Semigroups of I-quotients

Nassraddin Ghroda

A Thesis Submitted for the Degree of PhD

University of York
Department of Mathematics

August 2011



I

(R A Y

LABLARY

W

B R R —



Abstract

Let @ be an inverse semigroup. A subsemigroup S of Q is a left I-order in Q or Q
is a semigroup of left I-quotients of S, if every element in @Q can be written as a™'b
where a,b € S and ™! is the inverse of @ in the sense of inverse semigroup theory. If
we insist on a and b being R-related in @), then we say that S is straight in @ and Q
is a semigroup of straight left I-quotients of S.

We give a theorem which determines when two semigroups of straight left I-
quotients of given semigroup are isomorphic.

Clifford has shown that, to any right cancellative monoid with the (LC) condition,
we can associate an inverse hull. By saying that a semigroup S has the (LC) condition
we mean for any a, b € S there is an element ¢ € S such that SanSb = Sc. According
to our notion, we can regard such a monoid as a left I-order in its inverse hull. We
extend this result to the left ample case where we show that, if a left ample semigroup
has the (LC) condition, then it is a left I-order in its inverse hull.

The structure of semigroups which are semilattices of bisimple inverse monoids, in
which the set of identity elements forms a subsemigroup, has been given by Gantos.
We prove that such semigroups are strong semilattices of bisimple inverse monoids.
Moreover, they are semigroups of left I-quotients of semigroups with the (LC) con-
dition, which are strong semilattices of right cancellative monoids with the (LC)
condition. We show that a strong semilattice S of left ample semigroups with (LC)
and such that the connecting homomorphisms are (LC)-preserving, itself has the (LC)
condition and is a left I-order in a strong semilattice of inverse semigroups.

We investigate the properties of left I-orders in primitive inverse semigroups. We
give necessary and sufficient conditions for a semigroup to be a left I-order in a
primitive inverse semigroup. We prove that a primitive inverse semigroup of left
I-quotients is unique up to isomorphism.

We study left I-orders in a special case of a bisimple inverse w-semigroup, namely,
the bicyclic monoid. Then, we generalise this to any bisimple inverse w-semigroup.
We characterise left I-orders in bisimple inverse w-semigroups. '
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Chapter 1

Introduction

Many authors are interested in the theory of semigroups of quotients. We recall that
a subsemigroup S of a group G is a left order in G or G is a group of left quotients
of S if any element in G can be written as a™'b where a,b € S. Ore and Dubreil
(1] showed that a semigroup S has a group of left quotients if and only if S is right
reversible and cancellative. By saying that a semigroup S is right reversible we mean
for any a,b € S,SanN Sb # 0. Murata in 1950 [35] extended the notion of a group of
left quotients to a semigroup of quotients. He insisted on a semigroup of quotients
being a monoid and that inverses were inverses lying in the group of units. A different
definition proposed by Fountain and Petrich in 1985 [6] was restricted to completely
0-simple semigroups of left quotients. Gould in 1985 [17] extended this concept to
left orders in arbitrary semigroup. The idea is that a subsemigroup S of a semigroup
Q is a left order in Q if every element in @ can be written as a'b where a,b € S and
a* is an inverse of a in a subgroup of Q and if, in addition, every square-cancellable
element of S (an element a of a semigroup S is square-cancellable if aH*a?) lies in a
subgroup of (). In this case we say that Q is a semigroup of left quotients of S. Right
orders and semigroups of right quotients are defined dually. If S is both a left and a

right order in @, then S is an order in @ and @ is a semigroup of quotients of S.

McAlister introduced two concepts of quotients for an inverse semigroup @Q with
a subsemigroup S in [28]. The first one says that @ is a semigroup of quotients of S
if every element in @ can be written as ab~'c where a,c,b € S. The second one is

that @ is a semigroup of strong quotients of S if every element in @ can be written
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as ab™lc where a,c,b € S and b € SancS.

Our new definition is that a subsemigroup S of an inverse semigroup @ is a left
I-order in @) and @ is a semigroup of left I-quotients of S if every element in @)
can be written as a~'b where a,b € S and a™! is the inverse of a in the sense of
an inverse semigroup theory. Right I-orders and semigroups of right I-quotients are
defined dually. If S is both a left I-order and a right I-order in @, then S is an I-order
in @ and Q is a semigroup of I-quotients of S.

Let S be a left I-order in Q. Then S is straight in Q if every ¢ € @ can be written
as ¢ = a~'b where a,b € S and aRb in Q; we also say that Q is a semigroup of

straight left quotients of S.

The main purpose of this thesis is to study the theory of quotients in inverse
semigroups. We investigate the structure of quotients in some classes of inverse semi-

groups.

In addition to this introduction, this thesis comprises seven chapters. In Chapter 2
we begin by providing brief accounts of the basic ideas concerning inverse semigroups.
As we are interested in inverse semigroups we devote the second section to introducing
some well known concepts for inverse semigroups. The class of all inverse semigroups
is properly contained in the class of all ample semigroups; in Section 2.3 we give
some useful descriptions of such semigroups. In Section 2.4 we introduce some spe-
cial classes of inverse semigroups; we will investigate their left I-orders in the next
chapters. In the final section we introduce some definitions from category theory and

we explain the relationship between categories and monoids.

In Chapter 3 we give the formal definitions of a left (right) I-order and a straight
left (right) I-order. Also, we give a number of examples of left I-orders. In the final
section of this chapter we concentrate on the uniqueness of straight left I-quotients,
in the following sense. We ask a question: if a semigroup S is a straight left I-order
in an inverse semigroup ) and embedded in another inverse semigroup P under a
homomorphism ¢, when can ¢ be extended to a homomorphism from @ to P? In

order to answer this question we introduce a ternary relation on S and then the answer
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is given in Theorem 3.2.9, which gives necessary and sufficient conditions for straight
left I-quotients of a given semigroup to be isomorphic. Consequently, we have solved

the problem of the uniqueness of Q. The result of this section can be found in [12].

In Chapter 4 we show that starting with a left ample semigroup S with the (LC)
condition, the inverse hull of S is a semigroup of left I-quotients of S. By saying
that a semigroup S has the (LC) condition we mean for any a,b € S there is an
element ¢ € § such that Sa N Sb = Sc. The main theorem of this chapter gives
a necessary and sufficient condition for a left ample semigroup to be a left I-order
in its inverse hull. Right cancellative monoids are precisely left ample semigroups
possessing a single idempotent. Our result generalises and extends Clifford’s result
for a right cancellative monoid. It is worth pointing out that the inverse hull of the
left ample semigroup need not be bisimple. In Section 4.3 of this chapter we give
a necessary and sufficient condition to make it bisimple, in the case that S satisfies

(LC). The results of this chapter have already appeared in [12].

In Chapter 5 we investigate left I-orders in certain semilattices of bisimple inverse
semigroups. Since a Clifford semigroup is certainly a semilattice of bisimple inverse
semigroups, our result will significantly extend that for left orders in Clifford semi-
groups. Gantos has shown that, if S is a semilattice of right cancellative monoids
with the (LC) condition and certain further conditions, then we can associate it with
a semilattice of bisimple inverse semigroups. In the main theorem of Chapter 5, we
show that one of Gantos’s conditions is equivalent to S itself having the (LC) con-
dition. We use this equivalence to define a simple form for the multiplication which
is easier to deal with than the form which Gantos used. We link this with Clifford’s
result and our definition of left I-order to introduce a new aspect for such semigroups
which we can read as follows: If S is a semilattice of right cancellative monoids with
(LC) and § has (LC), then S is a left I-order in a semilattice of inverse hull semi-
groups. Moreover, we prove that such S is a left I-order in a strong semilattice of

inverse hull semigroups. We end this chapter by extending these ideas to the following:

Let S be a strong semilattice Y of left ample semigroups S,,a € Y, such that
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each S, has (LC). Using the general results of the previous chapter, each S, is a
left I-order in its inverse hull £(S,). We show that S is a left I-order in @ where Q
is a strong semilattice Y of the inverse hulls 3(S,) of the semigroups S,,a € Y, if
and only if the connecting morphisms are (LC)-preserving, and this is equivalent to
S having (LC). In this case, @ is isomorphic to the inverse hull of S. The result of
this section can be found in [12]. In Section 5.3, we define a category SR of semilat-
tices of right cancellative monoids with the (LC) condition, which themselves have
the (LC) condition, and a category SB of semilattices of bisimple inverse monoids,
in which the set of identity elements forms a subsemigroup, and show that SR and
SB are equivalent. This result may be specialised in section 2.5' to show that the
corresponding category of right cancellative monoids with (LC) is equivalent to the

category of bisimple inverse monoids.

In Chapter 6 we consider left I-orders in primitive inverse semigroups. We show
that any left I-order in a primitive inverse semigroup is straight, a result which will
play a significant role in Section 6.3. The main theorem in this chapter, Theorem 6.2.1
gives necessary and sufficient conditions for a semigroup to have a primitive inverse
semigroup of left I-quotients. Brandt semigroups, that is, inverse completely O-simple
semigroups, are precisely 0-simple primitive inverse semigroups. We specialise our
result to left I-orders in Brandt semigroups? a result which may be regarded as gener-
alisation of the main theorem in [11]. As a consequence of our work, any left I-order S
in a primitive inverse semigroup @) is straight, and showing that S satisfies conditions
in Theorem 3.2.9, we prove that primitive inverse semigroups of left I-quotients of
S are isomorphic. We recall that a semigroup S is an abundant semigroup if each
R*-class and each L*-class of S contains an idempotent. In the last section of this

chapter we consider abundant left I-orders in primitive inverse semigroups.

In Chapter 7 we concentrate on a left I-order in one of the most fundamental
semigroups; the bicyclic monoid. In order to study left I-orders in the bicyclic monoid,
we need to know more about its subsemigroups. A description of the subsemigroups

of the bicyclic monoid was obtained in [3]. By using this description we study left

11 wish to thank Professor D. B. McAlister for pointing out the idea of this section to me.
?We understand that Cegarra has an equivalent result.
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I-orders in the bicyclic monoid. It is well-known that the bicyclic monoid plays a very

important role in the study of inverse w-semigroups.

In Chapter 8 we characterise left I-orders in bisimple inverse w-semigroups. A
bisimple inverse w-semigroup @ is isomorphic to a Bruck-Reilly semigroup BR(G,8),
where G is the group of units of @) and @ is a group homomorphism of G. We show
that any left I-order in a bisimple inverse w-semigroup is straight. The main theorem
of this chapter gives necessary and sufficient conditions for a semigroup to be a left
I-order in a bisimple inverse w-semigroup. We study the special case when a semi-
group is a left I-order in a proper bisimple inverse w-semigroup BR(G,#), that is, § is
one-to-one. In the final section of this chapter we are concerned with the uniqueness

of bisimple inverse w-semigroup left I-quotients of a given semigroup.

Some of the work from Chapters 6, 7 and 8 form the subject matter of several papers
(13], [14] and [15], recently submitted for publication.



Chapter 2

Preliminaries

In this chapter we will present all of the basic elementary concepts of semigroup
theory used throughout this thesis. All of the definitions and results are standard
and can be found in [1, 23] and [38].

2.1 Notation and Relations

A semigroup S = (S,.) is a set S together with an associative binary operation on
S. Some semigroups contain an identity element, that is, an element 1 € S such that
al = la = a, for all @ € S. Such semigroups are called monoids. If a semigroup
contains an element 0 that satisfies z0 = 0z = 0 for all z € S, then 0 is called a zero
element of the semigroup. Note that identity and zero elements, if they exist, are

unique.

We use S! and S° to denote the semigroup S with an identity or a zero adjoined

if necessary, respectively. That is,

gl S if S has an identity element,
) Su{1} otherwise,

with the multiplication extended by defining al = la = a for all a € S*. And

g0 — S if S has a zero element,
1 SuU{0} otherwise,

with the multiplication extended by defining a0 = 0a = 0 for all @ € S°.
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An eclement e € S is an idempotent if €2 = e. The set of all idempotents of S
is denoted by E = E(S). A band is a semigroup such that every element is an

idempotent and a commutative band is a semilattice.

Let (X, <) be a partially ordered set. If z,y,z € X and z < z,y, then z is a lower
bound of x and y. If z lies above all other lower bounds of z and y it is the greatest
lower bound and z is denoted by = A y. If every pair of elements in X has a greatest

lower bound, then X is a meet semilattice.

On any semigroup S, we define a partial order relation < on E(S) by
e< fifand onlyifef = fe=e.

If S is a commutative semigroup, then (E(S), <) forms a meet semilattice. If S
contains 0, then 0 < e for every e in E(S). An idempotent element e of S is called

primitive if e # 0 and f < e implies that f =0 or e = f.

A non-empty subset T of a semigroup S is a subsemigroup of S if it is closed
under the operation of S. A subsemigroup of S which is a group with respect to the
multiplication inherited from S will be called a subgroup of S. If A is a non-empty
subset of S, then the intersection of all subsemigroups of S containing A, is the
subsemigroup of S generated by the set A; and is denoted by (A). The subsemigroup
(A) consists of all elements in S that can be written as a finite product of elements
of A.

A non-empty subset A of a semigroup S is called a right ideal it AS C A, a left
ideal if SA C A and an ideal if it is both a left and a right ideal. If a is an element
in a semigroup S the smallest left ideal containing a is denoted by SaU {a} which we
may conveniently write as S'a, and which we call the principal left ideal generated
by a. The principal right ideal generated by a is defined dually and two-sided ideal
generated by a is S*aS!.

Let S and T be semigroups. A function ¢ : § — T is called a homomorphism of
S into T if for all a,b € S we have (ap)(bp) = (ab)p. If S and T are monoids then, to
be called a monoid homomorphism, ¢ must also satisfy 1g¢ = 17. If ¢ is one-to-one,

then ¢ is a monomorphism or embedding of S into T'. If it is surjective it will be called
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an epimorphism. Also, a homomorphism is called an isomorphism if it is bijective.
If there is an epimorphism from S onto T, we say that T is a homomorphic image of
S. We say that S and T are isomorphic if there is an isomorphism between S and T'
and we write S = T. A homomorphism from S to itself is called an endomorphism

and an isomorphism from S to itself is called an automorphism.

The equivalence relation R on a semigroup S is defined by the rule that a R b if and .
only if aS* = bS*. The relation a £b is defined dually. Also, we say that a J b if they
generate the same principal two-sided ideal. The intersection of £ and R is denoted
by H. It is easy to see that R and £ are, respectively, a left congruence and a right
congruence. It is a significant fact that £ and R are commute, so that, consequently
D =R o L is an equivalence and is the join of £ and R in the lattice of equivalence
relations on S. We recall that these equivalence relations are called Green’s relations.
The R-class containing the element a will be written as R,. Similarly for Lo, H,, D,
and J,.

We say that a semigroup S is simple if it consists of a single J-class (0-simple if
5% 0 and {0} and S\ {0} are the only J-classes). A completely 0-simple semigroup
is a O-simple semigroup with a primitive idempotent. A semigroup S is said to be
bisimple if it consists of a single D-class (a O-bisimple semigroup is a semigroup with
two D-classes, {0} and S\ {0}).

The next lemma gives an elementary characterization of R and L.

Lemma 2.1.1. Let S be a semigroup and let a,b € S. Then:
(1) (a,b) € R if and only if there exist z,y € S' such that ax = b, by = a.
(2) (a,b) € L if and only if there exist z,y € S* such that za = b, yb = a.

There is a generalization of Green’s relation R which is defined by the rule that
aR*b if and only if the elements a,b of S are related by Greens relation R in some
oversemigroup of S. The relation £* is defined dually. The join of the relations R*
and L£* is denoted by D* and their intersection by H*. An alternative definition for

R* is given by the next lemma.
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Lemma 2.1.2. [31] Let S be a semigroup and let a,b € S. Then the following
conditions are equivalent:

(1) (a,b) € RY;

(2) for all z,y € S, za = ya if and only if xb = yb.

It is easy to see from this lemma that R* is a left congruence and £* is a right
congruence. This lemma can be simplified when one of the elements involved is an

idempotent as follows:

Corollary 2.1.3. [8] Let a be an element of a semigroup S, and e € E(S). Then the
following are equivalent:
(1) aR*e;

(2) ea = a and for all z,y € S, za = ya implies ze = ye.

A semigroup S in which each L£*-class and each R*-class contains an idempotent
will be called an abundant semigroup. If the idempotents commute in an abundant
semigroup we call it an adequate semigroup and in this case the R*-class (£*-class)
of a € S contains a unique idempotent, denoted by a® (a*). If the idempotents of
S commute and we insist only that each R*-class (L£*-class) contains an idempotent,

we call S a left adequate (right adequate) semigroup.

2.2 Inverse semigroups

An element a of a semigroup S is called a regular element if there exists an element
x in § such that ara = a. The semigroup S is regular if its elements are regular.
An inverse semigroup is a regular semigroup in which all the idempotents commute.
Equivalently, an inverse semigroup is a semigroup S such that for all a € S there is
a unique b € S such that aba = a and bab = b. The element b is the inverse of a and

1

is denoted by a™!. It is worth noting that (a=*)™! = @ and (ab)™! = b~la™! for all

a,besS.

If X is a non-empty subset of an inverse semigroup S, then the intersection X*

of all inverse subsemigroups of S containing X, is the inverse subsemigroup of S
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generated by X. It is easy to see that X* = (X U X 1) where X! is the set of all

inverses of elements of X.

For an inverse semigroup, each R-class and each L-class contains exactly one

idempotent, that is, ea™® € R, and a'a € L,. Consequently, for every a,b € S,
aR b if and only if aa™! = bb7?,

a Lbif and only if a™'a = b7'b

1

where =%, b7 is the inverse of a,b in S, respectively.

An inverse semigroup S, possesses a natural partial order relation < which is
defined as follows. If a,b € S, then

a < b if and only if a = eb for some idempotent e.

With respect to the natural partial order E(S) is a meet semilattice with e A f = ef.

A transformation on a set X is a function from X into itself. The set of all
transformations on X is a semigroup under composition (from left to right) and
denoted by Tx and we call it the full transformation semigroup on X. For any
semigroup S and non-empty set X, a homomorphism ¢ from S into 7x is called a
representation of S and ¢ is called a faithful representation if it is one to one. For any
element a in a semigroup .S the transformation p, [A,] defined by zp, = za[zA, = az]
for all z € S is the (inner) right [left] translation of S corresponding to the element

a of S, and the mapping a — p, of S into T is a faithful representation.

A partial transformation on a set X is a function o mapping a subset A of X
into a subset B of X. The partial transformation semigroup PT x consists of all
partial maps of X and the operation is composition of partial ‘mappings, where for
a,B € PTx,

domaf = (imaNdom B)a~! and Vz € domaf, z(af) = (za)p.

The symmetric inverse semigroup on a set X, denoted by Zy, is the set of all one-
to-one partial transformations of a set X with multiplication as above. Note that

aff = 0if imaNdom B = @ where 0 is the empty transformation.
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The natural partial order on Zx is easily seen to be the domain restriction of a

partial map, that is:
a < g if and only if dom (o) C dom (8) and @ = 8 |qom a-

We can look at any inverse semigroup as a subsemigroup of a symmetric inverse

semigroup as we will note in the next theorem.

Theorem 2.2.1. ( Vagner-Preston) [25] Every inverse semigroup embeds in a suit-

able symmetric inverse semigroup.

Lemma 2.2.2. [23] In the symmetric inverse semigroup;
(1) « LB if and only if ima = im S,
(2) aR S if and only if doma =dom 3.

2.3 Ample semigroups

Let Zx be the symmetric inverse monoid on a set X. We can define three unary

operations ~1,* and * as follows: for each o € Ty,
P

1

*=aa ! and o* = o la.

a~!is the inverse of o«

Let S be a subsemigroup of Zx. If S closed under *, then S is a left ample semigroup
which may be regarded as a (2,1)-subalgebra of Zx, with unary operation *. Right
ample semigroups may be defined in a similar way by considering closure under *. An
ample semigroup is one which is both left and right ample. It is worth pointing out
that an ample semigroup S may not be embeddable in an inverse semigroup in way

that respects both * and * (see [16]).

Alternatively, we can define a semigroup S to be left (right) ample if and only if
every R*-class (L*-class) contains an idempotent, E(S) is subsemilattice of S and S

satisfies the left (right) ample condition which is:
(ae)ta =ae (af{ea)* =ea) for all a € S and e € E(S)

where, for z € 5, zt (resp. z*) is the unique idempotent in the R*-class (resp.

L*-class) of z.
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A semigroup is ample if it is both left and right ample. We can note easily that,
any inverse semigroup is ample and right cancellative monoids are left ample. By a

right (left) cancellative semigroup we mean, a semigroup S such that for all z,y,z € S
rz = yz implies z = y (2z = 2y implies = = y).

It is clear that every right cancellative monoid contains exactly one idempotent.
Following [18], for any left ample semigroup S we can construct an embedding of
S into the symmetric inverse semigroup Zs as follows. For each a € S we let p, € Is
be given by
dom p, = Sat and im p, = Sa
and for any x € dom p,,

TP, = xa.
Then the map 6s : S — Zg is a (2,1) embedding.

Following [16], let S and T be two semigroups. We say that a homomorphism

¢: S —> T preserves R*, if for any a,b € S,
aR* b implies that ap R* be.

From Proposition 1.2 of [5] we have that #g preserves R*.

The inverse hull of a left ample semigroup S is the inverse subsemigroup of Zs
generated by Sfs. If S is a right cancellative monoid, then for any a € S we have
at = 1. Then p, : S — Sa is defined by

zp, = za for each z in S

Hence dom p, = S = dom Ig, giving that im g C Ry where R, is the R-class of Is in
Zs.

We should mention that, these representations are taken from [1] and [18] respectively.
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The next lemma gives some elementary properties of left ample semigroups. Proofs
can be found in [8] or [18].

Lemma 2.3.1. Let S be a left ample semigroup. If a,b € S, then
(1) (a*b)™ = a*b¥,
(2) ata=a,

(3) for any idempotent e in S and every element a in S, SaN Se = Sae.

2.4 Some special classes of inverse semigroups

The purpose of this section is to introduce some classes of inverse semigroups, for
which we consider their left I-orders in the next chapters. We refer the reader into

[23] and [1] for more information about such semigroups.

2.4.1 Bisimple inverse semigroups

We recall that a semigroup S (without zero) having a single D-class is said to be
bisimple. A semigroup S with a zero element 0 is called 0-bisimple if it contains two
D-classes, namely S\ {0} and {0}.

Let S be a semigroup with an identity 1. If a and b are elements of S such that
ab = 1, then we call a a right unit and b a left unit of S. An element which is both a

left and a right unit is called a unit.

Let S be an inverse semigroup. The idempotent e = aa™! (f = a™'a) will be called

the left (right) unit of a.

Lemma 2.4.1. [1] Let S be an inverse semigroup. Then S is bisimple if and only if
for any two idempotents e, f in S there exists an element of S with left unit e and

right unit f.

Clifford [1] in 1953, showed that every bisimple inverse monoid may be constructed
from a right cancellative monoid satisfying the condition that the intersection of any
two principal left ideals is again a principal left ideal. We shall call such a condition

the (LC) condition. He proved the following theorem [1]:
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Theorem 2.4.2. (Clifford, 1953) Let Q be a bisimple inverse monoid with identity
1 and let B = R, the R-class of 1. Then R is a right cancellative monoid and
the intersection of any two principal left ideals is a principal left ideal, i.e. for each
a,b € R, there exists c € R such that Ra N Rb = Rc. Conversely, let S be a right
cancellative monoid in which the intersection of any two principal left ideals is a
principal left ideal and let £(S) be the inverse hull of S. Then $(S) is bisimple

inverse monoid such that the R-class of 1 is isomorphic to S.

We should point out that Reilly [41] has shown that the structure of any bisimple
inverse semigroup with or without identity is determined by any of its R-classes
regarded as RP-system, that is, an ordered pair (R, P) where R is a partial semigroup

and P is a subsemigroup of R satisfying certain conditions.

The inverse hull of a right cancellative monoid is an important tool in describing
the structure of bisimple inverse monoids. Let S be a right cancellative monoid with
the (LC) condition. The mapping p: S — L(S) given by

ap = Pa
is an embedding of S into X(S) and Sp = R; (see [1]), that is, Sp is the R-class of
the identity of £(S) = (SpU (Sp)~Y). In order to show that £(S) = (Sp)~'(Sp) we
show that every element in ¥(S) can be written in the form p;'p, for some a,b € S.
In other words, for any pe, pg € Sp the element p.p;' = p7!py for some p,, py € Sp.
Now let pep;* be in £(S). Then Secn Sd = Sw for some w € S as S has (LC). Then
w = tc=rd for some t,r € S and py, = pipe = prpa in Sp. As pIlpe, py'pa and p3lpy,
are the identity mappings on Se¢, Sd and Sw respectively. We have
072 pep 7 pa = Isensa = Isw = 03 Pu-

Since p; = pwp;! and p, = pup;', we get

07 0r = Pep PupTt = peps pep  Para" = pepy’.

Thus p.p;' = p; ' pr as we desired.

The idea for the above argument came from the next Proposition due to Fountain

and Kambites [10]. They have done some modification on Theorem 2.4.2 as follows:



2.4. SOME SPECIAL CLASSES OF INVERSE SEMIGROUPS 15

Proposition 2.4.3. The following are equivalent for a right cancellative monoid S:
(1) 3(S5)° is 0-bisimple;
(2) The domain of each non-zero element of £(S)° is a principal left ideal;
(3) Every non-zero element of £(S)° can be written in the form p7'p, for some
a,bes;
(4) for any a,b € S, either SanNSh =0 or San Sb = Sc for somec e S.

A bisimple inverse w-semigroup is a bisimple inverse semigroup whose idempotents

form an w-chain, that is, E(S) = {en, : m € N°} where ey > e, > ¢y > .... Thusif §

is a bisimple inverse w-semigroup, on E(S) we have
em < e, if and only if m > n.

Reilly [40] determined the structure of all bisimple inverse w-semigroups as follows:
Let G be a group and let 6 be an endomorphism of G. Let BR(G, 6) be the semigroup

on N° x G x N° with multiplication

(m>g’ n)<p7 h’a (J) = (m —-n+t, (get—n)(het——p)’ g—p+ t)

where t=max{n, p} and 6" is interpreted as the identity map of G. As was shown in
[40] (cf [23]), BR(G,0) is a bisimple inverse w-semigroup and every bisimple inverse
w-semigroup is isomorphic to some BR(G,6). In the case where G is trivial, then
BR(G,0) = B where B the bicyclic semigroup, which we identify with N° x NO.
The set of idempotents of BR(G, ) is {(m,1,m);m € N°} and for any (m,g,n) in
BR(G,0),

(m,g,n)™" = (n,g7",m).

For any (m,a,n), (p,b,q) € BR(G, 6),
(m,a,n) R (p,b,q) if and only if m = p,
(m,a,n) L (p,b,q) if and only if n = q,
and, consequently,
(m,a,n)H (p,b,q) if and only if m = p and n = q.

It follows that H is the identity relation on B.
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2.4.2 Clifford semigroups

A Clifford semigroup is an inverse semigroup with central idempotents. Before intro-
ducing an alternative definition for such semigroup, we need the following definitions
from [1].

Definition 2.4.4. Let Y be a semilattice. A semigroup S is called a semilattice Y of
semigroups Sy, € Y, if § = |J, ¢y Sa Where S5 C Spp and S, NSg =0 if a #
and we write S = S(Y; S4).

If each S, is a right cancellative monoid, we say that S is a semilattice of right

cancellative monoids.

