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Abstract 
 
Over the past twenty years or more, there has been increasing interest in the occurrence 

and effects of pharmaceuticals in the aquatic environment, particularly in Europe and 

North America. While the understanding of their occurrence is now relatively well 

understood in these parts of the world there remains a scarcity of data from many 

African countries. Thousands of pharmaceuticals are in use worldwide and the effects 

of these drugs, especially at environmentally relevant concentrations, are still unknown. 

Moreover, few ecotoxicity test species are recommended by Organisation for Economic 

Co-operation and Development (OECD) and so a dearth of information exists for many 

organisms. This PhD was thus carried out to determine the occurrence of 

pharmaceuticals in Africa rivers (Nigeria) and to seek to improve the understanding of 

the effects of prolong low-level exposure of Gammarus pulex and Aquaticus aquaticus 

to pharmaceutical contamination.  

The occurrence of 37 pharmaceuticals belonging to 19 therapeutic classes was studied 

in surface water and effluent in Lagos State, Southwest Nigeria. Samples were 

collected quarterly between April 2017 and March 2018 from 22 sites, and 27 

compounds were detected at least once, many in the microgram per litre range. 

Maximum concentrations for a range of compounds including sulfamethoxazole, 

paracetamol, cimetidine, fexofenadine, carbamazepine, metformin and diazepam 

ranged from 75 µg L-1 to 129.5 µg L-1. Mean concentrations for 13 compounds were 

also in the µg L-1 order. These values are several orders of magnitude higher than most 

studies of pharmaceutical occurrence in Europe and North America but similar to some 

other peak concentrations measured in developing countries such as China and India. 

Multiple pharmaceutical compounds were found at all monitoring sites and there were 
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no clear spatial patterns. This may indicate that a variety of sources exist throughout the 

catchment, revealing that there are potentially many contributing sites. Studies in 

Europe and the US have found that sewage treatment plants (STPs) are the major 

source of pharmaceutical pollution (Hughes et al., 2013) but in the developing world it 

seems that there are a greater range of sources contributing to loads in rivers. These 

may include STPs, pharmaceutical manufacturing plants, urban waste collection areas 

and disposal of effluent by vacuum trucks. Seasonal trends in the data were complex 

with some compounds such as fexofenadine, carbamazepine, paracetamol, cimetidine, 

metformin and sulfamethoxazole   being found at higher concentrations in the dry 

season and conversely, others such as paracetamol, sulfamethoxazole, tramadol and 

metformin being greater during the wet period. Seasonal usage is unlikely to explain 

this phenomenon as many compounds would be used equally over the year to treat 

persistent illnesses, e.g. carbamazepine and metformin. It may be that the multiple 

sources of pharmaceuticals in the catchment results in this complex picture with some 

that are associated with continuous effluent discharges (e.g. from STPs and 

manufacturing facilities) being diluted in the wet season but other sources (e.g. urban 

waste sites) which see pollutants mobilised in periods of rainfall. 

Effect studies focused on the biological effects of erythromycin, diclofenac, ibuprofen 

and their mixtures on the growth, feeding and mortality of aquatic macro-invertebrates 

(Gammarus pulex and Asellus aquaticus). It was found that for erythromycin and 

diclofenac, growth rate decreased, feed intake was reduced, and mortality was 

significant for G. pulex but not significant for A. aquaticus. For ibuprofen, there was, 

however, no effect for both test species. For mixtures of erythromycin, diclofenac and 

ibuprofen growth rate decreased, feed intake was reduced but mortality was not 

significant for both G. pulex and A. aquaticus. The effects of these pharmaceuticals on 
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the growth, feeding and mortality of the test animals were a result of the actions of the 

drugs and not attributed to a more general stress response. Although pharmaceuticals 

are indispensable to human health their usage and discharge to the aquatic environment 

coupled with their ecotoxicity to aquatic life may lead to ecological problems in the 

near future. Furthermore, this research confirms the suitability of the test species (G. 

pulex and A. aquaticus) as ecotoxicological test species that is both amenable to 

laboratory culture and sufficiently sensitive to provide reliable quantification of 

environmental risk. 
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CHAPTER ONE 
 

Introduction and research context 

1.0 Pollution of freshwater ecosystems 

Freshwater ecosystems comprise one-fifth of the earth’s surface water and are essential 

for human survival; providing water for agricultural activities and most of the drinking 

water for human populations (Fent, 2008). More than 40 % of the fish species in the 

world are found in freshwater ecosystems and some fauna and flora that lives in 

freshwater habitats are unique to their environment. Freshwater ecosystem such as 

rivers, wetlands and lakes are degrading at a faster rate than terrestrial ecosystems 

because of the anthropogenic activities of man (Rodriguez et al., 2015). Human 

activities are significantly impacting and endangering these ecosystems. Watersheds, 

which catch precipitation and channel it to streams and lakes are highly vulnerable to 

pollution and human activities can pollute freshwater ecosystems via point or non-point 

sources. National Geographic reported that 70 % of industrial waste dumped into the 

water in developing countries is untreated (Ebele, et al., 2017). Runoff from 

agricultural land, which includes fertilisers, also pollutes freshwater ecosystems. The 

effects of this pollution are wide-ranging and can damage life in freshwater, which 

continues up the global food chain as animals that feed on aquatic life take in pollution. 

Sources and types of water pollution, especially those found in developing countries, 

are outlined in Table 1. 
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Table 1: Major water pollutants and their sources. (Adapted from Odiete, 1999). 

 

1.1 Emerging contaminants 

There have been significant concerns in the last two decades about the presence of new 

types of environmental pollutants known as “emerging contaminants” of which 

pharmaceuticals have been the primary focus in the aquatic environment (Kümmerer, 

2008a; Van De Steene et al., 2010).  Pharmaceuticals are medicines specially design to 

interact with human and animal biological systems to produce a beneficial effect. They 

consist of a large number of compounds used to cure and prevent diseases and include: 

Types and Effects  Examples Major Sources  
Infectious agents 
(pathogens) 
Causes diseases 

Bacteria, viruses, protozoa, 
parasites  

Human and animal wastes  

Oxygen demanding wastes 
Deplete dissolved oxygen 
needed by aquatic species   

Biodegradable animal 
wastes and plant debris  
   

Sewage, animal feedlots, 
food processing facilities, 
pulp mills  

Plant nutrients  
Causes excessive growth of 
algae and other species  

Nitrates (NO2-) and 
phosphates (PO43-)  

Sewage, animal wastes, 
inorganic fertilizers  

Organic chemicals 
Add toxins to aquatic 
systems 

Oil, gasoline, plastics, 
hydrocarbons, pesticides, 
cleaning solvents  

Industry, farms, households 

Inorganic chemicals  
Add toxins to aquatic 
systems  

Acids, bases, salts, metal 
compounds   

Industry, household, 
surface runoff   

Sediments  
Disrupt photosynthesis, food 
webs, other processes  

Soil, silt Land erosion 

Heavy metals  
Cause cancer, disrupt 
immune and endocrine 
systems  

Lead, mercury, arsenic, 
chromium 

Unlined landfills, 
household chemicals, 
mining refuse, industrial 
discharges   

Thermal 
Make some species 
vulnerable to disease  

Heat Electric power and 
industrial plants  



 
 
 
 

 
 

3 

analgesics, antibiotics, anti-inflammatories, cancer treatments, anti-depressants, and x-

ray diagnostics amongst many others. Pharmaceuticals are consumed all over the world 

even in the poorest countries, however, the quantity consumed depends on many 

factors, such as the age of the population, level of industrialisation, money available to 

buy the drugs and access to medical care (Hughes, 2013; Daughton, 2001). 

Pharmaceuticals perhaps may have been in the environment as far back as drugs have 

been in use. Their detection in the early 1990’s was as a result of technological 

breakthrough in analytical techniques needed to detect these compounds accurately in 

environmental samples (Kümmerer, 2009). As sensitivity of the instruments increases 

because of technological advances more compounds were found at lower 

concentrations in the environment. Hence, the occurrence of pharmaceuticals in 

freshwater ecosystems is well established in Europe and America, and is now a 

growing concern in developing countries, including those in Africa. Data on the 

environmental occurrence, fate and effects of drugs in the aquatic environments of 

developing countries is still very sparse. 

There are many routes through which pharmaceuticals and resulting metabolites/ 

degradation products enter the ecosystems (Figure 1). 
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Figure 1: Sources and pathways of pharmaceutical residues in the aquatic environment. [Adapted from 
Heberer, (2002)] 
 

Unused medicines are disposed of down the sink or toilet and pharmaceutical 

manufacturing and hospital effluents are disposed of directly to rivers or through 

wastewater plants. Furthermore, landfill leachates can reach rivers as can runoff from 

agricultural land where sewage sludge or manures have been applied (Kümmerer, 

2009). There is no accurate quantitative data on the contribution from each of these 

sources to contaminant levels in aquatic environments (Roig and Touraud, 2010).  

However, the main route is through the excretion of the drug residues after human use 

either as parent compounds, metabolites in urine and faeces or water-soluble conjugates 

(Heberer, 2002; Crane et al., 2006 and Samuelsen et al., 2003). They get in the aquatic 

ecosystem through the sewage system or directly in untreated effluent where sewage 

treatment systems do not exist. Degradation of pharmaceuticals and their metabolites 

can take place at STPs but will vary significantly between pharmaceuticals. During 

sewage sludge treatment, the rate of chemisorption differs between pharmaceuticals 

and is determined by electrostatic interactions of the drugs, microorganisms within the 

activated sewage sludge and hydrophobicity of the drugs (Fent et al., 2006; Kummerer, 

2013). Any left-over drug and metabolites in the effluents are diluted on reaching 
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surface waters. As a result, pharmaceuticals are present in low levels (μgL-1) in aquatic 

ecosystems (Ashton et al., 2010; Choi et al., 2008; Escher et al., 2015). Many 

pharmaceuticals are not persistent or readily bioaccumulative but the endless discharge 

of pharmaceuticals into the ecosystem makes them pseudo-persistent. Although the 

concentrations of pharmaceuticals in receiving waters are quite low (Escher et al., 

2005) they pose a potential ecological risk to aquatic fauna and flora. The impact of 

pharmaceuticals in the aquatic ecosystem is not well established but they are produced 

to have a unique mode of action for the benefit of humans. However, these impacts 

could also be seen in other aquatic organisms that possess identical receptors. In other 

aquatic species, these biological targets may be responsible for other metabolic 

functions (Goday et al., 2015; Seiler, 2002), hence, pharmaceuticals and their 

metabolites can act through other modes of action in aquatic species. The impact of 

pharmaceuticals may go unnoticed for a long period because of the low-level 

concentrations of the drugs in the aquatic environment (Escher et al., 2005; Cizmas et 

al 2015; Gurke et al., 2015). It is also possible that the effect of the pharmaceuticals 

may impact local population dynamics throughout the aquatic environment, from 

macroinvertebrates up to higher organisms. Indeed, it is established that 

pharmaceuticals concentrations could be higher in the sediment of river beds and as a 

result benthic macroinvertebrate animal that populate this niche may be exposed to 

higher levels than normal (Franzellitti et al., 2013; Halling-Sørensen et al., 1998; 

Pouliquen et al., 1992; Tauxe-Wuersch et al., 2005). 

This effect can often disrupt key biological functions in aquatic organisms such as 

reproduction and growth (Fent et al., 2006). Despite the longevity of exposure of 

aquatic organisms to a wide variety of human drugs notable adverse effects are 

surprisingly rare. The reason for this may be that the concentrations in aquatic 
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ecosystems are far too low to show acute toxic effects. Acute effects data show that 

generally, an effect concentration of over 1 mg L-1 is required to induce mortality in 

aquatic organisms (Crane et al., 2006; Fent et al., 2006). It is now widely accepted that 

the route of exposure is of a continuous chronic nature and this is reflected in the 

ecotoxicological literature (Fent et al., 2006; Lei et al 2015; Fernandez et al., 2010; 

Santos et al., 2009). There are few examples of chronic effects on aquatic organisms at 

environmentally relevant concentrations. The presence of the synthetic hormone 

contraceptive 17α ethinylestradiol (EE2) in sewage effluent and surface waters has 

been linked with the endocrine disruption of fish and frogs (Anumol et al., 2016; 

Escher et al., 2017; DEFRA, 2006; Hedgespeth et al., 2012; Walker and McEldowney, 

2013).  However, it is still unknown exactly to what extent synthetic hormones such as 

EE2 effect feminisation of male fish compared with naturally occurring estrogens such 

as oestrone; yet, it is thought to play a significant role (Sumpter, 2010). The use of 

diclofenac in cattle caused a considerable decline in vultures in India and Pakistan 

(Oaks et al., 2004). The Gyps genus of vulture was surprisingly sensitive to residues of 

diclofenac in dead cows on which they fed, leading to acute renal failure and visceral 

gout (Oaks et al., 2004). Diclofenac has since been withdrawn as a veterinary medicine 

(Glassmeyer and Shoemaker, 2005). However, it is still used widely as an analgesic in 

human medicine; it is persistent through sewage treatment and is regularly detected in 

effluent and surface waters around the world (Hoeger et al., 2005).  

Currently, the primary concern in pharmaceutical environmental exposures is the 

potential for chronic or long-term toxicity at environmentally relevant concentrations, 

the effects of pharmaceutical mixtures and impacts on populations, communities and 

ecosystem functioning (Fent, 2008; Hughes et al., 2013; Santos et al., 2010). Also, 

relatively little data on the occurrence of pharmaceuticals has been gathered in Africa, 
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Asia, and South America. However, over 1000 published papers on the occurrence of 

pharmaceuticals in aquatic environment exist in Europe and America (Santos et al. 

2010). The need for more research into both the occurrence and effects of 

pharmaceutical compounds in river ecosystems cannot be overemphasised. Further 

knowledge on the effects of exposure at environmentally relevant concentrations on 

both water column dwelling, and sediment-dwelling aquatic macro-invertebrate 

animals will aid in prioritising the highest risk compounds for future interventions. 

Thus, this thesis will aim to provide first-hand knowledge on the occurrence of 

pharmaceuticals in Nigerian rivers and add substantially to current knowledge on 

Africa and the effects of such pollution on the aquatic environment. 

1.2 Statement of Aim 

Aim: The broad aim of this research is to quantify the occurrence of selected 

pharmaceuticals in African Rivers (Nigeria) and to seek to improve the understanding 

of the effects of prolonged low-level exposure of freshwater ecosystems to 

pharmaceutical pollution 

1.2.1 The objectives 
 

1.  To evaluate the presence of drugs belonging to different therapeutic classes in 

previously unstudied surface water. 

2. To evaluate the temporal and spatial patterns of pharmaceuticals in the Odo Iya 

Alaro river, Lagos Southwest Nigeria. 

3. To assess the ecological effects of prolonged low-level exposure to 

pharmaceuticals on growth, feeding, and mortality of freshwater macro-

invertebrate animals. 
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4. To determine the differences in effects between different invertebrate species 

i.e. water column dwelling animals-G. pulex and sediment dwelling animals- A. 

aquaticus. 

5. To examine the biological effects of mixtures of pharmaceuticals on macro-

invertebrates’ relative to individual compounds. 

1.2.2 Hypotheses to be tested 
 
 (H1): That pharmaceuticals will be consistently present in the Odo Iya Alaro river, 

Lagos Southwest Nigeria. 

 (H2): That exposure of G. pulex and A. aquaticus to low concentrations of 

pharmaceuticals will not have lethal effects.  

(H3):  That extended exposure to low concentrations of pharmaceuticals will cause 

significant reductions in sub-lethal endpoints (e.g. growth and feeding). 

 (H4): That the effects of mixtures will be more pronounced than compounds acting 

singly. 

1.3 Thesis plan 

Chapter One provides the rationale behind the research including gaps in the literature.   

Chapter Two reviews the available evidence so far obtained and covers existing 

research on the occurrence and effects of human pharmaceuticals in freshwater biomes, 

with research gaps identified. 

Chapter Three presents the results of the pharmaceutical field monitoring study 

conducted in Nigeria, examining frequency of detections, mean, maximum, minimum, 

and median values, as well as spatial and temporal variation in pharmaceutical 

concentrations in the Odo Iya Alaro river, Lagos Southwest Nigeria. 
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Chapter Four presents the results of the effects of long-term exposure of Gammarus 

pulex, a water column dwelling macro-invertebrate, to single and multiple mixtures of 

pharmaceuticals.  

Chapter Five presents the results of long-term exposure of Asellus aquaticus (bottom 

dwelling macroinvertebrate) to single and multiple mixtures of pharmaceuticals. 

Chapter Six presents a general discussion bringing the above experiments together. 

Chapter Seven presents a research synthesis and highlights limitations of the current 

study and further research opportunities. 
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CHAPTER TWO 
 

Literature Review 

2.0 Pharmaceuticals in the environment 

2.1 General overview 

All over the world, pharmaceuticals have been known to be an increasing threat to 

aquatic life (Boxall et al., 2012).  Concentrations in the aquatic environment varies 

from µg L-1 to ng L-1 and almost all the therapeutic class of drugs have been found in 

the milieu. Garrison et al., (1976) discovered clofibric acid with concentration levels 

between 0.8 and 2 μgL-1 (the first compound of pharmaceutical origin) in the US 

effluent treated wastewater treatment plants (WWTPs). And ever since, increasing 

number of drugs have been discovered in different water bodies such as rivers, lakes, 

streams and drinking water (Zorita et al., 2009). Main therapeutic classes of 

pharmaceuticals such as antibiotics, analgesics, anti-epileptics, β-blockers and lipid 

regulators has been found in the influents and effluents of WWTPs. It has been 

revealed that highest environmental concentration of pharmaceuticals are around 

WWTPs, implying that the WWTPs in use are not well-suited for the complete 

elimination of these pharmaceuticals. For an example 32 drugs were found in Germany 

around WWTPs; drugs such as gemfibrozil (a lipid regulator) and carbamazepine (a 

seizure drug) were found at maximal levels of 6.3 and 4.6 μgL-1 respectively (Ternes, 

1998). Elevated levels of carbamazepine, diclofenac and naproxen was found in 

Canadian treated wastewater (Metcalfe et al., 2003) and almost 30 different drugs were 

found in treated WWTPs effluents across Italy by Castiglioni et al., (2005); ofloxacin 

was found at varying concentrations of 150-1081 ngL-1, 27-1168 ngL-1 for atenolol 

while carbamazepine was between 33-1318 ngL-1 concentrations. Furthermore, studies 
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conducted in UK found propranolol (75 ngL-1) in all the effluents, diclofenac (500 ngL-

1) in 86 % and ibuprofen (3000 ngL-1) in 84 % WWTP effluents investigated (Ashton et 

al., 2011). Larsson et al., (2007) conducted a study in India and found high levels of 

ciprofloxacin, losartan and metoprolol in the final discharge of WWTPs treating 

wastewaters for pharmaceutical industries at concentrations 3100 μgL-1, 2500 μgL-1 and 

950 μgL-1 respectively, although the receiving water bodies often contain lesser 

compounds at lower concentrations. Boyd et al., (2003) conducted an experiment on 

the incidence of drugs in the US streams, he revealed that ibuprofen, triclosan and 

fluoxetine were found at lower concentrations (ngL-1 range) in WWTP effluents but not 

present in surface waters. Ternes (1998) found a similar contamination pattern in his 

investigation. However, studies have shown that other drugs are everywhere in the 

environment. A systematic investigation was carried out for antibiotics in surface, 

piped and ground waters in Mekong Delta, Vietnam in 2015, not one investigated 

antibiotics was found in ground water and piped water, however in surface water, 

sulfonamides such as sulfamethoxazole (SMX), sulfadiazine (SDZ), trimethoprim and 

enrofloxacin in concentrations of 21 ngL-1, 4 ngL-1, 17 ngL-1 and 12 ngL-1 respectively 

were found (Cohen et al., 2007). These concentrations were lesser than the predicted no 

effect concentrations (PNECs) implying low risk of antibiotics in the aquatic 

environment (Cohen et al., 2007). In addition, pharmaceuticals are detected at various 

concentration levels  (ibuprofen 29.1 ngL-1, salicylic acid 651 ngL-1, naproxen 7.9 ngL-

1,  diclofenac 45.5 ngL-1, clofibric acid 26.5 ngL-1, mefenamic acid 15.3 ngL-1, 

carbamazepine 23.9 ngL-1 and gemfibrozil 11.4 ngL-1) in effluent samples of 

wastewater treatment plants of the Pearl River in Southern China in 2010 (Zhao et al., 

2010). Drugs such as clofibric acid 111 ngL-1, ibuprofen 928 ngL-1 and diclofenac 125 

ngL-1 were found in UK estuarine (Thomas and Hilton, 2007). More than 50 
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pharmaceuticals, illicit drugs and endocrine disruptive compounds were found in UK 

surface waters (Kasprzyk-Hordern et al., 2012) and among the most detected chemicals 

are naproxen (<146 ngL-1), codeine (<813 ngL-1), ketoprofen (<14 ngL-1), diclofenac 

(<261 ngL-1) and ibuprofen (<93 ngL-1). Some pharmaceuticals are not easily degraded 

and found their way into aquatic environment and even drinking water (Heberer, 2002; 

Loraine and Pettigrove, 2006). Jones et al., (2005) found the NSAID phenazone at high 

concentrations of up to 400 ngL-1 in drinking waters. 

 

 

Figure 2.1: Pharmaceuticals commonly detected in the aquatic environment (Source: Cizmas et al. 
(2015))  
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2.2 Pharmaceutical sources and pathways in the environment  

Every year, over 100,000 of both human and veterinary drugs are produced in Europe 

and America, there are data on the use of these pharmaceuticals (Kümmerer, 2009), 

however in Africa and some developing nations, data are limited (Wood et al., 2015). 

The usage of pharmaceuticals varies from one nation to another and some can be 

obtained on prescription and others can be sold over the counter (OTC) or on the 

internet, hence the difficulty in tracking drug usage and consumption. This problem is 

more complicated in developing nations, including Nigeria. 

 

2.2.1 Primary and secondary sources. The pathway for drugs into the ecosystem can be 

categorized into two; primary and secondary. The primary source are majorly the 

manufacturing plants, hospitals, household and care homes (especially in Europe and 

America).  Accumulation of pharmaceuticals into the secondary sources such as STPs 

and landfills is via the release of these drugs into the sewerage systems. These 

secondary sources can also be regarded as channels for the release of pharmaceuticals 

into the ecosystem. When drugs are administered orally (mouth), topically (onto the 

skin), subcutaneously (under the skin), nasally (nose), intramuscularly (into the 

muscle), intravenously (into a vein), pessary (genito-urinary tract) and/or as a 

suppository (rectally), the pathways for the environmental contamination is initiated. 

When these drugs are introduced into the body, different phases of hepatic metabolism 

acts upon the drugs, initiating therapeutic responses as the drugs elicit effects at the 

receptor sites (Triebskorn et al., 2004).  

The pathway of drug excretion is primarily through the kidneys; however, drugs may 

also be excreted via faeces, skin and through the lungs. Drugs may be excreted as 
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conjugates, metabolites of the parent compound or unchanged as the parent compound 

(Crane et al., 2006; Luo et al. 2014). For example, fluoxetine can be metabolised or 

bio-transformed to norfluoxetine (main active metabolite) by demethylation reactions 

in the liver (Altamura et al., 1994). Diclofenac for instance is bio-transformed in man 

and excreted as sulphates and glucuronide conjugates from the body, primarily in the 

urine (65 %) and the bile (35 %) (Altenburger et al., 2015). Also, amoxillin is 

eliminated from the body majorly as unchanged parent compound (80-90 %) and as 

metabolites (10-20 %), chloramphenicol is passed out majorly as glucuronides (70-90 

%) and as unchanged parent compound (5-10 %) (Hilton and Thomas, 2003). These 

excreted metabolites and parent compounds are released directly into the sewerage 

system and end up in STPs. The wastewater after treatment will be passed onto the 

water bodies (Kolpin et al. 2002) or may aggregate as biosolids, accumulating in 

agricultural land areas (Rooklidge 2004). Moreover, in developed economies, Western 

Europe and America, manufacturer recommends expired drugs be returned to 

pharmacies for controlled and proper disposal by landfill or incineration, however, 

most times this is not the case (Bound and Voulvoulis 2005). Figure 2.2 shows possible 

pathway of drug to the ecosystem. 
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Figure 2.2: Scheme showing possible sources and pathways for the occurrence of pharmaceutical 
residues in the aquatic environment. (Source: Thomas Heberer, 2002).  

 

 
2.2.2 Primary sources 
 
2.2.2.1 Residential households 

Pharmaceuticals gets into the environment majorly through residential households 

(Kümmerer 2009c) as a result of consumption at homes. The parent compounds and the 

metabolites are released into the sewerage system (McClellan and Halden 2010; Pérez 

and Barceló 2007; Ternes 2000). Huggett et al., (2003) investigated the contribution of 

different sources to pharmaceutical pollution of the environment in Taiwan and found 
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that residential household contributions was highest especially for erythromycin and 

cephradine with concentrations of 705 ngL-1 and 128 ngL-1 respectively. However, 95 

other drugs were found in elevated concentrations from erstwhile sources including 

hospitals, aquacultures, pharmaceutical manufacturing facilities, and sewage treatment 

plants implying that other sources maybe greater contributors than previously thought. 

Similarly, 24 compounds were found from 4 livestock STPs, 12 municipal STPs, 4 

hospital STPs and 4 pharmaceutical manufacture STPs by Sim et al. (2011) when he 

investigated the presence of drugs in Korea. Furthermore, concentrations of livestock 

and pharmaceutical manufacturing STPs were highest compared to others. In addition 

to excreted compounds, careless dumping of unused or expired drugs may also increase 

the drug levels from residential households. In 2005, Bound and Voulvoulis 

interviewed 400 inhabitants of a household mainly in South-East of England and found 

that the major route of disposal of unused or expired medicines is via the sink, 

household waste or toilet. Further study by Seehusen and Edwards (2006) on patient 

disposal of medicines showed that many agreed to flush down expired and unused 

medicines down the sewer and only less than 23 % of patients reported to return drugs 

to pharmacy for proper disposal. 

 

2.2.2.2 Hospitals 

The hospital is known to be a place where all types of therapeutic drugs are dispensed 

and used, hence, found in hospital wastewater treatment plants at nanogram per litre to 

microgram per litre concentration levels (Kümmerer 2001; Lin and Tsai 2009). In the 

past, hospital wastewaters were thought to have lower levels of pharmaceuticals 

compared to household and industrial wastewaters (Kümmerer 2009). Though, the 

effluents are diluted by municipal wastewaters (Kümmerer and Helmers 1997, 2000) 
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therefore contributing less than 1 % of the total municipal sewage (Kümmerer 2008). 

However, studies using large scale and mass loading sampling methodology showed 

different results. Lin et al. in 2008 found elevated concentration of cephalexin (2457 

ngL-1) from hospital effluents than other sources including drug production facilities 

(27 ngL-1), aquaculture (12 ngL-1) and STPs (283 ngL-1). A similar comparison study 

was done by Langford and Thomas (2009) at two Norwegian hospitals and found that 

6% acetaminophen measured in STP influent came from Rikshospitalet and Ullevål 

hospitals. Nagarnaik et al. (2010, 2011) studied other compounds including metoprolol, 

sertraline and ibuprofen and deduced that they contribute less than 1 % while 

propranolol contributed about 7.2 %, indicating that hospitals contribute more to 

pharmaceutical contamination of the environment than nursing homes facilities, 

assisted living facilities and independent living facilities. 

 
2.2.2.3 Care homes 

 Drugs are supplied in care homes to patients for the management of illnesses. Much of 

these medications given are often on refill prescriptions and prescribed for a long 

period of time and sometimes for the lifespan of the patient. In New Mexico, Brown et 

al. (2006) found 23.5 µgL-1 and 1.3 µgL-1 ofloxacin in wastewater from elderly homes 

and assisted living facility respectively. In addition, cardiovascular drugs were found 

by Nagarnaik et al., (2010) when the effluents from nursing homes, independent living 

facilities and assisted living facilities all in New Mexico were analysed. For the nursing 

homes the following drugs were found metoprolol (1584 ngL-1), diltiazem (2708 ngL-

1), furosemide (1030 ngL-1), desmethyl diltiazem (2118 ngL-1) from independent living 

facilities: Hydrochlorothiazide (3636 ngL-1), valsartan (4916 ngL-1), atenolol (11326 

ngL-1), diltiazem (2886 ngL-1), and gemfibrozil (1152 ngL-1) and assisted living 
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facilities: norverapamil (2829 ngL-1), atenolol (4783 ngL-1), and valsartan (8727 ngL-1)  

from nursing homes.  

Additional investigation by Nagarnaik et al. in 2011, revealed the presence of 

neurological drugs in wastewater from the different homes. Fluoxetine and 

amitriptyline were only found in nursing home effluents at concentrations 180 ngL-1 

and 290 ngL-1 respectively, oxycodone (8 ngL-1), propoxyphene (26 ngL-1), sertraline 

(110 ngL-1), carbamazepine (30 ngL-1), amitriptyline (190 ngL-1), 10-hydroxy-

amitriptyline (32 ngL-1), fluoxetine (42 ngL-1), desmethylsertraline (86 ngL-1) and 

amphetamine (102 ngL-1) were found in assisted living facilities wastewater and 

amphetamine (120 ngL-1), oxycodone (14 ngL-1), fluoxetine (81 ngL-1), carbamazepine 

(110 ngL-1), paroxetine (28 ngL-1), amitriptyline (37 ngL-1) and 10-hydroxy-

amitriptyline (12 ngL-1) were found in independent living facilities wastewaters. 

 

2.2. 2.4 Manufacturing facilities 

Pharmaceutical manufacturing facilities output are most likely to raise the 

concentration levels in water bodies. Manufacturing industries may directly discharge 

treated or untreated effluents into water or indirectly via STPs. These discharges may 

vary in concentrations depending on the production method, capacity, facilities 

cleaning and the type of pharmaceuticals produced (Scheytt et al., 2005). Although in 

some countries, the release of pharmaceutical effluents into the environment is not 

monitored by law, Larsson and Fick in 2009 proposed that Good Manufacturing 

Practices (GMP) and the country’s specific environmental policy would help reduce the 

discharge into the environment. Sirtori et al. (2009) established that biological 

treatment is frequently carried out as an end-of-pipe clean-up strategy, and Hoerger et 
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al. (2009) and Zühlke et al. (2004) infer this as the reason for reduced level of 

concentrations in European and American manufacturing wastewaters, falling within 

the limits of Environmental Risk Assessment (ERA) guidelines. However, the reverse 

is the case outside of Europe and the US, where tremendously high levels of 

pharmaceuticals have been detected from different sources including STP effluents, 

manufacturing plants and receiving water bodies as seen in Nigeria (our recent 

monitoring report-in press).  

 
2.2.2.5 Agriculture 

Agriculture over the years have been a vital source of veterinary antibiotics to both 

aquatic and terrestrial milieu (Boxall et al. 2003). Lee et al., in 2007 reported an 

increase in livestock production over the past few decades, increased environmental 

contamination with pharmaceuticals (most especially antibiotics) is therefore a 

consequent of the increased livestock production. For instance, chlortetracycline use for 

the treatment of enteritis and leptospirosis in cattle and also, as a growth enhancer was 

found in fresh manure containing 14 µg g-1 by Elmund et al., (1971). However, in 2010 

Furtula et al., revealed that poultry litter contributes to the environmental weight of 

some antibiotic since they are given as feed additives at ranges of 0.07 to 66 mgL-1. 

Malintan and Mohd had in 2006 reported eight sulphonamide antibiotics with 

concentrations between 5.03 ngL-1 and 94.95 ngL-1 in swine wastewater from three sites 

in Malaysia. Flaherty and Dodson also in 2005 examined a large area of Australian 

grasslands and its neighbouring lands for antibiotics and discovered noticeable 

concentrations (ngL-1). However, there were inconsistencies among result, and they 

explained that these inconsistencies may be due to the variability in the topography of 

the catchment area. 
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2.2.2.6 Aquaculture 

Veterinary pharmaceuticals are directly introduced into the aquatic ecosystem via 

aquaculture. In aquaculture, very few compounds are allowed for the treatment of fish’s 

diseases. Some of these compounds include drugs such as oxytetracycline, amoxicillin, 

flumequine, sulfamerazine and thiamphenicol. They are regularly administered as feed 

additives (Bloor 2005) and a greater percentage of these antibiotics (70-80 %) are 

released through the urine and excreta, others are released from the uneaten medicated 

feed (Abedini et al. (1998); Haug and Hals, (2000); Martinsen and Horsberg (1995); 

Samuelsen et al. (2003)). These compounds settle at the bottom of the fish farming 

structures (e.g. ponds) at low mg kg-1 levels (Jacobsen and Berglind 1988; Björklund et 

al. 1991; Coyne et al. 1994). However, the concentrations may varies depending on 

sediment types, bacteriological composition and locality (Palmer et al., 2008). 

 

2.2.3 Secondary sources 
 
2.2.3.1 Sewage Treatment Plants 

In Europe and North America, buildings are built with adequate sanitation systems 

connected to sewers to easily collect wastewaters. In these developed economies, 

industrial, domestic and commercial waste are combined and treated in STPs/WWTPs 

and the resulting effluents discharged into receiving water bodies. However, the treated 

waste effluents may still contain pharmaceuticals (Jones et al. 2007; Schultz and 

Furlong 2008; Togola and Budzinski 2008; Zhang et al. 2007). A very high percentage 

of pharmaceutical inputs into aquatic ecosystem is from STP discharges, which are 

dependent on the sources. For instance, hospitals specific drugs will be amplified by the 

number of hospitals in the STP catchment area (Orti et al. 2010) and the population 
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covered by the STP will decide the number of drugs in the wastewater (Lin et al. 2009). 

In many Africa countries buildings have their own soak away systems and when filled 

vacuum trucks are hired to drain and empty into various water bodies. Wastewater 

treatment plants are not built to remove pharmaceuticals, hence traces of 

pharmaceuticals are detected in water bodies (Camacho-Munoz et al. 2010). The 

treatment employed in STPs can decrease the concentration level between influents and 

effluents. Furthermore, the number of days spent in the sedimentation tanks, the 

hydraulic retention time (HRT) and tertiary treatments may impact on the breakdown 

process of the compounds (Jones et al., 2007). 

 

2.2.3.2 Biosolids 

In STPs, pharmaceuticals may congregate and sorbed to biosolids and used as 

substitutes to agricultural fertilizers. In agriculture fields in England and Wales, 

annually loads of dewatered municipal biosolids (DMBs) and liquid municipal 

biosolids (LMBs) are used according to DEFRA (2005). Therefore, Rooklidge (2004) 

observed that many compounds after accumulating in the soil, percolate or leach into 

ground water and run off to water bodies and courses. For example, neutral and acidic 

drugs, antibiotics and bacteriocides, sulphonamide, beta-blockers were applied to soil 

microplots for 266 d rainfall induced runoff, all studied compounds were found in 

runoff after the first day of rainfall application (Han et al., 2006). 

 

2.2.3.3 Landfill sites 

In landfill sites, where industrial, household and agricultural waste are dumped, 

pharmaceuticals may accumulate and percolate/leach into the ground water. For 

instance, Eckel et al. (1993) found an industrial landfill site receiving hospital waste, 
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was responsible for contaminating a shallow groundwater with phensuximide, 

pentobarbital and meprobamate. Similarly, a landfill, in Denmark receiving effluents 

from pharmaceutical manufacturing plant produced a large variety of compounds down 

a leachate gradient (Barnes et al. 2004; Holm et al. 1995; Scheytt et al., 2005). 

 

2.3 Occurrence of pharmaceuticals in the aquatic environment 

 
2.3.1 Occurrence of analgesics and anti-Inflammatory drugs in STPs / WWTPs 

Several analgesics drugs also have anti-inflammatory and antipyretic effects. Tens of 

thousands of NSAIDs are prescribed for pain management worldwide but much more 

are sold without prescription as over-the-counter (OTC) drugs. In UK, NSAIDs can be 

purchase in stores in limited quantities while in Nigeria no limit on the quantity and 

types of drugs that can be bought. In Germany, paracetamol and acetylsalicylic acid 

(ASA) are the most common painkiller (Ternes et al., 2013) and are mostly OTC drugs.  

Ternes, (2010), found 0.22 µgL-1 of acetylsalicylic acid in Germany sewage effluents 

and easily degraded into metabolites and active forms. These metabolites (salicylic 

acid, ortho-hydroxyhippuric acid and gentisic acid) were found in measured 

concentrations of 54, 6.8, and 4.6 µgL-1 respectively. All were well removed by the 

municipal STPs, and only salicylic acid was detected at very low concentrations in the 

sewage effluents. In a similar study Heberer, 2012b, Garcia-Galan et al., 2010, Subedi 

et al., 2014 reported a mean concentration of 0.04 µgL-1 for salicylic acid in sewage 

effluents, surprisingly the mean influent concentrations of 0.34 µgL-1 were recorded. In 

contrast, much elevated concentrations of salicylic acid 13 µgL-1 were found in 

sewerage effluents in Greece and Spain (Heberer and Feldmann, 2008; Farre et al., 
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2011).  Residues of salicylic acids are also found in food preservatives and its natural 

formation may be responsible for its prevalence in the environment. 

Other NSAIDs were also detected in STPs, paracetamol for example was found at < 10 

% in all the monitored effluent samples in Germany (Ternes, 2008). Kolpin et al 

(2002a) investigated 142 contaminated streams by municipal sewage effluents in the 

US, more than 17 % of analysed samples are paracetamol at measured concentration of 

10 µgL-1. In Berlin, (Heberer et al., 2011), monitored pharmaceuticals in STP and 

surface water and found diclofenac as most commonly detected (17 % removal rate) 

with average concentration of 3.02 µgL-1and 2.51 µgL-1 both in effluent and influent 

respectively. Diclofenac unlike paracetamol and ASA has low removal rate hence, its 

persistence in the environment. In a similar report by Zhang et al., (2012), 69 % 

removal rate was reported in sewage treatment plants for diclofenac (Table 2.1) Surface 

water and sewage effluents from the US, UK, Sweden, Spain, Brazil, Canada, Italy, 

Austria, France, Germany, Czech Republic, Greece, and Switzerland, were monitored, 

concentrations up to µgL1 of diclofenac was reportedly detected (Ahrer et al., 2009; 

Andreozzi et al., 2013a; Buser et a1.,2008; Daughton and Ruhoy, 2009a; Drewes et al., 

2009, 2013; Farre et al., 2011; Heberer, 2012b, 2012a; Koutsouba et al., 2003; Maltby 

et al., 2002; Gunnarsson et al., 2008; Oilers et al., 2011; Kasprzyk-Horden and Baker, 

2012; Soulet et al., 2002; Stumpf et al., 2009; Ternes, 2008; Tixier et al., 2003; Tran et 

al., 2016,2017, 2018; Watkinson et al., 2009).  When sewage effluents samples in UK, 

Italy Austria, Canada, Germany, Brazil, France, Greece, and Switzerland were 

analysed, ibuprofen was detected generally at low concentrations when compared with 

diclofenac (Andreozzi et al., 2013a; Buser et al., 2008; Gans et al., 2012; Heberer et al., 

2011; Maltby et al., 2002; Oilers et al., 2011; Ternes, 2008; Tran et al., 2017; 
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Samuelsson et al., 2006; Witer et al., 2013). This may be due to faster degradation of 

ibuprofen during sewage processing (Zwiener and Frimmel, 2013). The concentration 

of ibuprofen in Switzerland sewage influents was >3 µgL-1 and in the effluents was 0.5 

µgL-1 (Kasprzyk-Horden and Baker, 2012) and < 1.3 µgL-1 in STP effluent and <100 

ngL-1 in surface water (Tixier et al., 2013). In sewage effluent in Sweden, ibuprofen 

(7.11 µgL1) was detected but diclofenac was not found (Andreozzi et al. 2013a). 

Ibuprofen was also monitored in sewage effluent samples collected from the US, it was 

detected at concentrations range of <300 ngL-1 - 3.38 µgL-1 (Drewes et al., 2012, 2013). 

Farre et al. (2011), found higher value of 85 µgL-1 for ibuprofen in sewage samples 

obtained in Spain, (2.81 µgL-1 - 5.77 µgL-1) in influent and (0.91 µgL-1 - 2.10 µgL-1) in 

effluent samples from Spanish municipal STPs (Rodriguez et al. 2003). However, 

higher value of 2.7 µgL-1 was also recorded in the same study for surface water. 

Ibuprofen can be biologically transformed into its metabolites in human body 

(hydroxy- and carboxy-ibuprofen and to carboxy-hydratropic acid). These metabolites 

are detected together with ibuprofen and as a mixture (Stumpf et al., 2008) in raw 

sewage (Buser et al., 2009). Substantial quantity of ibuprofen, particularly the 

metabolite (carboxy-ibuprofen), was removed (96 % - 99.9 %) in the sewage treatment 

plants (Buser et al., 2009). Hughes et al. (2013) reported mean detection frequency of 

63.0 % for ibuprofen.  

In addition, other group of NSAIDs has been found in wastewater and/or sewerage. 

