the model by the parameter v·j . This model therefore distinguishes between

the scenario where random dropouts give the appearance of a null homozygote and the situation

where genetic mutations at the primer binding site result in a genuine, genotype-driven, band

absence. Assuming that null alleles can only be correctly diagnosed as null alleles, the final

transition probabilities take the form

κ·jab
= ω∅ (a)ω∅ (b) + (1 − ω∅ (a))

[
ω∅ (b) v·j + (1 − ω∅ (b)) (1 − v·j) p·jab

]
(3.18)

where ω∅ (a) is an indicator function:

ω∅ (a) =

 1 if a is a null allele

0 otherwise
(3.19)

SNPs Single Nucleotide Polymorphisms (SNPs) are markers that use polymorphisms at a

particular nucleotide to derive useful information of the system of interest. For the most part,

SNPs have two codominant alleles, representing the two nucleotide states and a recessive null

allele (Carlson et al., 2006). Recent studies have shown that many commonly used SNP mark-

ers in human populations may actually have three codominant states (Hüebner et al., 2007;

Hodgkinson & Eyre-Walker, 2010) with the possibility that some may even have the maximum

four codominant states (Brookes, 1999).

Regardless of the number of codominant alleles, the observation model for SNP markers uses

the same derivation from the general framework for codominant markers described previously.

Here, we define the parameter, ξ·j , to denote the random dropout rate, or the probability as

failing to observe a non-null allele, at locus j. Given that a random dropout error does not

occur then another type of error, misclassification of the correct allele type, may occur with

probability γ·j . In the incidence of a classification error we assume that the replacement allele
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type is drawn uniformally from the remaining pool of non-null alleles such that the probability

of selecting from each of the candidate alleles is 1
Aj−2 . Combining these elements of observation

error results in the following formulation for the elements of κκκ·ja :

κ·jab
= ω∅ (a)ω∅ (b) + (1 − ω∅)

 ω∅ (b) ξ·j + (1 − ω∅ (b)) (1 − ξ·j)[
ωa (b) (1 − γ·j) + (1 − ωa (b))

γ·j
Aj−2

]
 (3.20)

where like ω∅ (x) (see equation 3.19), ωa (b) is another indicator function such that

ωa (b) =

 1 if a = b

0 otherwise
(3.21)
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Table 3.1 summarises the methods described in this section as well defining some fixed

parameter sub-model variants.

3.2.3 Parentage Sampling Algorithm

The derivation of the likelihood equation described in equation 3.1 allows, through application

of Bayes theorem, the calculation of the posterior probability of a parentage pair given the

phenotype observations and a vector of parameters, βββ:

P (♀i = m,♂i = f |Oi,Om,Of ,βββ) =

P (Oi|♀i = m,♂i = f,Om,Of ,βββ)P (♀i = m,♂i = f)∑
a

∑
b

P (Oi|♀i = a,♂i = b,Om,Of ,βββ)P (♀i = a,♂i = b)
(3.22)

The quantity, P (♀i = m,♂i = f), represents the prior probability that individual m is the

mother and individual f is the father of offspring i. In many applications there will not be

any prior information regarding probabilities of possible parentage combinations but it is at

this stage that it is possible to incorporate known incompatibilities in the mating system by

giving such matches a zero weight. For example, many plant species are self-incompatible and

so, in the analysis of a species that exhibits such characteristics, P (♀i = a,♂i = a) = 0 for all

a. If we define the term ‘mother’ to mean ‘seed donator’ and ‘father’ to mean pollen donator

in the plant sexual system then it is also possible to exclude androecious plants from being the

‘mother’ and gynoecious plants from being the ‘father’ at this stage.

When the set of vectors of observation model parameters, βββ, are fixed then it is possible

to calculate the posterior probabilities for each parentage pair directly using equation 3.22.

However, it is unlikely that genotyping error rates are known precisely for any given system.

It is possible, however, to extend the analysis to jointly estimate values for βββ from the data as

long as previous knowledge of the parameters of the genotyping error rates can be expressed as

a prior, P (βββ). The posterior density we need to evaluate is now

P (♀i = m,♂i = f,βββ|Oi,Om,Of ) =

P (Oi|♀i = m,♂i = f,Om,Of ,βββ)P (♀i = m,♂i = f)P (βββ)∫
Vβββ

∑
a

∑
b

P (Oi|♀i = a,♂i = b,Om,Of ,βββ)P (♀i = a,♂i = b)P (βββ) dVβββ

(3.23)

where Vβββ is a volume of integration over all possible values of the elements of the comprising

vectors of βββ.
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The new posterior density of equation detailed in equation 3.23 is now sufficiently complex

to be difficult to evaluate directly. Instead, possible parentage combinations and values for βββ

can be sampled from the posterior distribution using Markov Chain Monte Carlo techniques.

Deriving the for the full conditional distributions of βββ for each of the separate observation

models is not a trivial task and so this means that it is not possible to use Gibbs sampling

to draw these values and so we have instead implemented a single-update Metropolis-Hastings

algorithm (see Chib & Greenberg, 1995) for this purpose.

The Metropolis-Hastings algorithm requires the generation of proposal values of the param-

eters of interest, denoted by βββ∗, ♀∗
i , and ♂∗

i , which are accepted as samples from the target

distribution with a probability related to the ratios of their posterior support compared to

that of samples generated in the previous iteration of the algorithm. The proposal values are

generated from a proposal density. , P (♀∗
i ,♂∗

i ,βββ
∗|♀i,♂i,βββ), which describes the probability of

generating the candidate values given the last iteration’s sample values for ♀i, ♂i, and βββ. As

long as the proposal probabilities for values that have some posterior support are greater than

zero, the exact form of the proposal density does not affect the eventual convergence of the

algorithm to the target distribution. The proposal density does however control the efficiency

to which samples from the Markov chain convergence towards the posterior distribution. For

the generation of proposed values for vectors of observation model parameters we have im-

plemented a multivariate truncated normal distribution (see Horrace, 2005) with probability

density function

P (βββ∗|βββ,ΣΣΣ) =

e

[
− 1

2 (Kβββ∗−Kβββ)
T
ΣΣΣ−1(Kβββ∗−Kβββ)

]
∫ L+

1

L−
1

∫ L+
2

L−
2

. . .

∫ L+
N

L−
N

e

[
− 1

2 (Kβββ∗−Kβββ)
T
ΣΣΣ−1(Kβββ∗−Kβββ)

]
d [Kβββ∗ ]

1
d [Kβββ∗ ]

2
. . . d [Kβββ∗ ]

N

(3.24)

where Kβββ and Kβββ∗ are respecifications of βββ and βββ∗ respectively so that the entire set of

observation parameters in all samples and at all loci are laid out vertically in one column vector

of length N :

Kβββ =
[
βββT
11 βββT

12 . . . βββT
1L βββT

21 βββT
22 . . . βββT

2L . . . βββT
SL

]T
(3.25)

[Kβββ∗ ]
i

represents the ith element of the vector Kβββ∗ . The two vectors L− =
[
L−
1 L−

2 . . . L−
N

]T
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and L+ =
[
L+
1 L+

2 . . . L+
N

]
contain the limits, upper and lower respectively, for each of the

N parameters in Kβββ . The limits need not necessarily be finite. Finally, ΣΣΣ, is the variance-

covariance matrix for the proposal distribution of new parameters. To sample prospective

values for each of the parameters independently, only the diagonal elements need be set to non-

zero values. This is the best tactic for most applications. However, setting off-diagonal values

of the variance-covariance matrix to non-zero values would allow for the efficient sampling of

parameters where there is a known colinearity in the likelihood surface for one or more of the

parameters. Geweke (1991) describes an algorithm for the efficient sampling from multivariate

truncated normal distributions.

One simple method to propose candidate parentage pairs for a given offspring is to select

uniformally amongst the parentage pairs with each iteration of the Metropolis-Hastings algo-

rithm. However, except when genotyping errors are set exceptionally high, the weighting of

parentage likelihoods will be tightly constrained around the true parent pair. Selecting pro-

posal parentage pairs using a simple uniform distribution may therefore produce a very high

rejection rate and inefficient convergence times. However, in equation 3.22 we are presented

with the full conditional distribution of the parentage pairs given a set of values for βββ. It is also

possible to sample values with a probability mass function corresponding to this conditional

distribution by sampling from a categorical distribution with categories defined as each of the

possible parentage pairs and a probability parameter vector with elements calculated using

equation 3.22. This method of parameter selection for possible parentage pairs represents the

Gibbs sampling step within a Metropolis-within-Gibbs sampling algorithm (Tierney, 1994).

Algorithm 2: Metropolis-within-Gibbs sampling algorithm for the generation of samples from

the joint posterior distribution of parentage and observation model parameters for a given

offspring.

1. Initialise the chain with arbitrary values for ♂i, ♀i, and elements of the vector set βββ,

ensuring that P (Oi|♀i = m,♂i = f,Om,Of ,βββ) > 0, P (♀i = m,♂i = f) > 0, and P (βββ) >

0.

2. Gibbs Step: Draw a new parentage combination (♀i and ♂i) from a categorical distribution

with probability vector elements set according to equation 3.22 conditional on the current

values for βββ.
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3. Metropolis-Hastings Step: Propose a set of new values for the genotype observation model

βββ∗ from a multivariate truncated normal distribution with probability density function

given in equation 3.24.

4. Calculate

u =
P (Oi|♀i = m,♂i = f,Om,Of ,βββ

∗)P (♀i = m,♂i = f)P (βββ∗)P (βββ|βββ∗,ΣΣΣ)

P (Oi|♀i = m,♂i = f,Om,Of ,βββ)P (♀i = m,♂i = f)P (βββ)P (βββ∗|βββ,ΣΣΣ)
(3.26)

5. Generate a random uniform value, α, between zero and one. If α < min {1, u} then set

the current vectors of parameter values, βββ, to the proposed values βββ∗.

6. Store the current values of ♀♀♀, ♂♂♂, and βββ as samples from the target distribution of equation

3.23.

7. Return to step 2.

The implementation of the algorithm above and equations 3.22 and 3.23 assume that the parent-

age conditions for each offspring are independent and, as such, parentage estimations can be

made for each offspring individual separately. If the same pool of individuals are used as po-

tential parents for each of the offspring then this assumption can be violated. For situations

where it is likely that the number of offspring to be assigned parentage lie in the upper end or

exceed the reproductive potential of an individual then it is unlikely that one individual can be

the parent to all offspring in the group. Also, by separating parentage estimation we are also

separating the estimation of observation error model parameters. Except in the very rare case

where no overlap exists for the pool of potential parents for each offspring and it is expected

that the parameters for the observation error model will be significantly different for each of

the offspring, it is much more reasonable to include information from the parentage performed

for each of the offspring to estimate the parameters of the observation model. In these situa-

tions it is necessary to jointly update the entire parentage vectors, ♀♀♀ = [♀1 ♀2 . . . ♀W ]
T

and ♂♂♂ = [♂1 ♂2 . . . ♂W ]
T

, where W is the total number of offspring. The new target

distribution then becomes

P (♀♀♀ = m,♂♂♂ = f ,βββ|O) =

P (♀♀♀ = m,♂♂♂ = f)P (βββ)
∏
i

P (Oi|♀i = mi,♂i = fi,Omi ,Ofi ,βββ)∫
Vβββ

∑
a

∑
b

P (♀♀♀ = a,♂♂♂ = b)P (βββ)
∏
i

P (Oi|♀i = ai,♂i = bi,Oai ,Obi ,βββ) dVβββ

(3.27)
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Equation 3.27 assumes that the observation process for each offspring is conditionally inde-

pendent from the observation process of each of the other offspring given the set of observation

model parameter vectors βββ:

P
(♀i = m,♂i = f |Oi,Om,Of , R

♀
i , R

♂
i ,βββ

)
=

P (Oi|♀i = m,♂i = f,Om,Of ,βββ)P
(♀i = m,♂i = f |R♀

i , R
♂
i

)
∑
a

∑
b

P (Oi|♀i = a,♂i = b,Om,Of ,βββ)P
(♀i = a,♂i = b|R♀

i , R
♂
i

) (3.28)

where R
♀
i and R♂

i are the sets of elements of the relevant parentage vectors except for element i,{♀1, ♀2, . . . , ♀i−1, ♀i+1, . . . , ♀W

}
and

{♂1,♂2, . . . ,♂i−1, ♀i+1, . . . ,♂W

}
respectively. The term

P
(♀i = m,♂i = f |R♀

i , R
♂
i

)
denotes the probability that offspring i has mother m and father

f given a set of parentage relationships for all other offspring. It is here that the investigator

may, if they so wish, incorporate models of reproductive success to allow for limits on breeding

potential. The joint inference of the entire parentage vectors, ♀♀♀ and ♂♂♂, can be achieved by

updating each element of the vector in turn using Gibbs sampling, drawing each element from

a categorical distribution with probability vector calculated using equation 3.28.

Algorithm 3: Metropolis-within-Gibbs sampling algorithm for the generation of samples from

the joint posterior distribution of observation model parameters and the full parentage vector

for W offspring. Allows for dependence of parentage between offspring and the dependency of

the observation process on shared parameters between potential parents.

1. Initialise the chain with arbitrary values for the elements of vectors ♀♀♀, ♂♂♂, and βββ ensuring

that
∏

i P (Oi|♀i = mi,♂i = fi,Omi ,Ofi ,βββ) > 0, P (βββ) > 0, and P (♀♀♀,♂♂♂) > 0.

2. Gibbs Step: For each ith offspring out of the total W :

(a) Draw values for the parentage pair ♀∗
i , ♂∗

i from a categorical distribution with a

vector of probabilities for each of the different parentage combinations calculated

using equation 3.28.

(b) Set ♀i = ♀∗
i and ♂i = ♂∗

i .

3. Metropolis-Hastings Step: Propose a set of new values for the genotype observation model

βββ∗ from a multivariate truncated normal distribution with probability density function

given in equation 3.24.
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4. Calculate

u =

P (♀♀♀ = m,♂♂♂ = f)P (βββ∗)P (βββ|βββ∗,ΣΣΣ)
∏
i

P (Oi|♀i = mi,♂i = fi,Omi ,Ofi ,βββ
∗)

P (♀♀♀ = m,♂♂♂ = f)P (βββ)P (βββ∗|βββ,ΣΣΣ)
∏
i

P (Oi|♀i = mi,♂i = fi,Omi ,Ofi ,βββ)
(3.29)

5. Generate a random uniform value, α, between zero and one. If α < min {1, u} then set

the current vectors of parameter values, βββ, to the proposed values βββ∗.

6. Store the current values of ♀i, ♂i, and βββ as samples from the target distribution of equation

3.23.

7. Return to step 2.

3.2.4 An Example Dataset

To demonstrate the methods described in this chapter we apply the techniques using a data

set for which the parentage is already known. We use an extensive data set of a Canary Island

zebrafinch population with parentage assigned for over 120 offspring from a pool of 340 possi-

ble parents. This allows us to compare the results from the parentage analysis to the known

parentage and evaluate the performance of the method. After loci with missing values present

are removed from the analysis, 157 single-nucleotide polymorphisms (SNPs) remain.

To determine the performance of the models we perform two sets of analyses. The first

analysis aims to test the effect of the observation model parameters, from two different phe-

notype observation models (R1-1 and C2-0 from table 3.1) on the quality of the paternity

assignment. To achieve this aim, we run the analysis for a series of parameter values, treating

them as fixed parameters in the estimation process. We generate samples from the posterior

distribution using the Metropolis-within-Gibbs algorithm described in the previous section. In

all cases and in each chain, we run the algorithm for 130000 iterations and discard the first

30000 iterations to allow the chain to ‘burn-in’. Each analysis uses a total of five independent

chains and each chain was initialised by selecting a parent pair at random as the putative

parents for each offspring. Visual inspection of the trajectories of samples generated by each

chain showed reasonable mixing between chains and the appearance of convergence in each of

the analyses performed. Ranges for one metric of convergence, the multivariate scale reduction

factor of Brooks & Gelman (1998), for all of these analyses were between 1.03 and 1.11. These
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values suggest that a longer run will not substantially improve the precision of estimates of the

parameters.

The quality of the paternity is assessed by using the proportion of the empirically derived

posterior samples of parentage that assign the true parent pair as the parents, as an estimate

of the posterior probability weight of the true parent pair. Assuming that the parentage of

different offspring can be considered independent events, then the probability of correctly as-

signing the parents of all offspring is simply the product of the posterior probability estimates

for the true parents for each of offspring. This index will henceforth be referred to as the ‘total

probability of correct parentage assignment’.

The second set of analyses involves the joint estimation of parentage and model observation

parameters. We test the sensitivity of the estimation process on the prior distribution by con-

sidering two different prior density distributions. Our first prior is a vaguely informative prior

with the probability of error for all error types given by a normal distribution with a mean

of 0.005 and a standard deviation of 0.03 truncated between 0 and 1. Whilst ensuring that

posterior estimates for the error values are restricted to an area of feasibility, this prior is still

relatively broad and easily contains the values commonly used as fixed error rates in parentage

analysis. For example, Marshall et al. (1998) use an error rate of 0.01 in their analysis of red

deer in their demonstration of the Cervus parentage analysis package. The second prior tested

is an uninformative uniform distribution set over the limits of the error rate parameter (zero

and one). This will allow investigation into the extent to which the quality of the parentage

assignment is dependent upon knowledge of the observation error rates.

Similarly to the first set of analyses, we run the Metropolis-within-Gibbs algorithm described

in the previous section for 130000 iterations and discarded the first 30000 iterations to allow

the chain to ‘burn-in’. Each analysis uses five independent chains. Initial parentage allocations

for each offspring were chosen at random and initial values for the error parameters were drawn

from a uniform distribution between zero and one to initialise each chain. New values for the

error model parameters were proposed according to a simple random-walk Metropolis-Hastings

algorithm except that the distribution was truncated between the limits of the parameter val-

ues. The standard deviation of the step-length was 0.1. Visual inspection of the trajectories

of the samples suggest that the chains were mixing well and that requirements of convergence

were met. In addition, calculation of the multivariate scale reduction factor (Brooks & Gel-
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man, 1998), gives values of 1.07 and 1.14 for the fitting of the random relabelling observation

model (R1-1 of table 3.1) using the vaguely-informative and non-informative priors respectively.

The multivariate scale reduction factor for the analysis using the vaguely-informative and non-

informative prior in the fitting of the marker-specific SNP model (C2-0 from table 3.1) was

1.02 and 1.06 respectively. These values suggest that the posterior estimates for the observa-

tion model parameters will not be substantially improved by further running of the MCMC

algorithm.

3.3 Results

3.3.1 Fixed Error Model Parameters

All observation methods performed well across the entire range of biologically reasonable geno-

type error rates evaluated in this study, with the total probability of correct parentage assign-

ment consistently higher than 83%. Both the random-relabelling observation model (R1-1 from

table 3.1) and the SNP marker-specific observation model (C2-0 from table 3.1) tested show a

negative skew of performance with genotyping error rate (see figure 3.3). This is to be expected,

when genotyping error rates are set to artificially high levels then the parentage inference be-

comes blurred and probability weights are spread more evenly amongst the candidate parent

pairs, thus lowering the posterior probability attached to the true parent pair. This situation

improves gradually as the error rate is lowered, peaking when the fixed error rate matches

closely the true genotyping error rate. However, a sharp drop in performance is present once

the genotyping error rate is set at artificially low levels. This could be because the diagnosis

of erroneous incompatibilities caused by observation errors exclude the true parents, causing a

significant negative impact on the total probability of correct parentage assignment.

The SNP marker-specific observation model does however produce higher values for the total

probability of correct parentage assignment, for some values of its parameter space. The C2-0

model benefits from an extra free parameter of complexity that the random relabelling model

and at least some of this increased performance can attributable to the flexibly of likelihood sur-

face under different parameter combinations. However, the total probability of correct parentage

is particularly sensitive to changes in the allelic dropout frequency and relatively insensitive to

changes in the allele misdiagnosis parameter (figure 3.3b). This suggests that the majority of

errors present in data set are of the allele dropout variety. The only tunable genotyping error

rate parameter in the R1-1 observation model controls the rate of genotype substitution, and
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the genotype substitution probabilities are derived from the observed frequencies. However,

given that null alleles are expressed only in the homozygous case, the substitution probabilities

for genotypes containing null alleles in this model are only non-zero for homozygous case. This

suggests that the R1-1 exhibits a certain degree of structural inflexibility to deal effectively with

recessive alleles.

3.3.2 Variable Error Model Parameters

Figure 3.5 shows the prior probability density plot and the marginal posterior density estimates

for the parameters for each of the observation models when the observation model parameters

are estimated jointly with the parentage. The quality of the parentage assignment remains

high for both observation models when informative priors are specified: the total probability of

correct parentage assignment is 87.776% for the random relabelling model and 96.321% for the

SNP marker model. The performance of the methods is not maintained when uninformative

priors are specified however. The total probability of correct parentage assignment drops to

64.344% and 62.151% when there is no information to constrain the parameters of the obser-

vation models to reasonable values.

From figure 3.5 it is apparent that the posterior estimates for the parameters of the observa-

tion models are very similar under the specification of an informative prior and all appear very

similar in shape to the prior distribution. Additionally, the credible intervals for the random

relabelling parameter of model R1-1 and the allele misdiagnosis rate of model C2-0 are very

wide when an uninformative prior is specified. This suggests that there is only limited infor-

mation available in the data to estimate these parameters. Despite this, there is little posterior

support for extreme values for the random relabelling parameter and the allele misdiagnosis

parameter when the prior is uninformative. This makes sense as low values for the relabelling

rates in R1-1 and the allele misdiagnosis rates in C2-0 result in models where the likelihood of

any incompatible parent and offspring phenotype combinations is low. In a large data set it

is likely that there will be at least one instance where observation error will result in offspring

with phenotypes that appear incompatible with any available parent pair and so, in these cases,

it is possible to discriminate against these unlikely parameter values even when there is no prior

information. Moreover, the allelic dropout rate parameter of model C2-0, whilst wider than

under the analysis using the vaguely-informative prior, still has a relatively narrow posterior

distribution when a non-informative prior is specified. Allelic dropout provides a very peculiar

type of error compared to the other error types as it not only changes the observed allelic
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Figure 3.3: The effect of the parameters of the observation models on the total probability of
correct parentage assignment. Figure (a) shows the effect of the value of the rate of random
relabelling error parameter on the parentage assignment quality for the R1-1 observation model
(see table 3.1). Figure (b) illustrates how the parentage assignment quality varies with each of
the two parameters for the observation model C2-0 (see table 3.1): the rate of allelic dropout
and the rate of allele misdiagnosis.

frequencies but also the zygosity of the population. This type of signal may be pretty easy to

detect in the data set and so, the frequency of these types of error may be estimated reliably,

even when an uninformative prior is used.

3.4 Discussion

Our results have shown that the application of observation models that describe the error types

present in different marker types outperform generic relabelling models on the whole. The

Figure 3.5 (on the next page): Model outputs and priors from an analysis where both obser-
vation model parameters and parentage are jointly estimated. Figure (a) displays the prior
probability density of observation parameters. The left-hand panel gives a vaguely informative
prior with higher densities given to error rates that are likely to exist in standard settings. The
right-hand panel is an entirely non-informative prior, where the error rates are equally likely
along the entire possible range of values. Figure (b) displays the estimated posterior density for
the parameter of the random relabelling model (R1-1) under analyses using the two different
prior types. Figure (c) displays the marginal posterior density estimates for the two parameters
under the SNP observation model (C2-0) with the leftmost panels displaying results for analyses
performed using with the vaguely informative prior and the rightmost panels displaying results
for analyses performed using the non-informative prior. The blue shading on the posterior
density estimates denotes the 95% credible interval for the parameter estimates and the red
dotted line shows the median value of the posterior sample.
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(a) Prior Specification of Error Terms
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(b) Random Relabelling Model
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(c) SNP Observation Model
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quality of the parentage assignment is however dependent upon assumptions about the error

rate. This is true regardless of the observation model used. The wide credible interval for most

observation model parameter estimates when a uninformative prior is specified may explain the

poor performance of the parentage assignment in these situations. Parentage methods rely on

identifying unlikely or incompatible genotypes to exclude potential parent pairs and, given that

our inference of these genotypes are driven by how they are liked to the observations of the

phenotype, then the parameters attached to a given observation model will dramatically alter

how phenotypes are used to weight combinations of different parents. If we have poor knowl-

edge of the error rate then it becomes difficult to identify the correct parent pair. In short,

there is an issue of parameter identifiability in the model and without prior knowledge of one

set of parameters then it is difficult use information about the observation error rates to build

a picture of parentage. All is not lost however, as we have shown that even vaguely-informative

priors can provide the information required for improved parentage assignment.

Different marker systems are observed in different ways: AFLP and RAPD markers allow

the simultaneous observation of multiple loci on one gel line so that the position on the gel de-

notes the locus whilst VNTR and RFLP markers use the positioning on the gel to assign allele

types for one locus at a time. Given the very different nature of these observation processes, it

seems intuitive that the application of one model for all marker types to describe the transition

from genotype to observed phenotype would be insufficient.

One of the criterion for assessing the performance of a model is to ask whether the model,

as it is described, adequately mimics the real-world phenomenon for which it is designed to

elucidate. The model implemented in Parente (Cercueil et al., 2002) defines a parameter that

controls the rate of errors of substitution. When a substitution is made the single locus genotype

is replaced with another single locus genotype taken directly from the population of genotypes

in the sample. It has been argued that such a model, may adequately describe errors arising

from labelling, pipetting or data entry errors (Kalinowski et al., 2007). Relabelling errors are

however likely to result in genotype errors across all loci rather than just at a specific locus.

Moreover, this list of human errors does not include that of allele binning, an error type which

would result in a very different genotypic signal than that occurring from random relabelling,

and has the potential to account for much of the observation error (Ewen et al., 2000). Other

allele misdiagnosis errors, unrelated to the quantity of the allele in the sampled population,

such as allelic dropout from contamination by inhibitory contaminants or preferential ampli-
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fication of other allele types are also not included. The error model implemented in Cervus

(Marshall et al., 1998), goes further than that of Cercueil et al. (2002) and draws replacements

from a theoretical population in Hardy-Weinberg equilibrium with allele frequencies equal to

those observed in the sampled population. It is even harder to see how this type of error could

occur in the genotyping process as neither labelling, pipetting, or data entry errors involve the

investigator finding a replacement for the true sample by going back out into the field and

sampling from a population that may not necessarily exhibit the same zygosity as the sampled

population. This is particularly true given that the presence of null alleles does not mean that

observed allele frequencies of the sampled population represents the true allele frequencies.

Dominant markers, true to their namesake, exhibit a relatively high frequency of recessive

markers as it is only the presence of null allele homozygotes in the sample that create the

polymorphism from which inference can be drawn. The per locus information content for most

dominant markers is much lower than their codominant counterparts, prompting some authors

to eschew the use of dominant markers in parentage analysis (Kirst et al., 2005). However,

the costs of running dominant markers can be considerably cheaper, and, it may be possible to

make up for the lack of power at one locus by inferring parentage relationships from many loci

simultaneously (Gerber et al., 2000; Milligan & McMurry, 1993). Currently, very few parent-

age analysis programs allow for the use of dominant markers in parentage analysis: Probmax

(Danzmann, 1997), MasterBayes (Hadfield et al., 2006), Famoz (Gerber et al., 2003) and,

more recently, Colony (Jones & Wang, 2010; Wang, 2004), are notable exceptions to this.

However, unlike the observation model for dominant markers described in this study, most of

these programs are limited to the analysis of parentage in the diploid case.

