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Abstract

This thesis introduces a new class of functional-coefficient time series models,

where the regressors consist of autoregressors and latent factor regressors, and the

coefficients are allowed to change with certain index variable. The unobservable

factor regressors are estimated through imposing an approximate factor model

on very high dimensional exogenous time series variables and subsequently im-

plementing the classical principal component analysis. With the estimated factor

regressors, a local linear smoothing method is used to estimate the coefficient

functions and obtain a one-step ahead nonlinear forecast of the response variable,

and then a wild bootstrap procedure is introduced to construct the prediction in-

terval. The developed methodology is further extended to the case of multivariate

response vectors and the model is generalised to the factor-augmented vector time

series model with functional coefficients. The latter substantially generalises the

linear factor-augmented vector autoregressive model which has been extensively

studied in the literature. Under some regularity conditions, the asymptotic prop-

erties of the proposed methods are derived. In particular, we show that the local

linear estimator and the nonlinear forecast using the estimated factor regressors

are asymptotically equivalent to those using the true latent factor regressors. The

latter is not feasible in practical applications. This thesis also discusses selection

of the numbers of autoregressors and factor regressors and choice of bandwidth

in local linear estimation. Some simulation studies and an empirical application

to predict the UK inflation are given to investigate the performance of our model

and methodology in finite samples.
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ŷt�1|t, and the grey area denotes the 95% prediction interval of the

response in the out-sample when qn � 150 in Example 1. . . . . . . 46

4.3 The solid curve denotes the true values of the response yt�1, the dot-

ted curve denotes the one-step ahead nonlinear forecasted values
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Chapter 1

Introduction

In recent years, advanced science and technology grow rapidly to facilitate data

collecting and computing. Consequently, large data are available in many areas

such as finance and economics. An important issue associated with the large

data set is that the number of variables becomes very large. It is often the case

that the number of variables in big data analysis exceeds the sample size. In this

case, traditional statistical tools in data analysis become infeasible, and dimension

reduction is needed to effectively extract sample information.

The dimension reduction technique is probably the most commonly-used

method for analysing highly-dimensional data. The main idea of the dimension

reduction technique is to remove redundant features and identify significant

ones in the large data. In the statistical literature, many shrinkage and screening

methods have been introduced to select significant variables in the statistical

models for independent data (Fan and Lv, 2010; Bühlmann and van de Geer, 2011;

Hastie et al., 2015). However, these methods may not perform well in analysing

highly-correlated large data set, which is common in finance and economics.

The high-dimensional factor model is often preferred to deal with the latter case

(Chamberlain, 1983; Fama and French, 1993; Bai and Ng, 2002). When both the

cross-sectional size and time series length are large, the principal component

analysis is probably the most widely-used method to estimate the factor model

(see Section 2.3 for details).

The main focus of this thesis is high-dimensional time series. In traditional

1
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time series models, the coefficients involved are usually assumed to be constants

over a long horizon of time (Brockwell and Davis, 1991; Hamilton, 1994; Tsay,

2010). There are many parametric techniques that can be used to estimate these

coefficients, e.g., ordinary least squares (OLS) estimation, maximum likelihood

estimation (MLE), and Bayesian estimation. However, the assumption of the

constant coefficients in time series models is too restrictive and often violated

when analysing economic and financial data.

It is sensible to allow the coefficients to change smoothly over time or with

an observable time series index variable. In this thesis, we study the varying-

coefficient time series model which is a natural extension of linear time series

model. The varying-coefficient model is introduced by Hastie and Tibshirani

(1993) and has been extensively studied in the past few decades, e.g., Chen and

Tsay (1993), Fan and Zhang (1999), Cai et al. (2000), Cai et al. (2000), Xia et al.

(2004), Fan and Huang (2005) , Kai et al. (2011), and Jiang et al. (2013).

When analysing large data set, we often apply the high-dimensional varying-

coefficient models. In this case, the screening or shrinkage method is usually

used to remove the insignificant regressors, and then use the significant ones to

build the models. Consequently, the nonlinear model prediction performance

can be improved (Wang and Xia, 2009; Lian, 2012; Fan et al., 2014; Liu et al.,

2014; Li et al., 2015). However, as pointed out by Fan and Lv (2008) and Chen

et al. (2018), existing variable selection approaches may have some problems

when irrelevant regressors are highly correlated with some relevant ones. These

irrelevant regressors might be selected into the model with higher priority than

some other relevant regressors, which would lead to high false positive rates

and low true positive rates. This problem could become worse in the time series

setting as the regressors usually contain some lags of the response and strong

correlation exists among the regressors. To deal with this problem, we need

to develop an alternative dimension-reduction technique in order to apply the

functional-coefficient model to high-dimensional time series data.

The so-called factor-augmented model provides an effective way to address the

above problem. The factor-augmented model is to combine the high-dimensional
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factor model with the prediction model in time series analysis. Applying the

factor model to high-dimensional exogenous variables, we can extract latent fac-

tors which can represent the dynamic feature of the high-dimensional exogenous

process. The number of factors is often much smaller than the number of exoge-

nous variables. Thus, the aim of dimension reduction can be achieved. Then

the estimated factors as well as the auto-regressors are combined to build the

factor-augmented prediction model. Details for recent developments on the factor-

augmented model can be found in Section 2.4.

In this thesis, we introduce a new class of functional-coefficient predictive

regression models when the regressors consist of auto-regressors and latent factor

regressors. Unlike the linear factor-augmented models which have been exten-

sively studied by existing literature, the coefficients are allowed to vary with

a random index variable. The proposed model is called the factor-augmented

functional-coefficient model (FA-FCM). We propose a two-stage estimation proce-

dure to estimate the coefficient functions (with rotation): first estimate the latent

factors (with rotation) and then the rotated coefficient functions are estimated

by the local linear smoothing technique (Fan and Gijbels, 1996). In addition, a

one-step ahead nonlinear forecasting of the response is constructed by using the

estimated coefficient functions. Under regularity conditions, the local linear esti-

mator and the nonlinear forecast using the estimated factor regressors are shown

to be asymptotically equivalent to those using the true latent factor regressors.

Furthermore, a bootstrap method is introduced to construct the prediction interval.

The factor-augmented vector auto-regression is further generalised by allowing

the coefficient matrices to change smoothly with an index variable.

The rest of the thesis is organised as follows. Chapter 2 is the literature review,

where we briefly review the nonparametric kernel-based regression, varying-

coefficient models, high-dimensional factor model, and linear factor-augmented

regression. Chapter 3 introduces the univariate FA-FCM model, and proposes the

nonlinear estimation and forecasting methodology. The extension to nonlinear

vector auto-regression with the multivariate response is also discussed in this

chapter. Chapter 4 provides the finite-sample simulation studies and an empirical
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illustration to predict the UK inflation using the developed model and method.

Chapter 5 derives the asymptotic results. Chapter 6 concludes the thesis.



Chapter 2

Literature Review

In this chapter, we provide a brief overview of concepts, models and methodolo-

gies that are closely related to this thesis. This chapter is organised as follows.

Section 2.1 contains a review of the literature on univariate nonparametric kernel-

based regression, including kernel regression estimation and local polynomial

estimation. Section 2.2 provides a review of the varying-coefficient models and

its estimation methods. Section 2.3 reviews the factor models and the principal

component analysis method for estimating both common factors and factor load-

ings, and discusses some methods for determining the number of common factors.

Section 2.4 briefly reviews the linear factor-augmented model.

2.1 Univariate Kernel-Based Regression

In this section, we review the kernel estimation and local polynomial estimation for

a nonparametric regression model, where the regressor is univariate. In addition,

we also discuss the choice of optimal bandwidth in kernel-based estimation.

2.1.1 Kernel Regression Estimation

The nonparametric regression modelling approach has become very popular

in recent decades. It relaxes some restrictive assumptions imposed on the lin-

ear regression models and allows data to “speak for themselves”. One of the

5



2.1 Univariate Kernel-Based Regression 6

most commonly-used nonparametric regression estimation methods is the kernel

smoothing technique. In this section, we give a brief review for the kernel-based

smoothing method when the regressor is univariate. More details can be found in

Wahba (1990), Wand and Jones (1994), Fan and Gijbels (1996), and De Boor (2001).

Consider bivariate data pX1, Y1q, . . . , pXn, Ynq, which form an independent and

identically distributed sample from a population pX, Y q. A nonparametric regres-

sion model is defined as follows:

Y � mpXq � ε, (2.1)

where mp�q is known as a nonparametric regression function and the random

error ε is independent of X with Epεq � 0 and Varpεq � σ2
ε . The main interest in

the nonparametric regression is to estimate the regression function mp�q, which

can be also written as the conditional expectation of Y given X � x0 denoted by

mpx0q � EpY |X � x0q.
We start with a traditional kernel regression estimators called the Nadaraya-

Watson regression estimator that is proposed by Nadaraya (1964) and Watson

(1964). It is defined as:

m̂NW px0q �
ņ

i�1

wipx0qYi, (2.2)

where the weights wipx0q are given by

wipx0q � Kb pXi � x0q°n
j�1Kb pXj � x0q , (2.3)

in which Kbp�q � Kp�{bq{b, Kp�q is a kernel function and b is a bandwidth control-

ling the level of smoothing. The bias of the Nadaraya-Watson regression estimator

is

biaspm̂NW px0qq �
�
m2px0q � 2m1px0qf 1px0q

fpx0q


b2

2

» 8

�8

u2Kpuqdu, (2.4)

where fpx0q is the density function of X at the point x0, f 1px0q is the first deriva-

tive of fpx0q, m1px0q and m2px0q are the first and second derivatives of mpx0q,
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respectively, and the variance of the Nadaraya-Watson regression estimator is

σ2
npm̂NW px0qq � 1

nbfpx0q
» 8

�8

K2puqdu, (2.5)

by noting that ε is independent of X and Varpεq � 1.

We next discuss the properties and choice of the kernel function. It is usually a

non-negative smooth function satisfying the following properties:

i) symmetry: Kp�uq � Kpuq,

ii) normalisation:
³8
�8

Kpuqdu � 1,

iii) finite second moment:
³8
�8

u2Kpuqdu   8.

The following lists are some commonly-used kernel functions:

i) Uniform or Boxcar kernel:

Kpuq � 1

2
Ip| u |¤ 1q,

ii) Epanechnikov or Parabolic kernel:

Kpuq � 3

4
p1� u2q Ip| u |¤ 1q,

iii) Gaussian kernel:

Kpuq � 1?
2π

expp�u
2

2
q Ip| u |¤ 1q,

iv) Biweight or Quartic kernel:

Kpuq � 15

16
p1� u2q2 Ip| u |¤ 1q,

v) Triweight kernel:

Kpuq � 35

32
p1� u2q3Ip| u |¤ 1q,
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where Ip�q is an indicator function.

It is well-known that the choice of kernel function does not strongly affect the

performance of the nonparametric regression estimation (Fan and Gijbels, 1996;

Fan et al., 1998). As pointed out by Fan (1992), the Epanechnikov kernel function

achieves the optimal efficiency in the class of all regression functions whose second

derivative is bounded by a constant in the neighbourhood of the point x0. Thus,

we employ the Epanechnikov kernel function in the rest of this thesis.

The choice of bandwidth is more crucial than the choice of the kernel function

because it determines the smoothness of the estimated regression function. As the

bandwidth increases, the estimated regression function goes from undersmoothing

to oversmoothing. As the bandwidth diverges to infinity, the regression function

is approximated by a constant. In the kernel-based estimation, we usually let

the bandwidth tend to zero, which can help capture a complex pattern of the

nonparametric regression function. The details on how to determine an optimal

value of bandwidth will be given in Section 2.1.3.

Another commonly-used local kernel smoothing estimator is the Gasser-Müller

regression estimator proposed by Gasser and Müller (1984), which is defined as

m̂GMpx0q �
ņ

i�1

�» si

si�1

Kb pu� x0q du
�
Yi, (2.6)

with s0 � �8, sn � �8, and si � pXi � Xi�1q{2 for i � 1, . . . , n � 1, where

Kbp�q � Kp�{bq{b, Kp�q is a kernel function and b is a bandwidth.

The bias of the Gasser-Müller regression estimator is

biaspm̂GMpx0qq � b2m2px0q
2

» 8

�8

u2Kpuqdu, (2.7)

and the variance of the Gasser-Müller regression estimator is

σ2
npm̂GMpx0qq � 1.5

�
1

nbfpx0q
» 8

�8

K2puqdu
�
. (2.8)

By comparing with the Nadaraya-Watson regression estimator, the bias of

the Gasser-Müller regression estimator is simpler, but its variance is larger. Both
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the Nadaraya-Watson and the Gasser-Müller regression estimators are based on

local constant approximation, so they suffer from the boundary effect, i.e., the

nonparametric regression estimates usually have large bias near the boundary

points. The so-called local polynomial regression provides an effective way to

address this problem. This will be reviewed in the next section.

2.1.2 Local Polynomial Estimation

The local polynomial regression estimation is more general than the kernel re-

gression estimations, giving estimates for both the regression function and its

derivatives. As in Section 2.1.1, suppose that we have bivariate data pXi, Yiq,
i � 1, . . . , n, which form an independent and identically distributed from a popu-

lation pX, Y q and consider estimating the regression function mpxq at the point of

x � x0.

A local polynomial approximation techniqe is applied to the unknown regres-

sion function mpxq in a neighbourhood of x0. Suppose that the pp� 1qth derivative

of mpxq at the point x0 exists. We consider the following Taylor expansion:

mpxq � mpx0q �mp1qpx0qpx� x0q � mp2qpx0q
2!

px� x0q2

� � � � � mppqpx0q
p!

px� x0qp,
(2.9)

where mpkqpxq is the k-th order derivative of mpxq. We can rewrite the approxima-

tion in (2.9) as

mpxq �
p̧

j�0

β0
j px� x0qj, (2.10)

where

β0
j �

mpjqpx0q
j!

for j � 0, 1, . . . , p.