The above structure is a gross structure of S but not fine. For, if z € S,,y € Sg,
then we know that zy € S,g, but we do not know what it looks like. We can cope

with this by the following fine structure:

Definition 2.4.5. Let Y be a semilattice. To each o € Y associate a semigroup S,
and assume that Sy, N Sg = 0 if o # B. For each pair o, 8 € Y, > 3, let
Va3 Sa —* Sg be a homomorphism such that the following conditions hold:
(1) Paja = tsa;
(2) PapP8y = Pay ifx 2 B 2> 1.
On the set S = |,y Sa define a multiplication by

axb=(apaas)(bvsas)
ifae Sa, be Sﬁ

With respect to this multiplication S is a semigroup, called a strong semilattice of
semigroups S, and denote S = S(Y'; Su; Ya,8)-

The next theorem from [23] gives an alternative description of Clifford semigroups.
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Theorem 2.4.6. Let S be a semigroup with set E of idempotents. Then the following
statements are equivalent:

(1) S is a Clifford semigroup;

(2) S is a semilattice of groups;

(3) S is a strong semilattice of groups;

(4) S 1is regular, and the idempotents of S are central;

(5) S is reqular, and D3 N (E x E) = 1.

We should point out that not every semilattice of semigroups is a strong semilattice

of semigroups (see for example [43]).

2.4.3 E-unitary inverse semigroups

We say that an inverse semigroup S is E-unitary (or proper) if E(S) is a unitary

subsemigroup, that is, for all a in S and e in E(S),
ae € E(S) implies that a € E(S).

Equivalently,
ea € E(S) implies that a € E(S).

Thus $ is proper if an element above an idempotent in the natural partial order, is

also an idempotent.

We now describe the well known McAlister’s P-Theorem. Let X be a partially
ordered set and let ) be a subset of X with the following properties.

(1) Y is a lower semilattice, that is, every pair of elements A, B in ) has a greatest
lower bound A A B in Y, '
(2) Y is an order ideal of X, that is, for A, B in X, if Aisin Y and B < A, then B
isin Y.
Now let G be a group which acts on X (on the left), by order automorphisms. This
means that there exists a function G x X — X, in notation (g, @) — ga, such that
(i) for all A, Bin X, A < B if and only if gA < gB;
(1) for all Ain X, 1A = A;
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(#) for all g, h in G and all A in X, g(hA) = (gh)A.
The triple (G, X, ) is also assumed to have the following properties:

(3) for every X in X, there exists g in G and an A in ) such that g4 = X
(4)forallge G, gYNY #0.

The triple (G, X', )) have the above properties is a McAlister triple. Moreover,
MG X, V) ={(A9) €Y xG:g'Ac Y}

Is an inverse semigroup with the multiplication (A4, ¢)(B, h) = (AAgB, gh), such that
(A,9)™' = (g7'A,g71). Semigroups of the form M(G, X, ) are called P-semigroups.
One of the main results in the study of E-unitary inverse semigroups is McAlister’s
P-Theorem:

Theorem 2.4.7. [28, 82, 33] Let (G,X,Y) be a McAlister triple. Then M(G,X,))
is an E-unitary inverse semigroup. Conversely, every E-unitary inverse semigroup s

wsomorphic to one of this kind.
Munn [34] showed that the relation
o= {(a,b) € Sx.S:ea=ebfor some e* =e € S}

is the minimum group congruence on any inverse semigroup S, that is, ¢ is the
smallest congruence on S such that S/o is a group.

We now give some an alternative condition for an inverse semigroup to be proper.

Proposition 2.4.8. [83] The following are equivalent for an inverse semigroup S:
(1) S is proper;
(2) o NR = Ig, where Ig is the identity relation on S.

2.4.4 Primitive inverse semigroups

An inverse semigroup S with zero such that S # {0} is a primitive inverse semigroup

if all its nonzero idempotents are primitive.
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Lemma 2.4.9. [21] Let S be a primitive inverse semigroup. Then for e € E(S) and
s€ S, ifes#0, then es = s. Similarly, se # 0 implies se = s.

Let I, A be non-empty sets and let G be a group. Suppose that P = (py;) is a
A x I matrix over the 0-group G°(= GU{0}). We call P a sandwich matrix. We say

that P is regular if no row or column of P consists entirely of zeros, that is,
for all © € I there exists A € A such that py; # 0

for all A € A there exists ¢ € I such that py; # 0.

We assume that P is regular.
Now let S = (I x G x A)U {0}, and define a multiplication on S by

. . . (iaap)\jb) /1') if Drj :7é 0
(z,a,)\)(j,b,u) - { 0 if Drj = ()7

(1,a,A)0 =0(,a,A) =00=0 ....... (x).
The semigroup S is defined by M°(G; I, A; P). This structure is due to Rees (1940)

and we call such a semigroup a Rees matriz semigroup.

Theorem 2.4.10. [1] Let G° be a A x I matriz with entries in G° be a 0-group,
let I, A be non-empty sets and let P = (py;) be a A x I matriz with entries in GO°.
Suppose that P is reqular. Let S = (I x G x A)U {0}, and define a multiplication on
S by (*). Then S is a completely 0-simple semigroup. Conversely, every completely

0-simple semigroup is isomorphic to one constructed in this way.

Let § = M°(G; I, A; P) be a Rees matrix semigroup. If I = A and every row and
every column of P contains exactly one non-zero entry, then S is inverse. In this case
S = MG 1,1; A) where A is the I x I identity matrix (see [1]). We define a Brandt
semigroup to be a completely O-simple inverse semigroup. In [1], it is pointed out

that a semigroup will be a Brandt semigroup if and only if it is isomorphic to some
MUG; I, T; D).

The next lemma [1] links many concepts together.
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Lemma 2.4.11. A semigroup S with zero is completely 0-simple if and only if it
satisfies the following three conditions:

(i) S is regular;

(i) every non-zero idempotent of S is primitive;

(iit) if e and f are non-zero idempotents of S, then eSf # 0.

Note that every Brandt semigroup is a primitive inverse semigroup.

Let {S; : ¢ € I'} be a family of disjoint semigroups with zero, and put S; = S\ {0}.
Let S = |J,c; 57 U {0} with the multiplication
ab if a,b € S; for some i and ab # 0 in S;;
axb= .
0, otherwise.
With this multiplication S is a semigroup called a 0-direct union of the S;. In [25], it is

shown that every primitive inverse semigroup is a O-direct union of Brandt semigroups.

2.5 Categories

This section is divided into two parts. The first part contains definitions in category
theory and the relationship between monoids and categories. In the second part we use
category theory to find the relationship between the class of right cancellative monoids
with the (LC) condition and the class of bisimple inverse monoids by supplying both
classes with suitable homomorphisms. The main source for the definitions and results

of this section is [38].

A set is a class which is a member of another class, a proper class is a class which

is not a set. An example is the class of all sets that are not members of themselves:
U={S:Sisasetand S ¢ S}.

If U is a set, then U is either a member of itself or not.
If U € U, then by the defining condition of & we have U ¢ U, a contradiction.
Therefore, U ¢ U, but now by the defining condition we have I/ € U, a contradiction.

Thus U is not a set.
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Definition 2.5.1. A category C is given by

(1) a class Ob C of objects;

(2) aclass Hom C of homomorphisms; for each pair (u, v) of objects, a set Hom (u,v)
of homomorphisms (arrows) such that Hom C = Uwveon ¢ Hom (u,v);

(3) for each triple (u,v,w) of objects, a mapping from Hom (u,v) x Hom (v, w)
into Hom (u, w) which associates to each p € Hom (u,v) and ¢ € Hom (v,w) the
composition pg € Hom (u, w). Composition is assumed to be associative.

(4) for each object u, there exists a homomorphism 1, € Hom (u,u), called the
identity homomorphism at u, such that for each pair (u,v) of objects, for each p €
Hom (u,v) and ¢ € Hom (v,u), 1,p=p and ¢l, = ¢.

We write ¢ : u — v as an alternative to ¢ € Hom (v, u).

A subcategory S of a category C is a category S whose objects are objects in C
and whose homomorphisms are homomorphisms in C with the same identities and
composition of homomorphisms, satisfying the following conditions;

(1) if a € ObS, then 1, € Hom S;

(2) if o, 6 € Hom S and af is defined in C, then a8 € Hom S;

(3) if « € HomS and o : @ —» b, then a,b € ObS.

Let S be a monoid and A any object, for each r € S we associate an arrow A — A.
The arrows of the category correspond to the elements of S. The composition of
arrows is just the binary operation of S. The identity arrow 14 = 1 is just the unit of
S. This construction does produce a category. Thus A monoid (S, ., 1) can be viewed

as a category with just one object.

We can look at the category as algebraic structure in it is own right as we will see

in the following definition from [38].

Definition 2.5.2. Let C be a set equipped with a partial binary operation. If
z,y € C and the product zy is defined we write 3zy. An element e € C is called an
identity if Jex implies ex = x and Jze implies ze = z. The set of identities of C is
denoted by Cy. The set C is said to be a category if the following three axioms hold:

(1) z(yz) exists if and only if (zy)z exists in which case they are equal.
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(2) z(yz) exists if and only if zy and yz exist.
(3) For each z € C there exist identities e, f € C such that 3ze and 3fz.

Before we give the definition of an equivalence of categories, we first need to

introduce the following definitions.

Definition 2.5.3. A functor F from a category C to a category D is a pair of
mappings, one from ObC to ObD and the another from Hom C to Hom D and
satisfying the following conditions ;

(1) F1, = 1p, for all a € Ob C,

(it) if @ :a — b, then Fa: Fa — Fband if 8 : b — ¢, then

F(ap) = (Fa)(FB).

Definition 2.5.4. Let F and G be functors from a category C to a category D. A
natural transformation 7 : F' — G of functors F' and G is a function mapping Ob C
into Hom D such that

1. 7(a) : Fa — Ga where a € ObC, 7(a) € Hom D

2. if @ a — b is a homomorphism, then the diagram

Fa 225 Fp

ﬂ@l lﬂw
Ga 525 Gb

commutes.

If also 7(a) is an isomorphism for each a € Ob C, then 7 is a natural equivalence

of the functors F and G.

Definition 2.5.5. A quadruple (F,G, 0,7 ) is an equivalence of the categories C and
D if

(1) F is a functor from C to D,

(it) G is a functor from D to C,

(tit) 0 : Ic — GF is a natural equivalence,

(tv) 7 : Ip — F'G is a natural equivalence.
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Theorem 2.4.2, due to Clifford, in Section 2.4.2, shows that every bisimple inverse
monoid gives rise to a right cancellative monoid with the (LC) condition (its R-class
containing the identity element). Conversely from such a monoid we can construct
a bisimple inverse monoid. We will supply these classes of semigroups with suitable
homomorphisms to allow us to build categories and we will show these categories are

equivalent.

Notation 2.5.6. Let a category B be given by
Ob B are bisimple inverse monoids,

Hom B are monoid homomorphisms of Ob B.

Notation 2.5.7. Let a category R be given by

ObR are right cancellative monoids with the (LC) condition,

Hom R are monoid homomorphisms of ObR. say ¢ : R — R/, such that
if Ra N Rb = Rc for some a,b,c € R, then R'(ap) N R'(bp) = R'(cp).

It is worth pointing out that in Chapter 4, homomorphisms in Hom R, will be

called (LC)-preserving and we define this notation in a more general context.

From Theorem 2.4.2, if § € Ob B, then its R-class of the identity is in ObR and

in fact this is the first part of a proof of the following lemma from [3§].

Lemma 2.5.8. For every S € ObB, let U(S) be the R-class of identity of S, and
for every ¢ € HomB say ¢ : S — S let U(p) = ¢ l(j(g). Then U is a functor from
B io R.

Now our aim is to define a functor from R to B and we know in advance from
Theorem 2.4.2, that if S € ObR, then its inverse hull is a bisimple inverse monoid
2(S). Let R € ObR. Then on R x R define a relation 7 by

(a,b)7(c,d) & a = uc, b = ud for some unit u of R.

Then 7 is an equivalent relation. We denote the 7—class containing (a,b) by [a, ]
and let
R'oR={[a,b];a,b€ R}.
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Since R € ObR, for any a,b € R we have that Ra N Rb = Re for some ¢ € R, then
let a v b denote the representative of the L-class of ¢ and we define a * b by
(axbd)b=aVb=>bVa=(bxa)a.
Now we can define a multiplication on R~! o R by
la, ble,d] = [(c + ba, (b + c)d].

In [38] it is shown that R~! o R is isomorphic to X(R). Hence we get the first part of
the next lemma.
Lemma 2.5.9. Let R € ObR and put V(R) = R™* o R. For any ¢ € HomR, say
¢: R— R, let V(p): [a,b] — [ap,by] (Ja,b] € R~' o R). Then V is a functor
from R to B.

Let S € ObB, with R-class of the identity U(S). Then in view of left order as in
the argument precedes Proposition 2.4.3, we have that S = U(S)~'U(S) and we can

say that the mapping in the next lemma is defined on all of S.

Lemma 2.5.10. For any S € Ob B, define £(S) : S — VU(S) such that
£(S) : a”b —> [a,b] where a,b € U(S). Then £ is a natural equivalence of the functor
Ig and VU.

S s
6(5)‘{ lé(s')
vu(s) 2221 vus)

Lemma 2.5.11. For any R € ObR, define n(R) : R — UV (R) such that
n(R) : v — [L,7] (r € R). Then n is a natural equivalence of the functor Ix and
uv.

R R
71(R)i ln(R’)
uv(R) Y yv(R)

Theorem 2.5.12. [38] The quadruple (U,V,&,n) is an equivalence of categories B
and R.



Chapter 3

Left I-orders

In this chapter we will introduce the basic definitions and give some examples of
left I-orders. We concentrate on straight left I-orders. We give some properties of
such left I-orders which are used in the proof of Theorem 3.2.9. One conscquence
of this theorem is that we can determine necessary and sufficient conditions for two
semigroups of straight left I-quotients of a given semigroup to be isomorphic. The
point of working with straight left I-quotients is that many cases of left I-quotients

are straight, as we will see in the following chapters.

3.1 Definitions and examples

Ore and Dubreil [1] showed that, if S is a subsemigroup of a group G, then G is
a group of left quotients of S in the following sense: every element of G may be
expressed as a™!b for a,b € S, if and only if S is a right reversible, that is, for all
a,b € S, we have that San Sb # (), and S is cancellative. Fountain and Petrich
[6] have extended this to a special class of semigroup and they provided the first
formal definition of a semigroup of left quotients, but they restricted their attention
to orders in completely 0-simple semigroups. The idea is that for a senﬁgroup S to
be a left order in a completely O-simple semigroup @, every element in @ can be
written as a*b where a,b € S and a* is the inverse of @ in a subgroup of Q. This
definition has been extended to the class of all semigroups [17]. The idea is that a
subsemigroup S of a semigroup @ is a left order in Q or Q is a semigroup of left

quotients of S if every element of @ can be written as a'd where a,b € S and o

25
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is the inverse of @ in a subgroup of @ and if, in addition, every square-cancellable
element of S’ (an element a of a semigroup S is square-cancellable if a H* a?) lies in a
subgroup of Q. Semigroups of right quotients and right orders are defined dually. If
S is both a left order and a right order in a semigroup @Q, then S is an order in @ and
Q is a semigroup of quotients of S. This definition and its dual were used in [17] to
characterize semigroups which have bisimple inverse w-semigroups of left quotients.
In the case of a completely 0-simple semigroup of quotients Q, if a H* a2, that is, a is
a square-cancellable element, then as H} = {0}, we have that if a # 0, then a? # 0,
so that from the structure of @), we know aH a? and so a must be in a subgroup of
Q.

In the case of inverse semigroups, the notion of quotients has been effectively
defined by a number of authors without being made fully explicit. The first one was
introduced by Clifford [2] where he showed that from any right cancellative monoid
S with (LC) there is a bisimple inverse monoid @ such that Q = S~15; that is, every
element ¢ in @ can be written as a™'b where a,b € S, and a~! is the inverse of a in
@ in the sense of inverse semigroup theory. By saying that a semigroup S has the
(LC) condition we mean that for any a,b € S there is an element ¢ € S such that

Sa N Sb = Sc. Thus, (LC) is a rather stronger condition than right reversibility.

McAlister has introduced two concepts of quotients in [28] as follows:

Concept 1: Let @ be an inverse semigroup and S a subsemigroup of Q. Call Q
a semigroup of quotients of S if every element in @ can be written as ab~!c where

a,b,ce S.

Concept 2: With @ and S as above, say Q is a semigroup of strong quotients

of § if every element in Q) can be written as ab~'c where a,b,c € S and b € SancS.

We now give the formal definition of a semigroup of left I-quotients. Let S be a
subsemigroup of an inverse semigroup Q. Then we say that S is a left I-order in Q or
@ is a semigroup of left I-quotients of S, if every element of Q can be written as a=1b

where a and b are elements of S. We stress that a~! is the inverse of @ in the sense
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of inverse semigroup theory. Right I-orders and semigroups of right I-quotients are
defined dually. If S is both a left I-order and a right I-order in Q, then we say that

S'is an I-order in ), and @ is a semigroup of I-quotients of S.

We remark that if a semigroup S is a left order in @ in the sense of [11, 17] (in
particular @) is inverse), then it is certainly a left I-order. For, if S is a left order in Q,
then we insist that any ¢ € @ can be written as g = ab where a,b € S and a! is the
inverse of a in a subgroup of S so that certainly a! = @™, but however the converse

is not true as we will see in an example in this section.

If S'is a left I-order in @ and S has a right identity e, then this must be an identity
of @ (and hence of S). For any q € Q we have that ¢ = a~1b where a,b € S, so that

ge=a'be=a"lb=g¢q

and

eq=ea"tb=(ae)b=a"lb=q.

A left I-order S in an inverse semigroup @Q is straight in Q if every element in @ can
be written as a~'b where a,b € S and a R b in Q; we also say that Q is a semigroup
of straight left I-quotients of S. If S is straight in @, then we have the advantage of
controlling products in Q.

The rest of this section is devoted to illustrative examples. The first is typical of the
class of examples in which a semigroup S is a left I-order in an inverse semigroup @,

where the idempotents form a chain. We will study one of such classes in Chapter 8.

Example 3.1.1. The bicyclic semigroup B consists of all pairs of non-negative inte-

gers with multiplication given by
(k,[)(m,n) = (k= l+1{,n —m+t) where t = max{l,m}.

It is easy to see that B is an inverse semigroup with identity (0,0) and (i, j)~! = (5,1) .

Green’s relations R and L are given by

(4,7) L (k1) if and only if j = I,
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and
(4,7) R (k,1) if and only ifi = k.
It is clear that the R-class of the identity R0y is a subsemigroup of B. If (,7) is

any element of B, then

(,9) = (,0)(0, 5) = (0,4)71(0, 5)
so that R is a left I-order in B. On the other hand, the only element of Ro,0) lying
in a subgroup is (0,0), and (0,0)*(0,n) = (0,n) for any (0,n) € Rn. Thus Ry is

not a left order in B.

The fact that R is a left I-order in B is a very special case of the result of [2]
mentioned in the Introduction, which we shall revisit. The semigroup B is bisimple
and we shall see that bisimple inverse semigroups play an important role in this
theory. Suppose that @ is bisimple inverse semigroup and pick an R-class R = R,
of @, with e € E(Q). Let ¢ € Q. As Q is bisimple we can find mutually inverse
clements z,27' € @ such that zz7! = e and 7'z = ¢¢~'. Then ¢ = z~'zq and
rqR2qq~! = 2 Re. Thus any element of Q can be written as a quotient of elements

chosen from any R-class.

In fact, by the argument preceding Proposition 2.4.3, due to Clifford, the R-class
of the identity of a bisimple inverse monoid is a left I-order in it. Hence every element
q in a bisimple inverse monoid @ can be written as a='b where a,b € Ry. Thus

g=ab=cc'a b = c(ac)"'b

where aRcR 1. That is, @ is a semigroup of quotients of R; in sense of the first

concept by McAlister.

The next example gives a left I-order in a Brandt semigroup. We will introduce
necessary and sufficient conditions for any semigroup to have a Brandt semigroup of

left I-quotients in Chapter 6.

Example 3.1.2. Let H be a left order in a group G, and let B° = B%(G,I) be a
Brandt semigroup over G where |I| > 2. Fizi € I and let

Si={(t,h,7):he H,jeI}u{0}. -
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Then S; is a straight left I-order in B°.
To see this, notice that S; is a subsemigroup, 0 = 0-10, and for any (j,9,k) € B,

we may write g = a~'b where a,b € H. Then

(J,9,k) = (6,0,5) 7' (6,0, k)

where (i,a,j), (i,b,k) € S;. It is easy to see that S; is not a left order in B°.

3.2 Extension of homomorphisms

Fountain and Petrich in [6], gave an example of a semigroup having two non-isomorphic
semigroups of right quotients. In the classical case Easdown and Gould [4] showed
that a semigroup can have non-isomorphic inverse semigroups of left quotients. This
will also happen in our case. In this section we prove a theorem concerning a straight
left Lorder S in an inverse semigroup @ with S embedded in another inverse semi-
group P. Under what conditions is @ isomorphic to P 7 This question led us to
determine when two straight left I-quotients of a given semigroup are isomorphic. We

begin by introducing the following notion.

Definition 3.2.1. Let S be a subsemigroup of  and let ¢ : S — P be a homomor-
phism from S to a semigroup P. If there is a homomorphism ¢ : Q — P such that
¢|s = ¢, then we say that ¢ lifts to Q. If ¢ lifts to an isomorphism, then we say that

Q and P are isomorphic over S.

To achieve our goal, we must first examine when two quotients a™'b and cld are
equal, where a,b,c,d € S and S is a left I-order in Q. In Lemma 3.2.4 below, we
give conditions on S such that a~'b = c~'d; the use of Green’s relations in ¢ in our

conditions will be ‘internalised’ to S at a later point.

Lemma 3.2.2. Let b,c,z,y be elements of an inverse semigroup Q such that TR y.

If bt =z~ ly, then zb = yc.
Proof. We have that

beteb™t = (be V) (be ) = @)y =y e =T
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as * Ry. Hence
be le=bbYbc e = beteb™ib = b

1

and so zbc™lc = zb. From y = zbc™! we have

xb = zbc™lc = yc,
as required. U

If S is a left I-order in an inverse semigroup @, then R and £ will be relations on
@, unless otherwise stated. To emphasise that R and L are relations on (), we may
write R? or R in Q and £® or £ in Q. The relation R* will always refer to S.

Lemma 3.2.3. Let S be a left I-order in Q. Let ¢ = a™'b in Q where a,b € S. Then
aROb if and only if bLY qRY a1,

Proof. Suppose that a Reb. Then, ag = aa™'b = b and gb~! = a~'bb™! = a™', s0
that ¢ £2b and ¢R? a~!. On the other hand, let ¢ = a=!b where ¢R?a™" and g L b.
Then q € R,-1 N Ly in Q. From [1, Theorem 2.17], this means there exists e € E(Q)
such that e € L,-1 N Ry in Q. The conclusion is that e = aa™' =bb~1, s0 aR%b. O

Notice that if S is a straight left I-order in an inverse semigroup @, then S intersects

every L-class of Q.

Lemma 3.2.4. Let S be a straight left I-order in Q. Let a,b,c,d € S with aRPb
and ¢ RPd. Then a~'b = c~*d if and only if there exist x,y € S with za = yc and
zb = yd and such that aRPz~', z Ry and y L2,

Proof. Suppose first that a~'b = ¢"'d. By Lemma 3.2.3, b£%a™ b = c™'d L% d and
a1 RRa 1 = ¢ ldRPc! so that a L9¢. Let x,y € S be such that ac™! = 27y
and £ R9y. Then

b=acld=z""yd,

so that b = yd. From Lemma 3.2.2, za = yc. As a L9 ¢ we have that a™? R9 ¢!

hence
aR%aa ' RP%ac™ =27 yRz ™,
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and therefore # L2 a~!. On the other hand, a=! R? ¢! implies that a~'a = ¢~!¢ and

then

1 1 -1

y=zac L9 tac = ¢ lee = 07,
as required.
Conversely, if za = yc and zb = yd for some z,y € S with 2R9y, a R z~! and

y L2 ¢! then a = z7lye, b= z7lyd and in view of the fact that
bRPaRC ™I ROz 1z,
we have

a”'b = (z7'yc) Nz yd)
= ¢y lzzlyd

= ¢y lyd as TRy
= clecld as y LY ¢!
= c¢c7ld.

Lemma 3.2.5. Let Q be an inverse monoid. Let a,b,c,d € Ry. Then
ab=cld if and only if a = uec and b = ud
for some unit u.

Proof. Suppose that a='b = ¢~'d where a,b,¢,d € R;. We have
a'Rab=c'dRc in Q.

Then a Lcin Q. Since aR b, it follows that b = aa™'b = ac™'d. We claim that ac™!
is a unit. As aLc, it follows that ac™' Lec™! = 1. Since a ! R ¢! we have that
1=aa'Rac! and hence u = ac™! is a unit, and we obtain b = ud. Since u = ac!

1

and a £ ¢ we have that uc = ac™'c = a. The converse is clear. O

Now we give the following well known Lemma from [25].

Lemma 3.2.6. Let 0 : Q — P be a homomorphism between inverse semigroups.
(1) (s7H)0 = (s0)~! for all s € Q.
(2) If e is an idempotent, then e is an idempotent.

(3) QO is an inverse subsemigroup of P.
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(4) If a,b € Q and a <. b in Q, then af <, bl in P.
(5) If af is idempotent, then afl = e for some e = €* € Q.

Lemma 3.2.7. Let S be a left I-order in Q and let ¢ be a homomorphism from S to

a semigroup P. Then ¢ can be extended to at most one homomorphism ¢ : Q@ — P.

Proof. If 1 : Q@ — P is any homomorphism extending ¢, then if ¢ = a7 'b € @ we

have
g = (a7'b)y = (ayp) " b = (a) "} (bp).
O

Let S be a subsemigroup of an inverse semigroup Q). We use Green’s relations on
@ to define binary relations g% RS, §2S and £Z and a ternary relation T on S
by the rules:
<% =<2 N(Sx 8) and <F g=<F N(S x 9),

so that S%s and Sgs are, respectively, left and right compatible quasi-orders. We

then define Rg and £g to be the associated equivalence relations, so that
RS =RIN(SxS)and LT =L2N(Sx S).
Consequently, ’Rg and 52 are left and right compatible. For any a,b,c € S,
(a,b,c) € TE if and only if ab™'Q C ¢™'Q.

The following Lemma is an application of the 7T relation and we will use it to prove

our main theorem.

Lemma 3.2.8. Let S and T be subsemigroups of inverse semigroups @ and P re-

spectively, and let ¢ : S — T be a homomorphism. If for all a,b,c € S,
(a,b,0) € T§’ = (ag, b, c8) € T7,

then for all u,v € S,
u < v = up <f (vo)
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Proof. Suppose that u,v € S and u@Q C v~!'Q. Then vu™!Q C v7!Q, so that
(u,u,v) € TE. By assumption, (ug, up, vé) € T, so that

upP = ug(ug)™' P C (vg) ™' P
and u¢ <5 (v$)~! as required. O

We use the relation 'TSQ to prove our rather general result below. As in the classical

case, T SQ can be avoided in some special cases of interest.

Theorem 3.2.9. Let S be a straight left I-order in Q and let T be a subsemigroup of
an inverse semigroup P. Suppose that ¢ : S — T is a homomorphism. Then ¢ lifts
to a (unique) homomorphism ¢ : Q@ — P if and only if for all a,b,c € S:

(i) (a,b) € RS = (ag,bp) € RE;

(it) (a,b,c) € TS = (ag, b, ch) € TE.

If (i) and (ii) hold and S¢ is a left I-order in P, then ¢ : Q — P is onto.

Proof. If ¢ lifts to a homomorphism ¢, then as homomorphisms between inverse

semigroups preserve inverses and Green’s relations, it is easy to see that (¢) and (i%)
hold.
Conversely, suppose that (i) and (4) hold. We define ¢ : Q — P by the rule that

(a7'b)p = (ag)~'bs
where a,b € S and a R9b.
To show that ¢ is well defined, suppose that
atb=c"1d

where a,b,c,d € S, aR®b and ¢ R?d. Then by Lemma 3.2.4, there exist z,y € S
with za = yc and zb = yd and such that aR%z™!, zR%y and yL2¢™!. Apply-
ing ¢, we have that z¢a¢ = yodcd and zdbp = ypdp. By (i) we also have that
rd RE yp,ap RF b and cp R dp. Also, since bRPaR?z! and dRPcRy~!, it
follows from Lemma 3.2.8 that bp <k (z¢)~! and d¢ <K (y¢)~'.
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From z¢ bp = y¢p d¢p we can now deduce that bp = (z¢)~lye d¢ so that

(ag)~'bg (ag)™ (cﬁ) yo de
( )ty do

(ycbccb) ycbdcb

E Y

I | I

yod) " yd do

so that ¢ is well defined.

