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Abstract

Huge demand for wireless throughput and number of users which are connected to the

base station (BS) has been observed in the last decades. Massive multiple-input

multiple-output (MIMO) is a promising technique for 5G for the following reasons; 1)

high throughput; 2) serving large numbers of users at the same time; 3) energy

efficiency. However, the low throughput of cell-edge users remains a limitation in

realistic multi-cell massive MIMO systems. In cell-free massive MIMO, on the other

hand, distributed access points (APs) are connected to a central processing unit (CPU)

and jointly serve distributed users. This thesis investigates the performance of cell-free

Massive MIMO with limited-capacity fronthaul links from the APs to the CPU which

will be essential in practical 5G networks. To model the limited-capacity fronthaul links,

we exploit the optimal uniform quantization. Next, closed-form expressions for spectral

and energy efficiencies are presented. Numerical results investigate the performance gap

between limited fronthaul and perfect fronthaul cases, and demonstrate that exploiting a

relatively few quantization bits, the performance of limited-fronthaul cell-free Massive

MIMO closely approaches the perfect-fronthaul performance. Next, the energy

efficiency maximization problem and max-min fairness problems are considered with

per-user power and fronthaul capacity constraints. We propose an iterative procedure

which exploits a generalized eigen vector problem and geometric programming (GP) to

solve the max-min optimization problem. Numerical results indicate the superiority of

the proposed algorithms over the case of equal power allocation. On the other hand, the

performance of communication systems depends on the propagation channel. To

investigate the performance of MIMO systems, an accurate small scale fading channel

model is necessary. Geometry-based stochastic channel models (GSCMs) are

mathematically tractable models to investigate the performance of MIMO systems.
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1.1 Overview and Motivation

In recent years, urban population growth has attracted multi-disciplinary research

attention. Not only are people using more mobile data per capita (2x per year), but the

population density in urban areas has also grown. As a result, the data demand density

per unit area has grown exponentially, and will continue to do so in most parts of the

world. Sustainable growth of wireless infrastructure to match this demand is crucial to

the digital economy and lifestyle. The main goal of wireless communications is to

achieve high data capacity without delay. Over the past few years, an abundance of

techniques have been proposed as a means to efficiently scale the wireless capacity. It

remains unclear which technology or set of technologies can meet the demand.

1
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Massive multiple input multiple output (MIMO) is one of the potential technologies

for the 5th Generation (5G) cellular networks. The conventional way to support a large

geographical area with wireless transmission is to exploit a cellular network methodology

[3], where each base station (BS) serves a set of users. Note that it is not possible to use

a single cell massive MIMO system which covers an effectively unlimited area, such as

an entire country or continent. Hence, we have to divide the large geographical area into

many cells resulting in a multi-cell massive MIMO system [3]. In the following, similar

to the methodology in [4], we consider a given large geographical area and provide a basis

for comparison between different scenarios.

A massive MIMO system can be defined by a 5-tuple (Na, Nu, R,G,W), where Na

and Nu refer to the total number of service antennas and total number of users in the area

with Na � Nu, G is the Nu × Na channel matrix between the Nu users and the Na

antennas, W refers to the Na × Nu pre-coding/de-coding matrix between the Na

antennas and the Nu message symbols for/from the Nu users, and R km2 is the size of

the service area [4]. For a given area, there are different scenarios to implement massive

MIMO technology. Based on [4], some of them are listed as follows: i) Single cell

massive MIMO: a single BS equipped with Na antennas communicates with Nu users

distributed in the cell with size R km2 ii) multi cell massive MIMO: the service area of

size R km2 is divided into Nc cells with one BS in each cell, where Nc × Na,BS = Na,

where Na,BS is the number of antennas at each BS. The BSs jointly serve distributed

users in the cells, and iii) cell-free massive MIMO: large number of access points (APs)

NAP, with few antennas Na,AP at each, are randomly distributed through the coverage

area with size R km2 [4]. The bottleneck in single-cell and multi-cell networks is the

poor performance of cell edge users [5]. To deal with this problem, cell-free massive

MIMO is introduced. In cell-free massive MIMO, there are no cells, and hence, no

boundaries. All users in the network are coherently served by several randomly

distributed APs via a central processing unit (CPU) [2, 6]. In [7] a user-centric approach

is proposed where each user is served by a small number of APs. Cell-free massive

MIMO effectively implements a user-centric approach [8]. Cell-free massive MIMO is a

scalable versions of the network-MIMO systems, or coordinated multipoint processing

(CoMP) [9, 10]. Cell-free massive MIMO is likely a key element of next-generation

networks [8]. In [11], Marzetta characterized the performance of massive MIMO

systems in the context of time division duplexing (TDD), which has widely inspired the
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community [12], which is capable of outperforming frequency division duplexing

(FDD).

On the other hand, another promising set of technologies for 5G is reviewed in [13–

15]: the combination of large antenna arrays and short wavelength carrier waves. To

defeat the effect of path loss at millimetre-wave (mm-wave) bands necessitates highly

directional antennas, which implies that mm-wave communication systems must deploy

massive MIMO. Moreover, this combination allows for a greater bandwidth availability

and extremely high spectral efficiency by utilizing a large number of antennas, whilst

occupying a relatively small area. This technology is known as massive MIMO at the

mm-wave spectrum. Therefore, we investigate an accurate channel model in mm-wave

bands in Chapter 6 of this thesis.

The work in this thesis will consider several significant challenges with a view to

contributing to 5G. Potential challenges that will be considered for this objective involve:

• One of the main issues of cell-free massive MIMO systems which requires more

investigation is the limited-capacity fronthaul links from the APs to a CPU. The

assumption of infinite fronthaul in [2, 16] is not realistic in practice. The fronthaul

requirements for massive MIMO systems, including small-cell and macro-cell BSs

have been investigated in [17]. The fronthaul load is the main challenge in any

distributed antenna systems [17];

• A significant challenge of the 5G communication networks is the huge throughput

difference among the users, which is addressed as fairness. Hence, one of the main

tasks of massive MIMO is to provide good performance for all users in the network,

which is referred to max-min fairness. This reveals the significance of max-min

fairness power control problem which maximizes the smallest of all user rates;

• In [18], the authors show that the collocated massive MIMO is energy-efficient.

On the other hand, the authors in [16] investigate the energy efficiency of cell-free

massive MIMO downlink with error-free and unlimited-capacity fronthaul links.

However, it is not yet obvious how energy efficient a cell-free massive MIMO with

limited-fronthaul capacity is;

• Another important issue in massive MIMO systems is user scheduling to maximize
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multiuser diversity gain with imperfect CSI. Recently, a range of user scheduling

schemes have been proposed for large MIMO systems. Most of these, such as

that described in [19], require accurate knowledge of the channel from all potential

users to the BS -which in the massive MIMO case is completely infeasible to obtain.

However, a simplified correlation-based user scheduling algorithm, by considering

massive MIMO simplifications and the effect of the cell geometry is still an open

problem.

• Spatially consistent channel modeling at mm-waves: Standardized MIMO channel

models such as the 3GPP channel model for new radios [20] are geometry-based

stochastic channel models (GSCMs) [21]. However, the available GSCMs at mm-

waves do not necessarily retain spatial consistency in simulated channels, which

is essential for small cells with ultra-dense users. In Chapter 6 of thesis, we work

on parameterization of the COST 2100 channel model, which ensures the spatial

consistency, using a ray-tracer which is adjusted to produce results consistent with

measurements.

1.2 Aims

The aim of this work is to overcome challenges of implementing an ultra-dense radio

access network using ”cell-free” massive MIMO techniques and COST 2100 channel

model. The objectives are summarised as follows:

• Exploiting the knowledge channel statistics at the receiver (users’ side in the

downlink and CUP’s end in the uplink) to derive a closed-form expression for

spectral efficiency cell-free massive MIMO.

• To model the effect of quantization due to the limited-capacity fronthaul links from

the APs to the CPU.

• Solving the non-convex max-min fairness problem to maximize the smallest rate of

the users.

• Investigation of energy efficiency of cell-free massive MIMO assuming fronthaul

limited-capacity fronthaul links.
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• Finding a practical user assignment algorithm for cell-free massive MIMO.

• Presenting low complexity correlation-based user scheduling and beamforming

design for collocated massive MIMO under a geometry-based stochastic channel

model.

• Parameterizing COST2100 channel model at mm-wave band based on a ray-tracer

optimized with measurements.

In this thesis, we investigate the practical requirements in cell-free massive MIMO,

namely, the effect of quantization error and the problem of user assignment. Finally, in

this thesis, we aim at bridging the gap between the two groups of research, i.e. this thesis

develops a realistic and practical massive MIMO scheme with the realistic COST 2100

channel model.

1.3 Contributions

The contributions of this thesis are summarised as follows:

• We consider two cases in which: i) the quantized versions of the channel estimates

and the received signals at the APs are available at the CPU and ii) the quantized

versions of processed signals at the APs are available at the CPU. The

corresponding achievable rates are derived by using the Use-and-then-Forget

(UaF) bounding technique taking into account the effects of channel estimation

error and quantization error. Next, to improve the performance of the cell-free

massive MIMO system, we propose to use a novel receiver filter, operating at the

CPU, which can be designed based only on the statistics of the channel.

• The uniform quantizer is investigated. Next, we make use of the Bussgang

decomposition to model the effect of quantization and present the analytical

solution to find the optimal step size of the quantizer.
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• We propose a max-min fairness problem which maximizes the smallest of all user

rates under the per-user power and fronthaul capacity constraints. To solve this

problem, the original max-min fairness problem is decomposed into two

sub-problems and an iterative algorithm is developed to solve the max-min

optimization problem. The optimality of the proposed algorithm is proved through

establishing the uplink-downlink duality for the cell-free massive MIMO system

with limited-capacity fronthaul links. We provide the convergence and complexity

analysis of the proposed scheme.

• A novel and efficient user assignment algorithm based on the capacity of fronthaul

links is proposed which results in significant performance improvement.

• An expression for uplink energy efficiency is derived based on channel statistics

and taking into account the effects of channel estimation errors, the effect of pilot

contamination, and quantization error. A novel approach to solve the non-convex

energy efficiency maximization problem is proposed, where we propose to

decompose the original problem into two sub-problems and an iterative algorithm

is developed to determine the optimal solution. Successive convex approximation

(SCA) is used to efficiently solve the power allocation problem. Next, a heuristic

sub-optimal energy efficiency maximization problem is proposed where the

original optimization problem is transformed into a standard geometric

programme (GP). The convergence and complexity analysis of the proposed

schemes are presented.

• Exploiting the eigenvalue spectrum of the channel covariance matrix, we propose

to use the angular bins to build up an approximate eigenchannel, which can be

used for linear precoding design. Next, a new user scheduling scheme is proposed

under the assumption of no instantaneous channel at the BS, other than the channel

correlation. The complexity of the proposed scheme is presented.

• We work on channel parameterization for the COST 2100 channel model using

mobile channel simulations at 61 GHz in Helsinki Airport. We study whether

clusters exist or not. For the first time, we perform clustering of dynamic multipath
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channels, where we identify and track clusters based on the spatial coordinates of

the multi-path components (MPCs).

1.4 Thesis Outline

The thesis structure is as follows:

• Chapter 2: Background

The chapter is dedicated the introduction of the basic concepts of multi-user

MIMO, massive MIMO, and cell-free massive MIMO. Different ways to

implement massive MIMO are described. Next, the fundamental theory of channel

estimation is explained. The basic principle of uniform quantizer is reviewed. We

next present the details of finding the optimal step size of uniform quantizer. The

achievable rate is next explained for the case of unknown channel gain at the

receiver. The details and parameters of COST 2100 channel model and the optimal

uniform quantizer are next provided.

• Chapter 3: Max-Min Rate of Cell-Free Massive MIMO Uplink

In this chapter, a cell-free massive MIMO with limited-capacity fronthaul links is

considered. The optimal uniform quantizer is exploited to quantize the signals at

the APs. The max-min rate optimization problem is investigated where the

smallest rate of the users is maximized. An iterative algorithm is proposed to

tackle the non-convexity of the problem. Next, we propose an efficient AP

assignment to decreases the load of fronthaul links. The convergence and

complexity of the proposed algorithm are provided. Finally, numerical results are

provided to validate the proposed algorithms.

• Chapter 4: Energy Efficiency of the Cell-Free Massive MIMO Uplink

In this chapter, the total energy consumption in a cell-free massive MIMO uplink

is modeled, enabling us to define the energy efficiency optimization problem in

cell-free massive MIMO uplink. The problem is not convex in its initial form and a
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convex approximation is proposed to efficiently solve the original optimization

problem. Next, to reduce the complexity of the system an sub-optimal algorithm is

proposed. Numerical results confirm that the sub-optimal scheme has a very

efficient performance while decreasing the complexity of the system. Next, we

investigate the complexity and convergence of the proposed algorithms. Finally,

numerical results are provided which show the effectiveness of the proposed

algorithms compared to the scheme with equal power allocation.

• Chapter 5: Low Complexity Massive MIMO Techniques Under Realistic

Channel

In this chapter, a collocated massive MIMO system with realistic geometry-based

COST 2100 channel model is considered. The problem of joint user scheduling

and beamforming design is considered while the transmitter has access to the

knowledge of the correlation of the channel. The proposed scheme exploits the

Fourier transform of the correlation matrix at the transmitter. Numerical results

demonstrate that the proposed algorithm achieve a performance very close to the

performance of the scheme with the estimated channel available at the transmitter.

• Chapter 6: Dynamic Multipath Clustering at 61 GHz

In this chapter, we consider ray-tracing results in a large scale environment in

Helsinki airport. Using the [x, y, z] information of the MPCs, we group the MPCs

into clusters. A Kalman filter is exploited to track the cluster positions for different

snapshots. Next, we extract the distribution of cluster life time, distribution of total

number of clusters and distribution of number of MPCs per cluster.

• Chapter 7: Conclusions and Future Work

In this chapter, we present the conclusions of the thesis and the possible future

research directions.
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2.1 Introduction

Massive MIMO is a technology which is obtained by increasing the number of BS

antennas and number of users in MU-MIMO systems. In massive MIMO, a very large

12
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number of antennas (hundreds or even thousands of antennas) communicate with a large

number of users, whereas the number of users is much smaller than the number of BS

antennas. In this chapter we study the fundamentals of massive MIMO systems. Next,

we present the basics of the COST 2100 channel model. The spectral and energy

efficiency of the massive MIMO system depend on the geometry of area. Hence, to

investigate the performance of massive MIMO in a real and practical propagation

environment, an accurate geometry-based channel model is essential. Finally, we

provide the details of the quantization model which we have used to model the

quantization error in cell-free massive MIMO.

The chapter is organised as follows: First, an introduction to multi-user MIMO is

presented in Section 2.3 which is followed by interesting practical aspects of massive

MIMO in Section 2.4 and the details of channel estimation in Section 2.5, respectively.

Next, the basics of massive MIMO and different types of massive MIMO are introduced

in Sections 2.6 and 2.7, respectively. Then, we present the basic concepts of the realistic

geometry-based COST 2100 channel model in Section 2.8 and detailed analysis of

uniform quantization to find the optimal step size of the quantizer are given in Section

2.9. The details to calculate the achievable rate with unknown channel gain at the

receiver and non-Gaussian noise is discussed in Section 2.10. Finally, a summary of the

chapter is provided in Section 2.11.

2.2 Notation

The following notations are adopted in the rest of the chapter. Uppercase and lowercase

boldface letters are used for matrices and vectors, respectively. The notation E{·} denotes

expectation. | · | stands for absolute value. The conjugate transpose of vector x is xH ,

and XT denotes the transpose of matrix X. In addition, it is assumed that x ∼ CN (0, σ2)

represents a zero-mean circularly symmetric complex Gaussian RV with variance σ2. The

conjugate of the variable x is presented by x?. Moreover, [x]n, R(x) and I(x) represent

the nth element of vector x, the real part and imaginary part of the complex variable x,

respectively. Next, diag[x] refers to a diagonal matrix whose diagonal elements are the

elements of vector x. Note that IN refers to the N ×N identity matrix. The notation |x|,
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|X|det and |x|size stand for the absolute value of x, determinant of matrix X, and the size of

vector x, respectively. Finally, the Kronecker product of X and Y is presented by X⊗ Y.

2.3 The Basics of Multi-User MIMO

In this section, the basic concepts of multi-user MIMO are presented. Note that massive

MIMO can be regarded as multi-user MIMO with a large number of antennas at the BS.

So, it is essential to understand the basics of multi-user MIMO.

2.3.1 System Model

Consider a single cell MU-MIMO system with M antennas at the BS and K single

antenna users. For the sake of simplicity, we suppose all users and the BS work on the

same time-frequency resource. Moreover, we assume a channel that is known at the BS

and the users. The training schemes for frequency-division duplex (FDD) and

time-division duplex (TDD) are discussed at the end of this chapter.

2.3.2 Uplink Transmission

We consider uplink transmission in a single cell massive MIMO system with M antennas

at the BS and K single antenna users. The M × 1 received signal at the BS is given by

yup =
√
pupHs + n, (2.1)

where s = [s1, · · · , sK ]T represents the symbol vector of K users, pup is the average

power for each user in uplink mode. The elements of the noise n are independent and

identically distributed (i.i.d.) Gaussian random variables (RVs) with zero mean and unit

variance, and independent of the aggregate channel matrix H ∈ CM×K . Based on the

analysis in [22], assuming knowledge of the channel at both transmitter and receiver, the
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Figure 2.1: The uplink of a MU-MIMO system with K single-antenna users in a single
cell.

Shannon sum-capacity is obtained by

Csum cap = log2 det
(
IK + pupH

HH
)
, (2.2)

where IK refers to K × K identity matrix. Note that the sum-capacity is achieved by

successive interference cancellation (SIC), where users’ signals are successively decoded

and subtracted out of the received signal [22].

2.3.3 Downlink Transmission

Suppose x ∈ CM×1 denotes the transmitted signal from the BS in downlink mode. Then,

the received signal at the kth user is given by

ydl,k =
√
pdh

T
k x + zk, (2.3)

where
√
pd denotes the average signal-to-noise ratio (SNR). It is assumed that p̄d denotes

the data powers, where pd = p̄d
pz

, where pz is the power of noise. Moreover, zk represents

the Gaussian additive noise at the user k. Moreover, hk ∈ CM×1 is the channel from the
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Figure 2.2: The downlink of a multi MU-MIMO system with K single-antenna users in a
single cell.

kth user to the BS. The vector of received signals at the K users is given by

ydl =
√
pdH

Tx + z, (2.4)

where ydl = [ydl,1, ydl,2, · · · , ydl,K ]T , zdl = [z1, z2, · · · , zK ]T and H = [h1 · · ·hK ].

2.3.4 Linear Receivers in Uplink

The optimal performance in MU-MIMO is obtained by maximum-likelihood (ML)

detection. However, as linear processing is nearly-optimal in massive MIMO [11], we

consider linear processing in this thesis. The received signal yup is multiplied by the

K ×M matrix WH as follows:

ỹup =
√
pupW

HHs + WHn. (2.5)

Each stream of ỹup is decoded. Then, the kth stream is given by

ỹup,k =
√
pupw

H
k hksk +

√
pup

K∑
k′ 6=k

wH
k hk′sk′ + wH

k n, (2.6)
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where wk represents the kth column of W. Hence, the SNR of the kth stream is given by

SINRk =
pup | wH

k hk |2

pup
∑

k′ 6=k | wH
k hk′ |2 + ‖ wk ‖2

(2.7)

We consider three linear multi user detectors: Maximum Ratio Combining (MRC),

Zero-forcing (ZF), and Minimum mean-square error (MMSE) receiver. The details are

described below.

1) Maximum Ratio Combining (MRC): where wk = hHk . Hence, the received SINR

of the kth symbol for MRC is given by

SINRk =
pup ‖ hk ‖4

pup
∑K

k′ 6=k | hHk hk′ |2 + ‖ hk ‖2
. (2.8)

In this case, as the received signal at the BS is multiplied by HH , the signal processing of

MRC is simple.

2) Zero-forcing (ZF) receiver: In ZF receiver, the multiuser interference is completely

removed by projecting each stream onto the orthogonal complement of signal. For the

case of ZF receiver, we can write:

ỹup = (HHH)−1HHyup =
√
pups + (HHH)−1HHn. (2.9)

Note that to make the matrix HHH invertible, we need M ≥ K. The kth stream of ỹup is

given by:

ỹup =
√
pupsk + ñk, (2.10)

where the term ñk is the kth element of (HHH)−1HHn. The SINR of the kth user is

given by

SINRk =
pup

[(HHH)−1]kk
. (2.11)

3) Minimum mean-square error (MMSE) receiver: the MMSE receiver has the best

performance among linear receiver, as it minimizes the mean-square error between the

estimated signal and the transmitted signal. The MMSE receiver is obtained by solving

the following equation

WMMSE = min
W

E
{∣∣WHH− s

∣∣2} . (2.12)



CHAPTER 2. BACKGROUND 18

Based on the analysis in [23], the optimum MMSE receiver is obtained as follows:

wMMSE
k =

√
pup
(
HHH + IM

)−1
hk, (2.13)

where wMMSE
k refers to the kth column of WMMSE.

2.3.5 Linear Precoding in Downlink

In the downlink, the signal transmitted from M antennas, x, is a linear combination of the

symbols of the all K users. Suppose sk with E{|sk|2} = 1 is the symbol intended for the

kth user. The precoded signal is given by

x =
√
cWs, (2.14)

where x = [s1 · · · sK ]T , W ∈ CM×K refers to the precoding matrix, and

c =
1

E{tr(WWH)}
is a normalization constant chosen to satisfy the power constraint

E{||s||2} = 1. Hence, the received signal at the kth user is given by

ỹdl,k =
√
cpdlh

T
kwksk +

√
cpdl

K∑
k′ 6=k

hTkwk′sk′ + nk. (2.15)

Hence, the SINR of the kth symbol for Conjugate Beamforming is given by

SINRk =
pup|hTkwk|2

pup
∑K

k′ 6=k | hHk wk′ |2 +1
. (2.16)

Three conventional linear beamformers are conjugate beamforming, ZF, and MMSE pre-

coders. The basic concept and properties of these beamformers are the same as linear re-

ceivers. Hence, the we provide their definitions as follows:

W =


H∗, Conjugate beamforming,

H∗
(
HTH∗

)−1
, ZF,

H∗
(
HTH∗ + K

pdl
IK

)−1

, MMSE.

(2.17)



CHAPTER 2. BACKGROUND 19

Figure 2.3: The performance of uplink sum rate for the linear receivers and the optimal
reciever. Taken from [1].

2.4 Why Is Massive MIMO Practically Interesting?

In massive MIMO, when the number of BS antennas is large, due to the law of large

numbers, the channels of users become orthogonal (please see Section 2.6.2 for the

details). As a result, linear processing is almost optimal. Fig. 2.3 demonstrates the sum

rate performance of the system versus the number of BS antennas with linear receivers.

Let us assume perfect channel knowledge at both receiver and transmitter and assuming

successive decoding, in which users’ signals are successively decoded and subtracted out

of the received signal. Hence the Shannon sum capacity is obtained by [24]

Csum cap = log2 det (IK + pupMIK) . (2.18)

As the figure shows, by increasing number of antennas M , the sum rate performance with

linear processing becomes very close to the Shannon sum capacity.
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2.5 Channel Estimation

The channel needs to be estimated at the BS and users. The estimation scheme depends

on the operating modes; FDD and TTD. In this section, we review the general approach

to estimate the channel at both TDD and FDD.

2.5.1 Channel Estimation in TDD Mode

In TDD, the uplink and downlink channel are the same. Hence, the CSI can be obtained

by the following approach [1]:

• Uplink mode: The BS requires CSI for detecting the transmitted signal by the users.

At the first step, the K users transmit K orthogonal pilot sequences to the BS and

the BS estimates CSI based on the received data.

• Downlink mode: The BS requires CSI to design the precoding matrix and each

user needs the effective channel gain to detect the signal of interest. At the first step,

similar to the uplink mode, theK users transmitK orthogonal pilot sequences to the

BS and the BS estimates CSI. As the next step, the BS beamforms pilot sequences

and sends them to the K users. The users estimate the effective channel gains via

the received signal.

As a result, the training scheme in the TDD mode requires 2K symbols (K symbols

for uplink and K symbols for downlink). Let us suppose channel is constant during T

symbols. Hence, the following condition should be satisfied:

2K < T. (2.19)



CHAPTER 2. BACKGROUND 21

2.5.2 Channel Estimation in FDD Mode

Different frequencies are used in the uplink and downlink of FDD mode. Hence, the

uplink and downlink channels in FDD systems are not the same. In this subsection, we

describe a scheme to obtain the channel in the uplink and downlink transmissions of FDD

systems.

• Downlink mode: CSI is required at the BS to design the beamforming matrix. The

BS sends M orthogonal pilots to the K users. Each user estimates the channel

based on the received signal. At the next step, the K users feed back the estimated

channel to the BS. So, M symbols for the downlink and K symbols for the uplink

are required by this scheme [1].

• Uplink mode: The K users send K orthogonal pilots to the BS. Next, the BS

estimates the channels based on the received signal. This scheme needs K

channels uses [1].

As a result, one could conclude that the coherence time of the channel (in symbol) should

be large enough to transmit M +K symbols in downlink and M symbols in uplink mode.

Hence, the channel estimation scheme for FDD mode requires the following condition:

T >

 M +K, Downlink

M, Uplink .
(2.20)

2.6 The Basics of Massive MIMO

First, we discuss the basic concept that TDD provides better performance than FDD in

massive MIMO systems. Next, favourable propagation and channel hardening in massive

MIMO is provided.
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Figure 2.4: The possible regions for TDD and FDD modes of massive MIMO for the
coherence time T = 200. Taken from [1].

2.6.1 Is TDD or FDD Best Suited to Massive MIMO Systems?

Channel estimation load in TDD mode does not depend on M , while channel estimation

load in FDD systems is a function of M . As a large number of antennas are used in

massive systems, TDD mode is more suitable for massive MIMO systems. Let us consider

an example from [1]: let us assume T = 200 symbols denote the coherence interval,

which corresponds to a coherence bandwidth of 200 KHz and coherence time of 1ms.

Then (2.20) results in M +K < 200. However, exploiting (2.19), we have K < 100. To

compare TDD and FDD mode, we use Fig. 2.4 which is extracted from [1]. The figure

shows the regions for possible values of M and K for T = 200. Fig. 2.4 investigates the

operating feasible regions for different values of (M,K) in the FDD and TDD modes of

massive MIMO systems. As the figure shows, the FDD region is very small compared to

the TDD region. By having a large number of antennas in massive MIMO, we have to use

the whole channel coherence time for channel estimation, which does not leave any time

to transmit data.
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Figure 2.5: A single-cell massive MIMO system with K single-antenna users and a BS
equipped with M antennas.

2.6.2 Favourable Propagation

Massive MIMO systems benefit from favourable propagation which introduces the

desirable condition to increase sum-capacity [25]. The mutual orthogonality among the

channel vectors of the users is called favourable propagation [25]. Let us assume the

vectors hk, k = 1, · · · , K denote the size M × 1 channels. Based on [25], the channels

introduce favourable propagation if the following condition hold

hHi hj =

 0, i 6= j

‖hi‖2 6= 0, i = j,
(2.21)

where in (2.21), we use the law of large numbers. Note that based on the law of large

numbers, the average of the results obtained from a large number of trials should be close

to the expected value.

2.7 Different Scenarios to Implement Massive MIMO

As mentioned earlier, a massive MIMO system is determined by the 5-tuple

(M,K,R,H,W), where M and K refer to the total number of service antennas and
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Figure 2.6: A multi-cell massive MIMO system with K single-antenna users and L cells,
with one BS at the centre of each cell. The dashed lines denote the fronthaul links from
the APs to the CPU.

total number of users in the area with M � K, and H and W are the channel and

pre-coding/de-coding matrix in the downlink/uplink modes. Note that R km2 refers to

the size of the area. In this section we present a performance comparison between three

scenarios as follows: i) Single cell massive MIMO: a single BS equipped with M

antennas communicates with K users distributed across a single cell with size R km2,

which constitutes the entire service area; ii) multi cell massive MIMO with joint

processing: the service area of size R km2 is divided into Nc cells with one BS in each

cell, with total number of service antennas at all BSs is M . The BSs jointly serve

distributed users in the cells, which is combination of massive MIMO and network

MIMO or CoMP [26–28], and iii) cell-free massive MIMO: a large number M of APs,

with a small number N of antennas at each, are randomly distributed through the

coverage area with size R km2 [4]. Hence the total number of service antennas in

cell-free massive MIMO is NM . Note that a genuine single-cell massive MIMO system

is not realistic in practice- an entire network of users in a country (or even in a city) is

never going to be served by just one cell. In the following, we explain the

above-mentioned system models.



CHAPTER 2. BACKGROUND 25

Figure 2.7: A cell-free massive MIMO system with K single-antenna users and M APs.
The dashed lines denote the fronthaul links from the APs to the CPU.

2.7.1 Single-Cell Massive MIMO

A single BS equipped with large number of antennas communicates with a much smaller

number of users distributed in the cell. Fig. 2.5 represents a single-cell massive MIMO

with a BS with M antennas and K single antenna users. As the figure shows, the “cell

edge” users are far away from the BS and suffer from very high pathloss, which results in

poor service for the cell edge users.

2.7.2 Multi-Cell Massive MIMO

In multi-cell massive MIMO, the area is divided into several cells and there is one BS

at the centre of each cell. The BSs could be connected to the CPU via fronthaul links.

However, the low throughput of cell edge users remains a limitation factor in realistic

multi-cell massive MIMO systems [5]. The system model of multi-cell massive MIMO is

demonstrated in Fig. 2.6.
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Figure 2.8: The achievable rate versus total number of antennas with conjugate beam-
forming, orthogonal pilot sequences, pilot power pp = 100 mW, downlink data power
pd = 200 mW, and size of area 2 × 2 km2. For the case of cell-free massive MIMO,
there are M single-antenna APs which are uniformly distributed through the area. In case
of single-cell massive MIMO, there is one BS with M antennas at the centre of cell. In
multi-cell massive MIMO, we divide the area into 4 cells and assume one BS at the centre
of each cell. Moreover, it is assumed that each BS has M

4
antennas. Note that this result

is a contribution of this thesis and is included here to the sake of completeness.

2.7.3 Cell-Free Massive MIMO

In this subsection, we explain the concept of cell-free massive MIMO which has gained a

lot of attention recently because of its potential to ensure uniformly good service rates for

all users [2]. Cell-free massive MIMO system is a combination of distributed MIMO and

massive MIMO systems [2]. The distributed APs are connected to a CPU via fronthaul

links [2]. The system model of cell-free massive MIMO is presented in Fig. 2.7.