We next estimate β0
j , j � 0, 1, . . . , p, using the local polynomial method. Con-

sider the weighted least squares objective function:

Q pβ0, β1, . . . , βpq �
ņ

i�1

#
Yi �

p̧

j�0

βjpXi � x0qj
+2

KbpXi � x0q, (2.11)



2.1 Univariate Kernel-Based Regression 10

where Kbp�q � Kp�{bq{b with Kp�q being a kernel function and b being a bandwidth.

Minimise the objective function Q pβ0, β1, . . . , βpq in (2.11) with respect to βj , j �
0, 1, . . . , p, and denote the estimators by β̂0, β̂1, . . . , β̂p. Then, we can obtain the

estimators of the unknown regression function mpx0q and its derivatives:

m̂pjqpx0q � j!β̂j for j � 0, 1, . . . , p.

For convenience, the weighted least squares objective function in (2.11) is

usually written in the matrix form. As in Fan and Gijbels (1996), we write

Qpβq � pY �XβqᵀWpY �Xβq, (2.12)

where

X �

�
����

1 pX1 � x0q � � � pX1 � x0qp
...

...
...

1 pXn � x0q � � � pXn � x0qp

�
���
,

Y �pY1, . . . , Ynq
ᵀ

,

β �pβ0, β1, . . . , βpq
ᵀ

,

and W is the n� n diagonal weight matrix with KbpXi � x0q being the diagonal

components, i.e.,

W � diag tKbpX1 � x0q, . . . , KbpXn � x0qu .

If the pp� 1q � pp� 1q matrix X
ᵀ
WX is invertible, the minimiser to Qpβq can

be obtained as

β̂ � �
X

ᵀ
WX

��1
X

ᵀ
WY, (2.13)

and

m̂pjqpx0q � j!e
ᵀ

j�1β̂,
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where j � 0, 1, . . . , p and ej�1 is a pp � 1q-dimensional vector with the pj � 1qth
entry being one and the others zeros.

Note that when the order of the local polynomial regression is set to be zero, it

reduces to the Nadaraya-Watson regression estimator. The local linear regression

is a special case of the local polynomial regression when the order of the local

polynomial regression is equal to one. The local linear estimation is probably

the most commonly-used local polynomial estimation. More details on local

polynomial regression estimation including its asymptotic theory and empirical

application can be found in Fan and Gijbels (1996).

2.1.3 Bandwidth Selection

The bandwidth selection plays an important role in implementing the kernel

regression estimators. The bandwidth affects the level of smoothness, through

controlling the size of the local neighbourhood in kernel estimation. The trade-

off between bias and variance is usually considered when selecting an optimal

bandwidth. If we choose a small size of bandwidth, then it leads to small bias but

large variance for the kernel estimation. When we increase the size of bandwidth,

the kernel estimation variance can be reduced but the bias would be larger.

In practice, the value of optimal bandwidth is not available, and depends on

the unknown regression function. Several methods for bandwidth selection have

been proposed in the literature. One of the most widely-used methods is the cross-

validation (CV) method introduced by Stone (1974). For simplicity of exposition,

we consider only the cross-validation criteria for the Nadaraya-Watson kernel

regression estimator. The same idea can also be applied to other kernel-based

estimation methods.

The main idea of the cross-validation method is described as follows. The CV

objective function is defined by

CVpbq � 1

n

ņ

i�1

rYi � m̂b,�ipXiqs2wpXiq, (2.14)

where m̂b,�ipXiq is a leave-one-out estimator of mpXiq with the i-th pair of ob-
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servations pXi, Yiq left out in estimation, and wp�q is a weight function. For the

Nadaraya-Watson kernel regression estimator, the leave-one-out estimate m̂�ipXiq
is defined as

m̂b,�ipXiq �
°
j�iKbpXj �XiqYi°
j�iKbpXj �Xiq , (2.15)

where Kbp�q � Kp�{bq{b, Kp�q is a kernel function and b is a bandwidth. Subse-

quently, the optimal bandwidth can be chosen by minimising the CV function

CVpbq defined in (2.14) with respect to b.

2.2 Varying-Coefficient Models

In the traditional linear regression and time series models, it is well-known that

the coefficients involved are often assumed to be constants over a long time

period. There are several parametric methods which can be applied to estimate

the constant coefficients, for instance, ordinary least squares (OLS) estimation,

maximum likelihood estimation (MLE) and Bayesian estimation. However, the

assumption of the constant coefficients in the models is often too restrictive and

violated in many practical applications, e.g., analysis of financial and economic

data collected over a long time horizon. Hence, it may be more appropriate to

allow the coefficients in the models to change over time or with an observable

time series index variable.

The varying-coefficient model proposed by Hastie and Tibshirani (1993) is a

natural extension of the classical linear models by allowing the coefficients in

the models to vary with a random index variable. It can be used to explore the

nonlinear dynamic pattern in univariate or multivariate time series data analysis.

Instead of estimating joint multivariate nonparametric regression function directly,

in the varying-coefficient model, we nonparametrically estimate smooth coefficient

functions, each of which is univariate nonparametric regression function. Thus,

the curse of dimensionality issue can be avoided. The varying-coefficient models

and its generalised version have been extensively developed and received much

attention in the statistics literature, e.g., Cleveland et al. (1992), Chen and Tsay

(1993), Fan and Zhang (1999), Cai et al. (2000), Cai et al. (2000), Xia et al. (2004),
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Fan and Huang (2005) , Kai et al. (2011), and Jiang et al. (2013).

In this section, we give a brief review of the varying-coefficient models and two

estimation methods: one-step estimation and two-step estimation. Both of these

two methods are based on the local polynomial smoothing technique introduced

in Section 2.1.

2.2.1 One-Step Estimation Method

Let Y be a response variable and X1, . . . , Xp be covariates. The varying-coefficient

model can be formulated in the following form:

Y �
p̧

j�1

αjpUqXj � ε, (2.16)

where U is an observable random index variable, αjp�q is an unknown coefficient

function and ε is the error term of the model with

Epε|U,X1, . . . , Xpq � 0 a.s.,

and

Varpε|U,X1, . . . , Xpq � σ2pUq a.s.

Here, we use a.s. to denote almost surely.

Note that model (2.16) allows the unknown coefficient functions

α1pUq, . . . , αppUq to vary with the random index variable U . If U is replaced by

scaled time points, model (2.16) becomes the time- varying coefficient model.

We next introduce the one-step local linear estimation method proposed by

Cleveland et al. (1992) to estimate the smooth coefficient function in (2.16). Assume

that αjp�q has continuous second-order derivatives. For each given u0, we apply

the Taylor expansion to approximate the varying-coefficient functions locally:

αjpuq � αjpu0q � αj
1pu0qpu� u0q, (2.17)

for u in a neighbourhood of u0, αj 1p�q is the first-order derivative function of αjp�q,
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j � 1, . . . , p. Consider the following local least-squares objective function:

QpA,Bq �
ņ

i�1

�
��

Yi �
p̧

j�1

αj � βjpUi � u0qXij

�2

KbpUi � u0q
�

, (2.18)

where A � pα1, . . . , αpqᵀ , B � pβ1, . . . , βpqᵀ , Kbp�q � Kp�{bq{b, Kp�q is a kernel

function and b is a bandwidth.

By minimising the objective function in (2.18), the local linear estimators of the

coefficient functions can be estimated as

α̂pu0q � pIp,Opq
�
Xᵀ

WX
��1 �Xᵀ

WY
�
, (2.19)

where Ip is a p � p identity matrix, and Op is a p � p null matrix with each entry

being 0,

X �

�
�������

X11 X11pU1 � u0q X12 X12pU1 � u0q � � � X1p X1ppU1 � u0q
X21 X21pU2 � u0q X22 X22pU2 � u0q � � � X2p X2ppU2 � u0q

...
...

...
... . . . ...

...

Xn1 Xn1pUn � u0q Xn2 Xn2pUn � u0q � � � Xnp XnppUn � u0q

�
������

,

Y �pY1, . . . , Ynq
ᵀ

,

W �diag tKbpU1 � u0q, . . . , KbpUn � u0qu .

2.2.2 Two-Step Estimation Method

The one-step local linear estimation introduced in Section 2.2.1 is not efficient when

different coefficient functions have different degrees of smoothness and cannot

achieve the optimal estimation convergence rate. To address this problem, Fan

and Zhang (1999) introduce the so-called two-step estimation procedure, which

we review in this section.
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To avoid confusion, we let the subscripts “0”, “1”, and “2” denote those related

to the initial, one-step, and two-step estimators, respectively. We next review the

two-step estimation procedure.

We first obtain the initial estimators of the coefficient function αjpuq, j �
1, . . . , p, by minimising the local least-squares objective function:

Q0pA,Bq �
ņ

i�1

�
��

Yi �
p̧

j�1

tαj � βjpUi � u0quXij

�2

Kb0pUi � u0q
�

, (2.20)

where A � pα1, . . . , αpqᵀ , B � pβ1, . . . , βpqᵀ , Kb0p�q � Kp�{b0q{b0, Kp�q is the kernel

function, and b0 is an initial bandwidth. The obtained initial estimators of the

coefficient function are denoted by α̂1,0pu0q, α̂2,0pu0q, . . . , α̂p,0pu0q.
Without loss of generality, assume that the coefficient function αppuq is

smoother than the rest of the coefficient functions αjpuq, j � 1, . . . , p � 1, which

have the same degree of smoothness. Specifically, the coefficient functions αjpuq
are assumed to have second-order derivatives, and the coefficient function αppuq
has bounded fourth-order derivative. Therefore, for each given point u0, the

coefficient function αppuq can be approximated via

αppuq � αppu0q � α1ppu0qpu� u0q � α
p2q
p pu0q

2!
pu� u0q2 � α

p3q
p pu0q

3!
pu� u0q3, (2.21)

for u in a neighbourhood of u0, where αpkqp p�q is the k-th order derivative of αpp�q
and α1ppu0q � α

p1q
p pu0q.

By using the local cubic approximation in (2.21), we consider the following

local least-squares objective function,

Q1 pA1, B1, αp, βp, γp, δpq �
ņ

i�1

�
Yi �

p�1̧

j�1

tαj � βjpUi � u0quXij � tαp � βppUi � u0q

� γppUi � u0q2 � δppUi � u0q3uXip

�2
Kb1pUi � u0q,

(2.22)

where A1 � pα1, . . . , αp�1qᵀ , B1 � pβ1, . . . , βp�1qᵀ , Kb1p�q � Kp�{b1q{b1, Kp�q is

the kernel function K and b1 is the bandwidth in the first step. Note that b1
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may be different from b0 used in the initial estimation. By minimising the local

least-squares objective functionQ1 pA1, B1, αp, βp, γp, δpq, we obtained the estimates

α̂j, β̂j , j � 1, . . . , p� 1, and α̂p, β̂p, γ̂p, δ̂p. Then, let α̂p,1pu0q � α̂p, which is called the

one-step estimator.

Finally, we substitute the initial estimates α̂1,0p�q, α̂2,0p�q, . . . , α̂p�1,0p�q, and min-

imise the following objective function:

Q2 pαp, βp, γp, δpq �
ņ

i�1

�
Yi �

p�1̧

j�1

α̂j,0pUiqXtj � tαp � βppUi � u0q � γppUi � u0q2

� δppUi � u0q3uXip

�2
Kb2pUi � u0q, (2.23)

where Kb2p�q � Kp�{b2q{b2, Kp�q is the kernel function and b2 is the bandwidth.

Let α̃p, β̃p, γ̃p, and δ̃p be defined by minimising Q2 pαp, βp, γp, δpq with respect to

αp, βp, γp and δp. Denote α̂p,2pu0q � α̃p as the two-step estimator of αppu0q.
Note that the bandwidth b0 for the initial estimates of the coefficient function

is usually chosen to be small for reducing bias in the first step of this procedure.

On the other hand, we consider higher-order smoothing in the second step with a

larger bandwidth b2 to reduce the variance of the final estimator of the coefficient

functions αppu0q. Consequently, the two-step estimator often outperforms the

one-step estimator in numerical studies.

2.3 Factor Models

With rapid developments in data collection techniques and information technol-

ogy over the past decade, a large amount of data can now be observed and usually

characterised by a large number of variables over a long time span. Many tradi-

tional statistical analysis techniques fail in cases where the number of variables in

data analysis exceeds the sample size. Hence, it is important to develop effective

statistical tools for high-dimensional data analysis. Dimension reduction is one of

the most commonly-used techniques to deal with this issue.

The key idea of the dimension reduction is to reduce a large number of initial

variables in the high-dimensional data. It can be done either by removing redun-
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dant variables and keeping only the most relevant variables, or by finding a small

set of features that contain the same (or similar) fundamental information as the

initial variables.

Among the dimension reduction techniques, the high-dimensional factor

model introduced by Chamberlain and Rothschild (1983) is very commonly used.

The main idea of the high-dimensional factor models is to reduce a large number

of initial variables to a small number of common factors that summarise most of

the information contained by the whole data set. It often assumes that both the

cross-sectional dimension p and the time-series length n jointly tend to infinity in

the factor model estimation.

In recent years, the factor models have been extensively studied in financial

and economic data analyses. Some well-known examples of factor models are

the arbitrage pricing theory (ART) (Ross, 1976) and the Fama-French three-factor

model (Fama and French, 1993). As shown in Ross (1976), ART assumes that a few

number of factors can capture the variation in a large number of asset returns. In

the Fama-French three-factor model, it is assumed that the three observed factors

including the market risk, the company size and the value of a company (the

book-to-market ratio) to explain the behaviour of vast stock returns. In reality,

it is often the case that the common factors and the factor number are unknown.