To see that @ lifts ¢, let h € S; then h = k=14 for some k,£ € S with kRP L. We
have that kh = £ and h S% k™1, so that k¢ho = £¢ and by (i7) and Lemma 3.2.8,
h¢ <L (k¢)~1. Tt follows that he = (k¢)~ld = hé.

We need to show that ¢ is a homomorphism. To this end, let a=!b,c¢™'d € @ where
a,b,c,d € S,aR2b and ¢RPd. By (i) we have that cp R dp. Now bc™! = u~lv
for some u,v € S with «R%v. By Lemma 3.2.2, ub = vc, so that u¢pbp = v ce.
Further, (b,c,u) € TSQ, so by assumption (i), we have that (bg, c,u¢) € 77 . Then
from u¢ bg(ch) ™' = vg ch(cd)~! we obtain bi(cg) ™! = (up)rvg ch(cd) !

Multiplying, we have

(a™'b)(c™'d) = a " bc 7 d = a7 rutvd = (ua)'ud,

and
uaRP ub = veR2 vd.
Hence _
((a'b)(c'd))d = g(uag )vdgqb
= (a¢)‘( ¢)” vqﬁdd)
= (ag) ' (ug) vpcg (ch)~do
= (a9)b(cg) 1ds

1

(a™'b)g(c7 d),
so that ¢ is a homomorphism as required.

If (i) and (ii) hold and S¢ is a left I-order in P, then for any p € P we have
p = (ag)~1bs for some a,b € S, so that p = (a'b)¢. O
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Corollary 3.2.10. Let S be a straight left I-order in Q and let ¢:S5 — P bean
embedding of S into an inverse semigroup P such that S¢ is a straight left I-order in
P. Then Q is isomorphic to P over S if and only if for any a,b,c € S:

(4) (a,b) € R & (ag, bg) € RE,; and

(1) (a,b,c) € 7'5Q & (ag,bp,co) € 7}1;

Proof. 1f Q is isomorphic to P over S then (¢) and (44) hold from Theorem 3.2.9.
Suppose now that (i) and (i) hold. From Theorem 3.2.9, ¢ lifts to a homomor-

phism ¢ : @ — P, where (a™'b)¢ = (a¢)~'bp. Dually, ¢~ : S¢ — Q lifts to a

homomorphism ¢-1 : P — Q, where ((ap)"*bg)p~! = a~'b. Clearly ¢ and ¢! are

mutually inverse. O

Where S is left ample, and ¢ preserves *, then we note that (i) in Theorem 3.2.9
and Corollary 3.2.10 is redundant. Further redundancies become apparent in the next

chapter.



Chapter 4

Inverse hulls of left I-quotients of
left ample semigroups

In [2] Clifford showed that a bisimple inverse monoid can be constructed from the R-
class of its identity which is a right cancellative monoid satisfying the condition that
the intersection of any two principal left ideals is again a principal left ideal. We shall
call this condition the (LC) condition. Conversely, from any right cancellative monoid
S that has the (LC) condition we can construct a bisimple inverse monoid such that
the R-class of the identity is isomomorphic to S. In [41] Reilly has shown that the
structure of any bisimple inverse semigroup with or without identity is determined

by any of its R-classes; these will not, in general, be a subsemigroups.

In this chapter we extend Clifford’s result to a left ample semigroup with the
(LC) condition. In Section 4.1 we introduce some characterizations of the embedding
of a left ample semigroup into a symmetric inverse monoid. The main theorem in
Section 4.2 gives a necessary and sufficient condition for a left ample semigroup to
be a left I-order in its inverse hull. The inverse hull of left I-quotients of left ample
semigroup with the (LC) condition may not be bisimple. In Section 4.3 we investigate
the special cases where the inverse hull of left I-quotients of left ample semigroup with
the (LC) condition is bisimple, simple, or proper. We end this section by tackling the

left ample semigroups homomorphism extension problem.

36
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4.1 Preliminaries

In Section 2.3, we showed that there is an embedding of a left ample semigroup S
into the symmetric inverse semigroup Zs. The inverse hull $(S) of S is the inverse
subsemigroup of Zs generated by im#6s, where s is the embedding of S into the
symmetric inverse semigroup Zg (as defined in Section 2.3). Where convenient we
identify S with its image under s in X(S). We begin with the following useful

lemma.

Lemma 4.1.1. Let S be a left ample semigroup. Let p, and py be in Sp. Then
(1) dom pop; ' = (San Sb)p;Y;
(2) imp;tpy = Satb
(3) dom p;'p, = Sb*a.
Proof. (1) and (2) are straightforward.
(3) We have that p, : Sa* — Sa, p, : SbT — Sb and p;! : Sa — Sat, so that

domp;tpy =

|
SN N N

1%
IS

+
)
n
Rl

4+
s
e
)

Notice that if a R* b, then dom p;1p, = Sa and im p;'p, = Sb.
Lemma 4.1.2. Let S be a left ample semigroup. Then, for any a,b € S, .
pa £ pp in X(S) if and only if a Lb in S.

Proof. Suppose that a,b € S. If p, £ py in £(S), then im p, = im p, so that Sa = Sb.
Also, since for any z € S we have x = z7z and so S'z = Sz so that a Lb in S. The
converse is clear. O

Remark 4.1.3. Let S be a left ample semigroup. Using the fact that R* is a left

congruence, and E(S) is a semilattice, we see that

atbR*a™ bt =btaT R* bra.
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Lemma 4.1.4. Let S be a left ample semigroup, embedded (as a (2,1)-algebra) in an
inverse semigroup Q. If S is a left I-order in Q, then S is straight.

Proof. Let ¢ = a™'b € Q where a,b € S. Then
g = (a*a)7'(b*b) = a'aTb"b = a" bt atb = (bTa) N (a'h).
We have
atbR*a™bt =btat R*bra

and 50 a"bR9b*a and S is straight. O

4.2 The main theorem

The main result of this section is Theorem 4.2.2, which gives a characterisation of left
ample semigroups with (L.C) which are left I-orders in their inverse hulls. We recall

that by saying that a semigroup S satisfies the (LC) condition we mean
for any a,b € S there exists ¢ € S such that San Sb = Se.

Lemma 4.2.1. Let S be a left ample semigroup. Ifb,c € S with SbNSc = Sw, where

ub = vc = w and ub™ = u, vct = v, then ppp! = p7'p, for some u,v € S.

Proof. Let b,c,u,v,w as in the hypothesis. From Lemma 4.1.1, we have

dompyp;! = (imp, Ndom pc‘l)pb“1
(SbN Sc)p;t
(Sw)p;

(Sub)py

Sub*

= Su,

i

ll

i

and for any su € Su,
(su)pspyt = (sub)p;t = (sve)p;! = svct = sv.
In particular, im pyp;! = Sv. Notice that

u=ubtR*ub=vcR* vct =v.

It is now easy to see that pyp;! = py ' py. ' O
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Now we introduce the main Theorem in this chapter.

Theorem 4.2.2. Let S be a left ample semigroup. Then SOs is a left I-order in its
inverse hull if and only if S has the (LC) condition.
If Condition (LC) holds, then SOs is a union of R*S)-classes.

Proof. Suppose that S is a left I-order in ¥(S). By Lemma 4.1.4, for any b,c €
S, ppst = prlpy, with uR*v where ub* = u and vc* = v. By Lemma 4.1.1,

dom (ppp;t) = Su, so that

Su = (im p, Ndom p;Y)p;t = (SbN Se)p; .
But p; ' ps is the identity on Sb = im p, and so

Sub = (Su)py = (SbN Sc)p;tpy = SbN Se,

and S has the (LC) condition.
Conversely, suppose that S has the (LC) condition. Let

Q={p; pp:a,be S} CE(S).

Observe that for any a € 5, py = pote = pa‘jpa, so that Sfs C Q.
Consider b,¢ € S. By Condition (LC), there exist u,v € S with SbN Sc = Sub,
and ub = ve with ub* = v and vet = v. By Lemma 4.2.1, pyp;t = p;'p, and u R* v.

It follows that if p;1ps, p 04 € Q, then

(02 05) (02 pa) = 07 (607 )0a = P3 (P73 Po)Pa = (Pupa) ™  (Pupa) = P Puds

so that ( is closed under multiplication. Clearly @ is closed under takihg inverses,
so that as ¥(S) C @ from definition of inverse hull, and so @ = %(S) as required.

If e € E(S) and p, R¥S) p-lp, where a,b € S and aR*b, then domp, =
dom p;'py, so that Se = Sa and a is regular in S. Any inverse ¢ of a in S must
be such that p. is the unique inverse of p, in @, so that pat € Sfs and hence
ptos € SOs.

Finally, if s € S, then p, R* ps+ in Ss, so that p; R pe+ in Z(S). It follows from
the previous paragraph that Sfs is a union of R-classes of X(5).

O
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Lemma 4.2.3. Let S be a left ample semigroup with (LC). If p7'py, p7 pa € (S),
where aR* b,cR*d, then

oty = plpy <= a =uc, b=ud and c = va, d = vb
for some u,v in S.

Proof. Suppose that p7'py, pops € £(S) where a R*b and ¢ R*d. By Lemma 4.1.1,
ptps: Sa — Sband pZlpy : Sc — Sd.
If p7tpy = pZlpy, then Sa = Sc and Sb = Sd. Hence a = uc and ¢ = va for some

u,v € S. Since a € dom (p;'p,), it follows that
b="b*p, = a*py, = ap;' po.
We have
b= ap;'pg = ucp. ' pa = ud.
Dually, d = vb.
On the other hand, if a = uc, b = ud, ¢ = va and d = vb, then
P06 = Pc Pua = P70 Pupa < P P
and
P2 Pa = P Pob = 705 Pops < 07 P
Hence p; oy = p;1pa, as required. O

It is clear that p;!p, is an idempotent. The next lemma gives the form of the

idempotents in X(S5).

Lemma 4.2.4. Let S be a left ample semigroup with the (LC) condition. Then the
set of idempotents of £(S) has the form {p;'ps : a € §}.

Proof. From the proof of Theorem 4.2.2, every element of X(S) has the form pow
for some a,b € S. By Lemma 4.1.4, we can assume that a R*b.

Suppose that p;1p, is an idempotent where a R* b. Then

o oo oy = P7 " Po-
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Since @ € dom (p,!p;) we have that
apg popy oo = apy’ po,
but ap,'p, = b. Thus bp;lp, = ap;'py, so that a = b, as required. O

We will employ the rest of this section to introduce another structure of 2(9)

where S has (LC) by using ordered pairs belonging to S x 5.

Let Z = {(a,b) : aR*b}. On Z define a relation ~ by
(a,b) ~ (¢,d) <= a=wuc, b=udand c=wva, d=vb

for some u,v € S. It is straightforward to check that the relation ~ is an equivalence
relation on Z. Put @ = Z/ ~ and denote the ~-equivalence class of (a,bd) by [a, b].

Define multiplication on @ by
[a, b][c, d] = [za, yd] where SbN Sc = Sw and w = zb = yc

for some z,y € S.

By Lemma 4.2.3, we have
Pa'o =P pa = [a,b] = [c,d].

Hence it is easy to see that the map [a,b] — p;'p, is an isomorphism from Q into
2(S). Then @ is an inverse semigroup with idempotents having the form {[a,q| : a €
S} and [a,b]™! = [b,a]. Also, S embeds in @ by the map 6 : S — @ defined by

afl = [a*, a]. Moreover, S0 is a left I-order in Q.

4.3 Some special cases

In this section we are interested in investigating under which conditions the inverse
hull of left I-quotients of a left ample semigroup with (LC) is a bisimple, simple, or
proper semigroup. We end this section by introducing Theorem 4.3.9, which gives a
necessary and sufficient condition for a homomorphism between left ample semigroups

with (LC) to be lifted to a homomorphism between their inverse hulls. We begin with:
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Lemma 4.3.1. For any semigroup S, R* o L = L o R*.

Proof. Let a,b € S with a R*oL£b. Then there exists an element ¢ € S with a R* ¢ £ b.
Either ¢ = b, in which case a LaR* b, or there exist u,v € S with ¢ = ub and b = ve.
Hence ¢ = ub = wve, so that as a R* ¢ we deduce a = uva, and thus a Lva. But
va'R*ve = b, so that a LoR*b and R* o L C Lo R*. The proof of the dual inclusion

is very similar. O

Lemma 4.3.2. Let S be a left ample semigroup that is a left I-order in an inverse
semigroup Q, such that S is a union of R-classes of Q. Then

(1) S is a (2, 1)-subalgebra of Q;

(i) for a,b € S with a R* b, we have a~'b is idempotent if and only if a = b;

(iii) for any a,b € S, we have Sa C Sb if and only if Qa C Qb;

(iv) for any a,b,c € S, we have SaN Sb = Sc if and only if Qa N Qb = Qc;

(v) S has the (LC) condition,

(vi) Q is bisimple if and only if

CSOR*zSXS;

and
(vii) @ is simple if and only if for all a,b € S there exists ¢ € S with

* S
aR*c <y b

Proof. (i) We need only show that if a € S, then aa™! = a*. We have that a R? aa™!
and S is a union of R%classes, giving aa™! € S. As a R*aa~! we must have that
aa”!=at.

(#7) If a1 is idempotent, then as a~'bR? a~'a, we must have that a~!b = ala.
Multiplying with a on the left gives b = bb~1b = aa™'b = aa~'a = a. The converse is
clear.

(ii3) If a,b € S and Sa C Sb, then clearly Qa € @Qb. On the other hand, if
Qa C Qb, then we have that a = h7'kb for some h,k € S. It follows that a =
((kb)*h)~ h*kb and using Remark 4.1.3,

((6b)HR)=1 R (kB)*h) = (6) 1) RO (kb)*R)~ A+ kb = a
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80 that as S is a union of R%-classes, ((kb)*h)~! € S. It follows that Sa C Sb.

(7v) By Lemma 4.1.4 and (i), S is straight in Q. Suppose that a,b € S and
SanSb= Sc. Then ¢ € San Sb C Qan Qb, so that Qc C Qan@b. Conversely, if
h™'ka = u~'vb € QaNQb, where h, k,u,v € S, hR? k and uR® v, then ka = hu~lvb
and hu~! = s71¢, say, where s,t € S and s R9 ¢. This gives that

ska =tvb € San Sbh= S,
and so ska = tvb = zc, where z € S. Now
ka = hu™lvb = s71tvb = s 'ze

and then h™'ka = h™'s™'zc € Qc. Hence Qa N Qb C Qc, so that Qa N Qb = Qc.
Conversely, suppose that a,b € S and QanQ@b = Qc. From Qc C Qa and Qc C Qb,
(#4i) gives that Sc C San Sbh. On the other hand, if u = za = yb € Sa N Sb for some
z,y € S, then u = gc for some ¢ € @Q, whence Qu C Qc. Again from (ii4), Su C Sc
so that Sa N Sb C Sc and we have Sa N Sb = Sc as required. ‘
(v) Let a,b € S. Then

QanNQ@b=Qa'an@Qb™'b=Qalab™'b = Qab~'s,
but ab™' = 57t for some s,t € S with sR?¢, by Lemma 4.1.4 and (i). We have

Qan Qb= Qs 'th = Qtb.

From (iv) we now have that Sa N Sb = Stb, and S has the (LC) condition.
(vi) From Lemma 4.1.4 and (), it follows that S is straight in Q. Let a=1b,¢!d €
@, where aR*b and ¢ R*d. Then

abDcldin @ & a'WRYz'yL2c1d for some z,y € S with zR*y
& a”'R9z7! and y L2 d for some z,y € S with z R*y
& aLl%zand yL£9d for some z,y € S with 2 R*y
& alSxR*yLYd for some z,y € S.
It follows that @ is bisimple if and only if £% o R* o £ is universal. But from
Lemma 4.3.1, £ and R* commute on S, so that @ is bisimple if and only if LSoR* =

S xS.
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(vié) Since @ is inverse, it follows from [1, Theorem 8.33] that @ is simple if and
only if for any e, f € E(Q), there is an clement ¢ € Q with e = gg~! and g lq < f.
By (i), e = a™'a and f = b71b for some a,b € S. Then Q is simple if and only if
there exists ¢ = ¢™'d (where ¢,d € S and ¢R* d) such that

e=qq'=clcanddld=q¢ < f.

Suppose now that @ is simple, and let a,b € S. Let e = a~'a and f = b~'b.
Consequently, there exists ¢,d € S with ¢R*d, a~'a = ¢ lc and d~'d < b~'h. It
follows that a £%¢ and Qd C Qb. By (iii), a L5 ¢ and Sd C Sb. By Lemma 4.3.1,
Ju € S with a R*u L5 d, so that a R* u <5 b.

Conversely, suppose the given condition on S holds. Let e, f € E(Q) be such that
e =a"laand f = b7'b, and let ¢ € S be such that a R*¢ <2 b. In Q we have
aR%c _<_§ b, so that ¢7'¢ < b7'h. Hence e = a~'a and ¢~lc < f, so that Q is simple.

[

Corollary 4.3.3. The following conditions are equivalent for a left ample semigroup
S:

(1) £(S) is bisimple;

(ii) S has the (LC)condition and R* o L =8 x S;

(itt) S is a left I-order in £(S) and R* o L =85 x S.

Proof. We recall that the embedding of S into X(S) is via what, in the terminology
of [31], are called one-one partial right translations. It follows that ¥(S) is an inverse
subsemigroup of the inverse semigroup S of one-one partial right translations. Thus
for any o € %(S),dom v is a left ideal and for any @ € doma and z € S, (za)a =
z(aq).

(12) = (itd) and (ii2) = (4¢) are immediate from Lemma 4.3.2 and Theorem 4.2.2.

(i) = (4%). Suppose that X(5) is bisimple. For any o € £(S), we know that oD p,,
for some e € E(S), so that a R 3 L p. in £(S). Then doma = dom 8 and im 3 = Se.
It follows that dom 8 = S(ef™!) so that dom« is principal. Now let a,b € S; then

dom (papyt) = (Sa N Sb)p;! = Sw
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for some w € S, and so

Swa = San Sb
and S has (LC). From Theorem 4.2.2 and Lemma 4.3.2, R* o £ is universal on S. [

We recall that a left ample semigroup S is proper if R* N o = ¢, where ¢ is the
least right cancellative congruence on S, and where o is given by the formula that for
any a,b € S,

acb < ea = eb for some e € E(S).

Clearly, if S is a subsemigroup in an inverse semigroup @, then if a¢ b in S, we have
that ao b in @, but the converse may not be true. In other words, there is a natural

morphism from S/o to Q/o, but this may not be an embedding.

Theorem 4.3.4. Let S be a left ample semigroup such that S is a left I-order in Q
where S is a union of R-classes of Q. Then the following conditions are equivalent:
(i) Q is proper;
(ii) S is proper and S/o embeds naturally in Q/o;

(itt) S is proper and S/c is cancellative.

Proof. (i) => (it) Suppose that @ is proper, and a,b € S are such that acb in
Q). Then ea = eb for some e € E(Q) so that bTea = bteb = ebtb = eb and
a*teb = atea = eataa = ea. Hence ateb = bea and so eatdh = eb*a, as E(S) is a
semilattice. But b*a R? a*b, and so b+ta = atb. This gives that acb in S.

Clearly, if a,b € S and a(R*No)bin S, then a (RNo)bin @, whence a = b and
S is proper. |

(1) = (i74) This is clear.

(#42) = (7) Notice that by Lemmas 4.1.4 and 4.3.2, S is straight and any idempotent
of @ has the form a™'a for some a € S. Let a!b,c7d € Q, where a,b,c,d € S, a R* b
and ¢R*d. Suppose that a~10 (RN o) c !d in Q. Then there exists z € S such that

zlza7b = 27 lzeid

and a='bR9c7'd. From the former, za™'b = zc™'d and from the latter, a L2 ¢, by

Lemma 3.2.3. By Lemma 4.3.2, a £ ¢ and so there exist u,v'e S with a = uc and
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¢ = va. We may choose u,v such that a*u = v and ¢*v = v. Now a = uc = uva so
that a* = uva*, whence u = a*u = wvatu = wou. Similarly, v = vuv, so that u and
v are mutually inverse in both S and Q.

From za='b = zc~'d we have that
za”'b = z(va)~'d = za v d = zaud.

But, by Lemmas 3.2.3, 4.1.4 and 4.3.2, za* L9y for some y € 3, so that yb = yud,
and as S/o is cancellative, boud in S. Also, bR* a = ucR* ud so that as S is proper,
b = ud. Now

o 'b=a"ud =a"vld = (va)"'d = c7d
and @ is proper as required. |

We remark that if the conditions of Theorem 4.3.4 hold, then for any ¢ = [a~1b] €

Q/o, we have that ¢ = [a]7[b] and so the cancellative monoid S/o is a left order in

the group Q/o.
The following result is classic; most of it follows from Theorem 4.2.2 and Corol-

lary 4.3.3.

Corollary 4.3.5. [2, 30, 36] The following conditions are equivalent for a right can-
cellative monoid S:

(i) £(S) is bisimple;

(i) S has the (LC) condition;

(itt) S is a left I-order in X(S). .

If the above conditions hold, then S is the R-class of the identity of £(S). Further,
X(S) is proper if and only if S is cancellative.

Conversely, the R-class of the identity of any bisimple inverse monoid is right

cancellative with Condition (LC).
Proof. The equivalence of (i), (#¢) and (¢i¢) follows from Corollary 4.3.3 and the fact
that R* is universal on S.

Suppose that (i), (#) and (#i7) hold. Let e be the identity of S. As remarked in

Section 2.4.1, £(S) is a monoid with identity e. Since S is a single R*-class, and
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the embedding of S into £(9) is a (2, 1)-embedding, we have S € R>™. Again by
Theorem 4.2.2, we have that B2 ¢ S, so that § = RZ®.

Since o = ¢ on S, it is clear that § is proper and S/o = S. From Theorem 4.3.4
¥(8) is proper if and only if S is cancellative,

Conversely, let R be the R-class of the identity of a bisimple inverse monoid Q. By
Theorem 2.4.2, R is a right cancellative monoid with the (LC) condition, and from

the comments before Example 3.1.2, we have that R is a left I-order in Q. ]

To study the case when X(S) is bisimple inverse w-semigroup, Clifford obtains the

following result [2].

Lemma 4.3.6. Let Q be a bisimple inverse semigroup with tdentity. Let S be the
right unit subsemigroup, and G the unit group, of Q. Then the partially ordered sets

of principal left ideals of Q and S are isomomorphic.

If £(S) is a bisimple inverse w-semigroup, then for any two idempotents a~'a, b=1b
in 2(S5) we have a™'a < b™'b or b7'b < a~'a. In the former case Qa C Qb, and so

Sa C Sb. In the latter case Qb C Qa, and so Sb C Sa. Hence
ala <7 == Qa C Qb < Sa C Sb

or
b <ala <= Qb C Qa < Sb C Sa.

Lemma 4.3.7. Let S be a right cancellative monoid. If the principal left ideals of S

are linearly ordered, then the idempotents of £(S) form a chain.

Proof. 1t is clear that S has the (LC) condition and X(S) is a bisimple inverse semi-
group. We proceed to show that E(X(S)) a chain. For any a™'a,b'b in E(Z(S))
for some a,b € S we have a = tb or b = ra for some ¢,7 € S. In the former case,

a~lab~1b = a'a. Similarly, in the latter case b~'ba~1a = b~1b. O
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The proof of the following corollary is clear so we have omitted it.

Corollary 4.3.8. Let S be a right cancellative monoid. If the principal left ideals of
S form an w-chain, then the following are equivalent:
(¢) S is left cancellative;

(i) Z(S) is a proper bisimple inverse w-semigroup.

We now give a promised simplification of Theorem 3.2.9. The following result was
first proved in the special case of S and T being right cancellative in [42]. First, we
say that a (2, 1)-homomorphism ¢ : S — T, where S and T are left ample semigroups
with the (LC) condition, is (LC)-preserving if, for any b,c € S with SbN Sc = Sw,
we have that

T(b¢) NT(c) = T(wg).
This condition is not new: it appeared originally in [42] for right cancellative monoids
with (LC), where it was called an sl homomorphism and subsequently (or variations
thereof, and under different names) in, for example, [20] and [31]. Using the fact that
for idempotents ¢, f of an inverse semigroup @, we have that Qe N Qf = Qef, it is
easy to verify that any morphism between inverse semigroups is (LC)-preserving.

The following result was first proved in the special case of S and T being right

cancellative in [42].

Theorem 4.3.9. Let S and T be left ample semigroups with the (LC) condition and
let Q and P be their inverse hulls. Suppose that ¢ : S — T is a (2, 1)-homomorphism.
Then ¢ lifts to a homomorphism ¢ : Q — P if and only if ¢ is (LC)-preserving.

Proof. For ease in this proof we identify S and T with S8s and T6r, respectively.
Since S and T is (2,1)-subalgebra of @ and P respectively, so that ¢ must preserve
the unary operation ™ and hence the relation R*. Since (R*)® = R¥ N (S x S) and
(R*)T = RPN (T x T) so that () of Theorem 3.2.9, holds. It remains to show that
(¢7) of that theorem holds if and only if ¢ is (LC)-preserving.

Suppose first that ¢ is (LC)-preserving. If (a,b,¢) € T&, then ab™!Q C ¢1Q.
Now S has (LC) so that Sa N Sb = Sw for some w € S and ua = vb = w for some

u,v € S with ua™ = v and vb™ = v. From Lemma 4.2.1, ab™! = v~ v and uR* v.
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Hence u~'v@Q C ¢71@Q so that Su C Sc, by Lemma 4.3.2. Clearly,
T(u¢) C T(vg), upad = vebg = we, up(agp)”™ = u¢ and vp(bp)* = vg.

As ¢ is (LC)-preserving, T(ad) NT(bp) = T(w¢), whence (ag)(bp)™! = (u¢) v and
it follows that (a¢, b, cd) € TL.

Conversely, suppose that (i7) of Theorem 3.2.9 holds, so that ¢ lifts to a homomor-
phism & : Q — P. Supppose that b,c € S and SbN Sc = Sw. We have ub = vc = w
for some w,v € S with ub* = u, ve* = v and wR*v. This gives that be~! = y~lv
and so, applying ¢, we have bp(ch)™" = (ug)~lvp. As T has (LC), we certainly have
that bp(cg)™" = h™'k for some h,k € T with h(bg) = k(cg) = z, T(b¢) N T(co) = Tz
and AR*k in T. From Lemmas 4.3.2 and 3.2.3 u¢ Lk in T, so that we = (ub)p =
up b Lh(bp) = z in T. We now have that

T(b8) N T(c4) = Tz = T(wo)
and ¢ is (LC)-preserving. O

The above result could (via a series of intermediate steps) be deduced from The-
orem 2.6 of [31]. For, the ample condition ensures that a left ample semigroup is
embedded in the semigroup § of one-to-one partial right translations of S, via the
right regular representation described in Section 4.1. Further, the image of S is con-
tained in J(S), the set of join irreducible elements of 5. By [31, Proposition 1.14], if
S has (LC), then J(S) is an inverse semigroup, which is isomorphic to our £(S). The
restriction of 6 in [31, Theorem 2.6] to J(S), with a slight adaptation of the notion

of permissible homomorphism, will now give our Theorem 4.3.9.



Chapter 5

Left I-orders in semilattices of
inverse semigroups

Our aim in this chapter is to find the structure of semigroups of left I-quotients of

certain semilattices of left ample semigroups with the (LC) condition.

Clifford [1] showed that any right cancellative monoid S with the (LC) condition
is the R-class of the identity of its inverse hull $(S). Moreover, in our terminology,
S is a left I-order in X(S). Gantos [20] considered semigroups which are semilattices
of right cancellative monoids with the (LC) condition and certain further conditions.
In Chapter 4 we extended Clifford’s result to a left ample semigroup with the (LC)
condition. In this chapter we extend Gantos’s result to certain strong semilattices of

left ample semigroups.