In cell-free massive MIMO, many distributed APs are connected to one or several

CPUs and coherently serve many distributed users [2]. In other words, here the service

antennas can be assumed as the elements of a very large distributed antenna array in a

multiuser MIMO system. This approach provides many of the benefits of cloud radio

access network (C-RAN), enjoying lower path loss as well as distributed signal

processing. Note that in C-RAN the radio access network (RAN) over an area of
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possible tens of km2 is treated as a distributed antenna system (DAS) in which AP

antennas are connected to a large central baseband processing unit (BBU). Cell-free

massive MIMO is an effectively scalable version of network MIMO, or CoMP [9, 10],

and can effectively eliminate the concept of cells. One of the main issues of cell-free

massive MIMO systems which requires more investigation is the limited-capacity

backhaul links from the APs to the CPU. Due to the combination of massive MIMO and

distributed MIMO, cell-free massive MIMO benefits from high system throughput and

energy efficiency [2, 29]. Fig. 2.8 presents a performance comparision between cell-free

massive MIMO and single-cell massive MIMO versus total number of antennas M . Note

that we deploy M single-antenna APs in cell-free massive MIMO. As the figure shows

cell-free massive MIMO provides a better performance thanks to the fact that APs have a

smaller geographical distance to the users.

2.7.4 Cell-Free Massive MIMO System Model

We consider uplink transmission in a cell-free massive MIMO system with M APs and

K single-antenna users randomly distributed in a large area. Moreover, we assume each

AP has N antennas, as shown in Fig. 2.9. The channel coefficient vector between the kth

user and the mth AP, gmk ∈ CN×1, is modeled as

gmk =
√
βmkhmk, (2.22)

where βmk denotes the large-scale fading, the elements of hmk are i.i.d. CN (0, 1) RVs,

and represent the small-scale fading [2]. Note that throughout this thesis we refer to βmk

by the statistics of the channel. The large-scale fading βmk changes very slowly with time.

Compared to the small-scale fading, the large-scale fading changes much more slowly,

some 40 times slower according to [12, 30]. Therefore, βmk can be estimated in advance.

One simple way is that the AP takes the average of the power level of the received signal

over a long time period. A similar technique for collocated massive MIMO is discussed

in Section III-D of [12].
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Figure 2.9: The uplink of a cell-free massive MIMO system with K single-antenna users
and M APs. Each AP is equipped with N antennas. The solid lines denote the uplink
channels and the dashed lines present the fronthaul links from the APs to the CPU. Sim-
ilar to [2], we assume that the simulation area is wrapped around at the edges which can
simulate an area without boundaries. Hence, the square simulation area has eight neigh-
bours.

2.7.5 Uplink Channel Estimation in Cell-Free Massive MIMO

In order to estimate channel coefficients in the uplink, the APs employ a minimum mean-

square error (MMSE) estimator. During the training phase, all K users simultaneously

transmit their pilot sequences of length τ symbols to the APs. Let
√
τφφφk ∈ Cτ×1, where

‖φφφk‖2 = 1, be the pilot sequence assigned to the kth user. Then, the received signal at the

mth AP is given by

Yp
m =
√
τpp

K∑
k=1

gmkφφφ
H
k + Wp

m, (2.23)

where vector Wp
m ∈ CN×τ is the noise whose elements are i.i.d. CN (0, 1). Moreover, pp

is the normalized transmit SNR of each pilot symbol, where pp = p̄p
pn

, where p̄p and pn

refer to the transmit pilot power and the noise power, respectively. Next, the APs exploit

the pilot sequence φφφk to correlate the received signal with the pilot sequence as follows

[2]:

y̌pm,k = Yp
mφφφk =

√
τppgmk +

√
τpp

K∑
k′ 6=k

gmk′φφφ
H
k′φφφk + ẇp

mk, (2.24)
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where ẇp
mk ,Wp

mφφφ
H
k . The linear MMSE estimate of gmk is

ĝmk =
E
{
gmky̌

p
m,k

}
E
{∣∣y̌pm,k∣∣2} y̌pm,k = cmk

(
√
τppgmk+

√
τpp

K∑
k′ 6=k

gmk′φφφ
H
k′φφφk+ẇp

mk

)
, (2.25)

where that the expectations are taken over small-scale fading and noise. Next, cmk is

obtained as [2]

cmk =

√
τppβmk

τpp
∑K

k′=1 βmk′ |φφφHk′φφφk|
2

+ 1
. (2.26)

Note that, as in [2], we assume that the large-scale fading, βmk, is known. The estimated

channels in (2.25) are used by the APs to design the receiver filter coefficients and deter-

mine power allocations at users to maximize the minimum rate of the users. Note that the

channel gmk has N i.i.d. Gaussian elements. Therefore, the power on the nth component

of gmk is defined as follows:

γmk = E
{
|[ĝmk]n|

2} =
τppβ

2
mk

τpp
∑K

k′=1 βmk′ |φφφHk′φφφk|
2

+ 1
=
√
τppβmkcmk. (2.27)

In this thesis, we investigate the cases of both random pilot assignment and orthogonal

pilots in cell-free massive MIMO. Here the term “orthogonal pilots” refers to the case

where unique orthogonal pilots are assigned to all users. In the case of orthogonal pilots,

the length of pilots is τ ≥ K. Hence, the pilots assigned to the users are orthogonal.

Moreover, for case of “random pilot assignment”, we have τ < K. Hence, similar to the

scheme in [2,31], each user is randomly assigned a pilot sequence from a set of orthogonal

sequences of length τ (< K).

2.8 The Basics of COST 2100 Channel Model

The propagation channel model is the basis of wireless communications. An accurate

and realistic channel model is a requirement for 5G systems. This section investigates a

geometry-based channel model in detail.
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Figure 2.10: The general description of the cluster model. The spatial spreads for cth
cluster are given.

COST 2100 Channel Model

In geometry-based stochastic channel models (GSCMs), the double directional channel

impulse response is a superposition of MPCs. The channel is given by [32]

h(τ, φ, θ) =

NC∑
j=1

Np∑
i=1

ai,jδ(φ− φi,j)δ(θ − θi,j)δ(τ − τi,j), (2.28)

whereNp denotes the number of multipath components, τ denotes the delay, δ denotes the

Dirac delta function, and φ and θ represent the direction of arrival (DoA) and direction of

departure (DoD) respectively. Similar to [32], we group the multipath components with

similar delay and directions (depending on cluster delay spread) into clusters. Three kinds

of clusters are defined; local clusters, single clusters and twin clusters. Local clusters are

located around users and the BS while single clusters represented by one cluster and twin

clusters are characterized by two clusters related respectively to the user and the BS side

as shown in Fig. 2.10. A local cluster is a single cluster that surrounds a user: single

clusters can also occur in a different position. Twin clusters consist of a linked pair of

clusters, one of which defines the angles of departure of multipaths from the transmitter,

while the other defines the angles of arrival at the receiver [32]. There is a large number

of clusters in the area, however only some of them can contribute to the channel. The

circular visibility region (VR) determines whether the cluster is active or not for a given

user. The MPC’s gain scales by a transition function that is given by
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AV R(r̄MS) =
1

2
− 1

π
arctan

(
2
√

2 (LC + dMS,V R −RC)√
λLC

)
, (2.29)

where r̄MS is the centre of the VR, RC denotes the VR radius, LC represents the size of

the transition region and dMS,V R refers to the distance between the mobile stations (MS)s

and the VR centre. Moreover, λ denotes the wavelength (in m). For a constant expected

number of clusters NC , the area density of VRs is given by

ρC =
NC − 1

π (RC − LC)2 . (2.30)

All clusters are ellipsoids in the environment and can be characterized by the cluster

spatial delay spread, elevation spread and azimuth spread. Once the position of the BS

and users are fixed, we need to determine the positions of the clusters in the area by

geometrical calculations. For the local clusters, we consider a circle around the users and

the BS, so that the size of the local cluster can be characterized by the cluster delay spread

(aC), elevation spread (hC) and the position of MPCs [32]. For local clusters the cluster

delay, azimuth and elevation spreads can be given by

aC =
∆τc0

2
, (2.31a)

bC = aC , (2.31b)

hC = dC,BS tan θBS, (2.31c)

where c0 denotes the speed of light, dC,BS is the distance between the cluster and the BS,

∆τ refers to the delay spread and θBS is the elevation spread seen by the BS. The delay

spread, angular spreads and shadow fading are correlated RVs and for all kinds of clusters

are given by [33]

∆τc = µτ (
d

1000
)
1
2 10στ

Zc
10 , (2.32a)

βc = τβ10σβ
Yc
10 , (2.32b)

Sm = 10σs
Xc
10 , (2.32c)

where ∆τc refers to the delay spread, βc denotes angular spread, and Sm is the shadow

fading of cluster c. Moreover, Xc, Yc and Zc denote correlated RVs with zero mean and

unit variance. Correlated random process can be simulated using Cholesky factorization
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[33]. Cholesky factorization can be used to generate a random vector with a desired

covariance matrix [34]. The MPCs’ positions can be drawn from the truncated Gaussian

distribution given by [32]

f(r)=


1√

2πσ2
r,o

exp

(
−
[
r − µr,o√

2σr,o

]2
)
|r| ≤ rT ,

0 otherwise,

(2.33)

where rT denotes the truncation value. For single clusters, the cluster delay, azimuth and

elevation spreads can be given by

aC = ∆τc0/2, (2.34a)

bC = dC,BS tanφBS, (2.34b)

hC = dC,BS tan θBS. (2.34c)

To get the fixed positions of the single clusters, the radial distance of the cluster from the

BS is drawn from the exponential distribution [32]

f(r) =


0 r < rmin,

1

σr
exp

(
−(r − rmin

σr
)

)
otherwise.

(2.35)

To determine the fixed position of the cluster, the angle of the cluster can be drawn from

the Gaussian distribution with a standard deviation σφ,C . For the twin clusters, for both

the BS and user side clusters we have

aC =
∆τc0

2
, (2.36a)

bC = dC,BS tanφBS. (2.36b)

For the BS side cluster, the elevation spread can be given by

hC = dC,BS tan θBS, (2.37)

while for the MS side cluster, we have

hC = dC,MS tan θMS. (2.38)
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Fig. 2.10 gives an example of the geometry of the Cth cluster. For twin clusters, the

distance between the cluster and the BS and the distance from the VR centre and the MS

is given by [32]

dC,BS tan ΦC,BS = dC,MS tan ΦC,MS. (2.39)

The delay of a cluster is represented by [32]

τC = (dC,BS + dC,MS + dC)/c0 + τC,link, (2.40)

where the geometrical distance between twin clusters is represented by dC , dC,MS denotes

the geometrical distance between the user and the centre of the visibility region, dC,BS

refers to the distance between the BS and the cluster, and finally τC,link is the cluster link

delay between the twin clusters. Hence, the cluster power attenuation is given by [32]

AC = max (exp [−kτ (τC − τ0)] , exp [−kτ (τB − τ0)]) , (2.41)

where kτ denotes the decay parameter, and τB is the cut-off delay. We assume Rayleigh

fading for the MPCs within each cluster. Hence, the complex amplitude of the ith MPC

in the jth cluster in (2.28) is given by

ai,j =
√
LpAV R

√
ACAMPC e

−j2πfcτi,j , (2.42)

where Lp is the channel path loss,AMPC is the power of each MPC which is characterized

by the Rayleigh fading distribution and τi,j is the delay of the ith MPC in cluster j given

by [32]

τi,j =

(
dMPCi,j ,BS + dMPCi,j ,MS

)
c0

+ τi,C,link. (2.43)

By assuming a fixed OFDM subcarrier, we can drop the variable τi,j from (5.6). For the

non-line-of-sight (NLoS) case of the micro-cell scenario, the path loss expression can be

given by [35]

Lp = 26 log10 d+ 20 log10(
4π

λ
), (2.44)

where d and again λ denote the distance (in m) and the wavelength (in m), respectively.

Note that the basics of COST 2100 channel model presented in this section are exploited

in Chapters 5 and 6.
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2.9 The Basics of Optimal Uniform Quantization

Based on Bussgang’s theorem [36], the output of a non-linear function such as a quantizer

with Gaussian input can be represented as a linear function as follows:

Q(z) = h(z) = az + nd, ∀k, (2.45)

where a is a constant value and nd refers to the distortion noise which is uncorrelated with

the input of the quantizer, z. The term a is given by

a =
E {zh(z)}
E{z2}

=
1

pz

∫
Z
z̃h(z̃)fz(z̃)dz̃, (2.46)

where pz = E{|z|2} = E{z2} is the power of z and we drop absolute value as z is a real

number, and fz(z) is the probability distribution function of z. Define

b =
E {h2(z)}
E{z2}

=
1

pz

∫
Z
h2(z̃)fz(z̃)dz̃. (2.47)

Then, the signal-to-distortion noise ratio (SDNR) is

SDNR =
E {(az)2}
E{n2

d}
=

pza
2

pz (b− a2)
=

a2

b− a2
, (2.48)

According to [36], the midrise uniform quantizer function h(z) is given by

h(z) =


−L−1

2 ∆ z ≤ −
(
L
2 + 1

)
∆,(

l + 1
2

)
∆ l∆ ≤ z ≤ (l + 1)∆, l = −L

2 + 1, · · · , L2 − 2,

L−1
2 ∆ z ≥

(
L
2 − 1

)
∆,

(2.49)

where ∆ is the step size of the quantizer and L = 2α, where α is number of quantization

bits. Note that the lemma and the analysis provided below are novelty of this thesis, and

we include them in this chapter for the sake of completeness.
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Lemma 1. The terms a and b are obtained as follows:

a = ∆

√
2

πpz

∑L
2
−1

l=1 e
−
l2∆2

2pz + 1

 , (2.50a)

b =
∆2

pz

(
1
4

+ 4
∑L

2
−1

l=1 l Q
(

l∆√
pz

))
, (2.50b)

where Q is the Q-function and is given by Q = 1
2
erfc

(
z√
2

)
, where erfc refers to the

complementary error function [37].

Proof: We exploit (2.46) and (2.49) to find a and b for uniform quantizer as follows:

a =
1

pz

∫ ∞
−∞

zh(z)fz(z)dz

=
1

pz

∫ −L2 +1

−∞
−zL− 1

2
∆fz(z)dz +

l=−L
2

+1∑
l=−L

2
+1

∫ (l+1)∆

l∆

x

(
l +

1

2

)
∆fz(z)dz

+

∫ ∞
L
2
−1

z
L− 1

2
∆fz(z)dz

)
a1=

(L− 1)∆

2
√

2πpz
exp

(
−
(
L
2
− 1
)2

2

)

+

L
2
−2∑

l=−L
2

+1

(
l + 1

2

)
∆

√
2πpz(

exp

(
− l

2∆2

2

)
− exp

(
(l + 1)2 ∆2

2

))

+
(L− 1) ∆

2
√

2πpz
exp

(
−
(
L
2
− 1
)2

2

)

a2=

L
2
−2∑

l=−L
2

+1

(
l + 1

2

)
∆

√
2πpz

exp

(
− l

2∆2

2

)
−

L
2
−2∑

l′=−L
2

+1

(
l′ + 1

2

)
∆

√
2πpz

exp

(
− l
′2∆2

2

)

=

L
2
−2∑

l=−L
2

+1

∆√
2πpz

exp

(
−l2∆2

2

)

=

L
2
−1∑
l=1

2∆√
2π

exp

(
−l2∆2

2

)
+

∆√
2πpz

= ∆

√
2

πpz

L
2
−1∑
l=1

exp

(
−l2∆2

2

)
+ 1

 , (2.51)
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b =
E {h2 (z)}
E {z2}

=
1

pz

∫ ∞
−∞

h2(z)fz(z)dz

=
2

pz

L
2
−1∑
l=1

∫ l∆

(l−1)∆

(
l − 1

2

)2

∆2fz(z)dz

+

∫ l∆

(L2−1)∆

(
L− 1

2

)2

∆2fz(z)dz

)

a1=
2∆2

pz

L
2
−1∑
l=1

(
l − 1

2

)2(
Q

(
(l − 1) ∆
√
pz

)
−Q

(
l∆
√
pz

))

+

(
L− 1

2

)2

Q

(
(L− 2) ∆

2pz

))

a2=
2∆2

pz

L
2
−1∑

l′=0

(
rl′ +

1

2

)2

Q

(
l′∆

pz

)
−

L
2
−1∑
l=1

(
l − 1

2

)2

Q

(
l∆

pz

)
=

2∆2

pz

(1

2

)2

Q(0) +

L
2
−1∑
l=1

((
l +

1

2

)2

−
(
l − 1

2

)2
)
Q

(
l∆

pz

)
=

∆2

pz

1

4
+ 4

L
2
−1∑
l=1

lQ

(
l∆

pz

) (2.52)

where the steps a1 and a2 come from the property that the input of the quantizer has

the Gaussian distribution, and l′ = l + 1, respectively.

In general, terms a and b are functions of the power of the quantizer input, pz. To remove

this dependency, we normalize the input signal by dividing the input signal, z, by the

square root of its power,
√
pz, and then multiply the quantizer output by its square root,

√
pz. Hence, by introducing a new variable z̃ = z√

pz
, we have

Q(z) =
√
pzQ(z̃)

= ã
√
pz z̃ +

√
pzñd

= ãz +
√
pzñd. (2.53)

Note that (2.53) enables us to find the optimum step size of the quantizer and the

corresponding ã. The optimal step size of the quantizer is obtained by solving the
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following maximization problem:

∆opt = arg max
∆

SDNR

= arg max
∆

a2

b− a2

I1= arg max
∆

ã2

b̃− ã2

= arg max
∆

ã2

b̃

I2

, arg max
∆

2∆2

π

(∑L
2
−1

l=1 exp
(
−l2∆2

2

)
+ 1
)2

∆2
(

1
4

+ 4
∑L

2
−1

l=1 lQ
(
l∆
pz

))


= arg max
∆


(∑L

2
−1

l=1 2 exp

(
−l

2∆2

2

)
+ 1

)2

1
4
+4
∑L

2
−1

l=1 l Q (l∆)

, (2.54)

where in step I1, we have used (2.53) and step I2 comes from results in Lemma 1. The

maximization problem in (2.54) can be solved through a one-dimensional search over

∆ for a given L in a symbolic mathematics tool such as Mathematica. For the input z̃

with pz̃ = 1, the optimal step size of the quantizer, the resulting distortion noise power,

pñd = E{|ñd|2} = b̃− ã2, and the resulting ã are summarized in Table 2.1.

Remark 1. Interestingly, the optimal values for quantization step size, ∆opt, given in

Table 2.1, are exactly the same as the optimal values of quantization step size without

using Bussgang theorem in [38]. In [38], J. Max did not provide any analytical solution

to obtain the optimal quantization step size. Moreover, J. Max only calculates the optimal

step size and the resulting distortion power for α = 1, · · · , 5 whereas Lemma 1 enables us

to calculate the optimal step size and the resulting distortion power for any quantization

resolution values for α up to 18 listed in Table 2.1.
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Table 2.1: The optimal step size and distortion power of a uniform quantizer with Buss-
gang decomposition.

α ∆opt pñd = b̃− ã2 ã

1 1.596 0.2313 0.6366
2 0.9957 0.10472 0.88115
3 0.586 0.036037 0.96256
4 0.3352 0.011409 0.98845
5 0.1881 0.003482 0.996505
6 0.1041 0.0010389 0.99896
7 0.0568 0.0003042 0.99969
8 0.0307 0.0000876 0.999912
9 0.0165 0.0000249 0.999975

10 0.0088 6.99696× 10−6 0.999993
11 0.004649 1.94441× 10−6 0.999998
12 0.0024484 5.35536× 10−7 0.999999
13 0.001283 1.46369× 10−7 1
14 0.001283 3.97394× 10−8 1
15 0.000349 1.0727× 10−8 1
16 0.0001812 2.88095× 10−9 1
17 0.0000938 7.70251× 10−10 1
18 0.0000485 2.05146× 10−10 1

2.10 Achievable Rate with Unknown Channel Gain at

the Receiver and Non-Gaussian Noise

It is a common assumption that in massive MIMO, the BS or users do not have

knowledge of the channel gain [4, 24]. So, in this section, we investigate the achievable

rate without assuming knowledge of channel at the receiver. Let us assume g is a scalar

RV representing the point-to-point fading channel. Hence, the received signal is given by

y =
√
pgx+ w, (2.55)

where x is the transmitted symbol (E{|x|2}] ≤ 1) and p is the power and w is noise.

Similar to [24, Section 2.3.4], we assume g and w are independent, and there is no

assumption considered on the statistical relationship between g and w. Based on

[24, Section 2.3.4], to calculate the achievable rate, we need to re-write the received
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signal as follows:

y =
√
pE {g}x+

√
p (g − E {g})x+ w︸ ︷︷ ︸

effective noise

. (2.56)

Note that the term
√
p (g − E {g})x is due to the lack of the information about g.

Following the methodology in [24, Section 2.3.4], the second and third terms in (2.56)

are mutually uncorrelated, and moreover, they are uncorrelated with x. The term w is the

effective noise. Finally, the achievable rate is given by

R = log2

(
1 +

p|E {g} |2

pVar {g}+ 1

)
. (2.57)

Assuming C refers to the capacity of this channel, we have [24]

C ≥ R. (2.58)

By using (2.57) and (2.58) and the analysis in [24], one could conclude that the bound

in (2.58) is helpful if g oscillates closely around its expected value E {g} resulting small

variance Var {g} [24]. Finally, exploiting the effect of channel hardening, although g is

random, the value of g − E {g} is small, resulting in small Var {g}.

2.11 Summary

The chapter is summarised as follows:

• A general overview of the basics related to the current thesis has been provided.

Some background knowledge which is essential for the upcoming chapters of the

thesis has been presented.

• In this chapter we have given an overview of basics of MU-MIMO systems. The

linear transmission schemes including ZFBF and MRT and the SINR of

performance of the system with linear precoding have been presented.

• Different ways of massive MIMO implementations have been discussed: single-cell

massive MIMO; multi-cell massive MIMO; cell-free massive MIMO.
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• The principles of channel estimation in cell-free massive MIMO uplink have been

investigated.

• The detailed parameter set of realistic geometry-based COST 2100 channel model

has been presented.

• The general concept of the uniform quantizer has been introduced. Next a detailed

analysis to find the optimal step size of the uniform quantizer has been provided.

• The details of calculating the achievable rate with unknown channel gain at the

receiver and non-Gaussian noise have been presented.
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3.1 Introduction

One of the main issues of cell-free massive MIMO systems which requires more

investigation is the limited-capacity fronthaul links from the APs to a CPU. The

41
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assumption of infinite fronthaul in [2, 16] is not realistic in practice. First, we consider

the case where all APs send back the quantized version of the minimum mean-square

error (MMSE) estimate of the channel from each user and the quantized version of the

received signal to the CPU. We next study the case when each AP multiplies the received

signal by the conjugate of the estimated channel from each user, and sends back a

quantized version of this weighted signal to the CPU. We derive the total number of bits

for both cases and show that given the same fronthaul capacity for both cases, the

relative performance of the aforementioned cases depends on the number of antennas at

each AP, the total number of APs and the channel coherence time. A new approach is

provided to the analysis of the effect of fronthaul quantization on the uplink of cell-free

massive MIMO. While there has been significant work in the context of network MIMO

on compression techniques such as Wyner-Ziv coding for interconnection of distributed

BSs, here for simplicity (and hence improved scalability) we assume simple uniform

quantization. We exploit the Bussgang decomposition [36] to model the effect of

quantization.

In [2, 6, 16] the authors propose that the APs design the linear receivers based on the

estimated channels, and that this is carried out locally at the APs. Hence, the CPU exploits

only the statistics of the channel for data detection. However, in this thesis, we propose to

exploit a new receiver filter at the CPU to improve the performance of cell-free massive

MIMO systems. The coefficients of the proposed receiver filter are designed based on

only the statistics of the channel, which is different from the linear receiver at the APs.

The proposed receiver filter significantly improves the performance of the uplink of cell-

free massive MIMO.

We next investigate an uplink max-min rate problem with limited fronthaul links. In

particular, the receiver filter coefficients and power allocation are optimized in the

proposed scheme whereas the work in [2] only considered user power allocations. In

particular, we propose a new approach to solve this max-min problem. A similar

max–min rate problem based on signal-to-interference-plus-noise ratio (SINR) known as

SINR balancing in the literature has been considered for cognitive radio networks in

[39, 40]. In [41, 42], the authors consider MIMO systems and study the problem of

max-min user rate to maximize the smallest user SINR. The problem of uplink-downlink

duality has been investigated in [43, 44]. Note that none of the previous works on
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uplink-downlink duality consider massive MIMO and the SINR formula in single-cell

does not include any pilot contamination, channel estimation and quantization

distortions.

To tackle the non-convexity of the original max-min rate problem, we propose to

decouple the original problem into two sub-problems, namely, receiver filter coefficient

design, and power allocation. We next show that the receiver filter coefficient design

problem may be solved through a generalized eigenvalue problem [45]. Moreover, the

user power allocation problem is solved through standard geometric programming (GP)

[46, 47]. We present an iterative algorithm to alternately solve each sub-problem while

one of the design parameters is fixed. Next an uplink-downlink duality for cell-free

massive MIMO system with limited fronthaul links is established to validate the

optimality of the proposed scheme. We show that there exists an equivalent problem

related to virtual downlink SINR to realize the same user rate in the uplink with an

equivalent total power constraint and the same receiver filter coefficients. By solving this

equivalent virtual max-min SINR problem, the optimality of the proposed scheme in the

uplink is validated. We finally propose an efficient user assignment algorithm and show

that further improvement is achieved by the proposed user assignment algorithm. The

contributions of the chapter are summarized as follows:

1. We consider two cases: i) the quantized versions of the channel estimates and the

received signals at the APs are available at the CPU and ii) the quantized versions of

processed signals at the APs are available at the CPU. The corresponding achievable

rates are derived taking into account the effects of channel estimation error and

quantization distortion.

2. We make use of the Bussgang decomposition to model the effect of quantization

and present the analytical solution to find the optimal step size of the quantizer.

3. We propose a max-min fairness power control problem which maximizes the

smallest of all user rates under the per-user power and fronthaul capacity

constraints. To solve this problem, the original problem is decomposed into two

sub-problems and an iterative algorithm is developed. The optimality of the

proposed algorithm is proved through establishing the uplink-downlink duality for

the cell-free massive MIMO system with limited fronthaul link capacities.
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Figure 3.1: The uplink of a cell-free massive MIMO system with K single-antenna users
and M APs. Each AP is equipped with N antennas. The solid lines denote the uplink
channels and the dashed lines present the limited-capacity fronthaul links from the APs
to the CPU.

4. A novel and efficient user assignment algorithm based on the capacity of fronthaul

links is proposed which results in significant performance improvement.

The chapter is outlined as follows; Section II describes the system model and Section III

provides performance analysis. The proposed max-min rate scheme is presented in

Section IV and the convergence is provided in Section V. The optimality of the proposed

scheme is proved in Section VI. Section VII investigates the proposed user assignment

algorithm. Numerical results are presented in Section VIII, and finally Section IX

concludes the chapter.

3.2 System Model

We consider uplink transmission in a cell-free massive MIMO system with M APs and

K single-antenna users randomly distributed in a large area. Moreover, we assume each

AP has N antennas. The channel coefficient vector between the kth user and the mth AP,

gmk ∈ CN×1, is modeled as gmk =
√
βmkhmk, where βmk denotes the large-scale fading,

the elemnts of hmk are i.i.d. CN (0, 1) RVs, and represent the small-scale fading [2]. Note

that the uplink channel estimation is presented in Section 2.7.5.
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Uplink Transmission

In this subsection, we consider the uplink data transmission, where all users send their

signals to the APs. The transmitted signal from the kth user is represented by xk =
√
ρqksk, where sk (E{|sk|2} = 1) and qk denotes the transmitted symbol and the transmit

power from the kth user, respectively. The N × 1 received signal at the mth AP from all

users is given by

ym =
√
ρ

K∑
k=1

gmk
√
qksk + nm, (3.1)

where ρ represents the normalized uplink signal-to-noise ratio (SNR) (see Section VIII

for more details). Moreover, each element of nm ∈ CN×1, nn,m ∼ CN (0, 1) is the noise

at the mth AP.

3.3 Performance Analysis

In this section, the performance analysis for two cases is presented. First we consider the

case when the quantized versions of the channel estimates and the received signals are

available at the CPU. Next, it is assumed that only the quantized versions of the weighted

signals are available at the CPU.

Case 1. Quantized Estimate of the Channel and Quantized Signal Available at the

CPU: The mth AP quantizes the terms ĝmk, ∀k, and ym, and forwards the quantized CSI

and the quantized signals in each symbol duration to the CPU. The quantized signal can

be obtained as:

[ỹm]n = ã[ym]n + [eym]n = [ζm]n + j[νm]n, ∀m,n, (3.2)

where [eym]n refers to the quantization distortion, and [ζm]n and [νm]n are the real and

imaginary parts of [ỹm]n, respectively. The analog-to-digital converter (ADC) quantizes

the real and imaginary parts of [ym]n with α bits each, which introduces quantization

distortions [eym]n to the received signals [48]. In addition, the ADC quantizes the MMSE
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estimate of CSI as:

[g̃mk]n= ã[ĝmk]n+[egmk]n=[%mk]n + j[κmk]n, ∀k, n, (3.3)

where [%mk]n and [κmk]n denote the real and imaginary parts of [g̃mk]n, respectively. For

simplicity, we assume all APs use the same number of bits to quantize the received signal,

ym, and the estimated channel, ĝmk. Therefore, E
{
|[ẽym]n|2

}
= E

{
|[ẽgmk]n|

2
}

= σ2
ẽ ,

where E
{
|[ẽym]n|2

}
and E

{
|[ẽgmk]n|

2
}

are quantization distortions of a quantizer with

normalized input [ym]n√
E{|[ym]n|2}

and [ĝmk]n√
E{|[ĝmk]n|2}

, respectively, and σ2
ẽ = pñd . Note that

due to power normalization, pñd , ã, b̃, and optimal ∆ for (3.2) and (3.3) are the same and

provided in Table 2.1. The received signal for the kth user after using the MRC detector
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at the CPU is given by

rk =
M∑
m=1

umkg̃
H
mkỹm =

M∑
m=1

umk

(̃
aĝmk + eĝmk

)H
(ãym + eym)

=
M∑
m=1

umk

(
ãĝmk + eĝmk

)H (̃
a
√
ρ

K∑
k=1

gmk
√
qksk+ãnm+eym

)

= ã2√ρE

{
M∑
m=1

umkĝ
H
mkgmk

√
qk

}
︸ ︷︷ ︸

DSk

sk

+ ã2

M∑
m=1

umkĝ
H
mknm︸ ︷︷ ︸

TNk

+ ã2√ρ

(
M∑
m=1

umkĝ
H
mkgmk

√
qk−E

{
M∑
m=1

umkĝ
H
mkgmk

√
qk

})
︸ ︷︷ ︸

BUk

sk

+ ã2

K∑
k′ 6=k

√
ρ
M∑
m=1

umkĝ
H
mkgmk′

√
qk′︸ ︷︷ ︸

IUIkk′

sk′

+
K∑
k′=1

ã
√
ρ
M∑
m=1

umk(e
ĝ
mk)

Hgmk′
√
qk′sk′︸ ︷︷ ︸

TQDkk′

+ ã
M∑
m=1

umk(e
g
mk)

Hnm︸ ︷︷ ︸
TQDgk

+ ã

M∑
m=1

umkĝ
H
mke

y
m︸ ︷︷ ︸

TQDyk

+
M∑
m=1

umk

(
eĝmk

)H
eym︸ ︷︷ ︸

TQDgyk

, (3.4)

where DSk and BUk denote the desired signal (DS) and beamforming uncertainty (BU)

for the kth user, respectively, and IUIk represents the inter-user-interference (IUI) caused

by the k′th user. In addition, TNk accounts for the total noise (TN) following the MRC

detection, and finally the terms TQDy
k, TQDg

k, TQDgy
k and TQDkk′ refer to the total

quantization distortion (TQD) at the kth user due to the quantization distortions at the
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channel and signal. Moreover, by collecting all the coefficients umk, ∀m, corresponding

to the kth user, we define uk = [u1k, u2k, · · · , uMk]
T and without loss of generality, it is

assumed that ||uk|| = 1. The optimal values of umk are investigated in Section IV.

