
Writer identification in medieval and modern
handwriting

Tara Gilliam

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

University of York

Department of Computer Science

September 2011

Abstract

Writer identification is the task of associating a handwriting sample with the iden-

tity of the correct writer. It can be used to confirm or refute the authenticity of a

document, or to link together documents produced by the same writer. This prob-

lem has applications in several areas, including forensics and palaeography – the

study of historical books and writings.

Rigorous manual writer identification requires the exhaustive comparison of

character details, and is very time-consuming, making computer automation of

all or part of this process attractive. Most research into automated writer iden-

tification has originated in forensic science, although more recently applications

to historical texts are increasing. With mass digitisation of texts on the rise in

libraries and collections, organising this new data is a growing problem.

However, different types of writing have different characteristics, and require

different handling. This thesis focuses on how medieval English manuscripts from

the 14th–15th centuries compare to the contemporary handwriting datasets used

for much of the research and feature development in this area.

The work presented here is based on an in-depth application of the grapheme

codebook approach to offline writer identification. It finds domain-specific con-

siderations throughout the process, particularly in grapheme creation and compar-

ison and in the influence of document sources on system accuracy. Additionally,

over the course of the data analysis, methods are proposed for the visualisation of

extracted features, for quantifying the impact of sample source on identification

accuracy, and for a nearest-neighbour-based verification system.

Contents

1 Introduction 11

1.1 Medieval writing process . 13

1.2 Writer identification in context 15

1.2.1 Writer identification as a biometric 15

1.2.2 Biometric systems . 17

1.2.3 Biometrics as Classification 20

1.3 Grapheme Codebook Method . 22

1.4 Thesis Layout . 24

2 Literature Review 25

2.1 Related Areas . 26

2.1.1 Summary . 28

2.2 Dataset preprocessing . 28

2.3 Offline Feature Extraction . 30

2.3.1 Characteristics . 30

2.3.2 Local features . 33

2.3.3 GSC features . 34

2.3.4 Slant-based approaches 35

2.3.5 Grapheme-based approaches 38

2.3.6 Run-length distributions 44

2.3.7 Textural features . 45

2

2.3.8 Hidden Markov Models 47

2.3.9 Non-Latin scripts . 48

2.3.10 Historical work . 51

2.3.11 Feature Selection and Extraction 52

2.3.12 Feature Identification Performance 54

2.4 Summary . 56

3 Data Processing and Experiment Methodology 57

3.1 Introduction . 57

3.2 Data Preparation . 58

3.2.1 IAM . 60

3.2.2 Medieval . 60

3.3 Datasets . 63

3.3.1 Image Processing Stages 63

3.3.2 Processing Implementations 65

3.4 Grapheme Codebook . 70

3.4.1 Codebook Generation 70

3.4.2 Feature Extraction . 73

3.4.3 Classification . 76

3.4.4 Codebook Summary . 78

3.5 Methodology . 79

3.5.1 Experimental set-up . 80

3.6 Baseline Results . 81

3.7 Summary . 82

4 Grapheme Codebook Analysis 83

4.1 Grapheme Extraction . 84

4.1.1 Methodology . 85

4.2 Normalisation . 86

4.3 Segmentation . 88

3

4.4 Grapheme Extraction Conclusions 93

4.5 Image Distance measure . 94

4.6 Conclusions . 99

5 Feature selection and extraction 102

5.1 Codebook Selection Methods . 103

5.2 Feature Analysis . 105

5.3 Feature Extraction . 106

5.3.1 Feature extraction details 108

5.3.2 Results and Analysis . 111

5.3.3 Visualisation . 113

5.4 Feature Selection . 115

5.4.1 Extraction-based methods 117

5.4.2 Similarity-based methods 118

5.4.3 Hybrid method . 120

5.4.4 Controls and reference methods 120

5.4.5 Experiment Methodology 122

5.4.6 Results and Analysis . 123

5.5 Conclusions . 130

6 Classification 133

6.1 Classification strategy . 133

6.1.1 Methodology . 135

6.1.2 Results and Analysis . 136

6.1.3 Conclusions . 139

6.2 Verification thresholds . 139

6.2.1 Problem Background . 140

6.2.2 Method . 140

6.2.3 Implementation . 142

6.2.4 Results and Analysis . 146

4

6.2.5 Summary . 151

6.3 Conclusions . 151

7 Conclusions 153

7.1 Contributions . 154

7.1.1 Dataset differences . 154

7.1.2 Cross-dataset results . 155

7.1.3 Proposed methods . 157

7.2 Limitations and Further Work . 157

7.3 Conclusion . 160

A Datasets 161

A.1 IAM . 161

A.2 CEDAR . 163

A.3 PSI . 164

A.4 Firemaker . 166

A.5 NFI . 168

A.6 ImUnipen . 168

A.7 IFN/ENIT . 169

B Offline Writer Identification Feature Performance 171

C Algorithms and Code Excerpts 184

D Verification results 189

D.1 IAM dataset verification results 189

D.2 Scribal dataset verification results 199

5

List of Figures

1.1 Outline of the grapheme codebook identification process. 23

2.1 A ‘th’ extracted from the CEDAR sample text 31

2.2 Slant distributions of two handwriting samples 36

2.3 Measurement of slant and edge-hinge angles 37

2.4 Edge-hinge distributions of two different writing samples 38

2.5 A grapheme codebook generated using a 2D Kohonen SOFM . . . 40

2.6 Individual graphemes from invariant and non-invariant clusters . . 42

2.7 Graphemes composed into invariant clusters 42

3.1 Overview of the grapheme codebook identification process 59

3.2 Full page IAM dataset sample 61

3.3 Selected lines from IAM database handwriting samples 61

3.4 Sample image from the medieval scribes dataset 62

3.5 Example grapheme splitting points by the minima heuristic 65

3.6 Sample original scribe image, ©British Library 66

3.7 Sample scribe image after cropping and thresholding 67

3.8 Graphemes produced with original and modified segmentation . . 70

3.9 Small codebook with two IAM sample feature vectors 74

3.10 Plot of IAM-sample feature vectors from Figure 3.9 76

3.11 Baseline accuracy on the medieval and IAM datasets 81

4.1 Graphemes produced by ‘ratio’ and ‘square’ normalisation 87

6

4.2 Normalisation experiment results on IAM and medieval datasets . 89

4.3 Graphemes produced by minima and ligature segmentation 90

4.4 Segmentation experiment results on IAM and medieval datasets . 92

4.5 Simple correlation and cross-correlation grapheme matching . . . 95

4.6 Image distance experiment results on IAM and medieval datasets . 98

4.7 Results overview for IAM and scribes datasets 100

5.1 Classification accuracy of feature extraction methods (IAM data) . 112

5.2 Number of features used in extraction methods (IAM data) 112

5.3 Classification accuracy of feature extraction methods (scribes data) 113

5.4 Number of features used in extraction methods (scribes data) . . . 114

5.5 Sample PCA-sorted codebook 115

5.6 Visualisation of individual principal component vectors 116

5.7 Codebook examples of similarity-based selection criteria 121

5.8 Classification accuracy relative to small source codebook accuracy 125

5.9 Classification accuracy relative to large source codebook accuracy 126

5.10 Identification compared to small codebook similarity distributions 129

5.11 Identification compared to large codebook similarity distributions 131

6.1 Classification strategy comparison on each dataset 137

6.2 Correct/Incorrect nearest-neighbour distance distributions 143

6.3 Confidence thresholds on the medieval and IAM datasets 145

6.4 Confidence threshold error rates as a proportion of each dataset . . 148

A.1 Full page IAM dataset sample 162

A.2 Selected lines from IAM database handwriting samples 162

A.3 Complete CEDAR letter sample 163

A.4 The word ‘referred’ from different-writer CEDAR samples 164

A.5 Sample from a PSI database letter 164

A.6 Two letter samples from the PSI dataset 165

A.7 Writing extracted from two Firemaker page samples 166

7

A.8 Full-page sample of a Firemaker database text 167

A.9 Writing example pairs from the NFI dataset 168

A.10 Word and ligature images from the IFN/ENIT Arabic word database169

A.11 Full-page IFN/ENIT database form of place-names and postcodes 170

8

Acknowledgements

First, I would like to thanks my supervisors Prof. John Clark and Prof. Richard

Wilson, and my assessor Prof. Jim Austin, for their advice and support through-

out my research. Thanks also to the EPSRC for financial support under a PhD

studentship.

For the provision of the data for this work I would like to thank the AHRC-

funded project “Identification of the Scribes Responsible for Copying Major Works

of Middle English Literature”, and Prof. Linne Mooney and Dr. Estelle Stubbs in

particular for their time and expertise in arranging access and identifications.

Finally I would like to thank my family and all those who have supported, en-

couraged, and distracted me over the last four years: Heather, Mark, Louis, Nick,

Charles, Eliza, and Lin for all our extremely sensible and completely research-

focused discussions, to all those in the NSC pizza research-student group, and to

the members of YCCSA for widening my view of my research.

9

Author’s declaration

I declare that all work in this thesis is my own, except where attributed to another

author. Some of the results in this thesis have been previously published as fol-

lows:

Tara Gilliam, Richard C. Wilson and John A. Clark

Scribe Identification in Medieval English Manuscripts

20th International Conference on Pattern Recognition, 2010

Tara Gilliam, Richard C. Wilson and John A. Clark

Segmentation and Normalisation in Grapheme Codebooks

11th International Conference on Document Analysis and Recognition, 2011

10

Chapter 1

Introduction

Palaeography is the study of historical documents and writings. The majority

of the work lies in transcription, interpretation, and dating of manuscripts, but a

significant component is the identification of a manuscript’s writer, or scribe1.

Identifying the writer of a copy can have significant implications in confirm-

ing its authenticity. For instance, manuscripts associated with Geoffrey Chaucer’s

personal scribe, Adam Pinkhurst (Mooney, 2006), are likely to have been over-

seen by the author personally, allowing historians a degree of confidence in their

fidelity. Scribal identification can also form an element of manuscript dating or

locating, as well as indicating the extent of transmission of a particular text.

Scribal identification is a time consuming manual process, requiring expertise

in the personal handwriting styles of up to hundreds of scribes working in a given

time period. Minute details of the style of individual characters and pen strokes

are examined and compared between manuscripts to confirm whether they were

written by the same scribe. This process is usually complicated by the difficulty of

bringing valuable manuscripts from different collections together for comparison

(Davis, 2007).

The practicalities of this situation are in contrast to the other major contem-

1In historical works, the terms writer or scribe are distinct from author, as the composer of a
text was frequently a different person to the scribe that produced any single copy.

11

porary application of writer identification: forensic or questioned document ex-

amination (FDE/QDE), carried out to provide evidence in criminal investigations

or civil legal cases. Here experts typically have easy access to the documents in

question, and a growing access to computerised writer identification systems and

databases to aid them (Tapiador and Sigüenza, 2004; Srihari and Leedham, 2003;

Bulacu and Schomaker, 2005b; Franke et al., 2003; Niels et al.). Although there is

a substantial body of work available in writer identification, it largely originates in

forensic science and little of it has been systematically targeted at historical data.

This is significant as the approach and purpose of the writing can be very different

to that of modern day script. This influences both the writers and their technique,

and consequently the writing styles they produce.

Previous work has divided the influences on personal handwriting style into

the genetic and the memetic (Schomaker and Bulacu, 2004), that is, innate and

learned factors. With widespread literacy, modern-day writing is largely for per-

sonal use. Prior to the invention of the printing press, the most common role of a

writer was essentially that of a copyist, producing texts to a predetermined specifi-

cation. These disparate purposes swing the balance of personal and purely taught

influences in opposite directions: the far higher degree of style enforcement in

Medieval and earlier times is reflected in more standardised scripts. Texts were

produced chiefly for public consumption on a medium (vellum, or other parch-

ments) which was expensive, whereas the chiefly transient, private use of con-

temporary writing (and the typical lack of instruction beyond primary education)

allows an individual style more freedom to develop.

Given this divide in the writing characteristics of each period, this thesis tests

the hypothesis that medieval and modern writing will have significantly dif-

ferent responses to writer identification techniques. From this motivation the

thesis is structured as an in-depth analysis of two datasets: a typical contempo-

rary dataset widely used in writing analysis research, and a new medieval English

manuscript dataset. The experiments carried out highlight the areas of writer iden-

12

tification in which medieval data requires special handling, as well as the meth-

ods which are robust to the dataset type. This thesis will therefore develop and

evaluate techniques originating in modern writer identification for the domain of

medieval English manuscripts. The following sections will look in more detail at

the medieval writing process, before moving onto the computational aspect: set-

ting the offline writer identification field in the context of its development as a

biometric classification problem, and outlining the specific method on which the

work in this thesis is based.

1.1 Medieval writing process

In the medieval period prior to the invention of the printing press, texts were pro-

duced by hand-copying a new or existing text onto parchment, using a quill pen

and ink most likely manufactured by the writer creating the work. At a time

when literacy (and writing in particular) was not widespread, these were typically

professional scribes producing a wide-variety of texts such as legal documents, re-

ligious and secular literature, and collections of medical or scientific knowledge.

Scribes were usually involved in most aspects of book production. The writ-

ing material was usually parchment (also known as vellum, although this term

sometimes refers particularly to the higher-quality parchments), made from clean-

ing, treating, washing, and stretching animal hides (usually calf, sheep, or goat).

These were then folded and cut into booklets of pages known as quires, which

were bound together to form books. The inner ‘flesh’ side and outer ‘hair’ side of

the resulting parchment are often distinguishable, and can form part of the page

texture and colour in image reproductions. Paper, generally imported, was also

beginning to gain ground as a writing medium at this time.

Depending on the type of work and the size of the page, the text could be laid

out across the full page, or in two or more columns. Scribes sometimes marked

guides on their pages before writing by a combination of drawing margin lines,

13

pricking evenly down the page where each line should start, or drawing or scor-

ing horizontal lines. Some texts were highly ornate, with miniature illustrations

placed both in the margin and between the main text, gold or silver illumination,

coloured inks, decorated or illustrated capitals, and decorated borders (margina-

lia). These may have been produced by the scribe who copied the work.

Quills were usually made from goose feathers. The shaft was cured to harden

it, before the tip was trimmed and shaped into a nib. They required periodic re-

sharpening, which can often be detected in a manuscript by the effect the changed

nib-shape has on the ink trace. Unlike modern pens, writing with a quill required

almost no pressure on the page, eliminating pressure variation from the possible

writer-identifying features (Stokes, 2009).

The writing process itself was slow. Scribes sometimes noted the dates they

started and completed a particular manuscript or work, and examination of these

suggests that they typically averaged 4–6 sides per day, or 24–40 sides per week

(Gillespie and Wakelin, 2011, p. 35). The speed of composition would be affected

by the font used for the work: the more formal fonts such as Textura were associ-

ated with prestigious and higher-quality texts. They required the pen to be lifted

after each stroke, while the faster cursive Secretary script was more typical in ev-

eryday documents. Font choice was, in turn, affected by both the content of the

text and to some extent the language in which it was written, with Textura asso-

ciated more strongly with Latin and liturgical works, and the more cursive scripts

associated with vernacular English (Greetham, 1994).

Professional scribes would have been able to produce a range of fonts appro-

priate to the text to be copied, significantly complicating the identification task. In

addition to this multiple scribes often worked on a single manuscript, and modified

their personal style to match each other with the aim of making writer transitions

smooth and undetectable. From a writer identification viewpoint, this style im-

itation is essentially a form of forgery, executed for the purpose of professional

presentation of a manuscript.

14

From this process, we can see that medieval texts have very different writ-

ing characteristics to modern texts, notably the text samples generated for typical

writer identification work. These tend to be written freehand in an individual’s

undisguised personal style, with cleanly separated lines of text, a single source

language, similar-size samples, and often an identical pen-type. The IAM dataset

shows most of these characteristics and is representative of a typical modern

writer-identification dataset. The medieval dataset, sourced from a wide range

of manuscript collections, has none of these features and is illustrative of the me-

dieval text production described above. Section 3.2 gives further details of the

datasets used in this work.

As the majority of writer-identification research to date has taken place on

contemporary datasets, these period-specific differences suggest that there will be

aspects of current state-of-the-art techniques that are suboptimal or ineffective on

medieval data. The next sections describe the general process of writer identifica-

tion in its context as a biometric pattern recognition problem.

1.2 Writer identification in context

Handwriting is an example of a biometric, a personal attribute that can be used to

identify an individual. The theoretical basis for this comes from the field of classi-

fication or pattern recognition, which is concerned with attributing naturally vary-

ing measurements to the correct identity. This section will give a brief overview of

the field of biometrics and the pattern recognition process it applies, and conclude

with a summary of the most closely related research areas.

1.2.1 Writer identification as a biometric

“Biometrics is the science of recognising the identity of a person based on the

physical or behavioural attributes of the individual...” (Jain et al., 2008, Preface).

Physical attributes are measurable biological qualities that a person possesses,

15

such as fingerprint, iris, or face recognition. Behavioural attributes are distinctive

traits in the way a person performs some action, e.g. gait, speech, or handwriting.

The main current uses of biometrics are in secure authentication (also known as

verification) of a person’s identity, e.g. fingerprint scanning in the US-VISIT pro-

gramme2, and iris recognition3. The longstanding and widespread use of personal

signatures to authenticate transactions also falls into this category.

Handwriting has been recognised as a valid biometric, with the evidence of

Forensic or Questioned Document Examiners (FDEs/QDEs) being judged legally

admissible (Srihari et al., 2002; Davis, 2007; Jain, 2002). Its main uses are in

expert witness regarding the authenticity of a particular text, and in determining

the authorship of a historical text where this is unknown or in question.

In Jain et al. (2005), seven characteristics are listed by which to judge a po-

tential biometric; Dunstone and Yager (2009) lists thirteen. Particularly where

handwriting is concerned (Schomaker, 2007) these are primarily factors such as

universality, uniqueness, permanence, and measurability, i.e. the biometric should

be possessed by all members of the relevant population, it should be individually

distinctive, it should remain distinctive, and it should be possible to collect the

data in a suitable form. Further considerations include social, practical, and sys-

tems design issues. Jain et al. (2005) and Impedovo and Pirlo (2008) note that no

biometric will meet all such criteria, but must be application-appropriate.

Handwriting generally meets the main criteria for a useful biometric. It is

universal, as the population in practical use comprises those who have already

produced written documents; its uniqueness has been demonstrated in e.g. Srihari

et al. (2002); and its measurability gives rise to the study of feature extraction and

selection that occupies much of the writer identification literature. The question

of permanence is more interesting. It is well-known that there are many fac-

tors affecting writing style, both habitual (memetic) and physiological (genetic)

2http://www.dhs.gov/files/programs/gc 1208531081211.shtm
3http://www.ukba.homeoffice.gov.uk/travellingtotheuk/Enteringtheuk/usingiris/

16

http://www.dhs.gov/files/programs/gc_1208531081211.shtm
http://www.ukba.homeoffice.gov.uk/travellingtotheuk/Enteringtheuk/usingiris/

(Schomaker and Bulacu, 2004). Aging, and associated physical conditions that

may develop, clearly have some impact but have not been found to prevent iden-

tification (Walton, 1997).

The process of writer identification is carried out through implementing a bio-

metric classification system. The writer-specific technique that has been chosen

for this problem domain is the grapheme codebook process. Descriptions and

models of these two systems are given in the following sections.

1.2.2 Biometric systems

The following sections provide an outline of the processes and operation of a

biometric system. More detailed discussions of these (including error and accu-

racy measurements) can be found in e.g. Bolle et al. (2003); Dunstone and Yager

(2009); Jain et al. (2008) or Jain et al. (2004).

System Processes

A biometric system must be able to collect, process, store, and compare biometric

samples, and output a decision as to whether any two samples were collected from

the same individual (Dunstone and Yager, 2009). These components support the

processes of enrollment, and at least one of identification and verification.

Enrollment The first required phase of a biometric system is enrollment (also

called registration), when the system is initialised with biometric samples from the

verified individuals which it must be able to recognise. The system components

required at this stage are collection, processing, and storage. Collection involves

a physical sensor to accept biometric inputs; processing includes any automatic

and manual processing of the input required to produce a good representation of

the biometric; following which one or more verified biometric samples may be

stored for the individual. These samples form the data on which the system will

rely when making authentication decisions, and is assumed to be accurate.

17

After enrollment, the system is able to compare any incoming samples to its

database of registered users and decide whether or not a match has been found.

There are two main modes of operation: verification and identification.

Verification In verification mode (also called authentication), the system checks

whether an incoming sample matches the identity that an individual claims. This

requires first that the claimed identity is in the system database, and that the pro-

cessed sample matches the system’s record for that individual closely enough that

it judges them to have been produced by the same person. The system may or may

not add the newly collected sample to its database. The system components in-

volved in this process are collection and processing (for the new sample), storage

(for retrieval of existing samples and possible retention of the new), comparison

(to determine how closely the new sample matches existing data for that individ-

ual), and decision (to determine whether the outcome of the comparison is close

enough).

Identification In identification mode (also called recognition), the individual

does not need to claim an identity: the new biometric sample is compared against

all individuals known to the system. This requires a far greater number of compar-

isons than verification. Additionally, two comparison thresholds are required in

the decision component: the first, as before, determines whether a sample is close

enough to a specific individual to match, but the second must determine whether

the sample is a close enough match to any individual registered on the system.

The components involved in this process are again collection and processing (for

the new sample), storage (for retrieval of all existing samples and possible reten-

tion of the new), comparison (to determine how closely the new sample matches

existing data for all individuals), and decision (to determine whether the outcome

of the comparison is close enough to match a single individual).

18

Measuring system accuracy

Unlike most authentication systems, which require an exact match between tokens

(such as passwords), biometric tokens will naturally have some variability. This

implies that its matching system must also tolerate variation. It also suggests

that should a perfect match be found, it is likely to indicate that a copied sample

has been used in an attempt to fool the system. Too high or too low a threshold

will both produce authentication errors, and various measures have been used to

describe how well a system achieves this goal. The accuracy of a biometric system

is usually phrased in terms of its error rates.

Many biometric systems perform verification, for which there are two standard

types of error: False Accept Rate (FAR), the chance of incorrectly attributing

a presented sample to the wrong individual, and False Reject Rate (FRR), the

chance of failing to match a presented sample to the correct individual. These are

called Type I and II errors respectively, and are also known as False Match/Non-

Match Rates (especially when considering identification rather than verification

problems). Either rate can be trivially reduced to zero by rejecting or accepting all

samples presented to it. They must therefore be used in conjunction to determine

the trade-off between them, giving the error characteristics of a particular system.

The information in this graph is frequently summarised using the Equal Error Rate

(EER), the point on the curve where the FAR and FRR have the same values.

The same types of error are present in identification systems, but it is impor-

tant to compare the error characteristics of the identification problem itself against

the verification problem. Verification checks whether a single claimed identity

matches the sample presented, whereas identification checks for a match with any

known identity. If a discriminator has a particular error rate in verification, this

chance of error will occur at every individual match considered in the identifica-

tion problem. The corresponding identification error rate is therefore related to the

product of the error on every single match. This demonstrates that identification

is, statistically, a far harder problem than verification, and the accuracy require-

19

ments for features which perform the former task are much higher (Daugman,

2000).

1.2.3 Biometrics as Classification

The process of determining this identification as accurately as possible has been

formalised in the field of pattern recognition, or classification. The basic stages in

a pattern recognition task will be outlined in turn below, along with a discussion of

their corresponding biometric system components and writer identification stages.

Preprocessing This stage involves the collection and preparation of the data

into a suitable form to work with, and is obviously very specific to the type of

data being classified. In the case of images, this step can comprise scanning,

digitisation, and manual or automatic cleaning and enhancement. It is carried out

in the biometric system components of collection and processing.

For offline writer identification, this typically includes the digitisation of the

document images, skew correction, region-of-interest/text-block selection, con-

version to black-and-white (binarisation), and any text-component extraction re-

quired to support later processing stages.

Feature Extraction There is typically far too much information in the input

data to classify it directly, and much of this information will be (at best) irrelevant

to determining the correct class. The pattern recognition process therefore relies

on measuring or extracting elements of the original data that are useful indicators

of the class to which it belongs. These elements are known as features, and their

development forms a major part of each pattern recognition application domain.

In the domain of writer identification, the bulk of the research has been focused

on this stage, and a detailed survey of proposed writer identification features is

given in Section 2.3. In the biometric system, this stage is also included in the

processing component.

20

Additionally, there are some optional steps that may be carried out in deriving

improved features from those initially extracted. Features may be combined in

various ways to generate new features (feature generation), or they may be put

through a preliminary testing phase to pick out the most accurate predictors (fea-

ture selection). Both of these stages are more typical in the development of new

features than the implementation of a stable biometric system, as the latter usually

relies on techniques which have already been proven reliable.

Classification Once each input sample has been represented by a set of features,

samples can be compared to determine which group, or class, or measurements

they are most likely to be from. In writer identification, these classes correspond to

individual writers: each person is modelled as a generator of a set of handwriting

‘patterns’ of their own personal style. The concrete instances of these patterns

extracted from document images form the class of writing samples attributed to

that person. The process of attributing a previously unknown sample is known as

classification.

A wide array of algorithms have been developed to do this (many of these can

be found in Bishop (2007)). Biometrics generally employs techniques from su-

pervised classification, which requires accurate samples from known individuals

to train the classifier, gathered in the Enrollment phase. These training set samples

may be used to generate a template or prototype of writer’s typical style, or they

may be used directly to describe the range of patterns that a writer produces.

In classification terms, the set of features used to describe the samples is

known as the feature space, and a single sample’s list of measurements is its fea-

ture vector. Each feature vector represents a single point in the feature space, and

the distance between two vectors illustrates how similar their originating samples

are. This distance measurement occurs in the comparison component of a biomet-

ric system. A good set of features will therefore produce feature vectors which

are close together when samples are from the same person, and far apart when

21

samples are from different people: ideally, the points from a person’s samples

would form a single cluster which does not overlap that of any other writer. In

this case, the identity of the writer of an unknown document may be determined

(the biometric system process of identification) by:

• measuring the document sample’s values for each feature (feature measure-

ment), e.g. average character body width or length of descending strokes

• plotting the resulting point in the feature space containing the training data

• determining which cluster (i.e. class) the point is closest to (classification)

This is illustrated in more detail in Section 3.4.3.

The corresponding process of verification is similar, but requires an additional

piece of information: the writer (i.e. class) the unknown sample is expected to

belong to. Instead of looking for the closest cluster, verification considers whether

or not the sample is likely to belong to the expected writer’s cluster of points.

In both verification and identification, the decision component of the biometric

system is responsible for this final stage of classification.

1.3 Grapheme Codebook Method

Although a wide variety of techniques are in use in writer identification, this work

focuses on the grapheme codebook method (as described in Bulacu (2007), also

known as the Fraglets feature) as a basis for the dataset analysis. It was chosen

for its high identification performance, relatively low processing and metadata

requirements, and similarity to manual writer identification processes. These el-

ements were important in this work as the medieval dataset has no transcriptions

available, and the methodological similarities provide a good reference point for

those with a humanities background in the target application area. The final sec-

tions of this introduction give an outline of the grapheme codebook process.

22

Image

Processing
Grapheme

Extraction

Global

Codebook

Selection

Grapheme

Distribution

Calculation

(per-image)

Classification

FIGURE 1.1: Outline of the grapheme codebook identification process.

The codebook method is based around the segmentation of text into graphemes.

These are character-scale text fragments formed by dividing a cursive ink trace

heuristically. Although the aim is to provide an approximately character-like seg-

mentation of the text, the character content or meaning of the grapheme is not

used, so whole, partial, or merged characters are equally valid. A good heuristic

will give a consistent segmentation, i.e. given a similar ink trace, will produce

similar output graphemes. This allows comparison of the distribution of ink trace

shapes formed by a writer.

Preprocessing stages for the codebook method are outlined in Figure 1.1. They

consist of binarising the input image, then extracting the connected-components

(all joined sections of ink trace pixels). These are segmented into graphemes

and scaled to a fixed size for comparison. Each image in the training and test

sets is represented by its constituent graphemes, and the dataset as a whole is

represented by the union of these. From this whole-dataset grapheme collection,

a fixed number (typically 100–1000) are selected to form a global codebook: the

reference basis by which the images in this dataset will be measured.

The next step is to measure the features and calculate the feature vector for

each image in the dataset. Each grapheme in an image is compared against all the

graphemes in the codebook, and tallied against the one it matches most closely.

Once this has been dome for all graphemes in an image the tally is normalised

to sum to 1, giving a probability distribution. This is the image’s feature vector

with respect to the selected codebook. Once all image feature vectors have been

calculated, and optional feature selection or extraction step may take place. The

final identification step is classification: comparing the feature vectors in the train-

23

ing set against those calculated from unattributed images to determine their most

likely writer.

1.4 Thesis Layout

The thesis is therefore structured as an investigation of each stage of the grapheme

codebook process. Chapter 2 reviews the writer identification literature, looking

particularly at approaches to feature development. The pre-processing steps of

image binarisation and cleaning, and connected-component extraction and basic

segmentation, are developed and applied in Chapter 3. It also expands upon the

choice of the grapheme codebook method for feature extraction, and describes a

consistent experimental methodology that will be followed for the work in this

thesis. Baseline identification results are provided for later comparisons.

The experiments in Chapter 4 test alternatives to the initial stages of grapheme

segmentation, scaling, and grapheme image comparison. Chapter 5 analyses com-

binations of grapheme features, and proposes and evaluates codebook selection

criteria. Chapter 6 considers the final stage of identification, comparing classifica-

tion strategies and analysing both types of dataset against an example verification

system. Finally, Chapter 7 summarises the conclusions drawn from the experi-

ments in this thesis and identifies limitations and areas for further work. The main

findings of this thesis are that:

• Grapheme aspect-ratio is a writer-specific feature in modern handwriting

but not in scribal handwriting

• Translation-invariant grapheme comparison improves modern writer identi-

fication rates, but does not affect scribe identification

• The style of the document from which a sample originates strongly in-

fluences scribe identification rates, but has minimal effect on the modern

dataset

24

Chapter 2

Literature Review

This chapter comprehensively reviews the available techniques in computational

writer identification. Although the dataset for this work is drawn from a palaeo-

graphic background, the relevant techniques are from automated document pro-

cessing and biometrics, and it is these areas that will be surveyed.

Writer identification is based on a behavioural biometric: a learned activity

from which personally identifying data can be extracted. As such, the identifica-

tion process falls into the theoretical framework of Pattern Recognition. As an

area of document analysis, it is also linked to areas of handwriting research such

as Optical Character Recognition (OCR).

Within automated writer identification, methods are divided by the type of

information they employ: motion and pressure captured at the time of writing

(online information), or image-based data only (offline information). Within of-

fline identification, a further loose categorisation is made according to the level

of writing-specific knowledge required as input. This ranges from none, where

images are treated as pixel patterns or textures, up to detailed information on the

character set and textual content of each sample.

This chapter outlines related areas of work before examining the existing lit-

erature in details, including the current state of automated writer identification for

the historical domain.

25

2.1 Related Areas

The following sections summarise the areas of writing analysis research which are

closely related to image-based writer identification: motion-based writer identifi-

cation, signature verification, and optical character recognition.

Online Writer Identification Writer identification is split into two top-level

branches: online and offline writer identification. Online identification analyses

writing samples that have been captured during production, making use of the

dynamic motion, direction, timing, and pressure information available (Li and

Tan, 2009; Li et al., 2007), as well as shape-based data (Namboodiri and Gupta,

2006; Blankers et al., 2007), or a combination of approaches (Schlapbach and

Bunke, 2007a). In contrast, offline writer identification uses only measurements

drawn from the static image of the completed ink trace.

Online writer identification has a high identification accuracy, and the addi-

tional information available makes it generally superior in this regard to purely

offline techniques. A review of the current state of the field is given in Chapran

(2006), as well as an example identification system; as a large part of this field

involves signature text in particular the references in the section below are also

relevant.

However, online techniques are clearly only applicable where the writing sam-

ples to be studied can be recorded in progress. This excludes it from application

to historical and archived documents, as well as most forensic applications.

Signature Verification The most developed branch of writing-based biometrics

is signature verification: the task of determining whether a given signature was

produced by the claimed identity. In particular, online signature verification ben-

efits from a high degree of standardisation, with benchmark databases available

(Guyon et al., 1994; Garcia-Salicetti et al., 2003; Ortega-Garcia et al., 2003; Ye-

26

ung et al., 2004) and several related ISO standards1.

Current state-of-the-art systems tend to comprise a selection of motion and

duration statistics (Tan et al., 2009; Chan et al., 2007; Li et al., 2007). Online

information is usually preferred to static or purely shape-based information. Re-

views of this area are given in Plamondon and Lorette (1989) and Leclerc and

Plamondon (1994), with more recent work presented in Jain et al. (2008, Chapter

10) and Impedovo and Pirlo (2008).

Optical Character Recognition The aim of OCR is to convert text from a

graphical form (either machine print or handwriting) into a machine-encoded text

format. Although online handwriting OCR is well-established (Tappert et al.,

1990), this summary will focus on offline handwriting OCR as the area of greatest

overlap to writer identification.

OCR is the most widespread form of writing image processing, found in

e.g. commercial and home scanning software packages, as well as more spe-

cialised applications such as postcode and address reading for mail sorting (Liu,

2003; Lee and Leedham, 2004) and automated bank cheque processing (Cheriet

et al., 2007; Liu, 2003). Thorough reviews of standard methods and processes

can be found in Due et al. (1996); Plamondon and Srihari (2000); Mori et al.

(1999) and Cheriet et al. (2007). Many standard research databases are available,

e.g. CEDAR2, NIST3, MNIST4, or CENPARMI (Suen et al., 1992).

The initial image pre-processing stage of handwriting OCR is very similar to

writer identification, especially where historical data is concerned (e.g. binarisa-

tion (Gupta et al., 2007) or character segmentation (Bryant et al., 2010)). Some

methods however actively remove writer-specific style elements such as slant

(Cheriet et al., 2007; Marti and Bunke, 2002) to normalise the writing, making

1e.g. online signature data format for interchange ISO/IEC 19794-7
2http://www.cedar.buffalo.edu/Databases
3http://www.nist.gov/srd/nistsd19.cfm
4(digits only) http://yann.lecun.com/exdb/mnist/index.html

27

http://www.cedar.buffalo.edu/Databases
http://www.nist.gov/srd/nistsd19.cfm
http://yann.lecun.com/exdb/mnist/index.html

it easier to distinguish characters. Ideally, all writer, document, or other style-

specific elements would be normalised away, leaving a single canonical form for

each character. In this respect handwriting OCR can be framed as an inverse of

style-identification problems such as writer identification. These attempt instead

to normalise or generalise over the common writing characteristics formed by text

content or character distribution, to retain only the idiosyncratic style.