In the first section we prove a lemma concerning properties of a semigroup S which
is a semilattice ¥ of right cancellative monoids S,, € Y. Gantos has developed a
structure for semigroups @ which are semilattices Y of bisimple inverse monoids
Qa, such that the set of identities elements forms a subsemigroup. His structure
is determined by semigroups S which are strong semilattices Y of right cancellative
monoids S,,« € Y with the (LC) condition and certain homomorphisms. We prove
one of these conditions is equivalent to a semigroup S having the (LC) condition. We
use this equivalence to define a nice form for the multiplication that is easier to deal

with than the form which Gantos used.

In the second section we are concerned with a semigroup of left I-quotients of a

50
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left ample semigroup S with the (LC) condition which is a strong semilattice ¥ of left
ample semigroups S,, o € Y, such that each S, has the (LC) condition. We study
the relationship between the inverse hull of S and the semigroup of left I-quotients of
S. In the final section of this chapter we use the results in the previous sections to

prove the equivalence between two categories.

5.1 Left I-quotients of semilatices of right cancellative semi-
groups

Gantos’s main theorem states: Let S be a strong semilattice Y of right cancellative
monoids Sy, € Y with (LC) and connecting homomorphisms ¢, 5, > 3. Suppose
in addition that (Cy) holds, where (Ca): if Span N Syby = Syey for all Aoy bo, Co € 8,
then

Sp(0atpa,8) N Sp(batpas) = Sa(cpas)

for all a,8 € Y with & > B. In the terminology of Chapter 4, (Cy) says that the
connecting homomorphisms are (LC)-preserving. He obtained a semigroup () which
is a semilattice Y of bisimple inverse semigroup (), with identity e,, o € ¥ such that
{ea:@€Y}lisa subsemigroup of Q. In fact, Q, is the inverse hull of S, for each a €
Y. We show that (C,) is equivalent to S having the (LC) condition. We then reprove
Gantos’s result. In Corollary 5.1.14, we provide a simple proof of Theorem 5.1.3
completely independent of [20], by using Theorem 3.2.9 and Lemma 5.1.2. We start

with the following useful lemma.

Lemma 5.1.1. (¢f. [9]) Let S be a semilattice Y of right cancellative monoids Sa,a €
Y. Let e, denote the identity of Sy, € Y. Then

(1) egan = aneg if @ > B where aq € S,;

(2) eaap = €ap;

(3) E(S) is a semilattice;

(4) the idempotents are central;

(5) for any a,b € S, aR*b in S if and only if a,b € S, for some o in Y;

(6) S is a left ample semigroup.
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Proof. (1) Let es € Sz and a, € S, for some o, B €Y, where a > 8. Then ega, and
aqep are in Sg, = Sz. Hence

€plg = (eﬁ(la)eﬂ = eﬂ(aaeﬂ) = Qq€g.

(2) Let e, € S, and e5 € Sp be the identities of S, and Sp respectively. From (1) it
follows that

€aCop = €a€alnpg = €aCaplo-

Hence (eqtap)eatas = eqtqp, that is, €atap is an idempotent in S,5. But there is only

one idempotent in Sug, so that eye,s = €af = €a8€q-

(3) Let ey € S, and e5 € Sy for some o, 8 € Y. Then €atg € Sup and from (2)

we have that
CaCf = €4CRCaS = €ang = Cap-
(4) Let eq € S, and ag € S; for some o, B € Y. Then eaty € Sop and from (1) and
(2) we get
€allf€as = ol = €afly = 03€ag = ACaCag.

Since eqg is the identity of S,s, we have that e,as = age,.

(5) Suppose that aR*b in S where a € S, and b € Sp. Then ega = ege,a and
50 egb = ege,b which implies that 5 < a. Dually, @ < 8 and hence o = 8.
Conversely, suppose that b € S, and zb = yb for some z,y € S where x € Sp and
y € Sy. Then fa = ay as zb,yb € S, = Say. Thus zbeys = ybeag so that from (1)
we get Teapb = yeagb, and so zeas(beas) = yeas(beas). Now zeas, Yeas, beas all lie in
Sap which is right cancellative, so that Te,s = yeqas. As in the proof of (3) we have
that e,ep = egeq = eqp. Hence wege, = yege, = yeyeq and then ze, = ye,. Also, if
xb = b, that is, 2b = e,b, then re, = ejeq = €4. Thus bR*e, in S. Hence for any

a € S, we have that a R* b in S as required.

(6) From (3) we have that E(S) is a semilattice. By (5) we deduce that each R*-class

contains an idempotent which must be unique as E(S) is a semilattice. Notice that
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if a € S,, then a* = e,. To see that S is left ample, let a € S, and eg € Sp. We
have to show that aes = (aeg)*a. Using (1) and the fact that €a€p = €€y = €4 AS

in the proof of (3) we get
(aeg)Ta = eqpa = aeyp = aeqaes = aeg
as required. O

In the following lemma we show that the ‘strong’ in Gantos’s result is automatic.

The proof of the following is entirely routine, but we provide it for completeness.

Lemma 5.1.2. Let P = S(Y; Sa) where each S, is a monoid with identity e,, such
that B = {eq : @ € Y'} is a subsemigroup of P. Then E is a semilattice isomorphic
toY and E is central in P.

If we define dap : So =+ Sp by audaps = ages, for all ay € S, where > [, then
each ¢q p s a monoid homomorphism, and P = S(Y; Sa; gzﬁaﬁ). Conversely!, If
P =8(Y; S4;@a,p), then for a,8 € Y with o > B and a € S, we have APep = Aty =

€sa.

Proof. 1t is easy to see that Y is isomorphic to £ under the map o — e,, where €a)
is the identity of S,. Let o, € S, and suppose first that a > 8. Then

aqes = eglaqes) = (eptq)es = egay,.

Now, for arbitrary e,

Aa€y = (aae—y)ea'y = aa(e'yeon) = 0oy = €anlla = (ea'ye’y)aa = ea'y(e’raa) = €40q,

so that F is central in P.
It is easy to see that for @ > B, ¢ap : So — Sp is a monoid homomorphism,

Gae = Is, and for a > B > v, oy = Gapdsy Let Q = S(Y; Sa;dba,g) and denote
the binary operation in @ by .
For a,,bs € ¢ we have

o * bg = (AaPa,a) (0898.a8) = (Aatas)(bsas) = (aab@)eaﬂ = aubg,

1This part of the lemma is folklore and was drawn to my attention by Fountain.
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as required.

On the other hand, let P = S(Y; S,; ¢q5). First, note that ifa,B €Y witha > g,
then eqa,p = e because ¢, 4 is a monoid homomorphism.

Suppose that a,8 € Y with @ > 8 and let a € S,. Then

A€p = APa,peH = APu g
since apq g € Sp and eg is the identity of Sj. O

Now we introduce the main theorem of this section. It is worth pointing out that
this theorem is equivalent to the main theorem of [20]. However, we give here another
proof. The idea is to use the (LC) condition introduced previously in order to prove
such a theorem. This proof will make our result easier to extend to other settings in
the next section. Let £(S) be the inverse hull of left I-quotents of a right cancellative
monoid S with (LC). In the rest of this section we identify S with Sg, where 8y is
the embedding of S into Zg. We write a~!b for short the element 07 py of £(S) where
a,bes.

Theorem 5.1.3. Let S = S(Y; Sa) be a semilattice of right cancellative monoids S,
with identity eq,a € Y. Suppose that S, and each S, has (LC). Then Q = S(Y; Ta)
is a semilattice of bisimple inverse monoids (where S is the inverse hull of S, ) and

the multiplication in Q is defined by: for a™'b € £,,c¢7'd € 2s,
a~tbe™'d = (ta)~ (rd)
where Sab N Sqpc = Sepw and th = rc = w for some t,1 € Syp5.

Proof. By Corollary 4.3.5, each S, is a left I-order in £, where each S, is the R-class
of the identity of X, and X, is a bisimple inverse monoid. We prove the theorem by

means of a sequence of lemmas. We begin by the following lemma due to Clifford.

Lemma 5.1.4. (cf. [2, Lemma 4.1]) Let T be a right cancellative monoid. Then for

a,b e T we have
a Lb if and only if a = ubd,

for some unit u of T.
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Lemma 5.1.5. The multiplication is well-defined.
Proof. Suppose that we have elements a1, b1, ag, by of Sy, ¢1,dy, ¢2,ds of Sg such that
aflbl =ay"'by in B, and cildy = ¢y dy in X5

By Lemma 3.2.5,

a; = urag, by = uiby

for some unit u; € S, and

€1 = v1¢y, dy = vids

for some unit v; € Sy. By definition,
al‘lblcl_ldl = (tlal)_l(rldl)

where

Saﬁbl N Sagcl = S(,gwl and t;b; = ric; = wy

for some ¢, m,w; € Sa5. Also,
a5 by Vdy = (taaz) " (rady)

where

Saﬁbg n Sa[iCz = Sapwe and taby = rocy = wy

for some t, 7y, wo € Sap.

We have to show that a7'b;c;71d; = a; 'bycy~dy, that is,
(tra1) " (r1dr) = (taa) ™ (rady)
and to do this we need to prove that
tia; = utyas and rid; = uryds

for some unit u in S,g, using Lemma 3.2.5. We aim to prove that S,gw; = S,sw,.

We get this if we prove that Sasb1 = Sagbs and Sypcr = Sapco.
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Since by = uyby, using Lemma 5.1.1(1), we have that

eaﬂbl = eaﬂu1b2 = (uleaﬁ)b2 = (Uleaﬁ)(eaﬁbz)

s0 that Spgeqsb; C Sapeapbs and since by, = u'b; the converse implication also holds.
We have
Saﬁbl = Sa'geaﬁbl = Sageang = Saﬁbz.

Similarly, Sageqscr = Sapeasca. Hence Sapw1 = Sapws 50 that wy Lwy in S,s. By
Lemma 5.1.4, wy = lw, for some unit { in Sap- Then

wy = t1by = lwy = I(taby) = lta(uithy).
But, by Lemma 5.1.1 a; R*b; in S, it follows that #;a; = ltguflal = [taa,. Since

wy = ric; = lwy = Iracy = Iravy ey

and ¢; R*d; in S, again using Lemma 5.1.1, we have

rid; = lrgvfldl = lrgvl'lvldg = Irody
as required. O

In order to prove the associative law we need to introduce subsidiary lemmas. The
proof of the next lemma depends only on the fact that S, is right cancellative and

the proof can be found in [20].
Lemma 5.1.6. (5,04 N Saba)Ca = Sa@aCa N Sabacy for all gy, by, co € S,.

In the following lemma we prove the equivalence between S having the (LC) con-
dition and (C,) mentioned in the introduction. In the next section we extend its

statement to a more general context. We are grateful to Dr. Gould for supplying the

proof of this equivalence.

Lemma 5.1.7. Let S = S(Y; Sa) be a semilattice Y of right cancellative monoids
Se with the (LC) condition. Then

S has (LC) if and only if whenever § < «, if Saa N Saba = Sata (A, bayca € S,),
then Sg(ages) N Ss(baes) = Sa(cats)-
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Proof. Suppose that S,aq, N Syby = S,cy implies Sga, N Sgby = Sge, for all 8 < a.
Let a € S, and b € Sj for some o, 3 € Y. Then Q€ag, €apb € Sup 50 that as Sy has
(LC) we know that

Saﬂ(eaga) N Sag(eaﬁb) = Saﬂc

for some ¢ € S,5. Now, let d € San Sb, say d € S, so that v < off and d = ua = vb

for some u,v € S. By assumption,
Sy(eapa)ey N S, (eapb)e, = S, ce,.
Then Syae, N S,be, = S,ce,. Now,
d=wua=vb= (e;u)a = (eyv)b € Syan S,b= S,c

as eyu,e,v € S, Then d € S,c and so Sd C Sc. Thus San Sb C Se. Also,
¢ € Sapa € Sa and ¢ € S,pb C Sb. Thus ¢ € San Sb. Hence Sc C San Sb and we
get Sc = San Sh.

On the other hand, suppose that S has (LC) and let S,aq N Saby = Saca, s0 that

Ca = Ualy = Ugb, for some uy, v, € S,. We claim that
Sa, N Sb, = Sc,.

As S has the (LC) condition there exists d € S¢ such that Sa, N Sb, = Sd. Then
d = ka, = hb, for some k,h € S and so £ < . Since ¢, € Sa, N Sb, we have that
¢o = rd for some r € § so that « < . Hence o = £, that is, d € S, and we can write
d = d,.

From ¢, = rd we have that ¢, = (ear)dy € Sady so that S,c, € S.d,. Since
dy = kag = hby = (€ak)aq = (eah)bs, we have that d, € Sqaa N Syby = Saca, and so
Sady C Spcq. Thus Sad, = Sace. Hence dy L, in Sy, so that dy, L ¢, in S. We have

Sa, N Sb, = Sc,.

Hence our claim is established.
Now let 8 < a. Since Sg has the (LC) condition and ega, egb € Sz we have that

Ss(epaa) N Splegba) = Spwp
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for some ws € Sg. We aim to show that Sz(escy) = Spwg.
Since wg € Spa, N Sgbs C Sa, N Sh, we have that wg € Sc, and so wg = le, for
some ! € S, say | € S, so that 5 > . Since wg = egwg = eglc, and n > B, it follows
that wg = egws = legc,, by Lemma 5.1.1. Then wg = (leg)(egca) € Spcy SO that
Sgwa C Sglegey).

Conversely, since ¢, = Uaaq = v4b, and B < a, it follows that egc, = E8UGERA =
€glatpba, by Lemma 5.1.1. It follows that eze, € Spae N Sgby = Spwg. Hence
Sp(esca) C Spwg. Thus Ssepe,) = Sswy as required. O

Lemma 5.1.8. Let a™'b,a7'eq € T4 and c71d,epd € T4 where a,b € Sy, c,d € Sz
and eq, es are the identity elements in S, and Sg respectively. Then

(¢) a™'begd = (aeqp) =1 (bd),

(i) (a™ea)(c2d) = (ca) ™ (deas).

Proof. (i) We have that S,ses N Sagb = Sas N Sagb = Sasb and
eapb = (beag)es = (eagb)es = beag,

using Lemma 5.1.1. We have

(a™1b)(epd) = a(beg)d

(it) We have that Sypc N Sagea = SapcN Sap = Sapc and
easC = (Ceap)ea = (€apC)en = Cequg,
using Lemma 5.1.1. We have
(a7lea)(c'd) = (ca)™}(deas)

as required. 0
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Lemma 5.1.9. Let a™'b € £,,e5d,d e; € g and r7'y € T, where e is the
identity element in Sy where a,b € Sarep,d € Sg and z,y € S,. Then

(1) (a™bepd)a™y = a~b(egdz="y);

(1) (a7bd leg)a™ly = a~1b(d gz 1y).
Proof. (i) Let a='b, egd, 21y be as in the hypothesis. Then

(a7'begd)z™ly = (aeqp) !(bd)z~ly by Lemma 5.1.8 (2),
= (t1a)7(r1y)

where ¢1bd = riz = w; and
Sapy(bdeapy) N Sapy(eapy) = SagyW1

for some 1,71, w; € Sag,-

On the other hand, by definition of multiplication,

atb(epdz™ly) = a”'b(toes) N (roy)
= (tsa)"(rsr2y)

where tod = ror = wy with
Sey(degy) N Spy(zepy) = Spywy (5.1)
for some t3, 75, wy € Sp, and t3b = T3ta€apy = W3 With
Sapybeay N Sapytr€apy = Sapyws (5.2)
for some 3,73, w3 € Sapy. Using (5.1) and Lemma 5.1.7 gives
Sapyd N Sapy@ = Spgyws ' (5.3)
We must show that (¢1a) 7 (r1y) = (t3a)"'(r3rey). By using Lemma 3.2.5, we have to

show that tja = utza and r1y = ursryy for some unit » in S,g,.

Once we know w; Lwsd in S,sy, we have that wy = hwsd for some unit A in Sagy
by Lemma 5.1.4. Hence t,bd = ht3bd so that tiea4,bd = htsze,p,bd. Since t;, hts and
eqp,bd are in S,g,, which is right cancellative we obtain t; = ht; so that tja = htsa.
Now, .
wy = rx = t1bd = hizbd = hrsted = hrgrozx.
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As 7y, hryry and €apyT are in S,g, again by right cancellativity in Sapy we have that

r1 = hrsry and so riy = hrsray.
Now, as S has (LQ)

Sopyln = Sapybd N Sapy®

Saﬁvbd N Sozﬁ'yd N Sa/g»yl‘

Sa57bd n Sa/;-ng by (53)

Sagvbd n Saﬂ,ytgd

Sambdeaﬂ,, N Sa,gytgdeam

= (Sapyb N Sapyta)deqs, by Lemma 5.1.6
Sapywsd by (5.2).

(1) Let a™'b,d™"eg, #7'y be as in the hypothesis. Then,

i

il

Il

i

(a7'bd™eg)ely = (tia)"Y(rieg)z~ly
= (tat1a) 7 (roy)

where t;b = rid = w; with
Sap(beag) N Sap(deas) = SapWi
for some 1,71, w; € Sap and tyr; = rox = wy with
SapyT1 N SapyT = Sapywo.
for some t3, 75, wy € Sap,. By (5.4) and Lemma 5.1.7 we have
Sapyb N Sopyd = Sepywy.

On the other hand, by Lemma 5.1.8(47),

a7b(desr™y) = atb(ad) " (yep,)
= (t3) " (rayes,)

where

tab = r3zd = w3, Sagy(2d) N Sagy(beapy) = Sapyws

for some t3,73, w3 € Sagy-

(5.4)

(5.5)

We have to show that (tot1a)~Yry) = (tsa)~'(rsyesy). By using Lemma 3.2.5, we

have to show that t3a = vistia and rsy = vryy for some unit v in Sapy-
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Once we know wy £ wsd in Sapy, We have that wy = kw,d for some unit % in Sapy, by
Lemma 5.1.4. Hence ryzd = kroxd so that T3€apyTd = kroeqsp xd. Since 73, EafyTd
and krsy are in Sapy Which is right cancellative we obtain r3 = kry so that r3y = kryy.
Now,

Wy = t3b = T‘3.’13d = krgxd = ktg’f‘ld = ktgtlb.

Hence t3e,3,b = ktaotieqas,b where t3, €agyb and ktyt; are in S,p, again by rlght can-
cellativity in Sapy we have that ¢35 = ktot; and so tsa = kiqtia.

Now,
Sa37w3 = Sag-yb N Sag.y.’L'd
Saﬁﬂ) N Ssyzd N Sapgyd
Sapyrd N SapyWy by(5.6)
Sa57l'd N Sag,y'l“ld
Sa57$d6a57 n Saﬁ7T1 deam
(Sapyz N SapyT1)d€npy by Lemma 5.1.6
= Samwgd by (55)

as required. d

il

il

Lemma 5.1.10. The associative law holds in Q.

Proof. Suppose that a™'b € X4,¢7'd € T5 and st € ¥, where a,b € S,,c,d € Sps
and s,t € S,. From Lemma 5.1.9, we have that
a~'0(c7lds7t) = a7'b(clegegd.s™1t)
= a7 'b(cleg.cpdst)
= (a Yheleg)(epd.s1t)
= (a~'bcleg.epd)s™ 't
== ( lb(C-‘ICﬂ.CIgd))S_lt
= (a"lbcld)s 1t

From Lemmas 5.1.10 and 5.1.5 we get the proof of Theorem 5.1.3. O

Let a € S, and b € Sp for some o, 8 € Y. By Lemmas 5.1.8 and 5.1.1,

-1

eategh = e;laes'b = (eatap) ' (ab) = eag(ad) = ab

and we get the following lemma;

Lemma 5.1.11. The multiplication on Q extends the multiplication on S.
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The next corollary is now clear.
Corollary 5.1.12. The semigroup S defined as above is a left I-order in Q = Uaey Za-

Let §=8 (Y; Sa) be a semilattice Y of right cancellative monoids S, with identity
€w; @ € Y such that each S,,a € Y has the (LC) condition. By Lemma 5.1.1,
E = {ea:a €Y} is a subsemigroup of S. Hence S is a strong semilattice ¥ with
connecting homomorphisms ¢, 5 : S, — Sp given by anpas = aqeg where a > f for
any aq € Sa, by Lemma 5.1.2. In fact, every semilattice of right cancellative monoids
is a strong semilattice of right cancellative monoids (see [39, Exercises I111.7.12]). If
S has the (LC) condition, then by Corollary 5.1.12, S has a semigroup of left I-
quotients Q = ),y Lo where £, is the inverse hull of Sy, € Y. It is easy to see
that e, is the identity of ¥,. From Lemma 5.1.7 and Theorem 4.3.9, the ¢, g’s lift to
homomorphisms ¢qp : Loy — g and ¢o,sds, = Gay for all a > B > 7, and ¢q 4 is
the identity on X,. Hence @ is a strong semilattice of bisimple inverse monoids ¥,’s,

a € Y, by Lemma 5.1.2. The following theorem is now clear.

Theorem 5.1.13. Let S = S(Y; Sa, a,s) and for each «, let Sy be a right cancellative
monoid with the (LC) condition and T, be its inverse hull of left I-quotients. Suppose
that S has the (LC) condition. Then S is a left I-order in a strong semilattice of
monoids Q = S(Y'; Zq, da,p) where o p’s lift to up’s, a > B.

In the next corollary we provide an alternative proof for the above theorem, by

using our result in Section 3.2.

Corollary 5.1.14. Let S = S(Y; Sa, Ya,s) and for each a, let S, be a right cancella-
tive monoid with the (LC) condition and £, be its inverse hull of left I-quotients.
Suppose that S has the (LC) condition. Then for all a,8 € Y, a > 8 we have that
©Ya,p lifts to a homomorphism ¢op of Lo into Xg. Moreover, S is a left I-order in
Q= S(Y;Za, Pap)-

Proof. By Corollary 4.3.5, each S, is a left I-order in its inverse hull £, and S,
is the R-class of the identity of £,. We know that ¢, g : Sy — S5 is given by
QaPap = Gaeg Where o > 3 for any a, € S,. By Theorem 3.2.9, each ¢, 5 (a0 > B)
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lifts to a homomorphism ¢, 4 : &, — 23 if @4 3 preserves 7;,@ and R relations. In

other words, if ¢4 g satisfies Conditions (i) and (ii) of this theorem. Let
be T, CdTIE,
for some b,¢,d € S,. Hence
be™t = d 7y = (zd) "y

for some z,y € S,. Also, bc™! = h™'k for some h,k € S, with S,bN S,c = Sew
where hb = kc = w. As h™'k = (zd) 'y we have that

xd = uh and y = uk

for some unit u € S,, by Lemma 3.2.5. Since S has (LC) and S,bN S,c = S,w we
have that
Sp(bes) N .Sp(ces) = Sp(wep),

by Lemma 5.1.7. It follows, as ¢, g preserves units, that

bSoa,B(CSOa,B)_l = (h@a’g)—l(k@a?ﬂ) = (xd)(p;,lﬂy(pa,ﬁ = (dwa,ﬁ)—l(x(foa,ﬁ)—lyipa,ﬁ-

Hence
bfa,8(cpap) ' Ea C (dpas) ' Ss

and 50 (0a s, CPapr das) € TS, as required. It is clear that ¢, s preserves R%
relation. It is straightforward to show that the multiplication on @ extends that of
S. Hence Q = (Y; X4, ¢ap) is a strong semilattice of bisimple monoids. It is clear

that S is a left I-order in Q. O

We aim now to prove the converse of Theorem 5.1.13. Let @ be a strong semilat-
tice ¥ of bisimple inverse monoids Qq, (with identity e,) such that £ = {e, : o € Y}
is a subsemigroup of Q. By Lemma 5.1.2, E' is central in (). Further if we define
bap @ Qu —> Qp by gad = qaes (o > f3), then each ¢, is a monoid homomor-
phism and Q = S(Y;Qq; ¢a,s). Let S, be the R-class of the identity e, in Q,.
Clearly, ¢u.psls, : Sa — Sz and S = S(Y'; Sa; Pasls.) is a strong semilattice Y of

right cancellative monoids S,. We wish to show that S has the (LC) condition. By
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Lemma 5.1.7, to show that S has (LC) condition we have to show that bapls, is

(LC)-preserving (o > B). We need the following technical lemma from [38] (see,
Lemma 3.2 of [2)).

Lemma 5.1.15. (¢f. [38, Lemma X.1.8]) Let Q be a bisimple inverse monoid and
let R be the R-class of the identity. For any a,b,c € R,

Ra N Rb= Reif and only ifa tab™'b = ¢ le.

Returning to our argument before Lemma 5.1.15. Let Saa N Seb = S,c where
a,b,c € S,. Then, we have that a~'ab~1b = c~'¢. We claim that
(esa) ™ (epa)(esb) 1 (esh) = (egc)~(esc) where a > 8.

Since E is central in Q we have

(esa)~!(eza)(esh) Hegb) = a~legegab~legh
a"legablegh
a"laegh1b
ega”lab1b
egc e
egcege
(eac) ™ (egc)-

Hence our claim is established. By the above lemma Sgega N Spesh = Sgesc where
o > B. Thus by Lemma 5.1.7, S has the (LC) condition and the following theorem

i

{

o

is clear.

Theorem 5.1.16. Let Q) be a strong semilattice Y of bisimple inverse monoids @,
(with identity e,) such that E = {e, : a € Y} is a subsemigroup of Q. Then there
is a subsemigroup S of Q with the (LC) condition which is a strong semilattice of
right cancellative monoids S, where S, is the R%-class of ea. Moreover, S is a left
I-order in Q.

Combining Theorem 5.1.3 and Theorem 5.1.16, we get the following corollary.
Corollary 5.1.17. (cf. [20, Main Theorem]) Let § = S(Y';S,) be a semilattice Y of
right cancellative monoids S, with identity eq, such that each S, has (LC). Suppose
in addition that for any a > B, if Sata N Saby = Sacy, then Sgas N Sgb, = Sscy.

For each o € Y, let Qo be the inverse hull of S,, so that Q, s a bisimple inverse
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monoid, and S, is the R9*-class of eq. Then Q = S(Y;Q.) is a semigroup of left
I-quotients of S, such that E = {ea:a€Y}isa subsemigroup.

Conversely, let Q = S(Y; Qa) be a semilattice Y of bisimple inverse monoids Qq,
with identity e, such that E = {eq : o € Y'} is a subsemigroup. Then S = S(Y; REQ)
is a semilattice of right cancellative monoids R, such that each R., has (LC) and
for any a > B, if R, a, N Re by = R, cq, then Regaa N Reyby = Rescq where R, is
the R-class of the identity ey in Q, for alla € Y.

It was shown in [1] that a semigroup @ which is a semilattice Y of inverse semi-
groups (), is an inverse semigroup, but if each Qo is proper @ may not be proper
(see, Example 5.2 [37]).

Let S = S(Y;Sa; ¢as) be a strong semilattice Y of right cancellative monoids
Say € Y with the (LC) condition and S has (LC). In Corollary 5.1.14, we showed
that S has a strong semilattice of left I-quotients Q = S(Y;Z4, ¢a,s) where 3, is the
inverse hull of S, for each o € Y and each ¢, 4 is the extension of Pa,8- We recall
that the connecting homomorphism ¢, s is given by s p = ega. We employ the rest

of this section to study the case when @ is proper.

Theorem 5.1.18. Let S = S(Y;54;¢as), where each S, is a right cancellative
monoid with the (LC) condition and each ¢qp is (LC)-preserving. Let ©, be the
inverse hull of left I-quotients of S, for each o € Y. Then Q = S(Y; Yo bap) is a
semigroup of left I-quotients of S. Moreover, each ¢op is one-to-one and each T,
proper if and only if Q is proper and (x) holds where (x) is the following condition:
for alla,b € S, and for all a > B,

adap L7 b g implies that a L7 b.