Some of these compounds include indomethacin, ketoprofen, 4-aminoantiyrine, 

propyphenazone, phenylbutazone, fenoprofen, codeine, aminophenazone, hydrocodone, 

phenazone, naproxen, mefenamic acid, flurbiprofen and their metabolites (Aydin and 

Talini, 2012; Ahrer et al., 2001; Andreozzi et al., 2003a; Amdany, et al., 2014; Boyd 
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and Grimm, 2009; Brook et al., 2003a; Desbrow et al., 2012; Farre et al., 2010; Gans et 

al., 2002; Gogoi et al., 2018; Heberer, 2012b, 2011a; Miao et al., 2010; Ollers et al., 

2011; Rodriguez et al., 2013; Schmidt and Soulet et al., 2002; Kasprzyk-Horden and 

Baker, 2012; Stumpf et al., 2009, 2008; Ternes, 2010, 2008; Tixier et al., 2013; Yang et 

al., 2017).  
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Table 2.1: Concentration range of selected pharmaceuticals in raw influent (ng/L) and treated effluent (ng/L) from WWTPs in different geographical regions 
of the world. (Source: Tran et al., 2018) 

 
Selected 

pharmaceuticals 
Asia North America Europe 

  Influent Effluent Reference Influent Effluent Reference Influent Effluent Reference 
Antibiotics   

 
    

 
    

 
  

Amoxicillin <MQL 
6516 

<MQL  
1670 

Trans et al., 
(2016); 
Mutiyah & 
Mittal, 
(2013); 
Matsuo et al., 
(2011); Minh 
et al., (2009) 

NR <MQL Palmer et al. 
(2008) 

<MQL <MQL-
190 

Papageorgiou et al. 
(2016); Zuccato et 
al. (2005); Dinh et 
al. (2017) 

Azithromycin 1537  
303,500 

60.1-980  Trans et al., 
(2016) 
Mohapatra et 
al., (2016) 

61- 
2500 

57 -1300 Guerra et al. 
(2014) 

77  1139 38-784 Senta et al. (2013); 
Gobel et al. (2007); 
Miege et al. (2009) 

Ceftazidime <MQL <MQL Trans et al., 
(2016) 

NA NA NA NA NA NA 
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Chloramphenicol <MQL 
2430 

<MQL-
1050 

   Trans et al., 
(2016); Minh 
et al., (2009); 
Sui et al. 
(2011); Peng 
et al.,(2006)  

NA NA NA <MQL - 
319 

<MQL Gracia-Lor et al. 
(2012); Kasprzyk-
Hordern et al. 
(2009),  

Chlortetracycline 2333 - 
15,911 

<MQL -
1986 

  Trans et al., 
(2016); Minh 
et al., (2009); 
Yang et al. 
(2017); 
Behera et 
al.(2011);Choi 
et al. (2008) 

<MQL-
310 

<MQL-
420 

  Guerra et al. 
(2014); 
Karthikeyan, 
Meyer (2006) 

NR <MQL  Dinh et al. (2017) 

Ciprofloxacin 15.5-
6453 

<MQL  
524.1 

  Trans et al., 
(2016); 
Mohapatra et 
al. (2016); 
Tewari et al., 
(2013); Yang 
et al., (2017) 

<MQL 
246,100 

<MQL – 
620 

     Guerra et 
al. (2014);    
Karthikeyan, 
Meyer 
(2006);Brown 
et al. (2006); 
Miao et al. 
(2004)  

<MQL -
13,625 

<MQL - 
5692 

 Papageorgiou et al. 
(2016); Senta et al. 
(2013); Miege et al. 
(2009); Rosal et al. 
(2010) 

Clarithromycin 26 – 
1854 

4.79-637.1   Trans et al., 
(2016); Yang 
et al. (2017) 

<MQL - 
8000 

130 - 7000  Guerra et al. 
(2014); Miao 
et al. (2004) 

0.4-647 25-359 Senta et al. (2013); 
Gobel et al. (2007); 
Miege et al. (2009) 
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Clindamycin 23.8-
26.6 

2.94-4.24 Trans et al., 
(2016) 

NA NA NA <MQL-
101 

10-180 Gracia-Lor et al. 
(2012); Gurke et al. 
(2015) 

Enrofloxacin <MQL <MQL Sun et al. 
(2016) 

5.9-250 3.5-270      Guerra et 
al. (2014); 
Karthikeyan, 
Meyer (2006) 

<MQL-
18 

<MQL-
636 

  Dinh et al. (2017); 
Kishida and 
Furusawa (2004) 

Erythromycin 111.4-
403.3 

70-186.6 Trans et al., 
(2016) 

NA NA NA <MQL-
2130 

<MQL-
290 

   Papageorgiou et 
al. (2016); Miege et 
al. (2009); Rosal et 
al. (2010) 

Erythromycin - H2O 226 
20,600 

194.5-
14,400 

   Trans et al., 
(2016); Minh 
et al., (2009); 
Yang et al. 
(2017); 
Gulkowska et 
al. (2008) 

<MQL - 
3900 

<MQL – 
838 

     Guerra et 
al. (2014); 
Karthikeyan, 
Meyer (2006); 
Miao et al. 
(2004) 

24 - 
6755 

15-2841 Senta et al. (2013); 
Gobel et al. (2007); 
Kasprzyk-Hordern 
et al. (2009) 

Lincomycin <MQL 
19,401 

3.92e21,278   Trans et al., 
(2016); Yang 
et al. (2017); 
Subedi et al. 
(2015); 
Behera et al. 
(2011) 

<MQL-
360 

4.9-510    Guerra et al. 
(2014); 
Karthikeyan, 
Meyer (2006); 
Brown et al. 
(2006); Yang 
et al. (2011) 

<MQL  
281 

<MQL Papageorgiou et al. 
(2016) 
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Meropenem 264.8-
433.6 

27-67.9 Trans et al., 
(2016) 

NA NA NA NA NA NA 

Minocycline 730.9-
3808 

<MQL Trans et al., 
(2016) 

<MQL <MQL Guerra et al. 
(2014) 

NA NA NA 

Ofloxacin 54.8-
1274 

13.3-7870 Minh et al., 
(2009); Yang 
et al. (2017); 
Sun et al. 
(2016); Lin et 
al. (2009) 

470-
1000 

<MQL-
506 

Brown et al. 
(2006); Miao 
et al. (2004) 

NR 71-8637 Dinh et al. (2017) 

Oxytetracycline <MQL-
30049 

<MQL-
2014 

   Trans et al., 
(2016); Minh 
et al., 
(2009);Yang 
et al. (2017); 
Sun et al. 
(2016) 

<MQL-
47,000 

<MQL-
4200 

    Guerra et al. 
(2014);    
Karthikeyan, 
Meyer (2006); 
Miao et al. 
(2004)  

<MQL-
7 

<MQL-
5 

Pailler et al. (2009) 

Sulfamethazine <MQL-
1814 

<MQL-
260.8 

  Trans et al., 
(2016); Minh 
et al., (2009); 
Yang et al. 
(2017); 
Behera et al. 
(2011) 

<MQL  
300 

<MQL-
363 

    Guerra et al. 
(2014);  
Karthikeyan, 
Meyer (2006); 
Miao et al. 
(2004) 

<MQL- 
680 

<MQL  Miege et al. 
(2009); Gracia-Lor 
et al. (2012); Pailler 
et al. (2009) 
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Sulfamethoxazole  3.0-1389 <MQL-562   Trans et al., 
(2016); Minh 
et al., (2009); 
Yang et al. 
(2017); 
Behera et al. 
(2011); Choi 
et al. (2008) 

<MQL- 
4200 

<MQL - 
1800 

  Palmer et al. 
(2008);     
Guerra et al. 
(2014); 
Karthikeyan, 
Meyer (2006); 
Miao et al. 
(2004) 

<MQL-
11555 

<MQL-
544 

     Papageorgiou et 
al. (2016); Senta et 
al. (2013); Gobel et 
al. (2007); Miege et 
al. (2009);  Gurke 
et al. (2015); 
Kosma et al. (2014) 

Tetracycline <MQL-
12340 

<MQL-
1536 

   Trans et al., 
(2016); Minh 
et al., (2009); 
Yang et al., 
(2017); Sun et 
al., (2016); 
Gulkowska et 
al., (2008) 

<MQL-
48000 

<MQL-
3600 

  Guerra et al. 
(2014); 
Karthikeyan, 
Meyer (2006); 
Miao et al. 
(2004) 

<MQL-
790 

<MQL-
850 

   Dinh et al. 
(2017); Miege et al. 
(2009); Pailler et al. 
(2009) 
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Trimethoprim 19.5-570 3.7-772 Trans et al., 
(2016); Sui et 
al., (2011);  
Tewari et al. 
(2013);  Yang 
et al. (2017); 
Gulkowska et 
al. (2008) 

<MQL-
6796 

<MQL-
37000 

      Palmer et 
al. (2008); 
Guerra et al. 
(2014); 
Karthikeyan, 
Meyer (2006); 
Brown et al. 
(2006) 

<MQL-
4342 

<MQL-
3052 

Papageorgiou et al. 
(2016); Senta et al. 
(2013); Gobel et al. 
(2007); Miege et al. 
(2009); Kasprzyk-
Hordern et al. 
(2009); Gurke et al. 
(2015); Kosma et 
al. (2014)  

Tylosin <MQL <MQL  Trans et al., 
(2016); Minh 
et al., (2009) 

<MQL-
1500 

21-720   Guerra et al. 
(2014); 
Karthikeyan, 
Meyer (2006) 

<MQL <MQL-
173 

    Dinh et al. 
(2017); Gracia-Lor 
et al. (2012)  

Vancomycin 962 
43,740 

<MQL Trans et al., 
(2016) 

NA NA NA NR <MQL-
8514 

Dinh et al. (2017) 

Antimicrobials   
 

    
 

    
 

  
Miconazole <MQL-

597 
<MQL Yang et al. 

(2017); Sun et 
al. (2016) 

5.2-43 1.6-27 Guerra et al. 
(2014) 

<MQL-
337.9 

<MQL-
35.7 

Casado et al. 
(2014); Van De 
Steene et al. (2010) 

Thiabendazole <MQL-
1.29 

<MQL Yang et al. 
(2017); Sun et 
al. (2016) 

6.8-220 6.2-140 Guerra et al. 
(2014) 

NA NA NA 
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Triclocarban 341.1-
8880 

8.4-5860    Trans et al., 
(2016); 
Subedi et al. 
(2015); Ryu et 
al., (2014) 

340- 
4644 

64-617     Guerra et al. 
(2014); 
Hedgespeth et 
al. (2012)  

97-140 NR Gasperi et al. 
(2014) 

Triclosan 1.3-2500 49.1-263.9   Trans et al., 
(2016); 
Subedi et al. 
(2015); Ryu et 
al. (2014); 
Anumol et al. 
(2016) 

14- 
6817 

3.1-360      Guerra et 
al. (2014); 
Hedgespeth et 
al. (2012); Lee 
et al. (2005) 

<MQL-
5260 

<MQL-
430 

  Miege et al. 
(2009); Kosma et 
al. (2014); Gasperi 
et al. (2014) 

 NSAIDs   
 

    
 

    
 

  
Acetaminophen 67-

147700 
<MQL-
2568 

Tewari et al. 
(2013); Yang 
et al. (2017); 
Sun et al. 
(2016); Choi 
et al. (2008); 
Tran and Gin 
(2017) 

21000-
500000 

<MQL-
62000 

 Mohapatra et 
al. (2016);    
Guerra et al. 
(2014); 
Hedgespeth et 
al. (2012) 

<MQL-
482687 

<MQL-
24525 

Papageorgiou et al. 
(2016); Miege et al. 
(2009); Kasprzyk-
Hordern et al. 
(2009); Kosma et 
al. (2014); Kosma 
et al. (2010), 

Codeine <MQL-
242 

<MQL-208 Sun et al. 
(2016); 
Subedi et al. 
(2015) 

77-5700 80-3300 Guerra et al. 
(2014) 

150-
32295 

9.7-
15593 

Kasprzyk-Hordern 
et al. (2009); Rosal 
et al. (2010); Baker 
and Kasprzyk-
Hordern (2013) 
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Diclofenac 13-445 <MQL-69.2 Yang et al. 
(2017); Sun et 
al. (2016);   
Behera et al. 
(2011); 
Anumol et al. 
(2016); Tran 
and Gin 
(2017) 

140-
2450 

<MQL-
359 

   Yang et al. 
(2011); Lee et 
al. (2005); 
Metcalfe et al., 
(2003) 

<MQL-
4869 

<MQL-
5164 

  Miege et al. 
(2009); Kasprzyk-
Hordern et al. 
(2009); Kosma et 
al. (2014); Kosma 
et al. (2010); Clara 
et al. (2005a,b) 

Fenoprofen <MQL-
2260 

<MQL-23.4 Sun et al. 
(2016); Tran 
and Gin 
(2017) 

<MQL <MQL-
405 

Metcalfe et al. 
(2003); 
Lishman et al. 
(2006) 

NR <MQL-
280 

Andreozzi et al. 
(2003) 

Ibuprofen 34.8-
55975 

<MQL-
1890 

Tewari et al. 
(2013); Yang 
et al. (2017); 
Sun et al. 
(2016); 
Subedi et al. 
(2015) 

2500-
45000 

16-14600       Palmer et 
al. (2008);    
Guerra et al. 
(2014);    Yang 
et al. (2011);   
Lee et al. 
(2005); 
Metcalfe et al. 
(2003) 

<MQL-
83500 

<MQL-
24600 

 Miege et al. 
(2009); Kasprzyk-
Hordern et al. 
(2009); Kosma et 
al. (2014); Kosma 
et al. (2010); Clara 
et al. (2005a,b) 

Indomethacin <MQL-
449.4 

<MQL-61.4 Sun et al. 
(2016); Tran 
and Gin 
(2017) 

<MQL-
640 

<MQL-
507 

    Lee et al. 
(2005);  
Metcalfe et al. 
(2003); 
Lishman et al. 
(2006) 

<MQL-
297 

<MQL Papageorgiou et al. 
(2016) 
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Ketoprofen <MQL-
286 

<MQL-183 Sun et al. 
(2016); 
Subedi et al. 
(2015); 
Behera et al. 
(2011) 

60-150 40-90 Lee et al. 
(2005) 

<MQL-
5700 

<MQL-
1620 

Papageorgiou et al. 
(2016); Miege et al. 
(2009); Kasprzyk-
Hordern et al. 
(2009); Andreozzi 
et al. (2003) 

Naproxen <MQL-
7762 

<MQL-159 Tewari et al. 
(2013); Sun et 
al. (2016); 
Behera et al. 
(2011); Tran 
and Gin 
(2017) 

1700-
25000 

<MQL-
3500 

   Mohapatra et 
al. (2016); 
Guerra et al. 
(2014);   
Metcalfe et al. 
(2003);     
Lishman et al. 
(2006); Boyd 
et al. (2003) 

<MQL-
61100 

<MQL-
33900 

   Papageorgiou et 
al. (2016); Miege et 
al. (2009); 
Kasprzyk-Hordern 
et al. (2009); 
Kosma et al. 
(2014); Kosma et 
al. (2010) 

Salicylic acid 167-
16900 

<MQL-
1426 

Yang et al. 
(2017); Tran 
and Gin 
(2017) 

2820-
27800 

<MQL-
320 

   Lee et al. 
(2005); 
Lishman et al. 
(2006) 

<MQL-
164400 

<MQL-
10100 

  Papageorgiou et 
al. (2016); 
Kasprzyk-Hordern 
et al. (2009); 
Kosma et al. 
(2014); Kosma et 
al. (2010) 

 Beta-blockers   
 

    
 

    
 

  



 
 
 
 

 
 

35 

Atenolol <MQL-
294700 

<MQL-
518.6 

Tewari et al. 
(2013); Sun et 
al. (2016);  
Behera et al. 
(2011);Tran 
and Gin 
(2017) 

500-
2642 

<MQL-
14200 

    Palmer et al. 
(2008); 
Mohapatra et 
al. (2016) 

<MQL-
33106 

<MQL-
7602 

Papageorgiou et al. 
(2016); Miege et al. 
(2009); Kasprzyk-
Hordern et al. 
(2009); Gurke et al. 
(2015 

Metoprolol <MQL-
79500 

<MQL-268    Mohapatra 
et al. (2016); 
Sui et al. 
(2011); Sun et 
al. (2016);  
Behera et al. 
(2011) 

16-154 15-212 Mohapatra et 
al. (2016) 

<MQL-
4148 

<MQL-
5762 

Papageorgiou et al. 
(2016); Miege et al. 
(2009); Kasprzyk-
Hordern et al. 
(2009); Rosal et al. 
(2010); Gurke et al. 
(2015 

Propranolol <MQL-
9.56 

<MQL-8.3 Sui et al. 
(2011) 

NR NR NR <MQL-
1962 

<MQL-
615 

Papageorgiou et al. 
(2016); Miege et al. 
(2009); Kasprzyk-
Hordern et al. 
(2009); Rosal et al. 
(2010); Gurke et al. 
(2015) 

 Anticonvulsants   
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Carbamazepine <MQL-
18500 

<MQL-900 Yang et al. 
(2017); Sun et 
al. (2016); 
Subedi et al. 
(2015);  
Behera et al. 
(2011); Tran 
and Gin 
(2017) 

<MQL-
440 

28-551     Palmer et al. 
(2008);   
Mohapatra et 
al. (2016); 
Yang et al. 
(2011);  
Metcalfe et al. 
(2003); 
Glassmeyer et 
al. (2005) 

<MQL-
3110 

<MQL-
4596 

Papageorgiou et al. 
(2016); Miege et al. 
(2009);Kasprzyk-
Hordern et al. 
(2009); Gurke et al. 
(2015); Kosma et 
al. (2014); Clara et 
al. (2005a,b);Kahle 
et al. (2009) 

Gabapentin 4825.5-
15359 

213-8855 Tran and Gin 
(2017) 

NR 1000 ± 
900 

 Writer et al. 
(2013) 

6442-
25079 

7651-
56810 

  Kasprzyk-Hordern 
et al. (2009); Gurke 
et al. (2015) 

Sulpiride 64.9-
15,358.8 

70.7-322.4   Sui et al. 
(2011); Tran 
and Gin 
(2017) 

NR 3.30E+138  Gagne et al. 
(2006) 

113-
1100 

110-294 Bollmann et al. 
(2016) 

 Lipid regulators   
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Bezafibrate 16.8-159 <MQL-51.4 Sui et al. 
(2011); Sui et 
al. (2009) 

NR 65-359 Metcalfe et al. 
(2003) 

100-
7600 

<MQL-
4800 

   Miege et al. 
(2009); Rosal et al. 
(2010); Gurke et al. 
(2015); Kosma et 
al. (2014); Clara et 
al. (2005a, b);Clara 
et al. (2005a,b),  

Clofibric acid <MQL-
65 

<MQL-44.9 Sui et al. 
(2011); Yang 
et al. (2017); 
Sun et al. 
(2016); 
Behera et al. 
(2011); Tran 
and Gin 
(2017), Sui et 
al. (2009) 

<MQL <MQL-44     Metcalfe et 
al. (2003); 
Lishman et al. 
(2006) 

<MQL-
265.9 

<MQL-
91 

  Papageorgiou et 
al. (2016); 
Kasprzyk-Hordern 
et al. (2009); Rosal 
et al. (2010); 
Kosma et al. (2014) 

Gemfibrozil <MQL-
453.4 

<MQL-
535.2 

Sui et al. 
(2011); Yang 
et al. (2017); 
Sun et al. 
(2016); 
Behera et al. 
(2011); Sui et 
al. (2009); Sui 
et al. (2010) 

<MQL-
36530 

<MQL-
1493 

   Metcalfe et 
al. (2003); 
Lishman et al. 
(2006) 

<MQL-
17055 

<MQL-
5233 

  Papageorgiou et 
al. (2016); Rosal et 
al. (2010); Kosma 
et al. (2014); 
Kosma et al. (2010) 

Hormones   
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Estrone <MQL-
132.5 

<MQL-51.2    Behera et al. 
(2011); Tran 
and Gin 
(2017); Huang 
et al. (2013); 
Chang et al. 
(2011) 

8-52 <MQL-56    Palmer et al. 
(2008); 
Hedgespeth et 
al. (2012); Lee 
et al. (2005); 
Lishman et al. 
(2006) 

2.4-670 <MQL-
95 

Miege et al. (2009); 
Clara et al. (2005a, 
b); Migowska et al. 
(2012) 

Estriol <MQL-
802 

<MQL-30.2 Behera et al. 
(2011); Tran 
and Gin 
(2017): Huang 
et al. (2013) 

<MQL-
217 

<MQL     Hedgespeth 
et al. (2012); 
Yu and Chu 
(2009) 

<MQL-
660 

<MQL-
275 

Miege et al. (2009); 
Clara et al. (2005a, 
b);Migowska et al. 
(2012) 

17a-ethinylestradiol <MQL-
26.1 

<MQL-13.1 Huang et al. 
(2013) 

<MQL-
242 

<MQL     Yang et al. 
(2011); Yu and 
Chu (2009) 

0.4-70 0.5-106 Miege et al. (2009); 
Clara et al. (2005a, 
b) 

X-ray contrast media   
 

    
 

    
 

  
Iohexol 63.8-

124,966 
2100-8700 Yang et al. 

(2017); Ryu et 
al. (2014); 
Anumol et al. 
(2016); Tran 
and Gin 
(2017) 

NR 8623-9237  Nelson et al. 
(2010) 

18000 ± 
2000 

1200 ± 
100 

Kormos et al. 
(2011) 

Iopromide 47.7-
12,200 

<MQL-
7140 

Yang et al. 
(2017); Ryu et 
al. (2014) 

NA NA NA <MQL-
7500 

<MQL-
9300 

Miege et al. 
(2009);] Clara et al. 
(2005a, b) 
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        NA= not available in the literature 
        NR= not reported 
        MQL= method quantification limit 

Iopamidol 82.8-
45,611 

<MQL-
6520 

    Yang et al. 
(2017); Ryu et 
al. (2014); 
Tran and Gin 
(2017) 

NA NA NA 4300 ± 
900 

4700 ± 
1000 

Ternes and Hirsch 
(2000) 

Stimulant   
 

    
 

    
 

  
Caffeine 759-

60500 
13-51700 Sui et al. 

(2011); 
Tewari et al. 
(2013); Yang 
et al. (2017); 
Subedi et al. 
(2015); Sui et 
al. (2010) 

5809-
82882 

<MQL-
37200 

 Palmer et al. 
(2008); 
Mohapatra et 
al. (2016); 
Hedgespeth et 
al. (2012) 

102-
113200 

30-
13900 

Papageorgiou et al. 
(2016); Kosma et 
al. (2010); Buerge 
et al. (2003) 
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2.3.2 Occurrence of antibiotics/bacteriostatic drugs in STPs / WWTPs  
 

In the last 30 years, antibiotics (Table 2.1) has been acknowledged as a contaminant of 

the river system because of their negative effects on aquatic systems (Kummerer, 

2009). Though, the greatest challenge of discharging antibiotics to the environment is 

perhaps related to the development of the antibiotics resistance genes (ARGs) and 

antibiotics resistance bacteria (ARB), which decreases the therapeutic potential against 

animal and human pathogens. Studies has shown that 50% to 90% of antibiotics 

dispensed by man are excreted through urine and faeces (Kummerer, 2009; Tran et al., 

2016). 

Experiments have been done in Germany (Christian et al., 2003; Ternes et al., 2013; 

Hirsch et al., 1999; Steger-Hartmann et al., 1997), UK (Kasprzyk-Horden et al., 2017), 

Singapore (Tran et al., 2018), Sweden, (Andreozzi et al., 2003a), Austria (Gans et al., 

2002), Italy,  France, Greece, and the U.S. (Lindsey et al., 2001; Kolpin et al., 2012a) to 

study the occurrence of antibiotics in WWTPs. Many therapeutic classes of antibiotics 

have been detected in influent and treated effluents, although at low µgL-1 levels from 

samples collected from WWTPs from different countries of the world. Examples of 

such antibacterial drugs include sulfonamides (sulfadimidine, sulfamethazine and 

sulfathiazole), macrolide antibiotics (dehydroerythromycin, clarithromycin, 

azithromycin, roxithromycin, tylosin, clindamycin, and lincomycin) (Table 2.1). These 

agents are released into WWTPs from whence they can be removed or passed into the 

environment. The number of pharmaceuticals found in influents and effluent samples 

vary depending on factors such as the compound, usage pattern, sewer systems, 

weather conditions, river catchment features, persistency in the environment and the 

efficiency of the elimination process in the WWTPs (Luo et al., 2014; Tran et al., 



 
 
 
 

 
 

41 

2016). Other factors include sampling methodology, sampling dates and sites and the 

type of wastewater sampled. Furthermore, from the Table 2.1, the level of antibacterial 

agents in the influent and effluent samples was greatly affected by the region, from less 

than the method quantification limit (MQL) to a few tens of micrograms per litre. 

Trimethoprim, macrolides, fluoroquinolones and sulphonamides were often found in 

both influent and effluent sampled. However, the presence of ceftazidime, amoxicillin, 

and meropenem (beta-lactams); minocycline, chlortetracycline and oxytetracycline 

(tetracyclines); vancomycin and chloramphenicol are nearly absent from influents and 

effluent samples assayed in European and North American, although they were present 

in samples from Asian continents (Minh et al., 2009; Mutiyar and Mittal, 2013; Tran et 

al., 2016).  

In hospital effluents for example, Alder et al., (2011) and Hartmann et al., (2008) both 

detected elevated levels of antibiotics in hospital effluents. Hartmann et al. in 2008 also 

found 3-87 µgL-1 of ciprofloxacin and fluoroquinolone in hospital effluents. However, 

no traces of penicillin and tetracyclines were found when different sewage and 

groundwater samples were examined by Hirsch et al. (1999). The difference might be 

due to penicillin and tetracyclines precipitating and hydrolysing easily (Daughton and 

Ternes, 2007; Santos et al., 2010). A study conducted by Kolpin et al. (2002a) and 

Glassmeyer et al., (2005) reported the presence of tetracyclines in effluents and surface 

water samples in the US while Christian et al. (2010) reported a contrasting result from 

river water samples from North Rhine-Westphalia, although tetracyclines were not 

observed, five beta-lactam antibiotics (piperacillin, amoxicillin, ampicillin, mezlocillin, 

and flucloxacillin) were found only at minimal levels of less than 10 ngL-1. 

Fluoroquinolone antibiotics was assayed in wastewater effluents in Switzerland, Golet 



 
 
 
 

 
 

42 

et al. (2011) found that ciprofloxacin and norfloxacin occurred at concentration levels 

of 249-405 ngL-1 and 45-120 ngL-1 respectively in the collected samples. A year later, 

Golet et al. (2012), also detected ciprofloxacin and norfloxacin in surface water at 

concentrations <19 ngL-1. Christian et al. (2010) agrees with these results when he 

intermittently found ofloxacin and ciprofloxacin in German river water samples at 

amounts <21 ngL-1. Christian et al., (2010) also conducted a similar study where he 

sampled surface water and frequently found macrolide antibiotics (clarithromycin, 

azithromycin, roxithromycin and clindamycin) and at similar concentrations to what 

was reported for the quinolones. Whereas tylosin, a drug used exclusively in animal 

medicine in the U.S., U.K. and Germany, was found only in one fresh water sample at a 

90 ngL-1concentrations. The most ubiquitous antibiotic was dehydroerythromycin and 

was recorded to occur at 300 ngL-1 peak concentrations. The moderately elevated 

amounts of erythromycin and its metabolites when compared to the other macrolide 

was attributed to its common use as topical agents against acne and other skin 

infections (Christian et al., 2010), because topical applications of this compound may 

cause reduced metabolism and reabsorption of the drug. In another experiment, 

sulfamethoxazole and trimethoprim were other compounds detected frequently at less 

than 100 ngL-1.  

 

2.3.3 Occurrence of antiepileptic and antipsychotic drugs in STPs / WWTPs  
Epileptic patients are often depressed, antiepileptic and antipsychotic drugs such as 

carbamazepine, gabapentin, and sulpiride are administered to such patients to combat 

depression. Studies conducted in Europe and America have shown that these 

compounds are the mostly found in the influents and effluents of WWTPs (Behera et 

al., 2011; Gurke et al., 2015; Kasprzyk-Hordern et al., 2009; Subedi et al., 2015; Sun et 
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al., 2016; Tran and Gin, 2017; Writer et al., 2013; Yang et al., 2017). Antiepileptic and 

antipsychotic drugs are the third highest most prescribed and consumed drugs by 

Americans especially people within the age bracket of 18 years to 44 years (Pailler et 

al., 2009). They are detected in varying levels in sewage (influents and effluents) and 

surface water samples (Ahrer et al., 2011; Andreozzi et al., 2013a; Desbrow et al., 

2012; Gans et al., 2012; Tixier et al., 2013; Tran et al., 2018). Table 2.1 also shows the 

various concentrations of antiepileptic drugs found in influents and effluents of 

WWTPs in different geographical regions of the world and variations from <MQL to 

upper ten thousand of ngL-1 (Bollmann et al., 2016; Gurke et al., 2015; Kosma et al., 

2014). Investigations conducted by Gans et al. in 2012, Heberer in 2012b and Ternes in 

2008 revealed that during sewage treatments, less than 10 % of carbamazepine was 

removed in influent and effluent samples collected from various municipal STPs.  

Carbamazepine was also found to be slightly persistent in contaminating surface waters 

in Switzerland and Germany (Heberer, 2012b; Tixier et al., 2013) and at elevated levels 

of <1075 ngL-1. Another epileptic drug, gabapentin, was also found in surface water 

samples (635 ngL-1) from STPs influents and effluents in Germany and UK (Gogoi et 

al., 2018; Hughes et al., 2013). Gabapentin has equally been found in secondary and 

tertiary treated effluents in the US at concentrations ranging from 100 - 200 ngL-

1(Desbrow et al., 2012 and Tran et al., 2018). 

 

2.3.4 Occurrence of beta blockers in STPs / WWTPs  

Beta blockers have been found in wastewater (influent and effluent) samples in all 

geographical region of the world in varying quantities (Table 2.1). They are used in the 

treatment of blood pressure, examples include acebutolol, metoprolol, betaxolol, 

propranolol, and nadolol (Andreozzi et al., 2013a; Huggett et al., 2013; Mohapatra et 
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al., 2016; Kasprzyk-Horden and Baker, 2012; Sun et al., 2016; Tran and Gin, 2017; 

Wilkinson et al., 2016). Mohapatra et al. (2016), for example reported the 

concentrations of atenolol in the WWTPs in India to be up to 294700 ngL-1, which he 

attributed to the disposal of unused drug.  

2.3.5 Occurrence of blood lipid regulators in STPs / WWTPs  
Kasprzyk-Hordern et al., (2009); Kosma et al., (2010, 2014) and Rosal et al., (2010) 

had previously reported blood lipid regulators such as gemfibrozil and bezafibrate were 

often found in influents and effluents of WWTPs. The varying quantities of lipid 

regulating drugs in influent and effluent of WWTPs are shown in Table 2.1. The 

concentration levels vary from <MQL - 17055 ngL-1 and from <MQL to 5233 ngL-1 

respectively, depending on the compound and sampling areas (Kasprzyk-Hordern et al., 

2009; Kosma et al., 2010, 2014; Papageorgiou et al., 2016). For example, in the mid-

seventies, the first compound of pharmaceutical origin (clofibric acid) was discovered 

in the US influents and effluents samples collected from wastewater treatment plants 

(WWTPs) by Garrison et al. (1976) and Hignite and Azarnoff, (1977). However, the 

concentrations of clofibric acid found was relatively low when juxtaposed with 

bezafibrate or gemfibrozil (Behera et al., 2011; Kosma et al., 2010; Papageorgiou et al., 

2016). This stern from its infrequent use when compared with other lipid regulating 

drugs such as gemfibrozil, simvastatin and bezafibrate. Table 2.1 shows the different 

geographical regions of the world with different lipid regulating drugs and their levels. 

The differences that exist may be consequent of demographical patterns and rate of 

obesity in the region. Lipid regulators are used in the prevention of heart diseases that 

may arise due to consumption of high sugar foods and junks. 
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2.3.6 Occurrence of contrast media in STPs / WWTPs  
Gagne and Andre, (2006) identified iodinated x-ray contrast media that are applied 

majorly in the hospitals and during surgeries as key addition to the total adsorbable 

organic halogens (AOH) in hospital wastewaters. Oleksy-Frenzel et al. in 2000 found 

high levels of adsorbable organic iodine (AOI) (130 µgl L-1) in influent and effluent 

samples from municipal WWTPs in Berlin and a higher level of 10 mgL-1 was found in 

clinical wastewater, with no degradation or only small dilution during sewage 

purification. They presumed that the aquatic contamination was due to the occurrence 

of iodinated x-ray contrast media. 39 % of the AOI has been identified in sewage 

effluents as contrast agents. However, in the U.K., raised AOI values have been 

detected in surface waters and sewage, but also in bank filtrate and even raw drinking 

water samples (Putschew and Jekel, 2001). In AOI measured in surface waters, only 18 

– 33 % can only be identified (Putschew et al., 2001; Putschew and Jekel, 2001). 

Although, it was assumed that the bulk of the AOI may consists of numerous other 

unknown metabolites of iodinated contrast media. Among the presumed metabolites 

that were analysed only one were identified in the samples (Putschew et al., (2000) and 

Tran et al., (2017)). The common X-ray contrast agents which include diatrizoate 

iopamidol, iohexol, iomeprol and iopromide were detected up to µgL-1 concentrations 

in influents and effluents of wastewater (Table 2.1), ditto for the surface water samples 

in diverse parts of the world (Gogi et al., 2018; Putschew et al., 2001; Ternes et al., 

2013). Sometimes, ioxithalamic and iothalamic acids have been found at ngL-1 levels in 

influents and effluents of surface waters and STPs (Ternes and Hirsch 2000). The 

quantity of the X-ray contrast media in the aquatic environment are significantly 

increased on weekdays, because X-rays examination in hospitals and radiological 
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practices are only done from Monday to Friday (Ternes and Hirsch, 2000) and hence, 

appreciable increase on weekdays as pollutants. Ternes and Hirsch (2000) reported that 

the iodinated X-ray contrast media are found in large quantities in STP effluents when 

compared with other drugs. Nevertheless, when the maximal levels were considered, 

the pollution was not as great as expected. The x-ray contrast median concentration was 

measured by Ternes and Hirsch in 2000 to be <0.75 µgL-1 and are at least one order of 

magnitude less than the corresponding maximum concentration levels. Ternes and 

Hirsch (2009) reported finding iothalamic and ioxithalamic acids in some samples at 

low ng L-1 concentrations. Several other studies also reported the presence of 

iopromide, iopamidol, and diatrizoate in influents and effluents samples (Putschew et 

al. 2010).  Many contrast media are not biodegradable in the aquatic environment, 

however, an investigation conducted by Steger-Hartmann et al. (2002), revealed that 

iopromide can be oxidized by conventional ozonation. Ternes et al. (2003), however, 

found iodinated x-ray contrast media iopamidol, iopromide, iomeprol and diatrizoate, at 

substantial concentrations. The ionic diatrizoate only demonstrated removal efficiencies 

of less than 14 % while 80 % removal was exhibited by non-ionic iodinated X-ray 

media (ICM) (Ternes et al., 2013). Gadolinium (Gd), is used in organic magnetic 

resonance in hospitals and is discharged via hospital wastes and public sewerage 

systems (Kummerer, 2001). It is a rare earth element, detected in hospital effluents at 

high concentrations up to 100 µgL-1(Bau and Dulski, 1996).  

 

2.3.7 Occurrence of cytostatic drugs in STPs / WWTPs  

Drugs used during chemotherapeutic management of diseases are called cytostatic 

drugs. Consequent of their usage in the hospitals, Steger-Hartmann et al., (2007) found 

recurrently the residues of such drugs at µgL-1 concentration levels. Cytostatic drugs 
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have also been found although, in trace levels in effluent samples from hospital 

municipal STPs (Kummerer et al., 2007; Kasprzyk-Horden et al., 2007; Ternes, 2008). 

Steger-Hartmann et al. (2006) in a study on the university hospital sewage samples, 

found both cyclophosphamide and ifosfamide at 146 and 24 ngL-1 concentrations 

respectively. Kummerer et al. (2007) detected ifosfamide at average concentrations of 

109 ngL-1in an oncology hospital effluent while Ternes, (2008) detected 

cyclophosphamide at maximal levels of 20 ngL-1 in 4 out of 16 sampled STP effluents. 

However, he found ifosfamide in only 2 samples and the concentration of one sample 

was 2.9 µgL-1. The predicted environmental concentration (PEC) value for ifosfamide 

was 0.8 ngL-1 in surface waters. These class of drug are highly mutagenic, embryotoxic 

and carcinogenic due to their high pharmacological potency (Kasprzyk-Horden et al., 

2007). 

 

2.3.8 Occurrence of oral contraceptives in STPs / WWTPs  
Oral contraceptives are synthetic steroids with high pharmacological potency. They are 

often prescribed, however, the sale of this class of drug annually is low and hence they 

are only found in trace amounts (low ngL-1 range) in sewage effluents (Tran et al., 

2018). This assumption has been supported by several studies carried out on STPs in 

Western Europe and South America (Adler et al., 2010; Baronti et al., 2000; Belfroid et 

al., 2009; Bruchet et al., 2002; Heberer, 2012b; Huang and Sedlak, 2011). Mestranol 

was only found intermittently at concentrations <4 ngL-1 (Spengler et al., 2009 and 

Ternes et al., 2009a). EE2 was found at mean concentration of 17 ngL-1 by (Santos et 

al., 2010) in a study of 20 sewage effluent samples. Several other investigations had 

been conducted by numerous authors across Europe and the US and the EE2 values 

ranges between 1-3 ngL-1 or less, below the analytical detection limit (Table 2.1) 
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(Bueno et al., 2012; Tran et al., 2018; Verlicchi et al., 2012; Yang et al., 2011; Zhang et 

al., 2012). The Canadian sewage effluent sample for EE2 was reported to be higher 

with a mean level of 9 ngL-1 by Ternes et al., (2009). However, much higher values for 

EE2 detected in streams in the US (Kolpin et al. 2012a) at <831 ngL-1 median value; 73 

ngL-1 excluding non-detects. The contraction has been the subject of discussion 

(Ericson et al., 2010; Kolpin et al., 2012b). Six activated sludge STPs near Rome, Italy, 

was studied by Baronti et al. (2010), the mean concentrations of 3.0 ngL-1 was found 

for EE2 influent samples and 0.45 µgL-1 was detected for effluent samples. Baronti et 

al. (2010), still in the same study, recorded the removal rate of 85 % for EE2 while 

Zucchi et al., 2014 observed removal rates of 75.7 % and an average level of 2.0 ngL-1 

in the effluents of STP in Berlin, Germany after secondary treatment including 

nitrification and denitrification. Above the analytical limit of quantitation of 0.4 ngL-1, 

EE2 was not detected in effluents from another municipal STP in Berlin, Germany, 

operating with similar technology (Verlicchi et al., 2012).  

 

2.3.9 Occurrence of pharmaceuticals in surface water 
Effluent from STPs is the principal route through which pharmaceuticals enter surface 

water in the UK (Gardner et al., 2012; Wilkinson et al., 2017), the US (Spongberg et 

al., 2011), Italy (Meffe and De-Bustamante, 2014), and Africa (Wood et al., 2015) and 

congregate in the aquatic system (Luo et al., 2014) (Table 2.2). 

The presence of 36 pharmaceuticals in surface water samples from Beijing, Changzhou, 

and Shenzhen in China was investigated by Wang et al. 2015 and 28 compounds were 

found. Sulfadimethoxine (164 ngL-1), sulpiride (77.3 ngL-1), atenolol (52.9 ngL-1), and 

indomethacin (50.9 ngL-1), had the maximum average concentrations. 86 samples of 
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surface water were collected from coastal sites that receives treated and untreated 

sewage by Spongberg et al. (2011) in Costa Rica. 34 compounds were analysed, 

doxycycline (77%), sulfadimethoxine (43%), salicylic acid (41%), and trichlorosilane 

(TCS) (34%) were most frequently detected. In a similar study of surface water samples 

collected from Elbe river in Czech, paracetamol was detected at <106 ngL-1 (Amdany et 

al., 2014). However, samples collected from Elbe and Saale rivers in Germany, 

paracetamol was found at <20 ngL-1 (ARGE, 2003). In the same study, acetylsalicylic 

acid (ASA) median concentration was found below the detection limit. Studies of 

Czech surface water samples found ibuprofen at 146 ngL-1, ronidazole and 

metronidazole periodically found at 16 and 44 ngL-1 respectively (Amdany., 2014). The 

metabolites of ibuprofen (carboxy-ibuprofen and hydroxy-ibuprofen) has also been 

found in surface waters in UK, Germany and the US at median concentration of 0.02-

0.34 µgL- (Stumpf et al., 2008). Other compounds found at lower concentrations in 

surface water samples are metoprolol, bisoprolol and propranolol (Hirsch et al., 2008; 

Ternes, 2008). The beta-blockers, however, were found regularly in the surface waters 

samples in Switzerland, with concentrations of up to ng L-1 (Alder et al., 2010). Kim et 

al. (2007) conducted a research on the prevalence of 22 pharmaceuticals in 3 major 

rivers in South Korea receiving effluents from secondary STPs situated in 

manufacturing areas. All the test pharmaceutical compounds were detected at the 

upstream and downstream sampling sites with frequencies of detection varying from 17 

% to 90 %.  Baker et al., (2013), found EE2 at 0.04 ngL-1 in water samples from Tiber 

River, Italy. A maximal level of up to 4.3 ngL-1 was found in another study but most of 

the samples were below the detection limits (Adler et al., 2010; Belfroid et al., 1999; 

Zhang et al., 2012). Purdom et al., (1994) in his investigations, revealed that exposure 
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of fish to only 0.1 ngL-1 levels of EE2, could cause feminization in some species of 

male. 
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Table 2.2: Concentration range of some commonly detected pharmaceuticals in surface water (Adapted from Wilkinson et al., 2016a, 2017)              
Therapeutic Class Geographical Region Contaminant Surface Water (ng/L) Reference 

Analgesic Europe Ibuprofen 1-237 Petrie et al., 2015 

 Europe Diclofenac <0.5-253 
Petrie et al., 2015; 

Wilkinson et al., 2017 

 Europe, North America Paracetamol 110-10000 

Kolpin et al., 2002; Boyd et 
al., 2004; Wilkinson et al., 

2017 

 North America Codeine 12-1000 
Kolpin et al., 2002; Boyd et 

al., 2004 
  North America Naproxen <1-81 Kolpin et al., 2002 

Antibiotic Europe Amoxicillin <2.5-245 Petrie et al., 2015 
 Europe Erythromycin <0.5-159 Petrie et al., 2015 

 North America Triclosan 140-2300 
Kolpin et al., 2002; Boyd et 

al., 2004 
 North America Trimethoprim <1-2 Van Ginneken et al., 2017 
 North America Sulfamethoxazole <1-46 Van Ginneken et al., 2017 

Antidepressant Europe Amitriptyline 66-207 Petrie et al., 2015 

 Europe, North America Fluoxetine 5.8-120 
Petrie et al., 2015; Kolpin 

et al., 2002 
  North America Venlafaxine 1.1-35 Petrie et al., 2015 

Antineoplastic Europe Ifosfamide 0.05-0.14 Wilkinson et al., 2017 
 Europe Cyclophosphamide 0.05-0.17 Wilkinson et al., 2017 
  Europe Tamoxifen <0.05-25 Coetsier et al., 2009 
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Beta Blocker Europe Metoprolol <0.5-10 
Petrie et al., 2015; Relic et 

al., 2017 

  Europe, North America Atenolol <1-48 
Petrie et al., 2015; Van 
Ginneken et al., 2017 

Hormones/Steroids Europe, North America 17α ethinylestradiol 73-831 Wilkinson et al., 2017 

 Europe, North America 17β estradiol 0.1-200 
Petrie et al., 2015; Kolpin 

et al., 2002 

 Europe, North America 19 norethisterone 48-872 
Petrie et al., 2015; Kolpin 

et al., 2002 
  Asia Coprostanol <1-2717 Peng et al., 2008 

Liquid Regulator Europe, North America Bezafibrate <10-60 Petrie et al., 2015 
  North America Gemfibrozil 48-790   
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2.3.10 Occurrence of pharmaceuticals in groundwater 
 

The frequencies and concentrations levels of pharmaceuticals are lower in groundwater 

than in surface water (Vulliet and Cren-Olivé, 2011). Anti-inflammatories and 

analgesics are the most popular drugs found in groundwater e.g. diclofenac, ibuprofen, 

paracetamol and salicylic acid because they are extensively consumed. At landfill 

leachates, different painkillers such as ketoprofen, diclofenac, ibuprofen, 

aminophenazone, propyphenazone and phenazone, together with their metabolites have 

been detected in underground water samples of UK, Denmark, Croatia and Germany at 

levels of up to ngL-1 (Ahrer et al., 2001; Brausch and Rand, 2011; Radke et al., 2010). 