Finally, there are two cases where handwriting OCR and writer identification

systems are combined. The first is when using a writer’s identity (and associated

style profile) to improve character recognition by adapting to their personal style

(Brakensiek et al., 2001). The second uses the character recognition rate of a

writer-trained OCR system to verify whether a new sample’s writer matches. One

such writer identification system has been proposed by Schlapbach and Bunke

(2004a) and is described in more detail in Section 2.3.8.

2.1.1 Summary

This section has placed automated offline writer identification in the context of

its pattern recognition background and the wider field of biometrics, along with

summaries of those areas of writing analysis which are closely related, but not

directly applicable.

The next sections of this review focus in detail on an analysis of the offline

writer identification field. Section 2.2 describes the typical state of the data used

in this work, including the datasets in use and the common image pre-processing

steps required. Section 2.3 details the range of feature extraction methods present

in the writer identification literature.

2.2 Dataset preprocessing

In most image-based text processing, a cleaned, binarised image is expected and

most feature extraction methods assume a black ink trace on a white background.

28

An exception is Wirotius et al. (2003), which hypothesises that grayscale images

will contain information on pen pressure, a common online feature. The grayscale

images complicate the task of ink trace extraction such that a binarised version

is required as a reference, but the performance of the extracted features fails to

match that of available static features. This suggests binary images offer a rea-

sonable compromise between loss of writer-specific information and manageable

data processing. Further support for this comes from the work in Zuo et al. (2002),

where the same experiment was run on grayscale and binary images. The identi-

fication rates for binary images were only one percentage point short of the 98%

achieved with grayscale, suggesting that there was little additional information to

be gained.

Standard algorithms exist for the task of thresholding images, e.g. (Niblack,

1990; Otsu, 1979), and more recent algorithms have been developed for docu-

ment images (Kavallieratou, 2005) and historical documents in particular (Leed-

ham et al., 2002). However, binarisation is not usually implemented specifically

for a writer identification task, as many standard implementations of image thresh-

olding are already widely available5.

The modern data sets typically used (e.g. IAM (Marti and Bunke, 1999), Fire-

maker (Bulacu et al., 2003), CEDAR (Srihari et al., 2002), UniPen, or IFN/ENIT

(Pechwitz et al., 2002)) tend to have little problem with image noise, but it is a

particular problem with historical documents. Data collected recently has the ad-

vantage of being designed for the purpose of automatic processing6, with samples

standardised to contain only text of a known layout on a blank background, and

to use the same line height, writing instruments, etc. Almost all specifically ask

the subject for their natural handwriting. Most historical texts fall at the opposite

extreme: the pages are varied in size, content, style, font, writing instrument, and

decoration, and are usually noticeably degraded, containing smudges and marks,

5For example, ImageMagick (http://www.imagemagick.org)
6Details of commonly used datasets are given in Appendix A

29

http://www.imagemagick.org

variable backgrounds, bleed-through of ink from the reverse of the page, physical

warping, and faded or patchy ink traces. Preprocessing on these kinds of dataset

tends to require some manual intervention. Example images from these datasets

are given in Appendix A.

2.3 Offline Feature Extraction

The bulk of work in writer identification has been in identifying and developing

new features. This section will outline the characteristics that describe the range

of available features, and provide a qualitative overview of the main groups that

have been proposed.

2.3.1 Characteristics

This section explains the terms used to group writer identification features, and

also examines the factors in experimental design which affect classification accu-

racy and the interpretation of identification results. The following sections sur-

vey the range of feature extraction techniques currently available, ordered from

greatest to least use of writing information: local features are described first

(Section 2.3.2), followed by global writing and texture-based features in Sec-

tions 2.3.6 - 2.3.7. A comprehensive summary of the corresponding experimental

results is available in Appendix B for reference.

Local, Global, and Textural Writer identification features can be grouped by

the amount of writing-specific information they require. Textural features use no

writing information: they are typically features from image or signal recognition

that have been applied to document images without adaptation, such as wavelets

(Terzija and Geisselhardt, 2004; Daugman, 2005; Shahabi and Rahmati, 2009;

Antonini et al., 1992) and autocorrelation (Bulacu and Schomaker, 2007b; Bulacu

et al., 2003; van der Maaten, 2005; Bracewell, 1965). At the other extreme, local

30

FIGURE 2.1: A manually extracted ‘th’ from a sample of the CEDAR letter, with
structural features marked (Pervouchine and Leedham, 2006)

features are usually measured directly from specific, identified parts of the ink

trace, such as strokes or characters. This information tends to come from manual

labelling (Srihari et al., 2002; Pechwitz et al., 2002). Between these categories,

global features make use of the distinction between ink trace and background, but

do not require any transcription of the writing content. They can be extracted or

measured from any text. These divisions are approximate, and terminology varies:

local and global features are also sometimes described as structural and statistical

features respectively.

Text-dependent and Text-independent These terms can be used to describe

two related concepts in either feature extraction or experimental methodology. A

feature can be text-dependent if it requires a particular text in order to be extracted.

This is most often encountered in local, character-based features, e.g. measuring

particular parts of a given character, such as the ascender heights or loops (Figure

2.1). Conversely, a text-independent or text-agnostic feature can be applied to any

text, regardless of content and often regardless of script, e.g. height of text line.

In methodology, these terms refer to the content of the dataset. Some datasets

have a single, fixed-content text which participant writers copy out a given number

of times to produce the handwriting samples (Srihari et al., 2002; Nejad and Rah-

31

mati, 2007). This approach is most common in character-based features (Zhang

et al., 2003), but is also occasionally applied to words (Zhang and Srihari, 2003;

Zois and Anastassopoulos, 1996). Other datasets have free or varied content sam-

ples, either by design (Marti and Bunke, 1999; Pechwitz et al., 2002; Bulacu et al.,

2003) or due to the existing data sources (Brink et al., 2007; Bar-Yosef et al.,

2007).

The majority of the high performing features in writer identification are text-

independent, but their results can still be affected by the use of fixed-content texts.

Many people use multiple forms, or allographs, to draw the same letter (Srihari

et al., 2003), and selection of a form is usually dependent on the adjacent charac-

ters. Having a single possible text for a sample will skew the shape distributions

in favour of those graphs and combinations present, especially as most predefined

texts are fairly short (e.g. the CEDAR letter (Srihari et al., 2002) is 156 words

long, PSI database texts (Bensefia et al., 2005) are 107 or 98 words). This effect,

coupled with the exact matching of content across writers, effectively factors out

some of the variation that a good feature aims to compensate for. Davis (2007)

notes (p. 255) that in forensic use, the main advantage of the ability to request a

sample text from a writer is that the content can be identical to the questioned doc-

ument. Apart from this mention, the issue does not appear to be discussed in the

literature, but some indication of its potential effect can be found in Schomaker

et al. (2004): using a 15x15-cell grapheme codebook, various pages of the Fire-

maker dataset are tested. Amongst these, testing the free-content pages of the set

yields an identification rate of 70%. The same codebook tested against samples

copied from a fixed text by the same writers, again in their natural handwriting,

causes a large jump in accuracy to 97%, an increase by a factor of 1.4. In prac-

tice in historical use, performance on varied texts is essential as these document

collections were not systematically generated.

32

2.3.2 Local features

One method of automating writer identification is to replicate the processes carried

out manually by palaeographers and Forensic or Questioned Document Examin-

ers (FDEs or QDEs). However, these methods have never been aimed at automatic

extraction, and their descriptions are often too vague to implement directly. Sub-

stantial design choices are usually required to formalise these descriptions into an

implementation, so that even those features derived from the same original de-

scriptions may be quite different in practice. For example, Srihari et al. (2002)

describe their work as using features similar to those used by document analysts,

but include counts of exterior curves and interior contours in the category of mea-

sures of writing movement, and counts of sloping components as a measure of

stroke formation. Pervouchine and Leedham (2007) also describe needing to ap-

ply stroke thinning algorithms to character images due to difficulties in automati-

cally identifying loops. Manual document examination tends to be placed in terms

of the interpreted units that are obvious to a person, e.g. characters, rather than the

visual artifacts that are actually present, e.g. the ink trace. This means that to

directly implement manual features, a very high level of ground truth knowledge

of the text in question is usually required, such as information about the bounds

of each character and a full transcription of the text. As the problem of general

handwritten-image OCR is still very much unsolved, this information is usually

obtained manually and/or by designing a fixed source text, as in Srihari et al.

(2002); Gazzah and Amara (2007) and Wang et al. (2003).

Local features, whether derived from FDE features or developed indepen-

dently, are always directly measured. Information extracted in this way describes

the structural composition and shape of a character or graph very finely. This

can include measurements made of parts of specific characters (e.g. ascenders or

loops), or presence or absence of a specific structure (e.g. loop on the descender

of a ‘y’). Examples of this type of work include the GSC features described in

Section 2.3.3, and the studies of Pervouchine and Leedham (2007, 2006); Sutanto

33

et al. (2003) and Maclean (2004).

2.3.3 GSC features

A considerable amount of work has been produced using local and structural fea-

tures which aims to prove that handwriting is a personally distinctive characteris-

tic, capable of distinguishing individuals at the level required to provide evidence

in court. Srihari et al. (2002) presents an initial thorough study of the situation,

introducing the CEDAR dataset7 and several feature performance experiments at

the document, word and character level. It also applies the gradient, structure and

concavity (GSC) features developed for character recognition (Srikantan et al.,

1996) to the task of writer identification, a process on which the later studies rely.

The features are based on a pixel-level analysis of individual character images.

All pixels are initially mapped to a quantisation of their stroke gradient into 12 or

18 directions. The image is divided into a number of regions, often 4×4. Features

are drawn from the proportion, variation and presence or absence of certain gradi-

ent directions in these regions. Structural features are the presence or absence of

some unspecified combinations of pixel gradients. Stroke extraction is performed

by thresholding the gradient maps and extracting any remaining connected pixels.

The bounding boxes and orientation of these strokes is used to determine con-

cavity. As these features are designed for character recognition, they have been

adapted somewhat for writer identification – most notably, the paper proposing

these GSC elements describes many real-valued features, whereas Srihari et al.

(2002) uses only a binary bit vector. It is not stated whether those used are ex-

actly those described as binary features, or if the real-valued elements have been

adapted or encoded in some way.

The initial study has been extended to examine in particular the potential to

discriminate between authors on the basis of individual characters (Zhang et al.,

2003) and individual digits (Srihari et al., 2003). Single handwritten words (Zhang
7Details of this dataset can be found in Appendix A.2 on page 163

34

and Srihari, 2003) are also studied, and the GSC features are extended here to

apply to whole-word images. The data used in these experiments has been ex-

tracted manually from around 3000 samples of a copied letter, designed to cover

the widest possible range of letter combinations. These works generally do not

aim to propose a methodology that could practicably be used in writer identifica-

tion, and thus the limitations of requiring manual character extraction and having

a fixed text are mitigated. The performance of these features is very high, reach-

ing 98% Top-1 correct on a dataset of 875 writers, but the prohibitive manual

segmentation and labelling requirements make it unsuitable for most general use.

2.3.4 Slant-based approaches

One aspect of handwriting known to be characteristic is slant, or more generally,

the orientations of the strokes a writer tends to produce: angle (or directional)

based features are frequently amongst the top performers in writer identification

(e.g. 86% Top-1 accuracy from 250 writers (Bulacu and Schomaker, 2006)), and it

was found in Schlapbach and Bunke (2005) that removing the characteristic slant

from handwriting generally decreased the identification rate.

The distributions of stroke fragment angles have been studied extensively by

Bulacu et al. (Bulacu and Schomaker, 2006; Bulacu, 2007; Bulacu et al., 2003),

both individually (slant distribution) and in joint distributions of angles that occur

together (edge-hinge distributions and direction co-occurrence distributions). This

work was extended in van der Maaten (2005) with edge-hinge combinations.

All these features are extracted in similar ways: by performing edge-detection

on the ink trace image, then sliding a square window over the sample to locate

stroke contours (Figure 2.3). If the central pixel in the window is ink, a search is

made to find if there is a continuous edge that meets the window border: if so, the

fragment orientation, or angle, is quantised by the window pixel it intersects. The

edge hinge distributions follow the same method, except that a measurement is

made only if two stroke fragments are found from the central pixel, in which case

35

FIGURE 2.2: Slant distributions of two handwriting samples (Schomaker and
Bulacu, 2004)

the angle pair is recorded. Direction co-occurrence distributions measure the an-

gle pairs found at either end of a (horizontal or vertical) run length of background

pixels, and attempt to extract larger-scale information about changes in writing

direction (Schomaker et al., 2004). In all cases, once the counts have been accu-

mulated, they are normalised so that they sum to 1, giving a probability density

function (pdf).

The quantisation and dimensionality of the resulting distributions is deter-

mined by the size of the window, which also defines the stroke fragment length n.

This parameter has been tested for the basic slant distribution for values of 3-5

pixels (Bulacu et al., 2003); the width of the ink trace in the normalised samples

used is in the region of 5 pixels. As there is no way of determining the direction

in which a stroke was made, only angles between 0-180° are considered, giving

these slant features a dimensionality between 8-16. For edge-hinge distributions,

values of n between 3 and 9 pixels have been tested (van der Maaten, 2005; Bulacu

et al., 2003). As these are joint distributions, the dimensionalities are of the order

of the square of the quantisation directions, and range between 104 (at 3 pixels)

and 1952 (9 pixels). Direction co-occurrence distributions have been tested with

36

FIGURE 2.3: Measurement of slant and edge-hinge angles (Bulacu and
Schomaker, 2003)

4-pixel fragment lengths (Schomaker et al., 2004), with a dimensionality of 144,

and accuracies of up to 76% (van Erp et al., 2003).

Edge-hinge distributions

The top performer of slant, edge-hinge and direction co-occurrence distributions

is the edge-hinge distribution, which has become one of the top performing global

identification features8 (Bulacu and Schomaker, 2006, 2007b). It was developed

from the differentiated slant distribution: the authors state that the increased per-

formance of the differentiated feature vector was due to it capturing information

about changes in writing direction (Bulacu et al., 2003). However, this informa-

tion does not seems to be present in any derivative of a slant distribution: the angle

information is aggregated, so detail of the individual transitions that take place in

8All three distributions, along with run-length distributions, have been included in WANDA, a
writer identification system to aid forensic experts in both manual and automated sample inspec-
tion (Franke et al., 2003). An overview of identification systems in use can be found in Srihari and
Leedham (2003).

37

FIGURE 2.4: Edge-hinge distributions of two different writing samples (Bulacu
and Schomaker, 2007a)

writing is lost. The two joint distribution features are most likely to contain this

information: the same-pixel or same-run length links provide the necessary co-

occurrence information, which may explain their superior performance.

Edge-hinge combinations

Edge-hinge distributions were further developed in van der Maaten (2005) to pro-

duce edge-hinge combinations. Van der Maaten theorised that hinge pdfs of dif-

ferent fragment lengths contained different information, as they are extracted at

different scales. He variously combined hinge distributions of 3, 5, 7 and 9 pixels,

and found that concatenating all these into a single feature vector gave the best

performance of 81% from 250 writers, despite the resulting feature vector having

3600 dimensions.

2.3.5 Grapheme-based approaches

A different area of work involves shape-based features: those that operate directly

on the ink trace fragments produced, rather than extracting a particular aspect of

it. All these approaches divide the ink trace into small segments, and cluster them

to produce a selection representative in some way of the stroke shapes a writer

produces. The segmentation stage typically uses the heuristic of splitting on the

38

lowest infection points (minima)9 of the ink trace to produce character-like frag-

ments, as proposed in Casey and Lecolinet (1996). The presence or distributions

of these reference shapes in a document form its feature vector.

There are two main groups of work that use graphemes directly – the grapheme

codebooks of Schomaker and Bulacu (2004), and writer invariants, proposed in

Nosary et al. (1999). In addition, Seropian et al. (2003) and Siddiqi and Vincent

(2007) propose similar schemes at a sub-grapheme level, constructing a represen-

tative reference base using smaller stroke fragments10. These approaches there-

fore operate on the information that can be gathered by comparing stroke shapes

directly. They are divided into those that seek to keep or emphasise the outlier

shapes in the set (grapheme codebooks) and those that discard them, retaining the

more frequently occurring (writer invariants and stroke-fragment reference bases).

Grapheme codebooks are based on the more general image classification bag-

of-words technique (Li and Perona, 2005; Lazic and Aarabi, 2007; Marinai et al.,

2010; Woodard et al., 2010). The main differences are a natural rather than artifi-

cial segmentation criterion (i.e. a heuristic that approximates characters), and the

omission of an explicit feature extraction or selection stage, with the normalised

frequency histograms used as features directly.

Grapheme codebooks

The approach of Bulacu et al. requires a reference set of graphemes, against

which a similarity profile of a sample’s grapheme distribution is calculated. This

9See Figure 3.5 and Section 3.3.2 for details of this process and an example of minima-based
splitting.

10Despite initial similarities, larger ‘graphemes’, such as the word-level images used in word
spotting (Manmatha et al., 1996), are not used. To do so would reduce the effective sample-size
from the number of characters down to the number of instances of the selected words. It may
also require semantic knowledge of the text content, either as a transcription or through manual
segmentation of the image samples. Although a complete word has the potential to be highly
writer-specific, there is no guarantee with free-content samples that the words under inspection will
appear, and the matching process is highly-dependent on alphabet, language, and font, rendering
it unsuitable for comparing multiple scripts across varied domains.

39

FIGURE 2.5: A grapheme codebook generated using a 2D Kohonen SOFM (Bu-
lacu and Schomaker, 2007a)

reference set, or codebook, is selected by choosing a certain number of graphemes

from the entire training set combined. Using the training set allows the codebook

to be tailored to describe any style, script, or font that the data might share.

In the initial proposal, a Kohonen self-organising feature map (SOFM) was

used to cluster the graphemes, producing a 2D array of selected graphemes which

spanned the shape space of the set (Schomaker et al., 2004), but the resulting spa-

tial mapping is not used in the codebook. In Bulacu and Schomaker (2005a), 1D

SOFM, 2D SOFM and k-means clustering were shown to give equivalent perfor-

mance, and van der Maaten and Postma (2005) also showed that random selection

produces comparable results. Random selection produces codebooks with slightly

different properties to the clustering methods: the probability of a grapheme’s se-

lection reflects the underlying training set distribution, whereas clustering-based

selections remove the repetition of the most common elements and weight towards

outliers – frequency of occurrence is not a factor. However, the magnitude of this

effect is unclear, as codebook sizes (typically 50-200 graphemes) may not be large

40

enough to reflect the differences significantly. The work in Ghiasi and Safabakhsh

(2010) introduces a new segmentation criterion which outperforms the usual ink-

trace minima segmentation used on smaller Arabic text sample sizes.

Given a complete reference codebook, a sample’s grapheme distribution is

calculated by binning each grapheme in turn into the closest match present in the

codebook. The remaining frequency distribution has dimensionality equal to the

codebook size and is normalised before being used as the sample’s feature vector.

Larger codebooks have the potential to describe a sample more accurately, but

suffer the curse of dimensionality. Codebook sizes of around 400 are often found;

a size of 1089 was originally tested (Schomaker and Bulacu, 2004). In Schomaker

et al. (2004), performance was found to plateau or tail off slightly beyond a code-

book of size 225 for Latin texts. No studies have been performed to analyse

the relative performance of graphemes or grapheme types (e.g. rounded, single-

stroke, complex, large). Considering that the best-performing selection method

currently available performs equivalently to random selection, this seems an area

which could benefit from further analysis.

Performance of grapheme codebooks is good, with accuracies up to 100%

on Arabic texts (Ghiasi and Safabakhsh, 2010), but more usually around 80%

on a 650-writer, text-independent dataset (Bulacu and Schomaker, 2007b). In

Schomaker et al. (2007) it was further found that smoothing out the binning counts

for graphemes gave a significant performance boost, increasing Top-1 classifica-

tion accuracy from 71% to 82%. In smoothing, a smaller portion of the ‘count’

allocated to a bin (a matched codebook grapheme) is split between its n closest

neighbours, as determined by shape similarity (in strength of match, not SOFM

layout-based proximity).

Writer invariants

The original proposal for writer invariants did not require a global codebook,

41

FIGURE 2.6: Individual graphemes from invariant and non-invariant (discarded)
clusters (Bensefia et al., 2002)

FIGURE 2.7: Graphemes composed into invariant clusters (Bensefia et al., 2005)

and was designed with image retrieval and data compression in mind: the training

set images are indexed by a feature vector to be retrieved on same-writer queries.

To produce the feature vector, a clustering algorithm is run over the graphemes

generated from the sample. The sequential algorithm used (Bensefia et al., 2002)

includes a stochastic element, so this process is repeated. Graphemes which are

clustered together on every run are grouped into an invariant; all others are dis-

carded. Image correlation is used as the similarity measure on the grapheme

bitmaps at this and all later image comparison stages.

In the information retrieval context, Bensefia et al. (2002) defined a similar-

ity measure between two sample documents D and T in terms of a normalised

sum of the similarities of each of D’s graphemes to its best-matched grapheme

42

from T. Query document D is then assigned the writer of its closest matching

training set sample. As this calculation requires computing the similarity between

every grapheme in the query sample and every grapheme in the entire training

set, the authors compress the training set documents by replacing their grapheme

sets with their invariant sets. This caused no loss of precision in retrieval (98%

from 88 writers). This result may suffer from a favourable fixed-text bias in the

dataset, but it indicates that writer-specific information may be concentrated in

the typical rather than the atypical shapes produced. This result is an interest-

ing counterpoint to the use of grapheme codebook clustering selection, and also

the χ2 distance metric used by Bulacu et al. for computing similarity between

distributions. The authors specifically state that this metric weights the lower-

probability areas of the distribution (Bulacu and Schomaker, 2007b), i.e. the less

common elements. They found this metric outperforms several others including

Euclidean, Hausdorff, and Bhattacharya, although Hamming distance apparently

also performs well (Schomaker et al., 2004; Schomaker and Bulacu, 2004).

Later writer invariants-based proposals have drifted much closer to the grapheme

codebook approach, in particular using a reference set of invariants computed

from the entire training set, and using a similarity measure based on binning/thresh-

olding rather than raw correlation (Bensefia et al., 2005). The switch from indi-

vidual writer profiles to a combined reference set was presumably made to reduce

the number of comparisons required in a query/identification calculation. How-

ever, the authors do not state how much of a reduction pooled invariants produce

and as this change was made in conjunction with others, it is impossible to isolate

any effect this may have had on identification performance.

Stroke fragments

Seropian et al. (2003) and Siddiqi and Vincent (2007) both propose codebooks

composed of lower-level stroke fragments that are much smaller than the graphemes

used above, but make use of them in very different ways. Siddiqi and Vincent

43

(2007) tiles the ink trace with small windows to achieve this segmentation, and

tests various window sizes. Unfortunately no reference to the dimensions of the

image or writing is given, which makes these hard to interpret. The codebook, or

reference base, is composed of a representative image from each fragment cluster

above a certain threshold size. This is closest to the writer invariants approach

which also discards outlying graphemes. However, no distributions are calculated

- similarities between reference bases are calculated directly by maximising the

total image correlation between their train and test fragment sets. The approach

gives very good results of up to 94% on a fairly small (50 writers) IAM dataset.

Seropian et al. (2003) appears to use a representative set of stroke fragments to

reconstruct the handwriting image, in the manner of an Iterated Function System

(Hutchinson, 1981; Barnsley, 2000). Similarity between these reference bases

is determined by substituting fragment images from one base into another, and

quantifying the quality of the resulting reconstruction of the original image using

the peak signal-to-noise ratio. Identification accuracy appears to be good but is

reported imprecisely (> 85%) for a 20-writer dataset.

2.3.6 Run-length distributions

The first feature proposed for automatic writer identification in practice was the

run-length distribution (Arazi, 1977). This is a global, purely statistical analysis

of an image that involves counting the lengths of continuous runs of pixels of the

same colour (usually black and white), and converting the frequencies of occur-

rence into a probability density function. Run lengths can be computed either

horizontally or vertically, and on background (white) or ink trace (black) pixels.

Arazi states that background runs will be more informative, as they can convey

information about the distributions of inter- and intra-character spacing, whereas

ink run distributions convey mainly information about stroke widths. This is plau-

sible, as in cases where the influence of the writing instrument cannot be factored

out, any writer information will be very noisy. The only test of this assertion ap-

44

pears in Bulacu et al. (2003), which shows both vertical and horizontal run-lengths

perform better on background than ink pixels. The run-length still frequently ap-

pears in recent work, and although its individual performance as a feature is not

that high (20-30% in the best cases (Brink et al., 2008; van der Maaten, 2005;

Bulacu et al., 2003)), it has proved useful in combination with others (Bulacu and

Schomaker, 2006; van Erp et al., 2003).

2.3.7 Textural features

This class of features borrows techniques directly from general image analysis,

examining each handwriting sample without making use of the information that

writing is present. They usually draw out global aspects of the writing style, but

can be susceptible to distraction by page- and text-based differences, e.g. irreg-

ular layout or line spacing, which often do not reflect personal writing style. To

mitigate this, the images are often pre-processed to make them more uniform in

spacing (Ubul et al., 2009; Shahabi and Rahmati, 2009; Zhu et al., 2000; Fornéz

et al., 2009).

Wavelets and filters

Although wavelets are used in many image processing applications (e.g. Terz-

ija and Geisselhardt (2004); Daugman (2005)), they do not in general seem to

be a useful feature in writer identification. Many classes of wavelet have been

tested, including Haar, Odegard, Villasenor and Daubechies (Schomaker and Bu-

lacu, 2004; van der Maaten, 2005), but they have never reached a useful level of

performance. However, the Gabor wavelet appears to be an exception: Schomaker

and Bulacu (2004) suggests its periodicity may give it an advantage in picking out

angular information, and it appears frequently as a high-performing feature in

non-Latin scripts, particularly Arabic and Chinese (Shahabi and Rahmati, 2006,

2009; He et al., 2005; Zhu et al., 2000). Shahabi and Rahmati (2006) tests Gabor

energy features, filters and various transforms on a dataset of Farsi handwriting,

45

with performance considerably better than those for most wavelets. Said et al.

(1998) also use Gabor filters with similar results, however both papers use datasets

that are small (25 and 20 writers respectively) and no information is given on how

the results might scale with increasing numbers of writers.

Grayscale co-occurrence matrices

First proposed in Haralick et al. (1973) for general image classification, grayscale

co-occurrence matrices (GSCMs) are usually employed in binary form only for

writer identification. They are calculated by considering the frequency of occur-

rence of each grayscale value in the Moore neighbourhoods of all pixels with a

particular value, forming a square matrix whose dimensions reflect the quantisa-

tion of grayscale values in the image. The neighbourhoods most used are of radius

or width 1, i.e. the immediately adjacent pixels only, but larger widths can also be

used. For binary images, this will be 2× 2.

GSCMs of several widths have been used as a reference features in Said et al.

(1998) and Shahabi and Rahmati (2006) against various Gabor-based filters. They

gave reasonable performance on small datasets, though are usually outperformed

by the filter-based features.

Autocorrelation

Horizontal autocorrelation is used as a measure of how well writing resembles

itself, extracting information on regularity in handwriting and evenness of spacing

between vertical strokes. This is measured by taking each row of pixels in turn

and shifting it against itself repeatedly, calculating each time the correlation or

Hamming distance between the matched pairs. With a top identification rate of

25% on 150 writers (Schomaker et al., 2007) and 13% on 650 writers (Bulacu and

Schomaker, 2007b) its performance is poor, although like most texture features

it has not been tested in combination. Vertical autocorrelation is not used, as its

values will be determined mainly by the content of the writing, i.e. the characters

46

that line up in each column.

2.3.8 Hidden Markov Models

Schlapbach and Bunke (2004a) propose a writer identification system based on the

output of a pre-existing handwritten OCR system (Marti and Bunke, 2002). By

composing Hidden Markov Models (HMMs) for character and word recognition,

a model is trained for each writer’s style from sample data. The features used are

extracted from a sliding window passed horizontally over binarised text lines, but

as these are designed for character recognition rather than writer identification,

they do not fall into the usual categorisation. The text is processed before the fea-

ture extraction stage by normalising the average character width, scaling the text

vertically and removing the ink trace slant. Although these may lose some writer

identification information, they were initially retained as they improve the read-

ability of the text, which this system depends on to give accurate results. A later

comprehensive study into these normalisations concluded that slant correction in

particular decreased the writer identification rate (Schlapbach and Bunke, 2005);

subsequent applications of this system apply only vertical scaling (Schlapbach

and Bunke, 2007b).

For identification, all models are run over an unknown sample, each outputting

a transcription of the text and a likelihood score of that transcription. As correctly

recognised words should have a significantly higher score than incorrect ones, the

likelihood should be a good measure of the accuracy of a model over a sample.

A model trained to recognise a writer’s style should output more accurate tran-

scriptions, thus the best writer matches are determined by the highest likelihood

scores. Performance of this system is very good, at 97% for 100 writers (Schlap-

bach and Bunke, 2007b) but the prohibitive training requirements (including a full

transcription of all samples) make it unsuitable for most practical applications.

Some of these issues were addressed by a significant pruning of the original

system down to the Gaussian Mixture Models (GMMs) used in HMM training

47

(Schlapbach and Bunke, 2006a,b). This drastically cuts down on the training re-

quirements, as no character or word models are needed. This in turn removes the

requirement for a ground truth transcription of each sample. The identification

performance is also slightly increased to 98%.

Both the HMM and GMM approaches require training a model for each ex-

pected writer. This is a disadvantage in any system that continually adds to its

classified document set, as an expensive retraining step must occur to make use

of each update. (This is particularly important in scribal identification, as new

samples may be in very different styles or fonts to the known data, which will sig-

nificantly extend the class boundary.) The problems of handling unknown writers

in this system can be alleviated with an accept/reject threshold from writer verifi-

cation (Schlapbach and Bunke, 2006a, 2004b).

2.3.9 Non-Latin scripts

This section will briefly review the main work in writer identification for non-

Latin scripts.

Although the majority of work involves Western and especially Latin alpha-

bet datasets, there have also been several, albeit more isolated, studies into writer

identification for other scripts. The performance of features across different scripts

is of interest when applying features to a new domain, in this case medieval En-

glish and Latin scripts. Although the majority of current work is text-independent,

the distribution of typical letter shapes in a script can affect the performance of

a feature. There has not been much work in testing features across scripts: those

proposed tend to be designed for a particular domain, and are generally very dif-

ferent across alphabets. The most significant exception to this is (Bulacu et al.,

2007a), where grapheme codebooks, edge-hinge distributions and run lengths are

applied directly to an Arabic-script dataset. There was a small performance drop

compared to the typical accuracy on Latin datasets, but overall performance was

comparable, suggesting that these features extract information common to a vari-

48

ety of handwritings.

Arabic and Chinese scripts feature most prominently in the literature. The

main reference database available for non-Latin scripts is the IFN/ENIT11 database

of handwritten Tunisian placenames (Pechwitz et al., 2002). It is used for both

writer identification (Abdi et al., 2009; Bulacu et al., 2007a) and handwriting

recognition experiments, most notably the ICDAR Arabic Handwriting Recog-

nition Competitions (Märgner et al., 2005; Märgner and El Abed, 2007, 2009). A

smaller Farsi dataset has been used for work involving Gabor filters (Shahabi and

Rahmati, 2009; Nejad and Rahmati, 2007) and as a supplement in further devel-

oping the grapheme codebook feature (Ghiasi and Safabakhsh, 2010), and custom

datasets have been used to test gradient features (Sadeghi ram and Moghaddam,

2009), wavelet transforms (Gazzah and Amara, 2007), SIFT features (Woodard

et al., 2010), and Gabor-based graph matching (Helli and Moghaddam, 2009).

Shahabi and Rahmati (2006) apply Gabor-based features using a fixed-content

dataset from 25 people, although the written pages were divided into non-overlapping

blocks. The Gabor filters, transforms and energy features were compared favourably

against the grayscale co-occurrence matrix proposed for general texture recogni-

tion in Haralick et al. (1973).

Wang et al. (2003) draw features from individual Chinese characters. These

directional element features are usually used for character recognition, but are

applied here in conjunction with dimensionality reduction to determine author-

ship. Two datasets were tested, the main consisting of a large training set drawn

from over 600 writers (although most contribute only a single character) and a

test set composed of 6 samples of 20 characters from 27 writers. All characters

are tested individually, i.e. only like characters are ever compared, making this

a text-dependent approach also. Gabor filters have also been tested (Ubul et al.,

2009; Zhu et al., 2000), including a wavelet variation using a Generalised Gaus-

sian Density (GGD) model for Chinese characters in He et al. (2005). Following

11Details of this dataset can be found in Appendix A.7

49

the texture approach of Said et al. (1998), they take 64-character samples from 10

people, using one sample for training and another for testing. The two methods

show similar performance, but the GGD approach shows a substantially reduced

computation time.

Beyond these, Bar-Yosef et al. (2007) examine binarised images from a small

dataset (34 images) of historical Hebrew manuscripts. Much of the paper focuses

on the image processing and character segmentation required, which is typical of

historical datasets. Character segmentation is somewhat easier in Hebrew calligra-

phy as characters do not join together. Their approach is highly text- and alphabet-

specific, as it extract features from the letters Aleph, Ain and Lamed only: using

the convex hull of each character image, features such as central moments, aspect

ratios and estimations of curvature are combined into a single vector.

Zois and Anastassopoulos (1996) use first-order central moments and mor-

phological openings as features. The dataset is composed of 20 writers, who

contribute eight samples of each of four Greek words. These are processed in-

dividually to determine the moments, and the vertical projection profile of each

word is incrementally truncated to obtain the morphological opening features.

In addition to these studies, many use databases of Western but non-English

scripts. The PSI database12 is composed of samples written in French, and the

NFI13 and Firemaker14 datasets are in Dutch. Although these languages are strongly

Latin-based, they contain digraphs not found in English. These are joined letter

pairs that form a single written character, effectively extending the base alphabet,

and both languages use diacritics above or below letters. Some work is also begin-

ning in writer identification from handwritten musical manuscript pages (Fornéz

et al., 2009; Marinai et al., 2010).

12Details of this dataset can be found in Appendix A.3
13Details of this dataset can be found in Appendix A.5
14Details of this dataset can be found in Appendix A.4

50

2.3.10 Historical work

There is comparatively little writer identification work on historical data. Al-

though interest in this area is increasing, much of the current work focuses on

handwriting recognition (Fischer et al., 2009, 2010) or document image process-

ing (Likforman-Sulem et al., 2007; Leedham et al., 2002; Bulacu et al., 2007b).

As mentioned in Section 2.3.9, there has been some work into historical He-

brew manuscripts with good results, but as it relies on specific Hebrew charac-

ters the approach is not applicable outside that alphabet. For Latin-based scripts,

Bensefia et al. (2003) tested the writer invariants proposal on the PSI database and

a dataset drawn from the 19th century correspondence of Emile Zola. They note

a number of image processing difficulties with the historical data, and conclude

that these probably contributed to its significantly lower performance. A medieval

Italian dataset was tested with features composed of statistics calculated from a

Zipf power-law curve, adapted to characterise a two-dimensional image texture

(Pareti and Vincent, 2006). A peak result of 80% was achieved, but the dataset

itself is not fully described and its size is unknown.