Proof. By Corollary 4.3.5, each S, is a left I-order in its inverse hull 3, and S, is
the R-class of the identity of 3,. Since each g, g is (LC)-preserving, it follows that
S has the (LC) condition, by Lemma 5.1.7. From Theorem 5.1.13, we have that S is
a left I-order in ). Suppose that @ is proper and () holds. To show that each Ga,p

is one-to-one, let
(a™'b)das = (c"'d)ass
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where a™1b,¢71d € ¥, for some a,b,c,d € S,. Since ¢, p is the extension of Pa,p for

all @ > 8in Y, we have

(eaa) ™ (epb) = (egc) ™" (ead).
Hence a™'esb = ¢™'egd and so a~'bey = c~'des as the identities are central in Q. It
follows that a™'b o ¢~'d in . Using Lemma 3.2.3, we get ada,s = ega L egc = cpyp
and so a L*« ¢, by assumption. Since RS> = REN(Z4xEy) and L%« = LON(T4xT,)
for each o € Y (see, Proposition 2.4.2 of [23]) we have that a £ ¢ and so a~! RQ ¢~
Again by Lemma 3.2.3,

a VW RYaTIRAIRY ¢,
so that a™'6RYc™'d. Since Q is proper and a~'b(c N R?)¢1d, it follows that
a~'b = ¢71d, by Proposition 2.4.8. Hence Pa,p is one-to-one. It is clear that if Q is
proper, then ¥, is proper foralla € Y.

On the other hand, suppose that each ¢, g is one-to-one and %, is proper for each

a € Y. To show that @ is proper, let
atocle=cle
where a™'b € X, and ¢™!¢ € T for some a,b € S, and ¢ € Sj. It is clear that 8 < «
so that S,g = Sz. By definition of multiplication
a 'be™le = (za) " Hye) = ¢ e

where xb = yc for some z,y € Sp and as za, yc, ¢ € S we have that za = uc = yc for
some unit v in Sg, by Lemma 3.2.5. Since zb = yc we have that zegh = yc = zega, as
¥ is proper, it follows that Sg is cancellative, by Corollary 4.3.5. Hence egb = ega
and so agap = bpy 5. Hence a = b as ¢q 5 is one-to-one. To show that () holds, let
aag LZ bp, 5 for all @ > B in Y and for all a,b € S,. We have

(a™'a)pas = (b7'b)days
s0 that as ¢, g is one-to-one a™'a = b~'b in T, and so0 a £ b as required. O

Following [22], let P be a semilattice Y of inverse semigroups P,, and let o, =

o(P,) be the minimum group congruence on P,. Define 7 on P by

PTq <> po,qin P, for some a € Y.
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It is shown in [22] that 7 is a congruence on P and P/ is a semilattice Y of groups
P,/04. That is, P/7 = Usey (Pa/0s). For any ac, € P,/o, and bog € Pg/og we
have

(acq)(bog) = (ar)(br) = (ab)T = (ab)oyps.

Lemma 5.1.19. [22] Let P be a semilattice Y of proper inverse semigroups Py, € Y
and let T be defined as above, so that P/7 is a semilattice Y of groups Gy = P,/oa
and define the mappings Va5 : Gy — Gp by giap = ges where a € G, and eg
denotes the identity of Gz. Then the following are equivalent:

(1) P is proper;

(2) P/T is proper;

(3) ta,3 is one-to-one where a > f3.

Corollary 5.1.20. Let S = S(Y;Sa, 9ap), where each S, is a right cancellative
monoid with the (LC) condition and each @, g is (LC)-preserving. Let Q = S(Y; Z4, bap)
be the semigroup of left I-quotients of S where £, is the inverse hull of Sy for each
a €Y and o4 be defined as above for each oo € Y. Then the following are equivalent:
(1) Each S, is left cancellative and ¢o 5 is one-to-one for all o, B € Y with o > B;
(2) Q is proper and (%) holds;
(3) Each X, is proper and ¢op : G4 — G is one-to-one for all a, B €Y where
Go =Zo/04 for all « €Y and () holds.

Proof. (1) = (2). By Corollary 4.3.5, E, is proper for each a € Y. Then (2) follows
by Theorem 5.1.18.

(2) = (3). It is clear that if @ is proper, then X, is proper for all & € Y. From
Lemma 5.1.19, we have that 1,4 is one-to-one for all a, 8 € Y where « > 8. Hence
(3) holds.

(3) = (1). By Corollary 4.3.5, each S, is left cancellative. It remains to show that
cach ¢, 5 is one-to-one. Since 9, g is one-to-one for all o, 8 € Y where @ >  we have

that @Q is proper, by Lemma 5.1.19. Hence (1) holds by Theorem 5.1.18. O

The following variation of Corollary 5.1.20 can be considered as a partial general-

isation of Corollary 4.3.5.
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Lemma 5.1.21. Let S = S(Y; Say@ap), where each S, is a right cancellative monoid
with the (LC) condition and each Pa,p @5 (LC)-preserving. Let Q = S(Y; Sa, Goz)
be the semigroup of left I-quotients of S where ¥, is the inverse hull of S, for each
o €Y. Then the following are equivalent:

(1) Each S, is left cancellative and Pa,p 15 one-to-one for all a, f € Y with o > B;

(2) Each %, is proper and Pa,p is one-to-one for all o, B € Y with o > f;

(3) Q is proper and (*) holds.

Proof. (1) = (2) Since each S, is left cancellative, it follows that Y« 18 proper for all
a €Y, by Corollary 4.3.5. The implication (2) = (3) follows from Theorem 5.1.18.
(3) == (1) Since Q is proper, it follows that each Y4 is proper so that (1) follows
from Corollary 4.3.5 and Theorem 5.1.18. O

Remark 5.1.22. In the rest of this section we let S = S(Y; Sa;@a’ﬂ) be a strong
semilattice of right cancellative monoids Sy, o € Y with the (LC) condition, and
assume that S has the (LC) condition, and, let Q = S (Y; DI qﬁa,g) be a semigroup
of left I-quotients of §, where each I, is the inverse hull of S, for each o € Y. By
Corollary 4.3.5, each S, is a left I-order in &, and S, is the R-class of the identity
of ¥,.

Remark 5.1.23. From Corollary 4.3.5 and Lemma 3.2.5, we deduce that for any
a,be S, and for all & € Y we have

albin S, if and only if a L b in .

By the above Remark, () holds if and only if (x)' holds where (x)" is the following

condition:
for all a,b € S, and for all o > 8,

apa,p Lbpap in Sp implies that a Lb in S,.

If we insisted on @ being proper, then by Lemma 5.1.18, the sufficient conditions
are ¢, g is one-to-one for all a, f € Y with a >  and ¥, is proper for all @ € Y. Such
conditions are related to the structure of ¢). We shall introduce equivalent conditions

on the structure of S in order to do so. We begin with the following lemma.
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Lemma 5.1.24, Let ba,8) Pa,p and S be as in the Remark 5.1.22. If ¢ g s one-to-one
Jorall o, B €Y with a > B, then

(%) @a,8 is one-to-one for all a,BEY with a > B,

(71) (%) holds.

Proof. (i) Since ¢, 5 is one-to-one for all o, 3 €Y with @ > 8. Then as ¢,z is the
extension of ¢, 5 we have that ¢, 4 is one-to-one.

(#4) Suppose that aPa,p Lbpag in Sg for all @ > B in Y and a,b € S, so that
@pas L7 bpag, by Remark 5.1.23. Hence agg s £55 bfas SO that ad)sades =
bo, 5bpa,s. We have that (@'a)gas = (b7'0)¢ap. AS ¢ap is one-to-one we have
that a™'a = b~1b so that a £ b. By Remark 5.1.23, a £ b in S, as required. O

Lemma 5.1.25. Let ¢y 5, ¢ap, S and Q be as in the Remark 5.1.22. Let Q@ be proper
and (*)" holds. Then

Ga,p 1s one-to-one if and only if p, 5 is one-to-one

forall o, B €Y with o > .

Proof. It is clear that if each ¢, s is one-to-one, then each ©a,3 1 one-to-one. Con-

versely, suppose that ¢, g is one-to-one for all @, 8 € Y with a > 8. Let
(a—lb)¢a,ﬁ = (C_ld)¢a,ﬂ

where a™1b,c¢"'d € T, for some a,b,¢c,d € S,. Since $a,p 18 the extension of ¢, g for

all « > B in Y, we have
(esa) ™" (egd) = (esc) " (esd).

Hence a~'egb = ¢ 'egd and so a™'beg = ¢ 'deg as the identities are central in Q. It
follows that a'boc™'d in Q. By Lemma 3.2.3, ega L egc and so ega L ege in S,
by Remark 5.1.23. Then apag L cpap in Sp and so aLc in Sy, by (). Again by
Remark 5.1.23, a £¥* ¢. Tt follows that a™! R¥» ¢! and so a=! R9 ¢!, by Proposition
2.4.2 of [23]. Again by Lemma 3.2.3,

a R TR IR 1,



5.1. LEFT F-QUOTIENTS OF SEMILATICES OF RIGHT CANCELLATIVE SEMIGROUPS 70

Since @ is proper we have that a~1b = c~'d, by Proposition 2.4.8. Thus ®a,p 1S OnE
to one. O

Before giving the conditions which make @ is proper, by using the structure of S

we need the following lemma.

Lemma 5.1.26. Let o5 and Q be as in the Remark 5.1.22. Then
Q is proper if and only if &, is proper for each a €Y and @, g is one-to-one, for all
a,BEY witha > B.

Proof. Suppose that @ is proper. It is clear that &, is proper for all @ € Y. To show
that ¢, 4 is one-to-one for all o, 8 € ¥ with a > 3, let

APq.8 = b@a,ﬂ

where a,b € S,. Then ega = egh so that aob in Q. Since aR¥=b, it follows
that a R? b, by Proposition 2.4.2 of [23]. As @ is proper we have that a = b, by
Proposition 2.4.8. Thus ¢, g is one to one,

On the other hand, assume that ¢, is one-to-one for all a, 8 € Y with a >0
and X, is proper for all o € Y. Let

atbele=c¢"1¢

where a™'b € %, and ¢7'c € T4 for some a,b € S, and ¢ € Ss. By definition of
multiplication,

a~tbele = (za)Hye) = ¢ e

where zb = yc for some z,y € S,p. It is clear that 8 < « so that Sap = Sp. Hence
za,yc,c € Sg, so that za = uc = yc for some unit v in Sg, by Lemma 3.2.5. Since
xb = yc we have that zegh = yc = zega, and as ¥z is proper, we have that Sp is
cancellative, by Corollary 4.3.5. Since ega,egh and z are in Sz which is cancellative
we obtain egh = ega. Hence apq s = by, s gives a = b as @, 5 is one-to-one. Thus Q

is proper. O

From Corollary 4.3.5 and Lemma 5.1.26, we have
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Corollary 5.1.27. Let S, Ya,p and Q be as in the Remark 5.1.22. Then
Sa 15 left cancellative for each o € Y and Ya,p 18 one-to-one, for all a,f € Y with
a = 3 if and only if Q is proper.

In the next lemma we shed light on the relationships between @, g, fa,s and ¥, 4

for all @ > B in Y which play a significant role in making @) proper.

Lemma 5.1.28. Let S, Q, Pa,p Pap be as in the Remark 5.1.22 and a3 be as
in Corollary 5.1.20. If S, is left cancellative for all o« € Y, then the following are
equivalent:

(i) Each @43 is one-to-one and (x)' holds;

(i9) Each ¢ap is one-to-one and (x) holds;

(i) Each vqp is one-to-one and (x) holds.

Proof. As S, is left cancellative for each o € Y, we have that Yo is proper for each
a €Y, by Corollary 4.3.5. Hence we can use Lemma 5.1.19.

(i) = (i2) From Corollary 5.1.27, we have that  is proper. Then (it) follows from
Theorem 5.1.18, and the equivalence of () and (x)'.

(it) = (iii) By Lemma 5.1.21, we have that @ is proper and so (i) follows from
Lemma 5.1.19. The implication (#i) == (i) follows from Lemma 5.1.19, Theo-
rem 5.1.18 and Remark 5.1.23. O

The following diagrams may help the reader to visualise the the relationship be-

tween the homomorphisms and semigroups which we have considered.

Ocr a?,

¥ (Pa)0a

Oa 4 N
Soe > Ea Z ? Ga a ? Pa
‘Pn,ﬁl l%,a l’/’a,ﬂ and ‘Paﬁl l%,a lwa,ﬁ
Og Uf} s Ué
Sﬁ 3 Zﬁ ¥ Gﬁ ez — pega E— (peﬁa)aﬁ

It is easy to see that the above diagrams are commutative.
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5.2 Left I-quotients of semilattices of left ample semigroups

In this section we extend the results of the previous section to a strong semilattice of
left ample semigroups with the (LC) condition. We recall that a (2,1)-homomorphism
¢ : 5 — T, where S and T are left ample semigroups with the (LC) condition is (LC)-
preserving if, for any b, ¢ € S with SbN Se = Sw, we have that

T(b¢) N T(cd) = T(ws).

We show that this condition is equivalent to such a semigroup itself having the (LC)

condition and its semigroup of left I-quotents is isomorphic to its inverse hull,

In (i7) of the following theorem we give the promised generalisation of Lemma 5.1.7.

Proposition 5.2.1. Let S = S(Y; Sa;qba,g), where each S, is left ample and the
connecting morphisms are (2,1)-homomorphisms.

(i) The semigroup S is left ample, and for any a,b € S, aR*b in S if and only if
a,be S, for somea €Y and aR*b in S,.

(i) If each Sy has (LC), then S has (LC) if and only if every dog,a > B, is

(LC)-preserving.
Proof. (i) Let fu, 95 € E(S); then
Jo98 = (faPa,a8)(988p.08) = (9608,08)(fataes) = 98far

using the fact that E(S,g) is a semilattice. Thus F(S) is a semilattice.

Suppose now that ao(R*)%bs. Let f, be the idempotent in the (R*)S=-class of a,.
Then, as fya, = a, we must also have that f,bs = bs so that 8 < a. With the dual
we obtain that a = 3; clearly, then a,(R*)%bg.

Conversely, suppose that aq(R*)%b, and z,a, = ysae. Then ya = da = p,
say, and (2@ ) (@aPapu) = Ysbsu)(@adau). But ¢4, is a (2,1)-homomorphism, and
aa(R*)5by, 50 that agdeu(R*)%#bada,.. We thus obtain that

($7¢7,u) (ba¢a,u) = (ys ¢6,u) (baﬁba,u)
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and hence z,b, = ysbo. Making an easy adjustment for T, = 1 yields that a,(R*)%b,.

Notice that from the above, there is no ambiguity in the use of the superscript *.
To see that S is left ample, let a, € S and f; € E(S). Then

(aafp)tae = ((aa¢a,aﬁ)(fﬂ¢ﬂ,aﬂ))+<aa¢a,a5) = (2aPa,08)(f508,08),

using the fact that S, is left ample and therefore satisfies the left ample condition,

so that (aafg)*aqs = asfs and S satisfies the left ample condition.

(44) Suppose that each S, has (LC).
Assume first that each ¢4, is (LC)-preserving. Let aq,bs € S and let v = af. As S,
has (LC) we know that

580 N Sybg = Sy(GaBay) NS5 (bsgs) = Sycy,

for some c,. We claim that Sa, N Sbs = Se,.

Certainly ¢, = z,a, = y,bs for some z.,,y, € S,, so that ¢y € Sa, N Sbs and so
SC,Y C Sa, N Sbﬁ.

On the other hand, let d € Sa, N Sbg; then there are elements U, v, € S with
d = u,0q = v,bg. Let 7 = po = v, so that 7 < ~. Then

d=d, = did, = (dfu,)aa = (d}v,)bs € Srag N S,bg.

Now ¢, . is (LC)-preserving, so that S;a, N S;bs = S,c,. This gives that d € Scy so
that Sa, N Sbs = Sc, as required.

Conversely, assume that S has (LC) and suppose that a > 3; we must show that

®a,5 1s (LC)-preserving. We first show that for any aq, by, co € S,
Sataq N Suby = Sacy if and only if Sa, N Sb, = Se,.
(<) If Sa, N Sby = Scq, we have that
Co = UGy = by = (ual)ay = (V) )by € Sate N Saba,

for some u,v € S so that Sycq € Sate N Saby.
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On the other hand, if Ta, Yo € S, and

Tala = Yaba € Sate N Saby C Sag N Shy,

then
Talo = Yabo = 2¢q = (2¢f)cq € Sycy

for some z € S. Thus S,a, N Saba € Sucq and we have Sya, N Syb, = SnCq as
desired.
(=) Conversely, suppose that S,a, N Saba = Sacq. Since S has (LC) we have that
Sag N Sby = Sdg for some dg € S. As dg € Sa, we have that B < «a, but ¢, € Sdg,
so that o = . From (<) we have that Sya, N S,b, = Sady so that ¢, Ld, in S, and
hence in S. Consequently, Sa, N Sb, = Sc,,.

We now return to the argument that ¢, g is (LC)-preserving (for o > 3). Suppose
that a,,bs,co € S and Spaq N Saby = Sac,. We know that Co = Taly = Yaby for
SOME Za, Yo SO that cados = (ToBa,p)(tabas) = (Yabaps)(bades), giving that

Cadbas € Sp(aada,8) N Sp(bada,s) = Spdp
for some dg. From the above, Sa, N Sby = Sc,. We have that for some ug, vg,
dp = ug(aada,s) = V8(baPa,s) = Upaa = vabs € San N Sby = Sc,
s0 that dg = z,ca = ((2y¢a)* 2y)(Cada,3) € Sp(Cata,p) for some z,. It follows that
S8(aada,p) N Sp(bata,s) = Spds = Sp(cata,s)
and ¢4 5 has (LC). ' O
We now give the main result of this section.

Theorem 5.2.2. Let S = S(Y; Sa;Qﬁa”@) be a strong semilattice of left ample semi-
groups Sa, such that the connecting homomorphisms are (2,1)-homomorphisms. Sup-
pose that each So,a €Y has (LC) and that S has (LC).

For each a € Y, let ¥, be the inverse hull of S,. Then for any o,8 € Y with
o > B, we have that ¢ag lifts to a homomorphism ¢ 5 Lo — L. Further,
Q = S(Y; EQ;M) is a strong semilattice of inverse semigroups, such that S is a

straight left I-order in Q. Moreover, Q) is isomorphic to the inverse hull of S.
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Proof. By Theorem 4.2.2, each Sabs, is a left I-order in its inverse hull - we identify
Se with S,fs, and write the inverse hull of Sq as Xy. By Lemma 4.1.4, S, is straight
in Q.

From Proposition 5.2.1, S is left ample and as § has the (LC) condition, the
connecting homomorphisms are (LC)-preserving. By Theorem 4.3.9, each ¢, (a0 > )
lifts to a homomorphism qﬁT,g- : X — Ljs. Clearly 5;; is the identity map and for
any @ 2 8 2 9, @ap ¢py = Gar. Thus Q = S(Y;Z4; dap) is a strong semilattice of

inverse semigroups and S is a straight left I-order in Q.

It remains to show that @ is isomorphic to the inverse hull P = Z(S) of S. First,
1t is easy to check that S is a union of R-classes of Q. For any a,b e S,

a’Rgb < a,be S, for some o and aRs*b
< a,b€ S, for some o and a (R*)%= b
< a(RY)%b
<~ at95 RF b95.
Let a4, b3 € S; we show that
Sa, N Sbﬁ = S((La(ﬁa,aﬂ) N S(bﬁgf)ﬁ’ag).

Let
T = uyaq = vsbg € Sa, N Sbg;

then ya = §8 = 7 say, so that 7 < af8 and
T ="z = (27U )aa = (zVv5)bs = (¢ 1,) (Gada,r) = (7vs)(bsd5.7)
= (2%uy)(@aBaep) = (705)(bsbp.as) € S(abans) N S(bsdsas).
Conversely, if
Y = hy(@aPaap) = Fs(bsPs.a8) € S(aabaas) N S(bsdpas)
then yaf = daf = k say and
Y = (Y hy)(@aBaas) = (U hs)(bpPp.as) = (¥ hy)aa = (¥ ks)bs € Sa, N Sby,

verifying that
Saa N Sbﬁ = S(“a‘ba,aﬁ) N S(bﬁqﬁﬁ,aﬂ)'
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Now let a,b,c € S. Consider ba~! € Q; say b= bg and a = a,. Then
ba™! = (b4p,a)(0Baas) ! = 27y

where T,y € Saﬂ»m = x(b¢ﬂ,aﬂ)+7 Yy = y(a¢a,aﬂ)+a Saﬂ(b¢ﬂ,aﬁ)msaﬂ(a¢a,aﬂ) = Saﬁ(x(b¢ﬂ,aﬂ))
and

2(bpap) = Y(afanp) = 2b = ya.

Also, z = 2(b*@gap) = xb* and similarly, y = ya*. From the proof of Proposi-
tion 5.2.1 and the argument above, we have that ShN Sa = S(zb). It follows from
Lemma 4.2.1, that in P, b0s(abs)™* = (x8s)}(y0s).

Now,

(a,b,c) € TS ab™1Q C ¢ 1Q
Qba~! C Qe
Qr~'y C Qc
Qy C Qc
Sy C Sec
Seg(yeg) C S@S(CQS)
P(yls) C P(chs)
P(ftes)—l(ygs) - P(CQS)
Pb@g(aas)_l - P(CGS)
(afs)(b0s)1P C (cls)~ 1P
(695, bls, 093) e P

From Corollary 3.2.10, @ is isomorphic to P via an isomorphism lifting 6. O

S R AR

5.3 The category of semilattices of certain bisimple inverse
monoids

In Section 2.5 we saw that the category of right cancellative monoids with the (LC)
condition and homomorphisms which are (LC)-preserving is equivalent to the category
of bisimple inverse monoids, and monoid homomorphisms. In this section we look at

the same problem in a more general context. We begin by defining the following two

categories.
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Let a category SR be given by

Ob (SR) are semilattices of right cancellative monoids with the (LC) condition,
which themselves have the (LC) condition,

Hom (SR) are (2,1)-homomorphisms of Ob (SR) which are (LC)-preserving.

Let a category SB be given by

Ob (SB) are semilattices of bisimple inverse monoids, in which the set of identity
elements forms a subsemigroup,

Hom (SB) are monoid homomorphisms of Ob (SB).

The objects of SR and SB are § = S(Y;S,) and Q = S(Y;Qs) respectively,
where the S,’s have the (LC) condition, S has the (LC) condition and the Q. ’s are
bisimple inverse monoids where {e, : e, is the identity of Qo} is a subsemigroup of
Q. Notice that in the case that Y is the single element semilattice, the categories
SR and SB are the categories R and B respectively in Section 2.5. We then obtain
the result in such a section. By Lemma 5.1.2, @ is is a strong semilattice. Also, by
Lemma 5.1.2 and Lemma 5.1.1, S is a strong semilattice ¥ with connecting homo-
morphisms @ap : So — Sp giving by aaes = €gaq where o > 8 and each Pa,p 18
(LC)-preserving.

Let S € Ob(SR), thatis, S=8 (Y; Sa) Is a semilattice Y right cancellative monoids
Sq with identity e,, @ € Y such that each S,,« € Y has the (LC) condition and S has
the (LC) condition. By Lemma 5.1.1, S is a left ample semigroup and {ea:x€Y}is
a subsemigroup of S. Since S has the (LC) condition, it follows that S is a left I-order
In a semigroup ) which is a semilattice ¥ of bisimple inverse monoids Q,,a € Y and
isomorphic to the the inverse hull of S, by Corollary 5.1.17 and 5.2.2. It is easy to
sce that that e, is the identity of Qa,a € Y. Hence X(S) € Ob (SB), as isomorphic

semigroups have the same structure.

Let ¢ € Hom(SR) say, ¢ : S — S§’. We have already seen that S and S’ are

left ample semigroups with the (LC) condition. Since ¢ is (LC)-preserving we can
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extend ¢ to ¢ : £(S) — 2(S’) where £(S) and X(S’) are the inverse hulls of S and
S’ respectively, by Theorem 4.3.9.

Lemma 5.3.1. Let S € Ob(SR) and put V(S) = £(S). For any v € Hom(SR),
say ¢ S — 5, let

V(o) pitpe — pitos, (a,b € S).
Then V is a functor from SR. to SB.

Let Q € Ob(SB). Then Q = S(Y; Qa) where each @), € Y is a bisimple inverse
monoid with identity e, such that E = {e, : @ € Y} is a subsemigroup of Q. By
Corollary 5.1.17, § = S(Y;R.,) is a semilattice of right cancellative monoids R.,
with the (LC) condition, satisfying (C,) which is equivalent to S having the (LC)
condition, by Lemma 5.1.7. Hence S € Ob (SR)).

Let ¥ : @ — Q' so that ¢|s : § — S’ where § = S(Y;Reo) and S =
S (Z ; Rea,). It is clear that v|g is (2,1)-homomorphism. It remains to show that
Y|s is (LC)-preserving. Since v is an inverse monoid homomorphism, we have that
Qa N Qb = Qc implies that Q' (ay) N Q'(by) = Q'(cyp) for any a,b,c € S. Now, by
applying Lemma 4.3.2, it is straightforward to see that 1|y is (LC)-preserving. We

have

Lemma 5.3.2. For every Q € Ob(SB), let U(Q) = S(Y;R.,) and for every ¢ €
Hom(SB) say ¢ : Q — Q' let U(¢) = ¢|s. Then U is a functor from SB to SR.

Next we construct the first natural equivalence.

Lemma 5.3.3. For any S € Ob(SR), define n(S) : S — UV(S) such that n(S) :
ar— p, (a €8S). Then n is a natural equivalence of the functor Is and UV .

Proof. Fix § € Ob (SR) we can show that 7(S) is an isomorphism. The diagram

%)
aq@ —————— QY

l UV(yp) l

Pa —— Payp
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is commutative since for all a € S,

ap(n(8") = pap = a(n(S)(UV(p)).

Hence, the diagram

S z s
n(S)l 7(5"
uv(s) —2 py(s)
is commutative. O

Let Q € Ob(SB), that is, @ = Uycy Qo Where Qu,x € Y is a bisimple inverse
monoid with identity e, such that {e, : @ € Y} is a subsemigroup of Q. Then @
is a semigroup of left I-quotients of U(Q) = S(V;R.,) where U(Q) has the (LC)
condition, by Theorem 5.1.16. By Theorem 2.4.2, each R, has the (LC) condition.
Since U(Q) is a left ample semigroup with the (LC) condition, it follows that it is a left
L-order in its inverse hull (U(Q)) = VU(Q), by Theorem 4.2.2. Using Lemma 5.1.2,
U(Q) is a strong semilattice of semigroups. In fact, U(Q) is a strong semilattice of left
ample semigroups and connecting homomorphisms are (2,1)-homomorphisms. Since
U(Q) has the (LC) condition and as each R, has the (LC) condition, it follows that
Q is isomorphic to VU(Q), by Theorem 5.2.2. We have the first part of the following

lemma which gives the second natural equivalence.

Lemma 5.3.4. For any Q € Ob(SB), define £(Q) : Q@ — VU(Q) such that £(Q) :
a~lb — p7lp, where a,b € U(Q) with a,b € Re, for some o € Y. Then € is a

natural equivalence of the functor Isp and VU.

Proof. Fix Q € ObSB. 1t is clear from the above remarks that & is well defined and
¢ is an isomorphism. The diagram
a-—lb __._,‘/i__) (a—lb)w

_ VU() —
po oy ————— Dy P
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Is commutative, since for a,b € U (Q)

(@™ DE@NVUM)) = ok pew = (@™ b)HEQ)).

Hence, the diagram

Q 4 Q
Q) 1 £(Q)
vU(Q) - v ()
is commutative. O

By combining Lemmas 5.3.1, 5.3.2, 5.3.3 and 5.3.4 we have the main result of this

section.

Theorem 5.3.5. The quadruple (U, V,&,n) is an equivalence of categories SB and
SR.



