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Abstract 

 

Renal cell carcinoma (RCC) is the 7th most common cancer in the UK. Almost one 

third of patients will have locally advanced or metastatic disease at presentation and 

a similar proportion will relapse despite undergoing surgery with a curative intent. 

More effective treatments are now available, although resistance is typically 

observed within months of starting treatment and median survival remains in the 

order of two years, highlighting the need for continued progress 

 

The aim of this work was the discovery and further investigation of novel therapeutic 

targets in ccRCC through proteomic approaches. Two potential emerging targets 

were further investigated in ccRCC. Spleen tyrosine kinase (SYK) was identified to 

be alternatively spliced in ccRCC compared to normal tissue. SYK inhibition with 

R406 caused cell death at concentrations >1 µM. Transient Receptor Potential 

Canonical (TRPC) channels 1, 4 and 5 expression was variable at an mRNA level in 

primary ccRCC and normal kidney tissue but the lack of antibodies to accurately 

detect the TRPC proteins using Western blot limited detection at a protein level. The 

activation and inhibition of these channels in-vitro was explored in the A498 RCC cell 

line. 

 

A comprehensive proteomic analysis of ccRCC tissue compared with normal kidney 

tissue, selected on the basis of underlying genomic changes was undertaken. 

Integration of the data led to the identification of a number of potential novel 

therapeutic targets. Cyclooxygenase-1 (COX-1) and proteasome subunit type beta-

9 (PSMB9), were taken forward and their upregulation in ccRCC at a protein level 

were demonstrated. Inhibition of COX-q was shown to cause RCC cell line death. 

 

The genetics of RCC at a descriptive level is comprehensive, but has not yet led to 

advances in treatment options. This work has demonstrated a valid approach to the 

integration of genomic and proteomic data that may be adopted in future studies. 
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Chapter 1 Introduction 

 

1.1 Renal Cell Carcinoma  

Renal cancer is the 7th most common cancer in the UK, accounting for 3% of all new 

cancer cases (2016). There were more than 12,000 new cases diagnosed in the UK 

in 2015, with a male to female incidence ratio of approximately 3:2 (Cancer Research 

UK). The incidence of kidney cancer in the UK has increased by 85% since the early 

1990s and is projected to rise by a further 26% in the next 20 years (Smittenaar et 

al., 2016). The most common type of kidney cancer is renal cell carcinoma RCC) 

(90%), of which the three major subtypes include clear cell RCC (ccRCC) (75%), 

papillary RCC (15-20%) and chromophobe RCC (∼5%) (Ricketts et al., 2018). 

 

Patients may present with local or systemic symptoms or both. A classic triad of flank 

pain, macroscopic haematuria and a palpable abdominal mass is described (Rini et 

al., 2009), although is now rarely seen (Cairns, 2010). Systemic symptoms may be 

related to sites of metastatic disease but may also be non-specific, such as weight 

loss, and general malaise. Patients may present due to the paraneoplastic 

syndromes associated with RCC including hypercalcaemia, hypertension, 

polycythaemia and anaemia (Palapattu et al., 2002). With the increasing use of 

routine abdominal imaging, it is reported that over 50% of cases are now detected 

incidentally (Rabjerg et al., 2014) (Cairns, 2010). Furthermore, given the often 

insidious nature of these tumours, in the UK almost 25% of cases are diagnosed 

following an emergency presentation, often with late stage disease (Cancer 

Research UK) (Shaw, 2016). 

 

Risk factors for the development of renal cancer include obesity, cigarette smoking, 

hypertension, family history and chronic kidney disease requiring dialysis (Chow et 

al., 2010). It is estimated that 4% of renal tumours are related to known hereditary 

syndromes including Von Hippel-Lindau (VHL) disease (Lonser et al., 2003) (Latif et 

al., 1993), Tuberous Sclerosis and Birt-Hogg-Dube syndrome (Linehan et al., 2003).  
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1.1.1 Stage and Grade 
The European Society of Medical Oncology (ESMO) and the European Association 

of Urology (EAU) has produced clinical practice guidelines for the diagnosis, 

treatment and follow-up of RCC (Escudier et al., 2016) (European Association of 

Urology, 2018). These highlight the pathological factors that should be reported in 

routine practice, including the histological subtype, the International Society of 

Urological Pathology (ISUP) nucleolar grade (clear cell and papillary RCC subtypes 

only) (Table 1.1) (Delahunt et al., 2013) and the presence of necrosis, microvascular 

invasion, and rhabdoid and sarcomatoid differentiation. These, coupled with accurate 

staging as defined by the American Joint Committee on Cancer (AJCC) / Union for 

International Cancer Control (UICC) Tumour-Node-Metastasis (TNM) system (Table 

1.2 and Table 1.3) (Paner et al., 2018) help provide important prognostic information 

and guide appropriate treatment options. 

  

The International Society of Urological Pathology (ISUP) nucleolar grading system 

has replaced the previously widely used four-tiered system described by Fuhrman et 

al. (Fuhrman et al., 1982). In the Fuhrman grading system the first three grades were 

based on the nuclear features and the final grade was based upon the presence of 

nuclear pleomorphism. As the identification and classification of RCC subtypes has 

improved, concerns were raised around the fact that this system considered RCC as 

a single tumour type and the subjective and poorly defined nature of the assessment 

for nucleolar prominence and pleomorphism (Delahunt et al., 2013). The ISUP 

grading system has better objectivity and a stronger association with patient outcome 

(Dagher et al., 2017). 

 

Table 1.1 – Grading system for renal cell carcinoma  as proposed by the 
International Society of Urological Pathologists (I SUP) 

ISUP Grade Definition 

1 Nucleoli are inconspicuous or absent at 
x400 magnification 

2 
Nucleoli are clearly visible at x400 
magnification but are inconspicuous or 
absent at x100 magnification  

3 Nucleoli are prominent and are easily 
visualised at x100 magnification 

4 

Presence of giant tumour cells and/or 
marked nuclear pleomorphism with 
clumping of chromatin 
or sarcomatoid differentiation 
or rhabdoid differentiation 
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The AJCC TNM staging system (8th edition) is widely recognised and is validated as 

a key prognostic parameter (Table 1.2) (Amin et al., 2017). The T in this staging 

system denotes the size and extent of the primary tumour, N denotes the extent of 

the nodal spread and M denotes the presence of metastatic disease. The patient can 

be assigned to one of four stages depending on the TNM classification (Table 1.3). 

 

1.1.2 Prognosis  
RCCs are characterised by their highly variable natural history. Almost one third of 

patients will have locally advanced or metastatic disease at presentation (Gupta et 

al., 2008) and approximately 10–28% of patients that undergo curative resection or 

ablation will experience a recurrence of their cancer (Kim et al., 2012) (Cairns, 2010). 

It is evident that patients with symptomatic presentations have a worse survival than 

those diagnosed incidentally (Palsdottir et al., 2012) (Kawata et al., 2008). The TNM 

staging system is a validated method for determining patient survival with 5-year 

survival being similar for males and females and ranging from approximately 83% at 

5 years for stage I disease and 6% for stage IV disease (Cancer Research UK).  

 

In the setting of localised or metastatic disease, there are a number of algorithms 

that have been developed to provide prognostic information. They are all based on 

clinical and pathological data. In the setting of resected localised disease, they have 

been developed to identify those patients with a high post-operative risk of recurrence 

so as to guide the intensity of surveillance protocols and to help counsel patients on 

the risks of recurrence. The first of these algorithms is the stage, size, grade and 

necrosis (SSIGN) score. It was developed and introduced by the Mayo Clinic and 

incorporates the pathological T stage, regional lymph node status, tumour size, 

nuclear grade and the presence of histological tumour necrosis, to assign patients to 

three risk groups based on either cancer-specific survival (Frank et al., 2002) or 

metastasis-free survival (Leibovich et al., 2003). A second algorithm commonly used 

is the University of California Los Angeles Integrated Staging System (UISS) which 

places patients into three risk groups based upon their TNM stage, Fuhrman grade 

and Eastern Cooperative Oncology Group (ECOG) performance status (Zisman et 

al., 2001). In the metastatic setting there are several algorithms utilised for the 

stratification of individual patient risk so as to assist in prognostication and help guide  
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Table 1.2 - Tumour, Node Metastasis (TNM) staging s ystem for RCC (8th 
edition) 

Primary Tumour (T) 

Tx Primary tumour cannot be assessed 

T0 No evidence of primary tumour 

T1 Tumour < 7 cm or less in greatest dimension, lim ited to the kidney 

T1a Tumour 4 cm or less 
T1b Tumour more than 4 cm but less or equal to 7 cm 
T2 Tumour > 7 cm in greatest dimension, limited to the kidney 
T2a Tumour more than 7 cm but less than or equal to 10cm 
T2b Tumour more than 10 cm 

T3 Tumour extends into major veins or perinephric tiss ues but not into the 
ipsilateral adrenal gland and not beyond Gerota fas cia  

T3a 
Tumour extends into the renal vein or its segmental branches, or invades the 
pelvicalyceal system or perirenal and/or renal sinus fat (peripelvic) fat but not 
beyond Gerota fascia 

T3b Tumour extends into vena cava below diaphragm  

T3c Tumour extends into vena cava above the diaphragm or invades the wall of the 
vena cava  

T4 Tumour invades beyond Gerota’s fascia (including contiguous extension into the 
ipsilateral adrenal gland)  

Regional Lymph Nodes (N) 

Nx Regional lymph nodes cannot be assessed 
N0 No regional lymph nodal metastases 
N1 Metastases in regional lymph nodes 

Metastases (M) 

M0 No distant metastases 
M1 Distant metastases 

Table 1.3 - Staging of RCC 

Stage  TNM Stage  

Stage I  T1 N0 M0 
Stage II  T2 N0 M0 
Stage III T1 N1 M0 

 T2 N1 M0 
 T3 N0 M0 
 T3 N1 M0 

Stage IV  T4 N0 M0 
 T4 N1 M0 
 Any T Any N M1 

 

 

treatment options. These include the International Metastatic RCC Database 

Consortium (IMDC) model (Heng et al., 2009) and the Memorial Sloan Kettering 

Cancer Centre (MSKCC) model (Motzer et al., 2002). The MSKCC model was initially 
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developed when cytokine treatment was the gold standard It is based upon the five 

criteria, Karnofsky performance status (KPS), lactate dehydrogenase (LDH), 

haemoglobin, corrected calcium and time from diagnosis to start of treatment. The 

more contemporary IMDC model is based upon KPS, haemoglobin, corrected 

calcium, time from diagnosis to start of treatment and serum platelet and neutrophil 

count. 

 

Unfortunately, despite their wide adoption in the clinic, such models based on 

standard clinico-pathological factors alone, fail to fully account for tumour 

heterogeneity and the unpredictable biological behaviour of RCC. This has led to 

attempts at investigating biomolecular signatures, in particular using genomic, 

transcriptomic, and proteomic profiling of tumour samples to generate prognostic 

models. Currently, the most promising of these approaches is the use of gene 

expression arrays in the setting of resected localised disease. For example, the gene 

expression assay panel ‘ClearCode34’ (Brooks et al., 2014), for use in ccRCC was 

demonstrated to show superiority to the UISS and SSIGN models and, subsequently, 

in the setting of metastatic disease, it improved the predictive power of the IMDC 

model (de Velasco et al., 2017). More recently, a 16-gene signature has been 

developed, with external validation using samples from patients recruited to the S-

TRAC trial of adjuvant sunitinib (Rini et al., 2018) (Rini et al., 2015). The assay was 

able to sub-stratify patients deemed at intermediate- or high-risk according to the 

Leibovich score and now warrants further evaluation in a prospective setting.  

 

1.1.3 Genetics and Biology 
The genetic landscape of ccRCC has been extensively characterised through a 

number of large-scale sequencing studies (Cancer Genome Atlas Research, 2013) 

(Sato et al., 2013) (Dalgliesh et al., 2010) (Scelo et al., 2014) (Pena-Llopis et al., 

2012) (Ricketts et al., 2014) (Ricketts et al., 2018). The dominant genetic event in 

sporadic ccRCC is the loss of VHL activity. The VHL gene, located on the short arm 

of chromosome 3 (3p25-26) encodes a regulatory protein (pVHL), which controls a 

large variety of cellular processes (Frew and Moch, 2015). One of these processes 

includes targeting hypoxia inducible factors (HIF) for ubiquitinisation and 

proteasomal degradation (Latif et al., 1993) (Gossage et al., 2015). HIF is responsible 

for a cells adaptation to hypoxia. If not inactivated through the action of VHL, it acts 

as a transcription factor for a number of proteins including vascular endothelial 

growth factor (VEGF) and platelet derived growth factor (PDGF), which in turn leads 
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to angiogenesis, cell growth and cell survival. In studies of VHL, loss of 

heterozygosity is observed in approximately 98% of sporadic cases, 73% have 

somatic VHL mutations and 30% have gene methylation (Scelo et al., 2014, Young 

et al., 2009) (Sato et al., 2013) (Gossage et al., 2015). 2-4% of RCC are caused by 

germline mutations in VHL (Latif et al., 1993) and less than 5% of tumours do not 

have VHL involvement (Young et al., 2009). 

 

Other frequently mutated genes include polybromo1 (PBRM1), SET domain-

containing protein 2 (SETD2) and BRCA1-associated protein 1 (BAP1) at 

frequencies of 40%, 19% and 15% respectively (Scelo et al., 2014) (Varela et al., 

2011). Like VHL, they are all located on chromosome 3p. PBRM1 encodes BAF180, 

a SWI/SNF chromatin remodelling complex protein, which is involved in the arrest of 

the cell cycle in response to hypoxia. BAP1 encodes a ubiquitin carboxy-terminal 

hydrolase (Benusiglio et al., 2015) and, notably, mutations in BAP1 tend to be 

mutually exclusive to PBRM1 mutations. SETD2 functions as a histone H3 lysine 36 

methyltransferase and it is notable therefore that all three TSGs can be classified as 

histone and chromatin regulators. Beyond this, a long ‘tail’ of low frequency (<5%) 

events are observed, the protein products of which are implicated in multiple diverse 

pathways (Cancer Genome Atlas Research, 2013, Scelo et al., 2014). 

 

Whilst descriptive studies such as these are helpful in improving our understanding 

of the genetics and evolution of ccRCCs, the exploitation of such knowledge to inform 

clinical practice and improve patient outcomes is yet to be achieved. The exception 

to this perhaps is the development of VEGF targeted TKIs based on the biology of 

VHL, although this work predates the more recent large-scale next-generation 

sequencing studies revealing recurrent mutations in genes such as BAP1, SETD2 

and PBRM1. Mutations in each of these genes have been reported to be associated 

with higher grade tumours and / or poorer outcomes but these associations are not 

always consistent. In the largest study to date, representing a pooled analysis of 1049 

patients with ccRCC, mutations in BAP1 were associated with tumour grade, tumour 

size and decreased CSS (q = 0.004) in a multivariable model, however this was lost 

when the SSIGN score was included. SETD2 mutations were associated with 

decreased relapse-free survival in multivariable models, including models with 

SSIGN score (Manley et al., 2016). Thus, such mutations appear to be of relevance 

in driving tumour biology, although may serve only as surrogates for pathological 

features such tumour grade and size. 
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Beyond the impact of single gene mutations, recent elegant work using multi-region 

sampling of a series of ccRCCs has been used to track the evolution of these 

cancers. The study led the authors to propose genetic subclassification of ccRCC 

into seven types, incorporating clonality and chromosomal complexity, and which 

appear to correlate with clinical phenotype (Turajlic et al., 2018). However, 37 of the 

101 tumours examined were not able to be classified and this remains hypothesis 

generating at present.  

 

In summary, the genetics of RCC at a descriptive level is now well understood but 

the application of this knowledge in the clinic to guide prognosis, predict response to 

existing therapies or to generate novel therapeutic strategies remains to be achieved 

and is a research priority in this disease.  

 

1.1.4 Current Treatment Strategies 
The mainstay of management of localised, stage I - III, RCC is definitive surgery, 

which may be in the form of a total nephrectomy or nephron-sparing surgery 

depending on the size and position of the tumour (Escudier et al., 2016) (European 

Association of Urology, 2018). In the setting of a localised, small cortical tumour, 

management may entail either surveillance, surgery or an ablative approach with 

radiofrequency ablation (RFA) or cryo-ablation (CA), particularly if the patient is frail, 

is deemed to be of a high surgical mortality risk, has poor renal function, multiple co-

morbidities or has multiple bilateral tumours (Stakhovskyi et al., 2011) (Wah, 2017).  

 

RCC is considered a chemotherapy, radiotherapy and hormone therapy resistant 

tumour. In a large review of 72 cytotoxic agents, involving 3502 patients with 

metastatic disease, objective responses were demonstrated in only 5.6% of patients 

(Yagoda et al., 1993) (Yagoda et al., 1995). Until the advent of newer, targeted 

therapy, the immunomodulatory cytokine therapies interferon alfa (IFN-α) and 

interleukin-2 (IL-2), were the most effective treatments available, with low objective 

response rates of 12% (Motzer et al., 1996, Wirth, 1993) and 14% (Fyfe et al., 1995) 

respectively. High dose IL-2 (HD IL-2) still has a role in the management of a group 

of highly selected patients with advanced disease due to its ability to induce a durable 

complete response (Chow et al., 2016) (Chow et al., 2018). HD IL-2 carries with it 
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significant toxicity and must be administered in a centre with a high level of expertise 

in dealing with the complications and that are equipped with intensive care support.  

 

Inhibitors of the vascular endothelial growth factor (VEGF) signalling pathway remain 

the mainstay of currently licensed treatments in the UK for the management of 

advanced RCC. Treatment options in this group include sunitinib, pazopanib, 

tivozanib, axitinib and cabozantinib (Table 1.4). They are all multi-targeted tyrosine 

kinase inhibitors (TKI) with activity against the vascular endothelial growth factor 

receptor (VEGFR) along with several other receptors including the platelet-derived 

growth factor receptor (PDGFR) and the stem cell factor receptor, KIT (Jonasch et 

al., 2014). They have similar side-effect profiles including hypertension, diarrhoea, 

fatigue, hand and foot skin reactions, nausea, cardiac events and bleeding. These 

toxicities can be marked, often requiring dose reductions or withdrawal of the drug.  

 

Details of the most relevant trials are shown in Table 1.5. The first TKI (sorafenib) 

was used in clinic in 2005 on the basis of the phase III TARGET trial comparing 

sorafenib with placebo in 903 patients with advanced ccRCC resistant to pre-

treatment with cytokines. Whilst crossover was permitted following a planned interim 

analysis, overall survival identified that sorafenib reduced the risk of death but 

median OS was not reached in the sorafenib arm. 10% of the sorafenib arm and 8% 

of the placebo arm discontinued the drug due to adverse events and 13% of patients 

in the sorafenib arm needed dose reductions due to toxicity compared to 3% in the 

placebo arm (Escudier et al., 2007) (Escudier et al., 2009). In 2006, sunitinib 

emerged as a new standard of care, based on a phase III trial of sunitinib versus IFN-

α for the treatment of 750 patients with previously untreated metastatic renal cell 

carcinoma with a clear cell component. Sunitinib improved the median PFS from 5 to 

11 months and had a higher objective response rate of 31 vs. 6% (p<0.001). 

Toxicities led to a dose reduction in 32% of the sunitinib group (Motzer et al., 2007) 

(Motzer et al., 2009). Pazopanib later became available, based on the result of a 

randomised controlled trial (RCT) of pazopanib versus placebo in both treatment 

naïve and cytokine pre-treated patients (n=435). Pazopanib improved the median 

PFS from 4.2 months to 9.2 months in the overall study population. The overall 

response rate was 30% with pazopanib versus 3% with placebo. Adverse events 

were again highly prevalent, with 33% of patients experiencing grade 3 or 4 toxicity 

with pazopanib (Sternberg et al., 2010). 
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Table 1.4 – Currently licensed treatment options in  the UK for advanced RCC 

  

Treatment Target Approved line of therapy 

Sunitinib  VEGFR-1, -2, -3 
PDGFR-α, -β 
KIT 

First line 

Pazopanib  VEGFR-1, -2, -3 
PDGFR-α, -β 
c-Kit 

First line 

Tivozanib  VEGFR-1, -2, -3 
c-Kit 

First line 

Axitinib  VEGFR-1, -2, -3 
 

After failure of first line sunitinib or a cytokine 

Cabozantinib  c-MET 
VEGFR 
GAS6 receptor 
RET 
TYRO3 
MER 
KIT 
TRKB 
FLT3 
TIE-2 

• First line for intermediate- or poor-risk metastatic 

disease as defined by the IMDC model 

• Second line after VEGF targeted therapy 

Lenvatinib  VEGFR-1, -2, -3 
FGFR-1, -2, -3, -4 
PDGFR-α 
KIT 
RET 

Second line along with everolimus (one previous 
VEGF targeted therapy) 

Everolimus  mTOR Second line following progression during or after 
VEGF targeted therapy 

Nivolumab  PD-1 For previously treated advanced RCC 
Interleukin -2 Immune 

mediated 
Decision of treating centre 

 

 

The large TIVO-1 phase III trial (n=517 patients) comparing tivozanib with sorafenib 

in untreated patients or those who had progressed on a cytokine demonstrated an 

improvement in PFS with tivozanib of 11.9 versus 9.1 months in the sorafenib arm. 

There was a trend towards a longer survival on the sorafenib arm, although this was 

confounded by the large amount of cross-over in patients initially randomised to 

sorafenib (Motzer et al., 2013). Cabozantinib is an example of an oral multi-tyrosine 

kinase inhibitor that targets MET, VEGFR and AXL. Upregulation of the MET proto-

oncogene is observed RCC, in particular the papillary subtype but can also occur in 

ccRCC, where it has been shown that VHL inactivation (Nakaigawa et al., 2006) and 

hypoxia (Pennacchietti et al., 2003) can lead to MET upregulation and the resultant 

activation of downstream signalling cascades including the mitogen activated kinase 
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(MAPK) and the PI3K-AKT-mTOR pathways, which in turn lead to cell proliferation 

and cell survival (Smyth et al., 2014). The phase 3 METEOR trial compared 

cabozantinib with everolimus in 658 patients with advanced or metastatic ccRCC who 

progressed after previous VEGR therapy. Cabozantinib demonstrated an improved 

median OS (7.4 versus 3.9 months) (Choueiri et al., 2016). This is an important trial 

as it is the only TKI to demonstrate an improvement in OS and PFS after previous 

VEGFR inhibiting drugs. Cabozantinib was also investigated in the first line setting 

against sunitinib in the phase II CABOSUN trial (Choueiri et al., 2017a) (Choueiri et 

al., 2018a). This investigated patients with intermediate- or poor-risk disease as 

defined by IMDC criteria and included 157 patients. PFS was improved significantly 

in the cabozantinib arm (8.6 versus 5.3 months) leading to its approval in the first-

line setting. 

 

Another class of drug licenced for use in the second line setting in the UK for 

advanced RCC is the mTOR inhibitor, everolimus. This was approved based on the 

phase III trial of everolimus versus placebo for patients (n=410) whose disease had 

progressed on prior anti-VEGF therapy. The study demonstrated an improved PFS 

in the everolimus arm (4 vs. 1.9 months). Significant toxicities with everolimus 

included non-infectious pneumonitis. 10% of patients receiving everolimus 

discontinued the drug and 34% needed dose reductions due to toxicity (Motzer et al., 

2008) (Motzer et al., 2010). It is evident, however, that as a single agent, the use of 

everolimus in clinical practice is now limited, based on data from METEOR and other 

trials demonstrating its relative inferiority. The combination of lenvatinib and 

everolimus has been shown to improve median PFS in patients pre-treated with a 

tyrosine kinase inhibitor, versus everolimus alone, although this was based on a 

small phase II trial, with approximately 50 patients per arm (14.6 months compared 

with 5.5 months) (Motzer et al., 2015b). 

 

More recently, positive trials using immune checkpoint inhibitors, targeting cytotoxic 

T lymphocyte antigen 4 (CTLA-4), programmed cell death 1 (PD-1), and its ligand 

PD-L1 (Jonasch et al., 2014, Pardoll, 2012) have been published. CTLA-4 is 

expressed by activated CD4 and CD8 cells and negatively regulates T cells. PD-L1 

is a ligand for PD-1, a T cell receptor that negatively regulates the immune response. 

This is particularly relevant in kidney cancer with the finding that PD-L1 is expressed 

in 16-66% of RCCs (Harshman et al., 2014). An example of a monoclonal antibody 
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against CTLA-4 is ipilimumab, and examples of monoclonal antibodies against PD-

L1 are atezolizumab, and against PD-1, nivolumab and pembrolizumab.  

 

Single agent nivolumab was demonstrated to improve median OS compared to 

everolimus in the CheckMate 025 trial in the setting of prior anti-angiogenic 

treatment. This trial included 821 patients and also demonstrated fewer grade 3 or 4 

adverse events in the nivolumab arm. In the first line setting the landmark trial of 

nivolumab plus ipilimumab versus sunitinib in previously untreated advanced ccRCC 

recruited 1096 patients (Motzer et al., 2018b), at a median follow-up of 25.2 months, 

the median OS was not reached for the experimental arm versus 26 months for the 

sunitinib arm. The objective response rate was much greater for the experimental 

arm at 42% versus 27% and the complete response rate was 9% versus 1%. These 

results represent a notable step forward in the treatment of and outlook for patients 

with advanced RCC and further follow-up data is awaited. It must be noted however 

that treatment related adverse events leading to discontinuation occurred in 22% and 

12% of patients, highlighting the toxicity profile of combination immunotherapy. 

Although both ESMO and EAU guidelines now recommend nivolumab plus 

ipilimumab as front-line therapy for patients with intermediate- and poor-risk disease, 

the European Medicines Agency has recently declined approval based on a lack of 

data clarifying the contribution of ipilimumab to the observed results. 

 

More recently there are several large ongoing trials investigating the combination of 

immune checkpoint inhibition combined with tyrosine kinase inhibition (Einstein and 

McDermott, 2017). Such trials in the first line setting include the CLEAR trial 

comparing lenvatinib in combination with everolimus or pembrolizumab, compared 

to sunitinib, the CheckMate 9ER trial comparing the combination of cabozantinib and 

nivolumab versus sunitinib, and the KEYNOTE-426 trial comparing pembrolizumab 

and axitinib versus sunitinib. The IMmotion151 was recently reported which 

compared atezolizumab in combination with bevacizumab (a monoclonal antibody 

against VEGF) with single-agent sunitinib, in the first line setting (Motzer et al., 

2018a). Median PFS was improved in the experimental arm by 2.8 months (11.2 

versus 8.4 months) and OS data are awaited. The treatment-related grade 3-4 

adverse events were lower with the combination arm compared to the sunitinib alone 

arm. 
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In 2004 it was demonstrated that cytoreductive nephrectomy prior to IFN-α improved 

median overall survival (OS) by 5.8 months (Flanigan et al., 2004). It is not known 

whether this also applies in the era of drugs targeting the VEGF signalling pathway. 

An attempt at answering this question was provided in the randomised controlled 

phase III trial, CARMENA (Mejean et al., 2018). A total of 450 patients with metastatic 

ccRCC were randomly assigned to nephrectomy followed by sunitinib versus 

sunitinib alone. Patients were stratified according to the MSKCC prognostic model 

and the primary endpoint was overall survival (OS). The trial concluded that sunitinib 

alone was not inferior to the nephrectomy-sunitinib group, with OS 18.4 months 

versus 13.9 months respectively. Whilst this is an informative trial, it must be noted 

that it was designed to show non-inferiority of sunitinib and in the 226 patients 

assigned to the nephrectomy arm, 16 did not undergo surgery and 40 did not receive 

sunitinib. The nephrectomy arm had a higher proportion of T3/4 tumours and lower 

nodal burden. Furthermore, with the ever-evolving treatment landscape, the 

relevance of the study to future practice is questionable.  

 

At this time, there is no evidence to support adjuvant treatment for resected renal cell 

carcinoma. The ASSURE trial, which assigned patients with unfavourable renal 

cancer to one year of sorafenib, sunitinib or placebo, has shown comparable median 

disease-free survival for all arms in an interim analysis, although the median 5 year 

overall survival has not yet been reached (Haas N, 2015). The European SORCE 

trial, which is looking at 1 versus 3 years of sorafenib versus placebo, has completed 

recruitment and the results are awaited. However, given the negative signal observed 

across such studies to date, it seems unlikely that this class of drug will prove useful 

in the adjuvant setting.  

 

Overall, whilst these studies show that there are many treatment options available 

for patients with advanced and metastatic RCC, it is evident that not all patients will 

respond (approximately 20% of patients have disease refractory to VEGF targeted 

treatment (Heng et al., 2012)), they are toxic and there are no predictive biomarkers 

in use to guide choice of agent. Whilst checkpoint inhibitors show promise in affording 

some patients durable disease control, many patients do not benefit and the majority 

of patients will succumb to their disease. Clearly, progress in understanding the 

molecular pathogenesis of RCC is leading to the development of new treatments, 

resulting in improvements in outcome for some of these patients, but resistance is 

typically observed within months of starting treatment and median survival remains 
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in the order of two years. This survival benefit comes at the expense of significant 

toxicities in a considerable number of those treated, negatively impacting on patients’ 

quality of life, frequently requiring dose interruptions or reductions, and can on 

occasion be life-threatening. Although there has been an improvement in treatments 

and outcome for patients with metastatic RCC over recent years, there remains a 

great need for continued progress. 
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Table 1.5 –Trials of systemic agents investigated i n advanced RCC 

 

Date 
published 

Study 

Acronym 

Arms and numbers of patients 

Setting Primary 
Endpoints 

Median OS 
(HR, 95% CI, 

p value) 

Median PFS 
(HR, 95% CI) References 

Experimental Control 

2007 TARGET Sorafenib (400 mg 
PO BD) (n=451) 

Placebo (n=452) 

Pre-treatment with 
cytokine therapy. 

ccRCC. Crossover 
permitted from 2005 

OS 
 

17.8 versus 
15.2 months 
(0.88, 0.74-
1.04 , 0.146) 

(after 
crossover) 

5.5 versus 
2.8 months 
(0.44, 0.35-

0.55, <0.001) 

(Escudier et 
al., 2007, 

Escudier et 
al., 2009) 

2007  

Sunitinib (50 mg PO 
OD for 4 weeks 

followed by 2 weeks 
without treatment) 

(n=375) 

Interferon α (9 MU 
SC three times 
weekly) (n=375) 

Previously untreated. 
Clear cell component 

required. 
PFS 

26.4 versus 
21.8 months 
(0.82, 0.67-
1.00, 0.051) 

11 versus 5 
months 

(0.42, 0.32-
0.54, <0.001) 

(Motzer et 
al., 2007) 

(Motzer et 
al., 2009) 

2010  Pazopanib (800 mg 
PO OD) (n=290) 

Placebo (n=145) 
Treatment naïve and 
cytokine pre-treated 

RCC 
PFS 

22.9 versus 
20.5 months 
(0.91, 0.71-
1.16, Not 
sig) (after 
crossover) 

9.2 versus 
4.2 months 
(0.46, 0.34-

0.62, 
<0.0001) 

(Sternberg 
et al., 2010) 

2010 RECORD-1 Everolimus (10 mg 
PO OD) (n=272) 

Placebo (n=138) Metastatic RCC PFS 

14.8 versus 
14.4 months 
(0.87, 0.65-
1.15, 0.162) 
Crossover 

allowed 

4.9 versus 
1.9 months 
(0.33, 0.25-

0.43, <0.001) 

(Motzer et 
al., 2008) 
(Motzer et 
al., 2010) 
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Date 
published 

Study 

Acronym 

Arms and numbers of patients 

Setting Primary 
Endpoints 

Median OS 
(HR, 95% CI, 

p value) 

Median PFS 
(HR, 95% CI) References 

Experimental Control 

2013  

Tivozanib (1.5 mg 
PO OD for 3 weeks 

followed by one 
week without 

treatment) (n=260) 

Sorafenib (400 mg 
PO BD) (n=257) 

Clear cell component 
required. 1 or more 

prior therapies 
permitted. Post 
nephrectomy. 

PFS 

28.8 versus 
29.3 months 
(1.25, 0.95-
1.62, 0.105) 

11.9 versus 
9.1 months 
(0.80, 0.64-
0.99, 0.042) 

(Motzer et 
al., 2013) 

2015 
CheckMate 

025 
Nivolumab (3 mg/kg 
IV) 2 weekly (n=410) 

Everolimus (10 mg 
PO OD) (n=411) 

Previous treatment 
with one or two anti-

angiogenic 
treatments 

OS 

25.0 versus 
19.6 months 
(0.73, 0.57-
0.93, 0.002) 

4.6 versus 
4.4 months 
(0.88, 0.75-
1.03, 0.11) 

(Motzer et 
al., 2015a) 

2016 METEOR Cabozantinib (60 mg 
PO OD) (n=330) 

Everolimus (10 mg 
PO OD) (n=328) 

Clear cell subtype 
only, at least one 

previous VEGFR TKI 
PFS 

21.4 versus 
16.5 months 
(0.66, 0.53-

0.83, 
0.00026) 

7.4 versus 
3.9 months 
(0.51, 0.41-

0.62, 0.0001) 

(Choueiri et 
al., 2016) 

2016 CABOSUN Cabozantinib (60 mg 
PO OD) (n=79) 

Sunitinib (50 mg 
PO OD for 4 weeks 

followed by 2 
weeks without 

treatment) (n=78) 

Advanced RCC with 
a clear cell 
component 

PFS 

26.6 versus 
21.2 (0.8, 
0.53-1.21) 

not powered 
for OS 

differences 

8.6 versus 
5.3 months 
(0.48, 0.31-

0.74, 0.0008) 

(Choueiri et 
al., 2017a) 

(Choueiri et 
al., 2018a) 
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Date 
published 

Study 

Acronym 

Arms and numbers of patients 

Setting Primary 
Endpoints 

Median OS 
(HR, 95% CI, 

p value) 

Median PFS 
(HR, 95% CI) References 

Experimental Control 

2018 
CheckMate 

214 

Ipilimumab (1 mg/kg 
IV) x 4 doses and 

Nivolumab (1 mg/kg 
IV) – both 3 weekly 
then single agent 

nivolumab 2 weekly 
(n=547) 

Sunitinib (50 mg 
PO OD for 4 weeks 

followed by 2 
weeks without 

treatment) (n=535) 

Previously untreated. 
Clear cell component 

required 

ORR, PFS 
and OS 

Not reached 
versus 26.0 

months ( 

11.6 versus 
8.4 months 

(0.82, 0.64 – 
1.05, 0.03) 
99.1% CI 

used 

(Motzer et 
al., 2018b) 

2018 
IMmotion 

151 

Atezolizumab (1200 
mg IV) and 

Bevacizumab (15 
mg/kg IV), both given 

3 weekly (n=454) 

Sunitinib (50 mg 
PO OD for 4 weeks 

followed by 2 
weeks without 

treatment) (n=461) 

Previously untreated 
PFS and 

OS 
Not reached 

11.2 versus 
8.4 months 
(0.83, 0.70-

0.96) 

(Motzer et 
al., 2018a) 
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1.2 Novel and Emerging Therapeutic Targets in RCC  

1.2.1 What Makes An Ideal Therapeutic Target? 
A therapeutic drug target is a protein, peptide or nucleic acid with proven function in 

the pathophysiology of a disease that can be modulated by a drug, for example a 

small molecular weight compound, antibody or recombinant protein (Gashaw et al., 

2011). Identification of potential therapeutic targets typically begins with descriptive 

studies on DNA, RNA or protein expression in the chosen disease type compared 

with normal tissue. Information on somatic mutations and other genetic alterations 

may also provide a starting point for target discovery (Gashaw et al., 2011). The 

success rates for drug development projects in phase II clinical trials are below 20%, 

with 56% of failures due to lack of efficacy (Arrowsmith and Miller, 2013), for this 

reason it is essential to consider what defines a ‘good’ novel therapeutic target prior 

to investing further time and resources into its investigation. Some of the key 

desirable physical and structural properties are essential and include involvement 

and proven function in the pathophysiology of disease under physiological conditions 

(Gashaw et al., 2011) (Bakheet and Doig, 2009), the exhibition of differential 

expression in diseased versus normal tissue, the availability of antibodies for 

confirmatory studies and the ability to be ‘druggable’. Not all drug-target binding and 

interaction results in therapeutic benefit. Structural knowledge of the novel target is 

helpful to predict high affinity, site-specific binding. (Bakheet and Doig, 2009). Other 

key properties to be considered include the presence of signal peptide, low pI, level 

of evidence implicating the protein-associated pathway, confirmation on tissue 

samples by immunohistochemistry (IHC), biological plausibility, protein properties 

and localisation, repurposing possibilities and whether there is a high unmet clinical 

need. 

 

1.2.2 Therapeutic targets currently being explored in RCC 
Novel therapeutic targets continue to be explored across RCC subtypes. In particular, 

agents that may augment the response rate and activity of checkpoint inhibitors are 

being urgently sought. RCC is known to harbour derangements in its metabolic 

pathways (Weiss, 2018). These include the finding of increased enzymes such as 

hexokinase-1 (HK-1), pyruvate kinase (PK-2) and lactate dehydrogenase A (LDH-A), 

suggesting increased glycolysis (Perroud et al., 2009), increased utilisation of fatty 

acids (Ganti et al., 2012), and evidence of tryptophan suppression, which can lead 

to immunosuppression if depleted (Lee et al., 2002). Glutamine utilisation is 
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increased in ccRCC compared with normal kidney tissue (Hakimi et al., 2016). 

Glutaminase inhibitors such as CB-839 have been shown to have activity in patients 

with RCC and appear to act synergistically with cabozantinib and everolimus (Tannir 

et al., 2018). Arginase inhibitors such as CB-1158, hypothesised to overcome the 

immunosuppressive activity of arginase, are also in early clinical trials and predicted 

to be active in RCC (Zea et al., 2005). Based on the concept of synthetic lethality, 

the activity of WEE1 inhibitors in patients with SETD2 deficient tumours is being 

explored (NCT03284385) (Pfister et al., 2015). There are a number of other treatment 

targets currently being investigated including zinc fingers and homeoboxes 2 (ZHX2). 

It is reported that this protein accumulates in the absence of functioning VHL, and it 

is slowed to interact with DNA to exert a downstream proliferative effect (Zhang et 

al., 2018). 

 

1.2.3  Transient Receptor Potential Canonical (TRPC ) channels 
The transient receptor potential receptor canonical (TRPC) channels are an 

interesting potential therapeutic target in RCC that will be explored further in this 

study. They have been implicated in the development and biology of cancer, in 

particular RCC, and thus may form a novel therapeutic target (Chen et al., 2014, 

Veliceasa et al., 2007).  

 

The TRPC channels belong to a super-family of transmembrane proteins that 

function as non-selective cation-permeable channels (Richter et al., 2014, Bon and 

Beech, 2013). They are linked to various processes such as angiogenesis, cancer 

and sensing including touch, taste and smell (Benemei et al., 2015, Damann et al., 

2008, Bon and Beech, 2013). There are 7 members of the TRPC family, with all 

except TRPC2 expressed in humans (Damann et al., 2008). Based on their functional 

properties, TRPC 1, 4 and 5 are considered to form a subgroup, as are TRPC 3, 6 

and 7 (Phelan et al., 2013). TRPC channels are present in almost all cells, including 

both excitable and non-excitable tissues (Abramowitz and Birnbaumer, 2009). TRPC 

1, 4 and 5 exist as tetramers. They may assemble as homo- or hetero-tetramers and 

can functionally overlap making them more complex to study (Bon and Beech, 2013, 

Abramowitz and Birnbaumer, 2009). This section of work will focus on the TRPC 1, 

4 and 5 subgroup due to the discovery of a potent modulator that will be discussed 

later. 
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There are several members of the TRPC family that may be implicated in cancer, 

thus explaining the observation of their altered expression in tumour compared with 

normal tissue (Prevarskaya et al., 2007b). For example, at an mRNA level, TRPC1 

expression is increased in ductal breast cancer compared with the adjacent normal 

tissue (Dhennin-Duthille et al., 2011), silencing of TRPC1 and 4 in the ovarian 

cancer-derived cell line (SVOC3) (Zeng et al., 2013) and silencing of TRPC1 in non-

small cell lung cancer (NSCLC) cell lines inhibited cell proliferation (Chen et al., 

2014). The use of isoform-specific blocking antibodies of TRPC1 and 4 both had an 

antiproliferative effect on the A549 NSCLC cell line (Jiang et al., 2013). TRPC1 

silencing and inhibition reduced cell invasiveness cellular mobility in the 

nasopharyngeal carcinoma cell line, CNE2 (He et al., 2012). These examples may 

suggest a role in the development of these cancer types. On the other hand, the 

normal renal epithelial cell line, HNK, demonstrates a four-fold higher TRPC4 

expression compared with RCC cell lines at an mRNA level (Veliceasa et al., 2007) 

and TRPC1 is reduced in androgen-resistant prostate cancer cells compared with 

androgen-sensitive cells (Prevarskaya et al., 2007a). TRPC 1, 4 and 5 expression 

has not been characterised in RCC 

 

1.2.3.1 (-)Englerin A (EA) 

In 2009, Ratnayake et al. carried out an extensive study of natural product extracts 

using the NCI60 cell panel to identify those with anti-cancer activity (Ratnayake et 

al., 2009). The NCI60 is a panel of 60 cell lines representing cancers from leukaemia, 

colon, lung, CNS, melanoma, ovarian, renal, prostate and breast (Shoemaker, 2006). 

A natural product extract from the plant Phyllanthus Engleri, named (-)englerin A 

(EA), was found to selectively inhibit the growth of five out of the eight renal cancer 

cell lines with a remarkably low GI50 (concentration required for 50% of maximum 

inhibition of cell growth) of less than 20 nM (Table 1.6) (Ratnayake et al., 2009). In 

comparison, another study has shown that the normal kidney cell line (HK-2) was 

relatively insensitive to EA (EC50 >10 µM) (Sourbier et al., 2013). 

 

Initially, the mechanism of action of EA was thought to be related to the binding to 

and activation of protein kinase C-θ (PKC-θ) producing an insulin-resistant phenotype 

whilst promoting a glucose-dependent state, thereby effectively starving the cells 

(Sourbier et al., 2013). More recently, it was discovered that the A498 renal cancer 

cell line, which was one of the most sensitive to be tested, did not express PKC-θ,  
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Table 1.6 – Table showing GI50 values for EA on var ious renal cancer cell lines 
in the NCI60 panel ,  

adapted from (Ratnayake et al., 2009).  

 

Renal Cell Line  GI50 for (-)Englerin A (nM)  

786-0 <10 

A498 <10 

UO-31 <10 

ACHN <10 

RXF-393 11 

SN12C 87 

TK-10 15500 

CAKI-1 15500 

 

 

questioning the validity of the earlier finding (Akbulut et al., 2015). Instead, the work 

of Professor David Beech and his team (University of Leeds) led to the discovery that 

EA was a highly selective and very potent activator of the TRPC 4 and 5 channels. 

