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Abstract

System identification and artificial neural networks (ANN) are families of algorithms

used in systems engineering and machine learning respectively that use structure

detection and learning strategies to build models of complex systems by taking

advantage of input-output type data. These models play an essential role in sci-

ence and engineering because they fill the gap in those cases where we know the

input-output behaviour of a system, but there is not a mathematical model to un-

derstand and predict its changes in future or even prevent threats. In this context,

the nonlinear approximation of systems is nowadays very popular since it better

describes complex instances. On the other hand, digital image processing is an area

of systems engineering that is expanding the analysis dimension level in a variety

of real-life problems while it is becoming more attractive and affordable over time.

Medicine has made the most of it by supporting important human decision-making

processes through computer-aided diagnosis (CAD) systems.

This thesis presents three different frameworks for breast cancer detection,

with approaches ranging from nonlinear system identification, nonlinear system

identification coupled with simple neural networks, to multilayer neural networks.

In particular, the nonlinear system identification approaches termed the Nonlinear

AutoRegressive with eXogenous inputs (NARX) model and the MultiScales Ra-

dial Basis Function (MSRBF) neural networks appear for the first time in image
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processing. Along with the above contributions takes place the presentation of

the Multilayer-Fuzzy Extreme Learning Machine (ML-FELM) neural network for

faster training and more accurate image classification.

A central research aim is to take advantage of nonlinear system identification

and multilayer neural networks to enhance the feature extraction process, while

the classification in CAD systems is bolstered. In the case of multilayer neural

networks, the extraction is carried throughout stacked autoencoders, a bottleneck

network architecture that promotes a data transformation between layers. In the

case of nonlinear system identification, the goal is to add flexible models capable of

capturing distinctive features from digital images that might be shortly recognised

by simpler approaches. The purpose of detecting nonlinearities in digital images

is complementary to that of linear models since the goal is to extract features in

greater depth, in which both linear and nonlinear elements can be captured. This

aim is relevant because, accordingly to previous work cited in the first chapter, not

all spatial relationships existing in digital images can be explained appropriately

with linear dependencies.

Experimental results show that the methodologies based on system identifica-

tion produced reliable images models with customised mathematical structure. The

models came to include nonlinearities in different proportions, depending upon the

case under examination. The information about nonlinearity and model structure

was used as part of the whole image model. It was found that, in some instances,

the models from different clinical classes in the breast cancer detection problem

presented a particular structure. For example, NARX models of the malignant

class showed higher non-linearity percentage and depended more on exogenous

inputs compared to other classes.
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Regarding classification performance, comparisons of the three new CAD

systems with existing methods had variable results. As for the NARX model, its

performance was superior in three cases but was overcame in two. However, the

comparison must be taken with caution since different databases were used. The

MSRBF model was better in 5 out of 6 cases and had superior specificity in all

instances, overcoming in 3.5% the closest model in this line. The ML-FELM model

was the best in 6 out of 6 cases, although it was defeated in accuracy by 0.6% in

one case and specificity in 0.22% in another one.
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Chapter 1

Introduction

1.1 Background

The visual sense is the primary way that humans experience and get in touch with

reality [1]. In humans, the visual cortex is the centre for the processing of visual in-

formation since it extracts the necessary content to perform spatially complex tasks

[2]. Analogously in artificial intelligence, image processing retrieves the character-

istic information contained in digital images through algorithms mainly based on

statistics and numerical analysis. Image processing aims at (a) the strengthening

of the representation quality, or (b) extracting useful features from the represent-

ation to complete learning-related goals such as detection and classification [3].

However, unlike the visual cortex, image processing is capable of obtaining both

high and low-level features, which correspond to human and machine comprehen-

sion respectively. Examples of relevant application areas are security and defence,

remote sensing, microscopy, robotics and medicine [4].

Given the growing availability of the volume of digital information derived

from recent advances in information technology, the improvement in the capacity

to recognise high-quality features from visual data is a central problem in image

processing. However, this is often challenging because of inherent problem diffi-

1
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culties. The authors in [4] found that manoeuvres on digital images are not linear,

although linear procedures can approximate these systems in mild circumstances.

Also, linear manipulations in digital images may lead to poor results when there is

noise with different statistics to Gaussianity [5]. Similarly, the authors in [6] found

that linear filters in image processing can miss important image features, such as

borders separating objects from the background.

This problem has been approached from different perspectives, such as arti-

ficial neural networks [7], [8], [9], and linear system identification models [10], [11],

[12]. However, before the work presented in this thesis, the system identification

approach for feature extraction had only be incorporated by linear models, despite

the nonlinear ones have proven excellent results in the approximation of several dy-

namic problems [13], [14], [15], [16], [17]. This work makes this incorporation and

also presents a new neural network design based on autoencoders, which are known

by their bottleneck architecture designed to retrieve feature values efficiently [18],

[19], [20]. The new network combines the autoencoders with fuzzy logic [21], which

adds robustness to the system in the presence of uncertainties, a handy advantage

in classification problems. Figure 1.1 portrays the interrelations between the new

methods accordingly to their knowledge area.

The new methods take the form of Computer Aaided Diagnosis (CAD) frame-

works for the relevant problem of breast cancer detection. According to [22], the

rates of female deaths for breast cancer in the world are still in a terrible situation

in spite these have decreased in developed countries thanks to new detection tech-

nologies. However, in the United States, breast cancer is placed at the first place of

new cases by cancer type and lays as the second cause of cancer deaths in women

by 2017 [23].
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Figure 1.1: Knowledge areas related to the presented methodologies.

The global aim of the thesis is to make available new and more flexible

image processing methods able to deal with corrupted spacial features by taking

advantage of forefront models based on nonlinear analysis, while it presents the

breast cancer detection problem as a study case to validate the methodologies.

1.2 Motivation

Information technologies are evolving towards increasingly more efficient methods,

both in quality, as in processing volume and speed. The processing of digital images

is one of the branches that has received the most of attention, not only because

of its high presence in the media but also because of the growing role it plays

in decision-making, among others, in national security, surveillance, geographic

systems, microbiology and medicine [3],[24].

One of the primary objectives of image processing in this kind of applications

is the extraction of high and low-level features. High-level features are recognis-
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able by the human eye. The detection of the low-level features takes place at the

algorithmic level. The advance of the capacity of image feature extraction tech-

nologies in recognising visible and non-visible elements and/or reducing the gap

between levels is, therefore, of increasing importance [3].

This thesis contributes to solving this problem via three new classification

methods based on nonlinear system identification models and artificial neural net-

works for the extraction of high and low-level features since the proposed tech-

niques lay upon extraordinarily flexible approximation function methods such as

the NARX polynomial model and efficient structured neural networks based on

Gaussian functions.

Among the real-life disciplines mentioned earlier, the medical field is one that

has benefited the most from image feature extraction, specifically through CAD

technologies [25]. In this work, the proposed methods are coupled to classifiers

to integrate CAD systems as a second opinion tool to attack the breast cancer

problem, which is especially relevant not only because of the high mortality rate

linked to it but also by the positive healing potential when it is detected in early

stages [26].

1.3 Aims and objectives

1.3.1 General objective

To present new digital image feature extraction and breast cancer detection frame-

works to increase the availability and scope of existing approaches by leveraging

and combining the advantages of nonlinear system identification, simple and mul-

tilayer artificial neural networks.
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1.3.2 Specific aims

� To use nonlinear system identification models in the form of the Nonlinear

AutoRegressive with eXogenous inputs (NARX) model and the Generalized

Multiscales Radial Basis Function (MSRBF) networks to build up models

capable of capturing the two-dimensional elements contained in images.

� To design a method capable of leveraging the image models (built through

system identification) to extract representative feature values.

� To transform into a reduced amount of coefficients the most valuable inform-

ation extracted from the image models to lessen the computational burden

in the classification process.

� To combine the new digital image feature extraction procedures with a suit-

able classification algorithm to build up new CAD systems for breast cancer.

� To take advantage of fuzzy logic systems, stacked autoencoders and radial

basis function networks to integrate a new CAD system for breast cancer.

1.4 Thesis overview

The thesis content is structured as below:

� Chapter 2 reports a review of the related work concerning the frameworks

proposed in the following chapters. It goes over digital image processing,

system identification and computer-aided diagnosis (CAD) with an stress

in the background theory of parametric models and neural networks within

system identification. There is also a theoretical emphasis on the NARX
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models, radial basis function, multilayer neural networks and fuzzy logic

systems since these are the direct antecedents of the proposed methods.

� Chapter 3 presents the polynomial nonlinear autoregressive with exogenous

inputs (NARX) model as a nonlinear system identification model for image

feature extraction. The framework aims to seize the NARX capability to

portray dynamic systems into models, so complex structures within images

can also be adequately retrieved. The chapter reports as well a polynomial

NARX formulation for digital images, termed 2D NARX. Its solution takes

place through the forward regression orthogonal least squares (FROLS) al-

gorithm and the k-means++ clustering method. Also, the polynomial NARX

model takes shape as a CAD system for breast cancer detection. Experiments

show the capacity of NARX-FROLS to derive image models and the effect-

iveness to classify mammograms compared to previous CAD methods based

on system identification.

� Chapter 4 presents the multiscales radial basis function network (MSRBF)

in digital image processing. The MSRBF network combines a single hidden

layer structure which is highly competent to describe complex systems since

its efficiency outstands in the identification of real-life dynamical systems.

The objective is to produce concrete image models thanks to the inclusion of

scales in the hidden neurons, while the forward regression orthogonal least

squares (FROLS) algorithm selects the model structure. The discrete cosine

transform (DCT) converts the model output into highly compacted feature

values. A mathematical modelling was done to adapt the MSRBF network

as an image processing method by viewing the image as an input-output

system. To evaluate the method the problem of breast cancer detection in

X-ray mammography was adopted. Classification results show that the new
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characterisation method helped reach a very competitive diagnostic accuracy

among other measures. The MSRBF network could also generate highly

accurate images models.

� Chapter 5 presents a Multilayer Fuzzy Extreme Learning Machine (ML-

FELM) that is based on the functional equivalent between the Radial Basis

Functions (RBF) and Fuzzy Logic Systems to classify the mammograms.

The ML-FELM is a fast forward multilayer neural structure whose parameter

identification consists of two main phases. In the first one, Fuzzy Autoen-

coders (FAEs) intervene for the extraction of high-level image features. In the

second phase, a fuzzy RBF is implemented for the classification of the features

extracted by the FAEs. The use of some other automated ELM methodolo-

gies served to evaluate the performance of the proposed ML-FELM. Results

of the proposed ML-FELM applied on the MNIST, and mini-MIAS data sets

show a significant trade-off between accuracy and model simplicity.

� Chapter 6 summarises this thesis and reports the conclusions and directions

for future research.

1.5 Main contributions

This thesis explores new frameworks for image processing concerning feature ex-

traction and classification to enhance CAD systems based on a nonlinear analysis.

The most significant research contributions are described as follows:

1. Presentation of the polynomial NARX model in image feature ex-

traction. The NARX performs as a flexible-order system identification

model for image feature extraction for the first time. The idea is to take
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advantage of the proven capability of the polynomial NARX representation

to capture the subtle elements of nonlinear dynamic systems, so both smooth

and corrupting spacial features within images do not be omitted or shortly

described. The method includes the adaptation of the 2D image format to

an input-output dynamic system representation and the model’s stimulus-

response design for feature extraction. The model structure detection ma-

terialises via the FROLS algorithm.

2. A polynomial NARX-based CAD system. The polynomial NARX

model for image feature extraction appears for the first time in a CAD

framework for breast cancer detection. The k-means++ algorithm acts as

a clustering method that links the training and the testing vectors to pro-

duce a pre-diagnosis to be monitored by medical evaluation. Experiments

show the capacity of the system to derive image models and the effective-

ness to classify mammograms compared to previous CAD methods based on

system identification models.

3. Presentation of the MSRBF network in image feature extraction.

The direct use of the MSRBF networks within image processing takes place in

this research for the first time. This network holds an efficient and straight-

forward structure initially designed for the identification of input-output sys-

tems. The aim is to use it to get concise and accurate image models thanks

to the flexibility provided by the inclusion of scales in the Gaussian func-

tions. The FROLS algorithm solves the model structure detection problem.

After the model building, the discrete cosine transform (DCT) compresses

the energy of its output into a few coefficients to form feature vectors of high

quality.
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4. A MSRBF-based CAD system. The MSRBF network addresses the

problem of breast cancer detection in X-ray mammograms for the first time.

It works along with the DCT transform to take advantage of their joint capa-

city for flexible model approximation and feature extraction. Classification

results show that the new characterisation method helped reach a very com-

petitive diagnostic accuracy, sensitivity, specificity, positive predictive value

and negative predictive value.

5. Presentation of the ML-FELM neural network. The Multilayer Fuzzy

Extreme Learning Machine (ML-FELM) bases its power on autoencoders

neural networks, radial basis function networks (RBFNN) and fuzzy logic

systems. It aims to classify digital images in general, and regions of interest

from mammograms as a CAD system. The ML-FELM uses autoencoders for

the extraction of image features and Fuzzy-RBFNN for the classification of

the encoded features. Results on data for handwritten digits and breast can-

cer detection show a high model accuracy, while several other methodologies

are used to compare its performance.

1.6 Dissemination of research

1.6.1 Journals

The listed research was reported to the following journal:

� C. Beltran Perez, A. Rubio Solis, H.-L. Wei. ”A Multilayer Fuzzy Extreme

Learning Machine for Breast Cancer Image Classification”. Pattern Recog-

nition Letters, Elsevier, (2018). Manuscript submitted for publication.
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1.6.2 Conferences

The listed research was reported and presented in the following conferences:

� Carlos Beltran Perez and Hua-Liang Wei. ”Digital Image Classification and

Detection Using a 2D-NARX model”. In 2017 23rd International Confer-

ence on Automation and Computing (ICAC): Addressing Global Challenges

through Automation and Computing, IEEE, 2017.

� Carlos Beltran Perez and Hua-Liang Wei. ”Image Classification Using Gen-

eralized Multiscale RBF Networks and Discrete Cosine Transform. In 2018

24th International Conference on Automation and Computing (ICAC): Im-

proving Productivity through Automation and Computing, IEEE, 2018.

1.6.3 Presentations

The presentation of the listed research took place in the following symposiums:

� Beltran Perez, C. ”Enhanced Computer Aided Diagnosis for Breast Cancer

Imaging Based on System Identification Procedures”. In: The University of

Sheffield, Engineering Research Symposium, 2018.

� Beltran Perez, C. ”Digital Image Classification by Using a 2D-NARX Model”.

In: The University of Sheffield, Sheffield Neuroscience Conference 2017.



Chapter 2

Background and related work

This chapter presents a review of the work related to the contributions of the

thesis. It makes an overview of digital image processing, system identification

and computer-aided diagnosis. It highlights the background theory of nonlinear

parametric models, neural networks and fuzzy systems in the context of system

identification and image processing.

2.1 Digital image processing

Digital image processing is an interdisciplinary and ubiquitous branch of signal pro-

cessing and computer science that uses computer algorithms to enhance specific

features or extract relevant information of digital images. This area encompasses

a plethora of tasks that go from low-level processing, for instance, contrast en-

hancement, medium-level processing such as edge detection and thresholding, to

high-level tasks involving complex algorithms based on statistics or system identi-

fication to produce concise and efficient image descriptions [27],[28].

As regards the processing order of an image taken from a real-life object, the

hierarchy of tasks goes from the capture, digitisation, quantisation, prepro-

11
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Figure 2.1: General flow diagram of image processing methods.

cessing and medium to high-level processing (Figure 2.1) [5].

Digital image processing is especially important to society because it is highly

interdisciplinary and can be a tool to solve problems from different areas such as

medicine, astronomy, engineering and criminology and at the same time it uses con-

cepts from other disciplines as optics, radiometry, geometry and computer sciences

[27],[1].

2.1.1 Image formation and representation

The sense of vision is perhaps the most crucial perception system of human being,

as it allows them to quickly receive information from the environment and use it as

a basis for fundamental and complex tasks like moving, balance and protect them-

selves from external threats. In the same way, the study of visual observation and

its applications has been a significant part of science since its inception. Nonethe-

less, the scope of this discipline has grown thanks to two historical contributions:
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Figure 2.2: (a) Analogue image, (b) digitisation, (c) quantisation.

the photography by Louis Daguerre in 1839 [29], and the digital camera, by Steven

Sasson in 1975 [30].

The invention of Daguerre, known today as analogue photography, was able

to capture images using a lens within an opening of a light-tight box with a film

with silver halides in the opposite end. This advance allowed for the first time to

document an image objectively beyond technical drawings, and written descrip-

tions [27]. Meanwhile, the digital camera of Sasson used the lens and light-tight

box used by Daguerre, but electronic photosensitive sensors that collectively cap-

tured the optical wave fields as a continuous function f(x, y). Thereinafter, the

captured data was sampled and organised into a two-dimensional grid easy to be

quantised (in other words, converted into numerical values) based on a sampling-

based feature termed image intensity (Figure 2.2).

Since then until today, these discoveries have enabled computer science and

computer vision, among other disciplines, to adopt and develop fast algorithms

for many tasks such as evaluating, exploring, classifying and recognising, based on

mathematical calculations and statistical processes performed on the approximated

images [4].

The intervention of computer science accompanied by the development of
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increasingly fast computer hardware, higher-resolution acquisition techniques and

superior storage capacity during the last four decades have transformed the way

today’s scientist approximate visual analysis, that mainly comprises three strongly

interrelated areas: digital image processing, machine vision and image analysis

[4],[27].

Nowadays digital image processing encompasses the algorithms that process

higher-dimension signals (2-D and 3-D) to complete specific tasks. Machine vision

is related to image acquisition techniques that obtain information from both visual

and non-visual wave fields. Image analysis comprises algorithms that automat-

ically measure, examine and describe two and three-dimensional attributes and

quantitative features from images [31].

2.1.2 General applications

Image processing applications contribute in general to storing, refining and eval-

uating visual information, in motion or captured, from real problems such as

microscopy, iris recognition or object detection to facilitate or automate human

decision-making processes [1].

To exemplify the above, comprehensive overviews of digital image processing

techniques are for medicine [32] and [33], where noise reduction, object detection,

image segmentation and feature extraction play a common task. In CAD systems

the work in [34] and [35] stand out as relevant compilations. In microscopy [36],

where a consistent interpretation of micrographs takes place. In astronomy [37],

where high spectral and spatial resolutions are central requirements. In geography

[38], where geographical information (GIS) and remote sensing systems play a

central role.
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Regarding real-world applications and applied sciences, digital image pro-

cessing has tackled a number of diverse everyday problems in nearly all areas.

Prominent practical applications of digital image processing go from surveillance

[39],[40],[41], where video analysis and object tracking are mainly used to prevent

and combat delinquency, remote sensing [42],[43],[44], where the primary objective

is to classify map zones by visual identification, plant identification [45][46], by

computing digital images of plants to construct a classification framework, robot

guidance [47],[48],[49], where the visual environment is used as a reference to reduce

trajectory deviations, and flow visualization [50][51],[52], where image analysis of

flows delivers quantitative information that is useful as a measuring procedure or

feedback. Numerous additional applications of digital image processing can be

found in [3],[4],[53],[24],[1].

2.1.3 Image segmentation

Image segmentation is an essential step in image processing that divides the image

into two or more distinctive and homogeneous regions, each containing strongly

linked pixels that cooperatively represent a real-world entity [4],[24]. It is essen-

tial because various image analysis and feature extraction processes depend on

segmentation to intensify the objects, patterns or features to be extracted and

matched. The section shows the most common and attractive image segmentation

techniques in the literature.

Image thresholding segmentation usually aims to determine, as robust as

possible, a difference between the object or objects and the background. One of

the most relevant and multi-cited thresholding algorithms is the clustering-based

Otsu method [54] which finds the mean of the average levels for two different classes
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to select the threshold value. At first, the histogram of intensities is computed and

normalised.

From the histogram, every grey level in the image is used as possible threshold

value t to compute the variances of the foreground (intensity levels above t) and

the background (intensity levels equal or below t) for each candidate threshold.

Finally, it is selected the threshold with the minimum sum of upper and lower

variances. Though the method aims at optimal thresholding, it tends to establish

the value in function of the entity with larger variance within the class.

Between the region-based segmentation tactics, the unsupervised region grow-

ing algorithm is an attractive bottom-up alternative that, in spite of its proven

efficiency, only a small number of researchers have employed it [55]. In general, the

algorithm takes seeds as first regions which grow iteratively if the adjacent pixels

are unclassified. This annexing process is also carried out between regions by a

tagging strategy that compares them to investigate if these are similar, in which

case the regions merge each other.

Exciting and recent work on image retrieval segmentation is in [56] for land-

type recognition in satellite images, showing convincing results in grayscale and

colour images. In conclusion, though the image retrieval algorithm is exceptionally

efficient in noisy images, it is not as exploited in the literature as it could. A

drawback of the method is that it relied on the accuracy of the seeding process.

In [57] a hybrid colour image segmentation method is adopted with region

growing algorithm, cloud model and seed selection via Harris corner detector. The

latter is a probabilistic method low-sensitive to rotation, noise and brightness vari-

ations. Also, the cloud model is adopted to automatically grow the seed-centred

regions adopting or rejecting adjacent pixels in correspondence to a threshold es-
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tablished by the cloud. This threshold takes into account the expected value,

entropy and hyper entropy to compare the values between regions. The method

resulted fast and precise but presented some over segmented regions.

The graph cut algorithm, a combinatorial optimisation algorithm was used in

image segmentation for the first time in [58], by modelling the array of pixels of the

image as an undirected graph where the adjacencies between pixels are the edges

and the pixels as nodes. The method employs seeds, previously established by the

user, as hard constraints and cost functions between pixels as soft constraints to

choose cuts between those pixels with the lowest reciprocal cost.

The first author of [58] further presented the graph cut approach [59] for

medical image segmentation for cardiac magnetic resonance data. In this version,

directed and undirected graphs take place along with additional constraints in the

optimisation model to correct over segmented zones. The graph cut segmentation

in medical images presented efficiency, robustness and realistic modelling of specific

requirements. The method was presented depending on the user input to establish

seeds.

The work in [60] presents a newer approach to image segmentation using

cellular learning automata (CLA) as a skin detector. CLA is a discrete space-time

system composed of identical squared points which state changes as a function

of a simple rule (usually reward-punishment) which in turn depends on the cell

environment. All cells have the same environment size, which typically follows one

of the morphological configurations depicted in Figure 2.3 (representation taken

from [61]).

CLA is recent to image processing, being edge detection its most common

application. In the mentioned skin segmentation approach, the CLA rule decides
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Figure 2.3: a) Von Newmann, neighbourhood b) Moore neighbourhood.

whether a neighbourhood is a skin or not by using a probability map. The prob-

ability map propagates in all directions until a decision for an entire region takes

place. After some iterations, the procedure stops when the whole system con-

verges. Experimental results showed good performance of the algorithm compared

to previous skin detectors regarding false positives. However, the texture data of

the skin is not included while better performance is still desirable in low contrast

images.

2.1.4 Object recognition

Object recognition processes aim at finding entities within the images taking into

account pre-specified patterns in a supervised or unsupervised way [62].

The recognition process converges from two parallel lines: learning and clas-

sification. The general chart of this process, taken from [58], is in Figure 2.4.

As reported in the next section, this family of methods traditionally depend on

statistical methods to classify and compare from previous and new information,

so that the most common pattern recognition approaches in the literature are

statistical-based. The most representative of them are below.
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Figure 2.4: Overview of object recognition processing.

Template Matching is a statistical approach aimed at finding a prototype

or template of a point, saliency or shape (learning process from a training set)

and store it to compare later its similarity with new unknown entities (matching

and classification process). This task takes place by optimising the correlation (a

similarity index) during the learning process. Applications of template matching

include medicine, remote sensing and three-dimensional recognition.

A relevant application of template matching in X-ray computed tomography

is [63] where an elastic deformation of the regional variant data occurs during three

coarse-to-fine stages that fix the more significant disparities at each step with the

aim of improving the local similarity. The iterative process results in models or

templates with an increased resolution that mach the original data. Experiments

in X-ray brain scans show that elastic matching effectively detected the position

and shape of three different brains from 3 viewpoints. A disadvantage of this work

is the high computational demand of the method.

The statistical object or pattern recognition approach [64] represents the ob-

jects in the image as a set of measurements or features that are separated by

boundaries in the measurement space to define different classes. Probability dis-

tributions serve as standards to compute the boundaries, and their training or

computation is a priori. In the first case, an automatic training stage based on



Chapter 2. Background and related work 20

classification can be introduced as a criterion, for instance, MSE. Another way to

determine boundaries rests on suggesting several boundaries, analyse them and dis-

criminate them by taking into account the classification of patterns. As mentioned,

this recognition methodology needs as part of the inputs probability distributions

which must be specified by the user or inferred by additional methods.

Syntactic matching is a robust recognition approach designed to identify com-

plex entities by adopting a hierarchical decomposition of the more complex pat-

terns into more straightforward and more uncomplicated subpatterns until getting

to the primitives, the basic building blocks. In this way, numerous patterns of high

complexity end up being defined by a few primitives and a set of rules.

The syntactic matching approach arises in image processing in the identific-

ation of written characters, as in [65] where grayscale frontal photographs of cars

are processed as inputs to recognise the plate number code. The region growing

algorithm, referred before in this chapter, is used in the first two stages to perform

a segmentation which helps to isolate the car plate from the remaining image area

in the first place, such that the code number left black, the plate background white

and the rest of the image black. Then a second region growing segmentation is

processed to isolate the code number in black within a background in white. The

pattern recognition strategy then focuses on finding the optimal set of primitives

by considering string conflicts, such as Y and T in the form of possible represent-

ations for each letter and number. The tests demonstrated an accuracy of 95%.