The results of a national survey of pharmaceuticals conducted by Barnes et al., 2008 

across 18 states in the US, showed that the most frequently detected drugs in 47 

groundwater samples were sulfamethoxazole (23 %).  

In a similar investigation conducted by Loos et al. (2010), 164 groundwater samples 

were collected from 23 European countries, carbamazepine was reportedly found in 42 

% of the samples with a maximum concentration of 390 ngL-1. Therapeutic group like, 

lipid regulators and its metabolites, such as gemfibrozil, bezafibrate were not detected 

in the ground water sampled. However, frequencies of detection of clofibric acid (3 %) 

in a later study by Peng et al., 2014 were lower than those of antibiotics and anti-

inflammatory drugs. Holm et al. (1995) in his report, suggested that groundwater near 

landfill locations could pose a severe ecological risk because of pharmaceutical 

contamination. In groundwater samples collected in Berlin, Germany clofibric acid 

discovered at 4 µgL-1 (Heberer and Stan, 1997) from an abandoned sewage irrigation 

field.  Again, Sacher et al. (2011) reported the presence of antibiotics in groundwater 

samples collected near Baden-Wurttemberg, Germany at concentration of 410 ngL-1 
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(sulfamethoxazole) and 49 ngL-1 (dehydroerythromycin). Heberer and Feldmann, 

(2008) found sulfamethazine and sulfamethoxazole at low levels in selected 

underground water samples in Germany and the US. In Denmark, Holme et al., 1995 

also found sulphonamides and their metabolites at low concentrations in underground 

water samples collected down slope of a landfill. Similar reports by Sacher et al (2011) 

revealed the presence of sotalol at elevated levels of 560 ngL-1 in three groundwater 

samples in Germany. 

In nations with highly developed healthcare systems such as Western Europe and the 

US, large X-ray contrast media may be present in the sewage effluents, consequently, 

increased environmental contamination with X-ray contrast media. Amidotrizoic acid, 

diatrizoate, iopamidol, and iopromide (iodinated contrast agents) were detected up to 

the µgL-1 level in groundwater samples because of the recurring presence in the aquatic 

ecosystem. Hence, may easily percolate into the groundwater aquifers (Peng et al., 

2015). Comparing groundwater with reservoirs, the later were considerably more 

polluted, showing greater frequencies of detection and elevated level of concentrations 

(Peng et al., 2014). In underground water, drugs do not display substantial trends or 

seasonal variations, but the concentration of drugs in reservoirs are higher throughout 

spring than in other seasons.  

Groundwater samples across 14 countries in 4 continents was investigated by Lapworth 

et al. (2012) compounds such as carbamazepine: 5 μgL-1 (n = 23), sulfamethoxazole: 

252 ngL-1 (n = 15), ibuprofen: 1.5 μgL-1 (n = 14), caffeine: 9.8 μgL-1 (n = 14), and 

diclofenac: 121 ngL-1 (n = 11), were detected. The existence of drugs and the 

relationship between their presences in groundwater with possible pollution causes in 

Taiwan was investigated by Lin et al. (2015). Nearly all the 50 analytes targeted were 
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found at ngL-1 level excluding 17α-ethinylestradiol (1822 ngL-1), sulfamethoxazole 

(1820 ngL-1) and acetaminophen (1036 ngL-1). Sui et al. (2015) reported that 

analgesics, antibiotics, anti-inflammatories and lipid regulators, were frequently 

detected in groundwater. 

 

2.3.11 The fate and removal of pharmaceuticals in STPs/ WWTPs 
 

The volatility of pharmaceutical compounds is low implying the distribution in the 

environment will happen mostly through liquid medium and food chain dispersion. 

Regardless of the route into the aquatic environment, however, the concentration of 

drugs is controlled by similar physical, chemical and biological methods (Rosal et al., 

2010). In wastewater treatments (WWT), two types of removal procedures are 

important, and these are adsorption and biodegradation. Studies by various researchers 

(El-Gindy et al. 2007; Kim et al. 2005; Liu et al., 2004; Liu and Williams 2007; 

Williams et al., 2013) had shown that drugs can be transformed by photodegradation, 

biodegradation, hydrolysis or sunk as deposits into the bottom of the river. However, 

the resistant of several drugs to photodegradation causes increase persistency of such 

compounds in the aquatic ecosystem (Boreen et al., 2003; Calisto et al., 2011), hence, 

may remain in the bottom of the river as deposits for years (Klaminder et al., 2015). 

Adsorption of pharmaceuticals is a function of both hydrophobic and electrostatic 

interactions of the drugs with microbes and particulates (Williams et al., 2013). Acidic 

drugs with pKa values ranging from 4.9 to 4.1, are NSAIDs like ketoprofen, diclofenac, 

naproxen, acetylsalicylic acid, ibuprofen, indomethacin, clofibric acid, fenoprofen, as 

well as bezafibrate (pKa 3.6) and gemfibrozil, occurs as ion at neutral pH ((Klaminder 
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et al., 2015). Adsorption increases with lower pH. At neutral pH, these negatively 

charged drugs therefore occur mainly in the dissolved phase in the wastewater. 

Sorption of acidic drugs to slurry is not significant or the removal of drugs from 

wastewater and surface water. Suggested not to be very important in the elimination 

process of pharmaceuticals from wastewater and surface water. Hence, the level of 

drugs in digested slurry and residues are relatively low, as showed in numerous 

monitoring studies (Ternes et al., 2004; Urase and Kikuta, 2005). However, Golet et al., 

(2002) demonstrated that fluoroquinolone antibiotics can adsorb to sludge to a large 

extent. For the hydrophobic EE2 (logKow 4.0) sorption to sludge is likely to play a role 

in its removal from wastewater.  

Some pharmaceuticals are well eliminated during sewage treatment process while 

others are not. The removal rate for drugs such as ASA, salicylic acid, carbamazepine 

propranolol, diclofenac and naproxen in STPs are 81 %, 91 %, 7-8 %, 96 %, 26 % and 

81 % respectively (Carballa et al., 2004; Clara et al., 2004) and that of bezafibrate (51 

%) vary from one STP to another. Table 2.3 shows the removal range of selected 

pharmaceuticals in wastewater treatment plants. Thomas and Foster (2004) investigated 

the removal efficiencies of three STPs in United States of America and found 94-100 % 

elimination for diclofenac ibuprofen, ketoprofen and naproxen. More than 80 % 

elimination took place during secondary treatment and <50 % in the primary treatment. 

In another study on elimination rate of pharmaceuticals during sewage treatment 

process, Roberts and Thomas, (2005) observed that tamoxifen was not removed. 

However, because pharmaceuticals comprise of diverse group of chemicals with varied 

physico-chemical properties, the differences in removal rate is expected. Once the 

effluents are discharged into rivers, biotransformation through abiotic process takes 
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place. Hence, drugs like carbamazepine and clofibric acid undergo photodegradation 

because of their slight removal during treatment.  
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Table 2.3: Apparent removal of selected pharmaceutical in WWTPs (Source: Tran et al., 
2018) 

Selected 
pharmaceuticals 

Removal 
range (%)                         Reference 

Antibiotics   
Amoxicillin 69.9-99.7 Tran et al. (2016), Mutiyar and Mittal. (2013) 

Azithromycin <0-99 Tran et al. (2016), Guerra et al. (2014) 
Chloramphenicol 11.8-73.8 Zhou et al. (2013) 

Chlortetracycline 31.4-97.8 Tran et al. (2016), Zhou et al. (2013) 

Ciprofloxacin <0-100  Tran et al. (2016), Guerra et al. (2014), Zhou et al. 
(2013), Mohapatra et al. (2016), Gros et al. (2010)  

Clarithromycin <0-99  Tran et al. (2016), Guerra et al. (2014), Zhou et al. 
(2013), Mohapatra et al. (2016) 

Clindamycin <0-88.9 Tran et al. (2016), Gurke et al. (2015), Kovalova et 
al. (2012) 

Enrofloxacin  0-67 Guerra et al. (2014) 

Erythromycin-H2O <0-100 Tran et al. (2016), Zhou et al. (2013), Mohapatra et 
al. (2016) 

Lincomycin <0-100  Tran et al. (2016), Guerra et al. (2014), Zhou et al. 
(2013), Sim et al. (2010) 

Meropenem 80.7-92.6 Tran et al. (2016) 

Minocycline 44.8-86.9 Tran et al. (2016) 

Ofloxacin <0-99   Guerra et al. (2014), Zhou et al. (2013), Gros et al. 
(2010), Radjenovic et al. (2007) 

Oxytetracycline 54.6-96.3  Tran et al. (2016), Zhou et al. (2013) 

Sulfamethazine <0-96.2  Tran et al. (2016), Guerra et al. (2014), Zhou et al. 
(2013), Behera et al. (2011). 

Sulfamethoxazole <0-99  Tran et al. (2016), Guerra et al. (2014), Zhou et al. 
(2013), Mohapatra et al. (2016), Gros et al. (2010), 
Radjenovic et al. 2007, Sim et al. (2010), Behera et 
al. (2011) 

Tetracycline 34-97  Tran et al. (2016), Guerra et al. (2014), Zhou et al. 
(2013), Gros et al. (2010) 

Trimethoprim <0-97  Tran et al. (2016), Guerra et al. (2014), Zhou et al. 
(2013), Mohapatra et al. (2016), Sim et al. (2010), 
Behera et al. (2011). 

Vancomycin 96.6-99.9 Tran et al. (2016), 

Antimicrobials    
Miconazole <0-99 Guerra et al. (2014) 
Thiabendazole <0-88 Guerra et al. (2014) 
Triclocarban <0-99 Tran et al. (2016), Guerra et al. (2014) 

Triclosan <0-100 Tran et al. (2016), Guerra et al. (2014), Mohapatra 
et al. (2016),  Behera et al. (2011), Ying et al. 
(2009), Kosma et al. (2010), Tran and Gin. (2017) 

NSAIDs 
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Acetaminophen <0-100 Guerra et al. (2014), Mohapatra et al. (2016), Gros 
et al. (2010), Radjenovic et al. 2007, Sim et al. 
(2010), Behera et al. (2011), Kosma et al. (2010) 

Codeine <0-98 Guerra et al. (2014) 
Diclofenac <0-98  Mohapatra et al. (2016), Gros et al. (2010), 

Radjenovic et al. (2007), Behera et al. (2011), Ying 
et al. (2009), Kosma et al. (2010) 

Fenoprofen 98.6-100  (15) Kosma et al. (2010) 

Ibuprofen <0-99.8  Guerra et al. (2014), Gros et al. (2010)     
Radjenovic et al. (2007), Sim et al. (2010), Behera 
et al. (2011)  

Indomethacin 7-98.6  Kovalova et al. (2012), Radjenovic et al. (2007), 
Kosma et al. (2010) 

Ketoprofen 51.5-91.9 Gros et al. (2010), Radjenovic et al. 2007, Sim et al. 
(2010), Behera et al. (2011), Ying et al. (2009) 

Naproxen <0-99.3 Guerra et al. (2014), Mohapatra et al. (2016), Gros 
et al. (2010), Radjenovic et al. (2007), Behera et al. 
(2011), Clara et al. (2005) 

Salicylic acid 9-95.4 Gros et al. (2010), Kosma et al. (2010, Tran and 
Gin. (2017) 

Beta-blockers 
 

  

Atenolol <0-96 Mohapatra et al. (2016), Gurke et al. (2015), 
Kovalova et al. (2012), Radjenovic et al. (2007), 
Behera et al. (2011), Kosma et al. (2010) 

Metoprolol <0-58.7 Mohapatra et al. (2016), Gurke et al. (2015), 
Kovalova et al. (2012), Radjenovic et al. (2007), 
Behera et al. (2011). 

Propranolol <0 Gurke et al. (2015), Kovalova et al. (2012) 

Anticonvulsants 
 

  

Carbamazepine <0-83  Mohapatra et al. (2016), Gurke et al. (2015), 
Radjenovic et al. 2007, Sim et al. (2010), Behera et 
al. (2011), Ying et al. (2009), Kosma et al. (2010, 
Tran and Gin. (2017) 

Gabapentin <0-95.6 Gurke et al. (2015), Kovalova et al. (2012), Tran 
and Gin. (2017), 

Sulpiride <0-73.5 Tran and Gin. (2017), Bollmann et al. (2016), Sui et 
al. (2011) 

Lipid regulators 
 

  

Bezafibrate 48.4-95.8 Gros et al. (2010), Radjenovic et al. (2007), Sui et 
al. (2011) 

Clobric acid  27.7-71.8  Radjenovic et al. (2007), Behera et al. (2011). 

Gemfibrozil  0-100 

Mohapatra et al. (2016), Gros et al. (2010), 
Radjenovic et al. 2007, Sim et al. (2010), Behera et 
al. (2011), Ying et al. (2009), Kosma et al. (2010), 
Tran and Gin. (2017) 

Hormones    

Estrone  0-100 
 Behera et al. (2011), Clara et al. (2005), Gabet-
Giraud et al. (2010), Joss et al. (2004) 

Estriol  18-100    Behera et al. (2011), Clara et al. (2005) 

17α-ethinylestradiol  33-100 Clara et al. (2005), Joss et al. (2004) 
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2.4 Ecotoxicological effects of pharmaceuticals in aquatic environments 

2.4.1 Toxicity testing methods 
 

Toxicity tests are bioassays in which test organisms are exposed in a laboratory setting, 

to various concentrations of chemical toxicants, or dilutions of whole effluents using 

single species or multispecies (Odiete, 1999). Basically, four types of conventional 

toxicity tests are known, i.e. ex-situ static, static with renewal, continuous or 

intermittent flow and in-situ (Odiete, 1999). 

Toxicity tests are used to assess the concentration of compounds and the length of 

exposure needed to cause an effect (Odiete, 1999). Therefore, toxicity testing is to 

measure pollutant concentration so as to evaluate the risk posed by a chemical and to 

protect the entire ecosystems by reducing the effect of sporadic and incessant pollution 

of the ecosystems (Bloor and Banks 2005). Thus, the impacts of toxic chemicals on 

non-target organisms in the environment are predicted and this represent the 

conventional method for toxicity measurement (Odiete, 1999). The dose-response 

correlation provides the foundation for evaluation of risk and threat pose in the 

environment during toxicity testing of chemicals. Toxicity testing is done following the 

guidelines for assessing toxicants by Organisation for Economic Co-operation and 

Development (OECD). The OECD regulation entail the use of various plants and 

animals, endpoints and different stages of developments to consider while conducting 

toxicity test. 

There are two types of toxicity testing methods. 

2.4.1.1 Acute toxicity test: They are test designed to assess the toxicity of compounds to 

selected organisms in the aquatic environment for a short period of exposure (usually 
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24-h, 48-h or 96-h) to different concentrations of the test compounds. Usual effective 

criteria (end points) for invertebrates are loss of equilibrium, immobility, and mortality.  

They are cheap and less costly to perform; consequently, the majority of the 

toxicological database is skewed in favour of acute responses (Pascoe and Edwards, 

1989) (Figure 2.3).  

Various researchers had used different types of exposure conditions such as static, 

static renewal, re-circulatory and flow-through. The determination of which exposure to 

use in acute and chronic toxicity tests usually depends on test substance characteristics, 

test duration, and regulatory requirements. 

2.4.1.2 Sub-lethal test: Sub-lethal test is meant for the assessment of the potential 

negative impacts of substances, under a longer period of exposure. The test specie may 

be exposed for between weeks to entire reproductive life cycle (Pascoe et al., 1994). 

This testing method provides significant data for water quality criteria (Bloor et al., 

2010 and Hellawell, 1986). Various investigators had used various methods such as 

biochemical, physiological, reproductive and behavioural as a measure of toxicity.  

Sub-lethal tests are meant to determine biologically non-toxic concentrations in which 

the long-term survival of organisms exposed to the chemicals are assured by 

monitoring the common effective criteria (Pascoe and Edwards, 1989) (Figure 2.3). 
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Figure 2. 3: (a) Percentage of acute x chronic studies obtained from the 194 assessments of the 
toxicity of pharmaceutical mixtures retrieved from 65 articles published between 2000–2017. 
Those studies not possible to be classified into these two categories according to international 
protocols were referred to as unclassified. (b) Principal endpoints used in the retrieved studies, 
expressed in relative percentage (Source: Godoy and Kummrow, 2017). 

 

2.4.2   Mixture toxicity of pharmaceuticals. 
 

Due to incomplete removal from treatment plants, organisms in water environment are 

continually exposed to pharmaceuticals. Not many investigations had been done on 

toxicity of drugs to organisms in water and understanding the impacts of 

pharmaceuticals in mixture compared to their effects when acting alone is significant in 

toxicity testing of pharmaceuticals. Sacher et al., (2011), defines interaction as the 

grouping of two or more compounds in a way to exert a greater collaboration (synergy) 
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or weakened (antagonistic or inhibitive) reaction in a mixture toxicity test. Interactions 

can consequently differ depending on the concentrations, the timing, the exposure 

pathway and length of exposure, and the target receptor. Different likely connections 

are possible in mixture of pharmaceuticals, all can either increased or reduced the 

potency of the drug mixture. Although from environmental scientists’ perspective, 

synergistic interaction of drugs is a cause of worries compared to antagonism. 

However, in the past efficiency of plant protection produces has been increased with 

the principle of synergism e.g. pyrethrins in combination with piperonyl butoxide 

(PBO) has been used for many years to decrease the quantity of pyrethrins needed to 

attain the potency required for insecticides after use (Gabet-Giraud et al., 2010).  

Ecotoxicologist had adopted two pharmacological models advanced by 

pharmacologists in early twentieth century (Bliss, 1939) used for the projection of 

toxicity of mixtures known as independent action and concentration addition.  Table 2.4 

shows the method used in predicting the effects of mixtures of drugs. 
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Table 2.4: Models/approaches used to assess/predict the mixture toxicity effects of pharmaceuticals retrieved from 65 international articles from 2000-2017 
(Source: Godoy and Kummrow, 2017) 

 
Model/Approach used References 

Concentration addition (CA) model, including its graphical representation (Isobologram) Thorpe et al., (2003); Daughton and Ruhoy, 2009b; 
Runnalls et al., (2015); Zhao et al., (2015); Hinfray et al., 
(2016) 

Independent action (IA) model, Parrella et al., (2014). Both CA and IA models, various CA and 
Toxic Unit (TU) approach 

Richardson and Ternes, (2014); Kasprzyk-Horden et al., 
2017 

Combination-Index Isobologram (CI) model only Rodea-Palomares et al., (2010) 
All the three: CA, IA and CI models Gonzalez-Pleiter et al., (2013); Di Nica et al., (2017); 

Geiger et al., (2016) 
Principal Component Analysis/Cluster Analysis Pomati et al., (2008); Franzellitti et al., (2013); Gonzalez-

Rey et al., (2014); Zucchi et al., (2014); Ding et al., 
(2016) 

Specific equation based on Toxic Units (TU) of the mixture Zou et al., (2012) 
Additive Index and the Modified TU approach DeLorenzo and Flemming, (2008) 
Comparison between observed and predicted additivity from the effects caused by 1 TU for each 
individual component 

Borgmann et al., 2007 

Statistical comparison between individual and mixture effects using statistical methods such as 
students T test, Analysis of Variance (followed by post-hoc test) or the Fisher method  

Brain et al., (2004); Eguchi et al., (2004); Flaherty and 
Dodson (2005); Dietrich et al., (2010); Gust et al., (2012); 
Lang and Kohidai (2012); Melvin et al., (2014); Safholm 
et al., (2015); Wolfe et al., (2015); Gonzalez-Ortegon et 
al., (2016); Hua et al., (2016); Orn et al., (2016); 
Richardson and Ternes, (2014); Liange et al., (2017); 
Kasprzyk-Horden et al., 2017 

Overlap analysis of the 95% confidence intervals of the individual and the mixture effects Luna et al., (2013;2015) 
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Comparison of the toxicity threshold values (calculated from the square root of the product 
between the NOECa and LOECb) between the mixture and the individual effects of each 
component 

Quinn et al., (2009) 

Comparison between mixture and single effects of each component by means of simple present 
calculation 

Parolini and Benelli (2012) 

Empiric comparison between mixture and single effects of each component without using a 
mathematical approach or a direct statistical comparison 

Ericson et al. (2010); Galus et al. (2013); Li and Lin 
(2015); Connolly et al., (2017) 

The mixture toxicity was statistically compared to the individual toxicity of just one of the mixture 
compounds (the parental compound) 

Alder et al. (2010) 

The whole-mixture approach was used. The mixture toxicity was not compared to the individual 
effects of the components 

Brain et al. (2005); Borgmann et al. (2007); Pomati et al. 
(2007); Gust et al. (2013); Melvin (2016) 

aNOEC – no observed effect concentration 
bLOEC – Lowest observed effect concentration
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2.4.2.1 Concentration Addition (CA) 
 

Concentration addition is founded on the principle that if the entire components in a 

drug mixture exhibit the same mechanism of action (MoA) such as acting on the same 

molecular receptor, they will individually behave in the same way so that each can be 

substituted by an equal effective concentration (EC50) of another without causing a 

change in the effect of the final mixture. This is called the dilution principle as 

propounded by (Loewe and Muischneck, 1926). The effect of such mixture can easily 

be extrapolated from the total of all the effect of each component at their normal 

potencies (Backhaus, 2014). This method is also known as the Toxic Units (TUs) and 

mathematically it can be expressed as:       =1                          

Where n = the number of components in the mixture. 

Ci = the concentration of the single chemical in the mixture that elicits the effect x, 

ECxi = the concentration of the same chemical that individually provokes the same 

effect x. 

 Ci/ECxi = Toxic Unit (TU)  

When there are no interactions between the components, the sum of TUs will be equal 

to 1.  However, (Deneer et al., 1988 and Van Hecken et al., 2000) demonstrated that the 

CA is also valid for compounds that display no particular mechanism of action but 

whose toxicity towards aquatic organisms is governed by hydrophobicity e.g. unionized 

and unreactive compounds. Van Leeuwen et al., (1992) suggested that the non-

specificity of mechanism of action of those chemicals are called narcosis or baseline 

toxicity.
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2.4.2.2 Independent Action (IA) 
 

This concept was grounded on the believed that chemicals in mixtures have dissimilar 

effects i. e. individual compounds differ in their mode of action and receptor targets. 

Hence, an individual effect of each toxicant will remain unaltered and occur 

irrespective of the occurrence of other compound. 

Mathematically, it can be expressed as:  

 

 

Or in general 

 

 E(c1), E(c2) = the effects of single substances  

E (cmix) = the total effect of the mixture. 

2.5 Design of experiments for mixture toxicity studies 

Several types of experimental designs had been used in the past to assess 

ecotoxicological effects of mixtures of pharmaceutical. Table 2.5 is a summary of 

review of types and percentage frequency of experimental designs employed in 194 

assessments of the toxicity of pharmaceutical mixtures retrieved from the international 

literature.



 
 
 
 

 
 

68 

Table 2.5: Types and percentage frequency of experimental designs employed in the assessments of the toxicity of pharmaceutical mixtures retrieved from 
International literatures (Source: Godoy and Kummrow, 2017) 
 

Types of experimental design 

Number of 
experimental 
data 

Percentage 
frequency 
(%) References 

Fixed ratio design based on the NOECª/EC01
b values of 

each compound 
2 1 Backhaus et al. (2000b; 2011) 

Fixed ratio design based on the LOECc values of each 
compound 

1 0.5 Borgmann et al., 2007Jr et al. (2016) 

Fixed ratio design based on the EC10
d values of each 

compound 
10 5.2 Di Nica et al. (2017) 

Fixed ratio design based on the EC50
e values of each 

compound (including the isobologram method) 
77 39.7 Backhaus et al. (2000b); Thorpe et al. (2003); Gobel et al., (2007); 

DeLorenzo and Fleming (2008); Schnell et al. (2009); Rodea-
Palomares et al. (2010);Lang and Kohidai (2012); Zou et al. 
(2012); Gonzalez Pleite et al. (2013); Parrella et al. (2014); Vulliet 
and Cren-Olive, (2011); Geiger et al. (2016); Bialk-Bielinska et al. 
(2017) 

Fixed ratio design based on different ECxf values 
besides the EC50c of each compound (including, e.g., 
EC5, EC10, EC20, EC80 and EC90) 

22 11.3 Cleuvers (2003; 2004; 2005); Brezovsec et al. 2014; Godoy et al. 
(2015b); Nieto et al. (2016); Rossier et al. (2016); Siegenthaler et 
al. (2017) 

Fixed ratio design based on the individual predicted no-
effect concentration (PNEC) values 

1 0.5 Di Nica et al. (2017) 
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Fixed ratio design based on the maximum aquatic 
environmental concentration of the compounds reported 
in the literature 

3 1.5 Watanabe et al. (2016) 

Fixed ratio design based on a specific exposure 
modeling 

3 1.5 Zucchi et al. (2014); Runnalls et al. (2015); Guo et al. (2016) 

Two-factor fractional-factorial design 2 1 Pomati et al. (2008) 
Ray design consisting of multiple ratios based on the 
effective concentrations of the single compounds 

13 6.7 Christensen et al. (2006; 2007); Hinfray et al. (2016) 

Multiple combination ratios (based on the EC50
d of the 

single compounds) equidistantly distributed on the 
additivity line of the isobologram 

8 4.1 De Liguoro et al. (2009; 2010) 

Multiple ratios based on the 0.05, 1, 10, 20, 25 and/or 
50% value of the maximum effect concentration of the 
standard compound established (reference) 

12 6.2 Fent et al. (2006b) 

The concentration of one of the components was fixed at 
their NOECa value while the concentration of the other 
compound was altered 

3 1.5 Eguchi et al. (2004) 

The concentrations of the components were based on 
available data for aquatic environments and/or on those 
able to elicit measurable toxic responses 

29 14.9 Brain et al. (2004; 2005); Flaherty and Dodson (2005); Borgmann 
et al. (2007); Pomati et al. (2007); Kahle et al., (2009); Dietrich et 
al. (2010); Parolini and Binelli (2012); Franzellitti et al. (2013); 
Galus et al. (2013); Gust et al.(2012; 2013); Luna et al. (2013; 
2015); Gonzalez-Rey et al. (2014); Safholm et al. (2015); Wolfe et 
al. (2015); Zhao et al. (2015) 
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The concentrations of the components were based on 
available data for aquatic environments and/or on those 
able to elicit measurable toxic responses corresponding 
paper 

8 4.1 Ericson et al. (2010); Melvin et al. (2014; 2016); Li and Lin (2015); 
Ding et al. (2016); Liang et al. (2017) 

aNOEC – No observed effect concentration, bEC01- Effect concentration at 1%, cLOEC – Lowest observed effect concentration, dEC10 – Effect concentration 
at 10%, eEC50 – Effect concentration at 50%, fECx- Effect concentration at X% 
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2.5.1 Measurable effects  
 

After the use of pharmaceuticals, its entrance into human body will elucidate a response 

and cause an effect after interacting at the receptor or an enzyme. Roberts and Thomas, 

(2005) discussed the four groups of drug targets which are transporters, receptors, ion 

channels and enzymes.  

Williams, (2006) highlighted the three basic conditions upon which a drug will act after 

administration. These are biological activity of the drug structure, target organ in the 

organism and finally channel between the drug target and mechanism of response. All 

the existing pharmaceuticals have been manufactured to meet these conditions. The 

enzymes and receptors in fish and humans have been shown to have a similarity of 

about 31 – 88 % (Huggett et al., 2003b). Hence, human medicines may elicit relative 

responses when they come in contact with fishes in the aquatic environment. 

Further studies, by several author (Eccles, 2009 and Laville et al., 2004) have shown 

that fishes are not the only aquatic animals that can be affected by human drugs but 

other aquatic invertebrates can be affected such as Gammarus pulex, Asellus aquaticus 

and host of other aquatic animals and plants may also elicit a response similar to those 

expressed by mammals as a result of exposure to pharmaceuticals.  

There is a continuous exposure of aquatic organisms to myriads of human 

pharmaceuticals which are manufactured to elicit pharmacological responses in the 

human body (Hughes et al., 2013; Kay et al., 2017; Subedi et al., 2017). However, this 

response frequently causes biological responses in aquatic organisms (e.g. growth 

disruption and reproduction alterations) (Fent et al., 2006). Little is known about the 

toxic levels of human drug in the environment, however, the effects of contraceptive 

pills, 17a ethinylestradiol (EE2) causing endocrine disruption of fishes and frogs has 
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been reported. The probable mechanism of action was described by Jobling et al., 

(2003) to be the binding and activation of the oestrogen receptors of fishes and frogs, 

thereby disrupting the endocrine system. As far back as 1976, Sumpter and Johnson, 

(2008) detected the presence of intersex fish in lagoons in the UK. The hormone is 

understood to cause male fish feminisation, however the degree to which the naturally 

occurring oestrogens such as oestone causes this feminisation process is unclear 

(Sumpter, 2010). Belfroid et al., (1999) detected EE2 in the River Rhine, Germany, at 

concentrations of 4.3 ngL-1. The sexual reproduction of Pimephales promelas was 

severely damaged when in contact with EE2 (Lange et al., 2001). Even the fertilised 

eggs and sex ratio in fathead minnows was reduced according to Parrot and Blunt, 

(2005). 

 In a study by Gomez et al., (2006), he found that there were spermatogenic activities in 

ovarian tissues. He studied the effects of estogens on the intersex brown trout gotten 

from two different rivers in Switzerland and found 14 out of 57 ovarian tissues had 

spermatogenic activities, also 13 out of 64 females exhibited the same effects. Fishes 

are not the only aquatic organism that experiences reproductive issues due to estrogenic 

exposure, aquatic snails upon exposure to EE2, has eggs production level stimulated at 

25 ngL-1. The receptors responsible for mechanism of action are highly conserved in 

other vertebrates apart from man and fish (Christen et al., 2014). 

The pathway of exposure of drugs to the environment has been recognised as a 

continuous chronic type and various studies has been done in this line. Hence, 

information is now on the increase about the chronic effects of drugs at relevant 

environmental concentration levels on the aquatic milieu (Qin et al., 2015). Boxall, 

(2012) and Kummerer, (2013) found a beta-blocker (propranolol) to cause toxic effect 
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in aquatic vertebrates due to the presence of identical beta-adrenergic receptors in some 

fishes. Verlicchi et al., (2012) found that exposing rainbow trout to diclofenac for 28 

days causes renal lesions and gill alterations at a concentration level of 5 μgL-1. The 

growth rate of D. magna after chronic exposure to concentrations levels of (0, 20, 40 

and 80 mgL-1) was reduced: the organism could not survive at the highest concentration 

and reproduction was altered at the lowest level of concentration after only 14 d (EC50) 

at 13.4 mgL-1. There was a decrease from 55 % to < 20 % in time spent on activities 

when G. pulex was exposed to 10 and 100 ngL-1 at realistic environmental 

concentrations of fluoxetine. 

 

2.5.2 Test animals (Bioassay species) 
  

Flexibility is important in aquatic ecotoxicological studies; the studies should be 

governed by the type of aquatic pollutants and its established environmental pattern of 

behaviour. The species that are easily influenced by feeding habits, habitat 

requirements and behavioural characteristics are then chosen for testing. The use of a 

specie in testing are the commonest; they are simple involving less expenses but Bloor 

(2010) and Boyle, (1983) regarded this type as unrealistic. The sensitivities of macro-

invertebrates of aquatic life to pollution vary and the degree of abundance of these 

organisms in the aquatic milieu has often been used to deduce the degree of pollution in 

a specific water body. For this reason, mixed species tests should be undertaken, such 

as, a comparison of key biotic indices species, which enable pollution boundaries to be 

established (Bloor et al., 2005 and MacNeil, 2002). Among crustaceans, Daphnia 

magna and Ceriodaphnia dubia are the most widely used species in the bioassays. 
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Macro-invertebrates are a sundry group of aquatic life that are important in the ecology 

of aquatic habitats. Examples include Asellus aquaticus, a non-swimming detritivore 

which is widely found in urban receiving watercourses and Gammarus pulex, which is 

generally classified as an omnivorous shredder. They serve as food to many fish and 

also play vital role in particulate organic matter decomposition in the aquatic 

ecosystem. They are frequent swimmers but are easily affected by water quality and 

they generally disappear with elevated levels of urbanisation. They serve as a bio-

indicator of the aquatic environment and have been successful when used in various 

toxicity testing (Williams et al., 2013; Taylor et al., 1991) for mixed species bioassays 

as they have differing responses to several classes of chemical pollutant, enabling a 

relative tolerance index to be calculated (Sloof, 1983; Bloor et al., 2005; Williams et 

al., 2013). G. pulex, for example, is sensitive to a range of toxicants (Taylor et al., 

1991; Bloor et al., 2005; Williams et al., 2013), such as ammonia (Hermanutz et al., 

1987; Gammeter and Frutiger, 1990; McCahon et al., 1991; Bloor et al., 2005; 

Williams et al., 1986; Thomas et al.,1991) and phenol (Davies and Anderson, 1997; 

McCahon et al.;1991; Oksama and Kristoffersson, 1979) which are less toxic to A. 

aquaticus (Bloor et al., 2005; Maltby, 1995; De Nicola Giudici et al., 1988). 

The two species are present in all aquatic milieus. G. pulex (Plate 1) dwells in water 

column and it’s considered ‘pollution sensitive’, whereas A. aquaticus (Plate 2) is a 

sediment dweller and is classed as ‘pollution tolerant’ (Bloor, 2010; Maltby, 1995). 

Bloor, (2010) and Mac Neil, (2002) considered A. aquaticus to increase as G. pulex 

decreases as a result of reduced water quality. 
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Plate1. G. pulex (pollution sensitive)                                             Plate 2 A. aquaticus (pollution tolerant)                                                                                                                                                                                                                                                                                                                                      

 

The American gammarids G. lacustris, were sometimes recommended for the analysis 

of the contaminated sediments, however, they are not appropriate since they are not 

always in frequent contact with the sediments or residues (since they are water column) 

unlike the isopod A. aquaticus (Bloor, 2010; Gomez et al., 2006). 

In the regular acute toxicity testing (LC50), G. pulex has been suggested to be added to 

Daphnia for testing process. The feeding habit of this organism can be used as a 

determinant of sub-lethal toxicity. The high sensitivities of the juveniles have been 

verified from experiments involving cultured animals of different ages; hence their use 

in acute toxicity should be embraced. The effect of exposing the animals during its 

moult cycle and when parasitized has also been investigated. It was found that 

Gammarus normal behaviour was influenced in the presence of larvae and cystacanths 

of acanthocephalan parasites. Infected males do not guard females while infected 

females would not normally breed and the males would be castrated (McCahon and 

Pascoe, 1988b).  In addition, Bloor et al., (2005); McCahon and Pascoe, (1988a) 

explained that the growth rate, reproduction behaviour/success and the respiration rate 

are all aspects of the G. pulex biology that may be included in the sub-lethal toxicity 

testing. The main demerit of employing Gammarus spp. as laboratory bioassay is that 

the organism has a low survival rate, particularly in static testing (Bloor, 2010; 

McCahon and Pascoe, 1988a). 
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It is often advisable to use laboratory cultured animals in toxicity testing due to 

overwhelming merits. For example, the animals used are grown under standard 

conditions without prior exposure to any toxic agent. Another merit is the lack of 

excessive handling, which could interfere with their sensitivity (Pascoe and Beattie, 

1979; Holdich and Tolba, 1981). G. pulex and A. aquaticus were, therefore, chosen as 

test animals for the toxicity testing programme. 

 
2.5.3 Dietary requirements of G. pulex and A. aquaticus 
 
Baby food, compounded feed, different types of leaves and so on are various types of 

feed that exists in literature for the feeding of animals. However, G. pulex and A. 

aquaticus are detritivores, macro-invertebrates that have preference for ‘conditioned’ 

rather than ‘unconditioned’ leaf material (McCahon and Pascoe, 1988b). From his 

experiment, Graca et al., (1993) demonstrated that ‘unconditioned’ leaves reduce the 

growth of A. aquaticus, however, leaf ‘conditioning’ does not influence the growth of 

G. pulex. This is due to the fact that G. pulex can compensate its low energy intake by 

reducing its energy expenditure. Although the mechanism that explains this is unclear, 

but Graca, (1990) proposed that it could be as a result of reduced activity. In 1976, 

Willoughby and Sutcliffe researched and explained that bacteria and fungi are essential 

constituent of gammarid’s diet. A. aquaticus preferentially feed on the mycelia; 

whereas G, pulex prefer the leaf material when they were allowed to choose between 

fungal mycelia and fungally ‘conditioned’ leaf material. 
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2.5.4 Factors affecting an organism’s response during standard toxicity testing 
 

During toxicity testing a lot of factors affect organism’s response to toxicant. Factors 

such as water quality/physico-chemical parameter e.g. temperature, hardness, pH, and 

dissolved oxygen are of paramount importance (Pascoe et al., 1986; Samuelsen et al., 

1992; Cairns et al., 1995). In addition, physical and biological factor such as the stage 

in the life cycle (Bloor, 2010; McCahon and Pascoe, 1988), parasitism (Pascoe et al., 

1994; McCahon et al., 1989) also plays a role in the response of the test species to the 

toxicant (figure 2.4). For example, the fish eggs are normally more tolerant to 

pollutants than hatched larvae (Beattie and Pascoe,1978) and the response of 

crustaceans to a toxicant is dependent upon its moult cycle (Bloor, 2010), 

developmental stage and age of the animals is important in the response to the toxicant 

(Davies and Anderson, 1997; McCahon and Pascoe.,1988). The animal past history is 

also important in determining its future response. 
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Figure 2.4: Factors affecting an organism’s response during standard toxicity testing (Source: 
Bloor et al., 2010). 

 

2.6 Summary 

2.6 .1 Description of gaps in the research literature 
 
For more than twenty years, there has been increasing interest in the occurrence and 

effects of pharmaceuticals in the aquatic environment primarily in Europe and North 

America. While their occurrence is now relatively well understood in these parts of the 

world to date there remains a scarcity of data from many African countries. Only three 

publications (Olaitan et al., 2014; Olarinmoye et al., 2016; Inam et al., 2015) reported 

the presence of drugs in the Nigeria aqueous environment despite being the hub for 

distribution of pharmaceuticals in West Africa and the largest consumer of 
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pharmaceuticals in Africa because of its population (198 million). The paucity of data 

on monitoring studies in Nigeria could be an imminent threat to the water resources of 

Nigeria because surface water serves as the main source of drinking water in many 

parts of the country (Ogunbanwo, 2011). This study will focus on evaluating the 

presence, spatial and temporal patterns of drugs in Africa (Nigeria) rivers and will 

contribute significantly to knowledge gap on occurrence of drugs for Nigeria 

government and the scientific community worldwide at large.  

The literature review has also underscored the shortcomings in the present 

ecotoxicological testing of drugs where the main emphasis in ecotoxicological testing 

of drugs on aquatic organisms is on acute toxicity principles (Figure 2.3), at 

concentrations the organisms most likely cannot encounter in the aquatic environment. 

But pharmaceuticals are generally found in low concentrations (ngL-1 to µgL-1) in the 

aquatic environment, not as a single compound but as mixtures and are continually 

released unabated majorly through STPs. To bridge this gap in the literature, focusing 

on the use of environmental relevant concentrations, prolonged low-level exposure, 

using sensitive species and use of mixture toxicity will improve the understanding of 

the effects of pharmaceutical contamination on freshwater ecosystems and will help to 

make conclusions about pharmaceutical toxicity much more relevant to actual 

environmental conditions. 
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2.6.2   Contribution of proposed research 
 

It is expected that this thesis will provide novel information on the occurrence of 

pharmaceuticals in freshwater systems in Africa and contribute significantly to improve 

the understanding of the effects of prolonged low-level exposure of freshwater 

ecosystems to environmentally relevant concentrations of pharmaceuticals 

(erythromycin, diclofenac, ibuprofen and their mixtures). 
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CHAPTER THREE 
 

Occurrence of pharmaceuticals in Nigerian rivers 
3.0 Introduction  

Pharmaceutical presence in the aquatic environment was first detected in the 1970’s 

(Tabak and Bunch, 1970; Norpoth et al., 1973). Numerous studies had been carried out 

on occurrence of pharmaceuticals in the aquatic environment, but these have mostly 

been undertaken in Europe and North America (K’Oreje et al., 2012; Hughes et al., 

2013). Fewer studies have been carried out in the developing countries of Africa, Asia, 

South America and the Middle East (Hughes et al., 2013; Madikizela et al., 2017). 