The activation of the channels trigger a massive influx of sodium into the cell and 

rapid cell death is observed (Ludlow et al., 2017). The finding that TRPC4 expression 

is necessary, and sufficient for EA induced growth inhibition has since been 

independently verified by others (Carson et al., 2015). 

 

1.2.3.2 Other known TRPC channel agonists 

There are few known modulators of TRPC 4 and 5 activity, which has hindered the 

advancement of research into these channels. Of the modulators that are known, 

TRPC4 is activated by lead (Pb2+) (Sukumar and Beech, 2010) and both TRPC4 and 

5 are activated by micromolar concentrations of lanthanum and gadolinium (Jung et 

al., 2003). Rosiglitazone, one of the thiazolidinedione class of drugs, is a known small 

molecule activator of the TRPC5 channel at concentrations greater than 10µM (Bon 

and Beech, 2013, Majeed et al., 2011). Rosiglitazone is a drug that was previously 

licenced in type 2 diabetes but its use was suspended across Europe after the 

discovery that it led to an increased risk of cardiovascular events (2010) (Chen et al., 
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2012) (Nissen and Wolski, 2007), although it is still available in the U.S. It belongs to 

the thiazolidinedione class of compounds, which act as an agonist of peroxisome- 

proliferator–activated receptor γ (PPAR-γ). The agonist effect is not seen in other 

drugs and compounds within the same class (Majeed et al., 2011). The plasma 

concentrations of rosiglitazone in humans reach 1-3 µM following administration of a 

single 8 mg dose (Majeed et al., 2011). Riluzole is a second drug that is also known 

to activate the TRPC5 channel and the TRPC1/5 heteromer (Richter et al., 2014). It 

is licenced as a treatment to extend life for patients with amyotrophic lateral sclerosis 

(ALS), a form of motor neurone disease (MND) (National Institute for Health and Care 

Excellence (NICE), 2001). The plasma concentration in patients receiving 100 mg 

per day is approximately 2 µM (Mohammadi et al., 2002). 

 

The drug discovery and development process is expensive, estimated at $2.6 billion 

per drug, (DiMasi et al., 2016) and can take many years (Paul et al., 2010). 

Theoretically, the concept of repurposing drugs that have already been approved for 

other indications is an appealing one. The extensive pharmacokinetic, bioavailability, 

dosing and toxicity data that will already have been obtained for these drugs gives 

this approach an advantage of potentially bypassing some of this process, thereby 

reducing the time and costs involved (Sleire et al., 2017). If rosiglitazone is found to 

be an effective drug for use in RCC, its known cardiac toxicity may hinder its use, 

although in the setting of advanced cancer, the risk-benefit ratio may be deemed 

more acceptable. 

 
 

1.2.4 Spleen Tyrosine Kinase (SYK) 
Spleen tyrosine kinase (SYK) is a second protein that will be further explored in this 

study. It was first highlighted as a potential novel therapeutic target in a study 

undertaken as part of an ongoing collaboration with McGill University in Canada 

(Karimzadeh et al., 2018).  

SYK is a non-receptor type protein tyrosine kinase (PTK) initially discovered in bovine 

thymus and porcine spleen (Kobayashi et al., 1990, Taniguchi et al., 1991, Zioncheck 

et al., 1986, Zioncheck et al., 1988) that maps to chromosome 9q22 in humans (Sada 

et al., 2001). It is widely expressed in cells throughout the body, in particular almost 

all cells of a haematopoietic lineage (Yanagi et al., 1995) (Chan et al., 1994) (Yamada 

et al., 1993) (Benhamou et al., 1993) (Harrison et al., 1994) and has a number of 

functions which can be broadly classified as immunoreceptor and non-
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immunoreceptor related. It is activated by a large variety of immune response 

receptors, cytokines, integrins, thrombin and G protein coupled receptors (Futterer 

et al., 1998). 

 

1.2.4.1 Immunoreceptor related functions 

Immunoreceptors do not possess intrinsic protein kinase activity (Latour et al., 1998), 

instead they are closely associated to transmembrane proteins that have a 

cytoplasmic immunoreceptor tyrosine-based activation motif (ITAM). Upon activation 

of the immunoreceptor, tyrosine residues in the ITAM are phosphorylated, primarily 

by Src tyrosine kinase family members, and subsequently recruit SYK through 

interaction with the tandem SH2 domains. SYK in turn activates downstream signal 

pathways within the haematopoietic cell (Mocsai et al., 2010, Mocsai et al., 2004) 

(Turner et al., 2000). 

 

1.2.4.2 Non-immunoreceptor related functions 

Whilst initially thought to have a role limited to coupling immunoreceptor signalling 

with downstream effects, the development of SYK knock-out mouse models 

highlighted additional non-immunoreceptor related functions. Abnormal 

communications between the lymphatic and blood circulatory systems and a 

haemorrhagic phenotype was observed in the embryos of SYK deficient mouse 

models, emphasising its role in vascular development (Turner et al., 1995). 

Expression was later confirmed in endothelial cells (Yanagi et al., 2001a). Mice that 

had been lethally irradiated and reconstituted with SYK deficient foetal liver lacked 

mature B cells, emphasising SYK’s crucial role in the development of these cells 

(Turner et al., 1995). SYK also functions to mediate diverse biological functions such 

as osteoclast maturation (Mocsai et al., 2004) and cellular adhesion (Mocsai et al., 

2010). It also has a diverse role in autoimmune functions not limited to 

immunoreceptor  signalling (Mocsai et al., 2010, Yanagi et al., 2001b).  

 

1.2.4.3 SYK isoforms 

There are four transcripts of SYK that give rise to two isoforms through alternative 

splicing (Futterer et al., 1998). The longer isoform, SYK(L), measures 72 kDa, while 

the other, less abundant, shorter isoform, SYK(S), measures 69 kDa. SYK(S) lacks 

a 23 amino acid insert in the linker domain B (Turner et al., 2000) (Figure 1.1). The 

full significance and biological reasons for the two isoforms are not fully known. It is 
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clear that they have different functional roles. The 23 amino acid insert contains 

tyrosine 290, which has been shown to be a site of SYK autophosphorylation and 

subsequent activation in vitro (Furlong et al., 1997), although this was not the case 

in the RBL-2H3 (basophilic leukaemia cell line) or BI-141 (murine T-cell hybridoma 

cells) cell lines, where lack of the linker domain in SYK(S) has been linked with an 

inability to bind to the ITAM’s, and thus to participate in immunoreceptor signalling 

(Latour et al., 1998). The 23 amino acid insert was also found to have a nuclear 

translocation signal explaining the lack of SYK(S) in the nucleus of breast cancer cell 

lines  (Wang et al., 2003). It is likely the two SYK isoforms have different roles in 

different cell types.  

 

Figure 1.1 Schematic diagram showing the structure of the SYK isoform. 

The SYK (S) isoform is missing a 23 amino acid insertion the linker domain B as 
shown (amino acids 283 – 305). Adapted from reference - (Turner et al., 2000) 

 

 

1.2.4.4 Justification for examining SYK as a therap eutic target in 

RCC 

In an ongoing collaboration in conjunction with the McGill University in Canada, a 

novel integrated bioinformatics analysis of the data emerging from the International 

Cancer Genome Consortium (ICGC) Cancer Genomics of the Kidney (CAGEKID) 

database was performed. Data from the CAGEKID project was analysed for an 

association between the proteome and genes that were either mutated or 

differentially expressed at an mRNA level. Proteins that interacted extensively with 

these genes were identified and examined as potentially representing key players in 

the biology of ccRCC. The identification of VEGF and several other proteins, already 

known to have a role in RCC supported this novel approach. SYK was identified as 

a potential key regulatory factor in RCC, it was alternatively spliced at the RNA level 
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in 24/44 ccRCC samples (54.5%) compared to matched normal kidney samples. The 

longer isoform of SYK was more abundant in tumour samples compared to normal 

kidney samples (p<0.008) (Figure 1.2). 

 

 

Figure 1.2- Pooled relative abundance of RNA levels  for the SYK(L) and SYK(S) 
isoforms in matched tumour and adjacent normal kidn ey tissue. 

Relative abundance of the mRNA levels for each SYK (L) and SYK (S) isoform in 
samples from 44 patients are shown. The patient identifier is at the top of each box. 
The blue bar represents normal tissue and the red bar matched RCC tissue (This 
figure is taken from (Karimzadeh et al., 2018)) 



25 
 

 

 

 

Subsequent RNA interference work was undertaken which revealed that silencing 

SYK using shRNA reduced the ability of the 786-0 RCC cell line to form colonies, 

supporting the potential for SYK inhibition as a novel therapeutic strategy in RCC 

(Figure 1.3). This, together with the fact that inhibitors of SYK are already in clinical 

use in other indications, supported its further examination as a potential RCC 

therapeutic target in this work.  

Figure 1.3 Inhibition of SYK impairs the colony for mation of the 786-0 renal 
cancer cell line. 
The modulation of SYK was examined using RNA interference (a) Silencing of SYK 
(shRNA♯1 and shRNA♯2) reduces the colony formation of 786-0 compared with a 
negative control (pLKO). (b) Confirmation of SYK expression levels determined by 
qRT PCR relative to the negative control. (c) Western blotting to confirm SYK 
knockdown efficacy. (This figure is taken from (Karimzadeh et al., 2018)) 

Antibody: Santa Cruz, sc-1240 

Dilution 1 in 500 

Antibody: Santa Cruz, sc-365062 

Dilution 1 in 30,000 

(a) 

(b) 

(c) 
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1.2.4.5 SYK expression in cancer 

SYK can act as either a promoter or a suppressor of different cancer types (Krisenko 

and Geahlen, 2015) and this becomes more complex when the different isoforms are 

considered. It is hypothesised that SYK activation results in activation of various 

signalling cascades leading to a number of complex cellular responses including cell 

differentiation and cell survival (Coopman and Mueller, 2006). Amongst its many 

diverse roles, SYK is involved in cellular adhesion (Mocsai et al., 2010), B cell 

maturation (Turner et al., 1995, Mocsai et al., 2010), and the relay of signals from a 

large number of immunoreceptors in haematopoietic cells (Turner et al., 2000). Not 

all the previous work has identified between the two SYK isoforms.  

 

Breast Cancer 

SYK is expressed in normal human breast tissue and is lost in invasive breast 

carcinoma tissue. It is absent in highly tumourigenic breast cancer cell lines. 

Transfection of SYK into the SYK negative MDA-MB-435BAG breast cancer cell line 

reduced its tumour growth and metastasis formation in athymic mice (Coopman et 

al., 2000). SYK was found to be downregulated by mRNA expression in 28% (25/90 

paired breast cancer and normal breast tissue samples and when downregulated 

was associated with poor prognosis and distant metastasis (Toyama et al., 2003). 

Interestingly SYK is encoded on chromosome 9 and allelic loss of chromosome 9q22 

has been reported in primary breast cancer and is associated with lymph node 

metastasis (Minobe et al., 1998). Subsequently, it was demonstrated that the two 

SYK isoforms were differentially expressed in breast cancer cells. Western blot 

analysis of 16 paired tumour and normal breast tissue samples, SYK(S) was 

observed in 50% (8/16) of tumour samples (Wang et al., 2003). Overexpression of 

SYK(L) in breast cancer cell lines reduced cell invasion but did not effect cell 

migration. The manipulation of SYK(S) expression did not have an effect on cell 

invasion (Wang et al., 2003). Cellular imaging and Western blot analysis of cellular 

fractionations has demonstrated that both isoforms are found within the cytoplasm 

but only SYK(L) is found within the nucleus. Subsequent analysis of breast cancer 

cells led to the discovery of a nuclear translocation signal located within the 23 amino 

acid insert in linker domain B of SYK(L), thus explaining the cellular localisation of 

the two isoforms (Wang et al., 2003). This is complicated by the finding that in 

immune cells the nuclear translocation signal was separate to the 23 amino acid 

insert in DT40 lymphoma cell line (Zhou et al., 2006). The loss of SYK was observed 
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to be progressive through tumour progression from normal tissue through DCIS to 

invasive carcinoma using in-situ hybridisation (Moroni et al., 2004) 

 

Haematological Malignancies 

In cancers of a haematological origin there is a contradicting mix of SYK expression. 

In pro-B cell acute lymphoblastic leukaemia (ALL) (Goodman et al., 2001) and 

classical Hodgkin disease (Marafioti et al., 2004) SYK is observed to be down 

regulated, whilst it is upregulated in anaplastic large cell lymphoma (ALCL) 

expressing anaplastic lymphoma kinase (ALK) (Thompson et al., 2005). Conversely, 

SYK has also been observed to act as an oncogenic driver. There are subsets of B 

cell lymphomas, chronic lymphocytic leukaemia (CLL) and several other 

haematological malignancies that overexpress SYK and these cancers rely on SYK 

for survival (Buchner et al., 2009, Friedberg et al., 2010). 

 

Hepatocellular carcinoma (HCC) 

In HCC SYK was explored in seven established cell line models along with an 

immortalised normal liver cell line, LO2. SYL(L) was observed in the normal liver cell 

line and 86% (6/7) of the HCC cell lines. SYK(S) was observed in the two HCC cell 

lines with the highest metastatic potential. This work was carried out using qRT-PCR 

and confirmed with immunoblotting. In further work, SYK(L) was found to be 

significantly downregulated and SYK(S) upregulated in primary HCC compared with 

matched normal tissue and normal tissue without cirrhosis. SYK(S) was rarely found 

in non-tumour samples 1.3% (2/152). Using the HCC cell line, SMMC7721, two 

observations were noted, SYK(L) loss and SYK(S) gain were associated with 

increased cell growth and metastasis, confirmed by RNA interference. SYK(L) 

presence was associated with a more favourable outcome through better tumour 

differentiation, the absence of intrahepatic tumour nodules and less metastatic 

potential. SYK(S) expression was associated with a poorer outcome and a more 

aggressive tumour and higher metastatic potential (Hong et al., 2014). The cellular 

location of the two SYK isoforms concurs with the findings in breast cancer where 

SYK(L) was found in the nucleus and cytoplasm but SYK(S) was only found in the 

cytoplasm (Hong et al., 2014).  These findings suggest that SYK(L) acts on the 

nucleus to suppress the oncogenic properties of select cancer types and SYK(S) has 

a cancer promoting role in the cytoplasm. Loss of SYK(L) and presence of SYK(S) 

were the most powerful indicators of time to recurrence and overall survival (Yanagi 

et al., 2001b)  
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Other cancers 

The loss of SYK(L) was associated with increased cell growth and metastatic 

potential in pancreatic cancer (Layton et al., 2009). SYK mRNA is present in 

retinoblastoma cells but not in normal retinal cells (Zhang et al., 2012), indicating 

it may be a direct or indirect result of RB1 loss as this was the only known cancer 

gene mutated in a study of 4 cases of retinoblastoma. A subset of small-cell lung 

cancer (SCLC) overexpress SYK and SYK knockdown using siRNA decreases 

proliferation rate and increases cell death in the H69 and H146 SYK expressing 

small cell lung cancer cell lines (Udyavar et al., 2013).  

In ovarian cancer a positive correlation by qPCR was observed between 

increased SYK(L) expression and higher cancer grade (Prinos et al., 2011). 

Knockdown of SYK(L) reduced colony formation of the SLOV3 ovarian cancer cell 

line (Prinos et al., 2011). In cell line models of malignant melanoma and normal 

melanocytes, SYK was found to be downregulated in melanoma cells compared to 

melanocytes and was progressively lost in the transition from normal tissue to 

invasive malignancy (Hoeller et al., 2005). SYK was found to be present in the 

nucleus of 42.4% (106/260) of gastric cancer cases. Nuclear SYK expression was 

associated with T1 tumours and the absence of lymph node metastases a better 5-

year survival (92% vs. 67%, p<0.01) (Nakashima et al., 2006).  

 

1.2.4.6 SYK inhibitors 

There has been a great interest in the development of SYK inhibitors (Geahlen, 

2014). SYK inhibitors that are currently being investigated in clinical trials include 

R788 (fostamatinib), an oral prodrug of R406 (tamatinib) (Braselmann et al., 2006). 

It inhibits SYK in an ATP-competitive manner and has shown promise in several 

phase I/II clinical trials of rheumatoid arthritis (Weinblatt et al., 2008), immune 

thrombocytopenic purpura (ITP) (Podolanczuk et al., 2009), and, of more relevance 

to the current work, several lymphomas including DLBCL and CLL (Friedberg et al., 

2010). The toxicities included neutropenia, GI disturbances and hypertension and 

were reported to be manageable (Friedberg et al., 2010). Other SYK inhibitors 

include entospletinib, which showed benefit in a phase II clinical trial in humans in 

CLL (Sharman et al., 2015). It is reported to have better selectivity for SYK. No SYK 

inhibitors have been investigated in the treatment of RCC.  
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In keeping with the action of SYK to couple the activation of immunoreceptors to 

downstream signalling pathways, there are subsets of B cell lymphomas, chronic 

lymphocytic leukaemia (CLL) and several other haematological malignancies that 

rely on SYK for survival (Buchner et al., 2009, Friedberg et al., 2010). This explains 

the current investigation of SYK inhibitors in clinical trials in these cancers. A phase 

I/II trial of fostamatinib in recurrent B-cell non-Hodgkin lymphoma (B-NHL) has been 

reported. For the subsets of B-NHL, there were objective response rates of 22% 

(5/23) for diffuse large B-cell lymphoma, 10% (2/21) for follicular lymphoma, and 55% 

(6/11) for other types of B-NHL, including chronic lymphocytic leukaemia (CLL) 

 

1.3 Proteomic Approaches to Therapeutic Target  
Discovery 

This thesis was mainly focussed on the proteomic analysis of ccRCC and thus 

involved the utilisation of several proteomic technologies and techniques ranging 

from sample preparation and separation, to data analysis. Although these are 

detailed in Chapter 2, Materials and Methods, the preparation of tissue lysates for 

mass spectrometry analysis and the three main technologies, tandem mass 

spectrometry coupled with liquid chromatography (LC-MS/MS), sequential window 

acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS), 

and antibody arrays, will be discussed here along with their benefits and limitations. 

 

A key requirement to enable accurate proteomic profiling is the adoption of an optimal 

sample processing technique. Detergent use is essential in the solubilisation of 

hydrophobic proteins, but these detergents are typically not compatible with mass 

spectrometry and must be eliminated prior to analysis. Detergent contamination of a 

mass spectrometer is costly and time consuming. Many sample preparation 

techniques, such as the filter aided sample preparation (FASP) involve multiple steps 

and can have varying performance (Wisniewski et al., 2009). The suspension 

trapping (STrap) sample preparation method, developed and validated in this 

laboratory, enables highly reproducible and rapid SDS based protein extraction, 

followed by a tryptic digest and peptide clean up and was thus employed for this 

study (Zougman et al., 2014).  
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The peptide sample is separated using liquid chromatography and is eluted into the 

mass spectrometer. Following this there are three main processes. Firstly the sample 

is ionised, it then undergoes MS1 where the abundance and mass to charge (m/z) 

ratio is determined for the ions. In the final process, MS2, a subset of the detected 

ions are subjected to fragmentation and the abundance and m/z ratio is again 

determined for each fragment. LC-MS/MS is the most commonly available mass 

spectrometry technology to analyse complex protein mixtures. This method is also 

known as ‘discovery’ or ‘shotgun’ proteomics. In the MS2 step, the most abundant 

ions are individually selected and fragmented. This MS method is characterised by 

data dependent acquisition (DDA), the mass spectra obtained are compared to a 

theoretical protein sequence database (MaxQuant) through which the proteins are 

identified. Adaptations to this method of MS is possible, for example using stable 

isotope labelling and isobaric tags, and allow the targeted identification of specific 

peptides. There may be limitations in the ability to analyse low abundance proteins, 

but it is the more widely available mass spectrometry method. A second analysis 

technique is data independent acquisition (DIA), for example, SWATH-MS, which 

has been developed to complement other MS techniques such as tandem MS. Unlike 

LC-MS/MS, many ions are fragmented in the MS2 step at once, producing a complex 

fragmentation spectra that requires a large amount of computational analysis to map 

each peptide using spectral libraries. It is currently less widely available but is 

reported to be more reproducible and sensitive (Guo et al., 2015b). Both techniques 

have the ability to rapidly identify thousands of proteins per sample and both will be 

utilised in parallel in Chapter 4 (Hu et al., 2016). 

 

Antibody arrays have the advantage of requiring small amounts of sample and having 

a high level of reproducibility and sensitivity but are somewhat limited due to the lack 

of available reagents, lack of accuracy and dynamic range. The ability to detect 

protein abundance, different structural variations and post-translational modifications 

means it can be used to complement the mass spectrometry analysis (Haab, 2005). 

 

1.4 Integrating Proteomics and Genomics in Therapeu tic 
Target Discovery 

A number of studies in other cancer types have recently attempted to address this 

deficiency in knowledge through the integration of both proteomic and genomic data 

from the same samples in large bioinformatic analyses (Zhang et al., 2014) (Mertins 
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et al., 2016) (Zhang et al., 2016). This potential benefit is demonstrated in several 

examples, firstly, in the identification of TOMM34 as a therapeutic target in colorectal 

cancer (CRC) (Zhang et al., 2014). More recently, a peptide vaccine against 

TOMM34 and a second protein, RNF43, has been reported in a phase one trial in 

patients with CRC that were intolerant or refractory to standard chemotherapy, with 

stable disease over the course of the trial in 6 patients (25%) (Taniguchi et al., 2017). 

HDAC1 was identified to be upregulated in a subset of high-grade serous ovarian 

cancer (Zhang et al., 2016). Its pharmacological inhibition in addition to conventional 

chemotherapy has been explored in a phase II study in patients with previously 

treated ovarian cancer, with results suggesting a clinical benefit (Dizon et al., 2012). 

PAK1 was identified as a potential therapeutic target in breast cancer (Mertins et al., 

2016). Pharmacological inhibition of PAK1 in-vitro has been shown to inhibit breast 

cancer cell growth (Fajardo et al., 2015) and more recently inhibition of the Rac1-

PAK1 pathway has been shown to restore tamoxifen sensitivity in a breast cancer 

cell line (Gonzalez et al., 2017). Although these proteins had been identified to be 

dysregulated prior to the completion of these three proteogenomic studies, they still 

highlight the potential benefits of this approach for the identification of novel 

therapeutic targets and provide a promising platform that may be applied to ccRCC 

in order to develop rational novel therapies. 

 

The integration of proteomic and genomic information has the potential to help 

understand the functional effect of genome variation, in particular may provide further 

knowledge into the somatic gene mutations, such as those in PBRM1, SETD2 and 

BAP1. 
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1.5 Hypothesis and Aims 

The underlying hypothesis of this project is that identifying differentially expressed 

proteins in ccRCC compared to normal kidney using proteomic technologies, and 

integrating the findings with the results emerging from our group’s parallel ongoing 

genomic studies, is a useful strategy for novel therapeutic target discovery. 

 

To achieve my overall aim of identifying novel therapeutic targets in ccRCC, I have 

designed several integrated and complementary sub-studies with specific aims as 

follows: 

• To use the emerging targets, TRPC channels, as an exemplar with known 

drug modulators to design and implement in vitro strategies and models to 

both validate TRPC as a relevant target in RCC and to also subsequently 

explore any further emerging targets from my own proteomic studies.  

• To explore the initial findings of changes in SYK isoform at the mRNA levels 

from the groups ongoing genomic collaborations in terms of representing a 

novel potential therapeutic target in RCC. 

• To undertake a detailed proteomic analysis of ccRCC tissue compared with 

normal kidney, selected on the basis of underlying genomic changes, to 

understand the impacts of mutations in key genes on protein expression in 

ccRCC and identify potential novel therapeutics either for generic use or 

dependent on genetic profile.  
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Chapter 2 Materials and Methods 

All solutions were prepared using ultrapure water (ELGA DV25, 15 MΩ). 

Formulations of the various solutions are detailed in Appendix 1. Unless otherwise 

specified, all laboratory chemicals were purchased from Sigma or AnalaR. Tissue 

culture plasticware was obtained from Corning. All suppliers’ details are listed in 

Appendix 2.  

 

2.1 Cell lines and tissue samples  

2.1.1 Established cell lines  

To investigate the presence of the proteins highlighted within this study, a number of 

established RCC cell lines and other human derived established cell lines were 

utilised. These cell lines were stored in the vapour phase of liquid nitrogen within the 

laboratory and were retrieved for culture when necessary. The source, characteristics 

and growth media used for these cell lines are detailed in Table 2.1. All cell lines were 

routinely mycoplasma tested whilst in culture in line with laboratory protocols. 
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Table 2.1 – Source and characteristics of RCC cell lines.  

W/T denotes wild-type and ATCC and NCI denote the American Tissue Culture 
Collection and National Cancer Institute respectively. 

 

Cell line  Characteristics  Source  Media 

A498 
(HTB44) 

ccRCC from primary tumour. VHL 
mutant. 

ATCC (Giard et 
al., 1973) 

MEM Eagle 
(Sigma) 

 HTB45 
(A704) 

ccRCC from primary tumour. VHL 
mutant. 

ATCC (Giard et 
al., 1973) 

MEM Eagle 
(Sigma) 

HTB46 
(Caki-1) 

ccRCC from metastatic site 
(skin). VHL W/T. 

ATCC (Fogh et 
al., 1977) 

McCoys 5a  

HTB47 
(Caki-2) 

ccRCC from primary tumour. VHL 
mutant. 

ATCC (Fogh et 
al., 1977) McCoys 5a 

HTB49 
(SW839) 

ccRCC from primary tumour. VHL 
W/T.  

ATCC 
50 / 50, RPMI 
1640 / DMEM 

CRL1933 
(769-P) 

ccRCC from primary tumour. VHL 
mutant. 

ATCC RPMI 1640 

ACHN 
Papillary RCC. Pleural effusion. 
VHL W/T. 

ATCC 
MEM Eagle or 

RPMI 1640 

TK10 Primary tumour. VHL W/T. 
NCI (Bear et al., 
1987) 

RPMI 1640 

SN12C Primary tumour. VHL W/T. 
NCI (Naito et al., 
1986) 

MEM Eagle or 

RPMI 1640 

SN12K 
Mouse kidney subcapsular 
implant from human origin. VHL 
W/T. 

NCI (Naito et al., 
1986) 

MEM Eagle or 

RPMI 1640 

UMRC2 
ccRCC. Primary tumour. VHL 
mutant. 

HPA? (Grossman 
et al., 1985) 

MEM Eagle 

UO-31 
RCC, unknown subtype. VHL 
W/T. 

NCI  

HEK293 Human embryonic kidney cells ATCC  DMEM (Gibco) 

786-0 
(CRL1932) 

ccRCC. Primary tumour. VHL 
mutant. 

NCI 
DMEM (Gibco) 
or RPMI 1640 

HUVEC 
Human umbilical vein endothelial 
cells 

ATCC (Jimenez 
et al., 2013) F-12K Medium 

Raji cells Burkitts lymphoma B cells 
ATCC (Karpova et 
al., 2005) 

RPM! 1640 

 

2.1.2 Cell culture 

Cell lines were routinely grown in media supplemented with 10% (v/v) heat-

inactivated foetal calf serum (HI-FCS) (Biosera) and 2 mM GlutaMAX-1 (Gibco) in a 

humidified environment at 37°C in 5% CO2. Corning untreated cell culture flasks with 
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vented caps were used. For a T75 flask, cells were passaged by incubating with 5 ml 

PBS (Oxoid)/0.1% (w/v) EDTA (Sigma-Aldrich) for 5 minutes. Following removal of 

this solution, the adherent cells were incubated in 0.7 ml trypsin-versene (Gibco) for 

3-5 minutes at 37ºC. Upon detachment, the trypsin was inactivated by adding FCS-

containing media and the cell suspension was centrifuged at 350 g for 4 minutes. 

The volumes of solutions were scaled proportionately for other sized flasks. The cell 

pellet was resuspended and either re-plated or used for further experiments. Cells 

were routinely harvested at 85-90% confluence. A method used for the establishment 

of primary cell cultures is described in Chapter 3. 

 

2.1.3 Cryopreservation 

For storage of cell stocks, flasks of cells at 85-90% confluency were detached as 

detailed above and washed once with growth medium. The cell suspension was 

pelleted by centrifuging at 350 g for 4 minutes, then resuspended in a solution of HI-

FCS (Biosera) with 10% (v/v) DMSO (Sigma-Aldrich). 1 ml aliquots were transferred 

into cryovials (Thermo Scientific) and placed at -80ºC in a freezing container 

(Biocision CoolCell FTS30) to allow controlled rate cooling. After 24 hours the cells 

were transferred to the vapour phase of liquid nitrogen for long-term storage. When 

needed, cells were retrieved, gently thawed in a water bath (37°C), and then washed 

with pre-warmed media before re-pelleting by centrifuging at 350 g for 4 minutes, 

resuspending in culture media and placing in a culture flask for culture as above. 

 

2.1.4 Human tissue collection and storage 

Tissue samples were processed according to a strict standard operating procedure 

(SOP) in the Leeds Multidisciplinary Research Tissue Bank (RTB). With approval 

from the local Research Ethics Committee (REC) and following informed patient 

consent, tissue was routinely collected from patients undergoing surgery for 

suspected RCC in St James’s University Hospital, Leeds. Tissue samples were 

routinely collected from operating theatres immediately following nephrectomy and 

processed by Mrs J. Brown and Mr N. Gahir. Samples of tumour and distant normal 

kidney measuring approximately 5 mm x 5 mm x 10 mm were obtained and 

immediately transferred to the laboratory in ice-cold RPMI 1640 (Gibco) before 

dissection into smaller blocks, snap-freezing and storage in the vapour phase of 
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liquid nitrogen. Tissue samples from the RTB were accessed for use throughout this 

study. 

 

2.1.5 Frozen tissue sectioning 

Frozen tissue blocks were sectioned using a Leica CM3050 S Cryostat according to 

local SOP. Care was taken to ensure the tissue blocks remained in the frozen state 

throughout the process. Frozen tissue blocks and the cryostat chucks were placed in 

the cryostat chamber for at least 5 minutes prior to manipulation to adjust to chamber 

temperature. Ultrapure water was used to adhere the frozen tissue block to the 

cryostat chuck. For immunohistochemical staining of tissue sections, sections were 

cut at 5 µm and placed on a ‘Superfrost Plus’ microscope slide (VWR International) 

before short-term storage at -80oC until use. For the proteomic study, tissue sections 

of varying thickness tissue were cut (Chapter 4). Care was taken to avoid cross-

contamination by thorough cleaning of the cryostat between samples.  

 

2.2 General protein methods 

2.2.1 Protein extraction 

2.2.1.1 Protein extraction from cells 

Whole cell lysates were prepared as required for the various Western blotting studies 

analysing specific proteins.  Culture media was removed from flasks of cell 

monolayers once 85-90% confluent. After rapid washing three times with ice cold 

PBS (pH 7.3 +/- 0.2) and once with ice-cold isotonic (0.25 M) sucrose, draining 

thoroughly after each rinse using a pipette, 1 ml of lysis buffer (Laemmli buffer) was 

added to each flask and the flask placed flat on wet ice. After 2 minutes cells were 

scraped off using a cell scraper and the lysate transferred to an eppendorf where it 

was incubated for a further 15 minutes on ice. During this time, the DNA was 

disrupted by sonicating intermittently for 3 seconds at a time, checking for residual 

cellular particles but avoiding foaming and overheating of the sample (Soniprep 150, 

MSE, London, UK). Following centrifugation at 10,000g for 10 minutes at 4°C, the 

supernatant was alliquotted, total protein quantified and stored at -80°C. 
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2.2.1.2 Protein extraction from tissue 

Lysates from normal kidney and ccRCC tissue were used to investigate protein 

expression throughout this study. The protein extraction method used for the 

proteomic study in Chapter 4 is described later in this section. Prior investigations 

within the laboratory had determined that 10 µm sections equivalent to 1 cm x 3 cm 

surface area lysed with 400 µl of lysis buffer yield an average of 1000 µg total protein 

(250-2000 µg). Frozen tissue blocks stored in the RTB were selected and sections 

equivalent to the above placed in a 1.5 ml eppendorf. Flanking sections of 5 µm were 

also cut and were counterstained with haematoxylin and eosin for later review for 

evidence of necrosis, inflammation and viable tumour cells. For protein extraction, 

300 µl of lysis buffer (Laemmli buffer) was added to each tube followed by incubation 

on wet ice for 15 minutes with occasional vortexing. Following this, DNA was 

disrupted by sonicating for 3 seconds at a time whilst checking for residual tissue 

particles, but avoiding foaming and overheating of the sample (Soniprep 150, MSE, 

London, UK). The solution was centrifuged at 10,000 g for 10 minutes at 4°C, 

following which the supernatant was alliquotted, total protein quantified and stored at 

-80°C.  

 

2.2.2 Protein Assays 

Protein concentrations of whole cell lysates or tissue lysates in Laemmli buffer were 

determined using a modified Bradford assay which is compatible with the β-

mercaptoethanol and bromophenol blue present.  The protein concentration of tissue 

lysates prepared using modified RIPA buffer for the proteomic study (Chapter 4), 

were determined using the Bicinchoninic acid (BCA) assay (Thermo Fisher). Prior to 

Western blotting, equal protein loading was confirmed by analysing densitometry of 

Coomassie Blue stained gels) as described in 2.2.4. 

 

2.2.2.1 Modified Bradford Assay 

5 µl of protein lysate (or standards) were added to 10 µl of PBS, 10 µl of 0.1M HCl 

and 75 µl of ultrapure water. A standard curve was created using standards in the 

range of 0-5mg/ml with 5 mg/ml BSA diluted in PBS and an internal control of BSA 

(2 mg/ml) was used for quality control across assays. Bio-Rad Protein Assay Dye 

Reagent Concentrate (Bio-Rad) was diluted 1 part to 4 parts water immediately prior 
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to use and 3.5 ml was added to each standard, control and test sample tube. Each 

sample was run in duplicate. The samples were mixed, immediately added to a 

disposable cuvette and absorbance (595 nm) was measured using an Ultraspec III 

spectrophotometer (GE Healthcare). Results were analysed against the standard 

curve using the Prism statistical package (GraphPad). 

 

2.2.2.2 Bicinchoninic acid (BCA) assay 

The assay was carried out according to the manufacturer’s guidelines in 96 well 

plates. Nine protein standards ranging from 0 - 2 mg/ml were prepared using bovine 

serum albumin (BSA). 25 µl of each standard and unknown was pipetted into a 

microplate (96 well) in duplicate. Working reagent (supplied with kit) was added and 

the plate mixed for 30 seconds. After covering and incubating at 37 °C for 30 minutes, 

the plate was allowed to cool to room temperature and the absorbance of each well 

was measured at 562 nm using a MultiSkan EX spectrophotometer (Thermo). The 

Prism statistical package (GraphPad) was used to plot the standard curve and the 

protein concentration of each unknown sample was determined according to this.  

 

2.2.3 Protein electrophoresis 

2.2.3.1 Preparing 10% polyacrylamide gels 

Glass plates and spacers of 1mm thickness and plastic sheet spacers were 

assembled in a minigel casting box (10 gels). . Resolving gel solution was made by 

mixing adding 26.4 ml of stock acrylamide (National Diagnostics, Hull, UK) 10 ml of 

resolving buffer (Appendix 1), 800 µl of 10% w/v SDS and 38.8 ml of water, and after 

addition of 4 ml of ammonium persulphate (15 mg/ml) and 40 µl of TEMED 

(tetramethylethylenediamine), the solution was immediately pipetted into the gel 

casting box to a level approximately 1 cm from the top of the gels. 400 µl of water-

saturated isobutanol was carefully pipetted on top of each gel and the gels allowed 

to polymerise for an hour. After pouring off the isobutanol and rinsing the tops of the 

gels with water, a 4% stacking gel was added to each, consisting of a solution of 5 

ml acrylamide, 10 ml of stacking buffer (Appendix 1), 400 µl of 10% SDS, 22.4 ml of 

water, 2 ml of ammonium persulphate and 60 µl of TEMED. Combs (10 wells) were 

carefully inserted into the top of each gel and gels allowed to polymerise for a further 

hour, before being used immediately or stored until use at 2-8°C for up to 2 weeks. 
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2.2.3.2  One dimensional SDS-polyacrylamide gel ele ctrophoresis 

(1D SDS-PAGE) 

Protein samples were separated prior to Western blotting or quantification with 

Coomassie blue stain by 1D SDS-PAGE using 10% gels (Section 2.2.3.1) or Criterion 

TGX precast 8-16% gradient gels with 18 wells (Bio-Rad). Tissue or cell lysates were 

adjusted to required concentrations using 1x Laemmli sample buffer, the proteins 

denatured by heating to 95°C for 3 minutes, and 10-2525 µl as appropriate was 

loaded into each well. A dual stained molecular weight protein standard (10 µl) was 

used in one well (Precision Plus Protein™ Dual Colour Standard, Bio-Rad). The 

proteins were resolved by electrophoresis in a Bio-Rad electrophoresis tank at 120 

V (in-house gels) or 200 V (Criterion precast gels) using Tris-glycine running buffer 

(25mM Tris, 192 mM glycine, 0.1% w/v SDS), until protein separation was achieved 

as indicated by migration of the bromophenol blue dye front off the bottom of the gel 

(40-90 minutes).  

 

2.2.4 Coomassie blue staining of gels 

Coomassie blue staining of resolved gels was used for visualisation of the protein 

bands and checking equal protein loading measuring the density of the bands. 

Immediately following electrophoresis, the gels were fixed by immersing in 

Coomassie fix (40% v/v methanol, 7% v/v acetic acid, 53% v/v H2O) for 30 minutes. 

Following this, the gels were placed in Coomassie Blue staining solution, which was 

prepared by diluting 1 part methanol with 4 parts Brilliant Blue G Colloidal 

Concentrate (Sigma), for 2 hours with gentle rocking at room temperature. To 

destain, gels were washed for 1 minute in Destain I (25% v/v methanol, 10% v/v 

acetic acid, 65% v/v H2O), then Destain II (25% v/v methanol, 75% v/v H2O) until the 

gels were sufficiently destained to allow visualisation of protein bands. Gels were 

scanned using an ImageScanner III (GE Healthcare) and densitometric analysis was 

performed using ImageQuant software (GE Healthcare). 

 

2.2.5 Western blotting 

Western blotting was employed for confirmation of protein identity and semi-

quantitative determination of protein expression. Following separation by 1D SDS-

PAGE, proteins were transferred onto Hybond™-C Super nitrocellulose membrane 
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(Amersham Biosciences). Gels were placed in contact with a nitrocellulose 

membrane and sandwiched either side between a layer of sponge and a thick sheet 

of Whatman filter paper. The blotting sandwich was submerged in Towbin’s transfer 

buffer (Appendix 1) and transfer was carried out in a Mini Transfer Blot Cell (BioRad) 

at 100 V for 60 minutes or a Criterion Blotter (BioRad) at 100 V for 30 minutes. The 

complete transfer and quality of the transfer of protein was confirmed visually by 

placing the membrane in Ponceau S stain (Sigma) for 5 minutes at room 

temperature, then briefly washing with Ultrapure water until visualisation was 

achieved.  

 

After blocking membranes in 10% (w/v) non-fat dried milk (Marvel) in TBS/0.1% (v/v) 

Tween-20 (Sigma) (TBS-T) for 60 minutes at room temperature whilst gently rocking, 

membranes were incubated in primary antibody diluted in 1% (w/v) non-fat dried milk 

(Marvel) in TBS-T for 2 hours, at room temperature. After washing again in TBS-T (4 

x 5 minutes), the membrane was incubated in the appropriate secondary antibody 

(anti-mouse or anti-rabbit IgG horseradish peroxidase (HRP)-conjugated EnVision+ 

reagent) (Dako) diluted 1:200 in 5% (w/v) non-fat dried milk (Marvel) in TBS-T for 60 

minutes at room temperature. Following this membranes were washed again in TBS-

T (4 x 5 minutes) before being incubated in Supersignal® West Dura extended 

duration substrate (Thermo Scientific) as per manufacturers guidelines, for 5 

minutes. The blots were developed and visualised on Kodak BioMax film (Sigma) 

using an X-Ray Film Processor (Konica Minolta). A list of the antibodies used in this 

study and their optimised working concentrations are listed in Table 2.2. 

 

Table 2.2 – Primary antibodies used in this study 

Antibody Clonality Host Source 

TRPC1 (clone 1F1) Monoclonal Mouse NeuroMab 

TRPC4 (clone N77/15) Monoclonal Mouse NeuroMab 

TRPC5 (clone N67/15) Monoclonal Mouse NeuroMab 

Syk clone 4D10) (sc-1240) Monoclonal Mouse Santa Cruz 

Anti-proteasome 20S 
LMP2 antibody (PSMB9) 
(ab3328) 

Polyclonal Rabbit Abcam 

Cox-1 (clone CX111) 
(cay160110) 

Monoclonal Mouse Cayman Chemical 

Cox-2 (clone CX229) 
(cay160112) Monoclonal Mouse Cayman Chemical 
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2.2.6 Immunoprecipitation 

Immunoprecipitation using the TRPC1 antibody on A498 cells was performed in an 

attempt to identify a band observed with this antibody in Western blotting using this 

cell line (Chapter 3). After reaching 85-90% confluence in a T150 flask, growth media 

was carefully removed from the flask and the monolayer was gently washed twice in 

ice cold PBS. The cell monolayer was then scraped, transferred to a 1.5 ml eppendorf 

and pelleted by centrifuging at 350 g for 4 minutes. The cell pellet was lysed in a 

modified RIPA buffer at room temperature for 15 minutes. Following centrifugation at 

10,000 g for 5 minutes, the supernatant was removed and divided into two 

eppendorfs and the TRPC1 antibody (4 µg/ml) was added to one and an equal 

concentration of species-matched normal IgG, was added to the other. These were 

incubated on a spinner for 1 hour at room temperature. Magnetic protein G-coupled 

Dynabeads® (Life Technologies, Paisley, UK) were prepared by washing in the 

modified RIPA buffer, and added to the protein-antibody mix at 20 µl per 100 µl of 

lysate followed by incubation on a spinner for a further 30 minutes. The DynaMag™ 

magnet was used to separate the magnetic beads from the buffer and the bead pellet 

was washed once in modified RIPA buffer. The magnetic beads were again captured 

using the DynaMag™ magnet and the supernatant was processed for mass 

spectrometry analysis as detailed in Section 2.7.5 

 

2.3 Cell growth and viability assessment 

2.3.1 Cell growth analysis using Incucyte® equipmen t 

The IncuCyte® live-cell analysis system which is located inside an incubator at 37°C, 

5% CO2 was used to view and analyse cell growth upon exposure to various 

compounds. Cells were seeded onto 24 well plates in the appropriate growth media 

at a predetermined seeding density to achieve 80-90% confluence at the end of the 

experiment. The cells were allowed to settle for 24 hours in a cell culture incubator 

at 37°C, 95% air/5% CO2, before adding the investigative compound into the growth 

media.  The analysis system was preset to image each well in four areas hourly until 

the end of the experiment. These images were analysed using the Incucyte® 

software to determine the cell confluence over time without removing the plate from 

the incubator. 
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2.3.2 Cell viability assay (WST-1) 

Twenty-four hours after seeding each cell type at the seeding densities shown in 

Table 2.3, the growth medium was removed from each well and 100 µl of the required 

concentration of drug in growth medium was added to each well and cells incubated 

at 37°C in 95% air/5% CO2. Englerin A is poorly water-soluble so was stored 

solubilised in 100% DMSO (v/v) (stock concentration 5 µM). Pluronic acid was used 

as a dispersing agent. The concentration of pluronic acid was kept at 0.01% (v/v) and 

DMSO concentrations did not exceed 0.15% (v/v) and results were compared with 

cells treated with vehicle controls only. After 6 hr, 10 µl of WST-1 was added to each 

well and gently mixed for 30 seconds. The plate was incubated for a further 30 

minutes at 37°C, 95% air/5% CO2. The absorbance was measured at 440 nm and 

630 nm (background) using a MultiSkan EX spectrophotometer (Thermo). The Prism 

statistical package (GraphPad) was used to determine the cell viability (expressed 

relative to the vehicle control). This same method was used for the measurement of 

cell viability after exposure to the SYK inhibitor R406, except that the cells were 

exposed to the drug for 72 hours. 