It is crucial to estimate the common factors and determine the factor number in

high-dimensional factor models.

In general, there are two different modelling approaches for the high-

dimensional factor models: the dynamic factor model and the static factor model.

In the dynamic factor model, the common factors are assumed to follow the au-

toregressive process. Moreover, the observed variables in the dynamic factor

model are influenced by the common components as well as their lagged values.

Although the dynamic factor model is more general than the static factor model,

it is more difficult to estimate the dynamic factors and it is not the main focus

of this PhD thesis. Hence, in this section, we only focus on a review of the static

factor model and its estimation, including some selection criteria for the number

of factors.
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2.3.1 Estimation of the High-Dimensional Factor Models

Let xit denote the response variables for unit i observed at a time point t, i �
1, . . . , p and t � 1, . . . , n. The static factor model is defined by,

xit � λ
ᵀ

iFt � uit, (2.24)

where Ft � pFt1, . . . , Ftk0qᵀ is a k0-dimensional vector of the common factors, λi is

a vector of factor loadings, and uit is the idiosyncratic errors. Here, we assume that

the number of the common factors k0 is known and will discuss how to estimate it

in Section 2.3.2.

The static factor model (2.24) can also be written in the vector form:

Xt � BFt �Ut, (2.25)

where Xt � px1t, . . . , xptqᵀ is a p-dimensional vector of observations at time t,

B � pλ1, . . . , λpqᵀ is a p � k0 matrix of factor loadings, Ft is a k0-dimensional

vector of common factors, and Ut � pu1t, . . . , uptqᵀ is a p-dimensional vector of

idiosyncratic errors. For further notational simplicity, the static factor model can

be written in the matrix form:

X � FB
ᵀ �U, (2.26)

where X � pX1, . . . ,Xnq
ᵀ

is an n� p matrix of the observations, F � pF1, . . . ,Fnq
ᵀ

is an n� k0 matrix of common factors, and U � pU1, . . . ,Unq
ᵀ

is an n� p matrix

of the idiosyncratic errors of the model.

There are several methods that can be used to estimate both the common

factors and factor loadings. One of the most commonly-used methods is the

principal components analysis. The classical principal components analysis in

multivariate setting is done by transforming the initial multiple variables to a new

set of variables, which are ordered so that the first few retain most of the variation

that present in all the initial variables.

Connor and Korajczyk (1986) are among the first to propose that the common
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factors can be estimated by applying the principal component analysis method un-

der the assumption that the number of the time dimension n is fixed whereas the

number of cross-sectional dimension p tends to infinity. The idiosyncratic errors

in Connor and Korajczyk (1986) are assumed to be independent and identically

distributed over cross-sectional and time series dimensions. Stock and Watson

(2002a,b) study the approximate factor models by relaxing the restrictive assump-

tion on idiosyncratic errors. Some further developments on deriving asymptotic

properties of the estimators in factor models using the principal component analy-

sis can be found in Bai and Ng (2002) and Bai (2003, 2004).

We next introduce the principal components method to estimate common

factors and factor loadings in the approximate factor model. The estimated factor

loadings λ̂i and the estimated common factors F̂t are obtained by minimising the

least squares objective function:

V pF,Bq �
p̧

i�1

ņ

t�1

pxit � λ
ᵀ

iFtq2 � tr
��

X� FB
ᵀ� �

X� FB
ᵀ�ᵀ

�
, (2.27)

where trp� q is a matrix trace. Clearly, the solution for the objective function in

(2.27) is not unique. If pB̂, F̂q is a solution to minimise V pF,Bq, then pB̂Q, F̂Qq
is also a solution for any k0 � k0 orthogonal matrix Q, satisfying Q

ᵀ
Q � Ik0 . The

solution pB̂, F̂q would be unique by assuming the following restrictions:

F̂
ᵀ
F̂{n � Ik0 and B̂

ᵀ
B̂ is diagonal.

The following procedure can be used to minimise the least squares objective

function in (2.27). By concentrating out B̂, the minimisation in (2.27) is equiva-

lent to maximising trrFᵀpXX
ᵀqFs with respect to F. By using the normalisation

restriction that F̂
ᵀ
F̂{n � Ik0 , the estimated matrix of common factors F̂ is obtained

using the k0 eigenvectors (multiplied by
?
n) of the n� n matrix XX

ᵀ associated

with the k0 largest eigenvalues (ranked in the descending order), and the factor

loadings can be estimated as B̂ � X
ᵀ
F̂{n.

As the non-zero eigenvalues of XX
ᵀ and X

ᵀ
X are the same, an alternative pro-

cedure can be used to minimise the objective function in (2.27). By concentrating



2.3 Factor Models 20

out F̂, the minimisation in (2.27) is equivalent to maximising trrB̂ᵀpXᵀ
XqB̂s. Here,

we assume that the normalisation:

B̂
ᵀ
B̂{p � Ik0 and F̂

ᵀ
F̂ is diagonal.

Subsequently, the estimated factor loadings B̂ is given by the k0 eigenvectors

(multiplied by
?
p) of the p� p matrix X

ᵀ
X associated with the k0 largest eigenval-

ues (ranked in the descending order). Finally, we can construct the estimation of

common factors by F̂ � XB̂{p.

2.3.2 Determining the Number of Common Factors

It is well-known that the number of common factors k0 is usually unspecified. Ac-

curate selection of factor number is an important issue in factor model estimation.

Several methods have been proposed in the literature for selecting a true number

of common factor. As the principal component analysis is used to estimate the

factor models, we first review some classical methods to determine the number

of components. These methods have been commonly used in multivariate data

analysis.

i) Cumulative percentage of total variation (Jolliffe, 2002)

Let λ̂ � pλ̂1, . . . , λ̂pqᵀ be a vector of eigenvalues of a sample covariance matrix
1
n
X

ᵀ
X, which are arranged in descending order and δ be a pre-specified value

of percentage. In this method, the optimal number of common factors k0 is

determined by selecting the smallest number of components to achieve a

certain percentage of the total variance, i.e.,

λ̂1 � � � � � λ̂k

λ̂1 � � � � � λ̂p
¥ δ.

In practical applications, δ is usually chosen as a value between 70% and

90%.

ii) Kaiser’s rule
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Kaiser (1960) introduces a different idea by comparing the eigenvalue of

each principal component with a pre-specified value. In practice, we may

retain the components with eigenvalues greater than the average of the total

variance, which is defined by
1

p

°p
i�1 λ̂i. When the principal components are

obtained from the sample correlation matrix, the total variance equals to p.

As a result, the number of common factors can be selected as the number of

components whose corresponding eigenvalues are greater than one.

iii) Scree plot

The scree plot introduced by Cattell (1966) is a plot of the eigenvalues

λ̂1, . . . , λ̂p (in descending order). For determining the number of compo-

nents, we seek an elbow in the scree plot. If the elbow position is between

the k-th and (k � 1)-th eigenvalues, the number of components is chosen as

k.

In the high-dimensional approximate factor models with both p and n divergent

to infinity, some information criteria can be used to select the number of factors.

We next briefly review these criteria which are introduced and symmetrically

studied by Bai and Ng (2002).

When the number of common factors is k, we let V pkq be the sum of squared

residuals defined by

V pkq � pnpq�1
p̧

i�1

ņ

t�1

pxit � pλ̂ki qᵀF̂k
t q2, (2.28)

where λ̂ki and F̂k
t are the estimated factor loading and common factors by principal

components analysis when the factor number is k.

The objective function for the information criterion is defined by

PCpkq � V pkq � k � gpp, nq,

where gpp, nq is a penalty function satisfying the following conditions:

i) gpp, nq Ñ 0,
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ii) C2
n,p � gpp, nq Ñ 8 with Cn,p � mint?p,?nu.

The above two conditions ensure that k̂ � argminPCpkq is a consistent estimator

of k0, see, for example, Theorem 2 in Bai and Ng (2002).

Bai and Ng (2002) suggest the following choices of gpp, nq in the penalty term:

g1pp, nq � kσ̂2

�
n� p

np



ln

�
np

n� p



,

g2pp, nq � kσ̂2

�
n� p

np



lnC2

n,p,

g3pp, nq � kσ̂2
lnC2

n,p

C2
n,p

,

where σ̂2 is a consistent estimate of pnpq�1
°p
i�1

°n
t�1 Epuitq2. Bai and Ng (2002)

also suggest replacing σ̂2 with V pkmaxq, where kmax is a bounded positive integer

such that k0 ¤ kmax, and

V pkmaxq � pnpq�1
p̧

i�1

ņ

t�1

ê2it, êit � xit � pλ̂kmax
i qᵀF̂kmax

t ,

with λ̂kmax
i and F̂kmax

t being the estimated factor loading and common factors using

kmax factors.

In practice, Bai and Ng (2002) introduce the following three information criteria

objective functions with the logarithmic transformation on V pkq:

IC1pkq � lnpV pkqq � k

�
n� p

np



ln

�
np

n� p



,

IC2pkq � lnpV pkqq � k

�
n� p

np



lnC2

n,p,

IC3pkq � lnpV pkqq � k
lnC2

n,p

C2
n,p

.

The estimated number of factors is obtained such that ICjpkq pj � 1, 2, 3q is

minimised over 1 ¤ k ¤ kmax. The number kmax is often chosen as kmax �
8
Xpmin tn, pu {100qp1{4q\ where t�u denotes the floor function. The numerical studies

in Bai and Ng (2002) show that their information criteria have reliable performance

in finite samples.
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2.4 Linear Factor-Augmented model

In this section, we briefly review the estimation and forecasting methodology for

the linear factor-augmented prediction model. In macroeconomic time series, one

of the most commonly-used techniques is the factor-augmented, or diffusion index,

model (c.f., Stock and Watson, 2002a; Bernanke et al., 2005; Bai and Ng, 2006; Cheng

and Hansen, 2015). The linear factor-augmented model is a natural combination

of the high-dimensional factor model and the linear forecasting model. Unlike

the traditional time series models, the factor-augmented model includes both

lags of response and some latent common factors. Through the factor model, we

can estimate factor regressors which describe the dynamic feature of the high-

dimensional exogenous process. The number of factors is usually much smaller

than the number of exogenous variables. Hence, the use of the factor-augmented

model achieves dimension reduction.

We first introduce estimation of the linear factor-augmented prediction model,

and then review h-step ahead prediction of yt�h where the positive integer h

denotes the forecast horizon. The linear factor-augmented model is defined by

yt�h � β
ᵀ

1Ft � β
ᵀ

2Yt � εt�h, (2.29)

where Yt � pyt, � � � , yt�d0�1qᵀ is a d0 � 1 vector of lags of response variables, β1 �
pβ11, � � � , β1k0q

ᵀ

and β2 � pβ21, � � � , β2d0q
ᵀ

are two column vectors of coefficients,

and εt�h is a predictive model error. The factor regressor Ft is assumed to satisfy

the factor model (2.24) in Section 2.3.1.

The main procedure to estimate the factor-augmented prediction model (2.29)

can be divided into two stages. In the first stage, we estimate the common factors

F̂t by using the principal components method with some restrictions of factors and

factor loading as mentioned in Section 2.3.1. For simplicity, we assume that the

number of factors k0 is pre-specified. It can be estimated by using the information

criteria in Section 2.3.2. In the second stage, the estimated factors F̂t from the first

stage are used as regressors. In this stage, we estimate the coefficients β1 and β2

in the factor-augmented model p2.29q via the ordinary least squares.
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For notational simplicity, the factor-augmented model in p2.29q can be rewritten

as follows:

yt�h � β
ᵀ

HXt � εt�h, (2.30)

where Xt �
�pHFtqᵀ ,Yᵀ

t

�ᵀ
, βH � �

β
ᵀ

1H
�1,β

ᵀ

2

�ᵀ
and H is a k0 � k0 rotation matrix

such that F̂t estimates H
ᵀ
Ft consistently. The specific definition of H will be given

in Section 3.2.

The estimated coefficients of βH , denoted by β̂H , can be constructed as

β̂H �
�
X̂

ᵀ
X̂
	�1

X̂
ᵀ
Y,

where Y � pyh�1, � � � , ynq
ᵀ

and X̂ �
�
X̂1, � � � , X̂n�h

	ᵀ

. By using X̂t and β̂H , we

can construct the h-step ahead prediction of the response variable:

ŷt�h � β̂
ᵀ

HX̂t. (2.31)

According to the factor-augmented model in (2.29), it is worth to point out that

when h � 1 and yt�1 � pFᵀ

t�1,Y
ᵀ

t�1qᵀ , the model becomes the factor-augmented vec-

tor autoregressive (FAVAR) model introduced by Bernanke et al. (2005). Bernanke

et al. (2005) also suggest two techniques to estimate the FAVAR model: the two-

step method based on the principal component estimation of factors, and the

Bayesian method based on Gibbs sampling.



Chapter 3

FA-FCM and Methodology

In this chapter, we propose a new class of functional-coefficient predictive regres-

sion models, i.e., the factor-augmented functional-coefficient models (FA-FCM),

where the regressors consist of auto-regressors and latent factor regressors, and

the coefficients are allowed to vary with a random index variable. A two-stage

estimation procedure is introduced to estimate the rotated coefficient functions. In

the first stage, the latent factor regressors can be estimated by implementing the

principal component analysis as introduced in Section 2.3. In the second stage, we

use a local linear smoothing method to estimate the rotated coefficient functions

using the estimated factor regressors and auto-regressors. For simplicity, the same

bandwidth is employed for all rotated coefficient functions. A one-step ahead

nonlinear forecast of the response variable and a bootstrap procedure are applied

to construct prediction of response and the prediction interval. In addition, the

developed methodology is further extended to the case of multivariate response,

and the model is generalised to the factor-augmented vector predictive regression

with functional coefficients. The main focus of this chapter is to introduce the FA-

FCM structure and the relevant methodology. The numerical studies to examine

finite-sample performance will be given in Chapter 4. The asymptotic properties

as well as their proofs will be given in Chapter 5.