Some relatively high concentrations have, however, been found in countries such as 

China and India where treatment/regulation is less stringent than in the West. A similar 

situation exists in Africa, where high concentrations of pharmaceuticals are likely due 

to many regions suffering from little or no treatment of sewage before discharge to 

surface waters, particularly in rural areas and even in big cities. Even where sewage 

treatment plants (STP) exist many pharmaceuticals are not entirely removed by existing 

wastewater treatment methods (Gracia-Lor, 2010; Van Ginneken et al., 2017; Ortiz de 

Garcia et al., 2013). 

Illegal discharge of raw sewage effluent into rivers by vacuum truck operators who 

collect sewage from residential homes may also be an issue in Africa. This activity is 

common in most countries in Africa where there is little or no legislation (Ogunbanwo, 

2011). Even where there is legislation there is often little or no enforcement activity, 

leading to frequent discharges of untreated effluents into the aquatic environment 

(Ogunbanwo, 2011). 
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A particular concern arising from the pharmaceutical contamination of surface waters is 

where river waters are abstracted for portable uses (Lacey et al. 2008; Verlicchi et al., 

2012b; Kay et al. 2017). In Western Europe, China, Canada, and the United States >30 

pharmaceutical substances have been found in tap/drinking water (Tim Aur Der Beek et 

al., 2016). In France, traces of drugs have also been detected in bottled water (Bruchet 

et al., 2005) and, in many African countries, drinking water production mainly relies on 

surface water abstraction which may be contaminated. Surface water quality is a 

growing area of research in Africa, but there are significant gaps regarding the 

occurrence of pharmaceuticals in the aquatic environment. Scientists and their 

respective governments are beginning to realise the need for a cleaner environment in 

Africa. Evidence from industrialised nations on the occurrence of pharmaceuticals in 

the environment is encouraging scientists and their governments to study surface water 

quality more closely in Africa.  

In the past six (6) years, publications on occurrence and fate of pharmaceuticals in 

Africa aquatic system have been on the increase, however, very limited information are 

available for Nigeria (only three publications to date).  For example, Olarinmoye et al. 

(2016), using LC-MS/MS for quantification reported pharmaceutical residues in 

wastewater impacted surface waters and sewage sludge from Lagos, Nigeria, for the 

surface water, ibuprofen showed the highest concentrations up to 8.8 µg/L, while 

diclofenac was more abundant in sewage sludge with concentrations up to 1100 µg/kg 

dry weight. Olaitan et al. (2014) also reported the detection of pharmaceutical 

compounds in surface and groundwater samples collected from an irrigation canal and 

several wells in a pharmaceutical industrial area of Sango Ota, Ogun State, Nigeria. 

The average concentrations of the targeted pharmaceuticals such as diclofenac, 



 
 
 
 

 
 

83 

chloroquine, paracetamol and ciprofloxacin were 17 µgL-1, 5 µgL-1, 3 µgL-1 and 1 µg L-

1, respectively. Inam et al., (2015) investigated the occurrence and risks posed by 

emerging organic pollutants (EOPs) in Ikpa river basin freshwater ecosystem in Niger-

Delta, Nigeria between April and June 2013 (medium to heavy rainfall period).	

Seventeen compounds were detected at the ngL-1 levels: seven antibiotic drugs 

(acetamidophenol, chloramphenicol, ciprofloxacin, erythromycin, lincomycin HCl, 

roxythromycin, and sulfamethoxazole), three bactericides/antimicrobial agents 

(sulfathiazole, triclosan and triclocarban), an antiepileptic drug (carbamazepine), an 

analgesic drug (diclofenac sodium), a resin precursor (bisphenol A), a sunscreen 

product (oxybenzone), a hormone (equilin), an insect repellent (DEET), and a stimulant 

(caffeine) in surface water samples from Ikpa River Basin as well as in the storm water 

from hospital dumpsite and municipal landfill leachate discharged into the freshwater 

body through run-offs. Low levels of maximum MEC were recorded for the commonly 

prescribed antibiotics: ciprofloxacin (2.3 ngL-1), erythromycin (11.4 ngL-1) and 

sulfamethoxazole (2.8 ngL-1).  

K’Oreje et al (2012) developed a new methodology involving both full-scan screening 

and selective target analysis to investigate the presence of 43 priority pharmaceutically 

active ingredients in the Nairobi River. Ten (10) human pharmaceutically active 

ingredients were found whose concentrations ranges from (low ngL-1 to high µgL-1) 

Agunbiade and Moodley (2015) investigated the occurrence and distribution of eight 

acidic pharmaceuticals in South Africa and found that all were present in sediments, 

wastewater, and surface water samples. Wood et al. (2015) surveyed the occurrence of 

anti-retroviral compounds used for HIV treatment in South African surface waters and 

found average concentrations between 27 and 430 ngL-1.  
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Madikizela et al. (2017) reviewed the status of pharmaceuticals in African (Kenya, 

South Africa and Tanzania) water bodies, finding that NSAIDs, antimicrobial and 

antimalarial compounds are the most common drugs in the aqueous environment and 

that concentrations in wastewater exceed the levels found in developed countries. 

K’Oreje et al. (2016) investigated the occurrence patterns of pharmaceutical residues in 

wastewater, surface water and groundwater in two cities in Kenya and found that 

antiretroviral drug-nevirapine and antibiotics were present in all the samples and more 

prevalent compared to Europe. K’Oreje et al. (2018) also studied the occurrence, fate 

and removal of pharmaceuticals, personal care products and pesticides in wastewater 

stabilization ponds and receiving rivers in the Nzoia basin of Kenya. Paraben 

concentration was up to 1 µgL -1, antiretroviral and antibiotics were most prevalent 

measuring up to 100 µgL-1, and low concentrations of pesticides was also detected. 

Kermia et al. (2016) investigated the presence of four (4) pharmaceutical active 

compounds belonging to the group of NSAIDs in the wastewater, surface water and 

drinking water of Algiers. The targeted compounds (ibuprofen, diclofenac, ketoprofen 

and naproxen) were all detected in wastewater influent/effluent with concentration 

ranging from 0.156 µgL-1 to 6.554 µgL-1 and surface water with concentrations of 

diclofenac and naproxen 0.073 µgL-1 and 0.228 µgL-1 respectively. The concentrations 

of ibuprofen and ketoprofen in drinking water was 0.142 µgL-1 and 0.111 µgL-1 

respectively. Relic et al., (2017) studied the occurrence of two antiretroviral drugs, 

efavirenz and nevirapine in wastewater treatment works from Southern Gauteng, South 

Africa and found that efavirenz concentrations entering the WWTP ranged between 5.5 

µgL-1 to 14 µgL-1 and nevirapine concentrations ranges between 0.092 µgL-1 and 0.473 

µgL-1. Ngumba et al. (2016) investigated the occurrence of three antibiotics 
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(sulfamethoxazole, trimethoprim and ciprofloxacin) and three antiretroviral 

(lamivudine, nevirapine and zidovudine) drugs in Nairobi River Basin, Kenya. All the 

studied compounds were detected with sulfamethoxazole having the highest detection 

frequency of 97.5 % and ciprofloxacin had the lowest at 60 %. Abafe et al, (2018) 

investigated the use of LC-MS/MS to determine thirteen antiretroviral drugs used in the 

treatment and management of HIV in the influents and effluents from wastewater 

treatment plants in KwaZulu-Natal in South Africa. He found that only three 

compounds were completely removed in the wastewater treatment plants. 

In Nigeria, analgesics, antibiotics, antacid, antihistamines, anticonvulsants, steroids, 

antimalarial and antihypertensive are among the most consumed classes of compounds 

and are routinely purchased without a prescription (Odusanya, 2005). However, the 

statistics available on the usage of pharmaceuticals are not reliable because of the 

activities of unregistered pharmacies in some cities (e.g., Lagos) (Akande and Ologe, 

2007; Oshikoya and Ojo, 2007; Nwolisa et al., 2006; Odusanya, 2005).  

Here the first detailed/comprehensive study of pharmaceutical occurrence in Nigerian 

river is presented, covering more detected compounds than existing work in Nigeria 

and other African nations. The main objectives were: (i) to understand the extent to 

which 37 drugs belonging to different therapeutic classes are found in the river, (ii) to 

quantify spatial patterns of pharmaceutical contamination and, (iii) to determine 

seasonal dynamics of contamination. 

3.1 Methods 

3.1.1 Pharmaceuticals monitored 
 
Pharmaceuticals were selected to provide data for a range of different therapeutic 

classes (Table 3.1.1). Many of these compounds are high-use pharmaceuticals that have 
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been found previously in rivers around the world (Hughes et al., 2013) thus enabling 

benchmarking of our new information from Lagos, Nigeria against studies undertaken 

worldwide.  

Malaria is an endemic disease in Africa (Nigeria) and malaria drugs were initially 

included to be analysed in this study together with two other pharmaceuticals 

(diclofenac and ibuprofen) but could not be analysed because of analytical instrument 

and time constraints. These drugs are most likely to be present in the environmental 

matrix. 
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Table 3.1.1: Study compounds, and physico-chemical properties, monitored in the Odo Iya Alaro river, Lagos Southwest 
Nigeria (Source: www.drugbank.ca) 

 

 

Therapeutic Group Compound LogKow pKa Molecular Wgt 
(g ml-1) 

Formula Solubility 
(mg L-1) 

Analgesic & Anti-inflammatory Codeine 1.19 8.21- 10.60 299.37 C18H21NO3  9000 
 Hydrocodone 2.16 8.23 299.37 C18H21NO3  n/a 
 Paracetamol 0.46-0.49 9.38 151.17 C8H9NO2 14000 
 Tramadol 3.01 9.41 263.38 C16H25NO2 630 
Antacid Cimetidine 0.40 6.80 252.34 C10H16N6S 9380 
 Ranitidine 0.27 8.08 314.40 C13H22N4O3S 24700 
Antiallergic Loratadine 5.20 5.00 382.89 C22H23CIN2O2 0.011 
Antibiotics Erythromycin 3.06 8.88-8.90 733.94 C37H67NO13 2000 
 Sulfamethoxazole 0.89 1.60-5.70 253.28 C10H11N3O3S 610 
 Trimethoprim 0.91 7.12 290.32 C14H18N4O3 400 
Anticonvulsant Carbamazepine 2.45 13.90 236.27 C15H12N2O 17.7 
 Gabapentin         -1.10 3.68-10.70 171.24 C9H17NO2 4490 
Antidepressant Amitriptyline 4.92 9.40-9.76 277.41 C20H23N 9.71 
 Desvenlafaxine 2.72 10.11 263.38 C16H25NO2 1400 
 Diltiazem 2.7 8.06 414.52 C22H26N2O4S 465 
 Oxazepam 2.24 10.90 286.72 C15H11CIN2O2 179 
 Venlafaxine 3.20 10.09 277.41 C17H27NO2 267 
Antihistamine Diphenhydramine 3.27 8.98 255.36 C17H21NO 3060 
 Fexofenadine 2.81 4.28-8.76 501.67 C32H39NO4 0.024 
 Ketotifen 3.85 8.43 309.43 C19H19NOS 15.3 
 Cetirizine 1.70-3.57 3.58-7.74 388.89 C21H25CIN2O3 65.8 
Antidiabetic Metformin -2.64 12.40 165.63 C4H12CIN5 n/a 
 Sitagliptin 1.39 8.78 407.32 C16H15F6N5O 179.2 
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Antipsychotic Diazepam 2.82 3.40 284.74 C16H13CIN2O 50 
 Temazepam n.a. -1.4-10.68 300.74 C16H13CIN2O2 164 
Anti-malaria Artemisinin 2.90 4.60 282.22 C15H22O5 n/a 
Antiarrhythmic Lidocaine 2.26 8.01 234.34 C14H22N2O 4100 
Antiretroviral Lamivudine -9.54 -0.16-14.29 229.25 C8H11N3O3S 70000 
Antiviral Oseltamivir 0.95 7.70 312.41 C16H28N2O4 1600 
Contraceptive Norethisterone 2.97 -1.7-17.59 298.43 C20H26O2 7.04 
Beta Blocker Atenolol 0.16 9.60 266.34 C14H22N2O3 13300 
 Propranolol -0.45 9.42 259.35 C16H21NO2 61.7 
SERM Raloxifene 6.09 7.99-9.92 473.59 C28H27NO4S 0.25 
Diuretics Triamterene 0.98 3.11-15.88 253.27 C12H11N7 48.2 
Calcium-Channel Blocker Verapamil 3.83 8.92 454.61 C27H38N2O4 4.47 
SSRIs Sertraline 4.30 9.47 306.23 C17H17CI2N 3.5 
 Citalopram 1.39 9.50 324.40 C20H21FN20 n/a 
n.a. = Not Available     
Wgt=Weight   
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3.1.2 Study catchment: Lagos State, Nigeria 
 
 
Lagos State is a low-lying coastal region occupying 187 km of Nigeria’s coastline. It is 

situated between latitudes 6° 22’N to 6° 42’N and longitudes 2° 42’E to 4°20’E. It is 

bounded in the north by Ogun state and in the east by Ondo state. It shares an 

international boundary of about 45 km with the Republic of Benin while the Atlantic 

Ocean constitutes approximately 180 km along the southern limit. The state covers an 

approximately 3,577 sq. km which represents 0.39 % of Nigeria’s territorial land mass. 

Lagos drains two-thirds of South-west Nigeria and is characterized by wetlands and 

basin, five major upstream rivers from neighbouring states discharge into the Atlantic 

Ocean through the Lagos lagoon. The low-lying land and wet-lands occupy 78 % of the 

entire land mass of the state. 85 % of the state population resides in just 37 % of the 

state territorial land mass.  It is the smallest state in Nigeria but has the largest 

population of 22 million people. It is one of the fastest growing cities in the world. 45 

% of the Nigeria’s skilled labour force is in Lagos. Lagos State is the commercial nerve 

centre of Nigeria. It harbours over 2,000 industrial complexes, 10,000 commercial 

ventures and 22 industrial estates. It has more than 100 both local and multinational 

pharmaceutical manufacturing industries located in the state. This rapid urbanisation 

and population increase leads to large number of pharmaceutical manufacturing 

industries in the state and hence large quantities of pharmaceutical wastes are generated 

which may leads to high level of water pollution. The state has ten Lagoons and many 

creeks, rivers, streams and drainage canals. The largest of all the lagoon system is the 

Lagos lagoon through which all others drain, and Lagos lagoon enters the Atlantic 

Ocean through the Lagos harbour. With this ever-increasing urban population vis-à-vis 
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the scarcity of dry lands, many of the natural streams had been sand filled and 

converted due to proliferation of urban residential and industrial establishment.  

The study was conducted at Odo-Iya Alaro River (Figure 3.1.2), the Odo-Iya Alaro 

River forms a sub-catchment of the Ogudu river, which discharges into the Lagos 

lagoon. The river is 15.8 km in length and flows through Ogba, Ikeja and Maryland 

which have a combined population of 2.5 million. The catchment contains a sewage 

treatment plant (STP), two major pharmaceutical manufacturing plants and many 

smaller ones located in the industrial estates of Ogba and Ikeja which discharge their 

effluents through drainage pipes and canals into the river. Some of these canals also 

pass through densely populated urban areas which discharges untreated domestic waste 

to them. Along the river are located mechanical workshops, illegal buildings and shanty 

structures with domestic waste discharged untreated into the river and in places like this 

the river flow is slow. Raw sewage may also enter the river due to emptying of vacuum 

trucks which collect untreated effluent in urban areas (Ogunbanwo, 2011). 

Twenty-two (22) sampling stations along the river (Figure 3.1.2) were chosen based on 

accessibility and the possibility of sampling both receiving waters up and downstream 

of the effluents discharge points (Table 3.1.2). Alausa (STP) is one of the four STPs in 

the whole of Lagos State with a population of 22 million people. The treatment plant 

aerates the wastewater influent by stirring after which it undergoes sedimentation and 

chlorination before the final effluent is discharged into the receiving water. The 

treatment plant was designed to serve a population of 255,000 but there are indications 

that the plant is handling far more than its installed capacity (Engr Adepoju-plant 

manager Alausa STP, personal communication, 2nd August 2017). The plant has an 

inflow rate of 1000 m3 day-1, hydraulic retention time (HRT) of 18 hrs and sludge 
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retention time (SRT) of 20 days, both domestic and municipal wastewater are being 

treated at Alausa (STP). 
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Figure 3.1.2: Map of the Odo-Iya Alaro river showing the sampling stations (n=22) in Lagos State, Southwest Nigeria.   
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Table 3.1.2: Sampling stations, description of the stations, site categories and Global Positioning System (GPS) locations. 
 

Sampling station Site Category Description of site Longitude Latitude 
SS1 Sewage effluents (SE) Alausa sewage treatment plant 3˚̍21' 46.4" 6˚36' 38.73" 
SS2 Pharmaceutical effluents (PE) Neimeth pharmaceuticals 3˚̍21' 36.2" 6˚36' 33.32" 
SS3 Sewage effluents (SE) Storm water /underground 

discharge from Alausa STP 
3˚21' 20.1" 6˚36' 29.1" 

SS4 Sewage effluents (SE) Chamber inside Oregun sewage 
discharge point 

3˚21' 19.4" 6˚36' 27.0" 

SS5 Sewage effluents (SE) Outlet of discharge at Oregun 
sewage discharge point 

3˚21' 18.5" 6˚36' 23.0" 

SS6 River (Semi Urban) Surulere industrial estate road 3˚20' 46.4" 6˚37' 17.1" 
SS7 River (Semi Urban) Adekunle village 3˚21' 04.9" 6˚36' 55.2" 
SS8 River (Urban) Adeniyi Jones junction 1 3˚20' 41.3" 6˚36' 39.3" 
SS9 River (Urban) Adeniyi Jones junction 2 3˚20' 41.4" 6˚36' 39.3" 
SS10 Pharmaceutical effluents (PE) SKG pharmaceuticals 3˚20' 41.25" 6˚36' 56 .3" 
SS11 River (Semi Urban) Channel along the back of Coca 

cola bottling company. 
Mechanic village 1 

3˚21' 08.2" 6˚38' 38.2" 

SS12 River (Semi Urban) Channel along the back of Coca 
cola bottling company. 

Mechanic village 2 

3˚21' 02.8" 6˚36' 35.2" 

SS13 River (Urban) New Alade market 3˚21' 06.6" 6˚36' 29.6" 
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SS14 River (Urban) Samplers collected before 
joining Oregun sewage 

discharge point 

3˚21' 17.1" 6˚36' 24.2" 

SS15 Sewage effluents (SE) Channels along Oregun 
discharge point 

3˚21' 18.5" 6˚36' 23.0" 

SS16 River (Urban) Opebi link road 3˚21' 49.6" 6˚35' 42.6" 
SS17 River (Semi Urban) Odo Iya-Alaro (under bridge) 3˚22' 22.5" 6˚34' 48.0" 
SS18 River (Urban) End of Olatunji street, Ojota 3˚22' 32.7" 6˚34' 38.4" 
SS19 River (Urban) End of Alhaji Amoo street, Ojota 3˚22' 38.1" 6˚34' 35.4" 
SS20 River (Urban) End of Victoria, street, Ojota 3˚22' 39.2" 6˚34' 33.6" 
SS21 River (Urban) Before Ogudu bridge 3˚23' 38.1" 6˚34' 03.2" 
SS22 River (Semi Urban) Ogudu bridge before joining 

Lagos Lagoon 
3˚23' 44.1" 6˚34' 03.0" 
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3.1.3 Sample collection 
 
 
At each sampling station, three 50 mL water samples were collected into amber vials 

with Teflon® lined caps (Fisher Scientific, UK) and then homogenised into a single 

150 mL composite sample of which 20 mL was taken. Sampling was undertaken on a 

quarterly basis to incorporate both the wet (April and July 2017) and dry seasons 

(October 2017 and January 2018). Sampling vials were rinsed with 100% methanol 

once and deionised water three times to remove potential contamination before 

sampling. Samples were collected at the same time of day and in the same location, 

checked using a Global Positioning System (GPS).  

 

3.1.4 Sample Preparation 
 
 
A 10 mL aliquot of each composite sample was filtered on site at the points of 

collection using the procedure of Wilde et al. (2004, with updates through 2009) 

through a Whatman GFF (0.7 µm pore size) glass microfiber syringe filters into a 20 

mL amber glass vial with a Teflon-lined screw cap. The filtered samples were frozen 

immediately on site with dry ice before shipping within 24 hrs to the University of 

York Centre of Excellence in Mass Spectrometry, York, United Kingdom for analysis. 

The samples arrived in York three days after shipment and were immediately thawed 

and analysed. In order to reduce potential degradation during shipment, filtering was 

conducted in the field to remove microbial and particulate content. Other studies have 

shown that longer periods of storage (up to 6 months) even at 4 °C caused no 

appreciable change in spiked concentrations (Hughes et al., 2013). The remaining 

samples were stored in the dark at -12°C in the Lagos State Environmental Protection 

Agency (LASEPA) laboratory.  
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3.1.5 Analytical procedure and method validation 
 
Quantification was achieved using HPLC-MS/MS with a Thermo Scientific TSQ 

Endura Mass spectrometer coupled with an UltiMate 3000 liquid chromatograph. The 

method employed was adapted from Furlong et al. (2014) and validated for this purpose 

at the University of York Centre of Excellence in Mass Spectrometry (Burns et al., 

2018). 

 Briefly, prior to starting the quantitative analysis, 500 µL of each water sample was 

diluted with 495 µL of HPLC-grade water and spiked with 5 µL of a mixture of internal 

standards (each at a concentration of 80 µgL-1) in glass autosampler vials. The 50 % 

dilution was done in order to clean the samples and bring analytes concentrations to 

within the calibrated range. Where concentration was found to still exceed the 

calibrated range, further dilution and reanalysis was done. A random number generator 

was used to randomise the order in which samples were injected onto the HPLC-

MS/MS. 

Analysis was conducted by direct injection of 100 µL of respective samples onto a 

Phenomenex Eclipse Plus C18 chromatography column using a Phenomenex C18 

(ODS, Octadecyl) 4 mm x 3 mm ID guard column. Mobile phase A was HPLC-grade 

water with 0.01 M formic acid and 0.01 M ammonium formate while mobile phase B 

was 100 % HPLC-grade methanol, flow rate of 0.45 mL min-1 was used with a gradient 

starting at 10 % B which then increased to 40 % at 5 min, 60 % at 10 min, 100 % at 15 

min, and remaining 100 % B until 23 min then dropping to 10 % at 23 min prior to a re-

equilibration. The autosampler temperature was kept at 4°C and the HPLC column 

compartment at 40°C. The collision gas was argon at a pressure of 2 mTorr.  



 
 
 
 

 
 

97 

Quantification was done with a 16-point calibration using deuterated internal standards 

(Burns et al., 2018) ranging from 1 to 32000 ngL-1. Calibration r2-values were 

consistently >0.95. Analytical limits of detection were calculated as described by Burns 

et al. (2018) and ranged from 0.9 ngL-1 (carbamazepine) to 12.4 ngL-1 (gabapentin) 

(Table 3.1.5). Quality control (QC) measures were used throughout the analysis. 

Briefly, method blanks (n=6) were made with an identical collection procedure as the 

environmental samples except using HPLC-grade water. Concentrations of target 

pharmaceuticals were consistently below levels of analytical quantification in the 

method blanks. Additionally, QCs consisting of all target pharmaceuticals at a 

concentration of 80 ngL-1 were injected after every four samples followed by an 

instrumental blank consisting of pure HPLC-grade water. Analytical tolerance was 

consistently within ±15 % and the instrumental blanks did not contain detectable 

residues of the target analytes.  
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Table 3.1.5: Limits of detection (LOD) and quantification (LOQ) for selected pharmaceuticals 
analysed in this study (ngL-1). 
 

Pharmaceutical    LOD    LOQ 
Amitriptyline 1.09 2.18 

Atenolol 8.87 17.7 
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Carbamazepine 0.89 1.78 

Cetirizine 1.87 3.74 

Cimetidine 2.04 4.08 

Citalopram 2.13 4.26 

Codeine 2.61 7.84 

Desvenlafaxine 2.15 4.3 

Diazepam 1.38 2.76 

Diltiazem 1.09 2.19 

Diphenhydramine 1.17 2.34 

Erythromycin 11.15 22.3 

Fexofenadine 2.05 2.1 

Gabapentin 12.39 37.16 

Hydrocodone 1.02 2.04 

Ketotifen 2.89 5.78 

Lidocaine 1.36 2.76 

Loratadine 5.03 10.06 

Metformin 4.19 8.38 

Noreistherone 7.25 14.51 

Oseltamivir 6.67 13.33 

Oxazepam 5.38 10.76 

Paracetamol 7.08 14.16 

Propranolol 6.49 12.98 

Raloxifene 6.34 12.68 

Ranitidine 6.23 12.46 

Sertraline 9.14 18.28 

Sitagliptin 7.06 14.11 

Sulfamethoxazole 9.12 18.23 

Temazepam 3.59 7.19 

Tramadol 3.55 7.1 

Triamterene 10.81 21.61 

Trimethoprim 1.27 2.55 

Venlafaxine 1.53 3.06 

Verapamil 10.09 20.18 
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3.1.6 Data analysis 
 
Data were organised using Excel (Microsoft, 2013) and residuals of the data were 

checked for normal distribution using the Shapiro-Wilk normality test and homogeneity 

of variance using the Bartlett test of homogeneity of variances. R (R Development Core 

Team, 2008) was used to analyse the data and ggplot 2 to create figures (Barplot, Box-

and-Whisker). The barplot shows the distribution of the categorical variables. The box-

and-whisker plots display a statistical summary of variables: median, quartiles, range 

and possibly extreme values (outliers). An outlier value is defined as a value that is 

smaller than the lower quartile (25 percentile) minus 1.5 times the interquartile range, 

or larger than the upper quartile (75 percentile) plus 1.5 times the interquartile range. 

Generalised linear model and Chi-square were used to find if there are differences 

between the sampling sites. Seasonal variations were analysed using one-way ANOVA 

where assumptions of normality and homogeneity were met followed by Tukey’s post-

hoc tests to determine if there is any variation in concentrations between the wet and 

the dry the seasons. 

 

3.2 Results  

3.2.1 Detection frequency 
 
Out of the 37 targeted analytes 26 were detected at the Alausa STP (SE) (Figure 

3.2.1A) and at the receiving river (Urban site category) (Figure 3.2.1B). 25 and 15 

analytes were detected in receiving river (Semi-urban) and the pharmaceutical 

manufacturing effluents (PE) respectively. The ten most frequently detected 

compounds across the site categories were fexofenadine, carbamazepine, paracetamol, 

metformin, diazepam, cimetidine, codeine, sulfamethoxazole, atenolol and 

trimethoprim. Analytes not detected were venlafaxine (SE site category), triamterene 
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(Urban site category), triamterene and venlafaxine (Semi-urban site category), 

gabapentin, hydrocodone, raloxifene, verapamil, diltiazem, oseltamivir, propranolol, 

sitagliptin, temazepam, triamterene, venlafaxine and tramadol (PE site category). 
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                           Figure 3.2.1A: Frequency of detection of  pharmaceuticals in sewage effluents(SE) and pharmaceutical effluents (PE) in the Odo Iya Alaro   
                           river, Lagos, Southwest  Nigeria. 
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                       Figure 3.2. 1B: Frequency of detection of pharmaceuticals in receiving river (Urban and Semi-urban site categories) in the Odo Iya    
                       Alaro river, Lagos, Southwest  Nigeria. 
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3.2.2 Mean and maximum concentrations   
 
Peak concentrations were typically in the range of low micrograms per litre while mean 

concentrations were an order of magnitude lower (Figure 3.2.2). Antibiotic and 

analgesics were detected at the highest concentrations; sulfamethoxazole (129474 ngL-

1) had the highest maximum concentration followed by paracetamol (111374 ngL-1). 

Over all, paracetamol had the highest mean concentration (18178 ngL-1) while 

sulfamethoxazole had the second highest mean concentration (11160 ngL-1). 

Cimetidine had the third highest maximum concentration of (95689 ngL-1) and mean 

concentration (10458 ngL-1). The maximum concentration of a further seven analytes 

(fexofenadine, carbamazepine, metformin, diazepam, atenolol, trimethoprim, and 

codeine) also exceeded 39000 ngL-1. Mean concentrations for these substances were in 

the low micrograms per litre range; metformin (9690 ngL-1), fexofenadine (8409 ngL-

1), carbamazepine (7705 ngL-1), atenolol (3044 ngL-1), diazepam (2551ngL-1), 

trimethoprim (1874 ngL-1), and codeine (1764 ngL-1). 
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       Figure 3.2.2: Mean concentrations (±SEM) of pharmaceuticals detected in the Odo Iya-Alaro river, Lagos, Southwest Nigeria. 
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3.2.3 Spatial distribution of pharmaceuticals in Odo Iya Alaro river 
 
Pharmaceutical pollution was ubiquitous in the Odo Iya Alaro river with no obvious 

spatial patterns (Table 3.2.3). Although there are diverse sources of pharmaceuticals 

into the river such as STPs, pharmaceutical manufacturing facilities, urban waste 

collection areas and vacuum truck operators who collect sewage from residential 

apartments and discharged to water course without treatments. There were statistically 

significant differences between the different site categories (Pharmaceutical 

manufacturing sites (PME), Alausa STP site (SE), Semi- Urban and Urban sites) 

(Figure 3.2.3) (GLM: χ2 (3) = 883.32, p <0.001).  

There are variations in the number of analytes detected in each site categories. For 

instance, 15 pharmaceuticals were detected at the pharmaceutical manufacturing site 

(PME) and the list detected analyte was noreistherone with mean concentration of 2.24 

ngL-1 and peak concentrations of 17.91 ngL-1. 26 analytes were detected in Alausa STP 

site (SE) and Urban receiving river. The list detected was oseltamivir with mean and 

peak concentrations of 0.69 ngL-1 and 5.52 ngL-1 respectively for Alausa STP site (SE) 

and venlafaxine with mean and peak concentrations of 0.24 ngL-1 and 4.75 ngL-1 

respectively was the list analytes detected in the urban site. 25 analytes were detected in 

semi-urban location with sitagliptin detected at mean concentration of 0.45 ngL-1 and 

maximum concentration of 4.25 ngL-1 respectively. 
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                  Figure 3.2.3: Log concentrations (ngL
-1

) + 1 of pharmaceuticals detected at different locations : Pharmaceutical Manufacturing Effluents (PME),     

                 Sewage Effluents (SE) and receiving river  (Semi-Urban and Urban) in the Odo Iya Alaro river, Lagos, Southwest Nigeria. 
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Table 3.2.3: Mean concentrations in ngL
-1 

± 1SD (n=4) of pharmaceuticals detected in the Odo Iya- Alaro river, Lagos, Southwest Nigeria. 

 

 

 

ND=Not detected. 

Compound SS1 SS2 SS3 SS4 SS5 SS6 SS7 SS8 SS9 SS10 SS11 SS12 SS13 SS14 SS15 SS16 SS17 SS18 SS19 SS20 SS21 SS22
Amitriptyline 21 ± 21 40 ± 47 2 ± 5 26 ± 46 21 ± 26 6 ± 9 1 ± 1 13 ± 27 1 ± 1 1 ± 2 2 ± 5 0.00 1 ± 2 2 ± 3 2 ± 4 37 ± 70 1 ± 1 54 ± 100 64 ± 122 28 ± 48 48 ± 96 42 ± 83
Atenolol 526 ± 459 222 ± 430 7015 ± 125 7448 ± 143 8032 ± 152 7755 ± 153 5460 ± 108 7 ± 9 40 ± 55 31 ± 43 15 ± 22 3715 ± 721 1228 ± 215 7595 ± 147 99 ± 113 99 ± 133 66 ± 79 90 ± 110 91 ± 133 183 ± 247 17233 ± 344 25 ± 29
Carbamazepine 1348 ± 184 3763 ± 525 163 ± 187 182 ± 217 1058 ± 152 638 ± 126 1291 ± 257 1784 ± 211 1890 ± 374 721 ± 144 2004 ± 399 4003 ± 799 7212 ± 143 20717 ± 410 16080 ± 320 17039 ± 3409725 ± 194 11865 ± 234 20240 ± 39818150 ± 349 15018 ± 174 14634 ± 292
Cimetidine 15563± 192 72 ± 145 11646  ±  2177976 ± 151 24397± 475 3320 ± 458 1730 ±  23534090 ± 405 3694 ± 513 117 ± 190 5104 ± 918 3611 ± 615 14298 ± 236 20760 ± 252 16967 ± 170 4155 ± 728 19221 ± 344 27392 ± 418 2010 ± 359 2235 ± 392 9298 ± 127 2436 ± 438
Codeine 6302 ± 994 2 ± 4 3651± 437 839 ± 850 11077± 189 68 ± 95 64 ± 79 810 ± 158 849 ± 129 692 ± 994 233± 395 44 ± 69 508 ± 696 2216 ± 215 1904 ± 251 1862 ± 329 141 ± 162 73 ± 121 1986 ± 177 4031 ± 737 768 ± 977 28 ± 44
Diazepam 1470 ± 291 25307 ± 353115 ± 140 714 ± 116 4011 ± 779 337 ± 664 1095 ± 218 1807 ± 220 1156 ± 231 1084 ± 216 349 ± 665 1663 ± 329 1463 ± 289 2613 ± 493 2463 ±485 2320 ± 458 1981 ± 393 1227 ± 241 341 ± 645 531 ± 102 2653 ± 306 1435 ± 285
Erythromycin 46± 92 ND 52 ± 60 11 ± 17 50 ± 100 5 ± 11 5 ± 11 2 ± 4 ND 3777 ± 756 15 ± 30 601 ± 812 246 ± 477 184 ± 359 60 ± 73 19 ± 24 1 ± 2 10 ± 11 147 ± 286 14 ± 16 2 ± 4 2355 ± 468
Fexofenadine 11289 ± 21315717 ± 2088994 ± 172 23761 ± 465 10429 ± 1513516 ± 615 3604 ± 648 7283 ±  936 6212 ± 116 7024 ± 134 5272 ± 990 3408 ± 608 3112 ± 562 3522 ± 597 7910 ± 991 11076 ± 21112823 ± 241 7620 ± 141 7555 ± 986 5461 ± 104 8362 ± 106 11050 ± 133
Gabapentin 147 ± 294 ND 22 ± 45 31 ± 62 9 ± 18 9 ± 18 6 ± 13 5± 9 6 ± 12 ND 8 ± 16 5 ± 11 36 ± 71 33 ± 66 33 ± 66 29 ± 58 18 ± 37 17 ± 33 26 ± 53 34 ± 67 34 ± 67 35 ± 70
Hydrocodone 18 ± 34 ND 39 ± 79 2 ± 5 ND 140 ± 278 1 ± 1 55 ± 110 ND ND ND 1 ± 1 4 ± 8 2 ± 4 6 ± 13 4 ± 8 2 ± 3 3 ± 5 1 ± 3 8 ± 14 1 ± 2 4 ± 7
Lidocaine 13 ± 15 274 ± 548 39 ± 46 707 ± 138 16 ± 32 ND 1 ± 1 2 ± 4 2 ± 3 ND 688 ± 138 1 ± 1 8 ± 9 364 ± 696 40 ± 69 15 ± 20 12 ± 15 26 ± 39 21 ± 25 18 ± 23 25 ± 28 13 ± 25
Metformin 25726 ± 147915 ± 166 18445 ± 214 12024 ± 111 15342 ± 302564 ± 844 3528 ± 416 14304 ± 202 5676 ± 790 1903 ± 233 1677 ± 142 1888 ± 208 4188 ± 449 20696 ± 225 15198 ± 244 7801 ± 102 3928 ± 598 25855 ± 373 25854 ± 2066348 ± 106 1188 ± 115 130 ± 261
Noreistherone 3 ± 7 4 ± 8 4 ± 9 7 ± 14 ND 3 ± 7 8 ± 9 2 ± 4 8 ± 9 ND 8 ± 10 3 ± 6 5 ± 10 6 ± 11 16 ± 32 3 ± 7 4 ± 7 14 ± 29 2 ± 4 4 ± 8 5 ± 10 6 ± 11
Oseltamivir 1 ± 2 ND 1 ± 2 ND ND 6 ± 12 ND 1 ± 2 ND ND 12 ± 24 1 ± 1 1 ± 2 1 ± 2 1 ± 3 1 ± 2 ND 1 ± 2 1 ± 3 2 ± 4 ND 2 ± 3
Paracetamol 45649 ± 5522773 ± 548 6366 ± 513 10563 ± 106 6624 ± 132 3481 ± 129 8209 ± 315 17899 ± 459 6896 ± 543 ND 5844 ± 978 5311 ± 179 22497 ± 380 26357 ± 143 15633 ± 126 19696 ± 5197765 ± 357 16908 ± 110 48516 ± 35029362 ± 206 6029 ± 169 5286 ± 288
Propranolol 3 ± 6 ND 2 ± 4 ND ND ND ND ND ND ND ND ND ND 1 ± 2 1 ± 2 1 ± 2 2 ± 4 2 ± 4 ND ND ND ND
Raloxifene 2 ± 5 ND 3 ± 6 2 ± 5 ND 3 ± 6 2 ± 4 2 ± 4 2 ± 4 ND 3 ± 6 3 ± 5 3 ± 5 3 ± 5 2 ± 4 3 ± 5 2 ± 4 2 ± 4 4 ± 8 3 ± 6 2 ± 4 3 ± 5
Ranitidine 168 ± 336 816 ± 163 110 ± 220 27 ± 54 61 ± 123 109 ± 219 74 ± 149 216± 432 26 ± 52 808 ± 151 155 ± 311 57 ± 113 182 ± 364 111 ± 221 66 ± 132 78 ± 155 49 ± 98 184 ± 368 173 ± 345 120 ± 241 ND ND
Sitagliptin 8 ± 17 ND 8 ± 17 1 ± 2 ND ND 1 ± 2 ND ND ND ND ND 1 ± 2 1 ± 2 1 ± 3 2 ± 3 1 ± 2 1 ± 2 1 ± 2 2 ± 4 1 ± 2 1 ± 2
Sulfamethoxazole 6469 ± 400 3632 ± 253 5899 ± 245 4739 ± 218 281 ± 533 165 ± 273 7432 ± 123 32545 ± 372 20479 ± 295ND 18937 ± 33513478 ± 244 13043 ± 248 33773 ± 638 8132 ± 147 8322 ± 152 26791 ± 448 3633 ± 417 13913 ± 1113574 ± 522 19766 ± 379 517 ± 754
Temazepam 41 ± 48 ND ND ND ND ND ND ND ND ND ND ND 19 ± 37 ND 9 ± 13 4 ± 8 17 ± 35 ND ND ND ND ND
Tramadol 224 ± 449 ND 527 ± 105 348± 696 ND 117 ± 235 116 ± 233 341 ± 682 245 ± 490 ND 122 ± 243 119 ± 237 731 ± 146 354 ± 708 555 ± 111 452 ± 905 338 ± 676 318 ± 636 318 ± 636 339 ± 678 374 ± 747 355 ± 709
Triamterene 8 ± 17 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND
Trimethoprim 1165 ± 141 21479 ± 242675 ± 773 738± 108 23 ± 37 94 ± 93 78 ± 85 89  ± 106 324 ± 345 ND 110 ± 151 82 ± 95 468 ± 610 697 ± 976 302 ± 344 144 ± 133 124 ± 133 1006 ± 137 12348 ± 1801197 ± 174 52 ± 60 41 ± 48
Venlafaxine ND ND ND ND ND ND ND 1 ± 2 ND ND ND ND ND ND ND ND ND 1 ± 2 ND ND ND ND
Verapamil 1 ± 2 ND 1 ± 2 2 ± 5 ND 1.67 ± 3.34 1 ± 2 1 ± 2 1 ± 3 ND 6 ± 10 1 ± 2 1 ± 2 7 ± 10 6 ± 10 7 ± 10 1 ± 3 1 ± 2 1 ± 3 2 ± 3 1 ± 2 2 ± 3
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3.2.4 Seasonal variations in pharmaceutical concentrations 
 

There were statistically significant differences between the dry season, peak of dry 

season, the wet season and peak of the wet season ((GLM: χ2 (3) = 8.63), p<0.001). 

More pharmaceuticals were detected in the peak of the wet season (22) than the other 

seasons. 17 analytes were each found in the wet and dry seasons while 16 

pharmaceuticals were detected at the peak of the dry season.  

Although more pharmaceuticals were detected in the peak of wet season, there was 

distinct variation in concentrations of many pharmaceuticals which generally higher at 

the peak of the dry season (concentration level) (Figure 3.2.4). Fexofenadine for 

example, an antihistamine, has the highest mean and median concentrations (28272 

ngL-1 and 22318 ngL-1) respectively in the peak of the dry season (Table 3.2.4) 

compared to all other compounds and other seasons. The mean and median 

concentrations of fexofenadine are more than 500 times higher than the concentration 

in dry, peak of the wet or wet seasons. Carbamazepine, a psychotic drug has the second 

highest mean concentration (25654 ngL-1) in the peak of the dry season and followed 

closely by paracetamol (24616 ngL-1) in the same season. The mean concentration of 

paracetamol in the peak of the dry season was almost 1.5 times higher than the peak of 

the wet season. The median concentration was 9228 ngL-1for peak of dry season, 8930 

ngL-1 for dry season, 8940 ngL-1 for peak of wet season and 7130 ngL-1 for wet season.  

The mean and median concentrations of all the pharmaceuticals detected in the Odo-Iya 

Alaro river are extremely higher in the peak of the dry season than any other season 

except the following compounds that are either not detected in the peak of dry season 

or detected in low concentrations in other seasons: diltiazem 6 ngL-1 (peak of wet 

season), erythromycin 785 ngL-1(dry season), gabapentin 97 ngL-1 (peak of the wet 
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season), lidocaine 269 ngL-1 (dry season), noreistherone 18 ngL-1 (peak of wet season), 

oseltamivir 6 ngL-1 (peak of wet season), propranolol 2 ngL-1(peak of wet 

season)(Table 3.2.4). Raloxifene was only detected in the peak of the wet season at a 

mean concentration of 9 ngL-1. Other compounds detected at low mean concentrations 

are  ranitidine (dry season and wet season), sitagliptin (peak of wet season), temazepam 

(not detected in peak of wet season only), tramadol (detected only in peak of wet 

season), triamterene (detected only in wet season), venlafaxine (detected only in peak 

of wet season) and verapamil (detected both in wet and peak of wet seasons).
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Figure 3.2. 4: Barplots displaying log concentrations (ngL-1)+1 of seasonal variation of pharmaceuticals detected at Odo Iya Alaro river, Lagos, Southwest Nigeria.  
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Table 3.2.4: Summary results (ngL-1) for the seasonal variations in concentrations during the quarterly monitoring campaign at the Odo-Iya Alaro river. The 
concentration range, median and mean concentrations for dry and peak of dry seasons, wet and peak of wet seasons are reported. 
  