Null alleles are much rarer in loci used in codominant markers, not necessarily because they

are rarer in the total population of polymorphic loci, but that codominant markers used in

parentage analysis are often chosen from loci that exhibit low null allele frequencies (Matson

et al., 2008; Castro et al., 2007). This is because null alleles are often considered nuisance alle-

les in studies using codominant markers (de Sousa et al., 2005; Pemberton et al., 1995); most

packages of parentage analysis do not attempt to distinguish between heterozygotes with one or

more null alleles and non-null homozygotes, assuming the later, and, therefore, that no recessive

alleles exist in the data set. Whilst Cervus (Marshall et al., 1998; Kalinowski et al., 2007) and

Newpat (Worthington Wilmer et al., 1999) include a diagnostic tool for the identification of

loci with high null allele frequencies, they offer no mechanism to incorporate these loci into the
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analysis. Probmax (Danzmann, 1997), takes the more conservative approach, and re-codes all

non-null homozygotes as heterozygotes with the presence of one null allele for all loci with null

alleles present. This method may work satisfactorily for exclusion methods, but, if applied to

fractional assignment methods, may bias parentage assignment.

To avoid errors compounded by issues of observability, (de Sousa et al., 2005) advocates re-

moving all loci with suspected null alleles from all analyses. However, excluding all loci from an

analysis with suspected null alleles is very wasteful, drains the discrimination power between

candidate parent pairs, and may bias the paternity assignment if these loci are informative.

Indeed, some studies have shown that the benefits of some of the maximum-likelihood based

parentage assignment methods are undermined and perform no better than exclusion methods

once the set of sampled loci are trimmed to remove those which are error prone or contain null

alleles (Castro et al., 2007). For many species where the number of described microsatellite loci

are few, the loss of power from such exclusion practices would be unacceptable.

Dakin & Avise (2004), in their review of 233 articles using data that included null alleles,

report that only a small fraction of the 90% of articles the included loci with null alleles in

the analysis made any statistical correction for this fact. In contrast, the observation model

described in this paper explicitly addresses the different mechanisms by which a phenotype can

be observed, including the excess homozygosity arising from null allele presence. Given that

some studies show as high as 40% of incompatibilities arising from the presence of null alleles

(Bowling et al., 1997), it is becoming ever more important to address null alleles explicitly in

models of parentage. Bar some notable exceptions, the two main strategies for dealing with

null alleles in parentage analysis is either to remove loci from the analyses where they are sus-

pected to be present or to ignore their presence and to continue the analysis as normal without

correction. Both methods have substantial drawbacks. We describe here a method of parentage

assignment that explicitly models the inheritance of the null case, allowing the integration of

information present in all loci in the inference of paternity without needing to exclude loci with

null alleles present.

The special exceptions for null allele transmission used in this paper may go some way to

addressing the biases described in other papers. However, the implicit assumption has been

made that the ‘null’ allele is of only one type and our mechanisms of inheritance treat it as

such. (Lehmann et al., 1996) show that a ‘null’ allele may have a basis in many different genetic
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characteristics that prevent amplification. If some estimates of the number of null allele types

are known, then it may be possible to incorporate these as extra alleles in the observation and

genotype vectors. In most cases this information is not available, and even if it were available, it

is unlikely that this extra information would play an important role in discriminating between

potential parent pairs for a given offspring. Whilst it may be genetically incorrect to aggregate

the different null alleles types, it may prove to be the parsimonious stance in the absence of

further information and avoids the scenario where incompatibilities between different null allele

types are diagnosed but where one of the null allele types does not exist.

The Mendelian model of inheritance described in this paper performs adequately for species

with even-valued ploidy and equal genetic investment from both parents. However, more un-

usual inheritance systems can be incorporated into the analysis by modifying transition equation

3.3. For example, it is possible to describe the more general situation where genetic investment

from parents are not equal, respecifying probability mass functions gm (Xmj) and gf (Xfj)

gm (Xmj) =



∏
a

(
Gmja

Xmja

)
(
Cij

Mij

) if
∑
a

Xmja = Mij

0 otherwise

(3.30)

gf (Xfj) =



∏
a

(
Gfja

Xfja

)
(

Cij

Cij −Mij

) if
∑
a

Xfja = Cij −Mij

0 otherwise

(3.31)

where Mij is the number of copies of locus j maternally inherited by offspring i. Cij is the

ploidy of offspring i at locus j. Using this formulation it is possible to describe the inheritance

of maternally inherited markers, such as those residing in chloroplasts or mitochondria, by set-

ting Mij = Cij . It is also possible to describe sex specific ploidy, for example, haplodiploidy, by

setting Cij = 2 and Mij = 1 if the offspring is female, and setting Cij = 1 and Mij = 1 if the

offspring is male. Newpat (Worthington Wilmer et al., 1999) allows the analysis of sex-linked

loci, Famoz (Gerber et al., 2000) allows the analysis of cytoplasmically inherited loci, and

Colony (Jones & Wang, 2010) allows the analysis of haplodiploid organisms. However, the

methodology described in this paper can be extended to cover all of these marker inheritance

systems with ease, allowing also the mixing of these inheritance systems so that joint parentage

estimation can be made from different markers with different mechanisms of inheritance.
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Parentage analysis is often part of a much larger analysis, often used to infer other char-

acteristics such as dispersal abilities (Robledo-Arnuncio & Garca, 2007; Piotti et al., 2009;

Zeyl et al., 2009), home range size (Martin et al., 2007), and individual reproductive success

(Williams & DeWoody, 2009). These approaches require methods to combine the information

from both genetic and non-genetic data to jointly estimate parameters controlling parentage

and the phenomenon of interest. Classic approaches have seen the application of a two stage

process where parentage is first inferred using one of the many parentage analysis programs

available. Once parentage is ascertained the results of the analysis are fed into the second stage

of the model for which another set of parameters are estimated. However, it is rare in these

analyses that the uncertainty related to the parentage assignment is propagated to the next

stage of the model. If parents are incorrectly identified and no information is provided to the

strength of the identification then significant biases may arise in estimates of parameters at

the next stage of the analysis (Jones, 2003). Fractional parentage methods, such as the one

described in this paper, are expected to perform best when propagating uncertainty as they

can provide probabilistic estimates for all parent pairs, retaining information when multiple

possible crosses are likely.

MasterBayes (Hadfield et al., 2006) goes one step further in this regard and actually incor-

porates non-genetic information, such as spatial data, into the parentage assignment. Bayesian

methodologies can be particularly useful here because they allow easy combination of different

models into one hierarchical framework. Unlike methods which simply use the output of one

model to become the input of another model, Bayesian hierarchical models use the information

collected at any tier of the model to jointly estimate the parameters at all tiers of the model.

This ‘pulling in’ of all available data allows for maximum inference of parameter values and

better estimates (Jackson et al., 2009). Whilst exact implementations are beyond the scope

of this paper, it is worth noting that the model described here is equally as extensible to the

integration of data from other sources, allowing independent data on dispersal ability, breeding

success, or home range to influence paternity assignment.

The combination of null allele presence and allelic dropout have accounted for as much as

a 53% of false parentage assignments in some studies (Jerry et al., 2004). The mechanisms by

which genotyping error and null allele presence exclude parentage pairs are different however,

and to adequately model the probabilities associated with observing an offspring phenotype
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given the observed phenotypes of putative parents it is necessary to disentangle these effects.

The model framework described here does just that, explicitly modelling the inheritance of ’true’

genotypes and the observation process that links the phenotype to the ’true’ genotypes. We

have also shown that this method is easily extensible to include other non-genetic information

and allows the drawing of statistical power from multiple marker types and for any ploidy. Only

when all available information from all sources are drawn into the analysis can we achieve the

best possible estimates for the parameters that govern parentage. The method described here

presents one step towards this eventual goal.



CHAPTER 3S

Using Parentage Assignment for the Calculation of Population

Parameters

In ecological studies, the parentage assignment resulting from the parentage analysis is, in itself

not usually the primary focus of the study. More often, parentage analysis is a precursor to the

assessment of other features of interest in the population. We include this section as an adden-

dum to chapter 3 to show how we can use the output from the parentage analysis described

there to drive inference about two key parameters of interest: the distribution of offspring

for each individual, and the dispersal kernel of offspring from the parent individuals. Inference

about these processes can form the basis of an individual-based model as described in chapter 4.

3S.1 Calculating Breeding Success

The breeding success of an individual can be characterised by the probability distribution of

offspring that it manages to produce in a given time period. For many species we would expect a

difference functional form for breeding success between the sexes, or seed donor or pollen donor

when are talking about plants. We denote K♀ (x|ω♀) and K♂ (x|ω♂) as the probabilitiy mass

function of breeding success for the maternal (or seed donating plant) and paternal (or pollen

donating plant) contributions. Here, ω♀ and ω♂ are vectors of parameters controlling the

distribution of the breeding success function. In any given iteration of algorithm 3 in chapter

83
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3, we are presented with a set of putative parentage pairs, consisting of two vectors m and f ,

denoting the proposed mother (seed donor) and father (pollen donor) respectively for each of

the offspring in the population, such that each element of the vector holds the indicator number

of the maternally and paternally contributing parent. Under this specification of the model of

breeding success, the likelihood of the vectors of putative parentage pairs given the parameters

of the breeding success distributions is

LK

(
ω♀, ω♂) =

∏
j

K♀ (ζj |ω♀)K♂ (ξj |ω♂) (3S.1)

where ζj =
∑

i 1j (mi) and ξj =
∑

i 1j (fi) are the number of offspring that potential parent

j contributed to maternally and paternally respectively. 1j (x) is an indicator function and

equals one when individual j is the same individual as individual x and zero at all other times.

3S.2 Calculating Dispersal Distances

If spatial information pertaining to the location of the offspring and parents is available then if

is also possible to use the parentage assignment to parameterise estimates of inter-generational

dispersal. Animals adhere to a many number of specialised dispersal rules and behavioural

tendencies that would be too varied to discuss here. We instead restrict ourselves to the polli-

nation and seed setting dynamics of plants with the hope that the reader may be able to intuit

from this simple example to more complex dispersal models. The dispersal capabilities of an

individual can be represented by its dispersal kernel, a probability density distribution defined

over possible dispersal distances, r, and angles of dispersal θ. We might be inclined to define

separate probability density distributions for the different dispersal mechanisms, D♀ (r, θ|δ♀)
and D♂ (r, θ|δ♂), for seed dispersal and pollen dispersal respectively. We define rij as the

distance between individuals i and j, and θij as the angle of direction from i to j. For the birth

of a new sexually produced individual we can assume that two dispersal events have to have

happened: firstly a pollen grain must have dispersed from the pollen donor to the seed donor,

and secondly, a seed must have dispersed from the seed donor to the offspring location. The

likelihood of the vectors of the vectors of putative parentage pairs given the parameters for the

dispersal kernels is therefore

LD

(
δ♀, δ♂) =

∏
i

D♀ (rmii, θmii|δ♀)D♂ (rfimi , θfimi |δ♂) (3S.2)
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3S.3 Adding Population Parameter Inference to the Parent-

age Analysis

Parameter estimation for the breeding and dispersal parameters can be embedded into the

parentage analysis be inserting an extra Metropolis-Hastings sampler between steps 6 and 7 of

algorithm 3 of chapter 3. This Metropolis-Hastings sampler takes the standard form:

1. Propose new parameter values for the dispersal and breeding success models from the

proposal density q
(
ω∗♀, ω∗♂, δ∗♀, δ∗♂|ω♀, ω♂, δ♀, δ♂

)
2. Calculate

α = min

1,
LK

(
ω∗♀, ω∗♂

)
LD

(
δ∗♀, δ∗♂

)
π
(
ω∗♀, ω∗♂, δ∗♀, δ∗♂

)
q
(
ω♀, ω♂, δ♀, δ♂|ω∗♀, ω∗♂, δ∗♀, δ∗♂

)
LK

(
ω♀, ω♂)LD

(
δ♀, δ♂)π (ω♀, ω♂, δ♀, δ♂) q (ω∗♀, ω∗♂, δ∗♀, δ∗♂|ω♀, ω♂, δ♀, δ♂

)


(3S.3)

3. Draw a random number l from a uniform distribution defined between zero and one. If

l < α then accept ω∗♀, ω∗♂, δ∗♀, and δ∗♂ as samples from the posterior distribution and set

ω♀ = ω∗♀ ω♂ = ω∗♂
δ♀ = δ∗♀ δ♂ = δ∗♂

(3S.4)

otherwise accept ω♀, ω♂, δ♀, and δ♂ as samples from the posterior distribution.



CHAPTER 4

The application of Approximate Bayesian Computation to

Individual-Based Modelling

Summary

1. The application of individual-based models (IBMs) to ecological problems has long been

hampered by the inability to derive the likelihood functions used to assess the performance

of parameter combinations in describing observed data.

2. Heuristic pattern-matching methods have been suggested by previous authors which re-

quire a thorough interrogation of the parameter space. Whilst these methods allow for

a reasonable analysis when there are few parameters in the model, they rapidly loose

tractability when the dimensionality of the parameter vector increases. The lack of a

calculable likelihood means that classical likelihood-driven Bayesian approaches are also

impossible to employ.

3. Here we present a number of approximate Bayesian methods that can be used in IBM

applications to efficiently and robustly search the available parameter space even when

the functional form of the likelihood is not available. We develop a selection of novel

algorithms that are more specifically tailored towards the fitting of IBMs to the sort of

data that they are likely to be fitted to (such as time series data).

4. We explain how these methods can be extended using an approximate Bayesian equivalent

86
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of reversible-jump Markov chain Monte Carlo (MCMC) to select the best model from a

selection of candidate models.

5. A worked example is provided to show the application of these methods to select between

three semi-mechanistic models of molehill formation and to assess the posterior support of

different parameter combinations based on their ability to recreate the spatial properties

of observed molehills.

6. We discuss the how previous examples ‘pattern-oriented’ modelling fit in within the ap-

proximate Bayesian framework and describe the benefits of adopting these more formal

methods for the analysis of data.
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4.1 Introduction

Modelling is the art of refining complex phenomena into tractable caricatures. Ecological sys-

tems are complex, but boiling down the characteristics of that we are interested in into elegant

abstractions whilst maintaining realism can be difficult. With increased understanding of this

complexity, alongside an invigoured motivation to include it in the formulation of the model,

we have witnessed the birth of a many number of methodologies to incorporate complex inter-

actions.

Individual-based modelling is one such methodology. These techniques are often employed

by modellers when results arising from individual-level variation cannot be adequately explained

by their state-variable, and mostly analytical, counterparts. Here individuals are defined by

a set of rules and characteristics that dictate how they are to interact with their abiotic and

biotic environment. Population-level phenomena emerge in individual-based models (IBMs) as

the cumulative effect of the individuals interaction with the environment and each other rather

than hard-coded at a higher level such as those models employed in classic population ecology.

Individual-based models are not without their costs however. The very complexity of these

models mean that they are much more difficult to test and analyse (Murdoch et al., 1992;

Beissinger & Westphal, 1998). The problems with this complexity also extend to the fitting of

these models to data. Except in the most basic of cases, individual-based models are analyt-

ically intractable. Some authors have highlighted the ability to estimate certain key features

of interest from individual-based models using analytical techniques: Murrell et al. (2004) de-

scribe how to approximate the dynamics of spatial moments and Ovaskainen & Cornell (2006)

illustrate the derivation of asymptotically exact spatial information using perturbation theory.

Despite these efforts, for the most part we are forced to rely on Monte Carlo techniques for the

analysis and fitting of IBMs.

For our classical model counterparts the process of fitting models to data is a relatively

much less painful affair. Once a mathematical description of the underlying process has been

described, an error term, if not already implicit in the model, can be assumed about the process.

This allows us to describe the probability of observing the data if the structure of the model

and a given combination of parameter values were true. This likelihood function can then be

maximised either through analytical derivation or the employment of numerical techniques,
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such as those described in Nash (1990), to find the combinations of model parameter values

that, if true, would have the highest probability of producing the observed data. These optimal

parameter values are often referred to as ‘maximum-likelihood estimators’ and, for most of

the regularly applied probability distributions, they can be described in a simple closed-form

function of the data. Even in the absence of a full likelihood specification, the mathematical

description of the underlying process allows us to maximise or minimise some other relevant

metric such as the sum of the squared deviation of the data from the model functional form.

Unfortunately, deriving a likelihood function for an IBM is not a simple affair and, except in

the most simple of cases, it is mathematically intractable. An example of this intractability can

be illustrated by considering a description of the movement of an individual that disperses to a

new location in each time period by selecting a direction (θ) at random according to some known

angular probability distribution function, with probability density function f1 (θ|α), and then

independently drawing a dispersal distance (r) from another known probability distribution

with probability density function f2 (r|α). Here α is a vector of parameters controlling the

shape of the probability density functions. This is a simple setup and is one that has been

used frequently as the basis for more complex IBMs (see Dytham & Travis, 2006; Dytham,

2009, for examples). Now, consider that we are presented with some tracking data of an

individual’s movements in the field and we wish to fit our simple random-walk model to our

observed movement data. Under this scenario our likelihood function, L (α), is the product of

the probabilities of dispersing the observed direction and distance in each time period such that

L (α) =
∏
t

f1 (θt|α) f2 (rt|α) (4.1)

where rt and θt are the distance and angle of dispersal observed at time t respectively.

So far, as long as the probability density functions f1 and f2 are calculable, then our

likelihood function is specifiable in a simple and calculable form. However, modelling an indi-

vidual’s movement as a similar process to the Brownian motion of a particle will rarely provide

an adequate description of true movement (Turchin, 1998; Codling et al., 2008). One added

complication to the model that an ecologist may be keen to include in the model is the inter-

action of the individual with features in the landscape. For example, we could add an extra

movement rule into the model that states that if the path of movement crosses a physical bar-

rier (such as a wall) then it will reflect away from the wall at an angle from the wall equal
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to the angle of incidence before continuing its movement. Suddenly, with the addition of this

conceptually simple rule, the likelihood of dispersing to a given location becomes much more

difficult to calculate: the probability that an individual arrives at a certain location is now

the sum of the probability that the individual arrives there directly, without crossing a barrier,

and the probability that the individual arrives there indirectly by reflecting off one or more

reflective barriers. With the addition of two or more reflecting barriers, there can potentially

be an infinite number of ways the individual can arrive at a given location. To calculate the

likelihood in these situation would require the evaluation of the convergence properties of an

infinite series. We see that in this situation we are left with a model that is relatively easy to

simulate from, but for which it is difficult to evaluate the likelihood. Situations like this are

not uncommon when dealing with IBMs however.

The inability to specify a likelihood function for most IBMs presents a problem when fitting

these models to data. If we are unable to specify how likely the data are given the model

structure and parameter values then how do we go about searching the parameter space for

values that produce a good fit to the data? In most cases the potential range of values that

collected data can take is huge, and for continuous data and data with unbounded ranges, it is

infinite. Expecting an IBM to recreate the data for any combination of parameter values is ob-

viously untenable. Grimm et al. (1996) argue that although exact data recreation is impossible,

and not a useful goal, we can attempt to emulate certain patterns of interest in the data. By

defining metrics that measure the difference between the patterns of interest in the data and

the emergent properties of the individuals we can systematically search the parameter space for

value which, over many simulations, minimise the distance metric (Wiegand et al., 2003). This

so-called ‘Pattern-Oriented Modelling’ or ‘POM’ (Grimm et al., 1996, 2005) is not dissimilar

to what a statistical practitioner might call ‘fitting’, although typically, when fitting an IBM,

a smaller subset of potential parameter values are tested due to the high computational cost

associated with Monte Carlo simulation for each parameter combination.

Pattern-oriented modelling as it currently stands faces a number of problems however. The

dimensionality of the parameter vector in individual-based modelling is commonly high (DeAn-

gelis & Mooij, 2003). Testing just five values of eight different parameters would result in

58 = 390625 sets of simulations, each of which would require a number of realisations to in

order to adequately assess the ability of the parameter combination to emulate the pattern

of interest. Even if such a rigorous trial was performed there would be no certainty that one
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of the parameter combinations chosen would be the best out of the possible set of parameter

combinations, or indeed good, at pattern reconstruction.

In order to elevate pattern-oriented modelling from a heuristic to a methodology it is impor-

tant to incorporate techniques that can address these problems in a statistically robust manner.

This paper aims to flesh out a number of these techniques in this emerging field, describing

each in turn, giving an example of their use in fitting a relatively simple mechanistic model of

spatio-temporal point pattern dynamics to molehill construction.

4.2 Materials and Methods

4.2.1 Approximate Bayesian Computation

The process of model fitting requires that we search the available parameter space for combina-

tions that are the most probable given the available dataset. We, as investigators, are therefore

interested in the quantity P (θ|D), the probability of the parameter vector θ given the dataset

D. Bayes theorem states that this quantity is given by

P (θ|D) =
P (D|θ)π (θ)∫
P (D|θ)π (θ) dθ

(4.2)

where P (D|θ) is the probability of obtaining dataset D with a model parametrised with pa-

rameter vector θ, otherwise known as the likelihood. In Bayesian parlance the quantity P (θ|D)

is often referred to as the ‘posterior distribution’. π (θ) is the ‘prior probability’ of the param-

eter vector θ and this term represents the probability density of the parameter vector before

information has been drawn from the dataset. It is through this quantity that prior knowledge

of the system of interest, either through previous study or known biological or physical limits,

can be integrated into the fitting process. Except in the most simple of cases, the denominator

quantity, a normalising constant, is difficult to calculate analytically. Instead, Bayesian analysis

commonly relies on algorithms to sample values of θ from the target distribution. Inference is

made in these cases from the empirical distribution of sampled parameter values.

Fitting IBMs using Bayesian techniques comes with added disadvantage that, for the most

part, the likelihood function is not known. This quantity is required, not only in the direct

calculation of the posterior, P (θ|D), but also in most sampling algorithms of it. The demand

for fitting complex models to data with analytically intractable likelihoods has resulted in the
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development of a number of approximate likelihood-free approaches for Bayesian model fitting.

All methods of approximate Bayesian computation, rely on the calculation of a summary

statistic, or set of summary statistics, with which to compare simulated model outputs with the

real dataset. We denote the ith summary statistic of the true data, D, as Si (D) and the same

summary statistic calculated for data simulated from the model with parameter vector θ, D̂,

as Si

(
D̂
)

. The distance between the set of n summary statistics derived from the simulated

dataset and the real dataset is calculated using a distance function ρ
[
S (D) ,S

(
D̂
)]

, where

S (·) = [S1 (·) , . . . , Sn (·)]. All algorithms rely on a tolerance parameter, δ, which is used as

an acceptance threshold to decide how close the summary statistic calculated from the simu-

lated data has to be to the same statistic calculated from the real data before it is retained

as a sample from the posterior distribution. Small values of δ specify a very narrow accep-

tance criterion, a higher rejection rate, and hence, increased computational time in order to

obtain a robust sample from the target distribution. Large values of δ may increase acceptance

rate but at the cost of making the approximation to the posterior distribution much more coarse.

Rejection Sampling

The first set of approximate methods considered here are those that simulate parameters from

the prior followed by a rejection criterion. Earlier incarnations of rejection algorithms for

approximate Bayesian computation do exist (see Tavaré et al., 1997) but they are either designed

for a specific application and not easily generalisable to other models, or require an analytic

description of the expected value of the comparison statistic which, for most scenarios, is not

available. We begin here with a description of the method used in Pritchard et al. (1999) for

the fitting of human population history models to Y chromosome microsatellite data:

Algorithm 1: Rejection sampling (Pritchard et al., 1999)

1. Draw a random parameter vector θ from a distribution with probability density function

π (θ), the prior density.

2. Simulate a dataset, D̂, using parameter vector θ.

3. If ρ
[
S (D) ,S

(
D̂
)]

≤ δ (in their original paper Pritchard et al., 1999, required that

|Si (D) − Si

(
D̂
)
| ≤ δ for all i) then store the parameter vector θ as a sample from the
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target distribution.

4. Go to 1.

Beaumont et al. (2002) adapt this algorithm further, proposing an ellipsoidal acceptance region

at step 3, ρ
[
S (D) ,S

(
D̂
)]

=

√∑
i

[
Si(D)−Si(D̂)

σSi

]2
where σSi is a scaling constant related

to the variance of statistic i. The authors also provide a re-weighting and regression step to

attempt to correct for the approximation.

Markov Chain Monte Carlo

Rejection methods have the advantage that they are conceptually simple, easy to code and

that the generation of samples from the target distribution can be done in isolation. This lat-

ter characteristic permits the parallelisation of sample generation across multiple processors.

However, in cases where the prior density is substantially different from that of the posterior

density, the rejection rate can become prohibitively high and a thorough sample of the posterior

distribution computationally infeasible.

Standard Bayesian analysis makes common use of Markov Chain Monte Carlo methods,

such as the Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970; Chib &

Greenberg, 1995) or the Gibbs sampler (Geman & Geman, 1984), that involve the sampling

of posterior parameter estimates from a Markov Chain. The samples drawn from the chain

tend towards a sample from the posterior as the chain progresses. Samples may not be drawn

independently under this scheme but, at the asymptote, this lack of independence does not affect

the eventual converge of the parameter samples to that expected if they were drawn directly

and independently from the posterior. Marjoram et al. (2003) suggest an approximate analog

of the Metropolis-Hasting algorithm commonly employed in traditional Bayesian computation:

Algorithm 2: Markov chain Monte Carlo sampling (Marjoram et al., 2003)

1. Initialise the parameter vector θ with arbitrary values.

2. Propose a new vector of parameter values, θ∗, drawn randomly from a distribution with

probability density q (θ∗|θ).

3. Simulate a dataset, D̂, using the proposal parameter vector θ∗.
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4. If ρ
[
S (D) ,S

(
D̂
)]

> δ then store θ as a sample from the posterior distribution and go

to step 2.

5. Generate a random number, l, from a continuous uniform distribution defined between

the limits of 0 and 1. If

l > min

{
1,
π (θ∗) q (θ|θ∗)

π (θ) q (θ∗|θ)

}
(4.3)

then store θ as a sample from the posterior distribution and go to step 2.

6. Store θ∗ as a sample from the posterior distribution. Set θ = θ∗ and go to step 2.

The density q (θ∗|θ) in algorithm 2 is a proposal density. As long as the proposal density

allows the proposal of parameter combinations that have some posterior support then the exact

choice of the proposal distribution does not affect the asymptotic convergence properties of the

Markov chain. However, the choice of the proposal density will affect the speed of convergence

of the chain: proposal distributions similar to the posterior distribution perform most optimally

but, given that in most cases the functional form of the posterior is not known, we often resort

to simple proposal distributions with a simple symmetric distribution around the current pa-

rameter values.

Markov-Chain Monte Carlo methods in Bayesian analysis need to be applied with care

however. The samples drawn from the chain can only truly be considered as samples from the

posterior once the chain is run for infinite length of time. In practice, we are happy to accept

the samples once the chain has been run for ‘long enough’ but what constitutes ‘long enough’

usually depends on the how quickly the chain converges to its stationary distribution. Moreover,

when assessing values of θ with very low posterior support the number of rejected proposal

values will increase, curtailing the ability of the chain to explore the available parameter space.

For this reason, it can be difficult to adequately sample from multimodal target distributions,

particularly if there is a large region of low probability separating the modal peaks. It is

therefore vitally important when implementing these algorithms that adequate assessment is

made of the convergence of the chain, either through visualisation of chain mixing (see Peltonen

et al., 2009) or using one or more of the diagnostics described by Mengersen et al. (1999).