Proposition 1. Terms DSk, BUk, IUIkk′ , TQNkk′ , TQNg
k, TQNy

k, TQNgy
k are mutually un-

correlated.

Proof: Please refer to Appendix 3.A. �

To obtain an achievable rate, we use the analysis in [2]. This techniques is commonly
used in massive MIMO [23, 49] since it yields a simple and tight achievable rate which
enables us to further design the systems. The tightness of this bound for cell-free
massive MIMO is presented in [2]. Using Proposition 1 and the lower bound technique
in [2], we can obtain an achievable rate as RCase 1

k = log2(1 + SINRCase 1
k ), where

SINRCase 1
k is given by

SINRCase 1
k = (3.5)

ã4|DSk|2

ã4E
{
|BUk|2

}
+ã4E

{
|TNk|2

}
+ã4

K∑
k′ 6=k

E
{
|IUIkk′|2

}
+ã2E

{∣∣TQD
y
k

∣∣2}+ã2E
{∣∣TQD

g
k

∣∣2}+ã2
K∑
k′=1

E
{
|TQDkk′|2

}
+E
{∣∣TQD

gy
k

∣∣2}.

The closed-form expression for the achievable uplink rate of the kth user is given in the

following theorem.

Theorem 1. Having the quantized CSI and the quantized signal at the CPU and employ-
ing MRC detection at the CPU, the closed-form expression for the achievable rate of the
kth user is given by RCase 1

k = log2(1 + SINRCase 1
k ), where the SINRCase 1

k is given by

SINRCase 1
k = (3.6)

N2qk

(∑M
m=1 umkγmk

)2
N2

K∑
k′ 6=k

qk′

(
M∑
m=1

umkγmk
βmk′

βmk

)2∣∣φφφHk φφφk′ ∣∣2+N

(
Ctot

ã4
+1

)
M∑
m=1

umkγmk
K∑
k′=1

qk′βmk′+
N

ρ

(
Ctot

ã4
+1

)
M∑
m=1

umkγmk

,

where γmk =
√
τpppβmkcmk and Ctot = 2ã2σ2

ẽ + σ4
ẽ .

Proof: The power of quantization distortions can be obtained as

E
{
|[eym]n|2

}
=E

{
|[ẽym]n|2

}(
ρ

K∑
k′=1

qk′βmk′+1

)
,

E
{
|[egmk]n|

2
}

=E
{
|[ẽgmk]n|

2
}
γmk.

(3.7a)

(3.7b)
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Since E
{
|[ẽym]n|2

}
= E

{
|[ẽgmk]n|

2
}

= σ2
ẽ , we have:

E
{
|[eym]n|2

}
= σ2

ẽ

(
ρ

K∑
k′=1

qk′βmk′ + 1

)
,

E
{
|[egmk]n|

2
}

= σ2
ẽγmk.

(3.8a)

(3.8b)

Using (3.7) and the fact that quantization distortion is indepnedent with the input of the

quantizer, after some mathematical manipulations, we have:

ã2E
{
|TQDy

k|
2
}

+ ã2E
{
|TQDg

k|
2
}

+ ã2

K∑
k′=1

E
{
|TQDkk′|

2}
+ E

{
|TQDgy

k |
2
}

=NCtot

M∑
m=1

umkγmk

(
ρ

K∑
k′=1

qk′βmk′ + 1

)
. (3.9)

Note that the terms |DSk|2, E
{
|BUk|2

}
, and E

{
|IUIkk′|2

}
are derived in (3.45), (3.46) and

(3.51), respectively. Finally substituting (3.9), (3.45), (3.46) and (3.51) into (3.5) results

in (3.6), which completes the proof of Theorem 1. �

Case 2. Quantized Weighted Signal Available at the CPU: The mth AP quantizes the

terms zm,k = ĝHmkym, ∀k, and forwards the quantized signals in each symbol duration to

the CPU as

zmk = ĝHmkym = rmk + jsmk, ∀k, (3.10)

where rmk and smk represent the real and imaginary parts of zmk. An ADC quantizes the

real and imaginary parts of zm,k with α bits each, which introduces quantization

distortions to the received signals [48]. Let us consider the term ezmk as the quantization

distortion of the mth AP. Hence, using the Bussgang decomposition, the relation

between zmk and its quantized version, z̃mk, can be written as

z̃mk = ãzmk + ezmk. (3.11)

Remark 2. Note that we assume that only the statistics of the channel are known, and

the variance at the quantization input is defined on average over the channels. Although

the input of the quantizer is not precisely Gaussian, since it is the sum of many random
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Figure 3.2: Cumulative distribution of the input of the quantizer with K = 40, N = 10
and τp = K.
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Figure 3.3: Cumulative distribution of the input of the quantizer with K = 40, N = 1
and τp = K.

variates, from the central limit theorem, it has a near Gaussian distribution. Therefore, we

use the Bussgang decomposition, making the approximation that the input of the quantizer

is Gaussian distributed. The Gaussian approximation can be verified numerically, for

typical parameter values, as shown in Figs. 3.2-3.4, we can see that the cumulative

distribution of the empirical distribution matches very well with that of the Gaussian

distribution.
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Figure 3.4: Cumulative distribution of the input of the quantizer with K = 40, N = 1
and τp = 30.

The aggregated received signal at the CPU can be written as

rk =
M∑
m=1

umk

̃a ĝHmkym︸ ︷︷ ︸
zmk

+ezmk


= ã
√
ρ

K∑
k′=1

M∑
m=1

umkĝ
H
mkgmk′

√
qk′sk′+ã

M∑
m=1

umkĝ
H
mknm +

M∑
m=1

umke
z
mk

= ã
√
ρE

{
M∑
m=1

umkĝ
H
mkgmk

√
qk

}
︸ ︷︷ ︸

DSk

sk

+ ã
√
ρ

(
M∑
m=1

umkĝ
H
mkgmk

√
qk−E

{
M∑
m=1

umkĝ
H
mkgmk

√
qk

})
︸ ︷︷ ︸

BUk

sk

+
K∑
k′ 6=k

ã
√
ρ

M∑
m=1

umkĝ
H
mkgmk′

√
qk′︸ ︷︷ ︸

IUIkk′

sk′

+ ã

M∑
m=1

umkĝ
H
mknm︸ ︷︷ ︸

TNk

+
M∑
m=1

umke
z
mk︸ ︷︷ ︸

TQDk

, (3.12)

where TQDk refers to the total quantization distortion (TQD) at the kth user. Note that
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in cell-free massive MIMO with M →∞, due to the channel hardening property (please

refer to Section 2.10 for more details), detection using only the channel statistics is nearly

optimal. This is shown in [2] (see Fig. 2 of reference [2] and its discussion). Moreover,

in [2] the authors show that in cell-free massive MIMO with M → ∞, the received

signal includes only the desired signal plus interference from the pilot sequence non-

orthogonality. Finally, using the analysis in [2], the corresponding SINR of the received

signal in (3.12) can be defined by considering the worst-case of the uncorrelated Gaussian

noise is given by

SINRCase 2
k =

|DSk|2

E
{
|BUk|2

}
+

K∑
k′ 6=k

E
{
|IUIkk′|2

}
+E

{
|TNk|2

}
+

1

ã2
E
{
|TQDk|

2}. (3.13)

Based on the SINR definition in (3.13), the achievable uplink rate of the kth user is given

in the following theorem.

Theorem 2. Having the quantized weighted signal at the CPU and employing MRC
detection at the CPU, the achievable uplink rate of the kth user in the cell-free massive
MIMO system is R = log2(1 + SINRCase 2), where SINRCase 2 is given by

SINRCase 2
k = (3.14)

N2qk

(∑M
m=1 umkγmk

)2
N2

K∑
k′ 6=k

qk′

(
M∑
m=1

umkγmk
βmk′

βmk

)2∣∣φφφHk φφφk′∣∣2+NM∑
m=1

umk

(
σ2
ẽ (2βmk − γmk)

ã2
+γmk

)
K∑
k′=1

qk′βmk′ +
N

ρ

(
σ2
ẽ

ã2
+1

)
M∑
m=1

umkγmk

.

Proof: Please refer to Appendix 3.B. �

Required Fronthaul Capacity

Let τf be the length of the uplink payload data transmission for each coherence interval,

i.e., τf = τc − τp, where τc denotes the number of samples for each coherence interval

and τp represents the length of pilot sequence. Defining the number of quantization bits as

αm,i, for i = 1, 2, corresponding to Cases 1 and 2, and m refers to the mth AP. For Case

1, the required number of bits for each AP during each coherence interval is 2αm,1 ×
(NK + Nτf ) whereas Case 2 requires 2αm,2 × (Kτf ) bits for each AP during each

coherence interval (note that the factor 2 indicates that we separately quantize the real
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and imaginary parts of the signals). Hence, the total fronthaul capacity required between

the mth AP and the CPU for all schemes is defined as

Cm=


2 (NK +Nτf )αm,1

Tc
, Case 1,

2 (Kτf )αm,2
Tc

, Case 2,
(3.15)

where Tc (in sec.) refers to coherence time. In the following, we present a comparison

between two cases of uplink transmission. To make a fair comparison between Case 1

and Case 2, we use the same total number of fronthaul bits for both cases, that is 2(NK+

Nτf )αm,1 = 2(Kτf )αm,2.

3.4 Proposed Max-Min Rate Scheme

In this section, we formulate the max-min rate problem for Case 2 of uplink transmission

in cell-free massive MIMO system, where the minimum uplink rate of all users is

maximized while satisfying the transmit power constraint at each user and the fronthaul

capacity constraint. Note that the same approach can be used to investigate the max-min

rate problem for Case 1. The achievable user SINR for the system model considered in

the previous section is obtained by following a similar approach to that in [2]. Note that

the main difference between the proposed approach and the scheme in [2] is the new set

of receiver coefficients which are introduced at the CPU to improve the achievable user

rates. The benefits of the proposed approach in terms of the achieved user uplink rate is

demonstrated through numerical simulation results in Section V. In deriving the

achievable rates of each user, it is assumed that the CPU exploits only the knowledge of

channel statistics between the users and APs to detect data from the received signal in

(3.12). Using the SINR given in (3.14), the achievable rate is obtained
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RUP
k = log2(1 + SINRCase 2

k ). Defining

uk = [u1k, u2k, · · · , uMk]
T ,

Γk = [γ1k, γ2k, · · · , γMk]
T ,

Υkk′=diag
[
β1k′

(
σ2
ẽ (2β1k−γ1k)

ã2
+γ1k

)
,· · · , βMk′

(
σ2
ẽ (2βMk − γMk)

ã2
+γMk

)]
,

Λkk′ =

[
γ1kβ1k′

β1k

,
γ2kβ2k′

β2k

, · · · , γMkβMk′

βMk

]T
,

Rk = diag
[(

σ2
ẽ

ã2
+ 1

)
γ1k, · · · ,

(
σ2
ẽ

ã2
+ 1

)
γMk

]
.

(3.16a)

(3.16b)

(3.16c)

(3.16d)

(3.16e)

The achievable uplink rate of the kth user is given by

RUP
k =log2

1+ uHk
(
N2qkΓkΓ

H
k

)
uk

uHk

(
N2

K∑
k′ 6=k

qk′ |φφφHk φφφk′|2Λkk′ΛH
kk′ +N

K∑
k′=1

qk′Υkk′+
N

ρ
Rk

)
uk

. (3.17)

Next, the max-min rate problem can be formulated as follows:

P1 : max
qk,uk,α2

min
k=1,··· ,K

RUP
k

subject to ||uk|| = 1, ∀k, 0 ≤ qk ≤ p(k)
max, ∀k,

Cm ≤ Cfh, ∀m,

(3.18a)

(3.18b)

(3.18c)

where p(k)
max and Cfh refer to the maximum transmit power available at user k and the

capacity of fronthaul link between the mth AP and the CPU, respectively. Note that

using (3.15), Cm is given as Cm =
2(Kτf )αm,2

Tc
,∀m. Throughout the rest of the chapter,

the index m is dropped from αm,i, i = 1, 2, as we consider the same number of bits

to quantize the signal at all APs. Problem P1 is a discrete optimization with integer

decision variables (i.e., quantization bits) and it is obvious that the achievable user rates

monotonically increase with the capacity of the fronthaul link between the mth AP and

the CPU. Hence, the optimal solution is achieved when Cm = Cfh, ∀m, which leads to

fixed values for the number of quantization bits. As a result, the max-min rate problem
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can be re-formulated as follows:

P2 : max
qk,uk

min
k=1,··· ,K

RUP
k

subject to ||uk|| = 1, ∀k,

0 ≤ qk ≤ p(k)
max, ∀k.

(3.19a)

(3.19b)

(3.19c)

Problem P2 is not jointly convex in terms of uk and power allocation qk, ∀k. Therefore,

it cannot be directly solved through existing convex optimization software. To tackle this

non-convexity issue, we decouple Problem P2 into two sub-problems: receiver coefficient

design (i.e. uk) and the power allocation problem. The optimal solution for Problem P2,

is obtained through alternately solving these sub-problems, as explained in the following

subsections.

3.4.1 Receiver Filter Coefficient Design

In this subsection, the problem of designing the receiver coefficients is considered. We

solve the max-min rate problem for a given set of allocated powers at all users, qk,∀k,

and fixed values for the number of quantization bits. These coefficients (i.e., uk, ∀k) are

obtained by independently maximizing the uplink SINR of each user. Therefore, the

optimal receiver filter coefficients can be determined by solving the following

optimization problem:

P3 : max
uk

N2uHk
(
qkΓkΓ

H
k z
)

uk

uHk

(
N2

K∑
k′ 6=k

qk′|φφφHk φφφk′|2Λkk′ΛH
kk′+N

K∑
k′=1

qk′Υkk′+
N

ρ
Rk

)
uk

subject to ||uk|| = 1, ∀k.

(3.20a)

(3.20b)

Problem P3 is a generalized eigenvalue problem [45], where the optimal solutions can be

obtained by determining the generalized eigenvector of the matrix pair Ak = N2qkΓkΓ
H
k

and Bk = N2
∑K

k′ 6=kqk′|φφφHk φφφk′|2Λkk′Λ
H
kk′+N

∑K
k′=1 qk′Υkk′+

N
ρ
Rk corresponding to the

maximum generalized eigenvalue.
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Algorithm 1 Proposed algorithm to solve Problem P2

1. Initialize q(0) = [q
(0)
1 , q

(0)
2 , · · · , q(0)

K ], i = 1

2. Repeat steps 3-5 until
SINRUP,(i)

k − SINRUP,(i−1)
k

SINRUP,(i−1)
k

≤ ε,∀k

3. Determine the optimal receiver coefficients U(i) = [u
(i)
1 ,u

(i)
2 , · · · ,u

(i)
K ] through solving

the generalized eigenvalue Problem P3 in (3.20) for a given q(i−1),
4. Compute q(i) through solving Problem P5 in (3.22) for a given U(i)

5. i = i+ 1

3.4.2 Power Allocation

In this subsection, we solve the power allocation problem for a given set of fixed receiver

filter coefficients, uk, ∀k, and fixed values of quantization bits. The optimal transmit

power can be determined by solving the following max-min problem:

P4 : max
qk

min
k=1,··· ,K

SINRUP
k

subject to 0 ≤ qk ≤ p(k)
max.

(3.21a)

(3.21b)

Without loss of generality, Problem P4 can be rewritten by introducing a new slack vari-

able as

P5 : max
t,qk

t

subject to 0 ≤ qk ≤ p(k)
max, ∀k, SINRUP

k ≥ t, ∀k.

(3.22a)

(3.22b)

Proposition 2. Problem P5 can be formulated into a standard GP.

Proof: Please refer to Appendix 3.C. �

Therefore, Problem P5 is efficiently solved through existing convex optimization

software. Based on these two sub-problems, an iterative algorithm has been developed

by alternately solving both sub-problems at each iteration. The proposed algorithm is

summarized in Algorithm 1. Note that ε in Step 2 of Algorithm 1 refers to a small

predetermined value.
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3.5 Convergence

In this section, we present the convergence of the proposed Algorithm 1. We propose to

alternatively solve two sub-problems to find the solution of the original Problem P2,

where at each iteration, one of the design parameters is determined by solving the

corresponding sub-problem while other design variable is fixed. We showed that each

sub-problem provides an optimal solution for the other given design variable. Let us

assume at the i− 1th iteration, that the receiver filter coefficients u
(i−1)
k , ∀k are obtained

for a given power allocation q(i−1) and similarly, the power allocation q(i) is determined

for a fixed set of receiver filter coefficients u
(i−1)
k , ∀k. Note that, the optimal power

allocation q(i) determined for a given u
(i−1)
k achieves an uplink rate greater than or equal

to that of the previous iteration. In addition, the power allocation q(i−1) is a feasible

solution to find q(i) as the receiver filter coefficients u
(i)
k , ∀k are determined for a given

q(i−1). Note that the uplink rate of the system monotonically increases with the power.

As a result, the achievable uplink rate of the system monotonically increases at each

iteration. Note that the achievable uplink max-min rate is bounded from above for a

given set of per-user power constraints and fronthaul link capacity constraint. Hence the

proposed algorithm converges to a specific solution. Note that to the best of our

knowledge and referring to [16, 40] this is a common way to show the convergence. In

the next section, we prove the optimality of the proposed Algorithm 1 through the

principle of uplink-downlink duality.

3.6 Optimality of the Proposed Max-Min Rate

Algorithm

In this section, we present a method to prove the optimality of the proposed Algorithm 1.

The proof is based on two main observations: we first demonstrate that the original max-

min Problem P2 with per-user power constraint is equivalent to an uplink problem with an

equivalent total power constraint. We next prove that the same SINRs can be achieved in

both the uplink and the downlink with an equivalent total power constraint, which enables

us to establish an uplink-downlink duality. The concept of the virtual downlink max-min
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SINR problem is explained in Section 3.6.2. Finally, we show that the virtual downlink

max-min SINR problem is quasi-convex and can be optimally solved through a bisection

search [50]. Note that the uplink Problem P1 and the equivalent virtual downlink max-min

SINR problem achieve the same SINRs and the solution of the virtual downlink max-min

SINR problem is optimal. As a result, the optimality of the proposed Algorithm 1 is

guaranteed. The details of the proof are provided in the following subsections. The key

steps of the optimality of proposed scheme to solve Problem P2 are explained in Fig. 3.5.

3.6.1 Equivalent Max-Min Uplink Problem

We aim to show the equivalence of Problem P2 with a per-user power constraint and the

uplink max-min rate problem with a total power constraint. Note that in the total power

constraint, the maximum available transmit power is defined as the sum of all users’

transmit powers from the solution of Problem P2, which is formulated as:

P6 : max
qk,uk

min
k=1,··· ,K

RUP
k

subject to ||uk|| = 1, ∀k,
K∑
k=1

qk ≤ P c
tot.

(3.23a)

(3.23b)

(3.23c)

Problem P6 is not convex in terms of receiver filter coefficients uk and power allocation

qk,∀k. To deal with this non-convexity, similar to the proposed method to solve problem

P2, we propose to modify Algorithm 1 to incorporate the total power constraint in Problem

P6. Hence, we decompose Problem P6 into receiver filter coefficient design and power

allocation sub-problems. The same generalized eigenvalue problem in Problem P3 is

solved to determine the receiver filter coefficients whereas the GP formulation in P5 is

modified to incorporate the total power constraint (3.23c). Note that, the total power

constraint is a convex constraint (posynomial function in terms of power allocation) and

GP with the equivalent total power constraint can be used to find the optimum solution.

Lemma 2. The original Problem P2 (with per-user power constraint) and the equivalent

Problem P6 (with the equivalent total power constraint) have the same optimal solution.
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SINRDL
k (U,p) =

uHk
(
N2pkΓkΓ

H
k

)
uk

N2
∑K

k′ 6=k uHk′pk′|φφφHk′φφφk|2∆k′k∆H
k′kuk′ +N

∑K
k′=1 uHk′pk′Fk′kuk′ +

N
ρ

.
(3.24)

SINRUP
k (U,q) =

uHk
(
N2qkΓkΓ

H
k

)
uk

uHk

(
N2
∑K

k′ 6=k qk′|φφφHk φφφk′ |2Λkk′ΛH
kk′ +N

∑K
k′=1 qk′Υkk′ +

N

ρ
Rk

)
uk

. (3.25)

Proof: Please refer to Appendix 3.D. �

3.6.2 Uplink-Downlink Duality for Cell-Free Massive MIMO

This subsection demonstrates an uplink-downlink duality for cell-free massive MIMO

systems. In particular, it is shown that the same SINRs (or rate regions) can be realized

for all users in the uplink and the downlink with the equivalent total power constraints

[44, 51], respectively. In other words, based on the principle of uplink-downlink duality,

the same set of filter coefficients can be utilized in the uplink and the downlink to achieve

the same SINRs for all users with different user power allocations. The following theorem

defines the achievable virtual downlink rate for cell-free massive MIMO systems:

Theorem 3. By employing conjugate beamforming at the APs, the achievable virtual

downlink rate of the kth user in the cell-free massive MIMO system with K randomly

distributed single-antenna users, M APs where each AP is equipped with N antennas

and limited-capacity fronthaul links is given by (3.24) (defined at the top of this page).

Proof: This can be derived by following the same approach as for uplink transmission

in Theorem 2. �

Note that in (3.24), pk, ∀k denotes the downlink power allocation for the kth user and
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the following equalities hold:

Γk = [γ1k, γ2k, · · · , γMk]
T ,

Fk′k= diag
[
β1k(

w2(2β1k′−γ1k′)

3Q2
1

+γ1k′),· · ·, βMk(
w2(2βMk′ − γMk′)

3Q2
M

+γMk′)
]
,

∆k′k = [
γ1k′β1k

β1k′
,
γ2k′β2k

β2k′
, · · · , γMk′βMk

βMk′
]T ,

(3.26a)

(3.26b)

(3.26c)

The following Theorem provides the required condition to establish the uplink-downlink

duality for cell-free massive MIMO systems with limited-capacity fronthaul links:

Theorem 4. By employing MRC detection in the uplink and conjugate beamforming in

the downlink, to realize the same SINR tuples in both the uplink and the downlink of a

cell-free massive MIMO system, with the same fronthaul loads, the same filter coefficients

and different transmit power allocations, the following condition should be satisfied:

N
M∑
m=1

K∑
k=1

(
σ2
ẽ

ã2
+ 1

)
γmk |wmk|2 =

K∑
k=1

q∗k = P c
tot , (3.27)

where q∗k, ∀k refer to the optimal solution of Algorithm 1, and wmk denotes the (m, k)-th

entry of matrix W which is defined as follows:

W = [
√
p1u1,

√
p2u2, · · · ,

√
pKuK ]. (3.28)

Proof: Please refer to Appendix 3.E. �

Let us again consider the uplink and downlink SINR formulas in (3.24) and (3.25),

respectively. Considering the downlink SINR in (3.24), it is possible to define the

precoding matrix W = [
√
p1u1,

√
p2u2, · · · ,

√
pKuK ], which let us solve the downlink

max-min SINR problem jointly in terms of
√
pks and uks. However, it is not possible to

define such a W matrix for the uplink SINR in (3.25). In other words, in the downlink, it

is not required to define the separate variables
√
pks and uks as both the power and

transmitter filter are designed in a centralized manner at the CPU whereas in the uplink,

the power elements qks are used in a distributed manner at the users’ ends to transmit the

uplink data, while the receiver filters uks are designed at the CPU. Hence, the equivalent

downlink SINR defined with
√
pks and uks is called virtual downlink SINR.
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3.6.3 Equivalent Max-Min Downlink Problem

Note that the uplink Problems P2 and P6 are not convex in terms of receiver filter

coefficients U and power allocation qk,∀k, and hence they are iteratively solved.

However, it can be shown that the downlink problem it can be solved using bisection

method as both receiver filter coefficients and power allocation can be combined into a

singe variable. In particular, it is shown that the same SINRs (or rate regions) can be

realized for all users in the uplink and the downlink with the equivalent total power

constraints [44, 51], respectively. Next, let us consider the following virtual downlink

max-min SINR problem:

P7 : max
pk,uk

min
k=1,··· ,K

RDL
k

subject to ||uk|| = 1, ∀k,
K∑
k=1

cvir
k pk ≤ P c

tot,

(3.29a)

(3.29b)

(3.29c)

where RDL
k is the downlink SINR of user k, where pk is the downlink power allocated for

user k, and using the analysis in Theorem 4, we have cvir
k =

∑M
m=1

(
σ2
ẽ

ã2
+ 1
)
γmk |umk|2.

It is easy to show that Problem P7 can be re-formulated as a quasi-concave and a bisection

search can be used to obtain the optimal solution. This is why the virtual downlink max-

min SINR problem is interesting to us (because the optimal solution can be determined

through a bisection search as explained in Problem P8 as explained below). Therefore,

Problem P7 is difficult to jointly solve in terms of transmit filter coefficients uk’s and

power allocations pk’s. However, it can be represented by introducing a new variable W

to decouple the variables U and q as follows:

P8 : max
W

min
k=1,··· ,K

RDL
k

subject to N
M∑
m=1

K∑
k=1

(
σ2
ẽ

ã2
+1

)
γmk|wmk|2 ≤ P c

tot.

(3.30a)

(3.30b)

It is easy to show that Problem P8 is quasi-convex. Hence, a bisection [50] approach can

be used to obtain the optimal solution for the original Problem P8 by sequentially solving
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the following power minimization problem for a given target SINR t at all users:

P9 : min
W

M∑
m=1

K∑
k=1

γmk|wmk|2

subject to
wH
k

(
N2ΓkΓ

H
k

)
wk

N2
K∑
k′ 6=k

wH
k′ |φφφHk′φφφk|2∆k′k∆H

k′kwk′ +N
K∑
k′=1

wH
k′Fk′kwk′ +

N
ρ

≥ t,

N

M∑
m=1

K∑
k=1

(
σ2
ẽ

ã
+ 1

)
γmk|wmk|2 ≤ P c

tot,

(3.31a)

(3.31b)

(3.31c)

where wk represents the kth column of the matrix W defined in (3.28). Problem P9 can

be reformulated by exploiting a second order cone programming (SOCP). Note that the

objective function in (3.31) refers to the total transmit power. As a result, the optimal

solution for Problem P7 can be obtained by extracting the normalized transmit filter

coefficients uk’s and power allocations pk’s as

p∗k = ||w∗k||2, ∀k, & u∗k =
w∗k
||w∗k||

, ∀k, (3.32)

where the w∗k’s refer to the optimal solution of Problem P8. Note that constraint (3.31c)

is an equivalent total power constraint to the per-user power constraint in the original

Problem P2, which is a more relaxed constraint than (3.19c).

3.6.4 Proof of Optimality of the Proposed Algorithm to Solve

Problem P2:

In Lemma 2, we prove that Problems P2 and P6 are equivalent, and have the same solution.

Next, in Proposition 1, using uplink-downlink duality, we prove that Problem P6 and the

virtual downlink max-min SINR Problem P7 are equivalent. Note that the SINR achieved

by solving Problem P7 are optimal (the optimal solution is obtained by a bisection search

approach). This confirms that the proposed algorithm to solve Problem P2 is optimal. The

steps of this proof are presented in Fig. 3.5.
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Figure 3.5: The key steps of the optimality of proposed scheme to solve Problem P2.

3.7 User Assignment

Exploiting (3.15), it is obvious that the total fronthaul capacity required between the mth

AP and the CPU increases linearly with the total number of users served by the mth AP.

This motivates the need to pick a proper set of active users for each AP. Using (3.15), we

have

α2 ×Km ≤
CfhTc
2τf

, (3.33)

where Km denotes the size of the set of active users for the mth AP. From (3.33), it can

be seen that decreasing the size of the set of active users allows for a larger number of

quantization bits. Motivated by this fact, and to exploit the capacity of fronthaul links

more efficiently, we investigate all possible combinations of α2 and Km. First, for a fixed

value of α2, we find an upper bound on the size of the set of active users for each AP.

In the next step, we propose for all APs that the users are sorted according to βmk, ∀k,

and find the Km users which have the highest values of βmk among all users. If a user

is not selected by any AP, we propose to find the AP which has the best link to this user

(in Algorithm 6, π(j) = argmax
m

βmj determines best link to the jth user, i.e., the index

of the AP which is closest to the jth user). Note that to only consider the users that have
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Algorithm 2 User Assignment

1. Using (3.33), find the maximum possible integer value for Km,∀m
2. Sort users according to the ascending channel gain: βm1 ≥ βm2 ≥ · · · ≥ βmK ,∀m
3. Assign Km users with the highest values of βmk,∀m to each AP, i.e., Tm ←
{k(1), k(2), · · · , k(Km)},∀m
4. Find set of active APs for each user; Sk ← {m(1),m(2), · · · ,m(Mk)}, ∀k
5. for j = 1 : K

if size {Sj} = 0
π(j) = argmax

m
βmj , δ(j) = argmin

k
βπ(j)k, k|Skπj 6= ∅, Tπ(j) ← Tπ(j)\δ(j),

Tπ(j) ← Tπ(j) ∪ j
end

end
6. If m ∈ Sk, then γ̃mk ← γmk, otherwise γ̃mk = 0 and solve the max-min rate problem
P2

links to other APs, we use k|Skπj 6= ∅, where ∅ refers to the empty set. Then we drop

the user which has the lowest βmk, ∀k, among the set of active users for that AP, which

has links to other APs as well. Finally, we add the user which is not selected by any AP

to the set of active users for this AP. We next solve the virtual downlink max-min SINR

problem to maximize the minimum uplink rate of the users as follows

P10 : max
W

min
k=1,··· ,K

RDL
k (γ̃mk)

subject to N
M∑
m=1

K∑
k=1

(
σ2
ẽ

ã2
+1

)
γ̃mk|wmk|2 ≤ P c

tot,

(3.34a)

(3.34b)

where

γ̃mk =

 γmk, m ∈ Sk
0, otherwise

(3.35)

where Sk refers to the set of active APs for the kth user. The proposed algorithm is

summarized in Algorithm 6.