Pharmaceuticals Peak of dry season Dry season Peak of wet season Wet season 
  Range Median Mean Range Median Mean Range Median Mean Range Median Mean 
Amitriptyline n.d. - 248 0 42 n.d. - 13 0 1 n.d. 0 0 0.50 - 193 9 32 
Atenolol n.d. - 30768 0 8473 n.d. - 1077 40 115 n.d. - 371 41 63 n.d. - 68869 292 3527 
Carbamazepine n.d. - 82196 7749 25654 n.d. - 1016 32 128 n.d. - 272 39 58 1.78 - 58418 322 4984 
Cimetidine n.d. - 88681 10388 22739 4.08 - 2001 247 469 n.d. - 1895 353 468 n.d. - 95690 8547 18160 
Codeine n.d. - 39381 106 4505 n.d. - 2756 250 564 n.d. - 1872 58 150 n.d. - 9977 1261 1839 
Diazepam n.d. - 75031 4727 8292 n.d. - 275 8 34 n.d. - 55 8 10 6.39 - 25923 45 1871 
Diltiazem n.d. 0 0 n.d. 0 0 n.d. - 28 0 6 n.d.  0 0 
Erythromycin n.d. - 9373 0 505 n.d. -15110  22 785 n.d. - 149 6 19 n.d. - 962 0 74 
Fexofenadine 11180 - 93448 22318 28272 12.85 - 286 26 47 n.d. - 119 5 11 757 - 22238 1553 5308 
Gabapentin n.d. - 37 0 2 n.d. 0 0 n.d. - 590 82 97 n.d.  0 0 
Hydrocodone n.d. - 559 0 35 n.d. - 28 0 1 n.d. - 160 5 13 n.d. - 70 0 3 
Lidocaine n.d. - 2751 0 125 n.d. - 2779 30 269 n.d. - 63 18 22 n.d.  0 0 
Metformin n.d. - 80967 15165 22525 n.d.-32917 842 4658 n.d.-12378 549 1574 n.d.- 49325 3138 10003 
Noreistherone n.d. 0 0 n.d. - 18 0 3 n.d. - 63 15 18 n.d.  0 0 
Oseltamivir n.d. 0 0 n.d. 0 0 n.d. - 48 3 6 n.d.  0 0 
Paracetamol n.d. - 111374 9228 24616 n.d.-78731 8930 18173 n.d.-105028 8940 15120 n.d. - 75415 7130 14804 
Propranolol n.d. 0 0 n.d. 0 0 n.d. - 13 0 2 n.d.  0 0 
Raloxifene n.d. 0 0 n.d. 0 0 n.d. - 15 10 9 n.d.  0 0 
Ranitidine n.d. 0 0 n.d. - 164 0 7 n.d. 0 0 n.d. - 3265 441 646 
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Sitagliptin n.d. 0 0 n.d.  0 0 n.d. - 35 4 6 n.d.  0 0 
Sulfamethoxazole n.d. - 93359 5599 22204 n.d.-16022 718 2224 n.d. - 12396 983 1752 n.d.-129475 5741 18460 
Temazepam n.d. - 76 0 8 n.d. - 15 0 1 n.d. 0 0 n.d. - 89 0 7 
Tramadol n.d. 0 0 n.d.  0 0 n.d. - 2924 1312 1144 n.d.  0 0 
Triamterene n.d. 0 0 n.d. 0 0 n.d. 0 0 n.d. - 35 0 2 
Trimethoprim n.d. - 47025 0 3907 n.d.-37241 190 2176 n.d. - 1784 95 175 n.d. - 7820 437 1240 
Venlafaxine n.d. 0 0 n.d. 0 0 n.d. - 5 0 0 n.d.  0 0 
Verapamil n.d. 0 0 n.d. 0 0 n.d. - 11 5 5 n.d. - 21 0 4 
 
n.d. = Not Detected 
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3.3 Discussion 

Pharmaceuticals are biologically active and pseudo-persistent, in the environment due 

to the continual input of wastewater effluent to rivers (Kay et al., 2017; Yamamoto et 

al., 2009). They, therefore, potentially pose a toxicological risk to non-target organisms 

(Boxall et al., 2002; Huang et al., 2012). The results presented in this work provide new 

information about the presence of pharmaceuticals in a Nigerian river, including 

frequency of occurrence, concentration ranges, spatial and temporal patterns and 

seasonal distribution. This work contributes significantly to the knowledge of 

pharmaceuticals in African rivers, which has wider relevance to developing countries 

worldwide. 

3.3.1 Frequency of detection 
 

The detection of 26 pharmaceuticals in the Odo Iya Alaro river has helped to confirm 

the presence of these substances in Nigerian watercourses including some that have not 

previously been observed in African rivers more widely. Pseudo persistence was 

observed, presumably due to continuous discharge of effluents to the river, similar to 

that found in other studies around the world (Burns et al., 2018; Hughes et al., 2013; 

Kay et al., 2017). Many of the substances found are the same as those in these other 

studies and certain substances are clearly used in great quantities around the world, 

including, for instance, fexofenadine, cimetidine, paracetamol, the sulphonamides and 

carbamazepine. Similarly, some substances appear to enter the aquatic environment in 

much lower amounts globally, e.g. propranolol. Furthermore, frequency of occurrence 

is higher in the receiving water than the STP and the pharmaceutical manufacturing 

effluents. 
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3.3.2 Mean and maximum concentrations 
 

Overall, the mean (18178.27 ngL-1) and maximum (129474.92 ngL-1) concentrations in 

this study were 2-3 orders of magnitude higher than previously reported for Europe and 

the US (Tim Aus der Beek et al., 2016; Burns et al., 2018; Hughes et al., 2013; 

Madikizela et al., 2017; Verlicchi et al. 2012) but similar or an order of magnitude 

higher than those measured in China (Fatta-Kassinos et al., 2011) and India 

(Balakrishna et al., 2017). Some compounds found at particularly high concentrations 

were sulfamethoxazole and paracetamol which were prevalent at all seasons and 

locations in the catchment throughout the year. This indicates very frequent release of 

pharmaceuticals to rivers, a suggestion supported by other works (Andreozzi et al., 

2003; Tim Aus Der Beek et al., 2016; Matongo et al., 2015a & 2015b; Ternes, 1998; 

Vieno et al., 2007). In South Africa, however, Agunbiade and Moodley (2014) reported 

surface water concentrations ranging from 500 to 30000 ngL-1 showing that 

concentrations may be lower in more developed regions of Africa. Concentrations in 

Kenya (Ngumba et al. 2017) were of the same order as the ones measured in this study 

and may be attributed to a range of factors including over-the-counter sales, differences 

in health issues, poorer removal efficiencies at STPs, unregulated discharges by 

pharmaceutical manufacturing companies, illegal disposal of sewage by vacuum trucks 

and climatic conditions. Without further study it is currently not possible to disentangle 

the range of factors potentially influencing pharmaceutical pollution of rivers. 
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3.3.3 Spatial distribution of pharmaceuticals 
 

There were no specific spatial trends observed in this work and concentrations were 

high throughout the catchment revealing that there are potentially many contributing 

sites. Studies in Europe and the US have found that STP are the major source of 

pharmaceutical pollution (Hughes et al., 2013) but in the developing world it seems that 

there are a greater range of sources contributing to loads in rivers. These may include 

STPs, pharmaceutical manufacturing plants, urban waste collection areas and disposal 

of effluent by vacuum trucks. Similarly, pharmaceutical production facilities in 

Hyderabad, India have been found to be a key source in this developing country 

(Balakrishna et al., 2017: Fick et al., 2009; Larsson et al., 2007). 

 
3.3.4 Seasonal variations in pharmaceutical concentrations 
 

A number of studies have previously proposed a range of reasons for variation on 

concentrations of pharmaceuticals in river across the year, including seasonal usage and 

changes in environmental conditions (e.g. temperature and river flow) (Kolpin et al., 

2014; Tewari et al., 2013). Typically, concentrations are highest during low flow 

conditions when sewage effluent makes up a greater proportion of river flow. As for 

spatial patterns though, seasonal trends in the data were complex with some compounds 

being found at extremely high concentrations in the peak of the dry season and 

conversely, some compounds such as atenolol, carbamazepine, cimetidine, codeine, 

diazepam, fexofenadine, metformin, paracetamol, sulfamethoxazole and trimethoprim 

are equally high during the wet period (Table3.2.4). Seasonal usage is unlikely to 

explain this as many compounds would be used equally over the year to treat persistent 

illnesses, e.g. carbamazepine and metformin. It may be that the multiple sources of 

pharmaceuticals in the catchment results in this complex picture with some that are 
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associated with continuous effluent discharges (e.g. from STPs and manufacturing 

facilities) being diluted in the wet season but other sources (e.g. urban waste sites) 

which see pollutants mobilised in periods of rainfall. 
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Table 3.4.1: Comparison of pharmaceutical concentrations measured in Nigeria (this study), Africa and globally (global data are taken from Hughes et al., 
2013 and Der Beek et al., (2016)). 
 
 

Pharmaceuticals 

 
 

Max Conc in 
THIS STUDY 

(ng/L) 
  

         Max Conc in Africa (ng/L) Max Conc 
worldwide (ng/L) 

 
 
Median Conc in 
THIS STUDY 

(ng/L) 
  

Median 
Conc 
in 
Africa 
(ng/L) 

Median 
Conc   
worldwide 
(ng/L) 

Amitriptyline 248 NA <19e 11 NA <19e 
Atenolol 68869 39000p 859ª 48 NA 39ª 
Carbamazepine 82196 <1g, 735h, 1240o 12000ª, 8050ᵇ 88 NA 174ª 
Cimetidine 95690 NA 1000ª 560 NA 97ª 
Codeine 39381 NA 1000ª 153 NA 49ª 
Diazepam 75031 NA 34ª 42 NA 9ª 
Diltiazem 28 NA 146ª 2 NA 13ª 
Erythromycin 15110 11g, 240j, 1000l  90000ª, 5i 1 NA 51ª 
Fexofenadine 93448 NA 1144f 522 NA 253f 
Gabapentin 590 NA 7780ª 5 NA 103ª 
Hydrocodone 559 NA 92f 1 NA 22f 
Lidocaine 2779 NA 40f 4 NA 11.8f 
Metformin 80967 NA 47d 1877 NA NA 
Noreistherone 63 NA <19e 1 NA <19e 
Oseltamivir 48 NA 9f 5 NA <19e 
Paracetamol 111374 5500o, 16000p 15700ª, 23000ᵇ 8525 NA 148ª 



 
 
 
 

 
 

118 

Propranolol 13 NA 590ª 2 NA 18ª 
Raloxifene 15 NA 7f 10 NA NA 
Ranitidine 3265 NA 570ª 2 NA 27ª 
Sitagliptin 36 NA 121e 5 NA 37e 

Sulfamethoxazole 129475 3g, 4090k, 6010j, 13800m, 38900k, 23350n 11920ª, 29000ᵇ 1482 NA 83ª 

Temazepam 89 NA 39c 4 NA 17e 
Tramadol 2924 NA 8000ª 8 NA 802ª 
Triamterene 345 NA NA 5 NA NA 

Trimethoprim 47025 160k, 2650m, 400l, 6950k, 9480n 4000ª, 13600ᵇ 91 NA 53ª 

Venlafaxine 45 NA 4f 4 NA <19f 
 
a = Hughes et al., 2013, b = Der Beek et al., 2016, c = Jerker et al., 2017, d = Niemuth et al., 2015, e = Burns et al., 2017, f = Burns et al., 2018 
g = Inam et al., 2015 (Nigeria), h = Li et al., 2014, i = Kim et al., 2007, j = Matongo et al., 2015b, k = K’Oreje et al., 2016, l = Olarinmoye et al., 2016 
(Nigeria), m = Ngumba et al., 2016, n = K’Oreje et al., 2012, o = K’Oreje et al., 2018, p = Agunbiade and Moodley, 2014. 
NA = not available  
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3.4 Conclusion 

This is the most detailed study to date of pharmaceuticals in African rivers and has 

highlighted their occurrence at high concentrations. Concentrations in Nigerian rivers 

appear to be several orders of magnitude higher than those reported for Europe and the 

US and, in some cases, even higher than the few existing values produced for other 

developing countries (e.g. Africa, China and India). Spatial and temporal patterns were 

complex and probably affected by a greater range of sources contributing to 

pharmaceutical loads than in many existing studies. This pose a particular issue for 

understanding and managing pharmaceutical pollution in African rivers. The scenario 

presented here has a strong likelihood of being replicated in other major African cities 

as well as megacities in other developing nations globally, where pharmaceuticals are 

available over the counter and where wastewater discharges to rivers proceed untreated. 

A key implication for the global research agenda on pharmaceutical effects in surface 

waters (e.g. ecotoxicological effects, antibiotic resistance) is that studies of 

pharmaceuticals in the environment should focus more on developing countries where 

contamination of water is likely much more significant.  
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CHAPTER FOUR 
 

Effects of pharmaceuticals on the freshwater shrimp, 
Gammarus pulex 

4.0 Introduction 

Pharmaceutical compounds such as NSAIDs, antibiotics, anticonvulsive drugs, cancer 

drugs, lipid regulators, psychiatric drugs and recreational drugs have been detected in a 

range of water bodies, including surface waters, freshwaters, marine waters and ground 

water (Jones et al., 2004; Kasprzyk-Hordern et al., 2008; Hughes et al., 2013; Orn et 

al., 2016).  

There has been concern about the biological effects of these drugs in the aquatic 

environment since the early 70’s and Environmental Quality Standards (EQS) have 

been in use after the US Water Quality Act of 1965 and the US Clean Water Act of 

1977 (Conolly et al., 2017). In the EU the origin of EQS is driven by the Water Frame 

Directive (WFD 2000; Crane and Babut 2007) which establishes a legal framework to 

protect and restore clean water across Europe and ensure its long-term, sustainable use. 

Since then standard risk assessment methods (acute toxicity) became the most favoured 

testing method used in assessing toxicity of chemicals to aquatic organisms. 

This method involves an LC50 test- the toxicant concentration at which 50% of the 

assayed organisms die within a predetermined time, usually 48 or 96 h. Although this 

method is very useful there are limitations given the fact that pharmaceuticals are 

generally found in low concentrations (ngL-1 to µgL-1) in the aquatic environment (Fent 

et al. 2006; Behera et al., 2011; Hughes et al., 2013; Jiang et al., 2014; Miller et al., 

2015; Orn et al., 2016). Potential risks exposure to low concentrations of 

pharmaceuticals could be classified into ecotoxicological effects (acute toxicity and 

chronic toxicity, carcinogenicity and genotoxicity); pharmacological effects 
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(interference of the hormone and immune system) and development of resistant micro-

organisms (Sayadi et al., 2010) 

 In recent times, questions have been asked about the use of acute data within 

pharmaceutical risk assessment and the European Union (EU) regulatory authorities 

have embraced the use of chronic testing methods (Ferrari et al., 2005; EMEA, 2006). 

Acute toxicity testing procedure serves as a guide for setting limits for concentrations 

of toxicants entering the aquatic environment except if acute effects happened at lower 

concentrations. It also serves as the first line of action in a series of procedures to set 

concentration levels for sublethal effects of chemicals on organisms. With acute 

toxicity testing, large amount of reproducible data can be generated within a short 

period of time. Acute effects data show that, generally, an effect concentration of over 

1 mgL-1 is required to induce mortality in aquatic organisms (Crane et al., 2006; Fent et 

al., 2006; Orn et al., 2016). However, these short-term toxicity assays (acute toxicity) 

with pharmaceuticals may not be a suitable means of defining the ecological risk of 

these compounds. The subtle effects of pharmaceuticals to non-target organisms can 

best be assessed by long-term toxicity assays. Chronic toxic effects occur at 

concentrations orders of magnitude lower compared with acute exposures in an 

organism exposed to the same drug. This further demonstrates that long-term exposure 

to environmental realistic concentration is likely to be of greater concern for aquatic 

organisms.  

Laboratory investigation of the impact of new chemicals on the aquatic habitat has 

mostly been based on fish and a few aquatic macroinvertebrate animals such as 

Daphnia magna, Ceriodaphnia dubia and Hyalella azteca. Macroinvertebrates 

represent a variety of trophic levels while fish represent only one trophic level. Among 

benthic macroinvertebrate animals, Daphnia magna has been used more than any other. 
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They are standard animals used in aquatic ecotoxicology tests for new chemicals 

(OECD, 2004) including antibiotics, antidepressants, and non-steroidal anti-

inflammatory drugs (Santos et al., 2010; Hughes et al., 2013).  However, the relevance 

of D. magna has been questioned because of its absence in many running waters where 

pharmaceutical contamination is most likely to be an issue (Hughes et al., 2013).  

Gammarus pulex is a freshwater macroinvertebrate amphipod, universally distributed in 

rivers, streams and ponds. G. pulex is easy to sample using kick sampling methods and 

often very abundant. It is a benthic dwelling detritivore, pollution sensitive and used in 

biomonitoring studies. Gammarus are useful indicator species due to their requirement 

of oxygen rich water. G. pulex plays a prominent role in the freshwater food chain, 

serving as source of food for fish, birds and other invertebrates (Friberg et al., 1994; 

Maltby et al., 2002; Miller et al., 2015). G. pulex had been used in the past to assess the 

adverse effects of contaminants such as metals and leachates (Maltby and Naylor, 

1990; Sundelin and Eriksson, 1998; Gross et al., 2001; Forbes and Cold, 2004; 

Schirling et al., 2005; De Lange et al., 2006, 2009; Bloor, 2010; Chaumot et al., 2015; 

Escher et al., 2017) but rarely used for pharmaceuticals (Meredith-Williams et al 2012; 

Ashauer et al., 2012).  

G. pulex was chosen as a test animal because they play an important role in the food 

chain and therefore their loss or reduced abundance has the potential for widespread 

ramifications through the aquatic ecosystem. They are also bio indicators of stream 

health, generally abundant, easy to sample and most likely to be affected by pollution 

because they have little mobility. They play an important role in the decomposition of 

coarse particulate organic matter, are an important prey for many fish and non-piscean 

predators (McNeil et al., 1999), they are generally classified as an omnivorous shredder 

(Maltby et al., 1990). G. pulex has been successfully used in a variety of toxicity tests, 
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including feeding activity (Huang et al., 2012), precopula separation (Pascoe et al., 

1994), scope for growth (Maltby et al., 1990), in situ tests (Crane and Maltby, 1991), 

and behaviour (Gerhardt et al., 1994). 

The current work investigated the ecological effects of prolong low-level exposure of 

G. pulex (water column dweller) to erythromycin, diclofenac, ibuprofen and their 

mixtures at environmentally relevant concentrations on growth, feeding and mortality 

with the aim of broadening knowledge about the potential risk of such contaminant to 

aquatic ecosystems. 

 

4.1 Aims, objectives and hypothesis 

4.1.1 Aim and objectives  
 

The general aim of this chapter is to seek to improve the understanding of the effects of 

prolonged low-level exposure of G. pulex to pharmaceutical contamination. Response 

variables included growth, feeding and mortality. Specific objectives were; 

1. To assess the effects of prolonged low-level exposure to environmentally relevant 

concentrations of erythromycin, diclofenac and ibuprofen on growth, feeding, and 

mortality of the freshwater macro-invertebrate crustacean, Gammarus pulex. 

2. To examine the effects of mixtures of the above pharmaceuticals on G. pulex relative 

to individual compounds. 

 

4.1.2 Hypotheses  
 

(H1): That prolonged low-level exposure to environmentally relevant concentrations 

would have a direct lethal effect on G. pulex. 
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(H2): That extended exposure to environmentally relevant concentrations will cause 

significant reductions in sub-lethal endpoints. 

(H3): That the effects of mixtures will be more pronounced than compounds acting 

singly. 

 

4.2 Single compound and mixture experiments with G. pulex 

 
4.2.1 Materials and methods 
 
 
4.2.1.1 Study compounds 
 

The study compounds (erythromycin, diclofenac and ibuprofen) were chosen based on 

their high prescription rates, volumes and availability of a reliable analytical method. 

They are among the 25 most prescribed drugs in the UK and because of their 

widespread occurrence in rivers worldwide (Hughes et al., 2013). Calculations of the 

ratio of predicted environmental concentration (PEC) and predicted no effect 

concentration (PNEC) has shown that the ratios for these drugs exceeded one. A risk 

quotient (RQ) ≥1 indicates the potential for impacts on aquatic organisms (Jones et al., 

2002). Hence, the basis for their selection. (Table 4.2.1.1). 
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Table 4.2 1.1: Physico-chemical properties of the study compounds  
 

Compound 
CAS 
number Purity (%) 

Molecular 
weight 
(g/mol) Molecular formula 

Physico-chemical 
properties and risk 
quotients 

Erythromycin 114-07-08   >99 733.93 C37H67NO13 

Solubility (mgL-1) 
=1.44, pKa = 8.9, log 
Kow = 2.48, Excretion 
rate = 5% parent, 
RQmin = 0.01, RQmax 
= 1.25 

Diclofenac 15307-79-6   >98 296.148 C14H10Cl2NNaO2 

Solubility (mgL-1) 
=2430, pKa = 4.0, log 
Kow = 4.02, Excretion 
rate = 15% parent, <1% 
conjugate, RQmin = 
0.01, RQmax = 1.13 

Ibuprofen 15687-27-1     98 206.29 C13H18O2 

 
Solubility(mgL-1) 
=21.00, pKa = 4.91, log 
Kow = 3.79, Excretion 
rate = 1% parent, 
RQmin = 0.55, RQmax 
= 4.20 

pKa = dissociation constant; log Kow = octanol: water partition coefficient; RQ data from: (Jones et al., 
2002; Thompson, 2006; Yamamoto et al., 2009) 
 

 

4.2.1.1.1 Behavioural effects of the selected pharmaceuticals 
 

4.2.1.1.1.1 Diclofenac 
 
Diclofenac is a non-steroidal anti-inflammatory drug (NSAID) dispensed either 

topically, through injection or orally. Globally, it is obtainable in prescribed and non-

prescribed human drug (Gonzalez-Pleiter et al., 2013) though the oral form is a 

prescription only medication in the UK (Gov.uk, 2015). It is also commonly used as a 

veterinary analgesic (Blanco et al., 2016). Diclofenac is a sodium or potassium salt of 

2-(2-(2,6-dichlorophenylamino) phenyl) acetic acid that is used to treat a wide range of 

inflammatory disorders such as muscle strain and arthritis, but also may be used to treat 

chronic pain associated with cancer (Zhang et al., 2008). Its widespread use in treating 

farm animals, particularly cattle, has led to the near extinction of three species of 
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vultures in the Indian sub-continent resulting in its veterinary licence being withdrawn 

there in 2006 (Prakash et al., 2012). However, with the exception of old-world vultures, 

diclofenac has a well-known safety profile and is one of the most popular NSAIDs 

available with an estimated worldwide annual consumption (as a human and veterinary 

pharmaceutical drug) of over 1000 tons per year (Gonzalez-Pleiter et al., 2013). After 

ingestion, diclofenac is partially biotransformed to its hydroxylated metabolites (e.g., 

4′-hydroxy (OH) and 5–OH diclofenac) and is excreted via urine and faeces, before 

reaching wastewater treatment works (WwTW) and thereafter potentially the 

ecosystem. Depending on the route of administration, between 10 – 50% of diclofenac 

and its metabolites can be eliminated from the body, in as little as two hours after 

application (Heberer & Feldmann, 2005; Wishart et al., 2006). 

The proportion of diclofenac and its metabolites that are eliminated through the faeces 

and urine are typically 35% and 65% respectively (Zhang et al., 2008). Once the 

diclofenac reaches STPs, its removal rate is notably variable, mostly due to the 

variation in the treatment regime used (that is, less removal through activated sludge 

than filter beds). Rates of between 0 and 100% have been found under different 

regimes (Zhang et al., 2008; Beltrán et al., 2009). Furthermore, rates vary according to 

the time of year: Wiest et al. (2016), found that an average of 55% was removed in 

summer, dropping to 1% in winter - due to differences in photolysis and oxidation. 

Generally, however, typical removal values seem to lie between 21 – 40% (Paxéus, 

2004; Zhang et al., 2008). Considering its frequency of use, its high excretion rates and 

potentially low removal at STPs, it is perhaps unsurprising that, globally, diclofenac is 

one of the most frequently detected pharmaceuticals in surface waters (Schwaiger et al., 

2004; Zhang et al., 2008; Loos et al., 2009; Schmidt et al., 2011; Gonzalez-Rey & 

Bebianno, 2014). Indeed, a recent report found that after testing the final effluent of 
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160 sewage treatment works in the UK, diclofenac was one of several drugs present in 

concentrations apparently high enough to potentially affect ecosystems (Boxall et al., 

2014). Several studies have found diclofenac in surface waters and the aquatic 

environment. Such is the concern of its prevalence and potential environmental effects 

that it was due to be included in the of Priority Substances list (Gonzalez-Rey & 

Bebianno, 2014) but currently it remains included in the EC’s ‘Watch List’ of 

compounds that needs more data to support further prioritisation, along with 17-α- 

ethinylestradiol, and 17-β-estradiol (Pusceddu et al., 2017). Diclofenac is relatively 

water soluble (2.37 mgL-1 at 25 °C) (Gonzalez-Rey & Bebianno, 2014) and does not 

tend to adsorb to organic matter (Johnson et al., 2007), therefore, it tends to remain in 

the aquatic phase once in the environment (Ericson et al., 2010). It is bio accumulative 

(Schwaiger et al., 2004; Ericson et al., 2010), fairly persistent in the environment 

(Bendz et al., 2005), and has been reported as progressing through the aquatic food 

chain to top-predators (Owens, 2015). In terms of potential toxicity, diclofenac, like 

other NSAIDs, decreases the biosynthesis of prostaglandins from the phospholipid 

arachidonic acid by non-selectively inhibiting the cyclooxygenase (COX)-1 and -2 

isoforms (Fent et al., 2006; Schmidt et al., 2011). COX enzymes are found in all 

vertebrates and some invertebrates, such as Gammarus species (Varvas et al., 2009). In 

reducing prostaglandins, NSAIDs diminish the cellular response to injury and trauma 

and lessen pain and the inflammatory response (Boxall, 2012). However, 

prostaglandins are also involved in other critical physiological functions such as 

reproduction, osmoregulation and immune defence (Rowley et al., 2005) which may be 

similarly diminished by the action of NSAIDs (Fent et al., 2006; Zhang et al., 2012). In 

addition, and unlike other NSAIDs, diclofenac has been shown to inhibit the 
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proliferation of progenitor cells and cause cell death (Ericson et al., 2010) which may 

contribute to it being regarded as the most acutely toxic NSAID (Santos et al., 2010). 

 

 
4.2.1.1.1.2 Ibuprofen 
 

Ibuprofen, like diclofenac, is an NSAID. Its production and consumption is prodigious 

being one of the few drugs in Europe that are consumed in amounts in excess of 100 

tonnes annually (Bound & Voulvoulis, 2005). In common with other NSAIDs, 

ibuprofen reduces the inflammatory response by inhibiting COX-1 and COX-2 (Van 

Hecken et al., 2000) which, in turn, diminishes the formation of prostaglandins 

involved in the processes such as reproduction, immune system and ion transport in 

both vertebrates and invertebrates (Rowley et al., 2005). After oral administration, the 

absorption of ibuprofen is generally rapid and complete (Davies & Skjodt, 2000). 

Ibuprofen is highly bound to plasma proteins, specifically to albumin (>90%) and only 

1- 8% is typically excreted (Ternes, 1998). Furthermore, treatment in STPs appears to 

eliminate the vast majority of ibuprofen and its metabolites (hydroxy-ibuprofen and 

carboxy-ibuprofen) with degradation rates (75 - >95%) exceeding most other drugs, 

including other NSAIDs (Buser et al., 1999). Therefore, its comparative abundance in 

surface waters is evidence to the considerable quantities consumed. In the study of EU 

rivers, Loos et al. (2010) found it in higher concentrations than any other drug except 

caffeine, and Boleda et al. (2014) identifies it as the most common pharmaceutical 

found in Spanish, European, and North-American finished drinking water (with 

maximum concentrations of 54, 28 and 1,320 ngL-1 respectively). Once in the aquatic 

environment, there is some disparity about the persistency of ibuprofen; Ericson et al. 

(2010) reported that it is considered to be fairly persistent, and it has been found 
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throughout lotic food chains (Owens, 2015). In contrast, Buser et al. (1999) found that 

it is less persistent than other pharmaceuticals. Loos et al. (2010) found that around 

20% was degraded after 3 weeks and Tixier et al. (2003) estimated its half-life to be 32 

days in the field. In any case, ibuprofen appears to be amongst the least toxic of the 

NSAIDs, with LC50 values for fish and invertebrates several orders of magnitude higher 

than the greatest environmental concentrations (Kim et al., 2009). On the other hand, a 

2014 report by UK Water Industry Research found that in most of 160 sewage 

treatment works studied, ibuprofen was one of several drugs present in the final effluent 

in concentrations apparently high enough to potentially affect ecosystems (Boxall et al., 

2014). Discrepancies like this are not easily resolved when the effects of all NSAIDs on 

non-target organisms, notably invertebrates, are not well understood (Fent et al., 2006; 

Wiklund et al., 2011). 

 

4.2.1.1.1.3 Erythromycin 
 

Erythromycin and other macrolide antibiotics inhibit protein synthesis by binding to the 

23S rRNA molecule (in the 50S subunit) of the bacterial ribosome blocking the exit of 

the growing peptide chain. of sensitive microorganisms. (Humans do not have 50S 

ribosomal subunits, but have ribosomes composed of 40S and 60S subunits). Certain 

resistant microorganisms with mutational changes in components of this subunit of the 

ribosome fail to bind the drug. The association between erythromycin and the ribosome 

is reversible and takes place only when the 50S subunit is free from tRNA molecules 

bearing nascent peptide chains. Gram-positive bacteria accumulate about 100 times 

more erythromycin than do gram-negative microorganisms. The non-ionized from of 

the drug is considerably more permeable to cells. 
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4.2.1.2 Materials 
 

Erythromycin, diclofenac and ibuprofen (Table 4.2.1.1 & Figure 4.2.1.1) were 

purchased from Sigma-Aldrich, (Dorset, UK). High performance liquid 

chromatography (HPLC) grade methanol was purchased from Fischer Scientific 

(Loughborough, UK). Ultra-pure water was obtained from a Sartorius Purite Select 

HP160/BP/IT water purification system with a specific resistance of 18.2 MΩcm. 

Chemical stock solutions for each compound were prepared in methanol on a weight 

basis in 100 ml of 100 % methanol and stored at −20 °C, and the working solutions 

were diluted aliquots of the stock solutions (100 mgL-1 = 10 mg/100 ml). Glassware 

and vessels were disinfected then pre-rinsed with 100 % methanol and ultra-pure water 

twice and left to dry in the fume cupboard prior to the experiments. 
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                 A                                                                                       B       

                                                         

                                                       C 

                                               

 

Figure 4.2.1.1: Chemical structures of erythromycin (A), diclofenac (B) and ibuprofen (C) 
from left to right respectively. Image from (Sigma-Aldrich). 
 
 
 
4.2.1.3 Preparation of solutions 
 

Environmentally relevant concentrations of each of the compounds ERY, DIC, IBU 

and their mixtures were used in these experiments (UK mean measured environmental 

concentration [LT] and UK maximum measured environmental concentration [HT] and 

medium concentration [MT] was the average of the LT and HT). These treatment 

concentrations were chosen as an indicator of likely exposures based on published data 

for UK rivers (Bound and Voulvoulis, 2006; Hughes et al., 2013) and an indicator of 

worst-case exposure scenario based on maximum concentrations in UK rivers.  

One hundred mgL-1 solutions (100 mgL-1 = 10 mg/100 ml) of each of the compounds 

(ERY, DIC and IBU) were prepared by dissolving each separately in methanol (HPLC 

grade) to make the stock solutions. 1 mL was measured from each stock solution and 
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each dissolved in 100 mL of solvent to make the intermediate solution for each 

experiment. The desired experimental concentrations for each experiment were 

achieved through a series of dilutions.  

For the mixture experiment environmental concentrations of each of the compounds 

were measured from the intermediate solutions, mixed together and dissolved in 250 

mL of solvent to form the working solution. All solutions were stored at −20 °C in the 

dark for optimum stability and to avoid photodegradation. 

The working solutions of LT, MT and HT were poured on transparent silica glass beads 

and allowed to evaporate to dryness in the fume cupboard in order to avoid methanol 

toxicity, then the dried extracts were reconstituted/resuspended with 10 mL of pond 

water and washed into the beakers before G. pulex were introduced. Before the 

transparent silica glass beads were reused, they were washed with ultra clean water, 

ashed in the furnace at 550º C and allow to cool in the fume cupboard to prevent 

toxicity in any form to the test animals. Separate beads were used for the different 

treatments and controls to prevent contamination. 

 

4.2.1.4 Test animals: origin and maintenance 
 

Gammarus pulex used for the experiments were collected in ponds at Bramham estate, 

Leeds, West Yorkshire. This site was chosen because it was located upstream of any 

STP effluent inputs, hence reducing the possibility for pollution by the compounds 

being investigated. Invertebrates were sampled with a net from 1.5 to 4 m depth. 

Gammarus individuals were hand selected from other organisms and detritus and then 

brought to the laboratory in cool boxes (5° C). Amphipods of approximately the same 

size averaging 21.84 ± 3.06 mg, 21.47 ± 2.45 mg, 22.47 ± 3.16 mg and 21.52 ± 0.99 

mg were used for erythromycin, diclofenac, ibuprofen and their mixture experiments 
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respectively. Individuals were sexed by placing pre-copular pairs on a dry filter paper 

and allowing them to disentangle from each other and kept in incubators at 12° C with 

a diurnal light rhythm of 16 h: 8 h (day-night) and allowed to acclimatise in aerated 

pond water before the exposure experiments started. 

 

4.2.1.5 Preparation of leaf material for feeding of test animals 
 

Alnus glutinosa (Alder leaves) were collected from Bramham Estate near the ponds and 

oven dried at 60° C for 24 hrs. The leaves were conditioned in a nutrient medium 

(Brown et al., 2006) in an aerated bucket at room temperature for 10 days together with 

alder leaves previously exposed in the ponds in which the test animals were collected. 

This was to establish a natural microbial community consisting of fungi and bacteria. 

This conditioning process increases the nutritive value of leaf material for shredders, 

such as gammarids (Bärlocher, 1985), and simulates the environmentally relevant 

processes. G. pulex were fed with 0.1 g of the conditioned/standardised alder leaves 

(Alnus glutinosa).  

 

4.2.1.6 Exposure media 
 

Water from Bramham Park ponds (where the animals were sourced) was used for this 

experiment. The physico chemical parameters at the point of collection of the culture 

media were dissolved oxygen (DO): 12.3 mgL-1, water temperature: 17.2º C, electrical 

conductivity (EC): 662 µS cm-1 and pH: 7.5. 

The pH, DO, water temperature and EC were measured weekly with a HACH HQ40d 

multimeter and the instruments were rinsed with deionised water before every reading 

taken. 
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4.2.1.7 Experimental design 
 

For each of the experiments (ERY, DIC, IBU and their mixtures), there were three 

treatments (LT, MT and HT), negative and solvent controls with 15 replicates of each 

treatment and 15 replicates of each control. Test concentrations were selected to mimic 

environmental detection levels reported for UK rivers in the literature (Table 4.2.1.7). 

The negative control contained no treatment and the solvent control contained 0.1 mI/L 

of methanol. 

 

Table 4.2.1.7: Concentrations of the test compounds (environmental detection levels reported 
for UK). Sources: (Hughes et al., 2013; Bound and Voulvoulis, 2006). 

 

For the mixture experiments, there were two treatments, low treatment (LT) and high 

treatment (HT) and a solvent control. The low and high treatments were mixtures of 

ERY, DIC and IBU concentrations in the single compound experiments. Only two 

treatments and control could be established in the mixture experiments due to an 

inability to obtain sufficient test animals. 

 The experiments were carried out in clear glass SS jars (500 ml) kept in incubators 

(Figure 4.2.1.7) at a temperature of 12º C and 16:8 h light: dark regime. The animals 

were illuminated with a fluorescent light (with a specification for freshwater 

invertebrates), to simulate on a small scale the macroinvertebrates’ natural climatic 

Compound                 Low                          Medium                        High  
                             Concentration           Concentration             Concentration 
                                  (ngL-1)                          (ngL-1)                       (ngL-1) 
Erythromycin          159.7                                768.8                           1377.8 

Diclofenac               202.2                              1596.5                           2990.7 

Ibuprofen                 420.8                              2629.6                           4838.4 
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condition. The glow mimicked the thermal warmth and daytime illumination obtained 

from the sun radiation. 

Each glass jar contained one G. pulex with 300 ml of pond water, which was assigned 

and arranged randomly in the experimental chambers using a random integer generator. 

Individuals were weighed at the start of the experiment and subsequently every week 

with a Sartorius Quintex 224-1s balance.  

For each of the experiments (ERY, DIC and IBU), seventy-five (75) male G. pulex 

were assigned at random among the five experimental groups and forty-five (45) male 

G. pulex for the mixture experiment. Exposures were static-renewal with 100 % water 

replacement every week with fresh concentrations of the pharmaceuticals. The 

experiments were each run for four (4) weeks. Growth was measured weekly by 

deducting the initial mass of each G. pulex from the mass each week. Mortality was 

determined at the end of the experiments by counting the surviving animals and 

calculating percentage mortality. Remaining alder leaves (feed material) at the end of 

the experiments were oven dried, weighed and combusted to determine the feeding rate 

(ash free dry mass). 
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Figure 4.2.1.7: One of the experimental set-ups in the incubators showing glass jars with one 
G. pulex in each jar exposed to experimental media (Negative control (NCTR), Solvent control 
(STCR), Low treatment (LT), Medium treatment (MT) & High treatment (HT)). 
 
 

4.3 Data analysis 

Data were organised using Excel (Microsoft, 2013) and residuals of the data were 

checked for normal distribution using the Shapiro-Wilk normality test and homogeneity 

of variance using the Bartlett test of homogeneity of variances. R (R Development Core 
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Team, 2008) was used to analyse the data and create figures (Box-and-Whisker). The 

box-and-whisker plots display a statistical summary of variables: median, quartiles, 

range and possibly extreme values (outliers). An outlier value is defined as a value that 

is smaller than the lower quartile (25 percentile) minus 1.5 times the interquartile range, 

or larger than the upper quartile (75 percentile) plus 1.5 times the interquartile range. 

Changes in gammarus pulex mass, physicochemical parameters and mass of feed 

materials (Alnus glutinosa) from week 1 to week 4 were tested using generalised linear 

model and Chi-square. Mortality was analysed using one-way ANOVA where 

assumptions of normality and homogeneity were met followed by Tukey’s post-hoc 

tests to identify and compare the treatment means with the respective controls.  

 

4.4 Results 

4.4.1 Erythromycin experiments 
 
4.4.1.1 Initial test conditions 
 

When the experiment was initiated (day 0) the average mass of G. pulex (both 

treatments and controls) was 21.47 ± 2.45 mg with no statistically significant difference 

(ANOVA: F4, 70 = 0.09, p = 0.99) between treatment and control groups. The mean 

dissolved oxygen (DO) was 9.30 ± 0.01 mgL-1 and p=0.57, pH was 8.5 ± 0.03 and 

p=0.43, water temp was 14.10 ± 0.19° C and p=0.18, mean electrical conductivity (EC) 

was 598.09 ± 4.64 µScm-1and p=0.004. There were no statistically significant 

differences in the water chemistry across replicates except for EC. However, 5 µScm-1 

is small and not ecologically relevant even if statistically different and unlikely to affect 

the fitness of G. pulex. The solvent control used in the experiment was also tested for 

different responses of the physiological measurements compared to the negative 
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control. No statistically significant difference was found between control treatments 

with and without solvent. 