The structure of this chapter is organised as follows. Section 3.1 introduces

FA-FCM with univariate response. Section 3.2 proposes the two-stage estimation

procedure to estimate the rotated coefficient functions. Section 3.3 introduces the

25
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one-step ahead nonlinear forecast method and constructs the prediction interval

by using a bootstrap method. Section 3.4 discusses bandwidth selection and the

criteria for selecting the number of lags. Finally, Section 3.5 considers the extension

to FA-FCM with multivariate response.

3.1 FA-FCM with Univariate Response

As introduced in Section 2.2, the varying-coefficient regression/auto-regression

models are a natural extension of the traditional parametric linear regression/auto-

regression models, and they can be used to explore nonlinear dynamic pattern in

univariate or multivariate time series data analysis. In the last two decades, the

varying-coefficient modelling approach and its generalised version have experi-

enced rapid development (c.f., Chen and Tsay, 1993; Hastie and Tibshirani, 1993;

Fan and Zhang, 1999; Cai et al., 2000; Xia et al., 2004; Kai et al., 2011; Jiang et al.,

2013). Fan and Zhang (2008) and Park et al. (2015) give an extensive review of

some recent developments in the field.

In this thesis, we consider the dynamic time series setting. Let us start with an

introduction of functional-coefficient predictive regression model defined by

yt�1 �
qņ

i�1

α1iputqzti �
d0̧

j�1

α2jputqyt�1�j � εt�1

� Z
ᵀ

tα1putq �Y
ᵀ

tα2putq � εt�1, t � 1, � � � , n, (3.1)

where yt�1 is a response variable, Zt � pzt1, � � � , ztqnqᵀ is a qn-dimensional column

vector of random covariates, Yt � pyt, � � � , yt�d0�1qᵀ is a column vector of d0 lags

of the response, ut is a univariate index variable, α1p�q � rα11p�q, � � � , α1qnp�qs
ᵀ

and

α2p�q � rα21p�q, � � � , α2d0p�qs
ᵀ

are two column vectors of coefficient functions, and

εt�1 is the model error. If the index component ut � t{n with n as the time series

length, the model (3.1) is known as the time-varying coefficient time series model

(c.f., Robinson, 1989; Cai, 2007). In the econometric terminology, the components

of Zt are exogenous variables which are usually determined by the factors outside

of our models, whereas the components of Yt are determined within our model.
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In this thesis, we assume that qn, the number of exogenous covariates Zt,

diverges to infinity as the sample size n grows, but d0, the number of lags, is

fixed. The divergence rate of qn will be specified in Chapter 5 via some technical

assumptions. When the dimension of regressors in the models is ultra large

or moderately large, a commonly-used approach is to apply certain shrinkage

estimation or screening method to remove the insignificant regressors and then

use the significant regressors to build the varying-coefficient models, enhancing

the nonlinear model prediction accuracy (c.f., Wang and Xia, 2009; Lian, 2012;

Fan et al., 2014; Liu et al., 2014; Li et al., 2015). However, as briefly mentioned in

Chapter 1 and pointed out in some variable selection literature such as Fan and Lv

(2008), when irrelevant regressors are highly correlated with some relevant ones,

through the shrinkage or screening approach, these irrelevant regressors might be

selected into the model with higher priority than some other relevant regressors,

leading to high false positive rates and low true positive rates in the variable

selection of the varying-coefficient models. This problem could become worse in

the time series setting as the regressors usually contain some lags of the response

and it is not uncommon to find some strong correlations among the regressors,

see Chen et al. (2018) for some numerical evidences. Therefore, to address this

problem, we need to develop an alternative dimension-reduction technique for

the high-dimensional functional-coefficient predictive regression model (3.1).

As the number of lags is assumed to be fixed, we only need to consider the

dimension reduction on the high-dimensional exogenous regressors Zt. This will

be done by imposing an approximate factor modelling structure which have been

commonly used in the analysis of economic and financial time series data:

Zt � BnFt �Vt, (3.2)

where Bn is a qn � k0 matrix of factor loadings, Ft � pFt1, � � � , Ftk0qᵀ is a k0-

dimensional latent common factor which is stationary and weakly dependent

over time, and Vt is a qn-dimensional column vector of idiosyncratic errors. Note

that the notations used here for the approximate factor model (3.2) are different
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from those used in Section 2.3. The number of factors k0 is unknown, and it can be

determined via some criteria.

The approximate factor model (3.2) has been extensively studied in the liter-

ature, see, for example, Chamberlain and Rothschild (1983), Fama and French

(1993), Bai and Ng (2002), Fan et al. (2013) and the references therein. Through the

factor model (3.2), the latent factor time series process may carry a large proportion

of the “dynamic information” contained in the high-dimensional observable time

series Zt. But k0, the number of factors is typically much smaller than qn, the

dimension of Zt. So, we can achieve dimension reduction. Hence, in this thesis,

instead of directly estimating the dynamic relationship between yt�1 and Zt, we

consider the following functional-coefficient predictive model using the latent

factor regressors:

yt�1 � F
ᵀ

tβ1putq �Y
ᵀ

tβ2putq � εt�1, (3.3)

where β1p�q � rβ11p�q, � � � , β1k0p�qs
ᵀ

and β2p�q � rβ21p�q, � � � , β2d0p�qs
ᵀ

are two column

vectors of coefficient functions, and εt�1 is the error term. A significant difference

between models (3.1) and (3.3) is that the factor regressors Ft in the latter model

(3.3) are unobservable, while all of the regressors in the former model (3.1) are

observable. Furthermore, the number of regressors in the model (3.3) is k0 � d0,

which is fixed and much smaller than that in the model (3.1).

Through a combination of (3.2) and (3.3), we obtain the functional-coefficient

predictive regression model with latent factor regressors and call it as the Factor-

Augmented Functional-Coefficient Model (FA-FCM) throughout the thesis. The

FA-FCM can be viewed as a generalisation of the linear factor-augmented regres-

sion or auto-regression models (c.f., Stock and Watson, 2002a; Bernanke et al., 2005;

Bai and Ng, 2006; Pesaran et al., 2011; Cheng and Hansen, 2015) in which the

factor regressors Ft can be regarded as the “proxy” when we aim to describe the

dynamic relationship between yt�1 and Zt. Through the dimension reduction, it

is expected that the nonlinear forecast using the FA-FCM in (3.3) could be more

accurate than that using the conventional functional-coefficient time series model

(3.1).
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3.2 Estimation of the Rotated Coefficient Functions

As the factor regressors in the model (3.3) are unobservable, they must be deter-

mined from the observed time series data. In this section, we propose a two-stage

estimation procedure to develop a feasible nonparametric estimation approach:

in the first stage, we determine the rotated factor regressors by applying the

principal component analysis (PCA) method as introduced in Section 2.3; and in

the second stage, we estimate the rotated coefficient functions by using the local

linear smoothing technique. We next give a detailed description of the estimation

procedure.

STAGE 1: As mentioned in Section 2.3.1, the PCA is one of the most commonly-

used techniques for dimension reduction. For simplicity, we now assume that k0 is

pre-specified. Chapter 4 will discuss how to determine the number k0 in practice.

In this stage, we obtain the estimated factor regressors by using the principal

components analysis approach. Specifically, letting Zn � pZ1, . . . ,Znq
ᵀ

, an n� qn

matrix of observations, we conduct an eigenanalysis on the n � n (normalised)

matrix ZnZ
ᵀ

n{pnqnq, and obtain

F̂n �
�
F̂1, . . . , F̂n

	ᵀ

,

where F̂n is an n� k0 matrix which consists of the k0 eigenvectors (multiplied by
?
n) associated with the k0 largest eigenvalues of the matrix ZnZ

ᵀ

n{pnqnq (ranked

in the descending order). In addition, we may further construct the estimation of

factor loading matrix (with rotation) by

B̂n � Zᵀ

nF̂n{n,

where we have used the fact of F̂ᵀ

nF̂n{n � Ik0 with Ik0 being a k0 � k0 identity

matrix. Some existing literature (c.f., Bai and Ng, 2002; Stock and Watson, 2002a)

shows that, under some mild conditions, F̂t is a consistent estimate of the rotated
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common factor HFt (see also the proof in Chapter 5), where

H � Q�1
n

�
F̂ᵀ

nFn{n
	 �

Bᵀ

nBn{qn
�
, Fn � pF1, . . . ,Fnq

ᵀ

,

and Qn is a k0�k0 diagonal matrix of the first k0 largest eigenvalues of ZnZ
ᵀ

n{pnqnq
arranged in the descending order. Furthermore, one may prove that the rotation

matrix H is asymptotically invertible, indicating the existence of the inverse matrix

H�1 with probability approaching one.

STAGE 2: We estimate the rotated coefficient functions by employing the local

linear smoothing technique. Specifically, letting Xt �
�pHFtqᵀ ,Yᵀ

t

�ᵀ
, βHp�q ��

β
ᵀ

1p�qH�1,β
ᵀ

2p�q
�ᵀ

and noting that H�1H � Ik0 , we may rewrite model (3.3) as

yt�1 � β
ᵀ

HputqXt � εt�1. (3.4)

As in the literature, we assume that the coefficient functions β1p�q and β2p�q have

continuous second-order derivatives (see Assumption 7(ii) in Chapter 5), implying

that βHp�q have continuous second-order derivatives as well for given H. Instead

of estimating β1p�q and β2p�q, we next use the local linear smoothing method to

estimate the rotated coefficient functions βHp�q. This is the same as the one-step

local linear estimation introduced in Section 2.2.1.

Let

Xnpuq �

�
����

X
ᵀ

1 X
ᵀ

1pu1 � uq
...

...

X
ᵀ

n X
ᵀ

npun � uq

�
���
,

Yn �py2, � � � , yn�1qᵀ ,
Wnpuq �diag tKbpu1, uq, � � � , Kbpun, uqu ,

with Kbput, uq � K pput � uq{bq, where Kp�q is a kernel function and b is a band-

width. Then a local linear estimate of βHpuq can be constructed as

β̃Hpuq � pIk0�d0 ,Ok0�d0q
�
Xᵀ

npuqWnpuqXnpuq
��1 �Xᵀ

npuqWnpuqYn

�
, (3.5)
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where u is on the support of the index variable ut, Ik0�d0 and Ok0�d0 are identity

and zero matrices of dimension pk0 � d0q � pk0 � d0q, respectively. However, the

local linear estimation in (3.5) is infeasible and cannot be implemented directly

as the factor regressors involved in Xt are not observable. In practice, we have

to replace Xt by X̂t �
�
F̂

ᵀ

t ,Y
ᵀ

t

	ᵀ

with F̂t obtained in Stage 1, and let X̂npuq be

defined as Xnpuq with Xt replaced by X̂t. Then, we obtain the following feasible

local linear estimate of βHpuq:

β̂Hpuq � pIk0�d0 ,Ok0�d0q
�
X̂ᵀ

npuqWnpuqX̂npuq
��1 �

X̂ᵀ

npuqWnpuqYn

�
. (3.6)

In Chapter 4, we will compare the finite-sample performance between the

feasible and infeasible local linear estimators. In Chapter 5, we will show that the

feasible local linear estimator β̂Hpuq has the same asymptotic distribution as the

infeasible one β̃Hpuq.

3.3 One-step Ahead Nonlinear Forecast and Boot-

strap Method

Construction of one-step or multi-step ahead forecasting and the relevant pre-

diction interval is an important issue in time series analysis. In this section, we

will first introduce a one-step ahead nonlinear forecasting technique by using the

estimates of the rotated coefficient functions, and then we construct the one-step-

ahead prediction interval by using the wild bootstrap procedure.

Given the observations pyt�1, ut,Ztq with t � 1, � � � , n � 1 and pun,Znq, with

the feasible local linear estimation introduced in Section 3.2, we may obtain the

one-step ahead predicted value of yn�1:

ŷn�1|n � β̂
ᵀ

H,n�1punqX̂n, (3.7)

where β̂H,n�1p�q is the local linear estimate as in (3.6) using only the sample

pyt�1, ut,Ztq, t � 1, � � � , n � 1. In fact, ŷn�1|n defined in (3.7) can be regarded
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as an estimate of

yn�1|n � F
ᵀ

nβ1punq �Y
ᵀ

nβ2punq � β
ᵀ

HpunqXn.

The asymptotic property of ŷn�1|n will be given in Theorem 2 in Chapter 5. In

practice, it is often of interest to further construct the prediction interval of yn�1|n,

which is helpful to examine prediction stability. For given 0   α   1, the p1� αq
prediction interval of yn�1|n can be defined by

�
ŷn�1|n � cα{2 �

b
v̂arpŷn�1|nq, ŷn�1|n � cα{2 �

b
v̂arpŷn�1|nq

�
, (3.8)

where cα{2 is the upper α{2-percentile of
�
ŷn�1|n � yn�1|n

� {av̂arpŷn�1|nq and

v̂arpŷn�1|nq is the estimate of the variance of ŷn�1|n. However, (3.8) cannot be

directly used as neither cα{2 nor v̂arpŷn�1|nq is known. We next use a wild bootstrap

procedure to estimate cα{2 and v̂arpŷn�1|nq, and then proceed to construct a feasible

prediction interval.

We next describe five steps to determine cα{2 and v̂arpŷn�1|nq, which are crucial

to construct the one-step ahead prediction interval of yn�1|n.

