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Abstract 

 

The underlying genetic defects remain unknown in about 50% of inherited platelet 

bleeding disorders (IPDs). This study investigated the use of whole exome sequencing 

(WES) to identify candidate gene defects in 34 index cases enrolled in the UK 

Genotyping and Phenotyping of Platelets study with a history of bleeding, whose 

platelets demonstrated defects in agonist-induced dense granule secretion or Gi-

signalling. WES analysis identified a median of 98 candidate disease-causing variants 

per index case highlighting the complexity of IPDs. Sixteen variants were in genes that 

had previously been associated with IPDs, two of which were selected for further 

characterisation. Two novel FLI1 alterations, predicting p.Arg340Cys/His substitutions 

in the DNA binding domain of FLI1 were shown to reduce transcriptional activity and 

nuclear accumulation of FLI1, suggesting that these variants interfere with the 

regulation of essential megakaryocyte genes by FLI1 and may explain the bleeding 

tendency in affected patients. Expression of a novel truncated p.Arg430* variant of 

ETV6 revealed it to be stably expressed, possessing normal repressor activity in HEK 

293T cells and a slight reduction in repressor activity in megakaryocytic cells. Further 

studies are required to confirm the pathogenicity of this variant. To identify novel genes 

involved in platelet granule biogenesis and secretion, gene expression was examined 

in megakaryocytic cells before and after knockdown of FLI1, defects in which are 

associated with platelet granule abnormalities. Comparison of the gene expression 

data with that from platelets from patients with FLI1 defects and with the results of WES 

analysis in patients with secretion defects highlighted several genes of interest, 

including C18orf32, IGFBP2, PLCG2, SCFD2, SLC24A3, ST8SIA6 and ZBTB45 

which, between them, harboured ten candidate causative variants among the patients 

with defects in platelet secretion. Further work is warranted to explore the contribution 

of these genes to platelet secretory pathways.  
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1.1 Introduction  

 

1.1.1 Megakaryopoiesis and platelet production  

Platelets are the second most abundant cell in blood, with counts normally ranging 

from 150 to 350 x 109/L in the general population (Kaushansky, 2009). They are small 

anucleate discoid cells derived from megakaryocytes (MKs) and play a critical role in 

primary haemostasis by accumulating at sites of vascular injury and mediating 

formation of a fibrin-rich platelet plug that stems bleeding. MKs account for less than 

1% of all cells in the bone marrow (BM) but, through the process of megakaryopoiesis, 

they produce the 1011 platelets required each day to maintain normal platelet counts 

(Kaushansky, 2009). As shown in Figure 1.1, during conventional megakaryopoiesis, 

haematopoietic stem cells (HSC) are directed to differentiate sequentially through 

multipotent progenitors, common myeloid progenitors, MK-erythroid progenitors, MK 

progenitors, to mature MKs that release platelets. However, non-conventional models 

of megakaryopoiesis have also been described (shown in Figure 1.1). HSC that exhibit 

platelet-biased long-term reconstitution capacity (Plt-LT-HSC) are capable of 

differentiating directly to MKs without passing through the MK-erythroid progenitor 

stage while maintaining their self-renewal capacity and ability to generate multiple 

blood lineage cells (Sanjuan-Pla et al., 2013). Additionally, HSC progenitors called MK 

repopulating progenitors (MKRPs), that are proposed to derive from Plt-LT-HSC and 

maintain their self-renewal capacity, can directly differentiate into MK progenitors 

(Yamamoto et al., 2013). While Plt-LT-HSC and MKRPs contribute to MK production 

during steady-state conditions, another HSC that is thought to be derived from MKRPs 

called stem-like MK-committed progenitors (SL-MKPs) and which can differentiate 

directly to MK, are activated in response to stress induced by inflammation, infection 

or other states of thrombocytopenia (Haas et al., 2015). 

 

The process of megakaryopoiesis is orchestrated by a wide variety of factors, including 

thrombopoietin (TPO) and its receptor (MPL), many other cytokines and several 

transcription factors (reviewed in Behrens & Alexander (2018); Deutsch & Tomer 

(2013); Tijssen & Ghevaert (2013)).  

 

TPO acts as the primary regulator of megakaryopoiesis by binding to its receptor, MPL, 

and activating several downstream signalling pathways, though the presence of 
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residual platelets in mice and human with TPO or MPL deficiency (Alexander et al., 

1996; de Sauvage et al., 1996; Ihara et al., 1999; Savoia et al., 2007) indicates the 

contribution of TPO-independent mechanisms to the regulation of megakaryopoiesis 

(reviewed in Zheng et al. (2008)). Additionally, several cytokines contribute to 

megakaryopoiesis in both steady-state and emergency megakaryopoiesis such as 

multi-colony-stimulating factor, interleukin (IL) -1α, IL-3, IL-6, IL-9, IL-11, IL-21, stem 

cell factor, and interferon-α (Behrens & Alexander, 2018). 

 

 

 

Figure 1.1 Megakaryopoiesis  
In conventional megakaryopoiesis (A), haematopoietic stem cells (HSCs) are directed to differentiate 
sequentially through multipotent progenitors (MPPs), common myeloid progenitors (CMPs), 
megakaryocyte (MK)-erythroid progenitors (MKEPs), MK progenitors (MKPs), to mature MKs that 
release platelets. In non-conventional megakaryopoiesis (B-D), platelet-biased long-term reconstitution 
capacity HSC (Plt-LT-HSC), MK repopulating progenitors (MKRPs), and quiescent stem-like MK-
committed progenitors (SL-MKPs) are able to differentiate directly to MK progenitors. Curved arrows 
indicate self-renewal capacity. Adapted from Behrens & Alexander (2018). 

 

 

Each stage in the process of megakaryopoiesis requires a specific set of transcription 

factors. RUNX1 (Runt-related transcription factor 1) is considered to be a core 

regulator of early and late MK differentiation that interacts with other essential 

transcription factors to form stage-specific transcription factor complexes. For 

example, the RUNX1/ETS1 (E26 transformation-specific 1)/CBFβ (Core-binding factor 

subunit β) complex is required in the early stages of megakaryopoiesis, while the 
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RUNX1/Friend leukaemia virus integration 1 (FLI1)/GATA1 complex plays an 

important regulatory role in the late stages of megakaryopoiesis (Okada et al., 2013). 

Other transcription factors and co-factors that are known to contribute to MK lineage 

commitment, as well as to platelet production and function, include GATA2, FOG1 

(Friend of GATA1), TAL1 (T-cell acute lymphocytic leukaemia 1, SCL), EVI1 (Ecotropic 

Virus Integration Site 1 Protein Homolog), NFE2 (Nuclear Factor Erythroid 2), SRF 

(Serum Response Factor), MKL1 (Megakaryoblastic Leukaemia 1) and GFI1B (Growth 

Factor-Independent 1B). 

 

The process of MK maturation commences with multiple cycles of endomitosis without 

cytokinesis that are accompanied by an increase in the cytoplasmic volume in 

proportion to the degree of ploidy, resulting in a single MK with a ploidy of 16N or 

greater, which has a single poly-lobulated nucleus and a large cytoplasm. 

Subsequently, MKs develop a demarcation membrane system, becoming filled with 

platelet-specific proteins, organelles and granules inherited by platelets. MK 

maturation is followed by thrombopoiesis, the last stage of megakaryopoiesis which 

results in the release of platelets (reviewed in Kosaki (2005)). Platelet release is 

believed to be mediated via proplatelet formation, whereby, following MK maturation 

and migration toward the vascular niche, they develop dynamic cytoplasmic structures 

that project through junctions in the lining of blood sinuses, forming pseudopod-like 

structures called proplatelets. After further elongation and branching into multiple 

platelet-sized swellings at their ends, the platelets are released into the circulation due 

to the high shear forces that operate in the sinusoidal vessels. During this process, 

cellular organelles are packaged into the proplatelet before the platelets are released. 

The alternative platelet territory model for platelet release proposes that, during MK 

maturation, the developing demarcation membrane forms zones or territories around 

each platelet and the nascent platelets are then released into the circulation following 

explosive fragmentation that starts at the MK surface and proceeds to the centre of the 

cell (Kosaki, 2005).  

 

1.1.2 Platelet ultrastructure  

Platelets are small discoid cells, approximately 2.5 µm in diameter, that do not possess 

a nucleus, but they have a number of distinct structural features (reviewed in Gremmel 
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et al. (2016); Thon & Italiano (2012)). Although platelets do not contain DNA, they do 

have MK-derived mRNA allowing the expression of platelet proteins.  

 

The peripheral zone of a platelet contains a glycocalyx and a plasma membrane with 

internal invaginations that form an open canalicular system. The glycocalyx facilitates 

the uptake of plasma proteins, and provides an adhesive surface in response to 

haemostatic demands. The plasma membrane is a phospholipid bilayer in which 

negatively charged phospholipids are expressed predominantly in the inner leaflet thus 

maintaining the non-procoagulant status of the platelet surface. The membrane 

contains Na+ and Ca2+-ATP pumps that control the intracellular ionic environment. 

Additionally, the membrane has dynamic, cholesterol- and sphingolipid-rich 

microdomains called lipid rafts that have an important role in signalling and intracellular 

trafficking in platelets. The plasma membrane is also densely packed with many 

receptors, including glycoprotein (GP) and integrin receptors. The open canalicular 

system acts mainly as a massive membrane reservoir for activated platelets, serving 

as a gate that allows entry of external elements and release of granule contents, as 

well as a storage site for some plasma membrane GP receptors.  

 

The plasma membrane is connected to the cytoplasm via an actin cytoskeleton and 

contractile microtubule ring that play a role in platelet production, maintaining the 

discoid shape of resting platelets, linking the platelet receptors to the actin cytoskeleton 

and to cytoplasmic signalling proteins, thereby mediating shape change, spreading 

and degranulation following platelet activation in response to vascular injury. 

Additionally, many other proteins have a role in organising the actin cytoskeleton 

including myosin IIA, actin crosslinking proteins filamin A and α-actinin, as well as 

several regulator and effector proteins such as cofilin, profilin, Rho GTPases (RhoA, 

Cdc42 and Rac1), formins and WASp (Wiskott-Aldrich syndrome protein) (reviewed in 

Poulter & Thomas (2015); Shin et al. (2017)). 

 

The platelet cytoplasm contains many cellular organelles, including mitochondria, 

endoplasmic reticulum (called dense tubular system), Golgi and several types of 

granules. Despite their low number, mitochondria provide the platelet’s energy 

requirements. The dense tubular system is a residual endoplasmic reticulum network 

which acts as a reservoir for calcium that is released upon platelet activation. The Golgi 
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stack comprises remnants from the MK that are rarely seen in platelets. Recently, Golgi 

proteins were found within platelets and shown to map to a series of scattered 

separated structures rather than the typical stacked Golgi structures (Yadav et al., 

2017).  

 

Platelets possess three main types of granules, alpha (α)-granules, dense (δ)-granules 

and lysosomes, each with different cargoes (reviewed in Sharda & Flaumenhaft 

(2018)). The most abundant of these are the α-granules, which number between 50 

and 80 per platelet and contain many proteins that are either synthesised in the MKs 

(e.g. platelet factor 4 (PF4), β-thromboglobulin, platelet-derived growth factor (PDGF), 

thrombospondin) or endocytosed from plasma (e.g. factor V, fibrinogen, von 

Willebrand factor (VWF)). These proteins have diverse roles in platelet adhesion, 

coagulation, and wound healing. Each platelet also has between 5 and 8 electron-

dense granules which store ADP, ATP, GTP, serotonin, histamine, pyrophosphate and 

divalent cations that are essential for recruiting other platelets to the site of release. 

Lysosomes are the least abundant granule type, storing proteolytic enzymes which are 

involved in vascular remodelling.  

 

1.1.3 The role of platelets in primary haemostasis 

Platelets have roles in many biological processes, both physiological, such as wound 

healing, angiogenesis, immunity and inflammation, and pathological, including 

atherosclerosis, ischaemia, disseminated intravascular coagulation, bleeding, cancer 

and autoimmune diseases (reviewed in Golebiewska & Poole (2015); Ware et al. 

(2013)). However, their primary role is to arrest bleeding following vascular injury.  

 

Normally, platelets circulate in the bloodstream in a resting, non-reactive, discoid 

shape which is maintained through many mechanisms, e.g. the inhibitory effects of 

endothelial prostacyclin, nitric oxide (NO), and platelet–endothelial cell adhesion 

molecule-1 (PECAM-1) (Li et al., 2010; Ming et al., 2011). Most platelets do not 

participate in irreversible adhesion and are removed by macrophages in the spleen 

and liver after 7 to 10 days in the circulation. However, at sites of vascular injury, 

platelets are required to change their status to a reactive form to arrest bleeding. They 

participate in complex processes that involve interactions with the extracellular matrix, 

other platelets, as well as other cells via receptors present on their surface membranes 
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to trigger intracellular signalling pathways that lead to the formation of a platelet 

thrombus at the site of injury. There are generally considered to be five phases of 

platelet activity at sites of vessel injury: initiation, extension, secretion, consolidation 

and procoagulant activity.  

 

1.1.3.1 Initiation 

Circulating platelets remain in a resting state until they come into contact with 

immobilised adhesive proteins at sites of exposed subendothelial matrix, whereupon 

they become activated, and are able to bind to collagen through direct interactions 

mediated mostly via the platelet receptors α2β1 and GPVI that are important for platelet 

adhesion and collagen-induced platelet activation respectively (Berndt et al., 2014; Li 

et al., 2010). GPVI is non-covalently coupled to the Fc receptor γ-chain (FcRγ) and to 

Src family kinases (SFKs). As shown in Figure 1.2 when GPVI is crosslinked by 

collagen, the cytoplasmic immunoreceptor tyrosine-based activation motif (ITAM) 

within the FcRγ chain is tyrosine phosphorylated by SFKs leading to a serious of 

signalling events that result in activation of phospholipase C gamma (PLCγ), elevation 

of cytosolic calcium, thromboxane A2 (TXA2) synthesis, granule secretion, and integrin 

activation (Berndt et al., 2014; Li et al., 2010).  

 

In regions of low shear such as the venous circulation, some platelet integrins, 

including α2β1, are able to mediate stable binding of platelets to the subendothelial 

matrix directly (Dumont et al., 2009; Li et al., 2010). In contrast, in areas of high shear, 

platelets become tethered at sites of injury through the platelet GPIb-IX-V complex, 

which binds reversibly to immobilised VWF in the sub-endothelium via GPIb, thus 

allowing platelets to roll across the site of the injury (Varga-Szabo et al., 2008; Yago 

et al., 2008). However, this interaction is stabilised through direct interactions with 

collagen, which are mediated via the platelet collagen receptors α2β1 and GPVI. The 

interaction of VWF with GPIb-IX-V leads to activation of a SFK and phosphoinositide 

3-kinase (PI3K) resulting in PLCγ activation. It also triggers signalling through Akt, 

resulting in activation of the downstream mitogen-activated protein kinases (MAPKs), 

leading to TXA2 synthesis, and granule secretion (Figure 1.2) (Berndt et al., 2014; Li 

et al., 2010). 
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Platelet adhesion triggers signalling events that ultimately lead to an increase in 

intracellular calcium levels and structural changes that are associated with platelet 

spreading and the release of intracellular granule contents and integrin activation 

(Berndt et al., 2014; Li et al., 2010; Varga-Szabo et al., 2009). 

 

 

 

Figure 1.2 Signalling pathways of the major platelet adhesion receptors 
Btk; Bruton tyrosine kinase, CalDAG-GEF1; DAG-regulated GEF 1, DAG; diacylglycerol, eNOS; 
endothelial NO synthase, FcRγ; immunoglobulin epsilon receptor subunit γ, FcγRIIa; immunoglobulin 
γFc receptor IIa, GP; glycoprotein, IP3; inositol trisphosphate, LAT; transmembrane adapter linker for 
activated T-cells, MAPKs; mitogen-activated protein kinases, NO; nitric oxide, PI3K; phosphoinositide 
3-kinases, PKG; cGMP-dependent protein kinase, PLCγ; phospholipase C gamma, RIAM; Rap1-GTP–
interacting adaptor molecule, SFK; Src family kinases, sGC; soluble guanylyl cyclase, SLP76; Src 
homology 2 domain– containing leukocyte phosphoprotein of 76-kilodalton, TXA2; thromboxane A2, 
VWF; von Willebrand factor. Adapted, with permission, from Li et al. (2010). 

 

 

1.1.3.2 Secretion 

The release of the contents of the intracellular secretory granules of platelets into the 

surrounding environment is fundamental to thrombus formation as it mediates further 

platelet activation and interactions with other cells (reviewed in Joshi & Whiteheart 
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(2017); Sharda & Flaumenhaft (2018)). The process of exocytosis is typically mediated 

by the SNARE (soluble N-ethylmaleimide-sensitive fusion attachment protein receptor) 

complexes, which are formed through protein interactions between the vesicle (v)-

SNAREs (also known as vesicle-associated membrane proteins (VAMPs)), which 

reside on the vesicle or granule membrane, and target (t)-SNAREs present on the cell 

membrane and are subgrouped into the synaptosomal-associated proteins (SNAPs) 

and the syntaxins (STXs) (Hong, 2005). 

 

Although platelets contain different types of granules, current knowledge supports a 

single model for platelet secretion that involves the (v)-SNARE, mainly VAMP8, and 

the (t)-SNAREs, STX11 and SNAP23 (Golebiewska & Poole, 2015; Heijnen & Van der 

Sluijs, 2015). In addition to SNAREs other ‘granule’ machinery and ‘plasma membrane’ 

machinery are involved. The ‘granule’ machinery includes the SNARE-associated 

proteins UNC13D (Protein unc-13 homolog D; also known as MUNC13-4), the small 

GTPase Rab27 (Ras-related protein Rab-27) and the Rab effector SLP4 

(Synaptotagmin-like protein 4), while the ‘plasma membrane’ machinery includes 

STXBP2 (Syntaxin-binding protein 2; also known as Munc18b) and the regulator 

STXBP5 (Syntaxin-binding protein 5; also known as Tomosyn 1).  

 

Following platelet activation, sequential steps lead to secretion including granule 

tethering, docking via SNARE engagement, and membrane fusion, then cargo release 

(see Figure 1.3). Initially, granules tether to the lipid rafts in specific regions of the 

plasma membrane through the Rab27-UNC13D interaction and SLP4. Tethering 

facilitates pairing of the SNARE proteins between the vesicles (VAMP8) and the 

membrane (STX11-SNAP23-STXBP2) that lead to membrane fusion. Finally, 

interaction of the opposing SNARE is mediated by the Rab27-UNC13D complex on 

the granule leading to cargo release (Joshi & Whiteheart, 2017; Sharda & Flaumenhaft, 

2018). The presence of multiple SNAREs and SNARE-effectors in platelets that are 

able to contribute to granule exocytosis suggest a restricted spatial and temporal 

regulation of secretion for granules of different type or content (Golebiewska & Poole, 

2015; Heijnen & Van der Sluijs, 2015; Joshi & Whiteheart, 2017; Sharda & 

Flaumenhaft, 2018).  
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Figure 1.3 The currently accepted model of platelet granule secretion 
Three SNARE proteins form the core SNARE complex in platelet secretion; vesicle transmembrane 
VAMP8, membrane-anchored STX11 and SNAP23. Additionally, the SNARE-associated proteins, 
UNC13D and STXBP2, the small GTPases, Rab27 and SLP4 are also essential for secretion. Adapted, 
with permission, from Heijnen & Van der Sluijs (2015). 

 

 

1.1.3.3 Extension 

The molecules released from platelets, which include ADP, epinephrine, TXA2 and 

serotonin, promote the recruitment and activation of other platelets at the site of injury. 

Platelets respond to these soluble agonists via specific seven-transmembrane-domain 

G-protein-coupled receptors (GPCRs) which trigger downstream signalling through 
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one of four G-proteins each consisting of 3 subunits, α, β and γ. When a ligand binds 

to its cognate GPCR, the α-subunit of the heterotrimeric G-protein detaches from the 

receptor and the β/γ complex, triggering downstream signalling events. G-proteins are 

classified based on the similarity of their α-subunits into four subfamilies: Gq, Gi/Gz, 

G12/G13 and Gs. Figure 1.4 shows the platelet GPCRs and their ligands (reviewed in 

Li et al. (2010)). 

 

With the exception of Gs, signalling through the G-proteins in platelets results in 

platelet activation, while signalling through Gs, which is coupled to the prostacyclin 

receptor, results in inhibition of platelet activation following stimulation of adenylyl 

cyclase-dependent cAMP synthesis. G13 signalling activates RhoA which induces 

myosin light chain-dependent contraction, resulting in platelet shape change and 

granule secretion (Klages et al., 1999; Kozasa et al., 1998). Signalling through Gi 

relieves the inhibitory effect of cAMP-dependent protein kinase, activating the PI3K/Akt 

signalling pathway that induces granule secretion, TXA2 synthesis and activation of 

the critical mediator of integrin activation; Rap1 (Li et al., 2003b; Lova et al., 2003). Gq 

transmits cellular signals via the PI3K/Akt signalling pathway, and via activation of 

PLCβ that catalyses the hydrolysis of phosphatidylinositol 4,5 bisphosphate to inositol 

trisphosphate (IP3) and diacylglycerol (DAG). IP3 and DAG activate calcium 

mobilisation and protein kinase C (PKC) respectively, leading to platelet granule 

secretion. Additionally, they both indirectly activate αIIbβ3 integrin and MAPKs through 

activation of the DAG-regulated guanine nucleotide exchange factor (GEF) 1 (CalDAG-

GEF1) that activates Rap1 (Crittenden et al., 2004; Varga-Szabo et al., 2009).  