However, two main drawbacks remain to be solved: a problem in the segmenta-

tion of noisy objects and the possible combinatorial explosion when the number of

primitives is too large.
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2.1.5 Image classification

Image classification is very active in science and engineering because its develop-

ment enables computers to support humans visual-related decisions [62]. It unifies

machine learning and image processing as it involves the statistical learning pro-

cess of a desired output or pattern in digital images. This kind of procedures

are intended to (a) extract information from an image set to generate classes or

subsets of images with similar features or (b) extract information classes within

a single image. Depending on the application context and the human-machine

interaction degree during learning, the image classification process is supervised,

semi-supervised or unsupervised. However, an inherent difficulty is common to

this problems: the fact that in numerous cases the image data are not linked to

the classes of interest, in which case it is required to conduct a careful and com-

prehensive practice [27].

Figure 2.5 shows a flow diagram of the conventional classification process,

where the inputs may vary in format, but the output is always a discrete value

that denotes the class. Image classification is essential in many areas nowadays.

Relevant examples of these areas include:

Figure 2.5: Basic concept of classification (taken from [32]).
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� Remote sensing, which uses multispectral or multimodal satellite images for

studies such as urban planning and meteorological control [66].

� Automatic visual inspection, which focuses on improving industrial processes

such as defective component control [67].

� Military surveillance, for the location of strategic objectives [68].

� Tracking of moving objects, which can be recognition-based or motion-based

[69].

� Image compression for storage reduction and transmission [70].

� Biomedical imaging, which is used mainly for the diagnosis of medical images

such as heart, lung and breast [71],[72].

Due to the research objectives, the following section highlights the classific-

ation of biomedical images and computer-aided diagnosis.

Image classification in biomedical imaging

The primary target of classification In biomedical imaging is to associate patterns of

measurements with a specific disorder or condition, or in other words, determining

a disease from a collection of registers. The most usual cases are the simultaneous

monitoring of the patients’ situation and when the available information is very

extensive or very complex for easy understanding by the specialist [32]. Below are

the most representative classification techniques of biomedical image classification

along with related work.

� Linear Discriminators. The Fischer discriminant analysis [73] also known

as linear discriminators, is one of the simplest classification methods, since
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it resolves by dividing the data set with a line for two dimensions, a plane

for three dimensions and so on. Given that the method traces one single

boundary, two possible results are always available. A weighted sum is made

to know the class from which any set of observations belong. The weights are

estimated a priori by training, and the inference takes place by comparing

the weighted sum of the set to a threshold value.

A typical instance of this approach in CAD is that of [74] in which ultra-

sonic image analysis is used to diagnose hepatic fibrosis. In this case, a set

of textural parameters result from a set of healthy and fibrosis-related im-

ages. Then textural data are captured from new images to feed the linear

discriminator. The method attained an overall diagnostic accuracy of 75%.

� Support Vector Machines. The work of [75] introduced the support vector

machine (SVM) as a machine learning method for classification and predic-

tion aimed at avoiding the data overfitting while maximising the prediction

accuracy. The structural risk minimisation concept is used to improve the

generalisation of the model (or solve the overfitting problem) by equilibrat-

ing the model fitting versus the model complexity. SVM uses distances or

margins between some class data points and sets of constructed subspaces

(hyperplanes) to attain a useful separation [76].

In [77] SVM is used in CAD to classify solid breast tumours after a previ-

ous segmentation step. The SVM used 5 different datasets for training and

six morphologic features for classification criteria: form factor, roundness,

aspect ratio, convexity, solidity and extent. The performance of SVM in al-

most all morphologic features surpassed 90%. However, the recommended

approach in breast images depends on texture analysis, so its use is restricted

to ultrasound images since these are rich in textures.
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� K-means and k-prototypes. Within cluster analysis, the k-means clustering

classifier [78] involves a different training tactic by taking representative data

as prototypes or data centres. This way, the number of k-centres is equal to

the number of selected prototypes. After the user performs this selection,

there is a data distribution according to the closest Euclidean distance to

centres.

The k-means algorithm has several extensions, including the learning vec-

tor quantisation method [32] to find an improved centre positioning. The

k-prototypes algorithm [78] integrates the clustering of both numerical and

categorical data. Two CAD applications of the k-means algorithm in breast

cancer diagnosis are [10] and [79]. In both works, the classifier is used after

the ARMA and ARIMA parametric feature extraction. The first case repor-

ted a diagnosis accuracy of 93.8% and the second case a 95%.

2.1.6 The discrete cosine transform

As stated in Chapter 1, one of the particular objectives of this work is to compress

the digital image information to lessen the computational burden during classifica-

tion. Image compression is also known as coding. Image coding generally involves

a transformation function, being the discrete cosine transform (DCT) the most

used thanks to its advantages of high energy compression in very few coefficients

[24].

The discrete cosine transform [80] is an algorithm that represents images

using integer coefficients obtained through a discrete type transformation based

on cosine functions. The removal of the correlated coefficients takes place by

employing the Karhunen-Loeve transform, involving an orthogonalisation step to

generate a series of uncorrelated values. Finally, a sorting of values proceeds in
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descending order to concentrate the energy. The DCT compression is regarded as

lossy because the least essential frequency fragments left discarded in favour of the

first k most relevant values, which are later used to reconstruct the picture.

The DCT positions itself as a standard coding method. The most popular

standard mode for digital image compression is the Joint Photographic Experts

Group (JPEG), where the primary coding system is the DCT [70],[24]. In real-

time coding, the DCT acts in video streaming and streaming services, such as

the H.264 / MPEG-4 Advanced Video Coding (AVC) encoding used by YouTube

[81],[82].

Other uses of the DCT in image processing are object recognition and clas-

sification, including biometrics applications such as face recognition. This circle of

methods utilise the DCT compression in two common ways: as a preprocessing step

to reduce the input image dimensionality of a machine learning classifier [83],[84]

or as a feature extraction algorithm that feeds a subsequent distant-based classifier

[85],[86],[87].

2.2 System identification

The identification and modelling of complex systems has an essential role in science

and engineering because it fills the gap in cases where we know the input-output

behaviour of a system but we do not have a mathematical model to understand

and predict its changes in future. System identification techniques regard previous

observations of a system as explanatory variables to be processed to obtain a

trustable mathematical representation [88]. A standard representation in system

identification depicts dynamic systems as input-output models. Figure 2.6 shows

a basic scheme of a single input and single output (SISO) unknown system.
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System identification involves a plethora of techniques that depend on the

nature of the problem faced. Examples of relevant applications include Stock

prices [89],[90], weather prediction [91],[92], speech recognition [93],[94], pattern

classification [95],[96], and aircraft dynamics [97],[98].

The standard processing flow of system identification methods for the recog-

nition of a new model comprises, explicitly or implicitly, the following modules in

progressive order:

(A) The choice of the model to be used, which is the dynamic representation of

the system.

(B) The corresponding structuring of the available data (system inputs and out-

puts) in the form of a linear or nonlinear function, according to the selected

model.

(C) If unknown, the selection of the model structure.

(D) Model approximation or parameter estimation in the case of parametric mod-

els.

(E) Model validation.

Concerning the classification of the available system identification models, it

is common to consider linear and nonlinear and parametric, nonparametric and

Figure 2.6: Basic model of an input-output system.
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hybrid models. In this regard, nonlinear models are nowadays more popular since

their increased flexibility help to describe a broader range of physical systems

compared to their linear counterpart [99]. Parametric expansions such as NARX

models [100], rational NARMAX [101], Volterra series models [102] and block struc-

tured models [103] mostly use a discrete-time dynamic understanding of systems

as it allows to identify transparent models and the explanatory variables which

most minimise the fit-to-data error.

When the goal is merely to approximate the system and the model transpar-

ency can be sacrificed, nonparametric system identification methods such as radial

basis functions [104], multi-layer neural networks [105], wavelet functions [106],

fuzzy logic [107] or nature-inspired metaheuristics [108] can be convenient choices

[109],[88].

2.2.1 Nonlinear system identification models

Models are a fundamental part of systems engineering. Their correct identification

allows to analyse, understand and predict real systems as well as develop new

solutions or even prevent future threats. This section makes a review of system

identification models with an emphasis on the techniques which served as a basis

for the image processing methods proposed in this work: the NARX model, radial

basis function networks, artificial neural networks and fuzzy logic systems.

The NARX models

The Nonlinear AutoRegressive with eXogenous inputs (NARX) model is a special

case of the more general class of NARMAX models, an input-output discrete-

time representation for a great variety of linear and nonlinear systems proposed in
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[100] and [110] designed to identify complex systems. The NARX model approach

has proven to be highly accurate to identify a wide range of nonlinear problems

[88],[15],[16],[17]. NARX uses a general assumption: the output y(k) is explained

by an unknown nonlinear functionF [·] depending on sequences of lagged system

inputs and outputs to be identified and by a noise sequence e(k):

y(k) = F [·] + e(k) (2.1)

In the NARX model case, the general representation is:

y(k) = F [y(k − 1), ..., y(k − ny), u(k − 1), ..., u(k − nu)] + e(k) (2.2)

in which the function F [·] can be linear or nonlinear, y(k) and u(k) the the se-

quences for the system input and output and e(k) an independent, additive noise

sequence.

The expansion of the NARX function can be polynomial, rational or based on

neural networks, radial basis functions, wavelet models, fuzzy sets, among others

[88]. Of these, the polynomial class is the most popular given its decomposition

capability, transparency and readability, qualities that match efficiently to robust

structure detection and parameter detection algorithms, offering on the way in-
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terpretability and the qualitative performance of the input and output variables

[111]. The polynomial expansion of the NARX model is:

y(k) = θ0 +
n∑

i1=1

θi1xi1(k) +
n∑

i1=1

n∑
i2=1

θi1i2xi1(k)xi2(k) + ...

n∑
i1=1

...

n∑
i`=i`−1

θi1i2...i`xi1(k)xi2(k)...xi`(k) + e(k)

(2.3)

where k is a discrete time unit (k = 1, 2, · · · ), ` is the maximum nonlinear degree,

θi1,i2,...,im are the model parameters and n = ny + nu, being ny and nu are the

maximum lags for the system output and input. The vector of basic regressors is

as follows:

xm(k) =

y(k −m) 1 ≤ m ≤ ny

u(k −m+ ny) ny + 1 ≤ m ≤ n

(2.4)

with 1 ≤ m ≤ `. Notice that the estimation of the model parameters θi1,i2,...,im

is normally carried out separately after the structure detection. Besides, the ex-

haustive combination of all regressors in xm(k) takes place during the polynomial

expansion in (2.3) from degree 1 up to the maximum non-linear degree ` to shape

the candidate model terms. The total number of terms M in the pool of candidates

is:

M =
(n+ `)!

n!`!
(2.5)

in which ny and nu are the maximum lagged observations for the input and the

output, and n = ny + nu. From this viewpoint, each term of the expanded poly-
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nomial can be seen as a candidate term to be included in a final model utilising a

model structure detection algorithm (Section 2.2.3).

The use of polynomial NARX models have yielded multiple examples in the

understanding of diverse real-life complex systems [88],[111],[112],[17]. More ap-

plications include the modelling, understanding and forecasting of atmospheric

dynamics, as in [13], that reports a study seeking to solve a near-Earth magnetic

disturbance prediction problem. The authors bring together evidence revealing

that Earth’s northern hemisphere temperature is a function of the solar wind speed

and the dynamic solar wind pressure, among other variables. To produce math-

ematical models capable of finding the most influential independent variables, the

NARX model was feed with data collected at international geoscience agencies to

predict future instances and prevent future threats.

Another precedent is [14], where the meridional overturning circulation of the

Atlantic Ocean is effectively modelled via the NARX model to detect the causes

of the reduction of its strength in recent years. During the modelling, atmospheric

and oceanic density were listed as model inputs while the circulation strength was

considered the output. Results suggest that the circulation reduction is due to both

a seasonal variability of the sea current strength and different density between the

northern and southern hemisphere sea water.

As regards hybrid models, in [113] the ATM cash demand is predicted by

the NARX and the NARMAX models, each combined with ANN and support vec-

tor machines (SVM). Results showed that the NARX model coupled with ANN

obtained the better demand predictions, while none of the NARMAX models pro-

duced substantial improvement despite their higher complexity in being solved.
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Artificial neural networks

Artificial neural networks (ANN) emerged as a dominant class of models whose

structure emulates biological neural systems present in human and animal brains,

whose synchronised use of multiple but simple processing units is capable of per-

forming complex tasks such as learning behaviours, classifying data and be adapt-

ive to environmental changes [109]. The processing units in these networks are

artificial neurons while the connectors between units are named synaptic weights,

similar elements to those present in the human brain (see Figure 2.7), discovered

by Cajal at the beginning of the 20th century. [114].

While the technical jargon used in these networks differs from the one used

by other systems identification methods, the components depicted in ANN are

analogous to the latest in practice [88]. The first ANN proposed a binary threshold

unit called the McCulloch-Pitts neuron so that the output y at each unit could be

1 or 0, depending both on the threshold and the value of the inputs xi multiplied

by the weights wi associated to each (Equation 2.6).

Figure 2.7: Basic components of ANN.
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y = ϕ

( n∑
j=1

wixi

)
(2.6)

where ϕ(·) is a threshold function. Concerning the network structure, ANNs separ-

ate into parallel processing layers composed of many identical and interconnected

neurons whose connection strength is defined by weights. Modern ANN learning

algorithms iteratively modify such weights during the training process to minimise

the difference of the model output concerning the desired output or pattern. This

training enables a network to become a model made up by neurons getting involved

in different degrees aimed at making the inputs to yield output values as closest

to the actual values or expected answers (Figure 2.8) [88].

The most popular learning practice in ANN is the backpropagation method

(BP), which has continuously been adapted and enriched since its first use in this

context in 1982 [115]. When the ANN training adopts the BP algorithm, these

are known as feedforward backpropagation neural networks (FFBPNN). The idea

Figure 2.8: Learning process of ANN.
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behind this process points toward the use of multiple cycles or epochs composed

of:

(A) A forward propagation from input to output to obtain an approximation of

the target value.

(B) Calculation of the approximation error concerning the target value.

(C) An error backward propagation from output to input to distribute the ap-

proximation deficiency throughout the weights connecting the neurons.

(D) Update of the network weights with an improved value to start the next

epoch with an enhanced starting point.

The most used method to calculate the new weights minimising the error at

step (B) is the gradient descent algorithm, which helps to indicate the direction

(or plus-minus sign) in which the value of the weights are to be modified. Figure

2.9 shows the BP information flow.

Regarding the advantages, ANNs have proven to be effective at:

Figure 2.9: Types of propagation in ANN.
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� Fast hardware implementation if single neurons can be put into effect effi-

ciently.

� Improved tolerance to partial network faults thanks to parallel processing.

� Solving of nonlinear problems.

� Generalization capacity from known to unknown problems.

� Automated learning (no mandatory need of domain expert or task-specific

programming).

� A fast operation after learning.

Although the mentioned points make ANN an appealing choice, these can

present difficulties such as costly processing times. The last problem is because

when the ANN has a large number of neurons or hidden layers, the model training

task becomes more and more challenging. ANN have also a difficulty for modelling

noise and they need for the availability of a large amount of training data, especially

when the network is large [116],[88].

As regards applications, neural network architectures are recognised as func-

tional modelling options pattern classification and clustering, given their compet-

ence to categorise and recognise different classes without previous labelling thanks

their efficient learning algorithm, which is designed to work for a wide range of

problems [117].

In object classification, ANN explores and assign, one by one, input patterns

(in the form of feature vectors) to classes, according to their similarity. The general

overview of this recognition process contains segmentation, mining of features, and

contextual processing, which solution can require diverse ANN designs, including
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Figure 2.10: McCullough-Pitt artificial neuron model.

specific network structure and size, training sampling and training data, and neural

activation function. While some authors affirm that the performance of ANN is

very similar to the statistical approach, given that the first stems from the second,

ANN allows combining different approaches and flexible techniques to reach good

problem solutions [118]. Below are described significant variants of ANN.

� Adaptive Neural Networks. Adaptive neural networks are generally used as

classifiers with complex decision boundaries, offering an improved general-

isation and learning capacity. Adaptive networks offer higher parallelism,

little energy expenditure and increased adaptiveness [119]. Adaptive NNs

are multi-layer models which evolved from the first neuron prototype, which

had a very similar structure to that of the linear discriminator classifier.

However, in adaptive NN the output is fed to a nonlinear threshold function

(Figure 2.10).

Like the linear discriminator, this model can identify only two classes, unless

many neurons are arranged simultaneously to obtain multiple patterns or

classes. In [120], adaptive NNs are integrated into a CAD system to detect

and classify lung nodules. Adaptive networks are first used to detect a series

of suspicious zones in the image and then to classify each zone. The architec-

ture of the adaptive NN based classifier includes multilayer perceptron archi-
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tecture with two hidden layers, where the term perceptron alludes a higher

ability to perceive patterns [32]. In parallel, the training of the adaptive

NN classifier used the most typical patterns. Though the experimental tests

showed a high detection effectivity, the method needs a further comparison

to other approaches.

� Deep Feedforward Networks. Deep feedforward Networks (DFN) architec-

tures represent the central archetype of deep learning models, which are part

of machine learning and ANN methods [105]. Deep learning (DL), like ANN,

use many simple units of mathematical processing inspired by biological pro-

cesses with the ability to learn, as a whole, complex functions.

DL is also a robust machine learning technique designed to extract features

from input objects to automatically avoid human intervention during the

learning process, adding in exchange more hidden layers for pre-training.

This innovation reduced up to 20 times the previous training times for the

speech recognition problem by 2009 [121]. Concerning the network architec-

ture, the feedforward term of the DFN is due to the direction on which data

runs through the network (Figure 2.11).

Figure 2.11: Structural example of DFN (adapted from [122]).
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Although this network architecture is designed to progressively improve the

quality of the input information with the aim of delivering sensitive feature

values to the fully connected deeper layers of the network, the backpropaga-

tion training (detailed earlier in this section) is one of the most used learning

strategies for DFN. This popularity is because BP contributes to adjust the

deep network from top to bottom concerning the target value, principally in

cases where the volume of training data is not massive [123].

In spite of the notable advantages, deep neural networks demand large data,

high computational cost and a careful selection of their size given that they

present loss of generalisation capacity when there are more layers than ne-

cessary [124],[125]. The main applications of the DFN architecture and deep

learning models include computer vision in the form of visible sound waves

recognition [126], denoising [127], contrast normalization [128] and dataset

augmentation [129].

The network architecture most used in image processing problems takes the

form of convolutional neural networks (see below). More applications in-

clude speech recognition, as in [130] where the recognition rate for the best-

known topic-related database (TIMIT) improved by 6%, [131] where large

vocabulary sentences were recognised and [132] where took place information

alignment of acoustic and phonetic levels. With regard to natural language

processing, there are examples in machine translation applications [133],[134],

language parsing [135] and multitask learning architecture [136].

� Convolutional Neural Networks. Convolutional neural networks (CNN) [137]

are conceived as ANN with the difference of containing at least one convolu-

tion layer within its architecture [105]. CNN are generally inspired by brain

cells as well but particularly by the animal visual system [138]. For this
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Figure 2.12: Convolution mask processing over an image.

reason, the main application of CNN is image understanding and classific-

ation, although there are additional applications to be seen later on in this

section.

The initial stage of this networks builds upon convolutional and pooling layers

working in tandem, where the first ones aim to filter the input through a

linear mathematical process termed convolution while the former ones seek

to merge similar features into single representative values [123]. That filter

arises from the convolution kernel definition, that estimates several parallel

convolutions to interpret and decode the input grid into space-referenced

feature maps.

Another way to understand the logic of the convolution function is that

it provides a polished estimate of the multidimensional input arrangement

to acquire the most relevant values to be taken into account subsequently

by the fully connected hidden layers. Figure 2.12 exemplifies the use of

a function of this kind, where image A is convoluted by kernel B with a

resulting compacted grid C.

After using the convolution layers, the feature maps travel to a subsequent

intermediate layer known as pooling layer that helps to downsample or reduce
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Figure 2.13: Max pooling for a 2× 2 neighbourhood.

the data dimensionality before being processed by deeper network layers

[105]. The most common pooling function is the max-pooling [139] that

operates by selecting the maximum value of a neighbourhood of n × n size

(Figure 2.13).

CNN represent a significant and growing field in computer vision. Remark-

able applications encompass image classification [129] where a deep CNN

was used to reduce the recognition error of a big database by nearly half,

human pose estimation [140] where image recognition processed RGB im-

ages, handwritten recognition [141] where a backpropagation training was

carried out for the first time in a convolutional network and speech recogni-

tion [142] where a time-delay neural network and error backpropagation were

combined.

More applications include optical character recognition [143] ] were the method

was bought by Microsoft time after, text modelling [144] where CNN and re-

current NNs processed sentence modelling and classification, face verification

[145] in which several interleaved convolutional and pooling layers manage to

extract high-level biometric features, and action recognition [146] in which

a deep convolutional mapping characterized video representation focused on

trajectory extraction.



Chapter 2. Background and related work 40

� Extreme learning machine and autoencoders. Neural networks are regarded

as universal approximators of the unknown function relating the inputs and

the outputs of a nonlinear system [88]. As seen earlier, it is common that the

learning in neural networks takes place via backpropagation and the gradient-

descent algorithm, the latter being by far one of the most common nonlinear

optimisation methods and the most popular machine learning algorithm used

in neural networks [147].

However, the mapping of a model with this method has a generally slow con-

vergence rate which may last several hours or even days, which is a problem in

practical cases such as those in the industry [148]. Also, solution algorithms

based on gradient-descent run the risk of producing overfitting and falling

into local minimum [149].

The extreme learning machine (ELM) [150] is an unsupervised and much

faster feedforward NN since on the one hand it is not iterative and propagates

in a feedforward direction and on the other, it leaves out the gradient-descent

approach. The ELM bases its speed in a random process to determine the

weights connecting the inputs with the hidden layer since test results show

that the network training can do well without the standard weight estimation

[151]. Nonetheless, to estimate the weights connecting the hidden layer to

the output, the ELM uses a pseudoinverse learning process.

An essential capability of the ELM is the functionality for feature extraction

and dimensionality reduction or compression, especially when coupled to

autoencoders (AE) [152]. AE have a unique network architecture with a

compacted or bottleneck-type hidden layer aimed at duplicating the system

input and place it in the output as a pattern. In that architecture, the weights

connecting the intermediate layer to the last one are forced to represent
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Figure 2.14: ELM-AE architecture (taken from [153]).

the dimensionality change, mapping at the same time the extracted features

according to the network architecture [153].

Another practical idea behind the ELM-AE architecture is to extract a set of

high-quality features to be understood and processed by a final classification

layer. The basic ELM- AE structure for feature extraction is highly efficient

and has proven to be suitable both for kernels and deep neural networks

structures. Figure 2.14 illustrates the scheme.

The definition of the ELM-AE unsupervised learning algorithm, as defined

in [154] is as follows:

fELM(x) =
L∑
i=1

βihi(x) = h(x)βββ (2.7)

where βββ = [β1, · · · , βL]T are the weights connecting the hidden layer and the

output, h(x) = [g1(x), · · · , gL(x)] are the outputs values of the hidden nodes

after processing the input x. With the previous definition, the ELM-AE
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learning problem remains in the computation of the output weights βββ, which

can be written in the matrix form as:

βββ = H†T (2.8)

in which T = [t1, ·, tn] is the vector of target values, also known as patterns

or labels, H = [hT (x1), ·,hT (xN)]T and H† is the pseudoinverse of H. Then,

the ELM pseudoinverse learning problem is defined as:

βββ = HT (
I

C
+ HHT )−1T (2.9)

where C is a regularisation parameter to avoid overfitting. Finally, the solu-

tion of fELM(x) comes about by replacing Equation (2.9) in Equation (2.7).

The ELM and AE networks for feature extraction have been reported in

different formats and tested in many classification problems. Among the

most relevant, in [154] the ELM and AE were put together for the first time

into a deep neural network termed ML-ELM. The method was tested in the

public MINST dataset and compared to prevailing deep network structures.

The ML-ELM ran significantly faster than common AE and had superior or

similar classification performance than the selected benchmarks.

In [20], a kernel version of the multilayer ELM was proposed along the adop-

tion of AE networks to make the information to advance through the network

from one stacked layer to another without the need for human supervision.

In spite of being more straightforward, the ML-KLEM network was proven

to be much faster than two previous multilayer networks. The classification

accuracy for 20 public datasets for different problems outreached the other

methods in all cases, especially in large datasets.
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In [153] a generalised version of the ELM-AE was reported by adding an

improved regularisation process. Besides, the authors used a stacked AE deep

NN architecture, which is capable of repeating and improving the feature

extraction process several times through the network structure. Tests with

13 public image sets showed that the GELM-AE improved the classification

accuracy in almost all cases versus classic and deep learning classification

benchmark methods. As for the breast cancer classification problem, Section

2.4 reports related methods.

Radial basis function networks

Radial basis functions (RBF) are a special kind of artificial neural networks in

which there is only a single hidden layer, unlike deeper configurations known as

deep forward networks, reviewed before in this section.

Within the context of machine learning and system identification, this type

of networks were proposed in [104] with the aim of approximating an unknown

function from known data by summing several identical basis functions aimed at

making up an intermediate layer of the neural network known as hidden layer.

Figure 2.15 shows the typical architecture of an RBF neural network.

This network establishes a relationship of the system output y with the input

vector x through an unknown nonlinear function:

y = f(x1, x2, ..., xn) = f(x) (2.10)
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To develop the function each neuron of the intermediate layer is regarded as a

basis function ϕ known as kernel, which intends to provide a measure of similarity

(typically the distance) within a multidimensional space between a sample and a

centre through their internal product. The single-hidden-layer of an RBF network

stands as the sum of kernels and aims at approximate the unknown function f(x).

The following formula expresses the above:

f̂(x) =
M∑
j=1

wjϕj(x) (2.11)

where ϕj represent the radial basis function for the jth neuron and wj the cor-

responding weight. The most used kernel in RBF is the Gaussian one, with the

Euclidean distance as the norm:

ϕj(x(t);σj, cj) = exp

[
− 1

2

(x(t)− cj
σj

)2]
(2.12)

Figure 2.15: Basic scheme of an RBF neural network.
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where σj and cj are vectors containing the scales and the kernel centres for the jth

neuron. Although this category of neural networks is the simplest one concerning

hidden layers number, in [155] and [156] and later in [157] was proven that the

utilisation of this layout setup is sufficient to model any nonlinear function. Also,

RBF networks simplify the nonlinear functions approximation by reducing the

determination of the weights (θ’s in Equation 2.3) to linear expressions [104].