Sequential Methods

Sisson et al. (2007), and later Toni et al. (2009), provide the details of a likelihood-free equivalent

of a sequential Monte Carlo method using sequential importance sampling (SIS). Importance
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sampling requires the use of a number of ‘particles’, with each particle containing a vector of

potential samples of parameter values from the target distribution. The basic premise is that

rather then sub sample the particles directly from an approximation to the posterior distribu-

tion, such as the algorithm of Pritchard et al. (1999), the particles are instead filtered using a

number of intermediary distributions. This method attempts to circumvent the potential inef-

ficiency of a high rejection rate when the prior and posterior distributions are very different by

filtering the particles through T intermediate stages and replacing particles that are performing

badly with new ones. The fact that particles are independently drawn, each with their own

trajectory, means that particle filtering methods do not suffer from strong autocorrelation in the

posterior sample brought about by slow mixing at local optima and in low likelihood parameter

space to the same extent as MCMC methods. Sisson et al. (2007) supplement the basic particle

filtering algorithm with an extra particle mutation step (see Del Moral et al., 2006) such that

the final version (after corrections as published in Toni et al., 2009) is as follows:

Algorithm 3: Sequential importance sampling (Sisson et al., 2007; Toni et al., 2009)

1. Set the particle population iterator t = 1.

2. For each particle of the population of size N :

(a) If t = 1, generate a proposed vector of parameter values for particle i, θ∗t , from

an initialisation distribution with density µ (θ∗t ). In most implementations this ini-

tialisation distribution is set to the prior distribution, π (θ∗t ). For t > 1 randomly

select a vector of parameter values with replacement from the population of particles,

θt−1 =
[
θ
(1)
t−1, . . . , θ

(N)
t−1

]
, with the probability of selecting a given particle set equal to

its relative contribution to the vector of weights, Wt−1 =
[
W

(1)
t−1, . . . ,W

(N)
t−1

]
. This

is the equivalent of drawing a particle from a categorical distribution with proba-

bility vector for the categories set equal to the normalised weight vector. Use the

randomly selected vector of parameter values, θ
(S)
t−1, to generate θ∗t according to a

proposal density q
(
θ∗t |θ

(S)
t−1

)
.

(b) If π (θ∗t ) = 0 then go to step 2a.

(c) Simulate a data set for particle i, D̂
(i)
t , using the proposed parameter vector θ∗t .

(d) If ρ
[
S (D) ,S

(
D̂

(i)
t

)]
> δt then go to step 2a. δt is a population specific acceptance

constant that decreases monotonically as t→ T such that δt > δt+1. Only δT affects
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the approximation to the target distribution but previous acceptance constants do

control the efficiency of the algorithm (see Sisson et al., 2007; Toni et al., 2009).

(e) Set

θ
(i)
t = θ∗t (4.4)

W
(i)
t =


π
(
θ
(i)
t

)
µ
(
θ
(i)
t

) if t = 1

π
(
θ
(i)
t

)
∑

j W
(j)
t−1q

(
θ
(i)
t |θ(j)

t−1

) otherwise

(4.5)

3. Normalise Wt so that
∑

iW
(i)
t = 1.

4. If t < T then increment the population iterator t and go to step 2.

5. Save the parameter vectors from the T th population of particles, θT , as samples from the

posterior distribution.

Individual-based models are, in nearly all cases, dynamic: that is, they do not assume equi-

librium and simply generate results using this assumption. Equilibrium may emerge from the

fundamental individual-level description of the process, but it is not a requirement of the mod-

elling framework. Most individual-based models, such as the models described in this paper,

simulate the emergence of a time series of data. In some cases we have a time series of data

with which to compare to the outputs of the model in incremental stages. Given that the

main computational cost of fitting these models using the algorithms described above is the

simulation of data, it may be useful in these instances to curtail those simulations that are

obviously performing badly (not adequately matching the data collected in the early time pe-

riods) and use the computational time saved to assess another combination of parameter values.

Here we describe a reformulation of the algorithm of Toni et al. (2009), specifically for the

fitting of models to time series data. The model to be fit is simulated forward one time step

at a time and the simulated outputs compared to the data in that time period only. Unlike

the Toni et al. (2009) algorithm, where the model is run for the entire duration of the data

collection period in each iteration and compared to the entire dataset, the algorithm described

below breaks down the dataset into seperate time components, and resampling is done in each

time period. This serves to filter out poorly performing particles without the need to simulate

such particles through the entire data collection period. Under this specification, each particle
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holds not only a set of parameter values but also the current state of the simulation at each

time period.

Like the MCMC methods of algoritm 2, the SIS methods of algorithm 3 makes use of a pro-

posal density q
(
θ∗t |θ

(S)
t−1

)
to generate new possible parameter values to test. This is required

because in each iteration of the algorithm there is a selection of a new set of particles drawn at

random from the old set. Without enrichment of the diversity of the particles, the compound-

ing of this sampling effect over many iterations will result in a reduction of the diversity of the

particles. This ‘mutation’ of the parameter values is often referred to as ‘kernel smoothing’ and

is commonly applied in the fitting of dynamic models (see Liu & West, 2001; Thomas et al.,

2005; Harrison et al., 2006; Newman et al., 2006). However the application of the proposal

kernel to the parameters results in a separation between the parameter values and the states

that they generate. If the parameter values are greatly perturbed by the proposal kernel then

particles may end up holding state information that is unlikely to have been generated using

the perturbed parameters, introducing a bias into the analysis (Trenkel et al., 2000; Harrison

et al., 2006).

Other authors have postulated that it is better to replace the kernel smoothing step with

a sample from an MCMC sampler (Gilks & Berzuini, 2001; Khan et al., 2005; Andrieu et al.,

2010). The argument follows that because the sample from the particle filter at any given time

step is already a sample from the posterior distribution with respect to all data recorded up

until that time step, the MCMC sampler can be already be said to have ‘converged’. Samples

generated using these methods can therefore be taken to be true samples from the posterior

without requiring a formal test of convergence. Moreover, because standard MCMC tests

require a re-evaluation of the likelihood, or a re-simulation in the case of approximate methods,

the link between the parameters and the states of the model is maintained and the bias present

in kernel smoothing methods does not exist in MCMC perturbation. The downside to this

approach is that it requires twice as many simulations as the Kernel smoothing method. Below

we adapt the MCMC particle filter to the approximate Bayesian framework for the fitting of

IBMs to time-series data:

Algorithm 4: Sequential importance sampling with MCMC particle perturbation

for time series simulation
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1. Set the time iterator t = 1.

2. For each particle of the population of size N :

(a) If t = 1 generate a proposed vector of parameters, θ
(i)
t , from the prior distribu-

tion, π
(
θ
(i)
t

)
. For t > 1, randomly sample, with replacement, a particle from the

population of particles, θt−1 =
[
θ
(1)
t−1, . . . , θ

(N)
t−1

]
.

(b) Simulate forward one time step to create a simulated data set (states) for particle i,

D̂
(i)
t , using the parameter vector θ

(i)
t and the previous states of the particle, D̂

(i)
0:(t−1).

For the simulation of models that exhibit Markovian properties, only D̂
(i)
t−1 needs to

be considered when generating the set of states for the next time step.

(c) If ρ
[
S (Dt) ,S

(
D̂

(i)
t

)]
> δ then go to step 2a.

(d) Perturb the set of parameters according to the proposal distribution, q
(
θ∗t |θ

(i)
t

)
, to

create a candidate set of parameters θ∗t .

(e) Simulate from time t−1 to time t to create a proposed simulated data set (proposed

states), D̂∗
t , using the parameter vector θ∗t and the previous states of particle i,

D̂
(i)
0:(t−1).

(f) If ρ
[
S (Dt) ,S

(
D̂∗

t

)]
<= δ then generate random number, l, from a continuous

uniform distribution defined between the limits of 0 and 1. If

l > min

1,
π (θ∗t ) q

(
θ
(i)
t |θ∗t

)
π
(
θ
(i)
t

)
q
(
θ∗t |θ

(i)
t

)
 (4.6)

then set θ
(i)
t = θ∗t and D̂

(i)
t = D̂∗

t

3. If t < T then increment the time iterator t and go to step 2.

4. Save the parameter vector from the T th population of particles, θT , as samples from the

posterior distribution.

Sometimes, not only the distribution of parameter values but also the distribution of model

outputs used in the fitting process are of interest to the investigator. Inference about unobserved

data or predictions outside the realm of the comparison data set is often the aim of the modelling

exercise. Even though many locations may be unsampled, the simulation process may propose

data values for these locations at the same time as generating data values for sampled locations.

In this sense a missing data value can be considered as another parameter, values for which can
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be sampled, along with the others, during the fitting process. It is therefore possible to use the

distribution of simulated data values at unsampled locations in inferring possible values for these

missing data points. Data generated during the parameter sampling process which resulted in

a successful sample from the target distribution can be used for this purpose in algorithms 1

and 2. The evolution of the parameter over successive steps in the sequential sampling methods

mean that only data generated in the final step of algorithm 3, D̂T =
[
D̂

(1)
T , . . . , D̂

(N)
T

]
, is a

suitable approximation for inference purposes. None of the data generated in the fitting process

in algorithm 4 is suitable for the inference of missing data. These data must be generated by

re-simulating the time series with parameter values drawn from the posterior distribution.

4.2.2 Model Selection

Choosing between a set of possible models or weighting model outputs requires an assessment

of performance. In the simplest instance, for comparing models of equal complexity, it may

be sufficient to simply compare the fit of the models to the data. Metrics such as the sum of

squares or, preferably, a likelihood-based metric would perform adequately in these occasions.

As models become more heavily parametrised they are offered greater flexibility and hence the

ability to achieve a better fit. Using metrics which only take into account the fit of the model

to the data to compare models of differing complexity will result in the favouring of the more

complex specifications. In such situations it is also important to balance the fit of the model

against its complexity.

In classic maximum-likelihood based approaches to model fitting it is possible to use one of

the many indices of information criteria to assess the models in terms of both fit and parsimony

(such as those described in Burnham & Anderson, 2001). Bayesian models that have to be

fit using Markov Chain Monte Carlo (MCMC) methods often have an analytically intractable

maximum-likelihood value, and this quantity, the basis of many information criteria, needs to

be approximated numerically. The deviance information criterion of Spiegelhalter et al. (2002)

can be calculated from the standard MCMC output and thus removes the need for the Monte

Carlo evaluation of extra metrics. However, because the methods described in this paper do

not use or require the calculation of likelihoods, it is not possible to use standard information

theoretic approaches, including DIC, to weight model outputs.

One way to compare model specifications is to include a model indicator, M , to be sampled

jointly with the vector of parameters relevant for the model, θM , from the target distribution



CHAPTER 4. ABC FOR IBMS 100

P (M, θM |D). The marginal density P (M = m|D) can be approximated by the proportion of

samples taken from the posterior distribution where M = m. Using these marginal density

estimates it is possible to calculate approximate values for the Bayes factors for each pair of

models i and j:

Bij =
P (M = i|D)P (M = j)

P (M = j|D)P (M = i)
(4.7)

where P (M = m) is the prior support for model m. The Bayes factor, Bij , summarises the

support for model i over model j (see Kass & Raftery, 1995).

A number of joint model and parameter estimation algorithms exist; Grelaud et al. (2009)

describe a simple extension of the rejection algorithm to allow the estimation of the marginal

probability density of model structure. The extension of the sequential importance sampler of

Sisson et al. (2007) described in Toni et al. (2009) is generalised in Toni & Stumpf (2010) to

allow for joint estimation of the parameter and the model type. This version of the sequential

Monte Carlo sampler uses estimates of the posterior support for each model type to draw initial

values for a new model indicator in each iteration of the algorithm. This model indicator is

perturbed according to model proposal distribution and a set of candidate parameter values

are selected at random from the set of particles of the perturbed model type. Finally, the

values for the parameters are perturbed according to a parameter proposal distribution before

a simulation is made using the perturbed model type and parameter vector. The results of

this simulation are compared to the observed data and the particle is accepted if it meets the

required acceptance criteria. However, the estimate for posterior support in each iteration of

the algorithm is made by calculating the relative frequency of the model indicator in the pop-

ulation of particles. If the number of models relative to the number of particles is high then

the frequency of the relevant model indicators in the population of particles can be low and

approximation of the posterior support can be poor. Whilst the algorithm provided by Toni

& Stumpf (2010) appears to produce reasonable estimates of model performance, for computa-

tional feasibility its application is limited to cases where the number of candidate models are

small.

Alternatively, Green (1995) describes a modification of the Metropolis-Hastings algorithm to

allow for the movement between models with different numbers and types of parameters. If we

define the vector of parameters associated with models m and m∗ as θ and θ∗ respectively, where

model m has rm parameters and model m∗ has rm∗ parameters, then the implementation of
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the ‘reversible-jump’ algorithm of Green (1995) requires that we also define a bijection function

that can translate the values of the parameters of one model into the parameters of the other

(and vice versa). For most applications, this function may also require the generation of a

vector of random variables, u, such that the bijection describes the recoding of the parameters

of model m and random variables u, into θ∗ and vector of random variables u∗, where the

bijection is given by (θ∗, u∗) = gmm∗ (θ, u). The vector of random variables u∗ is used in the

bijection function, gm∗m (θ∗, u∗), to describe the reverse move from model m∗ to model m.

There are a number of conditions that restrict the choice of bijection function however. First

is the condition of reversibility, where

(θ, u) = g−1
mm∗ (θ∗, u∗) = gm∗m (θ∗, u∗) (4.8)

Secondly, the bijection functions must be differentiable or at least partially differentiable with

respect to each individual model parameter and random variable present in its list of arguments.

Finally, if we define the number of parameters of the random vectors u and u∗ as ru and ru∗

respectively, then

rm + ru = rm∗ + ru∗ (4.9)

This is known as the ‘dimension matching condition’.

To account for the change in parameter and model type it is important to redefine the

acceptance probability of the proposed transition. Under classic likelihood-based Bayesian

analysis, the acceptance probability of a move from model m with parameters θ to model m∗

with parameters θ∗, amm∗ (θ, θ∗), is given by

amm∗ (θ, θ∗) = min

{
1,
π (m∗, θ∗)L (m∗, θ∗) km∗→mqm∗m (u∗)

π (m, θ)L (m∗, θ∗) km→m∗qmm∗ (u)

∣∣∣∣∂gmm∗ (θ, u)

∂θ∂u

∣∣∣∣} (4.10)

where km→m∗ is the probability of proposing a jump from model m to model m∗ and qmm∗ (u)

is the probability of generating u from the proposal distribution defined when considering moves

from model m to model m∗.
∣∣∣∂gmm∗ (θ,u)

∂θ∂u

∣∣∣ is the absolute value of the determinant of the Jaco-

bian matrix of the bijection gmm∗ (θ, u), and appears in equation 4.10 due to the deterministic

transformation applied to parameters when jumping between model types (see Waagepetersen

& Sorensen, 2001). L (m, θ) is the likelihood of model m and parameter vector θ.

In approximate Bayesian analysis, simulations take the place of likelihood calculation and
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so the likelihood terms do not appear in the acceptance probabilities when the reversible jump

algorithm is adapted for approximate Bayesian computation. Below we show an adapted version

of the reversible-jump MCMC algorithm for application in an approximate Bayesian setting:

Algorithm 5: Reversible-Jump Markov chain Monte Carlo sampling

1. Initialise the parameter vector θ and model indicator m with arbitrary values.

2. Propose a model m∗ with probability km→m∗ .

3. Propose a vector of random values, u, drawn from a distribution with probability density

qmm∗ (u).

4. Apply the bijection, gmm∗ (θ, u), to generate a set of parameters θ∗ for model m∗.

5. Simulate a dataset, D̂, under model m∗ using the proposal parameter vector θ∗.

6. If ρ
[
S (D) ,S

(
D̂
)]

> δ then store θ and m as a sample from the posterior distribution

and go to step 2.

7. Generate a random number, l, from a continuous uniform distribution defined between

the limits of 0 and 1. If

l > min

{
1,
π (m∗, θ∗) km∗→mqm∗m (u∗)

π (m, θ) km→m∗qmm∗ (u)

∣∣∣∣∂gmm∗ (θ, u)

∂θ∂u

∣∣∣∣} (4.11)

then store θ and m as a sample from the target distribution and go to step 2.

8. Store θ∗ and m∗ as a sample from the target distribution. Set θ = θ∗ and m = m∗, and

go to step 2.

In algorithm 4 we have already shown that it possible to embed a Metropolis-Hastings sampler

in a particle filter to replenish particles without bias. The reversible-jump algorithm is no ex-

ception in this regard: Andrieu et al. (2010) and Khan et al. (2005) are two examples of studies

that have implemented reversible-jump MCMC samplers within a particle filter in the standard

likelihood-based Bayesian framework. This allows for joint model and parameter estimation

when confronted with time series data. Below we describe an algorithm that integrates these

approaches for approximate Bayesian computation:
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Algorithm 6: Sequential importance sampling with reversible-jump MCMC parti-

cle perturbation for time series simulation

1. Set the time iterator t = 1.

2. For each particle of the population of size N :

(a) If t = 1 generate a proposed vector of parameters, θ
(i)
t , and a model type, m

(i)
t from

the prior distribution, π
(
m

(i)
t , θ

(i)
t

)
. For t > 1, randomly sample, with replacement,

a particle from the population of particles present at the end of the period last time

period to provide a candidate vector of parameters, θ
(i)
t , and a model type, m

(i)
t .

(b) Simulate forward one time step to create a simulated data set (states) for particle

i, D̂
(i)
t , using model m

(i)
t , the parameter vector θ

(i)
t , and the previous states of the

particle, D̂
(i)
0:(t−1). For the simulation of models that exhibit Markovian properties,

only D̂
(i)
t−1 needs to be considered when generating the set of states for the next time

step.

(c) If ρ
[
S (Dt) ,S

(
D̂

(i)
t

)]
> δ then go to step 2a.

(d) Propose a model m∗
t with probability k

m
(i)
t →m∗

t
.

(e) Propose a vector of random values, u, drawn from a distribution with probability

density q
m

(i)
t m∗

t
(u).

(f) Apply the bijection, g
m

(i)
t m∗

t

(
θ
(i)
t , u

)
, to generate a set of parameters θ∗t for model

m∗
t .

(g) Simulate from time t−1 to time t to create a proposed simulated data set (proposed

states), D̂∗
t , using model m∗

t , the parameter vector θ∗t , and the previous states of

particle i, D̂
(i)
0:(t−1).

(h) If ρ
[
S (Dt) ,S

(
D̂∗

t

)]
<= δ then generate random number, l, from a continuous

uniform distribution defined between the limits of 0 and 1. If

l > min

1,
π (m∗

t , θ
∗
t ) k

m∗
t→m

(i)
t
q
m∗

tm
(i)
t

(u∗)

π
(
m

(i)
t , θ

(i)
t

)
k
m

(i)
t →m∗

t
q
m

(i)
t m∗

t
(u)

∣∣∣∣∣∣
∂g

m
(i)
t m∗

t

(
θ
(i)
t , u

)
∂θ

(i)
t ∂u

∣∣∣∣∣∣
 (4.12)

then set θ
(i)
t = θ∗t , m

(i)
t = m∗

t and D̂
(i)
t = D̂∗

t

3. If t < T then increment the time iterator t and go to step 2.

4. Save the parameter vector from the T th population of particles, θT , as samples from the

posterior distribution.
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4.2.3 An Example Dataset

To illustrate the practical application of the methods described in this paper we use algorithm 6

to fit, and select between, a number of quasi-mechanistic models that could potentially describe

the spatial dynamics of molehill production. We compare our model outputs to the dataset

described in Schiffers et al. (2008) using a suite of assessment metrics. This dataset consists

of eight experimental plots located throughout the Untere Havelaue nature reserve in western

Brandenberg, Germany. Molehill locations were measured fortnightly at each of the sites ac-

cording to the sampling regime illustrated in figure 4.1. At each sampling interval, the position

of each molehill was recorded for all sites using a tachymeter (Elta-R, Zeiss, Oberkochen).

4.2.4 Models of Molehill Production

One potentially fruitful method of modelling molehill construction would be to look at the

spatial properties of the molehill point pattern through time, and use one of the many well-

described phenomenological point pattern models, such as those described in Diggle (2003).

Whilst these methods may describe, and even predict, molehill appearances accurately, it is

difficult to elucidate the mechanisms that drive the spatial properties of molehills from a statis-

tical description of the pattern alone. If the aim of the modelling exercise is to better understand

the processes that drive molehill formation, then we need derive a model that can at least em-

ulate these processes.

For the purposes of giving an adequate explanation of the estimation methods employed,

we consider here a series of minimally mechanistic models of molehill construction. This allows

us to show an application of the methods with some structural realism but avoiding the level

of mechanistic detail that would swamp the discussion with details of model implementation.

We hope that although the model may be simpler than the individual-based models that are

commonly applied to ecological problems, the extensions of the methods to cover IBMs of in-

creased complexity should be intuitive to the reader.

The first model considered is a simple point-process description of molehill ‘birth’, ‘death’

and ‘dispersal’ and takes a similar form to many IBMs in which individuals are represented as

a particle in continuous space. In this sense we treat molehills a little like plants, where, in each

generation, each individual seeds a random number of ‘offspring’ which disperse from the parent

individual according to a given dispersal kernel before being thinned by a death process. In this
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particular example, each individual produces a number of offspring at each generation drawn

from a Poisson distribution with mean λ. Offspring disperse from the parent individual at a

random distance drawn from an exponential distribution, with mean β, in a random direction

that is uniformly drawn between the radian limits of 0 and 2π. Finally, each individual that

is not newly-born is removed with a probability τ , representing the removal of molehills from

weathering or trampling damage.

The data do not allow for an accurate estimation of mole population densities and so any

models derived to describe molehill production need to describe new molehill formation only

with respect to the distribution of molehills in the last time period. Modelling molehills as

reproducing entities may not make sense on biological grounds but this assumption may pro-

vide a sufficient caricature of the relevant point-process dynamics and supply the basis for the

more complex departures derived in later models. Indeed, whilst the model lacks an explicit

description of the below-ground activity that drives molehill production it may supply some

implicit insights.

Under the model described above, the probability that a site will become the location of a

new molehill decays exponentially with distance, but equally in all directions, from the parent

molehill. However, from the point-patterns of molehill locations published in Schiffers et al.

(2008) we can see that facets of the below-ground tunnel network are clearly visible on the

observed above-ground pattern. It is very unlikely that this pattern could be formed from a

spatially isotropic generation process.

Our second model extends the dynamics described in the first model to include an anisotropic

dispersal kernel. Instead each molehill ‘individual’ holds an extra state variable, θi, the angle

at which the individual dispersed from its parent molehill. Each new molehill is positioned in

a direction from the parent molehill drawn at random according to the von Mises distribution

(sometimes known as the circular normal distribution, see Fisher, 1993) with a mean equal to

the state variable θi of the parent molehill and a concentration parameter, analogous to the

reciprocal of the variance in unwrapped distributions, κ. In the limit κ→ 0 the dispersal direc-

tion follows a standard uniform distribution between the limits of 0 and 2π; the first model can

therefore be thought of a special case of the second model with the value of κ approaching this

limit. The state variable θi awards the individuals simulated some form of directional ‘mem-

ory’. Under this specification it is apparent that the locations of any one molehill lineage will
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resemble that of a sample of points taken from the path of a correlated random walk (Turchin,

1998), albeit with different functional forms given for step length and orientation.

The creation of a directional memory may allow a more branching point structure, as would

be expected for a phenomenon that is sampled from a subterranean network exhibiting such

patterns, but with every molehill contributing a statistically equal number of offspring to the

next time period it will result in a rather ‘bushy’ structure. The burrow systems of another sub-

terranean rodent, the silvery mole rat (Heliophobius argenteocinereus), as illustrated in Škliba

et al. (2009), exhibit a small number of long main tunnels with a number of shorter branching

side-tunnels. A set of points sampled from such a network would appear quite different from

those simulated from the second model, regardless of parameterisation.

Affording model flexibility in order to produce the kind of point patterns that could have

been produced from the subterranean networks of Škliba et al. (2009) requires a reformulation

of the birth process used in the first two models. In this final specification, the total number of

new molehills to be generated in any time period is drawn from a Poisson distribution with mean

Nλ, where N is the current molehill count. Rather than distribute these offspring amongst the

parents for placement these new molehills are instead placed sequentially: each new molehill is

assigned the last placed individual as its parent with probability ϕ (for the first offspring to be

placed in any time period this is individual placed last in the previous time period), otherwise

a parent is allocated at random from those individuals that are not newly-born in the current

time period. Once parentage for an offspring is assigned then it is dispersed from the parent

individual according to the mechanism described in the second model. In the first time period

the first offspring to be placed is assigned a parent at random from the individuals present at

model initialisation.

The parameter ϕ has the effect of controlling the ‘bushiness’ of the underlying subterranean

network. In the extreme, a value of 1 for ϕ will result in a series of points lying along a single

tunnel with no branching tributaries, with each new offspring automatically assigned parentage

of the next offspring in sequence. When ϕ = 0 every offspring is allocated parentage at random

from the set of survivors from the last time period and can be simulated by allocating parentage

for the offspring according to a multinomial distribution with a probability vector of identical

elements, each with the value 1
N ′ , where N ′ is the number of surviving molehills from the

last time period. This is the statistical equivalent of generating a separate independently and
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identically distributed Poisson number of offspring for each parent (Johnson et al., 1997) and is

the same as the birth process described in the first and second models. In this sense, both the

first and second models are special cases of the third model. Table 4.1 summarises the models

described here and the parameters that control their behaviour. Figure 4.2 shows an example

of one realisation from each of the models.

4.2.5 Implementation

We calculate the parameters and optimal model for the molehill data set using the sequential

Monte Carlo algorithm for time series data of algorithm 6. We draw parameter values for the

initial population of particles from the independent set of minimally informative priors:

τ ∼ U (0, 1) (4.13)

λ ∼ TN

(
1

2
, 6, 0,∞

)
(4.14)

β ∼ TN (3, 10, 0,∞) (4.15)

κ ∼ TN (10, 50, 0,∞) (4.16)

ϕ ∼ U (0, 1) (4.17)

where U (a, b) is a continuous uniform distribution with density function f (x|a, b) = 1
b−a .

TN (µ, σ, a, b) is a truncated normal distribution with density function

h (x|µ, σ, a, b) =
1

√
2πσ2

[
Φ
(

b−µ
σ

)
− Φ

(
a−µ
σ

)]e− (x−µ)2

2σ2 (4.18)

with Φ (x) as the normal cumulative density function. Each of three models are given uniform

prior weight and the particles are initialised according to this prior distribution.

Each particle is initialised with a set of points taken from the first time slice of data of plot

1. Each individual is initialised with a dispersal bias state variable (θ) drawn randomly from

a continuous uniform distribution with limits 0 and 2π, even for particles that are assigned a

model indicator for a model that does not allow for dispersal with a directional bias. We iterate

through the time steps, simulating data and filtering parameter values according to comparison

to the data recorded from plot 1. Once we have finished iterating through the data we are left

with a sample of parameter values drawn from the posterior distribution according to the data

recorded in plot 1. We then restart the algorithm at the first record in plot 2. Individuals and
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Plot 1

Plot 2

Plot 3

Plot 4

Plot 5

Plot 6

Plot 7

Plot 8

18th June 2002 9th June 2003 18th May 2004 4th May 2005 19th April 2006

0

5.704

ln N

Figure 4.1: Series of sampling schedules for each sampling location in the Untere Havelaue
nature reserve in western Brandenburg, Germany. Rectangles indicate that sampling was active
during that period. Shading relates to ln (Nt), the natural logarithm of the number of molehills
found at time period t.