 

Despite the considerable redundancy in the signalling pathways in platelets, it is 

noteworthy that while upstream signalling events vary according to the stimulus and 

the receptor activated, the downstream signalling pathways that ultimately lead to 

granule secretion, TXA2 synthesis, shape change and activation of αIIbβ3 are similar. 

 

1.1.3.4 Consolidation / Aggregation 

The αIIbβ3 integrin is the most abundant receptor on the platelet surface and it plays 

a crucial role in mediating platelet aggregation (Li et al., 2010; Wagner et al., 1996). It 

is maintained in a low-affinity state on resting platelets but following platelet activation, 

αIIbβ3 undergoes a conformational change to a high-affinity form that allows binding 
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to its ligands, fibrinogen and VWF, in an “inside-out” signalling process that requires 

the binding of talin and kindlin to the cytoplasmic domain of β3 (Bouaouina et al., 2008; 

Ma et al., 2008). Binding of αIIbβ3 to its ligands results in positive feedback and 

“outside-in” signalling, where Gα13 binds to the cytoplasmic domain of β3 and 

activates SFKs (Gong et al., 2010) that subsequently inactivate RhoA allowing platelet 

spreading on fibrinogen (Arthur et al., 2000; Gong et al., 2010) and mediating activation 

of PLCγ2 (Boylan et al., 2008) leading to further platelet activation, secretion, 

spreading and platelet-platelet interactions (aggregation), forming the primary platelet 

plug (Shattil et al., 2010). 

 

 

 

Figure 1.4 Platelet G-protein-coupled receptors and their G-proteins 
Platelet agonists bind to their cognate receptors stimulating platelet activation via the G-proteins, Gi, Gq 
or G13. Thrombin, serotonin and thromboxane A2 (TXA2) mediate platelet activation through the Gq 
and G13-coupled receptors, protease-activated receptor-1 (PAR-1), PAR-4, 5-hydroxytryptamine (5HT) 
and TXA2/prostaglandin H2 receptors (TP) respectively. ADP mediates initial platelet activation via the 
Gq-coupled receptor P2Y1, while sustained platelet aggregation is mediated through the Gi-coupled 
P2Y12 receptor. The Gi-coupled α2-adrenergic receptor (ADRA2) activates platelets in response to 
epinephrine. Stimulation of the Gs-coupled prostacyclin receptor (IP) leads to platelet inhibition. 
Adapted, with permission, from Li et al. (2010). 
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1.1.3.5 Platelet Procoagulant Activity 

Platelets also have procoagulant activity, as the exposed anionic phospholipids on the 

activated platelet membrane provide a surface for activation of coagulation factors X 

and prothrombin (Suzuki et al., 2010). The assembly of the tenase and prothrombinase 

complexes results in the generation of thrombin, which catalyses the formation of fibrin 

monomers, which when crosslinked, form a mesh that coats the primary platelet plug 

to form a stable haemostatic clot at the site of injury. 

 

1.1.4 Inherited platelet bleeding disorders 

Abnormalities in platelet number or function can be manifested as a predisposition to 

either thrombosis or bleeding. Symptoms of excessive bleeding can arise from either 

acquired or inherited causes, both presenting with similar bleeding patterns. However, 

patients with inherited defects usually present with symptoms early in life and have a 

family history of bleeding, whereas acquired disorders tend to be sporadic, occurring 

later in life. Inherited platelet bleeding disorders (IPDs) are a heterogeneous group of 

conditions arising from defects in genes which have a role in platelet production or 

function that result in an increased risk of bleeding.  

 

Patients with IPDs present with a broad range of mild to severe bleeding symptoms. 

Typically, they exhibit spontaneous mucocutaneous bleeding, epistaxis, menorrhagia 

and gastrointestinal bleeding. Patients may also develop purpura, bruise easily and 

experience prolonged bleeding after trauma. Some IPDs are associated with additional 

characteristic clinical signs and symptoms which facilitate their diagnosis. For example, 

patients with Wiskott-Aldrich syndrome usually suffer from severe immunodeficiency, 

while patients with Hermansky-Pudlak syndrome commonly present with skin and hair 

hypopigmentation (Derry et al., 1994; Hermansky & Pudlak, 1959). In contrast, some 

patients can be asymptomatic and are only at risk of bleeding when exposed to 

haemostatic challenges such as surgery or childbirth.  

 

1.1.4.1 The molecular basis of inherited platelet disorders 

IPDs tend to be classified according to the predominant features observed in affected 

patients, thus disorders in platelet secretion or aggregation are well established, as are 

inherited forms of thrombocytopenia. However, considerable heterogeneity in the 

phenotypic and clinical expression of IPDs mean that the features of different 

subgroups of IPDs frequently overlap. For example, Quebec platelet syndrome is 
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classified as a platelet secretion disorder, although it is also characterised by moderate 

thrombocytopenia (Tracy et al., 1984). As understanding of platelet biology has grown, 

some of the overlapping features have been explained by the recognition that many of 

the genes required for platelet development encode proteins that are also involved in 

mature platelet function (Bariana et al., 2017; Daly, 2017; Pecci & Balduini, 2014; 

Savoia, 2016). This knowledge has resulted in the grouping of IPDs based on the 

particular qualitative and/or quantitative defects displayed by the platelets as well as 

any additional clinical features of affected individuals and specific gene defects 

identified. To date, defects in at least 69 genes have been identified in patients with 

IPDs (Figure 1.5, Appendix 1). 

 

 

 

Figure 1.5 Genes associated with inherited platelet bleeding disorders and their 
role in megakaryocyte maturation, platelet production and function 
Many genes that play roles at different stages of megakaryocyte differentiation, proplatelet production 
and platelet function have been identified in association with inherited platelet bleeding disorders. 
Defects in these genes can result in thrombocytopenia and/or platelet function abnormalities. Adapted, 
with permission, from Pecci & Balduini (2014); Savoia (2016) and further updated. 
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1.1.4.2 Diagnosis of inherited platelet function disorders 

Diagnosis of an IPD is usually based on the clinical evaluation of the patient and the 

phenotype of the patient’s platelets. In a minority of cases, diagnosis is supported by 

DNA analysis to identify the underlying gene defect. Prior to undertaking platelet 

phenotyping, initial laboratory tests are usually conducted to exclude coagulation 

disorders, in particular type 1 VWD, the clinical features of which are similar to those 

of IPDs (Gresele et al., 2015).  

 

Platelet phenotyping  

Platelet phenotyping includes measurement of platelet count and size, the use of light 

microscopy to examine platelet morphology and platelet function testing using light 

transmission aggregometry (LTA). Additional assays and analyses that are 

occasionally used to phenotype platelets include assessment of platelet receptor levels 

by flow cytometry, electron microscopy to examine platelet ultrastructure, 

aggregometry using antagonists targeting specific platelet receptors, assessment of 

platelet thrombus formation on collagen at arterial shear rates, serotonin uptake and 

clot retraction assays (Gresele et al., 2015). 

 

As the gold standard test used to assess platelet function, LTA records the change in 

light transmission of a sample of platelet-rich plasma that occurs over time in response 

to specific agonists (Born, 1962). Although the exact response depends on the agonist 

and the concentration at which it is used, classically the initial platelet response 

commences with a lag phase, followed by a decrease in light transmission due to 

changes in platelet shape, then by an increase in transmitted light, known as the 

primary reversible wave, due to platelet aggregation in the presence of an external 

agent. A secondary wave is then observed as a result of sustained aggregation 

following the release of platelet granule contents, which result in a further increase in 

light transmission. Panels of agonists are used at a range of concentrations. The 

agonists include ADP, adrenaline, collagen, ristocetin, arachidonic acid, U46619 (a 

TXA2 analogue), protease-activated receptor-1 (PAR-1) and PAR-4 activation 

peptides and collagen-related peptide (CRP). LTA has also been adapted to allow 

assessment of dense granule secretion by the addition of luciferin-luciferase reagent 

and monitoring ATP release in a lumi-aggregometer (Miller, 1984).  
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The differential aggregation responses of platelets to a panel of agonists facilitate the 

identification of the two best characterised IPDs, Glanzmann thrombasthenia and 

Bernard-Soulier syndrome, since they are associated with characteristic aggregation 

responses. Furthermore, where the diagnosis of a specific disorder is not possible, the 

responses allow patients to be subgrouped according to the specific pattern of agonist 

responses. Thus, patients can be grouped according to whether their platelets display 

defects in Gi signalling, the TXA2 pathway, dense granule secretion, Gq signalling or 

GPVI signalling (Dawood et al., 2012). Indeed, most platelet defects identified by LTA 

were shown to fall into the first three of these subgroups (Dawood et al., 2012). A 

defect in the Gi signalling pathway appears in LTA as a defect in response to ADP and 

adrenaline. TXA2 pathway defects are characterised by a marked abnormality in 

response to arachidonic acid and the TXA2 analogue, U46619, can be used to 

distinguish between defects in TXA2 synthesis (normal platelet aggregation) and 

defects in the TXA2 receptor or in its downstream signalling pathway (impaired platelet 

aggregation). Patients with dense granule secretion defects present with a decrease 

in ATP secretion in response to all agonists (Dawood et al., 2012). 

 

Genetic analysis in inherited platelet disorders  

In addition to being of diagnostic value, genetic analysis in patients with IPDs can 

complement the results of platelet phenotyping, identify reasons for unexplained 

bleeding, allow assessment of bleeding risk, and facilitate genetic counselling of 

affected individuals. Improvements in our understanding of megakaryopoiesis, 

thrombopoiesis and platelet function in recent years have been driven by the 

development of molecular and genetic technologies such as next-generation 

sequencing (NGS), which have in turn led to the association of 34 new genes with IPDs 

over the last eight years, a number that represents approximately half of all genes 

known to contribute to IPDs in humans (Figure 1.6).  

 

Characteristic clinical features and platelet phenotypes are helpful in directing genetic 

analyses to a single or a few genes to confirm the diagnosis, and Sanger sequencing 

is useful for confirming the diagnosis of IPDs in those cases when phenotypic analysis 

suggests defects in particular genes such as in Glanzmann Thrombasthenia and 

Bernard-Soulier syndrome, or in membrane receptors for specific agonists such as the 

P2Y12 ADP, TXA2 and GPVI receptors. However, in those cases where platelet 

phenotyping does not direct genetic analysis, Sanger sequencing is impractical. The 
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development of NGS technologies has enabled large-scale simultaneous genetic 

analysis of target gene panels, whole exomes, or whole genomes and has facilitated 

the discovery of many novel genes associated with IPDs, of which the first was 

NBEAL2, defects in which are associated with Grey platelet syndrome (Albers et al., 

2011; Gunay-Aygun et al., 2011; Kahr et al., 2011). Since then, several other genes 

have been implicated in different IPDs using NGS technologies and many novel 

mutations in known genes associated with IPDs have also been documented. The role 

of NGS in the investigation of patients with IPDs is discussed more fully in chapter 3 

of this thesis. 

 

Approximately half of all patients with IPDs present with clearly associated clinical 

features that allow their diagnosis by sequencing a panel of genes, one of which is 

likely to harbour the underlying causative defect (Gresele et al., 2015; Sivapalaratnam 

et al., 2017). The other 50% of patients remain partially diagnosed, and the underlying 

genetic defect(s) are not identified. Although considerable advancements in the 

molecular genetic techniques that facilitate DNA analysis have been made in recent 

years, genetic diagnosis in these patients remains challenging due to the variable 

clinical expression, disease heterogeneity and multifactorial basis of the disease, and 

the possible contribution of other factors, such as infection, drug use, and other 

acquired disorders, to the diagnosis as well as the lack of knowledge of some aspects 

of platelet biology (Daly et al., 2014; Watson et al., 2013). These patients are 

categorised with mucocutaneous bleeding of unknown cause  

 

 

 

Figure 1.6 Genes recognised to be associated with inherited platelet bleeding 
disorders since 2010  
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1.2 The aims of this study 

The underlying genetic defect remains unknown in approximately 50% of patients with 

IPDs. The overarching hypothesis of this study is that IPDs in these patients are due 

to monogenic or oligogenic inheritance of alterations in genes encoding proteins 

essential for platelet formation and/or function. Thus, this study had three broad aims, 

which were to: 

i. Identify potential disease-causing genetic variants in patients with IPDs via 

analysis of whole exome sequence (WES) data using a variety of 

bioinformatic tools  

ii. Investigate the pathogenicity of selected variants using in vitro approaches  

iii. Identify novel genes associated with IPDs 

 

To achieve these aims, WES analysis was undertaken for 34 individuals who had been 

clinically diagnosed as having excessive bleeding symptoms and a suspected IPD. All 

patients were enrolled in the UK Genotyping and Phenotyping of Platelets (UK-GAPP) 

study and extensive platelet phenotyping had resulted in them being assigned to one 

of two subgroups according to whether their platelets showed a Gi-signalling defect, or 

a defect in platelet secretion. WES analysis was undertaken for all patients resulting in 

the identification of 98 candidate disease-causing variants in each index case (see 

chapter 3). Two potential disease-causing genetic variants in FLI1 and ETV6 that were 

identified in patients with platelet secretion defects were selected for further 

characterisation (see chapters 4 and 5). Finally, to identify novel genes involved in 

platelet granule biogenesis and secretion, gene expression was examined in a 

megakaryocytic cell line before and after knockout/down of FLI1, which encodes a 

transcription factor required for megakaryopoiesis, defects in which are associated with 

platelet granule abnormalities. Comparison of the gene expression data with that in 

platelets from patients with FLI1 defects and with the results of WES analysis in 

patients with secretion defects highlighted several novel genes of interest (see chapter 

6).   
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2 Chapter 2. Materials and Methods 
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2.1 Materials 

 

2.1.1 Plasmids 

The SnapGene Viewer software (version 4.1.5) was used to generate schematic 

diagrams for all plasmids used in this work, which can be viewed in Appendix 2. The 

expression vector pSG5 was from Agilent Technologies and the enhanced green 

fluorescent protein (EGFP) plasmids, pEGFP-N2-Empty Vector (EV) and pEGFP-N3-

EV, were from Clontech laboratories. The plasmid pCMV6-AC-HA-His-EV (pCMV6) 

was purchased from Origene (OriGene Technologies), while the pGEM®-T Easy 

vector was supplied by Promega. The CRISPR plasmid pSpCas9(BB)-2A-EGFP was 

from Addgene (PX458, plasmid # 48138) and used to generate the CRISPR/Cas9 

(clustered regularly interspaced short palindromic repeats / CRISPR associated 

protein 9 ) plasmid after ligation with the designed guide RNA (gRNA) sequence (Ran 

et al., 2013). 

 

The pSG5-FLI1 plasmid containing the full-length wild-type (WT) FLI1 cDNA was kindly 

provided by Professor M Trojanowska, Boston University (Watson et al., 1992). 

Plasmid pEGFP-N2-FLI1 containing the FLI1 cDNA was generated by Dr V Leo, 

Sheffield Haemostasis Group prior to this study. The pCMV6-AC-HA-His-ETV6 

(pCMV6-ETV6) plasmid containing the full-length ETV6 cDNA was a gift from 

Professor J Di Paola, University of Colorado Anschutz Medical Campus (Noetzli et al., 

2015). 

 

Three derivatives of the pGL3 reporter plasmid containing promoter fragments from 

three different genes cloned upstream of the Firefly luciferase cDNA were used. The 

pGL3-GP6 plasmid containing a fragment corresponding to nucleotides -238 to -1 of 

the GP6 (glycoprotein VI) promoter was generated by members of the Haemostasis 

Research Group prior to this study (Stockley et al., 2013). The pGL3-MMP3 and pGL3-

PF4 plasmids were a gift from Dr A Shimamura, Department of Paediatrics, University 

of Washington (Zhang et al., 2015); pGL3-MMP3 contains a DNA fragment 

corresponding to nucleotides -388 to -1 of the matrix metallopeptidase 3 (MMP3) 

promoter, whereas pGL3-PF4 contains a fragment corresponding to nucleotides -300 

to -1 of the platelet factor 4 (PF4) gene. The plasmid pRL-null was purchased from 

Promega (Promega, Southampton, UK).  
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2.1.2 Oligonucleotide primers 

Oligonucleotide primers were supplied by Eurofins Genomic apart from the TaqMan™ 

probes which were from Applied Biosystems Life Technologies. Oligonucleotides were 

handled and stored according to the manufacturers’ instructions. Working 

oligonucleotide primer concentrations for polymerase chain reaction (PCR) and 

sequencing were 10 µm and 1 µm, respectively. Table 2.1 provides details of all 

oligonucleotide primers used. 

 

 
 

 

Table 2.1 Oligonucleotide primers used in the study 
Name Sequence (5’ - 3’) 

Sequencing and PCR amplification  

M13_F TGTAAAACGACGGCCAGT 

M13_R CAGGAAACAGCTATGACC 

T7_F TAATACGACTCACTATAGGG 

CMV_F CGCAAATGGGCGGTAGGCGTG 

EGPF-N CGTCGCCGTCCAGCTCGACCAG  

U6_F CGTAACTTGAAAGTATTTCGATTTCTTGGC 

FLI1-exon7_F* CAGGGCCAGCACATAGTAGA 

FLI1-exon7_F# tgtaaaacgacggccagtGAGAAAGCACATCTGTCAAG 

FLI1-exon7_R# caggaaacagctatgaccCCTCCATCAGTTGACCATGT 

FLI1-exon8_F#* tgtaaaacgacggccagtCTTATGGTTGGTACGGTTGT 

FLI1-exon8_R#* caggaaacagctatgaccCAGGTGTCTGGACTTAGGAC 

FLI1-exon9_F# tgtaaaacgacggccagtGAACTGGGTTCTGCCTTCTC 

FLI1-exon9_R# caggaaacagctatgaccACATATGTCCTGTTGAGTCC 

FLI1-exon9_R* TTGGGGTTGGGGTAGATTCC 

FLI1-PS2_F ATGACCACCAACGAGAGGAG 

FLI1-PS3_F AGCTGTGGCAATTCCTCCT 

FLI1-PS5_R GGACTTTTGTTGAGGCCAGA 

FLI1-PS6_R GGGAGGGACAAAGTTCACCT 

FLI1-PS7_R GTTGGGGTTGGGGTAGATT 

ETV6-exon8-F# tgtaaaacgacggccagtCCAGCTGTATAAGATGATGG 

ETV6-exon8-R# caggaaacagctatgaccTAGTTTGTCTAAGGTGCTCC 

ETV6-cDNA_1 ATAATCACTGCCCAGCGTCC 

Mutagenesis (bold font indicates the targeted nucleotide(s)) 

FLI1-R340C_S TTTATCATAGTAATAACAGAGGGCCCGGCTCAGC 

FLI1-R340C_AS GCTGAGCCGGGCCCTCTGTTATTACTATGATAAA 

FLI1-R340H_S GCTGAGCCGGGCCCTCCATTATTACTATGATAAAAA 

FLI1-R340H_AS TTTTTATCATAGTAATAATGGAGGGCCCGGCTCAGC 

ETV6-R430X_S ATGAAATCATGAGTGGCTGAACAGACCGTCTGGAG 

ETV6-R430X_AS CTCCAGACGGTCTGTTCAGCCACTCATGATTTCAT 

ETV6-R399C_S AAATGTCCAGAGCCCTGTGCCACTACTACAAACTA 

ETV6-R399C_AS TAGTTTGTAGTAGTGGCACAGGGCTCTGGACATTT 

ETV6-R399X_S GAGAAAATGTCCAGAGCCCTGTGACACTACTACAAACTAAACATTA 

ETV6-R399X_AS TAATGTTTAGTTTGTAGTAGTGTCACAGGGCTCTGGACATTTTCTC 

CRISPR Cloning (phosphorylated oligonucleotides) 

FLI1-exon 7-S caccGATCGTTTGTGCCCCTCCAA 

FLI1-exon 7-AS aaacTTGGAGGGGCACAAACGATC 

FLI1-exon 9-S caccgAATGACGGACCCCGATGAGG 

FLI1-exon 9-AS aaacCCTCATCGGGGTCCGTCATTc 

Quantitative polymerase chain reaction (qPCR) 
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Taqman FLI1- FAM™ Hs00956711_m1 

Taqman B2M- VIC™ Hs99999907_m1  
Oligonucleotides were designed for FLI1; ENST00000527786: NM_002017 and ETV6; ENST00000396373: 
NM_001987. Italic lowercase letters indicate nucleotides added to facilitate cloning or sequencing; # primers have 
M13 tails to facilitate sequencing; * primers used to screen for CRISPR edits. 

 

 

2.1.3 Preparation of plasmids and mutagenesis kits 

The QuikChange® Lightning Site-Directed mutagenesis kit was purchased from 

Agilent Technologies. XL10-Gold® Ultracompetent cells were supplied with the 

mutagenesis kit, while calcium competent Escherichia coli (E. coli) NM554 cells were 

prepared in-house and made available for use in the laboratory. Luria-Bertani (LB) 

broth Miller (BP1426), LB agar Miller (BP1425) and NZY+ broth (BP2465) were 

purchased from Fisher BioReagents™. QIAprep miniprep, QIAprep maxiprep kits and 

Qiagen-tip 500 columns were purchased from Qiagen and used for plasmid 

purification. Ampicillin (A6140) and kanamycin (K-4000) were supplied by Sigma. 

 

2.1.4 Cell lines, tissue culture media and transfection reagent  

Human embryonic kidney (HEK) 293T cells were purchased from the American Type 

Culture Collection (ATCC), while human megakaryocytic Dami cells were kindly 

provided by Dr N Morgan, University of Birmingham. Dami cells were cultured in 

Roswell Park Memorial Institute (RPMI) 1640 medium + GlutaMAX™, while HEK 293T 

were cultured in Dulbecco's modified Eagle's medium (DMEM) + GlutaMAX™. For 

simplification, these media will be referred to as RPMI and DMEM hereafter. Both were 

supplemented with 10% foetal bovine serum (FBS) and antibiotic-antimycotic reagent. 