For this reasons RBF networks converge faster and adapt more favourably

during the learning process, especially in problems of classification where the train-

ing set is sufficiently small [116]. Although the mentioned points are advantageous

and produce computationally easier training, special attention must be placed in

the determination of the quality and quantity of the kernel centres cj(x), as these

represent a starting point to the training or approximation algorithm.

RBF networks have been used successfully in several contexts. In [15] a study

for modelling and predict the reactivity of near-earth geomagnetic field to magnetic

storms is reported. The authors took two solar wind-related variables as inputs

and the resulting disturbance in the magnetosphere as output. The modelling

introduced multiscales to give the RBF network greater description flexibility for

non-linear systems. The forward orthogonal regression (FOR) algorithm (close

related to FROLS, detailed later in Section 2.2.3) was adopted in the identification

structure to simplify the problem into a linear-in-the-parameters form.

Other studies include the modelling and identification of dynamical systems,

as in [158] where an RBF network competed against multi-layered networks for

solving different problems. In general, the study confirmed the excellent capacity

of neural networks to represent nonlinear systems. In particular, the capability of

RBF networks to derive linear learning laws show them to be faster of converging

and more accessible to train in identification problems.
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Below are more examples of applications of this networks in image classifica-

tion. In face recognition, authors of [159] found that a small sample set is enough

to train the network for a classification process successfully. The work in [160]

recommends three-dimensional object recognition where the learning process pro-

ceeds from a small image set composed of projected views of the object of interest.

Authors of [161], propose a motor systems control where the parameters of the

RBF work as optimal values of a velocity sensor. In medical image analysis, the

works [162] and [163] use the RBF network in each case as a classification tool,

after making a process of image decomposition into feature vectors.

In this way, it was possible to identify the pathological samples from the

healthy ones with competitive results in both mammography [162] and brain images

[163]. Note that the term pathological refers to the state of a person suffering or

being affected by a disease [164], [163]. Section 2.3 reviews additional system

identification approaches for breast cancer detection different than RBF.

Fuzzy logic models

Fuzzy sets emerge in 1965 as an effort to extend the precise (crisp) quantitative

analysis into qualitative and uncertain problems which are generally faced by most

real-life human-related disciplines such as social, medical, political and economic

sciences. Under this logic, the notion of fuzzy set refers to an object that contains

elements with partial degrees of membership about certain concepts. Fuzzy logic

models are also mappings with established rules for input-output systems of the

general form y = f(x). This kind of modelling grasps four processing modules: es-

tablishment of rules, fuzzification, inference, and defuzzification (output processor)

[165].
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Figure 2.16: MF of average students. Figure 2.17: MF of taller students.

A key concept to take the fuzzy logic into practice is the membership func-

tion (MF), which is a suitable representation mechanism capable of mapping and

quantifying the conceptual complexity occurring in problems with uncertainty. The

MF, as a distinctive feature of fuzzy logic models, associates shades of different

classes to objects.

To illustrate the concept of MF, below are shown two instances in which

the degree of membership µH for the measured variable (height) changes for two

different student groups; Figure 2.16 for male college students and Figure 2.17 for

male college students who belong to the basketball team (example adapted from

[165]).

The graph on the left indicates that John, a 5 ft. tall student, belongs to the

short set in a 0.25 degree, 0.75 to the medium set and 0 to the tall set. In the

case on the right, the same student belongs to the short set in 1.0 degree and 0

to the other sets. This example makes simpler to see that the height value (short,

medium, tall) has a different meaning in different contexts.

Fuzzy sets can be either type-1 or type-2 depending on the uncertainty par-

tition order the set is described [166]. To explain such a difference, we should

consider that the observed variable (horizontal axis in Figures 2.16,2.17) splits up
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into intervals where the existing classes overlap. The first-order uncertainty allows

knowing the precise points where the overlapping begins and ends. In second-order

uncertainty, however, this one-dimensional precision is removed in the service of

improving the mapping of uncertainty in the problem.

Another difference is that in type-1, the membership degree for a value of

the measured variable within any class overlap is a real number that exists in

[0, 1]. On the other hand, the type-2 membership degree for the same variable

value represents an interval of real numbers which is a subset of [0, 1] [165]. More

formally, type-1 fuzzy sets are:

A = {(x, µA(x))|x ∈ X} (2.13)

where A is a set function contained in the universe X and µA(x) is the MF of A,

where 0 ≤ µA ≤ 1.

Conversely, type-2 MFs can be seen as the blurred version of the type-1 MFs.

The type-2 MF depends on two variables (x and u) and is represented as µÃ, where

Ã is a type-2 fuzzy set, and 0 ≤ µÃ ≤ 1. Then, the type-2 fuzzy set is defined as

[21]:

Ã = {((x, u), µÃ(x, u))|x ∈ X, u ∈ U ≡ [0, 1]} (2.14)

where Ã is a set function contained in X, the universe for the variable x, and U ,

the universe for the variable u. The footprint of uncertainty (FOU) is the type-2

version of the type-1 membership degree. The FOU represents a region of the

Cartesian product X × {µÃ(x)} into [0, 1], where the membership degree µÃ(x)
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Figure 2.18: Three FOUs for the variable height (adapted from [165]).

is an interval of real numbers instead of a single value. Bearing these concepts in

mind, the MFs of Figure 2.17 can be reinterpreted as FOUs, as Figure 2.18 shows.

In the example, µ
Ã

(x′) and µÃ(x′) are the upper and lower membership func-

tions which form an interval of values (subset of [0, 1]) brought by the FOU for

the type-2 fuzzy set Ã.

Applications of fuzzy logic models often include hybrid models for diverse

purposes as classification, diagnosis, searching, evaluation, decision making, control

and planning. The work in [167] proposed a classification tool for breast cancer

and heart disease through a hybrid model of fuzzy logic and a genetic algorithm

for high dimensional data. Results showed that the fuzzy component of the model

helped the method to process uncertainties positively. In [168] fuzzy search was

implemented with a conditional random field in a text-mining technique for disease

name recognition for biomedical literature. While the conditional random field

served as a base classifier, a fuzzy search was employed to label unusual disease

names.
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In [169] a fuzzy-based decision evaluation method in curtain grouting was

proposed. Curtain grouting is the hydraulic barrier under a dam to reduce water

leakage. The fuzzy assessment took into account permeability, rock quality and

tightness of the rock mass to determine the best execution plan. The method re-

commended an efficient strategy and led to a better understanding of the problem.

In [170] a fuzzy system was presented to tack the trajectory of marine vehicles,

a problem with uncertainties as currents and waves. The adoption of a structure

learning mechanism helped to create automatically easy to interpret fuzzy rules

and fuzzy sets capable of identifying uncertainties. Results showed that tracking

performance improved previous methods for a similar instance.

In [171] an RBF-fuzzy granular approach for modelling problems with uncer-

tainties was put forward. In the preprocessing, the method applies the concept of

granular compression to compact the system inputs into a finite number of granules

which group similar data, leaving out most uncertainties. Next, the RBF network

hyperparameters and membership functions are calculated from the granules to

build up the RBF-fuzzy model.

The proposed modelling framework addressed a case of study with uncertain-

ties known as the Charpy impact test, which measures the strength of materials

by applying external stress. Results showed that in spite of the high uncertainty

of the problem, the method improved the testing performance of previous models

as regards generalisation capacity and global accuracy for predicting the strength

of materials.
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2.3 Detection of the model structure

Once the unknown function F [·] has been defined in the form of a nonlinear struc-

ture according to the model of choice, a crucial role of the identification process

comes into play: the selection of the correct terms or regressors to include in the

final model. More than often circumstances do not make easy for operators to

have information revealing the structure of a model intended to describe the phe-

nomena, so it becomes necessary to adopt suitable algorithms to detect it. This

necessity includes the ability to identify as simple as possible models without sac-

rificing representability until finding, if any, the most basic rule connecting input

and output values.

For instance, this advantage would prevent getting a nonlinear model for a

simple linear problem. Structure detection faces other challenges as the restricted

availability of user-friendly toolboxes, requirement of preventing long training times

and a limited amount of algorithms for solving dynamic models [109]. Figure 2.19

shows the general flow of the structure detection process.

The most important model structure detection algorithms for nonlinear sys-

tem identification include term clustering [172], multi-objective error reduction

[173],[174], forward orthogonal least squares [175],[176], evolutionary algorithms

[177],[178], local linear model trees (LOLIMOT) for fuzzy models [179], least ab-

solute shrinkage and selection operator (LASSO) [180] and heuristic optimization

[181],[182].
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Figure 2.19: General strategy for detecting the model structure.

2.3.1 The FROLS algorithm

The Forward Regression Orthogonal Least Squares (FROLS) algorithm [183],[184],

known as well by the name of orthogonal forward regression (OFR), is a widely used

algorithm for structure detection of nonlinear systems. It adopts the advantages

of the Orthogonal Least Squares (OLS) algorithm [183] working together the Error

Reduction Ratio (ERR) estimator [185] and adds a reordering process which gives

the joint algorithm more efficiency [183].

In the basic OLS, a first objective is to transform the original linear-in-the-

parameters representation of the regression model into another one with mutu-

ally orthogonal regressors. Then, the new representation is used by the ERR

algorithm to produce an iterative term selection. The initial linear in the linear-

in-the-parameters representation is:

y(k) =
M∑
i=1

θipi(k) + e(k) (2.15)
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where y(k) is the output sequence, M is the total number of candidate terms, pi(k)

is the sequence of model regressors (namely candidate terms) made up by combin-

ations of input and output variables contained in x(k) (see Equation 2.4), θi are

the model parameters and e(k) the error sequence. From the matrix perspective,

the Equation (2.11) can be represented as:

Y = θP + e (2.16)

whith P standing as the matrix of model regressors. Thus, an operation known as

the QR decomposition [186] produces an orthogonal break down of matrix P into

W and A:

P = WA (2.17)

in this way, P can span into an M -dimensional vector subspace, A is an upper

triangular matrix and W is a matrix with orthogonal columns w1,w2, · · · ,wM ,

where each column is an orthogonal basis, froming a basis set of the same size as the

subspace spaned by P . This process, based on linear algebra, is the Gram-Schmidt

orthogonalisation algorithm [187].

The OLS algorithm takes advantage of the previous procedure and uses the

ERR to estimate the contribution of each candidate term i (with i = 1, 2, · · · ,M)

to the variance reduction with respect to the desired output y by using the mutually

orthogonal basis contained in W . More formally, the ERR is stated as follows:

ERRi =
〈y,wi〉2

〈y, y〉〈wi,wi〉
× 100 (2.18)
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where wi is an orthogonal vector corresponding to the ith candidate term, y is the

vector of the desired output, from which deviations are measured, and the notation

〈·, ·〉 denotes the inner product of two vectors.

As part of a joint algorithm, the ERR helps to list the candidate terms in

order of significance to the deviation reduction concerning the output, thanks to the

ERR values linked to each possible choice. Thus, the structure detection algorithm

can select and include term by term the most significant elements in the solution

model. The process goes on until the model’s deviation concerning the output

reaches a threshold, pre-established with respect a minimum desired accuracy.

The latter can, therefore, be seen as stop criterion which is verified each time a

new term is selected and included in the model throughout the error-to-signal ratio

(ESR), which computes the model accuracy by summing the ERR values linked to

the selected terms. The detection algorithm calculates the difference between such

summed value (ESR) and the desired accuracy threshold and stops the iterations

when the former reaches the latter. The formula of the ESR is:

ESR = 1−
Ms∑
i=1

ERRi (2.19)

where Ms represents the number of candidate terms selected in the final model

so that Ms < M . Please note that for each iteration, the Gram-Schmidt ortho-

gonalisation algorithm [187] guides the detection algorithm to exclude from the

final model the candidate terms providing redundant information to that given by

the terms already included in the model. The OLS combined with the ERR has

proven to be superior to the least squares algorithm thanks to the orthogonalisation

process that yields an improved exclusion of the redundant terms [185].
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Please also note that the ERR and the OLS are complementary in this ap-

proach since in each iteration the former assigns the contribution value of each

candidate to the error reduction concerning the output y. Meanwhile, the OLS

helps to relegate from the final model the candidates with repeated information

to that of the candidates selected in previous iterations. However, this combined

approach can mistakenly confer higher ERR values to the regressors of pi(k) ap-

pearing first in the Equation (2.11), producing a partially influenced term selection

process [188].

The FROLS algorithm uses the OLS and the ERR algorithms and solves the

ordering problem. The solution takes place by introducing a simple but efficient

reordering technique in the terms comprised within pi(k), which is the pool of

regressors to be orthogonalised by the Gram-Schmidt algorithm [187] during the

OLS. Such reordering, described in [88], involves the following steps:

1. The reordering takes into account the lower order terms firstly, which are

usually linear.

2. For each order, the regressors containing more y and less u variables are

placed first in the equation. For instance, in the second order iteration, the

term y2(k−1) would be placed first because it does not contain any u variable.

3. Following this, in the middle are placed the regressors with a balanced num-

ber of y and u variables. For example, y(k − 1)u(k − 1).

4. The regressors that contain more u variables and less y variables, e.g. the

term u2(k − 1) would be placed by the end of the formulation.

5. Afterwards, the inclusion of the higher order terms takes action through steps

2 to 4.
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6. The process continues until the higher order terms are rearranged. In this

way, the global structure detection algorithm can perform the candidate se-

lection without incorrect biases.

The FROLS algorithm has been successfully used as structure detection al-

gorithm in numerous nonlinear approximations. Notable examples include radial

basis functions [189],[190], fuzzy systems [191], neural networks [158],[114] and

sparse models [192].

2.4 Computer aided diagnosis

Computer-aided diagnosis (CAD) systems represent a central research branch of

medical image processing. The accumulative increase of hardware and software

plus the access to advanced and new image processing techniques put CAD tech-

nologies within an unmatched perspective in its history. Initially, CAD arose as

an attempt to replace radiologists by computers [193].

However, the new CAD philosophy does not search to replace physicians, but

to offer instead a fast, objective and accurate second opinion to detect a variety

of anomalies in early stages ranging from lung nodules, vertebral fissures, size of

hearts and malignant nodules and prevent unnecessary biopsies, the proliferation

of cancer or its development to more advanced stages [194],[34].

CAD procedures emerge from multiple knowledge areas including biosignal

processing, digital image analysis and statistics. The ultimate purpose behind this

mixture is to provide a reliable inference about a potential health disorder, based

on a sophisticated extraction of information from measured biosignals, including

medical images [194]. Figure 2.20 shows a general flowchart of this process.
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Figure 2.20: Flowchart of medical image processing and CAD systems. Taken from

[32].

2.4.1 CAD for breast cancer

Breast cancer is a severe public health problem in many countries, regardless of

their development level. Only in the United States during 2017, an estimated of

40,610 women died of this disease, while another 63,410 new cases of breast car-

cinoma in situ (a disease in early stage) were diagnosed, representing 30% of cases

of cancer of any kind in women [23]. In developing countries, breast cancer has

become the leading cause of cancer death among females, contrary to the past dec-

ades [195]. While medical science has found relevant findings regarding the causes

and treatment of the disease, early diagnosis remains as the best current strategy

to improve the prognosis and treatment for affected women. CAD systems have

received attention because of its increasing power to assist humans at finding ab-

normalities and discriminate malignant from healthy tissue regions within medical

images, either with assisted or unassisted learning processes. CAD systems are

meant to extract specks, blobs or distinguish suspicious from healthy regions from

digital mammograms in breast cancer diagnosis [196].
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2.4.2 Diagnosis performance metrics

The basic and most common performance metrics found in the literature on CAD

systems for digital mammography are accuracy, sensitivity and specificity, while

positive predictive value (PPV) and negative predictive value (PNV) are found

with less frequency [197]. More specifically, accuracy is a straightforward metric

but it ignores the disease prevalence. Sensitivity and specificity do not make this

omission and quantify how consistent a classifier is to not overlook (fail to notice)

positive and negative cases, respectively. PPV explains the chance that a case

defined as positive is unhealthy. NPV calculates the chance that a case classified

as negative is healthy. The corresponding formulas are below ([198]):

Accuracy =
Correct decisions

No. cases
× 100 (2.20)

Sensitivity =
True positive decisions

Actually positive cases
× 100 (2.21)

Specificity =
True negative decisions

Actually negative cases
× 100 (2.22)

PPV =
True positives decisions

True positive+ False positives
× 100 (2.23)

NPV =
True negative decisions

True negatives+ False negatives
× 100 (2.24)
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2.5 System identification models and ANN into

CAD for breast cancer

In recent years an abundant collection of system identification parametric mod-

els and artificial neural networks have been presented as a feasible alternative for

medical image analysis in the detection of breast cancer. These efforts, all within

the CAD paradigm, have been directed to process digitalised breast imagery com-

ing from X-rays, ultrasound, magnetic resonance, and electrical impedance tomo-

graphy. The work considered as the most relevant and representative in this subject

are listed below.

2.5.1 Parametric model-based CAD systems

In [199] a one-dimensional autoregressive (AR) filter was proposed to improve

the contrast of ultrasound breast cancer images automatically and to enhance

the visualisation of suspicious masses. The approach used the concepts of higher

harmonics of the frequency band and characteristics of the sound wave propagation

in compressed versus relaxed tissues. The work inferred the presence of potential

malignant tissues through 1D signal and image contrast enhancement. The model,

though one-dimensional, was able to represent accurately real-life data.

In [10] an ARMA model to detect and classify breast cancer was proposed as

an innovative CAD scheme for ultrasound images. This approach, unlike previous

1-D methods [200],[201] and [199], presented a 2-D image analysis for classifica-

tion by using a moving window scan to take into account the spatial correlation.

The Yule-Walker least-squares algorithm computed the model parameters, while

the K-means classifier used the ARMA parameters as feature vectors to diagnose
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the breast image as healthy, benign or malignant. Simulations with real medical

databases proved a general accuracy above 90%. However, the lack of 2-D models

available for comparison motivated the authors to compare versus the 1-D ARMA

model only.

In [200] and [202] two FARMA CAD modelling for one-dimensional tissue

characterization from ultrasound radio-frequency echo schemes were presented.

The main modelling assumption stemmed from the observed similarity between ul-

trasound echo frequencies reflected by tissue and fractal processes. In consequence,

the incorporation of fractional parameters F in the ARMA models allowed to cap-

ture the fractal parameters. Experimental results confirmed that the best FARMA

configuration attained an accuracy of 87%, overtaking by 6% the radiologist’s pre-

biopsy criteria. Although these methods were limited to ultrasound images, the

encouraging results suggest their use in other image analysis problems.

In [11] the same authors introduced the ARMA model for image feature

extraction and the change detection algorithm based on sequential statistical ana-

lysis for microcalcification detection. In this work, the ease for solving the fixed-

structure ARMA linear model was exploited to extract parameters from the model

and statistically analyse abrupt changes in the parameters sequence, changes linked

to the appearance of microcalcifications in the image. The tests showed that the

method achieved sensitivity and specificity values above 94%. Despite good res-

ults, this approach works only with microcalcifications within the broad spectrum

of tumour types. The work in [79] presented a similar CAD parametric approach

for breast cancer for electrical impedance tomography.

In this case, an ARIMA model aimed to capture the image stationarity, un-

derstood as the addition of continuous regular processes, for instance, a repetitive

pattern or a continuous arrangement along the image. Additionally, the 3-D multi-
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frequency electrical impedance mammography (MEM) machine emerged as an af-

fordable and non-invasive breast scanning option especially useful in developing

countries. The method’s main steps included image enhancement, a 3-D to 2-D

image conversion, the Yule-Walker 2-D parameter estimation, and the K-means

classifier. Although the accuracy of simulations was not specified, the authors

claimed that the method is more effective than its 1-D counterpart, a more in-

depth comparison versus other 2-D models could have taken place.

In [12] an autoregressive quantitative ultrasound characterisation (AR-QUS)

model for breast cancer was presented. The study analysed images at a cellular

level and compared directly the differences between tissue types, where an autore-

gressive model estimated the power spectrum of tumour data. The algorithm was

capable of discerning healthy versus cancerous tissue but failed to distinguish the

tumour type.

More recently, authors of [10] presented in [203] a 2D-ARMA model and a 1-D

change detection algorithm as modelling strategies to detect small calcifications in

mammograms. The addition of the change detection algorithm obeyed an observed

link between calcification presence and statistical-additive changes in image’s local

properties. To model the tumour detection, the one-dimensional change detection

algorithm took the probability density functions to characterise the image features

obtained by the ARMA model. In this way, a series of additional parameters

θ resulted from averaging the PDFs via the generalised likelihood ratio (GLR).

After the parameter determination, a threshold value ta was experimentally chosen

and fixed to compare all parameter values to infer if the whole image resulted as

abnormal. Simulations with 524 normal and cancerous cases showed that the

accuracy surpassed 92%.
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2.5.2 ANN-based CAD systems

In [162], a CAD system for breast cancer detection using the grey-level co-occurrence

matrix for feature extraction and an RBF neural network as a classifier. Test res-

ults of the RBFNN compared to results of a back propagation ANN showed that

the reported method came to be better in accuracy (93.9% vs.79.5%) and tumour

class distinction (100% vs 89.5%). In [8] an easy-to-implement CAD approach used

independent component analysis for feature extraction and RBFNN for classifica-

tion to attain an accuracy of 88.2% and abnormality distinction rate of 79.3%.

In [9] an ANN technique for breast cancer detection was introduced by using

a grey level co-occurrence matrix for feature extraction and the scaled conjugate

gradient backpropagation to train the network. Classification results were pos-

itive for accuracy and sensitivity (93.1% of, 99%) but only moderately good for

specificity (83%). In [204] an integrated CAD system for breast cancer detection

using a particular network architecture was presented. The authors proposed the

generalised pseudo-Zernike moment for feature extraction which is claimed to be

robust to noise, and a new adaptive differential evolution wavelet neural network

was recommended as a classifier. Two mammogram databases were used during

testing (MIAS and DDSM) attaining accuracy rates of 89% and 87% respectively.

As for extreme learning machine and autoencoder networks in CAD, in [205],

an ELM network-based CAD system for breast mass classification was reported.

The framework included image segmentation as a preprocessing step to remove

background artefacts in the first place. Then, the isolation-extraction of the re-

gions of interest (a breast tumour and surrounding area) took place via the Hough

transform. To compare the efficiency, ELM, support vector machine (SVM) and

particle swarm optimisation plus SVM (PSO-SVM) where compared. Classifica-



Chapter 2. Background and related work 63

tion performance results with a series of ROIs extracted from the MIAS database

showed that the ELM-based method averaged accuracy of 95.73% from 5 different

training- testing folds, which was notably superior to PSO-SVM (90.5%) and SVM

(89.5%). However, there was no comparison to previous work results.

In [7] a CAD system using ELM for breast cancer detection was introduced

for the classification of benign and malign tumours enclosed in regions of interest

from the MIAS database. This unsupervised method aimed at speeding up the

training and achieving better generalisation properties, while a subset of 9 out

of 15 image features resulted from by using a heuristic search for better image

representation. An accuracy of 91% in testing was attained by ELM, beating

the metrics of previous approaches including SVM (82%), random forest decision

classifier (90%) and K-nearest neighbours (84%). In spite of the advantages, the

algorithm accuracy was proven to be dependent on the fair selection of the image

features.

Authors in [18] reported an orthogonal incremental ELM autoencoder for

image classification. It introduced the Gram-Schmidt orthogonalisation method

coupled with Barron’s convex optimisation learning algorithm to estimate the op-

timal weights connecting the hidden and the external layer of the network and

simultaneously reduce the convergence rates, unlike previous incremental ELM.

Testing on 5 classification problems for unidimensional data, including a breast

cancer database of 1029 clinical cases, and 6 benchmark ELM-based methods re-

vealed that the OCI-ELM testing accuracy outperformed 5 out of 6 methods in

the breast cancer problem (94.73%). Additionally, tests with the MNIST image

database of handwritten digits shown that OCI-ELM outperformed all benchmark

methods with an accuracy of 97.89%.
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In [206], the multiobjective optimisation of deep AE for feature extraction

and dimensionality reduction was described and tested in mammogram classifica-

tion. Multiobjective optimisation aimed at reducing both the reconstruction error

between the AE input and output and the classification error to improve the whole

feature extraction process. Tests for 949 mammograms using 8 different classifiers

(1 at a time) in the network’s classification layer showed that the accuracy of the

optimised AE network reached classification accuracies from 80% up to 98.45%.

2.6 Chapter remarks

� System identification brings together techniques capable of describing and re-

producing simple and complex, non-linear systems with flexibility and trans-

parency.

� System identification is commonly applied in several real instances, especially

in systems with inputs and outputs that are interrelated by an unknown

process.

� System identification can be used along with other algorithms to solve differ-

ent tasks such as analysis, modelling, replication of results, forecasting, risk

prevention and classification,

� Image processing and computer vision are interdisciplinary fields that have

reduced their cost in line with the advance of technologies to capture, broad-

cast and store digital information.

� Image processing takes elements from computer science and signal processing.

Image classification uses statistical learning techniques.
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� Popular image processing techniques include image segmentation, edge de-

tection and object recognition, which gives this field a broad application

landscape.

� Image processing can assists humans in several fields of application such

as remote sensing, surveillance, manufacturing, robotics and autonomous

vehicles, and sciences, like agriculture, meteorology and medicine.

� Image processing has produced relevant results in medicine as a tool to sup-

port the medical decision making in disease analysis, detection, monitoring,

classification, diagnosis and prognosis.

� Medical image processing has a particular interest in breast cancer detection

due to its worldwide incidence and data availability, on which a plethora of

methods aim to detect and to classify mass abnormalities or tumour cells.