3.8 Numerical Results and Discussion

In this section, we provide numerical simulation results to validate the performance of

the proposed max-min rate scheme with different parameters. A cell-free massive
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MIMO system with M APs and K single-antenna users is considered in a D × D

simulation area, where both APs and users are uniformly distributed at random. In the

following subsections, we define the simulation parameters and then present the

corresponding simulation results. The channel coefficients between users and APs are

modeled in Section 2.7.4 where the coefficient βmk is given by βmk = PLmk10

σsh zmk
10 ,

where PLmk is the path loss from the kth user to the mth AP and the second

term10
σshzmk

10 , denotes the shadow fading with standard deviation σsh = 8 dB, and

zmk ∼ N (0, 1) [2]. In the simulation, an uncorrelated shadowing model is considered

and a three-slope model for the path loss similar to [2]. The noise power is given by

pn = BW × kB × T0 × W, where BW = 20 MHz denotes the bandwidth,

kB = 1.381 × 10−23 represents the Boltzmann constant, and T0 = 290 (Kelvin) denotes

the noise temperature. Moreover, W = 9dB, and denotes the noise figure. It is assumed

that p̄p and ρ̄ denote the power of pilot sequence and the uplink data powers,

respectively, where pp = p̄p
pn

and ρ = ρ̄
pn

. In simulations, we set p̄p = 200 mW and

ρ̄ = 200 mW. Similar to [2], we assume that the simulation area is wrapped around at the

edges which can simulate an area without boundaries. Hence, the square simulation area

has eight neighbours. We evaluate the average rate of the system over 300 random

realizations of the locations of APs, users and shadow fading. Similar to the model in

[52], the fronthaul links establish communications through wireless microwave links

with limited capacity. Hence, we use Cfh = 100 Mbits/s [52], unless otherwise is

indicated. In this chapter, the term “orthogonal pilots” refers to the case where unique

orthogonal pilots are assigned to all users, while in “random pilot assignment” each user

is randomly assigned a pilot sequence from a set of τp orthogonal sequences of length τp

(< K), following the approach of [2] (for more details refer to Section 2.7.5).

Performance of Different Cases of Uplink Transmission

Fig. 3.6 presents the average per-user uplink rate is obtained by solving Problem P4, given

by (3.21) for Cases 1 and 2. The values of α1 = 9 and α2 = 2 correspond to a total number

of 14,400 bits for each AP during each coherence time (or frame). In addition, similar to

[48] we use a uniform quantizer with fixed step size. As Fig 3.6 shows the performance

of Case 1 is slightly better than Case 2 for K = 20. Next, the performance of the cell-

free massive MIMO system is evaluated for a system with K = 40 in which each AP is
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Figure 3.6: Average per-user uplink rate for cases 1 and 2, with (N = 4,K = 20, τp = 20,
α1 = 9, α2 = 2), and (N = 20, K = 40, τp = 40, α1 = 8, α2 = 5) with D = 1 km and
τc = 200. Note that here τf = τc − τp = 160.
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Figure 3.7: Average per-user uplink rate for cases 1 and 2, for M = 20, K = 20, τp = 20,
τp = 10, D = 1 km and τc = 200 versus number of antennas per AP. Note that we
consider (α1 = 18, α2 = 5), (α1 = 18, α2 = 10), (α1 = 18, α2 = 15) for the cases of
N = 5, N = 10, N = 15, respectively. This results in total number of 18, 000 bits for all
values of N .

equipped with N = 20 antennas. Fig. 3.6 shows the average rate of the cell-free massive

MIMO system, where for Case 1 and Case 2, we set α1 = 8 and α2 = 5, respectively

which leads to a total number of 64,000 fronthaul bits per AP per frame. Fig. 3.6 shows

that the performances of Case 1 and Case 2 depend on the values of N , K and τf . Next,
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Figure 3.8: The cumulative distribution of the per-user uplink rate, for {M = 70, N =
4, K = 40}, {M = 50, N = 8, K = 50}, and τp = 30, α1 = 1 and D = 1 km.

we investigate the effect of number of antennas per AP and τf forK = 20. Fig. 3.7 shows

the average per-user uplink rate of cell-free massive MIMO versus number of antennas per

AP and two cases of τp = 20 (τf = 180) and τp = 10 (τf = 190). Moreover, we consider

(α1 = 18, α2 = 5), (α1 = 18, α2 = 10), (α1 = 18, α2 = 15) for the cases of N = 5,

N = 10, N = 15, respectively, resulting 18, 000 bits for all values of N . As the figure

shows the difference between Case 1 and Case 2 decreases as N increases. Moreover, for

the case of orthogonal pilots and N = 15, the performance of Case 2 is better than the

performance of Case 1. Since in case 1, the CPU knows the quantized channel estimates,

other signal processing techniques (e.g., ZF processing) can be implemented to improve

the system performance and can be considered in future work.

Performance of the Proposed User Max-Min Rate Algorithm

In this subsection, we evaluate the performance of the proposed uplink max-min rate

scheme. To assess the performance, a cell-free massive MIMO system is considered

with 70 APs (M = 70) where each AP is equipped with N = 4 antennas and 40 users

(K = 40) which are randomly distributed over the simulation area of size 1 × 1 km

meters. Moreover, we consider the case {M = 50, N = 8, K = 50}. Fig. 3.8 presents

the cumulative distribution of the achievable uplink rates for the proposed Algorithm 1
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Figure 3.9: The convergence of the proposed max-min SINR approach (Algorithm 1) for
M = 70, N = 4, K = 40, τp = 30, α1 = 1 and D = 1 km.
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Figure 3.10: The convergence of the proposed max-min SINR approach (Algorithm 1)
for M = 30, N = 8, K = 50, τp = 50, α1 = 1 and D = 1 km.

in the case similar to [2], without defining the coefficients uk, (i.e., umk = 1 ∀m, k)

and solving Problem P4, with random pilot sequences with length τp = 30. As seen

in Fig. 3.8, the performance (i.e. the 10%-outage rate, Rout, refers to the case when

Pout = Pr(Rk < Rout) = 0.1, where Pr refers to the probability function) of the proposed

scheme is almost three times than that of the case with umk = 1 ∀m, k. Note that the

authors in [2] do not consider any receiver filter U, which is equivalent to umk = 1 ∀m, k.

Moreover, the authors in [2] consider the error-free and unlimited-capacity fronthaul links.
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Convergence

Next, we provide simulation results to validate the convergence of the proposed

algorithm for a set of different random realizations of the locations of APs, users and

shadow fading. These results are generated over the simulation area of size 1 × 1 km2

with random and orthogonal pilot sequences. Fig. 3.9 investigates the convergence of the

proposed Algorithm 1 with 70 APs (M = 70) and 40 users (K=40) and random pilot

sequences with length τp = 30, whereas Fig. 3.10 demonstrates the convergence of the

proposed Algorithm 1 for the case of M = 30 APs and K = 50 with orthogonal pilot

sequences. The figures confirm that the proposed algorithm converges after a few

iterations, while the minimum rate of the users increases with the iteration number.

Uplink-Downlink Duality in Cell-Free Massive MIMO System

Here, the simulation results are provided to support the theoretical derivations of the

uplink-downlink duality and the optimality of Algorithm 1. It is assumed that users are

randomly distributed through the simulation area of size 1 × 1 km. Figs. 3.11 compares

the cumulative distribution of the achievable uplink rates between the original uplink

max-min problem (Problem P1), the equivalent uplink problem (Problem P6) and the

equivalent downlink problem (Problem P7). In Fig. 3.11, the minimum uplink rate is

obtained for a system with 30 APs (M = 30) where each is equipped with N = 8

antennas and has 50 users (K = 50) for two cases of orthogonal pilot sequences and

random pilot sequences with length τp = 30. Moreover, Fig. 3.11 demonstrates the same

results for 70 APs (M = 70), N = 4, 40 users (K = 40), and τp = 30. The simulation

results provided in Fig. 3.11 validate our result that the problem formulations P1, P6 and

P7 are equivalent and achieve the same minimum user rate. In addition, these results

support our result on the uplink-downlink duality for cell-free massive MIMO in Section

VI and the proof of optimality of Algorithm 1.
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Figure 3.11: The cumulative distribution of the per-user uplink rate for the original prob-
lem with per-user power constraint (Problem P1), the equivalent uplink problem with total
power constraint (Problem P5), and the equivalent downlink problem (Problem P6), with
α1 = 1 and D = 1 km.

Performance of the Proposed User Assignment Algorithm 6

This subsection investigates the performance of the proposed user assignment Algorithm

6. In Fig. 3.12, the average per-user uplink rate is presented with M = 120, N = 2,

K = 50, orthogonal pilot sequences and random pilot assignment with D = 1 km,

versus the total number of active users per AP. Here, we used inequality (3.33) and set

α2 ×Km = 100 for all curves in Fig. 3.12. The optimum value of Km, (Kopt
m ), depends

on the system parameters and as Fig. 3.12 shows for both cases of τp = 50 and τp = 30,

the optimum value is achieved by Kopt
m = 20. As a result, the proposed user assignment

scheme can efficiently improve the performance of cell-free massive MIMO systems with

limited fronthaul capacity. For instance, using the proposed user assignment scheme for

the case of τp = 50 in Fig. 3.12, one can achieve per-user uplink rate of 2.442 bits/s/Hz

by setting Kopt
m = 20, instead of quantizing the signals of all K = 40 users and achieving

per-user uplink rate of 2.3 bits/s/Hz, which indicates more than 5.2% in the performance

of cell-free massive MIMO systems with limited fronthaul capacity.
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Figure 3.12: Average per-user uplink rate versus Km (the total number of active users for
each AP) with M = 120, N = 2, K = 50 and α2 ×Km = 100.
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Effect of the Capacity of Fronthaul Links

What is the optimal capacity of fronthaul links in cell-free massive MIMO systems to

approach the performance of the system with perfect and error-free fronthaul links? The

aim of this subsection is to answer this fundamental question. In this subsection, we

evaluate the performance of the cell-free massive MIMO system with two cases of

perfect and limited fronthaul links. To assess the performance, a cell-free massive

MIMO system is considered with M = 120, K = 50, N = 2, D = 1 km, τp = 30 and

τp = 50. To improve the performance of the system, we exploit the proposed user

assignment algorithm. Fig. 3.13 presents average per-user uplink rate with the proposed

max-min rate algorithm versus number of quantization bits, α1 with the use of proposed

user assignment algorithm. As Fig. 3.13 shows, for both cases of random and orthogonal

pilots to closely approach the performance of perfect fronthaul links, we need to set

α1 ≥ 8.

3.9 Summary

We have studied the uplink max-min rate problem in cell-free massive MIMO with the

realistic assumption of limited-capacity fronthaul links, and have proposed an optimal

solution to maximize the minimum user rate. The original max-min problem was divided

into two sub-problems which were iteratively solved by formulating them into generalized

eigenvalue problem and GP. The optimality of the proposed solution has been validated

through establishing an uplink-downlink duality. Numerical results have been provided

to demonstrate the optimality of the proposed scheme in comparison with the existing

schemes. In addition, these results confirmed that the proposed max-min rate algorithm

can increase the median of the CDF of the minimum uplink rate of the users by more than

two times, compared to existing algorithms. We finally showed that further improvement

in average rate of the users can be achieved by the proposed user assignment algorithm.
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3.10 Appendix

Appendix 3.A: Proof of Proposition 1

Terms eym and eĝmk have i.i.d. RVs with zero mean [48]. The value of the quantization

distortion is uncorrelated with the input of the quantizer. This can be achieved by

exploiting the Bussgang decomposition [36]. In this chapter, we do not address the

details of Bussgang decomposition and it can be considered an an interesting future

direction. As a result, we have

E {[eym]n} = 0,

E
{[

eĝmk

]
n

}
= 0,

E
{

(eym)Heĝmk

}
= 0,

E
{

ĝHmke
ĝ
mk

}
= 0,

E
{

yHmeĝmk

}
= 0,

E
{
yHmeym

}
= 0,

E
{
ĝHmke

y
m

}
= 0.

(3.36a)

(3.36b)

(3.36c)

(3.36d)

(3.36e)

(3.36f)

(3.36g)

In addition, based on [16], we have

gmk = ĝmk + ḡmk, (3.37)

where ḡmk has i.i.d. CN (0, 1) elements. Hence,

E
{
gHmke

y
m

}
= 0,

E
{

gHmke
ĝ
mk

}
= 0.

(3.38a)

(3.38b)
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These result in

E {TQNkk′} = 0,

E {TQNg
k} = 0,

E {TQNy
k} = 0,

E {TQNgy
k } = 0.

(3.39a)

(3.39b)

(3.39c)

(3.39d)

Moreover, note that as the term DSk is a constant, we have

E
{

DSHk TQNy
k

}
= DSHk E {TQNy

k} = 0, (3.40)

and similarly

E
{

DSHk TQNg
k

}
= 0,

E
{

DSHk TQNgy
k

}
= 0,

E
{

DSHk TQNkk′
}

= 0.

(3.41a)

(3.41b)

(3.41c)

In addition, we have

E
{

BUH
k TQNkk′

}
= E


(

M∑
m=1

umkĝ
H
mkgmk

√
qk−E

{
M∑
m=1

umkĝ
H
mkgmk

√
qk

}
︸ ︷︷ ︸

A1

)HM∑
m=1

umk(e
ĝ
mk)

Hgmk′
√
qk′


= E


(

M∑
m=1

umkĝ
H
mkgmk

√
qk

)H ( M∑
m=1

umk(e
ĝ
mk)

Hgmk′
√
qk′

)
− E

{
A1

H

(
M∑
m=1

umk(e
ĝ
mk)

Hgmk′
√
qk′

)}
. (3.42)

For the first term of (3.42), we have

E


(

M∑
m=1

umkĝ
H
mkgmk

√
qk

)H ( M∑
m=1

umk(e
ĝ
mk)

Hgmk′
√
qk′

)
=
√
qk′
√
qkE

{
M∑
m=1

M∑
n=1

umkumkĝ
H
mkgmk(e

ĝ
nk)

Hgnk′

}
= 0, (3.43)

where the last equality is due to E
{
gHmke

y
m

}
= 0, E

{
gHmke

ĝ
mk

}
= 0, and E

{
ĝHmke

ĝ
mk

}
=

0. For the second term of (3.42), as A1 is a constant, and using E
{

gHmke
ĝ
mk

}
= 0, we
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have

E

{
AH1

(
M∑
m=1

umk(e
ĝ
mk)

Hgmk′
√
qk′

)}
= 0. (3.44)

Finally, using (3.43) and (3.44), we have E
{

BUH
k TQNkk′

}
= 0. Using the same

approach, it is easy to show that the terms DSk, BUk, IUIkk′ , TQNkk′ , TQNg
k, TQNy

k, and

TQNgy
k are mutually uncorrelated, which completes the proof of Proposition 1. �

Appendix 3.B: Proof of Theorem 2

The desired signal for the user k is given by

DSk =
√
ρE

{
M∑
m=1

umkĝ
H
mkgmk

√
qk

}

= N
√
pqk

M∑
m=1

umkγmk. (3.45)

Hence, |DSk|2 = ρqk

(
N
∑M

m=1 umkγmk

)2

. Moreover, the term E{|BUk|2} can be

obtained as

E
{
|BUk|2

}
= ρE


∣∣∣∣∣
M∑
m=1

umkĝ
H
mkgmk

√
qk − ρE

{
M∑
m=1

umkĝ
H
mkgmk

√
qk

}∣∣∣∣∣
2


= ρ

M∑
m=1

qku
2
mk

(
E
{∣∣ĝHmkgmk − E

{
ĝHmkgmk

}∣∣2})
= ρN

M∑
m=1

qku
2
mkγmkβmk, (3.46)
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where the last equality comes from the analysis in [2, Appendix A], and using γmk =
√
τpppβmkcmk. The term E{|IUIkk′|2} is obtained as

E{|IUIkk′|2} = ρE


∣∣∣∣∣
M∑
m=1

umkĝ
H
mkgmk′

√
qk′

∣∣∣∣∣
2


= ρ qk′E


∣∣∣∣∣
M∑
m=1

cmkumkg
H
mk′w̃mk

∣∣∣∣∣
2
︸ ︷︷ ︸

A

+ ρ τpppE

qk′
∣∣∣∣∣∣
M∑
m=1

cmkumk

(
K∑
i=1

gmiφφφ
H
k φφφi

)H

gmk′

∣∣∣∣∣∣
2︸ ︷︷ ︸

B

, (3.47)

where the third equality in (3.47) is due to the fact that for two independent RVs X and

Y and E{X} = 0, we have E{|X + Y |2} = E{|X|2} + E{|Y |2} [2]. Since w̃mk =

φφφHk Wp,m is independent from the term gmk′ similar to [2], Appendix A, the term A in

(3.47) immediately is given by A = Nqk′
∑M

m=1 c
2
mku

2
mkβmk′ . The term B in (3.47) can

be obtained as

B = τpppqk′E


∣∣∣∣∣
M∑
m=1

cmkumk||gmk′ ||2φφφHk φφφk′

∣∣∣∣∣
2
︸ ︷︷ ︸

C

+ τpppqk′E


∣∣∣∣∣∣
M∑
m=1

cmkumk

(
K∑
i 6=k′

gmiφφφ
H
k φφφi

)H

gmk′

∣∣∣∣∣∣
2︸ ︷︷ ︸

D

. (3.48)
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The first term in (3.48) is given by

C = τpppqk′E


∣∣∣∣∣
M∑
m=1

cmkumk||gmk′ ||2φφφHk φφφk′

∣∣∣∣∣
2


= τpppqk′
∣∣φφφHk φφφk′∣∣2 E

{
M∑
m=1

cmkumk||gmk′ ||4
}

+
∣∣φφφHk φφφk′∣∣2

τpppqk′E

{
M∑
m=1

M∑
n 6=m

cmkcnkumkunk||gmk′ ||2||gnk′||2
}

= Nτpppqk′
∣∣φφφHk φφφk′∣∣2 M∑

m=1

c2
mku

2
mkβ

2
mk′

+ N2qk′
∣∣φφφHk φφφk′∣∣2

(
M∑
m=1

umkγmk
βmk′

βmk

)2

, (3.49)

where the last equality is derived based on the fact: γmk =
√
τpppβmkcmk. The second

term in (3.48) can be obtained as

D = τpppqk′E


∣∣∣∣∣
M∑
m=1

cmkumk

( K∑
i 6=k′

gmiφφφ
H
k φφφi

)H
gmk′

∣∣∣∣∣
2


= Nτpppqk′

[
M∑
m=1

c2
mku

2
mkβmk′

(
K∑
i 6=k′

βmi
∣∣φφφHk φφφi∣∣2

)]

= Nτpppqk′

[
M∑
m=1

c2
mku

2
mkβmk′

(
K∑
i=1

βmi
∣∣φφφHk φφφi∣∣2 − βmk′ ∣∣φφφHk φφφk′∣∣2

)]

= N
√
τpppqk′

M∑
m=1

u2
mkcmkβmk′βmk

− Nqk′
M∑
m=1

u2
mkc

2
mkβmk′

− Nτpppqk′
M∑
m=1

u2
mkc

2
mkβ

2
mk′

∣∣φφφHk φφφk′∣∣2 . (3.50)

Finally by substituting (3.49) and (3.50) into (3.48), and substituting (3.48) into (3.47),
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we obtain

E{|IUIkk′ |2} = Nρqk′

(
M∑
m=1

u2
mkβmk′γmk

)

+ N2ρqk′
∣∣φφφHk φφφk′∣∣2

(
M∑
m=1

umkγmk
βmk′

βmk

)2

. (3.51)

The total noise for the user k is given by

E
{
|TNk|2

}
= E


∣∣∣∣∣
M∑
m=1

umkĝ
H
mknm

∣∣∣∣∣
2


= N
M∑
m=1

u2
mkγmk, (3.52)

where the last equality is due to the fact that the terms ĝmk and nm are uncorrelated. The

power of the quantization distortion for user k is given by

E
{
|TQDk|

2} = E


∣∣∣∣∣
M∑
m=1

umke
z
mk

∣∣∣∣∣
2


=
M∑
m=1

u2
mkE

{
|ezmk|

2} , (3.53)

where in the last equality, we used the fact that using the Bussgang decomposition, with

the correlated inputs, the covariance matrix of the quantization distortion is

approximated with a diagonal matrix [53–57]. Finally, the power of the quantization

distortion is obtained as the following:

E
{
|ezmk|

2} = E
{
|ẽzmk|

2}σ2
zmk

= σ2
ẽσ

2
zmk

, (3.54)

where we used the fact that all APs use the same number of bits to quantize the weighted
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signal zmk in (3.12). Next, the term σ2
zmk

is obtained as

σ2
zmk

= E
{(

ĝHmkym
)H (

ĝHmkym
)}

= E

{(
√
ρ

K∑
k′=1

umkĝ
H
mkgmk′

√
qk′sk′ + umkĝ

H
mknm

)H

(
√
ρ

K∑
k′=1

umkĝ
H
mkgmk′

√
qk′sk′ + umkĝ

H
mknm

)}

= ρE


∣∣∣∣∣
K∑
k′=1

umkĝ
H
mkgmk′

√
qk′sk′

∣∣∣∣∣
2


+ E
{∣∣umkĝHmknm∣∣2} ,

where the last inequality in (3.47) is due to the fact that for two independent RVs X and

Y and E{X} = 0, we have E{|X + Y |2} = E{|X|2}+ E{|Y |2}. For the second term of

(4.69), we have E
{∣∣ĝHmknm∣∣2} = Nγmk. The first term in (4.69) can be obtained as

E


∣∣∣∣∣
K∑
k′=1

umkĝ
H
mkgmk′

√
qk′sk′

∣∣∣∣∣
2
 = E


∣∣∣∣∣
K∑
k′=1

umk(gmk − εmk)Hgmk′
√
qk′sk′

∣∣∣∣∣
2


= E


∣∣∣∣∣
K∑
k′=1

umkg
H
mkgmk′

√
qk′sk′

∣∣∣∣∣
2
︸ ︷︷ ︸

I

+ E


∣∣∣∣∣
K∑
k′=1

umkε
H
mkgmk′

√
qk′sk′

∣∣∣∣∣
2
︸ ︷︷ ︸

II

, (3.55)

where each element of ε is given by εmk = CN (0, βmk − γmk). The terms I and II in

(3.55) are given as following:

I = Nβmk

K∑
k′=1

qk′βmk′ , (3.56)

and

II = N(βmk − γmk)
K∑
k′=1

qk′βmk′ . (3.57)
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Finally, we have

E
{
|TQDk|

2} = Nσ2
ẽ

M∑
m=1

u2
mk

[
√
ρ (2βmk − γmk)

K∑
k′=1

qk′βmk′ + γmk

]
, (3.58)

By substituting (3.45), (3.46), (3.51) and (3.52) into (3.13), the corersponding SINR of

the kth user is obtained by (3.17), which completes the proof of Theorem 2. �

Appendix 3.C: Proof of Proposition 2

The standard form of GP is defined as follows [50]:

P12 : min f0(x),

subject to fi(x) ≤ 1, i = 1, · · · ,m, gi(x) = 1, i = 1, · · · , p,

(3.59a)

(3.59b)

where f0 and fi are posynomial and gi are monomial functions. Moreover,

x = {x1, · · · , xn} represent the optimization variables. The SINR constraint in (3.59) is

not a posynomial function in this form, however it can be rewritten as the following

posynomial function:

uHk

(
N2

K∑
k′ 6=k

qk′ |φφφHk φφφk′|2Λkk′Λ
H
kk′ +N

∑K
k′=1 qk′Υkk′ +

N

ρ
Rk

)
uk

uHk (N2qkΓkΓH
k ) uk

<
1

t
,∀k. (3.60)

By applying a simple transformation, (3.60) is equivalent to the following inequality:

q−1
k

(
K∑
k′ 6=k

akk′qk′ +
K∑
k′=1

bkk′qk′ + ck

)
<

1

t
, (3.61)

where

akk′ =
uHk

(∣∣φφφHkφφφk′∣∣2Λkk′Λ
H
kk′

)
uk

uHk (ΓkΓH
k ) uk

,

bkk′ =
uHk Υkk′uk

uHk (ΓkΓH
k ) uk

,

ck =
uHk Rkuk

ρuHk (ΓkΓH
k ) uk

.

(3.62a)

(3.62b)

(3.62c)
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The transformation in (3.61) shows that the left-hand side of (3.60) is a posynomial

function. Hence, the power allocation Problem P4 is a GP (convex problem), where the

objective function and constraints are monomial and posynomial, respectively, which

completes the proof of Proposition 2. �

Appendix 3.D: Proof of Lemma 2

This lemma is proven by exploiting the unique optimal solution of the uplink max-min

SINR problem with total power limitation through an eigensystem [43]. This problem is

iteratively solved and the optimal receiver filter coefficients Ǔ are determined by solving

Problem P3 of submitted manuscript. Next, we scale the power allocation at each user

such that the per-user power constraints are satisfied. Let us consider the following

optimization problem for a given receiver filter coefficients Ǔ:

P11 : CUP (Ǔ, Ptot
)

= max
qk

min
k=1,··· ,K

SINRUP
k

(
Ǔ,q

)
subject to

K∑
k=1

qk ≤ Ptot.

(3.63a)

(3.63b)

3.D.1 Optimal Solution of Problem P11 Exploiting an Eigensystem

The optimal solution of Problem P11 can be determined by finding the unique

eigenvector associated with unique positive eigenvalue of an eigensystem and the power

allocation q̌ that satisfies the following condition [43]:

K∑
k=1

q̌k = Ptot. (3.64)

The SINRs of all users can be collectively written as

q̌
1

CUP
k

(
Ǔ, Ptot

) = DΨ
(
Ǔ
)

q̌ + Dσ
(
Ǔ
)
, (3.65)
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where σ
(
Ǔ
)
∈ CK×1, σk (uk) =

N

ρ

(
σ2
ẽ

ã2
+1

)
M∑
m=1

ǔmkγmk and D and Ψ
(
Ǔ
)

are defined

as

D = diag
[

1

ǔH1 Ď1ǔ1

, · · · , 1

ǔHKĎK ǔK

]
,
[
Ψ
(
Ǔ
)]
kk′

=

ǔHk
ˇ̌Rkkǔk, k = k′,

ǔHk Řkk′ǔk + ǔHk
ˇ̌Rkk′ǔk, k 6= k′,

(3.66)

where Ďk, Řkk′ and ˇ̌Rkk′ are defined as

SINRUP
k =

qkuHk
( Ďk︷ ︸︸ ︷
N2ΓkΓ

H
k

)
uk

uHk
(∑K

k′ 6=k qk′ N
2|φφφHk φφφk′|2Λkk′Λ

H
kk′︸ ︷︷ ︸

Řkk′

+
∑K

k′=1 qk′ NΥkk′︸ ︷︷ ︸
ˇ̌Rkk′

+
N

ρ
Rk

)
uk
. (3.67)

Having both sides of (3.65) multiplied by 1T = [1, · · · , 1], we obtain

1

CUP
k

(
Ǔ, Ptot

) =
1

Ptot
1T ĎΨ

(
Ǔ
)

q̌ +
1

Ptot
1TDσ

(
Ǔ
)
, (3.68)

which can be combined with (3.65) to define the following eigensystem:

Λ
(

Ǔ, Ptot
)

q̌ext =
1

CUP
k

(
Ǔ, Ptot

) q̌ext, Λ
(

Ǔ, Ptot
)

=

 DΨT
(
Ǔ
)

Dσ
(
Ǔ
)

1

Ptot
1TDΨT

(
Ǔ
) 1

Ptot
1TDσ

(
Ǔ
)
.

(3.69)

The optimal power allocation q̌ is obtained by determining the eigenvector corresponding

to the maximum eigenvalue of Λ
(
Ǔ, Ptot

)
and scaling the last element to one as follows:

q̌ext =

q̌

1

 , (3.70a)

Λ
(
Ǔ, Ptot

)
q̌ext = λmax

(
Λ
(
Ǔ, Ptot

))
q̌ext. (3.70b)

Note that to find the optimal power allocation q̌, the elements of eigenvector of

Λ
(
Ǔ, Ptot

)
should be scaled such that the last element is one to satisfy the total power

constraint. In particular, the element of the eigenvector that needs to be scaled depends

on the type of power constraint in the problem. For example, to meet the total power

constraint, the last element is scaled to one. Similarly, to meet the other types of power
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constraints (for example, per-user power constraint), the components of this eigenvector

can be scaled by any positive value to satisfy a given condition as follows:

Λ
(
Ǔ, Ptot

)
δconsq̌ext = λmax

(
Λ
(
Ǔ, Ptot

))
δconsq̌ext, (3.71)

where δcons is a positive constant. This is the key fact that exploited to show that both

Problems P2 and P6 provide the same optimal solution.

In the next subsection, we propose to scale the elements of q̌ such that the per-user

power constraints are satisfied at each iteration.

3.D.2 Modified Eigensystem to Satisfy the Per-User Power Constraints

vspace.5cm We further scale the power allocation q̌ to satisfy the per-user power

constraints which is performed through carrying out the following two steps:

q̄ =


q̌1

p
(1)
max
...
q̌K

p
(K)
max

.

 . (3.72)

Next we find the maximum value among the elements of q̄, i.e., max(q̄), and divide all

elements of q̄ by it. Hence the power allocation ˇ̌q is defined as follows:

ˇ̌q =


q̌1

max(q̄)
...
q̌K

max(q̄)
,

 . (3.73)

In the next iteration, the same max-min problem is solved with a new total power

constraint obtained by summing up the allocated power to all users in the previous
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iteration:

L1 : CUP (Ǔ, P new
tot

)
= max

qk
min

k=1,··· ,K
SINRUP

k

(
Ǔ,q

)
,

subject to
K∑
k=1

qk ≤ P new
tot ,

where P new
tot =

K∑
k=1

ˇ̌qk.

(3.74a)

(3.74b)

(3.74c)

At the convergence of the algorithm, the per-user power constraints are satisfied with

achieving the same uplink SINR for each user. Interestingly, if this max-min problem is

solved with the corresponding total power constraint, then it will converge to the same

optimal solution of max-min problem with per-user power constraints. This is due to

the property that the eigensystem exploited to obtain the power allocation in (3.69) has

a unique positive eigenvalue and a corresponding unique eigenvector. Furthermore, in

both Problems P2 and P6, different elements of the same eigenvector are scaled to meet

the corresponding constraints on the power allocation. In other words, the last element

is scaled to meet the total power constraint in P6 whereas the element with the highest

ratio as in (3.71) is scaled to meet the per-user power constraint. As the equivalent total

power P c
tot for Problem P6 chosen from the solution of the original P2, both of them

will converge to the same solution whose optimality is proven later by considering an

equivalent problem related to the virtual downlink SINR. Therefore, Problems P2 and P6

of the revised manuscript are equivalent and have the same optimal solution. The steps of

proof involved in solving both Problems P6 and P2 are provided in Algorithm 3. Step 5 in

Algorithm 3 is the key step in which the different elements of the eigen vector (i.e., power

allocations) are scaled to meet the constraints on transmit power. This completes the proof

of Lemma 2. �

Appendix 3.E: Proof of Theorem 4

To achieve the same SINR tuples in both the uplink and the downlink, we need:

SINRDL
k (U,p) = SINRUP

k (U,q) ,∀k. (3.75)
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Algorithm 3 Proposed algorithm to solve Problems P2 and P6

1. Initialize P̌
new,(0)
tot = P c

tot for P2, and ˇ̌P
new,(0)
tot = P c

tot for P6, ˇ̌q(0) = q̌(0) =[
Ptot

K

c

, · · · , Ptot

K

c]
, i = 1

2. Repeat steps 3-5 until
SINRUP,(i+1)

k − SINRUP,(i)
k

SINRUP,(i)
k

≤ ε,∀k

3. Determine the optimal receiver coefficients Ǔ(i)
for P2, and ˇ̌U(i) for P6, by solving the

generalized eigenvalue Problem P3, for a given q̌(i−1) for P2 and ˇ̌q(i−1) for P6

4. Compute q̌(i) for P2, and ˇ̌q(i) for P6, through solving Problem P11 in (3.63) for a given
Ǔ(i)

for P2 and ˇ̌U(i) for P6

5. Scale the last element to 1, i.e., [q̌ext]K+1 = 1 as given in (3.70) for P2, and Scale the
elements of ˇ̌q based on (3.72) and (3.73) for P6

6. P̌ new,(i)
tot =

∑K
k=1 q̌

(i)
k for P2, and ˇ̌P

new,(i)
tot =

∑K
k=1

ˇ̌q
(i)
k for P6, and i = i+ 1

By substituting uplink and downlink SINRs, in (3.25) and (3.24), respectively, in equation

(3.75) and summing all equations by both sides, we have

p1N
M∑
m=1

(
σ2
ẽ

ã2
+ 1

)
u2
m1γm1 + · · ·+ pKN

M∑
m=1

(
σ2
ẽ

ã2
+ 1

)
u2
mKγmK =

K∑
k=1

qk.(3.76)

Therefore, this condition between the total transmit power on the uplink and the equivalent

total transmit power on the downlink should be satisfied to realize the same SINRs for all

set of users, which completes the proof of Theorem 4. �
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4.1 Introduction

For a given fronthaul capacity, we show that the total power consumption in the cell-free

massive MIMO system depends on the length of uplink pilot vectors, channel coherence

time and the total number of quantization bits. The uplink energy efficiency of the

86
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cell-free massive MIMO system is investigated in this chapter. In particular, optimal

power allocation strategies which maximize the uplink energy efficiency are investigated

for a system in which the quantized version of the weighted signals obtained from MRC

weighting at APs are available at the CPU. The contributions of this chapter are

summarized as follows:

1. An expression for uplink energy efficiency is derived based on channel statistics

and taking into account the effects of channel estimation errors, the effect of pilot

contamination, and quantization distortion.