The media (Cat Nos. 10566-016, 61870-010), 100X antibiotic-antimycotic (Cat No. 

15240062) (10,000 units/mL of penicillin, 10,000 µg/mL of streptomycin, and 25 µg/mL 

of amphotericin B) and FBS (Cat No. 10500064) were purchased from Gibco®. 

Dimethyl sulfoxide (DMSO; Cat No. D2438) and 1X trypsin-EDTA (0.12% trypsin, 

0.02% EDTA in Dulbecco′s phosphate buffered saline] solutions; Cat No. 59430C) 

were purchased from Sigma.  

 

Cells were transfected using either Lipofectamine® LTX reagent which was purchased 

from Life Technologies or jetPEI® transfection reagent from Polyplus.  
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2.1.5 Antibodies  

Antibodies were used for western blotting and protein localisation studies. Table 2.2 

lists the antibodies, their suppliers and the dilutions at which they were used. 

 

 

Table 2.2 Antibodies used in the study, their suppliers and working dilutions  

Antibody 

Dilution 

Modification Company 
Catalogue 

No. 
Microsc

opy 
WB 

Rabbit polyclonal anti-
human FLI1 

1:250 1:500 Unconjugated 
Thermo 
Fisher 

Scientific 
PA5-29597 

Rabbit polyclonal anti-
human ETV6 

--- 1:500 Unconjugated Abcam ab185816 

Mouse monoclonal anti-
human TATA-binding 

protein (TBP) 

--- 
1:1000 Unconjugated Abcam ab51841 

Mouse monoclonal anti-
human Cyclophilin B 

--- 
1:1000 Unconjugated Abcam ab178397 

Mouse monoclonal anti-
human β-tubulin I 

antibody 

--- 
1:500 Unconjugated Sigma T7816 

Goat polyclonal anti-rabbit 
IgG (H+L) antibodies 

1:500 --- 
Alexa Fluor™ 

488 dye 
Invitrogen A-11008 

Donkey polyclonal anti-
rabbit IgG (H + L) infrared 
fluorescent dye (IRDye)® 

680RD  

--- 1:10000 IRDye ® 680RD Li-Cor 926-68073 

Donkey polyclonal anti-
mouse IgG (H + L) IRDye 

® 800CW  
--- 1:10000 IRDye ® 800CW Li-Cor 926-32212 

 

 

2.1.6 Protein analysis reagents  

Protein was extracted using the radioimmunoprecipitation assay buffer (RIPA) from 

Thermo Scientific (89901) or the NE-PER™ nuclear and cytoplasmic extraction 

reagents which were purchased from Pierce Biotechnology. SIGMAFAST™ Protease 

Inhibitor Cocktail (PIC) tablets, EDTA-Free (S8830) were from Sigma. The Pierce 

bicinchoninic acid (BCA) protein assay kit was from Thermo Fisher Scientific. Western 

blotting was carried out using Novex™ NuPAGE® Gels and XCell SureLock™ Mini-

Cell system (Invitrogen, Thermo Fisher Scientific). NuPAGE 4-12% Bis-Tris gels 1.5 

mm, NuPAGE lithium dodecyl sulphate (LDS) sample buffer, 10X NuPAGE reducing 

agent, NuPAGE® antioxidant, NuPAGE™ MOPS SDS running buffer, Invitrolon™ 

0.45 µm pore size PVDF membrane and NuPAGE® transfer buffer were supplied by 

Invitrogen, Thermo Fisher Scientific. Odyssey Blocking buffer and Chameleon™ pre-

stained protein ladder were obtained from Li-Cor. Methanol (M/4000/17) was 
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purchased from Fisher Chemical, while Tween®20 (663684B) was from VWR Life 

Science. 

 

2.1.7 Enzymes and cloning reagents 

Several of the reagents required for cloning were purchased from New England 

Biolabs including 20,000 unit/mL BbsI-high fidelity (R3539L) restriction enzyme, 10X 

restriction enzyme (CutSmart®) buffer, 400,000 U/mL T4 DNA ligase (M0202S), 10X 

T4 ligation buffer and 10 mg/mL bovine serum albumin (BSA). TA cloning was carried 

out using the pGEM®-T Easy Vector System from Promega (A1360) which, in addition 

to the vector, includes T4 DNA ligase (3 u/µL) and 2X rapid ligation buffer. 

 

Several Taq polymerase kits were used including the 1.1X Reddymix DNA Polymerase 

Mix (AB-0575/LD), which contains Taq DNA Polymerase, dNTPs, reaction buffer, 1.5 

mM magnesium chloride and a red gel loading dye (Thermo Scientific), GoTaq® G2 

DNA polymerase kit (M7845), which contains 5X colourless GoTaq® reaction buffer 

and GoTaq® G2 DNA polymerase (Promega). The expand long template enzyme mix 

and 10X expand long template buffer 1, with 17.5 mM MgCl2 supplied with the Expand 

Long Template PCR system from Roche Diagnostics (11681834001) were also used. 

A solution of 100 mM deoxy-adenosine triphosphate (dATP) (U1240) was obtained 

from Promega, and 10 mM dNTPs (KN1011) were purchased from Kapa Biosystems. 

 

2.1.8 Other commercial kits and reagents 

Additional reagents and kits not mentioned above, but which were used during this 

study are listed in Table 2.3. 
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Table 2.3 Commercial kits and reagents used in this study 

Kit / Chemical / Reagent 
Catalogue number 

/ Product code 
Supplier 

4',6-diamidino-2-phenylindole (DAPI) D1306 
Molecular Probes® by Life 
Technologies 

Agarose BP1356 Fisher BioReagents™ 

Ammonium chloride A9434 Sigma 

BD Cytofix/Cytoperm™ Fixation buffer  554722 BD Bioscience  

BSA lyophilised powder  A7888 Sigma 

Clariom™ D Assay, human 902922 Affymetrix; Applied Biosystems™ 

Ethanol E/0665DF/17 Fisher Chemical 

Ethidium bromide (10 mg/mL in H2O) E1510 Sigma 

EZ-RNA Total RNA Isolation Kit 20-400-100 Biological industries 

GenElute™ mammalian genomic DNA 
miniprep kits 

G1N70 
 

Sigma 

Glycerol  G/0650 Fisher 

HyperLadder 1kb BIO-33053 Bioline 

HyperLadder IV (100s bp) BIO-33056 Bioline 

Isopropanol (propan-2-ol)  P/7500/17 Fisher Chemical  

Phorbol 12-myristate 13-acetate (PMA) P1585 Sigma 

Phosphate buffered saline (PBS) P4417 Sigma 

ProLong® Gold anti-fade reagent 
 

P36930 
 

Molecular Probes by Life 
Technologies 

Promega® Dual Luciferase® Reporter 
Assay System kit 

E1910 Promega 

QIAquick gel extraction Kit  28704 Qiagen  

QIAquick PCR Purification Kit  28106 Qiagen 

QuantiTect® reverse transcription kit  205313 Qiagen  

QuickExtract™ DNA extraction solution QE09050 Lucigen- Epicentric 

RT-PCR grade water  AM9935 Ambion  

Sodium acetate 3 M 71196 Sigma 

TaqMan™ gene expression master mix 4369016 Applied biosystem 

Thrombopoietin (TPO), recombinant 
human protein (10 µg) 

PHC9514 Gibco® by Life Technologies 

Tris-borate acetate (TBA) EC-872 National Diagnostics 

Triton® X-100 306324N VWR Life Science  

 

 

2.1.9 Software and online tools 

Several software and online tools were used during this study. These are listed in 

Appendix 3. 
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2.2 Methods 

 

2.2.1 Oligonucleotide primer design 

Oligonucleotide primers for use in mutagenesis reactions were designed using the 

QuikChange primer design tool 

(http://www.genomics.agilent.com/primerDesignProgram.jsp) from Agilent 

Technologies [accessed between 2015 and 2016]. Forward and reverse primers were 

complementary to each other and the region of interest, except where mutagenic 

nucleotides were introduced (indicated in bold font in Table 2.1). Primers for use in 

PCR were designed using Prime3Web (http://primer3.ut.ee/) [accessed between 2015 

and 2018]. Where appropriate, M13 tails were incorporated to facilitate sequencing 

(indicated by # in Table 2.1).  

 

2.2.2 Nucleic acid quantification 

DNA and RNA were quantified in sample solutions by measuring absorbance at 260 

nm using the NanoDrop 1000 Microfluid spectrophotometer (Thermo Fisher Scientific 

UK). The purity of nucleotide samples was assessed using the 260/280 and 260/230 

ratios of the absorbance measurements. 

 

2.2.3 DNA sequencing 

Sanger sequencing was performed using the Applied Biosystems 3730 DNA Analyser 

housed in the Core Genomic Facility, University of Sheffield. The sequence traces 

were analysed using FinchTV software (version 1.4.0) (Geospiza, Inc.), the Standard 

Nucleotide BLAST tool available at 

http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch

&LINK_LOC=blasthome [accessed 2015-2018] and CodonCode Aligner (version 

6.0.2) (CodonCode Corporation). 

 

2.2.4 Amplification of genomic DNA using polymerase chain reaction  

PCR was used to amplify target regions of genomic DNA prior to confirming the 

presence of sequence variants of interest, or the introduction of CRISPR-mediated 

edits. PCR was performed using 100 ng of genomic DNA, 10 µM forward primer, 10 

µM reverse primer (Table 2.1) and 12.5 μl of 1.1X ReddyMix PCR master mix in a total 

volume of 25 μl. Reactions were subjected to the following thermal cycling in a 

GeneAmp® PCR system 9700 (Applied Biosystems®): an initial denaturation step at 

http://www.genomics.agilent.com/primerDesignProgram.jsp
http://primer3.ut.ee/
http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
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95ºC for 2 minutes (mins), followed by 35 cycles of denaturation for 60 seconds (secs) 

at 95ºC, annealing for 60 secs at 55ºC and extension for 1 min at 72ºC, with a final 

extension performed at 72ºC for 10 mins. The PCR product was either directly 

sequenced or subjected first to agarose gel electrophoresis to check the size of the 

amplified product prior to sequence analysis or other use.  

 

2.2.5 Agarose gel electrophoresis of DNA 

Agarose gel electrophoresis was used to separate DNA fragments based on their size, 

and when analysed alongside an appropriate DNA ladder it allowed estimation of the 

size of DNA fragments. DNA fragments of 1 kilobase (Kb) or less were separated in 

2% agarose, while 1% agarose was used for larger fragments. The gel was prepared 

by dissolving the appropriate amount of agarose in 50 mL of 1X Tris-borate acetate 

(TBA) by heating. The mixture was allowed to cool before adding 2 µL ethidium 

bromide (10 mg/ml) and then pouring it directly into the cassette. Following 

solidification of the gel, it was submerged in 1X TBA electrophoresis buffer and 

samples were loaded (7.5–10 µL of DNA ladder or 20–25 µL of PCR product). Samples 

were electrophoresed at 120 V for 30–40 mins until the dye in the DNA ladder had 

migrated 50 to 80% of the length of the gel. Images were acquired using a Bio-Rad 

Gel Doc 2000 ultraviolet (UV) transilluminator using Quantity One imaging software 

from Bio-Rad laboratories (version 4.6.8).  

 

2.2.6 DNA extraction and purification  

Following electrophoresis, a gel slice containing the DNA fragment of interest was 

excised using a sharp, clean scalpel under a FastGene® Blue LED transilluminator 

(Geneflow Limited) and transferred into a 1.5 mL Eppendorf tube. The DNA fragment 

was extracted from the gel slice and purified using the QIAquick gel extraction kit 

according to the manufacturers’ instructions. Briefly, per 1X volume of agarose gel, 3X 

volumes of QG buffer were added. The sample was incubated at 50ºC for 10 mins with 

vortexing every 2–3 mins. When the agarose had dissolved, 1X volume of isopropanol 

was added to the sample, and the homogenous mixture was applied to the QIAquick 

column. After centrifugation for 1 min and discarding the flow-through, 500 µL of QG 

buffer was added to the column, and the flow-through was discarded following another 

centrifugation step. The column was then washed with 750 µL of PE buffer and 

incubated for 5 mins before centrifugation. After discarding the flow-through from the 

washing step, residual washing buffer was removed by an additional centrifugation 
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step. DNA was then eluted by adding 30 µL of EB buffer (10 mM Tris·Cl, pH 8.5) and 

incubating the sample for 5 mins before collecting DNA in a clean 1.5 mL Eppendorf 

tube by centrifugation. All centrifugation steps were performed at ~13,000 x g for 1 min 

in a table-top microcentrifuge at room temperature. 

 

In some situations, PCR products were purified directly using the QIAquick PCR 

purification kit following the manufacturers’ instructions. Briefly, 5 volumes of buffer PB 

were added to 1 volume of the PCR product. The mixture was loaded onto a QIAquick 

column before centrifugation to allow DNA binding to the membrane. The flow-through 

was discarded and the membrane washed with 750 µL PE buffer before centrifuging 

the column again and discarding the flow-through. After a further centrifugation step, 

30 µL EB elution buffer was added. The column was allowed to stand for 5 mins and 

the DNA then collected by centrifugation. All centrifugation steps are carried out at 

~13,000 x g for 60 secs at room temperature. 

 

2.2.7 Site-directed mutagenesis 

Nucleotide alterations were introduced into the cDNA sequence of interest in 

expression plasmids for either FLI1 or ETV6 using the QuikChange Lightning Site-

Directed mutagenesis kit. Mutagenesis was achieved by PCR amplification of 100 ng 

of plasmid DNA template, diluted with 125 ng of each oligonucleotide primer (Table 

2.1), 1 μl dNTP mix, 1.5 μl QuikSolution reagent, 5 µL 10X reaction buffer and 1 μl of 

QuikChange Lightning Enzyme in a final volume of 50 μl. Thermal cycling conditions 

were initiated with a denaturation step at 95ºC for 2 mins, followed by 18 cycles of 

denaturation at 95ºC for 20 secs, annealing at 60ºC for 10 secs and extension at 68ºC 

for 4 mins (30 secs/Kb of plasmid), with a final extension step at 68ºC for 5 mins. The 

amplified product was then treated with 2 μl Dpn I for 5 mins at 37ºC to digest the 

parental, methylated DNA before its introduction into ultracompetent XL10-Gold® 

cells.  

 

2.2.8 Transformation of competent E. coli with plasmid DNA 

Dpn I-treated products of mutagenesis reactions were introduced into XL10-Gold® 

ultracompetent cells, while transformations involving other plasmids were performed 

using competent NM554 E. coli. An aliquot of XL10-Gold® ultracompetent cells or 

competent NM554 cells was thawed on ice. Two to three μl of the DNA sample was 

then mixed with 45 μl of cells in a pre-chilled 14-mL BD Falcon polypropylene round-
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bottomed tube, before incubation on ice for 20 mins, heat-pulsed at 42ºC for 30 secs 

and incubated on ice for 5 mins. Following the addition of 500 µL of pre-warmed NZY+ 

broth, the bacteria were allowed to recover by incubation at 37ºC, with shaking at 200–

250 revolutions per minute (rpm) for 60 mins. The bacteria were then plated on LB 

agar containing 100 µg/mL of either ampicillin or kanamycin depending on the plasmid 

being prepared and incubated at 37ºC overnight.  

 

2.2.9 Plasmid DNA purification 

 

2.2.9.1 Plasmid DNA purification using the QIAprep spin mini kit 

A single colony was used to inoculate 5 mL of LB broth containing 100 µg/mL of either 

ampicillin or kanamycin. The culture was then incubated overnight at 37ºC, with 

shaking at 200 rpm. A glycerol stock was prepared from each inoculate and stored at 

-80°C for later use. Plasmid mini-preparations were isolated using the QIAprep spin 

miniprep kit according to the manufacturers’ instructions. In brief, bacterial cells were 

harvested by centrifugation at 6,000 x g for 3 mins and resuspended in 250 μl P1 

resuspension buffer. A 250 μl aliquot of P2 alkaline lysis buffer was added to lyse the 

cells and denature the DNA for 4 mins before the reaction was terminated by adding 

350 μl P3 neutralisation buffer, which allows small plasmid DNA molecules to renature 

into double-stranded DNA, while efficient renaturation is not possible for large genomic 

DNA. Cell debris, proteins and genomic DNA were removed by centrifugation for 10 

mins at ~13,000 x g, and the supernatant was then applied to a QIAprep spin column, 

allowing DNA to bind to the membrane. The column was then centrifuged at ~13,000 

x g for 10 mins. The eluate was discarded and the column was washed with 750 µL 

PE buffer and centrifuged again at ~13,000 x g for 1 min, followed by a further 

centrifugation step to remove any residual buffer. DNA was then eluted from the 

column by the addition of 50 μl EB elution buffer, followed by centrifugation at 13,000 

x g for 1 min. Direct sequencing was used to confirm the presence of any desired 

nucleotide changes in the plasmid before use in further work (see section 2.2.3). 

 

2.2.9.2 Plasmid DNA purification using the Qiagen plasmid maxi kit 

A sample from a glycerol stock was used to inoculate 250 mL of LB broth containing 

100 µg/mL of antibiotic before incubation overnight at 37ºC with shaking at 200 rpm. 

Bacterial cells were pelleted by centrifugation at 6,000 x g for 15 mins and resuspended 

in 10 mL P1 resuspension buffer. Cell lysis was achieved by the addition of 10 mL of 
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P2 and incubation for 5 mins. A 10 mL aliquot of chilled buffer N3 was then added to 

neutralise P2 and the sample incubated on ice for 20 mins to allow renaturation of 

plasmid DNA. A Qiagen-tip 500 column was equilibrated by allowing flow-through of 

10 mL QBT buffer. Following the removal of the cell debris, proteins and genomic DNA 

by centrifugation at 20,000 x g for 10 mins, the DNA-containing solution was applied 

to the equilibrated column. The column was washed twice with 15–25 mL QC buffer 

before eluting the DNA in 15 mL QF eluting buffer. The DNA was then precipitated by 

adding 10.5 mL of isopropanol and centrifuging the sample at 15,000 x g for 30 mins 

at 4ºC. The supernatant was discarded, and the DNA pellet was washed with 5 mL 

70% ethanol before centrifugation at 15,000 x g for 10 mins. The supernatant was 

discarded and the DNA pellet allowed to air-dry for 10 mins before it was resuspended 

in 500–1,000 μl distilled water. The final concentration of the DNA was determined and 

its purity assessed using the NanoDrop 1000 spectrophotometer as mentioned in 

section 2.2.2. Direct sequencing was usually conducted before using the plasmid in 

further studies (see section 2.2.3). 

 

2.2.10 Immortalised mammalian cell line culture 

The HEK 293T and Dami established cell lines were utilised for in vitro investigations. 

The reported doubling times for both cell lines are between 24 and 30 hours (hrs) 

(https://www.dsmz.de/catalogues/details/culture/ACC-635.html) (Greenberg et al., 

1988). The HEK 293 line is an adherent human epithelial embryonic kidney cell line 

derived by adenoviral transformation of cells from an apparently healthy female foetus. 

HEK 293T cells are a variant of HEK 293 cells that have the SV40 Large T-antigen, 

which allows for episomal replication of transfected plasmids containing the SV40 

origin of replication.  

 

The Dami suspension cell line was derived from the peripheral blood of a 57-year-old 

male patient with megakaryoblastic leukaemia (Greenberg et al., 1988), and therefore 

is a more suitable model for investigating the role of variants identified in patients with 

platelet bleeding disorders. Additionally, when Dami cells are treated with phorbol 12-

myristate 13-acetate (PMA) and thrombopoietin (TPO), they differentiate further along 

the megakaryocyte (MK) lineage (Greenberg et al., 1988; Lev et al., 2011). 

Cytogenetically, Dami cells are nearly triploid (+1, +2, +3, +4, +5, +6, +8, +11, +12, 

+13, +15, +17, +19, +20, +21, +22) (Greenberg et al., 1988).  

 

https://www.dsmz.de/catalogues/details/culture/ACC-635.html
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Cells were grown to sub-confluence in T75 flasks, and all passages and other 

manipulations of cell lines were conducted in a class II type A biological safety cabinet. 

Media, phosphate buffered saline (PBS) and trypsin were pre-warmed at 37ºC in a 

water bath before commencing any procedures. Cell lines were maintained in a 

humidified tissue culture incubator at 37ºC in the presence of 5% CO2. Cells were 

passaged twice a week or whenever the microscopic estimation of cell confluency 

reached 70–90%. 

 

2.2.10.1 Passaging cells 

HEK 293T cells are adherent and were cultured in DMEM medium supplemented with 

10% FBS and 1X antibiotic-antimycotic reagent. Cells were passaged by first removing 

the growth medium by aspiration, then washing the cells with 10 mL PBS. Following 

removal of the PBS, the cells were incubated with 2 mL trypsin for about 2 mins at 

37ºC. Following cell detachment, 8 mL of medium was added to neutralise the trypsin. 

A 0.5–1 mL aliquot of cells was then added to 10–15 mL fresh medium.  

 

Dami cells were cultured in RPMI 1640 medium supplemented with 10% FBS and 1X 

antibiotic-antimycotic reagent. Cells were passaged by adding 0.5–1 mL of cells from 

a confluent flask directly into a T75 flask containing 15 mL fresh medium.  

 

2.2.10.2 Cell counting and seeding 

Cells were counted manually using a haemocytometer before being seeded. Briefly, 

25 µL of a homogeneous cell suspension was loaded into the haemocytometer 

chamber. Using the 10X objective lens of a light microscope, the focus was set on the 

grid lines, and the cells in at least three squares, containing 16 smaller squares, were 

counted. The number of cells per mL was determined by multiplying the average 

number of cells in each square by 10,000. The number of cells seeded varied 

depending on the experiment and the surface area of the culture dish (summarised in 

Table 2.4). 