� This work presents two nonlinear system identification models and a mul-

tilayer neural network as new choices for digital image processing methods

for detecting and classifying breast tissue abnormalities.

� Previous system identification techniques have produced efficient models in

input-output dynamical systems. However there is little to say in different

domains, for instance, problems involving static (non-time-varying) variables

such as feature extraction, classification, pattern recognition or medical image

analysis systems.

� The use of nonlinear system identification in image processing confirms its

modelling accuracy and widens its application field not only in the medical

field but any image processing application related to analysis, detection and

classification tasks.
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� This chapter outlines the background and theory of image processing, system

identification, neural networks and fuzzy logic to shape new machine learning

methods for breast cancer detection.

� The capacity of producing transparent image models enables image analysis

to regard newly available information like model structure, model parameters

and image-based models to be analysed by response signals.

� The multilayer neural-fuzzy network represents an new integrated machine

learning framework that takes advantage of type-2 fuzzy sets for tackling

uncertainty in digital image processing.



Chapter 3

Image classification using a

2D-NARX model

In the literature, there are efficient parametric models aimed at characterising med-

ical images. However, these techniques are limited to being exclusively linear in the

variables. The NARX methodology is designed to contemplate non-linear decision

variables and approximate models with an improved scope. This chapter presents

a nonlinear parametric framework to characterise digital images and use such in-

formation in classification problems. It includes an adaptation process aimed at

transferring the information-type from a dynamic to a two-dimensional system,

the adoption of the polynomial NARX model into the solution method and the

application of the framework as a medical tool for breast cancer diagnosis. The

proposed methodology contains the following steps:

� Data transformation from digital images to the input-output system format.

� Estimation of tailor-made mathematical models derived from digital images.

� Extraction of feature values designed for image description, obtained in turn

from the image models.

� Classification and detection by using a distance-based classifier.

67
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Tests in a real application in medical images served to evaluate the proposed

method. The report of results is in Section 3.3.

3.1 Introduction

Digital image processing and analysis is a growing interdisciplinary branch of signal

processing and computer science. Its central aim is to obtain meaningful inform-

ation from visual patterns, while more advanced human-like skills as classifica-

tion and recognition rely on supervised, semi-supervised or unsupervised feature

analysis [207],[208]. In this context, image classification and pattern recognition

techniques make available multiple innovative choices to applied science, with re-

markable attention to medicine and bioscience which regularly deal with image

analysis of 2D, 3D and time sequences at different zoom levels that rely on precise

classification and feature extraction procedures [32].

Within medical analysis, computer-aided detection and diagnosis (CAD) is

a significant field of research at present. Although the scope of CAD covers the

examination of a variety of medical problems, breast cancer detection is one of the

most recurring CAD applications. A pragmatic reason for this is that for instance

in the United States, breast cancer is placed at the first place of new cases by cancer

type and lies in the second cause of cancer deaths in women by 2017 [23]. The

best known therapeutic strategy to reduce breast cancer mortality is early-stage

tumour detection, so enhanced CAD algorithms for this goal represent a genuine

alternative to save human lives. Parametric system identification methods for

image processing have enriched the CAD procedures portfolio by taking advantage

of a model-based viewpoint to obtain condensed parameters sets to be used in

feature analysis.
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The logic behind this detection methods is to attain image models from ex-

perimental data, similarly to obtaining parametric time series models for weather

forecasting. As time series analysis, parametric CAD system identification meth-

ods learn from the image data and help to estimate fundamental values useful for

detection processes. Common CAD techniques based on parametric system iden-

tification are only capable of identifying linear models, a fact that reduces their

flexibility for exploring higher order relationships within images. Note that the

term linear refers to an expression or model in which none of its variables has been

raised beyond the first power. In this regard, the authors of [4] concluded that

manoeuvres on digital images are not linear, although linear procedures can ap-

proximate these systems in some circumstances. Besides, linear manipulations in

digital images may lead to poor results when there is noise with different statistics

to Gaussianity [5].

Analogously, the authors of [6] found that linear filters in image processing

can miss important image features, such as borders separating background and

objects. Bearing this in mind this work adopts the NARX model [88] to improve the

characterisation of digital images through the construction of flexible-order image

models. Previous work on CAD systems for breast cancer based on parametric

system identification models include the AR model [199],[12], the FARMA model

[200],[202], the ARIMA model [79] and the ARMA model [10],[11],[203]. Chapter

2 reports these parametric methods in detail.

3.2 The 2D-NARX methodology

The recommended image processing method, termed 2D-NARX, can be divided

into four modules: image rendering, image modelling, feature vector extraction
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and classification, with all parts coded to run in sequence and automatically. The

proposed CAD scheme derived from 2D-NARX seeks to detect suspicious patterns

by adding initial and final divide-and-conquer steps, as used in [10],[209] and doc-

umented earlier for image processing in [210]. The integrated 2D-NARX approach

is summarised in 3.1.

Figure 3.1: 2D-NARX general algorithm chart.

The work flow of the classification and detection methodology includes a sep-

arate training process made in advance the single image feature extraction. For

this latter stage, the processing starts with the initial partitioning of the input

image (divide-and-conquer algorithm), followed by the transformation of the im-

age data to input-output data, the NARX image modelling, the FROLS model

structure detection, the feature extraction and the classification and diagnosis via

the K-means algorithm. The following sections detail each one of this steps.
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Figure 3.2: Magnification of microcalcifications in mammogram mdb233 (from

[212]).

3.2.1 Digital mammogram partitioning

The problem of breast cancer detection in digital images poses as a central element

the tumour characterisation, which have a considerably smaller size than the whole

digitised mammogram film. For this reason, a divide-and-conquer strategy was

adopted to obtain useful dimensioned subimages out of the initial mammogram,

zooming in on the tissue abnormalities including mammary microcalcifications,

which represent a critical element in breast cancer detection [211]. In other words,

the divide-and-conquer strategy aims to solve a massive problem by breaking it

down into smaller problems and use the solutions of each to solve the original

instance [210]. Please note that the medical image processing literature terms the

area enclosing the object of interest as the region of interest (ROI).

To illustrate the need for the image partitioning in the breast classification

problem, Figure 3.2 seeks to exemplify the significant difference in proportions

between a complete mammogram and a microcalcification in an image from the
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Table 3.1: Average tumour diameter of the MIAS database [212].

Tumour class Average size (pixels)

Benign 43.39

Malign 53.56

All classes 49.56

selected database. In the example, it is possible to observe with the naked eye that a

classification analysis at full mammogram level may easily leave microcalcifications

out of scope, whose failure to be detected is dangerous in medical terms since,

according to [211] these are catalogued as extremely suspicious in 78% of cases and

might well represent the only noticeable trace of a tumour.

The divide-and-conquer strategy includes the concept of subimage, which in

size terms is analogous to the ROI. The subimage size selection is a crucial decision

element since the bigger it is, the more data is available to find a reliable image

model, where the data represent the intensity value of the pixels. However, if

the subimage size is more extensive than necessary, pixels from other classes may

hinder the classification process [10]. To estimate the best suitable choice according

to the breast cancer detection problem, the average tumour diameter by class from

the selected database [212] was calculated to make a more reality-based decision

(Table 3.1).

The selection of a 64 × 64 pixels subimage size was considered suitable to

enclose the ROIs of the MIAS database effectively. This number also matches to

a large extent the partition of the original mammogram in a 1/16 ratio per side

recommended in [10],[11]. This proportion takes into account that the database
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mammograms present 1024 pixels by side so that dividing 1024 by 16 the result is

64 pixels per subimage side. Therefore, the calculation of the number of subimages

by mammogram is as follows:

s =
HW

N2
(3.1)

where H and W are the height and width of the original image respectively and

N the sub-image size per side, giving 256 subimages for the problem faced in this

chapter.

3.2.2 Two-dimensional image rendering and

representation

The modelling process is in system engineering as a bridge connecting a real sys-

tem with a solution algorithm. Analogously, the image interpretation from the

input-output systems viewpoint is a vital step of the methods proposed in this

and the following chapter. Given that the NARX models are designed by nature

to represent input-output systems, special attention had to be given during the

interpretation process to address the goal of adapting the two-dimensional image

field into the NARX paradigm consistently.

Figure 3.3: Multiple-input and single-output system.
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Figure 3.4: MISO system modelling of the image field.

To attain that objective, a pixel neighbourhood which could allocate a single

output (y(k)) and three adjacent exogenous inputs (u1(k), u2(k) and u3(k)) was

chosen for the sake of a straightforward but sufficient modelling in terms rep-

resentativeness. Figure 3.3 shows a diagrammatic example of a multiple-input,

single-output (MISO) system which is unknown.

The final configuration of four variables (one output and three inputs) is

analogous to a 2 × 2 bidimensional symmetric neighbourhood of adjacent pixels,

obtaining in this way an equivalent to a MISO system projected in two dimensions.

Figure 3.4 illustrates the resulting data conversion. Scheme (a) shows the

position of the input-output variables within the pixel neighbourhoods, where the

more on the left the neighbourhood is located, the more lagged it is from the time

series point of view. Scheme (b) represents the same pixel block as (a) but instead

of displaying the variable names, it shows the corresponding coordinates (i, j). The

above is achieved by fixing the origin (0, 0) at pixel y, which is equivalent to the
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Figure 3.5: Neighbourhood mask scanning movement during the image data col-

lection.

MISO system output. With that reference, the rest of the pixels take coordinate

values to be useful in model equations 3.2 to 3.5.

This format allows to consider the image as a series of observations (data

blocks spread vertically in space) distributed from top to bottom and from left

to right, where the lagged observations point towards the left side direction. In

addition to the above, no overlaps between the present and past observations are

allowed to avoid getting naive or simplistic models (for instance, a model consisting

of only the y(t− 1) variable).

The Figure 3.5 depicts the raster scan direction for collecting the intensity

map of an image from a dynamical system perspective. The following section

describes the mathematical formulation corresponding to this structure according

to the NARX model.

3.2.3 The NARX model

As seen in the previous chapter, system identification procedures aim at formu-

lating systems models from observational data without prior information of the

model structure. Several of these systems can be challenging because of their in-
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tricacy, may include non-Gaussian variables or might exhibit rapid changes from

one period to another, such that nonlinear approaches stand out from the rest as

good modelling and approximation choices.

However, the nonlinear condition conveys higher computational costs and

modelling accuracy challenges for system identification models. To overcome these

difficulties, the nonlinear autoregressive moving average with exogenous input

(NARMAX) model [110] (Section 2.2.1) was presented as a valid choice to model

a wide range of dynamic problems by processing past inputs and outputs to ex-

plain the system output [88]. The nonlinear autoregressive with exogenous input

(NARX) model is a simpler version of the NARMAX model that omits previous

errors, in the form of regressors, during the identification task for the sake of a sim-

pler representation and a greater ease to be solved at the cost of a minor precision

loss [213],[113].

Therefore, the choice of one of the above options depends on the priority for

simplicity and ease of solution versus accuracy [214]. The present study deals with

a problem that requires the rapid processing of a large number of subimages. Also,

preliminary tests showed that the regressors of a MISO system where sufficient to

describe both reduced and medium size images, so the NARX model was chosen

as it offered the right balance. The general NARX mapping for a single-input and

single-output system (SISO) was described earlier in Equation 2.2.

The NARX mapping proposed for image processing, derived from the formula

(2.2) and the mathematical 2D modelling, as detailed in Figure 3.4 and Section

3.2.2, is as follows (note that the related description is found after the formula).
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y(i, j) = F [y(i, j − 2(1)), y(i, j − 2(2)), ..., y(i, j − 2n),

u1(i− 1, j − 1− 2(1)), u1(i− 1, j − 1− 2(2)), ..., u1(i− 1, j − 1− 2n),

u2(i− 1, j − 2(1)), u2(i− 1, j − 2(2)), ..., u2(i− 1, j − 2n),

u3(i, j − 1− 2(1)), u3(i, j − 1− 2(2)), ..., u3(i, j − 1− 2n)] + e(i, j)

(3.2)

where y(i, j) is the system output, u1(i − 1, j − 1),u2(i − 1, j),u3(i, j − 1) are the

system inputs, e(i, j) is an independent noise sequence, n = nu = ny are the

maximum lags defined for the system variables (maximum observations in the

past contributing to explain the system output) and F [·] is a nonlinear function

to be defined. The regressors in Equation 3.2 represent space instead of time,

unlike common NARX formulations for dynamic systems. Indices i, j represent

the coordinates for rows and columns, respectively distributed in the pixel mesh.

By following Figure 3.4, the squares coloured in navy blue show the y variable

at point (0, 0) and the corresponding lags starting to the left at point (0,−2). Then,

these go on to point (0, 4) and so on. The first line of Equation 3.2 contains that

sequence. Similarly, coloured in yellow, the u1 variable at (−1,−1) has lagged

versions to the left from point (−1,−3), then at (−1,−5) and so on. The second

line of Equation 3.2 contains that sequence. The sequences for the variables u2 and

u3 can be inferred in the same way by following the green and light blue squares

succession, respectively.

The polynomial NARX

At this point is it equally relevant to note that the NARX equations 2.2 and 3.2

describe only a relationship between the system output and the unknown nonlinear
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function which depends on several lagged variables (listed in brackets within the

function) plus an independent noise sequence. Such a situation makes it necessary

to choose a model/blueprint from the broad range of choices (see Section 2.2.1 from

the previous chapter) capable of expanding the NARX mapping function stated

for image processing in Equation 3.2. From all alternatives, the polynomial NARX

models are the most popular given the advantages to be discussed later on [88].

A way of seeing the polynomial formulation is by considering that it equals

the output of a process to several monomials or power products representing all

the possible combinations of predecessors variables contained in the non-linear

function F [·] of the NARX mapping of Equation 3.2, from degree 1 (linear) up

to the nonlinear degree l. The power-form polynomial NARX models offer the

following advantages:

� The models are transparent, legible and easy to write.

� Given that these models are smooth functions, solutions are more precise and

run times are reduced.

� Flexibility to describe a wide variety of nonlinear systems in the time domain,

the frequency domain or a combination of both.

� Availability of widely tested algorithms to efficiently solve the formulation.
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The following equation rewrites Equation 3.2 from the explained above 2D

NARX mapping and the general definition of the power-form polynomial NARX

(Equation 2.3):

y(i, j) = θ0 +
n∑

i1=1

θi1xi1(i, j) +
n∑

i1=1

n∑
i2=1

θi1i2xi1(i, j)xi2(i, j) + ...

n∑
i1=1

...

n∑
i`=i`−1

θi1i2...i`xi1(k)xi2(i, j)...xi`(i, j) + e(i, j)

(3.3)

where l is the maximum nonlinear degree, θi1,i2,··· ,im are the model parameters,

n = ny + nu1 + nu2 + nu3, where ny, nu1, nu2, nu3 are the maximum lags for the

system outputs and inputs respectively, and e(i, j) is an independent noise se-

quence. Taking into account the general description (Equation 2.4) the vector of

basic cross-coupled regressors xm(i, j) combined in the 2D polynomial expansion

(Equation 3.3) is defined for a MISO system as:

xm(i, j) =



y(i, j − 2m), 1 ≤ m ≤ ny

u1(i− 1, j − 1− 2(m− ny)), ny + 1 ≤ m ≤ ny + nu1

u2(i− 1, j − 2(m− ny − nu1)), ny + nu1 + 1 ≤ m ≤ ny

+nu1 + nu2

u3(i, j − 1− 2(m− ny − nu1 − nu2)), ny + nu1 + nu2 + 1 ≤ m ≤

ny + nu1 + nu2 + nu3

(3.4)

The visualisation of the regressor sequence xm(i, j), recently described in

Equation 3.4, was simplified by fixing the maximum lags as the model was indeed
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configured in this work (see Section 3.3), so that ny = nu1 = nu2 = nu3 = 1. In

this way, the next equation expresses the regressor sequence in (3.4) as follows.

xm(i, j) =



y(i, j − 2m), 1 ≤ m ≤ 1

u1(i− 1, j − 1− 2(m− 1)), 2 ≤ m ≤ 2

u2(i− 1, j − 2(m− 2)), 3 ≤ m ≤ 3

u3(i, j − 1− 2(m− 3)), 4 ≤ m ≤ 4

(3.5)

With the adaptation of the NARX model to a two-dimensional viewpoint

and the definition of the nonlinear function expansion, adapted as well to the 2D

problem, the remaining step for system identification is to solve the power-form

polynomial model. Below is the explanation of the method adopted for this end.

3.2.4 FROLS model structure detection

The NARX system identification philosophy bases itself in the first place on the ex-

pansion of a (previously unknown) nonlinear function followed by the construction

of an extensive dictionary D containing M elements or terms. The components

of the dictionary, known as well as candidates, are obtained from the function

expansion, and it is from this dictionary that the structure detection algorithm

selects the final model terms. When the NARX function follows the power-form

polynomial expansion, it’s important to emphasise that each candidate represents

a power product (model term) of the polynomial formulation, taking into account

that each of these monomials is composed of cross-coupled system input and output

variables.

Figure 3.6 depicts the processing flow from data representation to the nonlin-

ear function expansion, a necessary step preceding the model structure detection.
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After the polynomial expansion, the forward regression orthogonal least squares

(FROLS) algorithm [183] (see Section 2.3.1) was incorporated into the algorithm

given its effectiveness to make one-at-a-time orthogonalised steps intended at se-

lecting the best available candidate terms contained in the polynomial function.

The incorporation took place by unifying the orthogonal least squares (OLS) [185]

and the Gram-Schmidt algorithms [187].

The OLS algorithm helps to select the candidate terms with higher error

reduction ratio (ERR) via the Gram-Schmidt orthogonalisation algorithm, which

promotes the stepwise selection of unselected candidate terms adding complement-

ary information to that of the model terms already included in the solution, gen-

erating parsimonious and accurate models. Figure 3.7 summarises such structure

selection process, where the resulting model is made up of the sum of power func-

tions (terms) and model parameters.

The described process, from the 2D/image processing perspective, initially

reads, transforms and represents the input image according to the polynomial

Figure 3.6: Flowchart of the NARX mapping and polynomial expansion of the

nonlinear function.
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NARX model in a data matrix or dictionary D. Afterwards, this dictionary is

processed by the FROLS algorithm, which creates a realistic and parsimonious

NARX model of the input image. The image model is taken hereinafter to obtain

representative feature values useful in classification and detection algorithms.

3.2.5 Extraction of feature values

Once the system identification design was complete, a significant challenge related

to the construction of feature values resulting from the ROI image models was

to be solved. In spite the NARX-FROLS system modelling offers competitive

advantages to accurately identify tailor-made models for various real-life systems

regardless of whether these are linear or not, such adaptive modelling advantage

brings along the difficulty of producing equal-sized feature vectors (necessary in

the classification process) out of different models with variable/adaptive NARX

structure from different ROIs. Therefore, a fixed number of unchanging input

signals were carefully selected to solve such hindrance. These input signals played

the role of stimuli of the model’s behaviour.

Such behaviour took the form of output signals from which it was possible

to extract information. The input signals selection aimed at producing mutually

Figure 3.7: FROLS’s model selection flowchart.
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uncorrelated model responses, so a series of tests were made by taking into account

diverse instances.

Such stimulus-response design was built up by taking into account the NARX

image model as a black box and a set of fixed input signals to produce the same

number of response (output) signals. The diagram of the model stimulation pro-

cedure is detailed in Figure 3.8.

After that, the approximation of feature vectors of the same length (required

for classification) resulted from using four statistical estimators on the response

signals obtained from the stimulus-response design. The measure selection aimed

at obtaining a statistical description or featuring of the response signals as reliable

as possible. The selected estimators were the population mean (µ), the standard

deviation (SD), the interquartile range (IQR) and the mean absolute deviation

(MAD). In statistical terms, the first one represents a central tendency while last

three are dispersion measures.

More profoundly, the population mean, which is a measure considering all

data values, is regarded as a reliable and representative estimator, while the stand-

ard deviation is an accurate estimator indicating the spreading out level of the data

Figure 3.8: Stimulating the model’s behaviour.
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points concerning the mean, being suitable for non-chaotic distributions with min-

imum outlier presence.

The interquartile range and the mean absolute deviation, represent robust-

type measures, ideal for characterising mixed or heavy-tailed data distributions.

The IQR is the difference between the third and the first quartile. The quartiles

are three population values dividing the data set into four equal parts, so the

IQR is practically unaffected by extreme values. The MAD is the average of the

data points distances regarding the median value and provides a clear idea of the

data set variability while extreme values hardly distort it. The formulas of the

estimators are listed below along with their main descriptive advantage.

Population mean (µ)

∑N
i=1 xi
N

(3.6)

Standard deviation (SD)

√∑N
i=1(xi − µ)2

N
(3.7)

Interquartile range (IQR) Quartile 3−Quartile 1 (3.8)

Mean absolute deviation (MAD)

∑N
i=1 |xi − µ|

N
(3.9)

The last characterisation step poses the mentioned statistical estimators to

analyse the output signals of the model to get a fixed number of feature values,

which are concatenated at the end of the procedure to build a feature vector.

Figure 3.9 shows the flow of this process. Also, it was decided to include in the

general procedure an extra position of the input image in the form of a 90-degree

rotation to increase the algorithm’s ability to recognise spatial features in the ROI

image, such as tumour position, microcalcifications and other abnormalities.
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With the previous design, the feature vector length representing the input

image is equal to the product of three values: statistical measures (4), stimulation

signals (6) and rotation angles (2), producing in total 4×6×2 = 48 feature values.

3.2.6 Classification and detection

The classification and diagnosis process of the method presented in this chapter

bases its power on the well-known K-means algorithm [78]. The K-means (see

Section 2.1.5) is a distance-based iterative refinement method (also considered a

machine learning method) aimed to divide a set of input observations into a k

number of groups. This procedure is done by (1) choosing at random K centres,

(2) linking the observations to their closest centre and (3) reallocating the centres

through the arithmetic mean of the cluster, (4) repeat steps 2 and 3 until the

system converges to a stable state.

Unlike the traditional K-means clustering algorithm, which applies unsuper-

vised learning to processing unlabelled data, the algorithm used in this work was

instead supervised. This process was done by labelling the known data in the first

Figure 3.9: Feature extraction by stimulating the model behaviour.
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place, taking into account the database documentation regarding the tumours co-

ordinates, diameters and classes (benign or malign), as well as other relevant visual

features contained in the mammograms, including tissue density (fatty, glandular

or dense) and background artefacts as tags, pectoral muscle and imaging and scan-

ning mistakes.

Then the labelled data are taken as patterns or first centres on which the

algorithm makes a series of linkage-directed iterations between the latest and the

input image feature vectors. Unlike the original, this modification allows the classi-

fying process to associate in the multidimensional space, via the shortest Euclidean

distance, the input image with the pre-labelled training images.

A second modification considered here is the adoption of an enhanced K-

means algorithm, named by its authors the K-means++ [215]. The algorithm

instead of merely assigning the input vectors to the nearest centre, weights the

first ones according to their square distance to the cluster centres, producing by

this simple modification a much faster convergence and a more accurate classi-

fication compared to the original algorithm [215]. The proposed breast cancer

detection method in digital mammograms compares the input image feature vec-

tor concerning the human labelled feature matrix, which is taken as a benchmark

by the K-means algorithm to determine the input image medical condition. The

overall classification process design is charted in Figure 3.10.

To explain more in detail the classification itself, the K-means++ partition-

ing takes the new, unlabelled input vectors to infer if these are whether healthy

or positive (suspicious) swiftly. A message is displayed by the program to the

user whenever a suspicious case is found, along with the inferred abnormality class

(whether it is benign or malign). The diagnosis processing design of a full mam-

mogram considers that it is enough for the classifier to identify at least one single
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Figure 3.10: Flow diagram of the classification and detection design.

vector as suspicious, out of the 256 composing the X-ray mammography, so that

the whole mammography be considered a positive case that needs attention and

follow-up by specialised human medical personnel.

3.3 Experiments and results

The experimental section of the CAD-NARX method intends to describe in detail

the selected case study, the challenges faced during the labelling of the samples,

the resulting image models and the obtaining of the performance values of the

classifier. As mentioned earlier, the development of the proposed method focuses

on extracting a compacted series of feature values capable of representing a di-

gital image of any kind as reliable and fast as possible to produce data useful to

classification. After that, the breast cancer detection problem, a significant public

health problem, was selected to appraise the image processing method.
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3.3.1 Case of study

The specific case of study for the breast cancer detection problem was the mini-

MIAS database of mammograms [212]. This publicly available image set resulted

from a selection of digitised X-ray films obtained from a single primary health

centre associated with the United Kingdom National Breast Screening Programme.

This free-access repository contains 322 films, scanned and digitised at 50-micron

pixel edge, reduced to 200-micron pixel edge so that images are 1024 x 1024 pixels.

Besides, the dataset includes detailed documentation on the character of the back-

ground tissue and, where applicable, class, severity, coordinates and approximate

radius of abnormalities.

All mammograms present a medio-lateral oblique (MLO) view and are grey-

scaled. A greyscale image is a single-channel digital representation which, unlike 3-

channelled RGB images, pixel values symbolise only a quantity of light (an intensity

value ranging from 0 to 255) so that several shades of grey may equal or lay in

between these values.

Figure 3.11: Typical medio-lateral oblique view of images mdb005 -benign-,

mdb009 -healthy- and mdb028 -malign- (from [212]).
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Table 3.2: Database mammogram class distribution [212].

Benign Malign Normal Total

Count 66 52 204 322

Percentage 20.50 16.15 63.35 100

Figure 3.11 shows examples of three breast-type specimens in the selected

database. In the image on the left side there is an X-ray scan of a patient with a

benign anomaly, in the centre a mammogram of a healthy patient and to the right

a plaque of a patient with a malignant tumour.

Note that for the convenience of the visualisation the X-ray films always

present the image background in black, so that the presence of any mass or object

appears in shades of grey becoming clearer in direct proportion to the level of

obstruction of these to the passage of the dark background.