2. A novel approach to solve the non-convex energy efficiency maximization problem

is proposed, where we propose to decompose the original problem into two sub-

problems and an iterative algorithm is developed to determine the optimal solution.

A successive convex approximation (SCA) is used to efficiently solve the power

allocation problem. Next, a heuristic sub-optimal energy efficiency maximization

problem is proposed where the original optimization problem is transformed into a

standard GP.

3. The convergence and complexity analysis of the proposed schemes are presented.

4. Numerical results demonstrate that the proposed scheme substantially outperforms

the case with equal power allocation. Finally, numerical results demonstrate that

although the proposed sub-optimal scheme has a lower complexity, it provides a

performance fairly close to that of the SCA scheme.

4.2 System Model

In this chapter, the system model is the same as the one used in Chapter 3. However, as a

reminder, we briefly review the system model. We consider uplink transmission in a cell-

free massive MIMO system withM APs andK single-antenna users randomly distributed

in a large area, as shown in Fig. 4.1. Moreover, we assume each AP has N antennas. The

channel coefficient vector between the kth user and the mth AP, gmk ∈ CN×1, is modeled

as gmk =
√
βmkhmk, where βmk denotes the large-scale fading and hmk ∼ CN (0, IN)



CHAPTER 4. ENERGY EFFICIENCY OF THE CELL-FREE MASSIVE MIMO UPLINK 88

Figure 4.1: The uplink of a cell-free massive MIMO system with K single-antenna users
and M APs. Each AP is equipped with N antennas. The solid lines denote the uplink
channels and the dashed lines present the limited capacity fronthaul links between the
APs and the CPU.

represents the small-scale fading [2]. Note that the uplink channel estimation is presented

in Section 2.7.5.

4.2.1 Uplink Transmission

In the uplink data transmission, where all users send their signals to the AP, the transmitted

signal from the kth user is represented by xk =
√
qksk, where sk (E{|sk|2} = 1) and

qk denotes the transmitted symbol and the transmit power coefficient from the kth user,

respectively. The N × 1 received signal at the mth AP from all users is given by

ym =
√
ρ

K∑
k=1

gmk
√
qksk + nm, (4.1)

where nm ∈ CN×1 is the noise at the mth AP and ρ is the normalized uplink SNR. We

assume that elements of nm are i.i.d. CN (0, 1) RVs.

4.2.2 Received Signal

The mth AP quantizes the terms zm,k = ĝHmkym, ∀k, and forwards the quantized signals

in each symbol duration to the CPU as zmk = ĝHmkym = rmk + jsmk, ∀k, where rmk and
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smk represent the real and imaginary parts of zmk. An ADC quantizes the real and

imaginary parts of zm,k with α bits each, which introduces quantization distortions to the

received signals [48]. In order to improve the performance, the forwarded signal is

further multiplied by the receiver filter coefficients at the CPU. Finally, using the

Bussgang decomposition and the receiver filter coefficients umk,∀m, k at the CPU, the

aggregate received signal at the CPU can be written as

rk =
M∑
m=1

umkQ
(
ĝHmkym

)
=

M∑
m=1

umk
(
a ĝHmkym + nd,mk

)
=

M∑
m=1

umk

ã ĝHmkym + σĝHmkymñd,mk︸ ︷︷ ︸
nd,mk

 , (4.2)

where the terms a and ã are defined in Section 2.9. Collecting all the receiver filter

coefficients umk,∀m, corresponding to the kth user, we define uk = [u1k, u2k, · · · , uMk]
T ,

without loss of generality, it is assumed that ||uk|| = 1.

4.3 Performance Analysis

In this section, we derive the spectral efficiency for the considered system model by

following a similar approach in [2]. Note that the main difference between the proposed

approach and the scheme in [2] is the new set of receiver coefficients which are

introduced at the CPU to improve the spectral efficiency. The benefits of the proposed

approach in terms of the spectral efficiency is demonstrated through numerical results. In

deriving the spectral efficiency of each user, it is assumed that the CPU exploits only the

knowledge of channel statistics between the users and APs in detecting data from the
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received signal in (4.2). The aggregated received signal in (4.2) can be written as

rk = ã
√
ρE

{
M∑
m=1

umkĝ
H
mkgmk

√
qk

}
︸ ︷︷ ︸

DSk

sk

+ ã
√
ρ

(
M∑
m=1

umkĝ
H
mkgmk

√
qk − E

{
M∑
m=1

umkĝ
H
mkgmk

√
qk

})
︸ ︷︷ ︸

BUk

sk

+ ã

K∑
k′ 6=k

√
ρ

M∑
m=1

umkĝ
H
mkgmk′

√
qk′︸ ︷︷ ︸

IUIkk′

sk′

+ ã
M∑
m=1

umkĝ
H
mknm︸ ︷︷ ︸

TNk

+
M∑
m=1

umknd,mk︸ ︷︷ ︸
TQDk

, (4.3)

where DSk, BUk and IUIk denote the desired signal (DS), beamforming uncertainty

(BU) for the kth user, and the inter-user-interference (IUI) caused by the k′th user,

respectively. In addition, TNk accounts for the total noise (TN) following the MRC

detection, and finally TQDk refers to the total quantization distortion (TQD) at the kth

user. The elements of quantization distortion are i.i.d. RVs [48]. Moreover, if the

probability density function of the input of the quantizer is even and we use a

symmetrical quantizer, the quantization noise has zero mean [56, 58, 59]. In addition,

note that using Bussgang decomposition the elements of the quantization distortion are

uncorrelated with the input of the quantizer [36], i.e.,

E
{(

ĝHmkym
)H

nd,mk

}
= 0. (4.4)

Exploiting (4.4), we have

E {(DSk.sk + BUk.sk)× TQDk} = 0. (4.5)

Hence, exploiting the analysis in [2], it can be shown that terms DSk.sk, BUk.sk,

IUIkk′ .sk′ , TNk and TQDk are mutually uncorrelated. Using the analysis in Section 2.10,
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the corresponding spectral efficiency (in bit/s/Hz) is obtained as follows:

Sk =

(
1− τp

τc

)
log2 (1 + SINRk) =

(
1− τp

τc

)
log2

(
1 +

|DSk|2

E {|BUk|2}+
∑K

k′ 6=k E{|IUIkk′ |2}+ E{|TNk|2}+
1

ã2
E{|TQDk|2}

)
.(4.6)

where SINRk refers to the signal-to-interference-plus-noise ratio (SINR) of the kth user

and its closed-form expression is provided in the following theorem.

Theorem 5. By employing MRC detection at the APs, the achievable uplink SINR of

the kth user in the cell-free massive MIMO system with K randomly distributed single-

antenna users and M APs, each is equipped with N antennas, is given by

SINRk = (4.7)
N2uHk

(
qkΓkΓ

H
k

)
uk

uHk

(
N2

K∑
k′ 6=k

qk′|φφφHk φφφk′ |2∆kk′∆H
kk′+N

2
K∑
k′=1

qk′|φφφHk φφφk′ |2Λk′+N
K∑
k′=1

qk′Dkk′+
N

ρ
Rk

)
uk

,

where

Γk = [γ1k, γ2k, · · · , γMk]
T , (4.8a)

∆kk′=

[
γ1kβ1k′

β1k

,
γ2kβ2k′

β2k

, · · · , γMkβMk′

βMk

]T
, (4.8b)

Λk′=
σ2
ẽ

ã2
diag

[
γ2

1k′ ,· · ·,γ2
Mk′

]
, (4.8c)

Dkk′= diag
(
σ2
ẽ

ã2
+ 1

)[
β1k′γ1k,· · ·,βMk′γMk

]
, (4.8d)

and where γmk =
√
τpppβmkcmk.

Proof: Please refer to Appendix 4.A. �

Finally, the sum spectral efficiency is given by

S (qk,uk, α) =
K∑
k=1

Sk (qk,uk, α) . (4.9)
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4.4 Total Energy Efficiency Model

4.4.1 Power Consumption Model

The total power consumption can be defined as follows [60]:

Ptotal = PTX + PCP, (4.10)

where PTX is the uplink power amplifiers (PAs) due to transmit power at the users and

PA dissipation [60], and PCP refers to the circuit power (CP) consumption. The power

consumption PTX is given by [2]

PTX =
1

ζ
ρpn

K∑
k=1

qk, (4.11)

where ζ is the PA efficiency at each user, and pn is the noise power. The power consump-

tion PCP is obtained as [2]

PCP = MPfix +KPU +
M∑
m=1

Pfh,m, (4.12)

where Pfix is a fixed power consumption (including control signals and fronthaul) at each

AP, PU denotes the required power to run circuit components at each user and finally,

fronthaul power consumption from the mth AP to the CPU is obtained as follows [52,61–

63]:

Pfh,m = PFT
Rfh,m

Cfh,m
, (4.13)

where PFT is the total power required for fronthaul traffic at full capacity, Cfh,m is the

capacity of the fronthaul link between the mth AP and the CPU, and finally Rfh,m is the

actual fronthaul rate between the mth AP and the CPU and is given by [52, 61–63]

Rfh,m =
2 K τf αm

Tc
, (4.14)

where αm denotes the number of quantization bits at each AP and for simplicity we

consider the same number of bits at all APs, drop the index m and use α as the number
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of quantization bits. Moreover, τf introduces the length of the uplink data (in symbols)

and is given by τf = τc − τp, where τc denotes the number of samples for each coherence

interval, τp represents the length of pilot sequence, and finally Tc refers to coherence

time in seconds. Note that in (4.14) α is related to the total uplink spectral efficiency,

since it will affect the TQD term and hence the total spectral efficiency in (4.6).

4.4.2 Total Energy Efficiency

In this section, we formulate the total energy efficiency of cell-free massive MIMO uplink.

The total energy efficiency is obtained by dividing the sum throughput (bit/s) by the total

consumed power (Watt) which is given by

Ee (qk,uk, α) =
B S (qk,uk, α)

Ptotal

(
bit

Joule

)
, (4.15)

where B is the frequency bandwidth.

4.5 Total Energy Efficiency Maximization

In this section, we propose a total energy efficiency maximization problem in cell-free

massive MIMO, where we design the number of quantization bits α, the receiver filter

coefficients uk and the power coefficients qk to maximize the total energy efficiency

under per-user power and per-user spectral efficiency constraints. Hence, the total energy

efficiency maximization can be modeled as follows:

P1 : max
qk,uk,α

Ee (qk,uk, α)

s.t. Sk (qk,uk) ≥ S
(r)
k , ∀k,

||uk|| = 1, ∀k,

0 ≤ qk ≤ p(k)
max, ∀k,

Rbh,m ≤ Cfh,m, ∀m,

(4.16a)

(4.16b)

(4.16c)

(4.16d)

(4.16e)
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where S(r)
k is the required spectral efficiency of the kth user, p(k)

max and Cfh,m refer to the

maximum transmit power available at user k and the capacity of fronthaul link between

the mth AP and the CPU, respectively. Assuming the same amount of fronthaul capacity

between all APs and the CPU, we drop the index m, and use Cfh for simplicity. Problem

P1 can be written as

P2 : max
qk,uk,α

B . S (qk,uk, α)
1
ζ
ρpn

∑K
k=1 qk +MPfix +KPU + PFT

2 K τf α

Tc

PFT
Cfh

s.t. Sk (qk,uk, α) ≥ S
(r)
k , ∀k,

||uk|| = 1, ∀k,

0 ≤ qk ≤ p(k)
max, ∀k,

Rfh ≤ Cfh, ∀m.

(4.17a)

(4.17b)

(4.17c)

(4.17d)

(4.17e)

Problem P2 contains one discrete variable (the number of quantization bits). Hence, we

can formulate the problem for fixed values of the number of quantization bits α, and we

investigate the optimal values of α numerically. As a result, for a given α, the total energy

efficiency maximization problem can be re-formulated as follows:

P3 :max
qk,uk

B . S (qk,uk, α)
1
ζ
ρpn

∑K
k=1 qk +MPfix +KPU + PFT

2 K τf α

Tc

PFT
Cfh

s.t. Sk (qk,uk, α) ≥ S
(r)
k , ∀k,

||uk|| = 1, ∀k,

0 ≤ qk ≤ p(k)
max, ∀k.

(4.18a)

(4.18b)

(4.18c)

(4.18d)

We then reformulate Problem P3 into the following problem:

P4 : max
qk,uk,ν

B . S (qk,uk, α)
1
ζ
ρpnν

∑K
k=1 p

(k)
max +MPfix +KPU + PFT

2 K τf α

Tc

PFT
Cfh

s.t. Sk (qk,uk, α) ≥ S
(r)
k , ∀k,

||uk|| = 1, ∀k,

0 ≤ qk ≤ p(k)
max, ∀k,

K∑
k=1

qk ≤ ν
K∑
k=1

p(k)
max,

ν? ≤ ν ≤ 1,

(4.19a)

(4.19b)

(4.19c)

(4.19d)

(4.19e)

(4.19f)
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where ν is an auxiliary variable and ν? and is obtained through the following remark.

Remark 3. Based on the analysis in [64,65], the slack variable ν? is obtained by solving

a power minimization problem subject to the same per-user power constraints in (4.19d)

and throughput requirement constraints in (4.19b). For details, please refer to Appendix

4.B. �

Theorem 6. The optimal solution of Problem P3 and problem P4 are equal.

Proof: The proof of Theorem 6 follows the same approach in the proof of

[64, Theorem 1]. Let us assume {Uopt,qopt} and {U̇opt, q̇opt, ν̇} are the optimal solution

of Problems P3 and P4, respectively. It is easy to show that
∑K

k=1 q̇k = ν̇
∑K

k=1 p
(k)
max.

Moreover, based on [64], it is clear that U̇opt and q̇opt provide a feasible solution to

Problem P3. Exploiting the per-user power constraints, using ν = 1∑K
k=1 p

(k)
max

∑K
k=1 qk and

0 ≤ ν ≤ 1, and by considering the throughput requirement constraints, one can conclude

that {Uopt,qopt} provide a feasible solution to Problem P4. Through these two facts, it is

not difficult to show that the optimal solutions of Problems P3 and P4 are equal, which

completes the proof of Theorem 6. �

Hence, we can convert the original total energy efficiency maximization problem into a

total energy efficiency maximization problem with per-user power constraints,

throughput requirement constraints and the new total power constraint. Next, Problem

P4 is iteratively solved by performing a one-dimensional search over the variable

ν? ≤ ν ≤ 1 [64]. Therefore, for a given ν, the denominator of the objective function of

Problem P4 is a constant, which enables us to define the following equivalent

optimization problem:

P5 : max
qk,uk

S (qk,uk, α)

s.t. Sk (qk,uk, α) ≥ S
(r)
k , ∀k,

||uk|| = 1, ∀k,

0 ≤ qk ≤ p(k)
max,∀k,

K∑
k=1

qk ≤ ν
K∑
k=1

p(k)
max.

(4.20a)

(4.20b)

(4.20c)

(4.20d)

(4.20e)

Problem P5 is not convex in terms of uk and power allocation qk, ∀k. Therefore, it
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cannot be directly solved through existing convex optimization software. To tackle this

non-convexity issue, we decouple Problem P5 into two sub-problems: receiver coefficient

design (i.e. uk) and the power allocation problem. The optimal solution for Problem P5,

is obtained through alternately solving these sub-problems, as explained in the following

subsections.

4.5.1 Receiver Filter Coefficient Design

In this subsection, the problem of designing the receiver filter coefficient vector is

considered. We solve the total energy efficiency maximization problem for a given set of

power allocations at all users, qk,∀k, and fixed values for the number of quantization

bits, αm, ∀m. These coefficients (i.e., uk, ∀ k) are obtained by independently

maximizing the total uplink energy efficiency of the system. Note that the spectral

efficiency of the kth user, i.e., Sk (qk,uk, α), is a function of only uk (it does not depend

on uk′ , where k′ 6= k), and hence, the optimal receiver filter coefficients can be

determined by solving the following optimization problem:

P6 :max
uk

Sk (qk,uk, α)

s.t. Sk (qk,uk, α) ≥ S
(r)
k , ∀k,

||uk|| = 1, ∀k.

(4.21a)

(4.21b)

(4.21c)

Note that the satisfaction of constraints in (4.21b) will be ensured in the power allocation

problem. Hence, we drop constraint (4.21b) and Problem P6 can be reformulated as:

P7 : max
uk

N2uHk
(
qkΓkΓ

H
k

)
uk

uHk

(
N2

K∑
k′ 6=k

qk′ |φφφHk φφφk′|2∆kk′∆H
kk′+N

2
K∑
k′=1

qk′ |φφφHk φφφk′|2Λk′+N
K∑
k′=1

qk′Dkk′+
NRk

ρ

)
uk

s.t. ||uk|| = 1, ∀k.

(4.22a)

(4.22b)

Problem P7 is a generalized eigenvalue problem [45], where the optimal solutions can be

obtained by determining the generalized eigen vector of the matrix pair Ak = N2qkΓkΓ
H
k

and Bk=N
2
∑K

k′ 6=kqk′ |φφφHk φφφk′|2∆kk′∆
H
kk′+N

2
∑K

k′=1qk′|φφφHk φφφk′ |2Λk′+N
∑K

k′=1qk′Dkk′+
N
ρ
Rk
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corresponding to the maximum generalized eigenvalue.

4.5.2 Power Allocation

In this subsection, we solve the power allocation problem for a given set of fixed receiver

filter coefficients, uk, ∀ k, and fixed values of quantization bits. The optimal transmit

power can be determined by solving the following total spectral efficiency maximization

problem:

P8 : max
qk

S (qk,uk, α)

s.t. Sk (qk,uk, α) ≥ S
(r)
k , ∀k,

0 ≤ qk ≤ p(k)
max, ∀k,

K∑
k=1

qk ≤ ν
K∑
k=1

p(k)
max.

(4.23a)

(4.23b)

(4.23c)

(4.23d)

Problem P8 can be reformulated as follows:

P9 : min
qk

K∏
k=1

(
1 + SINRk (qk,uk, α)

)−1

s.t. Sk (qk,uk, α) ≥ S
(r)
k , ∀k,

0 ≤ qk ≤ p(k)
max, ∀k,

K∑
k=1

qk ≤ ν

K∑
k=1

p(k)
max.

(4.24a)

(4.24b)

(4.24c)

(4.24d)

Problem P9 is generally a non-convex problem, however, it can be reformulated as a

standard GP problem [46]. We first rewrite Problem P9 as follows:

P10 : min
qk,tk

K∏
k=1

(1 + tk)
−1

s.t. Sk (qk,uk, α) ≥ S
(r)
k , ∀k,

0 ≤ qk ≤ p(k)
max,∀k,

SINRk ≥ tk,∀k,
K∑
k=1

qk ≤ ν

K∑
k=1

p(k)
max,

(4.25a)

(4.25b)

(4.25c)

(4.25d)

(4.25e)
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where tk,∀k refers to the slack variables. Problem (4.25) is a non-convex signomial

problem. However, in Appendix 4.B, we will show that all constraints in (4.25) can be

reformulated into posynomial functions. Hence, if the objective function in (4.25) can

be reformulated into a posynomial function, problem (4.25) is a standard GP and has an

optimal solution [46]. This motivates us to propose two schemes to transform Problem

(4.25) into a standard GP.

Efficient Power Allocation Scheme

We use the SCA scheme proposed in [66] to convert Problem (4.25) into a standard GP.

This scheme is referred to as the “inner approximation algorithm for non-convex

problems” in [66], and introduces an efficient solution for the original problem [64, 66].

Based on the analysis in [66], it is possible to search for a local optimum through solving

a sequence of GPs which locally approximate the original optimization problem. This

scheme is called the “inner approximation algorithm for non-convex problems” in [66].

This scheme provides an efficient solution for the original problem [64, 66]. Next, the

following lemma using SCA is required [64, Lemma 1]:

Lemma 3. Function Θ(x) = κtξ can be used to approximate function Π(x) = 1 + t,

near the point t̂. The best monomial local approximation is obtained by the following

parameters:

ξ =
t̂

1 + t̂
,

κ =
1 + t̂

t̂ξ
,

(4.26a)

(4.26b)

where Θ(t) ≤ Π(t), ∀t > 0.

Using the local approximation in Lemma 3, we can tackle the non-convexity of Prob-
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lem P10, which enables us to reformulate Problem P10 as follows:

P11 : min
qk,tk

 K∏
k=1

t

−
t̂k

1 + t̂k
k


s.t. Sk (qk,uk, α) ≥ S

(r)
k , ∀k,

0 ≤ qk ≤ p(k)
max,∀k,

SINRk ≥ tk,∀k,
K∑
k=1

qk ≤ ν
K∑
k=1

p(k)
max,(

(1− δ)t̂k
)
≤ tk ≤

(
(1− δ)t̂k

)
, ∀k,

(4.27a)

(4.27b)

(4.27c)

(4.27d)

(4.27e)

(4.27f)

where δ is a constant value to control the approximation accuracy [64].

Proposition 3. Problem P11 can be formulated into a standard GP.

Proof: Please refer to Appendix 4.C. �

Therefore, Problem P11 is efficiently solved through existing convex optimization

software. Based on these two sub-problems (P7 and P11), an iterative algorithm has been

developed by alternately solving both sub-problems at each iteration. The proposed

algorithm is summarized in Algorithm 4, where ε1 and ε2 are small values, and we set

ε1 = ε2 = 0.01.

Sub-Optimal Power Allocation Scheme

In this section, we present a heuristic solution to tackle the non-convexity issue of Problem

P10. Exploiting the analysis in [67], we propose to reformulate the energy efficiency
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Algorithm 4 Proposed algorithm to solve Problem P5

1. Initialize q(0), U(0). Calculate the uplink SINR(0)
k , t(0)

0 and S(r)
k using q(0) and U(0),

and set the initial SINR guess and initial auxiliary variables as t̂k = SINR(0)
k ,∀k, and

t
(0)
k = SINR(0)

k ,∀k, respectively.
2. Set q(?) = 0, t(?)k = t

(0)
k , U(?) = U(0), and Ẽ(?)

e,k = 0,∀k.
3. Calculate the constants ξ and κ using (4.26), and solve problem P11 with t(?)k and U(?),
and find q(??) and calculate t(??)0 and t(??)k .

4. If
∣∣∣t(??)k − t(?)k

∣∣∣ ≤ ε1, then set t(??)k = t
(?)
k and q(??) = q(?) and go to step 8, otherwise,

t
(?)
k = t

(??)
k and go to step 3.

5. Solve the generalized eigenvalue Problem P7 using q(?) and calculate U. Next, let
U(??) = U.
6. Compute the objective value of Problem P11 with U(??) and q(?) and call it Ẽ(??)

e,k ,∀k.

7. If
∣∣∣Ẽ(??)

e,k − Ẽ,ke(?)
∣∣∣ ≤ ε2,∀k, then U(?) = U(??) and go to step 8, otherwise, go to step

3.
8. If the stop criteria is satisfied stop, otherwise, go to step 3.

Algorithm 5 Proposed sub-optimal algorithm to solve Problem P5

1. Initialize q(0), i = 1.
2. Repeat steps 3-5 until

∣∣∣ ˜̃E
(i+1)
e,k − ˜̃E

(i)
e,k

∣∣∣ ≤ ε3,∀k, where ˜̃Ee,k is the objective value of
Problem P10.
3. i = i+ 1.
4. Set q(i) = q(i−1) and determine the optimal receiver coefficients U(i) through solving
the generalized eigenvalue Problem P7.
5. Compute q(i+1) through solving Problem P12.

maximization Problem P8 as follows:

P12 : min
qk,tk

K∏
k=1

t−1
k

s.t. Sk (qk,uk, α) ≥ S
(r)
k , ∀k,

0 ≤ qk ≤ p(k)
max,∀k,

SINRk ≥ tk,∀k,
K∑
k=1

qk ≤ ν

K∑
k=1

p(k)
max.

(4.28a)

(4.28b)

(4.28c)

(4.28d)

(4.28e)

Proposition 4. Problem P12 can be formulated into a standard GP.
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Proof: The objective function in (4.25a) and the power constraint in (4.25e) are

posynomial functions. The spectral efficiency constraint in (4.25b) and the SINR

constraint in (4.25d) can be rewritten into the posynomial functions similar to (4.85) and

(4.88), which completes the proof. �

Hence, existing convex optimization software can be used to solve problem P12. As in

the previous section, here we propose an iterative algorithm to iteratively solve

sub-problems P7 and P12. Finally, Algorithm 5 summarizes the proposed scheme.

4.5.3 Convergence

In this section, the convergence analysis of the proposed Algorithms 4 and 5 are provided.

Two sub-problems are alternately solved to determine the solution to Problem P2. At

each iteration, one of the design parameters is determined by solving the corresponding

sub-problem while other design variables are kept fixed. Note that each sub-problem

provides an optimal solution for the other given design variables. At the nth iteration,

the receiver filter coefficients u
(n)
k , ∀k are determined for a given power allocation q(n)

and similarly, the power allocation q(n+1) is updated for a given set of receiver filter

coefficients u
(n)
k , ∀k. The optimal power allocation q(n+1) obtained for a given u

(n)
k

achieves an uplink spectral efficiency greater than or equal to that of the previous iteration.

In addition, the power allocation q(n) is also a feasible solution in determining q(n+1) as

the receiver filter coefficients u
(n+1)
k , ∀k are determined for a given q(n). This reveals that

the achieved uplink spectral efficiency monotonically increases with each iteration, which

can also be observed from the numerical results presented in Figs. 4.2, 4.3 and 4.4. As

the achievable uplink energy efficiency is upper bounded by a certain value for a given set

of per-user power and spectral efficiency constraints, the proposed algorithms converges

to a particular solution. Note that to the best of our knowledge and referring to [16, 40]

this is a common way to show the convergence.
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Table 4.1: Computational Complexity of Different Problems

Problem Required arithmetic operations

Problem P7
14
3
KM3

Problem P11 niter×O
(
(4K−1)

1
2 (24K3−20K2+8K−1)

)
Problem P12 O

(
(4K−1)

1
2 (24K3−20K2+8K−1)

)

4.5.4 Complexity analysis

Here, we provide the computational complexity analysis for the proposed Algorithms,

which solve a generalized eigenvalue problem P7 and a GP (convex optimization

problem) given by P11 and P12, respectively, at each iteration. For the receiver filter

coefficient design in P7, an eigenvalue solver requires 14
3
KM3 flops for K users using

the QR algorithm [68].

Proposition 5. Problem P11, can be solved with complexity equivalent to

niter × O
(

(4K − 1)
1
2 (24K3 − 20K2 + 8K − 1)

)
, where niter refers to the number of

iterations in P11 which depends on δ in (4.27f). Note that the term O means there is

an unknown factor. Moreover, it can be shown that Problem P12 can be solved with a

complexity of O
(

(4K − 1)
1
2 (24K3 − 20K2 + 8K − 1)

)
.

The number of arithmetic operations required for Algorithms are provided in Table

4.1.
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Proof: Let us consider the following GP problem:

PGP : min f0(x) =
∑
i∈I0

ci0 exp{aTi x}

s.t. fj(x) =
∑
i∈Ij

cij exp{aTi x} ≤ dj, j = 1, · · · , n3,

(4.29a)

(4.29b)

where x = {x1, · · · , xn1} represents the optimization variables, Ij are subset of the

index set I = 1, · · · , n2, and all coefficients cij are positive, j = 1, · · · , n3 [69, Chapter

10]. Based on the analysis in [69, Chapter 10], the complexity of solving the GP problem

given in (4.29) is given by C = O
(

(n2 + n3)
1
2 (n3n

2
2 + n3

2 + n3
1)
)

. Therefore, exploiting

P11 defined in (4.27) and the transformation in (4.84)-(4.88), we have n1 = K,

n2 = 2K − 1 and n3 = 2K. Note that n2 = 2K − 1 is obtained using the transformation

in (4.88) for the constraint in (4.27b), and also the transformation in (4.85) for constraint

(4.27d). Hence, Problem P11, can be solved with a complexity equivalent to

niter × O
(

(2K − 1 + 2K)
1
2
(
(2K) (2K − 1)2 + (2K − 1)3 + (2K)3)), where niter

refers to the number of iterations to solve P11 which depends on δ in (4.27f). Moreover,

it can be shown that Problem P12 can be solved with a complexity of

O
(
(2K−1+2K)

1
2
(
(2K) (2K − 1)2+(2K−1)3+(2K)3)). After some manipulations,

we end up with the values given in Table 4.1, which completes the proof of Proposition

5. �

4.6 User Assignment

Let τf be the length of the uplink payload data transmission for each coherence interval,

i.e., τf = τc−τp, where τc denotes the number of samples for each coherence interval and

τp represents the length of pilot sequence. Note that we need 2αm × (Kτf ) bits for each

AP during each coherence interval. Hence, the total fronthaul capacity required between

the mth AP and the CPU for all schemes is defined as

Cm =
2 (Kτf )αm

Tc
, (4.30)

where Tc (in sec.) refers to coherence time. Exploiting (4.30), it is obvious that the total

fronthaul capacity required between the mth AP and the CPU increases linearly with the
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Algorithm 6 User Assignment

1. Using (4.31), find the maximum possible integer value for Km,∀m
2. Sort users according to the ascending channel gain: βm1 ≥ βm2 ≥ · · · ≥ βmK ,∀m
3. Assign Km users with the highest values of βmk,∀m to each AP, i.e., Tm ←
{k(1), k(2), · · · , k(Km)},∀m
4. Find set of active APs for each user; Sk ← {m(1),m(2), · · · ,m(Mk)}, ∀k
5. for j = 1 : K
if size {Sj} = 0
π(j) = argmax

m
βmj , δ(j) = argmin

k
βπ(j)k, k|Skπj 6= ∅, Tπ(j) ← Tπ(j)\δ(j), Tπ(j) ←

Tπ(j) ∪ j
end

end
6. If m ∈ Sk, then ~γmk ← γmk, otherwise ~γmk = 0 and solve the max-min rate problem
P2

total number of users served by the mth AP. This motivates the need to pick a proper set

of active users for each AP. Using (4.30), we have

αm ×Km ≤
CfhTc
2τf

, (4.31)

where Km denotes the size of the set of active users for the mth AP. From (4.31), it can

be seen that decreasing the size of the set of active users allows for a larger number of

quantization bits. Motivated by this fact, and to exploit the capacity of fronthaul links

more efficiently, we investigate all possible combinations of αm andKm. First, for a fixed

value of αm, we find an upper bound on the size of the set of active users for each AP.