 

2.2.10.3 Transfection of HEK 293T and Dami cells 

HEK 293T and Dami cells were transfected differently using different plasmid 

concentrations and transfection reagents. HEK 293T cells were transfected using 

Lipofectamine LTX reagent, while Dami cells were transfected using jetPEI. Both 

transfection reagents form complexes with DNA molecules allowing the negatively 
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charged plasmid DNA to overcome the electrostatic repulsion of the cell membrane 

and enter the cell. Transfection reagents were used according to the manufacturers’ 

instructions. The transfection conditions varied according to the experimental design 

(see Table 2.4). HEK 293T cells were seeded and incubated overnight before being 

transfected. When cells reached 50–70% confluency, DNA was first diluted in serum-

free DMEM media before adding the Lipofectamine LTX. Dami cells were seeded and 

transfected at the same time unless otherwise specified. The DNA and jetPEI were 

diluted separately in 150 mM NaCl. The diluted solutions were vortexed before adding 

the diluted transfection reagent to the diluted DNA. The ratio of Lipofectamine LTX to 

DNA used was 1:1, while the jetPEI to DNA ratio was 2:1 unless otherwise specified. 

 

The transfection mixture was vortexed for 15 secs, and incubated at room temperature 

for 15 mins in the case of Lipofectamine LTX, or 15–30 mins for jetPEI. The transfection 

mixtures were then added drop-wise using a pipette on top of the cell culture medium, 

and the plate was gently rocked to ensure homogeneous distribution. Cells were 

incubated in the tissue culture incubator following transfection and after 24 hrs, the 

media was replaced in the case of plates containing HEK 293T cells or topped-up in 

the case of Dami cells.  

 

2.2.10.4 Cryopreservation and thawing of cells  

Cells from a confluent T75 flask were collected into a 50 mL Falcon tube and 

centrifuged for 5 mins at 1,500 rpm. The medium was discarded, and the cell pellet 

resuspended in 2 mL of cell freezing medium containing 95% FBS and 5% dimethyl 

sulfoxide. The cell suspension was transferred in 1 mL aliquots into cryovials that were 

placed in a polystyrene container and frozen at -80ºC for 24 hrs before long-term 

storage in liquid nitrogen. 

 

Cells were thawed by placing the cryovial directly in a 37ºC water bath for 2 mins. The 

freezing media was removed by transferring the contents of the cryovial to a Falcon 

tube containing 5 mL of pre-warmed media, centrifuging the suspension at 1,500 rpm 

for 5 mins, and discarding the supernatant. The cell pellet was then resuspended in 5 

mL of fresh pre-warmed media. The resuspended cells were transferred to a T75 flask 

containing 10 mL media and incubated in the tissue culture incubator. Cells were 

passaged at least twice before use in further studies. 
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Table 2.4 Transfection conditions for HEK 293T and Dami cells 

Investigation Cells Plate 
Seeding 
density 

(cells/mL) 

Growth 
medium 
(per well) 

Plasmid DNA 
concentration 

Transfection 
reagent 

Transfection 
diluent 

Total 
transfection 

mixture 
volume 

Dual luciferase reporter 
assay 

HEK 293T 24-well plate 4-5 x 105 500 μl 500 ng 1 μl 
Serum-free 

DMEM media 
100 μl 

Dami 24-well plate 8 x 105 500 μl 1,000 ng 2 μl 150 mM NaCl 100 μl 

Cellular localisation 
HEK 293T 6-well plate 2.5 x 105 2 mL 2,500 ng 5 μl 

Serum-free 
DMEM media 

250 μl 

Dami 6-well plate 5 x 105 2 mL 3,000 ng 6 μl 150 mM NaCl 200 μl 

LDS-PAGE and western 
blotting 

HEK 293T 6-well plate 5 x 105 2 mL 2,500 ng 5 μl 
Serum-free 

DMEM media 
250 μl 

DMEM; Dulbecco's modified Eagle's medium, LDS; lithium dodecyl sulphate, PAGE; polyacrylamide gel electrophoresis. 
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2.2.11 Dual luciferase reporter assays  

Dual luciferase reporter assays were performed to examine the ability of FLI1 variants 

to transactivate the GP6 promoter and the ability of ETV6 variants to trans-repress the 

MMP3 and PF4 promoters. HEK 293T and Dami cells were transfected with three 

plasmids: a transcription factor expression plasmid (pSG5-FLI1 or pCMV-ETV6 

bearing WT or mutated cDNAs for FLI1 or ETV6, or the empty vectors pSG5 and 

pCMV), a pGL3-reporter plasmid (containing a GP6, MMP3 or PF4 promoter fragment 

upstream of the Firefly luciferase cDNA), and pRL-null. Use of pRL-null allowed the 

resulting data to be normalised to correct for transfection efficiency. In some 

experiments, variant transcription factors were co-expressed with the WT counterpart 

to mimic the heterozygous situation.  

 

2.2.11.1 Transfection of cells for dual luciferase reporter assays 

HEK 293T cells and Dami cells were seeded into 24-well plates and transfected as 

described earlier (see section 2.2.10.3). For each well of HEK 293T cells, the 

transfection mixture contained 100 ng of expression vector bearing the WT or mutated 

transcription factor cDNA or the corresponding EV with 200 ng of pGL3-reporter, 200 

ng of pRL-null and 1 μl of Lipofectamine LTX in a total volume of 100 μl serum-free 

DMEM. To transfect each well of Dami cells, a transfection mixture containing 200 ng 

of the transcription factor expression vector, 400 ng of the pGL3-reporter of interest 

and 400 ng of pRL-null diluted with 150 mM NaCl to a final volume of 50 µL was 

prepared. In a separate tube, 2 µL of jetPEI reagent was diluted with 150 mM NaCl to 

a final volume of 50 µL and mixed by vortexing. The diluted transfection reagent was 

added to the diluted DNA, the mixture vortexed and incubated at room temperature for 

15–30 mins before being added to the cells. 

 

2.2.11.2 Cell lysis and dual luciferase reporter assays  

Forty-eight hrs post-transfection, cells were washed with 200 μl of PBS, and after 

removing the PBS, cells were lysed by incubation at room temperature for 30 mins with 

100 μl 1X passive lysis buffer supplied with the Promega® Dual Luciferase® Reporter 

Assay kit. Each lysate was then divided into four 20 µL aliquots in the wells of a 96-

well clear-bottom white plate. Following the addition of 24 μl luciferase reagent to three 

wells, Firefly luciferase activity was measured using a microplate reader (Varioskan 

Flash, Thermo Scientific) and SkanIt RE for VarioSkan Flash software (version 2.4.5). 



 
 

 
53 

 

Quenching of luminescence arising from Firefly luciferase and parallel activation of 

Renilla luciferase were accomplished by the addition of 24 μl of Stop&Glo® reagent 

and Renilla luciferase activity was then measured using the same settings.  

 

Following subtraction of background luminescence derived from the sample and 

reagents, Firefly luciferase results were normalised for transfection efficiency using 

Renilla luciferase. The normalised ratios were then expressed as the fold change in 

relation to lysates from cells transfected with the EV. The results were plotted as the 

mean and standard error of the mean (SEM), and paired t-tests were used for 

comparison. 

 

2.2.12 Localisation of overexpressed FLI1 in mammalian cell lines 

Cloning of the cDNA for green fluorescent protein (GFP) either upstream or 

downstream of the cDNA for a gene of interest, without an intermediate stop codon, 

usually allows expression of a fusion protein that retains the properties of the GFP 

without affecting the protein encoded by the gene of interest. The presence of the GFP 

tag in the hybrid protein facilitates cellular localisation studies. This approach was 

adopted to further characterise FLI1 variants as part of this study. Direct detection of 

FLI1 by immunostaining was also carried out. 

 

2.2.12.1 Transfection of cells for cellular localisation studies 

HEK 293T and Dami cells were seeded onto glass coverslips in 6-well plates and 

transfected with the appropriate transcription factor expression plasmid (pEGFP-N2-

FLI1, pSG5-FLI1, or derivatives thereof). To promote attachment and differentiation of 

Dami cells following seeding, 0.2 µL 1 mM PMA and 2 µL 10 µg/mL TPO were added 

to achieve final concentrations of 100 nM PMA and 10 ng/mL TPO. The cells were 

incubated overnight before being transfected as described in section 2.2.10.3. 

 

2.2.12.2 Fixing and staining of cells 

Following incubation for 24 hrs at 37ºC in 5% CO2, cells were washed twice with 1–2 

mL PBS before adding 1 mL of BD Cytofix/Cytoperm™ Fixation buffer to each well. 

The plates were then incubated for 20 mins at room temperature on an orbital shaking 

platform at 130 rpm. The residual fixative solution was then removed in three washing 

steps each with 1–2 mL of PBS. 



 
 

 
54 

 

When immunostaining was used to detect FLI1, excess formaldehyde was quenched 

by adding 1 mL 50 mM NH4Cl to each well for 10 mins before washing the cells three 

times with PBS. Cells were permeabilised by adding 1 mL 0.2% Triton X-100 in PBS 

for 5 mins, followed by four washes with PBS. Protein binding sites were blocked by 

incubation of the coverslips with 1 mL 1% BSA in PBS for 20 mins at room temperature. 

Following three washes with PBS to remove excess unbound albumin, coverslips were 

incubated with polyclonal rabbit anti-human FLI1 antibodies diluted 1:250 in blocking 

buffer to detect FLI1. Following incubation for 1 hr at room temperature, coverslips 

were washed three times with the blocking buffer, then twice with PBS alone. They 

were then incubated in the dark for 1 hr at room temperature with a 1:500 dilution of 

secondary polyclonal goat anti-rabbit IgG (H+L) antibodies conjugated to Alexa Fluor™ 

488. Unbound antibodies were removed by three washes with blocking buffer followed 

by a further three washes with PBS alone.  

 

Coverslips were then mounted onto glass slides using ~300 µL 4',6-diamidino-2-

phenylindole (DAPI)-proLong® Gold anti-fade reagent which was prepared by adding 

1 µL 1000X DAPI nuclear counterstain to 1 mL proLong® Gold anti-fade reagent. 

Slides were stored in the dark at room temperature for 24 hrs to allow the mounting 

medium to dry. The coverslip edges were then sealed with clear varnish and the slides 

stored in the dark at 4ºC before examination (usually within 2–3 weeks).  

 

2.2.12.3 Microscopy 

The inverted Ti-eclipse Nikon widefield microscope with dual camera system housed 

in the Wolfson Light Microscopy Facility at the University of Sheffield was used to 

examine and quantify the distribution of proteins of interest within the cells. Slides were 

imaged for DAPI (blue; stain maximum excitation 350 nm, maximum emission 470 nm) 

and either GFP (bright green; maximum excitation 488 nm, maximum emission 510 

nm) or Alexa Fluor 488 (bright green: maximum excitation 490 nm, maximum emission 

525 nm). Images were acquired using NIS elements advance research software 

(version 4) with the following specification: 100X oil objective lenses, 395 nm and 470 

nm exciting laser using SpectraX LED excitation, with specific emission filter for quad-

DAPI and quad-FITC, and detected with Dual Andor Zyla sCMOS, 2560 x 2160, 6.5 

μm pixels. Images were taken for 8–30 cells per experiment and for each cell, a series 
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of Z-stacked images were taken at 0.2–0.3 µm steps from the top to the bottom of the 

cell.  

 

Images were stored as ND2 files and opened, processed and quantitated using ImageJ 

software (version 1.5). After opening an image, the Z-stacks were compressed to 

obtain the maximum intensity projection. The freehand selection tool was used to draw 

borders around the signals from DAPI and FLI1, and the signal areas were quantified 

using the programme. The percentage of nuclear FLI1 was equivalent to the proportion 

of total FLI1 (fluorescent FLI1-EGFP) which co-localised with the nuclear DAPI signal. 

The results were plotted as the mean and SEM, and t-test was used for comparison. 

 

On a single occasion, super-resolution images were acquired for cells expressing WT-

FLI1-EGFP and R340C-FLI1-EGFP by members of the technical team in the facility 

using the Structured Illumination super-resolution microscope and images were 

provided as JPEG files. 

 

2.2.13 Analysis of the distribution of FLI1 and ETV6 variants in HEK 293T cells  

LDS- polyacrylamide gel electrophoresis (PAGE) and western blotting were carried out 

to examine the subcellular localisation of FLI1 and ETV6 variants and to assess their 

ability to translocate to the nucleus in HEK 293T cells.  

 

2.2.13.1 Transfection of HEK 293T cells for protein extraction 

HEK 293T cells were seeded into 6-well plates and transfected with the expression 

plasmid bearing the WT, mutated cDNA of interest (pSG5-FLI1 or pCMV6-ETV6) or 

EV as described in section 2.2.10.3.  

 

2.2.13.2 Extraction of nuclear and cytoplasmic proteins from HEK 293T cells 

Forty-eight hrs post-transfection, the nuclear and cytoplasmic proteins were extracted 

from cells using the NE-PER™ nuclear and cytoplasmic extraction reagents according 

to the manufacturers’ instructions. In brief, harvested HEK 293T cells were washed 

with ice-cold PBS, and the supernatant discarded after pelleting the cells by 

centrifugation at 500 x g for 5 mins, leaving the cell pellet as dry as possible. The 

pelleted cells were resuspended by adding 200 µL ice-cold CER I reagent and 2 µL 

100X PIC and vortexing vigorously for 15 secs. The cell suspension was then 
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incubated for 10 mins on ice, before adding 11 μl ice-cold CER II. The mixture was 

vortexed vigorously twice for 5 secs with an intervening one-minute incubation on ice. 

The combined use of CER I and CER II disrupted the outer cell membrane and 

released the cytoplasmic contents, which were collected by centrifugation at 16,000 x 

g for 5 mins at 4ºC. The supernatant was immediately removed into a clean pre-chilled 

tube and the remaining insoluble nuclear pellet was then resuspended in 25 µL ice-

cold NER and 0.25 µL 100X PIC and incubated on ice. Every 10 mins, the suspension 

was vortexed vigorously for 15 secs before being returned to the ice. After 40 mins, 

the mixture was centrifuged at 16,000 x g for 10 mins at 4ºC, and the supernatant 

containing the nuclear proteins was immediately transferred to a clean pre-chilled tube. 

All extracts were aliquoted before storage at -20ºC. 

 

2.2.13.3 Determination of protein concentration in cellular extracts  

Protein concentration was determined using the Pierce bicinchoninic acid (BCA) 

Protein Assay Kit according to the manufacturers’ instructions. In brief, following 

preparation of the standards and working reagent as instructed, a 96-well plate was 

placed on ice and the wells loaded with 10 µL of the standards and test samples. A 

200 µL ice-cold BCA working reagent was added to each well, and the plate incubated 

at 37ºC for 30 mins. The plate was then cooled to room temperature on ice before 

measuring the absorbance of sample wells at 562 nm using a plate reader (Varioskan 

Flash, Thermo Scientific) and SkanIt RE for VarioSkan Flash software (version 2.4.5). 

Protein concentrations were interpolated from the standard curves using GraphPad 

Prism. 

 

2.2.13.4 Sample preparation and lithium dodecyl sulphate- polyacrylamide 

gel electrophoresis 

LDS-PAGE was carried out using a Novex™ NuPAGE® Gel and XCell SureLock™ 

Mini-Cell system. Samples were prepared for electrophoresis in pre-chilled tubes by 

diluting 10 µg of protein with 2.5 µL 4X NuPAGE LDS sample buffer, 1 µL 10X NuPAGE 

reducing agent and water to a final volume of 12.5 µL. Samples were denatured by 

boiling at 100°C for 10 mins before loading 10 µL aliquots into 1.5 mm NuPAGE 4–

12% Bis-Tris gels. A 5–10 µL aliquot of Chameleon duo pre-stained protein ladder was 

included in every electrophoresis run. NuPAGE™ MOPS SDS running buffer was used 

for electrophoresis, and 500 μL of NuPAGE® antioxidant was added to the upper buffer 
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chamber to maintain proteins in a reduced state during electrophoresis. The samples 

were separated for 50–60 mins at 200 V at room temperature in an ice bath. 

 

2.2.13.5 Electrophoretic transfer of proteins  

Western blotting was carried out in a semi-wet XCell II™ blot module using 1X 

NuPAGE® transfer buffer supplemented with 10% methanol (or 20% for two blots) and 

0.1% NuPAGE® antioxidant to enhance protein transfer. An Invitrolon™ 0.45 µm pore 

size PVDF membrane was activated by soaking the membrane in methanol for 30 

secs. After rinsing the membrane in deionised water, it was saturated in the transfer 

buffer for several mins before assembly of the blot.  

 

Following electrophoresis, the gel-membrane sandwich was assembled from the 

cathode to the anode in the following order: 2–3 layers of blotting pads, filter paper, the 

gel which was trimmed to remove the wells and the foot, the transfer membrane, filter 

paper, and 2–3 further layers of blotting pads. When two gels were blotted at the same 

time, the layers were repeated in the same order. All the blotting pads, pieces of filter 

paper and transfer membranes were pre-soaked in transfer buffer and kept saturated 

during assembly. The blot module was then filled with transfer buffer while the outer 

buffer chamber was filled with water to dissipate the heat produced during blotting. 

Protein transfer was carried out overnight at 4ºC at a constant voltage of 15 V or at 18 

V if two gels were blotted together.  

 

2.2.13.6 Protein detection on western blots 

Following protein transfer, any remaining protein binding sites on the membrane were 

blocked using Odyssey® PBS blocking buffer for 1 hr. The membrane was then 

incubated for 1 hr with a 1:500 dilution of polyclonal rabbit anti-human FLI1 or ETV6 

diluted in blocking buffer containing 0.2% Tween20. Additionally, monoclonal rabbit 

anti-human Cyclophilin B, which acts as a cytoplasmic marker, and monoclonal mouse 

anti-human TATA-binding protein (TBP), which serves as a nuclear marker, were also 

used, both at a 1:1000 dilution. The membrane was washed 4 times, each time for 5 

mins, with 15 mL 0.1% Tween20-PBS, before being incubated for 1 hr with the 

secondary antibody which was diluted in blocking buffer containing 0.2% Tween20. 

Two secondary polyclonal antibodies were used, each at a 1:10,000 dilution, donkey 

anti-rabbit immunoglobulins conjugated to IRDye 680RD and donkey anti-mouse 
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immunoglobulins conjugated to IRDye 800CW. The membrane was then washed 4 

times, each for 5 mins with 15 mL 0.1% Tween20-PBS, then twice, each for 5 mins 

with 15 mL PBS alone to remove the Tween20. All steps were carried out at room 

temperature using a rolling mixer for the incubations and a rocking shaker for the 

washes. Membranes were protected from light as much as possible at all stages of the 

detection procedure.  

 

Western blots were scanned using the Odyssey® Sa Infrared Imaging System (LI-

COR) through the Image studio software (version 2.0.13) set on the following 

parameters: focus offset 2 mm, intensity 7, and resolution 100 µM. The density of the 

band in the acquired image was then measured using Image Studio Lite software 

(version 5.2), where the average intensity of 3 pixels bordering each band was set as 

the background. The intensity of either the FLI1 or the ETV6 band on the western blot 

was normalised to the relevant nuclear (TBP) or cytoplasmic (cyclophilin B) 

housekeeping protein, and the ratio of FLI1 or ETV6 localized in the nucleus to that 

localized in the cytoplasm was calculated using the following equation: 

(Target protein in Nuc  TBP in Nuc)⁄

(Target protein in Cyto/ Cyclophilin B in Cyto)
 

The percentage of nuclear FLI1 was determined from the same data using the 

following equation: 

 

(FLI1 in Nuc  TBP in Nuc)⁄

(FLI1 in Nuc  TBP in Nuc)⁄ + (FLI1 in Cyto/ Cyclophilin B in Cyto) 
X100 

 

The results were plotted as the mean and SEM, and a Mann-Whitney test was used to 

compare results. 

 

2.2.14 Use of CRISPR/Cas9 to knockout/down FLI1 in Dami cells 

A CRISPR/Cas9 gene editing approach was adopted to generate stable Dami cell lines 

in which FLI1 expression was knocked out/down. The procedure was similar to that 

described by Bauer et al. (2015). 

 

2.2.14.1 CRISPR guide design  

CRISPR guides for editing FLI1 were designed using several online tools ([accessed 

2017–2018], links for all tools are found in Appendix 3), commencing with the Zhang 
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lab tool (Hsu et al., 2013) which suggested several candidate guide sequences 

targeting FLI1. Further tools were then used to facilitate selection between the top 5 

candidate guides including, the Efficiency Prediction tool (Housden et al., 2015), the 

Integrated DNA Technologies (IDT) tool, the CRISPOR tool (Haeussler et al., 2016), 

the CCTop - CRISPR/Cas9 target online predictor tool (Stemmer et al., 2017) and the 

ChopChop tool (Labun et al., 2016). The guides that were predicted to be effective by 

the majority of the design tools, which also avoided the intron-exon junctions, were 

selected.  

 

To facilitate cloning into the CRISPR plasmid pX458 using BbsI, and expression of the 

guide from the U6 promoter, additional nucleotides were added to each guide to result 

in 24- or 25- oligonucleotides. Thus, the forward oligonucleotides had the sequence 

5´-CACCg-target sequence-3´ and the reverse complement oligonucleotide had the 

sequence 5´-AAAC-target sequence-c-3´. However, guanine was not added after the 

CACC sequence to the forward oligonucleotide and cytosine was not added to the 3’ 

end of the reverse complement oligonucleotide if guanine was the first nucleotide in 

the guide sequence.  