In that way, the denser is an object or abnormality appearing in the mam-

mography area, the thicker and whiter it looks. The average tumour radio of the

image set is 43 pixels for benign and 53 pixels for malign growths. 33% of images

correspond to fatty, 32% to fatty-glandular and 35% to dense breast type. Table

3.2 displays a summary of the database categories distribution.

3.3.2 Setting up of the model parameters

The experimentation process includes tumour detection tests aimed at knowing the

efficiency of the feature extraction method to discriminate between images with

and without tumour occurrence. Separately, experiments were conducted to see the

discrimination accuracy between benign and malign tumours. A pondered random
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sampling was performed within each class to select the training and testing samples

to preserve the overall class distribution of healthy, benign and malign images of

the mini-MIAS data set. The original image set was randomly split and into 222

mammograms for training and 100 mammograms for testing. Such a partition

(69% training and 31% testing) was selected to maximise the number of training

images and to leave at the same time a large enough number of ROI images for

testing.

The first congruency tests of the new classifier utilised small and straight-

forward image sets, including symbol and letter libraries. These tests sought to

verify that the classifier was capable of sorting in an unsupervised way the letter

and symbol images with mutual similarity within the same groups.

After verifying the success in this first step, the 2D-NARX identification

algorithm came into play in the processing of real mammograms. It was adjusted

to a maximum nonlinear degree ` = 2 and maximum lags ny, nu1, nu2, nu3 = 1, as it

was the best balance found regarding representativeness and simplicity. The ROI

size was equal to 64 × 64 pixels given the average tumour size of the database. The

error tolerance of the ERR stop-criterion was 0.15%. The programs were coded

and run in MATLAB R2014b in a computer Dell Optiplex 7020 with IntelCore

i5-4590 CPU at 3.30GHz.

3.3.3 Data labelling and supervised learning

In spite of the high-quality database, numerous artefacts and scanning imperfec-

tions within images were present, such as unknown breast position and orientation

(left or right), duct tapes, orientation tags, low-intensity labels and scanning arte-

facts, as described in [216] for the same database. Besides, there were uneven
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Figure 3.12: Example of a mammogram with several background artefacts (image

274mdb [212]).

contrast levels as well as breast tissue and pectoral muscles dissimilarly positioned

along the images. An example of such difficulties is provided in Figure 3.12, where

the presence of various artefacts represents a potential hinder for the classification

process.

The above difficulties led to carry out a careful data labelling given that the

cancer detection problem involves the care of human lives. The process derived

5335 feature vectors of healthy, benign and malign digital ROI images. One by one,

the mammograms of the test set were subject to comparison with the training data

via the K-means classifier. To decide whether an X-ray mammogram is suspicious,

at least one of its 256 subimages must fall into the benign or malign category.

Otherwise, the entire image is tagged as healthy (see details in Section 3.2.5).
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3.3.4 Resulting image models

This section intends to provide examples of 2D-NARX models identified by the

FROLS algorithm, representing three clinical cases in mammograms containing a

benign, a healthy and a malign sample, according to the documentation attached

in the database. The sample selection took into account the uniformity and back-

ground clarity to ease the visual examination, especially with regard to the presence

of tissue abnormalities. The selected images correspond to those in Figure 3.11

(Section 3.3.1, Case of study) and their full view is in Appendix A.

The information contained in tables 3.3 and 3.5 to 3.9 includes, from left to

right, the thumbnail of the ROI, the index of the model terms sorted out according

to their ERR, the polynomial term included in the NARX model as a sum, the

parameter θi linked to the model term, and finally the ERR estimator, which in-

dicates the contribution in percentage of the term to decrease the model prediction

error concerning the observed data. Note that Equation 3.10 shows how the model

expressed in Table 3.3 takes the form of a mathematical expression.

Models from full mammograms

The first tables correspond to NARX models obtained directly from mammograms,

that is, from 1024× 1024 pixel images of the case study with no close-up or zoom

added over any ROI such as tumours or microcalcifications. The aim of studying

this group is to highlight the proposed method capacity to generate mathematical

models with terms, parameters and structures tailored to the input images. Also,

the exercise seeks to point out the difficulty involved in characterising any abnormal

samples without an adequate zooming-in level over the ROIs. Tables 3.3,3.5 and

3.6 present the first set of examples of image models.
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Table 3.3: Model of a benign mammogram (1024 × 1024 px, mdb005 [212]).

To better explain the NARX model in 2D, the first step is to write the data

in Table 3.3 as an identified model equation as follows.

y(k) = 0.993u3(k − 1) + 0.804u2(k − 1)− 0.795u1(k − 1)

−0.0032y(k − 1)u1(k − 1) + 0.0028y(k − 1)u2(k − 1)

+0.0038u1(k − 1)u2(k − 1)− 0.0033[u2(k − 1)]2 + e(k)

(3.10)

Then, Figure 3.13 shows below the basic model relationship of Equation

3.10 with the 2D image distribution. The unknown variable y in the period k is

determined by the combination of intensity values of the squares (pixels) u1, u2, u3

and y of the period k − 1. In other words, the NARX model predicts the value of

the y box with the information of other specific boxes located on its left.

By observing Figure 3.13, we can see in Table 3.4 that regressors in the time

domain have a two-dimensional equivalence in the new framework.
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Figure 3.13: The output y in time period k can be explained by combining

regressors u1(k − 1), u2(k − 1), u3(k − 1) and y(k − 1) in the proposed model.

When in the coordinate system y equals to y(i, j), the lagged variables equal to

u1(i− 1, j − 3), u2(i− 1, j − 2), u3(i, j − 3) and y(i, j − 2).

Table 3.4: Examples of the equivalence between representation systems for the

proposed method.

Thereby, Equation 3.10 can also be expressed in two dimensions as Equation

3.11 shows next.

y(i, j) = 0.993u3(i, j − 3) + 0.804u2(i− 1, j − 2)− 0.795u1(i− 1, j − 3)

−0.0032y(i, j − 2)u1(i− 1, j − 3) + 0.0028y(i, j − 2)u2(i− 1, j − 2)

+0.0038u1(i− 1, j − 3)u2(i− 1, j − 2)− 0.0033[u2(i− 1, j − 2)]2 + e(i, j)

(3.11)
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The first example in this section (Table 3.3) displays the NARX model of a

mammogram which presents two benign tumours practically spliced in the lower

zone of the breast. Although the method was able to model the whole digitised film

accurately (as the sum of ERR precision values indicates), it was problematic for

the new framework (and presumably for any other analysis) to lead to an accurate

classification without adequately zooming in over the ROI.

Table 3.5 and Table 3.6 represent the models of mammograms with healthy

and malignant cases respectively. It is possible to see that the first three models

are broadly similar to each other in terms of the presence of regressors made up of

the lagged exogenous inputs u1(k − 1), u2(k − 1) and u3(k − 1). As expected, the

no-zoom condition entails a comprehensive characterisation of the total image at

the expense of lower reliability in the classification of tumours, which are nearby

1/256 smaller in proportion.

Table 3.5: Model of a healthy mammogram (1024 × 1024 px, mdb009 [212]).
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Table 3.6: Model of a malign mammogram (1024 × 1024 px, mdb028 [212]).

Models from mammogram partitions

The second group of models represent subimages of 64 × 64 pixels obtained from

the mammogram partition, according to the criteria specified in Section 3.2.1,

which details the divide and conquer procedure used in this chapter.

Figure 3.14: ROI from a malign sample (mammogram mdb005 [212]).
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Figure 3.15: Model fitting to data, benign ROI from mdb005 [212].

Figure 3.14 shows the proportional difference between a subimage and a com-

plete mammogram. Note that that the tumour region is better circumscribed by

the ROI area compared to the full image. The full visualisation or zero zoom level

includes areas of marginal interest for the study.

Three tables showing the NARX subimage models are presented below along

with comparative graphs displaying the model predicted output (ŷ(k)) and the

real observed output (y(k)) to appraise the model fit accuracy. Tables 3.7 to 3.9

contain the subimage models and Figures 3.15 to 3.17 display the the model fitting

graphs.

Table 3.7: Model of a benign ROI (64 × 64 px, mdb005-217 [212]).
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Table 3.8: Model of a healthy ROI (64 × 64 px, mdb009-184 [212]).

Figure 3.16: Model fitting to data, healthy subimage from mdb009 [212].

Table 3.9: Model of a malign ROI (64 × 64 px, mdb028-182 [212]).
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Figure 3.17: Model fitting to data, malign ROI from mdb028 [212].

Since the proposed feature extraction and classification method is designed to

analyse at subimage zoom level, it is relevant to present NARX subimages models

to illustrate and understand what the models consist of and how do they vary from

case to case. In the model fitting to data plots we can observe that the models’

capacity to adjust to the learning data was high.

By comparing full mammogram models versus ROIs models, the second group

of models contains, mathematically speaking, more distinctive features such as

a particular model structure, a higher nonlinearity level and more diversity of

candidate model terms in the final solution than the first group. This finding

indicates that in breast cancer detection, 64 × 64 subimage models can better

capture more image features because they link together more elements, are much

more diverse among themselves and are more responsive to intensity changes than

further away zoom image models.

Regarding the analysis of the case studies presented above, we can see that

the benign model has very little dependence on non-linear terms, although there

is a high presence of exogenous inputs. Its adjustment to real observations is in
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practice excellent, where there are data fluctuations from medium to light-grey

intensity tones.

The model from a healthy subimage, instead, showed an important model

term diversity but a higher dependency on non-linear terms and a consistent pres-

ence of autoregressive terms. Its adjustment to observations was high, where data

fluctuation from dark to medium grey intensity levels were present. The malign

model had a balanced presence of linear and nonlinear terms, but it was entirely

dependent on exogenous inputs. Its adjustment to data was also high, where clear

to medium grey tones became darker (lower intensity values) at the end of scan

position.

Although the data-overfitting is usually a negative factor in predictive models,

nearly always designed at having good generalisation properties, the context of

feature value extraction allows contemplating the accurate adjustment of models to

the data as highly desirable, since it contributes to good image representativeness.

3.3.5 Classification performance metrics

For the sake of feasible comparisons and more interpretable results, the measures

of decision performance selected for this study are accuracy, sensitivity, specificity,

positive predictive value (PPV) and negative predictive value (PNV). A detailed

description of these metrics is reported in Section 2.4.2.

3.3.6 Classification and detection results

With the database partitioned into 222 and 100 images for training and testing,

as noted in Section 3.3.1, the initial testing results are summarised in Table 3.10.

These results only represent the count of hits and mistakes of the 2D-NARX.
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Table 3.10: Partition data and initial 2D-NARX results.

Testing database partition

Instance Counting

Total mammograms 100

Documented positive cases 43

Documented negative cases 57

Classifier hits and mistakes

Instance Counting

True positives 40

False negatives 3

True negatives 51

False positives 6

The results related to classification performance metrics are summarised later in

Table 3.11. Finally, a comparison of the decision performance between the new

method and previous parametric models for breast cancer detection is displayed

in Table 3.12, where, although the same metrics are used, most reported methods

use different databases so a cautious approach is recommended.

The assessment of the method’s capacity to discern among benign and ma-

lign tumours took place separately. 240 ROIs were chosen for testing through a

pondered random sampling and according to the original distribution, with all ROIs

containing fully or partially the abnormality, according to the image-coordinates

and approximate radius listed in the mini-MIAS documentation. The method ac-

curacy for this test was 94.16%. As for the runtime, the average processing length

per subimage was 1.7 seconds.
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Table 3.11: 2D-NARX tumour detection results.

Performance measure Result

Accuracy 91%

Sensitivity 93.02%

Specificity 89.47%

PPV 86.96%

NPV 94.44%

Figure 3.18 exemplifies 4 cases made through the 2D-NARX image character-

isation to ease a visual appraisal of the new method. Upper subimages are positive

or negative cases identified by the new method. Lower ROIs belong to samples

of the training set which helped the classifier to attract the corresponding image

above each. All examples are actual ROIs/subimages of 64 × 64 pixels extracted

from mammograms of the mini-MIAS database [212].

Table 3.12: Comparison of 2D-NARX with previous parametric methods.

Model Reference Image set Acc. % Sens. % Spec. %

1D-ARMA [10] U. of Illinois 78.5 59.5 79.7

2D-ARMA [10] U. of Illinois 93.8 92.3 94.1

2D-ARMA [11] DDSM 96.5 96.9 97.8

AR-QUS [12] Sunnybrook H. 83 88 91

ELM [7] mini-MIAS 91 90 98

2D-NARX [217] mini-MIAS 91 93 89.5
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Figure 3.18: Microcalcification (a) falling into the benign class thanks to sample

(b). Subimage (c) falling into the healthy class thanks to healthy sample (d).

Malign tumours (e) and (g) falling into the malign class tanks to samples (f) and

(h) respectively (images from [212]).

3.4 Discussion

� This work presents a new method that identifies linear and nonlinear features

from digital images to produce useful information to classification and de-

tection aims. The model design aimed at converting the image data into the

input-output system format in the first place. This step included tests with

different neighbourhoods and raster scan step sizes. Such drawback came

from the approach novelty and the omission of many authors in describing

this step in detail.

� For the first time, the NARX model as a system identification method for

digital images and as a CAD procedure for the classification of the medical

condition and the detection of abnormalities in digital mammograms.
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� The use of nonlinear system identification models with flexible structure and

model order within image processing enhances the spectrum of CAD sys-

tems for breast cancer detection based on parametric models. However, the

algorithm is not limited to mammogram analysis or medical image analysis.

� Experiments with the mini-MIAS database of mammograms revealed that

the new method produced ad-hoc model structures while included nonlinear-

ities in the image models for the sake of a richer representation.

� As to classification metrics, the algorithm showed a superior sensitivity (93%)

but lower specificity (89.5%). These values mean that the failure of noticing

tumours was low, but false alarms could be produced together with unneces-

sary expenses by follow-up examinations. The PPV of 87% indicates that

if a positive case is detected, an additional examination is recommended to

confirm the suspicion. NPV of 94.5% points out that negative results (normal

condition diagnosis) are safer to regard by the medical staff.

� As regards the ROIs, the new algorithm was capable of discriminating benign

from malign samples (94%) despite a significant similarity between these two

classes in many ROIs. The recommended method did not attain the highest

numbers, it stood competitive against previous algorithms getting a high

sensitivity, a below-average specificity, and a standard accuracy.

� The adaptive NARX modelling showed to be capable of avoiding identifica-

tion traps, as the estimation of too simplistic models from images containing

many information. Figure 3.5 explains the raster scan strategy to avoid such

problem by fully constraining overlaps between consecutive scan positions.

For instance, this strategy would prevent the creation of the overly simplified

model y(k) = y(k − 1) to describe a complex system. That model would
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imply that to predict the value located at any position y(k) it would only be

necessary to know the information at y(k− 1), which is rather a plain model

without any descriptive value.

� The supervised learning process involved the human labelling of a large

quantity of data, entailing a high cost concerning the person-hours spent

and extending the development time estimated initially for this project.

� The fact of carrying out an unsupervised training can easily lead to confusing

or misleading classification results, which in medical diagnosis could mean a

severe problem that can risk human lives. Given such a scenario and for the

sake of increasing the classifier sensitivity, a necessary but time-consuming

effort was made during the data labelling to include as possible malignant

and benign samples not only from different mammogram zones around ROIs

but also from mammogram rotations.

� The recommended algorithm presented limitations and areas of development

such as the mistaken, although rare, identification of identical NARX models

for two different subimages. To minimise the problem, the image characteriz-

ation added rotation angles to enrich the feature extraction process. Besides,

the new method did not leverage the model structure information, an ap-

pealing system identification attribute, to the feature extraction process.

� The above limitations took place in favour of a newly developed identifica-

tion design that promoted the creation of regular-sized feature vectors. This

achievement based on the use of different fixed signals focused on producing

model responses to be processed by statistical inference.

� Future work includes the feature vector enhancement through a reselection

of statistical estimators, an in-depth exploration of the NARX model set-up
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since higher order terms and more input variables can help to enrich the im-

age models, the inclusion of additional preprocessing techniques to normalise

uneven contrast levels between mammograms without altering the essential

image information and the design of strategies that best map the NARX

model structure since it has not been previously seized in image character-

isation and can represent a competitive advantage.



Chapter 4

Image classification by MSRBF

networks and DCT

The previous chapter presented a new approach to image feature extraction via

the NARX model to improve the scope of nonlinear system identification to tackle

the breast cancer detection problem. The work presented in this chapter aims

at extending the above concept by using the multiscales RBF networks, a non-

linear system identification technique that is powerful but never before used in

image processing. The discrete cosine transform is incorporated to characterise

the image model and retrieve feature values of reduced dimensionality and high

representativeness. Classification results show that the new method reached a very

competitive diagnosis accuracy.

The highlights of the proposed method are:

� A 2D NARX image mapping and its adaptation to multiscale radial basis

function networks.

� The solution of the MSRBF network using the FROLS algorithm.

� A DCT-based feature extraction process for enhancing the image character-

isation.

107
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� The creation of a CAD system based on the MSRBF DCT framework.

Section 4.3 reports the classification test results in a public database of di-

gitised mammogram films.

4.1 Introduction

Digital image processing and computer vision techniques encompass an increasing

variety of approaches to real-life problems. When it comes to image classification,

image processing methods aim at recognising both visible and hidden patterns

to enable a subsequent statistical inference process, oriented in the first place to

extract feature values to feed such analytic process [1]. Among the last ones, there

is increasing acceptance in the literature on system identification approaches, which

are mainly focused on building models only based on the historical record of the

system’s inputs and outputs [88]. This kind of models is also capable of recognising

and reproducing behavioural patterns from a system’s behaviour without prior

knowledge of its inner structure. Such pattern recognition capability is what makes

system identification models highly appealing in image processing. Figure 4.1

shows the core of the system identification scheme.

Computer-aided diagnosis (CAD) is a field of intense development that bridges

image processing and computer vision disciplines to the medical field, especially in

visualisation and diagnostic tasks. CAD has made the most of the current advances

in intelligent systems. Examples are software supporting platforms for radiologists

in decision-making [34]. One of the most popular system identification approaches

in CAD systems is represented by artificial neural networks (ANN) given their

excellent modelling capacity.
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Figure 4.1: Predicting the unknown system’s behaviour via system identification.

Moreover, many experts in CAD systems rely more frequently on the use

of multi-layered ANN with the intention of obtaining even better approximations.

However, the more the hidden layers are included in the network, the slower and

more complex the model training becomes. Conversely, single hidden layer net-

works, as radial basis functions, are known to be sufficient to estimate any con-

tinuous function independent of the linearity degree [88],[155].

Radial basis functions (RBF) are popular kernel-based networks which rep-

resent a particular class of ANN. Kernels are mathematical functions contributing

together to simulate a higher dimensional space from another one of lower dimen-

sion to ease the adjustment of relationships between the data by expressing it in

a new way. The kernel methods were incorporated into neural networks by 1990s

through SVM to solve machine learning-related problems such as classification,

regression and object recognition [218]. The popularity of kernels spread later to

principal component analysis (PCA), which solves problems with centred data (or

zero mean) and is focused on features or principal components of variables linked

to the input space [219]. Another popular variation is the polynomial kernel. It
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uses the information contained in a group of monomials by initially extracting from

these the product features to feed the learning algorithm subsequently [220].

As to probabilistic models, the kernel method incorporated Gaussian pro-

cesses, also named radial basis function kernels, the most commonly used at present

[219]. In spite of some kernels have specific applications, there is not a universal

choice for all problems. However, Gaussian kernels have shown to outperform other

kernel alternatives in classification problems [221]. Besides, RBF kernels hold a

linearly weighted structure that eases the training and discards more complex non-

linear procedures in the solution algorithm, so they are efficient at solving nonlinear

system identification problems [155].

Note that nonlinear image analysis has proven to be necessary for an increas-

ing number of areas, and digital image processing is not an exception. Exclusively

linear procedures in images may lead to poor operational results regarding edges,

non-Gaussian noise and other random distortions, factors that can be especially

dangerous when a high accuracy analysis is needed [4],[5],[6].

Notwithstanding that RBF networks sound like a good choice due to their

power of modelling and solving simplicity, the approximations they produce may

lack the flexibility to model highly dynamic or rapid changing systems. An al-

ternative to this limitation is the multiscale version of RBF, termed Generalized

Multiscale RBF networks (MSRBF) that provide a trade-off among the model-

ling straightforwardness of RBF networks and the advantages provided by more

complex deeper networks [222].

Until the presentation of this work, MSRBF networks have not been used

in image processing techniques and even less in CAD systems. In this work, the

MSRBF networks philosophy is adopted and combined with the discrete cosine
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transform to extract high-quality information from images with classification pur-

poses. Moreover, this chapter proposes the NARX mapping of digital images to an

autoregressive input-output system format (explained earlier in Chapter 3) with

the purpose of making the digital image information consistent with nonlinear

system identification problems. Tests results show that the new method is very

competitive as a CAD system in breast cancer image detection, an important and

challenging public health problem.

Previous work on RBF networks is abundant and a review of the most rep-

resentative and related techniques was carried out in Chapter 2. In short, RBF

networks have been used in general applications as the prediction of near-earth

geomagnetic field [15], face recognition [83], [159], modelling and identification of

dynamical systems [158], three-dimensional object recognition [160], and motor

systems control [161], and in CAD systems involving pathological brain detection

[163] and breast cancer detection [7],[162],[8],[9],[204].

This work puts forward a novel image processing framework for feature ex-

traction based on an improved version of RBF networks, adding to it the ad-

vantages of the DCT information compression and adapts the new methodology

successfully to CAD systems for breast cancer detection. This chapter describes

the information flow and the logic behind the proposed method, including all ad-

opted algorithms. Section 3 shows the experiments and results of the methodology.

Finally, Section 4 presents a discussion on the findings, difficulties and future work.
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4.2 The MSRBF DCT methodology

The MSRBF DCT feature value extraction method bases its logic on four main

algorithms: conversion of the image data into the NARX format, the multiscale

version of RBF networks, the FROLS algorithm and the discrete cosine transform.

The adjustment of the new methodology into the CAD point of view involved

the image partition into subimages or regions of interest (ROIs) in the first place.

As in chapter 3, ROIs are regarded here as the standard processing units, where

a 64 x 64 pixel-size was assigned to better enclose the ROIs such as tumours and

microcalcifications including the surrounding regions. Besides, a splitting process

was included to deepen the analysis scope of this work as for the objects’ position

detection in the ROI area and to produce a two-fold and parallel characterisation

(Figure 4.2). In the figure, a complete subimage is observed on the left side,

followed by its dual partition on the right. the new two-fold ROI characterisation

aims to improve the ability of the framework to retrieve the size and object position

from the image more effectively since it helps to allocate information from an image

zone into a feature vector section.

Figure 4.2: ROI splitting for a two-fold characterisation.
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Figure 4.3: MSRBF model approximation flowchart.

As for the image processing, each ROI split is read and stored according to the

input-output system format at first. Then, such data must be processed to derive a

convenient number of data centres. The referred centres represent artificial neurons

or functions contained in the singleton hidden network layer. In this work, the

mathematical structure of each neuron-function is the standard Gaussian function,

defined alongside the complete processing in the following section.

At the end of the image modelling process, the structure selection algorithm

FROLS comes into play to assess the candidate neurons and include the most

representative terms into the model. The solution of a system of linear equations

of the form Ax = B for x, where A equals the selected terms, x is the vector

of parameters θ, and B is the vector of the output y, is processed to obtain the

parameters or weights w of the model. Figure 4.3 shows the MSRBF network

information flow within the new methodology.
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Once the model is available, a set of input signals is used to excite the model

and generate a corresponding output signal series, whose values are processed via

the DCT and assembled to obtain a feature vector. The same process is repeated

with all mammogram’s ROIs to compare the final vectors to pre-tagged samples

corresponding to healthy, benign or malignant class utilising a distant-based clas-

sification algorithm.

4.2.1 Discrete-time system structuring

At this stage, the method aims to scan image data similarly to time series, where in-

stead of discrete time periods, adjacent pixel neighbourhoods lay distributed along

the image. From the system identification perspective, the way of representing

such data must be congruent with the following equation:

y(t) = f̂(x(t)) + e(t) (4.1)

in which the output y(t) is explained by a nonlinear function f̂ and an error

sequence e(t). Based on the 2D-NARX model describing a single-input-single-

output (SISO) system, the nonlinear function is compound together by a list of

input-output regressors as follows [217],[88]:

y(t) =f̂ [y(t− 1), y(t− 2), · · · , y(t− ny),

u(t− d), u(t− d− 1), · · · , u(t− d− nu)] + e(t)
(4.2)

where f̂ is an unknown nonlinear function, y(t) is the sequence of the system

output, u(t) is the sequence of the system input, nu and ny are the maximum lags

for the system inputs and output (set up in this work equal to 1), and d is a time
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delay auxiliary value, set here to d = 1. According to the more complex NARX

representation for a multiple-input-single-output (MISO) system seen in Chapter 3,

aimed at producing a richer feature extraction, the vector x(t) = [x1(t), · · · , xd(t)]T

is defined as a set of regressors in the following way:

xb(t) =

y(t− b), 1 ≤ b ≤ ny

u(t− (b− ny)), ny + 1 ≤ b ≤ ny + nu

(4.3)

where nu and ny are the maximum lags for the input u and the output y respectively

and b is an auxiliary value. Taking into account the previous description, the

vector of basic cross-coupled regressors to be combined in the 2D case within the

function expansion of this chapter is defined as xb(i, j). The last representation

shift aimed at addressing the bi-dimensional image processing problem of this

chapter, compared to the simpler time series problem that depends on a single

variable. Please note that Section 3.2.2 details the two-dimensional modelling of

this process. With this in mind, Equation 4.3 defines the set of regressors of as

follows:

xb(i, j) =



y(i, j − 2b), 1 ≤ b ≤ 1

u1(i− 1, j − 1− 2(b− 1)), 2 ≤ b ≤ 2

u2(i− 1, j − 2(b− 2)), 3 ≤ b ≤ 3

u3(i, j − 1− 2(b− 3)), 4 ≤ b ≤ 4

(4.4)

where the maximum lags ny, nu1, nu2, nu3 were fixed in 1 and b is an auxiliary value,

following the actual model set up to be seen in Section 4.3.
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4.2.2 Traditional RBF and 2D MSRBF neural networks

Traditional RBF neural networks

Traditional RBF networks are known to be straightforwardly structured, but with

a considerable power to identify a whole range of systems, including those with

irregular data [223]. However, single-scale RBF networks may have modest gen-

eralisation qualities [222]. Generalised multiscale radial basis function networks

(MSRBF) provide a favourable trade-off between easy to solve traditional RBF

networks and the modelling advantages of multi-layer networks, which more than

often include various hidden layers and involve nonlinear optimisation steps in the

solution process [222]. MSRBF networks are multiscale because on the one hand,

the kernel function included is Gaussian, and on the other, such Gaussian function

has several widths or scales.