In the next step, we propose for all APs that the users are sorted according to βmk, ∀k,

and find the Km users which have the highest values of βmk among all users. If a user

is not selected by any AP, we propose to find the AP which has the best link to this user

(π(j) = argmax
m

βmj determines best link to the jth user, i.e., the index of the AP which

is closest to the jth user). Note that to consider only the users that have links to other

APs, we use k|Skπj 6= ∅, where ∅ refers to empty set. Then we drop the user which has

the lowest βmk, ∀k, among the set of active users for that AP, which has links to other

APs as well. Finally, we add the user which is not selected by any AP to the set of active

users for this AP. The proposed algorithm is summarized in Algorithm 6. We next solve

the uplink energy efficiency maximization problem as follows
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P user assignment : max
qk,uk,α

Ee (qk,uk, α, γ̃mk)

s.t. Sk (qk,uk, γ̃mk) ≥ S
(r)
k , ∀k,

||uk|| = 1, ∀k, 0 ≤ qk ≤ p(k)
max, ∀k,

Rbh,m ≤ Cfh,m, ∀m,

(4.32a)

(4.32b)

(4.32c)

(4.32d)

where

γ̃mk =

 γmk, m ∈ Sk
0, otherwise

(4.33)

where Sk refers to the set of active APs for the kth user. Finally, note that this reduces

the complexity of the optimization problem, as some entries of γ̃mk are zero. Finally,

note that we turn off the mth AP, if the set of active users for the mth AP is empty, after

performing the user assignment scheme. Hence, we put the number of active APs instead

of M .

4.7 Numerical Results and Discussion

In this section, we provide numerical results to validate the performance of the proposed

scheme. A cell-free massive MIMO system with M APs and K single-antenna users is

considered in aD×D coverage area, where both APs and users are randomly distributed.

In the following subsections, we define the numerical parameters and then present the

corresponding numerical results.

4.7.1 Simulation Parameters

The channel coefficients between users and APs are modeled in Section 2.7.4, where the

coefficient βmk is given by [2]

βmk = PLmk10

σsh zmk
10 , (4.34)
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where PLmk is the path loss from the kth user to the mth AP and the second term in

(4.34), 10
σshzmk

10 , denotes the shadow fading with standard deviation σsh = 8 dB, and

zmk ∼ N (0, 1). In the simulation, an uncorrelated shadowing model is considered and a

three-slope model for the path loss is given by [2]

PLmk =


−L− 35 log10(dmk), dmk > d1,

−L−15log10(d1)−20 log10(dmk), d0<dmk≤d1,

−L− 15 log10(d1)− 20 log10(d0), dmk ≤ d0,

(4.35)

and L = 46.3 + 33.9 log10(f) − 13.82 log10(hAP ) − (1.1 log10(f)− 0.7)hk +

(1.56 log10(f)− 0.8) , where f denotes the carrier frequency (in MHz), hAP and hk

represent the AP antenna height (in m) and user height (in m), respectively. The noise

power is given by pn = BW × kB × T0 × W, where BW = 20 MHz denotes the

bandwidth, kB = 1.381 × 10−23 represents the Boltzmann constant, and T0 = 290

(Kelvin) denotes the noise temperature. Moreover, W = 9 dB, and denotes the noise

figure. It is assumed that that p̄p and ρ̄ denote the power of the pilot sequence and the

uplink data powers, respectively, where pp = p̄p
pn

and ρ = ρ̄
pn

. In simulations, we set

p̄p = 200 mW and ρ̄ = 1 Watt. Similar to [2], we assume that the simulation area is

wrapped around at the edges which can simulate an area without boundaries. Hence, the

square simulation area has eight neighbours. Moreover, we set ζ = 0.3, PU = 0.1 Watt,

Pfix = .825 Watt [52, 60–63]. Moreover, hereafter the term “orthogonal pilots” refers to

the case where unique orthogonal pilots are assigned to all users, while in “random pilot

assignment” each user is randomly assigned a pilot sequence from a set of orthogonal

sequences of length τp (< K), following the approach of [2, 31].

4.7.2 Numerical Results

Convergence of the Proposed Schemes

In this section, the convergence of the proposed Algorithms 4 and 5 is investigated. Figs.

4.2, 4.3 and 4.4 present the convergence of the proposed Algorithms 4 and 5 with M =

100 and M = 200 APs, and K = 20 and K = 40 users with the length of pilot τp = 20.

Note that in the figures, the term “Channel” means a random realization of positions of



CHAPTER 4. ENERGY EFFICIENCY OF THE CELL-FREE MASSIVE MIMO UPLINK 107

1 2 3 4 5 6 7 8
Number of iterations

7.8

7.9

8

8.1

8.2

8.3

8.4

T
ot

al
 e

ne
rg

y 
ef

fi
ci

en
cy

 (
bi

t/J
ou

le
)

105

Channel 1
Channel 2
Channel 3
Channel 4

Figure 4.2: The total energy efficiency of proposed Algorithm 4 (solid curves) and pro-
posed Algorithm 5 (dashed curves) versus number of iterations with K = 20, M = 100,
N = 1, α = 2, τp = 20, and D = 1 km.
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Figure 4.3: The total energy efficiency of proposed Algorithm 4 (solid curves) and pro-
posed Algorithm 5 (dashed curves) versus number of iterations with K = 40, M = 100,
N = 1, α = 2, τp = 20, and D = 1 km.

users and APs and small-scale fading. Note that we choose different values of K, M and

α to show that the proposed algorithm converges very fast for different parameters.

Note that in Figs. 4.2, 4.3 and 4.4, the solid and dashed curves represent the

performance of proposed Algorithm 4 and Algorithm 5, respectively. The figures
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Figure 4.4: The total energy efficiency of proposed Algorithm 4 (solid curves) and pro-
posed Algorithm 5 (dashed curves) versus number of iterations with K = 40, M = 200,
N = 1, α = 2, τp = 20, and D = 1 km.
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Figure 4.5: The total energy efficiency of proposed Algorithm 4 and proposed Algorithm
5 versus ν for one channel realization with K = 20, M = 100, N = 1, α = 2, τp = 20,
and D = 1 km.

confirm that the proposed Algorithms 4 and 5 converge in a few iterations.

Figs. 4.2, 4.3 and 4.4 demonstrate that the proposed sub-optimal scheme has a perfor-

mance fairly close to the performance of the proposed Algorithm 4. As Algorithm 5 has

a lower complexity and good performance, in the rest of numerical results, we investigate
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Figure 4.6: The average total energy efficiency versus number of APs with proposed
Algorithm 4 and equal power allocation with N = 1, α = 2, τp = 20, and D = 1 km.

the performance using only the proposed Algorithm 5.

The Optimal Value of ν

To study the effect of ν in Problem P5, we solve Problem P5 with different values of ν

and plot the total energy efficiency versus ν in Fig. 4.5. For this channel realization, for

both proposed Algorithms 4 and 5, the optimal value of ν has a range from 0.25 − 0.35,

and we set the optimal value to νopt = 0.3.

Performance Comparison

Fig. 4.6 presents the total energy efficiency of the proposed Algorithm 5 and the scheme

with the equal power allocation with M = 100, N = 1, α = 2, τp = 20, and D = 1

km. As seen in Fig. 4.6, the proposed scheme significantly improves the total energy

efficiency of cell-free massive MIMO compared to equal power allocation scheme (i.e.,

qk = 1,∀k,uk = [1, · · · , 1],∀k).
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Figure 4.7: The average total energy efficiency of proposed Algorithm 5 versus number
of quantization bits with K = 20, N = 1, τp = 20, and D = 1 km.

Effect of the Number of Quantization Bits

This section investigates the optimum values of number of quantization bits to maximize

the energy efficiency of cell-free massive MIMO. Increasing the number of quantization

bits introduces spectral efficiency improvement whereas it increases the fronthaul power

consumption from the APs to the CPU. Therefore, there is an optimum value in terms

of number of quantization bits to maximize the total energy efficiency of the cell-free

massive MIMO system. The average energy efficiency versus the number of quantization

bits is shown in Fig. 4.7 for the system with {K = 40, N = 5, PFT = 1 Watt, ρ = 3

Watt, Tc = 2 ms, D = 2 Km}, {K = 20, N = 1, PFT = 1 Watt, ρ = 1 Watt, Tc = 1 ms,

D = 1 Km}, {K = 40, N = 5, PFT = 10 Watt, ρ = 3 Watt, Tc = 1 ms, D = 1 Km} with

orthogonal pilots. Optimally, we need only 2-4 bits to quantize the data. Again, note that

ρ is defined in Section 4.7.1.

Effect of the Number of Antennas Per AP

In this section, the performance of cell-free massive MIMO is studied with different

numbers of antennas per AP. Similar to the methodolgy in [16], we set MN = 256 as the

total number of service antennas. The average energy efficiency of the system is shown
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f
=180, D=2 km

p
=40, 

f
=160, D=1 km

Figure 4.8: The average total energy efficiency of proposed Algorithm 5 versus the num-
ber of antennas per AP with K = 40, MN = 256, PFT = 10 Watt, Cfh = 100 Mbps,
and α = 4 bits.

in Fig. 4.8, for K = 40, α = 4 bits, and PFT = 10 Watt. Moreover, we provide numerical

results for two cases of orthogonal and random pilot assignment. It can be seen for a

fixed total number of service antennas, by reducing the total number of APs, M (which

is equivalent to increasing number of antennas per APs, N ), the total power consumption

will decrease. On the other hand, reducing M results in throughput reduction. As a

result, one can find a trade off between M and N . Fig. 4.8 reveals the optimum values of

M and N to have the largest total energy efficiency.

Effect of Power of Fronthaul Links

Fig. 4.9 shows the average energy efficiency of the cell-free massive MIMO system versus

the total fronthaul traffic power, PFT, for K = 20, N = 1, τp = 20, D = 1 km, Cfh =

102.4 Mbps, and two cases of M = 60 and M = 120. As the figure demonstrates, the

average energy efficiency decreases as the total power for fronthaul traffic increases.
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Figure 4.9: The average total energy efficiency of proposed Algorithm 5 versus number
of quantization bits with K = 20, N = 1, τp = 20, D = 1 km, Cfh = 102.4 Mbps, and
two cases of M = 60 and M = 120.

Energy Efficiency vs Relative Loss in Max-Min Spectral Efficiency

It is interesting to evaluate how much we can gain with the proposed energy efficiency

power control by sacrificing the required spectral efficiency. To investigate this, we

consider the max-min spectral efficiency problem with a given fronthaul rate, which is

defined as follows:

Pmax-min : max
qk,uk

min
k=1,··· ,K

Rk,

s.t. ||uk|| = 1, ∀k,

0 ≤ qk ≤ p(k)
max, ∀k.

(4.36a)

(4.36b)

(4.36c)

where Rk refers to the rate of the kth user. Next, we define the following optimization

problem:

P sac : max
qk,uk

Ee (qk,uk) ,

s.t. Sk (qk,uk) ≥
(

thsac × S(max-min)
k

)
, ∀k,

||uk|| = 1, ∀k,

0 ≤ qk ≤ p(k)
max, ∀k,

(4.37a)

(4.37b)

(4.37c)

(4.37d)

where S(max-min)
k = (1 − τp

τc
)Rmax-min

k , where Rmax-min
k is the optimal solution of Problem

Pmax-min. Figure 4.10 presents the average energy efficiency performance of the cell-free
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Figure 4.10: The average energy efficiency of proposed Algorithm 5 versus the sacrifice
in max-min spectral efficiency for K = 15, M = 80, N = 1, τp = 15, D = 1 km, α = 2,
PFT = 1 Watt and Cfh = 100 Mbps.

massive MIMO with M = 80, K = 15, N = 1, α = 2 and orthogonal pilots, obtained by

solving Problems Pmax-min and P sac. Note that we use the sub-optimal power allocation

scheme presented in Subsection 4.5.2 to solve Problem P sac. The figure shows that by

sacrificing 6% of the max-min spectral efficiency (i.e., 1 − thsac = 0.06), one could gain
6.85×106−5.4×106

5.4×106
= 26.8% improvement in the average energy efficiency of the system.

Performance of the Proposed User Assignment Scheme

This subsection investigates the performance of the proposed user assignment scheme. In

Fig. 4.11, the average energy efficiency proposed using Algorithm 5 is presented with

M = 40, N = 4, K = 50, and τp = 30 versus the total number of active users per

AP. Here, we used inequality (4.31) and set αm × Km = 100. As Fig. 4.11 shows, the

optimum value of Km, (Kopt
m ) is achieved by Kopt

m = 33. As a result, the proposed user

assignment scheme can effectively improve the energy efficiency performance of cell-free

massive MIMO systems with limited fronthaul capacity.



CHAPTER 4. ENERGY EFFICIENCY OF THE CELL-FREE MASSIVE MIMO UPLINK 114

20 25 30 35 40 45 50
K

m

1.3

1.4

1.5

1.6

1.7

1.8

A
v
er

ag
e 

en
er

g
y
 e

ff
ic

ie
n
cy

 (
b
it

/J
o
u
le

) 10
7

39% improvement

Figure 4.11: The average energy efficiency of proposed Algorithm 5 versus the total
number of active users for each AP with M = 40, N = 4, K = 50, τp = 30 and
αm ×Km = 100.

4.8 Summary

We have considered cell-free massive MIMO when the quantized version of the weighted

signals are available at the CPU. Bussgang decomposition has been used to model the

quantization effects. A closed-form expression for spectral efficiency has been derived.

We have then studied the problem of the energy efficiency maximization with per-user

power constraints, fronthaul capacity constraints and throughput requirements. We have

developed an SCA to efficiently solve this non-convex problem. Next a low-complexity

sub-optimal scheme is proposed. In addition, complexity and convergence of the proposed

schemes have been investigated. Numerical results confirmed that the limited-fronthaul

cell-free massive MIMO system with the proposed algorithm can reach almost twice the

uplink total energy efficiency compared to the case of equal power allocation. In addition,

a trade-off between the total number of APs and the number of antennas at the APs has

been shown. Moreover, we investigated the optimal number of AP antennas along with

the optimal number of quantization bits to maximize the uplink total energy efficiency of

cell-free massive MIMO. Finally, we have presented the energy efficiency performance

as a function of relative loss in the max-min spectral efficiency and evaluated the energy

efficiency improvement achieved by sacrificing some of the max-min spectral efficiency.



CHAPTER 4. ENERGY EFFICIENCY OF THE CELL-FREE MASSIVE MIMO UPLINK 115

4.9 Appendix

Appendix 4.A: Proof of Theorem 5

The desired signal for the user k is given by

DSk =
√
ρE

{
M∑
m=1

umkĝ
H
mkgmk

√
qk

}

= N
√
pqk

M∑
m=1

umkγmk. (4.38)

Hence, |DSk|2 = ρqk

(
N
∑M

m=1 umkγmk

)2

. Moreover, the term E{|BUk|2} can be

obtained as

E
{
|BUk|2

}
= ρE

{∣∣∣∣∣
M∑
m=1

umkĝ
H
mkgmk

√
qk − ρE

{ M∑
m=1

umkĝ
H
mkgmk

√
qk

}∣∣∣∣∣
2}

= ρN
M∑
m=1

qku
2
mkγmkβmk,

where the last equality comes from the analysis in [2, Appendix A], and using γmk =
√
τpppβmkcmk. The term E{|IUIkk′|2} is obtained as

E{|IUIkk′ |2} = ρ qk′E


∣∣∣∣∣
M∑
m=1

cmkumkg
H
mk′w̃mk

∣∣∣∣∣
2
︸ ︷︷ ︸

A

+ ρ τpppE

qk′
∣∣∣∣∣
M∑
m=1

cmkumk

( K∑
i=1

gmiφφφ
H
k φφφi

)H
gmk′

∣∣∣∣∣
2
︸ ︷︷ ︸

B

, (4.39)

where the third equality in (4.39) is due to the fact that for two independent RVs X and

Y and E{X} = 0, we have E{|X + Y |2} = E{|X|2} + E{|Y |2} [2]. Since w̃mk =

φφφHk Wp,m is independent of the term gmk′ similar to [2, Appendix A], the term A in (4.39)

immediately is given by A = Nqk′
∑M

m=1 c
2
mku

2
mkβmk′ . The term B in (4.39) can be
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obtained as

B = τpppqk′E


∣∣∣∣∣
M∑
m=1

cmkumk||gmk′ ||2φφφHk φφφk′

∣∣∣∣∣
2
︸ ︷︷ ︸

C

(4.40)

+ τpppqk′E


∣∣∣∣∣
M∑
m=1

cmkumk

( K∑
i 6=k′

gmiφφφ
H
k φφφi

)H
gmk′

∣∣∣∣∣
2
︸ ︷︷ ︸

D

.

The first term in (4.40) is given by

C = Nτpppqk′
∣∣φφφHk φφφk′∣∣2 M∑

m=1

c2
mku

2
mkβmk′

+ N2qk′
∣∣φφφHk φφφk′∣∣2

(
M∑
m=1

umkγmk
βmk′

βmk

)2

, (4.41)

where the last equality is derived based on the fact that γmk =
√
τpppβmkcmk. The second

term in (4.40) can be obtained as

D =N
√
τppqk′

M∑
m=1

u2
mkcmkβmk′βmk−Nqk′

M∑
m=1

u2
mkc

2
mkβmk′

− Nτppqk′
M∑
m=1

u2
mkc

2
mkβ

2
mk′

∣∣φφφHk φφφk′∣∣2 . (4.42)

Finally by substituting (4.41) and (4.42) into (4.40), and substituting (4.40) into (4.39),

we obtain

E{|IUIkk′|2} = Nρqk′

(
M∑
m=1

u2
mkβmk′γmk

)

+ N2ρqk′
∣∣φφφHk φφφk′∣∣2

(
M∑
m=1

umkγmk
βmk′

βmk

)2

. (4.43)

The total noise for the user k is given by

E
{
|TNk|2

}
= E


∣∣∣∣∣
M∑
m=1

umkĝ
H
mknm

∣∣∣∣∣
2
 = N

M∑
m=1

u2
mkγmk, (4.44)
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where the last equality is due to the fact that the terms ĝmk and nm are uncorrelated. Next,

we calculate the power of the quantization distortion. Let us assume zmk is the input of

the quantizer at the mth AP, where zmk = ĝHmkym. Using the Bussgang decomposition

and the receiver filter coefficients umk,∀m, k, at the CPU, the aggregate received signal

at the CPU can be written as

rk =
M∑
m=1

Q (zmk) =
M∑
m=1

Q
(
ĝHmkym

)
=

M∑
m=1

a ĝHmkym +
M∑
m=1

dzmk︸ ︷︷ ︸
TQDk

, (4.45)

where TQDk refers to the total quantization distortion (TQD) at the kth user. The power

of the quantization distortion for user k is given by

E
{
|TQDk|

2} = E


∣∣∣∣∣
M∑
m=1

dzmk

∣∣∣∣∣
2


= E

{(
M∑
m=1

dzmk

)(
M∑
m=1

dzmk

)∗}

=
M∑
m=1

E
{
|dzmk|

2}+
M∑
m=1

M∑
n 6=1

E {dzmk (dznk)
∗}

=
M∑
m=1

[
Cdzkd

z
k

]
mm

+
M∑
m=1

M∑
n6=m

[
Cdzkd

z
k

]
nm
, (4.46)

where Cdzkd
z
k

= E
{

dzk (dzk)
H
}

and it is the covariance matrix of the quantization

distortion, where dzk = [dz1k · · · dzMk]
T is the quantization distortion vector. Note that[

Cdzkd
z
k

]
mn

is the mnth element of Cdzkd
z
k
. To calculate Cdzkd

z
k
, we first re-write the

aggregate received signal at the CPU as follows:

rk = Q(zk) = Azk + dzk, (4.47)

where rk = [r1k · · · rMk]
T and zk = [z1k · · · zMk]

T . Moreover, using the analysis in

Appendix 4.A, it can be shown that the matrix A is diagonal. A is determined by the

linear minimum mean square (MMSE) estimation of rk from xk as follows [55]:

A = E
{
rkz

H
k

}
E
{
zkz

H
k

}−1
= CrkzkC

−1
xkxk

, (4.48)
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and the error has the following covariance matrix [55]

Cdzkd
z
k

= E
{

(rk −Azk) (rk −Azk)
H
}
E
{
zkz

H
k

}−1

= Crkrk −CrkzkA
H −ACzkrk + ACzkzkA

H

= Crkrk −CrkzkC
−1
zkzk

Czkrk . (4.49)

Remark 4. The covariance matrices Crkrk , Crkzk , and Czkrk are obtained using the

Price Theorem.

Proof: To characterize the cross-correlation and auto-correlation properties of
Gaussian input signals, we exploit “the Price Theorem” [70]. Based on the Price
theorem, the correlation coefficient at the output of nonlinear functions f1(x1) and
f2(x2) with correlated inputs x1 and x2 having zero-mean and the variances σ1 and σ2,

respectively, and the correlation coefficient ρx1x2 =
E{x1x∗2}
σx1σx2

, has the following
derivatives [70]

∂kE {f1(x̃1)f2(x̃2)}
∂ρkx̃1x̃2

(4.50)

= σk1σ
k
2

∫ ∞

−∞

∫ ∞

−∞

f
(k)
1 (x̃1)f

(k)
2 (x̃2)

2πσ1σ2
√

1− ρ2x1x2

exp

(
− 1

2
(
1− ρ2x1x2

)[ x̃21
σ2
1

+
x̃22
σ2
2

− 2ρx1x2
x̃1x̃2

σ1σ2

])
dx̃1dx̃2.

(4.51)

Next, for the special case f1(x1) = x1, then we have [55]

∂E {x1f2(x2)}
∂ρx1x2

= σ1σ2

∫ ∞

−∞

1

σ2

√
2π
f ′2(x̃2) exp

(
x̃2

2

σ2
2

)
dx̃2, (4.52)

resulting in

E {x1f2(x2)} = σ1σ2ρx1x2

∫ ∞

−∞

1

σ2

√
2π
f ′2(x̃2) exp

(
x̃2

2

σ2
2

)
dx̃2. (4.53)

Next, we use

f2(x)=Q(x)=
2α∑
i=1

li
(
u
(
x− llo,i

)
−u
(
x− lup,i))= l1+

2α∑
i=2

(
li − li−1

)
u
(
x− llo,i

)
. (4.54)
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Using the fact lup,i = llo,i+1, we have

∂Q(x)

∂x
=

2α∑
i=1

li
(
δ
(
x− llo,i

)
−δ
(
x− lup,i))= l1+

2α∑
i=2

(
li − li−1

)
δ
(
x− llo,i

)
, (4.55)

where δ is the Dirac Delta function. Therefore

E {x1Q(x2)} = σ1ρx1x2

2α∑
i=1

1√
2π
li

(
exp

(
−
(
llo,i
)2

2σ2
2

)
− exp

(
−(lup,i)

2

2σ2
2

))
. (4.56)

Next, we find the covariance at the output of the quantizer as follows [55]

E {Q(x1)Q(x2)}=

K∑
i=2

K∑
k=2

∆2

∫ ρx1x2

0

exp

(
− 1

2(1−ρ′2)

[
(llo,i)

2

σ2
1

+
(llo,k)

2

σ2
2
− 2ρ′llo,illo,k

σ1σ2

])
2π
√

1− ρ′2
dρ′. (4.57)

Note that in cell-free massive MIMO, we have ρx1x2 = ρmnk, where ρmnk is defined in

Appendix 4.B. Finally, Crkrk , Crkzk and Czkrk are determined using (4.56) and (4.57)

and the following equalities:

Crkrk = E {rkrk} = E {Q(zk)Q(zk)} , (4.58a)

Czkrk = E {zkrk} = E {zkQ(zk)} , (4.58b)

Crkzk = E {rkzk} = E {Q(zk)zk} . (4.58c)

Based on the above derivations,
[
Cdzkd

z
k

]
mn

is a function of the number of quantization

bits α, the step size of the quantizer ∆, and the correlation coefficient between the inputs

of the quantizer at the mth and nth APs, i.e., ρmnk (which is given in the following

proposition).

Proposition 6. The correlation coefficient between the inputs of the quantizers at the mth
and the nth APs is obtained as follows:

ρmnk = (4.59)

N2cmkcnkτppp
K∑
k′=1

ρdqk′βmk′βnk′
∣∣φφφHk′φφφk∣∣2√(

N2
K∑
k′=1

γ2mk′
∣∣φφφHk′φφφk∣∣2ρdqk′+Nγmk K∑

k′=1

βmk′ρdqk′+Nγmk

)(
N2

K∑
k′=1

γ2nk′
∣∣φφφHk′φφφk∣∣2ρdqk′+Nγnk K∑

k′=1

βnk′ρdqk′+Nγnk

) .
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Proof: To remind, note that the input of the quantizer at the mth AP, zm, is given by

zmk = ĝ∗mkym, (4.60)

where the MMSE estimate of the channel coefficient between the kth user and the mth

AP, i.e., ĝmk, is given by

ĝmk=cmk

(
√
τpppgmk+

√
τppp

K∑
k′ 6=k

gmk′φφφ
H
k′φφφk+Wp,mφφφk

)
, (4.61)

and the received signal at the mth AP from all users is given by

ym =
√
ρ

K∑
k=1

gmk
√
qksk + nm. (4.62)

We aim to calculate the correlation coefficient between the mth and nth APs, which is

given by

ρmnk =
|E {zmkz∗nk}|
σzmkσznk

, (4.63)

where σ2
zmk

and E {zmkz∗nk} and we have σ2
zmk

= E
{
|zmk|2

}
. Next, using (4.60)-(4.62),

we have

E {(zmk)∗ × znk} = E
{(

ĝHmkym
)∗ (

ĝHnkyn
)}

= E


(

ĝHmk

(
√
ρ

K∑
k′=1

gmk′
√
qk′sk′ + nm

))H (
ĝHnk

(
√
ρ

K∑
k′=1

gnk′
√
qk′sk′ + nn

))
= E


(
√
ρ

K∑
k′=1

gmk′
√
qk′sk′

)H

ĝmkĝ
H
nk

(
√
ρ

K∑
k′=1

gnk′
√
qk′sk′

)
= E

{
(
√
ρgmk

√
qksk)

H ĝmkĝ
H
nk (
√
ρgnk
√
qksk)

}
︸ ︷︷ ︸

A

+
K∑
k′ 6=k

E
{

(
√
ρgmk′

√
qk′sk′)

H ĝmkĝ
H
nk (
√
ρgnk′

√
qk′sk′)

}
︸ ︷︷ ︸

B

, (4.64)
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where in the last equality we used the fact that E{s∗ksk′} = 0. Next, we have

A = ρqkcmkcnkE

{
(gmksk)

H

(
√
τpppgmk+

√
τppp

K∑
k′′ 6=k

gmk′′φφφ
H
k′′φφφk+Wp,mφφφk

)
(
√
τpppgnk+

√
τppp

K∑
k′′ 6=k

gnk′′φφφ
H
k′′φφφk+Wp,nφφφk

)H

(gnksk)


= ρqkcmkcnkτpppE

{
gHmkgmkg

H
nkgnk

}
E
{
|sk|2

}︸ ︷︷ ︸
1

= N2ρqkcmkcnkτpppβmkβnk, (4.65)

and

B = ρqk′ E
{
gHmk′ĝmkĝ

H
nkgnk′

}︸ ︷︷ ︸
I

E
{
|sk′ |2

}︸ ︷︷ ︸
1

,∀k′ 6= k, (4.66)

where for k′ 6= k, we have

I = E

{
cmkg

H
mk′

(
√
τppp

K∑
l=1

gmlφφφ
H
l φφφk + Wp,mφφφk

)

cnk

(
√
τppp

K∑
l=1

gnlφφφ
H
l φφφk + Wp,nφφφk

)H

gnk′


= cmkcnkτpppE

{
gHmk′gmk′g

H
nk′gnk′

} ∣∣φφφHk′φφφk∣∣2
= N2cmkcnkτpppβmk′βnk′

∣∣φφφHk′φφφk∣∣2 . (4.67)

Finally, we have

E {(zmk)∗ × znk} = N2ρqkcmkcnkτpppβmkβnk

+ N2cmkcnkτpppρ
K∑
k′ 6=k

βmk′βnk′qk′
∣∣φφφHk′φφφk∣∣2

= N2cmkcnkτpppρ
K∑
k′=1

qk′βmk′βnk′
∣∣φφφHk′φφφk∣∣2 . (4.68)

Next, we calculate the power of the input signal of the quantizer, i.e., E
{
|zmk|2

}
as
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follows

E
{
|zmk|2

}
= E

{(
ĝHmkym

)H (
ĝHmkym

)}
= E


(

ĝHmk

(
√
ρ

K∑
k′=1

gmk′
√
qk′sk′ + nm

))H (
ĝHmk

(
√
ρ

K∑
k′=1

gmk′
√
qk′sk′ + nm

))
= ρE


(

ĝHmk

(
K∑
k′=1

gmk′
√
qk′sk′

))H (
ĝHmk

(
K∑
k′=1

gmk′
√
qk′sk′

))︸ ︷︷ ︸
A

+ E
{∣∣ĝHmknm∣∣2}. (4.69)

For the second term of (4.69), we have

E
{∣∣ĝHmknm∣∣2} = Nγmk, (4.70)
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and the first term in (4.69) can be obtained as

A = E


(

ĝHmk

(
K∑
k′=1

gmk′
√
qk′sk′

))H (
ĝHmk

(
K∑
k′=1

gmk′
√
qk′sk′

))
= E


(

K∑
k′=1

gmk′
√
qk′sk′

)H

ĝmkĝ
H
mk

(
K∑
k′=1

gmk′
√
qk′sk′

)
= E


(

K∑
k′=1

gmk′
√
qk′sk′

)H (
cmk

(
√
τpppgmk+

√
τppp

K∑
k′′ 6=k

gmk′′φφφ
H
k′′φφφk+Wp,mφφφk

))
(
cmk

(
√
τpppgmk+

√
τppp

K∑
k′′ 6=k

gmk′′φφφ
H
k′′φφφk+Wp,mφφφk

))H ( K∑
k′=1

gmk′
√
qk′sk′

)
= c2

mk

K∑
k′=1

qk′E

{
(gmk′sk′)

H

(
√
τpppgmk+

√
τppp

K∑
k′′ 6=k

gmk′′φφφ
H
k′′φφφk+Wp,mφφφk

)
(
√
τpppgmk+

√
τppp

K∑
k′′ 6=k

gmk′′φφφ
H
k′′φφφk+Wp,mφφφk

)H

(gmk′sk′)