Parameters Model
1 2 3

0 ≤ τ ≤ 1 Probability that a molehill is
removed in each time period

X X X

λ > 0 The average number of new
molehills created per molehill
in each time period

X X X

β > 0 The average distance an
‘offspring’ molehill disperses
from the ‘parent’ molehill in
any given dispersal event

X X X

κ ≥ 0 Concentration parameter
determining the inter-
generational correlation in
dispersal direction

× X X

0 ≤ ϕ ≤ 1 Parameter determining the
proportion of new molehills
generated in any time period
that lie on new tunnel sys-
tems

× × X

Table 4.1: A list of parameters, with a brief explanation of their purpose, used in each of the
models described in this study. A tick (X) represents a free parameter in the model that is to
be estimated from the data. A cross (×) represents a parameter that is absent from the model,
which in this example, is the same as using the third model but fixing the relevant parameter
at zero.
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(a) τ = 1
2
, λ = 3

2
, β = 1

5

(b) τ = 1
2
, λ = 3

2
, β = 1

5
, κ = 10

(c) τ = 1
2
, λ = 3

2
, β = 1

5
, κ = 10, ϕ = 9

10

Figure 4.2: Three consecutive generations from a single realisation of each of three models
described in this paper. Models 1 to 3 correspond to figures (a) to (b) respectively. In each
figure, a filled circle (�) represents the location of a newly-created molehill. Molehills created in
previous generations, and which survive the current generation, are denoted by an open circle
(�). Molehills that are removed at the end of the current generation are denoted by crosses
(×). A grey arrow connects ‘parent’ molehills to their ‘offspring’. Each realisation is initialised
with one molehill (present at the same location for each molehill) using the parameter values
shown by the labels. The sub-panels present in series (a) and (b) show an enlargement of the
region contained within the area bounded by the smaller rectangle.
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state variables for each particle are initialised in exactly the same way as described above but

starting values for the parameter vectors and model indicators are drawn from the population

of particles that survived the filtering process from iteration through the time steps of the first

plot, instead of from the prior distribution. This process is repeated for each plot until the

particles have been exposed to the data contained in the time periods of all plots. The final

distribution of parameter values and model indicators represents a sample taken from the pos-

terior distribution with respect to the entire data set.

Jumps between model types are proposed with the following probabilities:

k1→1 = 0.6 k1→2 = 0.3 k1→3 = 0.1

k2→1 = 0.2 k2→2 = 0.6 k2→3 = 0.2

k3→1 = 0.1 k3→2 = 0.3 k3→3 = 0.6

(4.19)

Under all model jumps at least three random numbers, (u1, u2, u3), are generated from a normal

distribution with variances σ1, σ2, and σ3, respectively and a mean of zero. The new proposed

value for τ , λ, and β (τ∗, λ∗, and β∗ respectively) are related to u1, u2, and u3 such that

τ∗ = logit−1 [logit τ + u1]

λ∗ = λeu2

β∗ = βeu3

(4.20)

Generating proposed values for the κ and σ parameters (κ∗ and ϕ∗ respectively) for models

that contain them requires a little more care however. Jumps to models that have the κ pa-

rameter (models 2 and 3) require the generation of a fourth random number, u4, drawn from a

normal distribution with a mean of zero and a variance of σ4. If the jump is from a model that

does not contain the κ parameter (model 1) then κ∗ = eu4 , otherwise κ∗ = κeu4 . Similarly,

jumps to models that have the ϕ parameter (model 3) require the generation of a fifth ran-

dom number, u5, drawn from a normal distribution with a mean of zero and a variance of σ5.

ϕ∗ = logit−1 u5 if the jump originates from a model does that does not contain a ϕ parameter,

otherwise ϕ∗ = logit−1 [logitϕ+ u5]. The full bijection specification for all jump types is given

below:
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Jumps from model 1 to model 1

(τ∗, λ∗, β∗, u∗1, u
∗
2, u

∗
3) = g11 (τ, λ, β, u1, u2, u3)

=
(
logit−1 [logit τ + u1] , λeu2 , βeu3 ,−u1,−u2,−u3

) (4.21)

Jumps from model 1 to model 2

(τ∗, λ∗, β∗, κ∗, u∗1, u
∗
2, u

∗
3) = g12 (τ, λ, β, u4, u1, u2, u3)

=
(
logit−1 [logit τ + u1] , λeu2 , βeu3 , eu4 ,−u1,−u2,−u3

) (4.22)

Jumps from model 1 to model 3

(τ∗, λ∗, β∗, κ∗, ϕ∗, u∗1, u
∗
2, u

∗
3) = g13 (τ, λ, β, u4, u5, u1, u2, u3)

=
(
logit−1 [logit τ + u1] , λeu2 , βeu3 , eu4 , logit−1 u5,−u1,−u2,−u3

)
(4.23)

Jumps from model 2 to model 1

(τ∗, λ∗, β∗, u∗4, u
∗
1, u

∗
2, u

∗
3) = g21 (τ, λ, β, κ, u1, u2, u3)

=
(
logit−1 [logit τ + u1] , λeu2 , βeu3 , lnκ,−u1,−u2,−u3

) (4.24)

Jumps from model 2 to model 2

(τ∗, λ∗, β∗, κ∗, u∗1, u
∗
2, u

∗
3, u

∗
4) = g22 (τ, λ, β, κ, u1, u2, u3, u4)

=
(
logit−1 [logit τ + u1] , λeu2 , βeu3 , κeu4 ,−u1,−u2,−u3,−u4

)
(4.25)

Jumps from model 2 to model 3

(τ∗, λ∗, β∗, κ∗, ϕ∗, u∗1, u
∗
2, u

∗
3, u

∗
4) = g23 (τ, λ, β, κ, u5, u1, u2, u3, u4)

=
(
logit−1 [logit τ + u1] , λeu2 , βeu3 , κeu4 , logit−1 u5,

−u1,−u2,−u3,−u4)

(4.26)

Jumps from model 3 to model 1

(τ∗, λ∗, β∗, u∗4, u
∗
5, u

∗
1, u

∗
2, u

∗
3) = g31 (τ, λ, β, κ, ϕ, u1, u2, u3)

=
(
logit−1 [logit τ + u1] , λeu2 , βeu3 , lnκ, logitϕ,−u1,−u2,−u3

)
(4.27)
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Jumps from model 3 to model 2

(τ∗, λ∗, β∗, κ∗, u∗5, u
∗
1, u

∗
2, u

∗
3, u

∗
4) = g32 (τ, λ, β, κ, ϕ, u1, u2, u3, u4)

=
(
logit−1 [logit τ + u1] , λeu2 , βeu3 , κeu4 , logitϕ,

−u1,−u2,−u3,−u4)

(4.28)

Jumps from model 3 to model 3

(τ∗, λ∗, β∗, κ∗, ϕ∗, u∗1, u
∗
2, u

∗
3, u

∗
4, u

∗
5) = g33 (τ, λ, β, κ, ϕ, u1, u2, u3, u4, u5)

=
(
logit−1 [logit τ + u1] , λeu2 , βeu3 , κeu4 ,

logit−1 [logitϕ+ u5] ,−u1,−u2,−u3,−u4,−u5
)

(4.29)

The derivation of the determinant of the Jacobian matrix for each bijection can be found in the

appendix of this chapter.

Four statistics are used to assess the performance of the simulated output in recapturing

the required facets of the real data. Firstly, we use the population counts of molehills at a given

time period. For particle acceptance the population of molehills in the simulated data must be

within 14 individuals of the population present in the data set at the relevant time period. This

threshold is set at 5% of the observed range of values for population counts in the data taken

across all time periods and sites. If we let NDt and ND̂∗
t

be the molehill population sizes in the

real and simulated data respectively at time t and C1 be the criterion acceptance value (here

equal to 14), then the first acceptance criterion is met if the following inequality is satisfied:

|NDt −ND̂∗
t
| ≤ C1 (4.30)

Secondly, we use summary statistics based on the empirical distribution functions of nearest-

neighbour distances, Ĝ (r), and the second-order variances of point-to-point distances (using

Ripley’s K function), K̂ (r) (see pages 17-20 and chapter 4 of Diggle, 2003) on the spatial

point pattern of molehills at each time period. Taken collectively, these statistics allow for

the assessment of clustering or uniformity in the point pattern. Both statistics are functions

of a radial search variable, r. In order to boil the functions down to simple rejection criteria,

we calculate the sum of the squared differences between the functions calculated on the real

and simulated data, ĜDt (r) and K̂Dt (r) versus ĜD̂∗
t

(r) and K̂D̂∗
t

(r) respectively, evaluated

at every 10cm interval between 0m and 35m such that the two conditions of proposed particle
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acceptance rest on the satisfaction of the two inequalities

∑
r

[
ĜDt (r) − ĜD̂∗

t
(r)
]2

≤ C2 (4.31)

∑
r

[
K̂Dt (r) − K̂D̂∗

t
(r)
]2

≤ C3 (4.32)

where r ∈
{
x : (∃k ∈ N0)

(
x = 1

10k
)
, 0 ≤ x ≤ 35

}
. Note that for computational efficiency, nei-

ther statistics are calculated with any edge correction (see pages 5-6 of Diggle, 2003). For the

purposes of comparison between two point patterns this should be sufficient as edge effects are

treated equally for both point patterns.

Our final acceptance criterion relates to the level of directional bias in the data. A number

of measures of anisotropy exist (see Rosenberg, 2004, 2000; Simon, 1997; Mugglestone & Ren-

shaw, 1996, for examples) but all require either sophisticated and computationally expensive

calculations, particularly when calculated for every proposed particle value, or require decisions

on analysis parameters that make the application of such techniques difficult to automate. Here

we propose a simple, ad hoc metric to estimate the degree of anisotropy in the point patterns

of both the data and the simulation outputs in any time period. We base this metric on the

deviation from the null (isotropic) hypothesis that for every point, the distribution of angular

directions of all other points represents a sample from a continuous uniform distribution defined

between the limits of 0 and 2π. We assess this deviation from circular uniformity by calculating

the p-value resulting from a one-sample Kolmogorov-Smirnov test. By using each point present

as the reference point in turn, the median of the resultant distribution of p-values is calculated

as an estimation of the degree of anisotropy present in the point pattern. If we let VDt and VD̂∗
t

be the median p-values calculated from the real and simulated point patterns respectively then

our final criterion correspondence to the validity of the following inequality:

|VDt − VD̂∗
t
| ≤ C4 (4.33)

We set C4 similarly to the logic of setting the other acceptance criteria, corresponding to 5%

of the range of values of the statistic in the observed data, here 1.1120247 × 10−2.

In some time periods the number of molehills in the data fall too low to calculate the statis-

tics described above. Time periods where there are fewer than five data points, for which there

is only a total of 40 across the 218 time periods for each of the 8 sites, are treated in exactly
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the same way as missing data (see below). Simulation output with fewer than three data points

are automatically rejected before the spatial statistics are calculated.

In simulating molehill patterns we simulate the model in time blocks corresponding to a

weekly period in the real data. Parameter values are therefore scaled to a per weekly basis.

From figure 4.1 it is clear that there are gaps in sampling for each of the eight plots. For the

purposes of the particle filtering we simply move to the next sampled time period, skipping

those time periods with no data attached to them, but to correct for this, we increment the

model according to the number of skipped time periods at the relevant data generation steps

(steps 2b and 2g of algorithm 6).

4.3 Results

Figure 4.3 displays the marginal density estimates from 100000 particles filtered according to

the implementation described previously. Model 1 has very little posterior support, occurring

in just 4% of the filtered particles. There is however little to distinguish between the two,

more complex models: model 2 occurs in approximately 51% of the filtered particles with the

remaining 45% supporting model 3. Indeed, even when model 3 is selected we can see from

figure 4.3 that the values for ϕ are generally very low. Given that it is the addition of the ϕ pa-

rameter that distinguishes model 3 from model 2, and that low values for ϕ result in sequential

molehill placement at very low frequencies, we can see that this placement procedure does not

bring about a substantial advantage in the description to the spatial distribution dynamics of

molehills.

From figure 4.3 it is clear that the 95% credible interval for parameter τ covers most of

the possible range of potential values for the parameter. This suggests that there is very little

information present in the data set to discriminate between possible values for τ . To get a

better estimate for τ it is necessary to include extra information from other data sources. This

information can be expressed in the form of an informative prior, restricting the parameters of

τ to values that are likely in the context of a broader study and allowing better estimation of

parameters that co-vary with this parameter. The lack of differentiation of τ between model

types is not unexpected given its wide distribution in all of the cases.
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The dispersal parameter β is highly differentiated between the particles of the different

model types. Median molehill ‘dispersal’ is highest in model 1, followed by model 2, and finally,

with the shortest dispersal distances, model 3. This effect could arise from the fact that for any

set of parameter values, molehills appear much more aggregated in simulations from model 1

and 2 than a realisation from model 3 with even a low ϕ parameter (see figure 4.2). In order to

emulate the spatial dispersion in the data set it is therefore critical that particles of model 1 and

model 2 exhibit high dispersal ability to achieve a spacing between molehills that is comparable

to the data. Whilst the filtered particles give overwhelming support for the inclusion of an

‘inter-generational’ correlation of dispersal direction, controlled by the κ parameter in models

2 and 3, there is little differentiation between in the range of credible values between the two

models. Moreover the credible interval for κ is broad and the marginal distribution is flat-topped

under both model specifications. This suggests that there is strong support for some ‘inter-

generational’ correlation of dispersal direction, as the posterior distribution has little density for

values close to zero, but that there is not enough information to discriminate against particular

values of κ in the mid-range.

4.4 Discussion

The traditional pattern-oriented approach to the fitting of complex models dictates that we

take a selection of parameter values and run multiple realisations of the model we are trying to

fit for each parameter combination. We compare facets of the simulated data to the real data

using a metric that permits an assessment of the performance of the parameters to match the

real data. Parameter combinations that perform well are stored to be investigated further and

parameter combinations that performed badly are removed from further analysis.

Whilst rarely specified in such terms, these attempts to sort the likely parameter combina-

tions from the unlikely, are really an attempt to sample from a distribution of parameter values

in the same proportion as their probability in the light of the data and what we previously knew

about the system: the posterior distribution. The first two steps of pattern-oriented modelling,

as defined by Wiegand et al. (2003), involves the aggregation of biological information and the

estimation of ranges of parameter values. In a Bayesian parlance this sounds very similar to

the specification of priors. Step three according to Wiegand et al. (2003) is the systematic com-

parison between the observed patterns and the patterns predicted by the model. This paper

details six algorithms that can perform such systematic filtering of parameter values according
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Figure 4.3: Histograms of the marginal densities of the parameter values from 10000 filtered
particles for each of the three models of molehill production. The shaded blue region denotes
the 95% credible interval for each of the parameter values and the red line denotes the median
value of the posterior sample
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to the set of comparison statistics that serve to condense the patterns of importance that need

to replicated in the model. The parallels appear striking.

Where the methodology outlined in this paper differs from that laid out in Wiegand et al.

(2003) is that the techniques described here, subject to a few caveats, guarantee the convergence

to a sample of parameters from the posterior distribution, albeit an approximation. There are

a number of examples of pattern-oriented modelling applied to ecological problems ranging

from the implementation of automated parameter selection techniques (Kramer-Schadt et al.,

2004; Swanack et al., 2009) to the simulation of a small number of scenarios to test parameter

sensitivity (Zinck & Grimm, 2009). The methods employed in these papers may indeed pro-

vide estimates of the range of likely parameter values but are unlikely to recreate the relative

density of parameter values present in the posterior distribution. Separating ‘good’ parameter

combinations from ‘bad’ combinations can only be made relative to the selection of parame-

ters tested. If the number of scenarios tested are too few then the risk is run that the best

selected parameter set is sufficiently different than the set most likely according to the posterior

density. Testing the full range of likely scenarios becomes costly as the dimensionality of the

parameterisation increases however. Whilst Bayesian methods do not make the curse of high

dimensionality go away, they do provide a systematic and efficient way of searching the param-

eter space. Providing not only point estimates of ‘good’ parameter values but also recreating a

distribution of parameters with posterior support.

Without adopting the techniques described in this paper, model selection for individual-

based models can be a difficult affair. Without an available likelihood it is impossible to apply

any of the information theoretic approaches to model selection Burnham & Anderson (2001)

and it is difficult to heuristically assess how much extra fit to the desired pattern merits an

increase in model complexity. Bayesian methods not only provide a way of selecting appropriate

models from a set of candidate models but they can also assign weights to be used in model

averaging (Hoeting et al., 1999).

Beyond parameterisation, approximate Bayesian techniques may also be used to synthesise

otherwise disparate sources of data. The need to specify priors, often thought a deficiency of

the Bayesian analysis, actually benefits the investigator by allowing the input of information

derived from other means such as experimental data to form a key part of the model predictions.

This particularly important for situations where many data may exist but it is contained in
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many small studies with differing objectives and protocols. One example where there exists a

plethora of data is the case of the Australian cane toad (Chaunus [Bufo] marinus). Its invasion

of Eastern Australia has been well documented and it has because a serious pest species. For

this species there is much known about the ecophysiological tolerances of this species but the

methods of predicting the invasion dynamics using mechanistic models based on environmental

biology have been applied independently of correlative methods of range prediction (Phillips

et al., 2008). By setting known physiological tolerances as priors on the relevant parameters,

it is possible using these methods to describe a mechanistic framework for the species distribu-

tion dynamics that is both able recreate dynamic patterns of range changes whilst maintaining

biological realism, even if the model description is sufficiently complex to make likelihood cal-

culation intractable.

Individual-based models have been criticised for their typically high parameter load which

relies heavily on inference from indirect parameterisation Kramer-Schadt et al. (although see

2007). The inability to specify a likelihood function for these parameters makes the task of

fitting these models very difficult. This places a high burden on the investigator and can make

the application of IBMs appear unnatractive even if the use of these sorts of models to model the

study system makes sense from a conceptual point-of-view. This methodology, by drawing in all

information that we know about the system of interest, and allowing us to use this information

to parameterise the models and choose between competing model architectures, demonstrates

one way in which the future of individual-based model research may overcome these hurdles.

Appendix 4.A Derivation of Jacobian determinants for

reversible jump MCMC implementation

The function g11 defines the transformation of the set of parameters (τ, λ, β) with regard to a

vector of randomly generated elements (u1, u2, u3) when proposing moves between parameter

values within model 1.

(τ∗, λ∗, β∗, u∗1, u
∗
2, u

∗
3) = g11 (τ, λ, β, u1, u2, u3)

=
(
logit−1 [logit τ + u1] , λeu2 , βeu3 ,−u1,−u2,−u3

) (4.34)

To retain the balance condition, functions which describe proposals of new parameters within

a model must be involutary: g11 (g11 (τ, λ, β, u1, u2, u3)) ≡ (τ, λ, β, u1, u2, u3). From equation
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4.34 we can derive the Jacobian matrix of function g11:

∂g11 (τ, λ, β, u1, u2, u3)

∂τ ∂λ ∂β ∂u1 ∂u2 ∂u3
=

e−u1

(e−u1τ−τ−e−u1 )2
0 0 τ(1−τ)e−u1

(e−u1τ−τ−e−u1 )2
0 0

0 eu2 0 0 λeu2 0

0 0 eu3 0 0 βeu3

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1



(4.35)

Given that the Jacobian matrix of equation 4.35 is triangular, the magnitude of the determinant

is simply the absolute value of the product of the diagonal components such that

∣∣∣∣∂g11 (τ, λ, β, u1, u2, u3)

∂τ ∂λ ∂β ∂u1 ∂u2 ∂u3

∣∣∣∣ =
eu2+u3−u1

(e−u1τ − τ − e−u1)
2 (4.36)

Function g12 describes the bijection for proposals of parameter values of model 2 given the

current values for the parameters in model 1, (τ, λ, β), and a vector of randomly generated

elements, (u1, u2, u3, u4), where

(τ∗, λ∗, β∗, κ∗, u∗1, u
∗
2, u

∗
3) = g12 (τ, λ, β, u4, u1, u2, u3)

=
(
logit−1 [logit τ + u1] , λeu2 , βeu3 , eu4 ,−u1,−u2,−u3

) (4.37)

with the Jacobian matrix for the bijection given as

∂g12 (τ, λ, β, u4, u1, u2, u3)

∂τ ∂λ ∂β ∂u4 ∂u1 ∂u2 ∂u3
=

e−u1

(e−u1τ−τ−e−u1 )2
0 0 0 τ(1−τ)e−u1

(e−u1τ−τ−e−u1 )2
0 0

0 eu2 0 0 0 λeu2 0

0 0 eu3 0 0 0 βeu3

0 0 0 eu4 0 0 0

0 0 0 0 −1 0 0

0 0 0 0 0 −1 0

0 0 0 0 0 0 −1



(4.38)

The Jacobian matrix in equation 4.38 is triangular and so the magnitude of the determinant is
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simply ∣∣∣∣∂g12 (τ, λ, β, u4, u1, u2, u3)

∂τ ∂λ ∂β ∂u4 ∂u1 ∂u2 ∂u3

∣∣∣∣ =
eu2+u3+u4−u1

(e−u1τ − τ − e−u1)
2 (4.39)

Function g13 describes the conversion from a set of parameters in model 1, (τ, λ, β), and a

vector of randomly generated numbers, (u1, u2, u3, u4, u5), to a set of parameters in model 3,

(τ∗, λ∗, β∗, κ∗, ϕ∗):

(τ∗, λ∗, β∗, κ∗, ϕ∗, u∗1, u
∗
2, u

∗
3) = g13 (τ, λ, β, u4, u5, u1, u2, u3)

=
(
logit−1 [logit τ + u1] , λeu2 , βeu3 , eu4 , logit−1 u5,−u1,−u2,−u3

)
(4.40)

with Jacobian matrix

∂g13 (τ, λ, β, u4, u5, u1, u2, u3)

∂τ ∂λ ∂β ∂u4 ∂u5 ∂u1 ∂u2 ∂u3
=

e−u1

(e−u1τ−τ−e−u1 )2
0 0 0 0 τ(1−τ)e−u1

(e−u1τ−τ−e−u1 )2
0 0

0 eu2 0 0 0 0 λeu2 0

0 0 eu3 0 0 0 0 βeu3

0 0 0 eu4 0 0 0 0

0 0 0 0 e−u5

(1+e−u5 )2
0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 −1



(4.41)

and, given the triangular properties of the matrix in equation 4.41, the magnitude of the

Jacobian determinant is

∣∣∣∣∂g13 (τ, λ, β, u4, u5, u1, u2, u3)

∂τ ∂λ ∂β ∂u4 ∂u5 ∂u1 ∂u2 ∂u3

∣∣∣∣ =
eu2+u3+u4−u1−u5

(e−u1τ − τ − e−u1)
2

(1 + e−u5)
2 (4.42)

Jumps from model 2 to model 1 are described by the function g21 where the set of parameters,

(τ, λ, β, κ), and random variables, (u1, u2, u3), are combined to form a set of new parameters,

(τ∗, λ∗, β∗), where

(τ∗, λ∗, β∗, u∗4, u
∗
1, u

∗
2, u

∗
3) = g21 (τ, λ, β, κ, u1, u2, u3)

=
(
logit−1 [logit τ + u1] , λeu2 , βeu3 , lnκ,−u1,−u2,−u3

) (4.43)
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The Jacobian matrix for g21 is calculated as

∂g21 (τ, λ, β, κ, u1, u2, u3)

∂τ ∂λ ∂β ∂κ ∂u1 ∂u2 ∂u3
=

e−u1

(e−u1τ−τ−e−u1 )2
0 0 0 τ(1−τ)e−u1

(e−u1τ−τ−e−u1 )2
0 0

0 eu2 0 0 0 λeu2 0

0 0 eu3 0 0 0 βeu3

0 0 0 1
κ 0 0 0

0 0 0 0 −1 0 0

0 0 0 0 0 −1 0

0 0 0 0 0 0 −1



(4.44)

where the magnitude of the determinant is given by

∣∣∣∣∂g21 (τ, λ, β, κ, u1, u2, u3)

∂τ ∂λ ∂β ∂κ ∂u1 ∂u2 ∂u3

∣∣∣∣ =
eu2+u3−u1

κ (e−u1τ − τ − e−u1)
2 (4.45)

Moves within model 2 are made by generating a random vector, (u1, u2, u3, u4), and applying

the function g22 to the vector and the current parameter values (τ, λ, β, κ). Similarly to g11,

g22 must be involutary to satisfy the balance condition described in (Green, 1995). Here

(τ∗, λ∗, β∗, κ∗, u∗1, u
∗
2, u

∗
3, u

∗
4) = g22 (τ, λ, β, κ, u1, u2, u3, u4)

=
(
logit−1 [logit τ + u1] , λeu2 , βeu3 , κeu4 ,−u1,−u2,−u3,−u4

)
(4.46)

with Jacobian matrix

∂g22 (τ, λ, β, κ, u1, u2, u3, u4)

∂τ ∂λ ∂β ∂κ ∂u1 ∂u2 ∂u3 ∂u4
=

e−u1

(e−u1τ−τ−e−u1 )2
0 0 0 τ(1−τ)e−u1

(e−u1τ−τ−e−u1 )2
0 0 0

0 eu2 0 0 0 λeu2 0 0

0 0 eu3 0 0 0 βeu3 0

0 0 0 eu4 0 0 0 κeu4

0 0 0 0 −1 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 −1



(4.47)
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The magnitude of the Jacobian determinant is as follows:

∣∣∣∣∂g22 (τ, λ, β, κ, u1, u2, u3, u4)

∂τ ∂λ ∂β ∂κ ∂u1 ∂u2 ∂u3 ∂u4

∣∣∣∣ =
eu2+u3+u4−u1

(e−u1τ − τ − e−u1)
2 (4.48)

The jump from model 2 to model 3 is given by the bijection described in function g23, where

(τ∗, λ∗, β∗, κ∗, ϕ∗, u∗1, u
∗
2, u

∗
3, u

∗
4) = g23 (τ, λ, β, κ, u5, u1, u2, u3, u4)

=
(
logit−1 [logit τ + u1] , λeu2 , βeu3 , κeu4 , logit−1 u5,−u1,−u2,−u3,−u4

)
(4.49)

The Jacobian matrix for g23 is given by

∂g23 (τ, λ, β, κ, u5, u1, u2, u3, u4)

∂τ ∂λ ∂β ∂κ ∂u5 ∂u1 ∂u2 ∂u3 ∂u4
=

e−u1

(e−u1τ−τ−e−u1 )2
0 0 0 0 τ(1−τ)e−u1

(e−u1τ−τ−e−u1 )2
0 0 0

0 eu2 0 0 0 0 λeu2 0 0

0 0 eu3 0 0 0 0 βeu3 0

0 0 0 eu4 0 0 0 0 κeu4

0 0 0 0 e−u5

(1+e−u5 )2
0 0 0 0

0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 −1


(4.50)

with determinant of magnitude

∣∣∣∣ ∂g23 (τ, λ, β, κ, u5, u1, u2, u3, u4)

∂τ ∂λ ∂β ∂κ ∂u5 ∂u1 ∂u2 ∂u3 ∂u4

∣∣∣∣ =
eu2+u3+u4−u1−u5

(e−u1τ − τ − e−u1)
2

(1 + e−u5)
2 (4.51)

Moves from the set of parameters used in model 3 to proposed parameter values in model

1 are described by the bijective function, g31

(τ∗, λ∗, β∗, u∗4, u
∗
5, u

∗
1, u

∗
2, u

∗
3) = g31 (τ, λ, β, κ, ϕ, u1, u2, u3)

=
(
logit−1 [logit τ + u1] , λeu2 , βeu3 , lnκ, logitϕ,−u1,−u2,−u3

)
(4.52)
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with Jacobian matrix

∂g31 (τ, λ, β, κ, ϕ, u1, u2, u3)

∂τ ∂λ ∂β ∂κ ∂ϕ ∂u1 ∂u2 ∂u3
=

e−u1

(e−u1τ−τ−e−u1 )2
0 0 0 0 τ(1−τ)e−u1

(e−u1τ−τ−e−u1 )2
0 0

0 eu2 0 0 0 0 λeu2 0

0 0 eu3 0 0 0 0 βeu3

0 0 0 1
κ 0 0 0 0

0 0 0 0 1
ϕ + 1

1−ϕ 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 −1



(4.53)

for which the magnitude of the determinant is

∣∣∣∣∂g31 (τ, λ, β, κ, ϕ, u1, u2, u3)

∂τ ∂λ ∂β ∂κ ∂ϕ ∂u1 ∂u2 ∂u3

∣∣∣∣ =

(
1

ϕ
+

1

1 − ϕ

)
eu3+u2−u1

κ (e−u1τ − τ − e−u1)
2 (4.54)

Jumps from model 3 to model 2 are defined by the bijection, g32, where

(τ∗, λ∗, β∗, κ∗, u∗5, u
∗
1, u

∗
2, u

∗
3, u

∗
4) = g32 (τ, λ, β, κ, ϕ, u1, u2, u3, u4)

=
(
logit−1 [logit τ + u1] , λeu2 , βeu3 , κeu4 , logitϕ,−u1,−u2,−u3,−u4

)
(4.55)

The function g32 has a Jacobian matrix given by

∂g32 (τ, λ, β, κ, ϕ, u1, u2, u3, u4)

∂τ ∂λ ∂β ∂κ ∂ϕ ∂u1 ∂u2 ∂u3 ∂u4
=

e−u1

(e−u1τ−τ−e−u1 )2
0 0 0 0 τ(1−τ)e−u1

(e−u1τ−τ−e−u1 )2
0 0 0

0 eu2 0 0 0 0 λeu2 0 0

0 0 eu3 0 0 0 0 βeu3 0

0 0 0 eu4 0 0 0 0 κeu4

0 0 0 0 1
ϕ + 1

1−ϕ 0 0 0 0

0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 −1


(4.56)
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with a Jacobian determinant of magnitude

∣∣∣∣ ∂g32 (τ, λ, β, κ, ϕ, u1, u2, u3, u4)

∂τ ∂λ ∂β ∂κ ∂ϕ ∂u1 ∂u2 ∂u3 ∂u4

∣∣∣∣ =
eu2+u3+u4−u1

(e−u1τ − τ − e−u1)
2

(
1

ϕ
+

1

1 − ϕ

)
(4.57)
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CHAPTER 5

On the approximation of continuous dispersal in discrete-space models

Summary

1. Models which represent space as a lattice have a critical function in theoretical and applied

ecology. Despite their significance, there is a dearth of appropriate theoretical develop-

ments for the description of dispersal across such lattices.