As mentioned, the present work includes the Gaussian kernel, for it allows

to easily use centres and widths for an added modelling flexibility, as it enables

the structure detection algorithm to choose from more options for a better rep-

resentation. Figure 4.4 exemplifies how the Gaussian neuron-function processes

the input data x according to the parameters µ (mean or kernel centre) and σ

(standard deviation, widths or scales) generating a bell-shaped distribution curve

in the output.

The Gaussian kernel is known as a multidimensional universal approximator

of functions converting a dimensional space into another corresponding one, but

with different dimension (usually longer) that helps to linearly separate any type

of input data with non-linear dependencies (like most of the real-life problems) to

make features or information easier to extract and interpret by machine learning

algorithms. The RBF neural network bases its effectiveness on this advantage and
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Figure 4.4: The shape of the Gaussian function contained in the RBF kernel.

approximates the unknown nonlinear function f̂ utilising a weighted sum of Gaus-

sian radial functions. Figure 4.5 shows the typical architecture of RBF networks.

The RBF structure consists of three layers, where the first one represents

the input data linked to the independent variables x1, · · · , xm. The first layer is

fully connected to the second intermediate layer, formed by the Gaussian neurons

Figure 4.5: Multiple-input single-output architecture of a Gaussian RBFNN before

the multiscale expansion to be shown in Figure 4.6
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φ1, · · · , φn. The second intermediate layer is in turn fully connected to the third

layer or output layer, employing the kernel weights w1, · · · , wn, which are part of

the result of the network training. Note that in the context of the neural network,

the Gaussian functions parameters ci for the centres and µi, for the widths are not

given in the problem and thus must be computed automatically from data. For

this reason, RBF networks are nonparametric methods. The general formulation

of the standard RBF for a one-dimensional system is the following:

f̂(x(t)) =
M∑
i=1

θiφi(x(t);σi, ci) (4.5)

where φi is the Gaussian kenrnel, x(t) is the vector of independent variables (which

in the NARX model are rather regressors), σi = [σ1, · · · , σn] is the vector of para-

meters of the scales or widths and ci = [c1, · · · , cn] is the vector of parameters of the

kernel centres. In such a way, the Gaussian kernel function for a one-dimensional

system is stated as follows:

φi(x(t) : σi, ci) = exp

[ d∑
b=1

(xb(t)− ci,b
σi

)2]
(4.6)

where d = nu+ny, being nu, ny the maximum lags for the system input and output

and b an auxiliary value for indexing the regressive variables contained in x(t).

Two-dimensional MSRBF neural networks

The MSRBF network implemented in this new framework adopts the multiscale

approach as a primal contribution together with the two-dimensional perspective

to tackle the image processing problem. The multiscale extension to RBF, as the

name suggests, multiplies the scales or widths of each kernel function with the aim
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Figure 4.6: Increase in the number of RBF neurons produced by the multiscale

approach regarding the architecture shown earlier in Figure 4.5

of expanding the flexibility of the single hidden-layer neural network and better

approach the non-linear function f̂ .

Figure 4.6 describes the structure of MSRBF neural networks, where the vec-

tors of the input layer are fully connnected to the Gaussian kernel functions φp,q,m

(defined originally in traditional RBF networks as φi). The number of functions

represents the number of kernel centres cm. The hidden layer neurons are fully

connected to the output layer by means of a series of weights wp,q,m corresponding

to the model parameters θp,q,m stated below in Equation 4.7. The 2D MSRBF ver-

sion replaces the vector of regressors x(t) (Equation 4.3) by the two-dimensional

vector x(i, j) (Equation 4.4).
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The 2D MSRBF network implemented in this work presents the following

mathematical structure, which is an adaptation of a definition presented in [222].

y(i, j) = f̂(x(i, j)) =
P∑
p=0

Q∑
q=0

Nc∑
m=1

θp,q,mφp,q,m(x(i, j);σ(p,q)
m ; cm) (4.7)

where y(i, j) is the system output, x(i, j) is the vector of bidimensional regressors

composed of lagged inputs and outputs, σ
(p,q)
m are the scales, cm are the candidate

centres with Nc representing their quantity in the network, φp,q,m are the basis

functions and θp,q,m are the model weights to be estimated during training. In that

way, the basis functions previously defined in traditional RBFs (4.6), are defined

in the 2D MSRBF network as:

φp,q,m(x(i, j) : σ(p,q)
m , cm) = exp

[
−

d∑
b=1

(xb(i, j)− cm,b
σ
(p,q)
m,b

)2]
(4.8)

where in the same fashion, φp,q,m is the general Gaussian kernel, σ
(p,q)
m are the

Gaussian multiscales, cm are the Gaussian centres, b is an auxiliary value index-

ing the variables contained in vector x(i, j) and d = ny + nu1 + nu2 + nu3 , being

nu1 ,nu2 ,nu3 and ny the regressive variables of the multiple-input-single-output net-

work design proposed in this chapter. However, special attention must be paid in

the determination of the Gaussian parameters.

Estimation of the kernel centres

The proposed method includes the implementation of an adaptive algorithm to de-

termine the number of centres Nc (and therefore, the number of Gaussian functions

in the hidden layer), taken from the work of [222] and [224]. In the first place, the
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sum-of-squares clustering algorithm acts as a criterion for estimating the number

of centres. The algorithm includes the following steps:

1. The input data, composed of N rows and p columns, is divided into an

arbitrary number of k initial groups G1, · · · , Gk.

2. The geometry centre (centroid) cj of each group Gj is obtained.

3. The variability dj per group is estimated by summing all distances of zi with

respect to the centroid cj:

dj = 2
∑
i∈Ij

‖zi − cj‖2 (4.9)

where the vector zi is the ith row of input data belonging to the group Gj.

4. The variability function of k, Wk, is estimated by summing the dj of all

groups.

5. The process is repeated from step 1 to 4 using different k values to estimate

their variability function Wk.

6. The difference in the variability function of k values involves the following

formula:

DIFF(k) = (k − 1)2/pWk−1 − k2/pWk (4.10)

7. The following equation helps to compute the effectiveness of each k by com-

paring the values obtained in step 6:

E(k) = |DIFF(k)/DIFF(k + 1)| (4.11)

8. Finally, the recommended k value, or number of centres Nc, is that one

maximising the function E(k).
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After the estimation of the number of kernel centres, the K-means++ al-

gorithm [215] is used to compute a corresponding number of centroids from the

N × p size input data matrix.

Estimation of multiple scales

As for the scales, a two stages determination was carried out, according to the

strategy recommended in [222]. The idea behind this aim is to estimate a single

scale by basis function φi in the first place followed in turn by the computation

of the quantiles (points taken at regular intervals) resulting from the first scale.

Thus, the equations below define the first single scales.

σy = max{y(i, j)} −min{y(i, j)} (4.12)

σur = max{ur(i, j)} −min{ur(i, j)} (4.13)

where σy is the initial scale for the output and σur are the initial scales for the

inputs ur = [u1, · · · , uR] of the MISO system. For the calculation of the multiple

final scales, the following formula, taken from [222], is used to expand σy and σur :

Λ(p,q)
m = diag

[
(σ(p)

y,m)2, · · · , (σ(p)
y,m)2︸ ︷︷ ︸

output y

, (σ(q)
ur,m)2, · · · , (σ(q)

ur,m)2︸ ︷︷ ︸
input ur

]
(4.14)

where Λ
(p,q)
m are the covariance matrices for the values p = 0, · · · , P and q =

0, · · · , Q, ur are the system inputs and σ
(p)
y,m = 2−pσy and σ

(q)
ur,m = 2−qσur are the

quantiles linked to the output and input initial scales. In this work, the values of

P and Q were fixed in 1 and the number of system inputs, R, in 3. Therefore the

scales contained in (4.14) can be disaggregated as follows:



Chapter 4. Image classification by MSRBF networks and DCT 123

σ(p)
y,m =

[
(σy2

0)2, (σy2
−1)2

]
=
[
(σy)

2, (σy/2)2
]

for all m (4.15)

σ(q)
ur,m =

[
(σur2

0)2, (σur2
−1)2

]
=
[
(σur)

2, (σur/2)2
]

for all m (4.16)

where ur = [u1, u2, u3] corresponds to the system inputs, σy and σur are the initial

scales for the output and the inputs obtained in Equations 4.12 and 4.13, and m in-

dicates the kernel centre, where m = 1, · · · , Nc. Note that in this chapter Nc equals

the number of centres k recommended by the sum-of-squares clustering algorithm,

examined earlier. With the above definitions, a more explicit representation of the

multiscale radial basis functions expressed in Equation 4.8 is:

φp,q,m(x(i, j) : σ(p,q)
m , cm) = exp

[
−

ny∑
b=1

(xb(i, j)− cm,b
σ
(p)
y,m

)2
−

d∑
b=ny+1

R∑
r=1

(xb(i, j)− cm,b
σ
(q)
ur,m

)2] (4.17)

where d = ny + nu1 + nu2 + nu3 and R = 3 is the number of system inputs. After

the definition of the kernels, a matrix of candidate functions must be constructed

to allow the FROLS algorithm to select the model structure.

4.2.3 Model structure detection

By taking into account that the number of scales in a MISO system is Ns =

(P +1)(Q+1)R and that the model set up in this work was P = Q = 1 and R = 3,

the initial number of Gaussian centres k of this work was scaled Ns = (2)(2)3 = 16

times in the MSRBF network, similarly to the structure expansion shown earlier in

Figure 4.6. Following up on this idea, the number of M candidates of the MSRBF

network in a MISO system is M = NcNs, where Nc is the number of kernel centres.
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The listing of the M candidates gains importance in the structure detection

algorithm since it makes use of a dictionary containing M candidate functions,

from which the selection process is carried out. The following dictionary with

triple index D3 enlists the basis functions in the following manner:

D3 =
{
φp,q,m(·, σ(p,q)

m , cm) for all p, q,m
}

(4.18)

where p = 0, · · · , P , q = 0, · · · , Q and m = 1, · · · , Nc. The forward orthogonal

least squares regression (FROLS) algorithm [225] is designed to build, term by

term, the best and most concise models by taking into account D3, the pool of

candidate terms. FROLS is initially based on the original OLS estimator [185],

which iteratively looks for the candidate terms that best minimise the error re-

specting the model output y(t) by using the ERR estimator. The orthogonalisation

algorithm helps to exclude from the selection the candidate terms which content

is redundant to that already included in the model.

However, the ERR estimator in the OLS is biased towards the inclusion of

terms sorted first in the model equation [88]. The FROLS algorithm contributes to

removing that shortcoming by adding a reordering of the candidate terms within

the equation, leaving out biases of any kind in the inclusion of the most significant

candidates. Section 2.3.1 gives a detailed explanation of the FROLS algorithm. In

this chapter, the stop-criterion of the FROLS algorithm changed to an IF function

to limit the number of terms. Thus, the model detection ends up when the error

tolerance is satisfied or when the model is long enough.
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4.2.4 Feature extraction and the DCT

Feature extraction

The feature extraction module of this framework works out from the image models

estimated by the MSRBF network. Similarly to the grey box stimulation-response

process seen in Chapter 3, in this work a finite number of fixed signals are used to

obtain responses from the MSRBF model. However, unlike the 2D NARX model,

the featuring process of the model’s response signal includes the discrete cosine

transform (DCT) to improve the representativeness of the image values concerning

the quality and the quantity. This improvement is because the featuring of the

model’s output response signal takes place through a direct data transformation

instead of external measures based on statistical measures, which can be useful

but can ignore information when measuring from the outside. Section 2.1.6 and

the following subsection explain the basics of the DCT algorithm.

Figure 4.7: Flowchart of MSRBF-based image processing for feature extraction.
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Figure 4.7 shows a scheme of the MSRBF-based image processing method,

where the excitation of image models and the DCT play essential roles. The idea

behind using the DCT is to obtain feature vectors of the same size. Another idea

behind is its capacity to allow the choice of an identical number of coefficients per

image and therefore create normal feature vectors. Below is a description of this

data transformation.

The discrete cosine transform

The discrete cosine transform [80] is a function that computes a sequence of dis-

crete values out of a first sequence. The resulting coefficients are calculated by

summing cosine functions valued at various frequencies, producing an oscillating

effect in the resulting numbers. A relevant contribution of the DCT is the data

compression capability for audio and image processing applications, including pat-

tern recognition [1]. A simple way to explain the DCT is to imagine a vector of a

certain length and the DCT as a transformation matrix so that the product of the

first two results in a second vector of the same length but with the information

concentrated in fewer coefficients. Because of this quality, it is easy to reorder and

leave out the less important values. More formally, the DCT for a data sequence

X(i), i = 0, 1, · · · , (N − 1) is:

Fx(u) =


√
2
N

∑N−1
i=0 X(i), u = 0

2
N

∑N−1
i=0 X(i) cos (2i+1)uπ

2N
, u = 1, 2, · · · , (N − 1)

(4.19)

where Fx(u) is the ith DCT coefficient. Figure 4.8 illustrates a graphic example of a

2D DCT compression . In the example, it is possible to appreciate the information

compression effect to only a few values of the image, compared with the original
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Figure 4.8: Example of 2D DCT information compression in a ROI.

image. This same effect applies to the analysis in one dimension, where the first

few coefficients concentrate the resulting information compression.

4.2.5 Classification and detection

The classification module is the connection between the feature extraction process

and CAD systems. It links the feature vectors from the supervised, pre-labelling

Figure 4.9: Role of the MSRBF DCT into a classification-based CAD system.
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task with the unlabelled feature vectors of the image to classify according to the

case study’s classes. Figure 4.9 aims to ease the information flow visualisation of

the proposed framework. In the chart, we observe two separate parallel processes

of image data extraction converging into the detection/diagnosis module, based

on classification. The difference between classification and diagnosis is that the

first one associates the input vector with a class. The diagnosis module uses the

classification results to interpret the patient’s condition and displays a message easy

to understand. For classification, the distance-based K-means++ algorithm was

selected [215]. The standard algorithm K-means inspired this technique. However,

K-means++ holds the advantage of using an improved seeding method to choose

centres, producing an efficient classification up to 70% faster [215].

4.3 Experiments and results

The assessment of the MSRBF DCT method engaged various experimental steps.

The chosen repository was the mini-MIAS database of mammograms [212]. The

public repository includes 322 high-quality grayscale X-ray films of 1024 × 1024

pixels of the medio-lateral oblique view of the breast in PGM format. The evalu-

ation goal was to assess the quality of the feature extraction method by evaluating

its classification quality for a defined set of mammograms with information at-

tached to them regarding the medical condition class and the background tissue

type. The database distribution regarding the breast tissue type is detailed in

Table 4.1.

A randomised data-splitting of the 322 breast scans of the database was made,

following a 65% to 35% ratio for training and testing with the aim of reducing the

chance of attaining biased performance metrics. Furthermore, to counteract the
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Table 4.1: Database breast-type distribution [212].

Fatty Fatty-Glandular Dense Total

Count 106 104 112 322

Percentage 32.92 32.3 34.78 100

high image variability regarding the breast tissue type, n = 4 different training

and testing scenarios with different tissue background composition were carried

out aimed at, on the one hand leaving in evidence potential differences in the

classification results and on the other to get a set of final performance measures

with minimal bias.

In that way, the global accuracy for a n number of training and testing

scenarios is defined by Accuracyn = average(Accuracy(i)), where i = [1, · · · , n]

symbolises the ith test. All programs were coded in MATLAB R2014b 64-bit

and executed in a computer running the Windows 7 Professional operating system

with Intel (R) Core (TM) i5-4590 processor at 3.30GHz speed, running MATLAB

2014b.

The assembly of a matrix of 21,637 feature vectors for data labelling pro-

duced 95.5% of vectors belonging to the normal class, and 4.5% identified as ab-

normal, being 2.29% benign and 2.21% malign. The error tolerance of the ERR

stop-criterion was 0.15%, and the maximum number of terms was 2. Once the

mammogram partition into ROIs (divide and conquer) was done, the feature vec-

tor extraction and feature vector labelling of the complete database took place by

processing the subimages into vectors and matching the database documentation

with these vectors. After the full database characterisation it was possible to build

any feature matrix for a specific training partition through the creation a subset
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Table 4.2: Two pairs of fit-to-data curves and ERR values. ROI from [212].

of the entire matrix database via the removal of the mammogram-related vectors

selected for testing.

The initial evaluation aimed at judging the ability of the model to fit the

observational data. Table 4.2 shows the example of a dense tissue-type subimage

or ROI, its subdivisions (for a two-fold characterisation) and the error reduction

ratio (ERR) of the models concerning the data of each case. The table above

includes a plot overlying the fit of both models versus the original data. It is

possible to observe from the chart that the model adjustment is reliable in both

cases since the curves of the predicted output and the original data overlap each

other in both pairs of curves.

To expand the evaluation of the MSRBF DCT image model to forecast the

observed data, five performance measures conventionally used in machine learning
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Table 4.3: Indices for precision validation for the two pairs of model prediction-to-

data curves displayed earlier in Table 4.2.

MSE MAE MAPE RMSE NRMSE

Upper ROI 7.2246 2.097 1.06 2.6879 0.0517

Lower ROI 66.4114 1.8062 1.4843 8.1493 0.0613

and forecasting were estimated and presented in Table 4.3, which incoporates the

Mean squared error (MSE), the Mean Absolute Error (MAE), the Mean Absolute

Percentage Error (MAPE), the Root-Mean-Square Error (RMSE) and the Norm-

alised Root-Mean-Square Error (NRMSE). The formulations and in-depth analysis

of the above measures can be found in [226] and [227].

The MSE measures the prediction quality using the square average of the

deviations, where errors are highly penalised. The RMSE is the most used metric

in regression models and uses the standard deviation of the prediction error. It

amplifies significant errors and is more robust than MSE. The MAE averages the

absolute values of the prediction errors and is easier to interpret than the RMSE.

The MAPE provides an intuitive interpretation by using the percentage of error

between prediction and data. The NRMSE is the standardised version of RMSE

and is ideal for comparisons because it is more robust to unit changes.

From the tables 4.2 and 4.3 some observations can be made. In general, the

deviation values in both settings are low, taking as reference the original scale where

the intensity value goes up to 210. Visually, the adjustment of the two curves is

quite good, but the values of MSE and RMSE penalised the Lower ROI prediction

strongly, with values of 66.4 and 8.1 compared with 7.22 and 2.68 for the upper

ROI. Conversely, the MAE value indicates that the deviation of the upper ROI is
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Table 4.4: Six ROI pairs, each aligned vertically, and below them the Euclidean

distance between their feature vectors. These vectors are obtained from the image

model output’s DCT compression. Note that the more the visual difference, the

larger the gap. Images from [212].

the highest, which suggests that the lower ROI adjustment is rather trustworthy.

With the above, it can be inferred that the MSRBF DCT model makes reliable

predictions in general, although its accuracy can decrease when sudden changes

in intensity level occur, such as those of the low ROI image. After this point, the

feature extraction assessment focused on the consistency of the Euclidean distance

between pairs of feature vectors. The Euclidean distance is the length in the space

between two points, say a(x1, y1) and b(x2, y2) in a straight line. It can be defined

for points a and b as follows.

d2(a,b) = 2
√
|x1 − x2|2 + |y1 − y2|2 (4.20)
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The Euclidean distance relationship was expected to be proportional to the

visual image similarity between ROIs. Table 4.4 exemplifies the comparison exer-

cise. The chart represents six pairs of images (a) and (b) holding different separa-

tion degrees. Below the images are the interpair Euclidean distances between the

image vectors. At the bottom, there is a curve showing how the gap increase as

the image pairs display a more significant disparity.

The experimental performance results of the four tests from different database

partitions are described in Table 4.5. The classification metrics detailed in Section

2.4.2 supported the assessment of the new model. At first, the percentages by

mammogram-type included in each test are displayed. The overall results are quite

encouraging in the four tests, especially regarding accuracy, specificity and NPV.

As assumed, we can note that the test set composition impacted the classification

Table 4.5: MSRBF DCT performance results by breast tissue-type ratio.

Test 1 Test 2 Test 3 Test 4

Tissue ratio

Fattty % 31.86 31.86 38.05 34.51

Dense % 29.20 31.86 28.32 23.89

Glandular % 38.94 36.28 33.63 41.59

Accuracy % 93.81 91.96 93.81 94.69

Sensitivity % 85.00 87.50 87.80 87.88

Performance Specificity % 98.63 94.52 97.22 97.50

PPV % 97.14 89.74 94.74 93.55

NPV % 92.31 93.24 93.33 95.12

Lesion distinctinon % 81.97 80.88 74.55 76.00
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Figure 4.10: Accuracy as a function of the presence of dense mammograms in the

test set.

results. This finding is an interesting point to discuss as this factor may lead to

confusing results in the breast cancer detection problem.

Note here that the sensitivity and specificity reported in Table 4.4 contrast

with those in Table 3.11 of the previous chapter, even though the same database

was used. As mentioned later in the chapter closure, this is because, during the

MSRBF DCT model training, four times more samples were taken into account, so

the sampling strategy was different. Also, the training approach aimed at reducing

a constant tendency of the model to find false positives, due to a common difficulty

of the breast cancer detection problem related to healthy but quite dense samples.

To ease the analysis of the resulting variations of the classification concerning

the mammogram-type composition in the testing set, exciting trends in the results

were found and plotted.

Figure 4.10 shows a negative relationship found between the presence of dense

mammograms in the test set and the classification accuracy. Such divergence can
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Table 4.6: False (positive and negative) cases during testing. ROIs from [212].

be the result of that dense-healthy images are visually similar to tumours of high

density, producing false detections.

As an example, Table 4.6 shows four cases: two false positives (false detec-

tions) and two false negatives (erroneous omissions) produced during testing when

ROIs with dense or glandular tissue were involved. It is possible to see that the ab-

normal tissue and the dense-healthy or glandular-healthy tissue can come to have

quite similar image compositions, causing, therefore, potential erroneous links by

the classifier.

On the other hand, Figure 4.11 suggests that there was a lessening ability to

distinguish the abnormality class with the increase of fatty mammograms presence

in the test, which was opposite to the expected result, given that fatty tissue tends

to have translucence, which would make the classification procedures easier.

However, and in favour of the latter hypothesis, the change of the sensit-

ivity values in the different set compositions suggested a positive trend between

fatty tests sets and the effective detection of any abnormalities (benign or malign).

The last point, together with the accuracy decrease in denser compositions, led to

finding a positive relationship between the MSRFB DCT classification accuracy
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Figure 4.11: Sensitivity and lesion distinction accuracy as functions of the presence

of fatty mammograms in the test.

with fatty mammograms and a negative relationship with dense mammograms.

Although these results may seem intuitive, it is necessary to carry out more dis-

criminative studies of this type in the future, especially with other methods of

featuring and classification to draw more generalised conclusions regarding the

breast cancer detection.

As for the variation of the presence of glandular mammograms in the testing

set, Figure 4.12 shows a very light direct relation of specificity and NPV with the

presence of glandular tissue. Although the trend was not significant enough to be

taken into account, it was expected, however, that the presence of glandular tissue,

on the contrary, would actively impede the quality of the classification results.

The overall performance of this study is presented in Table 4.7. It is no-

ticeable that values of sensitivity, PPV and lesion distinction are not as high as

expected, possibly because of the high resemblance of dense-healthy and glandular-

healthy tissue with many abnormal tumours. Among all the values, it stands out
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Figure 4.12: Specificity and NPV as functions of the presence of glandular mam-

mograms in testing.

that the tumour distinction was the lowest value of all the registered ones. This

difference is due on the one hand to the relative scarcity of abnormal samples,

which represented only 4.5% of the total of the labelled samples and on the other

to the fact that machine learning methods are generally more efficient to a more

significant number of samples available for training [228].

Table 4.7: MSRBF DCT overall performance results.

Statistical Measure Average result (%)

Accuracy 93.57

Sensitivity 87.05

Specificity 96.97

PPV 93.79

NPV 93.50

Lesion Distinctinon 78.35
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Table 4.8: Comparison of the MSRBF DCT method with previous work.

Model Reference Image Set Acc. % Sens. % Spec. %

2D-NARX [217] mini-MIAS 91 93 89.5

ELM [7] mini-MIAS 91 90 98

GLCM [162] mini-MIAS 93.9 97.2 91.5

ICA-RBF [8] mini-MIAS 88.2 – –

LDA-ANN [9] mini-MIAS 93.1 99 83

GPZM [204] mini-MIAS 89.3 83.5 93.4

MSRBF DCT [229] mini-MIAS 93.5 87 96.9

Finally, a comparison of the new method with previous work is presented

in Table 4.8. The comparative table shows that the proposed method obtained

high accuracy and the highest specificity (the capacity to correctly detect negative

cases). However, it showed an acceptable but below the average sensitivity, which

placed it below the GLCM method [162], which had the most stable and positive

performance.

As observed earlier in the chapter, the writer considers that the limitation

mentioned above is the side effect of a contingency strategy during training to

reduce the model tendency to find false positives caused by the considerable re-

semblance between healthy dense tissue and some tumour types. Hence, it became

necessary to increase both the number of dense-type healthy samples and benign

and malignant tumour samples in the training database, which could have caused

an incidental imbalance.
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4.4 Discussion

� This chapter presents an advantageous modelling neural network framework

originally designed to model nonlinear observational input-output series as

a novel image feature extraction method and CAD system, where the DCT

algorithm was incorporated to make the most of the MSRBF network image

modelling.