= qkc

2
mkE

{
(gmksk)

H

(
√
τpppgmk+

√
τppp

K∑
k′′ 6=k

gmk′′φφφ
H
k′′φφφk+Wp,mφφφk

)
(
√
τpppgmk+

√
τppp

K∑
k′′ 6=k

gmk′′φφφ
H
k′′φφφk+Wp,mφφφk

)H

(gmksk)


+ c2

mk

K∑
k′ 6=k

qk′E

{
(gmk′sk′)

H

(
√
τpppgmk+

√
τppp

K∑
k′′ 6=k

gmk′′φφφ
H
k′′φφφk+Wp,mφφφk

)
(
√
τpppgmk+

√
τppp

K∑
k′′ 6=k

gmk′′φφφ
H
k′′φφφk+Wp,mφφφk

)H

(gmk′sk′)

 . (4.71)
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For the first bracket in last term in (4.71), we have:

I1 = c2
mkE

{
(gmksk)

H

(
√
τpppgmk+

√
τppp

K∑
k′′ 6=k

gmk′′φφφ
H
k′′φφφk+Wp,mφφφk

)
(
√
τpppgmk+

√
τppp

K∑
k′′ 6=k

gmk′′φφφ
H
k′′φφφk+Wp,mφφφk

)H

(gmksk)


= c2

mkτpppE
{
gHmkgmkg

H
mkgmk

}
+ c2

mkE

{
gHmk

(
√
τppp

K∑
k′′ 6=k

gmk′′φφφ
H
k′′φφφk+Wp,mφφφk

)
(
√
τppp

K∑
k′′ 6=k

gmk′′φφφ
H
k′′φφφk+Wp,mφφφk

)H

gmk


= c2

mkτpppN(N + 1)β2
mk +Nc2

mkβmk

(
τppp

K∑
k′′ 6=k

βmk′′
∣∣φφφHk′′φφφk∣∣2 + 1

)

= c2
mkτpppN

2β2
mk + c2

mkτpppNβ
2
mk +Nc2

mkβmk

(
τppp

K∑
k′′ 6=k

βmk′′
∣∣φφφHk′′φφφk∣∣2 + 1

)

= N2γ2
mk +Nc2

mkβmk

(
τppp

K∑
k′′=1

βmk′′
∣∣φφφHk′′φφφk∣∣2 + 1

)

= N2γ2
mk +Nc2

mkβmk

√
τpppβmk

cmk
= N2γ2

mk +Nβmkγmk. (4.72)
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Next, for the second bracket in last term in (4.71), we have

I2 = c2
mkE

{
(gmk′sk′)

H

(
√
τpppgmk′φφφ

H
k′φφφk+

√
τppp

K∑
k′′ 6=k′

gmk′′φφφ
H
k′′φφφk+Wp,mφφφk

)
(
√
τpppgmk′φφφ

H
k′φφφk+

√
τppp

K∑
k′′ 6=k′

gmk′′φφφ
H
k′′φφφk+Wp,mφφφk

)H

(gmk′sk′)


=c2

mk

[
τpppE

{
gHmk′gmk′g

H
mk′gmk′

} ∣∣φφφHk′φφφk∣∣2+E
{
gHmk′

(
√
τppp

K∑
k′′ 6=k′

gmk′′φφφ
H
k′′φφφk+Wp,mφφφk

)
(
√
τppp

K∑
k′′ 6=k′

gmk′′φφφ
H
k′′φφφk+Wp,mφφφk

)H

gmk′




= c2
mk

[
τpppN(N + 1)β2

mk′

∣∣φφφHk′φφφk∣∣2 + E

{
gHmk′

(
√
τppp

K∑
k′′ 6=k′

gmk′′φφφ
H
k′′φφφk+Wp,mφφφk

)
(
√
τppp

K∑
k′′ 6=k′

gmk′′φφφ
H
k′′φφφk+Wp,mφφφk

)H

gmk′




= c2
mk

[
τpppN(N + 1)β2

mk′

∣∣φφφHk′φφφk∣∣2 +Nβmk′

(
τppp

K∑
k′′ 6=k′

βmk′′
∣∣φφφHk′′φφφk∣∣2 + 1

)]

= c2
mk

[
τpppN

2β2
mk′

∣∣φφφHk′φφφk∣∣2 +Nβmk′

(
τppp

K∑
k′′=1

βmk′′
∣∣φφφHk′′φφφk∣∣2 + 1

)]

= c2
mkτpppN

2β2
mk′

∣∣φφφHk′φφφk∣∣2 +Nc2
mkβmk′

√
τpppβmk

cmk

= N2γ2
mk′

∣∣φφφHk′φφφk∣∣2 +Nβmk′γmk. (4.73)

Hence, using (4.72) and (4.73), the term A in (4.69) is obtained as

A = N2

K∑
k′=1

γ2
mk′

∣∣φφφHk′φφφk∣∣2 qk′ +Nγmk

K∑
k′=1

βmk′qk′ . (4.74)

Finally, using (4.69), (4.70), and (4.74), we have

E
{
|zmk|2

}
= N2

K∑
k′=1

γ2
mk′

∣∣φφφHk′φφφk∣∣2 ρqk′ +Nγmk

K∑
k′=1

βmk′ρqk′ +Nγmk. (4.75)
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As a result, using (4.75) and (4.68) we have:

E
{
|zmk|2

}
=N2

K∑
k′=1

γ2
mk′

∣∣φφφHk′φφφk∣∣2 ρqk′+Nγmk K∑
k′=1

βmk′ρqk′+Nγmk, (4.76a)

E
{

(zmk)
H × znk

}
= N2cmkcnkτppp

K∑
k′=1

ρqk′βmk′βnk′
∣∣φφφHk′φφφk∣∣2 . (4.76b)

Next, for simplicity, let us consider the case of orthogonal pilots, where

γmk =
β2
mk

βmk + 1
τp

=
β2
mk

amk
. Therefore, we have

ρmnk = (4.77)

√√√√√ β2
mkβ

2
nk

β2
mkβ

2
nk+ank

(
β2
mk

N
+
amk
N2ρd

)
K∑
k′=1

βnk′+amk

(
β2
nk

N
+ an
N2ρd

)
K∑
k′=1

βmk′+
amkank

N2

K∑
k′=1

βmk′
K∑
k′=1

βnk′+
ankβ2

mk+amkβ2
nk

Nρd
+
amkank
N2ρ2d

.

Exploiting the definition of ρmnk in (4.77), one can conclude that under the conditions

listed below, the correlation coefficient ρmnk between APs n andm is small enough, based

on the results in Fig. 4.12, that the quantization distortions are approximately uncorrelated

1. As we have the term β2
mkβ

2
nk in both numerator and denominator of ρmnk, we need

to have large path loss differences at APs n and m to avoid large ρmnk,

2. As there are terms
∑K

k′=1 βmk′ ,
∑K

k′=1 βnk′ and
∑K

k′=1 βmk′
∑K

k′=1 βnk′ in the

denominator of ρmnk, having a large number of users results in smaller ρmnk,

3. Having small N results in small ρmnk.

The Actual Value of Correlation Between the Quantization Distortions Versus the

Correlation Between the Inputs of the Quantizers

Fig. 4.12 demonstrates
[
Cdzkd

z
k

]
mn

versus ρmnk for different number of quantization bits

α, where the diagonal elements of the covariance matrix are obtained by setting ρmnk =

1. There are two important observations based on the results in Fig. 4.12, which are

summarized as follows:

i) the elements of
[
Cdzkd

z
k

]
mn
,∀m 6= n, α > 3 are very small. Hence Cdzkd

z
k

can be
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Figure 4.12: Figure presents the mnth element of the covariance matrix of the quantiza-
tion distortion (i.e.,

[
Cdzkd

z
k

]
mn

in (4.46)) versus ρmnk for different number of quantization
bits for a given user k. To remind, ρmnk refers to the correlation coefficient between the
input of the quantizers at APs m and n. Note that the diagonal elements of the covariance
matrix are obtained by setting ρmnk = 1.

approximated by a diagonal matrix for number of quantization bits α > 3 (note that this

verifies the assumption of a diagonal matrix for quantization distortions in [53–57]),

ii) Fig. 4.12 shows that the off-diagonal elements of the matrix Cdzkd
z
k

are small

compared to the diagonal elements of Cdzkd
z
k
,∀α for ρmkn ≤ 0.75. Here, by the term

small we mean that

[
Cdzkd

z
k

]
mm[

Cdzkd
z
k

]
mn

≥ 10,∀m,n, α and with ρmkn ≤ 0.75.

Below, we provide numerical results and discussion to address the effect of correlation

between the inputs of the quantizers at different APs.

How Large is the Correlation Between the Input of the Quantizers at Different APs

in Cell-Free Massive MIMO?

The CDF of ρmnk in cell-free massive MIMO with different system parameters is plotted

in Figs. 4.13-4.15. The figure shows that with the practical parameters used in Figs.
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Figure 4.13: CDF of ρmnk, given in (4.60), in the cell-free massive MIMO system with
different system parameters with M = 60, N = 4, K = 20, and τp = 20.
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Figure 4.14: CDF of ρmnk, given in (4.60), in the cell-free massive MIMO system with
different system parameters with M = 80, N = 4, K = 30, and τp = 30.
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Figure 4.15: CDF of ρmnk, given in (4.60), in the cell-free massive MIMO system with
different system parameters with M = 60, N = 6, K = 40, and τp = 30..

4.13-4.15, and with probability of 95%, the correlation between the inputs of the

quantizers at different APs is ρmn ≤ 0.4. Next, based on Figs. 4.12, we can observe that

with ρmnk ≤ 0.4, the off-diagonal elements of the covariance matrix of the quantization

distortion
[
Cdzkd

z
k

]
mn
, ∀ m 6= n, are negligible compared to the diagonal elements, i.e.,[

Cdzkd
z
k

]
mm

.

The Performance Gap Between the Exact Uplink Per-User Rate and the Uplink Per-

User Rate While Ignoring the Correlation Between the Inputs of the Quantizers:

In this section, we present the uplink per-user rate with different system parameters for

two different scenarios. To remind, the correlation between the quantization distortions at

different APs is given by

E
{
|TQDk|

2} =
M∑
m=1

[
Cdzkd

z
k

]
mm

+
M∑
m=1

M∑
n6=m

[
Cdzkd

z
k

]
nm
, (4.78)

The SINR obtained by the exact value of E
{
|TQDk|

2} in (4.79) is referred to as

“Exact” in Fig. 4.16-4.18. Next, we exploit the results in Fig. 4.12 and Fig. 4.13-4.15,

the covariance matrix of the quantization distortion is approximated with a diagonal
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Figure 4.16: Uplink per-user rate of cell-free massive MIMO with. Here, the term “Exact”
refers to the case where we include the correlation between the quantization distortions
at different APs whereas the term “Approximate” refers to the case when we ignore the
correlations between the error at different APs. In all figures, we set α = 2 quantization
bits, and use equal power allocation with M = 60, N = 4, K = 20, and τp = 20.
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Figure 4.17: Uplink per-user rate of cell-free massive MIMO with. Here, the term “Exact”
refers to the case where we include the correlation between the quantization distortions
at different APs whereas the term “Approximate” refers to the case when we ignore the
correlations between the error at different APs. In all figures, we set α = 2 quantization
bits, and use equal power allocation with M = 80, N = 4, K = 30, and τp = 30.
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Figure 4.18: Uplink per-user rate of cell-free massive MIMO with. Here, the term “Exact”
refers to the case where we include the correlation between the quantization distortions
at different APs whereas the term “Approximate” refers to the case when we ignore the
correlations between the error at different APs. In all figures, we set α = 2 quantization
bits, and use equal power allocation with M = 60, N = 6, K = 40, and τp = 30.

matrix as follows:

E
{
|TQDk|

2} =
M∑
m=1

[
Cdzkd

z
k

]
mm

+
M∑
m=1

M∑
n6=m

[
Cdzkd

z
k

]
nm
≈

M∑
m=1

[
Cdzkd

z
k

]
mm

. (4.79)

This scenario is given as “Approximate” in Fig. 4.16-4.18. As Fig. 4.16-4.18 shows,

there is a negligible performance gap between the exact SINR and the approximate

SINR. Note that exploiting the exact definition for SINR, the optimization problem

cannot be approximated with a convex problem. Hence, here we consider the

uncorrelated quantization distortions at different APs, and the total quantization

distortion is obtained as follows:

E
{
|TQDk|

2} = E


∣∣∣∣∣
M∑
m=1

umknd,mk

∣∣∣∣∣
2
 (4.80)

≈
M∑
m=1

u2
mkE

{
|nd,mk|2

}
=
(̃
b−ã2

) M∑
m=1

u2
mk

[
N2

K∑
k′=1

γ2
mk′

∣∣φφφHk′φφφk∣∣2 ρqk′+Nγmk K∑
k′=1

βmk′ρqk′+Nγmk

]
.

By substituting (4.38), (4.39), (4.43), (4.44) and (4.81) into (4.6), the corresponding SINR

of the kth user is obtained by (4.8), which completes the proof of Theorem 5. �
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Appendix 4.B: Details of Finding ν? in Remark 3

Assuming a total transmit power of
∑K

k=1 qk, the power minimization problem can be

defined as follows:

P13 : min
qk

K∑
k=1

qk

s.t. Sk (qk,uk, α) ≥ S
(r)
k , ∀k,

0 ≤ qk ≤ p(k)
max,∀k.

(4.81a)

(4.81b)

(4.81c)

Problem P13 is a GP and can be efficiently solved. After solving Problem P13 and finding

the optimal solution q+
k ,∀k, the slack variable ν? is obtained as follows:

ν? =

∑K
k=1 p

(k)
max∑K

k=1 q
+
k

, (4.82)

which completes the definition for Remark 3. �

Appendix 4.C: Proof of Proposition 3

The standard form of GP is defined as follows [46, 50]:

P14 : min f0(x),

subject to fi(x) ≤ 1, i = 1, · · · ,m,

gi(x) = 1, i = 1, · · · , p,

(4.83a)

(4.83b)

(4.83c)

where f0 and fi are posynomial and gi are monomial functions. Moreover,

x = {x1, · · · , xn} represents the optimization variables. The SINR constraint in (4.83) is

not a posynomial function in its initial form, however it can be rewritten into the

following posynomial function:

uHk

(
N2
∑K

k′ 6=k qk′|φφφHk φφφk′ |2∆kk′∆
H
kk′+N

∑K
k′=1 qk′Dkk′+

N

ρ
Rk

)
uk

uHk (N2qkΓkΓH
k )uk

≤ 1

t
, ∀k. (4.84)
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By applying a simple transformation, (4.84) is equivalent to the following inequality:

q−1
k

(
K∑
k′ 6=k

akk′qk′+
K∑
k′=1

bkk′qk′ + ck

)
≤ 1

t
, (4.85)

where

akk′ =
uHk

(∣∣φφφHkφφφk′∣∣2∆kk′∆
H
kk′

)
uk

uHk (ΓkΓH
k ) uk

,

bkk′ =
uHk Dkk′uk

uHk (NΓkΓH
k ) uk

,

ck =
uHk Rkuk

uHk (ρNΓkΓH
k ) uk

.

(4.86a)

(4.86b)

(4.86c)

The transformation in (4.85) shows that the left-hand side of (4.84) is a posynomial func-

tion. Moreover, the spectral efficiency constraint in (4.24b) is not a posynomial function

in its original form, however, through some mathematical manipulation, it can be written

as:

uHk

(
N2
∑K

k′ 6=k qk′|φφφHk φφφk′ |2∆kk′∆
H
kk′+N

∑K
k′=1 qk′Dkk′+

N

ρ
Rk

)
uk

uHk (N2qkΓkΓH
k )uk

≤ 1

Ŝ
(r)
k

, ∀k, (4.87)

where Ŝ(r)
k = 2

τcS
(r)
k

τc−τp − 1. By applying a simple transformation, (4.87) is equivalent to the

following inequality:

q−1
k

(
K∑
k′ 6=k

akk′qk′+
K∑
k′=1

bkk′qk′ + ck

)
≤ 1

Ŝ
(r)
k

, (4.88)

where akk′ , bkk′ , and ck are given in (4.86a)-(4.86c). Therefore, the power allocation

problem P6 is a standard GP (convex problem), where the objective function and

constraints are monomial and posynomial, respectively, which completes the proof of

Proposition 3. �
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5.1 Introduction

To investigate the performance of massive multiple-input multiple-output (MIMO)

systems, an accurate multi-user channel model is necessary. Most standardized MIMO

channel models such as IEEE 802.11, the 3GPP spatial model, and the COST 273 model

rely on clustering [71]. The GSCMs consider the physical reality of channels to

134
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investigate the performance of MIMO systems using the concept of clusters [21]. The

COST 2100 model is a well known GSCM [21].

The problem of correlation-based user scheduling and beamforming (CUSBF) in

cluster-based channel models and its effect on the system performance of massive

MIMO has not been well studied in the literature. In this chapter, we investigate the

problem of joint user scheduling and beamforming design when only knowledge of the

statistics of the channel is available at the BS. The second order statistics of the channel

depend on the position of the users and the geometry of the system, including the relative

position of clusters in the area with respect to the BS and users. The fixed positions of

the users and clusters mean that channel variation is stationary. In the other words, if the

geometry of the system is fixed, the channel covariance matrix remains constant over

time. Moreover, changing the position of the users by a few meters will not affect the

statistics of the channel [72]. In [72], the authors quantize the given interval for the angle

of departure (AoD) of paths into M angular bins of size 1
M

; while exploiting the concept

of bins, the current chapter uses an approximated version of the channel matrix for

beamforming design. In general, multi-path components (MPCs) from common clusters

cause correlation which reduces the rank of the channel. We therefore work in this

chapter on the effect of common bins on the system performance.

Given the second order statistics of the channel, we perform low-complex user

scheduling and precoding based only on the covariance matrix of the users. The

behaviour of the eigenvalues of the channel covariance matrix for a large number of

antennas at the BS is studied. When the number of antennas tends to infinity, based on

Szego’s theorem for large Toeplitz matrices [72, 73], the eigenvalue spectrum of the

channel covariance matrix can be obtained by the discrete-time Fourier transform of the

antenna correlation function. Assume M denotes the number of antennas in a λ
2d

at the

BS (where λ and d refer to the wavelength and spaced linear array, respectively), 1
M

is a

rough estimate of the angular resolution. Although the BS does not require the

instantaneous channel information of the users but only their second-order statistics,

analysis and numerical results for the proposed user scheduling and beamforming

scheme show throughput superiority over others. The proposed user selection scheme

relies on a trade off between the number of occupied spectral bins for each user and the

spectral overlap among the selected users. This trade off is shown by introducing the
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variable ε to quantify the correlation between clusters.

We exploit the COST 2100 channel model, which is a more realistic multi-user

channel model than that assumed in [74], as the parameters of the COST model are

based on real-world measurements. In this chapter, we assume that the frequency is 2

GHz. Note that clustered channels are much sparser in the millimetre-wave range

considered in [74] compared to 2 GHz. In the proposed scheme, we first build up the

approximate eigenchannel matrix for the channels of users based on the channel

covariance matrix. Next, we propose that the BS generates the approximate

eigenchannel matrix. Note that this is the first work which employs this approximate

eigenchannel matrix. Moreover, this is a low-complexity practical scheme to implement

a massive MIMO system. Our results and contributions are summarized as follows:

1. Exploiting the eigenvalue spectrum of the channel covariance matrix, we propose

to use the angular bins to build up an approximate eigenchannel, which can be used

for linear precoding design. Next, a new user scheduling scheme is proposed under

the assumption that no instantaneous channel information is available at the BS,

other than the channel correlation.

2. The complexity of the proposed scheme is presented.

3. Numerical results show significant sum rate performance improvement of the

massive MIMO system compared to the joint spatial division and multiplexing

(JSDM)-based scheduling scheme presented in [72]. Moreover, in [75], the BS

exploits knowledge of the estimated channel to design the beamformer. Hence it is

very difficult to achieve the performance of the greedy weight clique (GWC)

scheme [75] knowing only the correlation matrix. The numerical results confirm

that there is only a small gap between the performance of the proposed

correlation-based scheme and the GWC scheme (which relies on the availability of

the estimated channel at the BS).
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5.2 System Model

Consider downlink transmission in a single cell with M antennas at the BS and K single

antenna user terminals on the same time-frequency resource. Here, we assume time divi-

sion duplexing (TDD) mode where the uplink and downlink channels are the same.

5.2.1 Downlink Transmission

The transmitted signal when Ks (Ks � M) users have been selected from the pool of

K users, is given by x =
∑Ks

k=1

√
pkwksk, where sk denotes the data symbol of user k,

wk denotes the precoding vector of size M and pk denotes the power assigned to user k.

Then the received signal at user k is given by

yk =
√
pkh

T
kwksk +

Ks∑
j=1,j 6=k

√
pjh

T
kwjsj + nk, (5.1)

where the vector hk of size M denotes the downlink channel of the kth (k = 1, · · · , Ks)

user and nk ∈ C(0, 1) is the complex additive white Gaussian noise (AWGN).

5.2.2 Uplink Channel Estimation in Single-Cell Massive MIMO with

Correlated Channel

In this section, we investigate the problem of estimating the channel in the TDD mode.

Suppose HT ∈ CM×K represents the uplink aggregate channel matrix between the users

and the BS. The channel covariance matrix R ∈ CMK×MK is given by

R = E
{

h̃h̃H
}
, (5.2)

where h̃ = vec(HT ). For MMSE estimation of the channel, we use a pilot sequence [76],

[77]. Let us assume Φp ∈ CK×τp denotes pilot matrix, where τp is the length of pilot
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sequence for each user. The received pilot signal Y ∈ CM×τp is given by

Y = HTΦp + N, (5.3)

where vec(N) ∼ CN (0, σ2
nIMτp) denotes circularly symmetric complex Gaussian noise

and I ∈ CMτp×Mτp denotes the identity matrix. The Bayesian MMSE estimator of the

channel is given by [76]

h̃MMSE = RΦ̃p
H
(
Φ̃pRΦ̃p

H
+ σ2

nI
)−1

ỹ, (5.4)

where Φ̃p = ΦT
p ⊗ I, where ⊗ is the Kronecker product, and ỹ = vec(Y).

5.3 Eigenvalue Spectrum of the Antenna Correlation

Function

In the COST 2100 channel model, each entry of the channel matrix can be written as

hkm =

Nl∑
i=1

aki δ(φ− φki)δ(θ − θki)δ(τ − τki), (5.5)

where Nl = NC ×Np, and it denotes the total number of paths and φki and θki represent

the DoD and DoA respectively of path i to the kth user. The complex amplitude of the ith

MPC in (5.5) is given by

aki= Lp AVR

√
AC︸ ︷︷ ︸

geometry-based attenuation

× AMPC︸ ︷︷ ︸
small-scale fading

=aga
ki × a

sf
ki. (5.6)

Note that the power of each path in (5.6) is scaled with respect to the small-scale fading

and the attenuation due to the geometry of the system which we call geometry-based

attenuation. Hence, assuming a linear array response at the BS side the K×M aggregate
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channel of all K users is given by

H =


∑Nl

i=1 a1i

∑Nl
i=1 a1ie

jα sinφ1i . . .
∑Nl

i=1 a1ie
jα(M−1) sinφ1i∑Nl

i=1 a2i

∑Nl
i=1 a2ie

jα sinφ2i . . .
∑Nl

i=1 a2ie
jα(M−1) sinφ2i

...
... . . . ...∑Nl

i=1 aKi
∑Nl

i=1 aKie
jα sinφKi . . .

∑Nl
i=1 aKie

jα(M−1) sinφKi

 , (5.7)

where α = −2π d
λ

, d is the spacing between two antenna elements and λ denotes the

wavelength (in m). TheM×M channel spatial covariance of the kth user channel vector is

given by Rk = E{hkhHk }. Assuming that the positions of users and clusters are fixed, the

expectation is taken over the power of MPCs which have the Rayleigh fading distribution.

Assuming a linear array response for the AoD φ and wide sense stationary (WSS) over

the array (φ is the same for all antenna elements confirming that you have planar wave),

each (m,n)-th entry of the channel covariance matrix for the kth user, Rk, is given by

[Rk]m,n =

Nl∑
i=1

(aga
ki)

2
ejα(n−m) sinφki , (5.8)

where the second equality comes from the fact that E {|aki|2} = (aga
ki)

2.a11

5.3.1 Eigenvalue Spectrum with M →∞

In [74], the authors exploit Szego’s theory for large Toeplitz matrices [73], and show that

for massive MIMO systems, the eigenvalue spectrum of the antenna correlation function

converges to the discrete-time Fourier transform of the antenna correlation function. In

other words, in the limit of a large number of antennas, the empirical eigenvalue

cumulative CDF of the empirical eigenvalues from the channel correlation matrix can be

approximated by the samples of the discrete-time Fourier transform of the antenna

correlation function [74]. The eigenvalue spectrum, Sk(f), is obtained by the

discrete-time Fourier transform of the autocorrelation function. Hence, we consider the

spectrum over the range f ∈
[
−1

2
,
1

2

]
(the eigenvalue spectrum is wrapped around the

1a1Note that the measurement results in [78] show that at the frequency of 2 GHz, to calculate the
channel covariance matrix, the BS needs to average the channel samples over around 300-400 samples and
100-200 samples for the case of urban and rural environments, respectively.
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interval f ∈
[
−1

2
,
1

2

]
by the periodicity of the discrete-time Fourier transform.). As the

eigenvalue spectrum can take any positive real value, similar to [74], we write

Sk(f); f ∈
[
−1

2
,
1

2

]
→ R+, where R+ = {x ∈ R|x > 0} refers to the positive real

values. Each entry of the channel correlation matrix for the kth user is given by

rk(mn) = [Rk]m,n, which with a change of notation, we rewrite as rk(m) = [Rk]l,l−m.

Hence, the general expression for the discrete-time Fourier transform of the antenna

correlation function is given by the following Lemma.

Lemma 4. The discrete-time Fourier transform of the antenna correlation for COST 2100

channel model with large number of antennas at the BS is obtained as:

Sk(f) =
∞∑

m=−∞

rk(m)e
−j2πfm

=
∞∑

m=−∞

(
Nl∑
i=1

(aga
ki)

2
e−j2π

d
λ

(m) sinφki

)
e−j2πfm

=
Nt∑
i=1

(aga
ki)

2
∞∑

m=−∞

e−j2πfm( d
λ

sinφki+f)

(a)
=

Nl∑
i=1

(aga
ki)

2

∞∑
m=−∞

δ

(
m−

(
d

λ
sinφki + f

))

=

Nl∑
i=1

(aga
ki)

2δ

(
f +

d

λ
sinφki

)
, (5.9)

where the step (a) we have

red

∞∑
m=−∞

e−j2πfm( d
λ

sinφki+f) =
∞∑

m=−∞

δ

(
m−

(
d

λ
sinφki + f

))
, (5.10)

which is the property of sum of complex exponentials [79].

Equation (5.9) shows that the DoD of paths can be estimated perfectly from the eigen-

value spectrum in the case of M → ∞. In the next section, we show that the eigenvalue

spectrum of Rk can be used to build up an approximate eigenchannel matrix for precod-

ing and user scheduling.
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5.3.2 Eigenvalue Spectrum with Finite M

For the case of finite M , this chapter follows the methodology in [72]. In [72], Adhikari

et al proposed quantizing the interval [−1
2
, 1

2
] into M disjoint intervals of size 1

M
. Using

analysis in [72], each interval introduces an angular bin, where bin Bb is centred at b
M
− 1

2

with b ∈ {0, 1, · · · ,M − 1}. Hence, based on [72], the kth user “occupies” bin Bb if the

following condition holds:

−d
λ

sinφkp ∈ Bb ≡
b

M
− 1

2
− 1

2M
< −d

λ
sinφkp ≤

b

M
− 1

2
+

1

2M
. (5.11)

Let us assume, similar to [72], that π(i) denotes the index of the bin occupied by the MPC

i. Then, based on [72], Sk(f) for the case of finite M can be written as

Sk(f) =

Nl∑
i=1

(aga
ki)

2

∞∑
m=−∞

δ

(
m−

(
d

λ
sinφki + f

))

=

Nl∑
i=1

(aga
ki)

2 × 1
{
f ∈ Bπ(i)

}
. (5.12)

As (5.12) shows, the discrete-time Fourier transform at a particular Bb, is summation of

the paths with DoDs in the same bin, i.e. − d
λ

sinφkp ∈ Bb. Hence, the estimated DoD

based on the channel eigenvalue spectrum is not accurate for the case of finite M .

However, as we show in the next section, (5.12) can still be used to build up

an“approximate eigenchannels” matrix which can be used for beamforming and user

scheduling.

5.4 Proposed User Scheduling and Beamforming

In this chapter, we aim to solve the problem of joint user scheduling and beamforming

design assuming that only the second order statistics of the channel are available at the BS.

The proposed user selection scheme relies on a trade off between the number of occupied

spectral bins for each user and the spectral overlap among the selected users. For this

case, the performance analysis are found in the next subsection. Once the set of active

users has been determined, the BS exploits the covariance matrix of the selected users for
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beamforming design and transmits data to the users.

5.4.1 Correlation-based User Scheduling

By using the discrete-time Fourier transform of the antenna correlation given in (5.12),

we generate the K ×B matrix U as follows:

U=


∑

i,− d
λ

sinφ1i∈B1
(aga

1i)
2

∑
i,− d

λ
sinφ1i∈B2

(aga
1i)

2 . . .
∑

i,− d
λ

sinφ1i∈BM (aga
2i)

2∑
i,− d

λ
sinφ2i∈B1

(aga
2i)

2
∑

i,− d
λ

sinφ2i∈B2
(aga

2i)
2 . . .

∑
i,− d

λ
sinφ2i∈BM (aga

2i)
2

...
... . . . ...∑

i,− d
λ

sinφKi∈B1
(aga
Ki)

2
∑

i,− d
λ

sinφKi∈B2
(aga
Ki)

2 . . .
∑

i,− d
λ

sinφKi∈BM (aga
Ki)

2

,(5.13)

where each (k, b)-th entry of the matrix U denotes the discrete-time Fourier transform of

the antenna correlation function of the kth user at the bth bin, i.e.
∑

i,− d
λ

sinφki∈Bb(a
ga
ki)

2.

The BS uses the functions f1(uk) and f2(uk) to perform user scheduling, where uk is the

kth row of matrix U and we define the functions f1(u) and f2(u) in the following. As

described in step 4.1 in Algorithm 7, the algorithm starts by calculating the summation

over all area in terms of eigenvalue spectrum for all users, i.e. f1(‖ uk ‖ |) =‖ uk ‖, ∀ k,

and selects the user which has the largest value among the users. Then in the next step,

the proposed algorithm finds a set of ε-orthogonal users to the selected users. Here, ε-

orthogonality among the user k and the user j means that f2(uk,uj) =
|uku∗j |
||uk||||uj ||

< ε.