 
 

Table 2.3 – Details of seeding densities and plates  used for cell viability 
measurement using WST-1 

Cell line  Seeding density 
(cells/well) 

Time to cell 
viability 
experimentation 

Plate type (96 well 
microplate) 

A498 5000 30 hours Clear-bottomed 
Nunc plates 

HUVEC 7500 30 hours Clear-bottomed 
Nunc plates 

HEK-293 15,000 30 hours Clear-bottomed 
poly-D-lysine-
coated plates 

786-0 1000 96 hours Clear-bottomed 
Nunc plates 

CRL1933 2000 96 hours Clear-bottomed 
Nunc plates 

TK10 1500 96 hours Clear-bottomed 
Nunc plates 
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2.4 Immunohistochemistry 

2.4.1 Haematoxylin and eosin (H&E) staining of froz en tissue 

sections 

Frozen sections were removed from the freezer and fixed in acetone for 1 minute 

before being left to air dry for 5 minutes. The sections were then stained in Meyer’s 

haematoxylin (3 minutes) and rinsed in running tap water (1 minute). The 

haematoxylin pigment was blued by immersing in Scott’s water (1 minute), followed 

by a further rinse in running tap water (1 minute) and staining in eosin (1.5 minutes). 

The slides were rinsed again in running tap water (30 seconds), before being 

dehydrated through increasing concentrations of ethanol (50%, 75% and 100%; 3 

minutes each), and cleared in xylene (4 x 3 minutes). Coverslips were mounted onto 

the slides with DPX Mountant (Sigma) and the sections reviewed by a pathologist (Dr 

Pat Harnden). 

 

2.4.2 Immunohistochemical staining of frozen tissue  sections  

Immediately prior to immunohistochemical staining, sections were removed from the 

-80°C freezer, washed twice in TBS (5 minutes each), then fixed in 4% (w/v) 

paraformaldehyde solution for 10 minutes followed by three washes in TBS (5 

minutes each). The slides were next mounted onto Shandon cover plates with TBS, 

and loaded into the Sequenza tray (Thermo Fisher). Endogenous peroxidase was 

blocked for 15 minutes using Bloxall™ blocking solution (Vector Laboratories). 

Following a wash with TBS (5 minutes), the sections were blocked with 100 µl of 10% 

(w/v) casein in TBS for 30 minutes at room temperature. Primary antibody was diluted 

in antibody diluent (Life Technologies), and 100 µl was applied to the slides at room 

temperature for 1 hour. Slides were then washed twice in TBS followed by incubation 

with 100 µl of the appropriate secondary antibody for 30 minutes at room 

temperature. After a further 2 washes in TBS (5 minutes) the slides were further 

incubated with ImmPACT™ DAB Peroxidase substrate (Vector Laboratories) for 10 

minutes. The reaction was stopped by placing the slides in gentle running tap water 

for 1 minute. Counterstaining was performed by immersing the slides in Meyer’s 

haematoxylin for 20 seconds, followed by a rinse in tap water for 1 minute, Scott’s 

water (1 minute) and then tap water (1 minute). Slides were then dehydrated in 

increasing concentrations of ethanol (50%, 75% and 100%) (3 minutes each), then 
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cleared in 4 changes of xylene (4 x 3 minutes). Coverslips were mounted onto the 

slides with DPX Mountant (Sigma). 

 

Table 2.4 – Antibodies used in immunohistochemical staining of tissue 
sections 

Antibody  Species  Working 

concentration 

Source  

Cox-1 (clone 
CX111) 
(cay160110) 

Mouse (monoclonal) 5 µg/ml Cayman Chemical 

Cox-2 (clone 
CX229) 
(cay160112) 

Mouse (monoclonal) 5 µg/ml Cayman Chemical 

 

 

2.5 RT-qPCR of tissue samples for gene expression 

analysis 

The TaqMan® real time PCR assays (Thermo Fisher) were chosen to investigate 

TRPC 1, 4 and 5 gene expression in ccRCC and normal kidney samples through RT-

qPCR. These were used in accordance with manufacturer’s instructions. Both 

primary tissue and the A498 and CRL1933 ccRCC cell lines were used (Chapter 3).  

 

2.5.1 RNA extraction 

Cell lines at 80-90% confluence in a T75 tissue culture flask were harvested and 

resuspended as described in Section 2.1.2 and pelleted by centrifuging at 350 g for 

4 minutes. The Qiagen RNeasy Mini Kit was used to purify RNA from these samples, 

in accordance with the manufacturer’s guidelines. Essentially, cells were lysed using 

proprietary extraction buffers and the lysate was added to the silica membrane 

RAeasy spin column along with ethanol to create conditions that promote selective 

binding of total RNA to the RNeasy membrane with contaminants being washed 

away using serial centrifugations followed by elution of the RNA in RNase-free water. 

The approximate concentration of total RNA was determined using the NanoDrop 

8000 equipment (Thermo Fisher) prior to the reverse transcription step.  
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2.5.2 qPCR using Biomark HD system (Fluidigm) 

This system was used due to the low yields of RNA obtained from tumour samples. 

Flex Six™ gene expression integrated fluidic circuits (IFCs) were obtained for use on 

the Biomark HD system (Fluidigm), which allows automated qPCR reactions in 

nanolitre volumes. The circuits were used according to the manufacturer’s guidelines 

and all analyses were run in duplicate. Initially reverse transcription was performed 

(all in duplicate) in 96 well plates: 1 µl of RT Master Mix (Fluidigm), 3 µl of RNase-

free water and 1 µl of total RNA were mixed and 4 µl was loaded per well. This plate 

was placed into a Nexus thermo cycler L/R/G and reverse transcription performed by 

running at 25°C for 5 minutes, 42°C for 30 minutes and then 85°C for 5 minutes. Next 

a pre-amplification step was performed by combining 1 µl of Preamp Master Mix 

(Fluidigm) with 1.25 µl of a pooled Taqman® assay mix, 1.5 µl nuclease-free water 

and 1.25 µl of the template cDNA. 3.75 µl of this mixture was loaded into each well 

in a 96 well plate and heated to 95°C for 2 minutes before completing 14 cycles (95°C 

for 15 seconds followed by 60°C for 4 minutes). Once completed, 20 µl of 1X Tris-

EDTA (TE) buffer was added to each well. The Flex Six™ IFCs were next primed in 

the HX loader (Fluidigm). 2 µl of each TaqMan® assay was combined with 2 µl of 2X 

Assay Loading Reagent and 3 µl of this was loaded onto the Flex Six™ IFC. 1.8 µl 

of the pre-amplified cDNA was combined with 0.2 µl 20X Gene Expression Sample 

Loading Reagent and 2 µl 2X Taqman Universal Master Mix. 3 µl of this mixture was 

loaded onto the IFC. Once all samples were loaded as required, the IFCs were 

loaded into the Biomark HD and run at 30°C for 25 minutes, 60°C for 70 minutes, 

50°C for 2 minutes then 95°C for 10 minutes. Next the cycler was heated to 95°C for 

15 seconds followed by 60°C for 60 seconds for 40 cycles. The results were analysed 

using the integral software.  

 

2.5.3 DNA gel electrophoresis 

Agarose gels were made by heating agarose in TBE (Tris-Borate-EDTA) buffer at a 

concentration of 2% (w/v) and  GelRed® Nucleic Acid gel Gel Stain (Biotium) was 

added to the mixture (1:10,000). Slab gels were poured and allowed to cool to room 

temperature to set. 6X DNA loading buffer (30% (v/v) glycerol, 0.25% (w/v) 
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bromophenol blue) was made in-house. cDNA template/DNA loading buffer was 

loaded per well into the gel alongside a DNA ladder, and electrophoresed at 100 V 

for 2 hours immersed in 1X TBE. The bands were visualised in a GelDoc System 

(BioRad) using the UV illuminator. 

 

2.6 Measurement of intracellular calcium 

A498 cells were seeded at approximately 2x104 cells per well (96 well microplate) 

and incubated at 37°C, in 95% air/5% CO2, for 24 hr prior to experimentation. On the 

day of experiment, growth medium was replaced with standard bath solution (SBS) 

containing 2 µM fura-2-AM (Life Technologies) and 0.01% v/v pluronic acid. Loading 

was carried out in low light conditions and plates were wrapped in aluminium foil 

while incubating for 1 hr at 37°C. Cells were washed twice with SBS and left for 30 

minutes at room temp bathed in SBS. Plates were placed in the FlexStationII 

(Molecular Devices), a bench-top scanning fluorimeter, at room temperature. This 

allowed for integrated fluid transfer whilst taking fluorescence measurements. Upon 

addition of the appropriate concentration of (–) englerin A at 60 sec (Chapter 3), 

fluorescence was read at 340nm (bound) and 380nm (unbound) and plotted as a 

ratio of 340:380. 

 

2.7 Tissue sample preparation for proteomic analysi s 

Details of the tissues selected and study design are included in Chapter 4.  

 

2.7.1 Protein extraction from tissue  

Frozen tissue sections were cut as described in Section 2.1.5 aiming for a protein 

yield of 1000 µg as detailed in 2.2.1.2. The sections were then stored frozen in a 1.5 

ml eppendorf each until extraction. SDS lysis buffer solution was used for protein 

lysis. 250 µl of the lysis buffer (5% SDS in 50 mM Tris-HCl, pH 7.6) was added to 

each eppendorf containing the frozen tissue sections at room temperature followed 

by gentle vortexing. DNA was disrupted by intermittent sonicating for 3 seconds at a 

time whilst checking for residual tissue particles but avoiding foaming and 
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overheating of the sample (Soniprep 150, MSE, London, UK). Disulphide bonds were 

next reduced by adding dithiothreitol (DTT) (stock 1 M) (Sigma Aldrich) to a final 

concentration of 25 mM. After heating to 95°C for 5 minutes, protein concentration 

was determined using the BCA assay. Prior to protein clean-up and digestion, 

iodoacetamide  (stock 1 M) (Sigma Aldrich) was added to a final concentration of 125 

mM to alkylate cysteines thereby preventing refolding of proteins, and the sample 

was left in the dark for 30 minutes. 

 

2.7.2 Tryptic digestion of protein lysates (STrap t echnique)  

STrap tips were prepared by adding 10 plugs of quartz filter paper to a 200 µl pipette 

tip (Zougman et al., 2014). Following tissue lysis as above, 175 µl of Strapping buffer 

(90% aqueous methanol containing a final concentration of 100 mM Tris-HCl, pH 7.1) 

was added to each STrap tip. Each SDS lysate was acidified by adding 12.5% 

phosphoric acid to a final concentration of 1.25% and then added to the top quartile 

of the strapping buffer contained in the STrap tip. The STrap tip was next placed in 

a 2 ml tube and centrifuged at 4000g for 30 seconds. A further 80 µl of the Strapping 

buffer was added to the STrap tip and centrifuged at 4000g for 30 seconds followed 

by addition of 40 µl of 40 mM ammonium bicarbonate solution and centrifugation at 

4000g for 30 seconds. The tip was next removed from the tube and 30 µl of 

ammonium bicarbonate containing 2 µg of trypsin (Sequencing Grade Modified 

Trypsin, Promega) was added to the tip. This solution was pushed through the stack 

within the tip using a 10 ml syringe with an adaptor. After incubating for 1 hour at 

47°C, 60 µl of 40 mM ammonium bicarbonate was added to the STrap tip and the 

digested peptides were eluted from the quartz stack by centrifuging at 4000g for 30 

seconds.  

 

2.7.3 Peptide clean up using Stop And Go Extraction  (STAGE) 

Tips 

Peptides generated using the STrap digestion method were next cleaned up prior to 

mass spectrometric analysis (Rappsilber et al., 2007). Tips were prepared by adding 

4 plugs of C18 octadecyl discs (Empore™) to a 200 µl pipette tip. The C18 plugs 

were wetted using 50 µl methanol, which was pushed through using a syringe. The 

plugs were next acidified by adding 50 µl 0.25% formic acid to the tip and centrifuged 
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at 4000g for 15 seconds, before addition of 5 µl of 10% v/v trifluoroacetic acid to each 

tube (final concentration 0.5% v/v). The lysates were loaded into the STAGE tips and 

centrifuged at 4000 g for 30 seconds. The sample was next desalted by centrifuging 

50 µl of 0.25% formic acid through the tip. The tips were placed in a further 1.5ml 

eppendorf and the peptides were eluted by adding 50 µl of elution buffer (60% v/v 

acetonitrile with 0.2% v/v formic acid) and centrifuging at 4000g for 30 seconds. The 

sample was heated at 90°C for 10 minutes in a fume hood to concentrate to a final 

volume of 10 µl.  

 

2.7.4 Preparation of sample for transfer to Switzer land for 

SWATH-MS 

Peptide concentration of each lysate was estimated using the NanoDrop 8000 

system (Thermo Fisher). 5 µg of each sample was pipetted into individually labelled 

eppendorf tubes. The tubes were loaded into the rotary evaporator and run until dry. 

The tubes were sent to Switzerland for further analysis by SWATH-MS (Guo et al., 

2015b) 

 

2.7.5 Mass spectrometry 

The digested peptide samples were randomised and analysed using an EASY-nLC 

1000 ultra high pressure chromatography system linked to an LTQ Orbitrap Velos 

mass spectrometer (LC-MS/MS) by Dr Alexandre Zougman. Samples were injected 

(2 injections per sample) directly onto an in-house prepared 20 cm reversed phase 

fused-silica capillary emitter column of inner diameter 75 µm, packed with 3.5µm 

Kromasil C18 media.  

The total acquisition time was 150 minutes, the major part of the gradient being 3–

25% ACN in 0.1% formic acid at the flow rate of 0.25 µl/minutes. Survey MS scans 

were acquired in the orbitrap with the resolution set to 60,000. Up to the 20 most 

intense ions per scan were fragmented and analysed in the linear trap. The acquired 

data from duplicate MS runs for each sample were combined and label-free mass 

spectrometry data analysis was performed using MaxQuant (v1.5.2.8).59 Proteins 

were identified using the Andromeda peptide search engine integrated into the 

MaxQuant environment and the Uniprot human database with the false discovery 

rate (FDR) for proteins and peptides set to 0.01 (Cox et al., 2009).(Cox et al., 2011) 
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Carbamidomethylation of cysteine was set as a fixed modification, with protein N-

terminal acetylation and oxidation of methionine as variable modifications, enzyme: 

trypsin/P, maximum number of missed cleavages: 3. Differential expression between 

samples was assessed using label-free quantification (LFQ) intensity as a readout.  

 

2.7.6 DNA extraction for confirmation of genetic mu tations 

Given the heterogeneity of RCC, the main genetic mutations in VHL, PBRM1, BAP1 

and SETD2 were reconfirmed in parallel sections taken at the same time as sections 

for proteomic analysis and using similar amounts of tissue.  Sections were placed in 

1.5 ml eppendorfs and DNA extracted using the QIAamp DNA Mini Kit (Qiagen).  In 

brief, tissue was initially lysed as directed by the manufacturers guidelines and 

RNase added to eliminate RNA. After addition of ethanol the sample was applied to 

the QIAamp Spin Column and centrifuged at 6000g for 1 minute. After further clean-

up steps the DNA was eluted into a clean DNase-free microcentrifuge tube and 

stored at -20°C. The quantity of DNA was determined using the NanoDrop 8000 

system (Thermo Fisher) and the DNA was then used for confirmation of the known 

genetic mutations. This was performed by Dr Claire Taylor from the Genomics 

Facility, University of Leeds. 

 

2.8 Data analysis 

Statistical analysis was performed using R (R Core Development Team, 2010), 

SPSS (Version 22, IBM) and Prism (Version 7, GraphPad) statistical packages. All 

analysis using R was performed by Mrs Michelle Hutchinson, a senior statistician 

within this group.  

 

In the integrated proteomic and genomic study, principal component analysis and 

hierarchical clustering were used as multivariate methods of exploratory data 

analysis to visualise for groupings within the data. The differential expression (LFQ 

intensity) of each protein between genetically defined groups was assessed using 

non-parametric statistical tests. Initially a Kruskal Wallis test was used to determine 

if there were statistically significant differences and if identified, a post-hoc pairwise 

comparison Wilcoxen rank-sum (Mann Whitney U) test was applied. The false 
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discovery rate was calculated using the q-value method (Storey, 2002). When 

analysing for differences in global protein expression between ccRCC and normal 

kidney sample groups globally, a Wilcoxon rank-sum (Mann Whitney U) test was 

applied. Heat maps were generated by determining the z-score for each protein, the 

colour coding depicting the relevant score. A preliminary bioinformatics analysis was 

performed by Dr Lara Fuelner using Ingenuity® Pathway Analysis software. 

 

Parametric tests such as Student’s T-test and ANOVA were used as indicated 

throughout this study for analysis of cell growth and viability patterns. 
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Chapter 3 Exploration of TRPC 1, 4 and 5 and SYK as  novel 
therapeutic targets in ccRCC 

 

3.1 Introduction 

The main aim of this chapter was to begin to establish the validity of the transient 

receptor potential canonical (TRPC) channels 1, 4 and 5 and spleen tyrosine kinase 

(SYK) as novel therapeutic targets in RCC. The strategy adopted was carefully 

designed to allow subsequent exploration of further emerging novel targets 

throughout this thesis. 

 

Within this laboratory, the investigation of protein expression patterns in primary 

tissue samples is possible through utilisation of the attached Leeds Multidisciplinary 

Research Tissue Bank (RTB), which contains several hundred annotated frozen 

tissue samples from both RCC and matched normal kidney. The TRPC 1, 4 and 5, 

and SYK protein expression patterns were investigated in paired RCC and normal 

kidney samples from the same patient. Identification of established cell line models 

that were representative of the protein expression in primary tissue was sought. It is 

acknowledged that established cell lines have the advantage of being readily 

available and having the ability to be grown in bulk relatively quickly, but may not 

retain the exact characteristics of their ancestor cells (Pfaller and Gstraunthaler, 

1998). To address this, significant efforts were made to develop a reproducible 

method for the generation and growth of primary RCC cultures (Perego et al., 2005). 

Finally pharmacological modulators of the proteins were investigated with a plan to 

proceed to in-vivo work if successful (Figure 3.1). 
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Figure 3.1 – The approach adopted in the investigat ion of novel therapeutic 
targets in ccRCC. 

 
 

3.2 Transient Receptor Potential Canonical (TRPC) c hannels 
1, 4 and 5 

The TRPC 1, 4 and 5 channels are intriguing targets that have been hypothesised as 

being implicated in a number of malignancies including RCC (Veliceasa et al., 2007). 

Further research into these channels was hindered by the lack of potent modulators 

until the pioneering work by Professor David Beech’s group discovered that the 

natural product extract, englerin A (EA), very potently and selectively activated the 

TRPC 1, 4 and 5 channels (Akbulut et al., 2015). This same compound was already 

known to selectively inhibit the growth of RCC cell lines in the NCI60 cell panel at 
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concentrations of less than 10 nM (Ratnayake et al., 2009). This section of work aims 

to complement this work through further exploration of the TRPC 1, 4 and 5 channels 

in primary RCC tissue. 

 

The aim of this section of work was to further investigate the TRPC1, 4 and 5 

channels as novel therapeutic targets in ccRCC, through: 

1) Investigation of TRPC1, 4 and 5 channel expression in primary RCC tissue 

2) Confirmation of the selective and potent nature of EA on RCC cell death 

3) Investigation of other pharmacological TRPC channel agonists 

4) Investigation of TRPC channel inhibition in ccRCC using a small molecule 

inhibitor (Pico145) 

5) The generation of primary RCC cultures as a tool to assist in the further 

investigation of these channels 

 

3.2.1 TRPC 1, 4 and 5 gene expression in ccRCC 
Up to this point, investigations into TRPC1, 4 and 5 expression and the modulation 

of these channels were solely based upon observations using established RCC cell 

lines, which, as previously discussed, may not replicate the primary tissue or cell of 

origin. To begin this work, TRPC1, 4 and 5 gene and protein expression were 

investigated in primary ccRCC and matched normal kidney samples.  

 

3.2.1.1 Selection of a suitable endogenous control for RT-PCR 

To be suitable as an endogenous control gene, it must be stable in experimental 

samples and must not be influenced by biological, physiological, experimental or 

pathological conditions. Equal amplification efficiency of the endogenous control and 

target genes are also essential to allow determination of target gene expression 

(Jung et al., 2007). Whilst beta-actin and GAPDH are widely utilised endogenous 

controls, their stable expression in RCC and paired normal renal tissue was 

questioned based on several studies (Jung et al., 2007) (Dupasquier et al., 2014). 

Instead peptidylprolyl isomerase A (PPIA) was selected on the basis of three 

comparative explorative studies (Jung et al., 2007) (Dupasquier et al., 2014) (Ma et 

al., 2012). Features pertaining to the suitability of this gene include its ubiquitous 

nature within many cell types (Bergsma et al., 1991) (Koletsky et al., 1986) (Ryffel et 

al., 1991) (Schmid et al., 2003).  
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3.2.1.2 Amplification efficiencies of the PCR assay s 

The Taqman® Gene Expression assays (Thermo Fisher Scientific) were chosen for 

real-time PCR analysis of TRPC 1, 4 and 5 gene expression. To confirm the reliability 

of these assays, and the suitability of the selected endogenous control, the 

amplification efficiency of each assay was determined by analysing dilutions (range 

of 4 logs) of the target cDNA template by real time PCR. RNA was extracted from the 

A498 cell line. The gradient of the line plotted between the Ct value and the log10 

RNA concentration was calculated and the efficiency of the reaction was determined 

using the equation [(10(-1/slope) – 1) x 100]; a slope of -3.32 indicates an efficiency 

of 100% (https://www.thermofisher.com/uk/en/home/brands/thermo-

scientific/molecular-biology/molecular-biology-learning-center/molecular-biology-

resource-library/thermo-scientific-web-tools/qpcr-efficiency-calculator.html).  

 

The amplification efficiencies for the TRPC 1, 4 and PPIA assays were determined 

to be 88%, 115% and 89% respectively (Figure 3.2). The optimal Ct value range for 

the Fluidigm Biomark PCR system is stated to be between 5.5 and 23 (personal 

correspondence from Fluidigm). The Ct value for TRPC4 at 0.25 ng was not 

detectable. For TRPC5, the Ct values were only detectable when large quantities of 

cDNA were used, however these loads produced Ct values that were outside the 

recommended range of the PCR equipment used (Ct value range 25-27). The 

Taqman® assays are marketed as being almost 100% efficient.  

 

The amplification efficiencies demonstrated in this study are acceptable for TRPC1 

and TRPC4, confirming their suitability for this study, and further to this, their similar 

efficiency to PPIA confirmed it as a suitable endogenous control for further work. The 

results for TRPC5 either suggest lack of TRPC5 in this cell line, or inefficiency of the 

TRPC5 assay, leaving concerns over its later interpretation. This same experiment 

was repeated using the UMRC2 RCC cell line with similar findings, including for 

TRPC5 (Ct value range 24-26). 
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Figure 3.2 – Determination of the amplification eff iciencies of the Taqman® 
Assays for (a) TRPC1 (b) TRPC4 (c) PPIA.  
The C slope method, with minimum 5 concentrations (0.25-250 ng) covering a 4 log 
range, was utilised. The slope of each line and R2 value was calculated for each 
assay as shown in the figure. The A498 cell line was chosen as a positive control 
across the real-time PCR analyses based on previous Western blot analyses. All 
samples were run in duplicate (error bars indicate SD).  
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3.2.1.3 TRPC 1, 4 and 5 gene expression in ccRCC 

RNA yields from ccRCC samples, unlike normal kidney samples, were observed to 

be low despite strictly adhering to the manufacturers guidelines. This was felt to be 

related to a high lipid content interfering with the extraction and clean-up process. 

Despite this, the yields allowed PCR to be carried out on the Fluidigm Biomark PCR 

system (this includes a pre-amplification step).  

 

Eight frozen ccRCC and matched normal kidney tissue samples were selected for 

investigation of TRPC 1, 4 and 5 gene expression using RT- PCR (Table 3.1).  
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Table 3.1 ccRCC samples used in this study to inves tigate TRPC 1, 4 and 5 expression.  

The TNM 7th edition was used to stage these tumours. 

 

Sample ID Gender  Laterality Other details Max 
size mm Grade T N M Stage Microvascular 

Invasion Necrosis 

R344 F L  39 2 1a 0 0 I Not recorded Not recorded 

R377 F L  65 4 3a 0 0 III Y Y 

R389 F R  82 4 3a 0 0 III N Y 

R398 F R Rhabdoid Cells 88 4 3a 0 0 III Y Y 

R404 F L  105 4 3a 0 0 III Y N 

R405 F L  50 3 1b 0 0 I N N 

R420 M L 
Focal 

sarcomatoid 
differentiation 

80 4 3a 0 0 III Not recorded Y 

R426 M L  43 3 1b 0 0 I N N 
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The results demonstrate a statistically significant upregulation of TRPC1 in three of 

the eight RCC samples (R344, R389 and R420) compared with normal kidney. There 

was a statistically significant upregulation of TRPC4 in four of the eight ccRCC 

samples (R344, R404, R405 and R420) compared with their normal counterpart 

investigated in this experiment. Furthermore, there was a statistically significant 

downregulation of TRPC4 in two of the eight samples (R377 and R389) compared 

with their matched normal counterpart (Figure 3.3).  

 
 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 – (a) TRPC1 and (b) TRPC4 gene expressio n in primary ccRCC 
compared with paired normal kidney.  
A statistically significant difference in expression between the normal kidney and 
ccRCC samples are indicated by * (p-value <0.05. Students T test). Each 
experimental sample was run in duplicate within each experiment (N=2). The error 
bars represent the standard deviation. 

 

 

TRPC5 was only detected in one tumour sample (R405) (data not shown). All 

detectable Ct values except that of R344 Normal and R405 Normal for TRPC5 
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exceeded the recommended upper limit recommended for accurate interpretation 

using this PCR system. Given this and the previous inability to determine the 

amplification efficiencies, these results were deemed uninterpretable. 

 

There were no obvious correlations discovered between the expression levels of 

each channel and known clinical and pathological characteristics of the tumours such 

as grade and stage. There was no statistical difference in TRPC1 expression 

between all normal kidney samples using one-way ANOVA. 

 

To confirm the specificity of the Taqman® gene expression assays, the PCR 

products for the paired tissue sample R344 were further evaluated by DNA gel 

electrophoresis on a 2% agarose gel (Figure 3.4). A single band of the predicted 

length was observed for each gene of interest and the endogenous control PPIA. 

There were no bands in the negative control samples for each assay (not shown). 

This provided confidence in the gene expression assays and results obtained. 

Interestingly there was a single band seen for TRPC5 at the predicted length, 

suggesting that it did amplify, but at a value determined as uninterpretable by the 

qRT-PCR system used  

  

3.2.2 TRPC 1, 4 and 5 protein expression in ccRCC  
Seven ccRCC and matched normal kidney samples from the RTB were selected for 

investigation of TRPC1, TRPC4 and TRPC5 protein expression using Western 

blotting (WB), following optimisation of conditions and antibodies. A lack of reliable 

antibodies for Western blot analysis of the TRPC 1, 4 and 5 channels limited these 

studies, although primary tissue samples had not been previously investigated.  
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Figure 3.4 – Agarose gel electrophoresis to visuali se the PCR products of 
TRPC1, TRPC4, TRPC5  
The endogenous control PPIA is also included ( sample R344 Normal and Tumour). 
The base pair size is expected at 137 b.p., 72 b.p., 75 b.p. and 97 b.p. for TRPC1, 4 
5 and PPIA respectively. No bands were visualised for the negative controls for each 
Taqman® assay (not shown). 

 

 

It is recognised that there are no consistent, reliable endogenous housekeeping 

protein for the confirmation of equal loading of polyacrylamide gels following 

electrophoresis when comparing across tumour and normal pairs. To confirm this two 

equally loaded gels, each with three paired ccRCC and normal kidney lysates and 

an RCC cell line were run in parallel. The first gel was blotted for β-actin and the 

second gel stained with Coomassie blue and densitometry readings were taken for 

each band. The ccRCC bands demonstrated upregulation of β-actin compared to 

their normal kidney counterpart consistently across the three paired samples despite 

the Coomassie stained gel suggesting equal loading (Figure 3.5). This is in keeping 

with findings previously reported by this group (Ferguson et al., 2005). Consequently, 

it was decided that equal loading would be confirmed through the use of Coomassie 

blue staining of an identically loaded parallel gel for each Western blot in this study.  
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ample ID Densitometry 
reading 

Densitometry 
relative to 786-

0 
786-0 1983.9 1.0 

53N 1355.36 0.7 

53T 1649.2 0.8 

82N 1349.76 0.7 

82T 1675.79 0.8 

87N 1546.59 0.8 

87T 1541.58 0.8 

(a) 

(b) 

 R53             R82            R87 

   N      T        N      T       N       T  7
86

-0
 

  N      T      N      T       N      T 

 R53           R82          R87 

78
6-

0 

M
/W

 M
ar

ke
r 

M
/W

 M
ar

ke
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(c) 

Figure 3.5 - β-actin was not a suitable loading control for Wester n blot analysis 
of RCC and paired normal samples.  
(a) Coomassie blue staining of a gel loaded with three RCC (T) and normal kidney 
(N) samples as shown in the figure. (b) Densitometry readings for the gel shown in 
(a) with relative density to the RCC cell line. (c) Western blot of a parallel equally 
loaded gel for β-actin. 



62 
 

 

3.2.2.1 TRPC1  

TRPC1 protein expression was investigated across a range of ccRCC and matched 

normal kidney samples and the established RCC cell lines 786-0 and A498. The two 

cell lines were included to allow a comparison with previously performed WB 

analyses using the same antibodies that were previously included in a Masters 

thesis, which demonstrated a band at approximately 100 kDa, with another fainter 

band at a lower weight (Figure 3.6).  A major limitation of cutting the blot, especially 

when one molecular weight marker remains, includes the inability comment on lower 

weight bands and the inability to more accurately judge the relative size of 

neighbouring bands. The datasheet for the antibody demonstrated a Western blot of 

adult rat brain with a large smeared band between 98 and 64 kDa 

 

 

Figure 3.6 - Western blots analysing total TRPC1 an d 4 protein expression in a 
range of cell lines.   
Courtesy of Dr Melanie Ludlow. TRPC1 and TRPC4 protein expression patterns, 
using the antibodies utilised in this study, are shown across a range of cell lines.  

 

 

TRPC1 protein has been identified to exist as two isoforms weighing 91 and 88 kDa 

produced by alternative splicing (www.uniprot.corg) (The UniProt Consortium, 2017). 

Western blot for TRPC1 that did not include a positive control cell line (Figure 3.7) 

revealed a band between 31 and 36.5 kDa, which was upregulated in all RCC 
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samples compared with the paired normal kidney counterpart. The molecular weight 

of this band did not correlate with any known isoforms of TRPC1. This may represent 

a protein that cross-reacts with the TRPC1 antibody or it may possibly represent a 

degradation product of TRPC1. To confirm this finding and to include a positive 

control cell line and expose the blot for longer, this WB was repeated. The dominant 

band again correlated with the previous blot but several other bands were present. 

Comparison with the blot shown in Figure 3.6 demonstrated a band at approximately 

100 kDa with the same pattern of intensity in the A498 and 786-0 cell lines.  

 

Immunoprecipitation was performed using this TRPC1 antibody in an attempt to 

resolve the identity of the protein(s) in the dominant band. The immunoprecipitate 

was analysed using mass spectrometry with Mouse IgG1 as a control antibody. A 

total of 555 proteins were identified (peptide count >/=2). Of these, 112 were not 

detected in the Mouse IgG1 control antibody. TRPC1 was not identified, nor were 

any proteins with any homology for TRPC1.Therefore the identity of this protein 

remains uncertain and since this was not a focus of this thesis, further work was not 

conducted. 
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Figure 3.7 – Western blot analysis of TRPC1 protein  expression in ccRCC.  
(a) TRPC1 expression was explored across five ccRCC (T) and matched normal 
kidney (N) samples (b) a second gel of three paired samples and the RCC cell lines 
786-0 and A498 was exposed for longer to look for background bands that may 
represent TRPC1 at the expected molecular weights. 30 µg of protein was loaded 
per well. Normalisation of loading was confirmed with densitometry readings of an 
equally loaded gel stained with Coomassie blue. No bands were seen with a no 
primary antibody control. The expected molecular weight for the TRPC1 isoforms are 
91 and 88 kDa. 
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3.2.2.2 TRPC4 

The expression of TRPC4 protein was next similarly investigated. There are a 

number of bands seen across the whole gel, with one band observed at 

approximately 100 kDa, and two bands between 50 kDa and 37 kDa (Figure 3.8). 

The band at 100 kDa was present in all samples, and possibly represents one of a 

number of TRPC4 isoforms (113, 112, 103, 96, 95, 92 kDa), however, no significant 

difference was seen between RCC and paired normal kidney samples. The higher of 

the two molecular weight bands, between 50 and 37 kDa were present in all samples 

including the cell lines and appeared to be slightly upregulated in each tumour 

sample compared with matched normal kidney sample. The lower molecular weight 

band between 50 and 37 kDa was present in all normal samples, however was only 

detected in one tumour sample (R53). 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 – Western blot analysis of TRPC4 protein  expression in ccRCC.  
Western blot analysis for TRPC4 in three RCC samples, each with matched normal 
kidney samples, and the RCC cell lines 786-0 and A498 is shown. 30 µg of protein 
was loaded per well. A parallel gel was run and stained with Coomassie blue to 
confirm equal loading (not shown). No bands were seen with a no primary antibody 
control. 
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3.2.2.3 TRPC5 

Western blot analysis was performed across a selection of RCC tumour and normal 

paired samples (not shown). A non-specific pattern of multiple bands was seen 

across the blot, with no bands at the expected molecular weight of 111 kDa. 

 

The Western blot findings did not give confidence in the suitability of the antibodies 

to accurately identify the TRPC proteins investigated in this section of work. Whilst 

comparison with the Western blots shown in Figure 3.6 identified a similar pattern of 

band in the A498 and 786-0 cell lines, the blot had been cut, therefore further 

comment on the other bands are not possible. Further work into optimising the 

Western blotting using these antibodies was not successful and Western blot 

analysis using other antibodies had previously been undertaken by this lab, with no 

better antibody identified. For this reason, studies to confirm expression of the target 

in RCC tissues at the protein level were not taken forward. 

 

Considering the striking results demonstrating the potent and selective nature of EA 

in killing RCC cells in-vitro (Ratnayake et al., 2009), the next section of work set out 

to confirm these results and explore the effect of EA on several non-cancer cell lines. 

 

3.2.3 Exploration of the effects of Englerin A on v arious cell lines 
The work to this point has established that TRPC1 and TRPC4 are expressed in 

ccRCC tissue at an mRNA level, but with no consistent pattern between tumour and 

matched normal samples. The A498 RCC cell line was chosen to begin this 

exploratory work. Alongside, HEK293 (derived from a human embryonic kidney) and 

HUVEC (derived from the endothelium of veins from the umbilical cord) cell lines 

were selected as non-RCC comparisons (Graham et al., 1977) (Jaffe et al., 1973).  

 

3.2.3.1 A498 cell line  

Englerin A (EA) has been shown to cause rapid RCC cell line death at nanomolar 

concentrations (Ratnayake et al., 2009, Sulzmaier et al., 2012). This was first 

confirmed in the A498 cell line. The optimal seeding density of each cell line used 

was first established, so as to reach 70-80% confluency at 30 hours to ensure the 

cells were in an exponential growth phase at the time of experimentation. In keeping 

with previously published work, cells were seeded and cell media containing englerin 
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A added 24 hours later. After 6 hours, cell viability was measured using the WST-1 

cell viability assay (Figure 3.9). EA is shown to have a potent cell death effect in the 

A498 cell line. The EC50 (effective concentration of drug to cause half maximum 

response) was 60.2 nM. 

 

Figure 3.9 - EA reduced cell viability in the A498 RCC cell line.  
A498 cells were exposed to EA at the respective concentrations for 6 hours. Cell 
viability was measured using the WST-1 assay. The measurement of the WST-1 
absorbance is displayed as % cell viability where 100% cell viability indicates cells 
with the same metabolic activity as those in the untreated cells and 0% cell viability 
indicates cells with zero metabolic activity. The graph represents four experiments 
each with three replicates per condition. The error bars represent the standard error 
of the mean. 

 

 

3.2.3.2 HEK293 cell line  

The human embryonic kidney 293 (HEK293) cell line was chosen as a non-cancer 

cell line. The exact origin of this cell line is unclear, although it is known that it 

expresses the markers of renal progenitor cells, neuronal cells and adrenal gland 

cells (Stepanenko and Dmitrenko, 2015). The optimal seeding density was 

determined at 15,000 cells per well in a 96 well plate. After 24 hours, the cells were 

exposed to Englerin A for 6 hours and subsequent cell viability assessed using the 

WST-1 assay. No cell death was seen across a range of concentrations (1 nM to 5 

µM) of EA in the HEK293 cells (Figure 3.10).  
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Figure 3.10 – EA does not reduce cell viability in the HEK293 cell line.  
HEK293 cells were exposed to EA at the respective concentrations for 6 hours. Cell 
viability was measured using the WST-1 assay. The measurement of the WST-1 
absorbance is displayed as % cell viability where 100% cell viability indicates cells 
with the same metabolic activity as those in the untreated cells and 0% cell viability 
indicates cells with zero metabolic activity. The graph represents two experiments, 
each with three replicates per condition (N=2).  The error bars represent the standard 
error of the mean.  

 

 

3.2.3.3 HUVEC cell line  

The HUVEC (human umbilical vein endothelial cell line) was selected as a second 

cell line of a non-cancer origin. An optimal seeding density of 7,500 cells per well in 

a 96 well plate was determined. There was no cell death upon exposure to EA (1 nM 

to 5 µM), further demonstrating the apparent selectivity of EA for RCC (Figure 3.11). 
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Figure 3.11 – Englerin A does not cause cell death in HUVEC cells.  
EA did not cause any HUVEC cell death at a range of concentrations from 1 nM to 
50 µM upon exposure for 6 hours. Cell viability was measured using the WST-1 
assay. The measurement of the WST-1 absorbance is displayed as % cell viability 
where 100% cell viability indicates cells with the same metabolic activity as those in 
the negative control and 0% cell viability indicates cells with zero metabolic activity 
(equivalent to the absence of all cells). This graph is based on two experiments, each 
with three replicated per condition (N=2). The error bars represent the standard error 
of the mean. 

 

 

3.2.3.4 Exploration of the effects of Englerin A on  intracellular calcium 

In keeping with the action of EA as an agonist of the non-selective cation permeable 

TRPC channels, the effect of EA on intracellular calcium was next explored. EA (1 

µM) caused a rapid surge of calcium into the cell immediately upon exposure to EA 

(Figure 3.12).  
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Figure 3.12 – Measurement of intracellular calcium changes upon exposure to 
EA.  
EA (1 µM) was added to the A498 cells at the time point 60 seconds using the 
FlexStationII. Intracellular calcium was measured using the ratiometric calcium 
indicator dye, Fura-2. A surge of calcium is seen to enter the cell. The black line 
represents the DMSO negative control. There is no change in intracellular calcium in 
the vehicle control (DMSO). This graph represents one experiment with three 
replicates per condition (N=1) and is representative of the two independent repeats. 
 

 

3.2.3.5 Investigation of the effect of the addition  of the Na+/K+-ATPase 

inhibitor Ouabain to EA 

Whilst this work was ongoing it was hypothesised that cytotoxicity was also the result 

of sodium influx (Ludlow et al., 2017). It was hypothesised that the sodium/potassium 

ATPase (Na+/K+-ATPase) pump was working to counteract the influx in sodium 

caused by EA, thus explaining the incomplete cell death (40%) even at the highest 

doses of EA. Ouabain, a Na+/K+-ATPase inhibitor, was demonstrated to increase the 

potency and cell death seen upon exposure to EA at a concentration that did not 

reduce cell viability on its own (10 nM). This finding was significant and warranted 

further investigation at this point as ouabain may work synergistically with EA in 

patients with RCC. In preparation for potential work using primary RCC cells, this 

finding was confirmed in A498 cells (Figure 3.13). Ouabain at 10 nM did not cause 

any cell death at 6 hours. EA (1 µM) induced approximately 40% cell death. The 

addition of ouabain (10nM) to EA (1 µM) enhanced the cell death effect to 

approximately 60%. There was no statistically significant difference in % cell viability 

EA added  
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with the exposure to ouabain alone. The reduced cell viability seen with EA and 

ouabain and EA alone was statistically significant as shown in the figure. 