Work in the area of medieval manuscripts has tended to focus on databases

and modelling support for the manual identification process. Examples of this

include the Medieval Scribes website15 which offers a searchable index of charac-

ter exemplars for about 80 scribes, and the System for Palaeographic Inspections

(Ciula, 2005) for the analysis and comparison of manuscript letterforms.

The existing scribal identification work in medieval English manuscripts uses

very small datasets. Stokes (2007) initially applies run-lengths, autocorrelation,

edge- and hinge-directions to six images by two scribes with promising results.

The remainder of the paper describes development of a tool to support data-entry

of manually-described features for clustering.

Bulacu and Schomaker (2007a) applies edge-hinge distributions, grapheme

codebooks and run-length distributions to images from 10 scribes, finding perfor-

15www.medievalscribes.com

51

www.medievalscribes.com

mance equivalent to a 900-writer modern dataset (Bulacu and Schomaker, 2007b);

however the historical dataset uses 2-15 samples (usually 6 or 7) per writer, whereas

the modern dataset has only two. An interesting exception to this equivalence is

the run-length distribution feature, which performed far better on the historical

dataset than the modern one. This may be an artifact of the increased number of

samples per writer or the scaling effect of a small dataset.

2.3.11 Feature Selection and Extraction

Common subsequent stages of feature refinement within the wider pattern recog-

nition field are feature selection and feature extraction. Feature selection tech-

niques choose subsets of an original set of features with two aims: improving the

classification rate by discarding irrelevant or poor features, or reducing the num-

ber of features as far as possible without decreasing the existing classification rate.

Feature extraction methods combine existing features in some way to create new

features which better describe the input data. Again, this can be with the objective

of reducing the number of features and/or increasing accuracy.

As the majority of the work in writer identification has focused on developing

or deriving new features, these techniques are currently used more rarely within

the writer identification literature16, with a few notable exceptions.

Of these two stages, some form of feature selection is more common. Sequen-

tial selection methods start with either the complete set of features (Sequential

Backward selection, or SBS) or the empty set (Sequential Forward Selection, or

SFS), and remove the worst-performing feature or add the best-performing fea-

ture on each iteration, before reclassifying the data with the updated feature sub-

set. The ‘floating’ variations (Pudil et al., 1994) combine these approaches, e.g.

Sequential Floating Forward Selection (SFFS) adds the best-performing feature

at each iteration, but also checks to see whether performance of the updated set

16e.g. neither the surveys of (Plamondon and Lorette, 1989) nor (Sreeraj and Idicula, 2011)
consider this

52

could be improved by removing a previously-chosen feature. Fornéz et al. (2009)

test various sequential selections and finds the best results with SFBS, reducing

the original set of 92 features to 11, with a small drop in accuracy.

Genetic Algorithms (GAs) are a class of stochastic optimisation techniques

which takes an initial population of solutions (in this case, various subsets of fea-

tures) and tests their performance, keeping the best-performing each iteration and

mutating and recombining them to produce new potential solutions. Pervouchine

and Leedham (2007) uses GAs to group 31 features measured from the grapheme

‘th’ into those considered ‘Indispensable’, ‘Partially relevant’, or ‘Irrelevant’.

Of the feature extraction methods17, Principal Component Analysis (PCA) is

the most commonly applied technique. It seeks to describe most of the varia-

tion in the training data in as few dimensions as possible (without taking class

label information into account). The same number of resulting dimensions are

output, but are ranked according to the variation accounted for. Typically the top

10% of PCA dimensions will represent the data well. Bulacu et al. (2003) briefly

mentions applying PCA to confirm the “excessive dimensionality” of the feature

vectors they have developed, and van Erp et al. (2003) states that “...PCA analy-

sis confirmed that a reduction to 10% of the original dimensions may still yield

reasonable results.”.

Linear Discriminant Analysis (LDA) is another common method used to find

the most writer-discriminating directions in a feature space. It can be used a clas-

sifier in its own right, finding the best linear splitting planes between the training

data. LDA operates on the assumptions that the class covariances are the same,

and that the feature data are normally distributed. It seeks to best separate the

training data by trading-off two measures: minimising the within-class variance

(i.e. mapping each class’s data in as tight a cluster as possible) and maximising

the between class variance (i.e. placing different classes as far from each other as

17Details of the feature extraction methods summarised here can be found in e.g. Hastie et al.
(2009)

53

possible). As with PCA, the direction in which the ratio between these measures

is maximised has the highest weighting, leading to ordered output dimensions.

As LDA models the splitting planes between classes, the number of output di-

mensions is one less than the number of input classes. Wang et al. (2003) applies

both PCA and LDA to the Directional element features common to Chinese writer

identification, with excellent individual-character results near 100%.

Schlapbach et al. (2005) investigates many of these techniques, including PCA

and Multiple Discriminant Analysis (a variant on LDA designed for the multi-

class problem) for feature extraction, and a GA and various sequential algorithms

for feature selection. Several techniques manage to reduce the number of features

and increase overall identification accuracy; of these, MDA performs best in both

categories.

Independent Component Analysis is, like PCA, an example of blind-source

separation in that it does not require the classes of the data. Unlike LDA, it makes

the assumption that the input feature data are not normally-distributed, using this

to search for the feature combinations and weightings most likely to have pro-

duced the observed feature data. Ubul et al. (2009) applies a combination of PCA,

ICA, and a genetic algorithm to Gabor-filter features, improving identification ac-

curacy from 83.4% to 92.5% whilst reducing the number of features used from 96

to 20.

2.3.12 Feature Identification Performance

Due to the wide variation in experimental setup, it is very difficult to compare

feature performances precisely. Nevertheless, some general conclusions can be

drawn. The top-performing structural features (GSC) outperform the top global

or statistical features (GMMs, edge-hinge combinations, grapheme codebooks),

and maintain this performance over a large dataset (875 writers). Due to the time-

consuming manual character segmentation that must be performed, all studies use

the same (CEDAR) dataset. This consists of fixed-content samples which may

54

positively skew the results by a significant amount18. Of the text-independent

features, the GMM approach of training each writer gives the best results, at a

maximum of 98% on 100 writers, but this does involve experimental parameter

adjustments over the training set. The largest datasets used with text-independent

features are in Bulacu and Schomaker (2007b) and Bulacu and Schomaker (2006),

of 650 (IAM dataset) or 900 writers (IAM and Firemaker). Several features have

been tested on these, the best-performing being the edge-hinge distribution at ap-

proximately 80%. The related direction co-occurrence distributions are also rea-

sonably good, but are generally outclassed by the other angular features. The

edge-hinge combinations of van der Maaten (2005) boost the performance of the

single hinge distribution in a comparable implementation, but do not exceed the

highest performance of 84% recorded for this feature. This may be due in part

to the ceiling effect of smaller datasets, where a few misclassifications have a

noticeable effect on accuracy figures. Grapheme codebooks are of comparable

performance to edge-hinge pdfs over many datasets, and the high performance

of writer invariants and stroke-fragment reference bases suggest this is a robust

approach.

At a high of 69%, the brush feature is surprisingly accurate, but is only practi-

cal for datasets where the writing instrument is standardised.

Most texture-based features do not perform very well for the writer identifica-

tion task, and are generally tested only on small datasets. In particular, wavelets

(with the exception of Gabor wavelets) have shown near-uniformly poor perfor-

mance for the writer identification task, although the related filter-type features

show more promise. Autocorrelation performs little better, but its accuracy seems

to hold well over increasing numbers of writers. However, due to potential imple-

mentation differences, comparison between different experiments is unreliable.

Entropy, Hough features and fractal dimension measurements also perform very

poorly, to the point where they are unlikely to be of any use in writer identification,

18For details of this effect see Section 2.3.1

55

even in combination.

For further information, Appendix B contains a comprehensive listing of the

experimental results available in the offline writer identification literature.

2.4 Summary

This review has considered offline writer identification as a pattern recognition

problem, placed in the field of biometrics and closely related to other forms of

writing analysis such as signature verification and optical character recognition.

The datasets and image processing techniques in common use were briefly sur-

veyed, before considering in detail the area of writer identification which occupies

most of the literature: the design and extraction of writer-indicative features.

The full range of techniques in use was described, from those which require

complete text transcripts to those which operate on images regardless of text con-

tent. It is clear that there are few consistent methodological approaches, which

makes it difficult to accurately compare feature performance between experi-

ments. However in general, the features which employ most writing-specific in-

formation give the highest identification performance, but offer the least flexibility

in adaptation to new corpora.

The majority of the work has been conducted on Latin scripts, but Arabic

and Chinese scripts are a developing area. Almost all published work focuses on

contemporary data, with only a few scattered applications to historical images.

The next chapter of this work describes and explains the datasets, processing

methods, feature extraction techniques, and experimental methodology chosen to

support the work in this thesis.

56

Chapter 3

Data Processing and Experiment

Methodology

3.1 Introduction

This chapter describes and explains the significant choices of data and writer iden-

tification method used in the technical work of this thesis. The focus of this

work is the analysis of historical data, in particular a medieval English manuscript

dataset. A typical modern dataset drawn from the standard IAM database is ex-

amined in parallel to observe where the two sets respond differently. Section 3.2

describes the data characteristics and details the preliminary work done in pro-

cessing the datasets.

The grapheme codebook was chosen as the writer identification method for

several reasons:

• Excellent performance as an individual feature

• Adaptability and automatic specialisation to different scripts and text styles

• Does not require transcripts, OCR, or manual text labelling

• Well-established method, tested extensively and independently

57

• Visually comprehensible, and explainable by analogy to manual writer iden-

tification procedures

As described in Section 2.3.5, it is one of a number of similar approaches

to writer identification which aim to characterise the writing style of a sample

by considering the distribution of different ink trace shapes present in the text.

Section 3.4 details the stages in the codebook process, discussing the variations in

implementation found in the literature.

The final part of the chapter draws on the codebook discussion to define a

consistent experimental methodology. This includes the measures taken to ensure

that the results obtained are reliable, and (as far as is possible) comparable to

earlier studies, and includes some early preliminary experiment results.

An overview diagram of the complete process is given in Figure 3.1.

3.2 Data Preparation

Most contemporary datasets for testing writer identification algorithms are created

under standardised test conditions that do not reflect non-laboratory datasets: there

are typically a large number of writers generating text that meets fixed criteria,

using standardised writing instruments. In non-laboratory data, the text content,

quantity, and production usually varies widely between writers, and the document

reproductions may be very noisy. These qualities can be particularly pronounced

in historical datasets, and furthermore there is no possibility of generating addi-

tional data.

However as the volume of data being digitised grows, automated analysis of

historical documents is increasingly important. Historical datasets often differ in

many aspects from modern benchmark datasets on which features are designed

and tested, and techniques which are useful when handling modern datasets may

therefore be unsuitable for application to historical data.

58

Binarisation

Image Cleaning

Connected-component Extraction

Grapheme Segmentation

Grapheme Normalisation

Global Codebook Selection

Grapheme Distribution Calculation

Feature Vector Normalisation

1-Nearest Neighbour

Cross-validation

Feature Selection

Feature Extraction

Rejection Thresholding

Image Processing Text Processing

Feature Measurement Feature Development

Classification Verification

Preprocessing

Grapheme Codebook

 Feature Extraction

Classification

FIGURE 3.1: Overview of the grapheme codebook identification process. Sec-
tions in black are required for the grapheme codebook process. Sections in grey
are optional stages typically carried out repeatedly during feature development,

incorporating information fed back from earlier classifications.

59

In order to study this, two datasets will be examined: a widely-used contem-

porary dataset, and a new dataset consisting of photographs of medieval English

manuscript pages.

This section describes the standard IAM dataset and the medieval manuscript

dataset collected and examines the dataset-specific processing that was applied to

each.

3.2.1 IAM

The IAM database is a collection of grayscale PNG images of varied-content text.

The images are available in full pages, or at the text line or word level, and are

fully labelled. The content of the samples is freeform English text. Each test page

contains about a paragraph of text, using a separate guideline sheet to ensure that

the lines are horizontal and well-spaced. More details can be found in Marti and

Bunke (1999) and Appendix A.1. The modern handwriting dataset is drawn from

this database and consists of the 93 writers made available from the 100-writer

identification set (Schlapbach and Bunke, 2007b). The images are greyscale, con-

taining a single line of text segmented from a copied varied-text paragraph. Image

noise is virtually non-existent – standardised recording forms were used, scans are

uniform and high-quality, and text lines are cleanly separated, making it an excel-

lent baseline for comparison.

3.2.2 Medieval

The historical dataset contains approximately 400 full- and part-page images from

Middle-English manuscripts, written by 43 scribes. There are between one and 52

images attributed to each scribe; identification of each image was provided by

University of York Professor of Medieval English Palaeography, Linne Mooney.

As described in the Introduction, several scribes may contribute to a single manuscript.

However, the page images here have all been positively attributed to a single writer

60

FIGURE 3.2: Full page IAM dataset sample (Marti and Bunke, 2002)

FIGURE 3.3: Selected lines from IAM database handwriting samples (Marti and
Bunke, 2002)

61

FIGURE 3.4: Sample image from the medieval scribes dataset

62

to enable accurate system training.

The dataset is very irregular, and image noise levels are high. The ink trace is

often broken and faded, text lines can be curved or overlapping, and usually both

ink and background vary in colour due to aging or staining (Figure 3.4). Even

where the document is well-preserved, the script within a page can change size,

layout, and font. The images also vary in size and resolution, from archival quality

to samples taken with a handheld digital camera.

3.3 Datasets

The grapheme codebook method requires binary graphemes as input. This section

describes the processing applied to convert the original images into the required

format. A brief outline of the necessary stages is given (covering the ‘Preprocess-

ing’ section of Figure 3.1), followed by the detail of the process applied to each

dataset and the implementation which supported it, comparing the preprocessing

required for the modern and medieval data.

3.3.1 Image Processing Stages

As covered in Section 2.2, there are several image processing stages that generally

need to be applied in order to make use of the image data in writer identification.

For these experiments, the input data format is in graphemes, so the following

stages are necessary and are briefly summarised below: cleaning, binarisation,

connected-component extraction, and grapheme extraction. The graphemes have

been represented as bitmaps, as this format offers a good trade-off between com-

plexity of processing and use, and the potential classification accuracy (Bulacu

and Schomaker, 2005a). No further processing steps (such as contour extraction)

have therefore been applied.

63

Cleaning This stage is applicable where no suitable threshold can be found to

binarise the original images directly, either because they make use of colours that

map too closely together in greyscale, or because the image is very noisy, or con-

tains non-text elements.

Binarisation The vast majority of offline writer identification techniques work

with binary input images, rather than colour or grayscale. Although it appears

that no comprehensive studies have been done, available results suggest that de-

spite the information loss, this is the most useful format to work with. Although

grayscale may be appropriate for some features, e.g. attempting to reconstruct pen

pressure (Wirotius et al., 2003), for the most part it makes the resulting images too

complicated to process further1.

Connected-components A connected-component is a complete section of con-

nected ink trace, delimited only by where the writer has lifted the pen. The first

stage in extracting graphemes is typically to lift whole connected-components en-

tirely from the input page. This can be done in several ways, and is sometimes

combined with text-line extraction. Potential issues include handling components

that connect across text lines, and components that merge with non-text page ele-

ments.

Grapheme extraction A grapheme is a character-level segment of the ink trace

that may contain more or less than a single alphabetic character. Graphemes are

generally used as replacements for characters in any situation where the precise

content of the character is not important, as they are far easier to extract auto-

matically. The term fraglet is sometimes used; the terms are interchangeable.

Graphemes are derived by splitting the connected components in the writing direc-

tion as necessary, using a suitable deterministic heuristic. Figure 3.5 demonstrates

the ink-trace minima heuristic typically used.
1See Section 2.2 for further details

64

FIGURE 3.5: Example grapheme splitting points by the minima heuristic, as given
in Bulacu and Schomaker (2007a)

3.3.2 Processing Implementations

In this section, the relevant implementation details of the image preprocessing are

described, along with the tools and libraries used.

Cleaning and Binarisation ImageMagick2 is a specialised image processing li-

brary which provides extensive thresholding, despeckling, filtering, and de-noising

functions. These were accessed via a freely available wrapper library for Java,

JMagick3. Experimentation led to the conclusion that a median filter was most

effective, and that applying despeckling beforehand sometimes improved the end

result.

The median filter examines a window of a specified radius r around a pixel,

and replaces it with the median values of all pixels in the window. In a binary

image, this equates to using whichever value in the window (ink or background)

has the majority. As O(r2) pixels need to be examined for each input pixel, large

radii are rarely used.

Besides de-noising, the median filter has the side-effect of slightly enlarging

the ink trace and filling in small gaps, and removing very fine strokes. These mod-

ifications were deemed acceptable as the dilations are fairly modest and the gap-

2http://www.imagemagick.org
3http://www.jmagick.org

65

FIGURE 3.6: Sample original scribe image, ©British Library

66

FIGURE 3.7: Sample scribe image after cropping and thresholding

67

filling is usually beneficial (as it most commonly covers ink trace degradation).

The fragmentation of the ink trace that occurs from stroke loss is not necessarily

a problem, as it is consistently applied. Although a few strokes will be lost in the

process, it is an acceptable trade-off: a radius of two (that is, a 3×3 pixel window)

was found to offer the best compromise between clean up and ink trace alteration.

A GUI was developed to cover the interface to the three selected functions

(thresholding, median filter and despeckling), as there was no existing program

that had these available to use in a streamlined fashion. The alternative was the

command line interface to the ImageMagick library, but this offers no immediate

visible feedback, requiring a separate image viewer to be run each time a change

is made. The custom GUI allowed thresholding to be accurately adjusted, and

median and despeckling filters to be tested in combination to efficiently clean the

images.

Connected-component and Grapheme Extraction The extraction of the con-

nected components and graphemes is a fully automated process. The input ex-

pected is the cleaned and binarised sample image, and the output is PNG-encoded

images, which are sorted either by size (into accept/reject) and by a rough measure

of complexity: the number of horizontal ink runs across the centre of the image,

or maximum number of runs across the grapheme.

Connected-component extraction starts with all ink pixels from the input im-

age, and merges adjacent groups agglomeratively. The simple algorithm devel-

oped is given in Algorithm 1 in Appendix C. The list of known components is ini-

tialised to empty, and each input pixel is examined in turn. All known connected-

components that are adjacent to the current pixel are collected. If there is one

or more, they are all merged together, along with the current pixel. If the cur-

rent pixel does not touch any known component, it is added to the list as a new

component.

After a single pass through the document input pixels, all connected-components

68

will have been extracted, however, the complexity noticed in practice is related to

the connectedness and size of the components, which varies from image to image.

Graphemes are split from the connected-components in a modified implemen-

tation of the algorithm described in Bulacu and Schomaker (2007b). The original

proposed splitting on “the minima in the lower contour with the added condi-

tion that the distance to the upper contour is on the order of the ink-trace width”

(pg. 708). The upper contour is constructed from the uppermost ink pixel at each

vertical position in the image; likewise the lower contour is the vertical position

of the lowest ink pixel in each column. Ink trace minima are the lowest inflec-

tion points in the curves formed by these contours: see Figure 3.5 for an example

illustration.

Experimentation found that the quality of graphemes produced by this crite-

rion alone was not good on this dataset, and so some modifications were made: the

upper rather than lower contour is searched for minima, the ink trace before and af-

ter the split is checked to see that connectedness is maintained, and a small amount

of leeway is given in choosing minima (along a flat section of ink trace, any pixel

may be chosen that meets the earlier criteria). This avoids over-fragmentation,

and increases the likelihood of making a good cut.

The resulting graphemes have fewer rejections due to size or complexity, and

are visually neater, with fewer cuts through large or complex sections of ink.

These graphemes are rescaled to a fixed 50 × 50 pixel square which does pro-

duce some scaling artifacts, but affects mainly the lower-resolution images.

Both connected-component and grapheme extraction have rejection thresholds

(based on the median component dimensions) built in to remove tiny and irregular

components (e.g. underlines, noise). These underwent iterative adjustment on a

pilot dataset to obtain the current result, but generalise well over the full datasets.

69

(A) Original segmentation
(B) Modified segmentation

FIGURE 3.8: Graphemes produced with original and modified segmentation al-
gorithms

3.4 Grapheme Codebook

This section will discuss the grapheme codebook process in detail, covering the

feature extraction and classification stages of a biometric writer identification sys-

tem, as included in the ‘Feature Extraction’ and ‘Classification’ sections of Figure

3.1.

3.4.1 Codebook Generation

Once initial processing is complete, each image in the dataset is represented in the

writer identification system as an unordered bag of grapheme images. This section

will describe the identification process using the grapheme codebook method, dis-

cussing existing results and implementations in the literature. The first stage is to

generate a codebook: a reference set of graphemes that will be retained through-

70

out the process to define a ‘shape alphabet’ with which to describe each dataset

image.

Codebook Data

Codebook generation methods vary – the graphemes may originate from the dataset

in use or a separate training set, and may be selected using different criteria. Draw-

ing from the dataset in use produces a codebook most representative of the data

being tested: the range of shapes that the codebook discriminates will be most

closely tuned to the shapes actually used by the writers. The disadvantage is that

the codebook may be overfitted to the data used to train the writer identification

system. The range of ink trace shapes in unseen test data may be noticeably differ-

ent to the training data, giving less accurate results in practice than those estimated

from the initial training. Another potential problem is that graphemes selected for

the codebook are not removed from the image representation, leaving a handful of

graphemes with artificially exact codebook matches in later comparisons. This ef-

fect is only an issue in practice if the codebook comprises a significant proportion

of the dataset.

A second option is to set aside a portion of the training data for use only in

generating codebooks. This overcomes the problem of exact matches, but reduces

the data available for training the system. The third option is to use a differ-

ent dataset for generating codebooks, e.g. Schomaker and Bulacu (2004) selects

codebooks from lower-case text, but includes tests run on upper-case text; Bulacu

and Schomaker (2006) uses the ImUnipen dataset for codebook generation and

the Firemaker and IAM datasets for system training. This mitigates the overfitting

of codebooks to training data, but can also reduce the effectiveness of the final

system, as the codebook may be less sensitive to the target writing style.

71

Grapheme Selection

No existing work directly examines the question of composing a codebook that

best discriminates between writing styles; instead, codebook selection methods

aim to produce a representative sample of the available graphemes. The origi-

nal selection method proposed (Bulacu, 2007) was to cluster the graphemes by

shape-based similarity using a Kohonen Self-Organising Feature Map (SOFM).

The number of clusters is fixed to the required codebook size, and the cluster cen-

tres are selected for the codebook as they are taken to be representative of their

cluster of similar graphemes. The SOFM requires extensive training to converge

on a layout that best spans the shape-space – both one- and two-dimensional vari-

ants have been tested (Bulacu and Schomaker, 2005a), although the resulting spa-

tial organisation of graphemes is not used, as the codebook itself has no intrinsic

ordering.

K-means, an alternate method of clustering graphemes, has also been tested

(Bulacu and Schomaker, 2005a). The identification accuracy of codebook selected

this way was indistinguishable from the far more resource-intensive SOFMs. Both

clustering methods aim to represent the full span of shapes in the pool of avail-

able graphemes. In doing so, the rare and ‘outlier’ shapes are implicitly over-

represented in a codebook compared to their natural rate of occurrence.

In contrast, van der Maaten tests the simple method of selecting graphemes

at random from the pool (van der Maaten, 2005), retaining the property that

grapheme shapes will, on average, be selected in proportion to their natural fre-

quency of occurrence. Identification performance using this method appears to

be broadly similar to the clustering methods, although noticeably more varied.

This is expected, as clustering-based codebooks calculated from the same input

pool of graphemes are likely to be far more similar in composition across runs.

Another notable aspect of this work is that the codebooks generated are visually

very different to those reported in Bulacu (2007). This may be due to differences

in grapheme preparation, but may also reflect to some degree the difference in

72

selection method.

To summarise, there are two main approaches to selecting a representative

codebook. Clustering methods aim to span the total shape-space, akin to maximis-

ing the variance of the shape data, with the side-effect of over-representing atyp-

ical shapes. Random selection more accurately models the true shape distribu-

tion, but potentially at the expense of being less able to characterise infrequently-

occurring grapheme shapes.

3.4.2 Feature Extraction

Once the codebook has been selected, the next stage of the process is feature

extraction: numerically describing each handwriting image using the codebook as

a reference. This is done by comparing each grapheme extracted from the image

with every grapheme in the codebook, and tallying it against the closest-matching

codebook element. This forms a frequency distribution of the shapes in the input

image with respect to a specific codebook. It characterises the frequency with

which the different types of shape occur. The frequencies are normalised by the

number of graphemes in the input image to form a probability distribution, making

the distribution invariant to the amount of text in each sample. Figure 3.9 shows

the feature vectors generated from two IAM dataset sample images, as compared

against a codebook of three graphemes. In practice, codebooks typically contain

hundreds of graphemes, as smaller sizes do not contain enough information to

accurately discriminate between writer styles.

Two variations have been made from this outline: at the point of comparing

graphemes, and the tallying method. Grapheme comparison methods are depen-

dent on the representation of the grapheme images. The initial contour represen-

tation used the Euclidean distance between the stored points (Bulacu, 2007), but

later variations use bitmap image representations. As the images are binary and

identically-sized, a image correlation measure can be implemented by checking

whether the pixel at a point (x,y) in both images has the same value. A disadvan-

73

FIGURE 3.9: An example codebook of size 3, and the feature vectors generated
from two IAM dataset sample images

74

tage of this approach is that it is not translation invariant, i.e. if the image detail

in the graphemes is similar but offset, a low correlation may be registered as the

pixels do not overlay (more details are given in Section 4.5). This problem can be

solved by using an alternative similarity measure such as cross-correlation, which

effectively measures the correlation at all possible offsets, choosing the maxi-

mum. However, it is more expensive to compute and more complex to implement

(usually via the Fast-Fourier Transform). Although common in the more general

bag-of-words methods for arbitrary images, it has not been tested in the codebook

method literature.

Results of varying the tallying method have been reported in Schomaker et al.

(2007). Instead of attributing a single tally mark to the best-matching grapheme,

a count is also attributed to a number of the most similar graphemes found. The

effect of the technique of ‘smearing’ the tally is to stabilise the assignment of

increments to the codebook graphemes and smooth out the histogram, so that

individual entries which match only fractionally better do not receive such a dis-

proportionate boost in probability. This smoothing of the histogram is particularly

beneficial to small samples, where edge-cases can have a relatively large effect.

The number of additional graphemes incremented ranged from zero (i.e. standard

tallying) to 140 in a codebook of 1089 graphemes, with a peak boost in accuracy

from 75% to 81% when 30 grapheme neighbours are included.

An interesting extrapolation of this method would be to increment all code-

book graphemes in proportion to their similarity to the target grapheme, but this

has not been tried. This variation would also have the property of breaking the in-

terdependence of codebook features, as the increment values a codebook grapheme

receives would depend only on the absolute strength of the match with the test

grapheme, rather than the comparative strength relative to the other graphemes in

the codebook.

75

FIGURE 3.10: A plot of the feature vectors generated from the samples in Fig-
ure 3.9, in the feature space defined by the codebook. The red line indicates the

distance between the samples

3.4.3 Classification

Once feature vector calculation is complete, each image will be described by a

probability distribution quantised into one bin per codebook grapheme, as repre-

sented in Figure 3.9. An alternative visualisation of these feature vectors is to plot

them as points in a feature space described by the codebook. Each grapheme fea-

ture in the codebook forms an axis or dimension in the feature space with values

ranging from 0 to 1, and each image’s feature vector can be plotted as a point

using its corresponding probability values for each codebook feature. Figure 3.10

illustrates these points for the IAM samples from Figure 3.9.

To identify the writer of an image, its feature vector must be calculated and

compared to the feature vectors belonging to images whose writers are already

known. The simplest method is to measure the distance between the points in

feature space, with proximity indicating similarity. This is the unweighted or Eu-

76

clidean distance metric; alternative metrics such as Hamming, Chi-square, Bhat-

tacharya (Schomaker et al., 2004) define the distance between two points differ-

ently, weighting some dimensions more significantly than others. Schomaker et al.

(2004) finds that Hamming performs best, but Schomaker and Bulacu (2004) uses

the chi-square distance. The authors explain that with the latter metric, differences

in the low-probability areas of the distributions are emphasised.

Having chosen a metric for comparing feature vectors, the next stage is clas-

sification: assigning a sample of unknown identity to an existing group. The most

widely used method in the writer identification literature is nearest-neighbour –

the unknown sample is assumed to have the same writer as its closest neighbour-

ing sample in feature space. This classifier effectively operates by partitioning the

feature space around the points belonging to each class, regardless of the shape

this forms (including disjoint areas). This allows it to faithfully reflect highly

irregular boundaries.

Chance-levels and Significance

To determine the usefulness of a feature or set of features, a reference point is

required. The most basic comparison that can be made is whether the feature

performs better than chance-level, i.e. choosing a writer class at random as the

output. Given n writers, the naive chance level is 1/n and assumes that there is

an equal chance of choosing every writer class. However in the case of nearest-

neighbour, classification is based on proximity to one of the existing training-set

writing samples. This assumption therefore only holds if the training set contains

an equal number of samples for each writer. To calculate a more accurate chance-

level in this case, the probability of choosing a given writer class must be weighted

by the proportion of its training-set samples. For instance, if a training set contains

four samples from writer A and one sample from writer B, the chance of a test

sample being assigned to writer A will be four times that of writer B, i.e. 80% and

20% respectively. In the experiments reported in this thesis, the more accurate

77

per-sample method of calculating chance levels has been used throughout.

The second aspect of comparing classification results is significance. As the

methods used for identification involve an element of random selection, the same

experiment is run multiple times, and the average (mean) result taken to produce

a more reliable estimate of the method’s performance. The more runs, the more

reliable the mean will be as a true performance indicator, but it is still subject to

a margin of error. Additionally considering the spread of these individual results

allows us to estimate the range in which the true mean identification performance

lies. This statistic is the standard error of the mean, often shortened to standard er-

ror. The probability that the true mean lies within within one standard error above

and below the calculated mean is approximately 68%; a separation between two

results of at least this range is the basic requirement for the result to be statistically

significant. If two methods give results for which the standard error ranges over-

lap, there are insufficient grounds on which to confidently state that either method

performs better, i.e. the result is not significant. Confidence that two results are

different increases with the separation between their standard error ranges. Where

relevant, the error bars on plots in this thesis will be ± one standard error to illus-

trate this range.

3.4.4 Codebook Summary

This section has described the basic codebook method of generating a reference

codebook, calculating feature vectors for all training and test images, and assign-

ing test images the identity of the closest image’s writer. The variations in method

and implementation available in the literature have been discussed and compared.

The next section considers these alternatives to produce a consistent methodology

as a basis for future work.

78

3.5 Methodology

This section documents the development of a standard experimental methodol-

ogy, including some preliminary experiments carried out to support the approach

taken. For the most part, the most common approach taken in the field has been

retained to aid comparability. Where several options are available, the simplest

method was usually implemented. As this work is concerned more with com-

parison than extracting the maximum identification performance, this allows the

effects of various method adjustments to be more easily seen.

Grapheme Extraction Binarised images were used as input to the grapheme

extraction method. Some variations in implementation detail were required to

cope with the image noise present in the medieval dataset, but once these were

developed both datasets were processed using the same parameters. Minima-

segmentation was retained as the standard method, as was aspect-ratio normal-

isation to 50× 50 pixels for the resulting bitmap images.

Image Distance The simple image correlation distance was used to compare

grapheme images. The translation-invariant cross-correlation was also tried, but

computation time was prohibitive. Further details on this experiment can be found

in Section 4.5.

Codebook Size Codebook sizes of 50, 100, 150, 200, 250, and 500 were chosen,

as the results in Bulacu and Schomaker (2007b) suggest performance peaks at

codebooks of around 100 - 400. Preliminary experiments were conducted on both

datasets with codebook sizes ranging from 18 – 2500 graphemes, which confirmed

the figures found in the literature.

Multiple runs As all of the experiments in this thesis involve some element of

random selection, multiple runs were used for each experiment to increase the reli-

79

ability of the results. This was typically eight per parameter combination wherever

computation resources permitted, with mean and standard error reported.

Classifier Again, the standard nearest-neighbour classifier was used, for both

comparability and clarity. The Euclidean distance was used to compare feature

vectors, as an unweighted comparison of the feature vector distributions was pre-

ferred. Although more than two samples from each writer are available, the leave-

one-out testing strategy typically found was also retained, allowing robust results

to be calculated whilst making maximum use of the training data. Writer identifi-

cation accuracy will be primarily reported based on the best match only (Top-1).

3.5.1 Experimental set-up

Unless stated otherwise, the methodology for experiments is therefore summarised

as follows:

• Binarised page images as input

• Approximate grapheme splitting on ink trace minima

• Storage and comparison as bitmapped 50× 50 pixel images

• Codebook construction by random selection

• Simple image correlation as a grapheme difference measure

• Direct use of probability distributions as feature vectors

• Euclidean distance for comparing feature vectors

• Nearest-neighbour classifier

• Leave-one-out testing strategy

• Eight runs per parameter combination

80

0 50 100 150 200 250 300 350 400 450 500
30

35

40

45

50

55

60

65

70

75

80

codebook size

T
op

−
1

ac
cu

ra
cy

 (
%

)

Scribal dataset
IAM dataset

FIGURE 3.11: Baseline Top-1 identification results on the medieval dataset (43
writers) and IAM dataset (93 writers)

• Accuracy reported from Top-1 match

3.6 Baseline Results

To create a target against which to compare method variations, the baseline per-

formance was measured for the experimental set-up described above. The plots in

Figure 3.11 give the Top-1 identification accuracy on the scribal and IAM datasets.

The baseline accuracy for the IAM dataset is significantly lower than the medieval

data due to a larger number of writers and a much smaller sample size: the scribes

dataset images contain up to a page of text (an average of approximately 1000

graphemes), whereas the IAM dataset consists of text-line samples of around 35

graphemes.

The scribes dataset accuracy increases continuously with codebook size, al-

81

though the rate of increase drops after 200 graphemes. The identification accuracy

of the IAM dataset peaks at a codebook size of around 150–200 graphemes before

dropping off on larger codebooks.

3.7 Summary

This section has documented the details of the data processing and experimen-

tal preparation made for the work of this thesis. The codebook method chosen

was discussed in detail, and an experimental methodology has been defined from

the outset to ensure experiment results are consistent and comparable. As briefly

mentioned in Section 3.5, some variations on this method have been tested rig-

orously to observe whether the IAM and medieval datasets respond differently.

These experiments form the next chapter.

82

Chapter 4

Grapheme Codebook Analysis

As described in the previous Chapter, the grapheme codebook method has been

chosen for these investigations for its high identification accuracy and implicit

adaptability to a range of script styles. In this Chapter, three sets of experiments

are described which examine different aspects of this method.