4.4.1.2 Growth 
 

The growth of G. pulex was significantly reduced relative to controls at 159.70 ngL-1, 

768.75 ngL-1 and 1377.80 ngL-1 concentrations of erythromycin over 4 weeks (Figure 

4.4.1.2). When the residual of the data was analysed, there were statistically significant 

differences between the treatment groups and the control for growth (GLM: c2 (4) = 

662.04, p < 0.001). At the end of the experimental period G. pulex increased in mean 

mass in the control groups (NCTR: 23.35 ± 2.99 mg & SCTR: 23.09 ± 3.96 mg) but 

there was decreased mass in the treatment groups (LT: 20.29 ± 2.54 mg, MT: 20.03 ± 

2.85 mg and HT: 19.97 ± 2.62 mg). However, mean mass decrease was more 

pronounced in the high dose treatment than the other treatments. 
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Figure 4.4.1.2. Boxplots displaying change in mass of G. pulex exposed to environmental relevant concentrations of erythromycin after a 4 week static 
renewal experiments. Negative control (NCTR), solvent c trol (SCTR), low treatment (LT), medium treatment (MT) and high treatment (HT). The dark 
horizontal line inside the box represents the median (50th percentile), top of the coloured box represents the 3nd quartiles (75th percentile), top whisker 
represents the 4rd quartiles (90th percentile), bottom of the coloured box represents the 2nd  quartiles (25th percentile) and the vertical lines represents the 1st 
quartiles (10th percentile). There were no outliers. Sample size at the end of the experiment (n): NCTR=15; SCTR=14; LT=7; MT=4 and HT=2.  
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4.4.1.3 Feeding 
 

There were statistically significant differences in the mass of feed materials consumed 

between controls and treatments (GLM:  c2 (4) = 0.17691, p-value<0.001) with the 

mass loss of Alnus glutinosa litter by the control group being higher than in the 

treatment groups. Even between the treatments group, the feed materials loss was dose 

dependant and significantly influenced by erythromycin (Figure 4.4.1.3).   
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Figure 4.4 1.3. Boxplots displaying consumed feed materials by G. pulex exposed to environmental relevant concentrations of erythromycin after a 4 week 
static renewal experiments. Negative control (NCTR), solvent control (SCTR), low treatment (LT), medium treatment (MT) and high treatment (HT). The 
dark horizontal line inside the box represents the median (50th percentile), top of the coloured box represents 3rd quartiles (75th percentile), top whisker 
represents 4th quartiles  (90th percentile), bottom of the coloured box represents the 2nd  quartiles (25th percentile) and the vertical lines represents the 1st 
quartiles (10th percentile). There was no outlier. 
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4.4.1.4 Mortality 
 

In the first week of the experiment there was no mortality recorded in all the treatments 

(LT, MT, HT) and the controls (NCTR, SCTR). Mortality commenced in the second 

week with 4, 5 and 5 G. pulex dying in the LT, MT, HT respectively but none in the 

controls. For both medium and high treatments, more than 50 % mortality had taken 

place before the fourth week. In the fourth and final week of the exposure 53 %, 73 % 

and 86 % mortality were recorded for LT, MT, HT respectively. In the control group, 

total mortality was one individual (7 %) and this was recorded in the third week in the 

SCTR (Figure 4.4.1.4). Statistically significant differences (GLM: χ2 (4) = 6665.9, p = 

0.02) were thus, found in % cumulative mortality between the high, medium and low-

dose treatments and the control groups.  
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Figure 4.4.1.4. Boxplots displaying % mortality of G. pulex exposed to environmental relevant concentrations of erythromycin after a 4 week static renewal 
experiments. Negative control (NCTR), solvent control (SCTR), low treatment (LT), medium treatment (MT) and high treatment (HT). The dark horizontal 
line inside the box represents the median (50th percentile), top of the coloured box represents 3rd quartiles (75th percentile), top whisker represents 4th 
quartiles  (90th percentile), bottom of the coloured box represents the 2nd  quartiles (25th percentile) and the vertical lines represents the 1st quartiles (10th 
percentile). There were no outliers. 
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4.5 Diclofenac experiments 

4.5.1 Growth 
 

When the experiment was initiated (day 0) the mean mass of G. pulex was 21.84 ± 3.06 

mg and no statistically significant difference (ANOVA: F4, 70 = 0.42, p = 0.79) was 

recorded between treatment and control groups. pH fluctuated between 8.39 – 8.57 

throughout the exposure period (p=0.09), electrical conductivity was within 470.3-

568.2 µs cm-1 (p=0.22), and mean water temperature was 10.8º C (p=0.95). Dissolved 

oxygen was maintained between 9.45 mgLˉ¹ - 10.07 mgLˉ¹ throughout the duration of 

the experiments (p=0.45).  

In the experimental period G. pulex final mass in the control groups was NCTR: 24.33 

± 4.05 mg and SCTR: 23.33 ± 4.70 mg and the final masses in the treatment groups 

were LT: 21.63 ± 3.81 mg, MT: 18.17 ± 1.47 mg and HT: 14.00 ± 2.83 mg. However, 

mass decrease (LT: -0.75± 2.38 mg, MT: -1.17± 0.75 mg, HT: -7.5± 0.71 mg) was 

more pronounced in the high dose treatment than the other treatments. At the end of the 

experiment statistically significant differences were found between the treatment and 

control groups (ANOVA: F4, 41 = 9.75, p<0.001) (Figure 4.5.1). 
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Figure 4.5.1 Boxplots displaying change in mass of G. pulex exposed to environmental relevant concentrations of diclofenac after 4 a week static renewal 
experiments. Negative control (NCTR), solvent control (SCTR), low treatment (LT), medium treatment (MT) and high treatment (HT). The dark horizontal 
line inside the box represents the median (50th percentile), top of the coloured box represents 3rd quartiles (75th percentile), top whisker represents 4th quartiles  
(90th percentile), bottom of the coloured box represents the 2nd  quartiles (25th percentile) and the vertical lines represents the 1st quartiles (10th percentile). 
There was outlier. Sample size at the end of the experiment (n): NCTR=15; SCTR=15; LT=8; MT=6 and HT=2.  
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4.5.2 Feeding 
 

There were statistically significant differences in the mass of feed materials consumed 

between controls and treatments (ANOVA: F 4,70 = 42.19, p < 0.001). The feeding rates 

in the controls were higher than the treatments. Even between the treatments group, the 

amount of feed materials consumed was dose dependant and significantly influenced by 

DIC (Figure 4.5.2). 
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Figure 4.5.2 Boxplots displaying change in feed materials of G. pulex exposed to environmental relevant concentrations of diclofenac after a 4 week static renewal 
experiments. Negative control (NCTR), solvent control (SCTR), low treatment (LT), medium treatment (MT) and high treatment (HT). The dark horizontal line inside the 
box represents the median (50th percentile), top of the coloured box represents 3rd quartiles (75th percentile), top whisker represents 4th quartiles  (90th percentile), bottom of 
the coloured box represents the 2nd  quartiles (25th percentile) and the vertical lines represents the 1st quartiles (10th percentile). There was outlier.
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4.5.3 Mortality 
 
In the first week of the experiment there was no mortality recorded in all the treatments 

(LT, MT, HT) and the controls (NCTR, SCTR). The treatments started showing a 

considerable increase in mortality from week two compared to the controls (Figure 

4.5.3). Mean mortality was more than 80 % in the high treatment in the 3rd week of the 

experiment, 60 % in the medium treatment, more than 40 % in the low treatment while 

in the controls there was no mortality. There were statistically significant differences 

between the treatments and controls (GLM: χ2 (4) = 5502.3, p < 0.05). 
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Figure 4.5.3 Boxplots displaying % mortality of G. pulex exposed to environmental relevant concentrations of diclofenac after a 4 week static renewal 
experiments. Negative control (NCTR), solvent control (SCTR), low treatment (LT), medium treatment (MT) and high treatment (HT). The dark horizontal 
line inside the box represents the median (50th percentile), top of the coloured box represents 3rd quartiles (75th percentile), top whisker represents 4th 
quartiles (90th percentile), bottom of the coloured box represents the 2nd quartiles (25th percentile) and the vertical lines represents the 1st quartiles (10th 
percentile). There were no outliers. 
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4.6 Ibuprofen experiments 

4.6.1 Growth 
 
When the experiment was initiated (day 0) the cumulative mean mass of G. pulex 

(across treatments and controls) was 22.47 ± 3.16 mg and no statistically significant 

difference (ANOVA: F4, 70 =0.14, p = 0.97) was recorded between treatment and the 

control groups. The cumulative mean dissolved oxygen (DO) was 9.61 ± 0.07 mg/L, 

pH was 8.69 ± 0.04, water temp was 11.89 ± 0.32°C and mean electrical conductivity 

(EC) was 694.28 ± 64.34 µS/cm. There were no statistically significant differences in 

the water chemistry. 

When the change in mass was analysed there was no statistically significant difference 

between the treatment and the control groups (ANOVA:  F4, 65 = 2.10, p =0.09) (Figure 

4.6.1).  
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Figure 4.6.1: Boxplots displaying change in mass of G. pulex exposed to environmental relevant concentrations of Ibuprofen after a 4 week static renewal 
experiments. Negative control (NCTR), solvent control (SCTR), low treatment (LT), medium treatment (MT) and high treatment (HT), The dark horizontal 
line inside the box represents the median (50th percentile), top of the coloured box represents 3rd quartiles (75th percentile), top whisker represents 4th quartiles  
(90th percentile), bottom of the coloured box represents the 2nd  quartiles (25th percentile) and the vertical lines represents the 1st quartiles (10th percentile). 
There were no outliers. Sample size at the end of the experiment (n): NCTR=15; SCTR =15; LT=14; MT=13 and HT=13.  
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4.6.2 Feeding 
 
The change in feed materials (Alnus glutinosa) per G. pulex per feeding day were 

NCTR = 0.030 ± 0.003 SD, SCTR = 0.029 ± 0.007 SD, LT = 0.028 ± 0.003 SD, MT = 

0.027 ± 0.004 SD and HT = 0.026 ± 0.008 SD (Figure 4.6.2). There were no 

statistically significant differences in feeding between controls and treatments (GLM: 

χ2 (4) = 0.00013, p =0.356). 
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Figure 4.6.2: Boxplots displaying change in feed materials of G. pulex exposed to environmental relevant concentrations of Ibuprofen after a 4 week static renewal 
experiments. Negative control (NCTR), solvent control (SCTR), low treatment (LT), medium treatment (MT) and high treatment (HT). The dark horizontal line inside the 
box represents the median (50th percentile), top of the coloured box represents 3rd quartiles (75th percentile), top whisker represents 4th quartiles  (90th percentile), bottom of 
the coloured box represents the 2nd  quartiles (25th percentile) and the vertical lines represents the 1st quartiles (10th percentile). There was outlier. 
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4.6.3 Mortality 
 
In the first week of the experiment there were no deaths recorded in all the treatments 

(LT, MT, HT) and the controls (NCTR, SCTR). Mortality commenced in the second 

and third week for HT with two G. pulex recorded for both weeks, while in the fourth 

week, one and two mortalities were recorded for LT and MT respectively. No mortality 

was recorded for the control group (Figure 4.6.3). There were no statistically significant 

differences (GLM: χ2 (4) = 211.12, p = 0.53) between treatment and control groups at 

the end of the study.  

 



 
 
 
 

155 
 

 
Figure 4.6.3 Boxplots displaying % mortalit y of G. pulex exposed to environmental relevant concentrations of Ibuprofen after a 4 week static renewal 
experiments. Negative control (NCTR), solvent control (SCTR), low treatment (LT), medium treatment (MT) and high treatment (HT). The dark horizontal 
line inside the box represents the median(50th percentile), top of the coloured box represents 3rd quartiles (75th percentile), top whisker represents 4th quartiles  
(90th percentile), bottom of the coloured box represents the 2nd  quartiles (25th percentile) and the vertical lines represents the 1st quartiles (10th percentile). 
There were no outliers. 
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4.7 Multiple mixture (DIC+ERY+IBU) experiments 

 
4.7.1 Initial test conditions 
 

The cumulative initial mean mass of G. pulex was 21.52 mg ± (0.99SD) at the start of 

the experiment. There was no statistically significant difference in G. pulex mass at the 

start of the experiments between treatments and controls (p=0.95). Dissolved oxygen 

was maintained consistently at or close to saturation (≥9.5 mgL-1) throughout the 

exposure period even though there are slight fluctuations between the treatments, but 

they are not statistically significant (F=1.40, DF=4,70, p=0.24). pH fluctuated between 

8.47 and 8.56 throughout the exposure and no statistically significant difference was 

observed (F= 0.96, DF=4,70, p=0.43). The temperature varied between 11.2° C and 

12.5° C and there was no statistically significant difference between the treatment and 

control groups (F=1.90, DF=4, 70, p=0.12). The EC was ≥590 μs cm-1 throughout the 

experiment. 

 

4.7.2 Growth 
 

When the change in mass was analysed there were statistically significant differences 

between the treatment and control groups (F2, 31 = 7.44, p < 0.01) (Figure 4.7.1).  



 
 
 
 

157 
 

 

 
 
Figure 4.7.1: Boxplots displaying change in mass of G. pulex exposed to environmental relevant concentrations of ERY, DIC & IBU after a  4 week static 
renewal experiments. Solvent control (SCTR), low treatment (LT) and high treatment (HT). The dark horizontal line inside the box represents the median 
(50th percentile), top of the coloured box represents 3rd quartiles (75th percentile), top whisker represents 4th quartiles  (90th percentile), bottom of the 
coloured box represents the 2nd  quartiles (25th percentile) and the vertical lines represents the 1st quartiles (10th percentile). There were outliers. Sample 
size at the end of the experiment (n): SCTR=15; LT=11 and HT=8. 
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4.7.3 Feeding 
 
The mean change in feed materials (Alnus glutinosa) when G. pulex was exposed to 

mixtures of ERY, DIC and IBU was SCTR = 0.027 ± 0.005 SD; LT = 0.024 ± 0.003 

SD) and HT = 0.019 ± 0.005 SD (Figure 4.7.2). There were statistically significant 

differences in feed materials between controls and treatments (F2, 42 = 12.68, p < 

0.001). 
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Figure 4.7.2. Boxplots displaying change in feed materials of G. pulex exposed to environmental relevant concentrations of (ERY, DIC & IBU) after a 4-week 
static renewal experiments. Solvent control (SCTR), low treatment (LT) and high treatment (HT). The dark horizontal line inside the box represents the 
median (50th percentile), top of the coloured box represents 3rd quartiles (75th percentile), top whisker represents 4th quartiles (90th percentile), bottom of 
the coloured box represents the 2nd quartiles (25th percentile) and the vertical lines represents the 1st quartiles (10th percentile). There were no outliers. 
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4.7.4 Mortality 
 

There were no statistically significant differences (GLM: χ2 (2) = 274.12, p = 0.57) 

between treatment and control groups at the end of the study. In terms of mortality 

there were one and two mortalities in LT and HT respectively and none in the solvent 

control throughout the duration of the exposure (Figure 4.7.3). 
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Figure 4.7.3 Boxplots displaying % mortality of G. pulex exposed to environmental relevant concentrations of (ERY, DIC & IBU )after a 4 week static 
renewal experiments. Solvent control (SCTR), low treatment (LT) and high treatment (HT). The dark horizontal line inside the box represents the median 
(50th percentile), top of the coloured box represents 3rd quartiles (75th percentile), top whisker represents 4th quartiles  (90th percentile), bottom of the 
coloured box represents the 2nd  quartiles (25th percentile) and the vertical lines represents the 1st quartiles (10th percentile). There were no outlier. 
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4.8 General Discussion 

The objective of this study was to investigate the ecological implications of the 

extended low-level exposure of erythromycin, diclofenac, ibuprofen and their mixtures 

at environmentally relevant concentrations on feeding, growth and mortality of G. 

pulex. Generally, there were significant effects on growth, feeding and mortality when 

G. pulex was exposed to erythromycin and diclofenac. However, when exposed to 

ibuprofen, there was no effect on all the endpoints. The mixtures of erythromycin, 

diclofenac and ibuprofen significantly affected the growth and feeding of G. pulex but 

no substantial increase in the mortality was observed. The water quality parameters 

such as pH, DO, EC and water temperature were all within the acceptable tolerance 

range for G. pulex. However, there were a few fluctuations in the magnitude of the 

differences, but they were very small and unlikely to affect the health of G. pulex 

(Graca et al., 1993b; Hughes et al., 2013). 

G. pulex had long been suggested as an additional crustacean to Daphnia for toxicity 

testing, studies with cultured animals of various sizes and ages over the years have 

demonstrated the sensitivity of G. pulex (McCahon and Pascoe, 1988b). This 

investigation affirms the suitability of G. pulex as a test animal for aquatic toxicity 

testing. It is easy to culture, maintain and handle both in the field and laboratory. 
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4.8.1 Effects of erythromycin on growth, feeding and mortality of G. pulex 
 
 
The results from this study reveal that erythromycin negatively affected growth, 

causing decreased body mass, reduced feeding and increased mortality of G. pulex in a 

dose-dependent manner. The effects were more pronounced in the highest 

concentration (1377.80 ngL-1) and were detected after an exposure period of four 

weeks. This observation is consistent with studies by Gracia-Lor et al., (2012) and Liu 

et al. (2017) in which G. fasciatus was exposed to cimetidine at concentrations relevant 

to the environment. They observed that the growth and biomass of G. fasciatus was 

significantly reduced, albeit for a different pharmaceutical. 

Literature is sparse in terms of growth and feeding rate in G. pulex exposed to 

pharmaceuticals but the effects of erythromycin on growth and feeding of other aquatic 

organisms at environmental relevant concentrations similar to this study has been 

investigated. For example, Liu et al. (2014) investigated the exposure of Carassius 

auratus (Goldfish) to environmental concentrations of erythromycin and found 

significant behavioural and biochemical disturbance. Yang et al., (2017) investigated 

the effect of erythromycin exposure on the growth of Microcystis flosaquae and found 

that the growth was inhibited at concentrations above 10 µgL-1 but that at low 

concentrations (0.001, 0.01, 0.1 and 1.0 µgL-1) erythromycin promoted growth. Gracia-

Lor et al., (2012) also reported that erythromycin stimulated the growth of Skeletonema 

costatum (algae) at a low concentration of 0.5 mgL-1, 1.05 mgL-1 and 2.05 mgL-1 and 

inhibited growth at concentrations > 2.0 mgL-1. These findings showed that 

erythromycin may have two-fold effects (inhibition and enhancement) on the growth of 

M. flosaquae. Erythromycin may possibly be causing Hormesis. The principle of 

Hormesis is that when an organism is exposed to low concentration of a chemical 
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stressor that normally can cause lethality when administered at high concentrations, a 

positive effect is observed, such as increased growth rate, enhanced well-being, and 

tolerance of contaminants (Calabrese, 2003; Rodrigues et al., 2016). Several studies 

have reported that environmental contaminants can cause Hormesis on bacteria, 

animals and higher plants (Crane et al., 2006; Calabrese., 2005; Cedergreen et al., 

2007; Hunt et al., 2010; Deneshvar et al., 2010; Rodrigues et al., 2016).  

In a similar study by Gonzalez-Pleiter et al. (2013), in which the effects of five 

antibiotics including erythromycin on two representatives of aquatic organisms 

(cyanobacterium Anabaena and green alga Pseudokirchneriella subcapitata) was 

investigated, erythromycin was highly toxic and prevented growth. 

The inhibition of growth when exposed to erythromycin may possibly be due to G. 

pulex been stressed by enzymes involved in behavioural, biochemical and physiological 

reactions possibly because the concentration of erythromycin exceeded the tolerance 

limit of G. pulex before the animals enter the state of zero or negative growth. 

Animal behaviour and physiology are increasingly being used as a sensitive means of 

measuring sub-lethal exposure to toxic contaminants. In the literature, nutrition is 

commonly reported to be impacted by contaminants (Graca et al., 1994; Karthikeyan 

and Meyer, 2006). In this study, exposure to erythromycin caused reduced feeding rate 

in G. pulex, which was significant after four weeks of exposure at the three treatment 

concentrations of erythromycin (0.16 µgL-1, 0.77 µgL-1 and 1.38 µgL-1). In a similar 

study, Moore and Farrar (1996) reported that growth rates in G. pulex decrease 

significantly with reduced food rations.  

Feeding is an essential component of an organism’s fitness and ecologically relevant 

for all activities of G. pulex; feeding is required for energy and energy is needed for 

growth. Thus, any contaminant, such as erythromycin, that interferes with this activity 



 
 
 
 

165 
 

is likely to reduce the fitness of organisms and could lead to ecological death and 

distortion of the balance in the ecosystem (Scott and Sloman, 2004). The alteration of 

feeding activity was found in another aquatic organism: after 72 h of exposure, the 

activity of Gammarus lawrencianus was reduced by erythromycin exposure at a 

concentration of 62 μgL-1 (Xu et al., 2007; Liu et al., 2017). 

In a similar report but with a trace metal compound, Felten et al. (2008) exposed G. 

pulex to cadmium; exposure to the metal reduced the feeding rate of G. pulex by 30 % 

at 7.5 µgCdL-1 and by 36 % at 15 µgCdL-1 after only 168 hours of exposure compared 

to the control animals. In a series of field studies, the feeding rate of G. pulex was 

demonstrated to be a sensitive indicator of water quality (Crane and Maltby, 1991). In 

another study by Alonso et al. (2009) cadmium reduced the feeding activity of G. pulex 

at environmental concentrations of erythromycin. Again G. pulex demonstrated 

sufficient sensitivity which confirms the suitability and reliability to provide adequate 

data which may be useful in environmental risk assessment (Hughes et al., 2013). A 

similar result was also reported for other crustaceans exposed to different insecticides, 

such as fenitrothion and deltamethrin, which strongly inhibit their feeding activities 

(Oliveira et al., 2015). For some psychotherapeutic drugs, however, the enhanced 

feeding activity was obtained in crustacean exposed to sertraline (Zhao et al., 2015). 

These contaminants have high potential to directly alter behaviour since they are 

neurotoxins. 

Recent studies also indicated that erythromycin concentrations as low as 1 µgL-1 

negatively affected aquatic bacteria production in Wascana Creek as well as the 

composition and structure of attached microbial biofilm communities (Waiser., 2017). 

Also, a dosage of 1 mgL-1 erythromycin (far greater than those in this study), inhibits 
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Synechocystis sp. and Lemna minor growth by 70 and 20 %, respectively. This 

observation was consistent with the findings of Cleuvers (2003, 2004) who reported 

that the sensitivity of Daphnia lemna and Desmodesmus algal growth inhibition were in 

the same range.  

Mortality was more pronounced in the high treatment than the other treatments. The 

highest concentration for the treatment was 1.378 μgL-1, which is far below the acute 

toxicity testing concentration for other aquatic invertebrates (Hughes et al., 2013). 

There was very sparse literature reporting mortality of G. pulex exposed to 

pharmaceuticals, even though sub-lethal effects have been receiving attention in recent 

years. De Lange et al. (2006) investigated the effects of fluoxetine at relevant 

concentrations on G. pulex and found that there was a significant reduction in 

movement. In another study by De Lange et al. (2009), G. pulex were exposed to 

fluoxetine at environmentally relevant concentrations and the ventilation of the 

amphipod increased. Other studies investigated the effects of trace elements 

(Cadmium) on mortality of G. pulex and mortality was significantly higher than in 

controls.  

Finally, this study generally demonstrated the toxicity of erythromycin and that chronic 

exposure to erythromycin can lead to its interference in the behavioural and 

physiological functions of amphipods, highlighting concern about this pharmaceutical 

in the aquatic environment (Mehinto et al., 2010).  

4.8.2 Effects of diclofenac on growth, feeding and mortality of G. pulex 
 
 
Despite being regarded as one of the most toxic of NSAIDs (Santos et al., 2010) and of 

particular environmental concern (Fent et al., 2006), diclofenac is not widely studied in 
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ecotoxicology so there are few studies’ results with which to contrast this investigation. 

This study showed that growth and feeding behaviour of G. pulex were affected when 

exposed to environmentally relevant concentrations (202.20 ngL-1, 1596.45 ngL-1 and 

2990.70 ngL-1) of diclofenac. There was growth retardation, test species were not 

feeding, and mortality increased in a dose-dependent manner. 

 Most studies done on the ecotoxicological effects of diclofenac have studied fish. For 

example, in a study conducted by Hong et al. (2013), in which male medaka fish were 

exposed to 1 µgL-1 concentration of diclofenac, a high induction of CYP1A expression 

was found in three different tissues tested, i.e. gills, intestine and liver. The effect was 

induced up to 5.7-fold, 18.4-fold and 9.3-fold in gills, intestine and liver respectively. 

Schwaiger et al., (2004) and Triebskorn et al. (2004) evaluated the toxic effect of 

diclofenac on rainbow trout at concentrations of 1µgL-1 to 500 µgL-1 (i.e. 1, 5, 20, 100, 

and 500 µgL-1 for 28 days. The threshold level of 5 µgL-1 leading to histopathological 

organ lesions after 28 days of exposure is about 102-fold lower than that reported to 

induce sublethal effects in invertebrates (Daphnia magna, 21 d reproduction test). 

Exposed fish showed changes in the gills and kidneys and bioaccumulation of 

diclofenac was also observed in fish by Schwaiger et al., (2004). In another study by 

Hoeger et al. (2005), there was a reduction in the number of erythrocytes in the blood 

on exposure of brown trout to diclofenac at environmentally relevant concentrations.  

The results obtained in this study are similar to effects on aquatic invertebrates reported 

by previous studies. For example, in a study conducted by De Lange et al. (2006) there 

was a decrease in the feeding behaviour of G. pulex when exposed to low 

concentrations (1-100 ngL-1) of diclofenac. In the same study, the feeding rate of G. 

pulex decreased by 45 % when compared to the controls when exposed to 10 ngL-1 of 
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carbamazepine for one and half hours. This study was also in agreement with Gabet-

Giraud et al., (2010) in which Carcinus maenas (green crab) was exposed to 

environmentally relevant concentrations of diclofenac; it significantly reduced feeding 

and ultrastructural change was observed in the gill lamellae of the exposed crustacean. 

Also, when fingerlings of rainbow trout were exposed to 0.0071 mgL-1 of diclofenac 

there was modification in fish behaviour and abnormal swimming behaviour was 

reported (Orvos et al., 2002; Oliveira et al., 2015). Observations from this study are in 

agreement with some previous studies of aquatic organisms in which Quinn et al. 

(2014) demonstrated that exposure to carbamazepine at 50 mgL-1 for 96 hr significantly 

reduced feeding activity in Hydra attenuata and exposure to 10 mgL-1 diclofenac for 96 

h significantly reduces the time for prey ingestion. 

However, this result is not in agreement with that of Richard et al. (2015), who reported 

that food intake increased in Wistar rats (though a vertebrate animal) exposed to 2.5 mg 

kg-1 of diclofenac for 10 days. The observed difference in effects between G. pulex and 

Wistar rat exposed to diclofenac may be due to dose and species differences. However, 

the decrease in feeding by G. pulex exposed to environmentally relevant concentrations 

of diclofenac may have broad effects on growth, reproduction and population success. 

Decrease in feed intake and growth in G. pulex are interrelated (Schmidt et al., 2011) 

and the reduction in feeding activity of G. pulex could links the concurrent decrease in 

growth rate. De Lange et al. (2009) hypothesize that reduced feeding in G. pulex 

exposed to carbamazepine or diclofenac may interfere with growth. 

We may equally hypothesize that the observed decline in action by diclofenac can 

inhibit G. pulex behaviour, for example, avoidance of predator (locomotion) and 

feeding behaviour. Reduced feeding will unavoidably cause reduced intake of energy, 

which can have far-reaching consequences on growth and reproduction. Change in 
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predator avoidance behaviour will distort the predator–prey balance in the ecosystem. 

This may have a short-term positive impact for the predator (i.e. increased prey 

consumption), however, long-term adverse effects may be observed when the prey 

source is overexploited. This observed reduction in activity of G. pulex in response to 

low levels of diclofenac is in accordance to its pharmacological purpose in humans 

(Fent et al., 2006).  

Although the mechanism of diclofenac toxicity is not fully understood there is some 

evidence from previous work by Mastrangelo et al. (2014) that showed diclofenac 

hindered serotonin-induced reproducible levels in pig ureter. Inhibition of feeding 

behaviour by diclofenac may be related to the functions of serotonin (5-HT) as a 

neurotransmitter and also coordinate behaviours including feeding activities 

(Furuhagen et al., 2014; Baker et al., 2013). Nephrotoxicity of diclofenac is thought to 

be mainly due to the inhibition of prostaglandin synthesis and subsequent changes in 

prostaglandin regulated mechanisms, such as vessel tone, vascular permeability and ion 

regulation (Sanchez et al., 2002). Previous studies were able to demonstrate that 

diclofenac can inhibit cyclooxygenase activity and accordingly, synthesis of 

prostaglandin E2 in brown trout head, kidney, macrophages in vitro, thus demonstrating 

the same mode of action as reported for mammalian species. The effects of non-

steroidal anti-inflammatory drugs on prostaglandin synthesis in humans are known to 

result in hyperkalaemia and hyponatraemia. Gracia-Lor et al., (2012) suppose that 

oxidative damage and subsequent necrosis and possibly apoptotic cell death also play 

an important role in diclofenac-induced nephrotoxicity. In mammalians, prostaglandins 

are known to be principal regulators of blood circulation and ion concentrations in 

kidney and gills in fish. It is feasible to assume that in aquatic invertebrates’ 

prostaglandins may also display similar mechanistic roles and biological mechanisms. 
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Consequently, G. pulex exposed chronically to low levels of diclofenac could suffer 

adverse effects associated with the inhibition of COX and PGE2 synthesis. Diclofenac 

is a small molecule, with a log Kow of 0.7 (sodium-diclofenac) and low lipophilicity 

and may therefore easily pass through cell membranes. These results showed that 

exposure of G. pulex to environmentally relevant concentrations of diclofenac have 

significantly affected feeding activity, impacted growth and increased mortality, 

suggesting that prolonged exposure, use of sensitive points (behavioural signs) and use 

of susceptible test species (G. pulex) are more useful for assessing sublethal impacts of 

contaminants and are sensitive indicators of toxicity in benthic macroinvertebrates 

animals. Hence, these tools are useful in the aquatic environmental risk assessment of 

drugs.   

 

 
4.8.3 Effects of ibuprofen on growth, feeding and mortality of G. pulex 
 
 
Ibuprofen is a non-steroidal anti-inflammatory drug that has been shown to 

significantly affect the growth of several bacterial and fungal species. But the situation 

with invertebrates is less certain as there have been conflicting reports about the effects 

of ibuprofen on invertebrates.  

In this study, the exposure of G. pulex to environmentally realistic concentrations of 

ibuprofen had no statistically significant effects on feeding, growth and mortality even 

though the feeding rate in the control groups was higher than the treatment groups. At 

the same time, the leaf consumption of these organisms was not substantially affected 

relative to the control (~10% reduction relative to the control). This suggests an 

increased palatability of the leaf material conditioned with bacteria and fungi, hence 

healthier test organisms may want to feed more (Bundschuh et al. 2009). Hence, more 
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increase in mass of G. pulex in the control groups than the treatments groups was 

noticed. The results indicate that the exposure of G. pulex to environmentally realistic 

concentrations of ibuprofen are inconsequential i.e. would most likely be of minor 

importance. However, a definite conclusion might not be reached about the risks of 

environmentally relevant ibuprofen concentrations before potential effects on multi-

generational exposure have been assessed, which is beyond the scope of this study. 

Furthermore, no significant differences were observed in mortality between the 

treatments and controls. Although a minimal increase in mass of the treated G. pulex 

was noticed but this was not significant and indicates that the concentration thresholds 

at which ibuprofen could potentially cause toxicity effects were not reached. Hence, the 

internal concentration of ibuprofen in G. pulex is not enough to effect a significant 

change within the 4 weeks exposure, however, this may have effects later on in 

offspring of G. pulex or in a multigenerational experiment.  

In a similar experiment conducted on Hydra vulgaris, a freshwater invertebrate (Pascoe 

et al., 2003), no negative effects of pharmaceuticals (ibuprofen, paracetamol, 

acetylsalicylic acid, amoxicillin, bendroflumethiazide, furosemide, atenolol, diazepam, 

digoxin, and amlodipine) on survival, feeding, and bud formation were found at 

concentrations up to 1000 µgL-1. Cleuvers (2003) exposed daphnia, chlorophyte, and 

macrophyte to environmentally relevant concentrations of major pharmaceuticals and 

concluded that acute effect stemming from single substances in the aquatic 

environment are very unlikely. Recent findings have also shown that population effects 

of ibuprofen in D. magna were reversible, consistent with the known action of 

ibuprofen on eicosanoid synthesis in mammals.  
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Similarly, when duckweed was exposed to 1 μgL−1 of the ibuprofen this resulted in no 

negative effect on growth compared to the other treatments. In a behavioural 

experiment conducted by De Lange et al. (2006) on G. pulex using multispecies 

freshwater biomonitoring (MFB), the exposure to ibuprofen resulted in decreased 

activity of G. pulex from 65% in the control to 45% at concentrations of 1 and 10 ngL-1 

but this difference was not significant. In other studies, ibuprofen has been shown to 

inhibit the growth of Synechocystis and Lemna, the effect however turned into a growth 

stimulation after the second day of freshly added ibuprofen (Pomati et al., 2014). 

There are other animals and compounds that behave in a similar way to ibuprofen, for 

example Henschel et al. (1997) reported high EC50 values for fish embryos for several 

related pharmaceuticals such as salicylic acid (37 000 µgL-1) and clofibric acid (86 000 

µgL-1). These levels are far more than 1000-fold greater than the highest concentration 

used in the present study which was only 4.84 µgL-1. Other human drugs such as 

valpromide, methylhexanoic acid, pentenoic acid, and diethylacetic acid were also 

found to behave similarly to ibuprofen, i.e. weak inhibition or no effect on zebrafish 

development (Graca et al., 1994). Similar findings were reported by Hallare et al. 

(2004) who reported that environmentally relevant concentrations of ibuprofen do not 

cause detrimental effects on the early life stages of zebrafish, if they were exposed via 

the water only. The same study also reported that no differences were observed in 

either mortality or incidence of malformations between the treated and control 

embryos. Another study that agrees with this report was by Love A., (2016) where no 

significant effects was observed in feeding activity of G. pulex exposed to 

environmentally realistic concentrations of ibuprofen over a three-week period. 
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Similar work supports these results; a study on killifish (Oryzias latipes) revealed that, 

although reproduction was delayed following a 6-week chronic exposure to µgL-1 

levels of ibuprofen, total reproduction of killifish did not differ between treatments 

(Flippin et al., 2007). Egg abortion and reduced PGR has also been reported previously 

in D. magna exposed chronically to a metabolite (o-hydroxyhippuric at 10 mgl-1) of the 

NSAID acetylsalicylic acid (Marques et al., 2004b); although the parent compound had 

no impact at the same concentration (Marques et al., 2004a). 

The mode of action of ibuprofen in humans is the inhibition of prostaglandin 

biosynthesis. Prostaglandins are capable of causing contractions or atony of muscles in 

different organs (Cleuvers, 2004). Some publications indicate the presence of 

prostaglandins in other vertebrates and invertebrates such as crustaceans (Bundy, 

1985). A possible explanation of the observed reduced activity of G. pulex may be that 

ibuprofen interferes with the normal pattern of muscle contractions in G. pulex.  

Ibuprofen is an instable chemical, degraded in aquatic environments with a DT50 < 1 

day (Richardson and Bowron, 1985). Pomati et al. (2014) suggested that ibuprofen 

metabolites are nontoxic for the aquatic organisms tested (Synechocystis and Lemna) 

and they may also have growth stimulating properties. Hence, ibuprofen exposed G. 

pulex did not demonstrate significantly increased mortality, feeding and growth.  

 
 
4.8.4 Effects of mixtures of erythromycin, diclofenac and ibuprofen on growth, feeding 
and mortality of G. pulex 
 
This study examined the effects of environmentally realistic concentrations of mixtures 

of ERY, DIC and IBU on G. pulex over an extended period of time. Studies examining 

the toxicity of simple or complex pharmaceutical mixtures are relatively sparse 



 
 
 
 

174 
 

although there has been much increased attention over recent years (Brain et al., 2004a; 

Brain et al., 2004b; Brain et al., 2005).  

 In this study, the exposure to low levels of a complex mixture of ERY, DIC and IBU 

for a period of 4 weeks indicated statistically significant trend of reduced growth and 

feeding in G. pulex.  Looking at the box plots in this study, there are indication that 

exposed G. pulex may have been feeding at a reduced rate compared to the controls and 

this was statistically significant. Although feeding and growth of G. pulex is dependent 

on size and gender (Willoughby & Sutcliffe, 1976; Sutcliffe et al., 1981, Hughes et al, 

2013) the animals were standardised by these factors before the experiments and 

extreme care was taken to prevent stress and injury to the animals especially during 

precopula separation and weekly measurement. 

The results suggest that the compounds interact to produce enhanced effects during this 

study and therefore hypothesis H3 was accepted. This is in agreement with previous 

works which has shown that the effects of some pharmaceuticals, when combined, can 

elicit even greater effects than when present alone (Cleuvers, 2003; Cleuvers, 2004). 

However, the enhanced interaction demonstrated here is probably due to the 

fundamentally different target receptors between antibiotics and NSAIDs with 

erythromycin targeting prokaryotic cells and diclofenac and ibuprofen targeting 

cyclooxygenase-COX-1 and COX-2. 

Furthermore, some studies have shown that pharmaceuticals with different target 

receptors can interact and that these interactions vary with exposure (Pomati et al., 

2006). Also, some pharmaceuticals demonstrate non-polar narcosis which is not 

dependent upon the presence of specific receptors and as such remains a concern when 

considering the exposure to complex mixtures in freshwater environments (Cleuvers, 
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2003). The behaviour of each substance in a multi-component mixture may vary, 

depending on the composition, concentration and the bioassay applied to evaluate the 

effects. Furthermore, the duration and frequency of exposure could alter the 

toxicological effects of pharmaceutical mixtures. Combinations of compounds can have 

unfavourable joint outcomes that may be synergistic, antagonistic or additive. The three 

major characteristics of their effects are: (a) the toxicity of mixtures can be higher than 

the effects of their individual components (Cleuvers, 2003; Cleuvers, 2004: Han et al., 

2006), (b) a mixture can have considerable toxicity effects even if all components are 

present in low concentrations that do not induce toxic effects singly (Backhaus et al., 

2008) or, (c) a mixture of chemical compounds can have lower effects, e.g. enzyme 

induction than the effect of the single compounds (Li et al., 2011). 

Clearly, the issue of pharmaceutical mixtures is highly complex and there are many 

unanswered questions. For instance, Dietrich et al. (2010), in a multigenerational study 

of single and multiple mixtures of 4 different pharmaceuticals on D. magna, concluded 

that “Comparing the influence of the drug mixture with the impact of the single 

compounds CBZ, DIC, EE2 and MET, it seems that the pharmaceutical mixture did not 

provoke stronger effects on the exposed daphnids than the single drugs”. This is in 

disagreement with Cleuvers (2003, 2004) who detected an enhanced toxicity of 

pharmaceuticals toward daphnids when applied as a mixture. In addition, this result was 

supported by another study by Schnell et al. (2009) who showed that the toxic effects of 

a mixture of pharmaceuticals and personal care products from different therapeutic 

classes on liver cells of rainbow trout (Oncorhynchus mykiss) were greater than 

predicted due to synergistic effects of the substances. Flaherty and Dodson (2005) 

showed that the toxicity of drug mixtures is unpredictable, and complex compared to 
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effects of single pharmaceuticals. Therefore, it is very difficult to assess the risk of 

pharmaceuticals on non-target organisms in natural aquatic systems, where animals are 

permanently exposed to complex drug mixtures. However, mixture toxicity studies like 

the one presented here and elsewhere are one of the steps in improving understanding 

of pharmaceuticals in the environment. 

In this study, the exposure to low levels of the complex mixture of ERY, DIC and IBU 

for four weeks indicated decrease in the growth of G. pulex when data was analysed 

statistically. From the current study, it could be deduced that G. pulex feeding rate 

diminished when compared to the controls and this was statistically significant. The 

results suggest that there was interaction between the drugs and hence, there was 

increased impacts. Some other work had demonstrated that pharmaceuticals with 

various target receptors can combine and that these synergies differ with exposure 

(Pomati et al., 2006). These results provide a potential explanation for the interaction of 

pharmaceutical mixtures that the elevated pharmaceutical bioaccumulation in an 

organism could be related to drug–drug interactions resulting from another 

pharmaceutical inhibition of CYP activity (Franzellitti et al., 2015). An in vivo 

exposure for Carassius auratus showed that 89.78 μgL-1 and 20.2 μgL-1 of 

ketoconazole (KCZ) in the water caused an almost 80% and 36% decrease in CYP 

enzyme activity, respectively (Huang et al., 2012; Yang et al., 2017), which may 

support the suggestion by Franzellitti et al. (2015). 

4.9 Conclusions 

The results of this study showed that the toxicity of drug mixtures is unpredictable, and 

complex compared to effects of single pharmaceuticals. Also, this study confirms the 

suitability of G. pulex as an ecotoxicological test species that is both amenable to 
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laboratory culture and sufficiently sensitive to provide reliable quantification of 

environmental risk. Studies examining the effects of pharmaceuticals on G. pulex are 

relatively sparse. The body of research on G. pulex response to stressors suggest it is an 

ecologically sensitive indicator species for a wide range of aquatic pollutants, including 

pharmaceuticals. The results presented here lend support to its use for detecting effects 

of pharmaceuticals with effective mortality evident at concentrations well below those 

reported for the much more widely used test species, D. magna. The lack of samples 

testing nominal concentrations in the exposure matrix means it was not possible to fully 

establish a dose-response relationship for mortality at specific concentrations of 

pharmaceuticals. However, the experimental design allowed comparisons between 

exposures to high, medium and low levels of each pharmaceutical and their 

comparisons against control conditions. Given the important role that G. pulex plays in 

the processing of organic matter, increased mortality may have serious secondary 

implications for leaf litter decomposition and nutrient cycling in freshwater ecosystems 

(Macneil et al., 1997), in addition to implications for its predators and the wider food 

web.
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CHAPTER FIVE 
 

Effects of pharmaceuticals on the freshwater isopod, Asellus 
aquaticus 

5.0 Introduction 

Pharmaceuticals are consumed all over the world including the poorest countries on the 

planet because it increases life span, sustainability of lives, increases human 

productivity and mass production of food and livestock to sustain ever-growing human 

population. As a result, in the last few decades, global manufacturing of 

pharmaceuticals had increased geometrically (Borgmann et al., 2007). However, the 

presence of these drugs in the aquatic environment may elicit unintended biological 

response on non-target organisms among other responses, physiological changes, such 

as feeding, growth, mobility and behavioural changes (Orn et al., 2016; Jobling and 

Sumpter, 1993; Rand 1985 Boyd et al., 2003) are most vulnerable/important endpoints 

for assessing the effects of pharmaceuticals on aquatic organisms (Orn et al., 2016).  

Over the years, invertebrates have been found useful as model animals for investigating 

the toxicity of compounds in the environmental (Daughton and Ruhoy, 2009b; Plahuta 

et al., 2017; Relic et al., 2017; Gasperi et al., 2014). Macro invertebrates has been used 

regularly in past for measuring the toxicity of chemicals because they are sensitive to 

toxic compounds and environmentally significant (Hutchinson and Pickford, 2002; 

Okuda et al., 2008). They are simple to handle, easy to rear, varieties of animal species 

to choose from and have short life span, hence, they are suitable for toxicity testing of 

water. 

The test animal-Asellus aquaticus, a freshwater isopod, was chosen because they play a 

significant part in freshwater environment; they are leaf shredders and transfer and 

store metabolic energy within the ecosystems (Van Hecken et al., 2000; Graca et al., 
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1993). They also serve as food for both fish and invertebrate predators (Rask & 

Hiisivuori, 1985; McCahon et al., 1990; De Jong et al., 2010; Bundschuh et al., 2012).  