2. We present a series of methods for approximating continuous dispersal in discrete land-

scapes (denoted as centroid-to-centroid, centroid-to-area, area-to-centroid and area-to-

area dispersal). We describe how these methods can be extended to incorporate different

conditions at the boundary of the simulation arena and a framework for approximating

continuous dispersal between irregularly shaped patches.

3. Each approximation method was tested against a baseline of continuous Gaussian disper-

sal in a periodic simulation arena. The residence probabilities for an individual dispersing

in each time step according to a Gaussian kernel across grids of three differing resolutions

were calculated over a number of dispersal steps. In addition, the steady-state asymptotic

properties for the transition matrices for each approximation method and cell resolution

were calculated and compared against the uniform expectation under continuous disper-

sal.

4. All four methods described in this paper provide a reasonable approximation to the con-

126
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tinuous baseline (< 0.03 absolute error in probability calculations) on landscapes with

grid cells of length equal to the expected dispersal distance or finer but error increases as

grid cells become progressively larger than the expected dispersal distance.

5. Each approximation method exhibits a different spatial pattern of approximation error.

Centroid-to-centroid dispersal overestimates residence probabilities near the origin, re-

sulting in decreased invasion rates relative to the baseline diffusion process. All other

approximation methods underestimate residence probabilities near the origin and over-

estimate such probabilities in the peripheries, leading to an overestimation of invasion

rates.

6. The asymptotic properties of centroid-to-centroid and area-to-centroid dispersal approx-

imation methods deviate from that which is expected under continuous dispersal. This

characteristic renders these methods unsuitable for use in long-term simulation studies

where the equilibrium properties of the system are of interest.

7. Centroid-to-area and area-to-area approximation methods exhibit both low approxima-

tion error and desirable asymptotic properties however. These methods provide a viable

mechanism for linking individual-level dispersal to larger scale characteristics such as

metapopulation connectivity.
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5.1 Introduction

The extension of ecological models into the spatially explicit realm presents one of the most

rewarding but also one of the most challenging aspects of model development. Traditionally,

ecological models have focused on describing interactions between individuals in terms of the

mean density of individuals in a population. Models derived from this so-called ‘mean field’

assumption have provided many new insights in ecology but, without the inclusion of local

interactions between individuals, the lack of spatial structure in these models can produce very

different conclusions on crucial phenomena such as invasion speed and species coexistence than

their spatially explicit counterparts (Ovaskainen & Cornell, 2006; Murrell, 2010).

Whilst the spatial element can, in some cases, represent a substantial leap in complexity,

it can often elucidate the mechanisms of otherwise confusing observations. For example, the

addition of spatial structure in models of predator-prey dynamics in Murrell (2005) and Kondoh

(2003) have shown that equilibrium prey densities are negatively linked to the spatial covari-

ance of the antagonists which can increase when prey fecundity is increased. This extension

thus provides an alternative spatial explanation for the ‘paradox of enrichment’ of Rosenzweig

(1971). Moreover, some core principles of the theory of competition, such as the assertion that

a high ratio of intraspecific to interspecific competition provides community stability (appear-

ing in many text books such as Putman & Wratten, 1984), have been shown to be incomplete

when interrogated with models able to explicitly describe and simulate the spatial aggregation

of conspecifics (Neuhauser & Pacala, 1999; Murrell, 2010). In applied ecology, spatially explicit

models are also commonly used to represent the spatial arrangement of populations and dis-

persal of individuals, including in the context of reserve selection strategies and responses to

climate change (for example Moilanen et al., 2005; Willis et al., 2009).

One of the crucial elements of a spatially explicit model is the specification on how this

space is represented. Indeed, Murrell (2005) postulates that the one of reasons why the findings

of Wilson et al. (1993) appear to contradict the demonstration in Murrell (2005) that increased

prey movement reduces the equilibrium population size is that the study of Wilson et al. (1993)

represents space as a discrete lattice of environments with each patch able to support a maxi-

mum of one individual. This type of stochastic cellular automaton is one commonly employed

in ecological models (see Silvertown et al., 1992; Jeltsch et al., 1996; Mustin et al., 2009, for

more examples), although other variants where populations of more than one individual (as
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implemented in Travis & Dytham, 2002), or communities of more than one species (as imple-

mented in Travis et al., 2005), can inhabit a single cell are also used.

Whilst lattice models have the potential to provide many novel ecological insights (Naka-

maru, 2006), with some authors exalting these methods as a ‘paradigm’ (Hogeweg, 1988), their

simplification of spatial structure can lead to a number of biases in the interpretation of their

output. No more so is this bias shown so prominently than in the methodologies employed to

model dispersal through these habitats. The most basic simplification of dispersal, often de-

noted ‘stepping-stone’ dispersal or sometimes ‘nearest-neighbour’ dispersal (Kimura & Weiss,

1964), defines movement as a local process where individuals can only move to adjacent lattice

cells with some given probability, usually uniformly selected amongst the neighbourhood of

cells (although see Topping et al., 2003; Wiegand et al., 2004, for other weighting methods).

For rectangular lattices, different concepts of the neighbourhood are employed (see Milne et al.,

1996): ‘Moore neighbourhoods’ define the eight neighbouring cells in the horizontal, vertical,

and diagonal directions as potential destinations for dispersing individuals (Topping et al., 2003;

Wiegand et al., 2004, for example), whilst ‘von Neumann’ neighbourhoods consider only the

four cardinally adjacent cells as potential destinations for dispersing individuals (Söndgerath &

Schröder, 2002, for example). However, Holland et al. (2007) show that both neighbourhood

definitions can exhibit unnatural artefacts, both in terms of the spatial densities observed when

considering multiple realisations of such defined dispersal events and the maximum traversable

distance after a set number of time steps.

In continuous space, the probability density function of dispersal distances of a motile in-

dividual (or propagule in sessile organisms) from the point of origin is often referred to as the

distance distribution (Nathan & Muller-Landau, 2000), the circular distribution (Wilson, 1993),

or the distance pdf (Cousens et al., 2008). These distributions describe the probability of the

magnitude of a movement event but not its direction. In a one-dimensional world, the distance

distribution is the folded equivalent of a displacement distribution, where displacement also

accounts for the direction of movement and can therefore be negative. We can extend these

one-dimensional descriptions of displacement into the spatial domain by describing dispersal in

terms of its polar coordinates from the point of origin. For models with descriptions of dispersal

in continuous space there are a many number of distributions of spatial displacement available

to the investigator (see Clark et al., 1999; Cousens et al., 2008). This is not the case for discrete

lattice-based dispersal however; outside of simple stepping-stone models of dispersal there is a
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dearth of appropriate models for the calculation of cell-to-cell dispersal probabilities. To avoid

confusion, the term ‘dispersal kernel’ will hereafter refer to the probability density function of

displacement and not the probability density function of dispersal distance.

To address some of the deficiencies of stepping-stone models of dispersal, Chesson & Lee

(2005) describe a number of families of integer-valued displacement distributions for use in

lattice models of arbitrary dimensionality. These distributions have the flexibility to allocate

non-zero probabilities of dispersal to cells beyond the nearest neighbours, and hence can poten-

tially provide a mechanism of dispersal not too dissimilar to their continuous counterparts. The

distributions described in Chesson & Lee (2005) also exhibit a number of desirable qualities

that make their development a significant step forward for incorporating more realistic dispersal

in cell-based studies. Firstly, most of the distributions described in Chesson & Lee (2005) have

functional forms that are closed under convolution. This means that when iterating the disper-

sal forward a number of time periods, total displacement is simply a re-parametrisation of the

one-step displacement distribution. More generally, this means that we are able to parametrise

the displacement distribution as a function of time. Secondly, each of the displacement kernels

have a parameter controlling the kurtosis of the probability distribution and allowing flexibility

in specification of the probability weight of the tails of the distribution. This is particularly

useful for helping to include the effects of long distance dispersal that often requires a ‘fat-

tailed’ displacement distribution (Hovestadt et al., 2001; Petrovskii et al., 2008). Finally, the

displacement distributions of Chesson & Lee (2005) also exhibit asymptotic radial symmetry,

which ameliorates some of the artefacts of lattice-based dispersal described by Holland et al.

(2007).

Field data such as telemetry or seed shadow data are often used to parametrise continuous

models of dispersal (see Greene et al., 2004), but such data are rarely applied so explicitly in

the parametrisation of lattice dispersal, nor are such data collected in such a way as to be

applicable in these settings. Whilst Chesson & Lee (2005) provide models of lattice dispersal

with desirable mathematical properties, the underlying theoretical basis of these models is the

mixture of a random quantity of stepping-stone dispersal sub-stages, requiring that individuals

disperse cardinally with respect to the artificial geometry placed upon them within each of

these dispersal sub-stages. On a two dimensional grid, this means that although an individual

can disperse further than the nearest neighbours the final dispersal of the entire time step is

comprised of a number of stepping-stone dispersal sub-steps, with each dispersal sub-step lim-
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ited to movement within a von Neumann neighbourhood. It is difficult to see the theoretical

link between such models and those that are commonly fitted to dispersal data. We adopt here

a different approach, and instead describe a general method for the approximation of continu-

ous displacement distributions on lattices of arbitrary resolution. We use this methodology to

derive approximate cell-to-cell transition probabilities for commonly employed models of con-

tinuous dispersal and describe how this method can be extended to allow for common boundary

conditions and irregularly shaped source and destination patches.

For convenience, all notation used in this paper is summarised in table 5.1.

5.2 Materials and Methods

5.2.1 Calculating Transition Probabilities

We first begin by defining the two-dimensional displacement kernel g· (r, θ), which describes

the probability density of a polar displacement of length r (where r > 0) at a bearing θ in a

single dispersal event. There are a number of different ways to define the direction of dispersal,

θ. One common method employed in the mathematical domain is to define θ as the angle

of direction measured in an anti-clockwise direction from the x-axis such that −π < θ ≤ π.

However, a measurement regime that is more intuitive to field biologists, and one that may

be more consistent with the format of collected data, is to define the angle of dispersal as a

clockwise bearing from the y-axis, with θ instead defined between the limits 0 ≤ θ < 2π. For the

sake of clarity we will adopt the notation θ1 and θ2 to refer to the former and latter definitions

respectively. It is worth noting that θ1 and θ2 are linked by the relationship

θ1 =
π

2
− θ2 + 2π

[
1 −H

(
3π

2
− θ2

)]
(5.1)

where H (x) is the step function

H (x) =


1 if x > 0

0 otherwise

(5.2)

Grids are defined on a Cartesian coordinate system and so the polar displacement function

must be converted to describe the probability density of displacement to a set of Cartesian

destination coordinates, denoted here as k = (kx, ky), given a set of source coordinates, j =
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Table 5.1: Summary of notation used

Description Support

r Dispersal distance r ∈ R+

θ1 Angle of dispersal measured in an anticlockwise di-
rection from the positive x-axis

θ1 ∈ R − π < θ1 ≤ π

θ2 Angle of dispersal measured in a clockwise direction
from the positive y-axis

θ2 ∈ R 0 ≤ θ2 < 2π

H (x) Step function defined in equation 5.2 H (x) ∈ {0, 1}
j Potential source coordinates (jx, jy) jx ∈ R jy ∈ R
k Potential destination coordinates (kx, ky) kx ∈ R ky ∈ R
g· (r, θ2) Two-dimensional dispersal kernel described in terms

of polar displacement
g· (r, θ2) ∈ R0+

c· (jx, jy, kx, ky) Two-dimensional dispersal kernel described in terms
of the source and destination Cartesian coordinates
(see equation 5.6)

c· (jx, jy, kx, ky) ∈ R0+

ax ay The width and height of the simulation arena respec-
tively

ax ∈ R+ ay ∈ R+

J Source cell bounded by jx1 and jx2 on the x-axis and
jy1 and jy2 on the y-axis

jx1 ∈ R jx2 ∈ R jx1 < jx2

jy1 ∈ R jy2 ∈ R jy1 < jy2

K Destination cell bounded by kx1 and kx2 on the x-
axis and ky1 and ky2 on the y-axis

kx1 ∈ R kx2 ∈ R kx1 < kx2

ky1 ∈ R ky2 ∈ R ky1 < ky2

K(i1,i2) Translation of the destination cell bounded by
[kx1 + i1ax] and [kx2 + i1ax] on the x-axis and by
[ky1 + i2ay] and [ky2 + i2ay] on the y-axis

∅ A cell to denote the absorbing state: the area not
covered by any of the cells within the simulation
arena

p
(·)
·JK Probability of moving from cell J to cell K, cal-

culated according to the approximation method in
the superscript brackets (CC denotes centroid-to-
centroid, AC area-to-centroid, CA centroid-to-area,
and AA area-to-area dispersal; equations 5.5, 5.9,
5.7, and 5.8 respectively)

p
(·)
·JK ∈ R 0 ≤ p

(·)
·JK ≤ 1

p′
(·)
·JK

p
(·)
·JK corrected for the incorporation of restricting

boundary conditions (see equation 5.13)
p′

(·)
·JK

∈ R 0 ≤ p′
(·)
·JK

≤ 1

p′′
(·)
·JK

p
(·)
·JK corrected for the incorporation of periodic

boundary conditions (see equations 5.14, 5.15, and
5.16)

p′′
(·)
·JK

∈ R 0 ≤ p′′
(·)
·JK

≤ 1

J A source patch consisting of NJ cells
K A destination patch consisting of NK cells

p
(·)
·JK Probability of moving from patch J to patch K cal-

culated using the underlying cell transition probabil-

ities, p
(·)
·JK , according to equations 5.20 and 5.21

p
(·)
·JK ∈ R 0 ≤ p

(·)
·JK ≤ 1

P′′(·) A transition matrix with each element, p′′
(·)
·JK

, con-
taining the probability of moving to cell K from cell
J with periodic boundary correction applied

M
(·)
t A vector with each element, m

(·)
tJ , containing the

probability that an individual resides within cell J
at time t according to the relevant approximation
method

m
(·)
tJ ∈ R 0 ≤ m

(·)
tJ ≤ 1

wtJ Probability that an individual resides within cell J at
time t under a continuous Gaussian diffusion process
(see equation 5.26)

wtJ ∈ R 0 ≤ wtJ ≤ 1

w′′
tJ wtJ with periodic boundary correction applied (see

equation 5.27)
w′′

tJ ∈ R 0 ≤ w′′
tJ ≤ 1
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(jx, jy). We can rewrite r and θ2 in terms of these coordinates

r =

√
(kx − jx)

2
+ (ky − jy)

2
(5.3)

θ2 =
π

2
− arctan

(
ky − jy
kx − jx

)
+ πH (jx − kx) (5.4)

The derivation for r describes the standard magnitude of dispersal distance in a Euclidean two-

dimensional coordinate system. However, the formula for θ2 differs from the standard polar

conversion formula as it incorporates both a correction factor to match our definition of θ2 and

also an extra term to make the equation valid regardless of which quadrant the destination

coordinate, k, occupies in relation to the source coordinate j.

Centroid-to-Centroid dispersal

The simplest method to approximate a continuous displacement kernel on a lattice is to set the

cell-to-cell transition probabilities using the displacement kernel density for the distance from

the centroid of the source patch, J , to the centroid of the destination patch, K (one version

of the dispersal mechanism implemented in Moilanen, 2004). For this quantity to represent a

true probability however, it is necessary to normalise these values by dividing over the sum of

the probability densities of the displacement kernel evaluated at the centroids of all candidate

dispersal locations. If we denote the centroid-to-centroid transition probability from cell J ,

bounded between jx1 and jx2 on the x-axis and jy1 and jy2 on the y-axis (where jx1 < jx2 and

jy1 < jy2), to cell K, similarly bounded between kx1 and kx2 on the x-axis and ky1 and ky2 on

the y-axis, as p
(CC)
·JK , then

p
(CC)
·JK =

c·

(
jx2 + jx1

2
,
jy2 + jy1

2
,
kx2 + kx1

2
,
ky2 + ky1

2

)
∑
L

c·

(
jx2 + jx1

2
,
jy2 + jy1

2
,
lx2 + lx1

2
,
ly2 + ly1

2

) (5.5)

where c· (jx, jy, kx, ky) is a reparametrisation of the displacement kernel

c· (jx, jy, kx, ky) = g·

 r =

√
(kx − jx)

2
+ (ky − jy)

2
,

θ2 =
π

2
− arctan

(
ky − jy
kx − jx

)
+ πH (jx − kx)

 (5.6)

and L is a candidate destination cell bounded between lx1 and lx2 on the x-axis and ly1 and ly2

on the y-axis.
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Centroid-to-Area Dispersal

An alternative derivation of cell transition probabilities is the centroid-to-area definition, with

the probability of moving from cell J to cell K denoted here by p
(CA)
·JK . Under this definition,

the transition probabilities are defined by the probability that the dispersing individual lands

somewhere within the area of the target cell such that

p
(CA)
·JK =

∫ ky2

ky1

∫ kx2

kx1

c·

(
jx2 + jx1

2
,
jy2 + jy1

2
, kx, ky

)
dkxdky (5.7)

Unlike centroid-to-centroid dispersal, centroid-to-area dispersal allows the correct treatment of

destination patches that are of different sizes. This is comparable to the models of dispersal

implemented in studies such as Hanski et al. (2000) and Chapman et al. (2007) that weight the

dispersal probabilities to destination patches according to area.

Area-to-Area Dispersal

Both centroid-to-centroid dispersal and centroid-to-area dispersal can suffer from severe biases

when the cell size is large relative to the expected dispersal distance (Collingham et al., 1996).

Under such circumstances, the dispersal distance may need to be improbably large for an

individual to move from the centroid to the edge of a source cell, resulting in close to zero

probability weights for all possible non-source destination cells. Iterating such models forward

a number of time steps can produce a gross underestimation of invasion rates compared to a

continuous model counterpart. We can remedy some of these effects by allowing dispersal to

originate from alternative points from within the cell. One method, such as that employed

in one specification of the Spomsim model of Moilanen (2004), describes dispersal in terms of

the distance of the nearest edges between patches. Another method, and the one that we will

describe here, assumes that dispersal is equally likely from all possible locations from within

the cell. Here the locations of individuals are represented as a uniform probability distribution

bounded by the spatial boundary coordinates of the cell. The probability of any dispersal event

occurring between the source coordinates, j, and destination coordinates, k, is then simply the

product of the probability of the origin of the dispersal event, P (j) = 1

(jx2−jx1)(jy2−jy1)
, and

the probability of dispersing to the destination given that origin, P (k|j) = c· (jx, jy, kx, ky).

The transition probability from cell J to cell K, that we denote ‘area-to-area’ dispersal and by

the notation p
(AA)
·JK , requires that we integrate over all possible source coordinates within the

boundaries of the source cell and all possible destination coordinates within the boundaries of
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the destination cell such that

p
(AA)
·JK =

1

(jx2 − jx1) (jy2 − jy1)

∫ ky2

ky1

∫ kx2

kx1

∫ jy2

jy1

∫ jx2

jx1

c· (jx, jy, kx, ky) djxdjydkxdky (5.8)

Area-to-Aentroid Dispersal

One final method for the derivation of transition probabilities on a lattice is area-to-centroid

dispersal, p
(AC)
·JK . This method is less applicable for use in cell-based dispersal but is included

here for the sake of completeness. In a similar manner to the area-to-area dispersal approxi-

mation method described above, this definition requires the spatial integration over all possible

source coordinates except, that in this case, the destination coordinates are fixed at the centre of

the destination cell. However, like centroid-to-centroid dispersal, the final probability requires

normalisation such that

p
(AC)
·JK =

∫ jy2

jy1

∫ jx2

jx1

c·

(
jx, jy,

kx2 + kx1

2
,
ky2 + ky1

2

)
djxdjy

∑
L

∫ jy2

jy1

∫ jx2

jx1

c·

(
jx, jy,

lx2 + lx1

2
,
ly2 + ly1

2

)
djxdjy

(5.9)

Figure 5.1 illustrates the four different definitions used in this paper to approximate continuous

dispersal when generating lattice-based cell-to-cell transition probabilities.

Appendix A includes a detailed derivation of transition probability estimates under Gaus-

sian dispersal (see Clark et al., 1999) for each of the four approximation methods described in

this paper. It may not be easy to derive results analytically for other dispersal kernels how-

ever and, in these circumstances, it may be necessary to resort to the application of numerical

integration techniques (see Davis & Rabinowitz, 2007) to derive transition probability esti-

mates. Functions to perform any of the approximation methods described in this paper have

been provided for the R statistical computing platform as part of the ecomodtools package

available from RForge (https://r-forge.r-project.org/projects/ecomodtools/). The

LatticeTransitionProbs function of the ecomodtools package can be employed to calcu-

late cell-to-cell transition probabilities using the analytic results of commonly employed dis-

persal kernels, or, by using Monte Carlo integration for an arbitrary, user-defined, dispersal

kernel. To install the package and the relevant documentation from R simply type the fol-

lowing at the console whilst connected to the internet: install.packages("ecomodtools",

repos="http://R-Forge.R-project.org").
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(a) (b)

(c) (d)

Figure 5.1: Illustration of the four different lattice-based dispersal transition probability defini-

tions described in this paper. Figure (a) illustrates centroid-to-centroid dispersal, p
(CC)
·JK , where

dispersal events are assumed to originate from the centre of the cell and dispersing individuals
can only disperse to the centroids of the possible destination cells. Centroid-to-area dispersal,

p
(CA)
·JK , as depicted in figure (b), shows how the transition probability is defined as the proba-

bility of landing anywhere within the boundaries of the destination cell but with all dispersal

originating from the centre of the source cell. Area-to-centroid dispersal, figure (c) and p
(AC)
·JK ,

allows weights the dispersal probabilities of arriving at the centroid of the destination cell given
the point of origin of the dispersing individual by the probability that the individual begins
its dispersal from that origin. This is assumed to be uniform over the area of the cell. Area-

to-area dispersal, p
(AA)
·JK in figure (d), extends area-to-centroid dispersal by integrating over all

possible destination points in the destination cell and relaxing the restriction that individuals

can only disperse to centroids. Note that p
(CC)
·JK and p

(AC)
·JK require normalisation to represent

true transition probabilities.
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5.2.2 Composite Dispersal Kernels

Some authors have argued that one dispersal kernel alone does not offer enough flexibility to

describe the observed changes in species distributions and that a composite dispersal kernel

combining the different modes of dispersal at short and long ranges is preferable (Shigesada

et al., 1995; Higgins & Richardson, 1999; Bullock & Clarke, 2000). The commonest form for

a composite displacement kernel, denoted here as g+ (r, θ), usually consists of two sub-kernels,

g1 (r, θ) and g2 (r, θ), weighted by an extra parameter, ϕ:

g+ (r, θ) = ϕg1 (r, θ) + (1 − ϕ) g2 (r, θ) (5.10)

Under this specification, each dispersal event involves the drawing of a random distance and

direction from a joint distribution described by the probability density function g1 (r, θ) with

probability ϕ (where 0 ≤ ϕ ≤ 1), otherwise the distance and direction are drawn according to

a random number with joint probability density function g2 (r, θ). This allows the specification

of a kernel that describes a common localised dispersal pattern, with a high value of ϕ, but

with the possibility of very rare but long distance dispersal events. This formulation of compos-

ite dispersal can be included into our cell-to-cell transition probabilities under a lattice-based

modelling structure very simply by weighting the transition probabilities corresponding to the

composite kernels according to the weighting parameter ϕ such that

p
(·)
+JK

= ϕp
(·)
1JK

+ (1 − ϕ) p
(·)
2JK

(5.11)

where p
(·)
1JK

and p
(·)
2JK

represent the transition probabilities, calculated using any of the four

approximation methods described above, of the dispersal described by probability density func-

tions g1 (r, θ) and g2 (r, θ) respectively.

5.2.3 Incorporating Boundary Conditions

The methods described here assume that the lattice is infinite in both dimensions. However, for

all practical purposes, lattice models must be run over a finite grid. For any model running in a

finite space, decisions must be made as to what happens for individuals dispersing outside the

boundaries of the model. Research into the effects of boundary conditions is often considered

a rather esoteric subject but assumptions regarding individuals at the edge of the simulation

arena can exert a dramatic influence on the analysis of the model outputs (Sullivan, 1988;

Burton & Travis, 2008). No appraisal of methods for the approximation of continuous dispersal
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would therefore be complete without an explanation on how these methods can be adapted to

include boundary conditions.

Absorbing Boundary Conditions

One commonly applied boundary condition is the so-called ‘absorbing condition’. Here individ-

uals that disperse outside of the simulation arena are removed from the simulation: they are,

in effect, killed, although some implementations take care to differentiate between the edge-

enforced mortality and standard mortality when describing the results of the model analysis.

This boundary condition, whilst easy to implement, has the unfortunate side-effect that indi-

viduals in cells close to the border suffer from inflated mortality as it is from these cells that

dispersing individuals are more likely to cross the arena threshold. This may not be biologically

realistic if, outside the area of study, there exists a means of survival for individuals that dis-

perse outside this region and that it is possible for these individuals to exert some influence over

individuals within the study region either through processes such as competition or through

the production of offspring immigrating back into the dispersal arena.

Implementing absorbing boundary conditions in the calculation of cell-to-cell dispersal prob-

abilities requires the definition of an extra ‘absorbed cell’ that contains all individuals that have

moved outside of the simulation arena. Once present in the absorbed state, individuals are un-

able to leave; the probability of moving from the absorbed state to cell K, p
(·)
·∅K = 0 and the

probability of remaining in the absorbed state, p
(·)
·∅∅ = 1. By definition, the absorbed state

encapsulates any space not defined inside the simulation arena, so the probability of entering

the absorbed state from cell J , p
(·)
·J∅ is

p
(·)
·J∅ = 1 −

∑
L

p
(·)
·JL (5.12)

where L is any non-absorbing candidate destination cell inside the simulation arena.