Chapter 6

Primitive inverse semigroups of left
I-quotients

In this chapter we characterise left I-orders in primitive inverse semigroups. In Sec-
tion 6.1 we begin by investigating some properties of semigroups which are left I-orders
in primitive inverse semigroups. We show that any left I-order in a primitive inverse
semigroup is straight; this result enables us to use Theorem 3.2.9 in the next sections.
The next section is devoted to the proof of Theorem 6.2.1, which characterises those
semigroups that have a primitive inverse semigroup of left I-quotients. This theo-
rem shows such semigroups satisfy certain conditions. By starting with a semigroup
S which satisfies such conditions, we construct a semigroup of left I-quotients of S
which is primitive inverse. It is well-known that Brandt semigroups are a special class
of primitive inverse semigroups. We specialise our result to left I-orders in Brandt
semigroups, a result that may be regarded as a generalisation of the main theorem in

[11], which characterised left orders in Brandt semigroups.

In Section 6.3 we show that a primitive inverse semigroup of left I-quotients of
a given semigroup is unique up to isomorphism. Section 6.4 then concentrates on
I-orders (two-sided case) in primitive inverse semigroups. In the final section we give
characterisations of abundant semigroups S having primitive inverse semigroups of
left I-quotients. As we wish to embed S in an inverse semigroup (as a (2,1)-algebra),
clearly S must be adequate. If the embedding respects *, that is a (2,1)-algebra
embedding, then S is forced to be ample.

81
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6.1 Preliminaries

In this section we introduce a useful characterization of left I-orders in primitive
inverse semigroups. We show that any left I-order S in a primitive inverse semigroup

@ has a 0 element and is straight in Q.

A semigroup S with zero is defined to be categorical at 0 if whenever a,b,c € S
are such that ab # 0 and bc # 0, then abe # 0. We say that S is 0-cancellative if

b = c follows from ab = ac # 0 and from ba = ca # 0.

Recall that an inverse semigroup S with zero is a primitive inverse semigroup if all
its nonzero idempotents are primitive, where an idempotent e of S is called primitive
ife#0and f <eimplies f=0o0re=f.

The set of non-zero elements of a semigroup S will be denoted by S*; in particular,
E*(S) or just E* is the set of non-zero idempotents of 5. We will use the following

facts about primitive inverse semigroups heavily through this chapter. Proofs can be
found in [21] and [1].

Lemma 6.1.1. Let Q be a primitive inverse semigroup.
(1) Q 1is categorical at 0.
(it) If e, f € E*, then ef # 0 implies e = f.
(i1i) If e € E* and s € Q*, then

es # 0 implies es = s and se # 0 implies se = s.

(i) If a,s € Q* and as = a, then s = aa. Dually, if sa = a, then s = aa~!.

(v) If ab # 0, then a=la = bb7.

From the above lemma we can notice easily that a primitive inverse semigroup is
0-cancellative.

To investigate the properties of a semigroup S which is a left I-order in a primitive
inverse semigroup ¢ we need the relations A , p and 7 which are introduced in [26] on

any semigroup with zero as follows:

adbifandonlyifa=b=0or SanSb#0,
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apbifandonlyifa =b=0or aSNbS 0,
T=pNA\

Lemma 6.1.2. Let S be any semigroup with zero.
(i) If aR* b where a,b + 0, then

za # 0 if and only if zb # 0.
(i) If S is categorical at 0 and 0-cancellative, then
x,xa # 0 implies that z R* za,

for any z,a € S.

Proof. (i) Lemma 2.2 of [11].

(i) Let z,a € S with za # 0. If u,v € S and uz = vz, then clearly uza = vza.
Conversely, if uza = vza # 0, then by 0-cancellativity, uz = vz # 0. On the other

hand, if ura = vza = 0, then by categoricity at 0, uz = vz = 0 (note that in this

case, u,v # 1). O

In the next lemma we introduce some properties of a semigroup which has a prim-

itive inverse semigroup of left I-quotients.

We make the convention that if S is a left I-order in Q, then R and £ will be
relations on @ and R*, L*, A, p and 7 will refer to S.

Proposition 6.1.3. Let S be a subsemigroup of a primitive inverse semigroup Q. If
S is a left I-order in QQ, then:

(1) S contains the 0 element of Q;

(2) LN(SxS)=A;

(3) S is a straight left I-order in Q;

(4) Sa #0 for all a € S*;

(5) RN(SxS)=R"

(6) pCR".



6.1. PRELIMINARIES 84

Proof. (1) Since Q is a primitive inverse semigroup, it follows that @ is a O-direct union
of Brandt semigroups. Hence Q = Uies Bi where each B; is Brandt and B; NB; = {0}
for i # j.

It is well known that if a, b are elements of a Brandt semigroup and a, b lie in different
H-classes, then ab = 0. Thus, if a,b € () are in different H-classes of @, then ab = 0.
Hence, if S intersects more than one H-class of @, then 0 € S. Suppose S is contained
in an H-class H. If H is not a group H-class, then a? = 0 for all a € H , and hence
forall a € S, 50 0 € S a contradiction. If H is a group H-class, then 0 = a b€ H
for some a,b € H, a contradiction. Thus S cannot be contained in an H-class of @,
andso 0 € S.

(2) If alb, then @ = b = 0 and certainly aLb in @, or za = yb # 0 for some
z,y € 5. In the latter case, a = z71yb and b = y~'za, so that a £ b in Q. Conversely,
if albin Q, then either a = b =0, ora # 0 and a = ™ yb for some z7ly € Q*
where z,y € S. Then za = yb # 0. Hence aAbin S. It is worth pointing out that in

this case A is transitive. Moreover, it is an equivalence, and {0} is a A-class.

(3) Suppose that ¢ € @*. Then ¢ = a~'b for some a,b € S. Since a~'b # 0,
Lemma 6.1.1 gives aa™! = bb~! so that a R b in Q.

(4) Let a = z7'y # 0 for some z,y € S, where zRy in Q. By categoricity at 0
and Lemma 6.1.1 we have that xa = y # 0. Thus Sa # 0.

(5) It is clear that RN (S x §) € R*. To show that R* C RN (S x S). Let aR*b in
S; from (4) there exists y in S such that ya # 0. Hence yb # 0, by Lemma 6.1.2. By
Lemma 6.1.1, aa~! = y~ly = bb~! and we get a R b in Q.

(6) Suppose that apbin S. Then a = b = 0 and aRb in Q, or ar = by # 0
for some z,57 € S. Then b = azy™ and a = byz™?, so that aR b in Q. By (5), aR* b

in S. . O
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By Lemma 6.1.1 and Proposition 6.1.3, the following corollaries are clear.

Corollary 6.1.4. Let S be a left I-order in a primitive inverse semigroup Q. If
a”'b # 0, then aRb. Also, a"'Ra~1bLb.

Corollary 6.1.5. Let S be a left I-order in a primitive inverse semigroup Q). Let
a~'b,c71d be non-zero elements of Q) where a,b,c and d are in S. Then

(1) a”'b R c7d if and only if a A ¢;

(2) a™'b Lc71d if and only if b A d.

Proof. (1) We have that a='bR ¢™'d if and only if a=' R ¢! if and only if a L¢. By
Proposition 6.1.3, this is equivalent to a A c.
(2) This is dual to (1). O

6.2 The main theorem

The aim of this section is to prove the following theorem;

Theorem 6.2.1. A semigroup S is a left I-order in a primitive inverse semigroup Q
if and only if S satisfies the following conditions:

(A) S is categorical at 0;

(B) S is 0-cancellative;

(C) A is transitive;

(D) Sa #0 for alla € 5*.
Proof. Suppose that S be a left I-order in a primitive inverse semigroup Q. We have

observed in Lemma 6.1.3 that S contains the zero element of Q. Then S inherits

Conditions (A) and (B) from @. By Proposition 6.1.3, Conditions (C) and (D) hold.

Conversely, suppose that S satisfies Conditions (A)-(D). Our aim now is to con-
struct a semigroup @ in which S is embedded as a left I-order. We remark that from

(C), X is an equivalence and from the definition of A, {0} is a A-class. Let
Y ={(a,b) € Sx S:aR"b},

and

v ={(a,b) € L :0a,b+#0}.
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On X define ~ as follows;
(a,b) ~ (c,d) <= a=b=c=d=0, or there exist z,y € S* such that

za =yc#0, xb=1yd # 0.

Lemma 6.2.2. The relation ~ is an equivalence.

Proof. It is clear that ~ is symmetric. Let (a,b) € £*. By (D), there exists h € S
such that ha # 0 and hence as a R* b we have that hb # 0 and so ~ is reflexive. Let

(a’b) ~ (03 d) ~ (p, Q)v
where (a,b), (c,d) and (p,q) in £*. Then there exist z,y, Z,§ € S* such that
za=yc#0, zb=yd # 0 and Tc=Jp # 0, zd = §jq # 0.

To show that ~ is transitive, we have to show that, there are z,7 € S* such that
za=2Zp# 0and zb = zZq # 0.

By (D), Sc # 0 and Syc # 0 and clearly Scn Syc # 0, so that cAyc. Similarly,
TcAc since A is transitive, we obtain ycAZc. Hence wye = wZc # 0 for some
w,w € S. We have
wra = wyc = Wic = wyp # 0,
that is, wza = wjp # 0. Since ¢ R* d and wyc = wWZc # 0 we have that wyd = wzd #
0 so that similarly, wzb = wiyq # 0 as required. , O
Let [a,b] denote the ~-equivalence class of (a,b). We stress that [0,0] contains

only the pair (0,0). On Q = X/ ~ define a multiplication as:

[a,b][c,d] = { [C(U)a,yd] ieflsl;)\c and zb=yc#0 for some z,y € S;

and O[a, b] = [a,b]0 = 00 = 0, where 0 = [0,0]. We put @* = @\ {[0,0]}.

Before we show that the above multiplication is well-defined we can notice easily

that [za,yd] € Q. For zaR*zb = ycR* yd.
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Lemma 6.2.3. The multiplication is well-defined.
Proof. Suppose that [a;, ;] = [a2,D2], [c1,di] = [cy,dy] are in Q*. Then there are
elements y, zs, y1, y» in S* such that

2101 = Toap # 0,
T1by = 2309 # 0,
e = ooy # 0,
y1dy = yady # 0.

Now,

(a1, bi][e1, dy] = { ([)wal,wdl] gsgl Acy and why = we; #0 for some w, @ € S,

and

(g, ba) (e, do] = { ([)zag,édg] 1eflsebg/\cz and zby = Zc, # 0 for some z,Z € S;

Notice that as b; Aby and ¢; Ay, we have that by Acy if and only if by Acy. Hence
[a1, b1][e1,di] = 0 if and only if [ag, bo][c2, d3] = 0. We now assume that b; ¢ (and

50 by A ¢y also).
We have to prove that [wa,, @d;] = [zay, 2dy], that is,

Tway = yzap # 0, xwd; = yZd, # 0, for some z,y € S*.

Since wb; = wey # 0, 2by = Zcp # 0 and a; R* by, as R* by we have that wa, = 0 and
zay # 0, by Lemma 6.1.2. Hence

Way Aay Ax1a1 = Toas Aas A zas.

By (C), way A zag, that is, zwa; = yzas # 0 for some x,y € S. It remains for us to
show that zwd; = yzd, # 0. In order to do this we need a technical lemma.

The following lemma is essentially Lemma 4.8 of [11]. We give it for completeness.

Lemma 6.2.4. Let a,b,c,d,s,t,x,y be non-zero elements of S which satisfy
sa=tc#0, shb=1td# 0, za =yc#0.

Then zb = yd # 0.
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Proof. Since sa # 0, za # 0 and saAaAza, it follows that saAza, by (C). Hence
there are elements w, » € S such that zsa = wza # 0. Since S is 0-cancellative and

a # 0 we have that zs = wz # 0. Thus by categoricity at 0,
ztc = zsa = wra = wyc # 0.
Cancelling ¢ gives zt = wy # 0. By categoricity at 0 again we have
wzh = zsb = ztd = wyd # 0.
Hence zb = yd # 0. O

Returning now to the proof of Lemma 6.2.3, we can apply Lemma 6.2.4 as follows:
since T1a; = Toag # 0, T,b = 21by # 0 and zwa, = yzay # 0, it follows that

zwby = yzby # 0. Since wb, = wWey, zby = Zc, we have

Wy = zwhy = yzby = yzZey, # 0.
Reapply the same lemma to get zwd; = yzd, # 0 as required. O
Lemma 6.2.5. The multiplication is associative.

Proof. Let [a,b], [c,d], [p, q] € Q" and set

X = (o, H[e, d)[p, q] = { ([):z:a,yd][p, q] i}flsbe/\c and zb = yc # 0 for some z,y € S;
and
a,b)[Zc,5q] if dAp and zd = gp # 0 for some Z,7 € S;

Y = oo dlpa) = { fo0Fe00 EE
Suppose that X = 0. If b Ac, then either d Ap (in which case Y = 0) or, d A\p and
Id = yp # 0, for some Z,j € S. Then Tc # 0 and as cAZc, b Zc, so that again,
Y =0.

On the other hand, if bAc so that zb = yc # 0 for some z,y € S, and if yd A p,
then d Ap so that Y = 0.

Conversely, if Y = 0, then if d Ap we have either b A c (which case X = 0) or bAc
and yd # 0. In this case, p/Ayd, so that X = 0. If dAp, then we must have that
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bAZc, so that b Ac and again X = 0. We therefore assume that X #0and Y # 0.
Then

X = [za,yd]|p, q] = [sza,rq], syd=rp+£0
and

Y = [a,b)[Zc, §g] = [3a,77q], 5b= Fic 0.

for some s,7,5,7 € S.

We have to show that X =Y. That is,
wsza = wia # 0, wrq = wryg # 0

for some w,w € S*. By O-cancellativity this equivalent to wsz = @3 # 0 and
wr = wry # 0. Since zb # 0, sz # 0 and S categorical at 0 we have that szb # 0
also, 8b # 0. Hence szb A 3b, and so there exist w, @ € S such that wszb = w3b # 0.

As S 0-cancellative, we have that wsz = w3 # 0.

Now, since wszb = wshb # 0 and 5b = FZc # 0, #b = yc # 0 we have that
wsyc = @rzc # 0. As S is O-cancellative we have that wsy = wrZ # 0. Then
wsyd = wrzd # 0, but syd = rp # 0 and Id = Fp # 0 so that wrp = wrgp # 0.

Thus wr = wry # 0 as required. O

Let [a,b] € @Q*. By (D), for a € S* there exists z € S such that za # 0. Clearly,
[za,2b] € Q*. Again using (D), there exists ¢ € S with tza # 0, so that (tx)a =
t(za) # 0 and as a R* b, (tz)b = t(zb) # 0. Then the following lemma is clear.

Lemma 6.2.6. If [a,b], [za,zb] € QF, then [a,b] = [za, zb].

Let a € §*. By (D), there exists z € S such that za # 0. From Lemma 6.1.2, we
get  R* za. Hence [z,za] € Q*. If (y,ya) € £*, then za AaAya and so za Aya, by
(C). Hence there exist s,s" € S with sra = s'ya # 0. Cancelling a gives sz = s’y # 0
so that [z,za] = [y,ya]. So we have a well defined function 6 : S — @ defined by
00 = 0 and for a € S*,af = [z, za] where z € S* with za # 0.
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Lemma 6.2.7. The mapping 0 is an embedding of S into Q.

Proof. Let a,b be non-zero elements of § and let af — b8 so that [z, za] = [y, yb] for
some z,y € S with za # 0, yb £ 0. Hence there exist w,w € S* such that

wr =0y # 0, wra = wyb # 0.

Then, wza = wzb # 0 and as S is O-cancellative we have that q = b. Thus 0 is

one-one.

To show that ¢ is a homomorphism, let a,b € S* and af = [s,sa], b0 = [t,tb]
where s,t € S with sa % 0 and tb # 0 for some s,t € S.

Suppose that ab = 0. If sa ¢, then usa = vt # 0 for some u,v € S. By cate-
goricity at 0, usab = vth # 0, a contradiction. Hence sa At and afbf = 0 = (ab)b.

Assume therefore that ab # 0. Let (ab)d = [z,zab] where z € S with zab # 0.
By categoricity at 0, sab # 0. Hence sabAbAtb so that sab\tb, by (C). Tt follows
that wsab = wtb # 0 for some w,w € S.
Since S is 0-cancellative we have that wsa = @t # 0. Hence sa At and we have that
afbf # 0. Moreover, from za # 0 and sa # 0 we have that sa Aa A za and so sa ) za,
by (C). It follows that there exist m,n € S such that msa = nza # 0. By cancelling
a we have that ms = nz # 0 and by categoricity at 0, msab = nzab # 0. Thus
afbd = [s,sallt, tb]

= [ws,wth]

[ws, wsab]
s, sab) by Lemma 6.2.6,

z, zab)
= (ab)f.

it
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Lemma 6.2.8. The semigroup Q s regular.

Proof. Let [a,b] € Q*. Then, since [b,a] € Q* we get

[a,0][b,a][a,b] = [za,za]a,d] for some z € S with zb # 0
= [a,al[a,b] by Lemma 6.2.6,
= [ya,yb] for some y € S with ya # 0
= [a, by Lemma 6.2.6.
0
For any a € 5" we have that [a,a] € Q* and [a,q][a,a] = [za,za] where z € S

with za # 0. By Lemma 6.2.6, [za, za] = [a, a, that is, [a, a] is idempotent. The next
lemma describes the form of E(Q).

Lemma 6.2.9. E(Q) = {[a,a],a € S*} U {0} and forms a semilattice.

Proof. Let [a,b] € E(Q*). Then, [a,b][a,b] = [a,b]. Hence [za,yb] = [a,b] where
zb = ya 5 0 for some z,y € S. By definition of ~ there exist ¢, € S* such that
tra =ra # 0 and tyb = rb # 0. Since S is O-cancelltive, tz =ty = r # 0. Thus z =y
and so a = b.
For [a,a], [b,0] € E(Q*) we have that [b,b]la,a] = 0 <= aAb <= [a,a][b,b] = 0
and if a A b, then

[a,a][b,b] = [Sa,tb] where a = b # 0 for some $,f € S
[tb, $a]
[b, b][a, a].

o

0
By Lemmas 6.2.8 and 6.2.9, Q is inverse, so that [b, a] is the unique inverse of [a, b].
Lemma 6.2.10. The semigroup @ is primitive.

Proof. Suppose that [a, al, [b,b] € E(Q*) are such that [a,a] < [b,6]. Then

[a,a] = la,q][b,}]
= [za,yb] for some z,y € § where za = yb
= [yb, 0]
= [bb] by Lemma 6.2.6.
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By Lemma 6.2.7, we can regard S as a subsemigroup of Q. Let [a,b] € Q* and
all = [z, za], b0 = [y, yb] where za # 0 and yb # 0 for some z,y € S. By Lemma 6.1.2,
ya # 0 so that za AaAya and by (C), it follows that za Aya. Hence tza = rya # 0
for some t,r € S. By (B), tz = ry # 0 and so z Ay. We have

(@d)7H(00) = [z, za] [y, yt]

= [tza,rybd]
= [tza,tzd] by Lemma 6.2.6,
= [a,b)].
Hence S is a left I-order in Q. This completes the proof of Theorem 6.2.1. O

It is worth pointing out that if e € E(Q*), then e = a~'a for some ¢ € S*. For
e =a"'b € E(Q*) as aRb we have that b = ae and @ = be. Then it is clear that

a=b,

Corollary 6.2.11. A semigroup S is a left I-order in a Brandt semigroup @ if and
only if S satisfies that conditions in Theorem 6.2.1 and in addition, for all a,b € S*
there exist c,d € S such that ca’ R*d A\ b.

Proof. Suppose that S is a left I-order in @ and let a,b € S*. Since @ has a single
non-zero D-class, there exists ¢ € ¢ such that aR¢Lb in Q. Let ¢ = ¢~ 'd where
c,d € S and ¢Rd so that caRec™'d = d. By Corollary 6.1.4, ¢ ' Re'd Ld, it
follows that d Lc™'d £b. Hence caRdLb and so ca R* d \b, by Proposition 6.1.3.

On the other hand, if S satisfies the given conditions, then we can show that Q is
Brandt. For, if ¢ = a™'band p = ¢™'d € Q*, then b,d € S* so there exist u,v € S
with b R*vAd. In Q,ubR v Ld, so that b and d (and hence ¢ and p) lie in the same

Brandt subsemigroup of @ (as @ is a 0-direct union of Brandt semigroups). O

Lemma 6.2.12. Let Q = |J;c; @i be a primitive inverse semigroup where Q; is a
Brandt semigroup. If S is a left I-order in Q, then S is a 0-direct union of semigroups

that are left I-orders in the Brandt semigroups Q;,% € I.
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6.3 Uniqueness

In this section we show that a semigroup S has, up to isomorphism, at most one

primitive inverse semigroup of left I-quotients.

Theorem 6.3.1. Let S be a left I-order in a primitive inverse semigroup Q. If
¢S — T is an isomorphism where T is a left I-order in a primitive inverse semigroup
P, then ¢ lifts to an isomorphism ¢ : Q — P

Proof. Let ¢ : S — T be as given. From Proposition 6.1.3, S and T both contain 0
and clearly ¢ preserves this. Let a,b € $* with a R b in Q. By Condition (D), there
exists ¢ € S with ca # 0 and hence ¢b # 0. It follows that (cp)(ao), (cp)(bp) are
non-zero in P, so that a¢p R bg in P.

We also show that ¢ preserves £; for if a,b € S* and a £b in @, then a Ab in S, by
Lemma 6.1.3. It follows that ca = db # 0 for some ¢,d € S. Then cpap = dobo # 0
so that a¢ L b¢ in P.

It remains to show that ¢ preserves TSQ Suppose therefore that a,b,c € S and
ab™'Q C ¢™'Q. Then either ab™! = 0, or ab"' R ¢~ in Q. In the former case, either
aorbis0oraand b are not L-related in @, it follows that either a¢ or b¢ is 0 or ag
and b¢ are not L-related in P, giving (a@)(b¢)~! = 0 and so (ag)(bp) 1P C (ch)~LP.
On the other hand, if ab™! # 0, then a,b # 0 and soa Lb and a R ¢! in Q. It follows
that ca # 0 and so a¢ L b¢ and (cp)(ag) # 0 in P. Consequently,

0 # (ag)(b) ™' P = (ag)P = (c§) ' P,

Since ¢ (and, dually, ¢~?) preserve both R and T, it follows from Corollary 3.2.10,
that ¢ lifts to an isomorphism ¢ : Q — P. O

The following corollary may be deduced from the previous theorem.

Corollary 6.3.2. If Q1, Q2 are primitive inverse semigroups of left I-quotients of a

semigroup S, then Q1,2 are isomorphic by an isomorphism which restricts to the

identity map on S.
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Proposition 6.3.3. If a semigroup S has a primitive inverse semigroup @ of left
I-quotients and a primitive inverse semigroup Q of right I-quotients, then () and Q

are both semigroups of I-quotients of S, so that Q = Q by Corollary 6.3.2.

Proof. We show that @ is a semigroup of right I-quotients of S. Let ¢ € Q. If ¢ =0,
then ¢ = 0710 = 00~%. If ¢ € Q*, then q = a~!b for some a,b € S* where aRb in Q.
Then e R*bin S. Pick ¢ € S with ca # 0 and hence ¢b # 0, by Lemma 6.1.2. The

semigroup ' is a union of Brandt semigroups, say Q' = |J,.; Bi- Now, a,b,c € @' and
1

iel
ca, cb are non-zero, so a,b,c € B; for some i € I. Since ca # 0 we have ¢c”lc = aa™

! = pb~! giving aR b in

in B;, by Lemma 6.1.1. Similarly, ¢'c = bb~! and so aa™
B; and hence Q. By the dual of Proposition 6.1.3, a pb in S, that is, az = by # 0
for some z,y € S, so that zy~! = a~'b in Q (and Q). Thus S an I-order in Q and

similarly, in Q |
6.4 Primitive inverse semigroups of I-quotients

In this section we study the case where a semigroup is both a left and a right I-order

in a primitive inverse semigroup, that is, an I-order in a primitive inverse semigroup.

Lemma 6.4.1. Let S have a primitive inverse semigroup Q of I-quotients. Then
(HR*=RN(SxS)=0p,
(2) L*=LN(Sx8) =),
B)H*=HN(SxS)=r.
Proof. (1) By Proposition 6.1.3, RN (S x §) = R*. By the dual of Proposition 6.1.3,
RN (S x S)=p. Hence p="TR"
(2) This is dual to (1).
(3) Immediate from (1) and (2). O
Since H is a congruence on any primitive inverse semigroup the following corollary
is clear.

Corollary 6.4.2. Let Q be primitive inverse semigroup of I-quotients of a semigroup

S. Then H* is a congruence relation on S.
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If §'is an I-order in a primitive inverse semigroup (), then S satisfies the conditions
of Theorem 6.2.1, and in addition, the duals (C’) and (D) of (C) and (D). We can

reduce these conditions by using the next lemma.

Lemma 6.4.3. Left S be a left I-order in a primitive inverse semigroup Q and suppose
that aS # 0 for all a € S*. Then

R* C pif and only if S is an Iorder in Q.

Proof. Suppose that R* C p, by Proposition 6.1.3, R* = p, and so p is transitive. By
the dual of Theorem 6.2.1, S is a right I-order in a primitive inverse semigroup Q.
By Proposition 6.3.3, Q =2 Q and S is an I-order in @. On the other hand, if S is an
I-order in @, then by Lemma 6.4.1, R* = p as required. a

Now we introduce condition (E) which appeared in [11] for a semigroup with zero
as follows:

(E) apbif and only if a = b = 0 or there exists an element z in S such that
za # 0 and xb # 0.

Lemma 6.4.4. For a semigroup S, the following conditions are equivalent:
(1) S has a primitive inverse semigroup of I-quotients;
(2) S is O-cancellative, categorical at 0, and S satisfies (D), (D) , (E) and (E).

Proof. If (1) holds, then by Theorem 6.2.1, and its dual, we need only to show that
S satisfies (E) and its dual. Suppose that apb and a,b # 0. Then, aR*b, by
Lemma 6.4.1. By (D), there exists € S such that za # 0, and so b # 0, by
Lemma 6.1.2. Conversely, if za # 0 and zb # 0, then using (D), zapzx and z pxb.
Since p is transitive, xa pzb, it follows that zat = zbr # 0 for some ¢,7 € S. By

”

cancelling « we have that at = br # 0. Thus a pb. Similarly, S satisfies (£).

Suppose that (2) holds. We show that A and p are transitive. In order to prove
this, we show that R* = p and £* = A. Let aR*b. Then, either a = b = 0 or
a,b # 0 and by (D), za # 0 for some z € S and as a R* b, we have that zb # 0, by

Lemma 6.1.2. By (E), apb so that R* C p.
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Conversely, if apb, then either a = b = (so that a R*b) or ah = bk # 0 for
some h,k € S. Suppose now that u,v € S! and ua = va. If ua = va # 0, then
by categoricity at 0, uah = vah # 0, so that ubk = vbk # 0 and 0-cancellativity
gives ub = vb # 0. On the other hand, if ua = va = 0, then wah = vah = 0, so
that ubk = vbk = 0. By categoricity at 0, ub = vb = 0. Similarly, ub = vb implies

ua = va. Hence a R*b. 0
We now summarise the result of this section.

Proposition 6.4.5. For a semigroup S, the following conditions are equivalent:
(1) S is an I-order in a primitive inverse semigroup;
(2) S satisfies conditions (4),(B),(C),(D), (C) and (D);
(3) S satisfies conditions (A),(B),(C),(D), (D) and R* C p;
(4) S satisfies conditions (A),(B),(D),(D),(E) and (E).

Proof. The equivalence of (1) and (2) follows from Theorem 6.2.1 and its dual. The
equivalence of (1) and (3) is immediate from Theorem 6.2.1 and its dual, and Lem-

mas 6.4.1 and 6.4.3. Finally, the equivalence of (1) and (4) is given by Lemma 6.4.4.
|

6.5 The abundant case

In this final section we give characterizations of abundant semigroups which are left
I-orders in primitive inverse semigroups.

Fountain [7] has generalised the Rees theorem to show that every abundant semi-
group in which the non-zero idempotents are primitive, is isomorphic to what he calls
a PA-blocked Rees matriz semigroup. We refer the interested reader to [7] for more
details. It is clear that if an abundant semigroup is a left I-order in a primitive inverse

semigroup, then it is adequate. More than this, it must be ample, as we now explain.