 

Figure 3.13 – Ouabain enhances EA induced cell deat h in the A498 RCC cell 
line.  
A498 cells were exposed to 1 µM EA 6 hours. Cell viability was measured using the 
WST-1 assay. The measurement of the WST-1 absorbance is displayed as % cell 
viability where 100% cell viability indicates cells with the same metabolic activity as 
those in the untreated cells and 0% cell viability indicates cells with zero metabolic 
activity. The bars represent the standard error of the mean. Statistical analysis 
performed using a two-way ANOVA for multiple comparisons (* = p<0.00001). This 
figure represents 7 experiments each with 3 replicates per condition (N=7) 
 

 

3.2.3.6 Exploration of the effect of EA on the grow th of the A498 cell 

line 

It was noted that EA did not cause 100% cell death in the A498 RCC cell line, even 

despite more prolonged exposure to the compound. To explore this further and to 

support the findings in Figure 3.13, the growth of the A498 cell line was investigated 

over a 72 hour period following addition of EA using the Incucyte ® system, which 

measures cell confluence at predetermined regular intervals over a 72 hour period. 
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Figure 3.14 – EA reduced A498 RCC cell growth over a 72 hour period.  
A498 cells were seeded onto 24 well plates to obtain a confluence of approximately 
20% at 24 hours (10,000 cells per well). The cells were exposed to EA (1 µM) and 
Ouabain (10nM) as shown in the diagram and the confluence of the wells was 
recorded every 3 hours for 72 hours using the Incucyte ® system. This graph 
represents two experiments, each with two repeats (N=2). 
 
 
 
EA was demonstrated to reduce the growth rate of the A498 cell line (p<0.05), 

although ouabain did not enhance this effect (p=0.981). There was no statistical 

difference between the cell growth rate of the vehicle control and 10 nM Ouabain 

(p=0.950) (Figure 3.14). In the same experiment, although not shown, the vehicle 

control (0.15% DMSO) had no effect on cell growth compared to growth media alone. 

 

These results confirmed the potent and apparent highly selective nature of EA 

causing reduced cell viability of the A498 established RCC cell line but not the two 

non-cancer cell lines, HUVEC and HEK293. The activity of other alternative 

pharmacological TRPC agonists were next investigated. 
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3.2.4 Investigation of other pharmacological TRPC a gonists 
As previously discussed, the TRPC 1, 4 and 5 channels are known to be modulated 

by lead (Pb2+) (Sukumar and Beech, 2010), lanthanum and gadolinium (Jung et al., 

2003). These were not further explored here as they were not felt to represent viable 

future treatment options. This section of work introduces the concept of repurposing 

of drugs already licenced for other indications. The drugs rosiglitazone and riluzole, 

which are known to modulate the TRPC channels were further explored. 

 

3.2.4.1 Rosiglitazone  

The drug rosiglitazone is known to act as an agonist of the TRPC 1 and 5 channels. 

A498 cells were exposed to rosiglitazone at a number of concentrations up to 100 

µM and cell viability was recorded at 6 hours. Unlike EA, significant cell death were 

not seen at low concentrations. The only statistically significant reduction in cell 

viability was observed at 100 µM (Figure 3.15). 

Figure 3.15 – Investigation of the effect of rosigl itazone on A498 cell viability.  
A498 cells were exposed to rosiglitazone for 6 hours. Cell viability was measured 
using the WST-1 assay. The measurement of the WST-1 absorbance is displayed as 
% cell viability where 100% cell viability indicates cells with the same metabolic 
activity as those in the no drug control and 0% cell viability indicates cells with zero 
metabolic activity. This graph is based on four separate experiments, each with three 
replicates per condition (N=4). The error bars represent the standard error of the 
mean. There was a statistically significant difference as indicated by * (p =0.009) 
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3.2.4.2 Riluzole  

Riluzole is also known to activate the TRPC 1 and 5 channels. A498 cells were 

exposed to riluzole at a range of concentrations up to 100 µM for 6 hours. There were 

no statistically significant reductions in cell viability observed (Figure 3.16).  

 

 

Figure 3.16– Investigation of the effect of riluzol e on A498 cell viability 
A498 cells were exposed to riluzole for 6 hours. Riluzole is known to activate the 
TRPC1 and 5 channels similar to EA. This graph is based on three experiments with 
three repeats each (N=3). The error bars represent the standard error of the mean. 
There was no statistical difference between each concentration of drug as analysed 
using ANOVA for paired samples. 
 

 

3.2.5 Exploration of TRPC channel inhibition in RCC  cell lines 
The lack of highly selective and potent modulators of the TRPC channels has limited 

investigation of their biological function. During this work a highly potent and selective 

small molecule inhibitor of TRPC1, TRPC4 and TRPC5 was described by the David 

Beech group. This compound, named Pico145, was found to inhibit EA (10 nM) 

evoked calcium entry with an IC50 of 0.349nM for TRPC4, and 1.32nM for TRPC5 

(Rubaiy et al., 2017b). Inhibition of the TRPC1, 4 and 5 channels has not been 

previously investigated in RCC. The effects of the inhibition of the TRPC channels 

were next investigated using Pico145 on the A498 cell line. Based on the previously 

determined IC50 values, three concentrations (1, 5 and 10 nM) of this compound were 

chosen for further investigation.  
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The growth patterns of the A498 RCC cell line were investigated using the Incucyte® 

system. This demonstrated no difference when the A498 cell line was exposed to the 

Pico145 compared to cell lines exposed to the vehicle control (0.15% DMSO) (Figure 

3.17). Statistical analysis of the final time-point using a one way ANOVA for multiple 

group comparisons indicated there was no statistical difference between the 

conditions. 

 

Figure 3.17 – Pico145 did not alter the growth rate  of the A498 cell line.  
A498 cells were seeded onto 24 well plates to obtain 20% confluence at 24 hours 
(10,000 cells per well). The selective TRPC 1, 4 and 5 inhibitor was applied to the 
cells and confluence was measured every 3 hours for 72 hours using the Incucyte ® 
equipment. There was no statistical difference identified between the groups at the 
last time-point using a one-way ANOVA (p=0.724). This graph represents two 
experiments, each with two replicates per condition (N=2). The error bars represent 
the standard error of the mean. A positive control  (EA) was included in this 
experiment but not shown here. 
 

 

The growth of the A498 RCC cell line was next investigated when exposed to EA in 

combination with Pico145.  
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Figure 3.18 – Pico145 partially rescues the A498 RC C cell line from the effects 
of EA.  
A498 cells were seeded into 24 well plates to obtain 20% confluence at 24 hours 
(10,000 cells per well) The cells were exposed to EA and Pico145 as indicated. Cell 
confluence was measured every 3 hours for 72 hours using the Incucyte ® 
equipment. This represents two experiments, each with 6 and 4 replicates per 
condition respectively (N=2). The error bars represent the standard error of the mean.  
 

 

This experiment demonstrated that EA inhibited cell growth, which was statistically 

significant at the final time point (72 hours). Pico145 in combination with EA reduced 

the inhibition of cell growth at concentrations of 5 nM and 10 nM, but not at 1 nM 

(Figure 3.18).  

 

This concluded the investigations into TRPC 1, 4 and 5 in RCC. The expression at 

an RNA level is variable and due to lack of suitable antibodies, expression at a protein 

level using Western blot is not possible. The potent and selective nature of action of 

EA has been confirmed and the inhibition of the TRPC channels does not cause RCC 

cell death. 
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3.3 Spleen Tyrosine Kinase (SYK) 

SYK was chosen to investigate as a novel therapeutic target as it fulfilled the essential 

characteristics sought - SYK had proven function in the pathophysiology of a number 

of types of human cancer under physiological conditions, the differential expression 

of SYK had been highlighted at an mRNA level between RCC and matched normal 

tissue, and finally, SYK inhibitors were available and were being actively investigated 

in several clinical trials. Approval was being sought for a SYK inhibitor (fostamatinib) 

in idiopathic thrombocytopenic purpura in the UK (NICE guidance GID-TA10387).  

 

This section of work set out to: 

1) Examine the relative expression of the two isoforms of SYK in RCC versus normal 

kidney tissue at a protein level 

2) Identify any representative ccRCC cell line models that may be utilised for further 

work 

3) Explore the effect of small molecule inhibitors of SYK on RCC cell line models 

 

 

3.3.1 Western blotting analysis of primary tissue s amples for 
SYK 

Initially the expression of SYK was investigated at a protein level in primary RCC and 

matched normal kidney tissue. The 786-0 RCC cell line was used as a positive control 

based on preliminary work (Karimzadeh et al., 2018). Following initial optimisation 

experiments (data not shown), four paired tissue samples were selected from the 

RTB and Western blot analysis was performed (Figure 3.19).  
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Figure 3.19 - Western blot analysis of paired tumou r and normal tissue lysates 
probed for SYK.  
Four paired ccRCC and adjacent normal kidney samples were blotted with the Santa 
Cruz anti-SYK (sc-1240) antibody. 5 µg of lysate was loaded per lane. The positive 
control is a 786-0 cell lysate. A parallel gel was stained with Coomassie blue stain to 
confirm equal loading. No bands were seen with a no primary antibody control. 
 

 

Similar to the positive control, two bands were seen in the normal kidney samples. 

These bands were at a molecular weight consistent with the known SYK isoforms 

(72 and 70 kDa). Only the longer isoform, SYK(L), was present in the ccRCC samples 

consistent with the findings at the mRNA level. This pattern was also observed across 

all four paired samples.  

 

3.3.2 SYK protein expression in RCC cell lines 
The expression of SYK was next investigated across a range of RCC cell lines with 

the aim to identify a representative model. The 786-0 RCC cell line was again chosen 

as a positive control. There were two bands present, with a molecular weight 

consistent with both isoforms of SYK, in four of the twelve RCC cell lines (786-0, 

A498, HTB49, TK10). There were no bands observed across the other cell lines 

(Figure 3.20). 
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Figure 3.20 - Western blot analysis of a range of R CC cell line lysates for SYK.  
20 µg of protein was loaded per well. A parallel gel was stained with Coomassie blue 
stain to confirm equal loading. No bands were seen with a no primary antibody 
control. 
 

 

This demonstrated that, out of the 12 cell lines investigated, none of them were 

representative of the primary ccRCC tumours as shown in Figure 3.19. Thus, no 

available established cell line model was available for further investigation of the 

potential for SYK as a therapeutic target in RCC. On this basis it was decided 

that attempts to generate primary cultures derived from freshly excised renal 

tumours would be investigated to attempt to provide such a model.  

 

3.3.3 Investigation of the effect of SYK inhibition  on the 786-0 
RCC cell line 

Preliminary work undertaken by our collaborative group in McGill University, Canada, 

indicated that there was cell death when RCC cell lines (786-0, ACHN, UOK-171, 

HTB46 and HTB47) were exposed to the SYK inhibitor PRT062607 for 72 hours. The 

786-0 RCC cell line was chosen for investigation of SYK inhibition using R406, the 
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active compound of the oral prodrug fostamatinib. Fostamatinib is currently awaiting 

review by the National Institute for Health and Care Excellence (NICE) for the 

management of immune thrombocytopenic purpura, and is therefore the most 

advanced of the SYK inhibitors in terms of licensing and approval within the UK. For 

this reason R406 was chosen for this work. Cell viability was measured using the 

WST-1 cell viability assay. An optimal seeding density of 2500 cells per well in a 96 

well plate was determined to allow cell viability to be measured at 72 hours following 

exposure to R406. It was noted that the cell viability, was reduced (approx. 90%) at 

the lowest concentrations investigated compared with untreated cells, but further 

reduced above 0.1 µM of SYK inhibitor (Figure 3.21).  

 

Figure 3.21 – Investigation of the effect of the SY K inhibitor, R406, on the 786-
0 RCC cell line.  

786-0 cells were exposed to R406 at the respective concentrations for 72 hours. Cell 
viability was measured using the WST-1 assay. The measurement of the WST-1 
absorbance is displayed as % cell viability where 100% cell viability indicates cells 
with the same metabolic activity as those in the untreated cells and 0% cell viability 
indicates cells with zero metabolic activity. The graph represents three experiments, 
each with three replicates per condition (N=3).  The error bars represent the standard 
error of the mean. 
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3.4 Generation of primary cultures 

Established cell lines are commonly used in the laboratory. Whilst these have 

successfully been at the forefront of research, for example, in vaccine and antibody 

production, investigation of drug metabolism and effectiveness, novel therapeutic 

target discovery and study of gene function (Kaur and Dufour, 2012), they may not 

retain the exact characteristics of their ancestor cell (Pfaller and Gstraunthaler, 

1998), thus raising the question of how representative they are of the primary cell of 

origin. In a study of genomic derangements in RCC which studied a panel of 21 RCC 

cell lines and 90 primary RCC tissue samples, it was noted that the RCC cell lines 

exhibited many more genomic derangements than the genome of the primary RCC 

samples (Beroukhim et al., 2009). Primary cell cultures have the theoretical 

advantage of providing a more representative experimental model (Perego et al., 

2005) and in RCC and normal kidney, have been demonstrated to retain the 

proteomic profile and genomic alterations of their corresponding tissues in short term 

culture (less than three passages) (Perego et al., 2005) (Cifola et al., 2011). 

However, culture can be difficult to establish (Turin et al., 2014) and is associated 

with the problems of early senescence and cell contamination with other cells such 

as fibroblasts.  

 

The aim of this section of work was to generate a method to establish primary RCC 

and normal kidney cultures to aid in the subsequent validation of the novel 

therapeutic targets investigated within this chapter. This area was felt to be 

particularly important to explore, especially given the lack of a representative cell line 

model for the validation of the novel therapeutic target, SYK. A plan for careful 

characterisation of these primary cultures was developed using 

immunohistochemistry and targeted genomic analysis, thereby providing confidence 

in their identity. The aim was to perform experiments at the second passage so as to 

retain as much of the original characteristics of the ancestor cell, and avoid 

dedifferentiation of the cells. A proportion of the cells would be cryopreserved after 

the first passage. The histopathological diagnosis (Table 3.3) was not known at the 

time of tissue culture but was later recorded.  
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3.5 Description of method utilised 

As described in the materials and methods, tissue was routinely collected from 

consenting patients undergoing surgery for suspected RCC. Immediately following 

surgery samples of tumour and matched normal kidney measuring approximately 5 

x 5 x 10 mm were obtained from the pathology specimen. These were transferred to 

the laboratory in ice cold RPMI 1640 for further processing. 

 

The basic technique involved cutting the specimen into small pieces (<1 mm3) using 

two scalpels and placing these on a culture plate with a minimal covering of growth 

media (RPMI 1640 supplemented with 10% foetal calf serum, 1% glutamine and 1% 

penicillin and streptomycin). Cell outgrowth was awaited. No cell growth was seen in 

the normal kidney explants and a fungal infection became a problem at day 5 in the 

tumour sample. There was concern that the samples were becoming necrotic during 

the time in the culture plate, therefore the method was changed to using tissue 

disaggregation.  

Following receipt of the tissue in the laboratory, each tissue sample was cut up finely 

using two scalpels in a tissue culture hood. The connective tissue was digested using 

a mixture of 1 mg/ml type 1 collagenase and 1 mg/ml type 2 collagenase in phosphate 

buffered saline (PBS) supplemented with magnesium chloride and calcium chloride. 

Following incubation for 30 minutes in a water bath the solution was filtered through 

a 100 µm cell strainer and washed with growth media (DMEM/F12) containing foetal 

calf serum (FCS) to deactivate the collagenase. The solution was washed twice in 

Hanks Balanced Salt Solution (HBSS) and resuspended in 1 ml growth media (RPMI 

1640 supplemented with 10% FCS, 1% glutamine and 1% penicillin and 

streptomycin. This solution was placed in a T25 culture flask and an additional 4 mls 

of growth media was added after 4 hours to allow for cell adherence.  

 

Throughout this section of work, this tissue digestion technique was adapted to try to 

achieve cell growth (Table 3.2 and Table 3.3). A detailed literature review was 

undertaken and the various utilised techniques were taken into account. Overall, the 

steps could be grouped into three main stages, namely tissue collection, preparation 

and cell culture (Figure 3.23). This formed the basis of the variations made to the 

evolution of the methods used here (Table 3.1).  
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The problem of fungal infections was encountered in early attempts. This was likely 

related to contamination outside the operating theatre, in particular whilst dissecting 

the sample on the bench top in the pathology laboratory, which was unavoidable. 

The addition of anti-fungal treatment to the growth media was helpful and necessary 

in controlling this. 

 

Normal primary kidney cultures were easier to grow (Figure 3.22), which is in 

agreement with the literature (Perego et al., 2005) and fibroblast outgrowth was not 

found to be a significant problem in the successful cultured samples, again in 

concordance with the literature (Perego et al., 2005). The normal kidney cells were 

observed to grow diffusely throughout the flask, whereas the RCC cells tended to 

grow in small clumps that eventually began to coalesce.  

There was a greater success rate in terms of initiation of cell growth in-vitro and in 

sustaining this growth prior to first passage, with the commercially available Renal 

Epithelial Cell Medium 2. This was most likely as a result of various growth factors 

and supplements within this growth media including 5% foetal calf serum, epidermal 

growth factor (EGF), insulin, epinephrine, hydrocortisone, transferrin and tri-iodo-L-

thyronine. Despite this, there were major difficulties in encouraging continued growth 

beyond the first passage, despite attempts at using various dissociation reagents and 

cell seeding densities.  

 

Figure 3.22 Light microscope images of sample numbe r R683 normal kidney 
and RCC tumour primary cultures prior to the first passage.  

 

In summary, successful culture of primary cells was not successful beyond the first 

passage despite the adaptations made throughout this work. For that reason, the 

pursuit of primary cultures was stopped at this point. 

 

R683 Normal R683 Tumour 
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Figure 3.23 – Steps involved in the generation of p rimary RCC and normal 
kidney cultures.  

 

 

Tissue Collection

Tissue Preparation

Cell Culture

Further experimental

work

• Work began with small tissue fragments placed in culture vessel 

awaiting cell outgrowth (Variation 1)

• Basic technique changed to digestion of tissue samples using 

collagenase before placing in culture vessel (Variation 2)

• Length of time in collagenases – not changed

• Washes used – not changed

• Hypoxic time was minimised by reducing time to tissue collection 

through liaison with theatre staff and tissue collection technicians

• Tissue sample size increased as size of primary tumour allowed

• Necrotic areas avoided through use of expert, trained technicians

• Fungal infections overcome by addition of prophylactic antifungal 

treatment (Variation 3). Attempted removal unsuccessful (Variation 7)

• Minimal growth with RPMI 1640 - Changed to 50% DMEM: 50% 

RPMI 1640 - No change to supplementation with 10% FCS, 1% 

glutamine and 1% Penicillin and streptomycin (Variation 4)

• Minimal growth with 50% DMEM: 50% RPMI 1640 – Changed to 

DMEM supplemented with F12 - No change to other supplementation 

(Variation 5)

• Improved growth with DMEM/F12 of normal cells but minimal growth 

of tumour cells – addition of insulin, oxaloacetic acid and pyruvate to 

growth media (Variation 6)

• ? Poor tumour cell adherence – flasks coated with collagen I or IV 

(Variation 8)

• Foetal calf serum concentration increased from 10% to 20% -

(Variation 9)

• No growth tumour cells – media changed to Renal Epithelial Growth 

Medium 2 ® by Promocell (Variation 10)

• Seeding density maximised as possible throughout experiments

• Time left on dissociation agent minimised as permitted to allow cell 

detachment

Main Steps
Involved

Issues and changes
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Table 3.2 – Variations to the steps involved in the  generation of primary RCC and normal kidney cultur es. 

This table details the variations explored to generate primary RCC and normal kidney cultures.  

 

Variation 

Number 
Notes 

1 
Basic method - In this method the tissue did not undergo disaggregation, instead, under the tissue was cut into small pieces and was placed 

in a culture flask containing RPMI 1640 supplemented with 10% foetal calf serum, 1% glutamine and 1% penicillin and streptomycin.  

2 
A tissue digestion step (disaggregation) using collagenase was introduced, followed by wash in HSBB and incubation in RPMI 1640 

supplemented with 10% foetal calf serum, 1% glutamine and 1% penicillin and streptomycin. 

3 (2) + addition of prophylactic anti-fungal treatment 

4 
(3) + change in growth media to 50% RPMI 1640: 50% DMEM supplemented with 10% foetal calf serum, 1% glutamine and 1% penicillin and 

streptomycin 

5 
(3) + change in growth medium to DMEM supplemented with Ham’s F12 nutrient mixture, 10% foetal calf serum, 1% glutamine and 1% 

penicillin and streptomycin 

6 (5) + addition of insulin, oxaloacetic acid and pyruvate to growth medium 

7 (6) + removal prophylactic anti-fungal treatment from media 

8 (5) + coating culture flasks with collagen I or IV 

9 (5) + increase the FCS supplementation from 10% to 20% 

10 (5) + change growth medium to Renal Epithelial Growth Medium 2 ® by PromoCell  
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Table 3.3 – Tissue samples processed to establish p rimary renal cell and normal kidney cultures.   

The pathological characteristics of each sample along with the variation used (Table 3.2) and the outcome is detailed. 

 Sampl
e ID 

Normal/ 
Tumour Subtype ISUP 

grade 
T 

stage 
Necrosis 
present 

TNM 
Stage 

Leibovich 
score 

Growth 
in 

culture 

No of 
passages 
reached 

Variation Notes 

1 635N Normal       NO - 1 No growth 

2 635T Tumour Clear cell 3 3b N III 5 NO - 1 
No growth. 
Fungal infection at 
day 5 

3 638N Normal       NO - 2 
No growth. Fungal 
infection at day 15 

4 641N Normal       YES P1 3  

5 641T Tumour 
Papillary 
type 2 

3 2b Y II  NO - 3 No growth at day 20 

6 644N Normal       NO - 3 
Bacterial infection 
day 3 

7 644T Tumour Oncocytoma - - -  - NO - 3 No growth day 20 

8 646N Normal       NO - 3 No growth day 20 

9 646T Tumour 

Clear cell 
with 

rhabdoid 
change 

4 3a Y III 9 NO - 3 No growth day 20 

10 648N Normal       
 

YES P1 4  

11 648T Tumour 
Chromopho

be 
 2a N II  NO - 4 No growth day 20 

12 649N Normal       YES P1 5  

13 649T Tumour 
Papillary 
type NOS 

3 2a  II 5 YES P1 5  
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 Sampl
e ID 

Normal/ 
Tumour Subtype ISUP 

grade 
T 

stage 
Necrosis 
present 

TNM 
Stage 

Leibovich 
score 

Growth 
in 

culture 

No of 
passages 
reached 

Variation Notes 

14 650N Normal       YES P1 5  

15 650T Tumour Clear cell 3 3a N III 5 YES P1 5  

16 656N Normal       NO - 5 No growth at day 20 

17 656T Tumour Clear cell 3 1b Y I 4 NO - 5 No growth at day 20 

18 657N Normal       YES P1 5  

19 657T Tumour Clear cell 3 3a N III 5 NO - 5 No growth at day 20 
20 658N Normal       YES P1 6  

21 658T Tumour TCC      NO - 6 No growth at day 20 

22 659N Normal       NO - 6 No growth at day 20 

23 659T Tumour Clear cell 3 1b N I 3 NO - 6 No growth at day 20 
24 660N Normal       NO - 7 No growth at day 20 
25 660T Tumour Clear cell 3 1a N I 1 NO - 7 No growth at day 20 
26 661N Normal       NO - 7 No growth at day 20 

27 661T Tumour 
Papillary 
type NOS 

3 1b N I 3 NO - 7 
Fungal infection at 
day 19 

28 662N Normal       NO - 8 No growth at day 20 

29 662T Tumour Clear cell 4 1a N I 3 NO - 8 No growth at day 20 
30 664N Normal       YES P1 8  

31 664T Tumour 
Chromopho

be 
 1a N I  NO - 8 No growth at day 20 

32 665N Normal       YES P1 9  
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 Sampl
e ID 

Normal/ 
Tumour Subtype ISUP 

grade 
T 

stage 
Necrosis 
present 

TNM 
Stage 

Leibovich 
score 

Growth 
in 

culture 

No of 
passages 
reached 

Variation Notes 

33 665T Tumour 
Chromopho

be 
 3a N III  NO - 9 

Fibroblastic like 
growth – did not grow 
on passage 

34 666N Normal       NO - 9 No growth 

35 666T Tumour Clear cell 3 3a N III 5 NO - 9 
Fibroblastic growth 
pattern – did not grow 
on passage 

36 667N Normal       YES P1 8,9  

37 667T Tumour 

Oncocytic 
variant of 
papillary 

carcinoma 
with 

rhabdoid 
change 

3 1a Y I  NO - 8,9 
Viable cells although 
no growth 

38 669T Tumour Papillary 
type NOS 3 2b Y II  NO - 8,9 No growth 

39 670N Normal       YES P1 8,9  

40 670T Tumour 

Clear cell 
with 

rhabdoid 
change and 
suspicious 

for 
sarcomatoid  

4 3a Y III 11 NO - 8,9 No growth 
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 Sampl
e ID 

Normal/ 
Tumour Subtype ISUP 

grade 
T 

stage 
Necrosis 
present 

TNM 
Stage 

Leibovich 
score 

Growth 
in 

culture 

No of 
passages 
reached 

Variation Notes 

41 671T Tumour 
Papillary 
type 2 

(Metastasis) 
   IV  NO - 9 

No growth, cells 
initially looked viable 

42 672N Normal       YES P1 10  

43 672T Tumour 

Clear cell 
with 

rhabdoid 
change 

4 2a Y II 7 NO - 10 
Growth initially, 
although did not grow 
following passage 

44 673N Normal       YES P1 10  

45 673T Tumour Clear cell 2 1a N I 0 NO - 10 No growth 

 675N Normal       YES P1 10  

46 675T Tumour Clear cell 2 1b  I 2 NO -  
Cells looked viable 
but did not grow 

47 680T Tumour 
Papillary 

mixed type 
3 3a N III  NO - 10 

No growth. Small 
tumour sample size 

48 681N Normal       YES P1 10  

49 681T Tumour 

Clear cell 
with 

rhabdoid 
change 

4 2b Y II 8 YES P1 10  

50 682N Normal       YES P1 10  
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 Sampl
e ID 

Normal/ 
Tumour Subtype ISUP 

grade 
T 

stage 
Necrosis 
present 

TNM 
Stage 

Leibovich 
score 

Growth 
in 

culture 

No of 
passages 
reached 

Variation Notes 

51 682T Tumour 

Clear cell 
with 

rhabdoid 
and 

sarcomatoid 
change 

4 3a Y III 9 YES P1 10  

52 683N Normal       YES P1 10  

53 683T Tumour Clear cell 3 3a Y III 6 YES P1 10  

54 684N Normal       YES P1 10  

55 684T Tumour Clear cell 3 1b Y I 4 YES P1 10  
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3.6 Discussion 

The investigation of the role and function of the TRPC channel proteins has been 

slow, mostly hindered by the lack of potent and highly selective modulators. More 

recently the discovery of englerin A and the synthesis of Pico145 is allowing further 

analysis of the effect of the activation and inhibition of these channels both in-vitro 

and in-vivo. This work has contributed to the study of TRPC channel expression and 

in-vitro modulation in RCC. It has allowed the design of an in-vitro strategy and model 

to explore any further emerging targets throughout this thesis.  

 

3.6.1 TRPC 1, 4 and 5 expression in RCC 
This study has characterised TRPC 1, 4 and 5 expression in RCC, which had not 

been published elsewhere at that time. At an mRNA level, compared to the matched 

normal kidney samples, TRPC1 was observed to be upregulated in 37.5% (3/8) of 

the samples studied and TRPC4 was observed to be upregulated in 50% (4/8) of the 

samples studied. TRPC4 was also found to be down regulated in 25% (2/8) of the 

samples studied relative to normal kidney. This pattern of expression for TRPC1 and 

TRPC4 was not found to correlate with any of the clinic-pathological features of the 

tumours. The TRPC5 gene expression assay produced Ct values that were above 

the acceptable range for the qRT-PCR system used.  

 

Since this work was completed, gene expression data for all the TRP genes, 

including TRPC 1, 4 and 5 has been published for 14 different types of human cancer 

from the International Cancer Genome Consortium data (Park et al., 2016). This 

included 496 RCC of the clear cell subtype with 72 matched normal kidney samples. 

The median RCC to normal kidney ratio for TRPC1, TRPC4 and TRPC5 were 1.318, 

2.278 and 0.230 respectively (Park et al., 2016). If this same descriptive approach is 

applied to the samples investigated in this current study, the median RCC to normal 

kidney ratio for TRPC1 and TRPC4 is 1.668 and 2.431 respectively, which are 

comparable. These median values are of limited interpretability, instead identifying 

the number of samples with upregulation of the TRPC proteins would be more 

helpful. It does however indicate that overall the upregulation of TRPC1 and TRPC4, 

and the downregulation of TRPC5 in RCC predominates.  
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This contrasts with a study by Veliceasa et al. investigating the role of the 

angiogenesis inhibitor thrombospondin-1 (TSP1), in RCC. In this work TSP1 was 

found to be retained in the cytoplasm of the CRL1933 RCC cell line whereas it was 

secreted from the cell in the normal kidney cell line (HNK). It was hypothesised that 

this non-secretion was linked to impaired calcium uptake by the RCC cell. TRPC4 

was found to be downregulated in the CRL1933 cell line using RT-PCR compared 

with the HNK kidney cell line (representing normal kidney). It was hypothesised that 

TRPC4 downregulation led to impaired calcium intake and thus the non-secretion of 

the angiogenesis inhibitor TSP-1(Veliceasa et al., 2007). Whilst this may be the case 

in the CRL1933 cell line, it highlights the problems in extrapolating results from small 

studies involving a single RCC cell line and the problems of using established RCC 

cell lines as representative models for RCC.  

 

It is recognised that a weakness in this current study is the small number of samples 

investigated, and theoretically there may be differences in the cellular composition 

and variety within RCC samples compared to normal kidney samples, which may 

contribute to a dilution or concentrating effect on the protein of interest. It is necessary 

to identify a positive control for TRPC5 to complete its investigation. 

 

Whilst protein translation is tightly regulated, mRNA and protein levels do not always 

correlate due to the multi-step processes of translation, post-translational 

modification and protein degradation (Vogel and Marcotte, 2012, de Sousa Abreu et 

al., 2009). For this reason the investigation of TRPC protein expression was 

attempted in parallel to the mRNA expression analysis. Western blot results for TRPC 

1, 4 and 5 were disappointing. The identity of the striking band between 31 and 36.5 

kDa that was upregulated in tumour samples when using the TRPC1 antibody was 

not resolved. Its presence in the RCC cell lines eliminates the likelihood that it 

represents a blood component. Although the datasheet for this antibody states it does 

not cross-react with TRPC4 based on knockout validation results, it also stated that 

its immunogen shared >50% homology with TRPC4 which was confirmed on analysis 

using the Uniprot Blast program (Figure 3.24). It is possible that the band observed 

represents the TRPC4 eta isoform, with a predicted molecular weight of 37 kDa, 

although long sequence homology was absent. Another possibility is that this 

represents a TRPC1 protein degradation product. The identity was not clarified by 

immunoprecipitating the protein using the TRPC1 antibody followed by analysis of 

the lysate using mass spectrometry. There has been debate in the literature 
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regarding the specificity of commercially available TRPC antibodies (Flockerzi et al., 

2005) (Tajeddine et al., 2010). In addition much of the previously published work has 

investigated RNA expression, which likely reflects the lack of well-characterised 

antibodies. 

 

Figure 3.24 – Screenshot of the Uniprot Blast analy sis of the TRPC1 antibody 
immunogen. 

 

Another possibility is that the altered expression of the TRPC proteins observed in 

RCC represents their presence in endothelial cells. TRPC1 functions to maintain the 

barrier function of blood vessels (Abramowitz and Birnbaumer, 2009) and TRPC4 is 

involved in the regulation of endothelial cell function (Freichel et al., 2001). TRPC4 is 

upregulated in pulmonary artery endothelial cells in hypoxic conditions and may 

function mediate the downstream effects of cell proliferation and hypoxia induced 

changes (Fantozzi et al., 2003). RCC is characterised by its highly vascular nature, 

therefore this may be very relevant. 

 

Overall in this study whilst expression of TRPC1 and TRPC4 has been confirmed at 

an mRNA level, the expression of TRPC 1, 4 and 5 could not be confirmed at a 

protein level. It is likely that the TRPC channels are present at a protein level given 

the mRNA findings and the rapid cell death seen using the highly specific compound 
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englerin A which is blocked with knockdown and enhanced with overexpression of 

the TRPC proteins in cell lines (Carson et al., 2015) (Akbulut et al., 2015). On the 

basis of this it was felt to be appropriate to continue the investigation of these 

channels in RCC. 

 

3.6.1.1 Englerin A 

The potency of EA on the A498 RCC cell line was reconfirmed in this study, with an 

EC50 determined to be 60 nM, which is comparable to the results preceding this work. 

Investigation of two other non-cancerous cell lines, namely HEK293 and HUVEC, 

supported this selectivity and sparing of normal, non-cancerous tissue. This was 

again supported in a recent extended screen published just after completion of this 

work (Carson et al., 2015). At the time of this work, other members of the group had 

hypothesised that cytotoxicity may be a result of the sodium influx upon opening of 

the TRPC channels. This was supported by the additional cell death observed upon 

concurrent exposure of the cell lines to EA and the sodium/potassium ATPase 

inhibitor, ouabain. Ouabain inhibited the corrective transfer of sodium back out of the 

cell (Ludlow et al., 2017). The additive effect on cell death was reconfirmed here. 

Ouabain is not licenced for use in the UK. It has a highly toxic profile but has been 

used to treat cardiac disorders in the past (Furstenwerth, 2010). This may warrant 

investigation in future work should EA or an effective, less toxic derivative be 

synthesised. 

 

3.6.1.2 Rosiglitazone and Riluzole 

The concept of repurposing of drugs has potential economic and time saving benefits 

(Ashburn and Thor, 2004). Rosiglitazone and riluzole were investigated as novel 

drugs for the treatment of RCC. The peak serum concentration of rosiglitazone if 

taken at a dose of 8 mg per day is 600ng/ml. This equates to a concentration of 1.68 

µM (Day and Bailey, 2016).The mean peak serum concentration of riluzole has been 

determined to be 0.432 mg/l (Groeneveld et al., 2001). The concentrations of both 

rosiglitazone and riluzole used in this study ranged from 1 to 100 µM, thus should 

satisfactorily cover the therapeutic range in-vivo.  

 

Approximately 10% cell death was observed when rosiglitazone was used at 100 µM. 

This concentration likely exceeds the maximum tolerated dose in humans. Riluzole 

did not cause cell death. The low or lack of expression of TRPC5 in ccRCC may 
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explain these results, as rosiglitazone and riluzole have been observed to activate 

the TRPC5 channels, (Majeed et al., 2011) (Richter et al., 2014). In this current study 

conclusions could not be made regarding TRPC5 expression in RCC, but it was 

suspected that the expression of TRPC5 was low in RCC. This was supported by the 

study conducted by Park et al, which indicated that TRPC5 is predominantly 

downregulated in RCC (Park et al., 2016). which may contribute to explaining the 

finding of the lack of effect with rosiglitazone and riluzole. These findings do not 

support further investigation of rosiglitazone or riluzole as novel therapeutic options 

in RCC.  

 

3.6.1.3 TRPC channel inhibition 

Whilst TRPC channels have been investigated in established RCC cell lines, all the 

studies to date have looked at activation of the TRPC 1, 4 and 5 channels. Given the 

availability of a potent TRPC channel inhibitor it was felt to be of interest to investigate 

the inhibition of these channels to identify if they may also have a growth inhibitory 

or cell death effect in RCC. This study has demonstrated that the highly potent and 

selective TRPC 1, 4 and 5 inhibitor, Pico 145, does not alter the growth rate of the 

A498 cell line at concentrations beyond the IC50 values described for inhibiting EA 

evoked calcium entry into the HEK293 cell line overexpressing TRPC4 and TRPC5 

(Rubaiy et al., 2017b) (Rubaiy et al., 2017a). EA was used at a concentration of 10 

nM, whereas for this experiement 1 µM EA was used. This IC50 may also not 

represent the IC50 for cell death. Whilst it appeared to inhibit the effect of EA on the 

growth of the A498 cell line, this did not reach statistical significance at 72 hours. This 

lack of significance may be a result of the small numbers of experiments. In support 

of this inhibitory action on EA, Pico 145 blocked the adverse reaction to EA in mice 

(Cheung et al., 2018). The lack of rescue from the effects of EA may indicate that 

Pico145 is required at higher concentrations of that EA is working through a different 

mechanism that inhibition of the TRPC channels cannot abrogate. There have been 

several studies suggesting EA acts through an increase in reactive oxygen species 

(Sulzmaier et al., 2012), inhibition of the PI3K/AKT (Sourbier et al., 2013) and ERK 

pathways (Williams et al., 2013), induction of a metabolic stress (Williams et al., 

2013), through profound alteration of lipid metabolism and release of acute 

inflammatory mediators including interleukins, interferons and TNF (Batova et al., 

2017), as a component of the response to hypoxia such as the activation of EGFR, 

and through hypoxia inducible factor-1α (HIF1α) dependent and independent 

mechanisms (Azimi et al., 2017). The findings in this current study are also based on 
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one established RCC cell line and may not be representative of primary RCC’s. 

Further investigation is required to explore and fully understand these findings. 

 

Overall, at this present time and with EA in its present form, inhibition of the TRPC 1, 

4 and 5 channels does not appear to be a valid therapeutic target due to the on-target 

side effects affecting other tissues seen in mouse models, where EA caused reduced 

locomotor activity (Cheung et al., 2018) and death (Carson et al., 2015). Specific and 

essential to normal renal function, TRPC1 channels play a role in the regulation of 

glomerular filtration (Abramowitz and Birnbaumer, 2009) and are involved in the 

important contractile function of glomerular mesangial cells (Du et al., 2007). Beyond 

the kidney TRPC1 may be involved in lymphocyte activation and development, thus 

its modulation may seriously compromise the immune system (Mori et al., 2002). 

Given these, it may be difficult to target the TRPC channels without significant 

unwanted side effect, although it is recognised that the acceptable risk to benefit ratio 

of anti-cancer therapies does change depending on the predicted outcome from the 

cancer treatment. 

 

3.6.2 Spleen Tyrosine Kinase (SYK)  
This section of work has identified a differential expression of the SYK isoforms at a 

protein level in RCC. In primary RCC tissue the expression of SYK(S) was reduced 

to below the level of detection by Western blot analysis. In matched normal kidney 

samples there was expression of both isoforms. The differential isoform expression 

patterns seen in primary RCC and matched normal kidney tissue at a protein 

emphasised the findings at an mRNA level (Karimzadeh et al., 2018).  

 

Care must be taken in the interpretation of SYK expression levels in tissue samples 

given that global SYK protein levels have been reported to be as much as six times 

as abundant in immune cells compared with epithelial cells (Blancato et al., 2014). 

Flanking sections of each tissue block were cut and examined following H&E staining 

at the same time as cutting tissue for experimental work to exclude samples with 

excessive infiltrating inflammatory cells, but it is still possible that these cells were 

present, which may generate a significant change in the SYK protein expression in 

these tissue samples. Primary tissue samples also consist of a mixture of other cell 

types, which may have varying SYK expression. 
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Whilst acknowledging the potential problems with using established RCC cell lines 

as accurate models for RCC, but balancing this with their availability, homogeneity 

and relative ease of growth, Western blot analysis of established RCC cell lines was 

performed across a panel of established RCC cell lines to find a representative model 

for further work with SYK inhibitors. In the 12 cell line models investigated, there were 

two bands observed, consistent with the two SYK isoforms, in only four of these cell 

lines (786-0, A498, HTB49 and TK10 cell lines). There were no bands detected in 

the other cell lines investigated (CRL1933, HTB46, HTB47, A704, ACHN, UO31, 

SN12-K1 and SN12-C). Thus, no cell lines were representative of primary ccRCC 

tissue samples, thus limiting further work using these cell lines. A possible approach 

for future work would be transfection of the isoforms into cell lines.  

It is not known why the isoform expression is different in the established RCC cell 

lines examined. A possibility is that the small number of primary RCC and matched 

normal tissue samples examined in this study are not representative of RCC. It is 

also possible that alterations in SYK expression are generated with the in-vitro culture 

of established RCC cells. This theory is supported with the finding that epidermal 

growth factor (EGF) promotes SYK(L) expression in the SKOC3.ip1 ovarian cancer 

cell line Prinos et al. (2011). This highlights the limitations of working with established 

cell lines. This supports the attempts at generating primary RCC cultures in this study 

with the caveat that the media required to generate primary cultures will likely require 

supplementation. This may be minimised by performing experiments at an early 

passage. 

 

The alternative splicing of gene products is a common occurrence within the human 

body (Wang et al., 2008), where it is estimated to occur in the transcription of up to 

95% of multi-exon genes (Pan et al., 2008), and may contribute to cancer 

development and progression (Venables et al., 2009).  The alternate splicing of SYK 

has been shown to be biologically relevant in a number of different malignancies. 

SYK(L) contains a 23 amino acid insert that is not present in SYK(S). This insert has 

been shown to have several functions. Firstly, it contains tyrosine 290, which has 

been shown to be a site of SYK autophosphorylation in vitro (Furlong et al., 1997). 

Autophosphorylation is important in allowing the recruitment of other cellular 

effectors, therefore it may lead to the activation of SYK(L). Evidence against this 

theory is that this area was not deemed critical to the function of SYK in RBL-2H3 

(basophilic leukaemia cell line) or BI-141 (murine T-cell hybridoma cells) cell lines 

(Latour et al., 1998). Secondly, lack of the linker domain has been linked to the 
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inability to bind to ITAM’s and thus unable to participate in immunoreceptor signalling 

(Latour et al., 1998). Finally the linker domain contains a nuclear translocation 

sequence in breast cancer (Wang et al., 2003) and hepatocellular carcinoma (HCC) 

(Hong et al., 2014), thus explaining the subcellular locations of SYK(L) and SYK(S). 

This may be very relevant in RCC as the SYK(L) isoform may have a dominant effect 

on nuclear effectors causing cell proliferation. 

 

3.6.2.1 Other possible downstream effectors linked with SYK 

SYK has been shown to interact with varying downstream effectors in different cell 

lines. The downstream effectors that are particularly relevant to RCC include the 

mitogen-activated protein kinase (MAPK) pathway (Wan et al., 1996), which is known 

to be upregulated in RCC and if suppressed may inhibit RCC growth (Huang et al., 

2008). SYK has been identified as being important in activating the MAPK pathway 

in the chicken DT40 bursal lymphoma cell line. SYK is involved in activation of the 

PI3K-AKT signaling pathway as an oxidative stress response in B cells (Ding et al., 

2000) (Pogue et al., 2000). This is also an important pathway in RCC (Guo et al., 

2015a). SYK plays a central role in mTOR activation in follicular lymphoma cells 

where it has been shown to function through Pi3K-independent pathways. 

Pharmacological SYK inhibition resulted in downregulation of mTOR activity in 

follicular lymphoma, mantle cell lymphoma, Burkitt lymphoma, and diffuse large B 

cell lymphoma using cell lines (Leseux et al., 2006). Other downstream signaling 

pathways include the RAS-ERK pathway in HCC (Mocsai et al., 2010) (Hong et al., 

2014). SYK was shown to act as a transcription repressor through down regulation 

of FRA1 and cyclin D1 ocogenes in MDA-MB-231 breast cancer cell line (Wang et 

al., 2005). Its role in vascular development as demonstrated in knock-out mouse 

models may indicate it has a role in angiogenesis which is important in RCC.  