The calculation of centroid-to-centroid and area-to-centroid transition probabilities (equa-

tions 5.5 and 5.9 respectively) requires normalisation. This normalisation constant is defined as

the sum of the continuous displacement probability density function evaluated at the mid-points

of the set of candidate destination cells. However, the absorbing state has no defined mid-point

and, as such, it is not easy to implement centroid-to-centroid and area-to-centroid dispersal

using absorbing boundary conditions. In principle it may be possible to estimate the weight
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of dispersal probability by numerically evaluating an infinite series of cells lying outside of the

simulation area and then normalising these probabilities. In practise however, this method may

be heavily dependent on the resolution of the extra-arena cells and it is not clear how this

method would be applied in situations where the cells inside the simulation arena are not of

equal size.

Reflecting and Restricting Boundary Conditions

‘Reflecting’ and ‘restricting’ boundary conditions are both methods that ensure that individu-

als do not leave the simulation arena. Under reflecting boundary conditions, individuals that

arrive at the boundaries are reflected back into the simulation area. This process is fairly

simple to simulate in continuous space by employing algorithms to test for intersections of the

path of movement with the limits of the study region (see O’Rourke, 1994) and correcting the

coordinates in these cases according to simple reflection rules. These movement rules translate

into quite complex changes in the functional form of the displacement kernel however. These

functional changes are specific to the shape and extent of the study region and, for most sim-

ulation extents, it is not tractable to describe the net displacement after reflection correction

in terms of the original displacement kernel and even less so for a discrete approximation in

lattice simulations.

Restricting boundary conditions, where the displacement kernel is truncated so that the

probability of movement outside the simulation arena is given a zero weighting, have a much

simpler analytical representation. Here the probability of moving from cell J to cell K after a

restricting boundary correction factor is applied, p′
(·)
·JK

, is simply a normalisation of the standard

transition probability

p′
(·)
·JK

=
p
(·)
·JK∑
L p

(·)
·JL

(5.13)

It is worth noting that because the probabilities in centroid-to-centroid and area-to-centroid

dispersal (as defined in equations 5.5 and 5.9 respectively) are already normalised, that is∑
L p

(CC)
·JL = 1 and

∑
L p

(AC)
·JL = 1, then p′

(CC)
·JK

= p
(CC)
·JK and p′

(AC)
·JK

= p
(AC)
·JK .

Periodic Boundary Conditions

Another commonly applied method considering dynamics at the edge of rectangular simula-

tion arenas is the implementation of periodic boundary conditions. Under these boundary

conditions, individuals that exit the simulation arena arrive at the opposite edge. In effect,
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the simulation arena becomes a torus and provides a mechanism to approximate an infinite

landscape, although at the expense of possible periodicity effects (Hünenberger & McCammon,

1999; Pradeep & Hussain, 2004). In terms of the cell-to-cell transition probabilities described

previously, this means that it is now possible to move to a destination cell K by either directly

dispersing to it or by dispersing across a boundary and arriving at K indirectly. The updated

probability for moving from cell J to cell K for either centroid-to-area or area-to-area dispersal,

p′′
(CA
AA)

·JK , can then be defined as

p′′
(CA
AA)

·JK =
∞∑

i1=−∞

∞∑
i2=−∞

p
(CA
AA)

·
JK(i1,i2)

= p
(CA
AA)

·JK +
∞∑

i1=1


(

i1∑
i2=−i1

p
(CA
AA)

·
JK(i1,i2)

+ p
(CA
AA)

·
JK(−i1,i2)

+ p
(CA
AA)

·
JK(i2,i1)

+ p
(CA
AA)

·
JK(i2,−i1)

)
−p(

CA
AA)

·
JK(i1,i1)

− p
(CA
AA)

·
JK(−i1,i1)

− p
(CA
AA)

·
JK(i1,−i1)

− p
(CA
AA)

·
JK(−i1,−i1)


(5.14)

where K(i1,i2) is a translation of the cell K such that K(i1,i2) is bounded by [kx1 + axi1] and

[kx2 + axi1] on the x-axis and by [ky1 + ayi2] and [ky2 + ayi2] on the y-axis. The values ax and

ay represent the total width and height of the simulation arena respectively.

Conceptually toroidal boundary conditions can be considered equivalent to an infinite grid

of virtual simulation arenas of the same size and shape of our study area arranged in a lat-

tice with the main simulation arena set at the central point (see figure 5.2). The corrected

probability of dispersal from cell J to cell K with periodic boundary conditions is, under this

conceptual framework, the sum of the probabilities of moving from cell J to each corresponding

cell K in each of these virtual simulation arenas. The rearrangement of equation 5.14 allows the

expression of the corrected probabilities in terms of one infinite series: dispersal probabilities

being successively added from an expanding area of virtual simulation arenas. When i1 = 1,

the simulation arenas being evaluated lie in the immediate Moore neighbourhood (diagonal and

cardinal neighbours) around our focus simulation arena. As i1 increases, extra virtual simula-

tion arenas are evaluated in an expanding rectangle providing a better approximation to the

periodic boundary corrected probability of dispersal from cell J to cell K.

Whilst an expression for periodic cell-to-cell dispersal probabilities does not exist in a closed

form, it is possible to numerically approximate the infinite series that require evaluation in the

application of equation 5.14. The requirement for any probability density to integrate to unity

over the range of its support ensures that as the distance from the source location gets infinitely
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Figure 5.2: Illustration of the implementation of periodic boundary conditions when approx-
imating continuous dispersal on discrete landscapes. The landscape is conceptually arranged
as an infinitely sized lattice of simulation arenas centred around the main simulation arena
(shown in a solid black lines in the centre of the figure) for which we wish to calculate dispersal.
Dispersal from the green cell to the red destination cell within the main simulation arena can
occur by direct dispersal (red arrow) or by arriving at the cell by crossing a boundary of the
simulation arena and arriving at the cell from the opposite boundary. This is conceptually the
same as adding all the probabilities of landing at the corresponding highlighted destination
cells in each of virtual arenas (movement shown by black arrows). We approximate this infinite
sum by adding the probabilities calculated from the virtual simulation arenas in an expanding
rectangular region centred around the main simulation arena. The immediate Moore neigh-
bourhood around the main simulation arena is shown by the dotted black lines (with individual
cells shown in grey lines) and corresponds to the set of arenas considered when evaluating the
first element of the infinite series (i1 = 1). An outline of the neighbourhood evaluated for the
second element of the infinite series (i1 = 2) is also shown.
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large, the probability density must tend to zero. As the terms of the infinite series represent

ever increasing distances between the source and the translated destination cell then this also

ensures the convergence of the infinite series. It is then possible to implement numerical tech-

niques, such as those described in Caliceti et al. (2007), for the approximation of the series.

So long as the mean dispersal distance is small relative to the size of the simulation arena, the

convergence of the series will be rapid and only a handful of terms will need be evaluated to

obtain a reasonable approximation.

We know that the sum of dispersal probabilities from cell J to all possible destination cells

must equal one under periodic boundary conditions. The sum of direct (uncorrected) dispersal

probabilities will not equal one however. This is because these probabilities do not take into

account all the possible indirect dispersal events, where an individual travels over a border

of the simulation arena and arrives on the destination square from the opposite edge. Upon

algorithmic implementation it is useful to calculate the probabilities for all destination cells

from a single source concurrently, recalculating all probabilities at every increment of i1. Im-

plementing the algorithm in this fashion provides a useful metric, equivalent to one minus the

sum of the probabilities calculated at the current value of i1, which is the total probability still

‘unaccounted for’ in indirect dispersal. A convenient stopping condition for the evaluation of

the infinite series is provided when the ‘unaccounted’ probability is reduced to an acceptably

low level. This stopping condition can be set in the LatticeTransitionProbs function of the

ecomodtools R package through the max.prob parameter.

Implementing periodic boundary conditions for centroid-to-centroid and area-to-centroid ap-

proximation methods is a little more complex. Here, the normalisation step must be performed

after the periodic summation step. The probabilities of arriving in cell K after leaving cell

J using centroid-to-centroid and area-to-centroid dispersal after periodic boundary conditions

have been applied, p′′
(CC)
·JK

and p′′
(AC)
·JK

respectively, are defined as

p′′
(CC)
·JK

=
υ(CC) (J,K)∑
L

υ(CC) (J, L)
(5.15)

p′′
(AC)
·JK

=
υ(AC) (J, L)∑

L

υ(AC) (J, L)
(5.16)
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where

υ(CC
AC) (J,K) = γ

(CC
AC)

JK(0,0) +
∞∑

i1=1


(

i1∑
i2=−i1

γ
(CC
AC)

JK(i1,i2) + γ
(CC
AC)

JK(−i1,i2) + γ
(CC
AC)

JK(i2,i1) + γ
(CC
AC)

JK(i2,−i1)

)
−γ(CC

AC)
JK(i1,i1) − γ

(CC
AC)

JK(−i1,i1) − γ
(CC
AC)

JK(i1,−i1) − γ
(CC
AC)

JK(−i1,−i1)


(5.17)

and

γ
(CC)

JK(i1,i2) = c·

(
jx2 + jx1

2
,
jy2 + jy1

2
,
kx2 + kx1

2
+ i1ax,

ky2 + ky1

2
+ i2ay

)
(5.18)

γ
(AC)

JK(i1,i2) =

∫ jx2

jx1

∫ jy2

jy1

c·

(
jx, jy,

kx2 + kx1

2
+ i1ax,

ky2 + ky1

2
+ i2ay

)
djydjx (5.19)

Because the corrected transition probabilities require normalisation under centroid-to-centroid

and area-to-centroid dispersal, it is not suitable to use the same stopping criteria in the evalua-

tion of the infinite series of equation 5.17 in order to evaluate the infinite series of equation 5.14

for centroid-to-area and area-to-area dispersal. Instead we propose that, for a given value of i1,

further evaluation of the infinite series is stopped if the sum of the added probability for the

current iteration across all possible destination cells is below a certain value. When centroid-

to-centroid or area-to-centroid dispersal is selected, this stopping value can be controlled by the

max.prob parameter of the LatticeTransitionProbs function of the ecomodtools R package.

It is important to note that care must be taken when applying this stopping condition. Unlike

centroid-to-area and area-to-area dispersal, it is not possible to evaluate the ‘unaccounted for’

probability. As a result, there is no way to guarantee that a suitable number of virtual sim-

ulation arenas have been interrogated to adequately cover the entire range of distances with

meaningful non-zero density weights for a given dispersal kernel. This is particularly true for

dispersal kernels with modal distances far from the origin of dispersal. These effects are ame-

liorated somewhat by choosing a large simulation arena relative to the dispersal capabilities of

the species being studied.

5.2.4 Extension to Patch-Based Models

The methods described here are not limited to the description of cell-to-cell dispersal. Many

metapopulation and metacommunity models use simplified descriptions of the spatial extent

of patches. For example, Moilanen (2004) assumes that all patches are circular whilst Hanski

(1994) assumes that patch shape is negligible in determining patch connectivity. Both studies

assume that inter-patch dispersal probabilities need only be expressed in terms of the short-

est distance between patches and the area of the patch. However, if the spatial extent of the
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patches can be approximated using a set of cellular pixels then it is possible to bring the meth-

ods described here to bear and allow for the description of patch-to-patch dispersal in terms of

an underlying continuous displacement kernel. This allows patch connectivity to be described

both in terms of the dispersal capabilities of the species of interest and the spatial extent of the

individual patches.

Whilst approximating the spatial extent of patches as a series of cells may seem like an

abstraction, it rarely represents a loss of information. This is because the representation of

habitat areas in spatial data sets, such as the Corine land cover data set (as described in

Brown et al., 2002, for the UK extent), are often stored in a cellular ‘raster’ format anyway.

Even data stored as areal units in ‘vector’ format can be approximated using fine resolution

cellular lattices: the vector LandCover 2000 data set of Fuller et al. (2002) is also available

in a 25 metre resolution raster version.

If we define a patch, J, as the set of NJ cells that comprise the source patch, with each

constituent cell indexed J1, J2, . . . , JNJ
, and K as the destination patch of NK similarly indexed

cells, then we can calculate the probability of moving to patch K given that the source of

dispersal originated somewhere within patch J, p
(·)
·JK , in terms of the component cell-to-cell

dispersal probabilities. The event of a dispersing individual relocating to destination cell K1

and the alternative event of that same individual relocating to any other cell, such as the cell

K2, during a single dispersal event are mutually exclusive. This means that the probability of

dispersing to any of the destination cells in patch K given a specific source cell as the point

of origin, p
(·)
·JnK , is the sum of the probabilities of dispersal from the source cell to each of the

destination cells:

p
(·)
·JnK =

NK∑
m=1

p
(·)
·JnKm

(5.20)

If we assume that the probability of the location of the point of origin is uniformly spread

across the area of the patch, the final patch-to-patch probability is defined as the sum of the

probabilities of dispersing to any of the destination patch cells from each of the source patch

cells, but with each probability weighted by the proportional area of the relevant source cell
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relative to the total area of the source patch. Therefore,

p
(·)
·JK =

∑NJ

n=1

(
jnx2

− jnx1

) (
jny2

− jny1

)
p
(·)
·JnK∑NJ

l=1

(
jlx2

− jlx1

) (
jly2 − jly1

)
=

∑NJ

n=1

(
jnx2

− jnx1

) (
jny2

− jny1

)∑NK

m=1 p
(·)
·JnKm∑NJ

l=1

(
jlx2

− jlx1

) (
jly2 − jly1

) (5.21)

where jnx1
and jnx2

are the lower and upper boundaries on the x-axis of cell Jn respectively.

jny1
and jny2

are similarly defined as the lower and upper boundaries of cell Jn on the y-axis.

For a regular lattice of cells, where all cells have the same area, equation 5.21 simplifies to

p
(·)
·JK = 1

NJ

∑NJ

n=1

∑NK

m=1 p
(·)
·JnKm

.

To satisfy the condition
∑

K p·JK
= 1, a requirement for a properly defined probability

mass function, it is necessary that the patches collectively account for all space over which it is

possible for individuals to disperse to. While this may be reasonable when deriving movement

probabilities for individuals dispersing over landscapes with no gaps, such as the coarse-grained

Dirichlet landscapes of Holland et al. (2007), this may be unsuitable for application in most

metapopulation models where the total area of the patches combined can account for only a

very small proportion of the total area of study. In these situations it is important to describe

explicitly the fate of individuals that do not disperse successfully to another habitat patch. At

one extreme, we can define all patches that are not of suitable habitat as absorbing states and

apply the previously described absorbing state correction to the cell-to-cell transition probabil-

ities (and hence to the patch-to-patch transition probabilities). However, for landscapes with

patches that are relatively small compared to the total area of study or that appear infrequently,

this dispersal-mediated mortality may represent a sizeable mortality risk. For seed dispersal,

the displacement to unsuitable soil or environmental conditions may well doom that individual,

but in animal dispersal, the description of a ‘black hole’ effect between patches may present

an artificial inflation of dispersal mortality risk. At the other extreme, it is possible to apply

restricting boundary conditions to the set of patches so that an individual always successfully

disperses to a suitable patch. This in effect truncates the dispersal kernel so that only suitable

patches can be dispersed to. Under these conditions, dispersal mortality is always zero, even

in very isolated patches. In common application however, it may be most practicable to mix

these two extreme scenarios using a method such as the dispersal mixture formula presented in

equation 5.11.
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5.2.5 Testing the Approximation

To assess the accuracy of the four approximation methods described in this paper, we describe

the movement of an individual across the landscape over multiple time periods using each ap-

proximation method and compare the probability of the individual residing in each cell over

each time period with what would be expected if continuous point to point dispersal was em-

ployed.

We define a transition matrix, P′′(·)
· , as a comprehensive description of cell-to-cell dispersal

probabilities and with each element, p′′
(·)
·JK

, containing the probability of moving to cell K if

the dispersal event originated from cell J with periodic boundary correction applied. Here the

matrices P′′(CC)
· , P′′(CA)

· , P′′(AC)
· , and P′′(AA)

· are defined as dispersal matrices filled with

transition probabilities derived using the relevant approximation method. The state-vector,

M
(·)
t , with elements m

(·)
tJ contains the probabilities that the individual resides in cell J at time

period t. This specification allows the use of P′′(·)
· to describe M

(·)
t in terms of a Markov chain

recurrence relationship where

M
(·)
t = M

(·)
t−1P

′′(·)
· (5.22)

For the purposes of this exercise we approximate Gaussian dispersal on a lattice by filling the

cell-to-cell transition probabilities in matrix P′′(·)
· with those calculated using equations 5.30,

5.35, 5.34, and 5.38 derived in appendix A for centroid-to-centroid, area-to-centroid, centroid-

to-area, and area-to-area approximation methods respectively.

In order to compare the discrete approximations to continuous dispersal it is necessary

to derive a cell-based description of residence probability based on continuous dispersal over

time. Starting with the Cartesian representation of the Gaussian dispersal kernel as defined in

Clark et al. (1999), we have shown in appendix B that the total displacement in the Cartesian

coordinates, δx and δy, at time t, arising from Gaussian steps in each time period, is a bivariate-

normal random variable with probability density function

st (δx, δy|α) =
1

πtα2
e−

δ2x
tα2 e−

δ2y

tα2 (5.23)

α represents the isotropic standard deviation parameter of displacement in one time step. From

equation 5.23 it is possible to derive the probability that an individual resides in cell J at time
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t, or wtJ , by integrating the probability density function between the limits of the cell extent:

wtJ =

∫ jy2

jy1

∫ jx2

jx1

st (δx, δy|α) dδxδy

=
1

πtα2

[∫ jy2

jy1

e−
δ2y

tα2 dδy

][∫ jx2

jx1

e−
δ2x
tα2 dδx

]
(5.24)

From the identity

∫ j·2

j·1

e−
δ2·
tα2 dδ· =

√
tα

∫ j·2√
tα

j·1√
tα

e−κ2

dκ

=

√
πtα

2

[
erf

(
j·2√
tα

)
− erf

(
j·1√
tα

)]
(5.25)

where κ is a substitution used in integration (κ = δ·√
tα

), we can express wtJ in terms of the

numerically tractable error function, erf (Z), as defined in equation 5.32:

wtJ =
1

4

[
erf

(
jx2√
tα

)
− erf

(
jx1√
tα

)][
erf

(
jy2√
tα

)
− erf

(
jy1√
tα

)]
(5.26)

The final element to include in the derivation of continuous Gaussian dispersal in order to

make it comparable to the formulation used in the approximations we have applied here is to

apply a correction for periodic boundary conditions. Similarly to the derivation for periodic

correction derived in equation 5.14, the corrected form of the cell probabilities, w′′
tJ can be

defined in terms of the uncorrected probabilities such that

w′′
tJ = wtJ +

∞∑
i1=1


i1∑

i2=−i1

(
wt

J(i1,i2)
+ wt

J(−i1,i2)
+ wt

J(i2,i1)
+ wt

J(i2,−i1)

)
−wt

J(i1,i1)
− wt

J(−i1,i1)
− wt

J(i1,−i1)
− wt

J(−i1,−i1)

 (5.27)

Like equations 5.14 and 5.17, the convergent infinite series in equation 5.27 can be evaluated

numerically using techniques such as those described in Caliceti et al. (2007). Here cell J (i1,i2)

is a translation of cell J where J (i1,i2) is bounded by [jx1 + axi1] and [jx2 + axi1] on the x-axis

and by [jy1 + ayi2] and [jy2 + ayi2] on the y-axis. The vector, W′′
t, with an element for each

cell set to w′′
tJ , provides a description of continuous dispersal over time that has a structure

allowing comparison to the discrete approximations, M
(·)
t , described in this paper.

To test the effect of spatial scale of the lattice on the quality of the approximation, we

calculate the relevant probabilities over lattices of three different grid sizes of 1, 3, and 5 units
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in width and height. The simulation arena is a total of 45× 45 units meaning that, in terms of

cell count, the intermediate and coarse grained spatial resolutions comprise of arenas of 15×15

and 9 × 9 cells respectively. In each calculation we initialise the continuous Gaussian dispersal

process with an individual starting at the centre of the grid, which for notational convenience

we have designated as the origin of the x and y axes without loss of generality. For the discrete

approximations, we initialise the starting probability vector, M
(·)
0 , so that all elements are zero

with the exception of the one cell containing the origin which is given a value of one.

α is set to 6√
π
≈ 3.385 for all calculations. Converting the bivariate normal displacement

kernel into a probability density function of dispersal distance results in a rescaled Rayleigh

distribution (Tufto et al., 1997; Snäll et al., 2007; Cousens et al., 2008) with expected value

α
√
π

2 (Clark et al., 1998). By setting α to 6√
π

, we standardise the expected dispersal distance

over one time step to the cell length of the medium resolution grid. This provides a convenient

midpoint benchmark to judge the approximation methods at grid resolutions with cell lengths

larger than the expected dispersal distance, such as the 5 × 5 resolution grid, and grids at a

finer scale than the scale of dispersal, such as the 1 × 1 grid.

Residence probabilities were calculated for each cell over the 40 time periods using the

transition matrices generated using each of the four approximation methods described in this

paper. Each of the resultant vectors of residence probabilities at each time period was compared

to those expected under continuous dispersal.

5.3 Results

The absolute range of error values given in table 5.2 show, that for most grid sizes tested here,

all four approximation methods provide a reasonable dispersal approximation to what would be

expected under continuous dispersal. Here approximation error is defined as the difference be-

tween the probability that the individual resides within a cell at a given time period calculated

according to the approximation method being tested and the probability that the individual

would reside in that cell at the same time period under truly continuous dispersal (equation

5.27). Positive values represent incidences where the residence probabilities calculated by the

approximation method exceed those expected under continuous dispersal whilst negative val-

ues denote incidences where the ‘true’ residence probabilities exceed those calculated by the

approximation method.
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Residence probability estimates are correct to within three decimal places (< 0.0004) of

the true probability for calculations made under the fine resolution grid (1 × 1 cell size) for all

estimation methods calculated for all cells over the entire 40 step time period. For medium

resolution grids (3 × 3 cell size), this accuracy reduces to values within 0.03 of the continuous

dispersal baseline. At coarse resolutions (5 × 5 cell size), reasonable approximation to true

continuous dispersal is not guaranteed: at the extremes, approximation methods show an inac-

curacy in residence probability calculation of up to 0.175.

The time series of approximation error in figure 5.3 shows that the most extreme deviation

from continuous dispersal occurs, for all approximation methods and grid resolutions, close to

the origin in the earlier time periods. For locations further from the origin, the peak of ap-

proximation error occurs later in the time series, and at a much reduced magnitude. As time

increases, a wave of increased residence probability spreads out from the centre of the simula-

tion arena; if the timing for the arrival of this probability wave for an approximation method is

different than that predicted under continuous dispersal then, during this period of disparity,

we observe a peak of approximation method error.

Figures 5.4, 5.5, and 5.6 show the spatial distribution of approximation error on fine,

medium, and coarse resolution grids respectively. From these figures we can see that centroid-

to-centroid methods tend to over-estimate the probability weights around the origin of dispersal.

Conversely, centroid-to-area, area-to-centroid, and area-to-area methods all underestimate the

residence probabilities in these areas whilst overestimating residence probabilities in the pe-

ripheries.

Under two-dimensional Gaussian diffusion, the variance of the probability mass function

of the particle location (equation 5.23) tends to infinity as time increases. The cell residence

probabilities, calculated with periodic boundary conditions according to equation 5.27, thus

tend towards a uniform distribution bounded by the margins of the simulation arena. Due to

the Markovian nature of the calculation mechanism for the residence probabilities for each ap-

proximation method, it is possible to calculate the asymptotic probability distribution for such

methods. In Markovian models, the distribution of the asymptotic probability of residence is

equivalent to the right eigenvector corresponding to the dominant eigenvalue of the transition

matrix, rescaled so that all components sum to one. For properly defined transition matrices,
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(a) Fine resolution grid with cell size of 1× 1 units
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(b) Medium resolution grid with cell size of 3× 3 units
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(c) Coarse resolution grid with cell size of 5× 5 units
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Figure 5.3: Time series of approximation method error at three different sites. Probability error
is defined here as the difference of the probability of the individual residing in a cell under con-
tinuous dispersal (equation 5.27) and the probability calculated using a discrete approximation
method. Positive values represent an ‘excess’ of probability, where the residence probabili-
ties calculated by the approximation method exceed that expected under continuous dispersal.
Conversely, negative values represent residence probabilities calculated by the approximation
method below those expected under continuous dispersal. In each panel the solid black line
refers to ‘centroid-to-centroid’ dispersal, the dashed black line to ‘area-to-centroid’ dispersal,
the solid grey line to ‘centroid-to-area’, and the dashed grey line to ‘area-to-area’ dispersal. A
time series of error is displayed for three cells chosen at successively further distances from the
point of origin with sample point one representing the cell containing the origin, sample point
two represents the cell containing the point at coordinates (10, 10), and sample point three
refers to the cell containing the point at coordinates (20, 20). Figures (a)-(c) show the results
at the three different spatial resolutions used in this study, from fine scales to coarse scale. The
zero error line is denoted in red.
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(a) Centroid-to-centroid dispersal

Time 4 Time 8 Time 12 Time 16

(b) Centroid-to-area dispersal

Time 4 Time 8 Time 12 Time 16

(c) Area-to-centroid dispersal

Time 4 Time 8 Time 12 Time 16

(d) Area-to-area dispersal

Time 4 Time 8 Time 12 Time 16

−0.00021735 −0.00012999 −4.2625e−05 4.4738e−05

Figure 5.4: Spatial distribution of approximation method error through time on a fine resolution
grid (cell size 1×1 units). Probability error is defined here as the difference of the probability of
the individual residing in a cell under continuous dispersal (equation 5.27) and the probability
calculated using a discrete approximation method. Positive values (blue shading in the panels
above) represent an ‘excess’ of probability, where the residence probabilities calculated by the
approximation method exceed that expected under continuous dispersal. Conversely, negative
values (red shading in the panels above) represent residence probabilities calculated by the
approximation method below those expected under continuous dispersal. Figures (a)-(d) show
three snapshots of the spatial error for each of the four approximation methods.
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(a) Centroid-to-centroid dispersal

Time 4 Time 8 Time 12 Time 16

(b) Centroid-to-area dispersal

Time 4 Time 8 Time 12 Time 16

(c) Area-to-centroid dispersal

Time 4 Time 8 Time 12 Time 16

(d) Area-to-area dispersal

Time 4 Time 8 Time 12 Time 16

−0.013895 −0.0080119 −0.0021288 0.0037543

Figure 5.5: Spatial distribution of approximation method error through time on a medium
resolution grid (cell size 3 × 3 units). Probability error is defined here as the difference of
the probability of the individual residing in a cell under continuous dispersal (equation 5.27)
and the probability calculated using a discrete approximation method. Positive values (blue
shading in the panels above) represent an ‘excess’ of probability, where the residence probabili-
ties calculated by the approximation method exceed that expected under continuous dispersal.
Conversely, negative values (red shading in the panels above) represent residence probabili-
ties calculated by the approximation method below those expected under continuous dispersal.
Figures (a)-(d) show three snapshots of the spatial error for each of the four approximation
methods.
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(a) Centroid-to-centroid dispersal
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(b) Centroid-to-area dispersal

Time 4 Time 8 Time 12 Time 16

(c) Area-to-centroid dispersal

Time 4 Time 8 Time 12 Time 16

(d) Area-to-area dispersal

Time 4 Time 8 Time 12 Time 16

−0.067407 0.00023041 0.067868 0.13551

Figure 5.6: Spatial distribution of approximation method error through time on a coarse resolu-
tion grid (cell size 5×5 units). Probability error is defined here as the difference of the probability
of the individual residing in a cell under continuous dispersal (equation 5.27) and the proba-
bility calculated using a discrete approximation method. Positive values (blue shading in the
panels above) represent an ‘excess’ of probability, where the residence probabilities calculated
by the approximation method exceed that expected under continuous dispersal. Conversely,
negative values (red shading in the panels above) represent residence probabilities calculated by
the approximation method below those expected under continuous dispersal. Figures (a)-(d)
show three snapshots of the spatial error for each of the four approximation methods.
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the dominant eigenvalue is always equal to one as the total probability is conserved between

time periods.