 

2.2.14.2 Cloning of the CRISPR guides 

Forward and reverse CRISPR guides were purchased as phosphorylated 

oligonucleotides (mentioned in section 2.1.2) and cloned into pX458. Before cloning, 

guides were annealed to form double-stranded DNA oligonucleotides. Annealing 

reactions contained 1 µL of 100 μM stock of each guide oligonucleotide and 1 μl 10X 

T4 ligation buffer in a final volume of 10 μl. Oligonucleotides were heated in a 

thermocycler at 37ºC for 30 mins, then denatured at 95ºC for 5 mins before being 

allowed to anneal by reducing the temperature to 25ºC at 5ºC/min. The annealed oligos 

were ligated into the CRISPR plasmid using the Golden Gate cloning, where digestion 

and ligation occur in the same reaction. Ligation mixtures contained 100 ng pX458 

circular vector, 1 µL 1 μM annealed oligonucleotides, 5 μl 10X restriction enzyme 

buffer, 20 U BbsI, 10 mM ATP, 5 μg BSA, and 750 U T4 DNA ligase in a final volume 

of 50 μl. Samples were then subjected to 20 cycles of restriction digestion at 37ºC for 

5 mins and ligation at 20ºC for 5 mins, before inactivating the enzymes by heating at 

80ºC for 20 mins. The ligated oligonucleotides were then introduced into competent E. 

coli NM554 cells, mini-preparations of transformed colonies were isolated, and the 
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integrity of the inserted guide sequence was confirmed by sequencing using the U6 

promoter primer, before maxi-preparation of the plasmid (see 

sections 2.2.3, 2.2.8, 2.2.9). The purified plasmid was sequenced again using the 

same primer before transfection. 

 

2.2.14.3 Transfecting Dami cells with CRISPR plasmids 

The conditions for transfection of Dami cells using jetPEI were optimised by 

transfecting cells with a range of concentrations of pEGFP-N3 (1,000–12,000 ng) at 

different jetPEI:DNA ratios (4:1, 3:1, 2:1 and 1:1) as described earlier (see 

section 2.2.10.3). Cell viability and transfection efficiency were assessed 48 hrs post-

transfection using fluorescence-activated cell sorting (FACS) (see section 2.2.14.4). 

 

In the optimised protocol, one million Dami cells in 1 mL RPMI 1640 were seeded into 

each well of a 6-well plate. Cells were transfected with a total of 3,000 ng of CRISPR 

plasmids (1,500 ng of each plasmid) diluted to 100 μl with 150 mM NaCl, and 9 μl of 

jetPEI reagent diluted to 100 μl with 150 mM NaCl to achieve a jetPEI:DNA ratio of 3:1. 

Following overnight incubation, cells were supplemented with 2 mL of fresh media and 

sorted 48 hrs post-transfection using FACS (see section 2.2.14.4) 

 

2.2.14.4 Fluorescence-activated cell sorting 

Forty-eight hrs post-transfection, the viability and efficiency of transfection of cells were 

assessed using the BD FACSAria IIu (BD Bioscience) housed in the Flow Cytometry 

Core Facility at the University of Sheffield Medical School. Where appropriate, cells 

were also sorted using the EGFP signal. Cells were prepared for analysis by passage 

through a 50 μm filter into a FACS tube and then loaded into the machine. Viable and 

single cells were gated initially according to side scatter areas (SSC-A) and forward 

scatter areas (FSC-A), and their distribution on the forward scatter height (FSC-H) and 

FSC-A plot, respectively. EGFP positive cells were detected using the blue 530/30 filter 

and gated according to SSC-A. Figure 2.1 illustrates the parameters used to sort EGFP 

positive cells. 

 

Gated cells were bulk sorted into a collection tube containing 1 mL of media by the cell 

sorter and then sorted into single cells by limiting dilution into a 96-well plate containing 

100 µL of fresh media per well. Limiting dilution was carried out by first counting the 
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cells using a haemacytometer. The volume of medium containing 30 cells was then 

diluted to 10 mL to achieve a concentration of 3 cells/mL, before transferring 100 µL of 

the cell suspension into each well of a 96-well plate. The final cell concentration was 

0.3 cells/well, ensuring that some wells received a single cell and minimising the 

likelihood that any well received more than one cell. Single cells were then allowed to 

expand undisturbed in the incubator for 14 days.  

 

 

 

Figure 2.1 Fluorescence-activated cell sorting of cells expressing enhanced 
green fluorescent protein 

 

 

2.2.14.5 Genomic DNA extraction from CRISPR-edited Dami cells 

Genomic DNA (gDNA) was extracted from CRISPR-edited Dami cells using one of two 

methods. QuickExtract™ DNA extraction solution was used to isolate PCR-ready 

gDNA from an aliquot of cells grown in 96-well plates. Cells were pelleted by 

centrifuging at 1,500 rpm for 5 mins. The media was decanted and cell pellets were 

each resuspended in 50 μl extraction solution before being transferred to 0.5 mL PCR 

tubes/plate. DNA was extracted by heating at 65ºC for 6 mins, then 98ºC for 2 mins in 

a thermocycler before storage of samples at 4ºC prior to analysis.  

 

The GenElute™ mammalian genomic DNA miniprep kit was used to extract higher 

grade DNA for further characterisation. Cells from a confluent 6-well plate were 

pelleted by centrifugation for 5 mins at 300 × g. After removing the culture medium and 

washing the cells with PBS, the pellet was resuspended in 200 µL of resuspension 
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solution. To eliminate RNA and protein, 20 µL of RNase A solution was added, the 

sample mixed and incubated for 2 mins, before addition of 20 µL of the Proteinase K 

solution. Cells were lysed by adding 200 µL of Lysis Solution C, vortexing the mixture 

thoroughly until it was homogenised, then heating at 70ºC for 10 mins. During sample 

incubation, the binding column was equilibrated by adding 500 µL of the column 

preparation solution and allowing it to flow-through via centrifugation. The lysate was 

mixed with 200 µL of 100% ethanol before being loaded onto the equilibrated column 

using a wide bore pipette tip to reduce DNA shearing. The column was centrifuged, 

and the flow-through discarded. The column was then washed twice with 500 µL wash 

solution, discarding the flow-through each time, and centrifuged again for 3 mins at 

13,000 × g to remove any residual ethanol. DNA was eluted into a new collection tube 

by adding 200 µL elution solution, incubation for 5 mins and a final centrifugation step. 

All DNA extraction steps were performed at room temperature, and all centrifugation 

steps were at 13,000 × g for 1 min unless otherwise specified.  

 

To have DNA suspended in water rather than the elution solution, eluted DNA was 

precipitated by adding 20 µL 3M sodium acetate and 550 µL 100% cold (-20ºC) 

ethanol. Following incubation for 10 mins to overnight at -20ºC, DNA was recovered 

by centrifugation at 13,000 ×g for 15 mins at 4ºC and washed with 500 µL 70% cold (-

20ºC) ethanol. After removing the ethanol, the DNA pellet was air-dried for 10 mins 

then resuspended in 100–200 µL water.  

 

2.2.14.6 Screening for CRISPR-mediated edits at the DNA level 

Following extraction of genomic DNA, preliminary screening for the desired FLI1 edit 

was carried out by PCR amplification across the region that was targeted for deletion 

followed by agarose gel electrophoresis of the amplified product as described in 

sections 2.2.4 and 2.2.5. Intact alleles were detected in those clones that had been 

edited by amplification of a DNA fragment from within the target region using a second 

set of primers. The primers used for screening are indicated by an asterisk in Table 

2.1. 

 

2.2.14.7 Protein extraction from CRISPR-edited Dami cells 

Cells were harvested from a 6-well plate and washed twice with ice-cold PBS by 

centrifugation at 1,000-1,500 rpm for 5 mins and discarding the supernatant. The 
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washed cell pellet was resuspended in 50-200 µL of ice-cold RIPA buffer mixed with 

0.5-2 µL 100X PIC depending on the cell density and incubated on ice. Every 10 mins, 

the suspension was vortexed vigorously for 15 secs and returned to the ice. After 30-

40 mins, the mixture was centrifuged at 14,000 ×g for 15 mins at 4ºC, and the 

supernatant, containing the cellular proteins was immediately aliquoted into a clean 

pre-chilled tube and stored at -20ºC prior to analysis.  

 

2.2.14.8 FLI1 protein quantification in CRISPR-edited Dami cells 

FLI1 knockout/down was assessed by measuring FLI1 protein levels by LDS-PAGE 

and immunoblotting of cellular lysates from CRISPR-edited Dami cells as described in 

sections 2.2.13.4 to 2.2.13.6. The housekeeping protein was detected by probing the 

blot with a 1:500 dilution of monoclonal mouse anti-human β-tubulin I antibody. 

 

2.2.14.9 RNA extraction from CRISPR-edited Dami cells 

Total RNA was extracted using the EZ-RNA kit which involves disruption of the cells in 

guanidine thiocyanate/detergent solution and extraction of RNA using phenol and 

chloroform and its recovery by precipitation with alcohol. The extraction was performed 

according to the manufacturers’ instructions in a class II type A biological safety cabinet 

and in a pre-PCR room at a workstation reserved for RNA work. Briefly, following 

harvesting and washing cells with PBS by centrifugation at 1,000–1,500 rpm for 5 mins 

and discarding the supernatant, 500 µL denaturation solution was added to a PBS-

washed cell pellet, followed 5 mins later by 500 µL extraction solution. The suspension 

was vortexed vigorously for 15 secs, incubated for 10 mins and then centrifuged at 

13,000 x g for 15 mins, allowing separation of the RNA into the upper aqueous phase, 

while the DNA and proteins remained in the interphase and the lower organic phase 

respectively. Carefully, 300–400 µL of the upper phase was transferred into a new 1.5 

mL Eppendorf tube, and the RNA precipitated by adding an equal volume of 

isopropanol. Following incubation for 10 mins, RNA was collected by centrifugation at 

14,000 x g for 8 mins. The isopropanol was removed and the RNA pellet washed with 

500 µL 75% cold (-20ºC) ethanol before being centrifuged at 14,000 x g for 5 mins. 

The alcohol was removed and the RNA pellet was air-dried for 5 mins before being 

resuspended in 50–100 µL of ice-cold RNase-free water. Following quantitation using 

the NanoDrop, the RNA was aliquoted into pre-chilled tubes and stored at -20ºC. All 
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incubation steps were carried out at room temperature and the centrifugation steps 

were at 4ºC. 

 

2.2.14.10 Quantitative polymerase chain reaction of FLI1 expression using 

TaqMan™ probes 

A sample of RNA was usually transcribed to cDNA immediately following extraction. 

Alternatively, an aliquot of RNA was thawed on ice along with the reagents from the 

QuantiTect® reverse transcription kit prior to conversion to cDNA. Reverse 

transcription was performed according to the manufacturers’ instructions, assembling 

the reaction mixtures on ice, using RNase-free water. In a 0.5 mL PCR tube, 1,000 ng 

of RNA was mixed with 2 µL gDNA wipeout buffer in a final volume of 14 µL. The 

mixture was incubated for 5 mins at 42ºC, then returned to 4ºC, before adding 4 µL 5X 

Quantiscript RT buffer, 1 µL RT primer mix and 1 µL Quantiscript reverse transcriptase 

and incubating the sample at 42ºC for 15 mins. The reverse transcriptase was then 

inactivated by heating at 95ºC for 3 mins. After cooling to 4ºC, and the product was 

either used directly for quantitative polymerase chain reaction (qPCR), or stored at 4ºC 

for the short-term or at -20ºC for long-term periods. A GeneAmp® PCR system 9700 

(Applied Biosystems®) thermocycler was used for all incubation steps. Two control 

samples were included in the procedure, the non-template control which contained no 

RNA, and the no reverse transcriptase control. 

 

The 20 µL cDNA reaction was diluted to 100 µL with RT-PCR grade water. The FLI1 

probe (Hs00956711_m1) was FAM™ labelled, while the probe for the housekeeping 

beta-2 microglobulin gene (Hs99999907_m1) was VIC™ labelled; both probes 

spanned exons to minimise detection of any contaminating genomic DNA. Expression 

of FLI1 and the housekeeping gene were measured for each test sample in separate 

reactions in triplicate. A reaction master mix was prepared for each probe which 

included 5 µL 2X TaqMan™ gene expression master mix and 0.5 µL 20X TaqMan™ 

gene expression assay per replicate. A 384-well reaction plate was loaded with 6 µL 

of the master mix, then with 5 µL of the diluted cDNA reaction using an automated 

pipette dispenser. After sealing with optical adhesive film, the plate was inverted and 

tapped to mix the contents of the wells, then centrifuged briefly to ensure that the liquid 

was at the bottom of the wells. The TaqMan™ probes were kept ice-cold and protected 

from light as much as possible at all stages of the procedure. 
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Using the SDS software (version 2.4), the plate was loaded into the 7900HT Fast Real-

Time PCR system (Applied Biosystems™) and subjected to standard thermal cycling 

conditions: 95ºC for 10 mins, followed by 50 cycles of denaturation at 95ºC for 15 secs, 

and annealing and extension at 60ºC for 1 min. When the run was complete, the RQ 

manager software (version 1.2.1) was used to calculate the relative quantity (RQ) of 

FLI1 knockdown in CRISPR-edited Dami cells, following normalisation to the 

housekeeping gene. The default settings were used and the results were plotted as 

log10 of the RQ values.  

 

2.2.14.11 Characterisation of CRISPR-mediated edits in Dami cell clones by 

TA cloning 

Double strand breakpoints in the FLI1 gene that were introduced using CRISPR/Cas9 

were mapped by sequencing DNA amplified from selected clones either directly or 

following TA cloning. DNA was amplified for TA cloning using a high fidelity DNA 

polymerase. PCRs contained 100 ng of genomic DNA, 10 µM forward primer, 10 µM 

reverse primer, 2.5 µL 10X PCR Buffer with 17.5 mM MgCl2 (Expand Long Template 

Buffer 1), and 0.375 μl Expand long template enzyme in a total volume of 25 μl. 

Following thermal cycling as described earlier (see section 2.2.4), amplicons were 

purified as described in section 2.2.6. Prior to TA cloning, deoxyadenosine nucleotide 

overhangs were added to the purified amplicon by mixing 4 μl of the purified DNA with 

1 μl 5X colourless GoTaq® reaction buffer, 1 μl 2 mM dATP and 0.2 μl GoTaq® G2 

DNA polymerase and incubating the sample at 72ºC for 30 mins in the GeneAmp® 

PCR system 9700 (Applied Biosystems®).  

 

The product was ligated to the pGEM-T vector using a vector to insert ratio of 1:3 and 

the manufacturers’ recommended protocol. The Biomath Ligations calculator from 

Promega (see Appendix 3 for link) was used to calculate the amount of insert required 

for ligation, assuming the vector size and quantity were 3,015 bp and 50 ng 

respectively. Ligation mixtures containing the required amount of PCR product, 5 μl 2X 

ligation buffer, 1 μl pGEM-T vector, 1 μl T4 DNA ligase in a final volume of 10 μl were 

prepared and incubated overnight at 4ºC. Competent NM554 E. coli cells were then 

transformed with 2–3 µL of the ligation mixture as described previously (see 

section 2.2.8). Mini-preparations of plasmid DNA were purified from individual colonies 

and sequenced using the T7_F primer (as described in sections 2.2.9.1 and 2.2.3) 
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2.2.14.12 Differentiation of Dami cells  

To investigate the role of FLI1 in late megakaryopoiesis, Dami cells were treated with 

PMA and TPO both before and following knockdown of FLI1. PMA is a potent activator 

of the protein kinase C signalling pathway, which in Dami cells leads to megakaryocytic 

maturation, an increase in ploidy and expression of markers of late megakaryopoiesis 

including glycoproteins IIb/IIIa and Ib (Greenberg et al., 1988; Long et al., 1984; 

Lumelsky & Schwartz, 1997). TPO is a critical haematopoietic cytokine that acts 

primarily as a regulator of MK progenitor expansion and differentiation. It is essential 

for the production of mature α-granules in the cytoplasm of Dami cells treated with 

PMA, and it drives further MK differentiation (Briquet-Laugier et al., 2004). FLI1 levels 

in Dami cells that are differentiated using PMA and TPO have been observed to peak 

twice, at day one and following 5 to 7 days of treatment, remaining moderately elevated 

after that (Lev et al., 2011). To reflect the maximum effect of FLI1 on the Dami cells, 

RNA for transcriptome analysis was extracted after 6 days of treatment.  

 

Following an established protocol for Dami differentiation (Lev et al., 2011), Dami cells 

were seeded into T75 flasks at a density of 2.5 x 105 cells/mL in 10 mL of medium. 

Cells were treated daily for 6 days using 100 nM PMA (1 µL of stock 1mM PMA 

solution) and 10 ng/mL TPO (10 µL of stock 10 µg/mL TPO solution). The medium was 

replaced on day 3 before adding the PMA and TPO and likewise on every subsequent 

day. On day 7, stimulated cells were washed with PBS before they were collected in 

500 µL detergent solution for RNA extraction using a cell scraper. RNA was then 

extracted as previously described (see section 2.2.14.9).  

 

2.2.14.13 Transcriptome analysis of Dami cells  

Transcriptome analysis was performed in the Microarray and Next Generation 

Sequencing Core Facility, housed in the Sheffield Institute for Translational 

Neuroscience (SITraN) at the University of Sheffield. Prior to analysis, RNA quality, 

integrity and concentration were assessed using the NanoDrop spectrophotometer and 

Agilent 2100 bioanalyzer. Transcriptome analysis was carried out using ClariomTM D 

Assay_human chips (Affymetrix; Applied Biosystems™) with the Affymetrix Gene Chip 

Microarray, Affymetrix Gene Chip hybridisation and the Illumina HiScan SQ systems. 

The ClariomTM D Assay_human chip has more than 6,765,500 probes enabling 
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detection of in excess of 542,500 transcripts from more than 134,700 genes 

(https://www.thermofisher.com/order/catalog/product/902922). 

 

Results were analysed using the Affymetrix Transcriptome Analysis Console (TAC) 

software (version 4.0.1.36) and ClariomTM D human (version 2.0). Transcriptome data 

were compared between the WT clones, both before and following differentiation of 

the cells. Also, transcriptome data were compared between the WT and FLI1 

knockdown clones, both before and following differentiation of the cells. Transcripts 

that showed a ≥1.5 or ≤-1.5-fold log change in expression, and p<0.05 were highlighted 

(a screenshot from the programme showing the different settings used is displayed in 

Appendix 4).  

 

2.2.15 Statistical analysis 

GraphPad Prism software (version 7.03) was used for all statistical calculations. A p-

value less than 0.05 was considered significant. Different statistical tests were used 

depending on the data being analysed. Normality of the data was assessed using the 

D'Agostino-Pearson normality test. To compare differences between two groups, 

paired or unpaired T-tests were used when data showed a Gaussian distribution. 

Where data were not normally distributed a Mann-Whitney test was used. The results 

were plotted as mean and standard error of the mean unless otherwise specified. 
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3 Chapter 3. Identification of the Underlying Genetic 

Defects in Patients with Unexplained Inherited Platelet 

Bleeding Disorders Using Whole Exome Sequencing  
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3.1 Introduction 

 

3.1.1 Use of next-generation sequencing to investigate patients with inherited 

platelet bleeding disorders 

The development of next-generation sequencing (NGS) technologies has enabled 

large-scale simultaneous genetic analysis of target gene panels, exomes or whole 

genomes. Whole exome sequencing (WES) has been applied widely, helping to 

establish the genetic basis for many diseases, better management options and deeper 

understanding of the physiological and pathological aspects of many syndromes 

(Bainbridge et al., 2011; Dixon-Salazar et al., 2012; Stark et al., 2016). WES permits 

analysis of the coding regions and flanking intronic sequences, which account for 1–

3% of the whole genome. Since most of the known genetic causes of human disease 

are located in the exons, it offers an attractive approach for large-scale genetic analysis 

of patients with unexplained inherited disorders. With recent advancements in this 

technology, the challenge has shifted from the procedures and methodology involved 

in sequence analysis to data interpretation, assessing the functional impact of novel 

gene defects and linking the causative gene defects to particular clinical features 

(Gilissen et al., 2012). The challenge is to identify one or more genetic variants that 

are responsible for the disorder among the 20,000-50,000 genetic variants that are 

recognised in each patient. When candidate causative variants are highlighted, their 

significance often remains elusive, particularly where they occur in genes encoding 

proteins with unknown functions (Gilissen et al., 2012). Nonetheless, the development 

of pipelines for analysis of NGS data, bioinformatic tools for predicting the effects of 

candidate gene defects, and strategies for prioritising candidate variants are helping to 

increase the power of this technique (Ku et al., 2012). 

 

WES has facilitated the discovery of many novel genes associated with inherited 

platelet bleeding disorders (IPDs). The first of these was NBEAL2 (Neurobeachin Like 

2), which was found to be associated with Grey platelet syndrome (GPS) in three 

different studies (Albers et al., 2011; Gunay-Aygun et al., 2011; Kahr et al., 2011). 

Although these three studies utilised different methods, they adopted similar 

approaches, combining the power of genome-wide analysis and homozygosity 

mapping with WES. All three studies were based on the previous report from Gunay-

Aygun and colleagues that the locus at chromosome 3p21.1-22.1 was significantly 
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associated with GPS, which limited the number of candidate genes to 197 (Gunay-

Aygun et al., 2010). Kahr and colleagues relied on sequencing of RNA isolated from 

the platelets of an individual with GPS, which led directly to the identification of 

NBEAL2 as the causative gene (Kahr et al., 2011). Albers et al. (2011) sequenced 

DNA from four patients with GPS and prioritised candidate genes using the knowledge 

that GPS is a rare recessive disorder, and that causative variants would therefore be 

novel, inherited as homozygous or compound heterozygous defects, and that these 

would be considered deleterious to the function of the encoded protein using 

bioinformatic prediction tools (Albers et al., 2011). Gunay-Aygun and colleagues 

sequenced DNA from 15 unrelated GPS patients and identified NBEAL2 as the 

causative gene in all patients using similar assumptions (Gunay-Aygun et al., 2011). 