The first two experiments (Section 4.1) focus on different ways of extracting

graphemes from the original image ink trace, and the third experiment considers

three methods of calculating how closely two grapheme images match.

Their primary purpose is to compare the modern and medieval datasets to dis-

cover whether each dataset responds in the same way to adjustments in process-

ing and the codebook method, and whether some parts of the ink trace are more

writer-informative than others. Checking the response of the two datasets aims to

determine if current methods are directly applicable across all datasets, or whether

historical data of this kind requires a different approach. Highlighting aspects of

the writing that are particularly useful to writer identification enables us to see

if writer-specific information is found in the same aspects of all handwriting, or

whether modern or medieval texts have their own particular quirks which could

benefit from closer investigation.

The experiments are reported as follows: Section 4.1 introduces the back-

ground to the first two experiments. Section 4.2 considers how much writer-

83

specific information grapheme aspect-ratio carries in each dataset. Section 4.3

compares methods for splitting the ink trace into graphemes. It compares graphemes

that emphasise the character body with those that emphasise the between-character

ligatures, and considers whether this information is complementary. Section 4.5

compares three techniques for measuring the similarity between two graphemes,

including whether the position of the grapheme in the image is a significant factor

in practice, and how informative the level of image detail is. Finally, Section 4.6

summarises the results and conclusions from the work in this Chapter.

4.1 Grapheme Extraction

The first two experiments involve varying the graphemes initially extracted from

the image ink trace. The grapheme codebook method is considered a special

case of the bag-of-words strategy for general image classification (Li and Per-

ona, 2005). A major advantage of this specialisation is a natural and meaningful

image segmentation which takes into account the writing structure. The typical

segmentation method used assumes a binary input image (black text on a white

background), and heuristically inserts vertical breaks at the ink trace minima. This

method was originally given in Casey and Lecolinet (1996) for Optical Charac-

ter Recognition and aims to produce the most character-like segments possible,

but this occurs at the expense of breaking up the joins between them. Ghiasi

and Safabakhsh observe that these joins, or ligatures, between characters contain

writer-specific information which can be lost using standard segmentation. They

propose an alternate method that combines different sizes of fixed-width segmen-

tation, with good results (Ghiasi and Safabakhsh, 2010).

After segmentation, graphemes can be represented as contours or bitmaps,

with little impact on algorithm performance (Bulacu and Schomaker, 2005a). Us-

ing bitmaps, the graphemes are usually normalised in size to a uniform 50 ×
50 pixels, preserving the aspect ratio. However, Schlapbach and Bunke (2005)

84

find that some types of text size normalisation reduce identification accuracy.

Fornéz et al. find that constant-size normalisation in musical notation consistently

gives a higher identification accuracy than normalisation that preserves aspect-

ratio (Fornéz et al., 2009).

These results suggest that the typical approach to grapheme extraction may

not always be optimal. These experiments therefore test alternative methods for

the two main aspects of grapheme extraction: segmentation from the cursive ink

trace, and size normalisation for grapheme similarity matching. The identification

accuracy of the codebook method with these modifications is tested on both the

IAM and medieval datasets, to see whether they respond differently.

In Section 4.2 two grapheme size normalisation methods are tested: square-

ratio and aspect-ratio. The square-ratio method scales all graphemes to fill a 50×
50 pixel square, while aspect-ratio scales by only the largest dimension, preserving

the original height:width ratio of the grapheme. In Section 4.3, a variable-width

segmentation method is proposed which complements the minima-split approach

by preserving ligatures. This is compared against the standard method, and the

combination of graphemes from both methods.

4.1.1 Methodology

As these two experiments are closely linked, this section describes the experimen-

tal methodology used in both cases.

Codebook Method

The grapheme codebook method first splits the ink trace of an image into approx-

imately character-level fragments, using some segmentation method. A reference

set of graphemes is produced by selecting a subset of these – the codebook. Se-

lection can be by Kohonen Self-organising Map (Schomaker and Bulacu, 2004),

k-means clustering (Bulacu and Schomaker, 2005a), or random selection (van der

Maaten, 2005); overall identification accuracy is essentially independent of selec-

85

tion method (van der Maaten, 2005).

The features for each image are formed by measuring the similarity of each

of its graphemes to each of the codebook graphemes, and binning it against the

closest match. The resulting probability distribution is the sample’s feature vector;

codebook size determines the dimensionality.

Experiment Methodology

The following experiments consider only the initial process of segmenting and

storing the graphemes, and the effect that this has on classification accuracy. The

standard method described in Section 3.5.1 is followed, with the exception of

grapheme extraction as the variable under test. Codebook graphemes were se-

lected randomly from the total pool of graphemes generated for a dataset for the

given normalisation/segmentation method combination. Each experiment is run

eight times with a new set of random codebooks generated for each run (for a

total 384 runs across both datasets, including baseline experiments), and the mean

and standard error of the Top-1 classification accuracy are reported (Figures 4.2

and 4.4).

4.2 Normalisation

Normalisation methods are specific to the representation of the graphemes, and

are essential to allow comparison between writings which vary in size. This ex-

periment considers two possible size normalisation options for grapheme bitmaps:

fitting either a single dimension, or both dimensions, to 50 pixels. Figure 4.1 il-

lustrates the horizontal (columns 1 & 2) and vertical (columns 3 & 4) stretching

effect that square normalisation has over the natural aspect ratio of four graphemes

from a medieval manuscript image.

The aspect-ratio of a grapheme is retained by scaling both the height and

width by a single ratio. This ratio is calculated from the larger of the height or

86

FIGURE 4.1: Comparison of graphemes produced by the ratio (top) and square
(bottom) grapheme size normalisation methods

width of the original grapheme to ensure that at least one dimension of the scaled

grapheme fully fits the 50 x 50 pixel frame size. Scaling both dimensions to a

fixed size instead fits the frame in both dimensions, at the expense of warping the

original ink trace shape to some degree. Ratio preservation retains information

that may be writer-characteristic, and is the standard for bitmap normalisation in

grapheme codebook experiments (e.g. stated in Bulacu (2007), by inspection in

(Bulacu and Schomaker, 2007a; van der Maaten, 2005)). However, some forms

of constant-size scaling in both dimensions has been shown to be beneficial to the

writer identification rate. In Schlapbach and Bunke (2005), various normalisa-

tion operations were tested individually and in combination. Scaling each of the

the ascenders, descenders, and centre-line regions to a fixed vertical height was

the top-performing normalisation, improving identification accuracy from 76.0%

(no normalisations applied) to 97.7% (only vertical scaling applied). In Fornéz

et al. (2009), fixed-size normalisation for musical notation provides the highest

writer-identification accuracy across all three feature extraction options tested.

In this experiment, the standard minima segmentation was used to generate

two sets of graphemes for each of the scribes and IAM datasets, one aspect-scaled

and the other square-scaled. As described in Section 4.1.1, reference codebooks

were generated for each run by randomly drawing from the graphemes generated

from the relevant dataset/normalisation combination only. The feature vector gen-

87

eration and classification was identical across experiments in all other respects.

Results

Figures 4.2a and 4.2b show the variation in Top-1 classification accuracy on each

dataset, with error bars of ± 1 standard error (plotted with some horizontal jitter

for clarity).

The normalisation experiments on the IAM dataset clearly show that aspect-

ratio preservation performs better than fixed-dimension scaling. It produces a

highly significant improvement in identification accuracy of 5–6 percentage-points,

a substantial effect size equivalent to a boost of 7–11% over the square-scaled ac-

curacy. This effect is fairly constant across all codebook sizes, and confirms that

aspect-ratio in freehand Latin scripts carries writer-specific information.

On the medieval scribes dataset, aspect-ratio does not perform significantly

better than square-ratio. If anything, the results trend suggests that square normal-

isation may confer a small (1–2 percentage-point) boost. This demonstrates that

aspect ratio does not convey writer-specific information in this dataset. A likely

reason for this may be found in the manuscript style rather than writer-specific

handwriting style.

Scribes did not typically write in a personal freehand style, but adopted fonts

appropriate to the manuscript. These fonts are typical of particular periods and

geographic areas, and have a largely fixed aspect-ratio. This implies that aspect

is likely to be more strongly correlated with font than with writer in the scribes

dataset, as it is limited to scripts produced during the medieval period in England.

4.3 Segmentation

The second experiment compares segmentation heuristics, which determine how

the cursive ink trace is split into usable fragments. The standard method of split-

88

0 50 100 150 200 250 300 350 400 450 500
40

45

50

55

60

65

70

75

80

Codebook Size

A
cc

ur
ac

y
(%

)

Normalisation method classification accuracy on the IAM dataset

aspect−ratio normalisation
square−ratio normalisation

(A) Normalisation results on the IAM dataset

0 50 100 150 200 250 300 350 400 450 500
40

45

50

55

60

65

70

75

80

Codebook Size

A
cc

ur
ac

y
(%

)

Normalisation method classification accuracy on the scribes dataset

aspect−ratio normalisation
square−ratio normalisation

(B) Normalisation results on the medieval dataset

FIGURE 4.2: Results of the normalisation experiments, mean of 8 runs ± 1 stan-
dard error

89

FIGURE 4.3: Comparison of splitting points produced by the minima (bold/blue
line) and ligature (light/red line) segmentation methods

ting on ink trace minima (lowest inflection points1) aims to approximately divide

it into characters, but as the focus here is the shape distribution generated by the

writer and not the semantic content of the text, recognisable characters are not

essential.

In this experiment, the minima method is compared with its complement,

which breaks in the centre of characters wherever possible in order to preserve

the ligatures instead. Figure 4.3 shows the difference in splitting points on a con-

nected section of ink trace for each of these methods.

The minima method has been implemented by inserting a vertical break through

the minimum inflection points on the lower contour of the ink trace, if it addition-

ally holds that:

• The ink trace height at that point is approximately one stroke-width

• The segmentation will produce a grapheme with a sensible minimum width

(set at 5 pixels)

The stroke-width is estimated automatically per-document from the vertical

and horizontal run-length distributions.

The assumption implicit in the minima splitting method is that the character

body contains the writer-specific information. An alternative hypothesis is that
1See Figure 3.5 and Section 3.3.2 for details of this process and an example of minima-based

splitting.

90

the between-character ligatures contain writer-specific information, and should be

preserved.

The implementation of the ligature method initially employs the same minima

detection process, but splits instead at the midpoint between adjacent minima (and

the connected-component boundaries where necessary). A notable effect of this

process is that graphemes are no longer guaranteed to be connected-components

themselves.

As these segmentation techniques are designed to be complementary, their

combination is also tested. To do this, each image in the dataset is represented

by the union of the bags of graphemes output by both methods: the raw image

data is essentially duplicated, but each copy emphasises a different characteristic.

Graphemes identical under both methods are included only once to avoid skewing

the feature vector distributions in favour of single characters and small connected-

components.

This test distinguishes between the cases where the two splitting methods pro-

duce redundant or complementary information: if there is an exact overlap in the

information provided, the classification accuracy of the combination should ap-

proximately equal whichever single method (minima or ligature) is best. If the

two methods are extracting different information, combining them should give a

classification accuracy greater than either method individually.

Results

As before, Figures 4.4a and 4.4b show the Top-1 classification accuracy on each

dataset, with error bars of ± 1 standard error (plotted with some horizontal jitter

for clarity).

The segmentation results show that graphemes constructed preserving char-

acter ligatures do provide substantial writer-specific information, but the minima

segmentation method performs significantly better on both datasets.

On the IAM dataset, combining the output of both methods gives a significant

91

0 50 100 150 200 250 300 350 400 450 500
40

45

50

55

60

65

70

75

80

Codebook Size

A
cc

u
ra

cy
 (

%
)

Segmentation method classification accuracy on the IAM dataset

minima segmentation method
ligature segmentation method
combined (minima + ligature)

(A) Segmentation results on the IAM dataset

0 50 100 150 200 250 300 350 400 450 500
40

45

50

55

60

65

70

75

80

Codebook Size

A
cc

u
ra

cy
 (

%
)

Segmentation method classification accuracy on the scribes dataset

minima segmentation method
ligature segmentation method
combined (minima + ligature)

(B) Segmentation results on the medieval dataset

FIGURE 4.4: Results of the segmentation experiments, mean of 8 runs ± 1 stan-
dard error

92

performance boost, suggesting that the writer information extracted from char-

acter body and ligatures is independent to some degree. Identification accuracy

for the combined methods increases by 5–6 percentage-points over the minima-

segmentation method, and by 12–13 percentage-points over the ligature method.

This reflects a substantial proportional accuracy increase of 12% and 25% re-

spectively.

On the scribes dataset, the minima-split method significantly increases accu-

racy by 3–4 percentage-points, or 5–7% compared to the ligature method. This

confirms that the body of the character preserves more writer-specific informa-

tion than a focus on the between-character ligatures. However in contrast to the

IAM dataset, the combined method does not perform significantly differently to

either single-strategy approach. This may be due to the much larger number of

graphemes already available per-image.

4.4 Grapheme Extraction Conclusions

These experiments have examined bitmap normalisation and segmentation meth-

ods for grapheme codebooks on two very different datasets. Preserving the aspect-

ratio of freehand text was found to significantly improve classification accuracy by

7–11% compared to a grapheme size normalisation that discards this information.

These results suggest that at the grapheme level, aspect ratio is a writer-specific

feature in contemporary freehand writing. However, likely due to the geographic

and period influences of font on historical manuscripts, this does not necessar-

ily hold true of historical data: there is at best no increase in performance from

aspect-ratio preservation.

In grapheme segmentation for both datasets, preserving solely the charac-

ter body provides significantly more writer-specific information than preserving

solely the between-character ligatures. This effect is greatest on the IAM dataset,

with a performance difference of approximately 10%, compared to a difference of

93

approximately 6% for the historical data. Combining multiple splitting methods

produces a significant boost in accuracy on the small, clean IAM samples, but

this overhead of increasing the graphemes per sample offers no advantage on the

historical dataset.

Overall, the standard minima segmentation and aspect-ratio normalisation meth-

ods appear to perform well on clean benchmark datasets, but an improvement

in identification accuracy can be made for small image samples by combining

multiple segmentation methods. However on the historical data, the standard

aspect-ratio normalisation may have a negative impact, and combining segmenta-

tion methods offers no improvement. Extraction methods appropriate for modern

freehand benchmark datasets may therefore not be optimal when applied directly

to the increasing numbers of historical datasets in this area.

4.5 Image Distance measure

The previous experiments aimed to discover if writer-specific information is found

in various aspects of the ink trace. The final experiment looks directly at compar-

ing the graphemes once they have been generated.

The typical method for grapheme bitmap comparison is image correlation,

as described in Section 3.4.2. In binary images, this is equivalent to taking the

Euclidean distance between each pair of pixels, and is sometimes described as

such (e.g. (Bulacu, 2007)). To implement this measure, images were represented

as 50 × 50 matrices of boolean values, with zero representing a white pixel and

one a black pixel. Correlation was implemented by taking the sum of absolute

differences, normalised by the combined size of the images, and scaled to the

range [0,1], where zero means the images are totally different and one means

they are identical. The MATLAB implementation used is given in Listing 2 in

Appendix C.

The correlation measure is good at quantifying similarities in shape, but these

94

(A) Two example graphemes with matching ascender loops

(B) Graphemes overlaid directly: simple image correlation finds low similarity

(C) Graphemes overlaid at best-matching offset: cross-correlation finds high similarity

FIGURE 4.5: A comparison of simple correlation and cross-correlation matching
of two grapheme images

can be missed if the shapes are offset, as the ink pixels no longer line up (Fig-

ure 4.5). A translation-invariant distance measure compensates for these offsets.

Cross-correlation is used here: it calculates the correlation between two images

at every possible offset (padding an image if necessary) and uses the maximum

value, i.e. the closest match. It also returns the (x, y) location at which the best

match or matches are found, and for this reason it is commonly used to search for

a small patch or template in a larger image (Briechle and Hanebeck, 2001).

This process obviously requires much more computation than simple corre-

lation, as the similarity must be calculated for every pixel in the image. Cross-

95

correlation is therefore usually implemented using the Fast-Fourier Transform,

which considers the image data as a signal and maps both images into the fre-

quency domain, allowing all offsets to be considered simultaneously (Gentleman

and Sande, 1966). The MATLAB implementation of cross-correlation is used

here (the normxcorr2() function in the Image Processing Toolbox, Version 7.1).

Values are rescaled to the range [0,1], where again zero represents total difference

and one represents identical images.

As a contrast, these two correlation-based measures are compared to a distance

which does not directly consider shape information. The complexity of an image

is a rough measure of the level of detail it contains. This was implemented using

the measure defined in Kawaguchi (2005) for binary images. It considers the

proportion of black to white transitions which occur when looking along the rows

and columns of bitmap image pixels, specified by

∑w
x=1

∑h−1
y=1 ‖I(x, y)− I(x, y + 1)‖+

∑w−1
x=1

∑h
y=1 ‖I(x, y)− I(x+ 1, y)‖

w(h− 1) + h(w − 1)
(4.1)

where I is the bitmap image, w is the image width, h is the image height, and

(x, y) is the corresponding pixel value in the range [0,1] from white to black. If

fractional pixel transitions are permitted, this formulation extends to grayscale

images without modification. The MATLAB implementation of this metric is

optimised by summing the changes across rows and columns simultaneously, and

is given in Listing 3 in Appendix C.

Objective

The objective of this set of experiments is therefore to look more directly at how

the standard grapheme codebook methodology affects both datasets. The correla-

tion distances were chosen to examine the extent to which the graphemes formed

from the standard processing of each dataset respond to a translation-invariant

version of the usual shape-based correlation. The image complexity metric was

96

chosen as it does not directly involve shape-based information, providing instead

a measure of how detailed an image is.

The research questions considered in these experiments are:

• To what extent can translation-invariance improve identification accuracy in

shape-based image comparisons?

• Does translation-invariance affect the modern and medieval datasets differ-

ently?

• How useful are non-shape-based grapheme comparisons?

Methodology

The methodology for these experiments closely follows the standard method given

in Section 3.5.1, with the following notable exceptions. (The grapheme image

comparison method is different in each experiment, as this is the variable under

test.)

Eight runs were made for each of the simple correlation and image complexity

distances. However, preliminary tests showed that the cross-correlation distance

had a much higher computation time (approximately 4 times longer). Due to

resource constraints, only four runs were made for this experiment, which may be

reflected in a higher standard error in the cross-correlation results.

Particularly in view of the limited number of cross-correlation runs, the same

set of randomly-generated codebooks was used for each distance metric, to elim-

inate one of the sources of relative variation between experiments. Of the eight

codebook sets produced, four were used once for each of the distance metrics, and

the remaining four were used for the additional runs of the simple correlation and

complexity experiments. The standard set of codebook sizes was used, i.e. 50,

100, 150, 200, 250, and 500, for a total of 240 individual experiments run across

both datasets.

97

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

codebook size

T
op

−
1

ac
cu

ra
cy

 (
%

)

simple correlation
complexity
cross−correlation
chance−level rate

(A) Image distance results on the IAM dataset

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

codebook size

T
op

−
1

ac
cu

ra
cy

 (
%

)

simple correlation
complexity
cross−correlation
chance−level rate

(B) Image distance results on the medieval dataset

FIGURE 4.6: Identification accuracy for each image distance, mean ± 1 standard
error
98

Results and Conclusions

Figures 4.6a and 4.6b show the mean Top-1 identification accuracy of each dis-

tance metric, with error bars of± 1 standard error. The chance-level classification

accuracy is also shown for reference.

Both the correlation distances perform similarly, with the complexity distance

low but substantially above chance level. The IAM and medieval datasets respond

differently to the translation-invariance comparison: the IAM dataset identifica-

tion accuracy is improved by approximately 2–5 percentage-points with cross-

correlation, peaking at a codebook size of 150, whereas there is no difference

for the scribes data. This suggests that in practice, the additional computation

required for translation-invariance offers no advantage in medieval writing. A

potential cause of this is the greater regularity of the scripts, leading to more con-

sistent grapheme generation. The accuracy increase in modern handwriting may

be a useful effect in e.g. forensic analysis systems, which look to extract the max-

imum possible accuracy, but only where the increased computation time is not a

limiting factor.

The complexity distance shows a distinct decline in accuracy with increasing

codebook size. The simplicity of this measure probably suffers from having too

many reference codebook graphemes with similar complexity values, leading to

fragmentation of the values and obscuring the underlying distribution. As perfor-

mance is significantly higher than random guessing (particularly on the medieval

dataset) the distribution of image detail levels is clearly a writer-specific feature

– however, for practical levels of identification accuracy, shape-based grapheme

comparison is still required.

4.6 Conclusions

This Chapter has presented experiments in the segmentation, normalisation, and

comparison of graphemes, with the objective of comparing modern and medieval

99

IAM scribes Section Index
Aspect/Square Ratio Aspect No difference 4.2

Splitting Method Character Character 4.3
Combined Splitting Complementary Redundant 4.3

Correlation Type Cross-correlation No difference 4.5
Image Complexity Significant Significant 4.1

FIGURE 4.7: Results overview for IAM and scribes datasets

datasets and the handwriting aspects that provide writer-specific information.

For the initial part of this aim, Table 4.7 summarises the results of the exper-

iments carried out. It is clear that the datasets respond very differently overall,

with both method and implementation issues to take into account when working

with historical rather than modern data.

These experiments have also produced several conclusions regarding writer-

distinctive information in aspects of the ink trace. The normalisation experiment

in Section 4.2 demonstrated that grapheme aspect-ratio is uninformative in histor-

ical data, and may even be slightly detrimental. This result runs counter to the

standard methodology in use on modern data, for which it is well suited. The

difference may be due to the dominance of the imposed, non-personal font style

in determining the aspect-ratio of characters.

The segmentation experiments in Section 4.3 provide three results. First,

a focus on preserving the cursive ligatures rather than character bodies in seg-

menting graphemes still provides significant writer-specific information. Sec-

ond, the ligature-based information is not as powerful at describing writers as the

character-focused segmentation. Finally, these experiments showed that in mod-

ern handwriting with small image samples, these two sources of writer-specific

information are complementary, as identification using the combined output of

both segmentation methods was significantly better than either individually. This

factor may be exploited to enhance identification accuracy when only small sam-

ples are available.

100

In the medieval dataset, this result was not repeated, with the combined-output

graphemes failing to improve accuracy over the standard segmentation. This im-

plies that the information relied upon by the ligature-focused graphemes is already

present in the character-focused grapheme set.

In testing methods of comparing grapheme images, it was found that the in-

tricacy of the graphemes produced gives some writer information, particularly in

medieval writing. However, shape-based comparisons were required to reach ac-

curacy levels comparable to the current state-of-the-art. These experiments also

produced the interesting result that translation-invariant matching of the grapheme

shapes (Figure 4.5) boosts the identification rate on the modern IAM dataset, but

fails to have an effect on the historical dataset. Although less amenable to di-

rect interpretation than earlier outcomes, this may be another side-effect of the

font style used: the greater regularity noticeable in medieval scripts may produce

graphemes with a more consistent layout, whereas modern or natural handwriting

shapes are spatially spread over the grapheme image.

These experiments have provided significant pointers in the handling of me-

dieval and modern datasets, particularly in analysing where writer-distinctive in-

formation may be found. The following chapter continues this information analy-

sis, examining the feature distributions produced in the next stage of the codebook

process.

101

Chapter 5

Feature selection and extraction

This chapter investigates several approaches to analysing grapheme codebook fea-

tures for offline writer identification in medieval English scribal manuscripts. Cur-

rent methods for selecting a codebook typically produce codebooks that perform

no better than random grapheme selection, so the aim in this analysis is to identify

potential methods of improving codebook selection. In particular, the work inves-

tigates the characteristics of a high-performing codebook. Three feature extraction

methods are tested, and a number of feature selection methods are proposed and

compared. In feature extraction, the values of existing features are combined into

new features in various proportions, with the aim of optimising identification per-

formance and reducing the number of new features required. A disadvantage of

this approach is that any significant meaning of the original features is usually lost.

Feature selection chooses a subset of the original features, avoiding this problem.

The results given in Section 5.3 show that the Principal Component Analysis

extraction method performs best overall, typically matching or exceeding baseline

identification accuracy on both datasets, whilst substantially reducing the number

of features required. PCA-based feature selection was the top-performer of the se-

lection methods tested, again with a significant reduction in the required codebook

size while retaining good performance. The feature selection results also demon-

strate that a range of grapheme-shape similarities within a codebook is necessary

102

for good performance. All methods are compared on the IAM and scribal datasets;

the results are robust to data variation.

The remainder of the chapter is organised as follows: a description of the

grapheme codebook method and existing selection methods is given in Section 5.1.

Section 5.2 considers the motivation for applying feature selection and extraction

to grapheme codebooks in particular, and Sections 5.3 and 5.4 describe the exper-

iments carried out. Section 5.5 summarises the work and draws conclusions.

5.1 Codebook Selection Methods

No existing work directly examines the question of the codebook characteristics

that best discriminate between writing styles; instead, selection methods aim to

produce a representative sample of the available graphemes. The original selection

method proposed (Bulacu, 2007) was to cluster all the graphemes by shape-based

similarity using a Kohonen Self-Organising Feature Map (SOFM). The number

of clusters is fixed to the required codebook size, and the cluster centres are se-

lected for the codebook as they are taken to be representative of their cluster of

similar graphemes. K-means, an alternate method of clustering graphemes, has

also been tested (Bulacu and Schomaker, 2005a). The identification accuracy

of codebooks selected this way was indistinguishable from the far more resource-

intensive SOFMs. Both clustering methods aim to represent the full span of shapes

in the pool of available graphemes. In doing so, the rare and ‘outlier’ shapes are

implicitly over-represented in a codebook compared to their natural rate of occur-

rence, as cluster size is not taken into account.

In contrast, van der Maaten (2005) tests the simple method of selecting graphemes

at random from the total pool, retaining the property that grapheme shapes will on

average be selected in proportion to their natural frequency of occurrence. Identi-

fication performance using this method appears to be broadly similar to the clus-

tering methods, although noticeably more varied. This is expected, as clustering-

103

based codebooks calculated from the same input pool of graphemes are likely to

be far more similar in composition across runs.

In short, clustering methods aim to represent the dataset by spanning the total

shape-space (akin to maximising the variance of the shape data) with the side-

effect of over-representing atypical shapes. Random selection more accurately

models the true shape distribution, but potentially at the expense of being less

able to characterise infrequently-occurring grapheme shapes.

Writer invariants is a similar bag-of-words method proposed in an informa-

tion retrieval context (Bensefia et al., 2002). Here, a form of repeated stochastic

clustering was additionally applied to the grapheme bags for each sample to com-

press the training set. Graphemes which were clustered together on every run of

the clustering were grouped into ‘invariants’; all other graphemes were discarded.

This caused no loss of precision in retrieval (98% from 88 writers) compared with

using the full bag of graphemes for each sample. This result suggests that writer-

specific information may be concentrated in the typical rather than the atypical

shapes produced.

After codebook selection, the features for each image sample are formed by

measuring the similarity of each of its graphemes to each of the codebook graphemes,

and binning it against the closest match. The resulting probability distribution is

the sample’s feature vector, thus codebook size determines the dimensionality. To

classify an unknown sample, its graphemes are again counted against the same

codebook to form a probability distribution, and it is assigned the writer label

of the closest-matching sample (i.e. nearest-neighbour classification). Codebook

methods therefore offer a potential link between styles of character fragments and

the calculated features, making it an interesting target for further analysis.

104

5.2 Feature Analysis

The grapheme codebook method typically produces large feature vectors: typi-

cal values can be 200-400 (Bulacu and Schomaker, 2007b), with values ranging

into the thousands (Schomaker et al., 2004). Large numbers of features are usu-

ally undesirable, especially where the input sample size is small. The ‘curse of

dimensionality’ (Bellman, 1957)1 describes the problems that arise when manipu-

lating high-dimensional features, particularly how the number of samples required

to consistently represent an area of feature space grows exponentially as the di-

mensionality of the space increases (Hastie et al., 2009). The nearest-neighbour

classifier typically used with the grapheme codebooks offers no mitigation of this

effect.

Additionally, high numbers of features increase computation time and pro-

cessing requirements, and may obscure meaningful links between the grapheme

representations and salient elements of writing style. Analysis of existing features

can also produce a reduced feature set that performs as well as, or better than, the

original features.

The aim in this work is therefore to investigate techniques for feature reduction

in grapheme codebooks according to the following criteria:

• Increasing computational efficiency

• Increasing final classification accuracy

• Determining if features correspond to meaningful writing elements

In the latter aim, discovering whether such writing style aspects are consistent or

significantly different between modern and historical handwritings is of particular

interest.

Techniques for feature analysis fall into two broad categories: feature extrac-

tion where the original feature values are weighted and recombined into some
1Also known in this context as the Hughes effect (Hughes, 1968)

105

number of new features, and feature selection, where a subset of the original fea-

tures are used without modification.

Feature selection is simplest when the original features are independent (or

nearly so), as this minimises the feature combinations that require testing. Unfor-

tunately in grapheme codebooks, the opposite is true – the value of the feature as-

sociated with a given codebook grapheme is (theoretically) dependent on all other

graphemes in the codebook. This is because each grapheme in a sample is com-

pared against all codebook graphemes before being allocated to the closest match.

Removing any single grapheme from a reference codebook will redistribute its

allocated sample graphemes amongst the remaining codebook graphemes in un-

predictable ways.

A set of feature extraction methods are initially considered in Section 5.3,

followed by grapheme feature selection in Section 5.4.

5.3 Feature Extraction

Feature extraction methods combine the existing features in various proportions

to create new features, against which the samples are measured to create a new

set of feature vectors. The original grapheme features can be considered as axes

or dimensions which describe a feature space in which samples are located. The

process of feature extraction effectively creates a new feature space with different

axes, changing the basis against which samples are placed. For the simplest fea-

ture extraction, the new feature space is just a rotation of the original space. More

complex methods combine scaling, inverting, or otherwise manipulating the orig-

inal feature axes with the objective of creating a new feature space which will

better separate the samples into their writer groupings.

Three feature extraction methods were tested: Principal Component Analysis

(PCA), Independent Component Analysis (ICA), and Linear Discriminant Anal-

ysis (LDA). Each of these methods calculates a new set of features as a weighted

106

sum of the original codebook features. Each method outputs a matrix of coeffi-

cients, giving the weighting of each original feature for each new feature. Ranking

coefficients are also output for PCA and LDA to indicate the relative importance

of the new features: taking the top n of these reduces the dimensionality.

PCA attempts to characterise the whole dataset by retaining as much of the

original feature variance as possible into the fewest dimensions; the new feature

dimensions can be ranked by the proportion of variance accounted for. ICA (Hy-

varinen et al., 2001) considers the original feature vectors to be a mixture of a

hidden underlying set of factors. It therefore aims to derive these underlying fea-

tures under the assumption that they are independent. PCA and ICA are both

examples of ‘blind source separation’ techniques. This type of analysis does not

require any writer label information, and can be performed once for the whole

dataset.

In contrast, LDA uses the writer label information to generate a set of features

which maximise separation between samples from different writers, and minimise

the spread of samples from the same writer. New features can be ranked by the

eigenvalues which give the writer class separation that each provides. As this

requires correct writer label information for the training set, computation require-

ments for LDA are higher than those of PCA and ICA: the mapping must be

recalculated for the training set of each fold of the cross-validation in order to

withhold the writer label for the samples being tested each time.

In these experiments the standard experiment set up was used (see Section 3.5.1

for details), i.e. codebook sizes of 50, 100, 150, 200, 250, and 500, simple pixel-

wise image correlation to generate the feature vectors and the Euclidean-distance

nearest-neighbour for classification. Leave-one-out cross-validation is used for all

experiments. For both datasets, each codebook size was tested 8 times with a new

randomly-selected codebook drawn from that dataset’s total pool and classified

using each of the four methods, giving a total of 384 experiments run. The results

given below show the mean ± 1 standard error.

107

The baseline result is simple classification of the original feature vectors. On

the scribes dataset, this is 73.6% ± 0.70 (1 standard error) for eight runs on a

size 200 codebook, and 58.2% ± 0.34 for the same configuration on the IAM

dataset. The differences in baseline accuracy are related to the varying number of

writers and sample sizes of each dataset. All feature extraction results are given

as fractions of this baseline classification accuracy.

The following sections give a technical description of the extraction methods

used, and Section 5.3.2 presents the results.

5.3.1 Feature extraction details

In these sections the following symbols will be used:

• number of writers: w

• number of original features: f

• number of samples: s

• original feature vector data: X : f × s

• number of samples in a given writer class i: si

• feature vector data for a writer class i: Xi : f × si

PCA

The PCA transform is found from the eigendecomposition of the covariance ma-

trix of feature vectors, i.e.

cov(X) = PDPT (5.1)

where P : f × f is the eigenvector matrix containing the principal components

[p1,p2, ...,pf]. The principal component p1 is the direction of maximum data

variance, i.e. greatest spread. The second principal component p2 is defined to

be the axis of maximum remaining data variance, with the constraint that it must

108

be orthogonal to p1. The remaining principal components are defined likewise.

The diagonal matrix D contains the eigenvalues associated with each component

in descending order, which are the proportion of data variance the corresponding

direction accounts for. Dimensionality reduction in PCA feature space is by drop-

ping the components associated with the lowest eigenvalues, as these represent

the directions of little data variation.

PCA was chosen for its dimensionality reduction properties, as the top 10%

of PCA dimensions often provide a reasonable classification rate. The mapped di-

mensions and their weightings may also provide some insight into which graphemes

or grapheme groups are most influential in writer identification.

LDA

PCA considers only the total distribution of the sample data, without taking writer

information into account. The ideal mapping of samples into a new feature space

would place samples from the same writer class as close together as possible, and

as far apart from samples of different classes. The aim of LDA is to approximate

this transform, which is modelled by maximising the ratio of between-class scatter

to within-class scatter. This can be considered as a two-stage process: a ‘sphering’

transform on each class, followed by PCA applied to the class means to find the

directions which spread them as far apart as possible. LDA assumes that the

class covariances are identical – lifting this restriction gives the related Quadratic

Discriminant Analysis (Hastie et al., 2009, p. 112).

Sphering is therefore approximated by applying W−1, where the mean within-

class covariance matrix W is

W =
1

w

i=w∑
i=1

cov(Xi) (5.2)

The between-class scatter B is given by the variance of the (centred) class

109

means

B =
1

w

i=w∑
i=1

(µi − µ)(µi − µ)T (5.3)

where µi is the mean of the feature vectors for a class i and µ is the mean of

µ1...µw. The eigenvectors of W−1B maximise the class separation, which is given

by the respective eigenvalues.

LDA was applied here as it is incorporates class-specific information, allowing

it to model the grapheme combinations which best discriminate between writers.

Examining these may highlight individual writer quirks or trademarks. The im-

plementation used in this work is from the Matlab Toolbox for Dimensionality

Reduction2 (van der Maaten et al., 2009).