We recall that a semigroup S is a left (right) ample if and only if S is left (right)

adequate and satisfies the left (right) ample condition which is:

(ae)ta=ae (a(ea)" = ea) for all a € S and e € E(9).
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A semigroup is an ample semigroup if it is both left and right ample. From [18]
a semigroup .S is left ample if and only if it is embeds in an inverse semigroup T
such that RN (S x §) = R*. If a left ample semigroup S has a primitive inverse
semigroup of left I-quotients @, then for any a € S we have that a R* a™, and by

Proposition 6.1.3, a R a™, that is, a* = aa~!. Hence the following lemma is clear.

Lemma 6.5.1. Let S be a left I-order in a primitive inverse semigroup Q). Then the
following are equivalent:

(1) S is left adequate;

(2) S is left ample.

In the next lemma we introduce an equivalent condition for categoricity at 0 for

any primitive ample semigroup with zero.

Lemma 6.5.2. Let S be a primitive ample semigroup with zero. Then the following
are equivalent:

(i) S is categorical at 0;

(12) a* = bt <= ab#0 fora and b in S*.

Proof. (i) = (ii) Let a,b € S. If ab # 0, then aa*b*b # 0, so a*b* # 0 and so by
primitivity a* = b%. Conversely, if a* = b*, then aa* # 0 and a*b = b*b # 0, so by
categoricity at 0, ab = aa*b # 0.

(i) = () Suppose that ab # 0 and bc # 0 where a,b,c € S. Then a* = b+ and
b* = c*. Hence b*(bc) # 0 gives b*(bc)* = (b*(bc))* # 0 and so by primitivity
b* = (be)*. Thus a* = (be)* so that a*(be) # 0 and thus a(bc) # 0. . O

We can offer some simplification of Theorem 6.2.1, in the case that S is adequate.

Proposition 6.5.3. [7, Proposition 5.5] For a semigroup S with zero, the following
conditions are equivalent:

(1) S is categorical at 0, 0-cancellative and satisfies:
for each element a of S, there is an element e of S such that ea = a and an element
f of S such that af = a (%)

(2) S is a primitive adequate semigroup;
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(3) S is isomorphic to PA-blocked Rees I x I matriz semigroup M(M,p; I1,1,T; P)

where the sandwich matriz P is diagonal and p; = e, for eachi € I, € T.
From the above lemma and Theorem 6.2.1, the following lemma is clear.

Lemma 6.5.4. For a semigroup S with zero, the following conditions are equivalent:
(1) S is abundant and left I-order in a primitive inverse semigroup Q;
(2) S is a primitive adequate semigroup and ) is transitive;

(3) S is O-cancellative, categorical at 0, S satisfies (x) and X is transitive.
In the two-sided case we have the following.

Lemma 6.5.5. For a semigroup with zero, the following conditions are equivalence:
(1) S is abundant and an I-order in a primitive inverse semigroup Q;
(2) S is primitive adequate and X, p are transitive;

(3) S is O-cancellative, categorical at 0, satisfies (%) and X, p are transitive.

Proposition 6.5.6. Let S be a left ample semigroup and a left I-order in a primitive

inverse semigroup Q. If S is a union of R-classes of Q, then @ = £(S).

Proof. By Corollary 6.3.2, it is enough to show that £(S) is primitive, since by The-
orem 4.2.2 and Lemma 4.3.2, S is a left I-order in X(S). Let 0 # e < f in £(9).
Then, e = a~'a and f = b~'b for some a,b € S where e, f € E(Z(S)). We have that
0#e=ef,sothat ab™! # 0 and ab™! = c¢~'d for some ¢,d € S with ¢cR*d in S and
so ¢ Rd in £(S). Then by Lemma 3.2.2, ca = db # 0, so that in Q, a Lb and so a L b
in S by Lemma 4.3.2. Therefore in £(S). Hence e = f as required. ' O



Chapter 7

Bicyclic semigroups of left
I-quotients

The first published description of the bicyclic semigroup was given by Evgenii Lyapin
in 1953 [27]. The bicyclic semigroup B is the most straightforward example of a bisim-
ple inverse w-semigroup. In fact, it is a semigroup with many remarkable properties.
A description of the subsemigroups of the bicyclic monoid was given in 2005 [3]. In
this chapter we use this description to study left I-orders in the bicyclic monoid. By

description of left I-orders in B, we will obtain:

Theorem 7.0.7. Let S be a subsemigroup of B. If S is a left I-order in B, then it is

straight.

In the preliminaries, after introducing the necessary notation, we give the descrip-

tion of subsemigroups of B from [3].

Subsemigroups of B fall into three classes: upper, lower and two-sided. In Sections
3, 4 and 5 we give necessary and sufficient conditions for upper, lower and two-sided
subsemigroups of B to be left I-orders in B, respectively. In each case, such left

I-orders are straight, which proves Theorem 7.0.7.

99
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7.1 Preliminaries

The bicyclic semigroup B(a, b) is defined by the monoid generated by two elements a
and b subject only to the condition that ba = 1. It follows that the elements can all
be written in the standard form a'd’ where 4,j > 0. We can write out the elements

of B in array.

119 b2 b3 bt

alab ab® ab® bt
a? | a®b a®b? a?® bt
ad | a®b a®? AP @3
a* | atb a*b? ot afpt

The multiplication on B is defined as follows:

k+m-—-l1n

a i 1< m

akblambn - = 3
a”bt-mtn > m.

We can put the two cases together as follows:
afbla™b® = " where t = max{l, m}.
The monoid B is thus isomorphic to the monoid N° x N° with multiplication
(k,)(m,n) = (k =l +t,n — m 4+ t) where t = max{l,m}.

It is easy to see that B is an inverse semigroup: the element a’’ has inverse a/b'. The

idempotents of B are of the form
e, =a"b" (n=0,1,2,...) which satisfy 1 = ey > ¢; > e > ....
Green’s relations £, R and H are given by
a't’ La*btif and only if j =1,
o't R a*bt if and only if i = k,

and .
a't! Ha*b' if and only if i = k and j = [.
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In the array, the rows are the R-classes of B, the columns are the L-classes and
the H-classes are points. There is only one D-class; that is, B is a bisimple monoid

(hence simple).

Following [3], we start by introducing some basic subsets of B,

D = {a' 420} oo the diagonal.
LP = {a'W:0<j<p,i>0}forp>0...... the left strip (determined by p).

For 0 < ¢ < p we define the triangle
Tq,pz{aibj3qgi§j<p}-
For i, > 0 and d > 0 we define the rows
Ay ={d'V 1§ >0}, Ajpa={a'¥ :d|j —i,j > m)}
and in general for I C {0,...,m — 1},

Arma=|JAima={a¥ 1i€ I,d|j —i,j > m)}.

iel

For p>0,d> 0,7 € [d] ={0,...,d — 1} and P C [d] we define the squares
Ep — {aibj . i,j > p}’ Ep,d,r — {ap+r+udbp+r+vd Cu,v > 0},

Ypdp = U Ty = {aPtrredpptried e Py v > 0},
reP
It is worth pointing out that in [3] it was shown that a subsemigroup of B is inverse

if and only if it has the form Fp U X, 4p where Fp is a finite subset of the diagonal
(which may be empty). The function™: B — B defined by o't/ — aibi = ofb
is an anti-isomorphism. Geometrically it is the reflection with respect to the main

diagonal.
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for some (possibly empty) R C {0,....,d — 1}, some N € N and some finite set
Iy €{0,..,N - 1}.

We call diagonal subsemigroups those defined by 1., two-sided subsemigroups those

defined by 2., upper subsemigroups those defined by 8.(i) and lower subsemigroups
those defined by 3.(ii).

We begin with the following example which plays a significant role in studying left

I-orders in B.

Example 7.1.2. Let Ry = {a® : j > 0} be the R-class of the identity element 1 of
B and ¢ = a™b™ € B. Then

qg= a™ht = (aObm)—l(aobn)’

so that Ry is a straight left I-order in B. In fact, it is a special case of Clifford’s

result, mentioned in the Chapter 3.

Remark 7.1.3. Any subsemigroup of B that contains R is a straight left I-order in
B.

Lemma 7.1.4. Let S be a left I-order in B. Then for any L-class Ly of B, SNLy, # 0.

Proof. Let k € N°. Then
akftt = (a't) "1 (a™b")
= ab'amb"
— aj—i+tbn—m+t
where ¢t =max{i,m}, for some a'b’,a™b" € S. Hence k =j —i+t=n—m+t, so
that either k = j or k = n. Thus SN Ly # 0. 0
We conclude this section by the following lemma which plays a significant role in

the next sections.

Lemma 7.1.5. Let S be a left I-order in B and let d € N. If for all a'tV € S we have
that d|i — j, then d = 1.
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Proof. Let a*¥ € B. Then there exist a’t’, a™b" € § with

ak ot

il

(aib)~1 (ambn)
= a/bla™p"
— aj—i—i—tbn—m—l—t

where ¢t =max{i,m}. Now
k=1l = (j—i+t)~(n—m+t)
= (j— i)+ (m—n)=0(mod d).
It follows that d = 1. O

7.2 Upper subsemigroups

In this section we give necessary and sufficient conditions for an upper subsemigroup
S of B to be a left I-order in B. The upper subsemigroups of B are those having all el-
ements on or above the diagonal; that is, all elements satisfy: a’t’, j > 4. Throughout
this section S is an upper subsemigroup of B having the form (3).(s) in Proposi-
tion 7.1.1. We have already met one of them, which is the R-class of the identity. By

Lemma 7.1.4, we deduce that any left I-order upper subsemigroup is a monoid.

The next example is of a subsemigroup bigger than R-class of the identity. In fact,

it is the largest upper subsemigroup of 5.

Example 7.2.1. The upper subsemigroup B* = {a'¥’ : j > i} of B is a straight left
I-order in B, by Remark 7.1.83 as Ry C B*. In fact, we can write any element a'b/ of

B as follows

ait = (a'b™)(a7b+9) !
where a9 aIbt € BT, that is, BY is a right I-order in B. Hence B is an I-order
in B. It is worth pointing out that B is a full subsemigroup of B in the sense that
E(B) = E(BY).
Remark 7.2.2. Let S be an upper subsemigroup of B. If ¢ ¢ I, then S does not

contain any element of form a'b? for all j > ¢, and only contains a'b® if a'bt € Fp.

Lemma 7.2.3. Let S be an upper subsemigroup of B. If S is a left I-order in B, then
d=1and0€l.
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Proof. Since S an upper subsemigroup, it follows that for all afl/ € S we have that
d|j —i for some d € N. By Lemma 7.1.5, it is clear that d = 1. It is therefore remains
to show that 0 € I. By Lemma 7.1.4, we have that 1 € S. Let a%" € B for some

h € N. Hence
ot = (aibj)_l(ambn)
— aj-—i-}—tbn—m—}—t

where ¢ =max{i,m}, for some a't?,a™b* € S. For 0 = j — i + t we must have that
t=1and j=0. Asi < j, it follows that i = j = 0 and so a®b* = a™b" € §. O

The following corollary is obvious.

Corollary 7.2.4. Let S be an upper subsemigroup of B. If S is a left I-order in B,
then R, C S.

By Lemma 7.1.4, SN L, # 0. As Fp = DN Lypin(py, the following corollary is clear.

Corollary 7.2.5. Let S be an upper subsemigroup of B. If S is a left I-order in B,
then FD = {1} or FD = @

We now come to the main result of this section.

Proposition 7.2.6. For an upper subsemigroup S of B, the following are equivalent:
(7) S is a left I-order in B;
(1) Ry C S.
Moreover, writing S as S = FpUJ,¢; Si, we have Ry C S if and only if0 € I,d =1
and Fp U Fy = {1,...,a%™ ™1},

Proof. The equivalence of (i) and (47) follows from Example 7.1.2 and Corollary 7.2.4.

The remaining statement follows from inspection of the description of S as in 3(¢) of

Proposition 7.1.1. O

Corollary 7.2.7. Let S be an upper subsemigroup of B. If S is a left I-order in B,

then it is straight.
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7.3 Lower subsemigroups

In this section we give necessary and sufficient conditions for the lower subsemigroups
of B to be left I-orders in B. Throughout this section S is a lower subsemigroup of B

having the form (3).(47) in Proposition 7.1.1. We begin with:

Example 7.3.1. The lower subsemigroup T = {a't! : i > j,i > m} of B is a straight

left I-order in B. Since for any element g = a¥b* in B we have

g = akbh — akbk+h+mak+h+mbh — (ak+h+1nbk)—1(ak+h+mbh)

and it is clear that ¥tk and aF+P+mph gre in T.

Remark 7.3.2. Let S be a lower subsemigroup of B. If j ¢ I, then S contains no

element a't/ with i > j.

Lemma 7.3.3. Let S be a lower subsemigroup of B. If S is a left I-order in B, then
d=1and0€ 1.

Proof. Since S a lower subsemigroup, it follows that for all a’d’ € S we have that
d|j — i for some d € N. By Lemma 7.1.5, it is clear that d = 1. Let a"® € B where

h € N. Then

ahb() — (aibj)——l(ambn) — aj-i+tbn—m+t
where ¢t = max{m, ¢}, so that 0 = n —m+t. Hence we deduce that n =0 and t = m.
We also have that h = j —i+m so that m = h+ (i — j) > h so that a™b° € S. Hence
0€el. ' 0

Since Fp € D N Lynin(ny, the following corollary is clear.

Corollary 7.3.4. Let S be a lower subsemigroup of B. If S is a left I-order in B,
then Fp = {1} or Fp = 0.
Suppose that a lower subsemigroup S is a left I-order in B. From Lemma 7.3.3,

we have that d = 1 and 0 € I. We claim that J = N°. By Corollary 7.3.4, Fp = {1}
or Fp = (, so that as S intersects every L-class of B, by Lemma 7.1.4, I = N°. We

have one half of the following proposition.
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Proposition 7.3.5. 4 lower subsemigroup S is a left I-order in B if and only if d = 1
and I = N°,

Proof. Suppose that d = 1 and I = N°. Then
Ki,mhl ={db:j=t+ij> m;} = {a"™b 40 > m).
For any a®¥* € B we have that o"b* = (a"HEHpR) =2 (ah+R+bR) where t = max{my, my }
for i € N° It is clear that ahth+tph gh+k+tphk ¢ g . 0
The following corollary is clear from the proof of Proposition 7.3.5.

Corollary 7.3.6. Let S be a lower subsemigroup of B. If S is a left I-order in B,

then it is straight.

7.4 Two-sided subsemigroups

In this section we give necessary and sufficient conditions for the two-sided subsemi-
groups of B to be left I-orders in B. The two-sided subsemigroups of B have the forms
(2).(2) and (2).(4%) in Proposition 7.1.1. Throughout this section we shall assume that

a two-sided subsemigroup S of B is proper, in the sense S # B.

We divide this section into two parts. We study the first form in the first part,

and the second form in the second part.

We begin with the two-sided subsemigroups which have the form (2).(¢) in Propo-
sition 7.1.1.

Let ™" € FCS=FpUFUA[,aUZ,qp. Then, d|(n —m). For, as 0 € P,
a?b"*? € S and we have that a?b"*a™b™ = a?b" P+ € T, p, so that d|(m—n—d),
that is, m —n = (t+1)d for some t € N°. Hence for any a’¥’ € S we have that d|i — j.

By Lemma 7.1.5, the first part of the following lemma is clear.

Lemma 7.4.1. If a two-sided subsemigroup S = FpUFUA[, UL, s p of B is a left
I-order in B, then d = 1 and ¢ = 0. Consequently, R; C S.
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Proof. Let a®" € B where h € N. Then
aobh - (aibj)—l(ambn) — aj-i+tbn—m+t

where ¢ =max{m, i}, so that 0 = j—i+¢. Hence we deduce that j = 0. If o't/ € =, 4 p,
then as £, 4p is an inverse subsemigoup of B we have that ¢%"* € S. In the case
where o't/ ¢ 3,4 p we must have that o't € Fp U F U Ay,4 Hence j > i so that
¢ =7 = 0. It follows that a" = a™b"” € S. Hence ¢ = 0. O

Since Fpp C {1} we have that Fp = {1} or Fp = . In either case, SN L; = {1}.

Then the following corollaries are clear.

Corollary 7.4.2. If a two-sided subsemigroup S = Fp U F U ArpaU2pap of Bisa
left I-order in B, then Fp = {1} or Fp = {.

Corollary 7.4.3. A two-sided subsemigroup S = Fp UF UA1,4UY,4p of B is a
left I-order in B iff R, C S.

Corollary 7.4.4. If S = Fp UF UArp,4UX,4p is a left I-order in B, then it is
straight.

Now, we start studying the second form which has the form (2).(4¢) in Proposi-

tion 7.1.1.

Let a™" € F C S = FpUF U /A\[,p,d U Xp4p. Then, din — m. For, since
aPb"*t? € T, 4 p, it follows that a™b"aPbPt® = ™ "tPpPtd € B, p. Hence d|(m—n—d),
that is, m —n — d = td for some ¢ € N° and so m —n = (¢ + 1)d. Hence for any

a't’ € S we have that d|i — j. By Lemma 7.1.5, the first part of the following lemma

is clear.

Lemma 7.4.5. If a two-sided subsemigroup S = Fp UF\UKI’p,dU Ypdp of Bis aleft
I-order in B, thend =1 and ¢ = 0.

Proof. Suppose that g # 0, let a®* € B where k € N. Then

(lobk — (aibj)—l(ambn) — aj—i-’rtbn——m-f-t .
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where ¢ = max{m, i}, so that 0 = j —i+¢. Hence we can deduce that j=0.1If:=0,
then a%* = a™b" so that a®* € S a contradiction and so i > 0. Hence a'5° € S, but

a’t® € Agpq U FasFc Ty p a contradiction again. Therefore ¢ = 0 as required. [

Remark 7.4.6. In the case where ¢ = 0 it is easy to see that a”?° € S. If m ¢ 1,
then a“b™ ¢ F for any 0 <u < p. For, if a*b™ € ﬁ, then a?b0a¥b™ = aP+p™ € Kl,p,d

a contradiction.

Proposition 7.4.7. The subsemigroup S = Fp U F U Kl,p,d UX,ap of B is a left
I-order in B if and only ifd =1 and I = {0,...,p — 1}.

Proof. (=) Suppose that S is a left I-order in B. Then any element ¢ = a™b" € B
can be written as (a’?)~!(a*!) for some a't’, a*8! € S. By Lemma 7.4.5, d = 1 and
0 € I. It is remains to show that I = {0,...,p — 1}.
Let 0 < m < p. Then o
Qb = (azbj)—l(akbl)
R

where ¢ =max{i, k}, for some a‘t’,a*t' € S. Then m = j or m = [; so that a*b™ € S
for some u. If m ¢ I, so u < p, then aPt®a*b™ = aP**b™ € S, in contradiction to
Remark 7.4.6.

(<) Suppose that d =1 and I = {0,...,p — 1}. Then for any a™b" € B we have

ambn — (ap+m+nbm)—1(ap+m+nbn).
It is clear that @Pt™"p™, aPt™+")" € §. » O

Corollary 7.4.8. If S = Fp U Fu Kl,p,d UXpap ts a left I-order in B, then it is
straight.

From corollaries 7.4.4 and 7.4.8, we have the main result in this section.

Corollary 7.4.9. Let S be a two-sided subsemigroup of B. If S is a left I-order in
B, then it is straight.



Chapter 8

Bisimple inverse w-semigroups of
left I-quotients

Gould [17] gave a general definition of semigroup left quotients extending the special
case of this notion introduced in [6]. She used the extension of such a definition to
obtain necessary and sufficient conditions for a semigroup to have a bisimple inverse
w-semigroup of left quotients. As mentioned before, if a semigroup S is a left order
in an inverse semigroup @, then @ is also a semigroup of left I-quotients of S, but the
converse is not true, that is, if a semigroup S is a left I-order in an inverse semigroup
@, then it may not be left order in Q. The study of semigroups which have bisimple

inverse w-semigroups of left I-quotients seems a natural next step.

In this chapter we investigate left I-orders in bisimple inverse w-semigroups. In [19]
it was shown that if H is a congruence on a regular semigroup @, then every left order
S in @ is straight. To prove this, Gould uses the fact that S intersects every H-class
of Q. Since H is congruence on any bisimple inverse w-semigroup, any left order S in
such a semigroup must be straight. In Section 8.1 we give some preliminary results
which enable us to show a left I-order semigroup S in a bisimple inverse w-semigroup

Q, intersects every L-class of (). This is used to show that S is straight in Q.

In the next section we give the main result in this chapter, Theorem 8.2.1, which
gives necessary and sufficient conditions for a semigroup to be a left I-order in a

bisimple inverse w-semigroup. This theorem extends the result in [17].

In Section 8.3 we investigate a special case when a semigroup S is a left I-order
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in a proper bisimple inverse w-semigroup Q. In Section 8.4 we combine the result in
Section 8.1 with Theorem 3.2.9 to determine when two bisimple inverse w-semigroups

of left I-quotients of a given semigroup S are isomorphic over S.

8.1 Preliminaries

We refer the reader to Section 2.4.1 for background on bisimple inverse w-semigroups.

Let @ be a bisimple inverse w-semigroup. When convenient we identify Q as
BR/(G, 8) for some group G and endomorphism ¢ : G — G. Let R, (L,) denote the
R-class (L-class) of @ containing the idempotent e, = (n,1,n) (n € N%). From the
above,

Rpn={(m,a,n) :a € G,n €N},
L

n={(m,a,n):a€ G,m S NO}

Clearly,
Hm,n =R,NL, = {(m,a,n) ta € G}

= {¢€Q:qs7 =en, g7 g=cn}
and from the multiplication in BR(G, §),

Hm,an,q c Hm-n+t,q-p+t7
where t = max{n, p}.

Let S be any semigroup such that there is a homomorphism ¢ : .S — B where B
is the bicyclic semigroup. We define functions /,7 : § — N° by ¢(a) = (r(a),!(a)).
We also put H;; = (¢,7)¢ ", so that S is a disjoint union of subsets of the H;; for
some %, j € N and

Hj={aeS:r(a)=1,(a) = j}.

From the above, H is a congruence on any bisimple inverse w-semigroup . More-
over, there is a surjective homomorphism & : Q — B with Kerp = H where B
is the bicyclic semigroup. As above we will index the H-classes of @ by putting
H,; = (1,7)p"". It is easy to see that for elements p,q € @, pRq if and only if
pp = (i,) and ¢ = (i, k) for some 2,5,k € N%. A dual result holds for the relation

L (sec [17]).
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Let S be a left I-order in Q. Let ¢ = P|s. Then, ¢ is a homomorphism from S to
B. Unfortunately, this homomorphism is not surjective in general, since S need not

intersect every H-class of Q. But we can as above index the elements of S.

In Chapter 7 we showed that, if a semigroup S is a left I-order in a bicyclic
semigroup B, then S intersects every L-class of B. Moreover, it is straight. In fact,
this is true for any left I-order in a bisimple inverse w-semigroup, as we will see in

the next lemmas.

Lemma 8.1.1. If a semigroup S is a left I-order in a bisimple inverse w-semigroup
@, then SN L, # 0 for all n € N°,

Proof. Let p € H, . Then, p = a1 for some a,b € S with a € H;; and b € Hy,.
Hence

P=0a""b € HjiHiy C Hj_itmax(i p) i—htmax(if)»
and so n = j —i+max(i, k) = [ — k+ max(s, k). As max(i, k) = i or k, so that either
n=jorn=1[ Hence SN L, # 0. O

In [17] it was shown that if S a left order in a bisimple inverse w-semigroup @,
then it is straight. The following lemma due to Gould extends this to the left I-order

in bisimple inverse w-semigroup.

Lemma 8.1.2. If a semigroup S is a left I-order in a bisimple inverse w-semigroup

Q, then S is straight.

Proof. Let (h,q,k) € Q. Then,

(hyq k) = (4,0,5)7 (2,6, 8) = (4,a7",4)(t, b, 5)
for some (4,a, ), (t,b,s) € S. Let n = max{s,t}; since SN L, # @), by Lemma 8.1.1,
there exists (u,c,n) € SN L, and hence (u,c,n) '(u,e,n) = (n,1,n), so that

(n,1,n) R (t,b,s) or (n,1,n) R (4,a,j). In both cases, we have

)-
(h,q,k) = (i,a,5)” 1(7‘L,1,n)(t,b,s)
= (i,a,5) Nu,e,n)” (u,c,n)(t,b,s)

= ((wem)a,0) " ((wen)(tbs):
It is clear that (u,c,n)(%,a,j) R (u,c,n)(t,b,s). Hence S is straight. Ol
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The following corollary which recaps earlier facts we have been using, is clear.

Corollary 8.1.3. Let Q be a bisimple inverse w-semigroup. Then
(@) (m, @, n) ™ (m, 0,t) R (i, ¢,5) (i, d, k) if and only if n = j;
(22) (mya,n)™ (m, b,t) L (i,¢,5)72(,d, k) if and only if t = k.

8.2 The main theorem

This section is entirely devoted to proving Theorem 8.2.1 which gives a characterisa-

tion of semigroups which have a bisimple inverse w-semigroup of left I-quotients.

Theorem 8.2.1. 4 semigroup S is a left I-order in a bisimple inverse w-semigroup
Q if and only if S satisfies the following conditions:
(A) There is a homomorphism ¢ : S — B such that S is a left I-order in B;
(B) For xz,y,a € S,

(i) U(x),U(y) = r(a) and za = ya implies x =y,

(it) r(z),r(y) = l(a) and az = ay implies x = y.

(C) For any b,c € S, there exist z,y € S such that xb = yc where

ze Hr(x),r(b)—l(b)+max (l(b),l(c))’ ye Hr(:c),r(c)—l(c)+max (l(b),l(c)) ’

Proof. Let S be a left I-order in a bisimple inverse w-semigroup Q. For Condition
(A), since S is a left I-order in () and there is a homomorphism 7 : Q — B, it follows
that we can restrict % on S to get a homomorphism ¢ from S to B. Let (i,j) € B.
Then, there is an element ¢ in @ such that ¢ € H;; for some i, j € N°. Put ¢ = a™1b
for some a,b € S with a R b in Q, so that r(a) = r(b). Hence

q € Hyo)r(a)Hr(a)10) € Higa)iv)

then

(13) = (Ue),i(®)
= (r(a), U(a)) ™" (r(b), 1(b))
= (a@)_l(b¢)

Hence Sy is a left I-order in B.



8.2, THE MAIN THEOREM 114

To see that (B)(:) holds, suppose that z,y,a € § where I(z),l(y) > r(a) and
Za = ya. Since a™' € Hyga) () and zaa™! = yaa~! we have that Ter(a) = Yer(g) and
since r(a) < I(z),l(y), it follows that €l(z)s €l(y) < €r(a). Then

ZEi(z)Cr(a) = m"lxer(a) = Ter(a) = Yer(a) = YY ' Yer(a) = Yeu(y)Cr(a)
and so & = zey,) = yeyy) = y. The proof of (B)(it) is similar.

Finally, we consider (C). Let b,c € S. Then, be~! € Q and

-1
be™ € Hyu) Hio)rie) © Hr(b)—l(b)+max (10),1(0)) () 1)+ max (1))

Since S is a straight left I-order in Q, it follows that be=! = ™y where 2 Ry for

some z,y € S, and so zb = yc, by Lemma 3.2.2. From bc~! = ™1y we have

Hr(b)—l(b)+max (1)) (@)= 1(e) +max (o) ~ Hia)i),
so that I(z) = r(b) — I(b) + max (I(b),{(c)) and I(y) = r(c) — I(c) + max (I(b), 1(c)).

Conversely, we suppose that S satisfies conditions (4), (B) and (C). Now, our aim
is to construct via equivalence classes of ordered pairs of elements of S a bisimple
inverse w-semigroup (), which is a semigroup of straight left I-quotients of S. First,
we let

E={(a,0) € Sx S:r(a) =r(b)}

and on ¥ we define the relation ~ as follows:

(a,b) ~ (c,d) & there are elements z,y in S such that za = yc and zb = yd
where {(z) = r(a), l(y) = r(c) and r(z) = r(y).