 

3.6.2.2 SYK inhibitors 

Small molecule inhibitors of SYK are available. These are currently the focus of 

several phase I/II trials in various haematological malignancies with some clinical 

benefit demonstrated. These inhibitors are not isoform specific and their benefit in 

cancers with differentially expressed SYK isoforms is not known. The development 

of such inhibitors may be possible but would require preliminary work to determine 

the individual isoform-specific roles. R406 was chosen to investigate the effect of 

SYK inhibition on the 786-0 cell line. The peak serum concentration of R406 in 
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humans when given in doses of 80 – 600 mg as a single daily dose ranged from 501 

– 3920 ng/ml, equating to 1.06 µM – 8.33 µM (Baluom et al., 2013). Cell death was 

seen at concentrations above 1 µM up to 10 µM in this experiment. One of the issues 

with the SYK inhibitors, like most tyrosine kinase inhibitors, is that R406 also inhibits 

other kinases such as Lck, Jak, Flt3 and adenosine A3, albeit at much lower potency, 

but still complicating the understanding of any findings (Braselmann et al., 2006). 

 

In conclusion this work suggests SYK and the differential isoform expression may 

have a role in renal cell carcinoma. Work is somewhat limited by the lack of 

commercially available isoform specific SYK antibodies or inhibitors. There may be 

advances in this area in the future. SYK(L) may act as a tumour promoter where it 

interacts with downstream effectors in the cell nucleus. It clearly has an important 

function as it is the predominant isoform in human B cell lymphoid cells (Yagi et al., 

1994) where its inhibition can be clinically beneficial. SYK(S) may have an inhibitory 

role, and its loss may allow the unopposed action of SYK(L).  

 

The expression of SYK in RCC is similar to that in ovarian cancer, where SYK(L) 

knockdown reduced colony formation of the SLOV3 ovarian cancer cell line (Prinos 

et al., 2011). Silencing of SYK(L) has been shown to reduce colony formation and 

viability of the 786-0 and A498 RCC cell lines (Karimzadeh et al., 2018) thus proving 

a compelling indication to pursue further investigation of this protein as a novel 

therapeutic target in ccRCC. For the purposes of this section of work, a 

representative cell line model was required to pursue further investigation therefore 

work was ceased, awaiting attempts at primary RCC cell growth. 

 

3.6.3 Generation of primary RCC and normal kidney c ultures 
The drug discovery pathway in oncology begins with the identification of dysregulated 

genes and/or proteins that may be involved in the uncontrolled growth of the cancer 

cell. Subsequent in-vitro validation of the findings are typically achieved through the 

use of established cancer cell lines. Their robustness, ease of growth, availability and 

avoidance of the ethical concerns with the use of human and animal tissue make 

them a popular alternative to using primary cells, although they may not always 

replicate their primary cell of origin due to the genetic manipulation required to induce 

immortality. In addition extended culture and passage can contribute to genetic drift 

and variation in cell phenotype (Kaur and Dufour, 2012). Primary RCC cultures at an 
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early passage on the other hand retain many of the phenotypic characteristics of the 

original tissue and therefore represent a more relevant model (Valente et al., 2011). 

 

To complement the further investigation of the proteins discussed in this chapter and 

later in the thesis, attempts were made to developing a robust method for the 

generation of primary RCC cultures. Whilst disappointingly, this section of work did 

not prove to be successful, it provided insight into the difficulties and challenges 

encountered, and may be of benefit to others working in this area.  

 

There are a number of papers detailing the establishment and growth of primary RCC 

and normal kidney cultures. The success rates of these papers varies from 13% 

(63/498 samples) (Ebert et al., 1990) to 100% (6/6 samples) (Valente et al., 2011). 

Whilst all the studies have similar sample preparation techniques, from tissue 

digestion followed by culture, higher success rates are noted to be observed in 

samples obtained from more advanced tumours or metastatic sites (Anglard et al., 

1992). This study included one metastatic site but this was a papillary type tumour 

and was not successfully cultured. Cellular heterogeneity within the tissue samples 

is an important consideration. Whilst it would be unlikely to generate completely 

homogenous cultures by the third passage, characterisation of the cells grown was 

deemed to be a necessary step. In keeping with many of the published protocols a 

robust characterisation step involving a combination of genome wide copy number 

profiling, comparing both cultured cells and the corresponding tissue, and 

immunocytochemical characterisation to help determine cell origin was planned. 

Cytokeratin markers were mostly utilised along with carbonic anhydrase IX and 

vimentin (Cifola et al., 2011) (Kim et al., 2008).  

 

The success rates in this study were low and continued culture in-vitro unsuccessful. 

The same techniques described in some of these papers were followed, but did not 

yield the same results described. Despite this, it was decided to investigate this area 

again due to the potential benefits of generating primary cultures and the lack of a 

representative cell line model for the investigation of SYK.  

 

The pathological characteristics of the tumours were not known at the time of tumour 

resection and preparation for culture, as renal tumours are commonly diagnosed 

based on their appearances on imaging and not on a biopsy specimen. 
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Disappointingly, despite the time-consuming nature of this section of work, the 

difficulties in culturing primary cells were not overcome. This hindered further planned 

work on the modulation of TRPC channels and SYK. 

 

3.6.4 Conclusion and future plans 
In conclusion, the TRPC channels present an interesting target that inhibits the 

growth of RCC cell lines both in-vitro and in-vivo. The lack of antibodies to accurately 

detect the TRPC channels using Western blot somewhat hinders advancements in 

this area. The potent and specific action of englerin A within the NCI60 cell panel is 

remarkable. Despite this there are serious concerns raised regarding the TRPC 1, 4 

and 5 channels representing novel therapeutic targets in RCC given the on-target 

toxicity profile related to their inhibition with Englerin A (Cheung et al., 2018). The 

TRPC channels also play important roles in normal kidney function, which may be 

unacceptable when suffering from renal cell carcinoma (Abramowitz and 

Birnbaumer, 2009) (Du et al., 2007). The future work into these channels would be 

helped through the development of specific TRPC channel antibodies and exploring 

ways of delivering this compound or derivatives to the renal cancer cell itself.  

 

The alternative splicing of SYK in RCC compared to matched normal kidney was 

striking. This along with its position in the intracellular signalling system and its 

proven function in a number of other cancer types places it in an ideal position as a 

novel therapeutic target. This work was hindered by the lack of representative RCC 

cell line models, but despite this, R406, a SYK inhibitor, appeared to cause reduced 

cell viability between 1 and 10 µM, which was within the tolerated dose range in 

humans. The question whether this could be replicated in other RCC cell lines and 

primary RCC tumours was not investigated here. If establishment of cell line models 

including transfection of SYK isoforms is promising, later development of an isoform 

specific inhibitor for SYK(L) may be beneficial. 

 

Disappointingly growth of primary ccRCC cell lines was difficult and did not provide 

primary cell lines for further exploration of the proposed novel therapeutic targets 

discussed in this chapter. Much of the intended experimental work was hindered as 

this was planned to be the main concluding section to this work, indeed some of the 

initial exploration was aimed at optimising the techniques and compounds for use on 
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the primary cell lines. Despite this, the efforts here will hopefully provide some insight 

into the difficulties, which may be of benefit to others working in this area. 
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Chapter 4 Novel therapeutic target discovery in ccR CC 
through an integrated proteomic and genomic strateg y 

 

4.1 Introduction and rationale behind this study 

The molecular pathogenesis of sporadic clear cell renal cell carcinoma (ccRCC) is 

poorly understood despite being extensively characterised at the genetic, epigenetic 

and transcriptomic level in several studies (Cancer Genome Atlas Research, 2013) 

(Sato et al., 2013) (Guo et al., 2012) (Dalgliesh et al., 2010) (Pena-Llopis et al., 2012) 

(Scelo et al., 2014) (Brannon et al., 2010) (Varela et al., 2011). Along with the major 

finding of VHL tumour suppressor gene inactivation in as many as 75% of cases 

(Young et al., 2009), recurrent mutations in the three genes PBRM1 (≈40%), SETD2 

(≈19%) and BAP1 (≈15%) were also observed. To this date, these findings have 

largely been descriptive and have not generated any further changes in the clinical 

management and outcome of these patients. The presence of PBRM1, SETD2 and 

BAP1 mutations are associated with higher grade tumours and poorer patient 

survival (Kapur et al., 2013) (Pena-Llopis et al., 2012), therefore appear to have 

important clinical consequences, however, the drivers of this poor outcome at the 

protein level remain poorly defined, thus it is not clear how exactly they contribute to 

tumour biology (Vogelstein et al., 2013) (Pawlowski et al., 2013) (Liu et al., 2017)  

(Brugarolas, 2013) (Gossage et al., 2014). As discussed in the introduction chapter, 

a number of studies in other cancer types have recently attempted to address this 

deficiency in knowledge through the integration of both proteomic and genomic data 

from the same samples in large bioinformatic analyses (Zhang et al., 2014) (Mertins 

et al., 2016) (Zhang et al., 2016). Based on these studies, this section of work will 

adopt an integrative approach, which may have the potential to provide further 

knowledge into the functional effect of the recurrent mutations in VHL, PBRM1, 

SETD2 and BAP1, leading to the identification of novel therapeutic targets in ccRCC. 

 

4.2.1 Aims and hypotheses 
The aim of this section of work was to undertake a detailed proteomic analysis of 

ccRCC tissue compared with normal kidney, selected on the basis of the underlying 

genomic changes. This data will be used to attempt to identify how these genomic 

changes contribute to ccRCC biology. A number of proteins will be taken forward for 
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further studies into their potential as novel therapeutic targets based on their 

expression patterns in ccRCC compared to normal kidney tissue. 

 

4.3 Study design 

The following details the study design adopted in the detailed planning and 

undertaking of this study, which is summarised in Figure 4.1. 

 

4.3.1 Strategy overview 
The main strategy was to identify a number of genetically annotated frozen ccRCC 

and normal kidney tissue blocks from the RTB with a plan to undertake a detailed 

proteomic study using mass spectrometry to identify differentially expressed proteins 

within the genetic groupings. The ccRCC and normal kidney samples would be 

matched whenever possible. This study was made possible through the group’s 

involvement in the EU-funded Cancer Genomics of the Kidney (CAGEKID) project 

(Scelo et al., 2014), through which selected frozen ccRCC tissue had undergone 

whole genome sequencing. To be deemed suitable for inclusion into the study and 

taking into account potential heterogeneity between tissue blocks, it was planned that 

each tissue block underwent a histopathological review (as described in section 

4.4.1.2) and the presence of the chosen genetic mutations confirmed (as described 

in section 4.4.1.1). The main proteomic analysis was planned to be undertaken using 

tandem mass spectrometry (MS/MS) in our laboratory. Alongside this, international 

collaboration with two other expert groups was planned, through which the same 

samples would be subject to SWATH-MS (Zurich, Switzerland), and antibody array 

analysis (DKFZ, Germany) to allow complementary analysis and independent 

confirmation of the findings. Following the analysis, interpretation of the proteomic 

data in the context of the mutational profile present would be undertaken in an 

integrated analysis with assistance from Dr Lara Feulner (visiting academic clinician). 

The latter two analyses will not be discussed in detail in this chapter, instead they will 

form an integral part of a larger bioinformatics analysis following the completion of 

this thesis. 
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Figure 4.1 – Project Summary 
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4.3.2 Choice of genetic mutations 
Genetically defined fresh-frozen tissue samples from surgically resected primary 

ccRCC and matched normal renal tissue were selected for inclusion based on the 

mutational profile present. Careful consideration was given to the choice of genetic 

mutations to be represented within this study, particularly given the relatively small 

numbers of samples. This included taking into account the published evidence 

behind the consequence of a mutation of that particular gene, the type of mutation, 

the expected frequency of the genetic mutation and the availability of tissue blocks. 

Missense mutations were excluded on the basis that they are more likely to result in 

a normally functioning or partly functional protein, unlike the other mutation types. 

Samples with VHL inactivation due to hypermethylation of one or both alleles were 

also excluded. Based on this, samples with the four most common genetic mutations 

in ccRCC were selected (Table 4.1). 

 

Table 4.1 – Genetically annotated groups chosen for  further analysis.  

The following genetically annotated groups were chosen for proteomic analysis within 
this study. 

 

Genetic grouping (based on four 

‘driver’ mutations 

VHL PBRM1 SETD2 BAP1 

VHL mutation only Present Absent Absent Absent 

VHL + PBRM1 mutation Present Present Absent Absent 

VHL + SETD2 mutation Present Absent Present Absent 

VHL + BAP1 mutation Present Absent Absent Present 

VHL, PBRM1, SETD2 and BAP1 wild-

type (no mutation) 
Absent Absent Absent Absent 

PBRM1 mutation only  Absent Present Absent Absent 

 

 

4.3.3 Numbers of samples 
A target of 5 representative ccRCC tissue samples were planned per genetic group. 

Initially a larger number of patients would be selected for inclusion in the study, as it 

was anticipated that a number of tissue samples would be excluded due to 

inadequate quality upon histopathological review or may not have the chosen genetic 
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mutation in the available blocks. These tissue blocks were from the Leeds 

Multidisciplinary RTB and the International Agency for Research on Cancer (IARC), 

Lyon, France. All samples included in the CAGEKID study were subject to uniform 

standard operating procedures (SOPs) for handling and storage. A number of 

matched normal kidney samples were planned for inclusion (target of 50% of ccRCC 

samples) to allow a normal to tumour comparison to be made in the later analysis. 

 

4.3.4 Sample preparation and processing 

4.3.4.1 Sample cutting sequence 

Careful consideration was given to the cutting sequence for each tissue block to 

ensure that each Eppendorf contained a representative quantity of tissue from the 

whole tissue sample, thus limiting the impact of intratumoural heterogeneity (Figure 

4.2). A plan was made for two 5µm thick flanking and middle sections for 

histopathological review (as described in section 4.4.1.2). Sections were cut for DNA 

extraction for genetic mutation confirmation and for protein extraction for analysis 

using LC-MS/MS, SWATH-MS, and antibody array analysis. A sample of each tissue 

block was also collected for a parallel independent study that enriched for surface 

membrane proteins through a modified tissue lysis protocol followed by analysis 

using LC-MS/MS. Whilst this study is not discussed any further here, it was aimed 

that the results would be later reviewed to complement the results from this analysis. 

Provisional experiments determined the protein yield for samples cut with a surface 

area of 3cm2 x 10µm thick equivalent to be on average, 1000µg (range 250-2500µg). 

This helped determine the quantity of tissue needed to be cut for this experiment.  
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Figure 4.2 –Cutting sequence for each frozen tissue  block.  

Two 5µm flanking and middle sections were cut for histopathology review. Frozen 
issue was cut using a Leica Cryostat and placed in four eppendorf tubes. The sample 
in tube A was processed for LC-MS/MS and SWATH-MS and Tube B couriered to 
Germany for antibody array analysis. DNA extraction was performed on the sample 
in tube C for later genetic mutation confirmation. The content of tube D was used for 
an independent study that enriched for surface membrane proteins through a 
modified tissue lysis protocol and was analysed by LC-MS/MS (not discussed here) 

 

 

4.3.4.2 Protein extraction  

The suspension trapping (STrap) sample preparation method was chosen for peptide 

preparation. Developed in this laboratory, a single pipette tip per sample, loaded with 

both quartz fiber filters and reverse phase membrane (c18) disk plugs stacked on top 

of one another enabled rapid SDS based protein extraction, followed by protein 

digestion and peptide clean up (Zougman et al., 2014). Preliminary experiments 

identified frequent blockage of the quartz filters and C18 disk plugs following 

centrifugation, particularly in ccRCC samples. Additional centrifugation compounded 

the problem due to further compression of the filters into the narrowing pipette tip. It 

was concluded that the digested blood proteins present in the highly vascular ccRCC 

(Aziz et al., 2013) was the cause, and the method was adapted by separating the 

1.5cm2 x 30µm sections for protein extraction (TUBE A)

1.5cm2 x 30µm sections for protein extraction (TUBE A)

2 x 5µm H&E sections

2 x 5µm H&E sections

2 x 5µm H&E sections

1cm2 x 10µm sections for DNA extraction (TUBE C)

1cm2 x 10µm sections for DNA extraction (TUBE C)

1cm2 x 10µm sections for DNA extraction (TUBE C)

1.5cm2 x 30µm sections for antibody array analysis (TUBE B)

1cm2 x 30µm sections for independent surface membrane enriched 
study (TUBE D)

1.5cm2 x 30µm sections for antibody array analysis (TUBE B)

1cm2 x 30µm sections for independent surface membrane enriched 
study (TUBE D)
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filter and C18 disc plugs into two separate pipette tips which improved sample flow-

through.  

 

4.3.5 Quality control 
Data obtained from mass spectrometry can fluctuate over time, particularly with 

studies involving large numbers of samples that require prolonged analysis time 

(Watrous et al., 2017). There are many potential reasons for these signal drifts, 

including slight variations in mobile phase preparations, fluctuations in the high 

performance liquid chromatography (HPLC) retention times, varying complexity of 

the biological sample and changes in the sensitivity of the mass spectrometer. For 

this reason, a quality control sample (471 N) was planned to be run at the start, 

middle and end of the MS analysis to ensure correlation between the three mass 

spectra obtained. 

 

4.4 Results (Sample selection and processing) 

4.4.1 Sample preparation 
38 tumour blocks and 26 normal kidney blocks were initially selected for cutting 

based on the availability of the tissue blocks, genetic grouping and type of mutation 

present. Small numbers of patients within the VHL + SETD2 mutation and VHL + 

BAP1 mutation groups necessitated access of samples from the International Agency 

for Research on Cancer (IARC), Lyon, France. Additional tumour blocks from the 

same patient were then also accessed either due to small sample size or inadequate 

predefined quality. Overall there were sections cut from 125 tumour tissue blocks, 

representing 38 patients. Sections were also cut from 53 matched normal kidney 

tissue blocks, representing 26 patients. Dr Karen Dunn (postgraduate researcher) 

assisted in the cutting of tissue samples and in the preparation of tissue lysates. 

 

4.4.1.1 Confirmation of genetic mutations 

Given the extensive intratumoural heterogeneity previously described in RCC 

(Gerlinger et al., 2014), reconfirmation of the chosen genetic mutations was 

undertaken through targeted sequencing (Table 4.1). This work was undertaken by 

Dr Claire Taylor, Senior Researcher, Genomics Facility, University of Leeds. When 

included, the matched normal kidney samples were analysed in parallel for germline 
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mutations in the chosen genes. Two ccRCC tumour blocks originally identified as 

having both VHL and PBRM1 mutations were identified as having a VHL mutation 

only (340 T and 357 T). Two patients previously identified as having none of the 

genetic mutations were found to have a VHL mutation only (031 T and 400 T) and 

two patients originally identified to have a PBRM1 mutation only were found to have 

a VHL mutation in addition to the PBRM1 mutation (377 T and 404 T). One patient 

with a VHL and a PBRM1 mutation was also found to have that PBRM1 mutation in 

the normal kidney sample (370 N), which was confirmed as not containing any 

ccRCC tissue on histopathological review of flanking sections, thus confirming its 

presence in the germline. This sample was removed from the analysis. This impacted 

on the numbers of patients in each of the genetic groupings, especially the VHL + 

BAP1 mutation group and the PBRM1 mutation only group which were left with 2 and 

1 samples respectively. 

 

As known, a small number of mutations in other genes were identified within these 

samples, for the purposes of this study it was not feasible to account for lower 

frequency genes.  

 

4.4.1.2 Histopathological review of tissue sections  

An expert pathologist with a specialist interest in RCC (Dr. Pat Harnden) reviewed 

each slide for confirmation of the diagnosis and assessment of the grade, presence 

or absence of necrosis and fibrosis, percentage of viable tumour cells, presence or 

absence of medulla in the sample and degree of inflammation.  

13 tumour samples were excluded as they did not meet pre-determined criteria. The 

histopathological review assisted in the selection of the predetermined number of 

normal kidney samples (13) for inclusion in the study. Summary details of the ccRCC 

tumour samples and normal kidney samples are shown in Table 4.2 and Table 4.3 

respectively. A more detailed review is included in Appendix 4. 
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Table 4.2 – Summary of histopathological review of ccRCC tissue sections 

Extent of necrosis and degree of inflammation was graded from 0-2, the higher the figure, the more extensive the finding. 

 

Sample Number Section 
number 

Genetic group (based on four 
‘driver’ mutations) 

ISUP grade 
review 

Extent of 
necrosis 

(0-2) 

% viable 
tumour 

cells 

Degree of 
inflammation  

(0-2) 

% fibrosis or 
exudate 

031 T 1 VHL mutation only 2-3 0-2 60-70 0-1 30-40 

340 T 1 VHL mutation only 2 0 70-75 0 25-30 

344 T 1 VHL mutation only 2 0 75-80 0 20-25 

357 T 1 VHL mutation only 2 1 40-50 2 50-60 

364 T 1 VHL mutation only 2 0 75 0 25 

400 T 1 VHL mutation only 2 0 75 0 25 

417 T 1 VHL mutation only 2 0 70 1 30 

422 T 1 VHL mutation only 2 0 70-80 0-1 2-30 

426 T 1 VHL mutation only 1 0 70 1 30 

370 T 1 VHL + PBRM1 mutation 3 0 70 0 30 

377 T 1 VHL + PBRM1 mutation 3 0 80 0 20 

382 T 1 VHL + PBRM1 mutation 2 0 90 0 10 

404 T 1 VHL + PBRM1 mutation 1 0 90 0 10 

413 T 1 VHL + PBRM1 mutation 3 0 60-70 1 30-40 

231 T 1 VHL + SETD2 mutation 2 0 70 0 30 

371 T 1 VHL + SETD2 mutation 2 0 80 0 20 
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Sample Number Section 
number 

Genetic group (based on four 
‘driver’ mutations) 

ISUP grade 
review 

Extent of 
necrosis 

(0-2) 

% viable 
tumour 

cells 

Degree of 
inflammation  

(0-2) 

% fibrosis or 
exudate 

RS114563 T 1 VHL + SETD2 mutation 2 0 70 0 30 

RS114585 T 1 VHL + SETD2 mutation 2 0 70 0 30 

255 T 1 VHL + BAP1 mutation 2 0 60 2 60 

RS114494 T 1 VHL + BAP1 mutation 2 0 70 0 30 

128 T 1 No mutation group 4 and rhabdoid 0 70 0 30 

233 T 1 No mutation group 2 0 70 1 30 

409 T 1 No mutation group 3 0 60-70 1 30-40 

471 T 1 No mutation group 2 0 70 0 30 

396 T 1 PBRM1 mutation only 1 0 75 0 25 
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Table 4.3 – Summary of histopathological review of normal kidney tissue sections 

Extent of necrosis and degree of inflammation was graded from 0-2, the higher the figure, the more extensive the finding. 

Sample Number Section number 
Genetic group (based on four 

‘driver’ mutations)  
Cortex (%)  Medulla (%) Degree of inflammation  

% fibrosis or  

exudate 

344 N 1 VHL mutation only 100 0 1 0 

357 N 1 VHL mutation only 100 0 1 0 

364 N 1 VHL mutation only 100 0 1 0 

400 N 1 VHL mutation only 100 0 1 0 

417 N 1 VHL mutation only 100 0 1 0-1 

370 N 1 VHL + PBRM1 mutation 100 0 1 0 

377 N 1 VHL + PBRM1 mutation 100 0 0-1 0 

382 N 1 VHL + PBRM1 mutation 100 0 1 0 

404 N 1 VHL + PBRM1 mutation 100 0 1 0 

231 N 1 VHL + SETD2 mutation 90-100 0-10 1 5 

371 N 1 VHL + SETD2 mutation 100 0 1 0 

409 N 1 No mutation group 100 0 2 5 

471 N 1 No mutation group 100 0 1 0 

396 N 1 PBRM1 mutation only 100 0 1 0-10 
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4.4.2 Overview and patient demographics 

Following a rigorous histopathological and genomic review, 25 tumour samples and 

13 matched normal kidney samples were subject to proteomic analysis (Figure 4.3). 

The median age of patients at sample collection was 62 years (range 40-82 years). 

The male to female ratio was 14:11. A range of stages and grades were represented 

in the study. Detailed summaries of the ccRCC tumour samples entered into the 

study are shown in Table 4.4 and Table 4.5.  

 

In total, quantitative measurements for 3332 proteins were obtained from the 

samples analysed. Proteins identified on the basis of one peptide (n=134) were 

excluded from further analysis due to the lower confidence that these represented a 

true discovery. 
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Figure 4.3 - Consort diagram detailing samples ente red into the study.  
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Table 4.4 – Patient demographics and characteristic s of tumour samples 
entered into the study 

 

Gender 
Male  14 (56%) 

Female 11 (44%) 

Age (years) 
Median 62 

Range 40-82 

Stage 

I 7 (28%) 

II 3 (12%) 

III 8 (32%) 

IV 7 (28%) 

Grade 

1 3 (12%) 

2 12 (48%) 

3 5 (20%) 

4 4 (16%) 

No consensus 1 (4%) 

Genetic grouping 

based on four ‘driver’ 

mutations 

VHL mutation only 9 (36%) 

VHL + PBRM1 mutation 5 (20%) 

VHL + SETD2 mutation 4 (16%) 

VHL + BAP1 mutation 2 (8%) 

None of the four mutations 4 (16%) 

PBRM1 mutation only 1 (4%) 

Country of residence 
UK 22 (88%) 

Russia 3 (12%) 
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Table 4.5 – Detailed demographics and characteristi cs of patients’ tumour samples entered into the stu dy 

 

Sample 

number 

Genetic group 

(based on four 

‘driver’ mutations) 

Age Gender Stage Grade 

Geographical 

origin of 

tissue block 

Number of 

other 

genetic 

mutations 

detected 

Other mutations 

detected 

Matched 

normal 

included in 

study? 

031 T VHL mutation only 71 F IV 4 Leeds 0  N 

340 T VHL mutation only 40 M III 2 Leeds 2 ANPEP, ZFHX4 N 

344 T VHL mutation only 65 F I 2 Leeds 3 ARID1A, MDN1, ZFHX4 Y 

357 T VHL mutation only 45 M IV 2 Leeds 1 DMD Y 

364 T VHL mutation only 77 F I 2 Leeds 2 SST, KDM5C Y 

400 T VHL mutation only 54 F I 2 Leeds 0  Y 

417 T VHL mutation only 49 F I 2 Leeds 2 KMT2C, MTOR Y 

422 T VHL mutation only 67 M IV 2 Leeds 2 ATM, CSMD3 N 

426 T VHL mutation only 46 M I 1 Leeds 3 
ARID1A, KMT2C, 

TENM1 
N 

370 T 
VHL + PBRM1 

mutation 
54 M IV 3 Leeds 0  N 
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Sample 

number 

Genetic group 

(based on four 

‘driver’ mutations) 

Age Gender Stage Grade 

Geographical 

origin of 

tissue block 

Number of 

other 

genetic 

mutations 

detected 

Other mutations 

detected 

Matched 

normal 

included in 

study? 

377 T 
VHL + PBRM1 

mutation 
60 M III 3 Leeds 2 COL11A1, FAT1 Y 

382 T 
VHL + PBRM1 

mutation 
73 M I 2 Leeds 3 NRXN1, TENM1, TRRAP Y 

404 T 
VHL + PBRM1 

mutation 
65 F III 1 Leeds 5 

ANPEP, AR1d1A, 

COL11A1, DST, TRRAP 
Y 

413 T 
VHL + PBRM1 

mutation 
61 M III 4 Leeds 8 

ABCA13, ANPEP, ATM, 

DMD, MUC17, PTK7, 

ZAN, ZNF469 

N 

231 T 
VHL + SETD2 

mutation 
53 F IV 2 Leeds 2 ATM, 2FHX4 Y 

371 T 
VHL + SETD2 

mutation 
67 M I 2 Leeds 2 CACNA1, NRXN1 Y 
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Sample 

number 

Genetic group 

(based on four 

‘driver’ mutations) 

Age Gender Stage Grade 

Geographical 

origin of 

tissue block 

Number of 

other 

genetic 

mutations 

detected 

Other mutations 

detected 

Matched 

normal 

included in 

study? 

RS114563 T 
VHL + SETD2 

mutation 
54 M III 

No 

consen

sus 

Russia 0  N 

RS114585 T 
VHL + SETD2 

mutation 
62 F IV 2 Russia 2 KDM5C, TP53 N 

255 T VHL + BAP1 mutation 82 M II 3 Leeds 1 ANPEP N 

RS114494 T VHL + BAP1 mutation 56 F II 2 Russia 3 
ABCA13, DHAH7, 

DOCK8 
N 

128 T No mutation group 57 F III 4 Leeds 0  N 

233 T No mutation group 64 M IV 4 Leeds 0  N 

409 T No mutation group 62 F II 3 Leeds 1 MTOR Y 

471 T No mutation group 66 M III 3 Leeds 4 
ANK2, KDM5C, MTOR, 

USP24 
Y 

396 T PBRM1 mutation only 69 M III 1 Leeds 3 COL11A1, PRKDC, ZAN Y 
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4.4.3 Quality control 

From the single sample (471 N) analysed across the study, 3332 proteins were 

included in this correlation analysis. The spectra obtained were analysed for 

differences using one-way ANOVA for repeated measures. This demonstrated no 

evidence of a statistical difference in the pairwise comparisons between the three 

sample runs [F(2,6662)=1.185 p=0.306]. The Pearson’s correlation coefficients for 

each pairwise combination were 0.99 and the corresponding p-values were <0.001 

(Figure 4.4), indicating a strong association between the LFQ intensities of each run. 

This gives confidence that sample drift will have had a negligible effect on results 

obtained. 

Figure 4.4 –Correlation between the LFQ intensities  of the proteins identified 
in 3 runs of R471 normal tissue used as a quality c ontrol sample.  

Sample number R471N was run at the start, middle and end of the MS analysis. This 
figure shows the correlation of the LFQ intensities for the 3332 proteins identified 
between each of the three runs. (r* = Pearson's correlation coefficient and the dashed 
line represents the line of best fit) The p value is a test of the null hypothesis that the 
correlation is equal to 0. The LFQ intensities for albumin and cytoplasmic actin 1 are 
not shown in the figure for clarity, as their LFQ intensity scores were much larger 
than the other identified proteins, although these two proteins were included in the 
statistical analysis.   
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4.5 Analysis of data from LC-MS/MS analysis (Leeds data) 

4.5.1 Principal component analysis  

From this point forward, statistical analyses were undertaken using the R statistical 

package. Principal component analysis (PCA) of the LFQ intensity data for all 

identified proteins within the LC-MS/MS analysis was performed (Figure 4.5). A clear 

separation between normal kidney (N) and ccRCC tumour (T) samples was 

observed.  

 

Figure 4.5 – First principal component analysis (PC A) of ccRCC tumour (T) and 
normal kidney (N) samples within the proteomic stud y based on LFQ intensity.  

 

 

There was no separation within this PCA between the genetic groups included in the 

study (Figure 4.6). This was the same pattern for the second and third PCA. 

 

 

 

 Normal 
Tumour 
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Figure 4.6 - First principal component analysis of ccRCC tumour (T) and normal 
kidney (N) samples marked according to their differ ent genetic groupings.  

 

 

4.5.2 Hierarchical clustering 

Hierarchical clustering also demonstrated this separation of normal kidney and 

ccRCC tumour samples at the first major branch of the dendrogram (Figure 4.7). A 

second major branch separated the ccRCC tumour samples into two groups. This 

was the same for the normal kidney samples. The samples contained in the groups 

after the second branch mostly demonstrated concordance in the tumour and normal 

kidney samples, except for 344, 471 and 382. The reasons for the second branch 

within the ccRCC tumour samples are unclear. No correlation between the genetic 

groupings and branches were observed. Other factors such as gender, age and 

tumour characteristics were assessed but provided no explanation. A heatmap 

demonstrating the differential clustering between normal kidney and ccRCC samples 

is shown in Figure 4.8. When the tumour samples were analysed without normal 

kidney there was no clustering observed that related to the genetic groupings (Figure 

4.9). 

VHL + BAP1 mutation 
VHL + PBRM1 mutation 
VHL + SETD2 mutation 
No mutation group 
PBRM1 mutation only 
VHL mutation only 
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Figure 4.7 – Dendrogram showing hierarchical cluste ring of ccRCC tumour and 
normal kidney samples 

Hierarchical clustering of (a) all normal and tumour samples from the study (b) the 
tumour and normal kidney samples coloured based on genetic grouping, is shown. 

(a) 

Normal 
Tumour 

 

(b) 
VHL + BAP1 mutation 
VHL + PBRM1 mutation 
VHL + SETD2 mutation 
No mutation group 
PBRM1 mutation only 
VHL mutation only 
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Figure 4.8 – Heatmap showing differential protein a bundance between normal 
kidney and ccRCC tumour samples using LFQ intensity .  

Courtesy of Dr Lara Fuelner 

 

Figure 4.9 – Heatmap of ccRCC tumour samples demons trating the genetic 
groupings using LFQ intensity 

Courtesy of Dr Lara Fuelner  



125 
 

 

4.5.3 Analysis of tumour versus normal tissue acros s all 

proteins 

Overall 3136 proteins were identified by LC-MS/MS in the Leeds analysis. Using the 

definition of upregulation an downregulation as over, or less than 2 times the LFQ 

intensity respectively, compared to the average LFQ intensity for the normal samples, 

1323 of the proteins were upregulated in tumours (>2x) and 1314 were 

downregulated in tumours (>2x) The Wilcoxon test was applied to each protein to 

identify global differences in protein expression between the average LFQ intensity 

results of all ccRCC tumour and normal kidney samples. Overall 1337 (42.6%) 

proteins were identified to have a statistically significant difference (p<0.05) between 

tumour and normal kidney. The q value is a statistical measure of the number of 

statistically significant proteins that are wrongly identified as such. In this analysis the 

q value indicated that there was an 11.5% potential for false discoveries amongst 

these identified proteins. 32 proteins were below the level of detection in the normal 

kidney samples but were identified in over half of the ccRCC samples (see appendix). 

Conversely, there were 79 proteins detected in over half the normal samples but 

absent in the tumours. 

 

On the same analysis of tumour versus normal kidney samples but on the basis of 

the peptide count, there were 1485 (47.4%) proteins with a statistically significant 

difference based on the Wilcoxon test.  The q value indicated that there was a 10.5% 

potential of false discoveries amongst these proteins. 

 

4.5.3.1 Proof of principle 

Prior to proceeding with further analysis, seven of the differentially expressed 

proteins which were upregulated in ccRCC were selected and their expression 

reviewed in relation to published experience as a proof of principle. This provided 

confidence in the results obtained (Table 4.6, Figure 4.10 and Figure 4.11). 
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Table 4.6 – Proteins identified as being upregulate d in ccRCC samples in the LC-MS/MS study.  

Ten proteins from the 1337 identified as being upregulated in ccRCC samples in the LC-MS/MS analysis were reviewed and compared to 
published expression findings. The average LFQ intensity ratio of tumour to normal kidney for each protein is included, along with the p-value 
from a statistical comparison using the average LFQ intensity for tumour versus normal kidney using Wilcoxon matched pairs test. 1337 proteins 
were identified as being significantly upregulated in ccRCC tumour compared with normal kidney (Wilcoxon test). 

Protein name Gene name 

Number of samples 
with protein detected 

Average 
LFQ 

intensity 
fold 

difference 
(T/N) 

p-value Supportive references 
Normal Tumour 

Carbonic anhydrase 9 CA9 0 19 14762445 <0.001 (Soyupak et al., 2005), (Liao et al., 1997) 

Gamma-enolase ENO2 0 24 108357601 <0.001 (Sanders and Diehl, 2015) (Sun et al., 2010) 

Fatty acid-binding protein, brain FABP7 0 15 415913481 <0.001 (Zhou et al., 2015) (Domoto et al., 2007) 

NADH dehydrogenase 
[ubiquinone] 1 alpha subcomplex 
subunit 4-like 2 

NDUFA4L2 0 21 43232961 <0.001 (Liu et al., 2016) (Minton et al., 2016) 

Protein AHNAK2 AHNAK2 0 14 19467657 <0.001 (Wang et al., 2017) 

Cell surface glycoprotein MUC18 MCAM 0 22 9573301 <0.001 (Wragg et al., 2016) 

Chondroitin sulfate proteoglycan 4 CSPG4 0 17 9141129 <0.001 (Geldres et al., 2014) 
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Figure 4.10 – Dot plots of LFQ intensities of prote ins identified as being upregulated in ccRCC sample s in the LC-MS/MS study 

Each sample is arranged by its genetic group. The normal samples are included in red on the left side of the figure.  

Vimentin Carbonic anhydrase 9 

Gamma-enolase Fatty acid-binding protein, brain 
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Figure 4.11 - Dot plots of LFQ intensities of prote ins identified as being upregulated in ccRCC sample s in the LC-MS/MS study 

Each sample is arranged by its genetic group. The normal samples are included in red on the left side of the figure. 

NADH dehydrogenase [ubiquinone] 1 alpha 
subcomplex subunit 4−like 2 Protein AHNAK 

Cell surface glycoprotein MUC18 Chondroitin sulfate proteoglycan 4 
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4.5.3.2 Canonical pathway analysis  

The averaged LFQ intensity data for all the ccRCC tumour samples and normal 

kidney samples were next inputted into Ingenuity ® Pathway Analysis (IPA) (Qiagen, 

Redwood City). IPA contains a comprehensive knowledge-base from which 

uploaded protein expression profiles can be compared so as to predict expression 

changes in upstream molecules and to identify enriched canonical pathways. 

 

Pre-analysis settings specified inclusion of proteins with a two-fold cut off in LFQ 

intensity difference between tumour and normal kidney, human as the species, 

experimentally derived confidence and included all tissues and cell lines within IPA 

knowledge base. Canonical pathway enrichment within IPA was performed using 

Fisher’s exact test with a significance cut off p<0.05. IPA uses a z-score algorithm, 

such that an activation z-score ≥ 2 is considered activated and ≤ 2 is considered 

inhibited. z-score is a statistical measure of the match between expected relationship 

direction and observed gene expression It is weighted by the underlying findings, the 

relationship bias, and dataset bias. A review of the subsequent analysis identified 

upregulation and downregulation a dominant theme in a number of signalling 

pathways (Table 4.7). 

 

Table 4.7 Enriched canonical pathways in ccRCC tumo ur compared with 
normal kidney  

 

Upregulated Downregulated 

Carbohydrate biosynthesis Alcohol degradation 

Nucleoside / nucleotide biosynthesis Amino acid degradation 

Apoptosis signalling pathways Fatty acid and lipid degradation 

Integrin signalling  

Cellular growth, proliferation and 
development 

 

Cellular immune response  

Cellular injury and stress  

Growth factor signalling (VEGF, PDGF)  

 

 

The subsequent analysis identified enrichment of several pathways, of which the 

most significant top 20 are shown in Figure 4.12.. In particular there were a group of 
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pathways related to metabolism and energy production. In terms of energy 

metabolism, these were decreased expression of proteins involved in oxidative 

phosphorylation, evidence of mitochondrial dysfunction, an increase in the 

expression of proteins involved in carbohydrate biosynthesis (glycolysis, glycogen 

degradation and gluconeogenesis), and evidence of reduced ketolysis and 

ketogenesis. There were decreased expression of proteins involved in the TCA cycle, 

along with fatty acid β-oxidation, valine, tryptophan, and ethanol degradation. There 

was predominance of decreased expression of proteins involved in serotonin 

degradation. Within the cellular immune response pathways, the antigen 

presentation pathway, caveolar-mediated endocytosis signalling, IL-8 signalling, 

interferon signalling and, leucocyte extravasation signalling pathways were enriched. 

The VEGF and PDGF pathways were predominantly enriched with upregulated 

proteins, although this did not reach statistical significance with a z-score of 1.147 for 

each (Figure 4.13) 
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Figure 4.12 - The 20 most significantly altered can onical pathways in ccRCC 
when comparing average LFQ intensities of tumour ve rsus normal tissue.  

The orange bars represent canonical pathways with a z-score of greater than 2, thus 
indicating upregulation of the pathway. The blue bars represent canonical pathways 
with a z-score of less than -2, indicating downregulation of the pathway. The 
horizontal axis for the bars indicate the –log p-value. The orange line represents the 
ratio of proteins detected to the total number of proteins expected in  that pathway. 
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Figure 4.13 - Vascular endothelial growth factor (V EGF) and platelet derived 
growth factor (PDGF) signalling pathway enrichment.   

The red bars indicate the proportion of unregulated proteins in relation to total 
proteins expected in the pathway. The green bars indicate the proportion of 
downregulated proteins in relation to the total proteins expected. These pathways 
were enriched with upregulated proteins with a positive z-score, suggesting 
upregulation of these pathways, although the z-score was <2 (1.147 for each), 
therefore  it is not possible to say these pathways were activated. 

 

 

4.5.3.3 Upstream regulator analysis 

A further analysis to identify the predicted upstream regulators was undertaken. From 

this analysis, two statistical measures are computed for each protein, an activation 

z-score and p�value of overlap. The activation z-score is used to describe the 

activation state and the p�value of overlap describes the significance of the overlap 

between the dataset and the knowledge base using Fisher’s Exact Test, with 

significance generally attributed to p�values <0.01. Upstream transcriptional 

regulators were identified based on a z-score of ≤2 or ≥2, and a p-value of overlap of 

≤0.01. 24 upstream targets were predicted to be activated (Table 4.8). 8 of these 

regulators had already been identified within the MS analysis, although the 

expression pattern of TRAP1 was not in agreement with the predicted expression 

state. 14 molecules were predicted to be downregulated (Table 4.9). 6 of these 

regulators had been identified in the MS analysis and there was agreement in the 

state of activation in all except MAPK1 and OGA. They were 4-fold and 150000-fold 

upregulated in the MS analysis, respectively, yet were predicted to be inhibited based 

on the other protein expression levels. 
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Table 4.8 – Upstream regulators that are predicted to be activated in ccRCC 
compared with normal kidney tissue. 

Upstream Analysis within IPA uses a z-score algorithm, such that an activation z-
score ≥ 2 is considered activated and ≤ 2 is considered inhibited (p<0.01). The 
expression fold change refers to the findings from the MS analysis 

 

 

Table 4.9 – Upstream regulators that are predicted to be downregulated in 
ccRCC compared with normal kidney tissue. 