ICA

ICA does not consider the class information, but instead seeks to represent the

data by a set of features with minimal mutual information. It does this by mod-

elling the observed samples as a mixture of an unknown set of f source factors,

assumed to be statistically independent and non-Gaussian. These requirements

allow the estimation of both the independent factors (the new features) and the

mixing matrix of feature weights, but do not define any ordering on the derived

factors.

Given the mixing model X = MS, where M is the mixing matrix and S is the

matrix of independent sources, the first stage is applying the sphering transform

described above which whitens X and and transforms M into an orthogonal ma-

trix M′. However, as any orthogonal transformation of the data remains sphered,

one of a number of estimation methods is still required to calculate M′; the Fas-

tICA implementation3 is used here (Hyvärinen and Oja, 1997).

The ICA model of feature data as multiple observations of an underlying gen-

2Available at http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_
Dimensionality_Reduction.html

3Available at http://research.ics.tkk.fi/ica/fastica

110

http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html
http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html
http://research.ics.tkk.fi/ica/fastica

eration process maps well onto the grapheme codebook’s statistical approach. If

source factors can be reliably extracted from the grapheme codebook data, they

would offer an excellent interpretation of the writing characteristics which distin-

guish the writers in each dataset.

Dimensionality

Each feature extraction method is run over the baseline feature vector data, giving

varying numbers of new features. ICA produces at most the same number of new

features as original features, and LDA produces at most max(f, w − 1) features.

PCA outputs slightly fewer new features than original, but typically the top n fea-

tures are used such that they cover some percentage of the original data variance,

e.g. 90% or 99%. In these data, 90% was found to offer a good trade-off between

feature reduction and identification accuracy; all available LDA and ICA features

were used.

5.3.2 Results and Analysis

On the medieval dataset, the performance of PCA was by far the highest and most

consistent, being the only method to exceed the original accuracy. Performance

increases with codebook size, and performance equivalent to the baseline accuracy

is reached on the scribal dataset at a codebook size 200, and on the IAM dataset

at size 500. This required approximately 30% and 58% of the number of features

originally used on the medieval data (Figure 5.4) and IAM data (Figure 5.2) re-

spectively. The number of PCA features required shows a distinct decreasing trend

as codebook size increased on both datasets. Apart from the smallest codebook

size, LDA performed poorly on the scribal dataset. Analysis of LDA on a smaller

number of features suggests this is likely to be a numerical instability at higher

dimensions, possibly related to the sparseness of the feature vectors. On the IAM

data, LDA performs well at smaller codebook sizes, reaching approximately 1.1

times the baseline accuracy before dropping off sharply as on the scribal data.

111

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

original codebook size

ac
cu

ra
cy

 (
fr

ac
ti

o
n

 o
f

o
ri

g
in

al
)

PCA

ICA

LDA

FIGURE 5.1: Classification accuracy of feature extraction methods on the IAM
dataset

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

original codebook size

n
u

m
b

er
 o

f
d

im
en

si
o

n
s

(f
ra

ct
io

n
 o

f
o

ri
g

in
al

)

PCA

ICA

LDA

FIGURE 5.2: Number of features used in extraction methods on the IAM dataset

112

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

original codebook size

ac
cu

ra
cy

 (
fr

ac
ti

o
n

 o
f

o
ri

g
in

al
)

PCA

ICA

LDA

FIGURE 5.3: Classification accuracy of feature extraction methods on the scribes
dataset

ICA also performs poorly, suggesting it is either unable to extract any mean-

ingful underlying features from this dataset, or that the features it finds are only

weakly writer-informative. As all available ICA features are used, little dimen-

sionality reduction is seen. Classifying at various lower proportions of ICA fea-

ture vectors shows only a linear increase in classification accuracy – each feature

contributes a roughly equal amount to the overall identification accuracy, with no

single feature providing a significant contribution.

5.3.3 Visualisation

To visualise the relative importance of each grapheme in the top PCA compo-

nents, the codebook images are ranked according to their weights in the PCA

coefficients. That is, given the PCA transform in Equation 5.1, the weighting of

a single grapheme g in a principal component c is wcg = |pcg|. Summing these

113

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

original codebook size

n
u

m
b

er
 o

f
d

im
en

si
o

n
s

(f
ra

ct
io

n
 o

f
o

ri
g

in
al

)

PCA

ICA

LDA

FIGURE 5.4: Number of features used in extraction methods on the scribes dataset

weights across all principal components for each grapheme produces an ordering

on the codebook graphemes (Figure 5.5), most significant feature first.

Additionally, if a codebook grapheme is considered as a visual representation

of a feature (or equivalently of an axis in feature space), the codebook effectively

forms a visual basis of the feature space. Any vector can thus be represented by

weighting the basis codebook graphemes: in particular, the individual principal

component vectors can be visualised by generating the image

compositec(x, y) = 255 •
∑g=f

g=0 g(x, y) wcg∑g=f
g=0 wcg

(5.4)

where x and y index the image pixels. This formulation also quantises the result

into 256 grayscale values. A selection of components are shown in Figure 5.6:

the components along the top row are clearly dominated by a small number of

graphemes, while those on the bottom row are more evenly balanced. Darker areas

114

FIGURE 5.5: Sample PCA-sorted codebook

show pixel positions that have greater weighting amongst the input graphemes.

These visualisations can be helpful in explaining PCA and its implications for

this dataset, particularly to those with no prior knowledge of classification.

However, a codebook formed of these visualised ‘graphemes’ cannot be used

directly: the greyscale images are typically fairly balanced and thus insufficiently

distinctive to form a discriminating codebook, leading to very poor performance.

In order to choose a working reduced codebook, the following section considers

how these coefficients may instead be used to select individual graphemes.

5.4 Feature Selection

As described in Section 5.2, feature selection in grapheme codebooks is compli-

cated by a theoretical total dependence between features. Despite this, the ex-

115

FIGURE 5.6: Visualisation of individual principal component vectors

periments in this Section first analyse codebook selection based on individually

high-performing graphemes (derived from PCA and LDA coefficients) to see how

well they can perform in practice.

The end goal of this analysis is to discover grapheme-image-based character-

istics which can be used to improve codebook performance and better understand

how to select good codebooks. The implications of this would include the ability

to base grapheme selection directly on a dataset’s grapheme pool, without requir-

ing feature vector data or initial classifications (as in PCA and LDA). It would

also potentially give insight into the aspects of medieval and/or modern handwrit-

ing which discriminates writers well. Section 5.4.1 describes the method used to

convert feature weightings into original grapheme rankings.

Codebook selection aims to generate a set of graphemes representative of the

total pool of graphemes GD of all samples in the dataset. As discussed in Sec-

tion 5.1 and the review in Section 2.3.5, the different clustering approaches used in

the literature to date emphasise retaining the graphemes which either appear most

frequently or are outliers. From the writer or scribe perspective, this amounts to

looking for writer-specific information in the common allographs and characteris-

tic strokes, or in the uncommon and distinctive graphemes. This suggests that the

level of similarity of a codebook’s graphemes will be an interesting image-based

characteristic for investigation. Section 5.4.2 expands on this and describes the

116

approaches and implementations tested.

5.4.1 Extraction-based methods

For the first strategy, the feature extraction methods tested in Section 5.3 were used

to calculate significant individual features. These PCA- and LDA-based feature

selection methods were implemented by ordering the original features by the sum

of the coefficients for each original grapheme feature, weighted by the importance

of the coefficient’s corresponding new feature. The top n individual graphemes

are then chosen from the resulting ranking. For example, in terms of the PCA

transform and coefficient given in Equation 5.1, summing over the top i principal

component features used gives the following weighting for each original codebook

grapheme feature:

w =
c=i∑
c=0

|pcg| (5.5)

This weighting describes how important a single grapheme is, given its sig-

nificance in each of the new extracted features and the significance of those fea-

tures in turn. Choosing a subset of graphemes in this way from a large original

codebook and feature-data combination highlights the individual grapheme bins

whose features were most influential in determining classification accuracy for

that experiment. However, there is no guarantee that these selected features in

combination form a good codebook, even with respect to the same dataset.

Due to these feature-data requirements, these experiments were set up in two

stages. The baseline experiments (see Section 3.5.1 for details) were used as initial

‘source’ experiments: the necessary feature data was drawn from these results,

and the corresponding codebook was used as the grapheme pool for selection.

The baseline codebooks used are defined to be gs graphemes in size, from which

a subset of size gt is selected according to the method being tested. Further details

are given in Section 5.4.5.

117

5.4.2 Similarity-based methods

The second selection strategy considers a characteristic of a codebook rather than

of individual graphemes: the distribution of grapheme similarities within a code-

book. Similar graphemes in a codebook can provide a fine-grained distinction

between near-identical character shapes, whereas the outlier graphemes in the

dataset pool may highlight distinctive or unusual writer-specific characteristics.

The intra-codebook grapheme similarities are measured pairwise for all graphemes

in a codebook, using the same correlation image distance used in comparison. It

is therefore expected that each selection method will give a characteristic distribu-

tion of similarities, and that a potential explanation for the surprisingly strong per-

formance of the ‘random’ selection method is that it covers a similar range to the

clustering methods. It is further expected that selecting outliers weights the dis-

tribution towards the lower similarity range, and that selecting similar graphemes

weights the overall codebook distribution towards the higher similarity end of the

range.

We hypothesise that high-performing codebooks span a range of grapheme

similarities, allowing both fine-grained distinctions and unusual writer-specific

shapes, and that focusing exclusively on a single aspect will reduce codebook per-

formance. In order to test this, three similarity-based approaches are examined:

maximising the similarity of the graphemes, minimising their similarity, and in-

cluding the widest possible range of similarities.

These three methods were implemented heuristically. To produce a codebook

of mutually similar graphemes, the image distance matrix D : g × g (where g is

the number of graphemes in the source codebook) was calculated with the same

image pixel correlation used to produce the codebook feature vectors. Summing

the matrix columns gives a vector t : 1× g containing the total distance between

a single grapheme and all others in the codebook. The index of min(t) there-

fore gives the grapheme which is, on average, most similar to all other codebook

graphemes.

118

Minimal and Maximal Similarity Based on this, two implementations were

tested to select codebooks of minimal similarity. The global implementation sim-

ply selected the n graphemes with minimal total distances. The iterative imple-

mentation made n − 1 consecutive selections, choosing each time the grapheme

most similar to those already selected; it was initialised with the global minimum.

Codebooks of maximal similarity were implemented likewise. Plotting the dis-

tance distributions of target codebooks generated by each implementation demon-

strated that the global method gave better results in all cases, possibly due to the

iterative method being very sensitive to the initial few grapheme shapes. The

global implementation was therefore used in all the following experiments, and

these selection methods were labelled sim-min and sim-max. Examples of code-

books selected using the sim-min and sim-max criteria are given in Figure 5.7.

Both criteria produce codebooks with notable clusters of grapheme shapes. This

is clearest in the sim-min codebooks: a few graphemes are very similar to each

other, but are sufficiently different from the remaining graphemes to have a low

overall similarity to the codebook as a whole.

Similarity Ranges The objective of including a range of grapheme similarities

can be approached in several ways. The first option combined the sim-min and

sim-max approaches: when selecting n graphemes, the top n/2 elements by each

of the min and max criteria were taken, giving a distribution with two distinct

peaks at either end of the similarity range.

The second option was to keep the full spread of similarities present in the

original set by ordering all graphemes and choosing approximately equally-spaced

elements such that both ends are included and n graphemes total are selected.

This approach samples the existing distribution of similarities whilst retaining

representation of the extremes.

The third option is to aim for a flat or even distribution of similarities by bin-

ning the graphemes into a histogram of similarities (10 bins were used) and select-

119

ing equal numbers from each bin (as far as is possible). As they emphasise differ-

ent similarity characteristics, all three of these approaches were implemented and

labelled sim-range, sim-spread, and sim-even respectively.

5.4.3 Hybrid method

Given the poor identification results of LDA as a feature extraction method, it is

expected that it would perform poorly as a selection method as well. Preliminary

analysis suggested that the similarity range of graphemes selected by LDA was

narrow, and may be a contributing factor. An additional ‘hybrid’ strategy was

therefore tested: the codebook was ordered according to similarity and used the

LDA-rankings as a starting point, with the additional constraint that no two sim-

ilar adjacent graphemes could be selected. This has the effect of ‘spreading’ the

graphemes over a wider similarity range, and was labelled LDA-sparse.

5.4.4 Controls and reference methods

Two controls were also run: the first was a single-stage random selection of gt

graphemes from the dataset pool GD; the second matched the two-stage approach

of the methods under test, randomly selecting gt graphemes from the baseline

codebook of gs graphemes. These methods should produce equivalent results.

As a further point of reference, a standard clustering method was also imple-

mented. The k-medoids algorithm (Kaufman and Rousseeuw, 1990, p. 40) is very

similar to the more common k-means clustering (MacKay, 2003, p. 285): it selects

a number of cluster centres, and updates each cluster by assigning each sample to

its closest centre, followed by a recentering step. These two stages are repeated

until the clusters converge to a stable configuration. The significant difference be-

tween k-means and k-medoids is that the latter uses the most central data sample

to represent each cluster (the medoid), whereas k-means uses an artificial calcu-

lated element (the centroid) which represents the hypothetical sample that would

120

(A) Scribes dataset sim-min (left) and sim-max (right) selected codebooks

(B) IAM dataset sim-min (left) and sim-max (right) selected codebooks

FIGURE 5.7: Example codebooks generated from similarity-based selection cri-
teria

121

exist at the actual cluster centre.

In terms of clustering graphemes, this would give codebooks consisting of

elements that were not present in the input dataset, rather than the direct grapheme

selection that k-medoids provides. This approach also avoids having to define

how to compute a composite grapheme (which potentially introduces grayscale),

and allows all calculations to be based purely on the grapheme distance matrix

without requiring a coordinate-space mapping. The Partitioning Around Medoids

(PAM) variant (Theodoridis and Koutroumbas, 2006, p. 636) of k-medoids was

therefore implemented in MATLAB, using the standard image correlation as a

distance measure and random selection to initialise cluster centres.

5.4.5 Experiment Methodology

As outlined in Section 5.4.1, the feature extraction-based methods (PCA, LDA,

and LDA-sparse) require coefficients from an original set of feature vector data,

so these experiments were set up in two stages. The baseline experiments (see

Section 3.5.1 for details) were used as initial ‘source’ experiments, and the neces-

sary feature data was drawn from these results. Each selection method is run on

the source experiment codebooks of size gs to produce target codebooks of size gt

for testing, where gt < gs.

As prior experiments have shown that 200 grapheme features perform well, the

experiment was run at two scales with codebooks of size 200 as both the source

and target codebook sizes, i.e. target codebooks where gt = 200 were selected

from a source codebook where gs = 500 (large-scale), and for the small-scale

experiments gs = 200 and gt = 50.

For each dataset, eleven selection methods were tested and eight runs were

made of each size experiment on each dataset, giving 32 × 11 target codebook

experiments (in addition to the 32 baseline experiments) for a total 352 exper-

iments run. As before, grapheme comparison was implemented using simple

pixel-wise image correlation to generate the feature vectors and the Euclidean-

122

distance nearest-neighbour algorithm is used for classification. Leave-one-out

cross-validation is used for all experiments.

In summary, the selection methods tested are as follows:

• PCA-based

• LDA-based

• minimise similarity

• maximise similarity

• maximise range of similarities

• maximise spread of similarities

• select an even range of similarities

• similarity-spread/LDA hybrid

• Reference: k-medoids clustering

• Random control: matched sub-selection

• Random control: direct target-size selection (baseline)

The results plotted in Figures 5.8 and 5.9 show the identification accuracy

of each method, ordered by mean grapheme similarity, and Figures 5.10a – 5.11b

show the grapheme similarity distributions in more detail. Unless otherwise noted,

the figures given are the mean of the 8 runs, ± 1 standard error.

5.4.6 Results and Analysis

The results of these experiments fall into two categories which will be discussed

in turn. The first is the identification accuracies of the target codebooks, relative

to each other and to their source codebook baseline results. The second is the

123

distribution of grapheme similarities found within each selected codebook, and

their interaction with identification accuracy.

Identification accuracy

Figures 5.8 and 5.9 show the mean and standard error of all 8 runs as a fraction

of the baseline identification accuracy of the source codebook. Relative results

were used here to exclude the variation due to differences in baseline performance,

although a later comparison with absolute accuracies shows that source and target

codebook performance is uncorrelated. Overall, the pattern of selection method

performance is broadly similar across datasets and experiment scales.

Relative to the source codebooks, identification performance is rarely increased

over the source baseline results. Increases occur only in the large-scale IAM-

dataset experiments, although source performance is approximately matched by

PCA-based selection in the large-scale medieval-dataset experiments as well. No

selection method on the small-scale experiments meets this level, with typical per-

formance in the range 80–90% of source codebook accuracy across both datasets.

Comparing selection methods against each other, there are again many sim-

ilarities across all four experiments. Extremes of similarity range (sim-min and

sim-max) and LDA-based selection perform poorly across all experiments. Sim-

min is the only selection method which performs significantly worse than random

selection in all experiments, while sim-max significantly underperforms random

on both large-scale experiments. This supports the hypothesis that a range of

grapheme similarities is required for high codebook performance. Sim-max typ-

ically performs better than sim-min, i.e. of the two extremes, a codebook com-

posed of very similar graphemes has greater discriminatory power than a code-

book of very varied ‘outlier’ shapes. However, this distinction is not significant

on the large-scale medieval-dataset experiment.

PCA-based selection is the best-performing method overall, with behaviour

124

0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34
0.75

0.8

0.85

0.9

0.95

1

grapheme distance mean (fraction)

ac
cu

ra
cy

 (
fr

ac
tio

n
of

 o
rig

in
al

)

#200 => #50 sub−selection accuracy vs. mean intra−codebook distance

baseline
PCA
LDA
random
spread−LDA
sim−min
sim−max
sim−range
sim−spread
sim−even
k−medoids

(A) Performance on the small scribes experiment

0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36
0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

grapheme distance mean (fraction)

ac
cu

ra
cy

 (
fr

ac
tio

n
of

 o
rig

in
al

)

#200 => #50 sub−selection accuracy vs. mean intra−codebook distance

baseline
PCA
LDA
random
spread−LDA
sim−min
sim−max
sim−range
sim−spread
sim−even
k−medoids

(B) Performance on the small IAM experiment

FIGURE 5.8: Classification accuracy relative to source codebook baseline accu-
racy, mean of 8 runs (± 1 standard error)

125

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34
0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

grapheme distance mean (fraction)

ac
cu

ra
cy

 (
fr

ac
tio

n
of

 o
rig

in
al

)

#500 => #200 sub−selection accuracy vs. mean intra−codebook distance

baseline
PCA
LDA
random
spread−LDA
sim−min
sim−max
sim−range
sim−spread
sim−even
k−medoids

(A) Performance on the large scribes experiment

0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33 0.34 0.35
0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

grapheme distance mean (fraction)

ac
cu

ra
cy

 (
fr

ac
tio

n
of

 o
rig

in
al

)

#500 => #200 sub−selection accuracy vs. mean intra−codebook distance

baseline
PCA
LDA
random
spread−LDA
sim−min
sim−max
sim−range
sim−spread
sim−even
k−medoids

(B) Performance on the large IAM experiment

FIGURE 5.9: Classification accuracy relative to source codebook baseline accu-
racy, mean of 8 runs (± 1 standard error)

126

that varies between the datasets. On the medieval dataset, PCA performs signifi-

cantly better than all other selection types by approximately 2.5 and 4 percentage

points on the large- and small-scale experiments respectively. On the small-scale

IAM experiment PCA selection has a weakly significant lead of less than 2 per-

centage points, and on the large-scale experiment it is one of six selection methods

with indistinguishable identification performance.

The remaining selection methods typically cluster closely in accuracy range,

with sim-max at the lower end of this group. There is no consistent significant

difference in identification accuracy between the random controls and any of the

clustering or similarity-balancing implementations on any of the experiments. Iso-

lated deviations from this pattern are atypically low performances of LDA-spread

and sim-range on the small- and large-scale IAM experiments respectively, and a

difference in means between the two random selection methods on the small-scale

IAM experiment which exceeds the 1 standard-error bracket. However, all these

results fall well within their respective 95% confidence intervals and are unlikely

to be significant in any way.

Of final note is that LDA-spread selection performs better than purely LDA-

based selection on all experiments, highly significantly so on the small-scale me-

dieval and large-scale IAM experiments. This supports the hypothesis that in-

creasing the grapheme similarity range of a selection method improves its perfor-

mance.

Grapheme similarity distributions

In Figures 5.10 and 5.11, the grapheme distance distributions for each target

codebook are averaged over the 8 runs and plotted against the mean identification

accuracy. These histograms were generated using a similar method to those in

Section 5.4.2: the column-sum of the grapheme image distance matrix gives, for

each grapheme, the total distance to all other graphemes in its codebook; typical

127

values are obviously higher for larger codebooks. To generate the histograms

shown for each experiment, the grapheme distances for all target codebooks were

pooled and sorted, and the top and bottom 5% were placed into the two end bins.

The remaining central range is divided into 10 equally-spaced bins.

The first distinction between the IAM and scribal datasets is the range of

grapheme similarities spanned. The IAM dataset generates codebooks whose

graphemes are typically less similar to each other (at both scales) than the scribes

dataset. The upper ranges of the similarity distributions are close across both

datasets, but the IAM dataset has substantially higher minima, giving a range that

covers roughly the top 65% of that of the medieval dataset for both large-scale

and small-scale experiments. This supports the hypothesis that medieval writing

is overall less varied than modern handwriting.

The majority of selection methods, especially those with similar performance

to random-selection, have distributions of a slightly flattened bell-curve shape.

Sim-min, sim-max and sim-range produce the most differentiated distributions.

The two min- and max-based peaks of the sim-range method are clear on all

datasets, as is the ‘flattening’ effect of the sim-even method. However, none of

the similarity-balancing methods have a significant representation of graphemes

with low total distance. Additionally, on the scribal dataset at both scales PCA

is substantially better at reaching this end of the range than any similarity-range

implementation. On the IAM dataset there is no clear difference between PCA’s

similarity distribution and that of the majority of selection methods, although it

could be argued that PCA on the small-scale IAM has somewhat better represen-

tation of low-distance graphemes.

As grapheme selections are based on the distribution of the source codebook,

it is hard to predict the eventual distance distribution within the target codebook,

i.e. the indirection means target similarity distributions are hard to control. The

similar/low-distance end of the range is particularly hard to reach, as including

a few outlier graphemes disproportionately increases the total-distance measure

128

55

60

65

70
0

5

10

15

20

25

> 17.1

16.2−17.1

15.3−16.2

14.4−15.3

13.5−14.4

12.6−13.5

11.7−12.6

total grapheme distance bins

10.8−11.7

9.89−10.8

8.99−9.89

8.09−8.99

< 8.09classification accuracy (%)

gr
ap

he
m

e
fr

eq
ue

nc
y

PCA
LDA
LDA−spread
sim−max
sim−min
sim−range
sim−spread
sim−even
k−medoids
random

(A) Performance and similarity distributions for the small scribes experiment

44

46

48

50

52

54
0

5

10

15

20

25

> 17.6

17−17.6
16.4−17

15.8−16.4

15.2−15.8

14.6−15.2

14−14.6
13.4−14

total grapheme distance bins

12.8−13.4

12.2−12.8

11.6−12.2

< 11.6
classification accuracy (%)

gr
ap

he
m

e
fr

eq
ue

nc
y

PCA
LDA
LDA−spread
sim−max
sim−min
sim−range
sim−spread
sim−even
k−medoids
random

(B) Performance and similarity distributions for the small IAM experiment

FIGURE 5.10: Classification accuracies w.r.t. codebook similarity distributions,
mean of 8 runs (± 1 standard error)

129

for all graphemes in the target codebook. This effect explains why the similarity-

range implementations are clipped at the lower end. It is most clearly seen in the

distance between the sim-min distribution and the lower peak of the sim-range

distribution: despite an overlap in codebook content of approximately half, the

lower sim-range peak has been shifted substantially away from the low-distance

end of the range.

Looking at the hybrid method tested, LDA and LDA-spread have fairly sim-

ilar distributions. LDA itself seems to skew the grapheme choice substantially

towards the dissimilar. This effect is the exact opposite of the hypothesis pro-

posed in Section 5.4.3 , meaning the attempt at ‘spreading’ the graphemes has had

little effect at decreasing similarities, and rather a small effect of introducing a

few more-similar graphemes. Despite this, LDA-spread selection generally per-

forms better than LDA, likely due to sim-min being the worst-performing strategy

possible.

Overall, these distributions support the hypothesis that the grapheme-similarity

distribution of a codebook is a factor in its identification performance, and that a

range of grapheme similarities is necessary.

5.5 Conclusions

In this chapter, three feature extraction methods have been applied to the grapheme

codebook. ICA and LDA perform poorly, with analysis suggesting that sparse

feature vectors may be a contributing factor. PCA was found to perform sig-

nificantly better, matching the raw classification accuracy on both datasets using

approximately 33% of the number of dimensions on the medieval dataset, and

approximately 60% on the IAM dataset.

However, feature extraction obscures the intuitive link between grapheme code-

book features and the writing fragment samples they originate from. Although the

extracted dimensions can be visualised by weighting grayscale grapheme images,

130

66

68

70

72

74

76
0

10

20

30

40

50

60

70

80

90

100

> 68.2

65.4−68.2

62.6−65.4

59.8−62.6

57−59.8
54.2−57

51.4−54.2

48.6−51.4

total grapheme distance bins

45.8−48.6

43−45.8
40.3−43

< 40.3
classification accuracy (%)

gr
ap

he
m

e
fr

eq
ue

nc
y

PCA
LDA
LDA−spread
sim−max
sim−min
sim−range
sim−spread
sim−even
k−medoids
random

(A) Performance and similarity distributions for the large scribes experiment

53

54

55

56

57

58

59

0

10

20

30

40

50

60

70

80

90

100

> 70.5

68.5−70.5

66.6−68.5

64.6−66.6

62.7−64.6

60.7−62.7

58.7−60.7

56.8−58.7

total grapheme distance bins

54.8−56.8

52.9−54.8

50.9−52.9

< 50.9classification accuracy (%)

gr
ap

he
m

e
fr

eq
ue

nc
y

PCA
LDA
LDA−spread
sim−max
sim−min
sim−range
sim−spread
sim−even
k−medoids
random

(B) Performance and similarity distributions for the large IAM experiment

FIGURE 5.11: Classification accuracies w.r.t. codebook similarity distributions,
mean of 8 runs (± 1 standard error)

131

these are too indistinct to be used directly as codebook components. A range of

methods for grapheme selection were therefore tested. Some of these were based

on the feature extraction methods to find the individual graphemes that contribute

most to the top extracted features, and some were based on codebook-level criteria

based on grapheme similarity distributions. PCA-based selection again performs

best, and by a significant margin on the scribal dataset. Most selection methods,

including clustering, have similarity distributions and identification performance

close to that of random selection. Selection methods focusing on the extremes of

the similarity distribution had the worst performance, supporting the hypothesis

that a range of grapheme similarities is required for high performance.

132

Chapter 6

Classification

Classification is the final aspect of the identification process. The work in this

chapter considers two variations on the implementation of simple nearest-neighbour

classification to this point. Section 6.1 examines the effect that manuscript or doc-

ument origin has on identification accuracy. Given the formal, stylised nature of

most manuscripts in the period under consideration, this work tests the hypoth-

esis that the style of the physical manuscript which a sample originates from is

a stronger confounding factor in medieval than in modern writer identification.

Quantifying this effect can help avoid overestimation of identification accuracy

in same-document training sets. Section 6.2 uses the information discarded dur-

ing nearest-neighbour classification to add a verification layer to the identification

system. This allows estimation of the reliability of each writer label prediction

originally made.

6.1 Classification strategy

The following experiment focuses on a document-specific aspect of classification:

the effect that the manuscript or document style has on the overall writing style,

and thus on writer identification accuracy.

This section considers the classification strategy used in writer identification.

133

The standard method of cross-validation is typically used to ensure reliability of

results whilst maximising use of the training dataset. It divides the training set

into n ‘folds’, each of which are tested separately against the remaining data.

The strategy known as ‘leave-one-out’ has been used throughout the experimental

work in this thesis. It is a special case of n-fold cross-validation where the number

of folds equals the number of training samples, resulting in a single test sample

being compared against all remaining training data in each round.

Whilst this is general good practice, it does not take into account a relevant

domain-specific issue. In historical documents, the style of the writing is a combi-

nation of the scribe’s personal style, and the professional styling of the document

being composed. The physical manuscript copy that a historical image sample

originates from is therefore an important factor in determining writing style and

classification accuracy. Grouping the data by document forces the classifier to

generalise over all the writing styles a scribe has produced, without taking ad-

vantage of document-based rather than writer-based similarities. The writing in

the modern IAM dataset contains samples of different content types or genres:

news articles, letters, novels, etc., but all samples are copied by writers in their

natural personal style. It is therefore expected that there will be little impact from

factoring in the imposed document writing style on this dataset.

The aim of this experiment is therefore to correct for the effect of manuscript

style in historical writer identification accuracy, to produce a more realistic predic-

tion of how well the trained system may perform on unseen data. It will estimate

the size of the document-style effect by modifying the classification strategy from

the standard leave-one-out. Instead of testing one sample and using all other data

to train, this strategy excludes from the training set any samples by the same writer

from the same physical manuscript or document as the sample under test. This

will produce a pessimistic estimate of the system’s identification accuracy as it

requires the classifier to work without same-document style information, and with

a reduced amount of total training set data. There may also be same-document

134

distractors: samples from the same manuscript written by a different scribe, but

with a matching document style.

As the historical dataset has varying numbers of image samples per scribe and

per manuscript, these issues unfortunately affect different scribes to different de-

grees; however this is a realistic test situation which will provide valuable domain-

specific information. These experiments will also be run on the IAM dataset to

compare the magnitude of the effect on identification accuracy, and with a control

experiment to estimate the effect of reducing the training set.

6.1.1 Methodology

In the scribes dataset, samples consist of page or part-page images, grouped by

document: here, this is the physical manuscript or book from which they were

drawn. For the experiments in this Section, only a subset of the writers are used:

those who meet the criterion of having image samples from at least two docu-

ments. This subset contains 24 writers, with a total of 328 images split into 101

documents. There are 1–19 samples per document (median 2), and 2–14 docu-

ments per writer (median 3).

The IAM dataset consists of single-line image samples, segmented from a

page of freehand text. As these pages and their content are independent, each

page is considered to be its own document with the line images as samples. There

are 93 writers, 465 documents, and 4261 images in total, with 3–12 samples per

document (median 9), and 5 documents per writer. As all writers have more than

two documents, the entire dataset is used. On the IAM dataset therefore, a line

image tested will need to be matched against a line from another page to be clas-

sified correctly; on the scribes dataset, a page sample will need to be matched

against a page from a different manuscript.

The experiment will be run eight times using the standard methodology sum-

marised in Section 3.5.1, with the following exception: three classification modes

will be tested. The first is the standard leave-one-out (LOO). The second is the

135

proposed leave-document-out (LDO) method: all samples by the same writer and

from the same physical document as the test sample will be excluded from the

training set for that fold. Apart from the style issues being analysed, this also

makes the identification problem statistically harder as the proportion of ‘correct’

(i.e. same-writer) matches in the training set is decreased.

To quantify this effect, a third classification method is also tested: the leave-

random-out (LRO) strategy is a control that accounts for these changes in training-

set size. This method counts the n samples with the same document as the test

image, but instead of excluding them all as in LDO, it randomly chooses n sam-

ples from that writer to exclude. This produces a training set that has identi-

cal correct-writer:incorrect-writer sample ratios as LDO (and therefore the same

level of identification by chance), but without the explicit exclusion of all same-

document samples. This may of course happen incidentally, and is more likely to

occur in the scribes dataset where most writers have fewer attributed samples than

the IAM dataset.

The leave-one-out mode gives training sets of 327 and 4260 image samples

on the scribes and IAM datasets respectively. In leave-document-out or leave-

random-out mode, the training set for each fold will contain 309–327 and 4249–

4258 samples for the scribes and IAM datasets respectively, depending on the

number of samples attributed to the same document as the test sample. In the pre-

sented results, the per-sample chance-level calculations described in Section 3.4.3

have been adapted to match the new methodology, and both chance-levels are

indicated separately in the results.

6.1.2 Results and Analysis

Both datasets show a drop in actual and chance-level identification accuracies

using LDO and LRO compared to the standard leave-one-out method. The small

chance-level drops reflect the reduced probability of randomly choosing a same-

writer sample from the training set as under both LDO and LRO the number of

136

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

codebook size

T
op

−
1

ac
cu

ra
cy

 (
%

)

Classification method comparison on the scribes dataset

leave−one−out
leave−document−out
leave−random−out
LOO chance−level
LDO/LRO chance−level

(A) Classification strategy comparison on the medieval dataset

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

codebook size

T
op

−
1

ac
cu

ra
cy

 (
%

)

Classification method comparison on the IAM dataset

leave−one−out
leave−document−out
leave−random−out
LOO chance−level
LDO/LRO chance−level

(B) Classification strategy comparison on the IAM dataset

FIGURE 6.1: Classification strategies on each dataset, mean of 8 runs ± 1 stan-
dard error

137

these samples is reduced, while the number of different-writer samples remains

the same. It is also clear that for both datasets, codebook size is not a significant

factor: the percentage-point drop in identification accuracy is consistent across

the range.

In the interest of completeness an additional control method was tested, al-

though for clarity the results are not plotted here. This method also selected n

samples to remove (where n is again the number of same-document/same-writer

samples), but these were randomly taken from the whole training set rather than

being restricted to a single writer. Mean identification accuracies and standard er-

rors for this method were essentially identical to LOO across both datasets and all

codebook sizes. This shows that simply reducing the total training set size confers

neither a positive nor a negative effect, which confirms that the drop in identifi-

cation accuracy using LRO is due to the difference in the same-writer:different-

writer ratio, rather than the overall training-data reduction.

On the scribes dataset, the leave-document-out method has a much lower iden-

tification accuracy than leave-one-out, with a drop of approximately 24 percentage

points (Figure 6.1a). The results from the leave-random-out control experiment

show that only approximately 8 percentage points of this can be attributed purely

to a reduction in same-writer training data. This strongly suggests that the remain-

der of the decrease is due to the inability to distinguish the writer’s style across

different documents.

On the IAM dataset, the drop between the LOO and LDO methods is much

smaller, at approximately 4.8 percentage points (Figure 6.1b). It is also clear

that the majority of this drop is accounted for by the LRO method, i.e. the drop

is almost completely due to the reduction in the amount of same-writer training

data. The effect of the physical document style appears to be minimal, including

any effect the type of content may have had on the writer’s style.

138

6.1.3 Conclusions

These experiments have shown that the personal writing style present in the his-

torical data is substantially obscured by the style of the document a writing sample

originates from. The physical manuscript is therefore a highly significant variable

which must be taken into account in the analysis of medieval scribal texts.