STEP 1: Using the observations pyt�1, ut,Ztq, t � 1, � � � , n � 1, we estimate the

rotated coefficient functions βHp�q by the local linear smoothing method (3.6),

and denote the resulting estimates by β̂H,n�1putq for t � 1, � � � , n. Let X̂t, t �
1, � � � , n, be defined as in Section 3.2, where F̂t is obtained by implementing

PCA on the observations of Zt, t � 1, � � � , n. Construct the one-step ahead

forecast ŷn�1|n as in (3.7).

STEP 2: Generate the bootstrap sample:

y�t�1 � X̂
ᵀ

t β̂H,n�1putq � ε�t�1, t � 1, � � � , n� 1,

where ε�t�1 � ε̃t�1 � ηt�1, tηtu is a sequence of independent and identi-

cally distributed (i.i.d.) random variables drawn from a pre-specified dis-

tribution with mean zero and unit variance, such as Np0, 1q, and ε̃t�1 �
ε̂t�1 �

°n�1
t�1 ε̂t�1{pn� 1q with ε̂t�1 � yt�1 � X̂

ᵀ

t β̂H,n�1putq.
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STEP 3: As in Step 1, use the generated data set tpy�t�1, ut, X̂tq : t � 1, � � � , n� 1u
to re-estimate the rotated coefficient functions at ut, t � 1, � � � , n, and denote

the resulting estimates as β̂�
H,n�1putq. Construct the one-step ahead forecast:

ŷn�1|np1q �
�
β̂�
H,n�1punq

�ᵀ

X̂n.

STEP 4: Repeat Steps 2 and 3 for M times and obtain M bootstrap one-step ahead

predicted values, ŷn�1|npiq, i � 1, � � � ,M . The estimate of the variance of

ŷn�1|n is obtained via the sample variance of
 
ŷn�1|npiq : i � 1, � � � ,M(

and

is denoted by v̂ar�pŷn�1|nq.

STEP 5: For each i � 1, � � � ,M , use the sequence ŷn�1|npiq and v̂ar�pŷn�1|nq to com-

pute q�npiq �
�
ŷn�1|npiq � ŷn�1|n

� {av̂ar�pŷn�1|nq, and then obtain the estimate

of cα{2 by calculating the upper α{2-percentile of tq�npiq : i � 1, � � � ,Mu. We

denote the estimate of cα{2 by ĉ�α{2.

Using c�α{2 and var�pŷn�1|nq obtained in the above wild bootstrap procedure, we

can construct the feasible p1� αq prediction interval of yn�1|n by

�
ŷn�1|n � c�α{2 �

b
v̂ar�pŷn�1|nq, ŷn�1|n � c�α{2 �

b
v̂ar�pŷn�1|nq

�
. (3.9)

The above bootstrap method to construct the prediction interval can be seen

as a nonparametric generalisation of the bootstrap prediction interval introduced

by Gonçalves et al. (2017) for the parametric linear factor-augmented regression

model. As in Teräsvirta et al. (2010), here we let the auto-regressors (lags of the

response) in the time series model be invariant when generating the bootstrap

samples, although other bootstrap methods may also be applicable in our setting.

We refer to Zhang and Peng (2010) and Chen et al. (2018) for some recent devel-

opment on constructing the point-wise or simultaneous confidence bands in the

varying-coefficient models.
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3.4 Selection of the Bandwidth and the Number of

Lags

When the coefficient functions in model (3.3) are estimated by using the local linear

smoothing method, the accuracy of the resulting estimates depends on the choice

of bandwidth and the number of lags, both of which are unknown in practice. In

this section, we first introduce a bandwidth selection method proposed by Cai

et al. (2000) for selecting the optimal bandwidth b, and then a forward selection

criterion to determine the number of lags d0.

3.4.1 Selection of the Bandwidth

An important issue in the developed local linear estimation and one-step ahead

nonlinear forecasting approaches is the choice of bandwidth b. Hence, we need to

carefully choose an appropriate bandwidth to implement our proposed method.

As the time series process is assumed to be stationary and weakly dependent (see

Assumption 1 in Chapter 5), the classical cross-validation method introduced in

Section 2.1.3 is not applicable in our setting. We next use a modified multi-fold

cross-validation criterion proposed by Cai et al. (2000) to determine an appropriate

bandwidth for time series data. This criterion will be used in the numerical studies

in Chapter 4.

Let m and Q be two positive integers such that n ¡ mQ. To determine an

optimal bandwidth, we consider usingQ sub-samples of time series, each of length

n � qm, q � 1, 2, . . . , Q, to estimate the coefficient functions. Then, we construct

the one-step ahead nonlinear forecast for each “out-sample” with length m by

using the estimated FA-FCM based on the time series sub-sample observed before

the out-sample, and calculate the mean squared prediction errors. Specifically, we

defined the following average mean squared error:

AMSpbq �
Q̧

q�1

AMSqpbq, (3.10)
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where

AMSqpbq � 1

m

n�qm�m¸
t�n�qm�1

�
yt�1 � β̂

ᵀ

H,qputqX̂t

�2
,

and β̂H,qp�q and X̂t are computed using the sub-sample of time series observations

pyt�1, ut,Ztq, 1 ¤ t ¤ n � qm in (3.6) with the bandwidth re-scaled to be b �
rn{pn� qmqs1{5. In our numerical studies, as suggested by Cai et al. (2000), we use

m � t0.1nu and Q � 4, where t�u denotes the floor function.

3.4.2 Selection of the Number of Lags

In order to implement the proposed estimation and forecasting method, we need

to specify d0, the number of lags in the predictive regression model (3.3). The

model selection issue in parametric linear factor-augmented models is recently

studied by Djogbenou (2017). However, his selection criterion is not applicable

to our nonparametric model setting. In this section, We use the forward selection

criterion as a screening tool and employ the Bayesian Information Criteria (BIC)

as the stopping rule to estimate d0, motivated by the forward selection method

introduced by Wang (2009) and Cheng et al. (2016) for the high-dimensional

regression models without any latent factor regressor.

If the number of lags is assumed to be d, a positive integer, we let β̂Hpu|dq be

the feasible local linear estimate of the rotated coefficient function βHpuq, similar to

the definition of β̂Hpuq given in (3.6). Let X̂tpdq be defined as X̂t when the number

of lags is d. In the forward selection procedure, we examine the change of residual

sum of squares defined by

σ̂2
npdq �

1

n

ņ

t�1

�
yt�1 � β̂

ᵀ

Hput|dqX̂tpdq
�2
,

and compute the BIC value as in Wang and Xia (2009):

BICpdq � log σ̂2
npdq � d � logpnbq

nb
, (3.11)

when the lags of response are sequentially added to the FA-FCM. Specifically,
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we start with the predictive regression model without any lag (d � 0) in which

case BICp0q � log σ̂2
np0q. In the second step, we add the first lag to the model

and compute BICp1q. Continue this forward procedure by adding one lag in

each step, and determine the number of lags in the proposed FA-FCM as d̂ so

that BICpd̂ � 1q ¡ BICpd̂q. Our numerical studies show that the above forward

procedure selects the number of lags accurately in finite samples.

3.5 FA-FCM with Multivariate Response

The parametric linear vector auto-regressive models have been commonly applied

in analysing multiple macroeconomic time series data (Sims, 1980; Lütkepohl,

2005). In recent years, to deal with high-dimensional time series and achieve

dimension reduction, there has been increasing interest on combining the approxi-

mate factor model and linear vector auto-regression and studying the so-called

factor-augmented vector auto-regressive models. The latter modelling approach

is first introduced by Bernanke et al. (2005), and has been extensively studied in

recent years (c.f., Bai and Ng, 2006; Bai et al., 2016).

In this section, we aim to make a further extension of the factor-augmented

vector auto-regression by allowing the coefficient matrices to vary with an index

variable, and generalise the FA-FCM and the relevant methodologies developed

in the Sections 3.2 and 3.3 to the case of multiple response variables. Specifically,

suppose (3.2) and

ȳt�1 � B
ᵀ

0putqFt �
d1̧

k�1

B
ᵀ

kputqȳt�1�k � ε̄t�1, (3.12)

where ȳt�1 is p0-dimensional column vector of response variables, B0p�q is a k0�p0
matrix of coefficient functions and Bkp�q is a p0 � p0 matrix of coefficient functions,

k � 1, � � � , d1, and ε̄t is a p0-dimensional column vector of errors.

Model (3.12) generalises the multivariate functional-coefficient time series

model proposed by Jiang (2014) which excludes the latent factor regressors in the

predictive model. To simplify the discussion, we assume that the dimension p0 is
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fixed.

Consider estimating the matrices of coefficient functions by using the local

linear method as in Section 3.2. Let

X̄t � �pHFtqᵀ , ȳᵀ

t , � � � , ȳ
ᵀ

t�d1

�ᵀ
,

B̄Hp�q � �
B

ᵀ

0p�qH�1,B
ᵀ

1p�q, � � � ,B
ᵀ

d1
p�q� ,

and then rewrite (3.12) as

ȳt�1 � B̄HputqX̄t � ε̄t�1. (3.13)

As the rotated factor regressors HFt are latent, to develop a feasible nonpara-

metric estimation method, we have to replace HFt by the PCA estimate F̂t

defined in Stage 1 of the estimation procedure introduced in Section 3.2. Let

Ỹn � pȳ2, � � � , ȳn�1q and

X̃npuq �

�
����

X̃
ᵀ

1 X̃
ᵀ

1pu1 � uq
...

...

X̃
ᵀ

n X̃
ᵀ

npun � uq

�
���
,

where X̃t is defined as X̄t but with HFt replaced by F̂t. Then, similarly to (3.6), we

can obtain the following feasible local linear estimates of B̄Hpuq and its derivative

B̄1
Hpuq:

�
B̃Hpuq, B̃1

Hpuq
�
�
�
ỸnWnpuqX̃npuq

� �
X̃ᵀ

npuqWnpuqX̃npuq
��1

, (3.14)

where Wnpuq is defined in Section 3.2. As in Theorem 1 to be given in Chapter

5, under some regularity conditions, we may prove that the above local linear

estimators are asymptotically equivalent to those directly using the unobservable

rotated factor regressors HFt.

Finally, the one-step ahead nonlinear forecast of ȳn�1 can be constructed by
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following that in Section 3.3, i.e.,

ỹn�1|n � B̃H,n�1punqX̃n, (3.15)

where B̃H,n�1p�q is the local linear estimate as constructed in (3.14) using the sample

pȳt�1, ut,Ztq, t � 1, � � � , n � 1. The wild bootstrap method introduced in Section

3.3 can be used to construct the prediction intervals for the multiple response.



Chapter 4

Numerical Studies

In this chapter, we provide two simulated examples and one empirical application

to evaluate the finite-sample performance of the methods proposed in Chapter 3.

4.1 Simulation studies

In this section, we give the simulation studies under two different settings. The

first simulated example is used to examine the accuracy of the proposed model

with univariate response. The second simulated example is conducted to examine

the performance of the model with bivariate response. Throughout the simulation

studies, the kernel function is chosen as the Epanechnikov kernel introduced in

Section 2.1.1.

4.1.1 Example 1 with Univariate Response

In this section, we consider the following univariate FA-FCM:

yt�1 � F
ᵀ

tβ1putq �Y
ᵀ

tβ2putq � σ � εt�1, t � 1, � � � , n, (4.1)

where β1puq � rβ11puq, � � � , β1k0puqs
ᵀ

and β2puq � rβ21puq, � � � , β2d0puqs
ᵀ

are two

column vectors of coefficient functions, k0 � 4, d0 � 3, β11puq � sinpuq, β12puq �
cospuq, β13puq �

?
u, β14puq � log p1� uq, β21puq � 1

4
sinpuq, β22puq � 1

4
cospuq and

39
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β23puq � 1
4
. The observations of the index variable ut are independently generated

from Up0, 1q, the model errors εt are independently generated from Np0, 1q, σ is

chosen as 0.2, Ft � pFt1, � � � , Ft4qᵀ is a four-dimensional latent common factor

vector with each factor component generated from the following ARp1q process:

Ftk � 0.5 � Ft�1,k � ztk, k � 1, 2, 3, 4, (4.2)

where zt are i.i.d. and follow the standard normal distribution. In addition, we use

the factor model structure (3.2) to generate the exogenous observations Zt, where

each row of the qn � k0 factor loading matrix Bn is independently generated from

Np04, I4q and the idiosyncratic error vector Vt � Np0qn , Iqnq. The sample size n is

set as 200, 500 and 1000, whereas the dimension qn is set as 20, 150 and 500. The

replication number is 200.

In the simulation, we use the observations pyt�1, ut,Ztq to construct the local

linear estimates of the rotated coefficient functions β1puq and β2puq in the pre-

dictive model (4.1), and then obtain the one-step ahead nonlinear forecast of the

response as introduced in Section 3.3.

The common factors Ft and its number are usually unknown in practice. In

this simulation, the latent factors are estimated by the PCA technique introduced

in Section 2.3.1, and the number of factors is determined by choosing the first few

eigenvectors of ZnZ
ᵀ

n{pnqnq (corresponding to the first few largest eigenvalues)

such that 80% of the total variation is accounted for. The latter criterion is also

used by Chen et al. (2018) and performs well in our simulation. Table 4.1 shows

the estimation result for the factor number. We find that when the dimension qn is

as large as 150, the number of common factors can be very accurately estimated

over 200 replications.

The bandwidth in the developed local linear smoothing method is determined

by the modified multi-fold cross-validation method introduced in Section 3.4.1.

Furthermore, to save the computational time, for each combination of n and qn, we

only compute the average of the bandwidths (minimising the AMS function) over
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Table 4.1: The percentages of correctly selecting the factor number in 200 replica-
tions in Example 1

qn

n 200 500 1000

20 80.0% 83.5% 87.0%

150 100.0% 100.0% 100.0%

500 100.0% 100.0% 100.0%

20 replications for both the infeasible and feasible local linear estimations. Then we

use this average value as the optimal bandwidth in our simulation. The simulated

results for the optimal bandwidths and minimum of AMS are summarised in the

following tables.