Table 5.3 contains the sum of the absolute difference between the asymptotic residence

probabilities calculated for each of the approximation methods at each cell resolution and the

uniform probabilities expected under continuous dispersal. From table 5.3 it is clear that the

centroid-to-area and area-to-area approximations methods exhibit very small deviations from

the asymptotic expectation at all cell resolutions (< 1.8 × 10−8). Whilst the total deviation

exhibited by the centroid-to-centroid and area-to-centroid methods are still relatively small

(< 0.12), they are still many orders of magnitude larger than those exhibited by the areal des-

tination methods and represent a non-negligible departure from the asymptotic optimum.

5.4 Discussion

The methods described in this paper provide a number of different mechanisms to approximate

continuous dispersal in lattice-based models. We have shown that, for Gaussian dispersal at

least, these approximations hold well at resolutions equivalent to the expected dispersal distance

and finer. At coarse resolutions, the approximation methods described in this paper begin to

exhibit significant deviations from what would be expected under continuous dispersal. The

spatial signal of this error is quite different under the different approximation methods how-

ever. The over-estimation of residence probabilities at the core of the range observed under

centroid-to-centroid dispersal can be explained by the fact that, under this dispersal regime,

the distance between the origin and the destination sites are relatively large compared to the

other dispersal approximation methods; centroid-to-area dispersal provides a destination area

that has margins closer to the point of dispersal, area-to-centroid dispersal has a margin of the

departure area closer to the destination point, and finally, area-to-area dispersal has margins of

both destination and origin areas that are yet closer again. This results in centroid-to-centroid

approximation methods generating residence probabilities in the nearby and source cells far

in excess of what would be expected under continuous dispersal because the probability of

spanning the distance between the origin and dispersal centroid for intermediately isolated and

distant cells is very low (see Collingham et al., 1996). The unit sum requirement for dispersal

probabilities thus requires that the proportional weight be loaded in the nearby cells.
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Table 5.2: Table of the range of approximation error for each approximation method and cell
resolution over the entire arena and the 40 time steps calculated. Approximation error is defined
here as the difference of the probability of the individual residing in a cell under continuous
dispersal (equation 5.27) and the probability calculated using a discrete approximation method.
Positive values represent an ‘excess’ of probability, where the residence probabilities calculated
by the approximation method exceed that expected under continuous dispersal. Conversely,
negative values represent residence probabilities calculated by the approximation method below
those expected under continuous dispersal.

Grid Cell Size

Approximation Method 1 × 1 3 × 3 5 × 5

Centroid-to-centroid
Minimum −5.335 × 10−5 −3.437 × 10−3 −2.856 × 10−2

Maximum 3.999 × 10−4 2.993 × 10−2 1.740 × 10−1

Centroid-to-area
Minimum −9.904 × 10−5 −6.565 × 10−3 −1.755 × 10−2

Maximum 1.339 × 10−5 9.117 × 10−4 5.381 × 10−3

Area-to-centroid
Minimum −1.758 × 10−4 −6.565 × 10−3 −1.755 × 10−2

Maximum 4.464 × 10−5 9.177 × 10−4 5.381 × 10−3

Area-to-area
Minimum −3.885 × 10−4 −2.333 × 10−2 −1.053 × 10−1

Maximum 5.224 × 10−5 2.702 × 10−3 1.239 × 10−2

Table 5.3: Table of sums of asymptotic deviance of approximation methods from continuous
dispersal. Elements are calculated from the dominant right eigenvector of the transition matri-
ces used in equation 5.22. The element values are the sum of the absolute difference between
the elements of the eigenvector and the uniform probability distribution that represents the
asymptotic result of continuous dispersal.

Grid Cell Size

Approximation Method 1 × 1 3 × 3 5 × 5

Centroid-to-centroid 2.835 × 10−14 1.042 × 10−1 5.111 × 10−2

Centroid-to-area 8.229 × 10−9 1.748 × 10−8 4.751 × 10−13

Area-to-centroid 1.158 × 10−1 1.107 × 10−1 8.365 × 10−2

Area-to-area 8.902 × 10−10 4.927 × 10−11 3.665 × 10−11
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The effect of increased cell size on the spatial distribution of approximation error observed in

centroid-to-area, area-to-centroid, and area-to-area dispersal appears to act oppositely to that

observed with centroid-to-centroid dispersal. Here, residence probabilities close to the origin of

dispersal are underestimated whilst more distant dispersal events are predicted with a greater

frequency than that expected under continuous dispersal. For those approximation methods

where dispersal originates from an areal unit, this overestimation of residence probability in

the peripheral grid cells can be explained from the added dispersal advantage conferred by the

assumption that the point of departure is selected uniformly over the originating cell. If the

originating cells are large then this first stage in the dispersal process can potentially garner

origins of dispersal distant from locations likely to be dispersed to under continuous dispersal in

the previous time period. In other words, dispersing individuals are ‘pulled’ across the interior

of cells, effectively accelerating the dispersal rate. This extra process can, once compounded

over several time steps, induce considerable increases in the predicted invasion speed.

The point-based origin of dispersal in centroid-to-area dispersal means that it may not be

immediately obvious why centroid-to-area dispersal may suffer from the same spatial patterns of

approximation error that afflict the area-to-centroid and area-to-area approximation methods.

However, this phenomenon can be elucidated by envisioning the scenario where an individual

moves from a cell centroid to just inside the margins of a nearby cell in one time period. When

the model is iterated to the next time period, the individual is assumed to disperse from the

centre of the destination cell of the last time period. Like the areal origin approximation meth-

ods, this effect essentially creates an extra intracellular dispersal event in each time period.

Compounded over multiple time periods this effect will produce the observed spatial patterning

of approximation error and can potentially bias predictions of expansion rates dramatically.

Whilst the absolute approximation error is an area of key consideration when selecting an

appropriate approximation method (table 5.2), for simulations run over long-term timescales,

particularly those studies that focus on the equilibrium properties of the system, it is also im-

portant for the investigator to consider the asymptotic properties of the approximation method

applied (table 5.3). Methods that do not create outcomes that tend towards the continuous

process that they are supposed to approximate will produce an artefact of approximation and

may bias the interpretation of such results. Except at very fine scale resolutions, we have

shown here that centroid-to-centroid and area-to-centroid dispersal do not exhibit the requi-

site asymptotic properties for these purposes. Both of these methods share the characteristic
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that they require the evaluation of the dispersal kernel at a point. For a continuous dispersal

kernel, the probability of dispersing to a point is infinitesimally small and, in order to express

cell-to-cell dispersal probabilities in terms of a true probability that sums to unity across all

possible destinations, both approximation methods require normalisation. As a result, both

the centroid destination methods cannot characterise a ‘true’ dispersal process resulting in a

long-term deviation from the continuous process, even if the approximation in the short and

medium term is accurate.

The sensitivity of the approximation error and asymptotic properties of cell-based dispersal

to the resolution of the lattice has resulted in a number of authors suggesting rules for appro-

priate cell resolution. Martin (1993) expresses such recommendations in terms of a so-called

‘m-criterion’. In the context of dispersal approximation, this criterion is only satisfied if the

cell length is less than or equal to the expected dispersal distance of the underlying continuous

dispersal kernel over one time step. The expected dispersal distance of the underlying dispersal

kernel can be calculated by converting the two-dimensional displacement kernel, g· (r, θ), into

a probability distribution of distances (see Clark et al., 1999; Cousens et al., 2008), and calcu-

lating the expected value of this distribution. Rules for lattice-based dispersal have also been

documented in Collingham et al. (1996), where the authors recommend that the cell lengths

should be no longer than one half of the square root of the mean dispersal distance. Both

heuristics may be excessively stringent however. The fine resolution grid (cell length 1× 1) and

dispersal kernel parametrisation evaluated in this study falls slightly outside the maximum cell

length criterion of Collingham et al. (1996). However, even at the poorest performing locations

and time periods within the 40 time periods sampled, all approximation methods described

here still give accurate residence probabilities to within three decimal places at this spatial

resolution. Moreover, the medium resolution grid (cell length 3×3) falls exactly on the limit of

acceptability to satisfy the ‘m-criterion’ of Martin (1993). Even at this limit, the centroid-to-

area and area-to-centroid dispersal methodologies still provide residence probabilities to within

two decimal places of the continuous baseline.

For most applications, the methods described here will be employed to generate cell-to-cell

transition probabilities for only a small number of parameterisations of the underlying dis-

persal kernel. In these circumstances, where computational resources are not limiting, it is

recommended that fine-scale grid resolutions are used to minimise the approximation error.

Small grid sizes also reduce biases in estimates of range expansion and contraction and the
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results of such analyses are not so affected by the choice of approximation method. However,

in studies where different parameterisations of the dispersal kernel need to be tested, such as

in simulations of dispersal evolution (Hovestadt et al., 2001; Travis & Dytham, 2002; Dytham,

2009) or as part of assessing the uncertainty in values of the dispersal parameters on metapop-

ulation connectivity, repeated use of the approximation methods may be required. It is under

these conditions that computational requirements may become a real concern. For dispersal

kernels that have an analytical result specifying the approximation on discrete landscapes in

closed form, or with simple numerically tractable forms (for example, the approximation of

Gaussian dispersal derived in appendix A), there may not be much difference between the ap-

proximation methods in terms of computational time. For dispersal kernels where the only

option is to perform numerical integration to evaluate the integral in the approximations that

involve the dispersal to or from areal units (equations 5.7, 5.8, and 5.9), then the number of

evaluations of the integrand required to achieve a good approximation will be related to the

dimensionality of the integral. As a result, centroid-to-centroid approximation methods can be

evaluated in the fastest time as there is no integration involved in their calculation. This is

followed by area-to-centroid and centroid-to-area approximation methods which both require

integration over one areal unit in their evaluation. Area-to-area methods will be the slowest, as

they require integration over both the source and destination areas. It is worth noting however

that whilst this relative ordering may be true for calculating the whole matrix of transition prob-

abilities, centroid-to-centroid and area-to-centroid methods both require normalisation and, if

only a subset of cell transitions are required, these methods will still require evaluation of the

complete matrix in order to ascertain the correct normalisation values. In these instances,

centroid-to-area and even area-to-area approximation methods may be able to provide faster

results.

In situations where the transition matrix for multiple parameterisations of the underlying

dispersal is required, our recommendations for approximation methods are a little more nu-

anced. Similarly to our recommendation for minimal parameterisation evaluation, we advocate

the use of the smallest possible grid that is feasible given the computational resources. At high

resolutions, the differences between the approximation methods are negligible and, as such, the

method can be selected on the basis of speed alone (favouring centroid-to-centroid methods al-

though see above). However, if the smallest computationally feasible grid size is larger than the

expected dispersal distance, and therefore does not satisfy the ‘m-criterion’ of Martin (1993),

then it may become necessary to use the slower areal destination methods (centroid-to-area or
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area-to-area) that exhibit strong approximations to continuous dispersal and desirable asymp-

totic properties, even at coarse resolutions.

All attempts to emulate continuous dispersal on a discrete lattice will suffer from some

form of approximation error. Indeed, Chesson & Lee (2005) state that theory relating to the

continuous distribution, such as the moments and convolution properties, may not necessarily

apply once the distribution has been mapped onto a discrete lattice. Whilst this is undoubtedly

true, we argue here that when scaling up from point-to-point continuous dispersal to cell-to-

cell dispersal it is useful to maintain a theoretical link between the dispersal as modelled at

the smaller scale. In plants, dispersal kernels are most commonly fitted to seed shadow data

(Clark et al., 1999) or the outcomes from molecular parentage analysis (Robledo-Arnuncio &

Garca, 2007). In animals, mark-release-recapture data (Fujiwara et al., 2006) or telemetry

data (Dahl & Willebrand, 2005; Rhoads et al., 2010) methods are most commonly employed.

As such, most studies will quote dispersal strategies in terms of point distances. To incor-

porate the information garnered from these small-scale studies into estimates of cell-to-cell or

patch-to-patch connectivity, the calculation of which is an important prerequisite for any form

of spatially-explicit metapopulation model (Hanski, 1994; Moilanen, 2004), it is important to

define connectivity in terms of parameters derived from data collected at these scales.

Dispersal data collected at the metapopulation level does exist although this often requires

considerably more field effort to collect. Hanski et al. (2000) describe a likelihood-based ap-

proach for the incorporation of observation records of individuals in a patch at a given time

period. Whilst methods such as these can be critical in incorporating patch-scale data into

model parametrisation and prediction formulation, they can only be expanded to allow infer-

ence to be drawn from point-to-point dispersal data if patch connectivity is specified in terms

of the parameters relevant to these data. Parametrising metapopulation models in this way

provides a mechanism for inference to be drawn from data collected at both levels simultane-

ously. A core process model, in this case our dispersal kernel, can be linked to a data set via

an observation process. For the integration of data collected at different spatial scales, we can

define a series of observation models for each data set relating the records to the core process

model. For point-level data there exist a number of likelihood methods linking point settlement

observations to the underlying dispersal kernel (Ribbens et al., 1994; Clark et al., 1998, 1999;

Canham & Uriarte, 2006). For patch-level dispersal observations, the approximation methods

described here can be employed to rescale the dispersal kernel to the relevant spatial extent of
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the data. This provides a mechanism for the likelihood calculation of observed patch transitions

given an underlying dispersal kernel.

For some study species, particularly territorial mammals, the field of dispersal ecology has

pursued a much more mechanistic description of movement (for example Will & Tackenburg,

2008; van Moorter et al., 2009). Such models are often described as rule-based because they rely

mainly on simulation of individuals that move according to a set of rules rather than through

description from a redistribution kernel. Some of the simpler simulation models can still be

described in terms of a dispersal kernel and, for the approximation of such models in a dis-

crete landscape, the methods described in the paper remain directly applicable. For the more

complex models, where the description of the movement in terms of a dispersal kernel is not

tractable, the approximation of transition probabilities must be garnered from direct simula-

tion. Here multiple simulations must be performed. As the number of simulations grows large,

the proportion of simulations that reside in each cell at the end of the movement will provide

a reasonable approximation to the transition probabilities. If the simulations all start from the

centre of the source cell then this corresponds to centroid-to-area dispersal whilst area-to-area

dispersal corresponds to a set of simulations that pick a source location at random from within

the source cell according to uniform distribution within its borders.

In summary, Holland et al. (2007) have shown that nearest neighbour dispersal produces

results that are highly dependant upon the geometry of the lattice and the dispersal neigh-

bourhood. For more reasonable implementations of dispersal, we must apply methods that

approximate dispersal defined in continuous space to models where space is represented dis-

cretely. In most applications, centroid-to-centroid dispersal is used as a default approximation

method. Whilst this may represent the least demanding method in terms of computational

power, we have demonstrated that such methods can provide a very poor approximation to

continuous dispersal: producing biased estimates of invasion speed and asymptotic residence

probabilities. Conversely, approximation methods with areal destination spatial units exhibit

both desirable asymptotic qualities and high accuracy, even at relatively coarse spatial scales.

The adoption of these more complex methods need not be demanding and the use of numerical

tools such as the ecomodtools package, or through direct derivation (such as that described

for Gaussian dispersal in appendix A), can provide the investigator with a much better approx-

imation of continuous dispersal at very little cost in terms of time, either computationally or

in implementation. Moreover, we have shown how rows and columns of the transition matrices
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generated using these approximation methods can be aggregated to provide estimates of patch

connectivity for use in metapopulation and metacommunity models. These methods may pro-

vide a valuable part of a suite of techniques to draw inference about ecological processes from

data collected at multiple spatial scales.

Appendix 5.A Approximation of Gaussian Dispersal on a

Lattice

We start with the two-dimensional displacement kernel for Gaussian dispersal, denoted here

by gG (r, θ), derived by Clark et al. (1999) as a special case of the generalised exponential

distribution with probability density function

gG (r, θ) =
1

πα2
e−( r

α )
2

(5.28)

The Gaussian dispersal as described by Clark et al. (1999) is isotropic, so the corresponding

probability density function is not dependent upon the direction of travel, θ. Because of this,

it is often quoted in the literature as simply gG (r) but we include it here with the full notation

to emphasise the fact that it represents a joint probability density function of distance and

direction.

The relevant reparametrisation of gG (r, θ) in terms of Cartesian source and destination

coordinates according to equation 5.6 is

cG (jx, jy, kx, ky) =
1

πα2
e−

(kx−jx)2+(ky−jy)2

α2

=
1

πα2
e−( kx−jx

α )
2

e
−
(

ky−jy
α

)2

(5.29)

This corresponds to the probability density function of a set of destination coordinates drawn

from a bivariate normal distribution with mean parameters set according to the source coor-

dinates, with no correlation between the x and y coordinates, and with equal variance in each

dimension.

By using the kernel reparametrisation above in equation 5.5, it is possible to describe the

Gaussian centroid-to-centroid dispersal probability from source cell J to destination cell K,
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All of the other forms of lattice dispersal described in this paper require the integration of

cG (jx, jy, kx, ky):

∫ ky2

ky1

∫ kx2

kx1

cG (jx, jy, kx, ky) dkxdky

=
1

πα2
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e
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(

ky−jy
α

)2 ∫ kx2
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e−( kx−jx
α )

2

dkxdky

=
1
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ky1

e
−
(
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α

)2 ∫ kx2−jx
α

kx1−jx
α

e−υ2
x dυxdky

=
1

2
√
πα

[
erf

(
kx2 − jx

α

)
− erf

(
kx1 − jx

α

)]∫ ky2

ky1

e
−
(

ky−jy
α

)2

dky

=
1

2
√
π

[
erf

(
kx2 − jx

α

)
− erf

(
kx1 − jx

α

)]∫ ky2−jy
α

ky1−jy
α

e−υ2
y dυy

=
1

4

[
erf

(
kx2 − jx

α

)
− erf

(
kx1 − jx

α

)][
erf

(
ky2 − jy

α

)
− erf

(
ky1 − jy

α

)]
(5.31)

where υx = kx−jx
α and υy =

ky−jy
α represent substitutions used in the integration and erf (x) is

the error function defined as

erf (x) ≡ 2√
π

∫ x

0

e−t2 dt (5.32)

Whilst the error function does not have a closed analytical form, there exists a number of nu-

merical techniques, such as those described in Cody (1993), for efficient approximate evaluation.

Using a method similar to that used in the derivation of equation 5.31 it can also be shown

that

∫ jy2

jy1

∫ jx2

jx1

cG (jx, jy, kx, ky) djxdjy

=
1

4

[
erf

(
kx − jx2

α

)
− erf

(
kx − jx1

α

)][
erf

(
ky − jy2

α

)
− erf

(
ky − jy1

α

)]
(5.33)

Substituting the results of equation 5.31 into equation 5.7 and the results of equation 5.33

into equation 5.9 provides a mechanism to specify the Gaussian centroid-to-area and area-to-

centroid probabilities, p
(CA)
GJK

and p
(AC)
GJK

respectively, in terms of the numerically tractable error
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function so that

p
(CA)
GJK

=
1

4

[
erf

(
2kx2 − jx2 − jx1

2α

)
− erf

(
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(
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− jy1

2α

)
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(
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− jy2
− jy1

2α

)]
(5.34)

and

p
(AC)
GJK

=

[
erf

(
kx2 + kx1 − 2jx2

2α

)
− erf

(
kx2 + kx1 − 2jx1

2α

)]
[
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)
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∑
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)
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(
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)
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(5.35)

Starting from the result of equation 5.33 we show that

∫ ky2

ky1

∫ kx2

kx1

∫ jy2

jy1

∫ jx2

jx1

cG (jx, jy, kx, ky) djxdjydkxdky

=

1

4
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(
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α

)
dky −
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)
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]
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kx1
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(
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α

)
dkx −

∫ kx2

kx1

erf

(
kx − jx1

α

)
dkx

] (5.36)

We can express the indefinite integral of the error function in terms of the error function

∫
erf

(
k· − j··
α

)
dk· = α

∫
erf (ζ) dζ

= (k· − j··) erf

(
k· − j··
α

)
+

α√
π
e
−
(

k·−j··
α

)2

+ C (5.37)

where ζ =
k·−j··

α is a substitution used in the integration and C is a constant resulting from

indefinite integration.

Substituting the results of equation 5.37 into equation 5.36 allows us to express the Gaussian
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area-to-area transition probabilities, as defined in equation 5.8, in terms of the error function

p
(AA)
GJK

=
1

4 (jx2 − jx1) (jy2 − jy1)
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−
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(5.38)

Appendix 5.B Derivation of the Probability Density Func-

tion of Sums of Uncorrelated Bivariate-

Normal Distributed Variables

We begin with the description of two, two-dimensional displacement events such that the change

in the x and y dimension, δx and δy respectively, for each event are described by the bivariate

Gaussian distribution. Both displacement events have a mean of zero and separate isotropic

standard deviation parameters: α1 for displacement event one and α2 for displacement event

two. The probability density functions for each event, s1 (δx, δy|α1) and s2 (δx, δy|α2) respec-

tively, are therefore

s1 (δx, δy|α1) =
1

πα2
1

e
−
(

δx
α1

)2

e
−
(

δy
α1

)2

(5.39)

s2 (δx, δy|α2) =
1

πα2
2

e
−
(

δx
α2

)2

e
−
(

δy
α2

)2

(5.40)

The probability density functions above correspond to the special bivariate-Normal case where

there exists no correlation in the variate vector elements, that is, dispersal is not correlated in

the x and y spatial dimensions.

The probability density function of the total displacement, s3 (δx, δy|α1, α2), after both

displacement events described above are applied in sequence is the two-dimensional convolution
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of the two component displacement kernels such that

s3 (δx, δy|α1, α2) =
1
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1α
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(5.41)

where
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and ξ· is an integration substitution

ξ· =
α2
1τ· + α2

2 (τ· − δ·)

α1α2

√
α2
2 + α2

1

(5.43)

Substituting the results of equation 5.42 into equation 5.41 gives

s3 (δx, δy|α1, α2) =
1

π (α2
2 + α2

1)
e
− δ2x

α2
2+α2

1 e
−

δ2y

α2
2+α2

1 (5.44)

From this result it is clear that the probability density function of the total displacement is

a reparametrisation of the bivariate-Normal density function with a new standard deviation

parameter, α3, where α2
3 = α2

1 + α2
2. More generally, if we describe a discrete time process

with bivariate-normal displacement in each time step and for which the standard deviation

parameter is set to α isotropically, then the total displacement encountered at a time t is also

described by a bivariate-normal process with standard deviation parameter αt =
√
tα.



CHAPTER 6

Discussion

6.1 Main Conclusions

Many central theories of population genetics, such as the derivation of Hardy-Weinberg equilib-

rium (Hardy, 1908; Weinberg, 1908, and translated in Weinberg 1963), the description of neutral

drift in closed populations (Kimura, 1983, 1986), and the extension of the Wright-Fisher model

to describe genealogical coalescence (Kingman, 1982a,b; Hudson, 1983; Tajima, 1983; Tavaré,

1984), all assume, in their basic form at least, that population sizes remain constant. Some

progress has been made to extend some of these theories to situations where population size is

not constant, such as the extensions of coalescent theory (see Donnelly & Tavaré, 1995), but

these attempt are largely restricted to basic, deterministic scenarios of population change.

Conversely, classical population biology typically deals with models of population dynam-

ics that, by their very design, describe changes in population size but ignore individual level

variation. The deterministic models of population growth described by Pearl and Verhulst (see

Gilpin & Ayala, 1973), Ricker (1954, 1975), Beverton & Holt (1957), and Gompertz (1825),

share the characteristic that they do not account for stratification of population-relevant pa-

rameters within the population.

Efforts have however been made in the field of population biology to allow for some degree of

166
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within-population differentiation. By defining population structure as a vector it is possible to

specify unique fecundity, mortality and growth parameters for each population sub-section such

as age class (Leslie, 1945, 1948) or life-cycle stage (Lefkovitch, 1965). Another way to try to

incorporate individual differences in demographic parameters is to incorporate those differences

implicitly as a stochastic element in the model. This can involve adding demographic and envi-

ronmental stochasticity terms to existing models describing population dynamics (Brännström

& Sumpter, 2006) or by building models of population dynamics from the sum total of sub-

models of individual-level reproductive output (Haccou et al., 2007; Lebreton et al., 2007).

Individual-based models provide the next logical step for the investigation of the effect of

individual-level variability on population-level phenomena. In these models, the characteristics

of the individual can be explicitly incorporated into the model and the interaction between the

individuals and the environment lead to the so-called emergent properties of interest ( Lomnicki,

1999; Grimm et al., 1999; DeAngelis et al., 1994). Because the model description is already

set at the level of the individual, it is with these models that the opportunity to incorporate

genetic information is greatest.

The main thrust of this thesis has been to provide methods to allow the scaling up of

information found at the level of the gene to investigate patterns at the level of the population.

The theoretical basis of both population biology and population genetics has been extended by

many authors over the years, to the point that there are many points of synergy between the

two. It is not suggested, nor is it the intention, that this thesis is a complete and thorough

synthesis of these two related, but separate, fields of ecology. It is intended however that the

methods provided in this thesis provide points of departures from which further developments,

aimed at linking genetic information to patterns of population dynamics, can be established.

6.1.1 A Flexible and Robust Method of Allele Frequency Estimation

In chapter 1 we have discussed the importance of sound estimates of allele frequencies in in-

ferring population structure. Indeed, the accuracy of estimates of allele frequencies underpins

nearly all inference in the field of population genetics. Tests of Hardy-Weinberg equilibrium,

such as those described in Engels (2009), Schaid et al. (2006), and Troendle & Yu (1994), can

be particularly sensitive to biases in allele frequency estimates arsing from genotype observation

error (Morin et al., 2009; Mitchell et al., 2003). Allele frequency information can be used to diag-

nose recent population bottlenecks (Cornuet & Luikart, 1996) as implemented in the computer
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program Bottleneck (Piry et al., 1999). Tests of population structure, and the estimation

of fixation indices, also require accurate estimates of relative allele frequencies (sensu Weir &

Cockerham, 1984). Imperfect observation, either resulting from allele diagnosis errors (Clarke

et al., 2001; Ewen et al., 2000) or the presence of recessive alleles (Dakin & Avise, 2004), all pro-

vide mechanisms through which uncertainty in the allele frequency estimates can be introduced.

Both Stewart Jr & Excoffier (1996) and Lynch & Milligan (1994) describe methods to es-

timate allele frequencies for biallelic dominant markers. Under certain assumptions, Lynch &

Milligan (1994) also derives a measure of uncertainty around the point estimate of the allele

frequency, but neither method goes so far as to describe the full probability distribution of the

recessive allele frequency. The method of Zhivotovsky (1999) is the first method to attempt

this. Holsinger et al. (2002) and Foll et al. (2008) extend the allele estimation procedure to also

incorporate the estimation of fixation indices from observed genotype data, but these meth-

ods only incorporate the uncertainty arising from observations obscured by allelic dominance.

These methods, along with those of Guo & Thompson (1992) for codominant markers, all as-

sume that there is either no genotyping error or that it plays an insignificant part in allele

frequency estimation. Chapter 2 represents the first step in incorporating the uncertainties

into allele frequency estimates arising from both observation processes: that of recessive allele

obfuscation and allele diagnosis. The chapter also continues to describe how the local fixation

index, FIS , can also be jointly estimated. By providing estimates of allele frequency and local

fixation indices, and, crucially, the uncertainty around these estimates, the methods described

in chapter 2 provide a robust basis from which further analysis can be performed.