Note that if the user k and the user j do not have spectral overlap, which means they

do not have any shared bins, we have
|uku∗j |
||uk||||uj ||

= 0. Hence, increasing the value of ε

allows the users to have a bigger spectral overlap area. If the value of ε is too small, the

area of spectral overlap between the selected users decreases and Algorithm 7 selects a

small number of users. If the value of ε is too big, Algorithm 7 selects users with a large

spectral overlap which can reduce the throughput due to interference. It is well known

that in GSCMs, MPCs from shared clusters cause high correlation which reduces the

rank of the channel [80, 81]. However, selecting users with no spectral overlap does not

necessarily result in a higher throughput. So, to find the optimum value of ε, we draw the

sum rate versus ε and set the optimum value as ε in Algorithm 7. Note that, S0 contains

Ks = |S0| indices of the selected users.
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Algorithm 7 Correlation-based user scheduling and beamforming (CUSBF):
Step 1) Initialization: Υ0 = [1, · · · , K], S0 = ∅, i = 1,
Step 2) Calculate the eigenvalue spectrum of Rk by means of the discrete-time Fourier
transform of the antenna correlation function,
Step 3) Generate matrix U given by (5.13),
Step 4) Greedy Algorithm:

•4.1 π(i) = arg maxk∈Υ0
f1(‖ uk ‖)

= arg maxk∈Υ0
‖ uk ‖, S0 ← S0 ∪ {k}, u(i) = u(π(i)),

•4.2 If |Υ0| < Ks, Υi = {k ∈ Υi−1, k 6= π(i) | f2(uk,u(i)) =
|uku∗(i)|
‖uk‖‖u(i)‖

< ε},

•4.3 If |Υ0| < Ks and Υi 6= ∅, then i← i+ 1, and go to step 4.1, else, go to step 5,

Step 5) Generate matrix G given by (5.16). BS does not require the instantaneous chan-
nels of the users and uses matrix G for beamforming design.

5.4.2 Correlation-based Beamforming

Once the set of users is fixed, the BS can design the precoding matrix based on the

knowledge of Rk, ∀k. If Rk, ∀k, is available at the BS, it is possible to find an

approximated version for the channel matrix G. So, at step 5 of Algorithm 7, we propose

to build up the approximate eigenchannel matrix for the channels of users based on the

channel covariance matrix given by eq. (5.12) as follows:

gkm =
M∑
b=1

 Nl∑
i,− d

λ
sinφki∈Bb

(agaki )
2

 1
2

ej2π(m−1)( b
M
− 1

2), (5.14)

where the approximate eigenchannel gkm is a superposition of B approximated paths,

where B = M (denotes the total number of angular bins) and the bth approximated

path is centred at b
M
− 1

2
. We propose that the BS uses equation (5.14) to build up the

approximate eigenchannel matrix G defined as follows:

Finite M : (5.15)

G=



∑M
b=1(

∑Nl
i,− d

λ
sinφ1i∈Bb

(aga
1i)

2)
1
2 . . .

∑M
b=1(

∑Nl
i,− d

λ
sinφ1i∈Bb

(aga
1i)

2)
1
2 ej2π(M−1)( b

M
− 1

2
)∑M

b=1(
∑Nl

i,− d
λ

sinφ2i∈Bb
(aga

2i)
2)

1
2 . . .

∑M
b=1(

∑Nl
i,− d

λ
sinφ2i∈Bb

(aga
2i)

2)
1
2 ej2π(M−1)( b

M
− 1

2
)

... . . . ...∑M
b=1(

∑Nl
i,− d

λ
sinφKi∈Bb

(aga
Ki)

2)
1
2 . . .

∑M
b=1(

∑Nl
i,− d

λ
sinφKi∈Bb

(aga
Ki)

2)
1
2 ej2π(M−1)( b

M
− 1

2
)

.



CHAPTER 5. EVALUATION OF LOW COMPLEXITY MASSIVE MIMO TECHNIQUES UNDER

REALISTIC CHANNEL CONDITIONS 144

Table 5.1: Computational Complexity of Different Schemes

Schemes Channel estimation Scheduling BeamformingAAAAA

[75] O(K3M3) O(K) O(M3)

[72] O(K3
sM

3) O(K) KsO
(
M3+M log2M log b

)
Algorithm 1 − O(K) O(M3)

The approximate eigenchannel matrix G can be used for user scheduling and precoding

design. Note that only for the case ofM →∞, the DoD of each single MPC is resolvable

and are available at the BS.

5.5 Complexity Analysis

Without loss of generality the complexity, computation of the MMSE estimator is given

by O(τ 3M3), where τ = K is sufficient to remove the effect of pilot contamination [76].

Hence, the complexity of the MMSE estimator scales as O(K3M3), which indicates the

complexity of inverting of matrix size KM × KM to estimate the channel in equation

(5.16). The proposed Algorithm 1 and the scheme in [72] do not exploit the knowledge

of channel for user scheduling and beamforming design. For a given M ×M matrix, the

required operations to determine the eigenvectors is given byO
[
M3 +(M log2M) log b

]
,

where b is the relative error bound [82]. Moreover, the complexity to search the user for

the scheme in [75] is linear with the number of users [83]. Note that the complexity of

user scheduling in the proposed Algorithm 1 and the scheme in [72] is linear in terms of

the number of users. The number of arithmetic operations required for Algorithm 7 is

shown in Table 5.1. The authors in [78] define the spatial WSS quality which is given by

QWSS =
τLT

τc
, (5.16)

where τLT refers to the long-term time, where the statistics of the channel may be consid-

ered constant within this interval whereas τc is the channel coherence time. The measure-

ment results for the outdoor scenario at a center frequency of 2 GHz shows that QWSS =
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Figure 5.1: Average sum rate versus ε,pk = 10 dBm and R = 500 meters.

120. As a result, every 120 × τc, the correlation based schemes (the proposed Algorithm

1 and the scheme in [72]) need to be run, while the scheme in [75] need to be run at the

beginning of each coherence time.

5.6 Numerical Results and Discussion

A square cell with a side length of 2×R has been considered; we call R the cell size and

also assume users are uniformly distributed in the cell. As in [84], we assume that there

is no user closer than Rth = 0.1×R to the BS. We simulate a micro-cell environment for

the NLoS case and set the operating frequency fC = 2 GHz. The external parameters and

stochastic parameters are extracted from chapter 3 of [32]. The BS and user heights are

assumed to be hBS = 5 m and hMS = 1.5 m, respectively. The noise power is given by

Pn = BW kB T0 W, where BW = 20 MHz denotes the bandwidth, kB = 1.381 × 10−23

represents the Boltzmann constant, T0 = 290 (Kelvin) denotes the noise temperature, and

W = 9 dB is the noise figure. For this network setup, the average sum rate is evaluated

for the three scenarios. First, we evaluate the average throughput of the proposed CUSBF

scheme, given by Algorithm 1. In Fig. 5.1, the sum rate of users under the proposed

scheme is plotted as a function of ε in Algorithm 1. If ε is too large, the spectral overlap

(number of shared bins) is big, while if is too small, the multiuser diversity gain decreases

and users with shared bins cannot be selected. As a result, there should be a trade off
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Figure 5.2: Average sum rate versus total number of users with Ks = 10, pk = 10 dBm
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pk = 10 dBm and R = 500 meters.
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Figure 5.4: The average sum rate vs. transmit power. Solid (blue), dashed (red) and dotted
(black) lines refer to {M = 300, K = 70, Ks = 20}, {M = 300, K = 50, Ks = 10} and
{M = 200, K = 50, Ks = 10}, respectively.

between total number of shared bins and summation over all area in terms of eigenvalue

spectrum, which is explained in Subsection 5.4.1. The optimal value of ε is shown in Fig.

5.1. Next, we plot the average sum rate versus the total number of users in the system in

Fig. 5.2. As the figure shows, by increasing the total number of users, the average sum

rate increases, as a result of multi-user diversity gain. Fig. 5.3 demonstrates the average

per-user rate versus the total number of users in the system. Note that the analysis in [85]

demonstrate that in the limit of massive MIMO (M,Ks →∞ and α = M
Ks

), by increasing

Ks the average per-user rate decreases.

Finally, we evaluate the average throughput of the proposed CUSBF scheme, given

by Algorithm 1, and GWC [75, 86] with an MMSE estimate of the channel. For the

case of GWC, similar to [86], we set the optimal channel direction constraint to achieve

the best performance for GWC. Moreover, the comparison with the scheme proposed in

[72] is provided. In [72], Adhikari et al propose to select users which occupy a larger

number of bins and find users having a smaller spectral overlap with the selected users.

This scheme is referred to JSDM-based scheduling. Fig. 5.4 depicts the average sum

rate versus the total transmit power for three cases of {M = 300, K = 70, Ks = 20},
{M = 300, K = 50, Ks = 10} and {M = 200, K = 50, Ks = 10}, while adopting the

currently proposed scheme with ZFBF. As expected, since GWC exploits the estimated

instantaneous CSI, it has the best throughput. As the figures show, the performance of the
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proposed Algorithm 1 is slightly poorer than the case in which the BS has the knowledge

of the estimated instantaneous channel to perform user scheduling and beamforming as in

[75], i.e., GWC. Interestingly, for a larger number of antennas at the BS, the superiority

of the proposed scheme is more obvious in terms of achieving performance close to that

of the GWC scheme. Moreover, the performance of the proposed algorithm is several

times higher than for the scheme in [72], i.e., JSDM-based scheduling. In addition, the

figure demonstrate that the performance of the scheme in [72] is quite poor for the case

of the COST 2100 channel model. This is because of the large number of clusters in the

area, which means that the performance of eigen-beamforming is not as good as ZFBF.

Note that the JSDM in [72] is designed to work well with the angularly-sparse multipath

channels typically observed at mm-waves.

5.7 Summary

We proposed to use the angular bins of the eigenvalue spectrum of the channel covariance

matrix to build up an approximate eigenchannel for the users. Using the discrete-time

Fourier transform of the antenna correlation function, a novel user scheduling scheme

and linear precoding design has been proposed and tested with the COST 2100 channel

model. The results show that while the average throughput slightly decreases due to

absence of instantaneous channel, the computational complexity of the system reduces

significantly. As a result, the proposed scheme can be considered as a superior practical

approach for massive MIMO systems.
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6.1 Introduction

Most standardized MIMO channel models such as IEEE 802.11 [21] and the most recent

3GPP channel model [87] rely on clustering [21]. The same applies to the recent COST

channel models, e.g., the COST 2100 model [88]. These models are geometry-based

stochastic channel models (GSCMs) that are mathematically tractable, though to a limited

extent, to investigate the performance of MIMO systems [89]. The concept of clustering

is an essential basis of GSCMs to characterize scatterers in the cell environments. In

[90–94], the authors use clusters to characterize measured multipath channels for a GSCM

in mmWave bands. The available GSCMs at mmWave do not necessarily retain the spatial

149



CHAPTER 6. CLUSTER PARAMETRIZATION AT 60 GHZ IN A LARGE INDOOR

ENVIRONMENT 150

consistency of simulated channels due to lack of cluster dynamics, which is essential for

small cells with ultra-dense users. In this chapter, we work on cluster parameterization

to investigate the spatial consistency life-time of clusters, using a ray-tracer which is

adjusted to produce results consistent with measurements.

Unlike previously available clustering algorithms in [95, 96] (which are done based

on the angle and delay), in this chapter the coordinates are exploited for which the

multipath components (MPCs) interact with surrounding objects for a fixed position of

mobile station (MS) and BS. To the best of our knowledge, previously clustering has

been performed in a double-directional setting, i.e., considering both angle of arrival

(AoA) and angle of departure (AoD). A consistent scheme to identify and track clusters

based on the spatial coordinates of the MPCs (the [x, y, z]-coordinates of the MPCs) is

presented. To investigate the performance of the proposed clustering scheme we exploit

a set of ray-tracer results in Helsinki’s airport described in [97], which is very accurate to

present the propagation properties such as specular reflections, diffraction, diffuse

scattering [98]. The contributions of the chapter are summarized as follows:

1. We study whether clusters exist or not.

2. For the first time, we perform clustering of dynamic multipath channels.

3. [x, y, z] coordinate-based clustering.

6.1.1 Outline

The chapter is organized as follows; Section II describes the ray-tracer and simulation

area, and Section III provides the MPC clustering-and-tracking framework. The

simulation results and discussion are presented in Section IV while Section V concludes

the chapter.
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6.2 The Ray-Tracer and Simulation Area

The ray-tracer simulates multipath channels for a large number of links between BS and

MS [97]. Note that the ray-tracer works with accurate descriptions of the environment

in the form of point clouds, obtained by laser scanning, and has the ability of simulating

relevant propagation properties such as specular reflections, diffraction, diffuse scattering

and shadowing [98]. For more details on the ray-tracer refer to [97,98]. A check-in hall of

Helsinki airport as a representative small-cell scenario is considered as shown in Fig. 6.1.

Exploiting the ray-tracer parameters in Fig. 6.1, we obtain the MPCs for links defined

by BS and MS locations as in Fig. 6.1. The BS is located 1 m from a wall at a height

of 5.7 m whereas the MS is placed at a height of 1.5 m at every 5 cm over a route. In

total, 2639 links including 1816 LOS and 823 obstructed LOS (OLOS) are simulated. As

the ray-tracer calculates interactions of MPC with physical objects in the environment,

we save the first and last MPC interacting coordinates [x, y, z] (in case of multi-bounce

clusters, which is explained in Chapter 2) instead of the angle of departure and arrival

of each MPC. We assume downlink where BS transmits and MS receives radio signals.

The first and last interacting coordinates are the same for a single-bounce path ,related to

single-bounce cluster (please refer to the definition of clusters given in Chapter 2), and

are different for a multiple-bounce path. The ray-tracer also derives a complex gain for

each MPC.

6.3 Clustering-and-Tracking Framework

Similar to standard clustering algorithms [95,96], we independently perform clustering at

each snapshot and thereafter the clusters are tracked. Note that the snapshot refers to the

position of MS. Consider n = 1, · · · , N data windows, where at each data window we

have L(n) MPCs. Next, we define for each MPC v(n)
1,l = [x

(n)
MS,l, y

(n)
MS,l, z

(n)
MS,l] (the position

of MPCs from MS side) and v(n)
2,l = [x

(n)
BS,l, y

(n)
BS,l, z

(n)
BS,l] (the position of MPCs from BS

side), and finally we have

χ
(n)
l =

[
v(n)

1,l

]
=
[
x

(n)
MS,l, y

(n)
MS,l, z

(n)
MS,l

]
. (6.1)
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Figure 6.1: Floor plan of the small-cell site in Helsinki airport. For this simulation set-up
fc = 61 GHz, BW = 2 GHz refer to the carrier frequency and bandwidth, respectively.
Moreover, the position of BS is fixed (the green triangle), while we investigate 2639
positions for MS (the yellow and red points demonstrate the LOS and OLOS, respectively.
The total MS route is 132 m, and channels simulated at every 5 cm.

The same equality hold for the BS-side components. This enables us after visualising

clusters to plot clusters separately for v(n)
1,l and v(n)

2,l in physical three-dimensional space

as well as defining the matrix χ(n) = [χ
(n)
1 , · · · , χ(n)

L ] Moreover, the lth MPC in window

n has a power represented by p(n)
l which enables us to define the power vector p(n) =

[p
(n)
1 , · · · , p(n)

L ].

6.3.1 Cluster Parameters

In next step, we define the following parameters for each cluster:

1. Cluster ID c.

2. Cluster power at time n: γ(n)
c =

∑
l∈I(n)c

pnl , where I(n)
c denotes the set of MPCs

belonging to cluster c at time n.

3. Total number of MPCs in cluster c at time n: L(n)
c = |I(n)

c |size.
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4. Cluster centroid position:

µ(n)
c =

[
x

(n)
MS,c, y

(n)
MS,c, z

(n)
MS,c

]T
=

1

γ
(n)
c

 ∑
l∈I(n)c

pnl x
(n)
MS,l,

∑
l∈I(n)c

pnl y
(n)
MS,l,

∑
l∈I(n)c

pnl z
(n)
MS,l

T . (6.2)

5. Combined cluster centroid position and speed:

θ(n)
c =

[
x

(n)
MS,c,∆x

(n)
MS,c, y

(n)
MS,c,∆y

(n)
MS,c, z

(n)
MS,c,∆z

(n)
MS,c

]T
. (6.3)

6. Cluster spread matrix:

C(n)
c =

∑
l∈I(n)c

p
(n)
l (χnl − µnc ) (χnl − µnc )T

γ
(n)
c

. (6.4)

Next, similar to terminology in [95], a Kalman filter [77] is used to both track and

predict the cluster positions over time. Moreover, an initial-guess process introduces an

appropriate initial guess for cluster centroids, and finally the clustering algorithm

determines the clusters in the ray-tracer results exploiting the initial guess.

6.3.2 Kalman Filter to Track and Predict Cluster Positions

We exploit the cluster centroid positions and cluster centroid speeds for the Kalman

tracking [77]. The following state equations are used:



θ(n)
c = Aθ(n−1)

c + B(n),

A = I3 ⊗

1 1

0 1


µ(n)
c = Dθ(n)

c + E(n),

D = I3 ⊗
[
1 0

]
,

(6.5a)

(6.5b)

(6.5c)

(6.5d)

where B(n) and E(n) refer to the state-noise with covariance matrix Q and the observation-

noise with covariance matrix R, respectively. Note that µ(n)
c introduces the observed
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cluster centroid position. The prediction and update equations are given by

Prediction

θ
(n|n−1)
c = Aθ(n−1|n−1)

c ,

M(n|n−1) = AM(n−1|n−1)
c + Q,

(6.6a)

(6.6b)

and update

K(n|n) = M(n|n−1)
c DT

(
DM(n|n−1)DT + R

)−1
,

θ(n|n)
c = θ(n|n−1)

c + K(n|n)
(
µc − Dθ(n|n−1)

c

)
,

M(n|n) =
(

I−K(n|n)D
)

M(n|n−1)

(6.7a)

(6.7b)

(6.7c)

6.3.3 Association of Clusters

Association of predicted targets to identified targets is a substantial challenge in any

multi-target tracking [95]. Based on [95], the distance between a cluster with parameters

(µc,Cc) and a cluster with centroid µ̃ is called the closeness function and is given by

dc (µ̃|µc,Cc) =
1

(2π)
3
2 |Cc|

1
2
det

exp

(
−1

2
(µ̃− µc)T C−1

c . (µ̃− µc)
)
, (6.8)

First, the closeness function between the old clusters (with the old covariance matrix)

and new centroids and the closeness function between the new clusters (with the old

covariance matrix) and old centroids are calculated. Next, for each new cluster the closest

old cluster and for each old cluster the closest new cluster is determined. Note that the

closest cluster is determined by finding the maximum value of the closeness function.

If the closeness function from both directions are exactly the same, these two clusters

are associated and assumed to be one cluster. The clusters which are not associated are

assumed to be new ones.
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6.3.4 Initial Guess for Clusters

The initial guess of the cluster centroids is a challenging task in clustering algorithms. In

[95], the authors propose a novel initial guess to maximize the distances between the

cluster centroids. If there is no cluster prediction available, the path having the strongest

power is selected as the first centroid µ̂1 whereas for the case of available cluster

prediction, the initial-guess centroid from the prediction is to be as the current initial

guess. Note that the multipath component distance (MCD) in this chapter is different

from the one used in [95, 99]. The distance measure between MPCs i and j is given by

MCDij =
√
||MCDxMS ,ij||2 + ||MCDyMS ,ij||+||MCDzMS ,ij||2.

Note that in (6.9) we have

MCDxMS ,ij =
|xMS,i − xMS,j|

∆xMS,max
, (6.9)

where ∆xMS,max = max {|xMS,i − xMS,j|}, and the other terms in (6.9) are evaluated is a

the similar way to (6.9). Next, the weighted distance matrix Υ ∈ C l×c between all paths

and all initial-guess centroids is evaluated as follows:

Υ (χnl − µ̂c) = log10

(
p

(n)
l

)
MCD (χnl − µ̂c) . (6.10)

Following the terminology in [95], we select the path with the maximum minimum

distance to any centroid as follows:

lsel = max
l

{
min
c
{Υ}

}
. (6.11)

We then assign all MPCs to their closest centroid and cluster power is evaluated. If we do

not achieve the maximum number of clusters, and centroid powers are larger than 0.01%

of the total snapshot power, we repeat the calculation of the weighted distance matrix

Υ ∈ Cl×c in (6.10). Otherwise, the last centroid is ignored and the algorithm is stopped.
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Figure 6.2: Tracked Rx-side clusters in Helsinki airport in snapshot 3.

6.3.5 Clustering Algorithm

The KPowerMeans clustering algorithm is investigated in [100], and it performs as

follows: the initial-guess algorithm is applied, and the KPowerMeans clustering

algorithm is run only once as the initial guess as are constant. For more details on the

KPowerMeans clustering algorithm refer to [100]. Note that if any cluster occupies less

than 1% of total cluster power, we re-start the clustering algorithm with the initial guess,

with the number of clusters is reduced by one. Therefore, it is possible that the algorithm

ends with a single cluster.

6.4 Results and Discussion

The joint clustering-and-tracking algorithm is applied to the ray-tracer results at Helsinki

airport, explained in Section 6.2, where we have 2639 links. Figs. 6.2- and 6.6 present the

exemplary plots for different snapshots. The MPCs are shown by dots, where their power

is shown by light blue (weak power) and violet (strong power). The clusters are shown

by ellipsoids and always 99% of the total power is carried by the MPCs within clusters.
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Figure 6.3: Tracked Rx-side clusters in Helsinki airport in snapshot 4.

Figure 6.4: Tracked Rx-side clusters in Helsinki airport in snapshot 5.

We use different colors for ellipsoids just to make the cluster recognition easier. Each

cluster is identified by a cluster ID which is written on each cluster. As these exemplary

figures show for snapshots 2,3 and 4, cluster 2 is always tracked while the other clusters

are determined as new clusters.
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Figure 6.5: Tracked Tx-side clusters in Helsinki airport in snapshot 12.

Figure 6.6: Tracked Tx-side clusters in Helsinki airport in snapshot 13.

Next, the lifetime of clusters for the available sets of ray-tracer results is investigated,

for Tx-side clusters and Rx-side clusters separately. Figs. 6.7 and 6.8 show the

histograms of cluster lifetimes for Rx-side (BS-side) and Tx-side (MS-side) scenarios,

respectively. The figures show that in most cases clusters are active only for a few
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Figure 6.7: Histogram of Rx-side clusters cluster lifetimes (snapshots).
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Figure 6.8: Histogram of Tx-side cluster lifetimes (snapshots).

snapshots for this set of ray-tracer results. This requires more investigation. Moreover,

the number of clusters per snapshot is presented in Figs. 6.9 and 6.10 for Rx-side and

Tx-side clusters, respectively.

The other interesting phenomenon is the movement of the tracked cluster centroids,

which is shown in Fig. 6.11. Based on these figures the cluster centroid moves rapidly

in the x or y direction while its speed is very low in other direction. Moreover, the figure

shows for these clusters that the centroid’s speed is very low in the z direction. Finally,
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Figure 6.9: Histogram of total number of Rx-side clusters.

2 2.2 2.4 2.6 2.8 3 3.2

Number of clusters per snapshot

0

200

400

600

800

1000

1200

1400

N
um

be
r 

of
 O

cc
ur

en
ce

s

Figure 6.10: Histogram of total number of Tx-side clusters.

Figs. 6.12 and 6.13 investigate the distribution of the percentage of power in Tx-side and

Rx-side clusters.
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Figure 6.11: Tracked centroid of exemplary moving cluster.
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Figure 6.12: Histogram of percentage of occupied power by each Tx-side cluster.

6.5 Summary

In this chapter, we have worked on parameterization for the COST 2100 channel model

at 60 GHz band. We have worked on a ray-tracer, which has been optimized to match

measurements, to get double-directional channels at mmWaves. We have combined
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Figure 6.13: Histogram of percentage of occupied power by each Rx-side cluster.

clustering and tracking to improve the performance of consistent clustering. The results

showed that the joint clustering-and-tracking allows for cluster identification and

tracking for the ray-tracer results. Cluster lifetime and number of clusters per snapshot

have been investigated.
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7.1 Summary of the Work

The conclusions of the thesis can be itemized as follows:

• In Chapter 1, a introduction to the research area has been presented, followed by

outline of thesis and the publication list.

• A literature review was presented in Chapter 2, and the required and general basics

of thesis were presented. These includes: the basics of multi-user multiple-input

multiple-output (MIMO), channel estimation, the basics of massive MIMO, and

alternative ways to perform massive MIMO. Next, the basics of COST 2100

channel model and general basics of optimum uniform quantization have been

discussed. Finally, achievable rate with unknown gain at the receiver was

reviewed.

163



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 164

• In Chapter 3, we have studied the uplink max-min rate problem in cell-free

massive MIMO with the realistic assumption of limited-capacity fronthaul links.

Next, we have proposed an optimal solution to maximize the smallest user rate.

The max-min problem was divided into two sub-problems which were iteratively

solved by formulating them into generalized eigenvalue problem and GP. We have

validated the optimality of the proposed solution through presenting an

uplink-downlink duality. Numerical results have been provided to demonstrate the

optimality of the proposed scheme. In addition, these results confirmed that the

proposed max-min rate algorithm can increase the median of the CDF of the

minimum uplink rate of the users by more than two times, compared to existing

algorithms. Finally, we presented a user assignment algorithm to further

improvement in minimum rate of the users.

• In Chapter 4, we have considered cell-free massive MIMO when the quantized

version of the weighted signals are available at the CPU. Bussgang decomposition

has been used to model the quantization effects. A closed-form expression for

spectral efficiency has been derived. We have then studied the problem of the

energy efficiency maximization with per-user power constraints, fronthaul capacity

constraints and throughput requirements. We have developed an SCA to efficiently

solve this non-convex problem. Next a low-complexity sub-optimal scheme is

proposed. In addition, complexity and convergence of the proposed schemes have

been investigated. Numerical results confirmed that the limited-fronthaul cell-free

massive MIMO system with the proposed algorithm can reach almost twice the

uplink total energy efficiency compared to the case of equal power allocation. In

addition, a trade-off between the total number of APs and the number of antennas

at the APs has been shown. Moreover, we investigated the optimal number of AP

antennas along with the optimal number of quantization bits to maximize the

uplink total energy efficiency of cell-free massive MIMO.

• In Chapter 5, a collocated single-cell massive MIMO was considered with realistic

geometry-based COST 2100 channel model. Exploiting the eigenvalue spectrum

of the correlation of the channel at the BS, a correlation-based user scheduling and

beamforming scheme has been proposed. Complexity of the proposed scheme has

been investigated and finally we presented the numerical results.

• In Chapter 6, we assumed ray-tracer results in Helsinki airport at 61 GHz. A
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clustering-and-tracking framework was used to find the cluster parameters, and a

Kalman filter has been exploited to track and predict cluster positions.

7.2 General Conclusion

The thesis investigates mainly massive MIMO and COST 2100 channel model. The

benefits and challenges of different schemes to implement a massive MIMO system have

been presented. Thanks to the distributed APs, cell-free massive MIMO has the ability to

provide a great performance to all users. In practice the links from the APs to the CPU

cannot have infinite capacity. Therefore, a cell-free massive MIMO with

limited-capacity fronthaul links have been investigated. The problem of max-min

signal-to-interference-plus-noise ratio (SINR) has been considered which provides all

users with the same throughput. A user assignment technique was proposed. Next,

energy efficiency optimization problem has been considered.

In this thesis, we provided the basics of real geometry-based COST channel model

and draw an elegant connection between collocated massive MIMO and COST 2100

channel model. A correlation-based user scheduling and beamforming technique has

been presented.

Finally, a channel parameterization scheme at 61 GHz was proposed which exploits

Kalman filter to find the cluster parameters.

7.3 Future Work

Exploiting the proposed schemes, algorithms, performance analysis, and the presented

results, the future direction of related research are summarized as follows:

• In Chapters 3 and 4, the performance of cell-free massive MIMO with uncorrelated

Rayleigh fading channel were provided. However, note that this is not a realistic
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channel model and in practice the channel between different APs and different users

could be correlated. A proper investigation on the performance of cell-free massive

with correlated channel model could be an interesting research direction.

• In Chapter 3, a user assignment scheme was proposed to improve the max-min

throughput of the system. Although the proposed user assignment scheme improves

the performance, however, this is not the optimal assignment scheme. Future work

is needed to investigate the optimal user assignment scheme with different linear

receivers.

Further investigation to find the optimal user assignment scheme is required.

• In Chapter 5, a correlation-based user scheduling and beamforming design has been

proposed. The extension of the proposed scheme to distributed massive MIMO is a

future research direction.

• In Chapter 6, we found the cluster parameters. However, the other channel param-

eters like path loss and cluster delay spreads have not been investigated. This pro-

vides a future research direction.

• Deep learning can be used to decrease the effect of pilot contamination in cell-free

massive MIMO. Pilot contamination is one of the difficult challenges in cell-free

massive MIMO. Investigating optimal pilot assignment schemes is an interesting

future direction.

• In this thesis, we provided the performance analysis of cell-free massive MIMO

with MRC. However, other signal processing techniques (e.g., zero-forcing

processing) can be implemented to improve the system performance and can be

considered in future work.

• The original idea of additive quantization noise model (AQNM) comes from

[101], where the authors exploit a scalar non-uniform MMSE quantizer at each

ADC and compute the variance quantization distortion using Llyod-Max

algorithm [58]. However, in this thesis, we consider the uniform quantizer which

has low complexity. This can be regarded as future work.

• The performance with Ricean channels and the effect of LoS have not been consid-

ered in this thesis. The case of Ricean channels is kept for future work.



Glossary

5G 5th Generation

4G 4th Generation

AP Access Point

AWGN Additive White Gaussian Noise

ADC Analog-to-Digital Converter

BS Base Station

BU Beamforming Uncertainty

CPU Central Processing Unit

CP Circuit Power

CUSBF Correlation-Based User

Scheduling and Beamforming

CoMP Coordinated Multipoint Processing

CDF Cumulative Distribution Function

DS Desired Signal

DoA Direction of Arrival

DoD Direction of Departure

eCOST European Cooperation in Science and Technology

FDD Frequency Division Duplexing

FT Fronthaul Traffic

GWC Greedy Weight Clique

GP Geometric Programming

GSCMs Geometry-based Stochastic Channel Models

IUI Inter-User-Interference

i.i.d. Independent and Identically Distributed
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JSDM Joint Spatial Division and Multiplexing

LOS Line-of-Sight

ML Maximum-Likelihood

MRC Maximum Ratio Combining

MRT Maximum Ratio Transmission

MIMO Multiple Input Multiple

Output

MM-Wave Millimetre-Wave

MMSE Minimum Mean-Square Error

MS Mobile Stations

MPC Multi-Path Component

MCD Multi-Path Component Distance

NLoS Non-Line-of-Sight

OLOS Obstructed Line-of-Sight

PA Power Amplifier

RV Random Variable

SCA Successive Convex Approximation

SDNR Signal-to-Distortion Noise Ratio

SIC Successive-to-Interference Cancellation

SNR Signal-to-Noise Ratio

SINR Signal-to-Interference plus Noise Ratio

SOCP Second Order Cone Programming

TDD Time Division Duplexing

TN Total Noise

TQD Total Quantization Distortion

UaF Use-and-Then-Forget

VR Visibility Region

WSS Wide Sense Stationary

ZF Zero-Forcing

ZFBF Zero-Forcing Beamforming
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