Notice that if (a,b) ~ (c,d), then I(a) = I(c) and I(b) = I(d). For, I(a) = l(za) =
l(ye) = l(c) and {(b) = l(zb) = l(yd) = I(d).

Lemma 8.2.2. The relation ~ s an equivalence.

Proof. Tt is clear that ~ is symmetric. Let (a,b) € . By (C), for any a € S there
exists ¢ € S with I(z) = r(a), so that za = za and zb = zb and I(z) = r(a) = r(b),

and hence ~ is reflexive.
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Suppose that (a,b) ~ (c,d) ~ (p,q). Then there are elements z,y, Z, in S such
that

za =yc, xb=yd,
Tc=7gp, Td=yq,
where
r(z) =r(y), lz) =r(a), Uy) =r(c),
and
r(Z) = (@), U(z) =r(c), U(7) = r(p).
By Condition (C), for y,Z there exist s,t € S such that s% = ty where

€eH
s r(8),r{Z)~1(Z)+max (l(a’:),l(y)) ’ te Hr(s),r(y)—-l(y)+max (l(i),l(y)) '
Since I(z) = r(c) = I(y), it follows that {(s) = r(Z) and i(t) = r(y) = r(z). Now,
tza = tyc = sTc = syp,
and

tzh = tyd = szd = syq.
Hence tza = sjjp and tzb = syjq where tx € Hy(s)r(a), SY € Hy(s)r(p). We have
I(tz) =r(a), l(sy) = r(p) and r(tz) = r(sy),
that is, (a,b) ~ (p,q). Thus ~ is transitive. O
We write the ~-equivalence class of (a,b) as [a,b] and denote by @ the set of all

~-equivalence classes of Z. If [a, b], [c,d] € @, then by (C), for b and ¢ there exist z,y

such that xb = yc where

H
v€H (@), (b)=1(b)+max (1(8).1(c)) Y& A ) r(@-t(c)+max (15),460))

and it is easy to see that
r(za) = r(zb) = r(ye) = r(yd) = r(z) = r(y)
and we deduce that [za, yd] € Q. Define a multiplication on Q by
[a,b][c, d] = [za,yd]

where zb = yc and z € Hr(x)’r(b)_l(b)ﬁmx (i6).060))” ye Hr(:c),r(c)—l(c)+max (15)4@)”



8.2. THE MAIN THEOREM 116

Lemma 8.2.3. The given multiplication is well defined.

Proof. Suppose that [a1,b1] = [ag, by] and [e1,d1] = [c2,do]. Then there are elements

T1,T2,Y1, Y2 in S such that
T101 = TaQa,

zib = $2b2>
YiC1 = Yalo,
y1dy = yoda,
where
Wz1) =r(a1), U(z2) =r(a2), r(z1) = r(22)
and

) = rlcr), W) =r(ca), r(y1) = r(ya)-
Note that, consequently,

lar) = l(az), I{by) =1(bs), l(c1) = l(c) and I(dy) = I(dy).
By definition,
[a1, ba][er, di] = [way, ydi]
where 2b; = yc;andz € H
Also, '

@are=tsmax (16046e0)) " ¥ € oy rtenstery rmas (1601 06en))

[az, bo][ca, do] = [Zag, §db]

where by = jesandZ € H )\ oo (itbayiten))” ¥ € B, 3y rtca)-tfenysmas (t2)0(e2))"

We must show that [za;,ydi] = [Zas,§dz]. That is, we need to show that there
are w,w € S such that wzra; = WTay and wyd, = Wjdy with ‘
r(w) = r(0), l(w) = r(za;) and I(®) = r(ZTag).
Before completing the proof of Lemma 8.2.3, we present the following lemma.
Lemma 8.2.4. Let ay,az, by, ba € S be such that
r(ay) = r(b1), r(az) = r(ba)
and suppose that Ti, T, wy,Ws € S are such that

14y = L209, T1by = Ty, wia; = waay
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where 1(x1) = r(z2), I(z1) = r(a1), I(z5) = r(as) and r(wy) = r(w,). Then
’LUlbl = wgbg.

Proof. Let a1, ag, by, by, 1, 29, w1, ws exist as given. Note that consequently
l{a1) = l(az) and I(by) = I(b;). By (C), for wy,x; there exist z,y € S such that

Tw; = yr; where
r€H
r(@),r(wn) =1y +max (1w l(w1) )’ ye Hr(a:),r(x1)—l(:z:1)+nlax (ttwn) z1))”
Then zwya) = yz,a;, and
TWaQ2 = TW1Q1 = YT101 = YZaao.

Now,

, yro € H

H
W € r(2) }(z2)~U(z1)+max (1(w).(a1))

(@) wz)~1(wy)+max (1{wy) J(z1) )
and as [(z1) = r(a;) and I(z2) = r(az), we have
l(yz2) = r(az) — (1) + max (l(w1), r(a1)) = r(as)

and
l(zws) = {(ws) — I(wy) + max (I(w1), r(a1)).

Since Twyay = yzoas and l(yxs) = r(az). Then, in order to use Condition (B)(i), we
have to show that {(zws) > r(az). Since wia; = woas and r(wy) = r(w2) we obtain

that
r(wi) — Uwi) + max ({(w), 7(a1)) = r{wr) — Ww;) + max (I(wy),r(az))  (8.1)
so that
I(zwy) = l(w2) — l(wy) + max (L{w), r(al)) = max (I(ws),r(az)) > r(az)
as desired. Then zw, = yx2, by (B)(¢). Since zw; = yr; and z1b; = z3b; we have
zwi by = yz1by = yraby = 2w2bs.
Once we know r(w;by), r(weby) > I{z) we have wiby = wsby, by (B)(i). Now,

’LUlbl € Hr(wl)—l(w1)+max (l(wl),r(h)) (b)) —r(by)+max (l(wl),r(bl))
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and
bye H
Wtz 7(wy )~ l(w2)+xllax( (wg),r(bg)) JA(b1)~r(bz)+max (l(wg),r(bg)) ?
so that
r(wiby) = r(wr) = (w) + max (H{wi),r(a1))  as l(z1) = r(a) = (b))
= 7(wi) ~ l(wy) + max ({(wy), !(z1))
= (z)
and
r(webe) = r(wp) — wz + max (I(we ,r(ag as 7(be) = r(as)
= r(w) — w1 + max (I(wq),7 (a by (8.1)
= r(wy) — {wr) + max(l(wn),l(z1))  as l{x;) = r(a;)
= (z).
Hence the proof of our Lemma is complete. (]

Returning to the proof of Lemma 8.2.3, by (C), for za; and Za, there exist w,@w € S

such that wza, = wITa,; where

we H

r(w),r(wa1)—{(za1)+max (l(ml),l(f:a;))) and @€ H

r(w),r(Fa2)~l(Zaz)+max (l(mal),l(:iaz)) ’
Using the fact that 1(b;) = {(b2), I(c1) = (o) and l(a1) = l(a2), it is easy to see that
[{zay) = l(Zag). Therefore

l(w) = r(za)) = r(z) and (@) = r(Zaz) = r(Z).

Since r(w) = r(w) and wza; = WIay, it remains to show that wyd; = wyd,.

It is easy to see that r(wz) = r(w) = r(w) = r(wT). We know that
r(z1) = r(z), (z1) = r{ar), l(z2) = r(az), r(a1) = r(b1) and r(az) = r(b).

Since z1a; = X202, T1b1 = T2by and wxa; = WZTaz, we have that wrb, = wTby, by
Lemma 8.2.4.

We also have zb; = yc; and Zby = jcg, so that wyc; = wxby = WTby = wWyce. Thus
Y161 = YoC2, Y1d1 = Y2dz and wycy = Wycy.

Since 7(y1) = r(12), (1) = r(cr), Uy2) = r(c2), r(c1) = r(d1), r(c2) = r(dz) and
r(wy) = r(wg), it follows that wyd; = wWijdy, by Lemma 8.2.4 again.
Hence [za;, ydi] = [Taz, 7id,)]. This completes the proof of Lemma 8.2.3. O
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The next lemma is useful in verifying that the given multiplication is associative.
The proof follows immediately from the fact that l(ab) > 1(b),1(de) > I(e), and (B)(4).

Lemma 8.2.5. Let a,b,c,d,e € S. If abc = dec and 1(b) = r(c), I(e) = r(c), then
ab = de.

Lemma 8.2.6. The given multiplication is associative.

Proof. Let [a,b],[c,d], [p,q] € Q. Then by using the definition of multiplication in Q
we have

([a> ble, d]) [p, q] = [2a, ydl(p, q]

yeH

f
r(@)r(e)=1(e)+max (1)) O

where zb = yc and z € Hr(m),r(b)—l(b)-}-max (l(b),l(c))’

some z,y € S and then
([a1 b][c> d])[pvQJ = [wxa>u—)q]

wherewyd = dpandw € H ) iy (10006) © € Hruyrio)-tayemas (1)

for some w,w € S. Similarly,

[a:h]([c: d][p,q]) = [a7 b”‘fc) 37(]]

where zd=gpand Z € H 7]

H
(@) (-t max (1210 Y € @)1ty rma (1)) 20
then

[a7 b] ([C’ d”p, Q]) = [ZG, 2?‘]]

e — 57 Z H .
where zb = zZc and z € Hr(z),r(b)—l(b)+rnax (1w iza) * € H ) r@e)—t(ze) tmax (1) (z0))

To complete our proof we have to show that [wza,@q] = [2a,Z3g]. That is, we

need to show that there are £, h € S such that twza = hza and tiwq = hzjq with
r(t) = r(h), I(t) = r(wza) and (k) = r(za).
By Condition (C), for wz, z there exist h,t € S such that twz = hz where

heHd

ted r()r(2)~U(z)+max (1(wa),i(2))’

r(t),r(wa)—l(wz)+max (l(wm),l(z)) ’
and so twzra = hza and twzxb = hzb. Since xzb = yc and 2b = ZZc we have that
twyc = hzZzc. But

I(y) = r{c) — I(c) + max (I(b), 1(c)) > r(c)
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and

1(z) = r(d) — I{d) + max (l(d), l(p)) =r(c) — I(d) + max (l(d),l(p)) > r(c).
By Lemma 8.2.5, twy = hzZ and so twyd = hzZd. Now, wyd = wp and Zd = §p, so
that twp = hZyp. But
I(@) = r(p) — U(p) + max (I(yd), {(p)) = r(p)
and
1(g) = r(p) — U(p) + max (I(d),(p)) > r(p),

and therefore tw = h3j, again by Lemma 8.2.5. Hence twq = hzyq. It remains to
prove that
I(t) = r(wza) and I(h) = 7(za).

Since
I(t) = r(wz) — l(wz) + max (Hwz),1(2))

and
1(h) = r(z) — () + max ([(wz),I(2))-

Calculating, we have

r(wz) = r(w) (8.2)
l(wz) = I(z) — I(yd) + max (I(p), (yd)) (8.3)
I(z) = r(b) — I(b) + max (1(d),U(zc)) A (8.4)
and
I(z¢) = I(c) — U(d) + max (I(d),1(p)) (8.5)
I(yd) = I(d) — I(c) + max (1(b), (c))- (8.6)

Since r(wz) = r(wza) and r(z) = r(za), once we show that I(z) = l(wz), we will

have
I(t) = r(wz) = r(wza) and I(h) = 7(z) = r(za).
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It is convenient to consider separately two cases.

Case(7): l(c) = I(b). We have

I(yd) = I(d) and I(z) = r(b) — 1(b) + I(c).
I {(d) > U(p), then from (8.5), (zc) = I(c). From (8.3) and (8.4),
l(wz) = U(z) = r(b) — I(b) + U(c) = I(2).
If, on the other hand, I(d) < U(p), then I(zc) = I(c) —I(d) +1(p). From (8.3) and (3.4),
Hwz) = l{z) — I(d) + U(p)

and
I[(z) = r(b) — I(b) + max (l(b),l(c) —(d) + l(p)).

Since I(c) = I(b) and I(d) < I(p), it follows that I(c) — I(d) + I(p) > I(b). Thus
I(2) r(b) — 1(b) + (c) — I(d) + I(p)

i(z) = U(d) + (p)

= l(wz).

Case(ii): I(c) < I(b). We have

o

l(yd) = I(d) = l(c) + {(b) and I(z) = r(b).
If I(d) > I(p), then I(Zc) = I(c). From (8.3) and (8.4),

Hwz) = 1(z) — I(d) + I(c) — 1(b) + max (l(p), I(d) —l(c) + l(b))

and

I(z) = r(b) — 1(b) + max (I(b),1(c)) = r(b) = ().
Since I(d) > I(p) and I(c) < {(b) we have that [(d) — I(c) +{(b) 2 I(d) > I(p). Then
l(wz) = I(z). Hence l(z) = l(z) = l(wx).

If, on the other hand, I(d) < {(p), then from (8.5), {(Zc) = I(c)~1(d)+I(p). From (8.3)
and (8.4),

l(wz) = 1(z) — 1(d) + U(c) — 1(b) + max (I(p), 1(d) — U(c) + (b))
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and
I(z) = r(b) — (b) + max (L(b), I(c) — I(d) + 1(p)).
Once again, there are two cases. If {(c) — I(d) + {(p) > I(b), then

Up) = U(d) = I(c) + L(b)

and so
l(wz) Iz) = U(d) +1(c) — 1(b) + I(p)
;”((b)) = U(d) + l(c) = 1(b) + I(p)

If, on the other hand, I(c) — I(d) + I(p) < I(b), then I(p) < I(d) — i(c) + L(b). Hence

(I

H(wz) = (z) = r(b) = I(2).
This completes the proof of the lemma. O

Now we aim to show that ), which we have constructed, is a semigroup of left

I-quotients of S. First we show that S is embedded in Q.

As seen earlier, for any a € S there exists z € S with I(z) = r{a). Then za €
Hr(z)1(e) and [z,20] € Q. If y € S with I(y) = 7(a), then ya € H,y) ) and again
[y,ya] € Q. By (C), there exist s,t € S with sz = ty (and so sza = tya), where
s € Hrs)r(z), t € Hys)r(y). Hence [z, za] = [y,ya]. There is therefore a well-defined
mapping 6 : S — Q defined by af = [z, za] where © € H, (1) (a)-

Lemma 8.2.7. The mapping 0 is an embedding of S into Q).

Proof. Suppose that af = bf. Then [z,za] = [y, yb] where £ € Hy(z),(o) and y €
H (). By definition of ~ there are elements s,¢ € S such that sz = ty and
sza = tyb where [(s) = (), I(t) = r(y) and r(s) = r(t). We claim that a = b.

Since sza = tyb = sxb, once we show that r(a),r(b) > {(sz) we can use (B)(ii) to

get a = b. Now, it is easy to see that
ST € Hr(s),r(a) and ty € Hr(s),r(b)

and so [(sz) = r(a) and I(ty) = r(b). But sz = ty, so that r(a) = r(b) = {(sz). Hence

a = b and so 0 is one-to-one, our claim is established.
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To show that ¢ is a homomorphism, let af = [z,za] and b0 = [y,yb] where z €

Hr(.r),r(a) and Yy e Hr(y),r(b)- Then
abbf = [z, za][y, yb] = [wz, wyb]

where wra = wyandw € H 0
- y r(w),r(za)—I(za)+max (l(ma),l(y))  WE Hr(w),r(y)—l(y)+max (l(a:a),l(y)) )
ence

afbd = [wz, wzrab).
Notice that
r(za) = r(z), l(za) = l(a) and I(y) = r(b)

sothatwe H

T(w),r(z)—[(a)_*_max (l(a),r(b)) . Then

we € Hr(w),r(a)—l(a)+max (l(a),r(b)) = Hi(w),r(ab)-

It follows that (ab)d = [wz,wzxab] = adbh. O

The main purpose of the following is to show that @ is a bisimple inverse w-
semigroup and S is a left I-order in Q. First we need the following simple but useful

lemma.
Lemma 8.2.8. Let [a,b] € Q. Then [a,b] = [za, zb] for any z € S with I(x) = r(a).

Proof. 1t is clear that r(za) = r(z) = r(zb), so that [za,zb] € Q. By (C), for a and

xa there exist ¢,z € S such that ta = zza where

z€H

teH r(t),r(za)—l(za)+max (1(a) l(za) )"

r(t),r(a)~1(a)+max (l(a),l(xa)) !
Since I(za) = l(a) and r(za) = r(z) we have that I(t) = r(a) and I(z) = r(za) = r(z).
Also, I(zz) = r(a). Hence by (B)(4), t = zz and so tb = zxb. Thus

[a,b] = [za, zb]

as required. a
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Lemma 8.2.9. Let [a,b],[b,c] € Q. Then [a,b][b,c] = [a,c].

Proof. We have that r(a) = r(b) = r(c). By (C), for b there exists z € 5 such that
z € Hy(g)r@). By definition
[a,b][b, ] = [za, zc].

Hence Lemma 8.2.8, [za, zc] = [a, ¢}, as required. (
Let [a,b] € Q. Then [b,a] € Q and by Lemma 8.2.9,
[a,b][b, a][a, b] = [a,D].
Then we have

Lemma 8.2.10. The semigroup @ is regular.

Let [a,a] € Q. By Lemma 8.2.9, [a,d][a,a] = [a,a], that is, la,d] is an idempotent
in Q. Hence {[a,a);a € S} C E(Q). We have one half of the following Lemma.

Lemma 8.2.11. The set of idempotents of Q is given by EQ) = {la,a] : a € S}.
Proof. Let [a,b] € E(Q). Then,

[a, b][a, b] = [a, b]
and so [za, yb] = [a,b] where zb = ya and

yeH

z€H r(@)ir(a)~t(a)-+max (1(6).1(a)

(@) 6) -1t +mas (19.@)

so that

za € Hr(m),l(a)—l(b)+xllax (l(b),l(a))’ yb e Hr(x),l(b)—~l(a)+max (z(b),z(a))'
Since [za,yb] = [a,b], it follows that there exist t,z € S such that tza = za and
tyb = zb where 7(t) = r(2), U(t) = r(za) and I(z) = r(a). Moreover, I(za) = l(a) and
I(yb) = L(b). Since I(t) = r(za) = r(z) = r(y) we have

te € H #(t),r{b)—L(b)+max (z(a),z(b))’ tye Hr(t),r(a)—l(a)+max (l(b)»l(a))'

Hence ‘
I(tx) = 7(b) = r(a), I(ty) 2 r(a) = r(b) and I(2) = r(a) = r(b)
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and so from tyb = 2b and tza = za we have that tz = » — ty, using (B)(7). As
r(z) = r(y) = I(t) and tz = ty we have that r = y, by (B)(it). Then

1(b) = U(yb) = (zb) = I(ya) = l(za) = l(a)

gives l(z) = r(a) = r(b). Since zb = ya = za, it follows that q = b, by (B)(¢i). Hence

(z)
E(Q) € {[a,a];a € S}, and the lemma follows. O
Lemma 8.2.12. The set E(Q) is w-chain.
Proof. Let [a,a], [b,b] € E(Q). Then,
[a, al[b, 8] = [xa, yb]
where za = yb and & € Hr(a),r(@)-t(a) +max(i(@)i®)s ¥ € Hr(x)r(s)-1(b) +max(i(a) (). Henee
[a, a][b,b] = [za,za] = [yb, yb).
If i(a) = I(b), then = € H,(2),r(a) and 50 Ta € Hy(z)4(0)- By Lemma 8.2.8,
[za, za] = [a,q].

If I(b) > l(a), then y € Hy) 4 and yb € H(2)) so that [yb,yb] = [b,b], by
Lemma 8.2.8. 0

Notice also from Lemma 8.2.12 that if I(a) = {(b), then [a, a][b,b] = [a,a] = [b,}].

By Lemma 8.2.12, the idempotents of @ form an w-chain and hence commute, by

Lemma 8.2.10, the following Lemma is clear.
Lemma 8.2.13. The semigroup Q is inverse.
Lemma 8.2.14. The semigroup Q) is a bisimple inverse semigroup.

Proof. To show that @ is a bisimple inverse semigroup, we need to prove that, for
any two idempotents [a, a], [b,b] in E(Q), there is ¢ in @ such that ¢g¢~! = [a,a] and
g 'q = [b,b], by Lemma 2.4.1 ([1, Lemma 8.34]).
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By (A), S¢ is a left I-order in B. By Lemma 8.1.2, Sy is straight, so that for
(I(a),1(b)) there exist ¢,d in S such that

(@), (b)) = cp™'dp

where cp R dy in B so that co = (u,1(a)) and di = (u, I(b)) for some u € N°. Hence
g = [c,d] € Q. By Lemma 8.2.9,

qq—l =[c, dl[d, ] = [c, C]

and, similarly, ¢~'q = [d,d]. By the argument following Lemma 8.2.12, [¢c,c] = [a, d]
and [d,d] = [b, b], as required. O

The following lemma throws full light on the relationship between S and Q.

Lemma 8.2.15. Every element of Q can be written as a™'b, where a,b are elements

of S, r(a) = r(b).

Proof. Suppose that ¢ = [a,b] € Q for some a,b € S with r(a) = r(b). In view of
Lemma 8.2.7, we can identify a and b with [z, za] and [y, yb] respectively, for some

T € Hr(x),r(a)‘ and y € Hr(y),r(b)- Hence

a”'b = [z,2a] [y, yb]

[za, ][y, yb]

[tra, hyb] where tz = hy, r(t) =r(h), {(t) = r(z) and I(R) = r(y)
[tza,tzb] where [(tz) = r(a)

[a, b] by Lemma 8.2.8.

fl

I

O

From Lemmas 8.2.7, 8.2.12, 8.2.13, 8.2.14 and 8.2.15 we deduce that S is a straight

left I-order in a bisimple inverse w-semigroup. O
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8.3 Proper bisimple inverse w-semigroups of left I-quotients

In this section we investigate a special case for a proper bisimple inverse w-semigroup
of left I-quotients Q = BR(G, ). It is shown in [32], that @ = BR(G, ) is proper if

and only if  is one-to-one.

Proposition 8.3.1. Let S is a left I-order in a bisimple inverse w-semigroup Q. The
Jollowing are equivalent for a semigroup S:

(1) Q 1is proper;

(it) S satisfies the following condition:

{(a,b) € S x S :ta=1tb for somet € S}NR = I
where Ig is the identity relation on S.

Proof. (i) == (it). Suppose that Q is proper. Let ta = tb for some t € S and a RPb.
Hence t~'ta = t~'tb and as Q is proper, a = b, by Proposition 2.4.8.
(i1) = (7). Let a™'b be an element Q where a R b and ¢~¢ be any idempotent

in @ such that a~'bc¢™'¢ = ¢~lc. Using the proof of Theorem 8.2.1, we have

a tbe e = (za) " ye) = ¢ e

with 2b = yc where z,y € S and @ € H),r(5)-1(6)+max(t(8),1(e))s ¥ € Hr(z).r(e)=1(c)+max(i(t)1(c))-
It is clear that za R yc. Hence uza = ve = uyc for some u,v € S, by Lemma 3.2.4.

As yc = zb we have that uza = uzb. By assumption, a = b and so Q is proper. O

Corollary 8.3.2. The following are equivalent for a semigroup S.
(1) S is a left I-order in a proper bisimple inverse w-semigroup;
(i¢) S satisfies Conditions (4), (B) and (C) of Theorem 8.2.1, and the following

condition:
{(a,b) € S x S :ta=1tb for somet €S and r(a) =r(b)} = Is

where Ig is the identity relation on S.
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8.4 Uniqueness

This section will be devoted to proving Theorem 8.4.1, which determines when two
bisimple inverse w-semigroups of left I-quotients of a given semigroup S are isomorphic

over S.

Let B = BR(G1,6,) and B, = BR(G3,6) be bisimple inverse w-semigroups. We
recall that for any Q = BR(G, 6) there exist functions r,1: Q — N° giving by
T(i,g,j) = 7:7 l(Z,g,J) = .7
It is clear that if a semigroup S is a left I-order in @, then we can restrict these

functions on S.

Theorem 8.4.1. Let S be a left I-order in a bisimple inverse w-semigroup By. Let
@ S —> B, be an embedding of S into a bisimple inverse w-semigroup B, such
that Sy is a left I-order in By. Then By and By are isomorphic via an isomorphism

extending @ if and only if for alla € S,
r(a) = r(ayp) and l{a) = l{ap).
Proof. Suppose that r(a) = r(ap) and I(a) = l(ap) foralla € S. Definety : By — B»
by the rule that
(a'b)p = ap™ by
where a,b € S and aRBb. To show that 1) is well defined, let
atb=c'd
where a,b,¢,d € S,aRP' b and ¢RB d. Then by Lemma 3.2.4, there exist r,y € S

such that
za = yc and b = yd

where [(z) = r(a), {(y) = r(c) and r(z) = r(y). We then have
zpap = ypop and wobp = ypdp.
By assumption, £ € Hr(zp);r(ap)r YP € Hy(zp)r(cg)- By Lemma 3.2.4, we have

ap by = cp~ dep.
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We show that ¢ is a homomorphism. Let a=1b,¢"'d € B; with a R b and ¢ RB: d,
where a,b,c,d € S. Using the proof of Theorem 8.2.1, we have

(a'bc ™ d)y = ((2a)™ (yd))y

withzb=ycand zr € H
y r(@),r ()16 +max (1(8),1(c) )’ ye Hr(z),r(c)-l(c)+max (1))

Since zb = ye, it follows that zpby = ywep whe €eH
Y YUY T YPCOTRCIC LD € 5L, )bttty bmax (1001 d(e)

and yo € H Then zp L cpbp™ and yp <, (cp)~! so

r(ag) r(ep)—l(cp)+max (1) d(ep))
that from zpby = ypcp we have that zpbgcp™! = yp. Now,

r(bpcp™) = 1(bp) — U{bp) + max(I(bp), l(cp)) = r(zp~ ),

so that zo ™y = bpcp~!. Hence

(a™tbe d)y ((za)™! (yd))y
(za)p~Hyd)y as za RP xb = yc RP yd
ap™ wp T ypdy
apthpcpdyp
(a='o)p(c d)y.

We need to show that 1 is one-to-one. Suppose that

fl

fl

(a™'b)yp = (c7'd)y

where a,b,¢,d € S,aRP b and ¢ RP' d. Then ap~'bp = cp~'dp~!. By assumption,
ap RB2 by and cp RP2 dy so that in B,, there exist tp, s € Se such that

toap = recy and tpby = sedp

where [(tp) = r(ag), (sp) = r(cp) and 7(te) = r(sp), by Lemma 3.2.4. Hence in B,
we have that ta = rc and tb = rd where t € Hy)r(a)y 7 € Hrt),r(c), by assumption.
Thus a=!b = ¢~!d, by Lemma 3.2.4.

The converse can be deduced from Theorem 4.1 of [40]. O

In the next corollary we provide an alternative proof for the above theorem, by

using our result in Section 3.2.
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Corollary 8.4.2. Let S be a left I-order in a bisimple inverse w-semigroup B,. Let
@S — By be an embedding of S into a bisimple inverse w-semigroup By such that
Sy is a left I-order in Bs. Then following are equivalent:
(1) By and B, are isomorphic via an isomorphism extending ;
(2) for alla € S, r(a) = r(ayp) and l(a) = lay);
(3) for all a,b € S;

(i) a RP b <= apRP2 by,

(it) (a,b,c) € Tg* <= (ap, by, cp) € ’Tﬁf.

Proof. (1) =+(2) follows from Theorem 4.1 of [40].
(2) = (3) 3(z) is immediate. For any a,b,c € S

(a,b,c) € T ab™'B; C c1B;

r(ab™!) > r(ch)

r(a) — l(a) + max(l(a), (b)) > I(c)

rlag) — U(ap) + max({ap), 1(bg)) > I(cy)
r(apbp™) > r(cp™)

apbp™By C cp1B,

(GQO, bg@, CSO) € 7;’Bnp2
Hence (3) holds. (3) = (1) follows from Theorem 3.2.9. O

U
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