In contrast, the document style had very little effect on writer identification in

modern handwriting. This suggests that even for small samples, variation in the

content-type of writing samples is likely to have minimal effect on the measurable

writing style.

The following section will move from classification method considerations to

the next stage in the process – given a set of identified samples, is it possible to

determine the proportion of a dataset which can be classified confidently?

6.2 Verification thresholds

The classifier used in all these experiments is the nearest-neighbour classifier,

which finds the single closest match in the training set and attributes the test image

to its writer. The identification accuracy reported from each of these experiments

is simply the proportion of these assignments that was found to be correct, with

no additional information regarding how ‘good’ each match was.

As this information is useful for deeper analysis, the following section pro-

poses using the distance between the test image and its closest match to determine

the quality of the match, and how confident the system is in its identification. Ag-

gregating these distances over the whole data set can also provide information on

the proportion of data that can be confidently identified.

139

6.2.1 Problem Background

Although writer verification is a substantial field in its own right (most notably

in signature verification, see Section 2.1 for a summary), current work in writer

identification rarely offers dataset or system performance indicators beyond sim-

ple identification accuracy. A notable exception to this is the work of Bunke et

al. (Schlapbach and Bunke, 2007b, 2006a, 2004b), where a rejection mechanism

for a Hidden Markov Model-based writer identification system has been imple-

mented. Four confidence measures have been tested, which are used to reject

image samples that do not meet a given confidence threshold. By rejecting the

most ambiguous 21% of the input images, the remaining data could be classified

with 99.9% accuracy (Schlapbach and Bunke, 2007b).

Similar measures of the system’s level of confidence in its identity attributions

are particularly useful to historians in the further analysis of manuscripts, at both

the level of individual images and the overall dataset.

The following work describes an analysis of the baseline results (Section 3.6)

on the medieval and IAM datasets. This method is also more broadly applicable

to nearest-neighbour results generated from any set of features.

6.2.2 Method

This method builds an additional layer onto the existing stage of identification at

which unknown samples are labelled with the writer they match most closely. The

secondary stage augments this with an additional piece of information: how confi-

dent the system is that this writer is correct. The higher the value, the more likely

the writer label is to be correct, with very low values suggesting that the label is

incorrect, and intermediate values indicating insufficient evidence to decide either

way.

By applying a threshold to these values, a prediction can be made as to whether

the assigned writer is correct or incorrect. The combination of primary classifi-

140

Identification
Correct Incorrect

V
er

ifi
ca

tio
n Correct True Positive False Positive

Incorrect False Negative True Negative

TABLE 6.1: Accuracy classes for primary classification and secondary verifica-
tion

cation labels (i.e. writers) and secondary predictions about them will fall into the

following categories:

• Writer label is correct, and predicted to be correct (accurate prediction)

• Writer label is correct, but predicted to be incorrect (inaccurate prediction)

• Writer label is correct, but prediction is unsure (no prediction made)

• Writer label is incorrect, but predicted to be correct (inaccurate prediction)

• Writer label is incorrect, and predicted to be incorrect (accurate prediction)

• Writer label is incorrect, but prediction is unsure (no prediction made)

The more confident the system must be before declaring a match, the more

likely the match is to be correct, but a correspondingly smaller proportion of the

dataset will meet that threshold. The inverse of the same confidence threshold

can also be used to actively highlight the samples that the system has identified

incorrectly. For example, setting the threshold at 70% means that samples with a

confidence level of 70% or more will be predicted to have correct writer labels,

and samples with a confidence of 30% or less will be predicted to have incorrect

labels. The remaining samples have confidence c where 30% < c < 70%, and

will be rejected as ambiguous.

141

The retained data therefore falls into the four results categories for which an

accurate/inaccurate prediction is made. In verification terms, these categories are

respectively defined true positives, false negatives, false positives, and true nega-

tives, as summarised in Table 6.1. In these terms, the primary classification accu-

racy is the sum of the true positives and the false negatives at a threshold of 50%,

i.e. the samples whose labels were assigned correctly, regardless of whether this

was accurately verified, with no samples rejected as ambiguous.

This method considers the distance between a test sample and its nearest-

neighbour as an indication of how likely they are to belong to the same writer

class. In the identification system, this distance information is discarded. The

verification system instead collects these distances from the training data and di-

vides them into two groups according to whether the test sample was correctly or

incorrectly classified. The distribution of distances in each group provides infor-

mation on how frequently particular test–neighbour sample distance ranges result

in correct attributions. Given a sample of unknown authorship, the distance to its

nearest-neighbour can be used to estimate how likely the nearest-neighbour iden-

tification is to be correct. The following section describes the implementation of

this process.

6.2.3 Implementation

Given a classified dataset, the verification stage initially estimates the distance-

to-nearest-neighbour distributions of the image samples which were classified

correctly and incorrectly (Figure 6.2, blue and red plots respectively). This was

implemented using the MATLAB ksdensity() function to provide a smoothed dis-

tribution. The figures show that the majority of samples are in the range 0.05–

0.09 from their closest match in the medieval dataset, and 0.12–0.23 in the IAM

dataset. It is also clear that the samples finally identified correctly are typically

closer to their match than those incorrectly identified, and that the spread of the

IAM dataset is substantially greater than for the medieval data.

142

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

5

10

15

20

25

30

distance to top−1 match

m
at

ch
 d

en
si

ty

top−1 correct
top−1 incorrect
p(correct)

(A) Correct/Incorrect distance distributions for the medieval dataset

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

2

4

6

8

10

12

distance to top−1 match

m
at

ch
 d

en
si

ty

top−1 correct
top−1 incorrect
p(correct)

(B) Correct/Incorrect distance distributions for the IAM dataset

FIGURE 6.2: Correct/Incorrect nearest-neighbour distance distributions for each
dataset with prediction confidence, eight runs at codebook size 150

143

The relative areas under each curve reflect the primary classification accuracy:

on the IAM dataset, the mean over the eight runs is 57.9%, and 71.7% for the

medieval set. On the IAM data, the area covered by the blue curve is therefore

typically slightly larger than the red. On the medieval scribes data, the correc-

t/blue curves account for approximately 2
3

of the data and the incorrect/red curves

account for approximately 1
3
, i.e. covering approximately half the area of the cor-

rect curves.

By taking the ratio between the correct and incorrect distributions, the prob-

ability that any given nearest-neighbour distance represents a correct or incorrect

match can be calculated. This is implemented on a leave-one-out basis, so that

the distributions used in the calculation never contain the test sample’s distance

information. There are three edge-cases to handle where the ratio method is in-

sufficient: the test sample’s nearest-neighbour distance may be within the training

data range of the ‘correct’ cases but outside the range of the ‘incorrect’ cases and

vice-versa, or it may be outside the range of both distributions.

In the former case, the confidence assigned to the test sample’s label is to be al-

most completely sure that the primary labelling is correct or incorrect respectively,

i.e. one or zero, ± an uncertainty factor delta. In the latter case, the confidence

level is calculated proportional to the distance to the closest endpoints of each

distribution. The MATLAB code used is given in Listing 4 in Appendix C.

The green plots in Figure 6.2 show the probability of label correctness in-

dicated by this calculation at each potential distance between a sample and its

nearest-neighbour. Values outside the distance ranges which the training data cov-

ers are included as examples of the edge-case calculations described. It is clear

that ‘correct’ primary classifications are easier to identify at the lower end of the

distance range, and that uncertainty is much higher for larger distances.

144

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

confidence threshold (%)

ac
cu

ra
cy

/s
am

pl
es

 c
la

ss
ifi

ed
 (

%
)

in/correct prediction accuracy
% of samples classified

(A) Confidence thresholds on the medieval dataset

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

confidence threshold (%)

ac
cu

ra
cy

/s
am

pl
es

 c
la

ss
ifi

ed
 (

%
)

in/correct prediction accuracy
% of samples classified

(B) Confidence thresholds on the IAM dataset

FIGURE 6.3: Confidence thresholds on the medieval and IAM datasets, single run
at codebook size 150

145

6.2.4 Results and Analysis

This Section will discuss typical results obtained from this method, illustrated

by a comparative case study of the IAM and medieval dataset baseline results

(Section 3.6) for a codebook size of 150. Full results figures are available in

Appendix D.

Figure 6.3 shows the trade-off between the proportion of the labels the sec-

ondary system can predict accurately (i.e. true positives and true negatives) and

the proportion of the dataset that remains after rejecting samples that do not meet

the confidence threshold. The vertical scale shows both the proportion of un-

ambiguous samples remaining for label prediction and the secondary prediction

accuracy on that subset. Note that no values are plotted for a threshold confidence

of zero as no predictions are made with total confidence, leaving zero samples to

be classified at this point.

The span of the confidence threshold, or p-value, is limited to half the available

[0, 1] range, as its inverse is taken as the threshold for predicting incorrect labels.

A confidence level near 0.5 indicates the system is very weakly confident about

its verification prediction; thresholds close to zero (or equivalently, one) indicate

high certainty.

As a consequence of a two-layer system, two main types of system accuracy

are reported. Identification accuracy is the initial output: a prediction of which

writer label or class to assign to an unknown sample. This prediction can take as

many values as there are writers, and the label can be correct or incorrect. Ver-

ification accuracy is the secondary output: a prediction of whether a sample’s

identification is correct, incorrect, or ambiguous according to some threshold pa-

rameter. Ambiguous samples are rejected from the verification system, those that

remain are the attempted samples that the verification system considers. A sample

may be verified correctly when the initial identification is wrong (True Negative),

and vice versa (False Positive). Table 6.1 summarises the possible final outcomes

for attempted samples. As the accuracy trends over the range of codebook sizes

146

are very similar a codebook size of 150 has been chosen as a case study, although

any size-related variations of interest will be noted. Figures 6.4a and 6.4b illus-

trate the main accuracy rates of interest on each dataset for 8 runs of this codebook

size.

In these Figures, the horizontal primary accuracy line indicates the identi-

fication rate when all samples are included, i.e. the baseline classification rate

reported in earlier Chapters. It represents the performance of the existing one-

level identification system.

The solid pink tp+fn line is the identification accuracy at each threshold when

only the attempted samples are considered.

The blue dashed tp+tn line is the verification accuracy, i.e. the success rate

of the secondary prediction of whether a writer label is correct or incorrect. This

is equivalent to the blue curves in Figure 6.3, which show the accuracy on the

attempted samples only, whereas Figure 6.4 shows this in the context of the whole

dataset (i.e. incorporating both the verification accuracy and reject rates). The

distance to the tp+fn line below indicates the small but significant advantage in

prediction accuracy gained from using this verification system.

The green dashed tp line and corresponding light grey area shows only the

proportion of the dataset the system was able to predict correctly. This is the most

stringent measure of the combined identification and verification system accuracy.

The solid red bounding attempted line shows the proportion of the dataset

meeting the verification system threshold, as this varies along the x-axis. It is

equivalent to the green curves in Figure 6.3. Although Figure 6.3 illustrates a

single run only, the small error bars in Figure 6.4 demonstrate this curve shape is

typical of the overall result.

The shaded tn area shows the proportion of the dataset for which the verifica-

tion system was able to highlight an identification error made by the identification

stage, correctly picking out incorrect writer labels.

The dark shaded fp+fn area shows the total verification error rate on the sam-

147

confidence threshold for label correctness

da
ta

se
t s

am
pl

es
 (

%
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

10

20

30

40

50

60

70

80

90

100

110

primary accuracy
tp+fn
tp+tn
tp
attempted
fp+fn
tn
tp

(A) Error/accuracy rates on the medieval dataset

confidence threshold for label correctness

da
ta

se
t s

am
pl

es
 (

%
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

10

20

30

40

50

60

70

80

90

100

110

primary accuracy
tp+fn
tp+tn
tp
attempted
fp+fn
tn
tp

(B) Error/accuracy rates on the IAM dataset

FIGURE 6.4: Error rates for each confidence threshold on the medieval and IAM
datasets as a proportion of the total dataset, 8 runs mean and standard error at

codebook size 150

148

Codebook Accurate Identify & Verify (TP) Accurate Verification (TP+TN)
Size Rate % Threshold Samples % Rate % Threshold Samples %
50 91.33 0.09 15.68 97.85 0.09 15.68
100 87.19 0.09 17.50 98.66 0.02 7.50
150 90.17 0.12 28.52 98.21 0.04 11.30
200 91.47 0.07 19.85 97.29 0.07 19.85
250 93.50 0.07 19.81 97.26 0.07 19.81
500 92.06 0.10 29.01 96.31 0.09 26.94

TABLE 6.2: Scribal dataset peak verification accuracy rates, corresponding
thresholds, and samples attempted for two accuracy measures. Mean of 8 runs

given for each codebook size.

ples it attempted. It is a combination of the accurate writer label assignments it

predicted incorrect, and the inaccurate labels it predicted correct.

It is clear from both these Figures that only a small fraction of either the IAM

or scribal datasets can be identified with high confidence. At a threshold of 0.05,

only 3% of the IAM dataset and 13% of the scribes dataset samples are attempted

by the verification system for a codebook size of 150; if the threshold strictness is

relaxed to 0.25, 18% of the IAM dataset and 58% of the scribal dataset samples

are attempted. Verification accuracy only exceeds baseline identification accuracy

when the threshold stringency is lowered to 0.4–0.45 on the scribal dataset, and

0.45–0.5 on the IAM dataset. However, verification performance always exceeds

the initial identification performance on any attempted subset of samples, showing

the ability to find incorrect identifications is still valuable. At a threshold of 0.5

where the full dataset is passed to the verification system, identification accuracy

is exceeded by 4–8 percentage-points on the scribal dataset and 6–11 percentage

points on the IAM dataset, depending on codebook size.

Although its accuracy boost is greater, the IAM dataset presents a harder over-

all verification problem in two ways: absolute verification accuracies are lower

than their scribal dataset equivalents at all thresholds, and the rate of increase in

accuracy as the threshold is relaxed is slower, giving a concave curve (as opposed

to the medieval dataset’s convex shape). The IAM dataset’s lower identification

149

Codebook Accurate Identify & Verify (TP) Accurate Verification (TP+TN)
Size Rate % Threshold Samples % Rate % Threshold Samples %
50 73.44 0.22 7.13 91.00 0.10 2.29
100 87.04 0.11 5.12 95.14 0.03 1.60
150 88.27 0.12 6.76 95.49 0.06 3.37
200 88.28 0.12 7.53 95.61 0.08 4.84
250 88.79 0.12 7.92 94.83 0.07 3.95
500 89.33 0.10 6.09 95.83 0.08 4.72

TABLE 6.3: IAM dataset peak verification accuracy rates, corresponding thresh-
olds, and samples attempted for two accuracy measures. Mean of 8 runs given for

each codebook size.

rate is almost certainly a contributing factor to at least the first of these charac-

teristics. The variation in True Positive rates with increasing codebook size also

reflects the identification accuracy trend, peaking at a codebook size of 150 on the

IAM data before dropping off noticeably (e.g. at a threshold of 0.5), whereas the

scribes dataset rises slowly with increasing codebook size.

At the opposite end of the threshold scale, Tables 6.2 and 6.3 show the True

Positive accuracies of approximately 90% and verification accuracies of approx-

imately 95% (IAM dataset) or 97% (scribal dataset) are achievable on a suffi-

ciently limited fraction of each dataset. Except for the smallest codebook size

of 50 graphemes, similar peak accuracies are noted at all codebook sizes. On

the IAM dataset, the corresponding attempted dataset fractions are fairly level.

This suggests that beyond an initial codebook size of 50, increasing the number

of grapheme features does not significantly improve IAM dataset performance.

In contrast, although the peak verification rates on the medieval dataset remain

flat, the proportion of the dataset meeting this threshold requirement generally

increases with codebook size, particularly for the TP+TN accuracy criterion.

150

6.2.5 Summary

Introducing a simple verification layer to this identification system resulted in

a small but significant increase in the output accuracy of the combined system.

Each identification prediction is now augmented with the system’s level of confi-

dence, and a single adjustable threshold can be set to decide whether an attribu-

tion is trustworthy, untrustworthy, or ambiguous. Relaxed thresholds (near 0.5)

maximise the proportion of the total dataset classified correctly, while stringent

thresholds allow very high classification accuracies on a small subset of the data.

Changing the codebook size gives a similar distribution of system accuracies at

each step, and trends in verification accuracy broadly follow the underlying iden-

tification accuracy. Possibly due to lower identification performance, increasing

the codebook size on the IAM dataset beyond 100 graphemes does not signifi-

cantly improve either peak verification accuracy or the proportion of the dataset

that meets the required threshold. However, the scribal dataset does benefit from

increased codebook size as this increases the proportion of data for which the

system is highly confident.

6.3 Conclusions

In this Chapter, two separate parts of the classification process have been refined.

Section 6.1 demonstrated that the standard leave-one-out classification strategy

easily results in significant overestimates of system accuracy on historical data,

while making only a negligible difference to the modern IAM handwriting. This

is due to identifications that are strongly affected by the document aspects of a

sample’s writing style, rather than the purely writer-specific. The work presents

a method for analysing a dataset which quantifies the impact of this particular

confounding factor.

Section 6.2 adds a simple verification layer and identification confidence to

each writer label prediction. This gives a significant increase of 4–8 percentage-

151

points and 6–11 percentage points on the scribal and IAM datasets respectively.

Together, these techniques allow a deeper analysis of the modern and medieval

datasets which highlight their similarities and domain-specific differences.

152

Chapter 7

Conclusions

The overall hypothesis presented in this thesis was that medieval and contempo-

rary writing would respond differently to writer identification techniques.

To test this hypothesis, a series of experiments were executed covering aspects

of each stage of the writer identification process, on two datasets of writing im-

ages from each of the medieval and contemporary periods. These experiments

were designed primarily to discover areas of the identification process, where me-

dieval and contemporary data require different handling, but also to provide a

more in-depth study of the data than is typically available in the writer identifica-

tion literature.

The results of these experiments are summarised in Section 7.1, and indicate

that the medieval and IAM datasets do differ in their response to several of the

techniques developed and tested in this thesis. The work also demonstrates that

some techniques are equivalently applicable to both datasets, and additionally pro-

poses a number of novel methods of writer identification analysis. Section 7.2

identifies limitations of the work presented and potential areas for further work,

and Section 7.3 concludes this thesis.

153

7.1 Contributions

The conclusions drawn in this work are discussed under each of the three cate-

gories mentioned earlier, along with the areas open for further work. Sections 7.1.1

and 7.1.2 summarise the results which demonstrate dataset differences and sim-

ilarities respectively, and Section 7.1.3 addresses the methodological proposals

made.

7.1.1 Dataset differences

Differences in the responses of the scribes and IAM datasets were apparent through-

out the codebook-based writer identification process.

In the initial stage of segmenting the graphemes from the full ink-trace im-

age, a combination of ligature-focused and character-body-focused graphemes

improved IAM dataset accuracy by 12% over the standard character-body only

segmentation, whilst having no significant improvement on the scribes dataset

(Section 4.3). The ligature-focused graphemes segmented from the scribes dataset

therefore contain no writer-specific information (in net) that is not already present

in the character-body data. It is however likely that the advantage gained by the

IAM dataset from this ‘bootstrapping’ may be at least partially influenced by the

significantly smaller number of graphemes per sample when splitting by a single

criterion only.

In normalising graphemes, aspect ratio was found to be a writer-specific char-

acteristic of the IAM dataset, but not of the scribal dataset (Section 4.2). This is

likely due to character aspect ratio being largely determined by font in medieval

writing, rather than by personal preference as in modern freehand. Removing text

aspect ratio in medieval data is therefore likely to remove an element of document-

style interference, improving scribe identification accuracy.

When comparing grapheme bitmap images, the translation-invariant cross-

correlation distance was found to benefit IAM dataset identification rates, but had

154

no effect on the scribal dataset (Section 4.5). This suggests that graphemes gener-

ated from medieval text are more consistent (rendering translation-invariance un-

necessary); or that the position of the relative ink distribution within the grapheme

‘window’ is itself a writer-specific feature in medieval data.

In feature combinations, feature extraction using LDA provides the top iden-

tification performance on the IAM dataset for small codebooks, whereas PCA

performs the most accurately on the scribal dataset for all codebook sizes (Sec-

tion 5.3).

In classification, the style of the document of sample origin had a very strong,

highly significant effect on the medieval dataset, reducing identification accuracy

by as much as 22% when accounted for. In contrast, the IAM dataset reduc-

tion was only marginally significant, standing at approximately 3% (Section 6.1).

This result demonstrates that the accuracy of the grapheme codebook method on

scribal data is drawn in part from correctly matching samples based on a common

document-style, rather than a writer-specific generalisation. This illustrates the

impact and difficulty of working with the strong stylistic influences of medieval

data.

Taken together, these results demonstrate that optimisations in data prepara-

tion, feature analysis, and classification are not equally applicable to modern and

medieval data. Medieval writing requires domain-specific consideration for text

normalisation and source-document handling. Unlike modern writing, it fails to

benefit from translation-invariant grapheme comparison, LDA feature extraction,

or additional ligature-based grapheme representation.

7.1.2 Cross-dataset results

For several of the experiments run, the techniques tested were robust to the varia-

tion in dataset type.

In grapheme formation, ligature-based grapheme segmentation performed poorly

on both datasets, although this criterion was more informative on scribal than

155

modern data. At 61–72% and 44–53% identification accuracy on the medieval

and IAM datasets respectively, ligature-based graphemes clearly contain a signif-

icant amount of writer-specific information, but never reaches the classification

rates of character body-based segmentation (Section 4.3). Similarly, the com-

plexity distance measure also performed poorly (but above chance-level) on both

datasets, suggesting that non-spatial information carries few writer-specific sig-

nals (Section 4.5).

The top-performing techniques at the feature analysis stage are most robust

to the application dataset. PCA feature extraction is a consistent top-performer

on both datasets, increasing in accuracy with codebook size and exceeding base-

line identification accuracy on 500-grapheme codebooks (Section 5.3). PCA-

based feature selection (Section 5.4.1) is also the top-performing selection method

tested, suggesting that spanning feature-vector variation regardless of writer-class

considerations is the best feature analysis approach.

When comparing the codebook similarity selection approaches, the necessity

of a broad distribution of grapheme similarities holds on both datasets. Min-

imising similarity between codebook graphemes also underperforms maximis-

ing similarity, confirming that codebooks composed of outlier graphemes are less

writer-discriminating than those with small grapheme variations only, regardless

of dataset type (Section 5.4.6).

At the verification stage both datasets perform similarly overall, with a small

proportion of each dataset classifiable at a stringent threshold with very high ac-

curacy. A consistent increase as the threshold varies concludes with a significant

increase in the accuracy with which correct and incorrect labels can be marked,

giving more information overall than a purely identification-based system (Sec-

tion 6.2.4).

156

7.1.3 Proposed methods

The final contributions of this thesis are the following methods proposed over the

course of these experiments to improve data analysis in writer identification.

Section 5.3.3 introduces the approach of combining the feature extraction

coefficients calculated via PCA and LDA to compute the individually highest-

weighted graphemes. This is used as both for visualisation of the extracted fea-

tures in terms of the original component graphemes (Section 5.3.3), and as a basis

for feature selection (Section 5.4.1).

Section 6.1.1 describes a classification strategy for quantifying the impact that

document origin has on the identification of its constituent writing samples. This

method can be used to analyse and adjust the expected identification accuracies

for individual datasets, or to compare different features on the same dataset in

terms of their ability to generalise over document-style distractions.

Finally, the work in Section 6.2 employs the precise distance information typ-

ically discarded in the nearest-neighbour classifier as the basis of a verification

system. An algorithm is given to convert distances into confidence levels, and a

MATLAB implementation is provided.

7.2 Limitations and Further Work

The broadest limitations of the work presented in this thesis are inherent in the

data used: for the findings to apply beyond these specific datasets, the IAM and

scribal datasets must be representative of the data available in their respective

time periods. Continuing the experiments carried out in this thesis on alternative

datasets could confirm this, with additional applications to medieval data being of

particular interest. There are however several barriers to manuscript data availabil-

ity, such as a lack of systematic digitisation, the requirement for organisation by

writer at the page level, and frequent copyright issues in reproducing manuscripts

held in collections.

157

The samples chosen to represent typical contemporary handwriting data were

from the 100-writer task from the IAM handwriting dataset, a benchmark data

subset marked specifically for writer identification experiments. Unfortunately

during the course of this work the collection identifiers have been withdrawn, al-

though the individual images it comprised are still available. The choice of this

data was intended to be typical of the datasets on which feature development takes

place, however, the difference in sample size compared to the medieval dataset is

undesirable. Further work examining the effects of sample-size in each dataset are

necessary to quantify the impact (if any) that this may have had on the results pre-

sented. A related issue is the variation in the number of writers between datasets,

which may have affected e.g. the comparative stability of ICA feature extraction.

The medieval dataset is highly unbalanced in respect of the number of samples

available per-writer and per-manuscript. Whilst more complex to handle in evalu-

ation terms, this imbalance is typical of the data available and must be handled in

developing and analysing scribal identification techniques.

The sample-size used most often (and retained in this work) is per-page of a

given document. In historical texts, a complete manuscript may have been pro-

duced and illustrated by a number of scribes, who are likely to have imitated each

other’s writing styles to ensure continuity in the presentation. In producing a

training set classification, writer classification therefore cannot be recorded per-

document: it is likely required at a per-page level of granularity at a minimum, and

possibly further refined for pages which are disputed or have a known switchover

point – although these may also be left out of the training corpus entirely.

Variation in the sample-size used has not been examined as a variable in this

work, but could be tested on a quantitative or qualitative basis, i.e. it could be

enforced numerically (e.g. fixed number of graphemes allocated to each sample),

or based on a writing-related unit such as page or paragraph. Quantitative ap-

proaches provide greater direct comparability of results, but may not reflect the

context in which the writing was produced: for example, mixing graphemes from

158

different writing units may produce a different shape distribution than is typical of

a particular text. Additionally (as the results in Chapter 6 demonstrate) subdivid-

ing a single text where the document style is a significant factor may overestimate

the expected classification accuracy on an unrelated document. Qualitative ap-

proaches avoid these problems, but can produce samples with very varied text

quantities. In a varied-content corpus a distinction such as ‘paragraph’ may also

be impossible to apply consistently as it may not be equivalent or relevant to all

documents (e.g. lists or recipes, pages with columns). Future work may con-

sider how identification accuracy responds to changes in sample-size and division

method. The minimum sample-size required to achieve a given level accuracy in

each type of dataset is also unknown.

As the domain application of writer identification matures, it may be neces-

sary to make use of the additional information in grayscale images for fine-tuning

accuracy improvements. This area of research has additional challenges that dis-

tinguish it from contemporary writing. The writing instruments used to produce

medieval script require little or no pen pressure, reducing the information available

through this channel. As historical documents usually suffer from bleed-through

and faded and degraded ink traces, care must be taken to minimise the effect this

has on the grayscale information collected.

A limitation of the grapheme codebook feature itself is its reliance on a shape-

based ink-trace representation: this may leave it unable to abstract writer-features

well enough to generalise beyond the font style used in medieval scripts. Test-

ing this hypothesis requires a dataset categorised by font as well as writer, with

sufficient samples of each to draw conclusions. The document style factor tested

(Section 6.1) is a first step towards this, but is an imperfect proxy for font as doc-

ument style is linked strongly to period, location, and manuscript content type

(e.g. prose, poetry, religious works) which were not controlled for.

Potential extensions to specific areas of work include examination of the pos-

sible interactions between grapheme segmentation and normalisation approaches,

159

and dynamic feature selection methods to produce specific target-codebook sim-

ilarity distributions. A number of extensions to the verification framework out-

lined are also possible, such as a change of distance criterion (changing distance

to closest match to e.g. ratio of distances to closest predicted match:non-match),

or writer-specific distance thresholds. The latter however requires far more data

per scribe than currently available.

7.3 Conclusion

The work presented in this thesis has demonstrated clear areas of domain-specific

considerations when handling medieval manuscript data, as opposed to a conven-

tional contemporary dataset. The experiments reported have also identified char-

acteristics common to both datasets, and developed three novel methodological

approaches to the analysis of writer identification data. Although further develop-

ment is required to integrate this research into a viable software platform for use

in the humanities, it is hoped that this thesis has made a useful contribution to the

field.

160

Appendix A

Datasets

A.1 IAM

The IAM database (Marti and Bunke, 1999) is a collection of grayscale PNG

images of varied-content text1. The images are available in full pages, or at the text

line or word level, and are fully labelled. The content of the samples is freeform

English text, divided into several subject categories: although this has a negligible

effect for writer identification purposes, it is beneficial for other uses of the corpus.

Each test page contains about a paragraph of text, using a separate guideline sheet

to ensure that the lines are horizontal and well-spaced. The database currently

consists of around 1500 samples, from roughly 650 writers. More details can be

found in Marti and Bunke (1999).

1Available for download from http://www.iam.unibe.ch/fki/databases/iam-handwriting-
database

161

FIGURE A.1: Full page IAM dataset sample (Marti and Bunke, 2002)

FIGURE A.2: Selected lines from IAM database handwriting samples (Marti and
Bunke, 2002)

162

FIGURE A.3: Complete CEDAR letter sample (Srihari et al., 2002)

A.2 CEDAR

The CEDAR database is a fixed-content dataset composed of roughly 1500 writ-

ers, each contributing three samples of the CEDAR letter. The writers were se-

lected to be representative of the American population as stratified by many fac-

tors, including gender, handedness, country of origin, level of education and eth-

nicity. The sample text is in the form of a letter in English to be copied which has

been designed to contain all the digits and capitals, and every lower-case character

in word start, middle and end position, as this may affect the allograph used. Ex-

tensive manual segmentation of characters and some words has been carried out.

The dataset is described in Srihari et al. (2002).

163

FIGURE A.4: Copies of the word ‘referred’ segmented from several different-
writer samples of the CEDAR letter (Srihari et al., 2002)

FIGURE A.5: Sample from a PSI database letter (Bensefia et al., 2005)

A.3 PSI

The PSI database consists of 88 samples of French text, one from each writer.

Each sample is a copy of one of two possible fixed-text letters of 107 or 98 words

each, producing mainly cursive written text (Bensefia et al., 2002).

164

FIGURE A.6: Further examples of the two letters from the PSI dataset (Bensefia
et al., 2002)

165

A.4 Firemaker

The Firemaker database contains Dutch writing samples from 250 writers, each

contributing 4 pages of a fixed format. One page is a copy of a fixed-content text,

another is free form text of varied content generated by asking the writer to de-

scribe a cartoon and the third is a fixed text copied out in uppercase. The final page

is a fixed text copied in disguised or ‘forged’ handwriting - the writers were asked

to impersonate someone, but it is implied that no reference style was given, i.e.

the writers were attempting to conceal their own natural style rather than specif-

ically adopt someone else’s (Schomaker et al., 2004). Guidelines were used that

were removed by the digitisation process, and the paper and writing instruments

were standardised (Bulacu et al., 2003).

FIGURE A.7: Two samples of writing extracted from Firemaker database pages
(Bulacu and Schomaker, 2007b)

166

FIGURE A.8: Full-page sample of a Firemaker database text (van der Maaten,
2005)

167

FIGURE A.9: Examples of writing from the NFI set, each split into two (Brink
et al., 2007)

A.5 NFI

The NFI database has been collected by the Dutch National Forensic Institute, and

consists of forms filled out by around 1300 suspects in criminal cases. There are

usually 2 pages per person, with some exceptions, for a total of 3500 written forms

containing a mixture of cursive and capitalised text. The majority of the content is

a standardised text transcribed from dictation. An unusual feature of the NFI set

is the untidiness of the data - the forms were not lined in any way, and collection

was not carried out with automatic processing in mind. Some artifacts such as

marks or holes are present, and the images would generally require preprocessing

before use (Brink et al., 2007).

A.6 ImUnipen

The Unipen dataset is a database of online handwriting information, that is, it

contains timing, velocity and coordinate data rather than static images, and it is

168

FIGURE A.10: Word and ligature images from the IFN/ENIT Arabic word
database

generally used in online writer identification where this information is incorpo-

rated into the feature set (Guyon et al., 1994). However, static images can be

derived from the online trace data, to be used in offline writer identification exper-

iments. The resulting dataset of images generated from 215 writers of the Unipen

set has been named the ImUnipen set. Details of the image generation methods

can be found in Bulacu and Schomaker (2006).

A.7 IFN/ENIT

The IFN/ENIT database 2(Pechwitz et al., 2002) is a collection of handwritten

Arabic town and village names, made available for the purposes of testing hand-

writing recognition and identification algorithms. The database content was se-

lected with the aim of being similar to writing that might be found on a letter.

Word images were collected from whole-page forms, segmented at the charac-

ter/ligature level, binarised, and manually checked for writing errors. A significant

amount of metadata is presented alongside, such as ground truth transcriptions,

writer information (identifier, age, profession), and postcode.

2http://www.ifnenit.com/

169

http://www.ifnenit.com/

FIGURE A.11: Original whole-page form from the IFN/ENIT database showing
postcodes and place names

170

Appendix B

Offline Writer Identification Feature

Performance

The following table is a comprehensive listing of most of the work in individ-

ual writer identification feature extraction. Results are grouped by feature, and

within these, in descending order of performance. Feature combinations, survey

papers and repeated results are excluded. Multiple entries may appear for a single

paper that test many features, although where many variations on a feature have

been tested, representative results will be chosen. The number of writers listed

are those from the test set, where train and test figures vary. In general, accuracy

is expected to decrease with increasing numbers of writers to be distinguished,

and to be noticeably higher for samples of fixed content rather than varied. In-

formation on the most commonly used datasets is given in Appendix A. Other

factors not listed that affect accuracy include the number of samples, sample size

per writer, training data:test data ratio and the distance measure used, especially

with nearest-neighbour classifiers. Top-1 hit rates are given to the nearest whole

percent, and some have been estimated from graphs where no other figures are

supplied.