� The experiments aimed at appraising the tumour detection in X-ray mam-

mograms showed that the method was competitive compared to well-known

previous CAD systems for breast cancer based on system identification and

artificial neural networks.

� The proposed method reached a classification accuracy above 93%. While the

MSRBF DCT method is not perfect, the below-average classification metrics

may be due to a possible faulty data labelling strategy aimed at reducing the

high incidence of false positives, added to a frequent similarity found between

solid tumours and the healthy-dense tissue.

� A change from the regular FROLS stop-criterion to an IF function helped

to shorten the computational burden and the runtime in the service of the

massive processing of ROIs without a noticeable trace of reduction of the

modelling quality.

� The null incidence of identical models for similar images helped to know that

the new two-fold ROI characterisation extended the ability of the model to

extract size and object position features from the image effectively, which

otherwise might be lost.
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� As regards comparisons with previous work, care is advisable when interpret-

ing the values, since non-public databases are used in most cases, making

it difficult to make a realistic judgement. Besides, no reference about the

tissue-type composition included in the test set was available, a factor that

is considered capable of producing changes in the global performance.

� The comparison exercise of the model performance with different training-

testing compositions allowed to infer that getting results with a single parti-

tion in a heterogeneous database may generate unwanted trends in depend-

ence on the percentage of challenging elements such as dense tissue samples.

� Future work includes the transfer of the methodology to other medical study

areas such as brain diseases and lung cancer detection. Also, the use of the

Receiver Operating Characteristic (ROC) curve could balance the training

matrix composition to get to an optimal balance between sensitivity and spe-

cificity. The integration of the ROC analysis to the new method could lie in

the tailoring of a confidence threshold able to separate positive and negative

decisions, such as the modification of a visual criterion during training, so

the human can decide the class to which the sample belongs. However, this

path could be quite expensive in terms of time with thousands of subimage

samples.

� Note that the ROC curve was not considered in this work, as it is plotted

from the gradual modification of a decision threshold (namely confidence

threshold) between positive and negative cases [230]. The MSRBF DCT

scheme cannot easily consider such changes since the decision threshold is not

a variable or a value to be modified, but rather it is an undefined, implicit

function of the multiple samples collected and tagged in training according

to the database documentation.



Chapter 5

Image classification by

Multilayer-Fuzzy ELM

This chapter details a new method of digital image classification based on Mul-

tilayer Fuzzy Extreme Learning Machine (ML-FELM) networks, where the layers

belonging to ELM contribute to the extraction of high-quality feature values, while

the last ML-F layers play the role of a classifier with the added advantage of fuzzy

logic systems. Given the need to use a ready-to-use test instance during the devel-

opment process, an image database of handwritten digits is used at first. Later on,

the central tests for the problem of breast cancer detection show that the model

achieves high speed and classification performance while keeping model simplicity.

The method development includes the following points:

� The basics of extreme learning machines and their extension to MIMO RBF

neural networks.

� MIMO IT2-RBF neural networks for classification with uncertainties.

� Kernel-based ELM autoencoders for feature extraction.

� The new ML-FELM framework for image feature extraction and classifica-

tion.

141
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Experiments on the performance of the ML-FELM classifier and comparisons

with the previous work are reported in Section 5.4.

5.1 Introduction

The American Cancer Society (ACS) [231] reported that during the last decade

breast cancer has been the leading cause of premature mortality and the second

cause of death from cancer among women [232]. In 2015, the ACS issued a large

number of recommendations for women of different ages to have regular mam-

mography exams as an early detection strategy [231]. Until now, mammography

has been an effective visual mechanism for detecting the presence of suspicious

masses as benign or malignant [205],[26]. Nevertheless, in mammograms, the low

contrast among healthy tissues and lesions makes it hard to distinguish healthy

masses from malignant ones. This way, a significant number of efforts to con-

struct intelligent computer-aided diagnosis systems (CADs) have been proposed

[26],[233],[205],[229],[234],[235]. In particular, multilayer and deep neural struc-

tures have demonstrated to be a promising machine learning tool for medical image

processing [236],[154].

In this sense, Multilayer Extreme Learning Machines (ML-ELM) are emer-

ging learning algorithms that are gaining a lot of attention due to their simplicity

and high model generalisation accuracy [233],[236],[18],[19]. This attention is also

accredited to the ability of ML-ELMs to estimate in a fast manner the parameters

of hidden neurons without a fine tuning [237].

For instance, in [18], an ELM autoencoder was reported. Unlike previous

autoencoders where the weights between the hidden and the output layer are ran-

domly selected, the authors introduced an optimisation method to improve this
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selection to improve the accuracy and the speed of the neural network. Clas-

sification tests with one-dimensional databases showed that the method reached

percentages higher than 94% accuracy.

In [7], an ELM-based method for extracting features from benign and malig-

nant ROIs was presented to increase the convergence speed of training and achieve

better generalisation properties. However, extraction efficiency was highly de-

pendent on another method to select the feature values. Testing on a broad set of

mammograms (949) and 12 classes showed that the method reached an accuracy

of 91%. In [206], a deep autoencoder based on multiobjective optimization was im-

plemented on the one hand to reduce the dimensionality of the data to be useful in

classification and on the other to reduce the reconstruction error existing between

the first (encoder input) and the last layer (decoder output) of the autoencoder to

reduce the classification error. Tests with different classifiers in the last layer of

the network gave accuracies ranging between 80% and 98%.

This chapter reports a Multilayer Fuzzy Extreme Learning Machine (ML-

FELM) based on the practical equivalence between FLSs and the Multi-Input-

Multi-Output RBFNN model for breast cancer image classification. The ML-

FELM follows the hierarchical learning process of an ML-ELM [19] and the ML

Kernel-ELM [20]. In other words, the parameter identification of the ML-FELM

consists of two main steps. At first step, some stacked Fuzzy Autoencoders (FAEs)

are used as a mechanism for data representation by retrieving a set of high-quality

features and then classified in a second step by using a MIMO IT2-RBFNN. Unlike

the ML-KELM, the proposed ML-FELM computes the normalised weighted aver-

age, which is a defuzzification mechanism at each FAE’s output layer. Therefore,

each FAE in the first step is a MIMO RBFNN that is practically equivalent to a
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MIMO FLS where the process of fuzzification, inference engine and the defuzzific-

ation is carried out in the hidden and output layer respectively.

Two separate experiments are performed to study the effectiveness of the

proposed ML-FELM. First, to compare the computational time that is required to

train the ML-FELM for big data, the MNIST dataset for handwritten digits is em-

ployed. Similar to ML-ELM [19] and ML-KELM [20], the ML-FELM is much faster

for the classification of large data sets than other deep learning structures such as

the DBN and DBM [20]. Finally, the mini-MIAS breast cancer image repository

is employed to evaluate the ability of the ML-FELM for data representation and

image classification. According to our results, for breast cancer classification the

ML-FELM outperforms other machine learning methodologies such as the OCI-

ELM [18], ELM [7], GPZM [204], 2D-NARX [229] and similar to the SVM-ELM

[205], MOEA-2c [206].

The structure of the rest of the chapter is the following: in Section 5.2 a

short review of Extreme Learning Machine and its application to the Radial Basis

Function Neural Network (RBFNN) is provided, as well as a description about

the practical equivalence between Fuzzy Logic Systems (FLSs) and the RBFNN of

either Type-1 or Interval Type-2. Section 5.3 describes the proposed ML-FELM,

while Section 5.4 provides experiments and evaluation of the ML-FELM. Finally,

concluding remarks are provided in Section 5.5.



Chapter 5. Image classification by Multilayer-Fuzzy ELM 145

5.2 Preliminaries and definitions

5.2.1 ELM and multi-input-multi-output RBFNN

ELM was initially proposed as a single hidden layer feedforward network (SLFNN)

[237] to easily achieve a high generalisation performance at super fast speed. Then

ELM was extended to other neural structures in the form of Radial Basis Function

Neural Network (RBFNN)[238]. The jth output of an RBFNN with M kernels

and a number of P arbitrary samples (xp, tp) is given by:

yj =
M∑
i=1

βigi(µi, σi,xp), j = 1, · · · , Ñ (5.1)

where gi = fi/
∑M

i=1 fi are the normalised basis functions, xp = [xk1 , · · · , xkN ]T ∈

RN is the input vector, tp = [tp1 , · · · , tpÑ ] ∈ RÑ is the desired pattern and βi =

[βi1, · · · , βiÑ ]T is the vector of weights linking the ith kernel to the jth output.

The normalised basis functions gi are given by:

gi(µi, σi, xp) = exp

[
−

N∑
k=1

(xk − µki
2σi

)2]
, i = 1, · · · ,M (5.2)

As stated in [237], the standard Gaussian RBF kernels can obtain P arbitrary

samples with error means equal to zero, that is, given some random parameters

µki and σi, the training of the RBFNN is practically a least-squares solution of a

compact linear system. Their formulation is:

Hβ = T (5.3)
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in which H is the output matrix of the hidden layer of the RBFNN concerning the

input-output vectors (xp, yp). More formally:

H(µ1, · · · , µM , σ1, · · · , σM ,x1, · · · ,xP )

=


f1(µ1, σ1,x1) · · · fM(µM , σM ,x1)

...
...

...

f1(µ1, σ1,xP ) · · · fM(µM , σM ,xP )


P×M

where the vector of centres is µi = (µ1i , · · · , µNi
) and the vectors of weights and

outputs are,

β =


βT1
...

βTM


M×Ñ

and T =


yT1
...

yTP


P×Ñ

(5.4)

The solution of the linear system Hβ = T by the minimum norm least-squares

is unique and may be obtained by estimating the pseudoinverse H† so that:

β = H†T (5.5)

In line with the Ridge theory of regression, a positive value specified by the

user 1/C can be added to have a better generalisation performance [154].

β =

(
I

C
+ HTH

)−1
HTT (5.6)
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5.2.2 MIMO IT2-RBFNN and fuzzy logic

It has been shown that in ideal conditions, an RBF network may be seen either

as a Type-1 (T1) or as Interval Type-2 Fuzzy Logic System (IT2 FLS) [239],[240].

This equivalence is used in a number of applications for the modelling of complex

systems [240],[241] [242]. Figure 5.1 depicts the interaction of fuzzy components

during an inference process. In it, the inference engine uses the rule base to compare

the input image values to the outputs to generate an interval Gaussian membership

function to be defuzified later in the network.

Generally speaking, an RBFNN can be considered an FLS of T1 or IT2 (for

short IT2-RBFNN) when its neural structure consists of [239],[240],[241]:

1. The input layer with singleton fuzzification and Membership Functions (MFs)

within the rules are taken as Gaussian neurons [243].

2. The operator T-norm employed to compute the rule firing strengths in the

hidden layer is a minimum.

3. The secondary membership function of each fuzzy system is convex and either

of T1 or IT2.

Figure 5.1: Fuzzy logic process implicit in the neural network (ROI from [212]).
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4. The RBF and the fuzzy inference system employ the same procedure (either

weighted average or summation) to obtain each global output. The defuzzi-

fication formula mainly depends on the order of the FLS.

More specifically, every enhancement made by FLS can be useful to the RBF

theory since the its fuzzy rule structure base goes from T1 Fuzzy Sets (FSs) to

higher order FSs remains the same; in this form the modelling of the linked

antecedents and consequents takes place [244]. In that way, to design an RB-

FNN that is practically equivalent to a Multi-Input-Multi-Output (MIMO) IT2

FLS with a Karnik-Mendel algorithm, the associated inference mechanism must

be interpreted as an adaptive filter which resembles an additive combination of

the MFs (firing strengths). As illustrated in Figure 5.2, each associated fuzzy

rule Ri in a MIMO IT2-RBFNN is described by a multi-variable Gaussian MF
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µRi(xp, y
j
p) = µRi [x1, · · · , xn, yjp], where the input vector xp ∈ X1 × · · ·Xn and the

inference engine is defined as:

µRi(xp, β) = µAi→β =
[
TNk1µF i

k
(xk) ? µGi(β)

]
= [f i(~xp), f i(~xp)] (5.7)

in which ? represents the t−norm minimum, or the smaller distance to the vector

of inputs xp, and [f i(~xp), f i(~xp)] are the lower and upper membership functions

(LMF, UMF) respectively. In this chapter, each MF in the MIMO IT2-RBFNN

fuzzy rule is an interval Gaussian MF with an uncertain width σi = [σ1
i , σ

2
i ] and

fixed center (mean) µki, as it is shown in Figure 5.3.
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V
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S
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0.75

0.5
0.25

f i(xp)

LMF

f i(xp)
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�

Figure 5.3: Singleton fuzzification and interval secondary MF which becomes active

if xp = x′l for the ith recipient unit of the network (taken from [245]).
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F i :=



F i = [f i(xp), f i(xp)]

f i(xp) = exp

[
−

N∑
k=1

(
xk − µki

2σ2
i

)2
]

f i(xp) = exp

[
−

N∑
k=1

(
xk − µki

2σ1
i

)2
] (5.8)

The ith fuzzy rule of a MIMO IT2-RBFNN is stated as follows:

R̃i : IF x1 is F i
1 and · · · IF xk is F i

s and · · ·

IF xN is F i
N THEN y is wij; i = 1, · · · ,M (5.9)

In the case of a Mamdani type IT2-RBFNN (also known Zadeh type), the

weight vector (consequent) wi is a vector of single crisp (non-fuzzy) values, while

for a TSK model, each wi = ci0 + ci1x1 + ci2x2 + · · · + ciNxN . By considering the

practical equivalence among the RBFNN and the IT2 FLSs [240], for each output

yj, the MIMO IT2-RBFNN is a FLS with a reduction of the type centre-of-sets,

rule of product inference, and the output space of a singleton. The reduction-type

set (yl, yr) portrayed earlier in Figure 5.2, results from a Karnik-Mendel algorithm

[246]. In agreement with figures 5.1 and 5.2, when wij is a crisp value and the

inference engine for the IT2-RBFNN can be of Mamdani or TSK type, the for-

mulation of the matrix for the jth output in the MIMO IT2-RBFNN is stated as

[244],[246]:

yj =
1

2

(
Yj
l + Yj

r

)
wT
ij (5.10)
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in which the outputs yjl = Yj
lw

T
ij and yjr = Yj

rw
T
ij, and where:

Yj
l =

f
T
QT
j E

T
1jE1jQj + fTQT

j E
T
2jE2jQj

rTl Qjf + sTl Qjf
(5.11)

with Yj
l = (ψlj,1, · · · , ψlj,M), and the terms E1j, E2j, rlj and slj are defined as:

E1j = (e1j|e2j| . . . |eLj|0| . . . |0)T Lj ×M

E2j =
(
0| . . . |0|ξj1|ξ

j
2| . . . |ξ

j
M−Lj

)T
(M − Lj)× 1

rlj ≡ (1, 1, . . . , 1︸ ︷︷ ︸
L

, 0, . . . , . . . , 0)T M × 1

slj ≡ (0, . . . , . . . , 0

M−Lj︷ ︸︸ ︷
1, 1, . . . , 1)T M × 1

where Lj is the switching point that corresponds to the jth output, em ∈ RL
j (m =

1, · · · , Lj) and ξm ∈ RM−Lj , m = 1, · · · ,M −Lj are the basic vectors in which the

values equal zero excepting the mth one, which becomes 1.

Yj
r =

fTQT
j E

T
3jE3jQj + f

T
QT
j E

T
4jE4jQj

rTr Qjf + sTr Qjf
(5.12)

where Yj
r = (ψrj,1, · · · , ψrj,M)

E3j = (e1j|e2j| . . . |eRj|0| . . . |0)T Rj ×M

E4j =
(
0| . . . |0|ξ1j|ξ2j| . . . |ξM−Rj

)T
(M −Rj)× 1

rrj ≡ (1, 1, . . . , 1︸ ︷︷ ︸
Rj

, 0, . . . , . . . , 0)T M × 1
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srj ≡ (0, . . . , . . . , 0

M−Rj︷ ︸︸ ︷
1, 1, . . . , 1)T M × 1

where em ∈ RRj (m = 1, · · · , Rj) and ξm ∈ RM−Rj , j = 1, · · · ,M − Rj represent

the basic vectors where the elements equal zero apart from the jth one that be-

comes 1 [247]. f = (f 1, · · · , fM)T , f =
(
f 1, · · · , fM

)T
. When the Karnik-Mendel

algorithms are used [246], the reordered consequent weight w̃j derived from the

permutation to finding the switching points L and R is obtained as follows [247]:

w̃j = Qjw
T
j , Qj ∈ RM×M (5.13)

where wj = (w1j, · · · , wMj) represents the set of initial consequent weights ordered

by rule and Qj is the correspondent permutation matrix [247]. Therefore, the

defuzzified pth MIMO IT2-RBFNN output is the vector of Ñ outputs Yp =

[y1, · · · , yÑ ]T .

5.2.3 Multilayer kernel extreme learning

The Multilayer Kernel Extreme Learning machines (ML-KELM) are kernel-based

multilayer networks that adopt two separate learning steps. As indicated in [20]

and portrayed in Figure 5.4, in the beginning a set of high-quality features is

obtained using a number of L stacked kernel-based Autoencoders (AEs) where

each AE learns to transform data from its hidden to its output layer. At layer

zero (the input layer), an input matrix Xn is mapped into a kernel space Ω(n)
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Figure 5.4: Architecture of a Multilayer Kernel Extreme Learning Machine (from

[20]).

via the Gaussian activation function K(n) = exp(−||(xp − xq)||/2σ2), where a

transformation matrix Γ(n) is estimated as follows:

Ω(n)Γ̃(n) = X(n) (5.14)

where n is used to indicate the nth data transformation, Ω = HHT , and Γ̃(n) is

calculated as:

Γ̃(n) =

(
I

C
+ Ω(L)

)−1
X(n) (5.15)

such as Γ̃(n) = [γ
(n)
1 , · · · , γ(n)M ], where γ(n) is the nth transformation vector em-

ployed in the learning of the representation of the input data X(n). The final

transformation X(n+1) is obtained using a sigmoid:

X(n+1) = g
(
X(n)(Γ̃(n))T

)
(5.16)
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As pointed out in [154], [20],[236], if the nth transformation holds identical

dimension that the (n + 1)th layer, the activation function g may be selected as

linear piecewise.

5.3 Multilayer fuzzy extreme learning

machine

The proposed Multilayer Fuzzy Extreme Learning Machine (ML-FELM) is a mul-

tilayer fuzzy network inspired on the practical correspondence among the FLSs and

the RBF. Similarly to ELM for a multilayer perceptron [19], ML-FELM has a mul-

tilayer structure as displayed in Figure 5.4. Structurally speaking, the proposed

ML-FELM is composed of N + 1 layers whose parameter identification consists

of two main steps, that is, (a) an unsupervised hierarchical feature representation

stage [154],[19], [248], and (b) a supervised feature classification [240],[241].

The first step consists of a process for high-quality feature extraction by

stacking L Fuzzy Autoencoders. In other words, the nth layer uses an independent

MIMO T1 RBFNN (which is practically correspondent to a type 1 FS) as a Fuzzy

Autoencoder (FA). Unlike the ML-ELM suggested in [154] and [19], at the input

layer (layer zero) the input data does not need to be converted into an ELM space

of random features. Therefore, in the first step, representation learning of the

input data is initially performed, as the following equation shows:

H(n)Γ(n) = X(n), n = 1, · · · , L (5.17)
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in which, H(n) = [h(x1), · · · , h(xP )], p = 1, · · · , P , and the vector h(xp) =

[A1(xp), · · · , AM(xp)], where the term Ai is the ith normalised firing strength that

is calculated using the equation below (see Figure 5.5):

Ai(µi, σi,xp) =
fi(µi, σi,xp)∑M
i=1 fi(µi, σi,xp)

(5.18)

where the parameters (µi, σi) of each Gaussian MF in the nth layer are randomly

selected. Hence, each output yj in the FAE is a weighted average that plays the

role of a defuzzification process in T1 FLSs as follows:

yj =
M∑
i=1

Ai(µi, σi,xp)βij, j = 1, · · · , Ñ (5.19)
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in which the pth FAE output yp = [y1, · · · , yÑ ]T is used to build X(n). Therefore,

the transformation matrix Γ̃(n) is computed as follows [20]:

Γ̃n =

(
I

C
+ H(n)(H(n))T

)−1
(H(n))TX(n) (5.20)

In this way, X(n+1) can be computed using (5.16). In a similar way to [154], g(·)

can be any activation function. However, if the dimension of layer (n) and layer

(n+ 1) is the same, it is recommended to chose a linear piecewise function [20]. In

the second step, the layer L+ 1 is an IT2-RBFNN whose inputs are the resultant

high-quality features obtained at layer L by the latest FAE.

Therefore, to find the parameters of the MIMO IT2-RBFNN, ELM is sys-

tematically used in two separate moments to refresh the corresponding weights

in the IT2-RBFNN output layer [245, 249]. The first step [249] includes the ac-

quisition of the optimal initial values for the corresponding ones by estimating the

reduction-type set for the jth output [yjl , y
j
r ] as:

yjl,1 =

∑M
i=1 f iwij∑M
i=1 f i

=
M∑
i=1

f ′iwij; f
′
i =

f i∑M
i=1 f i

(5.21)

yjr,1 =

∑M
i=1 f iwij∑M
i=1 f i

=
M∑
i=1

f
′
iwij; f

′
i =

f i∑M
i=1 f i

(5.22)

where the weight vector wj = [w1j , · · · , wMj
]T and the weight matrix is stated as

W = [w1, · · · ,wÑ ]. By using Equations 5.11 and 5.12, the following linear system

can be defined for P patterns as follows:

T = ΦA(X(L+1))W,W ∈ RM×Ñ (5.23)
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where T = [t1, · · · , tP ]T , is the desired output vector, p = 1, · · · .P and each tp =

[t1P , · · · , tMp ]T . The matrix ΦA is defined for an IT2-RBFNN having a Mamdani

fuzzy rule structure as:

ΦA(x) =


Φ1

Φ2

...

ΦP

 ∈ R
P×(M×N) (5.24)

From Equation 5.21 and 5.22 it follows for a TSK implication:

ΦpWj =
1

2

M∑
i=1

(f
′
i + f ′i)

[
N∑
k=1

ci1k xk, · · · ,
N∑
k=1

c
iÑ
k xk

]
; j = 1, · · · , Ñ (5.25)

For a Mamdani type IT2-RBFNN, the second sum term in Equation 5.25 is

a crisp number wij. In that way, the system described in Equation 5.23 can be

solved as below:

W1 = ΦA(x)†T (5.26)

where W1 is the optimal primary value for the correspondent matrix W and

ΦA(x)† is the Moore-Penrose generalised inverse of ΦA(x). Then, the last op-

timisation process of W consists of implementing jth times the Karnik-Mendel

algorithm. In other words, each column vector in the matrix W = [w1, · · · ,wÑ ]T

is used to form a linear system given by:

tj = Φj
B(x)wj,wj ∈ RM (5.27)
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Therefore, from equations 5.11 and 5.12 the terms Yj
l and Yj

r are used to calculate

each weight vector wj where each Φj
B(x) becomes:

Φj
B(x) =


Φ̃1

Φ̃2

...

Φ̃P

 ∈ R
P×(M×N) (5.28)

so that:

Φ̃pwj =
1

2

M∑
i=1

(ψl,i + ψr,i)

[
N∑
k=1

ci1k xk, · · · ,
N∑
k=1

ciÑk xk

]
(5.29)

5.4 Experiments and results

The evaluation of the performance of the proposed ML-FELM networks included

two different experiments using two different image data sets. First, the MNIST

data set was used to compared the ML-FELM performance against other existing

techniques. Secondly, the ML-FELM was applied to breast cancer image classi-

fication using the mini-MIAS data repository. The experiments carried out were

processed with Intel (R) Core (TM) i5-4590 at 3.30GHz speed, running MATLAB

2014b. The evaluation of the effectiveness of the MIMO IT2-RBFNN required

the implementation of an ML-FELM having a MIMO RBFNN in the L + 1 layer

(ML-FELM-RBFNN for short). Then, this section denotes the short name ML-

FELM-IT2-RBFNN to describe an ML-FELM with a MIMO IT2-RBFNN in the

L+ 1 layer.
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5.4.1 Classification of handwritten digits

As mentioned at the beginning of the chapter, the initial testing stage required,

before the cancer detection tests, the use of a handy, ready-to-use and comparable

database to train and evaluate the new model multiple times. It was fundamental

to know if the feature extraction process was delivering consistent results to be

effectively interpreted by the classifier. Hence the first data set used in this chapter

was the MNIST database [250], which consists of a collection of 70,000 images of

28 × 28 pixels containing handwritten digits with subsets of 60,000 and 10,000

images for training and testing, respectively.

The MNIST database is a well-known data set to test deep neural structures

and machine learning algorithms. Analogously to the results presented in [154], in

this chapter the MNIST is used without any distortion to compare the performance

of the suggested ML-FELM. Table 5.1 details a performance comparison between

the ML-FELM, a Deep Belief Network (DBN), a Deep Boltzmann Machine (DBM),

a Stacked AutoEncoder (SAE) and a Deep Network based on Orthogonal convex

incremental ELM (OCI-ELM) [18].

To keep a good balance between model precision and low computational load,

the experiment setup for the ML-FELM-IT2-RBFNN and ML-FELM-RBFNN

with L = 3 is C = [0.1, 50−5, 104, 108] for 784-300-300-1000-10 hidden neurons.

The hidden neurons quantity for the DBN, DBM and the ML-ELM are 784-500-

500-2000-10, 784-500-1000-10 and 784-700-700-15000-10 respectively. As can be

noted from Table 5.1, the improvements offered by the proposed ML-FELM do

not make it the fastest learner. However, an important increase in model accuracy

and a simpler neural structure compensates this limitation. Moreover, by adding
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Table 5.1: Comparison between the new ML-FELM and previous ML networks in

the MNIST database.