Upstream regulator 

Expression 
fold 
change 

Activation 
z-score 

p-value of 
overlap 

RAC-alpha serine/threonine-protein kinase (Akt)   2.832 0.00851 

Epidermal growth factor receptor (EGFR) 1268797 2.565 0.0000874 

Interferon-induced, double-stranded RNA-
activated protein kinase (EIF2AK2) 192545 3.206 0.00345 

Endothelial PAS domain-containing protein 1 
(EPAS1)   2.395 0.000235 

Oestrogen-related receptor gamma (ESRRG)   2.224 0.0000667 

Guanine nucleotide-binding protein subunit 
alpha-12 (GNA12)   2.557 0.00128 

Hypoxia-inducible factor 1-alpha (HIF1A)   3.552 2.99E-08 

Interferon alpha/beta receptor 2 (IFNAR2)   2.449 0.0053 

Interferon regulatory factor 9 (IRF9)   2 0.00365 

Transcription factor jun-B (JUNB)   2.219 0.00409 

JmjC domain-containing protein 5 (KDM8)   2.449 0.0000112 

Myc proto-oncogene protein (MYC)   3.521 2.62E-09 

Enhancer of filamentation 1 (NEDD9)   2.534 0.0000927 

Protein NLRC5 (NLRC5)   2.407 0.000902 

p38 mitogen-activated protein kinase family 

(P38 MAPK) 
  4.373 0.0024 

Phosphoinositide 3-kinase family (PI3K)   3.035 0.0000613 

Pyruvate kinase PKM (PKM) 96377 2.432 0.0000262 

Transcription factor p65 *(RELA) 245441 3.494 0.000616 

Transcription activator BRG1 (SMARCA4)   3.244 0.00619 

Signal transducer and activator of transcription 
1-alpha/beta (STAT1) 1358.883 2.531 0.00113 

E3 ubiquitin-protein ligase synoviolin (SYVN1)   3.212 6.33E-07 

Transforming growth factor beta-1 proprotein 
(TGFB1) 131973 3.577 0.000671 

Protein-glutamine gamma-glutamyltransferase 2 
(TGM2) 9.43 3.273 0.00438 

Heat shock protein 75 kDa, mitochondrial 
(TRAP1) -1.788 2.864 2.01E-09 
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Upstream Analysis within IPA uses a z-score algorithm, such that an activation z-
score ≥ 2 is considered activated and ≤ 2 is considered inhibited (p<0.01). The 
expression fold change refers to the findings from the MS analysis 

 

Upstream regulator 

Expression 
fold 
change 

Activation 
z-score 

p-value of 
overlap 

Apoptosis-inducing factor 1, mitochondrial 
(AIFM1) -4.519 -2.2 0.0000874 

Transcription regulator protein BACH1 (BACH1)   -2.177 0.00744 

Collagen alpha-1(XVIII) chain (COL18A1) -2.638 -2.35 0.00465 

Cystatin-D (CST5)   -2.452 3.59E-11 

28S ribosomal protein S29, mitochondrial 
(DAP3) -127554.85 -2.236 0.00966 

Egl nine homolog 1 (EGLN)   -3.448 0.0000242 

Mitogen-activated protein kinase 1 (MAPK1) 4.259 -2.785 6.52E-07 

Protein Mdm4 (MDM4)   -2.8 0.0000345 

Protein O-GlcNAcase (OGA) 151097 -2.508 0.0000122 

Secretory phospholipase A2 receptor (PLA2R1)   -2.737 5.28E-13 

Scaffold attachment factor B1 (SAFB) -172701 -2.309 0.00286 

Suppressor of cytokine signaling 1 (SOCS1)   -2.54 0.00439 

Transcription factor EB (TFEB)   -2.121 0.000787 

WNT1-inducible-signaling pathway protein 2 
(WISP2)   -3.148 0.00808 

 
 
Amongst the 24 upstream regulators that were predicted to be upregulated in ccRCC, 

many of them are already known and have previously been documented in the 

literature. HIF1A (Krieg et al., 2000) and EPAS1 (HIF2A) (Frew and Moch, 2015) are 

identified to be upregulated as expected. Other known activated regulators include 

Akt (Hara et al., 2005) in which the inhibition is being investigated in a number of 

clinical trials (Jonasch et al., 2017). EGFR has been identified to be upregulated in 

83.8% (n=771) of ccRCC samples examined using a tissue microarray and was 

associated with a high tumour grade (Minner et al., 2012). A number of the regulators 

have not yet been investigated in RCC including GNA12, KDM8, SMARCA4 and 

SYVN1. 

 

4.5.4 Analysis of proteomic changes across the gene tic groups  

Identified proteins were analysed for differential expression across each genetically 

defined group according to the LFQ intensity using a Kruskal-Wallis test. 48 proteins 
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were found to have a statistically significant difference (p<0.05) across one or more 

group, although the q-value indicated that 99.9% of these proteins would be predicted 

to be false discoveries. A further post-hoc pairwise comparison using Wilcoxon test 

was performed to identify the group associated with the significant difference. When 

the same analysis was repeated using the average peptide count, there were 43 

proteins identified with a p-value <0.05. The q-value again indicated that 99.9% of 

these proteins would be predicted to be false discoveries. Dot plots for each protein 

were constructed using the R statistical package, as in Figure 4.10, and each were 

reviewed. No protein was observed to have a clear difference between groups. Due 

to the small sample sizes and exploratory nature of this study it is not possible to 

define proteins that are differentially expressed across the genetic groups, and 

possibly there may not be any. 

 

4.5.4.1 Canonical pathway analysis 

Through the IPA software, the next approach of inputting the LFQ expression fold 

change relative to normal kidney for each of the six genetic groups was undertaken. 

Firstly an analysis of canonical pathway enrichment was reviewed. On review there 

were no changes in canonical pathway activation across the groups, particularly the 

top 20 ranked according to their p-value (Figure 4.14). Given the very small numbers 

of samples in the PBRM1 mutation only group and the VHL + BAP1 mutation group 

caution was used in the interpretation of the proteomic profile results. 
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Figure 4.14 –Enriched canonical pathways on compari son of all genetic 
groups. 

The LFQ intensity data was inputted into IPA and an analysis of the canonical 
pathways that are enriched with proteins, was performed. The results are based on 
an activation z-score, such that a score ≥2 is considered to be upregulated and a 
score ≤2 is considered to be downregulated. The colour key is indicated at the top of 
the figure. Squares may be coloured with a z-score between -2 and 2. They are 
highlighted with a small square inside, therefore not classified as upregulated or 
downregulated.  
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4.5.4.2 Upstream regulator analysis 

On analysis of predicted upstream regulators based on the proteomic profile for each 

genetic group, a number of regulators were identified (Table 4.10, Table 4.11, Table 

4.12, Table 4.13, Table 4.14 and Table 4.15). These were grouped together for 

review in Table 4.16 and Table 4.17. A number of observations were made. Firstly 

JmjC domain-containing protein 5 (KDM8) was predicted to be upregulated across 

all genetic groups, as was Heat shock protein 75 kDa, mitochondrial (TRAP1). PKM 

is also predicted to be upregulated across the groups except the PMRM1 mutation 

only group. In the analysis of the effect of VHL mutation, Hypoxia-inducible factor 1-

alpha (HIF1A) was predicted to be upregulated in the VHL mutation groups as was 

Transforming growth factor beta-1 proprotein (TGFB1). Guanine nucleotide-binding 

protein subunit alpha-12 (GNA12) was upregulated in the no mutation group but not 

in the VHL mutation only group. 

 

A number of upstream regulators were identified to be downregulated across all 

samples, namely Apoptosis-inducing factor 1, mitochondrial (AIFM1), 28S ribosomal 

protein S29, mitochondrial (DAP3) and Secretory phospholipase A2 receptor 

(PLA2R1). Krueppel-like factor 11 (KLF11) is downregulated in samples containing 

a VHL mutation and Scaffold attachment factor B1 (SAFB) is downregulated in the 

no mutation group. Sterol regulatory element-binding protein 1 (SREBF1) was 

downregulated in the VHL+PBRM1 mutation group and the PBRM1 mutation only 

group. 
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Table 4.10 – VHL mutation only group - Upstream molecules that are predicted 
to be (a) activated and (b) inhibited in ccRCC comp ared with normal kidney 
tissue 

Upstream Analysis within IPA uses a z-score algorithm, such that an activation z-
score ≥ 2 is considered activated and ≤ 2 is considered inhibited (p<0.05). The 
expression fold change is the fold difference between ccRCC and normal kidney for 
that genetic group from the MS analysis. 

 

(a) Upstream regulator  
Expression 
fold change  

Activation 
z-score  

p-value of 
overlap  

Epidermal growth factor receptor (EGFR) 1058923 2.417 0.000112 

Interferon-induced, double-stranded RNA-
activated protein kinase (EIF2AK2) 534845.4 3.426 0.00999 

Oestrogen-related receptor gamma (ESRRG)   2.224 0.0000301 

Hypoxia-inducible factor 1-alpha (HIF1A)   3.671 1.31E-07 

Interferon alpha/beta receptor 2 (IFNAR2)   2.449 0.00306 

JmjC domain-containing protein 5 (KDM8)   2.449 0.00000586 

Myc proto-oncogene protein (MYC)   3.562 6.78E-09 

Enhancer of filamentation 1 (NEDD9)   2.331 0.000145 

Protein NLRC5 (NLRC5)   2.407 0.000499 

Phosphoinositide 3-kinase family (PI3K)   2.585 0.000247 

Pyruvate kinase PKM (PKM) 6.838 2.23 0.0000537 

Transcription factor p65 (RELA) 194223.2 2.977 0.0000793 

Transcription activator BRG1 (SMARCA4)   2 0.00447 

E3 ubiquitin-protein ligase synoviolin 
(SYVN1)   2.556 0.0000122 

Transforming growth factor beta-1 proprotein 
(TGFB1) 366589.9 3.563 0.000437 

Heat shock protein 75 kDa, mitochondrial 
(TRAP1) -2.956 3.014 3.07E-11 
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(b) Upstream regulator  
Expression 
fold change  

Activation 
z-score  

p-value of 
overlap  

Apoptosis-inducing factor 1, mitochondrial 
(AIFM1) -8.669 -2.2 0.0000512 

Collagen alpha-1(XVIII) chain (COL18A1) -3.232 -2.688 0.00447 

Cystatin-D (CST5)   -2.205 4.39E-10 

28S ribosomal protein S29, mitochondrial 
(DAP3) -127555 -2.236 0.00607 

Egl nine homolog 1 (EGLN)   -3.448 
0.0000036
1 

Oestrogen receptor   -4.035 0.00488 

Krueppel-like factor 11 (KLF11)   -2.58 0.0000184 

Mitogen-activated protein kinase 1 (MAPK1) 3.323 -2.669 0.0000122 

Protein Mdm4 (MDM4)   -2.621 0.000165 

Secretory phospholipase A2 receptor 
(PLA2R1)   -3.128 7.25E-14 

Peroxisome proliferator-activated receptor 
alpha (PPARA)   -2.557 0.0000681 

SAM pointed domain-containing Ets 
transcription factor (SPDEF)   -2.53 

0.0000015
3 
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Table 4.11 – No mutation group  - Upstream molecule s that are predicted to be 
(a) activated and (b) inhibited in ccRCC compared w ith normal kidney tissue 

Upstream Analysis within IPA uses a z-score algorithm, such that an activation z-
score ≥ 2 is considered activated and ≤ 2 is considered inhibited (p<0.05). The 
expression fold change is the fold difference between ccRCC and normal kidney for 
that genetic group from the MS analysis. 

 

(a) Upstream regulator  
Expression 
fold change  

Activation 
z-score  

p-value of 
overlap  

Bromodomain-containing protein 7 (BRD7)   2.219 0.00952 

Epidermal growth factor receptor (EGFR) 2047451 2.837 0.00000133 

Oestrogen-related receptor gamma 
(ESRRG)   2.224 0.0000118 

Guanine nucleotide-binding protein subunit 
alpha-12 (GNA12)   2.198 0.00191 

JmjC domain-containing protein 5 (KDM8)   2.449 0.00000276 

Protein NLRC5 (NLRC5)   2.191 0.00232 

Phosphoinositide 3-kinase family (PI3K)   2.568 0.000896 

Pyruvate kinase PKM (PKM) 6.657 2.432 0.00000227 

E3 ubiquitin-protein ligase synoviolin 
(SYVN1)   2.335 2.87E-07 

Heat shock protein 75 kDa, mitochondrial 
(TRAP1) -1.479 2.546 4.77E-09 

 

(b) Upstream regulator  
Expression 
fold change  

Activation 
z-score  

p-value of 
overlap  

Apoptosis-inducing factor 1, mitochondrial 
(AIFM1) -2.567 -2.2 0.0000274 

Collagen alpha-1(XVIII) chain (COL18A1) -2.414 -2.496 0.004 

28S ribosomal protein S29, mitochondrial 
(DAP3) -127554.85 -2.236 0.0035 

Egl nine homolog 1 (EGLN)   -3.157 0.000161 

Mitogen-activated protein kinase 1 (MAPK1) 4.094 -2.401 0.007 

Protein Mdm4 (MDM4)   -2.425 0.000694 

Protein O-GlcNAcase (OGA) 587926 -2.034 0.000277 

Secretory phospholipase A2 receptor 
(PLA2R1)   -3.128 7.08E-15 

Peroxisome proliferator-activated receptor 
alpha (PPARA)   -2.897 1.16E-07 

Scaffold attachment factor B1 (SAFB) -172701 -2.111 0.00115 
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Table 4.12 – VHL + PBRM1 mutation group - Upstream molecules that are 
predicted to be (a) activated and (b) inhibited in ccRCC compared with normal 
kidney tissue 

Upstream Analysis within IPA uses a z-score algorithm, such that an activation z-
score ≥ 2 is considered activated and ≤ 2 is considered inhibited (p<0.05). The 
expression fold change is the fold difference between ccRCC and normal kidney for 
that genetic group from the MS analysis. 

 

(a) Upstream regulator  
Expression 
fold change  

Activation 
z-score  

p-value of 
overlap  

Hypoxia-inducible factor 1-alpha (HIF1A)   2.532 0.00000212 

JmjC domain-containing protein 5 (KDM8)   2.236 0.0000818 

Pyruvate kinase PKM (PKM) 481881 2.012 0.0000884 

Transforming growth factor beta-1 
proprotein (TGFB1) 1 3.021 0.00167 

Heat shock protein 75 kDa, mitochondrial 
(TRAP1) -1.709 3.637 3.6E-10 

 

(b) Upstream regulator  
Expression 
fold change  

Activation 
z-score  

p-value of 
overlap  

Apoptosis-inducing factor 1, mitochondrial 
(AIFM1) -4.352 -2.2 0.0000252 

28S ribosomal protein S29, mitochondrial 
(DAP3) -127555 -2.236 0.00324 

Egl nine homolog 1 (EGLN)   -3.033 0.0000125 

Krueppel-like factor 11 (KLF11)   -2 0.0029 

Mitogen-activated protein kinase 1 (MAPK1) 4.755 -2.692 0.000129 

Protein Mdm4 (MDM4)   -2.425 0.000632 

Protein O-GlcNAcase (OGA) 285141 -2.302 0.0000411 

Secretory phospholipase A2 receptor 
(PLA2R1)   -2.591 1.19E-13 

Peroxisome proliferator-activated receptor 
alpha (PPARA)   -2.182 4.83E-07 

Sterol regulatory element-binding protein 1 
(SREBF1)   -2.03 9.72E-12 

Transcription factor EB (TFEB)   -2.646 0.000935 
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Table 4.13 – VHL + SETD2 mutation group - Upstream molecules that are 
predicted to be (a) activated and (b) inhibited in ccRCC compared with normal 
kidney tissue 

Upstream Analysis within IPA uses a z-score algorithm, such that an activation z-
score ≥ 2 is considered activated and ≤ 2 is considered inhibited (p<0.05). The 
expression fold change is the fold difference between ccRCC and normal kidney for 
that genetic group from the MS analysis. 

 

(a) Upstream regulator  
Expression 
fold change  

Activation 
z-score  

p-value of 
overlap  

RAC-alpha serine/threonine-protein kinase 
(Akt)   2.018 0.00427 

Oestrogen-related receptor gamma (ESRRG)   2.224 0.0000115 

Hypoxia-inducible factor 1-alpha (HIF1A)   2.533 4.45E-07 

JmjC domain-containing protein 5 (KDM8)   2.449 0.00000271 

Phosphoinositide 3-kinase family (PI3K)   2.13 0.00086 

Pyruvate kinase PKM (PKM) 7.658 2.87 0.0000993 

Transcription factor p65 (RELA) 1 2.902 0.00827 

Syntenin-2 (SDCBP) -52382.538 2.207 0.00344 

Structural maintenance of chromosomes 
protein 3 (SMC3) 1 2 0.00498 

Transforming growth factor beta-1 proprotein 
(TGFB1) 1 2.428 0.0037 

Heat shock protein 75 kDa, mitochondrial 
(TRAP1) -2.449 3.173 4.47E-10 

 

(b) Upstream regulator  
Expression 
fold change  

Activation 
z-score 

p-value of 
overlap  

Apoptosis-inducing factor 1, mitochondrial 
(AIFM1) -5.065 -2.2 0.0000269 

28S ribosomal protein S29, mitochondrial 
(DAP3) -127554.85 -2.236 0.00344 

28S ribosomal protein S29, mitochondrial 
(DAP3)   -2.492 0.0000503 

Egl nine homolog 1 (EGLN)   -2 0.00311 

Krueppel-like factor 11 (KLF11) 5.317 -2.774 0.000816 

Mitogen-activated protein kinase 1 (MAPK1)   -2.216 0.00498 

Protein Mdm4 (MDM4) 1 -2.682 0.00000435 

Protein O-GlcNAcase (OGA)   -2.878 2.48E-16 

Transcription factor EB (TFEB)   -2.333 0.0000186 
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Table 4.14 – VHL + BAP1 mutation group - Upstream molecules that are 
predicted to be (a) activated and (b) inhibited in ccRCC compared with normal 
kidney tissue 

Upstream Analysis within IPA uses a z-score algorithm, such that an activation z-
score ≥ 2 is considered activated and ≤ 2 is considered inhibited (p<0.05). The 
expression fold change is the fold difference between ccRCC and normal kidney for 
that genetic group from the MS analysis. 

 

(a) Upstream regulator  
Expression 
fold change  

Activation 
z-score  

p-value of 
overlap  

Fibroblast growth factor 7 (FGF7)   2.387 0.000153 

JmjC domain-containing protein 5 (KDM8)   2.236 0.0000701 

Pyruvate kinase PKM (PKM) 6.79 2.23 0.0000102 

Protein tyrosine phosphatase type IVA 3 
(PTP4A3)   2.194 0.00408 

Heat shock protein 75 kDa, mitochondrial 
(TRAP1) 1.735 2.523 2.34E-09 

 

(b) Upstream regulator  
Expression 
fold change  

Activation 
z-score  

p-value of 
overlap  

Apoptosis-inducing factor 1, mitochondrial 
(AIFM1) -2.193 -2.2 0.0000215 

28S ribosomal protein S29, mitochondrial 
(DAP3) -127555 -2.236 0.00281 

Egl nine homolog 1 (EGLN)   -3.017 0.000249 

Mitogen-activated protein kinase 1 (MAPK1) 4.281 -3.025 0.000861 

Protein Mdm4 (MDM4)   -2.619 0.0000533 

Secretory phospholipase A2 receptor 
(PLA2R1)   -2.261 3E-18 

Peroxisome proliferator-activated receptor 
alpha (PPARA)   -2.354 0.0000342 

Scaffold attachment factor B1 (SAFB) -172701 -2.53 0.00259 
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Table 4.15 – PBRM1 mutation only group - Upstream molecules that are 
predicted to be (a) activated and (b) inhibited in ccRCC compared with normal 
kidney tissue 

Upstream Analysis within IPA uses a z-score algorithm, such that an activation z-
score ≥ 2 is considered activated and ≤ 2 is considered inhibited (p<0.05). The 
expression fold change is the fold difference between ccRCC and normal kidney for 
that genetic group from the MS analysis. 

 

(a) Upstream regulator  
Expression 
fold change  

Activation 
z-score  

p-value of 
overlap  

JmjC domain-containing protein 5 (KDM8)   2 0.00181 

Protein tyrosine phosphatase type IVA 3 
(PTP4A3)   2.411 0.000826 

Heat shock protein 75 kDa, mitochondrial 
(TRAP1) -4.928 4.021 4.22E-13 

Tribbles homolog 3 (TRIB3)   2.236 0.00808 

 

(b) Upstream regulator  
Expression 
fold change  

Activation 
z-score  

p-value 
of 
overlap  

Apoptosis-inducing factor 1, mitochondrial 
(AIFM1) -11.771 -2.2 

0.000032
2 

28S ribosomal protein S29, mitochondrial 
(DAP3) -127555 -2.236 0.00403 

Krueppel-like factor 11 (KLF11)   -2.449 0.000607 

Nuclear factor erythroid 2-related factor 2 
(NFE2L2)   -2.588 0.000227 

Secretory phospholipase A2 receptor 
(PLA2R1)   -3.262 5E-16 

Peroxisome proliferator-activated receptor 
alpha (PPARA)   -2.534 

0.000004
83 

SHC-transforming protein 1 (SHC1)   -2.178 0.00374 

Osteopontin (SPP1)   -3.158 5.65E-09 

Sterol regulatory element-binding protein 1 
(SREBF1)   -2.514 8.29E-12 

Transcription factor EB (TFEB)   -2.828 0.000195 

Tumor protein p73 (TP73)   -3.119 0.00123 
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Table 4.16 – Upstream regulators that are predicted  to be upregulated in each 
genetic group compared with normal kidney tissue.  

Grey shading indicates upregulation in that particular genetic group 
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RAC-alpha serine/threonine-protein kinase (Akt)    ⇑   

Bromodomain-containing protein 7 (BRD7)  ⇑     

Epidermal growth factor receptor (EGFR) ⇑ ⇑     

Interferon-induced, double-stranded RNA-
activated protein kinase (EIF2AK2) ⇑      

Oestrogen-related receptor gamma (ESRRG) ⇑ ⇑  ⇑   

Fibroblast growth factor 7 (FGF7)     ⇑  

Guanine nucleotide-binding protein subunit alpha-
12 (GNA12)  ⇑     

Hypoxia-inducible factor 1-alpha (HIF1A) ⇑  ⇑ ⇑   

Interferon alpha/beta receptor 2 (IFNAR2) ⇑      

JmjC domain-containing protein 5 (KDM8) ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ 

Myc proto-oncogene protein (MYC) ⇑      

Enhancer of filamentation 1 (NEDD9) ⇑      

Protein NLRC5 (NLRC5) ⇑ ⇑     

Phosphoinositide 3-kinase family (PI3K) ⇑ ⇑  ⇑   

Pyruvate kinase PKM (PKM) ⇑ ⇑ ⇑ ⇑ ⇑  

Protein tyrosine phosphatase type IVA 3 (PTP4A3)     ⇑ ⇑ 

Transcription factor p65 (RELA) ⇑   ⇑   

Syntenin-2 (SDCBP)    ⇑   

Transcription activator BRG1 (SMARCA4) ⇑      

Structural maintenance of chromosomes protein 3 
(SMC3)    ⇑   

E3 ubiquitin-protein ligase synoviolin (SYVN1) ⇑ ⇑     

Transforming growth factor beta-1 proprotein 
(TGFB1) ⇑  ⇑ ⇑   

Heat shock protein 75 kDa, mitochondrial (TRAP1) ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ 

Tribbles homolog 3 (TRIB3)      ⇑ 
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Table 4.17 – Upstream regulators that are predicted  to be downregulated in 
each genetic group compared with normal kidney tiss ue.  

Grey shading indicates downregulation in that particular genetic group 
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Apoptosis-inducing factor 1, mitochondrial 
(AIFM1) ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ 

Collagen alpha-1(XVIII) chain (COL18A1) ⇓ ⇓     

Cystatin-D (CST5) ⇓      

28S ribosomal protein S29, mitochondrial (DAP3) ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ 

Egl nine homolog 1 (EGLN) ⇓ ⇓ ⇓ ⇓ ⇓  

Krueppel-like factor 11 (KLF11) ⇓  ⇓ ⇓  ⇓ 

Mitogen-activated protein kinase 1 (MAPK1) ⇓ ⇓ ⇓ ⇓ ⇓  

Protein Mdm4 (MDM4) ⇓ ⇓ ⇓ ⇓ ⇓  

Nuclear factor erythroid 2-related factor 2 
(NFE2L2)      ⇓ 

Protein O-GlcNAcase (OGA)  ⇓ ⇓ ⇓   

Secretory phospholipase A2 receptor (PLA2R1) ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ 

Peroxisome proliferator-activated receptor alpha 
(PPARA) ⇓ ⇓ ⇓  ⇓ ⇓ 

Scaffold attachment factor B1 (SAFB)  ⇓   ⇓  

SHC-transforming protein 1 (SHC1)      ⇓ 

Osteopontin (SPP1)      ⇓ 

SAM pointed domain-containing Ets transcription 
factor (SPDEF) ⇓      

Sterol regulatory element-binding protein 1 
(SREBF1)   ⇓   ⇓ 

Transcription factor EB (TFEB)   ⇓ ⇓  ⇓ 

Tumor protein p73 (TP73)      ⇓ 

 

 

4.5.5 Selection of novel proteins as therapeutic ta rgets 
Following on from this work, several proteins were selected for further investigation 

as novel therapeutic targets in ccRCC. A list of desired criteria was considered. 

These included upregulation in the majority of tumour samples whilst having a low 
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expression in normal kidney samples, not ubiquitous expression in other tissues, 

relevant biological function of the selected protein and finally the availability of 

antibodies and small molecule inhibitors. An initial shortlist of proteins was created 

and each one was considered, with two being then discussed in Chapter 5.  
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Table 4.18 – Proteins chosen for consideration of f urther investigation as novel therapeutic targets i n ccRCC 

 

Protein Gene Function (www.uniprot.org) 
Investigations in Inhibitor 

availability RCC Other cancers 
Protein diaphanous 
homolog 1 

DIAPH1 Assembly of actin structures. Required 
for cytokinesis. Promotes cell 
migration - essential for cell adhesion 
to collagen. 

None In the HCT-116 
colorectal cancer cell 
line controls cellular 
adhesion by stabilising 
microtubules. Its loss 
resulted in reduced 
metastatic potential (Lin 
et al., 2015) 

None available 

Protein NDRG1 NDRG1 Ubiquitously expressed in normal 
tissue. Stress/hypoxia responsive 
protein. Involved in cell growth and 
differentiation 

Association between 
primary tissue 
expression and 
favourable prognosis. 
In-vitro studies 
demonstrated 
enhanced RCC cell line 
invasiveness and cell 
proliferation with 
silencing (Hosoya et 
al., 2013) 

Decreased expression 
in colorectal carcinoma 
tissue compared with 
normal colon and loss 
is associated with 
poorer OS and 
recurrence (Mao et al., 
2013). Cell proliferation 
and invasiveness 
enhanced with knock-
down in a gastric 
cancer cell line (Chang 
et al., 2016) 

None available 

Peptidyl-prolyl cis-trans 
isomerase FKBP1A 

FKBP1A Role in immunoregulation and cellular 
processes involving protein folding, 
trafficking and cell cycle regulation. 
Ubiquitous expression in cells. Binding  
to rapamycin mediates the 
immunosuppressive effects (Fong et 
al., 2003) 

None None Inhibited by FK506 
(tacrolimus) and 
rapamycin 
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Protein Gene Function (www.uniprot.org) 
Investigations in Inhibitor 

availability RCC Other cancers 
Tumour protein D54 TPD52L2 Regulation of cell proliferation None Knock-down in the 

U251 glioma cell line 
reduced cell 
invasiveness, colony 
formation and induced 
G0/G1 cell cycle arrest 
(Wang et al., 2014)  

None 

Proliferation-associated 
protein 2G4 

PA2G4 May play a role in ERBB3 signal 
transduction (Yoo et al., 2000). May be 
involved in growth regulation  

None Expression upregulated 
in the transition from 
normal to hormone 
sensitive to hormone 
resistant prostate 
cancer (Gannon et al., 
2008). 

WS6 available. It is an 
inducer of β cell 
proliferation (Sigma 
Aldrich) 

ATP-dependent 6-
phosphofructokinase, 
platelet type 

PFKP A key enzyme in the glycolytic 
pathway 

Known to be 
upregulated in ccRCC 
at an mRNA  and 
protein level. 
Knockdown work 
induced cell cycle 
arrest and reduced 
proliferation in the 786-
0 and Caki-1 cell lines 
(Wang et al., 2016a) 

none Not available 

Prostaglandin G/H 
synthase 1 

PTSG1 More commonly known as 
cyclooxygenase-1 (COX-1). PTGS1 
catalyses the conversion of 
arachidonate to prostaglandin H2 
(PGH2), a committed step in 
prostanoid synthesis. The prostanoids 
are the principal proteins responsible 
for production of inflammatory 

By IHC, the 
cytoplasmic and 
cytomembranous 
staining intensity in 
RCC correlates with 
tumour grade, renal 
vein invasion, tumour 
size and perirenal fat 

Abnormal prostaglandin 
generation is felt to play 
a pivotal role in the 
evolution of most 
epithelial cancers from 
precursor lesions, this 
includes breast, 
colorectal and prostate 

Available - The 
selective PTGS1 
inhibitor SC-560 was 
shown to inhibit ovarian 
cancer cell growth in 
vivo and increase 
apoptosis in vitro 
(Daikoku et al., 2005). 
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Protein Gene Function (www.uniprot.org) 
Investigations in Inhibitor 

availability RCC Other cancers 
prostaglandins (Ricciotti and 
FitzGerald, 2011). 

invasion (Osman and 
Youssef, 2015). In both 
ovarian cancer and 
RCC PTGS1 and 
VEGF expression were 
found to correlate, 
suggesting their 
interaction. The non-
steroidal anti-
inflammatory drugs 
(NSAIDs) bind to the 
cyclooxygenase active 
site and inhibit PTGS1 
with varying selectivity 
(Patrono et al., 2004). 

cancer (Singh Ranger, 
2016) (Mauro et al., 
2010). PTGS1 has 
been shown to be 
overexpressed in a 
number of different 
cancers compared with 
adjacent normal tissue, 
including endometrial, 
oral, ovarian 

EH domain-containing 
protein 2 

EHD2 May play a role in membrane 
trafficking between plasma membrane 
and endosomes 

Previously noted to be 
upregulated in ccRCC 
(Zaravinos et al., 2014) 

Reduced expression in 
breast cancer tissue 
compared with adjacent 
normal breast tissue. 
Overexpression 
repressed and knock 
down of EHD2 
promoted migration and 
invasion of the breast 
cancer cell lines, MCF-
7 and MDA-MB-435 
(Yang et al., 2015). 

None available 
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Protein Gene Function (www.uniprot.org) 
Investigations in Inhibitor 

availability RCC Other cancers 
Protein ANHNAK2 AHNAK2 Regulation of RNA splicing Identified as being 

upregulated in ccRCC 
primary tissue. 
Knockdown inhibited 
cell proliferation, colony 
formation and 
proliferation in Caki-1 
cell line (Wang et al., 
2017) 

Upregulated in 
pancreatic 
adenocarcinoma 
relative to normal 
pancreas using IHC (Lu 
et al., 2017) 

None available 

Gamma-interferon-
inducible protein 16 

IFI16 Involved in transcriptional regulation. 
Possibly involved in p53-related 
tumour suppression 

None Downregulated in 
prostate cancer 
compared to prostate 
cancer cell lines 
(Alimirah et al., 2007). 
Expression decreased 
in hepatocellular 
carcinoma primary 
tissue and cell lines 
relative to normal liver 
tissue. Overexpression 
decreased cell 
migrational ability and 
colony formation whilst 
increasing apoptosis 
(Lin et al., 2017) 

None available 

Neutral cholesterol 
ester hydrolase 1 

NCEH1 Tumour cell migration, lipid 
metabolism, ether lipid metabolism 

None Upregulated in breast, 
ovarian, pancreatic 
cancers and 
melanoma. Inhibition in 
PC3 prostate cancer 
cell lines reduced 
invasiveness, migration 

Available - JW480 
(Sigma Aldrich) 
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Protein Gene Function (www.uniprot.org) 
Investigations in Inhibitor 

availability RCC Other cancers 
and cell viability (Chang 
et al., 2011) 

ERO1-like protein ERO1A Involved in oxidative protein folding in 
the endoplasmic reticulum. Regulates 
the MHC class  molecule 

None Expressed in 
oesophageal and 
gastric cancer cell lines 
(Battle et al., 2013). 
Related to the 
expression of PD-L1 in 
triple negative breast 
cancer (Tanaka et al., 
2017) 

Available 

Proteasome subunit 
beta type 9 

PSMB9 This protein forms a subunit of the 
immunoproteasome, a complex 
macromolecular structure involved in 
protein degradation and antigen 
presentation (Ferrington and 
Gregerson, 2012). The 
immunoproteasome is an alternative 
form of the constitutive proteasome 
that is not normally active in normal 
cells of the body but is expressed at 
high levels in cancer tissues. Its 
synthesis is induced by cytokines such 
as TNF-α and INF-γ (Ho et al., 2007). 

None PSMB9 has been 
shown to be 
upregulated in a 
number of other 
cancers including AML, 
prostate cancer and 
malignant melanoma 
(Rouette et al., 2016) 
(Kageshita et al., 
1999). 

Inhibitors are available 
that are non-
discriminatory in their 
action against all 
constitutive and 
immune-proteasome 
complexes and may 
have other actions 
(Kondagunta et al., 
2004). These have 
been introduced into 
clinical practice for the 
treatment of multiple 
myeloma and are the 
subject of multiple 
ongoing clinical trials 
(Hideshima et al., 
2001). 

 



 
 

 

153 

Protein Gene Function (www.uniprot.org) 
Investigations in Inhibitor 

availability RCC Other cancers 
Prolyl 4-hydroxylase 
subunit alpha 1 

P4HA1 Involved in biogenesis of collagen. 
Directly upregulated by HIF1 =under 
hypoxic conditions, where it may have 
a role in extracellular remodelling. 

Identified as an 
upregulated gene in 
ccRCC (Hirota et al., 
2006) 

Increased levels 
predice poor outcome 
in patients with breast 
cancer (Gilkes et al., 
2013) 

Available 

Prolyl 4-hydroxylase 
subunit alpha 2 

P4HA2 Involved in biogenesis of collagen None Upregulated at an 
mRNA level in breast 
cancer tissue 
compared with normal 
breast tissue. Silencing 
reduced cell growth 
and metastases in 
xenograft models 
(Xiong et al., 2014) 

Available 

Fatty acid binding 
protein, brain 

FABP7 Thought to be involved in fatty acid 
uptake, transport and metabolism 

Identified to be 
upregulated in ccRCC 
and correlated with 
advanced stage and 
poorer survival. 
Overexpression 
enhanced cell growth in 
RCC cell lines (Zhou et 
al., 2015) 

Associated with the 
basal breast cancer 
phenotype where 
higher expression was 
associated with a better 
outcome (Zhang et al., 
2010) 

None available 

Protein FAM49B FAM49B Regulator of mitochondrial function None Silencinig in pancreatic 
adenocarcinoma cell 
lines enhanced cell 
proliferation and 
invasiveness 
(Chattaragada et al., 
2018) 

None available 

Synaptogyrin-2 SYNGR2 May play a role in regulated exocytosis None None None available 
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Protein Gene Function (www.uniprot.org) 
Investigations in Inhibitor 

availability RCC Other cancers 
Testin TES It is found at areas of cell-to-cell 

contact and focal adhesions. Its 
location suggests it may have a role in 
cell adherence, communication and 
cell mobility. 

 This protein has been 
described as being 
overexpressed in a 
gastric cancer cell line 
(GTL-16) where it co-
amplifies with MET 
(Han et al., 2003). 
Although conflictingly it 
has also been 
demonstrated to be lost 
in multiple other 
cancers, including head 
and neck squamous 
cell carcinoma (Gunduz 
et al., 2009), breast, 
pancreatic, 
haematological 
(Tatarelli et al., 2000) 
(Sarti et al., 2005), 
glioblastoma (Mueller 
et al., 2007), prostate 
cancer (Chene et al., 
2004) and colorectal 
cancer (Huili et al., 
2016). 

None available 
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4.6 Discussion 

This chapter has described a comprehensive proteomic study in the context of using 

genomically defined tissues. Three profiling platforms, LC-MS/MS, SWATH-MS and 

antibody arrays, were used to analyse 25 ccRCC tissue samples and 13 matched 

normal kidney samples. Whilst the SWATH-MS and antibody array data is not 

discussed here, they will contribute to future work beyond this thesis. Overall, the 

expression of 3136 unique proteins was examined, of which 1337 (42.6%) were 

identified to have a statistically significant difference between the tumour and normal 

kidney samples. Two proteins were taken forward for further investigation, discussed 

in the next chapter of this thesis. 

 

Each sample underwent a comprehensive histopathological review and confirmation 

of the genetic mutation of interest to identify high quality tissue samples and avoid 

potential intratumoural heterogeneity affecting the results. The importance of this was 

highlighted in the 6 samples that were found to have a different mutational profile than 

when originally sequenced. Interestingly four of the tumour samples that were initially 

characterised as not having a VHL mutation were later found to have a somatic VHL 

mutation. If we consider the findings of the two phylogenetic studies of intratumoural 

genetic heterogeneity in ccRCC, this would not be expected as these studies 

consistently demonstrated that VHL mutations when present, were always positioned 

in the trunks of the phylogenetic trees, and were never subclonal. They were therefore 

ubiquitous throughout the multiregional biopsies (Gerlinger et al., 2014) (Sankin et 

al., 2014). Further investigation established that the VHL mutations were in fact 

present in exon 1 of the VHL gene but were not initially detected due to read quality. 

It is known that approximately 28% of VHL mutations are reported to occur in the 

large, GC-rich exon 1. The failure to detect these mutations were attributed to 

difficulties amplifying GC-rich regions, which is well documented in the literature 

(Hube et al., 2005). Normal kidney sample number 370 N was found to harbour a 

germline mutation in PBRM1, which has been reported in a small number of studies, 

one in a family with a predisposition to RCC (Benusiglio et al., 2015). This normal 

kidney sample was excluded from the subsequent analysis to prevent interference 

with the final results.  
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Proof of principle of our approach was obtained at the beginning and throughout the 

study in the identification of proteins already known and expected to be dysregulated 

in ccRCC. 

 

4.6.1 Analysis of tumour versus normal tissue acros s all proteins 
This study clearly distinguished between normal kidney and ccRCC tissue at a 

proteomic level as observed following principal component analysis and hierarchical  

clustering. Interestingly the tumours separated into two distinct clusters based on the 

protein profile. This clustering pattern did not relate to patient demographics, tumour 

characteristics and importantly the presence of one of the top four frequently 

occurring genetic mutations (VHL, PBRM1, SETD2 and BAP1). Further work to 

explore the difference between the two groups was undertaken by Dr Lara Feulner, 

who identified 117 proteins differentially expressed between the two groups. These 

proteins enriched the EIF2 signalling and mTOR signalling pathways in the first 

cluster, which is particularly interesting given the use of mTOR inhibitors in the clinic. 

In the everolimus versus placebo phase III trial in the second line setting in RCC, the 

response rate was approximately 5% in patients receiving everolimus (Motzer et al., 

2008). It would be interesting to apply this analysis to patients receiving everolimus 

to identify if it can predict response. The EIF2 signalling pathway is involved in protein 

synthesis, in particular translation initiation. Phosphorylation causes general 

repression of mRNA translation. Perhaps it is not surprising that these two pathways 

are enriched together as they appear to be interlinked. (Burwick and Aktas, 2017). 

Rapamycin, an mTOR inhibitor, indirectly increases phosphorylation of EIF2α in 

rapamycin sensitive and oestrogen-dependent MCF-7 breast cancer cell lines 

highlighting the modulating effect mTOR has on the EIF2 pathway (Tuval-Kochen et 

al., 2013). A study investigating other targets of sorafenib has demonstrated 

increased EIF2α phosphorylation in U937 leukaemia cell lines (Rahmani et al., 2007). 

Given these findings and the role of this signalling pathway, it warrants further 

investigation in the future. 

 

In the comparison between the average LFQ intensity values for each protein 

identified in ccRCC and normal kidney tissue, not taking into account the genetic 

mutations present, several enriched canonical pathways were identified particularly 

related to metabolism. The Warburg effect, first proposed by Otto Heinrich Warburg, 

describes the dependence of cancer cells on aerobic glycolysis for ATP production 

(Warburg, 1956), whereas normal kidney cells rely on mitochondrial oxidative 
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phosphorylation as the primary source of energy. In keeping with this finding and as 

proof of principle of our approach, there was increased abundance of proteins 

involved in carbohydrate biosynthesis and the generation of precursor molecules for 

the production of fatty acids, non-essential amino acids and nucleotides (Vander 

Heiden et al., 2009). It was expected that the VEGF and PDGF signalling pathways 

would be significantly enriched given the predominance of samples with VHL mutation 

(80%), although this was not the case. Whilst VEGF and PDGF pathways were 

observed to be enriched with upregulated proteins, this was not statistically significant 

(z-score 1.147). It is not known why this is the case, it may possibly be related to 

small sample size or the dilutional effect of the VHL wild-type samples.  

 

Twenty-four upstream molecules were identified to be upregulated and fourteen were 

identified to be downregulated in this analysis. HIF1A and EPAS1 (HIF2A) were 

upregulated, which adds to the proof of principle of the approach. A number of novel 

proteins were identified, not having previously been investigated. These included 

JmjC domain-containing protein 5, encoded by the KDM8 gene. This protein has 

H3K36me2 histone demethylase and hydroxylase activities, and is required for cell 

cycle progression by directly regulating transcription. It has been investigated in a 

number of different cancer types including breast cancer tissue where it was observed 

to be upregulated by IHC relative to normal breast tissue. Silencing in MCF7 breast 

cancer cells resulted in reduced cell growth (Hsia et al., 2010). It has been 

hypothesised to play a role in microtubule stabilisation. Its use with vinblastine and 

colchicine enhanced cell death in the HeLa cell line (Wu et al., 2016). There may be 

a link between upregulation of JmjC domain-containing protein 5 and the increased 

carbohydrate metabolism observed. It directly binds M2-PK, the M2 splice variant of 

pyruvate kinase which channels energy production through lactate synthesis. It then 

shuttles M2-PK to the cell nucleus where it activates HIF-1A transcription and thus 

the downstream glycolytic cascade (Lichner et al., 2017). Histone demethylase 

inhibitors are currently in development but none specific to JmjC domain-containing 

protein 5 have yet been identified. This warrants further investigation in the future 

(Larkin et al., 2012). 