Table 4.2: The average of the bandwidth for the infeasible local linear estimations
in Example 1

qn

n 200 500 1000

20 0.5650 0.3425 0.3150

150 0.6025 0.4325 0.2825

500 0.5750 0.4100 0.2850

Table 4.3: The average of minimum AMS for the infeasible local linear estimations
in Example 1

qn

n 200 500 1000

20 0.189653 0.169835 0.163798

150 0.191634 0.165929 0.167936

500 0.199697 0.167018 0.165778
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Table 4.4: The average of the bandwidth for the feasible local linear estimations in
Example 1

qn

n 200 500 1000

20 0.7800 0.5925 0.4325

150 0.6400 0.4375 0.2975

500 0.6000 0.4225 0.2925

Table 4.5: The average of minimum AMS for the feasible local linear estimations in
Example 1

qn

n 200 500 1000

20 0.670779 0.575377 0.514620

150 0.232345 0.211111 0.212695

500 0.215317 0.181714 0.177993

From the results in Tables 4.2-4.5, the optimal bandwidths and the correspond-

ing minimum AMS values are similar between the feasible local linear estimation

and the infeasible when both the sample size n and the dimension qn are large. For

both the infeasible and feasible local linear estimations, we find that as the sample

size n increases, the values of the optimal bandwidths decrease.

The forward selection procedure with the BIC stopping rule introduced in

Section 3.4.2 is used to determine the number of lags in the predictive model.

From Table 4.6, we find that the overall performance of the forward selection

method is satisfactory, and it improves as either the dimension qn or the sample

size n increases.
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Table 4.6: The percentages of correctly finding the lag number in 200 replications
in Example 1

qn

n 200 500 1000

20 92.5% 95.5% 98.5%

150 92.5% 98.5% 100.0%

500 97.0% 99.5% 100.0%

We next examine the finite-sample performance of the one-step ahead nonlinear

forecasting method constructed in Section 3.3. The simulated sample is split into

two parts: the “in-sample” (containing the first 90% of the time series observations)

used for estimation, and the “out-sample” (containing the last 10% of the time

series observations) used for prediction. The forecasting performance is measured

via the following Mean Squared Prediction Error (MSPE):

MSPE � 1

t0.1nu

ņ

t�n�t0.1nu

�
ŷt�1|t � yt�1

�2
, (4.3)

where ŷt�1|t is defined as in (3.7). For the aim of comparison, we also consider

the infeasible local linear estimation defined in (3.5) and use it to construct the

infeasible one-step ahead nonlinear forecast.

Table 4.7: MSPE of the infeasible one-step ahead forecast in Example 1

qn

n 200 500 1000

20 0.046389 (0.015) 0.042255 (0.009) 0.041290 (0.007)

150 0.047819 (0.014) 0.043122 (0.009) 0.041390 (0.006)

500 0.046349 (0.013) 0.042422 (0.009) 0.041388 (0.006)
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Table 4.8: MSPE of the feasible one-step ahead forecast in Example 1

qn

n 200 500 1000

20 0.160698 (0.060) 0.142234 (0.044) 0.141089 (0.041)

150 0.061223 (0.019) 0.054664 (0.011) 0.052289 (0.007)

500 0.049660 (0.015) 0.045416 (0.010) 0.044540 (0.006)

Tables 4.7 and 4.8 give the mean and standard error (in parentheses) of the

MSPE values over 200 replications for the infeasible and feasible nonlinear fore-

casts, respectively. By comparing the MSPE values in the two tables, we may find

that although the infeasible nonlinear forecast outperforms the feasible one (which

is unsurprising and mainly due to the estimation error in the PCA estimation

of the latent factors), the difference becomes very small when the dimension qn

increases to 500. In addition, Figures 4.1-4.3 give the 95% prediction interval in

the out-sample forecasting by using the wild bootstrap procedure introduced in

Section 3.3 with qn � 20, 150, and 500, respectively.
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(a) n � 200

(b) n � 500

(c) n � 1000

Figure 4.1: The solid curve denotes the true values of the response yt�1, the dotted
curve denotes the one-step ahead nonlinear forecasted values ŷt�1|t, and the grey
area denotes the 95% prediction interval of the response in the out-sample when
qn � 20 in Example 1.
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(a) n � 200

(b) n � 500

(c) n � 1000

Figure 4.2: The solid curve denotes the true values of the response yt�1, the dotted
curve denotes the one-step ahead nonlinear forecasted values ŷt�1|t, and the grey
area denotes the 95% prediction interval of the response in the out-sample when
qn � 150 in Example 1.
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(a) n � 200

(b) n � 500

(c) n � 1000

Figure 4.3: The solid curve denotes the true values of the response yt�1, the dotted
curve denotes the one-step ahead nonlinear forecasted values ŷt�1|t, and the grey
area denotes the 95% prediction interval of the response in the out-sample when
qn � 500 in Example 1.



4.1 Simulation studies 48

4.1.2 Example 2 with Bivariate Response

In this section, we consider the bivariate factor-augmented functional-coefficient

model with the following form:

ȳt�1 � B
ᵀ

0putqFt �
2̧

k�1

B
ᵀ

kputqȳt�1�k � ε̄t�1, (4.4)

where ȳt � py1t, y2tqᵀ is a bivariate response vector, Ft is a four-dimensional latent

factor vector generated in the same way as in Example 1, ε̄t � pε1t, ε2tqᵀ with ε1t

and ε2t being independently generated from Np0, 1q, B0p�q is a 4 � 2 matrix of

coefficient functions and Bkp�q is a 2� 2 diagonal matrix of coefficient functions,

k � 1, 2. Specifically,

B
ᵀ

0puq �
�
�B0,11puq B0,12puq B0,13puq B0,14puq
B0,21puq B0,22puq B0,23puq B0,24puq

�
�

B
ᵀ

1puq �
�
�B1,11puq B1,12puq
B1,21puq B1,21puq

�
� , B

ᵀ

2puq �
�
�B2,11puq B2,12puq
B2,21puq B2,21puq

�
� ,

where B0,11puq � sinpuq, B0,12puq � cospuq, B0,13puq �
?
u, B0,14puq � log p1� uq,

B0,21puq � 2u, B0,22puq � p1 � uq2, B0,23puq � 1{ exppuq and B0,24puq � cos2puq; for

k � 1, 2, Bk,11puq � Bk,22puq � 0.2 � Ipu ¤ 0.5q � 0.4 � Ipu ¡ 0.5q and Bk,12puq �
Bk,21puq � 0.3 � Ipu ¤ 0.5q�0.2 � Ipu ¡ 0.5q, Ip�q denotes the indicator function. The

definitions of B1puq and B2puq ensure that the generated bivariate observations

ȳt have a stationary pattern over time. In addition, the generating scheme for the

index variable ut and the exogenous variables Zn is the same as that in Example 1.

The sample size n is set to be 200, 500 and 1000, and the dimension qn of Zn is set

to be 20, 150 and 500.

Tables 4.9 and 4.10 give the percentages of correctly choosing 4 latent factors

(which account for at least 80% of the total variation) and the percentages of accu-

rately identifying 2 lags in the model, respectively. Like in the case of univariate

response (Example 1), the proposed methods have reliable numerical performance

in specifying the predictive model structure.
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Table 4.9: The percentages of correctly selecting the factor number in 200 replica-
tions in Example 2

qn

n 200 500 1000

20 83.5% 85.0% 91.0%

150 100.0% 100.0% 100.0%

500 100.0% 100.0% 100.0%
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Table 4.10: The percentages of correctly finding the lag number in 200 replications
in Example 2

qn

n 200 500 1000

20 74.5% 86.5% 97.5%

150 71.0% 78.5% 89.0%

500 73.0% 81.5% 90.5%

As in Example 1, we apply the multi-fold cross-validation criterion proposed

in Section 3.4.1 to select the optimal bandwidth. The optimal bandwidth can be

chosen by minimising the AMS function in (3.10). The estimated bandwidths and

the minimum values of AMS are summarised in Tables 4.11-4.14.

Table 4.11: The average of the bandwidth for the infeasible local linear estimations
in Example 2

qn

n 200 500 1000

20 0.1665 0.0795 0.0400

150 0.1645 0.0730 0.0385

500 0.1830 0.0745 0.0430
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Table 4.12: The average of minimum AMS for the infeasible local linear estimations
in Example 2

qn

n 200 500 1000

20 0.795209 0.470228 0.317070

150 0.795775 0.411576 0.338338

500 0.766907 0.494591 0.353485

Table 4.13: The average of the bandwidth for the feasible local linear estimations
in Example 2

qn

n 200 500 1000

20 0.2105 0.0910 0.0545

150 0.1735 0.0745 0.0405

500 0.1855 0.0745 0.0440

Table 4.14: The average of minimum AMS for the feasible local linear estimations
in Example 2

qn

n 200 500 1000

20 1.485806 1.018779 0.876313

150 0.877193 0.476728 0.397177

500 0.803621 0.514640 0.370274
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Table 4.15: MSPE of the infeasible one-step ahead forecast in Example 2

qn

n 200 500 1000

20 0.703400 (0.281) 0.649507 (0.190) 0.624566 (0.136)

150 0.744730 (0.368) 0.648674 (0.177) 0.628194 (0.133)

500 0.703471 (0.324) 0.646440 (0.191) 0.614113 (0.131)

Table 4.16: MSPE of the feasible one-step ahead forecast in Example 2

qn

n 200 500 1000

20 0.832918 (0.325) 0.751301 (0.212) 0.717344 (0.144)

150 0.761248 (0.369) 0.659639 (0.178) 0.641022 (0.135)

500 0.709743 (0.325) 0.650851 (0.191) 0.617325 (0.131)

As in Example 1, we also split the simulated sample into the in-sample (with

the first 90% of the time series observations) used for estimation and out-sample

(with the last 10% of the time series observations) used for prediction. To measure

the forecasting accuracy, we compute the accumulated MSPE for both y1,t�1 and

y2,t�1 within the out-sample, where both the infeasible and feasible local linear

estimation of the rotated coefficient functions are considered. The relevant MSPE

values are given in Tables 4.15 and 4.16, from which we may find that the nonlinear

forecast using the feasible local linear estimation has similar forecasting accuracy

to the infeasible one assuming the latent factors are known a priori (in particular

when the dimension pn is as large as 150). In addition, Figures 4.4-4.9 give the 95%

prediction interval for y1,t�1 and y2,t�1, respectively, in the out-sample forecasting,

using the bootstrap procedure.
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(a) n � 200

(b) n � 500

(c) n � 1000

Figure 4.4: The solid curve denotes the true values of the response y1,t�1, the
dotted curve denotes the one-step ahead nonlinear forecasted values, and the grey
area denotes the 95% prediction interval of the response in the out-sample when
qn � 20 in Example 2.
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(a) n � 200

(b) n � 500

(c) n � 1000

Figure 4.5: The solid curve denotes the true values of the response y1,t�1, the
dotted curve denotes the one-step ahead nonlinear forecasted values, and the grey
area denotes the 95% prediction interval of the response in the out-sample when
qn � 150 in Example 2.



4.1 Simulation studies 55

(a) n � 200

(b) n � 500

(c) n � 1000

Figure 4.6: The solid curve denotes the true values of the response y1,t�1, the
dotted curve denotes the one-step ahead nonlinear forecasted values, and the grey
area denotes the 95% prediction interval of the response in the out-sample when
qn � 500 in Example 2.
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(a) n � 200

(b) n � 500

(c) n � 1000

Figure 4.7: The solid curve denotes the true values of the response y2,t�1, the
dotted curve denotes the one-step ahead nonlinear forecasted values, and the grey
area denotes the 95% prediction interval of the response in the out-sample when
qn � 20 in Example 2.
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(a) n � 200

(b) n � 500

(c) n � 1000

Figure 4.8: The solid curve denotes the true values of the response y2,t�1, the
dotted curve denotes the one-step ahead nonlinear forecasted values, and the grey
area denotes the 95% prediction interval of the response in the out-sample when
qn � 150 in Example 2.
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(a) n � 200

(b) n � 500

(c) n � 1000

Figure 4.9: The solid curve denotes the true values of the response y2,t�1, the
dotted curve denotes the one-step ahead nonlinear forecasted values, and the grey
area denotes the 95% prediction interval of the response in the out-sample when
qn � 500 in Example 2.
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4.2 An empirical example

In this section, we apply the developed predictive model and forecasting method-

ology to predict the UK inflation change. The data set were downloaded from the

Office for National Statistics (ONS) and the Bank of England (BoE) websites, and

covers the time period from the first quarter (Q1) of 1997 to the fourth quarter

(Q4) of 2013. This data set has been analysed in Chen et al. (2018) which explore

the nonlinear dynamic relationship between the response yt and the exogenous

regressors Zt as well as the lags yt�j . This is different from the predictive regres-

sion structure considered in this thesis. In the following empirical analysis, the

response yt is defined as the UK consumer price index (CPI), and the exogenous

variables Zt are the 53 series of measuring the real activity and other economic

indicators to forecast CPI.

As in Chen et al. (2018), we divided the dataset into 2 parts used for estimation

and prediction, respectively. The first part of the training set covers the time period

from Q1/1997 to Q4/2012, and the second part of the forecasting set covers the

time period from Q1/2013 to Q4/2013. All of the quarterly observations have

been seasonally adjusted. Furthermore, as in Stock and Watson (1998, 1999) and

Chen et al. (2018), we considered one of the following 4 transformations on the

time series variables (depending on their nature): (i) no transformation, (ii) first

difference, (iii) logarithm, and (iv) first difference of logarithms. The transformed

CPI and the 53 predictor series were further normalised to have zero mean and

unit variance with the training data set of size n � 62. The original CPI and the

normalised first-difference of CPI are plotted in Figures 4.10 and 4.11.
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Figure 4.10: Plot of the original CPI series from Q1/1997 to Q4/2013.