Whilst the methods described in chapter 2 allows greater inclusion of sources of error in allele

frequency estimation, in practice this results in a rather high load of free parameters however.

The full list of estimable parameters in this model includes the parameters of the genotyping

observation model, the allele frequencies, and the inbreeding / outbreeding coefficient. Some of

these parameters may exhibit dependence and so, in the absence of prior information to narrow

the probable parameter space, the investigator may suffer problems with parameter identifia-

bility. When the number of loci are few, the data set may contain insufficient information to

separate the effects of extreme allele frequency from a population exhibiting severe inbreeding;

a population with a large excess of homozygotes (high fixation) is almost indistinguishable from

a population where one allele type is at almost full exclusivity. This is not an artefact of the

model but a real statistical feature when there is little information in the data set. In these situ-
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ations the only solutions are either to increase the number of loci or set more informative priors.

Foll et al. (2008) also describe another source of bias in allele frequency estimation based on

loci selection criteria. Informative loci are those that exhibit polymorphism. Loci with alleles

at extremely low or high proportional frequencies are much less likely to exhibit the relevant

level of polymorphism to be selected for use in a study. Because loci with extreme alleleic

frequencies are unlikely to be used in a study, Foll et al. (2008) argue that a uniform prior of

allele frequencies is not suitable. We argue in chapter 2 that this ascertainment bias can be at

least partially accounted for by a suitable parameterisation of the beta distribution for biallelic

markers and a Dirichlet distribution for polyallelic markers. This allows the investigator to set

a prior weight of allele frequencies that tends to zero at the extremes.

6.1.2 Propagating Uncertainty from Parentage Analysis

Patterns of parentage underpin a number of key ideas in the field of population genetics and

population ecology. Variation in the breeding success of individuals affects rate of coalescence

(Rosenberg & Nordborg, 2002; Nordborg, 2001), demographic stochasticity, and extinction

(Haccou et al., 2007). The concept of ‘effective population size’ introduced by Wright (1931,

1938), and often used as basic parameter in models of population dynamics, can be thought as

mechanism to correct for unequal genetic contributions of individuals to the next generation.

Where direct observation is too expensive or not possible, one of the many methods of molecular

parentage analysis (see Jones & Ardren, 2003) can be applied to fill the gap.

Simple exclusion methods, where potential parent combinations are ruled out based on ge-

netic incompatibility with their offspring, suffer from the problem that if loci number are too

few or exhibit insufficient polymorphism then it may not be possible to narrow down potential

parents to one pair. However, more importantly, even at low frequencies, genotyping errors and

mutations can cause severe problems for exclusion methods of parentage analysis (Cifuentes

et al., 2006). Only one error at one locus is needed to create an incompatibility that could

exclude the true parent pair.

Likelihood-based methods fare much better in this regard. Here the probability of a pu-

tative parent pair is calculated using Mendelian transition / segregation probabilities and an

observation model. Likelihood-based methods give a mechanism by which different parent pairs

can be weighted and reduces the sensitivity of the assignment to genotyping errors (Jones et al.,



CHAPTER 6. DISCUSSION 170

2010). However, simple assignment of parentage to pairs which exhibit the highest likelihood, or

posterior probability in Bayesian analyses, ignores the uncertainty attached to that assignment.

If the parentage assignment is to form the basis of further study then it is imperative that this

uncertainty be included in that analysis. To this end, only the so-called ‘fractional’ methods of

parentage analysis (see Devlin et al., 1988) can be used to robustly propagate this uncertainty

between hierarchical levels. Fractional methods do not assign paternity, but are used instead

to describe the joint probability distribution of the maternity and paternity. This allows the

confidence of outputs of further analysis to be weighted according to the probability of their

assumptions about the parentage.

Chapter 3 discusses the different genotype observation models employed in various parent-

age analysis computer packages and describes how they may be unsuitable for most marker

types. A series of marker-specific observation models are espoused which allow for the presence

of recessive alleles and better emulate the observation process for each marker type. A general

framework for fractional parentage analysis is described which allows for the application of these

marker-specific error models to systems of arbitrary ploidy. Like chapter 2, the framework por-

trayed in chapter 3 provides another mechanism for the incorporation of information contained

within genetic-level data to population-level problems whilst preserving any uncertainty in the

data set.

6.1.3 Modelling with Parameter Uncertainty in IBMs

Chapters 2 and 3 both outline methods that can be applied in the calculation of individual-

level life history parameters. The main premise of both techniques however, is to preserve

the uncertainty that surrounds these parameter estimates for the next stage of the analysis.

One broad set of techniques for the investigation of the effect of individual-level dynamics on

population-level phenomena include individual-based models (IBMs). This class of models ex-

plicitly models the interaction of individuals with each other and with their environment and

allows for the assessment of how changes in the behavioural rules of the individuals affects

emergent properties of the system being modelled.

One of the major obstacles in adopting an individual-based approach to modelling applied

ecological problems is that it is often difficult to fit individual-based models to real data. More-

over, the field of individual-based ecology currently lacks a statistically robust mechanism for

the assessment of the effect of parameter uncertainty on model outputs. This feature of IBMs
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is primarily driven by the fact that, except in the simplest of cases, there exists no equation

expressible in a simple closed form that links the input parameters to the patterns of interest.

This analytic intractability means that inference from IBMs rely on Monte Carlo methods.

Because extensive simulation from IBMs is costly, the number of parameter combinations that

can be tested in any sensitivity analysis is limited. Some heuristics for IBM analysis have been

proposed by authors such as Wiegand et al. (2003). These allow for a rough estimation of

the range of outputs given known valid ranges of inputs, but these methods have do not have

a statistical basis and it is unknown how such methods can deal with input parameters that

exhibit complex associations such as colinearity.

An alternative tactic for the assessment of parameter uncertainty on model outputs is to

view the joint probability distribution of the input parameters as a prior distribution in a

Bayesian analysis. The main strength of a Bayesian analysis is that the posterior distribution

of parameters from one analysis, like for example the posterior parameter outputs from the

methods outlined in chapters 2 and 3, can be used as the prior distribution for a later analy-

sis. In this sense it is possible to ‘daisy-chain’ together Bayesian models, with each sub model

bringing new data to bear on what is known about the set of parameters (Clark & Gelfand,

2006). However, the absence of a tractable likelihood function in most IBMs mean that stan-

dard Bayesian techniques cannot be applied in these cases.

Chapter 4 describes the application of an existing set of approximate Bayesian techniques

(Pritchard et al., 1999; Beaumont et al., 2002; Marjoram et al., 2003; Sisson et al., 2007; Toni

et al., 2009; Toni & Stumpf, 2010) which do not require a known likelihood function, in the

context of IBM analysis. Chapter 4 develops the methods described in Sisson et al. (2007) and

Toni et al. (2009); Toni & Stumpf (2010) further, describing an efficient way that IBMs can be

fit to time series data. Where chapters 2 and 3 aim to provide mechanisms to scale up from

the gene to the individual, the techniques of chapter 4 provide a novel mechanism for linking

information at the individual level to inference at the population level.

6.2 Future Work

6.2.1 Combination of Parentage and Allele Frequency Estimation

The methods described for the estimation of allele frequencies and assignment of parentage

outlined in chapters 2 and 3 are not technically independent. A key step in the parentage
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assignment algorithm of chapter 3 is the summation of observation probabilities over different

genotype possibilities (equation 3.1). This requires an application of Bayes theorem to calculate

the probability of a genotype allele frequency vector given an observation vector for the two

candidate parents (equation 3.4). The prior distribution for the genotype frequency vector in

equation 3.5 assumes uniform support over all possible genotypes. This might not always be a

sensible prior if allele frequencies are highly uneven; a rare allele homozygote is much less likely

than either heterozygotes or homozygotes with common alleles.

However, other aspects of the genetics of the population sampled such as allele frequency

and inbreeding / outbreeding estimates can be derived using the methods employed in chapter

2. This can provide an informed prior for parental genotypes in the parentage analysis. Indeed,

we can treat the allele frequency vector, f , and the inbreeding coefficient, FIS , as parameters of

a hyperprior for the genotypes using the relationship described in equation 2.6, to be estimated

as part of the parentage analysis process.

This type of analysis also allows for the assessment of parentage for samples that are missing

data at loci. Note here that ‘missing data’ refers to samples that are known not to been taken

and does not cover samples that are homozygous for an allele that does not amplify or for

situations where genotyping error results in a band absence. Typically, loci with missing data

must be excluded from the analysis which is wasteful, particularly if these loci are informative

and have the power to exclude parent pairs for which samples have been taken. It is also not

enough to ignore those loci that are missing in the calculation of likelihoods; when comparing

two candidate parents as possible parents for an offspring, using a differing number of loci creates

a preference bias for the potential parent with less usable loci. This is because, provided that

extra loci are not too error prone, an increase in the number of loci results in an increase in the

discrimination power of the data set, decreasing likelihoods. However, with extra information

pertaining to allele frequencies and zygosity of the population of study, it is possible to include

an extra step for the imputation of unobserved genotypes at particular loci (see Hruschka Jr.

et al., 2007; Schafer & Graham, 2002). Moreover, this method may provide a mechanism for the

calculation of the probability that parentage for an individual lies outside the pool of sampled

parents, from a random individual drawn from a population with the same allele frequencies

and zygosity as the sampled population.
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6.2.2 Dispersal Studies and Parentage Allocation

A critical aspect of a species biology is its ability to disperse. The dispersal ability of a species

is often described in terms of its dispersal kernel, a probability density function of dispersal

distances from the point of origin (see Levin & Kerster, 1974; Ribbens et al., 1994; Cousens

et al., 2008). Genetic information can be brought to bear on studies of dispersal dynamics by

providing information to help link offspring individuals to their parents (Pairon et al., 2006).

Robledo-Arnuncio & Garca (2007) describe a maximum-likelihood approach to fitting dispersal

kernels when the source individual is known. However, exclusion methods of paternity analysis

cannot always provide one unambiguous parent pair and, once observation error is taken into

account, there will always be some level of uncertainty attached to any parentage assignment.

We can incorporate the fitting of a dispersal kernel by extending the likelihood function of

equation 3.1 to include spatial information. If we define xi, yi, xm, and ym as the x and y

coordinates of individual i and putative mother m respectively then the new, full likelihood,

becomes

P
(
Oi, xi, yi|♀i = m,♂i = f,Om,Of ,βββ,ααα♀, xm, ym) = P (Oi|♀i = m,♂i = f,Om,Of ,βββ)

P
(
xi, yi|ααα♀, xm, ym) (6.1)

where ααα♀ is a vector of parameters for the dispersal kernel to be fitted. The dispersal kernel is

described by the probability density function P
(
xi, yi|ααα♀, xm, ym), which, in the isotropic case,

is simply a function of the Euclidean distance between the putative mother and the offspring,√
(xi − xm)

2
+ (yi − ym)

2
. All other notation can be found in the description for equation 3.1

in chapter 3.

Equation 6.1 can be used as the likelihood component of a Bayesian analysis for the calcu-

lation of the joint posterior of parentage assignment and dispersal capabilities in the light of

genetic observation and spatial location. This integrated analysis allows not only the propa-

gation of uncertainty in parentage assignment to estimates of dispersal kernel parameters but

actually allows spatial data to inform paternity assignment also (Hadfield et al., 2006).
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6.2.3 Patterns of Parentage and Breeding Success

A common application for methods of parentage analysis is to calculate the individual breeding

success for incorporation into models that can link the estimated breeding success to other vari-

ables, such as age (Vanpé et al., 2009a) or territory size (Vanpé et al., 2009b). However, most

studies do not take into account the uncertainty related to the parentage assignment. Models

of breeding success will certainly specify an error structure as part of their definition, and this

may go some way to implicitly capturing the variability in the data set, but this is not the same

thing as a full-blown observation model that will explicitly address these uncertainties. The

Bayesian nature of the analysis method outlined in chapter 3 makes the technique amenable to

extension to include the parameterisation and assessment of models of breeding success.

If we define the vectors ♀♀♀ and ♂♂♂ as random vectors of putative mothers and fathers respec-

tively, with each element, ♀i or ♂i, defining a possible parentage combination for offspring i,

then it is possible to express a joint-likelihood function for the observation vector of the entire

set of offspring genotypes:

P (O|βββ,γγγ) =
∑
♀♀♀
∑
♂♂♂

P (♀♀♀,♂♂♂|γγγ)
∏
i

P
(
Oi|♀i,♂i,O♀i

,O♂i
,βββ
)

(6.2)

Here γγγ is a vector of parameters for the model of reproductive success for which P (♀♀♀,♂♂♂|γγγ)

represents the likelihood function of the reproduction sub model. P
(
Oi|♀i,♂i,O♀i

,O♂i
,βββ
)

is

the likelihood function for the paternity assignment of offspring i, as defined in equation 3.1.

This likelihood function can form the basis of joint Bayesian analysis of parentage and models

of reproductive success. In this sense of a hierarchical model we have specified the parameters

of the breeding model, γγγ, as parameters for the prior expectation of the vector of joint parentage.

This basic specification provides an extension to the parentage analysis methodology out-

lined in chapter 3 to provide the joint estimation of parentage and the parameters of genotype

observation and breeding success. It is worth noting that under that the extension to the mod-

elling structure described here does not, in its basic form, provide an extra mechanism to add

extra data to the inference. This is unlike the extension of parentage model to incorporate

dispersal dynamics, described above, where extra spacial information forms a key part of the

inference. The extra ‘information’ here comes in the form of the more detailed structure of the

model. This extension does however serve to place biologically reasonable restrictions based on

expectations of breeding success on allowable combinations of parentage.
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6.2.4 Putting it all Together

We have shown that it is possible to generate estimates of allele frequency and inbreeding

level for any real-world population and we have discussed how these estimates can be used to

generate indices of population differentiation and structure whilst preserving any uncertainty

in these estimates. We have described methods for the assignment of parentage and we have

proposed ways in which these methods can be extended to allow estimates of dispersal ability

and individual breeding success. Going further, it is possible to link sophisticated models of

breeding success to the methods of parentage analysis described in chapter 3, that allow fecun-

dity to vary with extra factors such as the environment, territory conditions, local density, and

competition.

One example of where such an approach may be particularly fruitful is in the example of the

Australian cane toad. Previous attempts to predict the potential distribution of this invasive

species have involved the fitting of climate niche models to occurrence data (see van Beurden,

1981; Sutherst et al., 1996, for early examples). Unfortunately, these approaches are limited by

the fact the distribution of the cane toads is not in equilibrium with the environment and they

continue to invade into new regions of climate in which they had not previously been observed.

This has resulted in very poor predictive success.

More recently, the development of models based on the ecophysiological tolerances of the

cane toad have been developed (Kearney et al., 2008), allowing for the generation of surfaces

describing the expected fecundity and dispersal of cane toads in different climatic regions. It

would be possible to use parentage analysis (using the methods described in chapters 2 and 3) in

different climatic regions to refine these estimates and produce a more concrete statistical link

between fecundity and the environment. Moreover, this data could be used to supplement the

existing telemetry data (see Phillips et al., 2007) in order to derive accurate estimates of local

cane toad dispersal (using the methods from chapter 4). Finally, The dispersal and fecundity

parameters could form the basis of a metapopulation model (where the models of chapter 5

would need to be employed) to produce a model able to predict cane toad range dynamics at

the macroecological scale (Phillips et al., 2008).

Examples such as this demonstrate that low-level descriptions of life history parameters,

such as the breeding success and dispersal ability, can form the building blocks for higher-level
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individual and population based modelling (Phillips et al., 2008). With estimates for these

parameters it is possible to build larger scale models and make predictions of macroecological

patterns, drawing inference from data collected at multiple scales using techniques such as those

described in chapter 4 and applied in using the techniques in chapter 5. This thesis does not

purport to have achieved such an epic synthesis. The methods described in chapters 2, 3, 4

and 5, do however lay the foundations for such scaling by providing mechanisms through which

uncertainty and error can be integrated into inference at higher levels of the modelling hierarchy.

Robustly propagating uncertainty is an essential part of forming good ecological predictions.
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Mitchell, A.A., Cutler, D.J. & Chakravorty, A. (2003) Undetected genotyping errors cause ap-

parent overtransmission of common alleles in the transmission / disequilibrium test. American

Journal of Human Genetics 72, 598–610.

Moilanen, A. (2004) SPOMSIM: software for stochastic patch occupancy models of metapopu-

lation dynamics. Ecological Modelling 179, 533–550.

Moilanen, A., Franco, A.M.A., Early, R.I., Fox, R., Wintle, B. & Thomas, C.D. (2005) Pri-

oritising multiple-use ladscapes for conservation: methods for large multi-species planning

problems. Proceedings of the Royal Society B 272, 1885–1891.

Moree, R. (1950) A modification of the Hardy-Weinberg law. Science 111, 691–692.

Morin, P.A., Leduc, R.G., Archer, F.I., Martien, K.K., Huebinger, R., Bickham, S.W. & Taylor,

B.L. (2009) Significant deviations from Hardy-Weinberg equilibrium caused by low levels of

microsatellite genotyping errors. Molecular Ecology Resources 9, 498–504.

Mugglestone, M.A. & Renshaw, E. (1996) A practical guide to the spectral analysis of spatial

point processes. Computational Statistics and Data Analysis 21, 43–65.

Murdoch, W.W., McCauley, E., Nisbet, R.M., Gurney, W.S.C. & de Roos, A.M. (1992)

Individual-based models and approaches in ecology, chap. Individual-based models: combining

testability and generality, pp. 18–35. Chapman and Hall.

Murrell, D.J. (2005) Local spatial structure and predator-prey dynamics: counterintuitive ef-

fects of prey enrichment. American Naturalist 166, 354–367.

Murrell, D.J. (2010) When does local spatial structure hinder competitive coexistence and

reverse competitive hierarchies? Ecology 91, 1605–1616.

Murrell, D.J., Dieckmann, U. & Law, R. (2004) On moment closures for population dynamics

in continuous space. Journal of Theoretical Biology 229, 421–432.

Mustin, K., Benton, T.G., Dytham, C. & Travis, J.M.J. (2009) The dynamics of climate-induced

range shifting; perspectives from simulation modelling. Oikos 118, 131–137.

Nakamaru, M. (2006) Lattice models in ecology and social sciences. Ecological Research 21,

364–369.



BIBLIOGRAPHY 192

Nakanishi, A., Tomaru, N., Yoshimaru, H., Manabe, T. & Yamamoto, S. (2009) Effects of seed-

and pollen-mediated gene dispersal on genetic structure among Quercus salicina saplings.

Heredity 102, 182–189.

Nash, J.C. (1990) Compact Numerical Methods for Computers: Linear Algebra and Function

Minimization. Institute of Physics Publishing.

Nathan, R. & Muller-Landau, H.C. (2000) Spatial patterns of seed dispersal, their determinants

and consequences for recruitment. Trends in Ecology and Evolution 15, 278–285.

Nei, M. (1972) Genetic distance between populations. American Naturalist 106, 283–292.

Nei, M. (1973) Analysis of gene diversity in subdivided populations. Proceedings of the National

Academy of Sciences of the United States of America 70, 3321–3323.

Nei, M., Maruyama, T. & Chakraborty, R. (1975) The bottleneck effect and genetic variability

in populations. Evolution 29, 1–10.

Neuhauser, C. & Pacala, S.W. (1999) An explicitly spatial version of the Lotka-Volterra model

with interspecific competition. The Annals of Applied Probability 9, 1226–1259.

Newman, K.B., Buckland, S.T., Lindley, S.T., Thomas, L. & Fernández, C. (2006) Hidden

process models for animal population dynamics. Ecological Applications 16, 74–86.

Nielsen, R., Mattila, D.K., Clapham, P.J. & Palsbøll, P.J. (2001) Statistical approaches to

paternity analysis in natural populations and applications to the north Atlantic humpback

whale. Genetics 157, 1673–1682.

Nordborg, M. (2001) Handbook of Statistical Genetics, chap. Coalescent theory, pp. 179–212.

John Wiley & Sons, Chichester.

Oh, M.S. & Berger, J.O. (1993) Integration of multimodal functions by Monte Carlo importance

sampling. Journal of the American Statistical Association 88, 450–456.

Opel, K.L., Chung, D. & McCord, B.R. (2010) A study of PCR inhibition mechanisms using

real time PCR. Journal of Forensic Sciences 55, 25–33.

O’Rourke, J. (1994) Computational Geometry in C. Cambridge University Press, Cambridge.

Ovaskainen, O. & Cornell, S.J. (2006) Space and stochasticity in population dynamics. Proceed-

ings of the National Academy of Sciences of the United States of America 103, 12781–12786.



BIBLIOGRAPHY 193

Pairon, M., Jonard, M. & Jacquemart, A.L. (2006) Modeling seed dispersal of black cherry, an

invasive forest tree: how microsatellites may help? Canadian Journal of Forest Research 36,

1385–1394.

Pearl, R. (1917) Studies on inbreeding vii - some further considerations regarding the measure-

ment and numerical expression of degrees of kinship. American Naturalist 51, 545–559.

Peltonen, J., Venna, J. & Kaski, S. (2009) Visualizations for assessing convergence and mixing

of Markov chain Monte Carlo simulations. Computational Statistics and Data Analysis 53,

4453–4470.

Pemberton, J.M., Slate, J., Bancroft, D.R. & Barret, J.A. (1995) Nonamplifying alleles at

microsatellite loci: a caution for parentage and population studies. Molecular Ecology 4,

249–252.

Petrovskii, S., Morozov, A. & Li, B.L. (2008) On a possible origin of the fat-tailed dispersal in

population dynamics. Ecological Complexity 5, 146–150.

Phillips, B.J., Brown, G.P., Greenlees, M., Webb, J.K. & Shine, R. (2007) Rapid expansion

of the cane toad (Bufo marinus) invasion front in tropical australia. Austral Ecology 32,

169–176.

Phillips, B.J., Chipperfield, J.D. & Kearney, M.R. (2008) The toad ahead: challenges of mod-

elling the range and spread of an invasive species. Wildlife Research 35, 222–234.

Piotti, A., Leonardi, S., Piovani, P., Scalfi, M. & Menozzi, P. (2009) Spruce colonization at

treeline: where do those seeds come from? Heredity 103, 136–145.

Piry, S., Luikart, G. & Cornuet, J.M. (1999) Bottleneck: a computer program for detect-

ing recent reductions in the effective population size using allele frequency data. Journal of

Heredity 90, 502–503.

Planes, S., Jones, G.P. & Thorrold, S.R. (2009) Larval dispersal connects fish populations in a

network of marine protected areas. Proceedings of the National Academy of Sciences of the

United States of America 106, 5693–5697.

Pradeep, D.S. & Hussain, F. (2004) Effects of boundary condition in numerical simulations of

vortex dynamics. Journal of Fluid Mechanics 516, 115–124.



BIBLIOGRAPHY 194

Pritchard, J.K., Seielstad, M.T., Perez-Lezaun, A. & Feldman, M.W. (1999) Population growth

of human Y chromosomes: a study of Y chromosome microsatellites. Molecular Biology and

Evolution 16, 1791–1798.

Putman, R. & Wratten, S.D. (1984) Principles of Ecology, chap. 8: Competition and population

stability, pp. 202–218. University of California Press, Berkeley and Los Angeles.

Rhoads, C.L., Bowman, J.L. & Eyler, B. (2010) Home range and movement rates of female

exurban white-tailed deer. Journal of Wildlife Management 74, 987–994.

Ribbens, E., Silander Jr., J.A. & Pacala, S.W. (1994) Seedling recruitment in forests: calibrating

models to predict patterns of tree seedling dispersion. Ecology 75, 1794–1806.

Ricker, W.E. (1954) Stock and recruitment. Journal of the Fisheries Research Board of Canada

11, 554–623.

Ricker, W.E. (1975) Computation and interpretation of biological statistics of fish populations.

No. 191 in Bulletin of the Fisheries Resources Board of Canada, Department of Fisheries and

the Environment, Ottawa.

Robert, C.P. (1995) Simulation of truncated normal variables. Statistics and Computing 5,

121–125.

Robledo-Arnuncio, J.J. & Garca, C. (2007) Estimation of the seed dispersal kernel from exact

identification of source plants. Molecular Ecology 16, 5098–5109.

Robledo-Arnuncio, J.J. & Gil, L. (2005) Patterns of pollen dispersal in a small population of

Pinus sylvestris L. revealed by total-exclusion paternity analysis. Heredity 94, 13–22.

Rosenberg, M.S. (2000) The bearing correlogram: a new method of analysing directional spatial

auticirrelation. Geographical Analysis 32, 267–278.

Rosenberg, M.S. (2004) Wavelet analysis for detecting anisotropy in point patterns. Journal of

Vegetation Science 15, 277–284.

Rosenberg, N.A. & Nordborg, M. (2002) Genealogical trees, coalescent theory and the analysis

of genetic polymorphisms. Nature Reviews Genetics 3, 380–390.

Rosenzweig, M.L. (1971) Paradox of enrichment: destabilization of exploitative ecosystems in

ecological time. Science 171, 385–387.



BIBLIOGRAPHY 195

Rourke, M.L., McPartlan, H.C., Ingram, B.A. & Taylor, A.C. (2009) Polygamy and low effective

population size in a captive murray cod (Maccullochella peelii peelii) population: genetic

implications for wild restocking programs. Marine and Freshwater Research 60, 873–883.

Saenz-Agudelo, P., Jones, G.P., Thorrold, S.R. & Planes, S. (2009) Estimating connectivity

in marine populations: an empirical evaluation of assignment tests and parentage analysis

under different gene flow secenarios. Molecular Ecology 18, 1765–1776.

Schafer, J.L. & Graham, J.W. (2002) Missing data: our view of the state of the art. Psychological

Methods 7, 147–177.

Schaid, D.J., Batzler, A.J., Jenkins, G.D. & Hildebrandt, M.A.T. (2006) Exact tests of hardy-

weinberg equilibrium and homogeneity of disequilibrium across strata. American Journal of

Human Genetics 76, 1071–1080.

Schiffers, K., Schurr, F.M., Tielbrger, K., Urbach, C., Moloney, K. & Jeltsch, F. (2008) Dealing

with virtual aggregation - a new index for analysing heterogeneous point patterns. Ecography

31, 545–555.

Seamons, T.R. & Quinn, T.P. (2010) Sex-specific patterns of lifetime reproductive success in

single and repeat breeding steelhead trout (Oncorhynchus mykiss). Behavioral Ecology and

Sociobiology 64, 505–513.

Shigesada, N., Kawasaki, K. & Takeda, Y. (1995) Modeling stratified diffusion in biological

invasions. The American Naturalist 146, 229–251.

Signorovitch, J. & Nielsen, R. (2002) PATRI - paternity inference using genetic data. Bioinfor-

matics 18, 341–342.

Silvertown, J., Holtier, S., Johnson, J. & Dale, P. (1992) Cellular automaton models of in-

terspecific competition for space - the effect of pattern on process. Journal of Ecology 80,

527–533.

Simmons, L.W., Beveridge, M. & Kennington, W.J. (2007) Polyandry in the wild: temporal

changes in female mating frequency and sperm competition intensity in natural populations

of the tittigoniid Requena verticalis. Molecular Ecology 16, 4613–4623.

Simon, G. (1997) An angular version of spatial correlations, with exact significance tests. Geo-

graphical Analysis 29, 267–278.



BIBLIOGRAPHY 196

Sisson, S.A., Fan, Y. & Tanaka, M.M. (2007) Sequential Monte Carlo without likelihoods.

Proceedings of the National Academy of Sciences of the United States of America 104, 1760–

1765.
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