 

4.6.2 Analysis of proteomic changes across the gene tic groups 
This is the first study to begin to integrate the proteomic and genomic data from the 

same sample in ccRCC. PBRM1 encodes polybromo-1 (also known as BAF180), a 

subunit of the SWI/SNF complex that mediates ATP-dependent chromatin 
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remodelling processes that are implicated in replication, transcription, DNA repair and 

control of cell differentiation and proliferation (Reisman et al., 2009). There are a small 

number of studies investigating the biological consequences of a PBRM1 inactivating 

mutation. These have highlighted the role of PBRM1 in the regulation of p53 

transcriptional activity and the regulation of p53 mediated replicative senescence 

through p21 induction (Burrows et al., 2010). It is known that p53 regulates P21 

expression, which induces cell cycle arrest (Xia et al., 2008). Knockdown of PBRM1 

in ccRCC cell lines has been shown to increase their proliferation, colony formation 

and cell migration (Varela et al., 2011). Similarly restoration of PBRM1 expression in 

breast cancer cell lines was shown to reduce colony number and size (Xia et al., 

2008). Gene expression profiling has indicated that it regulates pathways associated 

with chromosomal instability, cellular proliferation, extracellular matrix organisation, 

cell adhesion and ion transport. The gene signature group was enriched with hypoxic 

markers (Varela et al., 2011) (Wang et al., 2016b). PBRM1 may also function to limit 

the over amplification of HIF in VHL deficient tumours through limiting the interplay 

between HIF and STAT3 (Nargund et al., 2017), possibly explaining why VHL 

inactivation alone is not sufficient to promote the development of ccRCC (Mack et al., 

2003). SETD2 encodes a histone H3K36 methyltransferase that is involved in histone 

remodelling processes (Sun et al., 2005). Tumours with a SETD2 mutation have been 

described to have a distinct gene expression profile compared with other non-SETD2 

mutated tumours. Large-scale transcriptional deregulation was noted with 298 genes 

showing significant differences in expression, all twofold or less (Dalgliesh et al., 

2010). Similar to tumours with a PBRM1 mutation, those with a SETD2 mutation also 

fell into a hypoxic gene expression signature group (Dalgliesh et al., 2010). BAP1 

encodes ubiquitin carboxyl-terminal hydrolase BAP1. This protein has been found to 

have a number of roles. Firstly it interacts with host cell factor-1 (HCF-1) where it 

regulates cell cycle progression (Misaghi et al., 2009). It also interacts with BRCA1 

where it regulates the DNA damage response (Pena-Llopis et al., 2012) and may 

have a broad role in nuclear ubiquitin-dependent regulatory processes. It was 

suggested that BAP1 has an indirect role in mTORC1 activation (Hsieh et al., 2017). 

 

Initial analysis for differential protein expression within each genetic group versus 

normal using a Kruskal-Wallis test did not confidently identify any proteins with a clear 

difference between the groups. This was supported by an individual review of the dot 

plot for LFQ intensity for each protein produced through the R statistical package. 

This was an interesting finding given the postulated functional differences described 

in the paragraph above. In keeping with the lack of differential protein expression 



159 
 

 

across the genetic groups, an analysis of the most significantly enriched canonical 

pathways seen in the global tumour versus normal kidney comparison did not 

highlight any change in the upregulated or downregulated status across all genetic 

groups.  

 

A number of upstream molecules were identified to be upregulated across the 

different genetic groups. As discussed before, JmjC domain-containing protein 5 

(encoded by KDM8) was upregulated in all genetic groups investigated, as was heat 

shock protein 75 kDa, mitochondrial (encoded by TRAP1). Heat shock protein 75 kDa 

has been shown to bind to and inhibit succinate dehydrogenase resulting in the 

stabilisation of HIF1A (Sciacovelli et al., 2013). There was disagreement in the MS 

analysis and the prediction of the upstream activation state. Despite being found to 

have a decreased fold change in 4/5 groups (range x 1.5-5) except VHL+BAP1 in the 

MS analysis, the IPA software predicted it to be upregulated based on the profile of 

other proteins. It is known to be expressed in RCC tissue and to a lower degree in 

normal kidney tissue at an mRNA and protein level which is consistent with the 

upstream regulator analysis (Si et al., 2015). These findings may reflect the small 

sample numbers and inadvertent choice of normal kidney samples with high 

expression of heat shock protein 75 kDa, mitochondrial, or may demonstrate the 

limitations of predicting upstream pathways in this software. The predicted state was 

based upon the differential expression of 19-20 downstream proteins, of which three 

were not as predicted in the MS analysis, namely pyruvate kinase M1/2, seryl-tRNA 

synthetase and glycyl-tRNA synthetase.  

 

HIF1α was predicted to be upregulated in the three of the four groups with VHL 

mutation, (not in the VHL+BAP1 mutation group). This is as would be expected with 

the knowledge of VHL. The small sample numbers in the VHL+BAP1 mutation group 

(2) may mean it is not representative. The VEGF and PDGF signalling pathways were 

not identified as being differentially expressed based on a significant z-score cut-off 

as 2. Transforming growth factor beta-1 proprotein (encoded by TGFB1) was similarly 

observed to be upregulated in the same three groups with VHL mutation. This link 

between VHL loss and transforming growth factor beta-1 proprotein upregulation has 

been commented on before in ccRCC in which its activity was attenuated upon 

reintroduction of functioning VHL in ccRCC cell lines (Bostrom et al., 2013). Small 

molecule inhibitors are being developed and some have been used in clinical trials, 

one of which included one patient with RCC in a phase I setting having failed sorafenib 
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or sunitinib (Morris et al., 2014). This patient did not have a response. The 

development of these inhibitors continues and may hold promise for the future (de 

Gramont et al., 2017). It may be that a patient may be predicted to respond if they 

have a VHL mutation according to the expression patterns in this study. 

 

VHL wild-type tumours are a particular subtype of RCC that were explored further in 

this study. Despite similar morphological features to tumours with a VHL mutation, 

they have a worse prognosis (Dagher et al., 2016). The no mutation group was 

analysed in relation to the other groups with a VHL mutation. Two upstream proteins 

were observed to be upregulated in the no mutation/VHL wild-type group, namely 

guanine nucleotide-binding protein subunit alpha-12, encoded by GNA12, and 

bromodomain-containing protein 7, encoded by BRD7. Guanine nucleotide-binding 

protein subunit alpha-12, which was previously identified as being upregulated in our 

comparison between the average LFQ intensity of all tumour samples compared to 

all normal kidney samples, was upregulated in the no mutation group and not in the 

other groups. Encoded by the GNA12 gene, it forms the α-subunit of a heterotrimeric 

G protein, which function to transmit many signals to effector molecules within the cell 

(Udayappan and Casey, 2017). Guanine nucleotide-binding protein subunit alpha-12 

has been previously identified to be upregulated at a RNA level in oral squamous cell 

carcinoma (Cheong et al., 2009), breast cancer (Kelly et al., 2006a) and prostate 

cancer (Kelly et al., 2006b). Silencing of guanine nucleotide-binding protein subunit 

alpha-12reduced cell growth, invasiveness and metastatic potential in each of these 

cancer types, but it has not yet been investigated in RCC. A link with VHL was not 

found in the literature, thus no explanation was found for its upregulation in VHL wild-

type tumours. Inhibition of the guanine nucleotide-binding protein subunit alpha-12 

and 13 subtypes has been shown to enhance the effect of bortezomib, a non-selective 

proteasomal inhibitor, through repression of PSMB5 (Yang et al., 2010).  

 

There were 19 proteins identified to be downregulated in one or more of the genetic 

groups in this study. They are not discussed further at this point due to their 

downregulated nature. Overall they provide further information into the biology of 

renal cell carcinoma with regards to the genetic mutations present. 
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4.6.3 Selection of proteins for further investigati on 
To conclude the study, the proteins were reviewed, with an aim to select two to further 

investigate their potential as novel therapeutic targets in ccRCC. From the list of 

interesting proteins in terms of their selective expression in ccRCC, relevant biological 

function and the availability of antibodies to perform proteomic investigations, two 

were selected to investigate in the next chapter of this thesis. Prostaglandin G/H 

synthase 1, which is also known as cyclooxygenase-1 (COX-1) was selected based 

on the dot plot of its expression according to its LFQ intensities in all samples (Figure 

4.15). 

 

 

Figure 4.15 – Dot plot for cyclooxygenase-1 (COX-1)  expression according to 
the LFQ intensity readings from the proteomic study  

 

 

COX-1 inhibitors are a commonly utilised drug in the clinic today, having anti-

inflammatory and analgesic effects. Further investigation would focus on whether this 

finding is confirmed in the complementary studies and whether there is a cell line 

model on which COX-1 inhibitors can be investigated. 

The second chosen protein was proteasome subunit beta type-9 (PSMB9) which is a 

proteasomal subunit that functions to cleave redundant proteins within a cell. It was 

markedly upregulated in all ccRCC tumour samples whilst having low or no 

expression in the normal kidney samples. 
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Figure 4.16 – Dot plot for proteasome subunit beta type-9 (PSMB9) expression 
according to LFQ intensity readings from the proteo mic study. 

 

 

4.6.4 Conclusion 
In conclusion, to our knowledge this study is one of the most comprehensive 

proteomic studies in ccRCC that also takes account of the genetic profile of the tissue 

samples. Several novel and interesting upstream proteins have been identified to be 

upregulated across the genetic groups through an analysis using the Ingenuity® 

Pathway Analysis (IPA) software, and two proteins have been selected for further 

investigation in the next chapter in this thesis. 

 

A number of interesting observations were made. Firstly, there was no significant 

difference in the expression of any particular protein observed across the genetic 

groups. Investigation of enriched canonical pathways did not identify significant 

differences across the genetic groups either. It may be that the tumours displaying 

different genetic mutations may converge on similar cellular processes and canonical 

pathways due to exposure to common selective pressures from the microenvironment 

or constraints inherited from the parental founder cell (Venkatesan and Swanton, 

2016). This would explain the convergence upon the pathways involved in glucose 

metabolism, nucleoside and nucleotide biosynthesis, cellular growth, proliferation and 

development and growth factor signalling. Secondly the tumours clustered into two 
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groups on hierarchical clustering and principal component analysis. Whilst the 

tumours did not cluster based upon the genetic groups, 17 proteins were differentially 

expressed between these two clusters and these proteins enriched the EIF2 and 

mTOR signalling pathways. The significance of this is not yet known. 

 

It is recognised that there were some limitations to this study that could not be 

addressed despite the comprehensive planning stages. The main limitation was the 

relatively small numbers of samples, as it was designed to be an exploratory pilot 

study for a larger future study. It was difficult to obtain tissue samples for the 

VHL+BAP1 and PBRM1 mutation only genetic groups due to the lack of tissue 

samples. Prior to commencing the study this was anticipated to be an issue. The 

design of this study did not take into account the presence of other genetic mutations 

in the selection of tissue samples. The impact of the additional mutations is unknown 

but are likely to have influenced the observed protein expression profiles. An example 

of a genetic mutation that may be significant is TP53, which is associated with higher-

grade tumours and poorer overall survival (Gerlinger et al., 2014) (Manley et al., 

2016). There are also limitations in the technology employed for this study. Despite 

the recent advances in mass spectrophotometric analysis, low protein coverage is 

still a problem in the absence of extensive fractionation which precludes analysis of 

numerous samples due to analysis time required.  

 

Overall, to date this study has been the first attempt to our knowledge at integrating 

the proteomic and selected genomic profile of the same tissue sample in ccRCC. It 

has given an insight into the biology of ccRCC and demonstrates the feasibility of 

undertaking such a study at a larger scale. The inclusion of a bioinformatic analysis 

would be beneficial to the analysis of such a study.  
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Chapter 5 Initial investigations into COX-1 and PSM B9 as 
potential therapeutic targets in ccRCC 

5.1 Introduction 

This chapter describes the results of the initial investigations of the two candidate 

novel therapeutic targets in ccRCC, namely cyclooxygenase-1 (COX-1) and 

proteasome subunit beta type-9 (PSMB9). Both were discovered to be upregulated 

in ccRCC compared with the matched normal kidney counterparts in the previous 

proteomic analysis of ccRCC tissue compared with normal kidney, selected on the 

basis of underlying genomic changes (see Chapter 4). 

 

5.2 Cyclooxygenase-1 (COX-1) 

5.2.1 COX-1 expression in the LC-MS/MS study 
COX-1 was identified to be expressed in 8/25 (32%) of ccRCC samples (R031, R233, 

R255, R340, R371, R377, R417 and R471) whilst it was detected in 0/13 of the normal 

kidney samples included in the detailed proteomic analysis of ccRCC tissue 

compared with normal kidney (Figure 5.1). There was no pattern of increased COX-

1 expression across the selected genetic groupings. There was no correlation 

between COX-1 expression and tumour grade. 
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Figure 5.1 – COX-1 expression in the proteomic anal ysis of ccRCC tissue 
compared with normal kidney using LC-MS/MS (a) LFQ intensity results (b) 
peptide count results 
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5.2.2 COX-1 expression in the SWATH-MS study 
To further confirm this finding the data obtained from the SWATH-MS analysis of the 

same samples was reviewed (Figure 5.2). In this analysis COX-1 was detected in all 

samples including normal kidney. Defining upregulation as an intensity level of over 

twice the matched normal kidney sample, COX-1 was upregulated in 6/13 (46%) of 

the matched samples (R364, R371, R377, R404, R417 and R471). The samples 

previously identified in the LC-MS/MS analysis were again identified in this study and 

represented the samples with the highest COX-1 intensity levels. 

 

 

 

 

An association between the results obtained from the LC-MS/MS and SWATH-MS 

analyses was next investigated (Figure 5.3). The corresponding Pearson’s correlation 

coefficient (r) was determined to be 0.87 (p<0.001) suggesting there was a 

correlation. 
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Figure 5.2 - COX-1 expression (intensity) in the proteomic analysis of ccRCC 
compared with normal kidney using SWATH-MS.  
(� indicates samples in which COX-1 was identified to be expressed in the LC-
MS/MS study) 
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Figure 5.3 – Graph demonstrating the association be tween the LFQ intensities 
of COX-1 identified in the samples analysed by LC-M S/MS and the intensity of 
the same samples analysed by SWATH-MS.   
The Pearson’s correlation coefficient (R) was 0.87 (p<0.001). 
 

 

5.2.3 COX-1 expression in a membrane enriched LC-MS /MS study  
During sample preparation for the section of work described in chapter 4, tissue 

sections were also cut for a parallel but independent study to be undertaken by 

another member of the group. Whilst the samples used in this second parallel study 

overlapped heavily with those in this section of work, some samples were excluded 

due to lack of tissue availability. This parallel study involved an adapted protein lysis 

and extraction technique to allow for membrane protein enrichment (the method is 

not described in this thesis) followed by analysis by LC-MS/MS. The data obtained 

for COX-1 was also analysed (Figure 5.4). Similar to the initial analysis using the data 

obtained from the LC-MS/MS study, COX-1 was not identified in any (0/13) of the 

normal kidney samples. It was however detected in 16/20 (80%) ccRCC samples. 
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Figure 5.4 - COX-1 expression in a parallel but ind ependent study investigating 
membrane protein enrichment followed by analysis us ing LC-MS/MS.  
(a) LFQ intensity results (b) peptide count results 
 

 

Overall these three complementary mass spectrometry analyses are supportive of 

the discovery that COX-1 is upregulated in a number of ccRCC samples compared 

with matched normal kidney. There was significant overlap in the peptides identified 

between the three approaches. These results support its further investigation as a 

novel therapeutic target in ccRCC.  
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5.2.4 Western blot analysis of COX-1 expression in ccRCC 
COX-1 protein expression was next investigated in ccRCC tumour and normal kidney 

samples through Western blot analysis. It is known that COX-2, a second protein 

encoded by a different gene, PTGS2 (chromosome 1q31.1), shares 65% homology 

with COX-1 at the protein level (www.uniprot.org). As well as sharing similar structural 

properties, it also catalyses the synthesis of prostanoids (Daikoku et al., 2005). Unlike 

COX-1, which is reported to be present in a broad range of cells, with constant 

expression under most physiological and pathological conditions (Wang and Dubois, 

2006), COX-2 is an immediate early response gene which is not normally expressed 

in most cells. Following discussions with Dr. Louise Coletta (Pre-Clinical Translation 

and Imaging Research Group, University of Leeds) who has a special research focus 

on COX-2, the colorectal cancer cell line HT-29 was identified as expressing COX-1 

and minimal COX-2, and conversely, the HCA7 colorectal cancer cell line was 

identified as expressing high levels of COX-2, but only minimal expression of COX-1.  

 

Due to the cross-reactivity of most of the available COX-1 and COX-2 antibodies and 

the similarities in molecular weight, care was taken in their selection for this study. 

Prior to analysing the lysates prepared in the proteomic study, antibodies were 

optimised using paired ccRCC tumour and normal kidney lysates selected from frozen 

stocks. Preliminary experiments confirmed the expected COX isoform expression 

patterns in the positive control cell lines (Figure 5.5).These Western blots 

demonstrate a dominant band and some lesser bands in each lysate at the expected 

molecular weight (range 56-72 kDa) for the majority of the COX-1 isoforms (69, 65, 

62, 56, and 72 kDa). These lesser bands may represent the multiple forms or 

alternatively may reflect some degradation, although unlikely given the care taken 

with the sample handling and processing. There was a further band at approximately 

37 kDa in the tumour sample of R051.  
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Figure 5.5 - Western blot analysis of three ccRCC t umour (T) and paired normal 
(N) tissue lysates and the positive control cell li nes HCA7 and HT29 for (a) COX-
1 and (b) COX-2.  
5 µg of protein was loaded per well. A parallel gel was checked for equal loading 
using Coomassie blue staining. No bands were seen with a no primary antibody 
control. The expected molecular weight for the COX-1 isoforms are 69, 65, 62, 56, 
and 72 kDa. The expected molecular weight for COX-2 is 69 kDa. 
 

 

 

Overall there was an increased expression of COX-1 in each paired tumour sample 

compared with the normal kidney counterpart. COX-2 expression was below the 

threshold of detection in these ccRCC and normal kidney lysates, whilst being 

detectable in the positive control HCA7 cell line. It was not detected an any of the 

mass spectrometry analyses. Selected samples from the proteomic study were next 

subject to Western blot analysis together with the positive control cell lines (Figure 

5.6). 
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Figure 5.6 – Western blot analysis of seven ccRCC t umour (T) and paired 
normal (N) tissue lysates chosen from the proteomic  study for (a) COX-1 and 
(b) COX-2.  

5 µg of protein was loaded per well and equal loading checked on a parallel 
Coomassie stained gel. Three positive control cell lines were included in this gel. 
HT29 and Raji as a positive control for COX-1 and HCA7 as a positive control for 
COX-2. No bands were seen with a no primary antibody control. 
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A dominant band (∼69 kDa) was seen in each tumour sample (although only faint in 

R396) and in the positive control cell line lysate consistent with COX-1. This band 

was upregulated in all ccRCC samples compared with the matched normal kidney 

samples thus further confirming the upregulation of COX-1 in ccRCC.  

 

5.2.5 Immunohistochemical analysis of COX-1 in ccRC C 
Initial workup experiments were carried out to determine the correct antibody 

concentration using cytospins of the positive control cell lines previously studied using 

Western blot. HT29 cells stained for COX-1, with minimal staining for COX-2. The 

HCA7 cells stained strongly for COX-2 and had minimal staining for COX-1.  

 

Tissue samples R377, R417 and R231 were selected for immunohistochemistry 

(IHC) based on the previous Western blot and mass spectrometry results (although 

R231 was negative by MS). There was increased staining for COX-1 in all tumour 

samples in comparison with their normal counterparts (Figure 5.7), which had no or 

minimal COX-1 detected. There was no staining for COX-2 in all samples and all 

irrelevant primary and no primary antibody controls were negative. The staining 

location was cytoplasmic/membranous. These results supported the previous 

analyses using mass spectrometry and Western blotting. 
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Figure 5.7 – Immunohistochemistry of ccRCC and the matched normal kidney 
sections for COX-1  
Three patient samples were selected based on previous Western blot and mass 
spectrometry results. No staining was observed in the irrelevant primary and no 
primary antibody controls (magnification x 160)  

Normal kidney ccRCC tumour 

R377 

R417 

R231 
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5.2.6 Western blot analysis of COX-1 in RCC cell li nes 
To identify cell lines with a similar COX-1 and COX-2 expression pattern as observed 

in ccRCC, twelve established RCC cell lines (786-0, A498, CRL1933, HTB46, HTB47, 

HTB49, A704, ACHN, UO31, SN12-K1 and TK10), the normal kidney cell line (HK2) 

and the positive control cell lines (HT29 and HCA7) were examined by Western 

blotting. Four bands were observed across the lysates with varying intensities when 

blotted for COX-1 (Figure 5.8). The molecular weights for the COX-1 isoforms are 69, 

65, 62, 56, 72 and 72 kDa, thereby providing an explanation for the lower three bands, 

but not the band at approximately 100 kDa. The positive control cell lines had one 

band consistent with COX-1. There are multiple bands present in most cell lines 

suggestive of COX-1 expression but the main isoform is slightly smaller than the 

dominant one seen in RCC tissue and HT29 positive control. This dominant band was 

not present in the normal kidney cell line (HK2). COX-2 was not observed in any of 

the ccRCC cell line lysates, although was present in the HCA7 positive control lysate, 

again this is as seen in RCC tissue.  
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Figure 5.8 - Western blot analysis of RCC cell line  lysates and positive control 
cell lines for (a) COX-1 and (b) COX-2.  
A single band is observed in the HT29 and HCA7 positive control cell lines consistent 
with COX-1 and COX-2 respectively. 5 µg of protein was loaded per well and equal 
loading was confirmed with a parallel gel stained with Coomassie blue. No bands 
were seen with a no primary antibody control. 
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5.2.7 Investigation of COX-1 inhibition in RCC cell  lines 
Despite the lack of an established RCC cell line with an identical COX-1 expression 

pattern to primary RCC tissues, several cell lines were selected for investigation of 

COX-1 and COX-2 inhibition using commercially available inhibitors. The cell lines 

786-0, A498, CRL1933 and TK10 were selected to cover a range of expression 

patterns of the three COX-1 bands of 50 - 75 kDa, visible on Western blot analysis 

(Figure 5.9). Four COX inhibitors were selected for investigation based on their 

differing inhibitory values for COX-1 and COX-2 (Table 5.1). 

 

 

Figure 5.9 – Selection of cell lines for investigat ion of COX inhibition based on 
the pattern of band expression for COX-1 using West ern blot.  
The cell lines selected for further investigation of COX-1 and COX-2 inhibition are 
highlighted in red. The positive control cell lines are highlighted in green. No bands 
were seen with a no primary antibody control. 
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Table 5.1 – COX-1 and COX-2 inhibitors selected for  investigation in this study.  
Four COX inhibitors were selected based upon their IC50 values for inhibiting COX-1 and COX-2. DMSO was used as the organic solvent 
for all inhibitors 
 

COX Inhibitor 

Max. solubility 
in organic 

solvent 

(mg/ml) / (mM) 

Stock Conc. 

(mM) 

IC50 COX-1 (µM) IC50 COX-2 (µM) 
References 

Recombinant 
protein 

Human 
monocytes 

Recombinant 
protein 

Human 
monocytes 

SC-560 35.0 / 100 100 0.009 0.005 6.30 1.4 
(Smith et al., 

1998) 

FR122047 1.00 / 2 2 0.028 N/A 65.0 N/A (Ochi et al., 2000), 

Indomethacin 17.5 / 50 50 1.670 0.009 24.6 0.31 
(Barnett et al., 

1994) 

Celecoxib 10.0 / 26 25 15.00 82 0.04 6.8 
(Penning et al., 

1997) 
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5.2.7.1 SC-560 

SC-560 is a highly selective COX-1 inhibitor with an approximately 700 fold higher 

selectivity for COX-1 than COX-2. Cytotoxicity was observed at concentrations above 

1 µM (Figure 5.10). The three RCC cell lines exhibited a range of sensitivities to SC-

560. The CRL 1933 cell line was the most sensitive.  

 

Figure 5.10 – Investigation of COX inhibition in RC C cell lines using the 
selective COX-1 inhibitor, SC-560.  
Cell viability was expressed relative to the vehicle control. 786-0, CRL1933 and TK10 
cells were seeded at 1000, 2000, 1500 cells/well respectively. (There were 3 
independent repeats per experiment, each with 3 replicates per condition). The error 
bars represent the standard error of the mean for each concentration of SC-560. 

 

 

The A498 RCC cell line was next chosen to investigate the effect of COX-1 inhibition 

on cell growth. Cell confluence was measured each hour for 72 hours using the 

Incucyte® equipment and software. SC-560 inhibited cell growth at concentrations 

above 1 µM (Figure 5.11). 
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Figure 5.11 – Incucyte analysis of A498 RCC cell li ne growth over 72 hours of 
exposure to the selective COX-1 inhibitor, SC560.  
This graph represents one experiment with three replicates and is representative of 
the three independent repeats. 
 

5.2.7.2 FR122047 

FR122047 is another selective inhibitor of COX-1. The IC50 for COX-1 is 28nM and 

for COX-2 is 65 µM. There was no cell death seen with concentrations up to 2µM 

(Figure 5.12). The poor solubility of this compound in the selected organic solvent did 

not allow its investigation at higher concentrations. 

 

Figure 5.12 - Investigation of COX inhibition in RC C cell lines using the 
selective COX-1 inhibitor, FR122047.  

Cell viability was expressed relative to the vehicle control. 786-0, CRL1933 and TK10 
cells were seeded at 1000, 2000, 1500 cells/well respectively. (There were 3 
independent repeats per experiment, each with 3 replicates per condition). The error 
bars represent the standard error of the mean for each concentration of FR122047. 
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5.2.7.3 Indomethacin 

Indomethacin is a less selective COX-1 inhibitor, with a 14 fold higher selectivity for 

inhibition of COX-1 than COX-2. Its IC50 values are 1.67 and 24.6 µM for COX-1 and 

COX-2 respectively. Approximately 20% cell death was seen at 50 µM (Figure 5.13). 

 

 

Figure 5.13 - Investigation of COX inhibition in RC C cell lines using the COX 
inhibitor Indomethacin.  

Cell viability was expressed relative to the vehicle control. 786-0, CRL1933 and TK10 
cells were seeded at 1000, 2000, 1500 cells/well respectively. (There were 3 
independent repeats per experiment, each with 3 replicates per condition). The error 
bars represent the standard error of the mean for each concentration of 
Indomethacin. 

 

 

5.2.7.4 Celecoxib 

Finally a selective COX-2 inhibitor was chosen to investigate the possibility that COX-

2 was being expressed at lower levels than our detection capabilities, but that its 

inhibition, rather than COX-1 was resulting in cell death. Celecoxib was chosen due 

to its IC50 values of 15 µM and 40 nM for COX-1 and COX-2 respectively. Cytotoxicity 

was observed in the CRL1933 cell line at concentrations above 1 µM and in the 786-

0 and TK10 cell lines at concentrations above 10 µM (Figure 5.14). 
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Figure 5.14 - Investigation of COX inhibition in th e RCC cell lines using the 
selective COX-2 inhibitor Celecoxib.  

The cell viability was expressed relative to the vehicle control. 786-0, CRL1933 and 
TK10 cells were seeded at 1000, 2000, 1500 cells/well respectively. (There were 3 
independent repeats per experiment, each with replicates per condition). The error 
bars represent the standard error of the mean for each concentration of Celecoxib  

 
 
 
This concluded the investigation of COX-1 in RCC. Whilst it is upregulated in ccRCC 

at a protein level as evidenced in the MS analyses and Western blot analysis, there 

were no representative RCC cell line model identified. 
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5.3 Proteasome subunit beta type-9 (PSMB9) 

5.3.1 Proteasomal subunit expression in the proteom ic study 
On initial review of the data obtained from the LC-MS/MS analysis of primary ccRCC 

and matched normal kidney tissue, the proteasome subunit beta type-9 (PSMB9) 

was identified as being expressed in all ccRCC samples included in the study but 

was expressed in only one matched normal sample, LR404, at a low level (Figure 

5.16). 

 

PSMB9 is a subunit of the proteasome complex, which acts to cleave redundant 

proteins. Proteasomal inhibitors are in clinical use in the treatment of multiple 

myeloma and are being investigated in other cancer types. Inflammatory cytokines 

induce a change from the constitutively expressed proteasomal subunits PSMB5, 

PSMB6 and PSMB7 to the immunoproteasomal subunits PSMB8, PSMB9 and 

PSMB10 respectively, which is thought to be an adaptive response (Ho et al., 2007) 

(Kloetzel, 2001). To further investigate this, this analysis was expanded to include 

the six proteasomal subunits mentioned (Figure 5.15 and Figure 5.16) 

 

Of the constitutive proteasomal subunits, proteasome subunit beta type-5 (PSMB5) 

was expressed in all 13 normal samples included in the study. It was expressed in 

5/25 (20%) of the ccRCC samples, but at lower levels than the normal kidney 

samples overall. These 5 samples did not have matched normal kidney therefore the 

expression relative to the matched normal sample could not be ascertained. 

Proteasome subunit beta type-6 (PSMB6) was again expressed in all normal samples 

and 18/25 of the ccRCC samples, but overall its expression was lower than in the 

normal kidney samples. Proteasome subunit beta type-7 was only detected in one 

normal sample, LR377, and was not detected in any of the ccRCC samples  

 

The proteasomal subunits belonging to the immunoproteasome were next 

investigated. Proteasome subunit beta type-8 (PSMB8) was expressed in 21/25 

(84%) of ccRCC samples and in only 2/13 (15%) of the normal kidney samples. In 

these two normal kidney samples, the expression levels were lower than the matched 

ccRCC samples. PSMB9 was expressed in all 25 ccRCC samples and only 1/13 (8%) 

of the normal kidney samples, where the expression in the matched ccRCC sample 

was much higher. Proteasome subunit beta type-10 (PSMB10) was expressed in 
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5/25 (20%) of the ccRCC samples but was not found to be expressed in any of the 

normal kidney samples (Figure 5.16). 

 

Overall this data demonstrates a shift between the predominant expression of the 

constitutive members of the proteasome in normal kidney samples to an 

predominance in expression of the immunoproteasomal subunits in ccRCC. 

 

This pattern of expression was replicated in the data obtained from the analysis of 

the samples using SWATH-MS. As with the analysis of COX-1, there was an intensity 

reading for each protein in every sample. Defining upregulation as an intensity level 

of over twice the matched normal kidney sample, and down regulation the opposite, 

PSMB5 was downregulated in 1/13 (8%) (LR344) and upregulated in 1/13 (8%) 

(LRV231) of the ccRCC samples. PSMB6 was downregulated in 4/13 (31%) of the 

ccRCC samples and PSMB7 was not differentially expressed between ccRCC and 

normal kidney. PSMB8 was upregulated in 10/13 (77%) of ccRCC samples and 

PSMB9 was upregulated in 10/13 (77%) of ccRCC samples compared with matched 

normal kidney. PSMB10 was not detected in the SWATH-MS analysis. Overall these 

results demonstrated a striking upregulation of PSMB8 and PSMB9 in ccRCC 

compared to normal kidney (Figure 5.17 and Figure 5.18). 

 

These results were again supported by the LC-MS/MS study that enriched for surface 

membrane proteins (Figure 5.19 and Figure 5.20).  
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Figure 5.15 – Expression of the consitiutive protea somal subunits (PSMB5, 
PSMB6 and PSMB7) in primary RCC and normal kidney f rom the proteomic 
study using LC-MS/MS. 

(n=13 matched pairs plus 12 additional unmatched ccRCC samples)  
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Figure 5.16 - Expression of the immunoproteasomal s ubunits (PSMB8, PSMB9 
and PSMB10) in primary RCC and normal kidney from t he proteomic study 
using LC-MS/MS 

(n=13 matched pairs plus 12 additional unmatched ccRCC samples).  
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Figure 5.17 - Expression of the consitiutive protea somal subunits (PSMB5, 
PSMB6 and PSMB7) in primary RCC and normal kidney f rom the proteomic 
study using SWATH-MS 

(n=13 matched pairs plus 12 additional unmatched ccRCC samples).  
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Figure 5.18 - Expression of the consitiutive protea somal subunits (PSMB8 and 
PSMB9) in primary RCC and normal kidney from the pr oteomic study using 
SWATH-MS. 

(n=13 matched pairs plus 12 additional unmatched ccRCC samples PSMB10 was 
not detected in this analysis) 
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Figure 5.19 - Expression of the consitiutive protea somal subunits (PSMB5, 
PSMB6 and PSMB7) in primary RCC and normal kidney f rom the membrane-
enriched proteomic study using LC-MS/MS. 

(n=8 matched pairs plus 12 additional unmatched ccRCC samples and 4 unmatched 
normal kidney samples)   
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Figure 5.20 - Expression of the consitiutive protea somal subunits (PSMB8, 
PSMB9 and PSMB10) in primary RCC and normal kidney from the membrane-
enriched proteomic study using LC-MS/MS. 

(n=8 matched pairs plus 12 additional unmatched ccRCC samples and 4 unmatched 
normal kidney samples)   
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5.3.2 Western blot analysis of PSMB9 expression in ccRCC 
tissue 

PSMB9 protein expression was next investigated by Western blotting of tissue 

samples (Figure 5.21). Three samples (RR051, R077 and R097) were 

electrophoresed on a polyacrylamide gel. The Western blot demonstrated 

upregulation of PSMB9 in the three ccRCC samples compared with their matched 

normal kidney. The band was seen in the matched normal kidney, but was faint. 

There were two positive control cell lines, mouse spleen and Raji cells were chosen 

based upon the antibody datasheet and previous publications. PSMB9 has been 

noted to exist as two isoforms in humans, weighing 23 kDa and 22 kDa, and in mice 

as one isoform weighing 23 kDa.  

 

Figure 5.21 - Western blot analysis of three ccRCC tumour and paired normal 
tissue lysates (not included in the proteomic study ) for PSMB9.  

Two positive control cell lines are included in this blot. 5 µg of protein was loaded per 
well. Equal loading was confirmed using Coomassie blue staining of an equally 
loaded parallel gel. PSMB9 has two known isoforms measuring 23 and 22 kDa. 
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The band seen with mouse spleen was noted to be at a slightly lower molecular 

weight than the band seen in the other lysates. The reason for this is not known and 

is not explained by the expected molecular weights of PSMB9 (www.uniprot.org). 

This was assumed to be related to interspecies variation. The Raji cell line lysate was 

chosen to proceed as a positive control.  

 

Seven samples from the proteogenomic study were next selected and blotted for 

PSMB9. Whilst upregulation of PSMB9 compared with the matched normal kidney 

samples was observed in all seven ccRCC samples, they were observed to be a 

higher molecular weight than the positive control cell line. The bands observed in the 

ccRCC samples were also broader than the bands seen previously, leading to the 

conclusion that they had gained a post-translational modification in the handling 

between the lysis and running the gel (Figure 5.22).  

Figure 5.22- Western blot analysis of seven ccRCC t umour and paired normal 
tissue lysates for PSMB9.  

These lysates were used in the proteogenomic study. This blot demonstrates a band 
between 25 and 20 kDa, consistent with PSMB9. This band is not seen in the paired 
normal tissue. 5 µg protein load per well.  
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5.3.3 Western blot analysis of PSMB9 expression in RCC cell 
lines 

PSMB9 expression was investigated in RCC cell lines using Western blot. Twelve 

RCC cell lines (786-0, A498, CRL1933, HTB46, HTB47, HTB49, A704, ACHN, UO31, 

SN12-K1 and TK10) and the normal kidney cell line (HK2) were investigated. PSMB9 

was expressed in all cell lines except CRL1933 (Figure 5.23). There were faint bands 

seen at approximately 100 kDa. These were not present in a no primary antibody 

control. Analysis of the immunogen for this primary antibody suggests it does not 

react with any other protein. 

 

Figure 5.23 – Western blot analysis of RCC cell lin e lysates for PSMB9. 5 µg of 
protein was loaded per well. Equal loading was conf irmed with an equally 
loaded gel run In parallel and stained with Coomass ie blue. 
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5.4 Discussion 

Following on from the detailed proteomic analysis performed in Chapter 4, this 

section of work has further contributed to the characterisation of the expression of 

two proteins, namely COX-1 and PSMB9, which had been identified as being 

differentially expressed in ccRCC compared to matched normal tissue.  

 

5.4.1 COX-1 

5.4.1.1 COX-1 protein expression in ccRCC 

COX-1 has been identified as being upregulated in 31–50% of the ccRCC samples 

included in this proteomic study (LC-MS/MS and SWATH-MS) and in the 

independent membrane enriched LC-MS/MS study. The findings of these three 

parallel analyses all correlated with one another. This finding was further confirmed 

using Western blot (WB) analysis of tissue samples. Two samples were observed to 

have upregulation of COX-1 using WB that had not been highlighted in the MS 

studies (R231 and R382).  

 

The SWATH-MS analysis identified COX-1 presence in all samples including normal 

kidney, although at an overall lower intensity than in the ccRCC samples. This is likely 

to relate to the higher sensitivity of the SWATH-MS in analysing samples (Guo et al., 

2015b). In this case, the analysis of the SWATH-MS data was based around one 

specific peptide sequence per protein, in this case ‘LQPFNEYR’, which theoretically 

if not carefully chosen correctly could mean the identification of other proteins, or the 

non-detection of appropriate proteins. To confirm this peptide sequence is unique, it 

was entered into the BLAST application (www.uniprot.org) and was found to be 

specific to all six known isoforms of COX-1 and reassuringly had no homology for 

any other proteins. This peptide sequence only appeared in the membrane enriched 

study and not the other LC-MS/MS study. This may be due to the sensitivity of LC-

MS/MS or MaxQuant, the MS spectra database. Immunohistochemistry on three 

cases of matched ccRCC ad normal kidney samples demonstrated upregulation of 

COX-1, which correlated with the Western blot results. The location of staining was 

cytoplasmic/membranous which concurs with the staining patterns seen in RCC 

according to ‘The Human Protein Atlas’ (www.proteinatlas.org). Multiple bands were 

observed in a panel of 12 established RCC cell lines and one normal kidney cell line 

using Western blotting, thus there was no cell line model fully representative of the 

primary ccRCC samples in term of this Western blot pattern. 



194 
 

 

 

COX-1 belongs to the cyclooxygenase family and exists alongside a second 

isoenzyme, COX-2. They are encoded by separate genes, PTGS1 on chromosome 

9q33.2 and PTGS2 located on chromosome 1q31.1. They share 65% homology in 

their protein sequences (www.uniprot.org) resulting in similar structural and kinetic 

properties (Daikoku et al., 2005). COX-1 is a key protein involved in prostanoid 

synthesis and is ubiquitously expressed in a broad range of cells, with constant 

expression under most physiological and pathological conditions. It catalyses the 

conversion of arachidonate to the key upstream prostanoid prostaglandin H2 

(PGH2), which in turn is subsequently metabolised to the downstream prostaglandin 

isoforms D2, E2, F2, I2 and thromboxane A2 (TXA2) (Mauro et al., 2010) (Feng et 

al., 1993). The prostanoids have various roles including that of cell homeostasis, 

involvement in vasoconstriction and proliferation of vascular smooth muscle cells, 

and in the regulation of immune function and kidney development (Patrono et al., 

2001) (Williams et al., 1999). COX-1 exists as 6 isoforms weighing 69, 65, 62, 56 and 

72 kDa. The specific function of each isoform is unknown. Like COX-1, COX-2 

catalyses the synthesis of prostanoids, although it is an immediate early response 

gene which is not normally expressed in most cells (Wang and Dubois, 2006), It is 

the principal isozyme responsible for production of inflammatory prostaglandins, 

thereby positioned to play a potential role in carcinogenesis. This has led to the 

development of selective COX-2 inhibitors and a large number of studies 

investigating COX-2 in different cancer types. Given its similar structural and 

biological properties, its protein expression was also investigated in the proteomic 

study. COX-2 was not identified in any of the ccRCC and normal kidney samples in 

any of the MS analyses, suggesting either its absence or presence below the level of 

detection. Further to this, Western blotting for COX-2 across 10 ccRCC and adjacent 

normal kidney samples, and a 12 established RCC cell lines, and 

immunohistochemistry of 3 paired ccRCC and normal kidney samples did not detect 

any COX-2 expression.  

 

COX-1 expression has been previously investigated in RCC, but focusing in particular 

on correlation with prognostic features of the tumour. A study of 42 paired RCC 

samples (86% ccRCC) using qRT-PCR demonstrated a significantly higher level of 

mRNA for COX-1 in RCC compared with matched normal kidney. This was confirmed 

at the protein level by immunohistochemistry of 196 RCC (77% ccRCC) and 91 

adjacent normal paraffin-embedded tissue samples. High expression of COX-1 
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correlated with larger tumour size, pathological stage, TNM stage and tumour 

recurrence. Survival analysis indicated that patients with high expression of COX-1 

had a shorter overall survival time (Yu et al., 2013). A similar study using 

immunohistochemical analysis of 64 RCC (70% ccRCC) paraffin embedded tissue 

samples identified high COX-1 expression in 62.5% of cases, with a similar 

correlation with tumor size, grade and stage (Osman and Youssef, 2015).  

 

COX-1 has been shown to be upregulated at a protein and mRNA level in other 

cancer types compared to the adjacent matched normal tissue including untreated 

epithelial ovarian cancer (Gupta et al., 2003), and cervical adeno- and squamous cell 

carcinoma (Sales et al., 2002). Using Immunohistochemical staining and RT-PCR, 

COX-1 was shown to exhibit increasing expression in the progression from normal 

oral mucosa, through hyperplasia, dysplasia and carcinoma (Mauro et al., 2010). 

Similarly COX-1 has been shown to be upregulated in breast cancer (Hwang et al., 

1998) and prostate cancer (Kirschenbaum et al., 2000) using Western blot. 

 

5.4.1.2 COX-1 inhibition in ccRCC 

The cyclooxygenase inhibitors include the non-steroidal anti-inflammatory drugs 

(NSAIDs), each having varying selectivity for COX-1 and COX-2, but none are 

specific for either COX protein. Four inhibitors were selected based upon their varying 

selectivity for COX-1 and COX-2 but recognizing that the IC50 values very much 

depend upon the method in which they were derived. Table 5.1 details the IC50 values 

for both COX-1 and COX-2 from studies using recombinant protein and also human 

monocytes. The solubilised recombinant protein or the cells were incubated with 

arachidonic acid and the IC50 was determined from measurement of the converted 

prostaglandin E2 (PGE2). There will be variability between these models and they 

are unlikely to reflect the IC50 values when studied using in-vivo models. In this study, 

the selective COX-1 inhibitors SC-560 and indomethacin both induced cell death in-

vitro at concentrations above 1 µM. In addition to the variability in IC50 values, this 

may also suggest that the COX-1 inhibitor is acting through a different pathway or on 

an alternative target at the higher concentrations, for example COX-2 given its distinct 

homology with COX-1 and despite it not being detected in this study. For this reason 

a highly selective COX-2 inhibitor, celecoxib was also used with IC50 values for COX-

1 and COX-2 of 15 µM and 0.04 µM respectively in recombinant protein models. Cell 

death was seen at concentrations between 1 and 25 µM, which still does not exclude 
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cell death as a result of COX-1 or other pathway inhibition. The COX inhibitor 

FR122047 did not cause cell death up to concentrations of 2 µM. Retrospectively it 

would have been useful to source a positive control cell line to provide confidence in 

the results. Overall, the COX-1 inhibitors cause cell death in established RCC cell 

lines albeit at much higher concentrations and are therefore still of potential interest 

in this investigation. 