Figure 4.11: Plot of the transformed CPI series from Q1/1997 to Q4/2013.
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Due to the high-dimension of the exogenous regressors, we imposed the ap-

proximate factor model structure (3.2) on Zt. As in the simulated examples, we

chose four PCA estimated common factors which account for 82.34% of the total

variation. Consider the following FA-FCM:

yt�1 �
4̧

k�1

Ftkβ1kputq �
d0̧

k�1

yt�1�kβ2kputq � εt�1, (4.5)

where the index variable ut is yt, the UK consumer price index.

We first applied the feasible local linear method to estimate the rotated co-

efficient functions in (4.5), where the Epanechnikov kernel was used and the

optimal bandwidth is 0.03 determined by the multi-fold cross-validation criterion

introduced in Section 3.4.1. For calculating the AMS values in the multi-fold cross-

validation criterion, we set the potential lags as 8. In this analysis, we also tried

the different values of the number of lags, and the results are not reported here.

To implement the forecasting model in (4.5), we need to select a number of lags.

Consequently, the number of lags, d0, was determined via the forward selection

procedure with the BIC stopping rule introduced in Section 3.4.2. As seen from

Figure 4.12, the lag number d0 is estimated as 6.
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Figure 4.12: The change of the BIC function.

Finally, we constructed the one-step ahead nonlinear forecast as in (3.7). In

order to measure the prediction accuracy, we computed the MSPE and the mean

absolute prediction error (MAPE) defined as

MSPE � 1

4

4̧

t�1

�
y64�t � ŷ64�t|63�t

�2
, MAPE � 1

4

4̧

t�1

��y64�t � ŷ64�t|63�t
�� .

The MPSE and MAPE values for the out-sample prediction using the proposed

FA-FCM are 0.0634 and 0.2114, respectively. For the aim of comparison, we also

consider using the traditional autoregressive (AR) model, the vector autoregressive

(VAR) model consisting of CPI, oil price, effective sterling exchange rate and BoE’s

base interest rate and the unemployment rate Phillips curve in the out-sample

prediction as in Chen et al. (2018). In AR and VAR models, the order of the

autoregressions are chosen by the Akaike information criterion (AIC). Let L be the

lag operator, and ∆ be the first difference operator. The Phillips curve specification
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is defined by

It�1 � It � α � βpLqut � γpLq∆It � εt�1,

where It is the t-th quarter of CPI, ut is the unemployment rate, βpLq � β0 � β1L�
β2L

2 � β3L
3 and γpLq � γ0 � γ1L� γ2L

2 � γ3L
3 are lag polynomials. The relevant

MPSE values are 0.0767 (AR), 0.1027 (VAR) and 1.1900 (Phillips) and the relevant

MAPE values are 0.2338 (AR), 0.2456 (VAR) and 1.0170 (Phillips), respectively. The

MPSE and MAPE results for the AR and VAR models and the unemployment rate

Phillips curve are directly quoted from Table 5.3 in Chen et al. (2018). Through the

comparison, we find that the developed FA-FCM and the one-step ahead nonlinear

forecasting approach have the most accurate performance in predicting the UK

inflation change. In addition, Figure 4.13 gives the 95% prediction interval of the

transformed CPI, yt�1, from Q1/2013 to Q4/2013 by using the wild bootstrap

procedure introduced in Section 3.3.

Figure 4.13: The solid curve denotes the true values of the transformed CPI yt�1,
the dotted curve denotes the one-step ahead nonlinear forecasted values ŷt�1|t,
and the grey area denotes the 95% prediction interval of the transformed CPI from
Q1/2013 to Q4/2013.



Chapter 5

Main Asymptotic Theorems

In this chapter, we give the asymptotic results for the methodologies developed in

Chapter 3. In particular, we show that the local linear estimator and the nonlinear

forecast using the estimated factor regressors are asymptotically equivalent to

those using the true latent factor regressors under some regularity conditions. In

this chapter, we only derive asymptotic theorems for FA-FCM with univariate

response. Similar properties also hold for FA-FCM with multivariate response.

Throughout this chapter, we let } � } denote the Euclidean norm of a vector and

} � }F denote the Frobenius norm of a matrix.

5.1 Technical Assumptions

We next list the regularity conditions which are needed for proving the asymptotic

theorems.

ASSUMPTION 1. (i) The process tpyt, ut,Ft,Vtqu is stationary and α-mixing de-

pendent with the mixing coefficient satisfying αk � cαρ
k, where

0   cα   8 and 0   ρ   1.

(ii) The index variable ut has a compact support C � r0, 1s, and its density

function fp�q has continuous second-order derivatives and is bounded away

from zero and infinity over r0, 1s.

ASSUMPTION 2. (i) The latent factor regressors satisfy the conditions that EpFtq �
64
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0k0 , the k0 � k0 matrix ΛF puq � E
�
FtF

ᵀ

t |ut � u
�

is continuous and positive

definite over u P C, and E
�}Ft}2p2�δq

�   8 for some

0   δ   8, where 0k is a k-dimensional null vector.

(ii) There exists a k0 � k0 matrix ΛB such that ΛB � limnÑ8 Bᵀ

nBn{qn. The

matrix ΛB is positive definite with the smallest eigenvalue bounded away

from zero.

(iii) There exist two k0 � k0 non-singular matrices Q0 and Λ̂F such that

Q0 � limnÑ8 Qn and Λ̂F � limnÑ8 F̂ᵀ

nFn{n with probability approaching

one, where F̂n and Fn are defined in Section 3.2.

ASSUMPTION 3. Letting X�
t �

�
F

ᵀ

t ,Y
ᵀ

t

�ᵀ

, the pk0� d0q � pk0� d0q matrix ΛXpuq �
E
�
X�
tX

�ᵀ

t |ut � u
�

is continuous and positive definite over u P C. Moreover,

E
�|yt|2p2�δq�   8.

ASSUMPTION 4. The kernel function Kp�q is positive and Lipschitz continuous

with a compact support.

ASSUMPTION 5. The bandwidth b satisfies b Ñ 0 and n1�τ�1{p2�δqb Ñ 8, where

τ ¡ 0 can be arbitrarily small and δ is defined in Assumption 2(i).

ASSUMPTION 6. (i) The idiosyncratic errors vtk satisfy Ervtks � 0 and

max1¤k¤qn Er|vtk|2δ1s   8 with δ1 ¡ 2, and there exists a positive constant m0

such that

max
1¤t¤n

E

�
�
�����
qņ

k�1

Bkvtk

�����
δ1
�
� ¤ m0q

δ1{2
n (5.1)

and

max
1¤t,s¤n

E

�
�
�����
qņ

k�1

pvtkvsk � Ervtkvsksq
�����
δ1
�
� ¤ m0q

δ1{2
n . (5.2)

(ii) Let qn{pnbq Ñ 8 and n � o
�rqn{pnbqsδ�{2�, where

δ�1
� � maxt1{r2p2� δqs � 1{δ1, 2{δ1u.

ASSUMPTION 7. (i) The sequence tεtu is i.i.d. with Erεts � 0,

0   σ2
ε :� Erε2t s   8 and Er|εt|2�δs   8, where δ is defined in Assumption
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2(i). Furthermore, εt�1 is independent of pus,Fs,Vsq, s ¤ t.

(ii) Both β1p�q and β2p�q have continuous second-order derivatives.

REMARK 1. The α-mixing dependence condition on the stationary process in

Assumption 1(i) is mild and has been widely used on analysing nonlinear time

series (c.f., Bosq, 1998). The geometric decaying rate on the mixing coefficient and

the compact support restriction on the index variable in Assumption 1 are imposed

to facilitate our proofs and can be relaxed at the cost of more lengthy arguments in

the poofs. The conditions in Assumption 2 are common in PCA estimation of the

approximate factor models (c.f., Bai and Ng, 2002, 2006). Assumptions 3–5 and

7(ii) are needed as the local linear smoothing method is used in our estimation and

forecasting procedures. In particular, the strong moment condition and bandwidth

restriction can ensure the validity of uniform consistency results in Theorem 1 and

Corollary 1 in Section 5.2. Assumption 6(i) is similar to the condition B4 in Chen

et al. (2018), indicating that for any t, vit is allowed to be weakly dependent over i.

Assumption 6(ii) shows that both n and qn diverge to infinity simultaneously in

our asymptotic results and their relationship relies on the moment conditions. In

particular, the dimension of exogenous regressors is allowed to be much larger

than the time series length.

5.2 Asymptotic Properties

In this section, we establish the asymptotic properties for the estimation of rotated

coefficient functions in Section 3.2 and the one-step ahead nonlinear forecasting

technique in Section 3.3. The following theorem shows that the feasible local linear

estimator β̂Hpuq defined in (3.6) is asymptotically equivalent to the infeasible one

β̃Hpuq uniformly over u P C.

THEOREM 1. Suppose that Assumptions 1–6 in Section 5.1 are satisfied. Then,

sup
uPC

���β̂Hpuq � β̃Hpuq
��� � oP

�pnbq�1{2
�
. (5.3)

Let µj �
³
ujKpuqdu, νj �

³
ujK2puqdu, H0 � Q�1

0 Λ̂FΛB, H̄0 � diag tH0, Id0u,
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Λpuq � H̄0

 
E
�
X�
tX

�ᵀ

t |ut � u
�(

H̄
ᵀ

0, and define β2
Hp�q as the second-order derivative

of βHp�q. Then, by (3.4) and the standard argument in the local linear estimation

(c.f., Fan and Gijbels, 1996), we have

pnbq1{2
�
β̃Hpuq � βHpuq � 1

2
µ2β

2
Hpuqb2

�
dÝÑ N

�
0k0�d0 ,

σ2
ε ν0
fpuqΛ

�1puq
�
. (5.4)

Furthermore, following the uniform consistency results in Hansen (2008), we may

show that

sup
uPC

���β̃Hpuq � βHpuq
��� � OP

�
b2 � rlog n{pnbqs1{2

	
. (5.5)

Let an 9 bn denote that 0   c ¤ an{bn ¤ c̄   8 when n tends to infinity. Combining

(5.4) and (5.5) with Theorem 1, we readily have the following corollary.

COROLLARY 1. Suppose Assumptions 1–7 in Section 5.1 are satisfied and b9 n�1{5.

Then we have

pnbq1{2
�
β̂Hpuq � βHpuq � 1

2
µ2β

2
Hpuqb2

�
dÝÑ N

�
0k0�d0 ,

σ2
ε ν0
fpuqΛ

�1puq
�
, (5.6)

and

sup
uPC

���β̂Hpuq � βHpuq
��� � OP

�
b2 � rlog n{pnbqs1{2

	
. (5.7)

In Section 3.3, we construct the one-step ahead nonlinear forecast ŷn�1|n using

the local linear estimates. The following theorem describes the accuracy of the

one-step ahead forecast.

THEOREM 2. Suppose that the conditions in Corollary 1 are satisfied. Then,

ŷn�1|n � yn�1 � ∆n � εn�1 � oP
�
1{pnbq1{2� , (5.8)

where ∆n �
�
β̂H,n�1punq � βHpunq

�ᵀ

Xn. Furthermore, conditional on un � u� and

Xn � X�, we have

pnbq1{2
�

∆n � 1

2
µ2b

2X
ᵀ

�β
2
Hpu�q

�
dÝÑ N

�
0k0�d0 ,

σ2
ε ν0

fpu�qX
ᵀ

�Λ
�1pu�qX�

�
. (5.9)
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REMARK 2. By the definition of yn�1|n in Section 3.3, we may show that

ŷn�1|n � yn�1|n � ∆n � oP
�
1{pnbq1{2� ,

indicating that pnbq1{2 �ŷn�1|n � yn�1|n

�
has the same asymptotic normal distribu-

tion as that in (5.9).

5.3 Proofs of Theorems

This section contains the proofs of the main asymptotic theorems and some tech-

nical lemmas together with their proofs. Throughout the proofs, we let C be a

generic positive constant whose value may change from line to line.

5.3.1 Proofs of the Asymptotic Theorems

In this section, we give the detailed proofs of the asymptotic theorems in Section

5.2.

PROOF OF THEOREM 1. Note that

β̂Hpuq � β̃Hpuq � pIk0�d0 ,Ok0�d0q

"�
X̂

ᵀ

npuqWnpuqX̂npuq
��1

�
�
X

ᵀ

npuqWnpuqXnpuq
��1

) �
X̂

ᵀ

npuqWnpuqYn
�

�pIk0�d0 ,Ok0�d0q
�
X

ᵀ

npuqWnpuqXnpuq
��1

�
X̂

ᵀ

npuqWnpuqYn � X
ᵀ

npuqWnpuqYn
�

�: Πn1puq �Πn2puq.

Letting

Mnpuq � 1

nb
Xᵀ

npuqWnpuqXnpuq, M̂npuq � 1

nb
X̂ᵀ

npuqWnpuqX̂npuq,

Nnpuq � 1

nb
Xᵀ

npuqWnpuqYn, N̂npuq � 1

nb
X̂ᵀ

npuqWnpuqYn,

we have

Πn1puq � pIk0�d0 ,Ok0�d0q
�
M̂�1

n puq �M�1
n puq

�
N̂npuq, (5.10)
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and

Πn2puq �
�
Ik0�d0q,Ok0�d0

�
M�1

n puq
�
N̂npuq � Nnpuq

�
. (5.11)

We first consider Πn2puq. Observe that

Mnpuq � 1

nb
Xᵀ

npuqWnpuqXnpuq

�
�
� 1

nb

°n
t�1 XtX

ᵀ

tKbput, uq 1
nb

°n
t�1 XtX

ᵀ

t put�ub qKbput, uq
1
nb

°n
t�1 XtX

ᵀ

t put�ub qKbput, uq 1
nb

°n
t�1 XtX

ᵀ

t put�ub q2Kbput, uq

�
�

�:

�
� Mn0puq Mn1puq

Mn1puq Mn2puq

�
� .