Subsequently, segregation of NBEAL2 variants within the families of affected patients 

was confirmed in both studies (Albers et al., 2011; Gunay-Aygun et al., 2011). Since 

the identification of NBEAL2 as the causative gene in GPS, NGS technologies have 

implicated several other genes in IPDs, including those encoding ACTN1 (Actinin 

Alpha 1), ANKRD18A (Ankyrin Repeat Domain 18A), CDC42 (Cell Division Cycle 42), 

ETV6 (ETS Variant 6) , FLI1 (Fli-1 Proto-Oncogene), FYB (FYN Binding Protein 1), 

GBA (Glucosylceramidase Beta) , GFI1B (Growth Factor Independent 1B 

Transcriptional Repressor), GNE (Glucosamine (UDP-N-Acetyl)-2-Epimerase/N-

Acetylmannosamine Kinase), KDSR (3-Ketodihydrosphingosine Reductase), 

PRKACG (Protein Kinase CAMP-Activated Catalytic Subunit Gamma), PTPRJ 

(Protein Tyrosine Phosphatase, Receptor Type J), RASGRP2 (RAS Guanyl Releasing 

Protein 2) , RBM8A (RNA Binding Motif Protein 8A), SBF2 (SET Binding Factor 2) , 

SRC (SRC Proto-Oncogene), THPO (Thrombopoietin) (Abuzenadah et al., 2013; 

Albers et al., 2012; Canault et al., 2014; Dasouki et al., 2013; Ferreira et al., 2017; 

Futterer et al., 2018; Hamamy et al., 2014; Izumi et al., 2014; Kunishima et al., 2013; 

Marconi et al., 2018; Morgan et al., 2013; Motokawa et al., 2018; Noetzli et al., 2015; 

Noris et al., 2018; Stockley et al., 2013; Takeichi et al., 2017; Takenouchi et al., 2015; 

Takenouchi et al., 2016; Turro et al., 2016; Wan et al., 2017; Zhang et al., 2015). 

 

WES analysis will normally identify about 25,000 genetic variants in the exome of a 

single individual (Gilissen et al., 2012). This enormous number of variants necessitates 

adopting various strategies to filter and prioritise the data for downstream analyses or, 

indeed, to identify the variants that are most likely to explain the patient’s phenotype. 
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In most cases, prioritisation of WES data to identify a disease-causing variant usually 

commences with the exclusion of common variants listed in public databases, then 

focuses on non-synonymous, nonsense and frameshift variants. The removal of 

common and synonymous single nucleotide variants (SNVs) usually results in a panel 

of candidate causative variants, and further prioritisation is typically required to reduce 

the number of candidate variants for further analysis using a variety of approaches 

(Figure 3.1). There are several strategies: (i) examination of segregation of candidate 

variants among family members (linkage analysis) requires WES data to be available 

for other family members, either affected and/or unaffected, and allows variants that 

are present in both the patient and unaffected members to be excluded, while those 

shared among only affected family members are retained for further investigation; (ii) 

homozygosity mapping in those cases where there is a history of consanguinity takes 

into consideration homozygous variants that are contained within large regions of 

homozygosity; (iii) when the disease is inherited recessively, considering only 

homozygous as well as compound heterozygous variants will be helpful, especially in 

cases when other family members are unavailable for study (double-hit strategy); (iv) 

data can be compared to those of unrelated patients who have similar phenotypes on 

the basis that they are likely to have defects in the same or different genes which 

interact or play a role in the same, or in a related pathway (overlap strategy); (v) a 

focus on  de novo variants (de novo strategy); and (vi) applying bioinformatic tools can 

predict the possible impact of candidate gene defects on protein structure and function 

(candidate gene strategy). The overall diagnostic success rate for such approaches in 

identifying causative variants in Mendelian disorders has been reported to be 30%-

60% (Gilissen et al., 2012; Stark et al., 2016). Innovative ways for handling genetic 

data that allow candidate gene prioritisation continue to be developed. For example, 

the Human Phenotype Ontology (HPO) project is an international open-source coding 

system which uses logarithmic computational software to link candidate disease-

associated genes identified by WES to patient phenotypes using standardised 

phenotypic terms (Kohler et al., 2014). This approach has recently proved to be 

effective in identifying genetic defects in patients with IPDs (Stritt et al., 2016; Turro et 

al., 2016; Westbury et al., 2015). 
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Figure 3.1 Approaches used to identify causative gene defects following whole 
exome sequencing 
Depending on the study design, several approaches can be utilised to prioritise variants to a limited 
number of single nucleotide variants (SNVs) that are then considered to be candidate causative defects. 
However, early steps in prioritising variants are almost always shared among different study designs.  

 

 

3.1.2 The UK Genotyping and Phenotyping of Platelets study 

The UK Genotyping and Phenotyping of Platelets study (UK-GAPP) was funded by the 

British Heart Foundation from 2010 to 2015, and involved researchers from 

Birmingham, Bristol and Sheffield. The study aimed to undertake extensive genotyping 

and platelet phenotyping to investigate IPDs in patients recruited through Haemophilia 

Centres throughout the UK 

(http://www.birmingham.ac.uk/research/activity/cardiovascular-

sciences/research/platelet-group/platelet-gapp/index.aspx). Since the research 

described in this thesis has arisen from work carried out in Sheffield as part of the UK-

GAPP study, a historical overview of the findings of the UK-GAPP study to date is 

warranted to allow the present study to be placed in context. A brief history of the UK-

GAPP study therefore follows. 

 

http://www.birmingham.ac.uk/research/activity/cardiovascular-sciences/research/platelet-group/platelet-gapp/index.aspx
http://www.birmingham.ac.uk/research/activity/cardiovascular-sciences/research/platelet-group/platelet-gapp/index.aspx
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3.1.2.1 Platelet phenotyping 

Although light transmission aggregometry (LTA) is the gold standard method for 

assessment of platelet function, its use as a tool to identify platelet function defects is 

influenced by several pre-analytical factors, sampling methods, aspects of the 

methodology and approaches used to interpret the results. Thus, prior to recruitment 

of patients with IPDs for assessment of platelet function, considerable work was 

undertaken to determine the optimal conditions for sampling by performing LTA on 

samples from control subjects, thus establishing normal ranges for platelet aggregation 

and secretion against which data from patients could then be compared. Normal 

platelet aggregation traces in response to a panel of eight different agonists, adenosine 

diphosphate (ADP), TXA2 mimetic (U46619), adrenaline, arachidonic acid, collagen, 

collagen-related peptide (CRP), protease-activated receptor (PAR)-1, and PAR-4 

peptides, each used at three different concentrations, were established using lumi-

aggregometry for approximately 100 healthy volunteers (Dawood et al., 2007). A 

comprehensive multicentre study involving platelet phenotyping of more than 600 

patients clinically diagnosed as having IPDs then commenced. The findings obtained 

for 111 of these patients were published in 2012 (Dawood et al., 2012). LTA confirmed 

the presence of a platelet defect in approximately 60% of cases studied, and it was 

possible to subgroup the cases according to the defects identified. Thus, cases were 

subgrouped according to whether they had a defect in dense granule secretion, a 

defect in Gi-receptor signalling, a TXA2 pathway defect, or defects in signalling through 

the purinergic receptor P2Y12 ADP receptor, the TXA2 receptor, glycoprotein (GP) VI 

pathway or a Gq signalling defect. It should be noted that the majority of patients had 

a defect in one of the first three of these categories and that most patients showed a 

partial impairment, rather than complete abrogation, of the response that was 

overcome at high agonist concentrations. The use of LTA failed to identify a platelet 

function defect in the remaining 40% of patients. The possibility that this was due to 

the limitations of LTA was examined by performing additional phenotypic assays, such 

as optical multichannel platelet aggregometry or measurement of platelet P-selectin 

release, but these also failed to demonstrate the presence of a defect (Chan & Warner, 

2012; Fox et al., 2009). It is possible that the bleeding symptoms observed in the 

patients may not have been due to platelet defects, or the assays used to investigate 

the suspected platelet disorders may not have been sensitive enough to detect a 

platelet defect. Also, the bleeding symptoms may have been caused by defects in 
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platelet adhesion or aggregation under flow which would not have been detected with 

the assays utilised (Watson et al., 2013).  

 

3.1.2.2 DNA analysis in patients recruited to the UK Genotyping and 

Phenotyping of Platelets study  

The decision whether to analyse certain candidate genes in patients recruited to the 

UK-GAPP study by Sanger sequencing or to undertake WES analysis has been largely 

driven by the results of platelet phenotyping as described above. When the clinical 

presentation, family history and results of platelet phenotyping suggested the strong 

likelihood of a defect in a particular gene or group of genes, Sanger sequencing of the 

candidate genes was undertaken. This approach led to the identification of a small 

number of novel defects in the P2Y12 ADP receptor and the TXA2 receptor, which 

were successfully characterised and shown to recapitulate the platelet phenotype 

when expressed in a heterologous cell line (Daly et al., 2009; Dawood et al., 2012; 

Mumford et al., 2010; Mumford et al., 2013; Nisar et al., 2011; Nisar et al., 2014; Patel 

et al., 2014). 

 

However, in most cases, the results of platelet phenotyping did not suggest a particular 

candidate gene that could be targeted for Sanger sequencing. The UK-GAPP study 

group therefore took advantage of rapidly developing NGS technology to undertake 

simultaneous sequence analyses of a panel of 216 candidate genes that were 

previously known to be associated with IPDs, human orthologs of genes in which 

defects were shown to cause platelet defects in animal models, or genes that were 

relevant to platelet function but not previously associated with IPDs (Jones et al., 

2012). They adopted a strategy for mapping and filtering the sequencing output that 

depended on earlier assumptions that causative SNVs were likely to be rare, that they 

would occur in the coding region of one of the 216 candidate genes, and that they 

would be predicted to be pathogenic using various bioinformatic prediction tools. 

Where possible, they also employed the clinical and laboratory phenotype data of 

patients to direct the analysis toward certain target genes among the 216 genes 

sequenced. They analysed DNA from ten patients diagnosed with IPDs in this way but 

focused their attention on one patient with a clinical diagnosis of Hermansky-Pudlak 

syndrome (HPS) whose platelets displayed an absence of ATP secretion in response 

to all agonists. The focus was thus directed to a shorter list of 57 candidate genes 
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which encoded proteins involved in dense granule formation and secretion. By 

removing common variants, synonymous variants that were predicted to be non-

functional, and heterozygous SNVs, because the mode of inheritance of HPS is 

recessive, a novel SNV in HPS4 was highlighted as the causative defect. However, it 

was not possible to identify the causative SNVs in any of the remaining nine patients 

who were studied at the same time. This study highlighted the difficulty of identifying 

causative variants in IPD patients due to the presence of many candidate gene defects 

even when the focus was on a limited number of genes. When using a sequencing 

method or approach that yields a large number of variants, as is the case with WES or 

whole genome sequencing, the identification of causative defects is even more 

challenging. It is further complicated by the fact that apparently healthy individuals 

carry hundreds of mildly disadvantageous SNVs without showing any apparent ill 

effects (Xue et al., 2012). 

 

In 2013, in a follow-on study to the one described above, Stockley et al. (2013) 

undertook NGS analysis of a panel of 260 platelet genes in a group of 13 patients with 

IPDs that were characterised by a significant reduction in dense granule secretion with 

no other features of HPS. Their findings revealed an enrichment of defects in the 

transcription factor genes FLI1 and RUNX1 (Runt-related transcription factor 1) in half 

of the index cases in this subgroup. Affected members of these families presented with 

bleeding disorders which were characterised by defects in platelet dense granule 

secretion, and in most cases, the presence of a FLI1 or RUNX1 defect was also 

associated with mild thrombocytopenia. RUNX1 and FLI1 are transcription factors that 

have a role in megakaryopoiesis and are known to cooperate in regulating the last 

stages of platelet production (Huang et al., 2009; Okada et al., 2013; Tijssen et al., 

2011; Zang et al., 2016). It is known that 94% of patients with Paris-Trousseau 

syndrome (PTS), who have a deletion of the long arm of chromosome 11 that includes 

FLI1, have a bleeding tendency that is characterised by thrombocytopenia and platelet 

dysfunction (Grossfeld et al., 2004). The report by Stockley et al. (2013) was the first 

to describe the association of platelet secretion defects with abnormalities in FLI1. 

Further characterisation of two of the non-synonymous FLI1 alterations identified in 

this study revealed a significant reduction in their transactivational capacity (Stockley 

et al., 2013).  
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The difficulty of identifying the underlying causative genes in patients with IPDs was 

again highlighted in the study by Leo et al. (2015), in which WES analysis was 

undertaken in two groups of patients, 12 with defects in Gi-signalling and 6 with defects 

in secretion, before downstream bioinformatic studies focused on an extended panel 

of 329 platelet genes (Leo et al., 2015). Assuming that unrelated patients with similar 

phenotypes will have defects in similar or closely related genes or pathways, 

downstream analysis of the genetic data was conducted separately for the two patient 

subgroups. Using a combination of bioinformatic prediction tools and functional 

annotation analysis, 13 genes which harboured deleterious defects were highlighted 

in the subgroup of patients with Gi-signalling defects, which could potentially explain 

the condition in 75% of the patients in this group. Similarly, 14 genes harbouring 

deleterious defects were identified in the subgroup of patients with platelet secretion 

defects, with at least one of these occurring in each of the patients in this subgroup. 

Although some defects were found in genes that were previously associated with IPDs, 

such as P2RY12 (Purinergic receptor P2Y12), LYST (Lysosomal trafficking regulator) 

and STXBP2 (Syntaxin-binding protein 2), most of the variants were in genes that had 

not previously been associated with IPDs.  

 

A drawback of the studies described above was the possible exclusion of causative 

defects due to restricting the analysis to certain genes. This was avoided by more 

recent studies which used WES analysis to elucidate the genetic basis of IPDs. Thus, 

SNVs in three consecutive codons of the SLFN14 (Schlafen family member 14) were 

identified in three unrelated index cases affected by a bleeding disorder which was 

characterised by thrombocytopenia and a defect in platelet secretion (Fletcher et al., 

2015). SFLN14 was later shown to be a ribosome-associated protein involved in 

ribosomal RNA and mRNA degradation in rabbit reticulocytes (Pisareva et al., 2015). 

Subsequently, the expression of all variant forms of SFLN14 was shown to be reduced 

due to posttranslational degradation and misfolding when compared with the wild-type 

protein (Fletcher et al., 2018). The findings suggested a possible role for SFLN14 in 

the degradation of RNA during thrombopoiesis. WES also facilitates rapid detection of 

causative defects in patients with inherited thrombocytopenia. Thus, WES analysis of 

DNA from 37 patients recruited to the UK-GAPP study with inherited bleeding 

diatheses characterised by thrombocytopenia of unknown aetiology identified 

pathogenic variants in 14 genes previously known to associate with inherited 
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thrombocytopenia in 46% of cases (Johnson et al., 2016). More recently, a combined 

approach of WES analysis, followed by in silico prediction of the likelihood of 

pathogenicity of novel homozygous variants that mapped to a tightly-linked 

homozygous region, and review of RNA sequence data for haematopoietic progenitors 

suggested a GNE variant to be the causative defect in a consanguineous family with 

severe congenital thrombocytopenia (Futterer et al., 2018).  

 

 

3.2 Hypothesis and aims of this study 

 

Many factors complicate diagnosis of IPDs, including issues relating to the laboratory 

investigations conducted, such as the lack of standardisation of methods for analysing 

platelet function between laboratories, the necessity to have the expertise to interpret 

LTA results and the identification of several plausible candidate gene defects in most 

affected individuals using WES analysis. Various factors related to the nature of the 

disease can also complicate the diagnosis, including differences in the severity of the 

bleeding phenotype among patients, which are dependent on the nature of any 

vascular challenges faced by patients. The extensive redundancy of the receptors and 

the complexity of the signalling pathways in platelets pose a further challenge. It is also 

recognised that different SNVs in one or more genes can result in considerable 

variability in clinical presentation among patients (Albers et al., 2012; Daly et al., 2009; 

Pecci et al., 2008). Allelic heterogeneity, in which similar IPDs can be caused by 

defects in different genes, is also a complicating factor. It is therefore likely that the 

contribution of multiple genetic loci affecting different aspects of platelet biology and/or 

other aspects of the haemostatic system may explain the patient phenotype in some 

cases, supporting the rationale for a multifactorial aetiology in IPDs.  

 

The enhanced power of genetic analysis provided by NGS technologies, such as WES, 

has helped to overcome some of the challenges described above, facilitating the 

identification of many novel genes associated with IPDs. It is predicted that WES 

analysis guided by platelet phenotyping, in addition to standard initial clinical 

evaluation, will aid the identification of the underlying causes for at least some patients 

with unexplained bleeding, which allow assessment of bleeding risk in affected patients 

and facilitate genetic counselling. Also, the outcome of these analyses will expand our 
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understanding of the relationship between platelet phenotype and genotype, yielding 

further insights into the molecular mechanisms of platelet physiology, which in turn will 

further aid the diagnosis of IPDs.  

 

The study summarised in this chapter involved 34 index cases who were recruited to 

the UK-GAPP study for investigation of an IPD. After extensive platelet phenotyping, 

cases were subgrouped according to whether their platelets displayed a defect in a Gi-

signalling pathway, or in secretion. Based on the overarching hypothesis of the study 

that IPDs are due to monogenic or oligogenic inheritance of alterations in genes 

encoding proteins that are essential for platelet formation and/or function, our aim was 

to identify potential disease-causing genetic variants via WES analysis. Given the 

interests of the group in the genes regulating the biogenesis and secretion of platelet 

granules, further downstream studies focused on those patients with secretion defects. 

 

 

3.3 Materials and methods 

 

3.3.1 Patients 

Thirty-four index cases who were recruited to the UK-GAPP study because they were 

suspected to have an IPD were investigated. Platelet phenotyping, which was 

undertaken at the time of enrolment, separated them into two broad, but distinct, 

subgroups. Thus, 12 cases had platelet profiles that were consistent with the presence 

of a Gi-signalling defect, as they displayed transient aggregation in response to ADP 

and a reduction or absence of aggregation in response to adrenaline, and an absence 

of ATP secretion in response to both agonists (Dawood et al., 2012). Platelets from the 

remaining 22 cases displayed profiles that were consistent with an abnormality in 

secretion, showing reduced ATP secretion in response to all platelet agonists (Dawood 

et al., 2012). DNA samples were available from the 34 index cases and from an 

additional affected family member for six of the index cases. Index cases were 

recruited based on clinical and laboratory criteria which included (i) a history of 

excessive bleeding symptoms, which either presented as spontaneous 

mucocutaneous bleeding or prolonged bleeding following injury; (ii) the absence of any 

known causes of acquired platelet dysfunction; (iii) exclusion of Glanzmann 

thrombasthenia, Bernard-Soulier syndrome and HPS; and (iv) exclusion of a 
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coagulation defect. It should be noted that 22 of the 34 index cases had been the 

subject of a previous investigation that focused on 329 platelet genes (Leo et al., 2015). 

 

The UK-GAPP study was approved by the National Research Ethics Service 

Committee West Midlands–Edgbaston (REC reference: 06/MRE07/36). Written 

informed consent was given by all participants in accordance with the Declaration of 

Helsinki before providing venous blood samples for analysis, which were collected 

using 3.2% trisodium citrate tubes (S-Monovette® 0.106 mol L–L; Sarstedt, Leicester, 

UK). 

 

3.3.2 Genetic analysis: identification of candidate single nucleotide variants 

WES was carried out in collaboration with Dr Michael Simpson, Kings College, London. 

Sequence data for each patient was provided as a large Variant Call Format (VCF) file 

and examined to identify SNVs of potential clinical relevance using a pipeline that was 

modified slightly from that used in a previous study (Leo et al., 2015) (Figure 3.2).  

 

SNVs were initially filtered according to their frequency in the general population 

against three different databases, the 1000 Genomes project 

(http://www.1000genomes.org/), the NHLBI exome sequencing project 

(http://evs.gs.washington.edu/EVS/) and an in-house database (Dr M Simpson, Kings 

College London) consisting of more than 900 exomes [accessed 2015]. Variants 

previously identified as having a frequency of over 1% were excluded from any further 

investigations. Furthermore, only SNVs that altered the amino acid sequence of the 

encoded proteins were retained, while synonymous SNVs were excluded. The 

potential consequences of the remaining variants were investigated using an online 

prediction tool, CADD [Combined Annotation Dependent Depletion, version 1.3 

(http://cadd.gs.washington.edu/score) (Kircher et al., 2014)]. CADD combines 

conservation-based metrics with functional metrics using 65 different annotations to 

generate a single value for each SNV. Based on the CADD inventor recommendation, 

a cut-off ranked C-score (PHRED) of 20 was used. Long indels that could not be 

analysed using CADD were considered to be pathogenic and taken forward within the 

pipeline. Following the removal of variants that were predicted to be benign according 

to CADD, the remaining SNVs were investigated for gene expression in platelets using 

PaxDb.4 [(https://pax-db.org/) (Wang et al., 2015)], which provided information based 

http://www.1000genomes.org/
http://evs.gs.washington.edu/EVS/
http://cadd.gs.washington.edu/score
https://pax-db.org/
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on two studies (Kim et al., 2014b; Martens et al., 2005), and data from a third study 

describing the platelet transcriptome (Londin et al., 2014). SNVs in genes which were 

found to be expressed in platelets according to one or more of these studies were 

retained. Where affected family members were available, shared SNVs were only 

considered for further analysis as all included family members presented with similar 

phenotypes to their corresponding index cases. 

 

WES data from the 34 index cases were analysed similarly for the majority of the 

pipeline. However, the 34 index cases comprised two subgroups of 12 cases who were 

diagnosed with Gi-signalling abnormalities as their platelets showed a defect in 

aggregation and secretion in response to agonists for the Gi-coupled receptors for ADP 

and adrenaline and 22 cases were diagnosed with dense granule secretion defects as 

their platelets demonstrated a decrease in ATP secretion to all platelet agonists. 