171

Feature #Writers Dataset Content Type Classifier Top-1 (%) Reference

slant distribution 250 Firemaker varied 1-nn 48 Bulacu and Schomaker (2007b)

slant distribution 10 Medieval manuscripts varied 1-nn 47 Bulacu and Schomaker (2007a)

slant distribution 650 IAM varied 1-nn 46 Bulacu and Schomaker (2007b)

slant distribution 250 Firemaker (split lines) varied 1-nn 45 Bulacu and Schomaker (2003)

slant distribution 900 Firemaker+IAM varied 1-nn 43 Bulacu and Schomaker (2006)

slant distribution 250 Firemaker (uppercase) fixed 1-nn 43 Bulacu and Schomaker (2007b)

slant distribution 250 Firemaker varied 1-nn 39 van der Maaten (2005)

slant distribution 250 Firemaker varied 1-nn 35 Bulacu et al. (2003)

slant distribution 150 Firemaker (uppercase) fixed 1-nn 34 Schomaker et al. (2007)

slant distribution 251 Firemaker unknown 1-nn 33 van Erp et al. (2003)

slant distribution 350 Arabic words fixed 1-nn 31 Bulacu et al. (2007a)

slant distribution 250 Firemaker varied 1-nn 26 Bulacu and Schomaker (2003)

differentiated slant distribution 250 Firemaker varied 1-nn 45 Bulacu et al. (2003)

edge-hinge distribution 250 Firemaker (uppercase) fixed 1-nn 84 Bulacu and Schomaker (2007b)

edge-hinge distribution 150 Firemaker (uppercase) fixed 1-nn 83 Schomaker and Bulacu (2004)

edge-hinge distribution 350 Arabic words fixed 1-nn 82 Bulacu et al. (2007a)

edge-hinge distribution 650 IAM varied 1-nn 81 Bulacu and Schomaker (2007b)

Feature #Writers Dataset Content Type Classifier Top-1 (%) Reference

edge-hinge distribution 298 IAM (200 chars) varied 1-nn 81 Brink et al. (2008)

edge-hinge distribution 250 Firemaker varied 1-nn 81 Bulacu and Schomaker (2007b)

edge-hinge distribution 10 Medieval manuscripts varied 1-nn 81 Bulacu and Schomaker (2007a)

edge-hinge distribution 900 Firemaker+IAM varied 1-nn 80 Bulacu and Schomaker (2006)

edge-hinge distribution 250 Firemaker (split lines) varied 1-nn 78 Bulacu and Schomaker (2003)

edge-hinge distribution 192 Firemaker (200 chars) varied 1-nn 76 Brink et al. (2008)

edge-hinge distribution 250 Firemaker varied 1-nn 72 van der Maaten (2005)

edge-hinge distribution 251 Firemaker unknown 1-nn 71 van Erp et al. (2003)

edge-hinge distribution 250 Firemaker varied 1-nn 63 Bulacu and Schomaker (2003)

edge-hinge combinations (3,7) 250 Firemaker varied 1-nn 81 van der Maaten (2005)

edge-hinge combinations (3,7,9) 250 Firemaker varied 1-nn 78 van der Maaten (2005)

edge-hinge combinations (3,5,7,9) 250 Firemaker varied 1-nn 77 van der Maaten (2005)

hor. direction co-occurrence distr. 251 Firemaker unknown 1-nn 76 van Erp et al. (2003)

hor. direction co-occurrence distr. 10 Medieval manuscripts varied 1-nn 71 Bulacu and Schomaker (2007a)

hor. direction co-occurrence distr. 650 IAM varied 1-nn 68 Bulacu and Schomaker (2007b)

hor. direction co-occurrence distr. 250 Firemaker varied 1-nn 68 Bulacu and Schomaker (2007b)

hor. direction co-occurrence distr. 900 Firemaker+IAM varied 1-nn 65 Bulacu and Schomaker (2006)

Feature #Writers Dataset Content Type Classifier Top-1 (%) Reference

hor. direction co-occurrence distr. 250 Firemaker (split lines) varied 1-nn 64 Bulacu and Schomaker (2003)

hor. direction co-occurrence distr. 250 Firemaker varied 1-nn 53 Bulacu and Schomaker (2003)

hor. direction co-occurrence distr. 250 Firemaker (uppercase) fixed 1-nn 51 Bulacu and Schomaker (2007b)

hor. direction co-occurrence distr. 350 Arabic words fixed 1-nn 38 Bulacu et al. (2007a)

ver. direction co-occurrence distr. 250 Firemaker varied 1-nn 66 Bulacu and Schomaker (2007b)

ver. direction co-occurrence distr. 650 IAM varied 1-nn 65 Bulacu and Schomaker (2007b)

ver. direction co-occurrence distr. 900 Firemaker+IAM varied 1-nn 59 Bulacu and Schomaker (2006)

ver. direction co-occurrence distr. 10 Medieval manuscripts varied 1-nn 56 Bulacu and Schomaker (2007a)

ver. direction co-occurrence distr. 350 Arabic words fixed 1-nn 39 Bulacu et al. (2007a)

ver. direction co-occurrence distr. 250 Firemaker (uppercase) fixed 1-nn 37 Bulacu and Schomaker (2007b)

grapheme distribution (2D SOFM) 180 Arabic text varied 1-nn 100 Ghiasi and Safabakhsh (2010)

grapheme distribution (2D SOFM) 150 Firemaker fixed 1-nn 93 Schomaker et al. (2004)

grapheme distribution 192 Firemaker (200 chars) varied 1-nn 82 Brink et al. (2008)

grapheme distribution (k-means) 650 IAM varied 1-nn 80 Bulacu and Schomaker (2007b)

grapheme distribution (random) 150 Firemaker varied 1-nn 79 van der Maaten (2005)

grapheme distribution (1D SOFM) 150 ImUnipen varied 1-nn 79 Bulacu and Schomaker (2005a)

grapheme distribution (2D SOFM) 250 Firemaker varied 1-nn 78 Bulacu and Schomaker (2005a)

Feature #Writers Dataset Content Type Classifier Top-1 (%) Reference

grapheme distribution (k-means) 150 ImUnipen varied 1-nn 78 Bulacu and Schomaker (2005a)

grapheme distribution (k-means) 900 Firemaker+IAM varied 1-nn 76 Bulacu and Schomaker (2006)

grapheme distribution (2D SOFM) 150 ImUnipen varied 1-nn 76 Bulacu and Schomaker (2005a)

grapheme distribution (k-means) 250 Firemaker varied 1-nn 75 Bulacu and Schomaker (2005a)

grapheme distribution (1D SOFM) 250 Firemaker varied 1-nn 75 Bulacu and Schomaker (2005a)

grapheme distribution (k-means) 10 Medieval manuscripts varied 1-nn 73 Bulacu and Schomaker (2007a)

grapheme distribution (2D SOFM) 150 Firemaker (uppercase) fixed 1-nn 72 Schomaker et al. (2007)

grapheme distribution 298 IAM (200 chars) varied 1-nn 70 Brink et al. (2008)

grapheme distribution (k-means) 250 Firemaker (uppercase) fixed 1-nn 65 Bulacu and Schomaker (2007b)

grapheme distribution (2D SOFM) 150 Firemaker (uppercase) fixed 1-nn 63 Schomaker et al. (2004)

grapheme distribution (2D SOFM) 150 Firemaker varied 1-nn 62 Schomaker et al. (2004)

grapheme distribution (k-means) 350 Arabic words fixed 1-nn 61 Bulacu et al. (2007a)

grapheme distribution (2D SOFM) 150 Firemaker (forged) fixed 1-nn 47 Schomaker et al. (2004)

hor. run-length distribution (bg) 10 Medieval manuscripts varied 1-nn 33 Bulacu and Schomaker (2007a)

hor. run-length distribution (bg) 192 Firemaker (200 chars) varied 1-nn 23 Brink et al. (2008)

hor. run-length distribution (bg) 250 Firemaker varied 1-nn 22 Bulacu et al. (2003)

hor. run-length distribution (bg) 298 IAM (200 chars) varied 1-nn 21 Brink et al. (2008)

hor. run-length distribution (bg) 250 Firemaker varied 1-nn 26 van der Maaten (2005)

Feature #Writers Dataset Content Type Classifier Top-1 (%) Reference

hor. run-length distribution (bg) 150 Firemaker (uppercase) fixed 1-nn 26 Schomaker et al. (2007)

hor. run-length distribution (bg) 251 Firemaker unknown 1-nn 20 van Erp et al. (2003)

hor. run-length distribution (bg) 250 Firemaker varied 1-nn 18 Bulacu and Schomaker (2007b)

hor. run-length distribution (bg) 250 Firemaker varied 1-nn 13 Bulacu and Schomaker (2003)

hor. run-length distribution (ink) 250 Firemaker varied 1-nn 11 Bulacu et al. (2003)

hor. run-length distribution (bg) 650 IAM varied 1-nn 10 Bulacu and Schomaker (2007b)

hor. run-length distribution (bg) 250 Firemaker (split lines) varied 1-nn 9 Bulacu and Schomaker (2003)

hor. run-length distribution (bg) 900 Firemaker+IAM varied 1-nn 8 Bulacu and Schomaker (2006)

hor. run-length distribution (bg) 250 Firemaker (uppercase) fixed 1-nn 8 Bulacu and Schomaker (2007b)

hor. run-length distribution (bg) 350 Arabic words fixed 1-nn 3 Bulacu et al. (2007a)

ver. run-length distribution (bg) 10 Medieval manuscripts varied 1-nn 44 Bulacu and Schomaker (2007a)

ver. run-length distribution (bg) 250 Firemaker varied 1-nn 29 van der Maaten (2005)

ver. run-length distribution (bg) 251 Firemaker unknown 1-nn 27 van Erp et al. (2003)

ver. run-length distribution (bg) 150 Firemaker (uppercase) fixed 1-nn 21 Schomaker et al. (2007)

ver. run-length distribution (bg) 250 Firemaker varied 1-nn 18 Bulacu et al. (2003)

ver. run-length distribution (bg) 250 Firemaker varied 1-nn 16 Bulacu and Schomaker (2007b)

ver. run-length distribution (ink) 250 Firemaker varied 1-nn 12 Bulacu et al. (2003)

ver. run-length distribution (bg) 900 Firemaker+IAM varied 1-nn 10 Bulacu and Schomaker (2006)

Feature #Writers Dataset Content Type Classifier Top-1 (%) Reference

ver. run-length distribution (bg) 250 Firemaker (uppercase) fixed 1-nn 9 Bulacu and Schomaker (2007b)

ver. run-length distribution (bg) 650 IAM varied 1-nn 8 Bulacu and Schomaker (2007b)

ver. run-length distribution (bg) 350 Arabic words fixed 1-nn 3 Bulacu et al. (2007a)

brush/ink density distribution 150 Firemaker (uppercase) fixed 1-nn 69 Schomaker et al. (2007)

brush/ink density distribution 250 Firemaker (split lines) varied 1-nn 62 Bulacu and Schomaker (2003)

brush 298 IAM (200 chars) varied 1-nn 57 Brink et al. (2008)

brush/ink density distribution 250 Firemaker varied 1-nn 53 Bulacu and Schomaker (2003)

brush/ink density distribution 251 Firemaker unknown 1-nn 53 van Erp et al. (2003)

brush 192 Firemaker (200 chars) varied 1-nn 41 Brink et al. (2008)

brush/ink density distribution 250 Firemaker varied 1-nn 30 van der Maaten (2005)

writer invariants 88 PSI fixed (1 of 2) 1-nn 98 Bensefia et al. (2002)

writer invariants 88 PSI fixed (1 of 2) 1-nn 93 Bensefia et al. (2005)

writer invariants 88 PSI fixed (1 of 2) 1-nn 93 Bensefia et al. (2003)

writer invariants 150 IAM varied 1-nn 87 Bensefia et al. (2005)

writer invariants 39 French historical varied 1-nn 72 Bensefia et al. (2003)

stroke-fragment reference base 50 IAM varied 1-nn 94 Siddiqi and Vincent (2007)

Feature #Writers Dataset Content Type Classifier Top-1 (%) Reference

stroke-fragment reference base 20 French texts varied 1-nn ¿85 Seropian et al. (2003)

stroke-fragment reference base 50 IAM varied 1-nn 84 Siddiqi and Vincent (2007)

Hermite filters 5 IAM+historical texts probably varied SVM 98 Imdad et al. (2007)

Gabor filters 17 Chinese characters probably fixed 1-nn 96 Zhu et al. (2000)

Gabor filters + PCA/ICA 55 Chinese text fixed 5-nn 93 Ubul et al. (2009)

Gabor-energy features 25 Arabic text fixed 1-nn 88 Shahabi and Rahmati (2006)

Hermite filters 30 IAM+historical texts probably varied SVM 83 Imdad et al. (2007)

Fourier transform of Gabor output 25 Arabic text fixed 1-nn 80 Shahabi and Rahmati (2006)

sigmoidal transform of Gabor filters 25 Arabic text fixed 1-nn 80 Shahabi and Rahmati (2006)

wavelet-based GGD 10 Chinese text varied 1-nn 80 He et al. (2005)

2D Gabor filters 20 probably English text varied 1-nn 76 Said et al. (1998)

2D Gabor filters 10 Chinese text varied 1-nn 70 He et al. (2005)

Gabor filters 20 music sheets varied 5-nn 64 Fornéz et al. (2009)

Gabor energy features 40 Arabic text probably fixed 1-nn 56 Shahabi and Rahmati (2009)

symmetric Gabor filters 25 Arabic text fixed 1-nn 36 Shahabi and Rahmati (2006)

Fourier transform of Gabor output 40 Arabic text probably fixed 1-nn 49 Shahabi and Rahmati (2009)

Gabor filter 11 Medieval manuscripts varied 1-nn 30 Amos (2004)

Feature #Writers Dataset Content Type Classifier Top-1 (%) Reference

Villasenor (2) wavelet 150 Firemaker (uppercase) fixed 1-nn 15 Schomaker et al. (2007)

Daubechies (14) wavelet 150 Firemaker (uppercase) fixed 1-nn 15 Schomaker et al. (2007)

Odegard wavelet 150 Firemaker (uppercase) fixed 1-nn 14 Schomaker et al. (2007)

Adelson wavelet 150 Firemaker (uppercase) fixed 1-nn 14 Schomaker and Bulacu (2004)

Antonini wavelet 150 Firemaker (uppercase) fixed 1-nn 14 Schomaker and Bulacu (2004)

Brislawn wavelet 150 Firemaker (uppercase) fixed 1-nn 14 Schomaker and Bulacu (2004)

Haar wavelet 150 Firemaker (uppercase) fixed 1-nn 5 Schomaker et al. (2007)

grayscale co-occurrence matrix 20 music sheets varied 5-nn 66 Fornéz et al. (2009)

grayscale co-occurrence matrix 25 Arabic text fixed 1-nn 64 Shahabi and Rahmati (2006)

grayscale co-occurrence matrix 20 English text probably varied 1-nn 60 Said et al. (1998)

grayscale co-occurrence matrix 40 Arabic text probably fixed 1-nn 31 Shahabi and Rahmati (2009)

hor. autocorrelation 150 Firemaker (uppercase) fixed 1-nn 25 Schomaker et al. (2007)

hor. autocorrelation 250 Firemaker varied 1-nn 16 Bulacu and Schomaker (2007b)

hor. autocorrelation 250 Firemaker (uppercase) fixed 1-nn 16 Bulacu and Schomaker (2007b)

hor. autocorrelation 650 IAM varied 1-nn 13 Bulacu and Schomaker (2007b)

hor. autocorrelation 251 Firemaker unknown 1-nn 12 van Erp et al. (2003)

hor. autocorrelation 250 Firemaker varied 1-nn 12 Bulacu et al. (2003)

Feature #Writers Dataset Content Type Classifier Top-1 (%) Reference

hor. autocorrelation 900 Firemaker+IAM varied 1-nn 12 Bulacu and Schomaker (2007b)

hor. autocorrelation 250 Firemaker varied 1-nn 0 van der Maaten (2005)

parameters of GMM 100 IAM varied 1-nn 98 Schlapbach and Bunke (2006a)

OCR accuracy likelihood 100 IAM varied 1-nn 97 Schlapbach and Bunke (2007b)

OCR accuracy likelihood 50 IAM varied 1-nn 97 Schlapbach and Bunke (2007b)

OCR accuracy likelihood 100 IAM varied 1-nn 97 Schlapbach and Bunke (2004b)

OCR accuracy likelihood 50 IAM varied 1-nn 94 Schlapbach and Bunke (2004a)

fractal+geometric measures 20 IAM (single lines) varied neural net. 90 Marti et al. (2001)

fractal+geometric measures 20 IAM (single lines) varied 1-nn 84 Marti et al. (2001)

fractal geometry transform 20 IAM (single lines) varied 5-nn 93 Hertel and Bunke (2003)

fractal geometry transform 50 IAM (single lines) varied 5-nn 84 Hertel and Bunke (2003)

statistics of lower+upper contours 20 IAM (single lines) varied 5-nn 76 Hertel and Bunke (2003)

statistics of lower+upper contours 50 IAM (single lines) varied 5-nn 53 Hertel and Bunke (2003)

statistics of connected-components 20 IAM (single lines) varied 5-nn 54 Hertel and Bunke (2003)

Feature #Writers Dataset Content Type Classifier Top-1 (%) Reference

statistics of connected-components 50 IAM (single lines) varied 5-nn 32 Hertel and Bunke (2003)

statistics of enclosed (loop) regions 20 IAM (single lines) varied 5-nn 36 Hertel and Bunke (2003)

statistics of enclosed (loop) regions 50 IAM (single lines) varied 5-nn 18 Hertel and Bunke (2003)

GSC (upper+lower) 875 CEDAR (characters) fixed 1-nn 98 Zhang et al. (2003)

GSC (chars. of ‘referred’+‘b’+‘h’) 10 CEDAR (characters) fixed 1-nn 97 Srihari et al. (2002)

GSC (chars. of ‘referred’+‘b’+‘h’) 100 CEDAR (characters) fixed 1-nn 90 Srihari et al. (2002)

GSC (chars. of ‘referred’+‘b’+‘h’) 900 CEDAR (characters) fixed 1-nn 82 Srihari et al. (2002)

GSC (digits 0-9) 875 CEDAR (digits) fixed 1-nn 75 Zhang et al. (2003)

GSC (digits 0-5) 776 CEDAR (digits) fixed 1-nn 58 Srihari et al. (2003)

GSC (word ‘referred’) 875 CEDAR (word) fixed 1-nn 49 Zhang and Srihari (2003)

GSC (word ‘Medical’) 875 CEDAR (word) fixed 1-nn 47 Zhang and Srihari (2003)

GSC (word ‘Cohen’) 875 CEDAR (word) fixed 1-nn 44 Zhang and Srihari (2003)

GSC (word ‘been’) 875 CEDAR (word) fixed 1-nn 40 Zhang and Srihari (2003)

GSC (digit ‘4’) 776 CEDAR (digits) fixed 1-nn 16 Srihari et al. (2003)

GSC (digit ‘7’) 776 CEDAR (digits) fixed 1-nn 12 Srihari et al. (2003)

GSC (digit ‘1’) 776 CEDAR (digits) fixed 1-nn 4 Srihari et al. (2003)

Feature #Writers Dataset Content Type Classifier Top-1 (%) Reference

structural features of ‘th’ 165 CEDAR (characters) fixed DistAl 67 Pervouchine and Leedham (2006)

structural features of ‘d’+‘y’+‘f’+‘th’ 200 CEDAR (characters) fixed DistAl 58 Pervouchine and Leedham (2007)

structural features of ‘p’+‘y’ 11 Medieval manuscripts varied Bayes 30 Maclean (2004)

statistical features of 3 chars. 34 Hebrew manuscripts varied linear Bayes 100 Bar-Yosef et al. (2007)

moments and ver. projection statistics 20 Greek words fixed neural net. 100 Zois and Anastassopoulos (1996)

gradient features 20 text pages unknown 1-nn 100 Tapiador and Sigüenza (2004)

word image PCA components 40 Chinese words fixed 1-nn 98 Zuo et al. (2002)

gradient features 50 Arabic text varied neural net. 94 Sadeghi ram and Moghaddam (2009)

directional element features 25 Chinese characters fixed 1-nn 94 Wang et al. (2003)

stroke measurement distributions 40 IFN/ENIT varied Borda ranking 93 Abdi et al. (2009)

Zipf curve statistics - Italian medieval texts varied 1-nn 80 Pareti and Vincent (2006)

autoregressive coefficients 422 French + Bengali text varied 1-nn 62 Garain and Paquet (2009)

grayscale ink section statistics - no dataset information unknown LDA 51 Wirotius et al. (2003)

vertical char. structure ratios 11 Medieval manuscripts varied neural net. 40 Dibben (2004)

grayscale ink section statistics - no dataset information unknown 1-nn 28 Wirotius et al. (2003)

statistics of ink and structure ratios 11 Medieval manuscripts varied 1-nn 10 Fallon (2004)

entropy 250 Firemaker varied 1-nn 3 Bulacu et al. (2003)

Hough features 250 Firemaker varied 1-nn 2 van der Maaten (2005)

Feature #Writers Dataset Content Type Classifier Top-1 (%) Reference

fractal dimension 250 Firemaker varied 1-nn 1 van der Maaten (2005)

Appendix C

Algorithms and Code Excerpts

This Appendix collects the algorithms and code excerpts referenced in the thesis,

organised by chapter.

Chapter 3: Data Processing and Experimental Methodology

Algorithm 1 Connected-component extraction from ink pixel coordinates

a l lComponen t s = []

f o r p i x e l i n c o o r d s :

a d j a c e n t C o m p o n e n t s = []

f o r comp i n a l lComponen t s :
i f comp . i s A d j a c e n t T o (p i x e l) :

a d j a c e n t C o m p o n e n t s . add (comp)

i f a d j a c e n t C o m p o n e n t s . s i z e () != 0 :
a l lComponen t s . removeAl l (a d j a c e n t C o m p o n e n t s)
mergedComponent = mergeAl l (ad jacen tComponen t s , p i x e l)
a l lComponen t s . add (mergedComponent)

e l s e :
a l lComponen t s . add (p i x e l)

184

Chapter 4: Grapheme Codebook Analysis

Algorithm 2 MATLAB implementation of the Euclidean or correlation distance

% Images are a l i g n e d by t h e t o p l e f t −hand c o r n e r
% Images o f d i f f e r e n t s i z e s w i l l a lways d i f f e r
f u n c t i o n d i s t = s i m p l e I m a g e D i s t a n c e (im1 , im2)

% s i z e () i s g i v e n i n t o t a l p i x e l s
avgpx = (im1 . s i z e () + im2 . s i z e ()) / 2 ;

% n o t e any s i z e d i f f e r e n c e s be tween images
e x c e s s = abs (im1 . s i z e () − im2 . s i z e ()) / 2 ;

% t a k e image d i f f e r e n c e s from o v e r l a p p i n g a r e a s o n l y
w = min (im1 . width , im2 . wid th) ;
h = min (im1 . h e i g h t , im2 . h e i g h t) ;

% o v e r l a p area s t a r t e d from t o p l e f t c o r n e r
i 1 = im1 (1 : h , 1 :w) ;
i 2 = im2 (1 : h , 1 :w) ;

i m d i f f = sum (sum (abs (i 1 − i 2))) ;

% p i x e l s p r e s e n t i n one image b u t n o t t h e
% o t h e r a lways compare d i f f e r e n t
t o t a l d i f f = i m d i f f + e x c e s s ;

% n o r m a l i s e by mean image s i z e
d i s t = t o t a l d i f f / avgpx ;

end

185

Algorithm 3 MATLAB implementation of the complexity of an image

f u n c t i o n comp = c o m p l e x i t y (img)
w = img . wid th () ;
h = img . h e i g h t () ;

rowChanges = 0 ;
f o r y = 1 : (h−1)

changes = sum (abs (img (y , :) − img (y +1 , :))) ;
rowChanges = rowChanges + changes ;

end

co lChanges = 0 ;
f o r x = 1 : (w−1)

changes = sum (abs (img (: , x) − img (: , x + 1))) ;
co lChanges = co lChanges + changes ;

end

maxChanges = (w*(h−1) + h *(w−1)) ;
comp = (rowChanges + co lChanges) / maxChanges ;

end

186

Chapter 6: Classification

187

Algorithm 4 MATLAB implementation of label confidence calculation from
nearest-neighbour distances

f u n c t i o n [p , x] = p C o r r e c t (t r a i n i n g , t e s t)
[cys , cxs , i y s , i x s] = c a l c C o n f i d e n c e (t r a i n i n g) ;
x = t e s t . d i s t s (1) ;

% ha nd le x−range edge c a s e s
xrangeC = and (x >= cxs (1) , x <= cxs (end)) ;
x range IC = and (x >= i x s (1) , x <= i x s (end)) ;
d e l t a = 0 . 0 0 0 1 ; % a f i x e d ’ a l m o s t sure ’ e r r o r r a t e

% edge 1: x i n xrange o f ‘ c o r r e c t ’ d i s t r i b u t i o n o n l y
i f and (xrangeC , n o t (x range IC))

p = 1 − d e l t a ;
re turn ;

end

% edge 2: x i n xrange o f ‘ i n c o r r e c t ’ d i s t r i b u t i o n o n l y
i f and (xrangeIC , n o t (xrangeC))

p = 0 + d e l t a ;
re turn ;

end

% edge 3: x i n n e i t h e r xrange : d e f i n e t e s t c o n f i d e n c e
% i n p r o p o r t i o n t o t h e c l o s e s t e n d p o i n t s o f each xrange
i f and (n o t (x range IC) , n o t (xrangeC))

d i s t T o F i r s t C x = min ([cxs (1) cxs (end)] − x) ;
d i s t T o F i r s t I C x = min ([i x s (1) i x s (end)] − x) ;
p = 1−d i s t T o F i r s t C x / (d i s t T o F i r s t C x + d i s t T o F i r s t I C x) ;
re turn ;

end

% edge c a s e s n o t h i t , p roceed w i t h normal i n t e r p o l a t i o n :
cy = i n t e r p 1 (cxs , cys , x) ;
i y = i n t e r p 1 (i x s , i y s , x) ;

p = cy / (cy+ i y) ;
end

188

Appendix D

Verification results

Section 6.2 presents the design and implementation of a verification system based

on the nearest-neighbour classifier. Identification accuracy results were calculated

for a range of confidence thresholds for each dataset on codebook sizes of 50–500

graphemes. These are broadly similar and are thus omitted from the main text, but

are included here for completeness.

D.1 IAM dataset verification results

189

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

2

4

6

8

10

12

distance to top−1 match

m
at

ch
 d

en
si

ty

top−1 correct
top−1 incorrect
p(correct)

(A) Distance distributions and prediction confidence for codebook size 50

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

2

4

6

8

10

12

distance to top−1 match

m
at

ch
 d

en
si

ty

top−1 correct
top−1 incorrect
p(correct)

(B) Distance distributions and prediction confidence for codebook size 100

FIGURE D.1: Correct/Incorrect nearest-neighbour distance distributions for each
dataset with prediction confidence, codebook sizes 50-100, eight runs

190

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

2

4

6

8

10

12

distance to top−1 match

m
at

ch
 d

en
si

ty

top−1 correct
top−1 incorrect
p(correct)

(A) Distance distributions and prediction confidence for codebook size 150

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

2

4

6

8

10

12

14

distance to top−1 match

m
at

ch
 d

en
si

ty

top−1 correct
top−1 incorrect
p(correct)

(B) Distance distributions and prediction confidence for codebook size 200

FIGURE D.2: Correct/Incorrect nearest-neighbour distance distributions for each
dataset with prediction confidence, codebook sizes 150-200, eight runs

191

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

2

4

6

8

10

12

14

distance to top−1 match

m
at

ch
 d

en
si

ty

top−1 correct
top−1 incorrect
p(correct)

(A) Distance distributions and prediction confidence for codebook size 250

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

2

4

6

8

10

12

distance to top−1 match

m
at

ch
 d

en
si

ty

top−1 correct
top−1 incorrect
p(correct)

(B) Distance distributions and prediction confidence for codebook size 500

FIGURE D.3: Correct/Incorrect nearest-neighbour distance distributions for each
dataset with prediction confidence, codebook sizes 250-500, eight runs

192

confidence threshold for label correctness (%)

fr
ac

tio
n

of
 d

at
as

et

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

primary accuracy
tp+fn
tp+tn
tp
attempted
fp+fn
tn
tp

(A) Error/accuracy rates for codebook size 50

confidence threshold for label correctness (%)

fr
ac

tio
n

of
 d

at
as

et

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

primary accuracy
tp+fn
tp+tn
tp
attempted
fp+fn
tn
tp

(B) Error/accuracy rates for codebook size 100

FIGURE D.4: Error rates for each confidence threshold as a proportion of the total
dataset, codebook sizes 50-100, 8 runs mean and standard error

193

confidence threshold for label correctness (%)

fr
ac

tio
n

of
 d

at
as

et

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

primary accuracy
tp+fn
tp+tn
tp
attempted
fp+fn
tn
tp

(A) Error/accuracy rates for codebook size 150

confidence threshold for label correctness (%)

fr
ac

tio
n

of
 d

at
as

et

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

primary accuracy
tp+fn
tp+tn
tp
attempted
fp+fn
tn
tp

(B) Error/accuracy rates for codebook size 200

FIGURE D.5: Error rates for each confidence threshold as a proportion of the total
dataset, codebook sizes 150-200, 8 runs mean and standard error

194

confidence threshold for label correctness (%)

fr
ac

tio
n

of
 d

at
as

et

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

primary accuracy
tp+fn
tp+tn
tp
attempted
fp+fn
tn
tp

(A) Error/accuracy rates for codebook size 250

confidence threshold for label correctness (%)

fr
ac

tio
n

of
 d

at
as

et

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

primary accuracy
tp+fn
tp+tn
tp
attempted
fp+fn
tn
tp

(B) Error/accuracy rates for codebook size 500

FIGURE D.6: Error rates for each confidence threshold as a proportion of the total
dataset, codebook sizes 250-500, 8 runs mean and standard error

195

confidence threshold for label correctness (%)

fr
ac

tio
n

of
 a

cc
ep

te
d

da
ta

se
t

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

primary accuracy
tp+fn
tp+tn
tp
attempted
tn
tp

(A) Error/accuracy rates for codebook size 50

confidence threshold for label correctness (%)

fr
ac

tio
n

of
 a

cc
ep

te
d

da
ta

se
t

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

primary accuracy
tp+fn
tp+tn
tp
attempted
tn
tp

(B) Error/accuracy rates for codebook size 100

FIGURE D.7: Error rates for each confidence threshold as a proportion of the
attempted dataset, codebook sizes 50-100, 8 runs mean and standard error

196

confidence threshold for label correctness (%)

fr
ac

tio
n

of
 a

cc
ep

te
d

da
ta

se
t

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

primary accuracy
tp+fn
tp+tn
tp
attempted
tn
tp

(A) Error/accuracy rates for codebook size 150

confidence threshold for label correctness (%)

fr
ac

tio
n

of
 a

cc
ep

te
d

da
ta

se
t

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

primary accuracy
tp+fn
tp+tn
tp
attempted
tn
tp

(B) Error/accuracy rates for codebook size 200

FIGURE D.8: Error rates for each confidence threshold as a proportion of the
attempted dataset, codebook sizes 150-200, 8 runs mean and standard error

197

confidence threshold for label correctness (%)

fr
ac

tio
n

of
 a

cc
ep

te
d

da
ta

se
t

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

primary accuracy
tp+fn
tp+tn
tp
attempted
tn
tp

(A) Error/accuracy rates for codebook size 250

confidence threshold for label correctness (%)

fr
ac

tio
n

of
 a

cc
ep

te
d

da
ta

se
t

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

primary accuracy
tp+fn
tp+tn
tp
attempted
tn
tp

(B) Error/accuracy rates for codebook size 500

FIGURE D.9: Error rates for each confidence threshold as a proportion of the
attempted dataset, codebook sizes 250-500, 8 runs mean and standard error

198

D.2 Scribal dataset verification results

In the following Figures, the equivalent scribal dataset results are given for code-

book sizes 50 − 500 for a range of confidence thresholds. As before, these re-

sults show the distributions of distances between the test sample and its nearest-

neighbour for samples eventually identified correctly and incorrectly; and the error

rates for the final verification system as a proportion of the dataset as a whole, and

as a proportion of just the attempted samples.

199

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

5

10

15

20

25

distance to top−1 match

m
at

ch
 d

en
si

ty

top−1 correct
top−1 incorrect
p(correct)

(A) Distance distributions and prediction confidence for codebook size 50

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

5

10

15

20

25

distance to top−1 match

m
at

ch
 d

en
si

ty

top−1 correct
top−1 incorrect
p(correct)

(B) Distance distributions and prediction confidence for codebook size 100

FIGURE D.10: Correct/Incorrect nearest-neighbour distance distributions for
each dataset with prediction confidence, codebook sizes 50-100, eight runs

200

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

5

10

15

20

25

30

distance to top−1 match

m
at

ch
 d

en
si

ty

top−1 correct
top−1 incorrect
p(correct)

(A) Distance distributions and prediction confidence for codebook size 150

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

5

10

15

20

25

30

distance to top−1 match

m
at

ch
 d

en
si

ty

top−1 correct
top−1 incorrect
p(correct)

(B) Distance distributions and prediction confidence for codebook size 200

FIGURE D.11: Correct/Incorrect nearest-neighbour distance distributions for
each dataset with prediction confidence, codebook sizes 150-200, eight runs

201

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

5

10

15

20

25

30

distance to top−1 match

m
at

ch
 d

en
si

ty

top−1 correct
top−1 incorrect
p(correct)

(A) Distance distributions and prediction confidence for codebook size 250

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

5

10

15

20

25

30

35

distance to top−1 match

m
at

ch
 d

en
si

ty

top−1 correct
top−1 incorrect
p(correct)

(B) Distance distributions and prediction confidence for codebook size 500

FIGURE D.12: Correct/Incorrect nearest-neighbour distance distributions for
each dataset with prediction confidence, codebook sizes 250-500, eight runs

202

confidence threshold for label correctness (%)

fr
ac

tio
n

of
 d

at
as

et

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

primary accuracy
tp+fn
tp+tn
tp
attempted
fp+fn
tn
tp

(A) Error/accuracy rates for codebook size 50

confidence threshold for label correctness (%)

fr
ac

tio
n

of
 d

at
as

et

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

primary accuracy
tp+fn
tp+tn
tp
attempted
fp+fn
tn
tp

(B) Error/accuracy rates for codebook size 100

FIGURE D.13: Error rates for each confidence threshold as a proportion of the
total dataset, codebook sizes 50-100, 8 runs mean and standard error

203

confidence threshold for label correctness (%)

fr
ac

tio
n

of
 d

at
as

et

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

primary accuracy
tp+fn
tp+tn
tp
attempted
fp+fn
tn
tp

(A) Error/accuracy rates for codebook size 150

confidence threshold for label correctness (%)

fr
ac

tio
n

of
 d

at
as

et

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

primary accuracy
tp+fn
tp+tn
tp
attempted
fp+fn
tn
tp

(B) Error/accuracy rates for codebook size 200

FIGURE D.14: Error rates for each confidence threshold as a proportion of the
total dataset, codebook sizes 150-200, 8 runs mean and standard error

204

confidence threshold for label correctness (%)

fr
ac

tio
n

of
 d

at
as

et

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

primary accuracy
tp+fn
tp+tn
tp
attempted
fp+fn
tn
tp

(A) Error/accuracy rates for codebook size 250

confidence threshold for label correctness (%)

fr
ac

tio
n

of
 d

at
as

et

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

primary accuracy
tp+fn
tp+tn
tp
attempted
fp+fn
tn
tp

(B) Error/accuracy rates for codebook size 500

FIGURE D.15: Error rates for each confidence threshold as a proportion of the
total dataset, codebook sizes 250-500, 8 runs mean and standard error

205

confidence threshold for label correctness (%)

fr
ac

tio
n

of
 a

cc
ep

te
d

da
ta

se
t

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

primary accuracy
tp+fn
tp+tn
tp
attempted
tn
tp

(A) Error/accuracy rates for codebook size 50

confidence threshold for label correctness (%)

fr
ac

tio
n

of
 a

cc
ep

te
d

da
ta

se
t

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

primary accuracy
tp+fn
tp+tn
tp
attempted
tn
tp

(B) Error/accuracy rates for codebook size 100

FIGURE D.16: Error rates for each confidence threshold as a proportion of the
attempted dataset, codebook sizes 50-100, 8 runs mean and standard error

206

confidence threshold for label correctness (%)

fr
ac

tio
n

of
 a

cc
ep

te
d

da
ta

se
t

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

primary accuracy
tp+fn
tp+tn
tp
attempted
tn
tp

(A) Error/accuracy rates for codebook size 150

confidence threshold for label correctness (%)

fr
ac

tio
n

of
 a

cc
ep

te
d

da
ta

se
t

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

primary accuracy
tp+fn
tp+tn
tp
attempted
tn
tp

(B) Error/accuracy rates for codebook size 200

FIGURE D.17: Error rates for each confidence threshold as a proportion of the
attempted dataset, codebook sizes 150-200, 8 runs mean and standard error

207

confidence threshold for label correctness (%)

fr
ac

tio
n

of
 a

cc
ep

te
d

da
ta

se
t

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

primary accuracy
tp+fn
tp+tn
tp
attempted
tn
tp

(A) Error/accuracy rates for codebook size 250

confidence threshold for label correctness (%)

fr
ac

tio
n

of
 a

cc
ep

te
d

da
ta

se
t

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

primary accuracy
tp+fn
tp+tn
tp
attempted
tn
tp

(B) Error/accuracy rates for codebook size 500

FIGURE D.18: Error rates for each confidence threshold as a proportion of the
attempted dataset, codebook sizes 250-500, 8 runs mean and standard error

208

Bibliography

Mohamed N. Abdi, Maher Khemakhem, and Hanene Ben-Abdallah. A novel

approach for off-line Arabic writer identification based on stroke feature com-

bination. pages 597–600, 2009. doi: 10.1109/ISCIS.2009.5291888.