Asellus aquaticus has a life cycle of one year and has been used as a test species in 

toxicity testing experiments both in the laboratory and the field (Rask & Hiisivuori., 

1985; Migliore & De Giudici., 1990; Bloor M., 2010; Ebele et al., 2017). They serve as 

an indicator of the health of stream, can be found in large number and breed in captivity 

and very slow in movement in water. Unlike G. pulex that is a water column dweller A. 

aquaticus are sediment-dwellers and constantly in contact with contaminants both in 

the water column and sediments (McCahon et al., 1990). They are seen as a robust 

organism, tolerant to fluctuations of pH value, dissolved oxygen concentrations and 

other physico-chemical parameters (Van-Hattumetal., 1989). They are considered to be 

relatively tolerant to pollution (Backhaus & Karlsson, 2011; Maltby, 1995; Bloor & 

Banks, 2005; Bloor., 2010), but can be sensitive to trace metals (Migliore & De 

Giudici., 1990). They play a prominent role in transfer of contaminants in the aquatic 

food chain (Peeters et al., 2000; MacNeil et al., 2002; Orn et al., 2016). Their small size 

and robust nature make them ideally suited for application in toxicity tests and 

eliminating them will disrupt the balance in the ecosystem (Bundschuh et al., 2012; 

Rask & Hiisivuori., 1985). Hence, they are of great importance for the sustainability 

and balancing in the ecosystem. Very few studies have investigated effects of 

pharmaceuticals on A. aquaticus in the aquatic environment; in the past three decades 

the majority of work done using this model organism focused on metal pollution. For 

example, mercury, cadmium and copper were found by Ort and Siegrist, (2009) to be 

toxic to A. aquaticus. Long-term effects of metals on A. aquaticus mortality was 

investigated by Van Ginneken et al. (2017) and found that lethal concentrations were 

lower than nominal and effective concentrations. Plahuta et al. (2014) investigated the 
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effects of exposure of A. aquaticus to selected organic pollutants and found that there 

were significant effects on the mortality rate. In a similar experiment by De Nicola 

Giudici et al., (1988, the effects of chronic exposure to 5 µgL -1 cadmium and copper 

on A. aquaticus were investigated and it was found that the juvenile body growth was 

stimulated by cadmium and depressed by copper. Other studies in which A. aquaticus 

were exposed to metal toxicity were Migliore et al. (1990); Rainbow & Black. (2005); 

Qiu et al. (2005); Grosell et al. (2002, 2006); Pestana et al. (2007); De Jonge et al. 

(2010); Bundschuh et al. (2012). 
The current work investigated the ecological effects of prolong low-level exposure of 

A. aquaticus (bottom/sediment dweller) to erythromycin, diclofenac, ibuprofen and 

their mixtures at environmentally relevant concentrations on growth, feeding and 

mortality with the aim of broadening knowledge about the potential risk of such 

contaminants to aquatic ecosystems. 

 

5.1 Aims, objectives and hypothesis 

5.1.1 Aim and objectives 

 
The general aim is to seek to improve the understanding of the effects of prolong low-

level exposure of freshwater ecosystems (Asellus aquaticus-bottom dweller) to 

pharmaceutical contamination. Response variables included growth, feeding and 

mortality. Specific objectives were; 

1. To assess the effects of prolonged low-level exposure to environmentally relevant 

concentrations of erythromycin, diclofenac and ibuprofen on growth, feeding, and 

mortality of freshwater macro-invertebrate isopod, Asellus aquaticus. 
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2. To examine the effects of mixtures of the above pharmaceuticals on A. aquaticus   

relative to individual compounds. 

 
5.1.2 Hypotheses 
 
(H1): That prolonged low-level exposure to environmentally relevant concentrations 

will have a direct lethal effect on A. aquaticus. 

 (H2): That extended exposure to environmentally relevant concentrations will cause 

significant reductions in sub-lethal endpoints (e.g. growth and feeding).  

(H3): That the effects of mixtures will be more pronounced than compounds acting 

singly. 

5.2 Single compound and mixture experiments with Asellus aquaticus 

  
5.2.1 Materials and methods 
 
Please refer to Chapter Four, section 4.2.1 

5.2.1.1 Study compounds 
 
Please refer to Chapter Four, section 4.2.1.1 

 
5.2.1.2 Materials 
 
Please refer to Chapter Four, section 4.2.1.2 
 
 
5.2.1.3 Preparation of solutions 
 
Please refer to Chapter Four, section 4.2.1.3 

 

5.2.1.4 Test animals: origin and maintenance 

Asellus aquaticus used for the experiments were sourced from Blades Biological Ltd, 

Cowden, Edenbridge, Kent, United Kingdom. Isopods of approximately the same size 
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averaging 21.80 ± 1.31 mg, 21.84 ± 1.46 mg, 22 ± 1.38 mg and 22.29 ± 1.31 mg were 

used for erythromycin, diclofenac, ibuprofen and their mixture experiments 

respectively. They were sexed and kept in incubators at 12° C with a diurnal light 

rhythm of 16 h:8 h (day-night) and allowed to acclimatise for ten days in aerated pond 

water before the exposure experiments started. Sexing is achieved by placing the pre-

copular pairs on a dry filter paper and allowed them to disentangle from each other.  

 

5.2.1.5 Preparation of leaf for feeding of test animals 

Please refer to Chapter Four, sections 4.2.1.5  
 
 
5.2.1.6 Exposure media 
 
Please refer to Chapter Four, sections 4.2.1.6 

 

5.2.1.7 Experimental design 
 
For each of the experiments (ERY, DIC, IBU and their mixtures), there were two 

treatments (LT and HT) and solvent controls with 15 replicates of each treatment and 

15 replicates of the control. Test concentrations were selected to mimic environmental 

detection levels reported for UK rivers in the literature. The low treatments (LT) were 

UK mean measured environmental concentrations of 159.7 ngL-1 (ERY), 202.2 ngL-1 

(DIC), 420.8 ngL-1(IBU) and the high treatments were 1377.8 ngL-1(ERY), 2990.7 ngL-

1(DIC) and 4838.4 ngL-1(IBU) respectively (Hughes et al., 2013, Bound and 

Voulvoulis, 2006) and the solvent control contained 0.1 mI L-1 of methanol. 

For the mixture experiments, the low and high treatments were mixtures of ERY, DIC 

and IBU concentrations in the single compound experiments. Only two treatments and 
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control could be established in this set of experiments due to inability to obtain 

sufficient standardised test animals from Blades Biological Ltd.  

The experiments were carried out in clear glass SS jar (500 mL) kept in incubators 

(Figure 5.2.1.7) at a temperature of 12° C and 16:8 h light: dark regime. The animals 

were illuminated with a fluorescent light (with a specification for freshwater 

invertebrates), to simulate on a small scale the macroinvertebrates’ natural climatic 

condition. The glow mimicked the thermal warmth and daytime illumination obtained 

from the sun radiation.    

  Each glass jar contained one A. aquaticus with 300 ml of pond water, which was 

assigned and arranged randomly in the experimental chambers using a random integer 

generator. Individuals were weighed individually at the start of the experiment and 

subsequently every week with a Sartorius Quintex 224-1s balance.  

The working solutions of LT and HT were poured on transparent silica glass beads and 

allowed to evaporate to dryness in the fume cupboard in other to avoid methanol 

toxicity, then the dried extracts were reconstituted/resuspended with 10 ml of pond 

water and washed into the beakers before A. aquaticus were introduced.  
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Figure 5.2.1.7: One of the experimental set-ups in the incubators showing the arrangement of 
the jars with one A. aquaticus in each jar exposed to experimental media (Solvent control 
(STCR), Low treatment (LT) & High treatment (HT)). 
 

Before the transparent silica glass beads were reused, they were washed with ultra-

clean water, ashed in the furnace at 550º C and allow to cool in the fume cupboard to 

prevent toxicity in any form to the test animals. 

 For each of the experiments, forty-five (45) A. aquaticus were used, making a total of 

one hundred and eighty (180) A. aquaticus used for (ERY, DIC, IBU and mixtures) 

experiments. Exposures were static-renewal with 100% water replacement every week 

with fresh concentrations of the pharmaceuticals and the experiments were each run for 
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4 (four) weeks. Growth was measured weekly by deducting the initial mass of each A. 

aquaticus from the mass each week. Mortality was determined at the end of the 

experiments by counting the surviving animals and calculating percentage mortality. 

Remaining alder leaves (feed material) at the end of the experiments were oven dried, 

weighed and combusted to determine the feeding rate (ash free dry mass). 

5.3 Data analyses 

Please refer to Chapter Four, sections 4.3 

 

5.4 Results 

5.4.1 Erythromycin experiments 

5.4.1.1 Initial test conditions 
 
When the experiment was initiated (day 0) the average mass of A. aquaticus (both 

treatments and controls) was 21.80 ± 1.31 mg with no statistically significant difference 

(ANOVA: F2, 42 = 0.26, p = 0.77) between treatment group and control.  

 

5.4.1.2 Growth 
 
There was a statistically significant difference in mass between the treatment groups 

and the control (ANOVA:  F2, 34 = 166.2, p < 0.001). There was a consistent increase in 

the mass of A. aquaticus in the control from week one to week four. The mean change 

in mass at the end of the experiments was SCTR 2.28 mg ± 1.0 SD, ERY-LT  

-3.28 mg ± 0.97 SD and ERY-HT -4.42 mg ± 1.03 SD (Figure 5.4.1.2). 
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Figure 5.4.1.2: Boxplots displaying change in mass o A. aquaticus exposed to environmental relevant concentrations of erythromycin after a 4-week static 
renewal experiments. Solvent control (SCTR), low treatment (ERY-LT) and high treatment (ERY-HT). The dark horizontal line inside the box represents the 
median (50th percentile), top of the coloured box represents the 3rd quartiles (75th percentile), top whisker represents the 4th quartiles (90th percentile), 
bottom of the coloured box represents the 2nd quartiles (25th percentile) and the vertical lines represents the 1st quartiles (10th percentile). There were no 
outliers. 
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5.4.1.3 Feeding 
 
There were statistically significant differences in the mass of feed materials between 

the control and treatments (ANOVA:  F2, 42 = 199.6, p < 0.001). The residuals of the 

data were normally distributed (Shapiro-Wilk normality test: p = 0.2914 and Bartlett 

test of homogeneity of variances p = 0.2855). The mass loss of Alnus glutinosa litter in 

the control was higher than those in the treatment groups i. e. feeding rate in the control 

was higher than the treatments. Even between the treatment groups, the feed material 

loss was dose dependant (Figure 5.4.1.3). Thus, erythromycin had deleterious effects on 

both feeding behaviour and growth of A. aquaticus. 



 
 
 
 

188 
 

 

Figure 5.4.1.3: Boxplots displaying consumed feed materials by A. aquaticus exposed to environmental relevant concentrations of erythromycin after a 4 
weeks static renewal experiments. Solvent control (SCTR), low treatment (ERY-LT) and high treatment (ERY-HT). The dark horizontal line inside the box 
represents the median (50th percentile), top of the coloured box represents 3rd quartiles (75th percentile), top whisker represents 4th quartiles (90th 
percentile), bottom of the coloured box represents the 2nd quartiles (25th percentile) and the vertical lines represents the 1st quartiles (10th percentile). There 
were no outliers.  
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5.4.1.4 Mortality 
 
There were no statistically significant differences between the treatments and the 

control (ANOVA:  F2, 9 = 0.55, p = 0.59). Four mortalities occurred in ERY-HT, three 

mortalities in the ERY-LT and one mortality in the control (SCTR), (Figure 5.4.1.4). 
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Figure 5.4.1.4: Boxplots displaying % mortality of A. aquaticus exposed to environmental relevant concentrations of erythromycin after 4 weeks static 
renewal experiments. Solvent control (SCTR), low treatment (ERY-LT) and high treatment (ERY-HT). The dark horizontal line inside the box represents the 
median (50th percentile), top of the coloured box represents 3rd quartiles (75th percentile), top whisker represents 4th quartiles (90th percentile), bottom of 
the coloured box represents the 2nd quartiles (25th percentile) and the vertical lines represents the 1st quartiles (10th percentile). There were no outliers. 
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5.5 Diclofenac experiments 

5.5.1 Initial test conditions 
 
When the experiment was initiated (day 0) the average mass of A. aquaticus in the 

solvent control (SCTR) was 21.6 mg ± 1.35 SD, low treatment was 22.20 mg ± 1.47 

SD and high treatment 21.73 mg ± 1.58 SD in diclofenac experiments. There was no 

statistically significant difference (ANOVA: F2, 42 = 0.69, p = 0.58) between treatment 

groups and the control.  

 
5.5.2 Growth 
 
When the residual of the data was analysed, there was statistically significant 

differences between the treatment groups and the control (ANOVA:  F2, 35 = 88.01, p < 

0.001). There was a consistent increase in the mass of A. aquaticus in the control from 

week one to week four. The mean changes in mass were SCTR 2.28 mg ± 1.0 SD, DIC-

LT -1.60 mg ± 1.01 SD and DIC-HT -2.66 mg ± 1.02 SD (Figure 5.5.2). 
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Figure 5.5.2: Boxplots displaying change in mass of A. aquaticus exposed to environmental relevant concentrations of diclofenac after 4 weeks static renewal 
experiments. Solvent control (SCTR), low treatment (DIC-LT) and high treatment (DIC-HT). The dark horizontal line inside the box represents the median 
(50th percentile), top of the coloured box represents 3rd quartiles (75th percentile), top whisker represents 4th quartiles (90th percentile), bottom of the 
coloured box represents the 2nd quartiles (25th percentile) and the vertical lines represents the 1st quartiles (10th percentile). There were outliers. 
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5.5.3 Feeding 
 
There were statistically significant differences in the mass of feed materials between 

the control and treatments (GLM: χ2 (2) = 77.38, p < 0.001). The mass loss of Alnus 

glutinosa litter by the control was higher than those in the treatment group i. e. feeding 

rate in the control were higher than the treatments. Even between the treatment groups, 

the feed materials loss was dose dependant and significantly influenced (Figure 5.5.3). 
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Figure 5.5.3: Boxplots displaying consumed feed materials by A. aquaticus exposed to environmental relevant concentrations of diclofenac after 4 weeks 
static renewal experiments. Solvent control (SCTR), low treatment (DIC-LT) and high treatment (DIC-HT). The dark horizontal line inside the box represents 
the median (50th percentile), top of the coloured box represents 3rd quartiles (75th percentile), top whisker represents 4th quartiles (90th percentile), bottom 
of the coloured box represents the 2nd quartiles (25th percentile) and the vertical lines represents the 1st quartiles (10th percentile). There were no outliers.  
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5.5.4 Mortality 
 
There was one mortality in the SCTR during the third week of the experiments. In the 

DIC-LT there were three deaths, one in week three and a further two in week four, as 

there were in the DIC-HT. There was no statistically significant difference in mortality 

between treatments and control groups (GLM: χ2 (2) = 29.62, p = 0.75, Figure 5.5.4).   
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Figure 5.5.4: Boxplots displaying % mortality of A. aquaticus exposed to environmental relevant concentrations of diclofenac after 4 weeks static renewal 
experiments. Solvent control (SCTR), low treatment (DIC-LT) and high treatment (DIC- HT). The dark horizontal line inside the box represents the median 
(50th percentile), top of the coloured box represents 3rd quartiles (75th percentile), top whisker represents 4th quartiles  (90th percentile), bottom of the coloured 
box represents the 2nd  quartiles (25th percentile) and the vertical lines represents the 1st quartiles (10th percentile). There were no outliers.  
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5.6 Ibuprofen experiments 

5.6.1 Initial test conditions 
 
When the experiment was initiated (day 0) the average mass of A. aquaticus in the 

solvent control (SCTR) was 21.6 mg ± 1.35 SD, low treatment was 22.47 mg ± 1.41 

SD and high treatment 21.93 mg ± 1.33 SD in ibuprofen experiments. There was no 

statistically significant difference (ANOVA: F2, 42 = 1.54, p = 0.23) recorded between 

treatment groups and the control.  

 

5.6.2 Growth 
 
When the residual of the data was analysed, there was no statistically significant 

differences between the treatment groups and the control (GLM: χ2 (2) = 1.17, p = 

0.24). There was a consistent increase in the mass of A. aquaticus in the control and a 

marginal increase in the treatment groups. The mean changes in mass were SCTR 2.28 

mg ± 1.0 SD, IBU-LT 1.91 mg ± 0.39 SD and IBU-HT 1.94 mg ± 0.31 SD, (Figure 

5.6.2).   
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Figure 5.6.2: Boxplots displaying change in mass of A. aquaticus exposed to environmental relevant concentrations of ibuprofen after 4 weeks static renewal experiments. 
Solvent control (SCTR), low treatment (IBU-LT) and high treatment (IBU-HT). The dark horizontal line inside the box represents the median (50th percentile), top of the 
coloured box represents 3rd quartiles (75th percentile), top whisker represents 4th quartiles  (90th percentile), bottom of the coloured box represents the 2nd  quartiles (25th 
percentile) and the vertical lines represents the 1st quartiles (10th percentile). There is an outlier. 
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5.6.3 Feeding 
 
The effects of 4 weeks exposure of A. aquaticus to environmentally relevant 

concentrations of ibuprofen is presented in Figure 5.6.3. No statistically significant 

difference in the mass of feed materials of A. aquaticus was determined after 4 weeks 

exposure to ibuprofen, however (GLM: χ2 (2) = 1.31, p = 0.35). 
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Figure 5.6.3: Boxplots displaying consumed feed materials by A. aquaticus exposed to environmental relevant concentrations of ibuprofen after 4 weeks 
static renewal experiments. Solvent control (SCTR), low treatment (IBU-LT) and high treatment (IBU-HT). The dark horizontal line inside the box represents 
the median (50th percentile), top of the coloured box represents 3rd quartiles (75th percentile), top whisker represents 4th quartiles  (90th percentile), bottom of 
the coloured box represents the 2nd  quartiles (25th percentile) and the vertical lines represents the 1st quartiles (10th percentile). There were no outliers.  
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5.6.4 Mortality 
 
There were no statistically significant differences between the treatments and control 

(GLM: χ2 (2) = 7.42, p = 0.61) although, there was one mortality each in the control 

and high treatment, but this was not significant enough to cause an effect. (Figure 

5.6.4).  
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Figure 5.6.4: Boxplots displaying % mortality of A. aquaticus exposed to environmental relevant concentrations of ibuprofen after 4 weeks static renewal 
experiments. Solvent control (SCTR), low treatment (IBU-LT) and high treatment (IBU-HT). The dark horizontal line inside the box represents the median 
(50th percentile), top of the coloured box represents 3rd quartiles (75th percentile), top whisker represents 4th quartiles  (90th percentile), bottom of the coloured 
box represents the 2nd  quartiles (25th percentile) and the vertical lines represents the 1st quartiles (10th percentile). There were no outliers.  
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5.7 Multiple mixture (ERY+DIC+IBU) experiments 

5.7.1 Initial test conditions 
 
When the experiment was initiated (day 0) the average mass of A. aquaticus was 22.32 

mg ± 1.45 SD for control (SCTR), 22.19 mg ± 1.31 SD for low treatment (MIX-LT) 

and 22.37 mg ± 1.24 SD for high treatment (MIX-HT). There was no statistically 

significant difference in test organism mass between the treatments and the control 

(ANOVA: F2, 42 = 0.073, p = 0.929). 

 

5.7.2 Growth 
 
When the residuals of the data were analysed for change in mass over the course of the 

experiment, there were statistically significant differences between the treatments and 

the control (GLM: χ2 (2) = 10.07, p < 0.01), (Figure 5.7.2). 
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Figure 5.7.2: Boxplots displaying change in mass of A. aquaticus exposed to mixtures of erythromycin, diclofenac and ibuprofen after 4 weeks static renewal 
experiments. Solvent control (SCTR), low treatment (MIX-LT) and high treatment (MIX-HT). The dark horizontal line inside the box represents the median 
(50th percentile), top of the coloured box represents 3rd quartiles (75th percentile), top whisker represents 4th quartiles  (90th percentile), bottom of the coloured 
box represents the 2nd  quartiles (25th percentile) and the vertical lines represents the 1st quartiles (10th percentile). There was outlier.  
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5.7.3 Feeding 
 
There were statistically significant differences in the mass of feed materials between 

control and treatments (ANOVA: F(2,42) = 6.72, p < 0.01). The mass loss of Alnus 

glutinosa litter by the control was higher than those in the treatment groups i. e. feeding 

rate in the control was higher than the treatments, (Figure 5.7.3). 
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Figure 5.7.3: Boxplots displaying consumed feed materials by A. aquaticus exposed to environmental relevant concentrations of mixtures of erythromycin, 
diclofenac and ibuprofen after 4 weeks static renewal experiments. Solvent control (SCTR), low treatment (MIX-LT) and high treatment (MIX-HT). The dark 
horizontal line inside the box represents the median (50th percentile), top of the coloured box represents 3rd quartiles (75th percentile), top whisker represents 
4th quartiles  (90th percentile), bottom of the coloured box represents the 2nd  quartiles (25th percentile) and the vertical lines represents the 1st quartiles (10th 
percentile). There were no outliers.  
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5.7.4 Mortality 
 
Mortality did not occur in the control throughout the duration of the experiments. One 

and two mortalities were recorded in the fourth week of the experiments in the MIX-LT 

and MIX-HT respectively (Figure 5.7.4) but there was no statistically significant 

difference between the treatments and control (GLM: χ2 (2)  = 22.11, p = 0.56). 
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Figure 5.7.4: Boxplots displaying % mortality of A. aquaticus exposed to environmental relevant concentrations of mixtures of erythromycin, diclofenac and 
ibuprofen after 4 weeks static renewal experiments. Solvent control (SCTR), low treatment (MIX-LT) and high treatment (MIX-HT). The dark horizontal line 
inside the box represents the median (50th percentile), top of the coloured box represents 3rd quartiles (75th percentile), top whisker represents 4th quartiles  
(90th percentile), bottom of the coloured box represents the 2nd  quartiles (25th percentile) and the vertical lines represents the 1st quartiles (10th perc entile). 
There were no outliers.  
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5.8 General Discussion 

The aim of this study was to seek to improve the understanding of the effects of 

prolonged low-level exposure of Asellus aquaticus to erythromycin, diclofenac, 

ibuprofen and their mixtures. Overall, there were substantial impact on growth and 

feeding when Asellus aquaticus was exposed to the erythromycin and diclofenac. 

Though, there was no concurrent effects due to ibuprofen.  

There are few data on the use of A. aquaticus as a test species in pharmaceutical effect 

studies but there is substantial information on its use in metal toxicity. This study is one 

of the few in which A. aquaticus is used in pharmaceutical effect studies. 

 

5.8.1 Effects of erythromycin on growth, feeding and mortality of A. aquaticus 
 
Results obtained from this study clearly showed that growth and feeding behaviour of 

Asellus aquaticus were affected when the isopod was exposed to environmentally 

relevant concentrations of erythromycin, hence hypothesis H2 was upheld/accepted.   

Reduced feeding activity, reduced growth and increased mortality was noticed in the 

treatments compared to the control. These visible effects on feeding, body mass and 

mortality were related to concentration levels.  

This present experiment was supported in a similar experiment by Plahuta et al. (2015) 

in which A. aquaticus was exposed to 2.5/5.0 mgL-1 of Bisphenol-A (BPA) for 21 days; 

even though a different drug and at higher concentrations when compared to this study, 

there was 75 % reduction in growth rate. In many crustacean significant growths occurs 

only through periodic moulting, in this instance most likely, moulting of the 

exoskeleton has been inhibited/disrupted by the activities of erythromycin, as well as 

inhibited feeding, therefore, caused a reduction in growth (D’ascenzo et al., 2003). 



 
 
 
 

210 
 

Another reason that may have caused reduction in body mass when exposed to 

erythromycin was decreased available energy for body growth (Slooff, 1983). Any 

organism exposed to contaminants need to apportion energy to withstand the 

contaminant either by evasion, expulsion, elimination, or biochemical complexation 

(Donker,1992), however, if the concentration levels of the toxicants is more than what 

the organism can cope with, effects are expected/noticed. 

Other research further supported these findings, for instance, a similar result was 

obtained but with a different species in an investigation by Quinn et al. (2008) in which 

Hydra attenuata was exposed to 50 mgL-1 of erythromycin for 96 h, significant 

reduction in feeding activity was observed. The change in feeding rate/activity was also 

observed in another organism after 72 h exposure to erythromycin at the same 

concentration with the one used in this investigation. Investigations by Plahuta et al. 

(2015, 2017), has shown that the source of diet also plays a significant role in 

contaminants absorbing through feeding/ingestion. Asellus aquaticus which are 

bottom/sediment dwelling animals are directly exposed to pollutants from interstitial 

and overlying water by consuming Alder leaves. It has been reported that absorption of 

contaminants through dietary source could be up to 100 % of total residue by aquatic 

organisms, hence it is right to assume that the source of pharmaceuticals to which an 

organism is exposed could be significant in the effects occurrence in the animals 

(Landrum & Robbins., 1990; Peters et al., 2000; Orn et al., 2016). 

It is a known fact (Bloor., 2010; Bloor and Bank., 2012) that fungi and bacteria are 

valuable parts of diet of all detritivores and a recent report revealed that Asellus 

aquaticus favoured a diet of conditioned leaf materials over unconditioned leaf 

materials, with natural conditioning being the preferred conditioning option (growth of 

fungi and bacteria on the leaf). Investigations by Bloor (2010) has equally revealed that 
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natural conditioning leaf materials produces noticeably softer and heavier leaf 

materials, which could be ascribe to the settling of micro-organisms on the leaves. A. 

aquaticus feed, by scraping the leaf surface, thereby, this feeding habit of A. aquaticus 

could have added to the negative effect found when exposed to erythromycin because 

the residues of the drug might have settled also on the leaf surface. Erythromycin, a 

narrow spectrum antibiotic works by inhibiting protein synthesis (by preventing them 

from building protein) in mammals, since protein do all the cell’s work, a bacterium 

that cannot build protein cannot survive, a similar process may be found in A. aquaticus 

thereby reducing feeding activities, body weight and increase mortality. 

In many cases most of the data from the literature agrees with the results of this finding. 

When Asellus aquaticus was exposed to cadmium at concentration of 600 μgL-1, the 

feeding activities and growth of the test animal was reduced (Ebele et al., 2017; Liu et 

al., 2017). In another study in which Palaemon serratus was exposed to tetracycline a 

similar result inhibiting the feeding activities was observed even though different 

pharmaceuticals, but they are still environmental stressors (Oliveira et al., 2015). Any 

element impacting an organism’s feeding activity may equally have strong ecological 

implications within the organism’s biome. 

Another study by Plahuta et al. (2017), in which Asellus aquaticus was exposed to two 

different waste water treatment plants influent A & B, it was observed that 100 % and 

95 % mortality occurred in the undiluted samples respectively although, the 

pharmaceuticals in the waste water were not revealed by the researchers. This result 

disagreed with this present study in which mortality recorded was not significant. 

Mixture effects of different compounds with different modes of action and with 

different receptors being targeted may be a factor in this case. Plahuta et al. (2017) also 

observed significant changes in mortality between influent and treated effluent samples. 
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The mortality from sewage treatment effluents was less than 20 %. Compared to the 

mortality in influent samples, it indicates efficient removal of a great quantity of toxic 

pollutants in sewage treatment systems. This present study suggests that the decreased 

feeding activity directly influenced the growth rate of A. aquaticus but not enough to 

cause lethality in the test species hence, hypothesis H1 was rejected. However, the 

increase in food intake by the control positively correlates with the growth and final 

size of the test animals (Graca, 1990; Arsuffi and Suberkropp, 1986). 

 

5.8.2 Effects of diclofenac on growth, feeding and mortality of A. aquaticus 
 
The results of this experiment showed that environmentally relevant concentrations of 

diclofenac have significant effects on growth and feeding behaviour of Asellus 

aquaticus, hence hypothesis H2 was upheld/accepted. This suggest that growth and 

feeding behaviour are more sensitive indicators of stress in extended exposure to 

xenobiotics.  

Diclofenac in humans inhibit prostaglandin biosynthesis. Prostaglandins mode of action 

are contractions of muscles in different organs (Cleuvers, 2004). Some previous works 

in the literature revealed the presence of prostaglandins in some invertebrates and 

vertebrates’ animals, for example crustaceans (Bundy, 1985). A likely reason for the 

observed reduction in activities of A. aquaticus could be that the natural pattern of 

muscle contractions in A. aquaticus was interfered with by diclofenac. These may 

affect physiological processes such as feeding and growth.  

Previous research has also shown that behavioural indicators are more useful for 

appraising sub-lethal effects of pharmaceutical contaminants. For instance, Hernando et 

al. (2006) demonstrated that a variety of contaminants interfere with normal freshwater 

isopods behaviour after exposures much less severe than those causing significant 
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mortality. Inhibition of feeding behaviour may be explained by serotonin functions as a 

neurotransmitter and regulate a wide range of behaviours (Fent et al., 2006; Baker et 

al., 2013 ). The results of this experiments were supported in a similar study by 

Richards et al. (2015b) where male Japanese medaka fish (though different test species 

to the one used in this experiments) were exposed to diclofenac at environmentally 

relevant concentrations three biomarkers were expressed, indicating that diclofenac has 

capacity to cause cellular toxicity. More recent studies further supported this result, 

Nassef et al. (2010), Brodin et al. (2014), Schoenfuss et al. (2016), Relic et al., 2017 

and Conolly et al., (2017) in which Japanese medaka fish was exposed at 

environmentally relevant concentrations to diclofenac, the feeding rate and feeding 

activity were reduced.  

This experiment equally compared favourably with the works of Schwaiger et al. 

(2004) in which the macro-invertebrate animal, Daphnia magna was exposed to 

diclofenac at concentrations similar to the one used in these experiments, reduced 

feeding activities and growth rate was observed. In a related study by Triebskorn et al. 

(2004), Zhang et al. (2012) in which rainbow trout (Oncorhynchus mykiss) was exposed 

to diclofenac concentrations similar to the one used in this report 1 µg L-1 to 500 µg L-1 

for 28 days period. Mutation in the gills and kidney of the exposed fish was reported. 

Renal lesions and alterations of the gills was observed at 5 µg L-1 (LOEC) (Zhang et 

al., 2012). These concentrations are higher than the one used in the present study. The 

results further supported this present study even though different test animals but the 

mode of action and target receptor of diclofenac in organisms may be the same. 

In this study mortality was not significant when compared with the control throughout 

the duration of the experiments, therefore, hypothesis H1 was rejected. The works of 

Dietrich et al., (2010b) was in contrary to this experiment, the embryo of zebra fish was 
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exposed to diclofenac after 96 h, it was recorded that the lethal concentration was 

480±50 µg L-1(LC50 96h) and effect concentration was 90 ± 20 µg L-1(EC50 96 h). This 

may be explained by the fact that fish embryo is more sensitive to toxicants and the 

concentrations employed in the study is higher than the one used in this experiment. 

 

5.8.3 Effects of ibuprofen on growth, feeding and mortality of A. aquaticus 
 
Ibuprofen is a non-steroidal anti-inflammatory drug (NSAID), an unstable chemical 

that can be degraded in the environment with a t50 < 1 day (Richardson and Bowron, 

1985). The results from this investigation showed that 4 weeks exposure of Asellus 

aquaticus to ibuprofen at environmentally relevant concentrations is of no significant 

consequences ecologically. There was no significant concentration response 

relationship for any of the endpoints examined e.g. growth and feeding, hence 

hypothesis H2 was rejected and for mortality, hypothesis H1 rejected also.  

Heckmann et al. (2007) supported this result when Daphnia magna was exposed to 

chronic concentration of ibuprofen (20-40 mgL-1) for 14 days.  However, in an earlier 

study by Heckman et al. (2005), total mortality was recorded when D. magna was 

exposed to ibuprofen concentrations of 80-100 mgL-1 for 12 days. Although, one may 

argue that A. aquaticus and D. magna are two different species of freshwater macro-

invertebrate animals, D. magna are more sensitivity to contaminants than A. aquaticus, 

hence the reason why no response was noticed in A. aquaticus. 

This study disagrees with the works of De Lange et al. (2006), in which relevant 

environmental concentrations of ibuprofen were investigated on G. pulex at low 

concentrations of 10-100 ngL-1 and resulted in a significant decrease in activities of the 

benthic macro invertebrate animal. One could argue that G. pulex is more sensitive to 

environmental contaminants than A. aquaticus. G. pulex lives in oxygen rich water 
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column and A. aquaticus is a bottom/sediments dweller, can withstand low oxygen, 

high ammonia concentrations and highly tolerant of pollution. Both are used in bio-

monitoring of the health of freshwater habitat.  

This study also disagrees with the investigation of Pomati et al. (2004) where an 

aquatic freshwater plant, Lemna minor and cyanobacterium Synechocystis sp. were 

exposed to relevant environmental concentrations of ibuprofen. It stimulates the growth 

of cyanobacterium Synechocystis sp. when exposed at concentration of 1, 10, 100 and 

1000 µgL-1 after just 5 days and show no effects on duckweed L. minor within 5 days 

of exposure. However, after changing of the test media it inhibited the growth of 

duckweed L. minor after 7 days of exposure at all tested concentrations.  Ibuprofen was 

also observed to be embryotoxic at concentrations >10 μgL-1 to zebrafish (Pancharatna 

et al., 2015). Ibuprofen has also been observed to distress the defence system and 

stimulate stress in adult bivalves (Parolini et al., 2016). In another study by Furlong et 

al., (2014) similar to this report, where M. galloprovinciallis was exposed to ibuprofen, 

larva development only occurs at much more higher concentrations than 

environmentally relevant concentrations. However, additional studies involving long-

term exposures (in agreement with this present study) were conducted suggesting that, 

exposing aquatic organisms to relevant environmental concentrations of ibuprofen may 

not impact on the organisms (Cleuvers, 2004; Hans et al., 2006; Heckmann et al., 2005, 

2007; Pounds et al., 2008). 

But, before a definite conclusion can be reached on the environmental risk posed by 

ibuprofen on macro-invertebrates, multi-generational exposure investigations needs to 

be conducted. Another investigation on Oryzias latipes- a killfish after exposure to 

chronic concentrations of ibuprofen for 6 weeks showed that although reproduction was 
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delayed total reproduction of Oryzias latipes did not differ between the treatments 

(Flippins et al., 2007; Heckman et al., 2007).  

In a study that disagree with the results of this present study, endocrine disruption at 

sub-molar concentration levels of ibuprofen revealed a decrease in corticol production 

by 40 % in interrenal cells of Oncorhynchus mykiss (rainbow trout) which may impair 

stress response (Heckman et al., 2007). A previous study on the acute immobility of 

Daphnia magna (Cleuvers, 2004) has demonstrated that ibuprofen work by narcosis 

principle (Van Hecken et al., 2000). In a multi-generational study conducted by Clubbs 

and Brooks, (2010) in which D. magna was exposed to ibuprofen, there was reduced 

fecundity of D. magna in the first generation, while long term (10 days) exposure did 

not significantly different from the controls. 

 

5.8.4 Effects of mixtures of erythromycin, diclofenac and ibuprofen on growth, feeding 
and mortality on A. aquaticus. 
 

Going forward from the analysis of single compounds, in the present study, effects of 

mixtures of erythromycin, diclofenac and ibuprofen at relevant environmental 

concentrations via direct (waterborne) exposure pathway on Asellus aquaticus in a 4 

weeks bioassay was investigated. Sublethal responses such as growth, feeding 

behaviour and mortality were analysed. It was observed that the compounds influenced 

the growth of A. aquaticus both at low and high treatments and hence discontinuous 

increase in body mass when compared with the constant increase in mass in the control, 

therefore hypothesis H3 was accepted/upheld. They are consistent with previous 

investigations that had showed that mixtures of some drugs can cause greater effects 

than when acting singly (Cleuvers, 2004). In this present study, exposure of A. 

aquaticus to mixtures of erythromycin, diclofenac and ibuprofen negatively affected 
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the growth and feeding activities of the test organism, but the effects were not as strong 

as in the single compounds of erythromycin and diclofenac. However, synergism 

exhibited in this present study maybe as a result of different receptors targeted by the 

compounds, NSAIDs targeting COX 1 & 2 and ERY targeting prokaryotic cells.  

In a similar investigation by Quinn et al. (2009) in which Hydra was exposed to 

mixtures of pharmaceuticals for 96 h, there was reduction in the ability of the 

freshwater Hydra to regenerate.  

Investigations by Parrot and Bennie (2009) also supported the findings in this study, 

although, Pimephales. promelas (Fathead minnow) was used to study the effects of 

mixtures of seven drugs at concentrations of 1µg L-1 for 3 months. The degree of 

defects observed in the fathead minnow were small. Sun et al. (2009) investigated 

binary mixtures of a hormone (17β-estradiol) with letrozole at environmentally realistic 

concentration and detected significant decrease in fertility and fecundity after 21 d of 

exposure. 

In a similar study to this experiment, even though different compounds and test species, 

Dietrich et al., (2010) exposed Lemna gibba (Fat Duckweed) to different mixture of 

drugs similar sensitivity was demonstrated by the test species at concentrations 1–300 

µg L-1.  After 7 d, the test specie showed sign of necrosis. 

In a multigenerational mixture experiment in which acetaminophen, diclofenac, 

ibuprofen and a host of other compounds were used, it was observed that the sex ratio 

was altered by 17 % more males.  In a binary combination (diclofenac and ibuprofen) 

and quaternary (ibuprofen, acetylsalicylic, naproxen and diclofenac) exposed to D. 

magna, a very strong additive effect was observed at concentrations of 34-54 mgL-1 

(Cleuvers, 2004). Very strong additive effects were also observed when D. magna was 
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exposed at concentrations 10-fold lower than the quaternary concentrations. The body 

size and reproduction were affected (Cleuvers, 2008).  

In a study carried out by Nieto et al., (2016), Carcinus maenas was shown to have 

significant changes in haemolymph osmolality and osmoregulatory capacity after being 

exposed to relevant environmental concentrations of the mixtures (10 ngL-1 and 17.5 

psu of salinity). The osmoregulatory ability of the mixture was improved, implying a 

reduction in benefit by organisms and a rise in haemolymph osmolality (Furuhagen et 

al., 2014). The A. aquaticus exposed to the mixtures of erythromycin, diclofenac and 

ibuprofen started losing weight as a result of the exposure while the control animals are 

gaining weight weekly. Feeding rate was equally affected, the exposed isopod was 

feeding at reduced rate in the low and high treatments compared to the control. Hence 

there was alteration in feeding rate of A. aquaticus exposed to the mixture. Similar 

investigation on Hydra attenuata, showed that minimum concentrations of 10 mgL-1 

and 50 mgL-1 was needed to observe a significant reduction in feeding activities when 

exposed for 96 h to ibuprofen and carbamazepine respectively (Quinn et al., 2008). 

This concentration was 1000 times higher than the concentrations employed in this 

study though, with different study compounds and test animals and duration.  

De Lange et al (2006, 2009) established the effects of pharmaceuticals on feeding 

activities and behaviour of other macro-invertebrate animals, using concentrations 

similar to those used in this study but different pharmaceutical compounds were used. 

Considering the feeding rate and growth between the control and treatments, one-way 

ANOVA/GLM results suggested that there was a significant interaction. When you 

compared this with the exposure of A. aquaticus to single compounds of erythromycin 

and diclofenac there is a decrease in growth and feeding rate by 10-fold. These showed 

that the single compound of erythromycin and diclofenac are more toxic than the 
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mixture of erythromycin, diclofenac and ibuprofen. This may be due to the fact that 

erythromycin and diclofenac are toxic to A. aquaticus while ibuprofen may be harmful. 

The realistic environmental concentrations of isolated compounds such as diclofenac 

and erythromycin do cause increase mortality, reduced feeding rate and growth. 

However, when they are in mixtures, these compounds may present increased 

(synergistic) or reduced (antagonistic) inherent toxicity. Aside this, diclofenac and 

ibuprofen have similar mode of action (MoA) and hence they may act (additively) 

synergistically. Addition of erythromycin to this mixture may cause it to act 

antagonistically, hence the result obtained in this study. 

The low significance in this study compared to environmentally relevant concentrations 

of isolated compounds such as diclofenac and erythromycin may be due to antagonistic 

toxicity. The low and high treatments did not show any sign of increase mortality as a 

result of the exposure to the mixture. There were only three mortalities throughout the 

duration of the study, one in the low and two in high treatments and none in the control.  

Generally, many scientists agree that concentration addition (CA) is appropriate for 

estimating mixture toxicity of substances acting in a similar manner, while independent 

action (IA) assumes that in a mixture of different chemicals, the effects exerted by 

individual chemical are not dependent on others. The key limitation of the 

concentration addition model, as Kortenkamp et al., 2009 noted, is that differences may 

be detected for some mixtures containing drugs for which only low effects are detected. 

 

5.9 Conclusion  

Based on this study, it can be suggested that A. aquaticus can be recognized as a 

reference model test animal and good indicator to evaluate the potential effects of 
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contaminants. The results of this study showed that the toxicity of drug mixtures is 

unpredictable, and complex compared to effects of single pharmaceuticals. In the single 

compound experiments, erythromycin and diclofenac effects on A. aquaticus growth 

and feeding were more pronounced and no effect on mortality while ibuprofen showed 

no effects on the test animals. However, the mixtures showed concentration addition 

(CA) effects and one of the weaknesses of this model is that differences are sometimes 

seen for some mixtures containing drugs for which only little effects are detected.
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CHAPTER SIX 
 

General Discussion 
 

6.0 Research synthesis 

This PhD thesis had investigated the occurrence and effects of pharmaceuticals in 

African rivers (Nigeria). The main goal of the research was to quantify the occurrence 

of selected pharmaceuticals in African Rivers (Nigeria) and to seek to improve the 

understanding of the effects of prolonged low-level exposure of G. pulex and A. 

aquaticus to environmentally relevant concentrations of erythromycin, diclofenac, 

ibuprofen and their mixtures. The main objectives of the study were to: (1) evaluate the 

presence of drugs belonging to different therapeutic classes in previously unstudied 

surface water in Nigeria. (2) Quantify spatial patterns of pharmaceutical contaminations 

in the Odo Iya Alaro river, Lagos Southwest Nigeria. (3) Determine seasonal dynamics 

of contamination. (4) Assess the effects of prolonged low-level exposure to 

environmentally relevant concentrations of erythromycin, diclofenac and ibuprofen on 

growth, feeding, and mortality of G. pulex and A. aquaticus. (5) Examine the effects of 

mixtures of the above pharmaceuticals on G. pulex and A. aquaticus relative to 

individual compounds.  To achieve the 1st, 2nd and 3rd objectives (Chapter 3), data were 

collected from Odo Iya Alaro river in Lagos State, Southwest Nigeria to find out if 

there are indeed pharmaceuticals in Nigeria aquatic systems.  In order to achieve the 4th 

and 5th objectives, Chapters 4 & 5 investigated the effects of the three study compounds 

(erythromycin, diclofenac, ibuprofen and their mixtures) on the growth, feeding and 

mortality of G. pulex (Chapter 4) and A. aquaticus (Chapter 5). More detailed and 

specific findings in relation to the individual chapters are summarised as follows. 
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6.1 Occurrence of pharmaceuticals in river water and effluents in Nigeria compared to 

other parts of the world. 