Model Reference Accuracy % Trainig Time

ML-ELM [154] 99.03 (± 0.04) 444.655s

ELM (random features) [20] 97.31 (± 0.1) 545.95s

ELM (Gaussian kernels) [20] 98.75 790.96s

DBN [20] 98.87 20580s

DBM [20] 99.05 68246s

OCI-ELM [18] 97.94 3985s

SAE [251] 98.6 -

ML-FELM-RBFNN - 98.57 (± 0.13) 2610.9s

ML-FELM-IT2-RBFNN - 99.14 (± 0.08) 2870.1s

an IT2-RBFNN in the L+1 layer, the generalisation properties of a MIMO RBFNN

are significantly improved.

5.4.2 Breast cancer classification and detection

The second data repository for the evaluation of the ML-FELM-RBF and ML-

FELM-IT2-RBF neural networks is the mini-MIAS database of mammograms, a

public image data source containing a selection of 322 digital mammograms of

1024 × 1024 pixels, gathered from the United Kingdom National Breast Screen-

ing Program [212]. The repository contains radiological images captured from the

mediolateral oblique view of the breast representing incidences of common abnor-

malities (66 benign and 52 malignant) and normal or healthy cases. Extensive

documentation of the image database includes location, diameter and class of ab-

normalities.
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Figure 5.6: Fuzzy Autoencoder and MIMO IT2-RBFNN based on Extreme Learn-

ing Machines (mammogram mdb028, from [212]).

Due to the size of the mini-MIAS data set and the number of labels and

annotations in each image, an initial preprocessing step aimed at creating a broader

set of subimages or Regions of Interest (ROI) was carried out. In other words, it

was necessary to create sets formed by many ROIs containing abnormalities in the

case of benign and malignant samples or healthy tissue for ordinary cases. Thus,

as illustrated in Figure 5.6, an additional procedure was performed to expand the

number of benign and malignant samples while improving the variability of the

training set. To enhance the variability prediction of the ML-FELM, the final

number of ROIs includes a subset of rotated images at 90, 180 and 270 degrees.

The increasing of samples mentioned above produced in total 4200 samples.

Such number came from 350 original samples, three uniformly distributed classes

(benign, malignant and healthy) and 4 rotation angles, totalling 350×3×4 = 4200

ROIs. The experiment setup for the ML-FELM using a MIMO IT2-RBFNN and

RBFNN is with a neural structure of 3 layers, where C = [0.16, 0.004, 106, 108], and
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with many hidden neurons 4096-1500-1500-4800-2. The dataset was split into two

subsets for cross-validation purposes, that is, 65% and 35% of the total of images

are used for training and testing, respectively. To measure the associated model

performance, the metrics accuracy, sensitivity and specificity, detailed in Section

2.4.2, are used in this chapter. A comparison between the proposed ML-FELM

and other existing methodologies for the diagnosis of breast cancer is presented in

Table 5.2.

The comparison table shows a similar classification performance in most

cases, although the feature extraction stage offered and the number of training

samples is different in each methodology. In particular, MOEA-2c, OCI-ELM and

ML-FELM show the highest accuracy performance. It is worth mentioning, the

Table 5.2: Performance comparison between the proposed ML-FELM and previous

machine learning techniques for breast cancer detection.

Model Ref. Image Set Acc. % Sen. % Spe. %

MOEA-2c [206] Inbreast+IRMA 93.4-98.1 - -

OCI-ELM [18] UCI: Br. Canc. 94.73 - -

SVM-ELM [205] DDSM 95.73 94.8 97.16

ELM [7] mini-MIAS 91.00 90.00 98.00

GPZM [204] mini-MIAS 89.38 83.58 93.43

GPZM [204] DDSM 87.27 82.51 90.33

2D-NARX [217] mini-MIAS 91.00 93.00 89.50

MSRBF DCT [229] mini-MIAS 93.50 87.00 96.90

ML-FELM-RBF - mini-MIAS 92.65 94.31 90.94

ML-FELM-IT2-RBF - mini-MIAS 95.13 94.14 97.78
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implementation of a MIMO IT2-RBFNN in the L + 1 layer produces a better

generalisation performance compared to its T1 fuzzy counterpart.

5.5 Discussion

� This chapter reports a Fuzzy Multilayer Fuzzy Extreme Learning Machine

(ML-FELM) considering the practical equivalence among the RBFNN and

Fuzzy Logic Systems (FLSs).

� Similarly to the ML-ELM and the ML-KELM, the parameter identification

of the ML-FELM consists of two phases. The first step consists of many

stacked Fuzzy Autoencoders (FAEs) that are practically equivalent to FLSs

of type-1 for the extraction of high-quality features. Consequently, the second

step contemplates a MIMO IT2-RBFNN that acts under the Interval Type-2

FLS logic for classification purposes of the encoded data.

� In the same way to other existing ELM approaches, the proposed method

offers the following advantages:

1. The ML-FELM does not need fine tuning.

2. The implementation of an IT2-RBFNN enhances the generalisation prop-

erties of the RBFNN for data classification.

3. Compared to ML-ELM, an ML-FELM does not need an initial ortho-

gonal feature representation.

4. According to the results, the computational burden for the parameter

identification of the ML-FELM is similar to other ELMs.

� In other words, the proposed ML-FELM is an ML architecture that under

ideal circumstances can be seen not only as an FLS but also as a one-forward-
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step machine learning able to find a good balance regarding model simplicity,

model accuracy and high-quality data representation.

� Regarding the network training time in Table 5.1, it is possible to see that the

parameter adjustment of the Gaussian function, which is non-linear, hindered

in some way the processing speed. However, the classification runtime per

ROI was negligible after the learning completion.

� Finally, it was interesting to find that multiple-output structures, as the

network in this chapter, are ideal for classification. Instead, single-output

models are better for function approximation, as confirmed in Chapters 3

and 4.



Chapter 6

Conclusions and final

considerations

6.1 Summary

The work in this thesis explored the adaptation of non-linear system identification

and neural networks (both simple and deep-structured) frameworks into new digital

image feature extraction and classification models. The work used the processing

of mammographic images as the primary study case, with the intent of classifying

the samples according to their clinical condition, for which it also contributed in

the exploring and enhancement of computer-aided diagnosis (CAD) systems.

Chapters 1 and 2 presented the problem and recounted the technical and

literary background of the solution methods proposed later in the thesis. There

was a stress in image processing, system identification and the strong plethora of

neural network based learning methods for image classification.

Chapter 3 presented for the first time the NARX models as non-linear image

processing methods and as a part of CAD systems for cancer detection. The imple-

mentation process took into account the forward regression OLS algorithm as the

165
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solution method for the identification problem. A reinterpretation and modeling of

digital images as input-output systems took place to make them compatible with

system identification procedures. The motivation of such modelling work obeyed

two reasons; (a) that the NARX models are very efficient and easy to identify

thanks to the FROLS algorithm and (b) that prior to this work these algorithms

had not been used in image processing or feature engineering. As the adaptive

capacity of the NARX models prevented the direct creation of equal-sized feature

vectors, the design and implementation of a stimulus-response module helped to

generate output signals that allowed to obtain a regular number of coefficients from

the image model.

Chapter 4 reported, also for the first time, the use of the multiscale radial

basis function networks in image processing and as a ground of a new CAD sys-

tem. The MSRBF combined with the FROLS algorithm had proven to be broadly

flexible and efficient in the modelling and solving of nonlinear dynamic systems

in difficult study cases. In this study, MSRBF networks turned out to be also

very skilled in image modelling. After the model identification, the discrete cosine

transform was incorporated to enhance the coefficient extraction of the stimulus-

response module. The original FROLS solution algorithm adds candidate terms to

the model until the reconstruction error decreases down to an accuracy threshold

[88]. In this work, the stop-criterion of FROLS changed to an IF function that

stopped the algorithm with the accuracy threshold or when the model attained

a maximum length. Also, the addition of a two-fold image characterisation to

increase the analysis resolution took place in the method.

The capacity of the NARX and MSRBF methods in feature extraction was

complemented by the K-means++ classification algorithm to build CAD systems

based on the classification of feature vectors derived from images.
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Chapter 5 unveiled a new image processing model termed the multilayer fuzzy

extreme learning machine (ML-FELM), from which a new CAD system came to

light. The ML-FELM is a deep neural network based on stacked autoencoders,

radial basis function (kernel-based) neural networks and elements of type-2 fuzzy

systems. This last feature sought to deepen the capacity of the classification process

by taking into account the uncertainty of the problem concerning the membership

degree of the object to different classes.

The new neural network used the first layers to extract feature values from

the image through an autoencoder-based ELM. Autoencoders (AEs) are neural

networks that learn from the input data in an unsupervised manner to make a

more efficient representation. AEs are also able to reduce the data dimensionality

as the information moves through the network layers. Kernel-based ELM networks

take advantage of such design by making the autoencoder to process data more

efficiently via the replacement of dispensable calculations with random values and

by removing the back-propagation training process. The last layers of the system

(multilayer fuzzy) use the extracted feature values to handle a fuzzy classification

which considers overlapping ranges between classes within the decision-making

process.

All the contributions were applied as CAD systems using the well-known

mini-MIAS public database for the detection of breast cancer as a case study.

Before the classification tests, the database was partitioned into subimages and

labelled into classes to enable the consistent training of the models.



Chapter 6. Conclusions and final considerations 168

6.2 Conclusions

The tests from the previous contributions revealed exciting findings. At first, the

results showed that the polynomial NARX model, solved through the FROLS al-

gorithm, managed to create precise and adaptive models of the images including

non-linear terms while presented particular mathematical structures according to

the image composition. The fact of finding non-linear structures in this prob-

lem corroborated the existence and proportionality of this critical feature within

the surface of digital pictures and enabled a tool for a more in-depth further

mathematical-based analysis and quantification. Classification performance val-

ues showed that the method was more efficient in detecting abnormalities than to

determine normal cases, while by comparing the results with previous work indic-

ated that the technique was more competitive than most models. However, the

recurrent use of non-public databases in prior methods hindered a more objective

comparison.

The MSRBF neural network, although less transparent in structure than the

NARX representation, demonstrated greater flexibility in image modelling. This

advantage was proven when none of the thousands of vectors generated by the

model was exactly the same, despite processing virtually identical subimages in

several cases. The null incidence of identical models for similar images also argues

that the two-fold ROI characterisation extended the ability of the model to extract

size and object position features from the image successfully. The change of the

FROLS stop-criterion into an IF function favoured a faster processing of multiple

ROIs without sacrificing the modelling efficiency. Experiments done with different

breast-type distributions for testing and training revealed that dense mammograms

hampered the accuracy of the classifier. In contrast, a direct relationship between
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accuracy and fatty type mammograms showed up. Although it was evident that

the classification results are susceptible to the type of tissue, little has been found

in the experiments reported in the CAD literature that take into account this

factor. The overall accuracy of the model was high, although the capacity to

detect negative cases was higher than that of positive cases. This difference could

be due to an unintended effort to reduce false positives during the manual labelling

of the samples.

Tests with the ML-FELM deep neural network showed that it offered a good

trade-off between simplicity, feature extraction and classification. The critical ele-

ments of the ML-FELM design were (a) the incorporation of fuzzy logic systems

to diminish the effects of uncertainty and (b) the autoencoders contained in ELM,

that produced a change of dimensionality of the raw input data to make it in-

terpretable by the ML-F classifier, which at first had particular difficulties. For

instance, the DCT, a 2D wavelet transform and convolution masks were tried un-

successfully to code the input data at first. The work in [252] provided a possible

explanation by holding that when a network structure is not deep enough (as it

is the ML-F network), it may present difficulties at solving non-linearly separable

problems. When this is the case, it is necessary to modify the data dimensionality

to increase the problem separability. Autoencoders solve this problem thanks to

their bottleneck-shaped structure, which forces the data dimensionality to change

down. Experiments with two case studies showed that the ML-FELM-IT2 model

was superior to most previous methods. In breast cancer detection, it proved to

be more effective in detecting negative cases than positive ones, although in both

cases the results were encouraging.

As for the case of study, the manual labelling of ROI samples is, despite its

disadvantages, necessary in the breast cancer detection problem. This conclusion is
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because databases documentation is not always accurate as to the location and ra-

dius of tumours, added to the similarity between many healthy dense (or glandular)

subimages and ROIs captured from abnormal tissue. Also, the divide and conquer

strategy together with the analysis at subimage zoom-level is considered necessary

in the problem of breast cancer detection and more specifically in the case of mi-

crocalcifications. This type of lesion is in the practice infinitesimal compared to a

complete mammogram, while fails to detect it are undoubtedly dangerous, as 78%

of this cases stand as extremely suspicious [211].

6.3 Future work

This section lists the opportunity areas and challenges derived from the limitations

of this research.

� The feature extraction of the NARX image model structure, which is adaptive

and has the potential to provide valuable information in each case. This work

did not seize this information because its qualitative and changing nature did

not make easy to figure out the way to estimate equal-sized feature vectors.

� A deeper adjustment of the NARX model and the 2D image representation

through the receiver operating characteristic (ROC) curve to analyse different

paired configurations, including the NARX maximum nonlinear order, the

NARX maximum lagged observations, the 2D pixel neighbourhood shape

and size, and the step-size between mask image scans.

� The optimal selection of the number of kernel centres of the MSRBF network

to reduce the computational load of the FROLS algorithm, given that the

estimation code used in this work considers a k value according to the input
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data, as it was possible to note that k is suboptimal, and occasionally it does

not adapt itself to the problem.

� The exchange between the adopted classifiers (K-means ++ and IT2-RBFNN)

and the proposed feature extraction models (NARX-FROLS, MSRBF-FROLS,

ML-FELM) with the aim of evaluating their performance more objectively

and isolating the agents that contribute the most in both processes (extrac-

tion and classification). In this way, to consider the creation of a hybrid

method based on the evidence of these tests.

� The extension of experiments with the NARX and ML-FELM methods using

low and high ratios of dense and glandular mammograms in the testing set.

This could confirm whether the findings found in Chapter 4 on the effect of

problematic mammograms on the accuracy of the classification in the breast

cancer detection problem are generalizable.

� The strengthening of the ML-FELM network through the fine-tuning of:

(a) the user-specified regularisation vector C, and (b) the number of hidden

neurons M within the autoencoder. That could give the system a better gen-

eralisation performance and more depth to classify images by the refinement

of the feature extraction process.

� The use of the ML-FELM network in the difficult object detection problem

for the unassisted isolation of ROIs within mammograms, including micro-

calcifications and the processing of dense problematic images. For instance,

the ML-FELM may help to classify the regions within mammograms while

a secondary analysis at subimage level could isolate the ROI.
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Appendix A

Examples of study case

mammograms

Section 3.3.1 showed examples of 3 standard mammograms from X-ray scans of

the mini-MIAS database [212], and in 3.3.4 the resulting models were reported for

the same images. This annexe shows the images referred into a larger magnitude

to facilitate their visualisation.

Please note that the images were converted into negative to reducing the ink

waste in printing.
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A.1 Benign mammogram mdb005

Figure A.1: Mammogram with a benign tumour. Film mdb005 from the mini-

MIAS database [212].
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A.2 Normal mammogram mdb009

Figure A.2: Mammogram in healthy clinical condition. Film mdb009 from the

mini-MIAS database [212].
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A.3 Malign mammogram mdb028

Figure A.3: Mammogram with a malign tumour. Film mdb028 from the mini-

MIAS database [212].



Appendix B

2D NARX testing results

Table B.1: 2D NARX model test results 1-15

Test no. Mamm. no. Real condition Result Pred. type.

1 27 Normal True negative

2 75 Malign True positive

3 59 Benign True positive Benign

4 60 Normal True negative

5 25 Benign True positive Benign

6 28 Malign True positive Malign

7 76 Normal True negative

8 77 Normal True negative

9 78 Normal True negative

10 79 Normal True negative

11 80 Benign True positive Benign

12 83 Benign True positive Benign

13 84 Normal True negative

14 87 Normal False positive

15 88 Normal True negative
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Table B.2: 2D NARX model test results 16-40

Test no. Mamm. no. Real condition Result Pred. type.

16 91 Benign True positive Benign

17 92 Malign True positive Malign

18 93 Normal True negative

19 94 Normal True negative

20 95 Malign True positive Malign

21 96 Benign True positive Benign

22 97 Benign True positive Benign

23 98 Normal True negative

24 103 Normal True negative

25 111 Malign True positive Malign

26 117 Malign True positive Benign

27 119 Normal True negative

28 120 Malign False negative

29 131 Normal False positive

30 132 Benign True positive

31 133 Normal True negative

32 134 Malign True positive Malign

33 135 Normal True negative

34 136 Normal True negative

35 139 Normal True negative

36 140 Normal True negative

37 141 Malign True positive Malign

38 143 Normal True negative

39 144 Malign True positive Malign

40 150 Benign True positive Benign
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Table B.3: 2D NARX model test results 41-64

Test no. Mamm. no. Real condition Result Pred. type.

41 151 Normal True negative

42 153 Normal True negative

43 154 Normal True negative

44 155 Malign True positive Malign

45 156 Normal True negative

46 158 Malign True positive Malign

47 160 Benign True positive Benign

48 166 Normal True negative

49 167 Benign True positive Benign

50 168 Normal True negative

51 169 Normal True negative

52 173 Normal False positive

53 174 Normal True negative

54 181-A Malign True positive Malign

55 181-B Malign True positive Malign

56 183 Normal False positive

57 184 Malign True positive Malign

58 186 Malign True positive Malign

59 189 Normal True negative

60 190 Benign True positive Benign

61 195 Benign True positive Benign

62 196 Normal True negative

63 202 Malign True positive Malign

64 203 Normal True negative
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Table B.4: 2D NARX model test results 65-86

Test no. Mamm. no. Real condition Result Pred. type.

65 204 Benign True positive Benign

66 206-A Malign True positive

67 206-B Malign True positive Malign

68 207 Malign True positive Malign

69 209 Malign True positive Malign

70 211 Malign True positive Malign

71 212 Normal True negative

72 213 Malign True positive Malign

73 231 Malign False negative

74 232 Normal True negative

75 214 Normal True negative

76 218 Benign True positive Benign

77 234 Normal True negative

78 237 Normal True negative

79 238 Malign True positive Malign

80 246 Normal True negative

81 247 Normal True negative

82 248 Benign False negative

83 249 Malign True positive Malign

84 251 Normal False positive

85 255 Normal True negative

86 272 Normal True negative
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Table B.5: 2D NARX model test results 87-100

Test no. Mamm. no. Real condition Result Pred. type.

87 273 Normal True negative

88 314 Benign True positive Benign

89 293 Normal True negative

90 294 Normal True negative

91 297 Normal True negative

92 299 Normal True negative

93 300 Normal True negative

94 301 Normal True negative

95 302 Normal False positive

96 303 Normal True negative

97 304 Normal True negative

98 305 Normal True negative

99 306 Normal True negative

100 314 Benign True positive Benign



Appendix C

MSRBF testing results:

Tissue-type ratio 1/4

The appendix shows results of the first test (out of 4) made with different tissue

compositions. Test 1 had 31.68% fatty, 29.20% dense and 38.9% glandular images.

Table C.1: MSRBF: Test tissue-type ratio 1/4, Results 1-9

test no. Mamm. Tissue Class Predict. Result

1 6 FATTY negative negative TN

2 11 FATTY negative negative TN

3 14 GLAND negative negative TN

4 15 GLAND benign negative FN

5 28 GLAND malign malign, benign TP

6 29 GLAND negative negative TN

7 31 FATTY negative negative TN

8 32 GLAND benign benign TP

9 41 GLAND negative negative TN
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Table C.2: MSRBF: Test tissue-type ratio 1/4, Results 10-35

test no. Mamm. Tissue Class Predict. Result

10 49 GLAND negative negative TN

11 60 FATTY negative negative TN

12 61 DENSE malign malign TP

13 63 DENSE benign benign TP

14 64 DENSE negative negative TN

15 67 DENSE negative negative TN

16 68 DENSE negative negative TN

17 69 FATTY 3 benign 3 benign TP

18 71 GLAND negative negative TN

19 74 GLAND negative negative TN

20 75 FATTY malign malign TP

21 77 FATTY negative negative TN

22 78 FATTY negative negative TN

23 84 GLAND negative negative TN

24 86 GLAND negative negative TN

25 88 FATTY negative negative TN

26 89 GLAND negative negative TN

27 93 GLAND negative negative TN

28 98 FATTY negative negative TN

29 100 DENSE negative negative TN

30 104 DENSE benign 3 benign TP

31 107 DENSE benign benign, malign TP

32 108 DENSE negative negative TN

33 109 DENSE negative negative TN

34 111 DENSE malign benign, malign TP

35 112 DENSE negative negative TN



Appendix C. MSRBF testing results: Tissue-type ratio 1/4 216

Table C.3: MSRBF: Test tissue-type ratio 1/4, Results 36-61

test no. Mamm. Tissue Class Predict. Result

36 118 GLAND negative negative TN

37 119 GLAND benign benign TP

38 120 GLAND malign benign, malign TP

39 121 GLAND benign benign TP

40 125 DENSE malign malign TP

41 137 DENSE negative negative TN

42 141 FATTY malign negative FN

43 151 FATTY negative negative TN

44 154 FATTY negative negative TN

45 157 FATTY negative negative TN

46 160 FATTY benign benign TP

47 161 GLAND negative negative TN

48 165 GLAND benign malign TP

49 166 GLAND negative negative TN

50 168 FATTY negative negative TN

51 171 GLAND malign malign TP

52 176 GLAND negative negative TN

53 177 GLAND negative negative TN

54 181 GLAND malign benign TP

55 182 GLAND negative negative TN

56 186 GLAND malign negative FN

57 187 GLAND negative negative TN

58 191 GLAND benign negative FN

59 192 GLAND negative negative TN

60 194 DENSE negative negative TN

61 195 FATTY benign negative FN
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Table C.4: MSRBF: Test tissue-type ratio 1/4, Results 62-87

test no. Mamm. Tissue Class Predict. Result

62 198 DENSE benign benign, malign TP

63 200 DENSE negative negative TN

64 202 DENSE malign malign TP

65 205 FATTY negative negative TN

66 208 DENSE negative negative TN

67 210 GLAND negative negative TN

68 211 GLAND malign benign TP

69 213 GLAND malign benign TP

70 218 GLAND benign benign TP

71 219 GLAND benign benign TP

72 220 GLAND negative negative TN

73 224 DENSE negative negative TN

74 228 GLAND negative negative TN

75 230 FATTY negative negative TN

76 231 FATTY malign malign TP

77 233 GLAND malign malign, benign TP

78 234 GLAND negative negative TN

79 238 FATTY malign malign TP

80 244 DENSE benign benign, malign TP

81 248 FATTY benign malign TP

82 249 DENSE malign malign TP

83 250 DENSE negative negative TN

84 251 FATTY negative negative TN

85 252 FATTY benign benign TP

86 254 DENSE negative negative TN

87 255 FATTY negative negative TN
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Table C.5: MSRBF: Test tissue-type ratio 1/4, Results 88-113

test no. Mamm. Tissue Class Predict. Result

88 256 FATTY malign negative FN

89 258 DENSE negative negative TN

90 261 DENSE negative negative TN

91 265 GLAND malign malign TP

92 267 FATTY malign malign TP

93 269 GLAND negative negative TN

94 270 GLAND malign malign TP

95 271 FATTY malign malign TP

96 272 FATTY negative negative TN

97 275 GLAND negative negative TN

98 278 GLAND negative negative TN

99 282 DENSE negative negative TN

100 287 DENSE negative negative TN

101 289 DENSE negative negative TN

102 292 GLAND negative negative TN

103 293 FATTY negative negative TN

104 295 DENSE negative negative TN

105 300 FATTY negative negative TN

106 302 FATTY negative negative TN

107 305 FATTY negative negative TN

108 307 FATTY negative negative TN

109 309 FATTY negative negative TN

110 314 FATTY 2 benign benign TN

111 317 DENSE negative negative TN

112 319 DENSE negative negative TN

113 322 DENSE negative benign FP


	Acknowledgements
	Nomenclature
	Introduction
	Background
	Motivation
	Aims and objectives
	General objective
	Specific aims

	Thesis overview
	Main contributions
	Dissemination of research
	Journals
	Conferences
	Presentations


	Background and related work
	Digital image processing
	Image formation and representation
	General applications
	Image segmentation
	Object recognition
	Image classification
	The discrete cosine transform

	System identification
	Nonlinear system identification models

	Detection of the model structure
	The FROLS algorithm

	Computer aided diagnosis
	CAD for breast cancer
	Diagnosis performance metrics

	System identification models and ANN into CAD for breast cancer
	Parametric model-based CAD systems
	ANN-based CAD systems

	Chapter remarks

	Image classification using a 2D-NARX model
	Introduction
	The 2D-NARX methodology
	Digital mammogram partitioning 
	Two-dimensional image rendering and representation
	The NARX model
	FROLS model structure detection
	Extraction of feature values
	Classification and detection

	Experiments and results
	Case of study
	Setting up of the model parameters
	Data labelling and supervised learning
	Resulting image models
	Classification performance metrics
	Classification and detection results

	Discussion

	Image classification by MSRBF networks and DCT
	Introduction
	The MSRBF DCT methodology
	Discrete-time system structuring
	Traditional RBF and 2D MSRBF neural networks
	Model structure detection
	Feature extraction and the DCT
	Classification and detection

	Experiments and results
	Discussion

	Image classification by Multilayer-Fuzzy ELM
	Introduction
	Preliminaries and definitions
	ELM and multi-input-multi-output RBFNN
	MIMO IT2-RBFNN and fuzzy logic
	Multilayer kernel extreme learning

	Multilayer fuzzy extreme learning machine
	Experiments and results
	Classification of handwritten digits
	Breast cancer classification and detection

	Discussion

	Conclusions and final considerations
	Summary
	Conclusions
	Future work

	Bibliography
	Examples of study case mammograms
	Benign mammogram mdb005
	Normal mammogram mdb009
	Malign mammogram mdb028

	2D NARX testing results
	MSRBF testing results: Tissue-type ratio 1/4