Letting H̄ � diag tH, Id0u and X�
t �

�
F

ᵀ

t ,Y
ᵀ

t

�ᵀ

, we readily have

Mnjpuq � H̄

�
1

nb

ņ

t�1

X�
tX

�ᵀ

t p
ut � u

b
qjKbput, uq

�
H̄

ᵀ
.

By Lemma B.1 in Section 5.3.2, we have

Mnpuq � fpuq � diag tµ0, µ2u b
 
H̄0E

�
X�
tX

�ᵀ

t |ut � u
�
H̄

ᵀ

0

(� oP p1q (5.12)

uniformly for u P C, where H̄0 is defined in Section 5.2 of the main document. By

Assumptions 2(ii)(iii) and 3, the limit matrix on the right hand side of (5.12) is

invertible, which together with Lemma B.2 in Section 5.3.2, implies that

pnbq1{2 sup
uPC

}Πn2puq} � oP p1q. (5.13)

We next consider Πn1puq. By Lemma B.2 and following the proof of Lemma

B.1 in Section 5.3.2, we readily have

sup
uPC

���N̂npuq
��� � sup

uPC

���N̂npuq � Nnpuq
���� sup

uPC
}Nnpuq}

� oP
�pnbq�1{2

��OP p1q � OP p1q. (5.14)
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This, together with Lemma B.3, leads to

pnbq1{2 sup
uPC

}Πn1puq} � oP p1q. (5.15)

In view of (5.13) and (5.15), we complete the proof of Theorem 1. l

PROOF OF THEOREM 2. Note that

ŷn�1|n � yn�1 � β̂
ᵀ

H,n�1punqX̂n � β
ᵀ

HpunqXn � εn�1

� β̂
ᵀ

H,n�1punq
�
X̂n �Xn

	
�
�
β̂H,n�1punq � βHpunq

�ᵀ

Xn � εn�1

�: ∆n1 �∆n � εn�1. (5.16)

By (3.7) in Corollary 1 and the arguments in Lemma B.2, we may show that

∆n1 �
�
β̂H,n�1punq � βHpunq

�ᵀ �
X̂n �Xn

	
� β

ᵀ

Hpunq
�
X̂n �Xn

	
� OP

�
b2 � rlog n{pnbqs1{2

	
� oP

�
1{pnbq1{2��OP p1q � oP

�
1{pnbq1{2�

� oP
�
1{pnbq1{2� . (5.17)

By (5.16) and (5.17), we readily have (3.8). The proof of (3.9) follows directly from

(3.6) in Corollary 1. l

5.3.2 Some Technical Lemmas and Their Proofs

In this section, we state some technical lemmas which have been used in the proofs

of the main asymptotic theorems and give their proofs.

LEMMA B.1. Suppose that Assumptions 1–5 in Section 5.1 are satisfied. Then,

Mnpuq � fpuq � diag tµ0, µ2u b
 
H̄0E

�
X�
tX

�ᵀ

t |ut � u
�
H̄

ᵀ

0

(� oP p1q (5.18)

uniformly for u P C.

PROOF. By Assumption 2(ii)(iii), we readily show that H0 is the probability limit
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of the rotation matrix H when n tends to infinity. Hence, it suffices to prove

1

nb

ņ

t�1

X�
tX

�ᵀ

t

�ut � u

b

	j
Kbput, uq � Σjpuq � oP p1q (5.19)

uniformly for u P C, where Σjpuq � µjfpuqE
�
X�
tX

�ᵀ

t |ut � u
�
, j � 0, 1, 2. The proof

of the uniform consistency result (5.19) is standard. Let mn � n1{p2�δq�pτ{2q with δ

and τ defined in Assumptions 2(i) and 5, respectively, and Vt � X�
tX

�ᵀ

t to simplify

notation. We define

V̄t � Vt � I
�}Vt}F ¤ mn

�
, Ṽt � Vt � I

�}Vt}F ¡ mn

�
,

where Ip�q is an indicator function. It is easy to show that

1

nb

ņ

t�1

X�
tX

�ᵀ

t

�ut � u

b

	j
Kbput, uq

� 1

nb

ņ

t�1

V̄t

�ut � u

b

	j
Kbput, uq � 1

nb

ņ

t�1

Ṽt

�ut � u

b

	j
Kbput, uq.

By the moment conditions in Assumptions 2(i) and 3 and using the Markov

inequality, for any ξ ¡ 0,

P

�
sup
uPC

����� 1

nb

ņ

t�1

Ṽt

�ut � u

b

	j
Kbput, uq

�����
F

¡ ξ

�

¤ P

�
max
1¤t¤n

}Vt}F ¡ mn



¤

ņ

t�1

P p}Vt}F ¡ mnq

¤ nE
�}Vt}2�δF

� {m2�δ
n � Opn�p2�δqτ{2q � op1q. (5.20)

Let V̄t,jpuq � V̄t

�
ut�u
b

�j
Kbput, uq{b. As mn Ñ 8, by Assumptions 3, 4 and 5 as

well as some standard arguments,

E
�
V̄t,jpuq

� � µjfpuqE
�
X�
tX

�ᵀ

t |ut � u
�� oP p1q

uniformly for u P C. We next consider covering C by a finite number of disjoint

intervals Ck with centre sk and radius r � opb2q, where the total number of Ck is
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N � Opr�1q. Observe that

sup
uPC

����� 1

n

ņ

t�1

 
V̄t,jpuq � E

�
V̄t,jpuq

�(�����
F

¤ C

�
max
1¤k¤N

����� 1

n

ņ

t�1

 
V̄t,jpskq � E

�
V̄t,jpskq

�(�����
F

� max
1¤k¤N

sup
uPCk

����� 1

n

ņ

t�1

 
V̄t,jpuq � V̄t,jpskq

(�����
F

� max
1¤k¤N

sup
uPCk

����� 1

n

ņ

t�1

 
E
�
V̄t,jpuq

�� E
�
V̄t,jpskq

�(�����
F

�

¤ C max
1¤k¤N

����� 1

n

ņ

t�1

 
V̄t,jpskq � E

�
V̄t,jpskq

�(�����
F

� oP p1q. (5.21)

Furthermore, by Assumptions 1 and 5 in Section 5.1, and the exponential type

inequality for the α-mixing sequence (c.f., Theorem 2.18 in Fan and Yao, 2003), we

have for any ξ ¡ 0

P

�
max
1¤k¤N

����� 1

n

ņ

t�1

 
V̄t,jpskq � E

�
V̄t,jpskq

�(�����
F

¡ ξ

�

¤
Ņ

k�1

P

������ 1

n

ņ

t�1

 
V̄t,jpskq � E

�
V̄t,jpskq

�(�����
F

¡ ξ

�

� O
�
N exp

 �c1bm�1
n n1�pτ{3q

(��O
�
Nm1{2

n b�1{2n1�pτ{3qρn
pτ{3q

	
� O

�
N exp

 �c1n1�1{p2�δq�p5τ{6qb
(��OP

�
Nb�1{2n1�1{p4�2δq�pτ{12qρn

pτ{3q
	

� op1q, (5.22)

where c1 is a positive constant. Then, we can prove (5.19) by using (5.20)–(5.22),

and thus the proof of the lemma is completed. l

LEMMA B.2. Suppose that Assumptions 1–6 in Section 5.1 are satisfied. Then we

have

sup
uPC

���N̂npuq � Nnpuq
��� � oP

�pnbq�1{2
�
,

where C is the compact support of ut.
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PROOF. By the definitions of F̂t and H, we readily have

Qn

�
F̂t �HFt

	
� 1

nqn

�
ņ

s�1

qņ

k�1

F̂sF
ᵀ

sBkvtk �
ņ

s�1

qņ

k�1

F̂sF
ᵀ

tBkvsk

�
ņ

s�1

qņ

k�1

F̂svskvtk

�

� 1

nqn

�
ņ

s�1

qņ

k�1

F̂sF
ᵀ

sBkvtk �
ņ

s�1

qņ

k�1

F̂sF
ᵀ

tBkvsk

�
ņ

s�1

qņ

k�1

F̂sE rvskvtks
ņ

s�1

qņ

k�1

F̂s tvskvtk � E rvskvtksu
�

�:
1

nqn
pWnt,1 �Wnt,2 �Wnt,3 �Wnt,4q (5.23)

for any 1 ¤ t ¤ n, where Bk is the k-th row of of Bn and vtk is the k-th component

of Vt.

Note that

X̂t �Xt �
�
pF̂t �HFtqᵀ ,0ᵀ

d0

	ᵀ

. (5.24)

By (5.24), to prove Lemma B.2, we only need to consider Rnjpuq defined by

Rnjpuq � 1

nb

ņ

t�1

�
F̂t �HFt

	
yt�1

�ut � u

b

	j
Kbput, uq

� Q�1
n

1

nb

ņ

t�1

Qn

�
F̂t �HFt

	
yt�1

�ut � u

b

	j
Kbput, uq

� Q�1
n

1

n2bqn

ņ

t�1

4̧

l�1

Wnt,lyt�1

�ut � u

b

	j
Kbput, uq. (5.25)

Following the argument in the proof of Lemma B.1, we may show that

1

nb

ņ

t�1

|yt�1|
���ut � u

b

���jKbput, uq � OP p1q (5.26)

uniformly for u P C. Using (5.26) and the fact that the limit of Q�1
n exists (by

Assumption 2(iii)), to prove Lemma B.2, it suffices to show

max
1¤t¤n

}Wnt,l} � oP
�
nqn{pnbq1{2

�
, l � 1, 2, 3, 4. (5.27)
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By Assumption 2(iii), we have
���°n

s�1 F̂sF
ᵀ

s

���
F
� OP pnq. By (5.1) in Assumption

6(i), we have

P

�
max
1¤t¤n

�����
qņ

k�1

Bkvtk

����� ¡ mn1{δ1q1{2n

�
¤

ņ

t�1

P

������
qņ

k�1

Bkvtk

����� ¡ mn1{δ1q1{2n

�

¤ max
1¤t¤n

E

�
�
�����
qņ

k�1

Bkvtk

�����
δ1
�
� {pmδ1qδ1{2n q   ξ (5.28)

for any ξ ¡ 0, by letting m ¡ pm0{ξq1{δ1 , where m0 is defined in Assumption 6(i).

Hence, we readily have

max
1¤t¤n

}Wnt,1} � OP pn1�1{δ1q1{2n q � oP
�
nqn{pnbq1{2

�
, (5.29)

as n � o
�rqn{pnbqsδ1{2� from Assumption 6(ii).

By Assumption 2(i) and following the proof of (5.28), we have
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.

When l � 2, we may show that
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, (5.30)

as n1{r2p2�δqs�1{δ1 � o
�rqn{pnbqs1{2� from Assumption 6(ii).
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For l � 3, by Assumptions 1(i) and 6(i), we have
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(5.31)

as bÑ 0.

By (5.2) in Assumption 6(i), similarly to the proof of (5.28), we can prove that
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where m is chosen as that in (5.28). Then, for l � 4, we have
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(5.32)

as n2{δ1 � o
�rqn{pnbqs1{2� from Assumption 6(ii). We have completed the proof of

(5.27). l

LEMMA B.3. Suppose that Assumptions 1–6 in Section 5.1 are satisfied. Then we
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have

sup
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���M̂�1
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F
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�
,

where C is the compact support of the index variable ut.

PROOF. Note that
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By Assumptions 2(ii)(iii) and 3, and Lemma B.1, we have

sup
uPC

��M�1
n puq��

F
� OP p1q. (5.34)

On the other hand, following the proof Lemma B.2,

sup
uPC

���Mnpuq � M̂npuq
���
F
� oP

�pnbq�1{2
�
. (5.35)

Then, by (5.33)–(5.35), we can complete the proof of Lemma B.3.



Chapter 6

Conclusion and Future Research

In this thesis, we have introduced a new nonlinear factor-augmented predictive

regression model with functional coefficients and developed a feasible local linear

smoothing method to estimate the coefficient functions (with appropriate rotation),

where the latent (rotated) factor regressors are estimated by the principal compo-

nent analysis approach and the number of auto-regressors is determined by the

forward selection procedure with the BIC stopping rule. Furthermore, we have ex-

tended the proposed methodologies to the more general case of multiple response

variables. The developed model is also generalised to the factor-augmented vector

auto-regression model with functional coefficients. Moreover, the one-step ahead

nonlinear forecast of the response is obtained by using the local linear estimated

functional coefficients and the prediction interval is constructed via the wild boot-

strap procedure as introduced in Chapter 3. In addition, the asymptotic theory

in Chapter 5 shows that the proposed local linear estimator and nonlinear fore-

cast using the estimated factor regressors are asymptotically equivalent to those

assuming that the true latent factor regressors were observable. The asymptotic

property is supported by the simulation studies in finite samples in Section 4.1.

The proposed methods perform reasonably well in the simulation. Furthermore,

the developed predictive model and forecasting methodology are applied to pre-

dict the UK inflation change, providing satisfactory forecasting performance. In

particular, our empirical result shows that our proposed nonlinear forecasting

method outperforms some commonly-used parametric forecasting methods.
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There are some interesting topics that are related to this thesis and will be

considered in future studies. In Section 2.3.2, different methods for determining

the number of common factors are reviewed. It might be interesting to connect

the selection of factor number to nonlinear forecasting and choose the optimal

factor number which results in good forecasting performance. Another interesting

topic is on the multi-step ahead nonlinear forecast of the proposed model and

construction of prediction intervals.
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