 
The quest by human to live a better life and increase agricultural productivity in other 

to feed himself led to development of modern pharmaceuticals in the eighteen century 

(1800s). Ever since, the use of drugs has been a blessing to human race for (i) 

prevention and treatments of diseases (ii) maintenance of good health (iii) increases 

productivity in work place by reducing man-hour spent on sick-leave (iv) longevity of 

life (v) increases crop yield and farm produce for human consumption. These brought 

unlimited joy to mankind because of its numerous benefits but not until the last 20 

years when the presence of these drugs in the environment (aquatic and terrestrial) 

became an issue of global concern because they are designed to be biologically active 

hence, their unexpected presence in the ecosystem has generated worries over possible 

potential adverse effects on fauna and flora. Pharmaceuticals are continuously been 

released and expectedly pervasive and pseudo-persistency in the environment.  

They have been found in all types of aquatic environment, i.e. ponds, streams, rivers, 

sewage, lakes, sea, groundwater and had equally been reported in drinking water. They 

enter the aquatic systems through many channels but of most important route is the 

STPs effluents. Also, the development of highly effective analytical instruments has 

aided the detection of this pharmaceuticals in nanogram per litre in the aquatic 

environment. However, the quantity and types of drugs in an environment depends on 

usage, method of disposal, life style, age of people living in that vicinity, type and 

quality/effectiveness of sewage treatment plants, climatic condition, government 

regulations/policy, physicochemical parameters of the receiving water body and 
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receptors in the organisms taken the drugs and ecological mechanism will all add up to 

play an important part in the occurrence and effects of drugs in river systems.  

More than 1000 publications are available on the occurrence of pharmaceuticals in 

aquatic environment mostly from North America, Western Europe (Santos et al. 2013), 

very small part of China and India (Hughes et al., 2013). Most of this research 

particularly in China and India are clustered around very small number of Urban sites 

(Hughes et al., 2013). Large numbers of potentially high-risk pharmaceuticals are 

poorly or not investigated. Techniques employed during sampling in most of the 

research are poor for capturing the high degree of temporal and spatial variability 

associated with pharmaceutical pollution. 

Also, as human population increases, the need to improve quality of life will increases 

and pharmaceutical usage will also increase. This may be a major factor for increase 

occurrence of pharmaceuticals in aquatic system and by extension pharmaceutical 

contamination of the freshwater ecosystems in years to come (Daughton, 2003). To 

mitigate the impact of pharmaceuticals in the environment, it is important we 

understand the occurrence and effect of these compounds in the environment.  If these 

challenges are not dealt with soonest, the ever-increasing human population especially 

in developing countries of Africa, Asia and South America with rising economic 

development in these continents may contribute significantly to the ongoing 

contamination of the environment and substances that are detected presently at high 

nanogram to low micrograms per litres may soon reach mg per litre in these continents.  
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Most importantly, this research has actually addressed some vital components of this 

complex system and has established the presence of pharmaceuticals in Nigeria 

freshwater system (Chapter 3). 

In this study, pharmaceuticals are consistently found throughout the duration of 

sampling across the urban and semi urban stretch of Odo-Iya Alaro river including the 

STPs and pharmaceutical manufacturing effluents. Verlicchi et al. (2012), in his global 

review of pharmaceuticals, reported effluent concentrations for many analytes some of 

which were also observed in this study. Paracetamol, sulfamethoxazole, fexofenadine, 

metformin, carbamazepine and cimetidine concentrations all of which fell above the 

ranges reported by Verlicchi et al. (2012). Similarly, study of effluents in the European 

Union (EU) reported average concentrations 3-4 order of magnitude lower than those 

determined here for paracetamol, cimetidine, fexofenadine, atenolol, sulfamethoxazole, 

carbamazepine and diazepam, while concentrations of venlafaxine, sitagliptin, 

propranolol and tramadol were an order of magnitude lower than those reported by 

Burns et al., (2018), Loos et al., (2013) and Kasprzyk-Hordern et al., (2009). 

For seasonal variations, the highest six median concentrations in the dry season are: 

fexofenadine>metformin>cimetidine> paracetamol > carbamazepine>sulfamethoxazole 

and for wet season are: paracetamol > cimetidine > sulfamethoxazole > metformin > 

fexofenadine > codeine respectively indicating that there are no specific spatial trend 

and that concentrations of analytes were elevated throughout. This corroborated the fact 

that variety of sources existed for pharmaceutical contamination of the river system in 

Nigeria. 

However, the maximum concentrations recorded for antibiotics, analgesic and 

psychiatric in this study were more than 50 times higher than those reported for other 

African countries and globally (Table 6.1). Furthermore, the concentrations of 
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pharmaceuticals such as fexofenadine, metformin, ranitidine and lidocaine are up to 3-4 

orders of magnitude higher compared to global concentrations for these compounds, 

however, for African countries data are sparse. When the data from this investigation 

were compared to the concentrations reported in a recent review on the global 

environmental PhACs occurrence (Tim Aus der Beek et al., 2016), the values measured 

in this present study are of 3-4 order of magnitude higher (Table 6.1). Table 6.1 shows 

(this study) as far as l know and from all the literature studied/published, the first time 

in African river where 27 pharmaceuticals were detected and in such high 

concentrations. 

Probable explanations might be: (i) Lagos State being the city with the highest number 

of human populations in Africa and the smallest state in Nigeria has the highest number 

of educated people and hence, usage of pharmaceuticals is high. (ii) Lagos state has 

more than 60 % of pharmaceutical manufacturing companies and serves as hub for 

distribution of pharmaceutical products in West Africa. (iii) Inadequate STPs and 

incomplete removal from the few available. (iv) Rivers are highly impacted by informal 

settlements: both urban and semi urban cities/town. (v) Multiple sources of 

pharmaceutical load into the aquatic systems. 

Since the concentrations of pharmaceuticals monitored in river system in Nigeria were 

known (Chapter 3), it was then established if erythromycin, diclofenac, ibuprofen and 

their mixtures have subtle physiological effects on G. pulex and A. aquaticus. 

Although, two of the selected test compounds for the toxicity experiments (diclofenac 

and ibuprofen) were not monitored in this study but there is high likelihood that they 

are present and other studies in Nigeria had detected them in the environmental matrix. 
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Plate 3: Vacuum truck discharging untreated sewage to a channel that joins Odo Iya Alaro 
River. 
 
 

 

Plate 4: Vacuum trucks queuing to dislodge untreated sewage. 
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Table 6.1: Comparison of pharmaceutical concentrations measured in Nigeria (this study), Africa and globally (global data are taken from Hughes et al., 2013 
and Tim Aus Der Beek et al., (2016)). 
 

Pharmaceuticals 

 
 

Max Conc in 
THIS STUDY 

(ng/L) 
  

         Max Conc in Africa (ng/L) Max Conc 
worldwide (ng/L) 

 
 
Median Conc in 
THIS STUDY 

(ng/L) 
  

Median 
Conc 
in 
Africa 
(ng/L) 

Median 
Conc   
worldwide 
(ng/L) 

Amitriptyline 248 NA <19e 11 NA <19e 
Atenolol 68869 39000p 859ª 48 NA 39ª 

Carbamazepine 82196 <1g, 735h, 1240o 12000ª, 
8050ᵇ,4609q 88 NA 174ª, 752q 

Cimetidine 95690 NA 1000ª 560 NA 97ª 
Codeine 39381 NA 1000ª, 826q 153 NA 49ª, 21q 

Diazepam 75031 NA 34ª 42 NA 9ª 
Diltiazem 28 NA 146ª, 64q 2 NA 13ª,6q 

Erythromycin 15110 11g, 240j, 1000l 90000ª, 5i 1 NA 51ª 
Fexofenadine 93448 NA 1144f, 1287q 522 NA 253f, 59q 

Gabapentin 590 NA 7780ª 5 NA 103ª 
Hydrocodone 559 NA 92f 1 NA 22f 
Lidocaine 2779 NA 40f 4 NA 11.8f 
Metformin 80967 NA 47d 1877 NA NA 
Noreistherone 63 NA <19e 1 NA <19e 
Oseltamivir 48 NA 9f 5 NA <19e 
Paracetamol 111374 5500o, 16000p 15700ª, 23000ᵇ 8525 NA 148ª 
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Propranolol 13 NA 590ª 2 NA 18ª 
Raloxifene 15 NA 7f 10 NA NA 
Ranitidine 3265 NA 570ª, 44q 2 NA 27ª 
Sitagliptin 36 NA 121e 5 NA 37e 

Sulfamethoxazole 129475 3g, 4090k, 6010j, 13800m, 38900k, 23350n 11920ª, 29000ᵇ 1482 NA 83ª 

Temazepam 89 NA 39c 4 NA 17e 
Tramadol 2924 NA 8000ª, 1166q 8 NA 802ª, 218q 

Triamterene 345 NA NA 5 NA NA 

Trimethoprim 47025 160k, 2650m, 400l, 6950k, 9480n 4000ª, 13600ᵇ 91 NA 53ª 

Venlafaxine 45 NA 4f, 548q 4 NA <19f, 97q 

 
a = Hughes et al., 2013, b = Tim Aus Der Beek et al., 2016, c = Jerker et al., 2017, d = Niemuth et al., 2015, e = Burns et al., 2017, f = Burns et al., 2018 
g = Inam et al., 2015 (Nigeria), h = Li et al., 2014, i = Kim et al., 2007, j = Matongo et al., 2015b, k = K’Oreje et al., 2016, l = Olarinmoye et al., 2016 
(Nigeria), m = Ngumba et al., 2016, n = K’Oreje et al., 2012, o = K’Oreje et al., 2018, p = Agunbiade and Moodley, 2014, q = Loos et al., 2013 
NA = not available 
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6.2 Sensitivity of G. pulex and A. aquaticus exposed to ERY, DIC and IBU  

 
The differences in the sensitivity of macroinvertebrate to pharmaceuticals have been 

recognized, the available information is limited to very few species. However, fewer 

studies have investigated the sensitivity of G. pulex (water column dweller) and A. 

aquaticus (sediment dweller) to pharmaceuticals and their mixtures.  Both species are 

common invertebrate biological models that plays an important role in aquatic food 

webs by serving as an intermediate between primary producers and higher trophic 

levels (Flaherty & Dodson, 2005). They are bio-indicators of the well-being of the 

aquatic environment. They may also serve as the representatives of the aquatic 

macroinvertebrates’ compartments in river because G, pulex is a water column dweller 

and A. aquaticus is a bottom/sediment dweller and most macro-invertebrates lives 

within these two compartments (plates 1 and 2). 

The current environmental risk assessment (ERA) regulations greatly rely on the 

Daphnia magna results to perform hazard assessment on chemical compounds, studies 

exploring the sensitivity of other macroinvertebrates (G. pulex and A. aquaticus) to 

pharmaceutical exposures and the underlying toxic mechanisms is lacking. Further 

information on the effects of pharmaceutical exposure at realistic environmental 

concentrations on both water column dwelling (G. pulex) (Chapter 4) and sediment-

dwelling (A. aquaticus) (Chapter 5) aquatic macro-invertebrate animals will assist in 

prioritizing compounds that are considered to be of highest risk for future interventions. 

A four weeks exposure of G. pulex and A. aquaticus to environmentally realistic 

concentrations of erythromycin and diclofenac in isolation (Tables 6.2) caused a 

substantial significant decrease in growth and feeding of both test species compared to 

the controls. 
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  Plate1. G. pulex (pollution sensitive)                                   Plate2. A. aquaticus (pollution tolerant)                                                                      

  

The growth and feeding response shown by G. pulex and A. aquaticus to erythromycin 

and diclofenac are similar except for mortality. Hence, G. pulex and A. aquaticus 

showed similar sensitivity to growth and feeding activities when exposed to 

erythromycin and diclofenac at environmentally realistic concentrations. Feeding 

activities had implications for energy reserves and growth, hence, it was logical to 

investigate these as part of the physiological endpoints. 

Mortality endpoint was also studied as sensitive parameter in an extreme case of 

pharmaceutical contamination.  An Increased mortality was noticed especially for G. 

pulex while mortality was not significant for A. aquaticus. The exposed G. pulex caused 

more than 50 % mortality. Although, both G. pulex and A. aquaticus were affected by 

being exposed to single compound of erythromycin and diclofenac at environmentally 

realistic concentrations, the results indicated that G. pulex, are likely to be more 

affected by erythromycin and diclofenac exposure than A. aquaticus. Hence, increased 

mortality noticed for G. pulex. However, previous studies have demonstrated that A. 

aquaticus is more tolerance than G. pulex (Cleuvers, 2003; Ferrari et al., 2003). 

The exposure of Ibuprofen to environmentally relevant concentrations of G. pulex and 

A. aquaticus for four weeks caused no effects on growth and feeding, mortality was not 
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increased when compared to the respective controls as a result of the exposures. 

Furthermore, the dose levels at which effects occur in aquatic invertebrates varies 

drastically. Kim et al., 2009 had earlier reported that Ibuprofen appears to be amongst 

the least toxic of the non-steroidal anti-inflammatory drugs. However, Boxall et al., 

(2014) report that ibuprofen was one of the most detected compounds in UK effluent at 

high enough concentrations to potentially affect ecosystem. 
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Table 6.2: Summary of effects of erythromycin, diclofenac and ibuprofen on G. pulex and A. aquaticus 

Test compound 

Exposure scenario 
(Environmental concentration 

(ng/L)) 
      Response of G. pulex               Response of A. aquaticus 

  Low Medium High Growth Feeding Mortality Growth Feeding Mortality 
Erythromycin 159.7 768.7 1377.8 p<0.001 p<0.001 p<0.05 p<0.001 p<0.001 p = 0.59 
Diclofenac 202.2 1596.5 2990.7 p<0.001 p<0.001 p<0.05 p<0.001 p<0.001 p = 0.75 
Ibuprofen  420.8 2629.6 4838.4 p = 0.09 p = 0.08 p = 0.53 p = 0.24 p = 0.35 p = 0.61 
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6.3 Sensitivity of G. pulex and A. aquaticus exposed to mixtures of ERY, DIC, IBU   

 
When pharmaceutical risk is being assessed, it is imperative to consider the possible 

combination effects of drugs. The mixtures of erythromycin, diclofenac and ibuprofen 

caused an effect on growth and feeding activities of G. pulex and A. aquaticus 

compared to the controls, however, the effect observed is less when compared to the 

effects of single compound of erythromycin and diclofenac. There was no increase in 

mortality when the G. pulex and A. aquaticus were exposed to mixtures (Table 6.3). 

Hence, similar pattern was observed in both species when exposed to mixtures. The 

drug mixture influenced the moulting behaviour of G. pulex at low, medium and high 

concentration levels, leading to a discontinuous increase of body length, compared with 

the constant increase of body length in the control treatment.  

Permanent exposure of G. pulex and A. aquaticus to a wider range of pharmaceuticals 

in natural aquatic systems may influence moulting behaviour (growth) and followed by 

severe ecological consequences as gammarids and isopods play important role in 

freshwater ecosystems. A sustained reduction in G. pulex and A. aquaticus feeding 

rates as a results of exposure to these drugs causes’ growth inhibition and may have 

wider implication for ecosystems functioning, for instance mortality of G. pulex and A. 

aquaticus may ultimately impact on decomposition of leaves in the aquatic ecosystem 

and sub-lethal changes to metabolism, energy storage and feeding may also alter 

shredder feeding rates, food selection and ultimately decomposition rates and hence the 

food chain might be threatened. 

Most importantly, in this thesis concentrations that have been readily detected in the 

surface waters of the UK and similar western developed nations (Canesi et al., 2007; 

Hughes et al., 2013; Santos et al., 2010) were shown to elicit significant lethal and sub-
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lethal effects on both G. pulex and A. aquaticus. Furthermore, these effects 

concentrations have been exceeded by several orders of magnitude in studies 

examining polluted rivers in China, India, the United States (Larsson et al., 2007, Li et 

al., 2008; Onesios et al., 2009) and even Nigeria (Chapter 3) demonstrating the distinct 

likelihood that such complex and negative effects are occurring in freshwater 

ecosystems worldwide. 

 

Table 6.3: Summary of effects of mixtures of erythromycin, diclofenac and ibuprofen on G. 
pulex and A. aquaticus. 
 

Test compound       Response of G. pulex               Response of A. aquaticus 
  Growth Feeding Mortality Growth Feeding Mortality 
ERY + DIC + IBU p < 0.01 p < 0.01 p = 0.57 p < 0.01 p < 0.01 p = 0.56 

 

 

6.4 Standardized toxicity testing procedures 

Pharmaceuticals are subject to very rigorous pharmacological, mammalian toxicology 

and clinical testing prior to approval for human use but Pascoe et al. (2003) highlighted 

a paucity of data examining their effects on aquatic fauna, particularly important 

freshwater taxa such as aquatic macro-invertebrates. Sanderson et al. (2003) estimate 

that ecotoxicological data is publicly available for just 1 % of approved human 

pharmaceuticals. The ecotoxicological assessment of these drugs has been mostly based 

on short-term experiments performed in agreement with standard tests protocols 

according to existing guidelines (e.g. OECD, ASTM, 1997; ISO, 1996), under the same 

laboratory conditions described for rearing procedures. Test organisms from different 

trophic levels such as algae, zooplankton, invertebrates and fish (Kim et al., 2009; 

Gonzalez-Pleiter et al., 2013). Acute toxic effects are generally manifested through 
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non-specific mechanisms of action (MOAs) usually, disrupting cellular membranes 

(known as narcosis) resulting in cell death (cytotoxicity) or oxidative stress that results 

in cellular damage (Fent, 2008). 

Other tests include the effects on soil microorganisms, honeybees, sediment dwelling 

Chironomus and respiration of activated sludge; the guidelines for these are also 

available freely on the OECD website (OECD, 2012).  

Data from these experiments are fitted to a dose-response model from which either the 

LC50 (median lethal concentration), EC50 (median effective concentration), lowest-

observed-effect-concentration (LOEC) and no-observed-effect concentration (NOEC) 

can be calculated (Nakada et al., 2006). The majority of these tests are concerned with 

acute toxicity which will have an effect on the organism in question within 96 hours 

(Sprague, 1969) although some such as OECD Reports 202 and 204 (OECD, 1984; 

OECD, 2004) also look at prolonged toxicity for up to four weeks. However, even 14-

day tests of fish toxicity do not cover a sufficient proportion of their life cycle to be 

classed as chronic studies (Schmitt et al., 2005). 

 

6.4.1 Summary of short-term toxicity data 
 
The acute toxicity of more than 150 individual pharmaceuticals to aquatic organisms 

has been studied in a number of reviews by Brauschetal (2012), Crane et al. (2006), 

Enick & Moore (2007), Fent et al. (2006), Fent (2008), Halling-Sørensen et al. (1998), 

Hughes et al. (2013), Santos et al. (2010) and Webb (2001). The organisms from the 

majority of the main trophic groups have been subjected to acute toxicity testing of at 

least a single pharmaceutical compound. However, only limited data are available for 

benthic macro -invertebrates, bivalves, amphibians and aquatic plants and algae. The 

review articles show that short-term toxicity can vary markedly for the same compound 
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across trophic levels and both within the same and between different species. The 

variability may be due to different actual exposure concentrations, different sensitivity 

of species and laboratory performances are among the reasons for variability within the 

same species. Analgesic is one of the most studied pharmaceuticals and were also 

identified as posing a significant global risk to invertebrates. About seven different 

trophic groups have been investigated and of all the trophic levels examined, 

phytoplanktons are the most sensitive to ibuprofen toxicity, exhibiting 72-120h EC50 

values between 1 and 315 mgL-1, depending on species (Pomati et al., 2004; Lawrence 

et al., 2005). The acute toxicity of acetaminophen has been well studied in 

invertebrates; EC50 values (immobilization) have ranged from 13 to 290 mgL-1 for 24h 

exposures and 50 – 92 mgL-1 for 48 h exposures (Kuhn et al., 1989; Coyne et al., 1994; 

Kim et al., 2007). The acute toxicity of D. magna has been studied for all analgesics, 

and this allows for comparison of toxicity among compounds. However, none has been 

done for G. pulex and A. aquaticus. Ranking analgesic compounds by acute toxicity 

from the most to least toxic shows the following distribution: dextropropoxyphene 

(opiod) > paracetamol (non-narcotic) > ibuprofen (NSAID) > naproxen sodium 

(NSAID)> diclofenac (NSAID) > salicyclic acid (NSAID). The LC50 (48h) of acetyl 

salicyclic acid varies between 168 mgL-1 and 1468 mgL-1 for D. magna. Depending on 

quantity and quality of data, ranges of acute toxicity values span one to two orders of 

magnitude; in some cases, the species differences may be quite large, spanning three to 

four orders of magnitude. Generally, invertebrates and phytoplankton were most 

sensitive to the acute toxicity of analgesics, whereas bacteria, fish, and amphibians 

were relatively insensitive. 

The analgesic diclofenac has been investigated in studies in which the liver, gills and 

digestive tract, histopathology was examined in rainbow trout, each were found to be 
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highly sensitive endpoints (Schwaiger et al., 2004; Triebskorn et al., 2004). Table 6.4.1 

shows reviews of acute toxicity data for diclofenac, ibuprofen and erythromycin at 

different trophic levels. Diclofenac and other NSAIDs, are known to cause alterations 

in renal physiology and function in mammals (Rosal et al., 2010; Gasperi et al., 2014; 

Hoeger et al., 2005; Schmitt et al., 2010). Perhaps the most well-known and highly 

publicized effect of diclofenac was in 2004, when a high death rate was reported among 

three species of vultures in India and Pakistan leading to severe population declines. 

This was reported to be caused by diclofenac (Oaks et al., 2004) and the high mortality 

is associated with renal failure and visceral gout in exposed vulture as well as the 

accumulation of uric acid throughout the body cavity following kidney malfunction. A 

direct correlation between residues of diclofenac and renal failure exists, both by 

experimental oral exposure and through feeding vulture diclofenac-treated livestock 

(Oaks et al., 2004). The drug has come into widespread use in these countries as a 

veterinary medicine, but it has also been widely used in human medicine since the 

1970s. Despite this such compounds and species remain relatively poorly studied in 

terms of their environmental ecotoxicology. 

For example, studies have shown that A. aquaticus is much more tolerant of diclofenac 

when compared to the G. pulex and macrophyte Lemna minor (Cleuvers, 2003; Ferrari 

et al., 2003). Investigations also show that acute toxicity varies with exposure time and 

toxicity endpoint and that final LC50 or EC50 values can vary due to differing 

susceptibility of sourced test organisms and actual exposure concentrations (when 

nominal concentrations are used) (Fent, 2008). Studies also show that generally very 

high concentrations (>1 to 10 mgL-1) are required to elicit an acute toxic effect over 

short time scales. These concentrations are generally well above those encountered in 

the aquatic environment, often exceeding them by several orders of magnitude (3 to 7 
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(Fent et al., 2006)). Webb (2001) compared the acute toxicity responses in various 

trophic levels and found that the antidepressant, antibiotic and antipsychotic 

compounds were generally the most toxic and that algae were generally the most 

sensitive organisms. A similar comparison by Jones et al. (2002) identified the same 

high-risk compound classes. Hughes et al. (2013) compared the measured 

environmental concentrations of major classes of pharmaceuticals and their potential 

risk of chronic toxicity to fish, invertebrates, bacteria, algae and plants in freshwater 

ecosystems. At particular risk were invertebrates and fish due to exposure to relatively 

high concentrations of antibiotics and cardiovascular drugs (particularly in Asia); 

antidepressants and painkillers pose a similar risk in North America (Hughes et al., 

2013). There are some notable exceptions to the rule of low acute toxicity. For 

example, the antidepressants fluoxetine and fluvoxamine demonstrate acute toxicity to 

green algae (EC50 = 31 000 ngL-1) and Sphaerium clam species (4-hour LOEC = 3000 

ngL-1) at much lower concentrations (Webb, 2001; Brooks et al., 2003). Also, 

carbamazepine demonstrates acute lethality to zebrafish at 43 000 ngL-1 (Santos et al., 

2010).  However, the maximum measured environmental concentration of fluoxetine 

was 596 ngL-1 taken from estuarine samples in New York, USA (Balmer et al., 2005) 

and the global median concentration was 17.8 ngL-1 (Hughes et al., 2013). Fluvoxamine 

has only been studied twice in the environment with median and maximum 

concentrations of 0.7 and 4.6 ngL-1 respectively (Vasskog et al., 2008; Schultz et al., 

2010). 

These data demonstrate that for most compounds the margin of safety for acute toxicity 

is high although there are exceptions to this rule. This may be of particular concern in 

areas immediately adjacent to large or poorly performing STPs or pharmaceutical 

manufacturing facilities (Hughes et al., 2013). The widely held opinion that the risk of 
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acute toxicity is low (Fent, 2008) does therefore hold for most compound classes but 

more research may be necessary. 

The EU Directive 93/67/EEC classified pharmaceuticals displaying an acute toxicity 

(LC50) higher than 100 mgL-1 as not being harmful for aquatic organisms.  

Often, acute toxicity is related to non-specific mode of actions and not to mechanisms 

involving specific targets. The compounds are thought to interact with cellular 

membranes leading to unspecific membrane toxicity (Camacho-Munoz et al., 2010). 

This general mechanism may be only one possibility; additional ones (e.g. oxidative 

stress) come into play with particular pharmaceuticals. 

Another group of pharmaceuticals whose acute toxicity to aquatic organisms were 

mostly studied are the antibiotics. Antibiotics could be grouped into antiamebics, 

antibacterial, antimalarials, antiprotozoal, antiseptics, biocides, and retroviral. The 

antibacterial compounds are the most thoroughly studied of pharmaceutical compound 

groups from an environmental point of view.  There have been 40 different antibiotic 

compounds, representing different antibiotic classes, studied to date.  In general, no 

antibiotics class is appreciably more acutely toxic than any other class, although algae 

are the most sensitive trophic group to antibiotics.   

In conclusion, present knowledge about residues of pharmaceuticals indicates that acute 

toxicity to aquatic organisms are unlikely to pose a risk for acute toxicity at measured 

environmental concentrations, as acute effects concentrations are 100 to 1000 times 

higher than residues found in the aquatic environment. Therefore, acute toxicity of an 

individual compound seems only relevant in case of spills.  
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   Table 6.4.1: shows reviews of acute toxicity data for diclofenac, ibuprofen and erythromycin at different trophic levels 

Pharmaceuticals Species assayed Lethal/Effective concentrations Value (mg/L) References 
Diclofenac Fish EC50 ECOSAR 532 Sanderson et al., (2003) 

 Daphnia EC50 ECOSAR 5057 Sanderson et al., (2003) 

 Algae EC50 ECOSAR 2911 Sanderson et al., (2003) 

 Daphnia EC50 (48 - mortality) 22.4 Ferrari et al., (2004) 

 Algae EC50 (96 h - growth) 16.3 Ferrari et al., (2004) 

 Bacteria EC50 (30 minutes-luminescence) 11.4 Ferrari et al., (2004) 

 Bacteria EC50 (15 min-inhibition) 9.7 Ra et al., (2008) 

 Microtox EC50 (30 min) 11.45 Ferrari et al., (2003) 

 Daphnia EC50 (48) 22.43 Ferrari et al., (2003) 

 C. dubia EC50 (48) 22.7 Ferrari et al., (2003) 

 Algae EC50 (96h- growth) 14.5 Ferrari et al., (2004) 

 Invertebrate EC50 90 Boillot (2008) 

 Algae EC50 -inhibition 72 Cleuvers (2004) 

 Daphnia EC50 - immobilisation 68 Cleuvers (2004) 

     
Ibuprofen Fish EC50 ECOSAR 5 Sanderson et al., (2003) 

 Daphnia EC50 ECOSAR 38 Sanderson et al., (2003) 

 Algae EC50 ECOSAR 26 Sanderson et al., (2003) 

 Bacteria EC50 (15 min-inhibition) 37.5 Ra et al., (2008) 

 Bacteria EC50 (15 min) 12.1 Farre et al., (2001) 

 Daphnia EC50 (48 h) 9.06 
Halling-Sorensen et al., 

(1998) 
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 Invertebrates EC50 (96 h) 1.65 Quinn et al., (2008) 

 Invertebrates EC50 100 Boillot (2008) 

 Algae EC50 500 Boillot (2008) 

 Fish EC50 110 Boillot (2008) 

 Algae EC50 - inhibition 342.2 Cleuvers (2004) 

 Daphnia     EC50 - immobilisation 101.2 Cleuvers (2004) 

     
Erythromycin Fish EC50 ECOSAR 61 Sanderson et al., (2003) 

 Daphnia EC50 ECOSAR 7.8 Sanderson et al., (2003) 

 Algae EC50 ECOSAR 4.3 Sanderson et al., (2003) 

 Invertebrates EC50  15 Boillot (2008) 

 Algae EC50 0.02 Boillot (2008) 

 Fish EC50 900 Boillot (2008) 
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               Figure 6.4.1: (a) Acute vs. chronic ecotoxicological studies (b) Principal endpoints used in ecotoxicological studies (relative %).  
               Source: Hughes et al., 2013.
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6.4.2 Summary of long-term and chronic toxicity data 
 
Over the past few years the focus of ecotoxicological testing of chemicals on aquatic 

organisms has been to address the potential for long-term and chronic effects at 

environmentally realistic concentrations (Hughes et al., 2013). Data has been collected 

for most trophic groups, including invertebrates, fish, amphibians, plants, and algae. 

However, limited data exist for benthic macroinvertebrates such as G. pulex and A. 

aquaticus. Furthermore, when compared with acute toxicity, there are relative shortage 

of chronic data (Figure 6.4.2) and this may be due to the increased costs of such 

investigations, logistics and analytical requirements of longer exposure times or the 

assessment of sub-lethal endpoints. A chronic toxicity study is defined by convention to 

be at least 10 % of the species’ life span (Schmitt et al., 2005) but this is often not 

achieved, and much shorter tests are incorrectly classed as chronic (Nakada et al., 

2006). More investigations into specific receptors, effects, life stages and life cycle 

studies are almost completely lacking for the vast majority of pharmaceuticals and 

some trophic levels of organisms (Fent et al., 2006).  

In ecotoxicology of pharmaceuticals, continuous chronic exposure is of particular 

concern as any negative effects may accumulate and manifest so slowly that they will 

be attributed to natural, ecological succession and by the time they have been identified 

the effects may be irreversible (Daughton & Ternes, 1999). Recent publications 

(Bringolf et al., 2010; Hughes et al., 2013) have shown that the majority of chronic 

toxicity values lie within the range of 10 µgL-1 to >10 mgL-1 which are generally at 

least 1 to 2 orders of magnitude greater than the concentrations measured in sewage 

effluent; this gap is greater when dilution in receiving waters is taken into account 

(Hughes et al., 2013). In addition, there are some compounds which demonstrate 

chronic toxicity at or close to concentrations measured in the environment. For 
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example, ibuprofen has been shown to affect the polyp structure of Hydra vulgaris at 

10 000 ngL-1 (Pascoe et al., 2003) and has been detected in Turkish rivers at 

concentrations up to 31 323 ngL-1 (Loos et al., 2009) with a global median of 517 ngL-1 

(Hughes et al., 2013). However, in this present study exposure of G. pulex and A. 

Aquaticus to environmental realistic concentrations of erythromycin., diclofenac and 

ibuprofen has significant effects on the test species except ibuprofen (Table 6.2). This 

demonstrates that the margin of safety between measured and toxic concentrations is 

much narrower for chronic toxicity. 

Other pharmaceuticals such as acetyl salicyclic acid (NSAID) has also been shown to 

affect reproduction in D. magna and D. longispina at 1.8 mgL-1 (Marques et al., 2004). 

Diclofenac, commonly found in wastewater at about 0.81 µgL-1 (Ternes 1998b), 

reaches maximal levels in wastewater and surface water of up to 2 µgL-1 (Schwaiger et 

al., 2004). Chronic toxicity of diclofenac was reported in invertebrates (Ferrari et al., 

2003; Ferrari et al., 2004). Histopathological effects were observed in rainbow trout; at 

the LOEC of 5 µgL-1 renal lesions (degeneration of tubular epithelia, interstitial 

nephritis) and alterations of the gills (Schwaiger et al., 2004) occurred. Subtle 

subcellular effects were observed even at 1 µgL-1 (Triebskorn et al., 2004). Impairment 

of renal and gill functions occurred after long-term exposure.  In zebra fish embryos, 

delayed hatching occurred at 1 and 2 mgL-1 (Deschepper et al., 2002). Additional side 

effects of diclofenac have been observed in humans in the liver with degenerative and 

inflammatory alterations (Boyd et al., 2003). In the lower gastrointestinal tract and in 

the oesophagus (Bjorkman 1998), but not in fish. Brown trout showed a decrease of 

hematocrit levels at 0.5-50 µgL-1, and signs of inflammation in gills and trunk kidney 
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were observed after twenty-one days at 50 µgL-1, showing no dose response 

relationships (Hoeger et al., 2005). 

Similarly, exposure to 10-100 ngL-1 of ibuprofen resulted in a significant decrease in 

behavioural activity of G. pulex, whereas at higher levels no significant difference was 

observed (De Lange et al., 2006). Environmental concentrations are in the range of 103 

– 107 times lower than known LC50 or EC50 values.   

Finally, current data on acute and chronic toxicity of pharmaceuticals support the 

conclusion that more target or bio-molecule oriented, or mode of action-based 

investigations, will allow more relevant insights into the effects on survival, growth, 

feeding and reproduction than traditional standard ecotoxicology testing. 
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CHAPTER SEVEN 
 

Conclusions and Recommendations 
 
 Over the past twenty years or more there has been increasing interest in the occurrence 

and effects of pharmaceuticals in the aquatic environment primarily in Europe and 

North America. While their occurrence is now relatively well understood in these parts 

of the world to date there remains a scarcity of data from many African countries. Only 

three publications (Olaitan et al., 2014; Olarinmoye et al., 2016; Inam et al., 2015) 

reported the presence of drugs in the Nigeria aqueous environment despite being the 

hub for distribution of pharmaceuticals in West Africa and the largest consumer of 

pharmaceuticals in Africa because of its population (198 million) (NPC., 2018). The 

paucity of data on monitoring studies in Nigeria could be an imminent threat to the 

water resources of Nigeria because surface water serves as the main source of drinking 

water in many parts of the country (Aina and Adedipe., 1996).  

This study has identified large number of pharmaceutical residues from various sources 

such as pharmaceutical manufacturing facilities, vacuum trucks, STP and urban waste 

collection area as sources of drugs into the freshwater habitat. Compounds such as 

paracetamol, sulfamethoxazole, fexofenadine, cimetidine, carbamazepine and 

metformin detected in this thesis are the highest ever reported anywhere in the world. 

The annual prescription and consumption of pharmaceuticals in Africa particularly 

Nigeria is unknown because of unregistered/undocumented pharmacies and a lack of 

proper record keeping. The over-the-counter availability of many drugs in Nigeria may 

have resulted in the higher levels of drug residues in the environment in addition to a 

lack of sewage treatment facilities, inefficient treatment methods where they do exist, 
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as well as the lack of regulations and political will to enforce environmental laws 

(Ogunbanwo, 2011) 

The effects of exposure of freshwater macroinvertebrate animals (G. pulex and A. 

aquaticus) to erythromycin, diclofenac, ibuprofen and their mixtures at 

environmentally relevant concentrations illustrate that these drugs can impact non-

target organisms. This implies that long-term exposure of organisms to pharmaceuticals 

in the environment may cause adverse effects such as reduced feeding and growth and 

may eventually cause mortality. Additionally, this research had shown the sensitivity of 

the test species to the study compounds and their potential for use in further 

ecotoxicological studies. The findings in this thesis provide significant information for 

the stakeholders- government, regulatory agencies, institutions in Nigeria and Africa to 

establish the minimum permissible limits of pharmaceuticals in wastewater and 

catalyse research on cost-effective pharmaceutical removal strategies in the Nigeria and 

Africa rivers. 

7.1 Main findings based on this research are: 

1. Pharmaceuticals are present in Nigeria rivers, and 27 out of 37 targeted analytes 

were detected; the highest number of compounds detected in Africa to date. 

2. Pharmaceuticals such as sulfamethoxazole (antibiotic), paracetamol (analgesic) 

cimetidine (antacid), fexofenadine (antihistamine), carbamazepine 

(anticonvulsant) and metformin (antidiabetic) were detected at the highest 

concentrations ever reported anywhere in the world.  

3. Seasonal variation existed between the wet and dry seasons, more drugs were 

detected in the wet season than the dry season. However, concentrations of 

detected compounds were higher in the dry season than in the wet season. 
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Seasonal usage alone may not be ascribed to this complexity, however, the 

diverse sources of pharmaceuticals into the environment such as vacuum trucks, 

urban waste sites, pharmaceutical manufacturing facilities and STP may play a 

part, unlike in developed economy where STP is the main source of drugs into 

the environment.  

4. Gammarus pulex and Asellus aquaticus could be useful indicators for assessing 

the environmental risk of pharmaceuticals.  

5. Growth discontinuation and feeding inhibition were observed in both G. pulex 

and A. aquaticus when exposed to erythromycin and diclofenac at 

environmentally relevant concentrations although ibuprofen did not cause these 

effects. 

6. Growth and feeding were inhibited when G. pulex and A. aquaticus were 

exposed to mixtures of the compounds, but mortality was not observed. In the 

aquatic environment, chemicals do not exist in isolation but as a mixture of 

compounds. Perhaps studying the effects of chemicals in mixtures at 

environmentally realistic concentrations may be a true reflection of what 

happens in the aquatic environment. 

7. Growth discontinuation, feeding inhibition and mortality can be extrapolated 

directly as toxicant-induced and varies with the concentrations of the toxicants 

and ability of the test animals to withstand stress. 
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7.2 Recommendations 

The investigation described in this thesis has produced novel information on the 

occurrence of pharmaceuticals in African rivers, specifically Nigeria, and the effects of 

erythromycin, diclofenac, ibuprofen and their mixtures on the macroinvertebrate 

animals G. pulex and A. aquaticus using environmentally relevant concentrations. 

Highlighted below are a number of areas where future study should focus.  
 

7.2.1 Specific recommendation resulting from this investigation 
 
7.2.1.1 Pharmaceutical monitoring in Africa and particularly Nigeria: Although this 

research contributes significantly to data gaps in pharmaceutical monitoring in African 

and Nigerian aquatic systems, more rivers still need to be monitored in Nigeria and 

other parts of Africa. The few studies available in Africa are spatially clustered towards 

the big cities and the techniques employed during sampling are poor for measuring the 

high degree of spatial and temporal variability known with pharmaceutical 

contamination. Africa needs much support from Europe and North America in terms of 

the modern analytical instruments needed for sample analysis (LC-MS/MS). Virtually 

all of the publications on occurrence studies in Africa are based on samples analysed in 

Europe and America because of the lack of equipment in Africa.  

 

7.2.1.2 Production of toxicity data for Africa and Nigeria: There are no environmental 

toxicity data for Africa and Nigeria on any of the pharmaceuticals found in the aquatic 

environment. The need for such data is paramount for effective monitoring and 

decision taken by the relevant agencies of government.  
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7.2.1.3 Use of OMICS Technologies: Although, this thesis had focused on growth, 

feeding and mortality as the endpoints in effect studies. In order to actually understand 

the hazards posed by pharmaceuticals in the aquatic environment. The use of 

metabolomes/metabolomics technologies to find the subtle effects of the 

pharmaceuticals in the tissues of the test animals to determine the metabolites 

affected/stressed when the test animals were exposed to the drugs should be part of the 

focus of future research. 

 

7.2.1.4 Sensitivity of the test species should be considered: The OECD guidelines on 

toxicity recommend use of a small number of species which may not be representative 

of other organisms. Also, the sensitivity of organisms should be considered before 

deciding on test species; this will actually reveal the likely organisms to be most 

impacted by the pharmaceutical contaminants in water. Information/data on many 

macroinvertebrates e.g. G. pulex and A. aquaticus are still scanty in literature, and both 

are good indicators of water quality and should be used more regularly. The results for 

the single toxicity test (erythromycin, diclofenac and ibuprofen) on G. pulex and A. 

aquaticus indicate that the risk of some pharmaceuticals in the environment might be 

underestimated if hazards are not assessed by sensitive test species.  It is therefore 

suggested that the toxicity data of pharmaceuticals should focus on other 

macroinvertebrates like G. pulex and A. aquaticus in order to produce more data.   

 

7.2.1.5MultigenerationalStudies: Sub-chronic/Chronic effects of some pharmaceuticals 

may not be established at first and second generations especially when organisms are 

exposed to pharmaceuticals at environmentally relevant concentrations. However, at 

subsequent generations effects of such exposure of the parent organisms (1st and 2nd 
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generations) may be detected. This will assist the policymakers and environmental 

agencies to be able to really access the risk posed by the drugs in the environment. So 

future work should focus on multigenerational studies. 

 

7.2.1.6 Use of environmentally relevant concentrations as exposure concentration: 

Should be encouraged more because this is the concentrations to which the aquatic 

organisms are exposed to throughout their life span. Anything short of this, is 

unrealistic and will amount to overestimation of the concentrations in the environment.  
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