Assuming that defects in a single gene would not result in two different disease 

phenotypes, SNVs that were present in genes shared by the two subgroups were 

removed from the analysis in the final step of the pipeline. 

 

 

Figure 3.2 Pipeline for analysis of whole exome sequence data 
Sequential steps to filter single nucleotide variants (SNVs) were as follows: SNVs having a minor allele 
frequency (MAF) in the general population of >0.01 and synonymous SNVs were removed; the 
pathogenicity of remaining SNVs was predicted using Combined Annotation Dependent Depletion 
(CADD) tool, and those SNVs having scores of 20 or greater or that could not be analysed by CADD 
were retained. Further prioritisation was achieved by retaining SNVs in genes known to be expressed 
in platelets and shared among affected family members (when available). Finally, SNVs located in genes 
that were shared between subgroups that had different platelet defects were removed. EVS; Exome 
sequence variant (NHLBI exome sequencing project).  
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3.4 Results 

 

3.4.1 Characteristics of index cases  

A total of 34 index cases (F1.1 to F34.1) were selected for investigation. All participants 

had been evaluated clinically and enrolled in the UK-GAPP study following diagnosis 

of a suspected platelet function disorder. Extensive platelet phenotyping was 

undertaken on samples from all subjects at the time of recruitment to the study to 

examine platelet aggregation and granule secretion in response to a range of agonists 

using lumi-aggregometry (Dawood et al., 2012; Dawood et al., 2007). The index cases 

selected for study belonged to one of two subgroups. Thus, 22 cases (F1.1 to F22.1) 

had been diagnosed with defects in dense granule secretion based on a reduction in 

ATP secretion from platelets in response to PAR-1 specific peptide (SFLLRN; 100 

μmol/L) or thrombin (1U/ml) compared to platelets from healthy control subjects. The 

remaining 12 cases (F23.1 to F34.1) were classified as having Gi-signalling 

abnormalities as their platelets displayed reversible aggregation in response to 10 

μmol/L ADP and absence of a secondary wave of aggregation in response to 

adrenaline (10 μmol/L). Six first-degree affected relatives were also included in the 

study (F1.2, F18.2, F25.2, F29.2, F30.2 and F34.2).  

 

3.4.2 Exome sequencing and prediction of candidate gene defects  

WES was performed on DNA from the index cases and affected family members, and 

analysis of the resulting genetic data was undertaken to identify candidate gene 

defects that could explain the bleeding tendency. Alignment of sequence data with the 

human genome resulted in the identification of approximately 25,000 sequence 

variants in the exome from each index case. Removal of synonymous variants and 

those variants identified by the 1000 Genomes project, the NHLBI exome sequencing 

project or an in-house database as having a minor allele frequency (MAF) in the 

general population of greater than 0.01 reduced the number of variants to a median of 

379 SNVs in each index case. The remaining SNVs were then analysed using CADD, 

a tool that scores the deleteriousness of SNVs in the human genome. Following 

removal of those variants having a CADD_PHRED score of less than 20, a median of 

174 (range 76–296) candidate SNVs remained per index case. Further prioritisation 

was achieved by limiting the analysis to SNVs located in genes expressed in platelets. 

This prioritisation was achieved by comparison with the data from three studies, two of 
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the platelet proteome, and one of the platelet transcriptome, and resulted in a reduction 

in the median number of SNVs to 103 per index case (range 46–175). Where data 

were available for an affected family member, focussing only on shared variants further 

reduced the number of SNVs by approximately 50% (Table 3.1).  

 

 

Table 3.1 Median number of single nucleotide variants in each exome at different 
stages of the analysis pipeline 

 Median (range) 

SNVs identified in exome sequence 24,774 (11,768–27,715) 

Non-synonymous SNVs* with MAF ≤ 0.01 379 (209–711) 

SNVs with CADD_PHRED score ≥ 20 174 (76–296) 

SNVs in genes expressed in platelets 103 (46–175) 

SNVs shared between affected family members 98 (31-175) 

CADD; Combined Annotation Dependent Depletion, MAF; minor allele frequency, SNV; single nucleotide variant.  

 

 

In the subgroup of 22 index cases with platelet secretion defects, a total of 2,066 

variants were identified in 1,476 candidate genes, while among the 12 index cases 

with Gi-signalling defects, a total of 1,059 variants were detected in 891 genes 

(Supplementary Data #1 & #2). Assuming that different platelet phenotypes will be due 

to causative variants in different gene subsets, those SNVs that occurred in genes 

common to both subgroups of index cases were filtered out from the data. The number 

of genes in which candidate SNVs were identified in both subgroups was 346. The 

removal of SNVs that occurred in these genes reduced the number of candidate genes 

by approximately 30%, with 1,130 and 545 unique genes remaining in the subgroups 

of index cases having secretion defects and Gi-signalling defects, respectively (Table 

3.2). Table 3.3 shows the number of SNVs in each patient at different stages of the 

analysis pipeline. 

 

 

Table 3.2 Numbers of single nucleotide variants and genes in which they occur 
in each subgroup of index cases  

 Secretion defect Gi-signalling defect 

Total number of candidate SNVs/genes 2,066/1,476 1,059/891 

Total number of unshared SNVs/genes 1,465/1,130 599/545 

SNV; single nucleotide variant.  



 
 

 
83 
 

Table 3.3 Number of single nucleotide variants in each index case at different stages of the analysis pipeline 

Index case  
Platelet 

phenotype 

SNVs identified 
in exome 
sequence 

Non-
synonymous 

SNVs* with MAF 
≤ 0.01 

SNVs with 
CADD_PHRED 

score ≥ 20 

SNVs in genes 
expressed in 

platelets 

SNVs shared 
between affected 
family members  

SNVs in genes 
unique to platelet 

phenotype  

F1.1 Sec 24,740 368 158 96 
48 38 

F1.2# Sec 26,483 598 254 149 

F2.1 Sec 27,715 711 296 175 --- 122 

F3.1 Sec 24,658 364 162 90 --- 66 

F4.1 Sec 24,709 389 187 109 --- 72 

F5.1 Sec 24,874 366 169 100 --- 69 

F6.1 Sec 24,657 423 200 116 --- 79 

F7.1 Sec 25,026 378 172 99 --- 71 

F8.1 Sec 24,510 393 175 99 --- 72 

F9.1 Sec 24,940 370 180 114 --- 86 

F10.1 Sec 25,206 500 221 121 --- 74 

F11.1 Sec 25,883 424 212 127 --- 83 

F12.1 Sec 24,700 359 153 86 --- 64 

F13.1 Sec 12,535 240 99 47 --- 31 

F14.1 Sec 17,860 304 121 63 --- 47 

F15.1 Sec 11,768 209 76 46 --- 35 

F16.1 Sec 25,090 379 81 96 --- 72 

F17.1 Sec 26,260 454 197 111 --- 81 

F18.1 Sec 17,350 309 118 72 
31 24 

F18.2# Sec 15,001 247 99 54 

F19.1 Sec 25,860 455 223 123 --- 85 

F20.1 Sec 17,462 523 208 102 --- 72 

F21.1 Sec 15,982 401 157 97 --- 77 

F22.1 Sec 16,101 277 119 66 --- 45 

F23.1 Gi 24,439 400 194 107 --- 62 
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F24.1 Gi 25,121 367 171 106 --- 71 

F25.1 Gi 24,967 467 223 127 
72 41 

F25.2# Gi 25,074 493 249 139 

F26.1 Gi 25,007 398 198 100 --- 55 

F27.1 Gi 24,910 336 147 82 --- 48 

F28.1 Gi 25,729 543 240 129 --- 75 

F29.1 Gi 24,704 378 190 113 
63 31 

F29.2# Gi 24,632 361 186 112 

F30.1 Gi 25,092 356 182 103 
57 30 

F30.2# Gi 25,023 379 163 108 

F31.1 Gi 24,631 332 150 96 --- 57 

F32.1 Gi 24,713 326 156 103 --- 63 

F33.1 Gi 25,092 419 175 107 
49 29 

F33.2# Gi 24,807 406 167 89 

F34.1 Gi 24,244 363 165 95 --- 38 

Median 24,774 379 174 103 98 65 

Minimum 11,768 209 76 46 31 24 

Maximum 27,715 711 296 175 175 122 

* After removal of synonymous and intronic variants. # affected relative of index case. CADD; Combined Annotation Dependent Depletion, Gi; Gi-signalling defect, MAF; minor allele 
frequency, Sec; secretion defect, SNV; single nucleotide variant.  
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3.4.3 Variants in platelet disorder genes identified among index cases with 

platelet secretion defects 

Given the focus of this study on genes regulating the biogenesis and secretion of 

platelet granules, further downstream studies focused on those patients with secretion 

defects, as well as the 1,130 genes which harboured SNVs in this subgroup of index 

cases.  

 

While the majority of variants identified were present in genes that have not previously 

been associated with IPDs, several variants occurred in genes that have previously 

been implicated in IPDs including ABCG8 (ATP binding cassette subfamily G member 

8), BLOC1S3 (Biogenesis of lysosomal organelles complex 1 subunit 3), ETV6, 

FERMT3 (Fermitin family member 3), FLNA (Filamin A), FLI1, GFI1B, ITGB3 (Integrin 

subunit beta 3), P2RX1 (Purinergic receptor P2X 1), and RUNX1 (Table 3.4). Thus, 

candidate defects were identified in at least one of the latter genes in 54% (12 out of 

22) of the index cases with platelet secretion defects, with four index cases harbouring 

defects in more than one of these genes. Four of these genes, ETV6, FLI1, GFI1B and 

RUNX1, which encode transcription factors that are known to have a role in the 

regulation of megakaryopoiesis, were shown to harbour candidate defects in six of the 

index cases with platelet secretion disorders. Querying these SNVs against “The 

Exome Aggregation Consortium (ExAC)” database (Lek et al., 2016) revealed that, 

with the exception of a c.322C>G:p.L108V SNV in BLOC1S3 which had a frequency 

of 1.16%, all of the SNVs occurred at frequencies of less than 1% in the general 

population (Exome Aggregation Consortium [ExAC], Cambridge, MA URL: 

http://exac.broadinstitute.org [accessed October 2018]).  

 



 
 

Table 3.4 Variants present in genes previously associated with inherited platelet bleeding disorders that were identified among 
index cases with platelet secretion defects 

Patient Gene 
CADD_ 
PHRED 
score 

Type of SNV Alteration rs number* ExAC** 
Location/Domain of the change in the 

protein*** 

F1.1+F1.2 FLI1 - FD NM_002017:c.992_995del:p.331_332del --- --- DNA-binding domain (Ets domain) 

F4.1 ETV6 45 SG NM_001987:c.1288C>T:p.R430X --- --- 
Winged helix-turn-helix DNA-binding 

domain 

F6.1 RUNX1 37 SG NM_001001890:c.236G>A:p.W79X --- --- DNA-binding domain (Runt domain) 

F6.1 ITGB3 33 NS NM_000212:c.349C>T:p.R117W --- 8.28e-06 Integrin beta subunit, N-terminal 

F7.1 RUNX1 27.1 SP NM_001001890:c.270+1G>T --- --- --- 

F7.1 BLOC1S3 23.9 NS NM_212550:c.322C>G:p.L108V rs75792246 0.01164 --- 

F10.1 FERMT3 24.4 NS NM_178443:c.293G>A:p.R98Q rs140992702 1.653e-05 --- 

F11.1 FLI1 26.9 NS NM_002017:c.1018C>T:p.R340C --- --- DNA-binding domain (Ets domain) 

F11.1 ABCG8 24.9 NS NM_022437:c.1540C>T:p.P514S --- --- Non-cytoplasmic domain 

F12.1 BLOC1S3 23.9 NS NM_212550:c.322C>G:p.L108V rs75792246 0.01164 --- 

F13.1 FLNA 27 NS NM_001456:c.806T>A:p.L269Q --- 2.313e-05 
Between calponin homology and 

immunoglobulin-like fold 

F16.1 BLOC1S3 23.9 NS NM_212550:c.322C>G:p.L108V rs75792246 0.01164 --- 

F19.1 BLOC1S3 23.9 NS NM_212550:c.322C>G:p.L108V rs75792246 0.01164 --- 

F21.1 GFI1B 20.5 NS NM_001135031:c.289G>A:p.D97N rs145562579 0.005939 --- 

F21.1 BLOC1S3 24.9 NS NM_212550:c.499C>T:p.L167F rs572296006 0.0005295 --- 

F22.1 P2RX1 24.8 NS NM_002558:c.1111G>A:p.A371T --- 8.24e-06 Cytoplasmic domain 

*rs number from the dbSNP database [accessed 2018]. **ExAC Browser (Beta) - version 0.3.1 from Exome Aggregation Consortium (http://exac.broadinstitute.org/) [accessed 2018]. 
***Location/Domain of amino acid substitution predicted using InterPro. CADD; Combined Annotation Dependent Depletion, FD; frameshift deletion, NS; non-synonymous, SG; stop-
gain, SNV; single nucleotide variant, SP; splicing. 

http://exac.broadinstitute.org/
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3.5 Discussion 

 

In this study, WES was used to investigate the underlying genetic defects in 34 index 

cases with IPDs who were recruited to the UK-GAPP study. Based on extensive 

platelet phenotyping at the time of study enrolment, 22 index cases were diagnosed 

as having defects in platelet secretion, while the remaining 12 had defects in Gi-

signalling pathways. The pipeline used to prioritise candidate defects from the WES 

data initially filtered variants according to their frequency in the population and variant 

type. Those with a MAF of 0.01 or greater were removed, as were synonymous and 

intronic (non-splice site) variants. The potential effects of gene variants were then 

predicted using CADD, a tool that combines the information from many functional 

annotation tools to derive single scores as measures of the deleteriousness of 

sequence variants. Variants achieving CADD_PHRED scores of 20 or greater were 

predicted to be pathogenic. Removal of variants having CADD_PHRED scores of less 

than 20, and occurring in genes that are not expressed in platelets, reduced the 

number of candidate variants to 103 in each index case. Where WES analysis was 

also undertaken on an affected family member, removal of variants that were not 

shared between the affected family members brought about an approximate 50% 

further reduction in the number of candidate gene defects in each corresponding index 

case. Assuming that causative variants would occur within genes that function in the 

same or related pathways for each subgroup of index cases, those genes that were 

represented among the SNVs identified in both subgroups were excluded from further 

analysis, thereby reducing the number of candidate SNVs by approximately 30%. A 

median of 70 candidate SNVs per index case, and a total of 1,130 possible candidate 

gene defects were identified across the 22 patients with secretion defects. Similarly, a 

median of 50 candidate SNVs per index case, and a total of 545 possible candidate 

gene defects were identified among the 12 patients with defects in Gi-signalling 

pathways, highlighting the heterogeneity and complexity of IPDs.  

 

Given the focus of this study on genes regulating the biogenesis and secretion of 

platelet granules, further downstream studies focused on those findings from the 

patients with defects in platelet secretion.  
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Heterozygous defects were identified in ten genes previously associated with IPDs, 

ABCG8, BLOC1S3, ETV6, FERMT3, FLI1, FLNA, GFI1B, ITGB3, P2RX1 and RUNX1, 

and defects in at least one of these genes were identified in about half of the index 

cases. However, it is important to note that several of the IPDs associated with these 

genes are recessively inherited and that the heterozygous presence of a variant in one 

of these genes alone is unlikely to fully explain the bleeding symptoms observed. 

Additionally, in four index cases, more than one candidate variant was identified 

suggesting that more than one gene may contribute to the pathogenicity of the IPDs. 

The associations of the ten previously mentioned genes with IPDs are discussed 

below. 

 

Interestingly, defects in only four of these genes have been previously associated with 

abnormalities in dense granule secretion, these being BLOC1S3, ETV6, FLI1, GFI1B 

and RUNX1 (Ferreira et al., 2017; Mao et al., 2017; Marneth et al., 2017; Morgan et 

al., 2006; Poggi et al., 2017; Saultier et al., 2017; Stockley et al., 2013). In the ETV6, 

FLI1, FLNA, GFI1B, ITGB3 and RUNX1-related IPDs, α-granule abnormalities have 

been documented (Aneja et al., 2011; Berrou et al., 2017; Favier et al., 2018; Ferreira 

et al., 2017; Glembotsky et al., 2014; Mao et al., 2017; Marneth et al., 2017; Noetzli et 

al., 2015; Stevenson et al., 2013; Stevenson et al., 2015). Although dense and α-

granules differ in their cargo, they are understood to have similar granule release 

machinery (Heijnen & Van der Sluijs, 2015) which suggests that the defects identified 

in some of these genes could, at least partly, explain the observed phenotypes in the 

affected cases.  

 

Apart from BLOC1S3, FLNA and ITGB3, the genes mentioned above which have been 

associated with platelet granule abnormalities all encode transcription factors that 

cooperate during megakaryopoiesis to determine several aspects of platelet biology. 

Current evidence suggests that ETV6 acts as a transcriptional repressor and has a 

significant role in early haematopoiesis, affecting the development of multiple lineages 

(Rasighaemi et al., 2015). More recently, several groups have reported its association 

with familial thrombocytopenia and a predisposition to haematological malignancy.  

Defects in platelet aggregation, accompanied by platelet hypogranularity, elongated α-

granules, and abnormal dense granules have also been described (Melazzini et al., 

2016; Moriyama et al., 2015; Noetzli et al., 2015; Poggi et al., 2017; Topka et al., 2015; 
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Zhang et al., 2015). The results of further work which was conducted to characterise 

the nonsense c.1288C>T transition in ETV6 and its potential contribution to the 

bleeding tendency in index case F4.1 will be described in chapter 5 of this thesis. FLI1 

is a key regulator of the differentiation of megakaryocytic/erythroid progenitors into 

platelets (Bastian et al., 1999; Pang et al., 2006; Vo et al., 2017) through its regulation 

of several megakaryocytic genes (Bastian et al., 1999; Deveaux et al., 1996; Eisbacher 

et al., 2003; Gosiengfiao et al., 2007; Hart et al., 2000; Lemarchandel et al., 1993; 

Moussa et al., 2010; Schwachtgen et al., 1997; Zang et al., 2016; Zhang et al., 1993). 

In recent years, germline defects in FLI1 have been identified in patients with IPDs that 

were characterised by abnormalities in platelet granules and variable 

thrombocytopenia (Poggi et al., 2015; Saultier et al., 2017; Stevenson et al., 2015; 

Stockley et al., 2013). Further work was undertaken to characterise the c.1018C>T 

transition in FLI1 which was identified in index case F11.1 and the findings are 

summarised in chapter 4 of this thesis. GFI1B plays a role in the development of both 

megakaryocytic and erythroid lineages by acting as a transcriptional repressor 

(Saleque et al., 2002). A number of studies have reported defects in GFI1B in 

association with “Bleeding Disorder, Platelet-Type, 17” which presents as a GPS-like 

phenotype in addition to red cell anisopoikilocytosis (Ferreira et al., 2017; Marneth et 

al., 2017; Schulze et al., 2016; 2017; Stevenson et al., 2013). In addition to 

macrothrombocytopenia and a reduced number of platelet α-granules, the platelets 

from affected patients were reported to have a reduction in dense granules. However, 

there was variation in the extent of the associated erythropoiesis defect as well as in 

the mode of inheritance (Ferreira et al., 2017; Schulze et al., 2016; 2017), suggesting 

that the location of variants may be important in determining the clinical phenotype. 

The identification of two GFI1B isoforms that preferentially promote either 

megakaryocytopoiesis or erythropoiesis would support this hypothesis (McClellan et 

al., 2017; Polfus et al., 2016; Schulze et al., 2016). RUNX1 is a core regulator of 

haematopoiesis (North et al., 2002), regulating the expression of many genes involved 

in megakaryocyte differentiation (Ichikawa et al., 2004), including genes involved in 

platelet granule biogenesis e.g. NFE2 (Nuclear Factor, Erythroid 2) (Glembotsky et al., 

2014) and PLDN (Pallidin) (Mao et al., 2017), granule content e.g. PF4 (Platelet Factor 

4) (Aneja et al., 2011), and signalling and trafficking e.g. ALOX12 (Arachidonate 12-

Lipoxygenase, 12S Type) (Kaur et al., 2010), PRKCQ (Protein Kinase C Theta) 

(Jalagadugula et al., 2011), RAB27B and RAB1B members of RAS oncogene family 
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(Glembotsky et al., 2014; Jalagadugula et al., 2018), and PCTP (Phosphatidylcholine 

transfer protein) (Songdej et al., 2016). Interestingly, defects in RAB27A and PLDN 

have been shown to cause Griscelli syndrome and HPS respectively, which are both 

characterised by abnormalities in platelet dense granules (Cullinane et al., 2011; 

Ménasché et al., 2000).  

 

Defects in BLOC1S3, FLNA and ITGB3 have also been associated with platelet 

granule abnormalities. BLOC1S3 encodes the BLOC-1 subunit that is involved in the 

biogenesis of lysosome-related organelles. Homozygous defects in BLOC1S3 are 

known to cause HPS type 8, of which dense granule deficiency is a characteristic 

feature, as well as oculocutaneous albinism (hypopigmentation) and impaired visual 

acuity (Morgan et al., 2006). Interestingly, five of the index cases studied were 

heterozygous for one of two BLOC1S3 SNVs identified in this study (F7.1, F12.1, F16.1 

F19.1 and F21.1). Two of these cases (F7.1 and F21.1) were also heterozygous for 

defects in RUNX1 and GFI1B. Defects in FLNA encoding filamin A, an actin-binding 

protein, have been associated with macrothrombocytopenia as a result of disturbances 

in the platelet cytoskeleton that affect proplatelet formation and platelet release 

(Nurden et al., 2011). The presence of enlarged α-granules in the platelets has also 

been reported (Nurden et al., 2011). Given the X-linked dominant mode of inheritance 

of FLNA defects, it is likely that the c.806T>A FLNA alteration predicting a p.L269Q 

substitution in filamin A is the causative genetic defect in the female index case F13.1. 