 

At this point it is useful to mention some of the inhibitors that have been investigated 

using in-vivo models and their beneficial effects in the cancer setting. SC-560 was 

demonstrated to reduce the growth of a mouse model of epithelial ovarian cancer, in 

which genetic and oncogenic modifications were experimentally engineered into 

mouse ovarian surface epithelial cells that were subsequently allografted into host 

mice to produce tumours (Daikoku et al., 2005). Similar to RCC, COX-2 was not 

expressed in this tumour type, and in turn the selective COX-2 inhibitor had little effect 

on tumour growth (Daikoku et al., 2005). Whilst this highly engineered cell type may 

not be representative of primary tumours, it is still a significant finding. Aspirin is an 

example of a potent COX inhibitor with a 50-100 fold selectivity for COX-1 (Patrono 

et al., 2004). Population-based studies have established that the long-term intake of 

COX inhibitors such as aspirin are associated with a significant reduction in the 

incidence and mortality from colorectal cancer (Gupta and Dubois, 2001) (Rothwell 

et al., 2010). Unlike RCC, COX-2 but not COX-1 is overexpressed in most colonic 

cancers and in polyps of patients suffering from familial adenomatous polyposis 

(FAP) (Nugent et al., 1993) (Janne and Mayer, 2000). Whilst the beneficial effect of 

aspirin is attributed to COX-2 inhibition in intestinal epithelial cells, stromal cells or 

endothelial cells of newly formed blood vessels, it is interesting that the dosages 

required to terminate COX-2 function in nucleated cells is much higher than that 

obtained from taking the low dose (75 to 100 mg) aspirin used here (Patrono et al., 

2004), but that COX-1 activity in activated platelets is permanently inactivated with 

low dose aspirin. It is hypothesised that activated platelets may serve as an induction 

signal for COX-2 expression in adjacent cells (Patrono et al., 2001). Upon activation, 

platelets release large amounts of arachidonic acid, which in turn is rapidly 

metabolised by multiple enzymatic pathways, the best characterized within platelets 

is the conversion to TXA2. The protein 15(S)-hydroxyeicosatetraenoic acid (HETE) 

is a pro-angiogenic downstream platelet product. HETE promotes angiogenic 

responses in both human dermal microvascular endothelial cells and HUVEC cells 

by up-regulating VEGF through the PIK3-Akt and p38 MAPK signaling pathways 
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(Rauzi et al., 2016). The other possibility is that the protective effect is from a COX-

independent pathway (Patrono et al., 2001).  

 

Several studies have attempted to explore how COX-1 may contribute to 

carcinogenesis given the preventative effect of aspirin. A correlation between 

vascular endothelial growth factor (VEGF) and COX-1 expression was observed in a 

number of cancer types including ovarian carcinoma (Gupta et al., 2003), RCC 

(Osman and Youssef, 2015), cervical cancer  (Kim et al., 2003) and oesophageal 

cancer (von Rahden et al., 2005). In both ovarian cancer and RCC, 

immunohistochemistry was used to demonstrate that areas of tissue sections with 

high expression of VEGF were also positive for COX-1 (Osman and Youssef, 2015) 

(Kim et al., 2003). This finding was reproduced using in-situ hybridisation and RT-

PCR in human epithelial ovarian cancer and oesophageal cancer respectively (Gupta 

et al., 2003) (von Rahden et al., 2005). Other work has shown that COX-1 regulates 

angiogenesis in endothelial cells through observations following its inhibition in 

established endothelial cell lines in-vitro (Tsujii et al., 1998). Either way it is not yet 

known if the upregulation of COX-1 is an innocent bystander or if it has a functional 

role. 

 

To date there have not been any other studies investigating the inhibition of COX-1 

in RCC cell lines nor RCC. This study has highlighted the upregulation of COX-1, but 

not COX-2 in RCC and confirms cell death in RCC cell lines upon inhibition of COX-

1 but only at high concentrations. It is not known whether this is due to specific COX-

1 inhibition or not. COX-1 inhibitors are in routine use in the clinical setting and are 

fairly well tolerated, but their use is somewhat limited by the toxicity profile, 

particularly with long-term use. Examples of the side effects include gastric 

ulceration, renal injury, and prolongation of bleeding time. With this in mind and the 

high concentrations of COX-1 inhibitors required for cell death in-vitro, it is unlikely 

that COX-1 represents a viable option for treatment of RCC. 

 

5.4.2 Proteasome subunit beta type-9 (PSMB9) 
The regulation of protein production and destruction is critical to cell survival. More 

than 80% of cellular proteins are degraded by the ubiquitin-proteasome system (Ho 

et al., 2007). Redundant proteins are recognised and marked for degradation via the 

attachment of multiple ubiquitin molecules, which are subsequently recognised by 
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the proteasomal complexes, of which three major variations exist in humans, the 

constitutive proteasome, the immunoproteasome and the thymo-proteasome 

(present exclusively in cortical thymic epithelial cells) (Murata et al., 2009). My work 

has identified a switch between predominance of the constitutive proteasome in 

normal kidney and the immunoproteasome in ccRCC samples. 

 

5.4.2.1 Proteasomal subunit expression in ccRCC 

PSMB9 is an immunoproteasomal subunit, which along with the other two 

immunoproteasomal subunits (PSMB8 and PSMB10) were found to be upregulated 

in ccRCC compared to normal kidney. Conversely the three members of the 

constitutive proteasome (PSMB5, PSMB6 and PSMB7) have been found to be 

downregulated in ccRCC. This finding was also confirmed in the SWATH-MS and the 

membrane enriched LC-MS/MS analyses. 

 

The 26S proteasome complex is almost exclusively found in humans. It consists of a 

20S core particle with two 19S regulatory cap subunits. The 20S core particle is 

composed of four stacked rings of seven subunits each, forming a central pore. The 

outer two rings contain the constitutively expressed α-subunits and the inner two 

rings contain the β-subunits (Figure 5.24). The α-subunits control the entry of tagged 

proteins into the proteasomal complex (Smith et al., 2007) and predominantly act to 

provide structure, whilst the β-subunits contain the protease active sites. In humans 

the inner rings of the 20S core particle consists mainly of the β-catalytic subunits, 

PSMB5, PSMB6 and PSMB7 each with different specificities considered caspase-

like, chymotrypsin-like and trypsin-like (Table 5.2) (Heinemeyer et al., 1997) (Groll et 

al., 2001). In response to inflammatory cytokines such as interferon-γ and TNF-α, the 

β-subunits PSMB6, PSMB7 and PSMB5 are replaced by PSMB9, PSMB10 and 

PSMB8, respectively, to form the immunoproteasome (Ferrington and Gregerson, 

2012) (Ho et al., 2007) (Kloetzel, 2001). The immunoproteasome is associated with 

adaptive immune responses, for example generation of antigenic peptide fragments 

for major histocompatibility complex 1 (MHC1) through its increased chymotrypsin-

like and trypsin-like activities, and in the positive selection of CD8+T cells. Through 

its regulation of protein homeostasis, it is hypothesised to be protective against 

oxidative stress. The immunoproteasome may also have a role in cytokine production 

as evident in the reduction in cytokine response to influenza in LMP2-/- mice (Angeles 
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et al., 2012) (de Verteuil et al., 2010) (Seliger et al., 1997) (Murata et al., 2009) (Kaur 

and Batra, 2016).  

 

The thymo-proteasome is present exclusively in cortical thymic epithelial cells and 

has a role in the selection of CDS8+ T cells (Murata et al., 2009). The study of the 

proteasome is difficult, contributed to by the lack of selective inhibitors and the 

existence of hybrid variants containing immunoproteasome and proteasome subunits 

(Kaur and Batra, 2016). 

 

 

  

Figure 5.24 – Schematic diagram showing structure o f the 26S proteasome 

alpha-subunits
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Table 5.2 – Nomenclature and activity of the protea some catalytic subunits 

 (Heinemeyer et al., 1997) 

β-subunit 

Uniprot 

nomenclature Alternative names Activity 

β5 PSMB5  Chymotrypsin-like 

β1 PSMB6  Caspase-like 

β2 PSMB7  Trypsin-like 

β5i PSMB8 LMP7 Chymotrypsin-like 

β1i PSMB9 LMP2 Caspase-like 

β2i PSMB10 MECL-1 Trypsin-like 

 

 

PSMB9 and PSMB10 have previously been identified as being upregulated in RCC 

amongst a panel of other genes, in a study using oligonucleotide microarrays to 

molecularly subtype 31 adult renal tumours, of which 13/31 were ccRCC (Schuetz et 

al., 2005). A second study investigating all 6 β-subunits in 54 RCC samples using 

RT-PCR focused mainly on correlation with prognosis. Expression of PSMB8 and 

PSMB9 was low in high grade tumours and low levels of expression of the 

immunoproteasomal subunits was associated with a poor overall survival, leading the 

authors to conclude that RCC with low levels of immunoproteasome subunit 

expression may not be presenting antigen appropriately, thereby evading immune 

surveillance. There was no comparison with normal kidney tissue in this study. 

(Murakami et al., 2001). This is a significant conclusion, particularly if consideration 

of PSMB9 inhibition is being considered. In support of the lack of expression in 

normal kidney, a study using IHC staining for PSMB9 observed scattered and weak 

cytoplasmic staining in a small number of normal kidney samples, although the main 

aim of this study was to compare expression in renal oncocytoma and the 

chromophobe variant of RCC in the search for a molecular marker to differentiate 

between the two (Zheng et al., 2013). Finally in a study of exploring the data from 

The Cancer Genome Atlas (TCGA) transcriptomic analyses identified PSMB5 and 

PSMB6 as being downregulated in RCC and PSMB7, PSMB8, PSMB9 and PSMB10 

as being upregulated compared to normal tissue (Rouette et al., 2016). 
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PSMB9 and the other immunoproteasome subunits have been characterised in other 

cancer types and have been found to vary in expression compared to normal tissue. 

Examples of downregulation include uterine leiomyosarcoma, where PSMB9 was 

observed to be downregulated compared with normal uterine tissue in 46/54 (85%) 

patients using IHC of tissue samples (Hayashi et al., 2011). Another study has 

observed that 36% of PSMB9 deficient mouse models spontaneously developed 

uterine leiomyosarcoma by 12 months old (Hayashi and Faustman, 2002). Similarly, 

in oesophageal squamous cell carcinoma downregulation of PSMB9 and PSMB8 

were significantly associated with more advanced tumour stage and positive lymph 

node status (Liu et al., 2009) 

 

An example of the upregulation of the immunoproteasomal subunits is breast cancer. 

An analysis of The Cancer Genome Atlas (TCGA) transcriptomic analyses identified 

that high expression of the immunoproteasome genes, in particular PSMB8 and 

PSMB9, is associated with improved breast cancer survival. This was hypothesised 

to be a surrogate marker of the paracrine secretion of interferon (INF) by infiltrating 

lymphocytes thus resulting in the improved survival (Adams, 2004). In AML, oxidative 

stress preferentially induces immunoproteasome expression over the constitutive 

proteasome. A number of prostate cancer cell lines overexpress PSMB9, leading to 

the finding of high levels of staining in primary tumour tissue compared with normal 

prostate tissue using IHC (FFPE tissue). In the PC3 cell line DAPI and PSMB9 were 

found to co-localise when investigated using immunofluorescence, suggesting 

PSMB9 presence in the cell nucleus where it may participate in transcriptional 

regulation. Transient knock-down of PSMB9 in PC3 cells caused a growth inhibitory 

effect (Wehenkel et al., 2012)  

 

In melanoma the expression pattern of the proteasomal subunits are more 

complicated. Melanocytes grown in-vitro do not express PSMB9, but in a study 

involving the immunohistochemical staining of 98 melanoma and 10 nevi lesions, 

PSMB9 was identified as being upregulated in nevi and melanoma lesions, but less 

frequently expressed in the melanoma lesions than the naevi leading the authors to 

hypothesise that the loss was a mechanism for escape from immune recognition 

(Kageshita et al., 1999).  
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5.4.3 Proteasome Inhibitors 
These ubiquitin-orientated proteasomal pathways were first considered as novel 

targets in cancer in the 1990’s (Tew, 2016), which led to the subsequent development 

of Bortezomib (PS-341), an unselective proteasomal inhibitor, which is licensed for 

use in the treatment of multiple myeloma and mantle cell lymphoma in the UK (Adams 

et al., 1999). The disruption of protein homeostasis through the use of Bortezomib 

and the other proteasomal inhibitors has validated the proteasome as an anticancer 

target, but the clinical application of these inhibitors have been limited due to lack of 

efficacy and toxicity in their current form. Bortezomib has other indirect effects 

including preventing activation of the NF-κB pathway (through stabilisation of IκB) 

and stabilisation of proapoptotic proteins, including cyclin dependent kinase inhibitors 

(p21 and p27) and tumour suppressors (p53). Its anti-cancer effect has been 

investigated using the NCI 60 cell panel where it was active against a wide range of 

cancer cell lines including RCC cell lines at nanomolar concentrations (Adams et al., 

1999). This had led to the investigation of bortezomib in RCC where it has been 

shown to induce apoptosis in the R11 and 444 RCC cell lines at concentrations of 

less than 1 µM (An et al., 2004). This has progressed to several phase II clinical trials 

in RCC. In a phase II study which included 21 patients with advanced RCC there was 

one partial response within the group in a patient with clear cell pathology (Davis et 

al., 2004). A second trial of bortezomib in advanced RCC (67% ccRCC) 

demonstrated that out of 37 patients, 4 had a partial response and 14 had stable 

disease (Kondagunta et al., 2004). A combination of sorafenib and bortezomib was 

investigated in the first line in a phase II trial involving 17 patients with advanced 

ccRCC demonstrated 1 partial response and 12 with stable disease. The combination 

was not superior to single agent sorafenib (Rao and Lauer, 2015). The combination 

of bortezomib and the histone deacetylase inhibitor belinostat was observed to 

increase apoptosis and inhibit renal cancer growth in RCC cell lines (Asano et al., 

2015). Bortezomib has been used in-vitro with other cancer cell lines including 

ovarian (Frankel et al., 2000), mantle cell lymphoma (Pham et al., 2003), pancreatic 

cancer (Shah et al., 2001) (Bold et al., 2001), NSCLC (Ling et al., 2003), prostate 

cancer (Adams et al., 1999) and squamous cell carcinoma head and neck (Sunwoo 

et al., 2001). In multiple myeloma, bortezomib has been shown to directly inhibit 

proliferation and induce apoptosis of human multiple myeloma cell lines and freshly 

isolated patient MM cells. It inhibits MAPK growth signaling along with other 

mechanisms including abrogating paracrine growth in the bone marrow by altering 

cellular interactions and cytokine secretion in the bone marrow millieu. This paper 
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laid the basis for clinical trials in patients with multiple myeloma (Hideshima et al., 

2001). 

 

The finding of the upregulation of the immunoproteasome, and not the constitutive 

proteasome in a number of cancers has led to the development of specific inhibitors 

of the immunoproteasome. An example is UK-101, which is a selective small 

molecule inhibitor of PSMB9. When used the molecular weight of PSMB9 shifts 

upwards suggesting the attachment of the inhibitor. This compound induced 

apoptosis in the PC-3 prostate cancer cell line, independent of the NF-κB pathway, 

both in-vitro and when implanted into a mouse model (Wehenkel et al., 2012).  

 

Overall, whilst upregulation of the immunoproteasome subunits have been reported 

at an mRNA and DNA level, this is the first reported analysis to identify upregulation 

of the immunoproteasome subunits in ccRCC at a protein level. If we consider what 

makes a good therapeutic target, the immunoproteasome subunits fulfill some of the 

criteria, namely the striking differential expression between normal and tumour 

tissue, the availability of antibodies and inhibitors for investigation and the high unmet 

clinical need for further treatments for patients suffering from advanced ccRCC. This 

study complements those already done investigating the immunoproteasome in 

RCC, and warrants further follow-up through the investigation of knockdown models 

and the use of specific immunoproteasome inhibitors. Bortezomib has been 

extensively investigated in RCC but was limited by its non-selective mechanism of 

action. Selective  immunoproteasome inhibitors were not available at the time of this 

work. Two unanswered findings were firstly that of the Western blot demonstrating a 

band at a lower molecular weight than tissue samples in mouse spleen (Figure 5.21). 

It is assumed that this represents an alternative isoform of PSMB9, that is described 

in humans but not in mice. The Western blot of tumour samples included in the 

proteomic study appear to weigh heavier than the Raji cell line positive control (Figure 

5.22). Unlike the bands seen in the previous blot, these bands appeared larger 

suggesting a gained modification between the mass spectrometry and the Western 

blot analysis. Despite this the differences in band intensity is striking with upregulation 

in the tumour samples.  

 

The findings here highlight upregulation of the immunoproteasome in ccRCC. It is not 

known if this change from the constitutive proteasome subunits is an adaptive result 
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of cell stress or cytokine release from infiltrating inflammatory cells and is simply a 

bystander change, or it is a driver of malignant change itself. This area remains 

interesting and warrants further work. 

 

5.4.4 Conclusion 
Overall, expression of the immunoproteasome in ccRCC warrants further 

investigation using RNA interference models and small molecule inhibitors. COX-1 

on the other hand is unlikely to represent a therapeutic target in ccRCC. The data 

generated through this work is will be of benefit to others in this group and is available 

for future analysis. 
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Chapter 6 Overall Discussion 

The overarching aim of this study was to identify novel potential therapeutic targets 

in clear cell RCC. Two approaches were taken to try and achieve this. Firstly, 

potential targets recently identified by our collaborators, but still at a very early stage 

of validation, were explored further. Secondly, a de novo discovery approach was 

undertaken, using parallel multi-platform proteomic profiling, using genetically 

characterised tumours. 

 

Despite early promise, particularly with respect to EA, neither of the existing 

candidate targets examined in this work demonstrated sufficient potential to warrant 

further investigation. However, the reasons for this are different for EA and SYK. In 

the case of EA, demonstrated to be a highly potent and specific activator of TRPC 

channels in vitro, the cytotoxicity of this compound at nanomolar concentrations was 

confirmed, with relative inactivity against a normal kidney cell line (HEK293) and non-

cancer cell controls, (HUVEC). Furthermore, expression of the target, TRPC4/5 was 

confirmed in primary RCC tissues, albeit at the level of mRNA rather than protein. 

However, the relative expression of TRPC4/5 in tumour relative to normal was not 

uniformly significantly elevated. Indeed, the ubiquitous expression of TRPC channels 

in normal tissues is widely acknowledged (Bon and Beech, 2013), thus raising the 

concern that exposure to EA in humans may be associated with significant toxicity. 

Notably, it has been reported that locals native to a region of Zimbabwe where the 

plant Phyllanthus Engleri is known to grow is known as the ‘suicide plant’ when the 

smoke of the root is inhaled (Watt and Breyer-Brandwijk, 1927). In parallel to the work 

undertaken in this study, toxicity studies in mice and rats have been undertaken by 

our group and others, confirming the highly toxic nature of EA (Carson et al., 2015) 

(Cheung et al., 2018). Critically, these studies, using TRPC knock-out mouse models, 

have demonstrated irrefutably that the observed toxicity represents an ‘on-target’ 

effect. Whilst VEGFR TKIs also have a number of well recognised on-target toxicities, 

these are manageable and the risk-benefit ratio favours their use. In the case of EA, 

the toxicity appears to be severe and, as yet, poorly defined. Thus, disappointingly, 

it is apparent that whilst EA is capable of efficiently killing renal cancer cells in vitro, 

it is also associated with a level of toxicity that renders the TRPC channels an unlikely 

future therapeutic target in RCC. 



206 
 

 

SYK as a therapeutic target was principally proposed based on the observation of 

differential expression of SYK isoforms at an mRNA level in RCC versus normal 

kidney. This finding was confirmed at a protein level although no representative RCC 

cell line model was identified. SYK inhibitors are in clinical trials and one is currently 

undergoing a licensing review in the UK. SYK inhibition using a small molecule 

inhibitor was shown to cause cell death in the 786-0 RCC cell line at concentrations 

above 1 µM. In summary it is difficult to say that SYK inhibition holds promise as a 

therapeutic target given the lack of isoform specific inhibitors and the need for further 

investigations into the biological function of each isoform in RCC. It may be that the 

observed change is simply a passenger rather than a driver. Its expression in other 

cancer types has mostly been reported relative to normal tissue as opposed to 

differential isoform expression. Despite this, it is worth exploring further given the 

striking change at a protein level and the effect in other cancer types. 

 

We also undertook one of the most comprehensive proteomic studies to date in 

ccRCC, particularly in the context of using genomically defined tissues. Across the 

three profiling platforms employed, in total, the relative expression of 3136 unique 

proteins were examined both within tumours and when compared to matched 

controls. 1337 proteins were identified to have a statistical significant difference 

between ccRCC and normal kidney, in particular 32 proteins were identified to be 

upregulated in ccRCC whilst not being detected in the normal kidney samples 

included in this study. Using a global tumour versus normal comparison of protein 

expression, two differentially expressed proteins, cyclooxygenase-1 (COX-1) and 

proteasome subunit beta type-9 (PSMB9), were taken forward for further 

investigation. COX-1 is unlikely to represent a therapeutic target in ccRCC based on 

the lack of potency of COX-1 inhibition in vitro. It remains unclear whether PSMB9 

really holds any promise as a therapeutic target, and further work is needed to 

establish the role, if any, of this protein in ccRCC growth and development. 

Disappointingly, protein expression was not significantly different between genetic 

groups. Given, for example, the higher grade and stage of cancers associated with a 

BAP1 mutation, it was hoped that the drivers of such a phenotype at a protein level 

would be identified. Such changes must be apparent, but the small sample size and 

the heterogeneity of mutational status beyond the key genes that we focused on, are 

likely to have hindered their detection. Thus, whilst descriptively ccRCC is well 

characterised at the genetic level, exploiting this information for patient benefit 

remains elusive. Interestingly, one hope for the future may come from the concept of 
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synthetic lethality and the sensitivity of SETD2 deficient cancers to WEE1 inhibition 

(Pfister et al., 2015). SETD2 encodes a H3K36 methyltransferase, which when lost 

results in loss of H3K36me3. This in turn results in reduced expression of a 

ribonucleotide reductase subunit (RRM2). WEE1 also regulates RRM2 expression 

and inhibition of WEE1 results in RRM2 degradation. RRM2 is essential for the 

maintenance of dNTP levels and thus DNA replication. A phase II clinical trial 

currently in recruitment is investigating the use of adavosertib (a WEE1 inhibitor) in 

the second line setting in patients with a SETD2 mutation (NCT03284385).  

 

Given the tremendous changes that have taken place in terms of the treatment 

landscape in RCC in recent years, it is reasonable to ask whether novel therapeutic 

targets are even needed in this disease. Combination immunotherapy using 

ipilimumab plus nivolumab has recently been licensed in the front-line setting by the 

European Medicines Agency and now awaits NICE appraisal before uptake in the 

UK. Furthermore, promising data is emerging for the combination of immunotherapy 

with anti-VEGF agents, in particular TKIs (Motzer et al., 2018a) (Motzer et al., 2018b) 

(Choueiri et al., 2018b). Deep and durable responses have been noted with both of 

these approaches and it is possible, although not yet established, that some patients 

may even be cured using such combinations. Nevertheless, several gaps remain. 

Firstly, not all patients will benefit from these approaches. In the landmark CheckMate 

214 trial, 20% of patients had PD as their best response (Motzer et al., 2018b). 

Secondly, these combinations are toxic. Combination immunotherapy was 

associated with 40% grade 3-4 toxicity, 35% of patients required high dose steroids 

to manage immune related adverse events (irAE) and there were seven treatment 

related deaths reported in the ipilimumab plus nivolumab arm (Motzer et al., 2018b). 

Thirdly not all patients are suitable for these treatments, due to poor performance 

status or co-morbidities. Fourthly, they come with a significant financial burden that 

is now a significant issue for increasingly overstretched and financially constrained 

health systems. For example, one year of ipilimumab plus nivolumab would be 

estimated to cost in excess of £120,000 per patient, which accounts for drug costs 

alone. An emerging priority, therefore, is to at least identify those patients most likely 

to benefit from these drugs. In this regard, transcriptomic signatures, gene mutation 

status such as PBRM1 and the gut microbiome have all shown early promise, but 

rigorous validation of these findings is required before their routine application in the 

clinic (Motzer et al., 2018a) (Miao et al., 2018) (Routy et al., 2018). 
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Non-clear cell carcinomas make up a small but significant minority of RCCs and it is 

arguable that in fact it is in this setting that the greatest priority for identifying novel 

therapeutic targets lies. The cell of origin, genetics, biology and clinical behaviour of 

these tumours is distinct to clear cell RCCs and, even within the non-clear cell types, 

there is great variation. Type I papillary tumours, for example, are characterised by 

MET alterations, whereas type 2 tumors are characterized by CDKN2A silencing, 

SETD2 mutations and TFE3 fusions (Linehan et al., 2016). Despite this, approaches 

to the management of patients with these types of RCC are based on the biology of 

clear cell RCC, and response rates to VEGFR TKI are recognized to be lower 

(Armstrong et al., 2016). Even in MET driven papillary RCCs, the activity of the MET 

inhibitor savolitinib was only 18% amongst 43 patients (Choueiri et al., 2017b). 

Whether a drug such as cabozantinib, that combines VEGF and MET activity, is more 

efficacious remains to be established. Overall, it is evident that rational novel 

therapeutic strategies are urgently needed for this group of patients, particularly as 

access to novel agents is being increasingly restricted to those with ccRCC. 
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Appendix 1  

 

Buffer formulations 

 

Laemmli buffer - 60 mM Tris-HCL pH 6.8, 2% (w/v) SDS, 10% (v/v) glycerol, 5% 

(v/v) β-mercaptoethanol, 0.01% bromophenol blue 

 

PBS - Made from tablets as per manufacturers instructions (Oxoid) 

 

SBS Solution (with 1.5 mM Ca 2+) - 135 mM NaCl, 5mM KCl, 1.2mM MgCl, 8 mM 

glucose, 10 mM HEPES, 1.5mM CaCl2 (pH 7.4) 

 

Tris-glycine running buffer - 25 mM Tris pH 8.3, 192 mM glycine, 0.1% (w/v) SDS 

 

Towbin’s transfer buffer - 25 mM Tris pH 8.3, 192 mM glycine, 10% (v/v) methanol 

 

Coomassie fix – 40% v/v methanol, 7% v/v acetic aci d, 53% v/v H 2O 

Coomassie Destain I – 25% v/v methanol, 10% v/v ace tic acid, 65% v/v H 2O 

Coomassie Destain II – 25% v/v methanol, 75% v/v H 2O 

 

Modified RIPA buffer - 150mM NaCl, 50 mM Tris-HCl pH 7.4, 0.5% IGEPAL®CO-

630, 0.2% sodium deoxycholate, protease inhibitor cocktail tablet 

 

SDS lysis buffer solution  - 5% SDS in 50 mM Tris-HCl, pH 7.6 
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Appendix 2 

 

Suppliers and manufacturers 

 

Abcam  
332 Cambridge Science Park, 
Cambridge, 
CB4 0FW, UK 
 
Anachem 
Anachem House, 
20 Charles Street, 
Luton, 
Bedfordshire, 
LU2 0EB, UK 
 
Applied Biosystems 
7 Kingsland Grange, 
Woolston, 
Warrington, 
Cheshire, 
WA1 7SR, UK 
 
Beckman Coulter (UK) Ltd. 
Oakley Court, 
Kingsmead Business Park, 
High Wycombe, 
HP11 1JU, UK 
 
BD Biosciences   
The Danby Building, 
Edmund Halley Road,  
Oxford Science Park, 
Oxford,  
OX4 4DQ, UK 
 
Bio-Rad Laboratories Ltd 
Bio-Rad House, 
Maylands Avenue, 
Hemel Hempstead, 
Hertfordshire, 
HP2 7 TD, UK 
 
Corning Inc. 
Riverfront Plaza, 
Corning, 
NY 14831, USA 
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Dako 
Dakopatts Ltd, 
16 Manor Courtyard, 
Hughenden Avenue, 
High Wycombe, 
Buckinghamshire, 
HP13 5AE, UK 
 
GE Healthcare 
Amersham Place, 
Little Chalfont, 
Buckinghamshire, 
HP7 9NA, UK 
 
Gibco 
3 Fountain Drive, 
Inchinnan Business Park, 
Paisley, 
PA4 9RF, UK 
 
Invitrogen 
PO BOX 2312, 
9704 Ch Groningen 
The Netherlands 
 
Eastman Kodak Ltd. 
Station Road, 
Hemel Hempstead, 
Hertfordshire, 
HP1 1JU, UK 
  
Mettler-Toledo, Inc. 
1900 Polaris Parkway,  
Columbus,  
OH 43240, USA 
 
Millipore 
The Boulevard, 
Blackmore Lane, 
Watford, 
WD1 8YG, UK 
 
Nalge (Nunc) International 
75 Panorama Creek Drive, 
P.O. Box 20365, 
Rochester, 
NY, USA 
 
Promega 
Delta House, 
Southampton Science Park, 
Southampton, 
SO16 7NS, UK 
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Qiagen Ltd. 
Boundary Court, 
Gatwick Road, 
Crawley, 
RH10 2AX, UK 
 
R&D Systems (Europe) Ltd. 
19 Barton Lane, 
Abingdon,  
OX14 3NB, UK 
 

Roche 
Roche Products Limited, 
P.O. Box 8, 
Welwyn Garden City, 
Hertfordshire, 
AL7 3AY, UK 
 
Sigma-Aldrich 
Fancy Road, 
Poole,  
Dorset 
BH12 4QH, UK 
 
Vector Labs (UK) Ltd. 
3, Accent Park, 
Bakewell Road, 
Peterborough, 
PE2 6XS, UK 
 
VWR International  
Hunter Boulevard 
Magna Park 
Lutterworth 
Leicestershire 
LE17 4XN, UK 
 
Whatman Inc. 
9 Bridewell Place, 
Clifton, 
NJ 07014, USA 
 
Zeiss (UK) Ltd. 
15-20 Woodfield Road, 
Welwyn Garden City, 
AL7 1LU, UK 
 
Zymed 
458 Carlton Court 
S. San Francisco, 
CA 94080, USA 
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Appendix 3 

Proteins identified to be significantly upregulated compared to normal kidney in the proteomic study 

Protein ID Protein names Gene names 
% of tumour samples 

with expression 

Q9H3K6 BolA-like protein 2 BOLA2 52 

O15427 Monocarboxylate transporter 4 SLC16A3 52 

P04839 Cytochrome b-245 heavy chain CYBB 52 

P02786 Transferrin receptor protein 1;Transferrin receptor protein 1, serum form TFRC 52 

Q13509 Tubulin beta-3 chain TUBB3 52 

P04233 HLA class II histocompatibility antigen gamma chain CD74 52 

Q15293 Reticulocalbin-1 RCN1 56 

Q8IVF2 Protein AHNAK2 AHNAK2 56 

Q8NBJ5 Procollagen galactosyltransferase 1 COLGALT1 60 

Q14554 Protein disulfide-isomerase A5 PDIA5 60 

P26447 Protein S100-A4 S100A4 60 

E7ETU9 Procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 PLOD2 60 

O15540 Fatty acid-binding protein, brain FABP7 60 

P14317 Hematopoietic lineage cell-specific protein HCLS1 64 
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Protein ID Protein names Gene names 
% of tumour samples 

with expression 

P13674 Prolyl 4-hydroxylase subunit alpha-1 P4HA1 68 

Q6UVK1 Chondroitin sulfate proteoglycan 4 CSPG4 68 

R4GMU1 
GDH/6PGL endoplasmic bifunctional protein;Glucose 1-dehydrogenase;6-

phosphogluconolactonase 
H6PD 72 

Q16666 Gamma-interferon-inducible protein 16 IFI16 72 

P11166 Solute carrier family 2, facilitated glucose transporter member 1 SLC2A1 72 

Q03518 Antigen peptide transporter 1 TAP1 72 

O60568 Procollagen-lysine,2-oxoglutarate 5-dioxygenase 3 PLOD3 76 

Q16790 Carbonic anhydrase 9 CA9 76 

E9PHQ0 Protein diaphanous homolog 1 DIAPH1 80 

Q96HE7 ERO1-like protein alpha ERO1L 80 

Q16363 Laminin subunit alpha-4 LAMA4 80 

Q9UGI8 Testin TES 84 

Q9NRX3 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 4-like 2 NDUFA4L2 84 

P43121 Cell surface glycoprotein MUC18 MCAM 88 

P13807 Glycogen [starch] synthase, muscle GYS1 92 

Q99541 Perilipin-2 PLIN2 92 

Q9BUF5 Tubulin beta-6 chain TUBB6 96 

P09104 Gamma-enolase;Enolase ENO2 96 
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Appendix 4 

Comprehensive histopathological review of sections cut for proteomic study 

Sample 
Number 

Section 
number 

Genetic group (based on 
four ‘driver’ mutations) 

Histopathology 
review grade 

Extent of 
necrosis 

% viable 
tumour 

cells 

Degree of 
inflammation 

% fibrosis or 
exudate 

031 T 1 VHL mutation only 2 0 70 0 30 

031 T 2 VHL mutation only 3 2 60 1 40 

031 T 3 VHL mutation only 3 0 60 1 40 

128 T 1 No mutation group 4 and rhabdoid 0 70 0 30 

128 T 2 No mutation group 4 and rhabdoid 0 70 0 30 

128 T 3 No mutation group 4 and rhabdoid 0 70 0 30 

231 T 1 VHL + SETD2 mutation 2 0 70 0 30 

231 T 2 VHL + SETD2 mutation 2 0 70 0 30 

231 T 3 VHL + SETD2 mutation 2 0 70 0 30 

233 T 1 No mutation group 2 0 70 1 30 

233 T 2 No mutation group 2 0 70 1 30 

233 T 3 No mutation group 2 0 70 1 30 

255 T 1 VHL + BAP1 mutation 2 0 60 2 60 

255 T 2 VHL + BAP1 mutation 2 0 60 0 60 

255 T 3 VHL + BAP1 mutation 2 0 60 0 60 

340 T 1 VHL mutation only 2 0 75 0 25 
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Sample 
Number 

Section 
number 

Genetic group (based on 
four ‘driver’ mutations) 

Histopathology 
review grade 

Extent of 
necrosis 

% viable 
tumour 

cells 

Degree of 
inflammation 

% fibrosis or 
exudate 

340 T 2 VHL mutation only 2 0 70 0 30 

340 T 3 VHL mutation only 2 0 70 0 30 

344 T 1 VHL mutation only 2 0 80 0 20 

344 T 2 VHL mutation only 2 0 75 0 25 

344 T 3 VHL mutation only 2 0 75 0 25 

357 T 1 VHL mutation only 2 1 50 2 50 

357 T 2 VHL mutation only 2 0 40 2 60 

357 T 3 VHL mutation only 2 2 50 2 50 

364 T 1 VHL mutation only 2 0 75 0 25 

364 T 2 VHL mutation only 2 0 75 0 25 

364 T 3 VHL mutation only 2 0 75 0 25 

370 T 1 VHL + PBRM1 mutation 3 0 70 0 30 

370 T 2 VHL + PBRM1 mutation 3 0 70 0 30 

370 T 3 VHL + PBRM1 mutation 3 0 70 0 30 

371 T 1 VHL + SETD2 mutation 2 0 80 0 20 

371 T 2 VHL + SETD2 mutation 2 0 80 0 20 

371 T 3 VHL + SETD2 mutation 2 0 80 0 20 

377 T 1 VHL + PBRM1 mutation 3 0 80 0 20 

377 T 2 VHL + PBRM1 mutation 3 0 80 0 20 
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Sample 
Number 

Section 
number 

Genetic group (based on 
four ‘driver’ mutations) 

Histopathology 
review grade 

Extent of 
necrosis 

% viable 
tumour 

cells 

Degree of 
inflammation 

% fibrosis or 
exudate 

377 T 3 VHL + PBRM1 mutation 3 0 80 0 20 

382 T 1 VHL + PBRM1 mutation 2 0 90 0 10 

382 T 2 VHL + PBRM1 mutation 2 0 90 0 10 

382 T 3 VHL + PBRM1 mutation 2 0 90 0 10 

396 T 1 PBRM1 mutation only 1 0 75 0 25 

396 T 2 PBRM1 mutation only 1 0 75 0 25 

396 T 3 PBRM1 mutation only 1 0 75 0 25 

400 T 1 VHL mutation only 2 0 75 0 25 

400 T 2 VHL mutation only 2 0 75 0 25 

400 T 3 VHL mutation only 2 0 75 0 25 

404 T 1 VHL + PBRM1 mutation 1 0 90 0 10 

404 T 2 VHL + PBRM1 mutation 1 0 90 0 10 

404 T 3 VHL + PBRM1 mutation 1 0 90 0 10 

409 T 1 No mutation group 3 0 70 1 30 

409 T 2 No mutation group 3 0 70 1 30 

409 T 3 No mutation group 3 0 60 1 40 

413 T 1 VHL + PBRM1 mutation 3 0 70 1 30 

413 T 2 VHL + PBRM1 mutation 3 0 70 1 30 

413 T 3 VHL + PBRM1 mutation 3 0 60 1 40 
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Sample 
Number 

Section 
number 

Genetic group (based on 
four ‘driver’ mutations) 

Histopathology 
review grade 

Extent of 
necrosis 

% viable 
tumour 

cells 

Degree of 
inflammation 

% fibrosis or 
exudate 

417 T 1 VHL mutation only 2 0 70 1 30 

417 T 2 VHL mutation only 2 0 70 0 30 

417 T 3 VHL mutation only 2 0 70 0 30 

422 T 1 VHL mutation only 2 0 80 0 20 

422 T 2 VHL mutation only 2 0 70 1 30 

422 T 3 VHL mutation only 2 0 70 1 30 

426 T 1 VHL mutation only 1 0 70 1 30 

426 T 2 VHL mutation only 1 0 70 1 30 

426 T 3 VHL mutation only 1 0 70 1 30 

471 T 1 No mutation group 2 0 70 0 30 

471 T 2 No mutation group 2 0 70 0 30 

471 T 3 No mutation group 2 0 70 0 30 

RS114563 T 1 VHL + SETD2 mutation 2 0 70 0 30 

RS114563 T 2 VHL + SETD2 mutation 2 0 70 0 30 

RS114563 T 3 VHL + SETD2 mutation 2 0 70 0 30 

RS114494 T 1 VHL + BAP1 mutation 2 0 70 0 30 

RS114494 T 2 VHL + BAP1 mutation 2 0 70 0 30 

RS114494 T 3 VHL + BAP1 mutation 2 0 70 0 30 

RS114585 T 1 VHL + SETD2 mutation 2 0 70 0 30 
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Sample 
Number 

Section 
number 

Genetic group (based on 
four ‘driver’ mutations) 

Histopathology 
review grade 

Extent of 
necrosis 

% viable 
tumour 

cells 

Degree of 
inflammation 

% fibrosis or 
exudate 

RS114585 T 2 VHL + SETD2 mutation 2 0 70 0 30 

RS114585 T 3 VHL + SETD2 mutation 2 0 70 0 30 

 

Sample Number Section number  
Genetic group (based on 

four ‘driver’ mutations)  
Cortex (%)  Medulla (%)  Degree of inflammation  

% fibrosis or  

exudate 

231 N 1 VHL + SETD2 mutation 100 0 1 5 

231 N 2 VHL + SETD2 mutation 90 10 1 5 

231 N 3 VHL + SETD2 mutation 90 10 1 5 

344 N 1 VHL mutation only 100 0 1 0 

344 N 2 VHL mutation only 100 0 1 0 

344 N 3 VHL mutation only 100 0 1 0 

357 N 1 VHL mutation only 100 0 1 0 

357 N 2 VHL mutation only 100 0 1 0 

357 N 3 VHL mutation only 100 0 1 0 

364 N 1 VHL mutation only 100 0 1 0 

364 N 2 VHL mutation only 100 0 1 0 

364 N 3 VHL mutation only 100 0 1 0 

370 N 1 VHL + PBRM1 mutation 100 0 1 0 

370 N 2 VHL + PBRM1 mutation 100 0 1 0 
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Sample Number Section number  
Genetic group (based on 

four ‘driver’ mutations)  
Cortex (%)  Medulla (%)  Degree of inflammation  

% fibrosis or  

exudate 

370 N 3 VHL + PBRM1 mutation 100 0 1 0 

371 N 1 VHL + SETD2 mutation 100 0 1 0 

371 N 2 VHL + SETD2 mutation 100 0 1 0 

371 N 3 VHL + SETD2 mutation 100 0 1 0 

377 N 1 VHL + PBRM1 mutation 100 0 0 0 

377 N 2 VHL + PBRM1 mutation 100 0 1 0 

377 N 3 VHL + PBRM1 mutation 100 0 1 0 

382 N 1 VHL + PBRM1 mutation 100 0 1 0 

382 N 2 VHL + PBRM1 mutation 100 0 1 0 

382 N 3 VHL + PBRM1 mutation 100 0 1 0 

396 N 1 PBRM1 mutation only 100 0 1 10 

396 N 2 PBRM1 mutation only 100 0 1 10 

396 N 3 PBRM1 mutation only 100 0 1 0 

400 N 1 VHL mutation only 100 0 1 0 

400 N 2 VHL mutation only 100 0 1 0 

400 N 3 VHL mutation only 100 0 1 0 

404 N 1 VHL + PBRM1 mutation 100 0 1 0 

404 N 2 VHL + PBRM1 mutation 100 0 1 0 

404 N 3 VHL + PBRM1 mutation 100 0 1 0 
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Sample Number Section number  
Genetic group (based on 

four ‘driver’ mutations)  
Cortex (%)  Medulla (%)  Degree of inflammation  

% fibrosis or  

exudate 

409 N 1 No mutation group 100 0 2 5 

409 N 2 No mutation group 100 0 1 5 

409 N 3 No mutation group 100 0 1 5 

417 N 1 VHL mutation only 100 0 1 0 

417 N 2 VHL mutation only 100 0 1 1 

417 N 3 VHL mutation only 100 0 1 0 

471 N 1 No mutation group 100 0 1 0 

471 N 2 No mutation group 100 0 1 0 

471 N 3 No mutation group 100 0 1 0 

 