M. Amos. Identification of Medieval Scribal Handwriting. Undergraduate thesis,

unpublished, 2004.

M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies. Image coding using

wavelet transform. Image Processing, IEEE Transactions on, 1(2):205–220,

1992.

B. Arazi. Handwriting identification by means of run-length measurements. IEEE

Trans. Syst., Man and Cybernetics, 7(12):878–881, 1977.

Itay Bar-Yosef, Isaac Beckman, Klara Kedem, and Itshak Dinstein. Binariza-

tion, character extraction, and writer identification of historical Hebrew cal-

ligraphy documents. Int. J. Doc. Anal. Recognit., 9(2):89–99, 2007. doi:

10.1007/s10032-007-0041-5.

Michael F. Barnsley. Fractals Everywhere. Morgan Kaufmann, 2nd edition, April

2000. ISBN 0120790696.

Richard Bellman. Dynamic Programming. Princeton University Press, 1957.

URL http://www.worldcat.org/isbn/0486428095.

209

http://www.worldcat.org/isbn/0486428095

A. Bensefia, A. Nosary, T. Paquet, and L. Heutte. Writer identification by writer’s

invariants. In Frontiers in Handwriting Recognition, 2002. Proceedings. Eighth

International Workshop on, pages 274–279, 2002.

A. Bensefia, T. Paquet, and L. Heutte. Information retrieval based writer identifi-

cation. In 7th International Conference on Document Analysis and Recognition,

pages 946–950, 2003.

Ameur Bensefia, Thierry Paquet, and Laurent Heutte. A writer identification and

verification system. Pattern Recognition Letters, 26(13):2080–2092, 2005. doi:

10.1016/j.patrec.2005.03.024.

Christopher M. Bishop. Pattern Recognition and Machine Learning (Informa-

tion Science and Statistics). Springer, 1st ed. 2006. corr. 2nd printing edition,

October 2007. ISBN 0387310738.

Vivian Blankers, Ralph Niels, and Louis Vuurpijl. Writer identification by means

of explainable features: shapes of loop and lead-in strokes. In Proceedings

of the 19th Belgian-Dutch Conference on Artificial Intelligence (BNAIC 2007),

pages 17–24, 2007.

Ruud Bolle, Jonathan Connell, Sharanthchandra Pankanti, Nalini Ratha, and An-

drew Senior. Guide to Biometrics (Springer Professional Computing). Springer,

1st edition, November 2003. ISBN 0387400893.

Ronald Bracewell. The Fourier Transform & Its Applications. McGraw-Hill, 1st

edition, 1965.

Anja Brakensiek, Andreas Kosmala, and Gerhard Rigoll. Comparing adap-

tation techniques for On-Line handwriting recognition. Document Analysis

and Recognition, International Conference on, pages 486–490, 2001. doi:

10.1109/ICDAR.2001.953837.

210

K. Briechle and U. D. Hanebeck. Template Matching Using Fast Normalized

Cross Correlation. In Proceedings of SPIE: Optical Pattern Recognition XII,

volume 4387, pages 95–102, 2001. doi: 10.1117/12.421129.

Axel Brink, Lambert Schomaker, and Marius Bulacu. Towards Explainable Writer

Verification and Identification Using Vantage Writers. In Document Analysis

and Recognition, 2007. ICDAR 2007 Vol. 2. Ninth International Conference

on, volume 2, pages 824–828, 2007.

Axel Brink, Marius Bulacu, and Lambert Schomaker. How much handwritten text

is needed for text-independent writer verification and identification. In Proc. of

19th Int. Conf. on Pattern Recognition (ICPR 2008), 2008.

Michael Bryant, Tobias Blanke, Mark Hedges, and Richard Palmer. Open source

historical OCR: The OCRopodium project. In Mounia Lalmas, Joemon Jose,

Andreas Rauber, Fabrizio Sebastiani, and Ingo Frommholz, editors, Research

and Advanced Technology for Digital Libraries, volume 6273 of Lecture Notes

in Computer Science, chapter 72, pages 522–525. Springer Berlin / Heidelberg,

Berlin, Heidelberg, 2010. doi: 10.1007/978-3-642-15464-5\ 72.

M. Bulacu and L. Schomaker. Writer style from oriented edge fragments. In Proc.

of the 10th Int. Conference on Computer Analysis of Images and Patterns, pages

460–469, 2003.

M. Bulacu and L. Schomaker. Combining Multiple Features for Text-Independent

Writer Identification and Verification. pages 281–286, 2006.

M. Bulacu, L. Schomaker, and L. Vuurpijl. Writer identification using edge-based

directional features. In 7th International Conference on Document Analysis and

Recognition, 2003.

M. Bulacu, L. Schomaker, and A. Brink. Text-Independent Writer Identification

and Verification on Offline Arabic Handwriting. In 9th International Confer-

211

ence on Document Analysis and Recognition, volume 2, pages 769–773, 2007a.

doi: 10.1109/ICDAR.2007.4377019.

Marius Bulacu. Statistical pattern recognition for automatic writer identification

and verification. PhD thesis, 2007.

Marius Bulacu and Lambert Schomaker. A Comparison of Clustering Methods for

Writer Identification and Verification. In 8th International Conference on Doc-

ument Analysis and Recognition, pages 1275–1279, Washington, DC, USA,

2005a. IEEE Computer Society.

Marius Bulacu and Lambert Schomaker. Grawis: Groningen automatic writer

identification system. In Proc. of 17th Belgium-Netherlands Conference on

Artificial Intelligence (BNAIC 2005), pages 413–414, 2005b.

Marius Bulacu and Lambert Schomaker. Automatic handwriting identification

on medieval documents. In Proc. of 14th Int. Conf. on Image Analysis and

Processing (ICIAP 2007), pages 279–284, 2007a.

Marius Bulacu and Lambert Schomaker. Text-Independent Writer Identification

and Verification Using Textural and Allographic Features. IEEE Trans. on Pat-

tern Analysis and Machine Intelligence, 29(4):701–717, 2007b.

Marius Bulacu, Rutger van Koert, Lambert Schomaker, and Tijn van der Zant.

Layout Analysis of Handwritten Historical Documents for Searching the

Archive of the Cabinet of the Dutch Queen. In 9th International Conference on

Document Analysis and Recognition, volume 1, pages 357–361, 2007b.

R. G. Casey and E. Lecolinet. A survey of methods and strategies in character

segmentation. Pattern Analysis and Machine Intelligence, IEEE Transactions

on, 18(7):690–706, 1996. doi: 10.1109/34.506792.

Siew K. Chan, Yong H. Tay, and Christian C. Viard-Gaudin. Online text in-

dependent writer identification using character prototypes distribution. In

212

2007 6th International Conference on Information, Communications & Sig-

nal Processing, pages 1–5. IEEE, 2007. ISBN 978-1-4244-0982-2. doi:

10.1109/ICICS.2007.4449745.

Joulia Chapran. Biometric Writer Identification: Feature Analysis And Classifi-

cation. International Journal of Pattern Recognition and Artificial Intelligence,

20(4):483–503, 2006.

Mohamed Cheriet, Nawwaf Kharma, Cheng-Lin Liu, and Ching Suen. Char-

acter Recognition Systems: A Guide for Students and Practitioners. Wiley-

Interscience, October 2007. ISBN 0471415707.

Arianna Ciula. Digital palaeography: using the digital representation of medieval

script to support palaeographic analysis. Digital Medievalist, April 2005. URL

http://www.digitalmedievalist.org/journal/1.1/ciula/.

John Daugman. Biometric decision landscapes. Technical report, 2000.

John Daugman. Recognising persons by their iris patterns. In Advances in Bio-

metric Person Authentication, pages 5–25. 2005.

Tom Davis. The Practice of Handwriting Identification. Library, 8(3):251–276,

2007. doi: 10.1093/library/8.3.251.

C. Dibben. Identification of Medieval Scribal Handwriting. Undergraduate thesis,

unpublished, 2004.

Due, Anil K. Jain, and Torfinn Taxt. Feature extraction methods for character

recognition-A survey. Pattern Recognition, 29(4):641–662, 1996. doi: 10.

1016/0031-3203(95)00118-2.

Ted Dunstone and Neil Yager. Biometric System and Data Analysis Design, Eval-

uation, and Data Mining. Springer, 2009.

213

http://www.digitalmedievalist.org/journal/1.1/ciula/

R. Fallon. Identification of Medieval Scribal Handwriting (Implementation). Un-

dergraduate thesis, unpublished, 2004.

Andreas Fischer, Markus Wuthrich, Marcus Liwicki, Volkmar Frinken, Horst

Bunke, Gabriel Viehhauser, and Michael Stolz. Automatic Transcription of

Handwritten Medieval Documents. pages 137–142, 2009. doi: 10.1109/

VSMM.2009.26.

Andreas Fischer, Kaspar Riesen, and Horst Bunke. Graph Similarity Features for

HMM-Based Handwriting Recognition in Historical Documents. Frontiers in

Handwriting Recognition, International Conference on, 0:253–258, 2010. doi:

10.1109/ICFHR.2010.47.

Alicia Fornéz, Josep Lladós, Gemma Sánchez, and Horst Bunke. On the Use of

Textural Features for Writer Identification in Old Handwritten Music Scores. In

10th International Conference on Document Analysis and Recognition, pages

996–1000, 2009. doi: 10.1109/ICDAR.2009.100.

Katrin Franke, Lambert Schomaker, Christian Veenhuis, Louis Vuurpijl, Merijn

van Erp, and Isabelle Guyon. WANDA: A common ground for forensic hand-

writing examination and writer identification. Technical report, 2003.

Utpal Garain and Thierry Paquet. Off-Line Multi-Script Writer Identification Us-

ing AR Coefficients. pages 991–995, 2009. doi: 10.1109/ICDAR.2009.222.

Sonia Garcia-Salicetti, Charles Beumier, Gérard Chollet, Bernadette Dorizzi, Jean

Jardins, Jan Lunter, Yang Ni, and Dijana Petrovska-Delacrétaz. BIOMET: A

multimodal person authentication database including face, voice, fingerprint,

hand and signature modalities. In Josef Kittler and Mark Nixon, editors, Audio-

and Video-Based Biometric Person Authentication, volume 2688 of Lecture

Notes in Computer Science, chapter 98, page 1056. Springer Berlin / Heidel-

berg, June 2003.

214

S. Gazzah and N. Ben Amara. Arabic Handwriting Texture Analysis for Writer

Identification Using the DWT-Lifting Scheme. In 9th International Conference

on Document Analysis and Recognition, volume 2, pages 1133–1137, 2007.

W. M. Gentleman and G. Sande. Fast Fourier Transforms: for fun and profit.

AFIPS ’66 (Fall), pages 563–578. ACM, 1966. doi: 10.1145/1464291.

1464352.

Golnaz Ghiasi and Reza Safabakhsh. An Efficient Method for Offline Text In-

dependent Writer Identification. pages 1245–1248, 2010. doi: 10.1109/ICPR.

2010.310.

Alexandra Gillespie and Daniel Wakelin, editors. The production of books in

England 1350-1500. Cambridge University Press, 2011.

David C. Greetham. Textual scholarship: an introduction. Garland Reference,

corrected edition, 1994.

Maya R. Gupta, Nathaniel P. Jacobson, and Eric K. Garcia. OCR binarization and

image pre-processing for searching historical documents. Pattern Recognition,

40(2):389–397, 2007. doi: 10.1016/j.patcog.2006.04.043.

I. Guyon, L. Schomaker, R. Plamondon, M. Liberman, and S. Janet. UNIPEN

project of on-line data exchange and recognizer benchmarks. In Proceedings of

the 12th IAPR International Conference on Computer Vision & Image Process-

ing, volume 2, pages 29–33, 1994.

Robert M. Haralick, K. Shanmugam, and Its’Hak Dinstein. Textural Features for

Image Classification. IEEE Transactions on Systems, Man, and Cybernetics, 3

(6):610–621, 1973. doi: 10.1109/TSMC.1973.4309314.

T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of Statistical Learning.

Springer, 2nd edition, 2009.

215

Zhenyu He, Bin Fang, Jianwei Du, Yuan Y. Tang, and Xinge You. A novel method

for offline handwriting-based writer identification. In 8th International Confer-

ence on Document Analysis and Recognition, volume 1, pages 242–246, 2005.

Behzad Helli and Mohsen E. Moghaddam. A text-independent Persian writer

identification based on feature relation graph (FRG). Pattern Recognition,

2009. doi: 10.1016/j.patcog.2009.11.026.

Caroline Hertel and Horst Bunke. A Set of Novel Features for Writer Identifica-

tion, pages 679–687. SpringerLink, Lecture Notes in Computer Science, 2003.

G. Hughes. On the mean accuracy of statistical pattern recognizers. 14(1):55–63,

January 1968. ISSN 0018-9448. doi: 10.1109/TIT.1968.1054102.

John Hutchinson. Fractals and Self-Similarity. Indiana University Mathematics

Journal, 30(5):713–747, 1981.

Aapo Hyvärinen and Erkki Oja. A fast fixed-point algorithm for independent

component analysis. Neural Comput., 9:1483–1492, October 1997. ISSN 0899-

7667.

Aapo Hyvarinen, Juha Karhunen, and Erkki Oja. Independent Component Analy-

sis. Wiley-Interscience, 1 edition, 2001. ISBN 047140540X.

A. Imdad, S. Bres, V. Eglin, C. Rivero-Moreno, and H. Emptoz. Writer Identifi-

cation Using Steered Hermite Features and SVM. In Document Analysis and

Recognition, 2007. ICDAR 2007 Vol. 2. Ninth International Conference on, vol-

ume 2, pages 839–843, 2007.

Donato Impedovo and Giuseppe Pirlo. Automatic Signature Verification: The

State of the Art. IEEE Transactions on Systems, Man, and Cybernetics, Part

C (Applications and Reviews), 38(5):609–635, 2008. doi: 10.1109/TSMCC.

2008.923866.

216

A. Jain. On-line signature verification. Pattern Recognition, 35(12):2963–2972,

2002. doi: 10.1016/S0031-3203(01)00240-0.

A. K. Jain, A. Ross, and S. Prabhakar. An introduction to biometric recognition.

Circuits and Systems for Video Technology, IEEE Transactions on, 14(1):4–20,

2004.

Anil K. Jain, Ruud M. Bolle, and Sharath Pankanti. Biometrics: Personal Identi-

fication in Networked Society. Springer, 2005.

Anil K. Jain, Patrick Flynn, and Arun A. Ross, editors. Handbook of Biometrics.

Springer, 2008.

Leonard Kaufman and Peter J. Rousseeuw. Finding groups in data: an intro-

duction to cluster analysis. John Wiley & Sons, Inc., 1990. doi: 10.1002/

9780470316801.ch1.

Ergina Kavallieratou. A Binarization Algorithm specialized on Document Images

and Photos. In 8th International Conference on Document Analysis and Recog-

nition, pages 463–467, Washington, DC, USA, 2005. IEEE Computer Society.

doi: 10.1109/ICDAR.2005.1.

Eiji Kawaguchi. BPCS-Steganography Principle and Applications. In

Knowledge-Based Intelligent Information and Engineering Systems, pages

289–299. 2005. doi: 10.1007/11554028\ 41.

Nevena Lazic and Parham Aarabi. Importance of Feature Locations in Bag-of-

Words Image Classification. pages I–641–I–644, 2007. doi: 10.1109/ICASSP.

2007.365989.

F. Leclerc and R. Plamondon. Automatic signature verification: the state of the

art-1989-1993. Intl. Journal of Pattern Recognition and Artificial Intelligence,

8(3):643–660, 1994.

217

C. K. Lee and C. G. Leedham. A new hybrid approach to handwritten address

verification. International Journal of Computer Vision, 57:107–120, May 2004.

Graham Leedham, Saket Varma, Anish Patankar, and Venu Govindarayu. Sepa-

rating Text and Background in Degraded Document Images: A Comparison of

Global Threshholding Techniques for Multi-Stage Threshholding. In Proceed-

ings of the 8th International Workshop on Frontiers in Handwriting Recogni-

tion, Washington, DC, USA, 2002. IEEE Computer Society.

Bangy Li and Tieniu Tan. Online Text-independent Writer Identification Based

on Temporal Sequence and Shape Codes. pages 931–935, 2009. doi: 10.1109/

ICDAR.2009.26.

Bangyu Li, Zhenan Sun, and Tieniu Tan. Online Text-Independent Writer Iden-

tification Based on Stroke’s Probability Distribution Function. In Advances in

Biometrics, volume 4642 of Lecture Notes in Computer Science, chapter 22,

pages 201–210. Springer Berlin / Heidelberg, 2007.

Fei-Fei Li and P. Perona. A Bayesian Hierarchical Model for Learning Natural

Scene Categories. In IEEE Computer Society Conference on Computer Vision

and Pattern Recognition, volume 2, pages 524–531, 2005.

Laurence Likforman-Sulem, Abderrazak Zahour, and Bruno Taconet. Text line

segmentation of historical documents: a survey. International Journal on Doc-

ument Analysis and Recognition, 9(2):123–138, 2007.

C. Liu. Handwritten digit recognition: benchmarking of state-of-the-art tech-

niques. Pattern Recognition, 36(10):2271–2285, October 2003. ISSN

00313203. doi: 10.1016/S0031-3203(03)00085-2.

David J. C. MacKay. Information Theory, Inference and Learning Algorithms.

Cambridge University Press, 1st edition, October 2003. ISBN 0521642981.

218

URL http://www.inference.phy.cam.ac.uk/mackay/itila/

book.html.

H. Maclean. Identification of Medieval Scribal Handwriting. Undergraduate the-

sis, unpublished, 2004.

R. Manmatha, Chengfeng Han, E. M. Riseman, and W. B. Croft. Indexing hand-

writing using word matching. In Proceedings of the first ACM international

conference on Digital libraries, pages 151–159, 1996. doi: 10.1145/226931.

226960.

V. Märgner and H. El Abed. Arabic Handwriting Recognition Competition. pages

1274–1278, 2007. doi: 10.1109/ICDAR.2007.4377120.

V. Märgner, M. Pechwitz, and H. El Abed. Arabic Handwriting Recognition Com-

petition. Document Analysis and Recognition, International Conference on, 0:

70–74, 2005. doi: 10.1109/ICDAR.2005.52.

Volker Märgner and H. El Abed. ICDAR 2009 Arabic Handwriting Recognition

Competition. pages 1383–1387, 2009. doi: 10.1109/ICDAR.2009.256.

Simone Marinai, Beatrice Miotti, and Giovanni Soda. Bag of Characters and SOM

Clustering for Script Recognition and Writer Identification. pages 2182–2185,

2010. doi: 10.1109/ICPR.2010.534.

U. V. Marti and H. Bunke. A full English sentence database for off-line handwrit-

ing recognition. In Proceedings of the 5th International Conference on Docu-

ment Analysis and Recognition, pages 705–708, 1999. doi: 10.1109/ICDAR.

1999.791885.

U. V. Marti and H. Bunke. Using a statistical language model to improve the per-

formance of an HMM-based cursive handwriting recognition systems. Interna-

tional Journal of Pattern Recognition and Artificial Intelligence, pages 65–90,

2002. doi: 10.1142/S0218001401000848.

219

http://www.inference.phy.cam.ac.uk/mackay/itila/book.html
http://www.inference.phy.cam.ac.uk/mackay/itila/book.html

U. V. Marti, R. Messerli, and H. Bunke. Writer identification using text line

based features. In Document Analysis and Recognition, 2001. Proceedings.

Sixth International Conference on, pages 101–105, 2001.

Linne R. Mooney. Chaucer’s Scribe. Speculum, 81(01):97–138, 2006. doi: 10.

1017/S0038713400019394.

Shunji Mori, Hirobumi Nishida, and Hiromitsu Yamada. Optical Character

Recognition (Wiley Series in Microwave and Optical Engineering). Wiley-

Interscience, April 1999. ISBN 0471308196.

Anoop Namboodiri and Sachin Gupta. Text Independent Writer Identification

from Online Handwriting. In Tenth International Workshop on Frontiers in

Handwriting Recognition, La Baule, France, 2006.

F. Nejad and M. Rahmati. A New Method for Writer Identification and Verifica-

tion Based on Farsi/Arabic Handwritten Texts. In 9th International Conference

on Document Analysis and Recognition, volume 2, pages 829–833, 2007.

Wayne Niblack. An Introduction to Digital Image Processing. Prentice-Hall, Inc.,

Upper Saddle River, NJ, USA, 1990.

Ralph Niels, Louis Vuurpijl, and Lambert Schomaker. Introducing TRIGRAPH -

Trimodal writer identification.

A. Nosary, L. Heutte, T. Paquet, and Y. Lecourtier. Defining writer’s invariants

to adapt the recognition task. In Document Analysis and Recognition, 1999.

ICDAR ’99. Proceedings of the Fifth International Conference on, pages 765–

768, 1999.

J. Ortega-Garcia, J. Fierrez-Aguilar, D. Simon, J. Gonzalez, M. Faundez-Zanuy,

V. Espinosa, A. Satue, I. Hernaez, J. J. Igarza, C. Vivaracho, D. Escudero, and

Q. I. Moro. MCYT baseline corpus: a bimodal biometric database. Vision,

Image and Signal Processing, 150(6):395–401, December 2003.

220

N. Otsu. A threshold selection method from gray-level histograms. IEEE Trans-

actions on Systems, Man and Cybernetics, 9(1):62–66, 1979.

Rudolf Pareti and Nicole Vincent. Global Method Based on Pattern Occurrences

for Writer Identification. In Tenth International Workshop on Frontiers in

Handwriting Recognition (2006), 2006.

Mario Pechwitz, Samia S. Maddouri, Volker Märgner, Noureddine Ellouze, and

Hamid Amiri. IFN/ENIT - database of handwritten Arabic words. In In Proc.

of CIFED 2002, pages 129–136, 2002.

Vladimir Pervouchine and Graham Leedham. Extraction and Analysis of Docu-

ment Examiner Features from Vector Skeletons of Grapheme ’th’. Document

Analysis Systems VII, pages 196–207, 2006.

Vladimir Pervouchine and Graham Leedham. Extraction and analysis of forensic

document examiner features used for writer identification. Pattern Recognition,

40(3):1004–1013, 2007.

Rejean Plamondon and Guy Lorette. Automatic signature verification and writer

identification – the state of the art. Pattern Recognition, 22(2):107–131, 1989.

doi: 10.1016/0031-3203(89)90059-9.

Réjean Plamondon and Sargur N. Srihari. On-line and off-line handwriting recog-

nition: A comprehensive survey. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 22(1):63–84, 2000.

P. Pudil, J. Novovičová, and J. Kittler. Floating search methods in feature selec-

tion. Pattern Recognition Letters, 15(11):1119–1125, November 1994.

S. Sadeghi ram and M. E. Moghaddam. A Persian Writer Identification Method

Based on Gradient Features and Neural Networks. pages 1–4, 2009. doi: 10.

1109/CISP.2009.5301092.

221

H. E. S. Said, K. D. Baker, and T. N. Tan. Personal identification based on hand-

writing. In Fourteenth International Conference on Pattern Recognition, vol-

ume 2, pages 1761–1764, 1998. doi: 10.1109/ICPR.1998.712068.

A. Schlapbach and H. Bunke. Off-line handwriting identification using HMM

based recognizers. volume 2, 2004a.

A. Schlapbach and H. Bunke. Using HMM based recognizers for writer identifi-

cation and verification. pages 167–172, 2004b.

A. Schlapbach and H. Bunke. Off-lineWriter Identification Using Gaussian Mix-

ture Models. In 18th International Conference on Pattern Recognition, vol-

ume 3, pages 992–995, 2006a.

A. Schlapbach and H. Bunke. Fusing Asynchronous Feature Streams for On-line

Writer Identification. In 9th International Conference on Document Analysis

and Recognition, volume 1, pages 103–107, 2007a.

Andreas Schlapbach and Horst Bunke. Writer Identification Using an HMM-

Based Handwriting Recognition System: To Normalize the Input or Not? In

Proc. 12th Conf. of the Int. Graphonomics Society, pages 138–142, 2005.

Andreas Schlapbach and Horst Bunke. Off-Line Writer Verification: A Compari-

son of a Hidden Markov Model (HMM) and a Gaussian Mixture Model (GMM)

Based System. In Tenth International Workshop on Frontiers in Handwriting

Recognition (2006), 2006b.

Andreas Schlapbach and Horst Bunke. A writer identification and verification sys-

tem using HMM based recognizers. Pattern Analysis and Applications (PAA),

10(1):33–43, 2007b. doi: 10.1007/s10044-006-0047-5.

Andreas Schlapbach, Vivian Kilchherr, and Horst Bunke. Improving Writer Iden-

tification by Means of Feature Selection and Extraction. In Eighth Interna-

222

tional Conference on Document Analysis and Recognition (ICDAR’05), pages

131–135, 2005.

Lambert Schomaker. Advances in Writer identification and verification. In IC-

DAR07, 2007.

Lambert Schomaker and Marius Bulacu. Automatic Writer Identification Us-

ing Connected-Component Contours and Edge-Based Features of Upper-Case

Western Script. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 26(6):787–798, 2004.

Lambert Schomaker, Marius Bulacu, and Katrin Franke. Automatic Writer Iden-

tification Using Fragmented Connected-Component Contours. In Proc. of 9th

International Workshop on Frontiers in Handwriting Recognition (IWHFR04),

pages 185–190, 2004.

Lambert Schomaker, Katrin Franke, and Marius Bulacu. Using codebooks of

fragmented connected-component contours in forensic and historic writer iden-

tification. Pattern Recognition Letters, 28(6):719–727, 2007.

A. Seropian, M. Grimaldi, and N. Vincent. Writer identification based on the

fractal construction of a reference base. In 7th International Conference on

Document Analysis and Recognition, pages 1163–1167, 2003.

F. Shahabi and M. Rahmati. Comparison of Gabor-Based Features for Writer

Identification of Farsi/Arabic Handwriting. In Proceedings of 10th IWFHR,

pages 545–550, 2006.

F. Shahabi and M. Rahmati. A New Method for Writer Identification of Handwrit-

ten Farsi Documents. In 10th International Conference on Document Analysis

and Recognition, pages 426–430, 2009. doi: 10.1109/ICDAR.2009.290.

223

I. Siddiqi and N. Vincent. Writer Identification in Handwritten Documents. In 9th

International Conference on Document Analysis and Recognition, volume 1,

pages 108–112, 2007.

Sreeraj and Sumam M. Idicula. A survey on writer identification schemes. In-

ternational Journal of Computer Applications, 26(2):23–33, July 2011. doi:

10.5120/3075-4205.

S. N. Srihari, S. H. Cha, H. Arora, and S. Lee. Individuality of handwriting.

Journal of Forensic Sciences, pages 1–17, 2002.

S. N. Srihari, C. I. Tomai, Bin Zhang, and Sangjik Lee. Individuality of numerals.

In 7th International Conference on Document Analysis and Recognition, pages

1096–1100, 2003.

Sargur N. Srihari and Graham Leedham. A survey of computer methods in foren-

sic document examination. In Proceedings of 11th Conference International on

Graphonomics Society (IGS2003), pages 278–281, 2003.

Geetha Srikantan, Stephen W. Lam, and Sargur N. Srihari. Gradient-based con-

tour encoding for character recognition. Pattern Recognition, 29(7):1147–1160,

1996. doi: 10.1016/0031-3203(95)00146-8.

Peter Stokes. Computer-Aided Palaeography, Present and Future. Institut für

Dokumentologie und Editorik, 2009.

Peter A. Stokes. Palaeography and Image-Processing: Some solutions and

problems. Digital Medievalist, December 2007. URL http://www.

digitalmedievalist.org/journal/3/stokes/.

C. Y. Suen, C. Nadal, R. Legault, T. A. Mai, and L. Lam. Computer recognition

of unconstrained handwritten numerals. Proceedings of the IEEE, 80(7):1162–

1180, July 1992. ISSN 0018-9219. doi: 10.1109/5.156477.

224

http://www.digitalmedievalist.org/journal/3/stokes/
http://www.digitalmedievalist.org/journal/3/stokes/

P. J. Sutanto, G. Leedham, and V. Pervouchine. Study of the consistency of some

discriminatory features used by document examiners in the analysis of hand-

written letter ‘a’. In 7th International Conference on Document Analysis and

Recognition, pages 1091–1095, 2003.

Guo X. Tan, Christian V. Gaudin, and Alex C. Kot. Impact of Alphabet Knowl-

edge on Online Writer Identification. Document Analysis and Recognition, In-

ternational Conference on, 0:56–60, 2009. doi: 10.1109/ICDAR.2009.165.

Marino Tapiador and Juan A. Sigüenza. Writer Identification Method Based on

Forensic Knowledge. In David Zhang and Anil K. Jain, editors, Biometric

Authentication, volume 3072 of Lecture Notes in Computer Science, chapter 76,

pages 555–561. Springer Berlin / Heidelberg, 2004.

C. C. Tappert, C. Y. Suen, and T. Wakahara. The state of the art in online handwrit-

ing recognition. Pattern Analysis and Machine Intelligence, IEEE Transactions

on, 12(8):787–808, August 1990. ISSN 0162-8828. doi: 10.1109/34.57669.

Natasa Terzija and Walter Geisselhardt. Digital image watermarking using com-

plex wavelet transform. In Proceedings of the 2004 Workshop on Multime-

dia and Security, pages 193–198, New York, NY, USA, 2004. ACM. doi:

10.1145/1022431.1022465.

Sergios Theodoridis and Konstantinos Koutroumbas. Pattern Recognition. Aca-

demic Press, 3rd edition, March 2006. ISBN 0123695317.

Kurban Ubul, Dilmurat Tursun, Askar Hamdulla, and Alim Aysa. A Feature Se-

lection and Extraction Method for Uyghur Handwriting-Based Writer identifi-

cation. pages 345–348, 2009. doi: 10.1109/CINC.2009.198.

L. J. P. van der Maaten. Improving Automatic Writer Identification. Master’s

thesis, Maastricht University, 2005.

225

L. J. P. van der Maaten, E. O. Postma, and H. J. van den Herik. Dimensionality

reduction: A comparative review. Technical report, 2009.

Laurens van der Maaten and Eric Postma. Improving Automatic Writer Identi-

fication. In Proceedings of the Seventeenth Belgian/Dutch Conference on AI

(BNAIC05), pages 260–266, 2005.

M. van Erp, L. Schomaker, and M. Bulacu. Sparse-Parametric Writer Identifi-

cation Using Heterogeneous Feature Groups. In Proc. of Int. Conf. on Image

Processing (ICIP 2003), volume 1, pages 545–548, 2003.

Judie Walton. Handwriting changes due to aging and Parkinson’s syn-

drome. Forensic Science International, 88(3):197–214, 1997. doi: 10.1016/

S0379-0738(97)00105-9.

Xianliang Wang, Xiaoqing Ding, and Hailong Liu. Writer identification using di-

rectional element features and linear transform. In 7th International Conference

on Document Analysis and Recognition, pages 942–945, 2003.

M. Wirotius, A. Seropian, and N. Vincent. Writer identification from gray level

distribution. In 7th International Conference on Document Analysis and Recog-

nition, pages 1168–1172, 2003.

Jeffrey Woodard, Mark Lancaster, Amlan Kundu, Dan Ruiz, and John Ryan.

Writer recognition of Arabic text by generative local features. pages 1–7, 2010.

doi: 10.1109/BTAS.2010.5634495.

Dit-yan Yeung, Hong Chang, Yimin Xiong, Susan George, Ramanujan Kashi,

Takashi Matsumoto, and Gerhard Rigoll. SVC2004: First international signa-

ture verification competition. In In Proceedings of the International Conference

on Biometric Authentication (ICBA), Hong Kong, volume 3072, pages 16–22,

2004.

226

Bin Zhang and S. N. Srihari. Analysis of handwriting individuality using word

features. In 7th International Conference on Document Analysis and Recogni-

tion, pages 1142–1146, 2003.

Bin Zhang, S. N. Srihari, and Sangjik Lee. Individuality of handwritten characters.

In 7th International Conference on Document Analysis and Recognition, pages

1086–1090, 2003.

Yong Zhu, Tieniu Tan, and Yunhong Wang. Biometric personal identification

based on handwriting. In 15th International Conference on Pattern Recogni-

tion, pages 797–800, 2000.

E. N. Zois and V. Anastassopoulos. Methods for writer identification. In Proceed-

ings of the 3rd IEEE International Conference on Electronics, Circuits, and

Systems, volume 2, pages 740–743, 1996.

Long Zuo, Yunhong Wang, and Tieniu Tan. Personal Handwriting Identification

Based on PCA. In Proceedings of SPIE Second International Conference on

Image and Graphics, pages 766–771, 2002.

227