ITGB3 encodes β3 integrin, which assembles with αIIb integrin subunit to form the 

αIIbβ3 fibrinogen receptor in platelets. Homozygous or compound heterozygous 

defects in ITGB3 result in the autosomal recessive disorder Glanzmann 

Thrombasthenia that is characterised by qualitative and/or quantitative deficiency of 

the αIIbβ3 receptor, which in turn alters the ability of platelets to aggregate. A small 

number of heterozygous alterations have also been shown to alter proplatelet 

formation and platelet release, resulting in GT-like thrombocytopenia with giant 

platelets and abnormal giant α‐granules (Favier et al., 2018; Ghevaert et al., 2008). 

Interestingly, the heterozygous ITGB3 SNV (c.349C>T:p.R117W) is co-inherited with 

a nonsense RUNX1 variant in index case F6.1. It is, therefore, possible that it is the 

combination of the two variants that results in the bleeding symptoms observed in the 

index case, though further work would be required to investigate this.  
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The remaining SNVs that were identified in genes previously associated with IPDs 

among those index cases with platelet secretion defects occurred in ABCG8, FERMT3, 

and P2RX1. However, none of these genes has previously been reported to be 

associated with platelet granule abnormalities. ABCG8 encodes sterolin-2, a 

transporter protein for dietary sterols (Berge et al., 2000). Recessively inherited 

ABCG8 alterations result in a condition known as thrombocytopenia associated with 

sitosterolemia or Mediterranean macrothrombocytopenia (Rees et al., 2005; Su et al., 

2006), a metabolic disorder which also affects the early phase of megakaryopoiesis by 

altering the bone marrow microenvironment. Although electron microscopy did not 

reveal any structural abnormalities in the platelet granules in affected individuals, 

aggregometry revealed a consistent defect in aggregation to ristocetin (Rees et al., 

2005; Su et al., 2006). Given the recessive pattern of inheritance of this disorder, the 

novel ABCG8 variant (c.1540C>T:p.P514S) identified in index case F11.1 is unlikely 

to explain their bleeding symptoms. Furthermore, the ABCG8 variant was co-inherited 

with a non-synonymous SNV in FLI1, the characterisation of which will be described in 

the following chapter. Homozygous defects in FERMT3 encoding Kindlin-3, a mediator 

of integrin activation (Moser et al., 2008), are associated with macrothrombocytopenia 

along with disturbed ‘inside-out’ integrin activation in leukocytes and platelets which 

results in leukocyte adhesion deficiency type III (Kuijpers et al., 2009). Given the 

recessive mode of inheritance, the FERMT3 variant (c.293G>A:p.R98Q) identified in 

index case F10.1, is unlikely to independently explain their bleeding symptoms. P2RX1 

encodes P2X1, the only ATP activated receptor in platelets. The release of ATP at the 

injury site and activation of the receptor causes a rapid influx of calcium that mediates 

rapid and reversible shape change, transient granule centralization and transient 

aggregation mediated by activation of αIIbβ3 integrin (Mahaut-Smith et al., 2011). The 

only heterozygous P2RX1 alteration that has been described was associated with 

symptoms of excessive bleeding in the presence of a normal platelet count, as well as 

normal platelet size and morphology (Oury et al., 2000). However, selective 

impairment of ADP-induced platelet aggregation was observed (Oury et al., 2000). The 

absence of further cases associating P2RX1 defects with IPDs emphasises the 

importance of undertaking further work to characterise the P2RX1 variant identified in 

index case F22.1 (c.1111G>A:p.A371T) to assess its possible contribution to their 

bleeding symptoms.  

 

https://onlinelibrary.wiley.com/doi/abs/10.1111/pai.12485
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WES analysis has facilitated the identification of candidate gene defects in this study, 

some of which could potentially explain, or contribute to, the dense granule secretion 

abnormalities and bleeding symptoms observed in the index cases. However, the use 

of this approach to identify the underlying genetic causes of unexplained bleeding 

symptoms does have limitations. Some variants may have been overlooked by 

focussing only on the exome, as intronic variants could contribute to disease. Also, by 

excluding those variants having MAFs greater than 1%, genetic variants that could 

potentially contribute to disease may have been overlooked. Furthermore, while non-

synonymous SNVs are more likely to be causative than synonymous SNVs, the latter 

can also be deleterious, mainly through the alteration of splice site positions but also 

by altering codon preferences and affecting the rate of protein translation (Plotkin & 

Kudla, 2011); these have been excluded from the analysis in this study. In the event 

that no causative variants are identified for an index case, the pipeline used to analyse 

the genetic data could be altered to include intronic and synonymous SNVs or to relax 

the stringency of the CADD predictions of pathogenicity. These limitations are not 

unique to this study but common across similar studies using NGS technology to 

identify the causative defects for complex and heterogeneous disorders (Gilissen et 

al., 2012).  

 

Despite the previously mentioned shortcomings, the number of candidate SNVs that 

could potentially contribute to the IPDs among the cases studied was reduced from 

~25,000 to ~100 for each index case. Focussing on the subgroup of 22 cases with 

platelet secretion abnormalities identified probable candidate gene defects affecting 

ETV6 and FLI1 in three index cases, and further studies were undertaken to 

characterise two of these (see chapters 4 and 5). As discussed above, the defects 

identified in FLNA, GFI1B, ITGB3, P2RX1 and RUNX1 could potentially contribute to 

the bleeding tendency in another five index cases, though, further investigation is 

required to evaluate the pathogenicity and association of these variants with bleeding.  

 

The identification of genetic defects that could potentially contribute to the bleeding 

tendency in approximately 35% of the index cases was achieved mainly as a result of 

the previous reported association of these genes with IPDs. This highlights the need 

to adopt alternative approaches to identify which, if any, of the remaining genes that 

were found to harbour candidate gene defects could be associated with IPDs in the 
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other index cases. Given that FLI1 is a master regulator of megakaryopoiesis, and that 

FLI1 defects are associated with profound reductions in dense granule secretion, it is 

feasible that some of the FLI1-regulated genes could harbour defects in patients with 

platelet secretion abnormalities. This hypothesis was tested by knockdown of FLI1 in 

the megakaryocytic Dami cell line and gene expression analysis to identify novel genes 

involved in platelet granule biogenesis and secretion. Those genes which are 

differentially expressed after FLI1 knockdown and harbour SNVs among cases with 

platelet secretion abnormalities would then be considered to be strong candidates for 

further investigation. This approach, and the results obtained, will be described fully in 

chapter 6.   
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4 Chapter 4. Characterisation of Two Novel FLI1 Variants 

causing Substitution of Arginine 340 in the ETS Domain 

of FLI1 in Patients with Platelet Dense Granule Secretion 

Disorders  
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4.1 Introduction 

 

4.1.1 Discovery of FLI1 

Friend virus (FV) -A and FV-P are complexes of spleen focus-forming virus (SFFV), 

either SFFV-A or SFFV-P, and Friend murine leukaemia virus (F-MuLV) (Ben-David & 

Bernstein, 1991). The FV complex is oncogenic and known to induce erythroleukaemia 

in mice, which is characterised by rearrangement of the E26 transformation-specific or 

E-twenty-six (ETS) family member Spi-1 proto-oncogene (Spi1) in 95% of cases 

(Friend, 1957; Moreau-Gachelin et al., 1988). F-MuLV alone does not induce 

erythroleukaemia in adult mice (Troxler & Scolnick, 1978), although it induces a variety 

of haematopoietic neoplasms in susceptible newborn mice (Silver & Kozak, 1986). In 

1990, Fli1 was identified as a common proviral insertion site that was rearranged in 

over 75% of FMuLV-induced erythroleukaemia cells (Ben-David et al., 1990). A year 

later, murine FLI1 was recognised as a member of the ETS family (Ben-David et al., 

1991) and based on extensive amino acid similarity, the human homologue, FLI1, was 

cloned and characterised from a T-cell leukaemia line (Watson et al., 1992). The gene 

is almost 127 kilobase (Kb) in size and located on chromosome 11 (11q23-24). 

 

The Ensembl genome browser (www.ensembl.org) lists nine FLI1 transcripts which 

have been annotated by the Genome Reference Consortium for Human Build 38 

(GRCh38). There are four non-coding transcripts and five protein-coding transcripts, 

of which four have RefSeq IDs from the National Center for Biotechnology Information 

(NCBI) as well as Consensus Coding Sequence (CCDS) identifiers. The transcript with 

the most extended open reading frame (NM_002017) spans 4.1 Kb of genomic DNA, 

comprising nine exons which are transcribed to yield a 51 kilodalton (kDa) protein that 

has 452 amino acids. The other three protein-coding transcripts, NM_001271010 (4.15 

Kb), NM_001271012 (3.43 Kb) and NM_001167681 (3.86 Kb), are translated to 

generate 386, 259 and 419 amino acid isoforms of FLI1.  

 

FLI1, together with the ETS transcription factors, ERG and FEV, belongs to the ERG 

subfamily of ETS transcription factors (Hollenhorst et al., 2011). FLI1 and ERG have 

roles in megakaryocyte (MK) differentiation and angiogenesis (Kruse et al., 2009; Liu 

et al., 2008; McLaughlin et al., 2001), while FEV plays a role in brain development 

(Hendricks et al., 2003). 

http://www.ensembl.org/
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4.1.2 Expression of FLI1 

During murine embryogenesis, Fli1 is expressed before day 8 in the extraembryonic 

yolk sac of the haemangioblasts (Mélet et al., 1996). At day E8.5 Fli1 can be detected 

in all parts of the newly formed mesoderm, primarily in the endothelial and neural crest 

cells, and from day E11.5, it can be detected in MK-like cells in the foetal liver, 

endothelial cells, spleen and thymus (Mélet et al., 1996). A similar pattern of expression 

was observed for the FLI1 homologue in Xenopus embryos where it was localised to 

angioblasts, endothelial cells and the neural crest (Mager et al., 2004). In zebrafish, 

fli1 expression is one of the earliest indicators of haemangioblast formation during 

embryogenesis, where it is detected in sites of developing vasculature, suggesting a 

role in the formation of both the endothelium and blood cells (Brown et al., 2000). 

Interestingly, fli1 expression overlaps with that of gata2 in the haemangioblast, but in 

the later stages of development, fli1 is found in the developing vasculature, while gata2 

is expressed in haematopoietic cells (Brown et al., 2000).  

 

Fli1 is highly expressed in the thymus, heart, muscle and spleen of adult mice and 

expressed at lower levels in the brain, kidney, testes and liver (Ben-David et al., 1991; 

Mélet et al., 1996). In humans, FLI1 is expressed in both endothelial and 

haematopoietic cell lineages (Hollenhorst et al., 2004) and found in peripheral blood 

lymphocytes, thymus, bone marrow (BM), ovary, spleen, heart (Watson et al., 1992) 

and platelets (Bastian et al., 1999). It has also been detected in transformed cell lines 

having lymphoid, myeloid and erythroid origins (Hromas et al., 1993; Klemsz et al., 

1993; Watson et al., 1992).  

 

4.1.3 Structure of FLI1  

As shown in Figure 4.1 like other members of the ETS family, FLI1 possesses the 

hallmark ETS domain (residues 280-365). In addition, it has a pointed N-terminal 

domain (PNT; residues 99-198).  
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Figure 4.1 Human FLI1 protein domain structure 
The domain structure of FLI1 (NP_002008) and the locations of amino acid substitutions that have been 
reported in patients with inherited platelet bleeding disorders are indicated. p.R144Q (Poggi et al., 2015); 
p.R324W (Stevenson et al., 2015); p.Asn331Thrfs*4, p.R337W and p.Y343C (Stockley et al., 2013); 
p.R337Q and p.K345E (Saultier et al., 2017); ETS; ETS DNA binding domain, NES; nuclear export 
signal, NLS; nuclear localisation signal, PNT; pointed N-terminal domain. 

 

 

4.1.3.1 The ETS domain of FLI1  

As with other ETS family members, the DNA binding capability of FLI1 lies within its 

ETS domain (Liang et al., 1994). The conserved ETS domain is approximately a 85 

amino acid sequence that binds to target DNA sequences having a core 

(C/A)GGA(A/T) motif. The preferred DNA sequence to which FLI1 binds is 

(A/t)(C/t)(C/a)GGAA(G/A)(T/c) (Szymczyna & Arrowsmith, 2000).  

 

FLI1 was the first ETS family member for which a structure of an ETS domain bound 

to DNA was described (Liang et al., 1994). It comprises three alpha helices, H1 

(residues 283-292), H2 (315-323), and H3 (332-344) as well as four short antiparallel 

stranded beta sheets, B1 (300-303), B2 (308-311), B3 (348-351), and B4 (357-361) 

(Liang et al., 1994). The H3 helix is the main region that interacts with the major groove 

in DNA while the loop between the H2 and H3 helices, and the wing between the B3 

and B4 beta sheets, interact with the minor groove of DNA (Liang et al., 1994).  

 

In addition to its role in DNA binding, the ETS domain incorporates one of two nuclear 

localisation signals (NLSs) present in FLI1; nuclear localisation signal 2 (NLS2) (Hu et 

al., 2005). Some residues required for DNA binding also appear to be vital for nuclear 

targeting of FLI1. For example, substitution of K325, R337, R340 or K350 with alanine 

residues causes a reduction in DNA binding capacity as well as nuclear accumulation 

of FLI1, while FLI1 variants in which R334 or R355 have been substituted with alanine 

residues still retain their DNA binding capability but fail to show nuclear accumulation 
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(Hu et al., 2005). Hu et al. (2005) also demonstrated that the affinity of the ETS domain 

for its target DNA sequence is higher than that for the nucleocytoplasmic shuttling 

receptors. The ETS domain has also been shown to mediate interactions of FLI1 with 

itself (Hou & Tsodikov, 2015) and with other proteins, such as GATA1 (GATA binding 

protein 1, erythroid transcription factor) and KLF1 (Kruppel like factor 1) (Eisbacher et 

al., 2003; Starck et al., 2003). 

 

4.1.3.2 The pointed N-terminal domain of FLI1  

The PNT domain, which is also known as the helix-loop-helix (HLH) or the sterile alpha 

motif (SAM) domain, comprises approximately 80 residues that are organised as four 

alpha helices (Hollenhorst et al., 2011). This domain is present in one-third of ETS 

family members (Hollenhorst et al., 2011). However, PNT of FLI1 has not received as 

much attention as its ETS domain. As shown in Figure 4.1 it overlaps partly with the 

nuclear localisation signal 1 (NLS1) and the nuclear export signal (NES) (see below) 

(Hu et al., 2005) and is reported to be involved in the interaction between FLI1 and 

ETV6 (Kwiatkowski et al., 1998).  

 

4.1.3.3 The nuclear localisation and export signals of FLI1 

Two NLS and one NES have been identified in FLI1 (Figure 4.1) (Hu et al., 2005). 

NLS1 has been localised to residues 62 to 126, partly overlapping with the PNT 

domain, while NLS2 is located between residues 277 and 360, coinciding with the ETS 

domain (Hu et al., 2005). The NES has been mapped to the amino acid sequence that 

encompasses residues 127 to 276 (Hu et al., 2005). Although each NLS can 

independently direct FLI1 to the nucleus, two signals are required for normal function 

as only combined mutations in both signals can entirely abolish nuclear accumulation 

of FLI1 (Hu et al., 2005).  

 

4.1.4 Functions of FLI1  

Extensive in vitro and in vivo studies have revealed a critical role for FLI1 in 

vasculogenesis, as well as haematopoietic cell proliferation and differentiation. Several 

murine models of FLI1 deficiency have been reported and those having phenotypic 

features related to these aspects of FLI1 function are summarised in Table 4.1. While 

these roles provide the primary focus for this thesis, FLI1 also has roles in determining 

cellular adhesion properties, regulation of the extracellular matrix (Hart et al., 2000; 
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Remy et al., 2002), and apoptosis (Cui et al., 2009; Yi et al., 1997). FLI1 acts mainly 

as a transcriptional activator (Rao et al., 1993), though it has been shown to repress 

expression of some target genes (Kubo et al., 2003; Starck et al., 2003; Tamir et al., 

1999). 

 

4.1.4.1 Role of FLI1 in vasculogenesis, angiogenesis and blood cell formation  

FLI1 is one of the transcription factors considered to be essential for control of 

haematopoietic stem cell differentiation and one of the regulators of early endothelial 

development (Kruse et al., 2009; Liu et al., 2008; Wilson et al., 2010). In a recent study, 

conditional overexpression of 15 transcription factors known to be important for 

induction of haematopoiesis in human embryonic stem cells showed that only FLI1 

overexpression was able to induce differentiation to the haematopoietic lineage (Zhao 

et al., 2018).  

 

Two mouse models which fail to express Fli1 (Hart et al., 2000; Spyropoulos et al., 

2000) and a mouse expressing a truncated FLI1 have been described (Moussa et al., 

2010). In all three cases, no visible phenotype was observed in heterozygous embryos, 

and the heterozygous adult mice had peripheral blood cell counts and bleeding times 

within the normal range (Hart et al., 2000; Moussa et al., 2010; Spyropoulos et al., 

2000). In contrast, homozygous null mice presented with fatal bleeding at mid-

gestation (E11.5 - E12.5) as a result of aberrant vasculogenesis, haematopoiesis and 

megakaryopoiesis (Hart et al., 2000; Spyropoulos et al., 2000). Histological 

examinations revealed endothelial abnormalities, disorganised columnar epithelium 

and disrupted basement membranes (Spyropoulos et al., 2000). Although normal yolk 

sac vascularisation was observed in the Fli1 null embryo, the ability of Fli1-/- cells to 

contribute to the development of the vascular endothelium and the foetal liver was 

compromised (Hart et al., 2000). Homozygous mice expressing the truncated FLI1 

showed a significant reduction in viability and were also thrombocytopenic (Moussa et 

al., 2010).  

 

Asano et al. (2010) reported a mouse model with conditional knockout of Fli1 in 

endothelial cells which displayed severe abnormalities of the vasculature, including a 

disorganised dermal vascular network characterised by irregular vessel diameters, an 

increase in vascular permeability and impaired basement membrane development 
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(Asano et al., 2010). Supporting its role in the development of the vasculature, FLI1 

was found to regulate expression of several endothelial genes considered essential for 

vascular homeostasis and angiogenesis (Abedin et al., 2014; Asano et al., 2010; 

Deramaudt et al., 1999; Gory et al., 1998; Göttgens et al., 2002; Hart et al., 2000; 

Landry et al., 2005; Le Bras et al., 2010; Marks-Bluth et al., 2015; Pimanda et al., 

2006). 

 

4.1.4.2 Role of FLI1 in erythroid/megakaryocytic differentiation 

Platelets and MKs express FLI1 (Bastian et al., 1999), and early evidence supported 

the vital role of FLI1 in megakaryocytic differentiation. Treatment of human 

erythroleukaemia K562 cells with phorbol 12-myristate 13-acetate (PMA) to induce MK 

differentiation is accompanied by overexpression of FLI1 and a severe reduction in 

GATA1 expression (Athanasiou et al., 1996). In contrast, erythropoietin-induced 

erythroid differentiation of the HB60 cell line resulted in downregulation of Fli1 while 

overexpression of Fli1 inhibited erythroid differentiation (Tamir et al., 1999).  

 

Overexpression of fli1 in Xenopus embryos and zebrafish resulted in a spectrum of 

abnormalities including developmental anomalies in the head and heart, alterations in 

cell adhesion properties and absence of erythrocyte differentiation (Brown et al., 2000; 

Remy et al., 2002). Interestingly, overexpression of both FLI1 and ERG in human BM 

erythroblasts resulted in transdifferentiation into MKs that were able to produce 

functional platelets (Siripin et al., 2015).  

 

Examination of foetal liver from the murine Fli1 knockout model mentioned above 

(section 4.1.4.1, Table 4.1), revealed reduced numbers of pronormoblasts and 

basophilic normoblasts (Spyropoulos et al., 2000), with an elevated number of 

abnormal undifferentiated MKs, which showed decreasing numbers of α-granules and 

had disorganised platelet demarcation membranes (Hart et al., 2000). The mice 

expressing the truncated FLI1 exhibited thrombocytopenia, abnormal platelet 

activation and aggregation as well as prolonged bleeding time (Moussa et al., 2010). 

Additionally, some of the genes associated with MK development were found to be 

downregulated, including those encoding Cd36 (CD36 molecule), Gp9 (Glycoprotein 

(GP) IX), Itga2b (Integrin subunit alpha 2b), Mafg (MAF BZIP transcription factor G) , 

Mpl (MPL proto-oncogene, Thrombopoietin receptor), Nfe2 (Nuclear factor erythroid 
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2), Pf4 (Platelet factor 4), Rab27B (RAB27B, Member of RAS oncogene family) 

(Moussa et al., 2010). In vitro cell culture studies of murine Fli1 knockout cells at E10.0, 

prior to haemorrhage, revealed a defect in erythropoiesis, downregulation of Mpl, and 

absence of megakaryopoiesis (Kawada et al., 2001). Assessment of the effect of FLI1 

on adult haematopoiesis by induction of Fli1 deletion in adult mice showed, in addition 

to a defect in myelopoiesis in multiple lineages, an increase in the number of MK-

erythrocyte progenitors, a decrease in large mature MKs, and increased numbers of 

erythrocytes in the BM (Starck et al., 2010). The peripheral blood revealed mild 

thrombocytopenia with a normal number of circulating red cells (Starck et al., 2010).  

 

In vivo and in vitro studies have demonstrated that FLI1 modulates the expression of 

both early and late MK-specific genes (Pang et al., 2006). These include CD36 

(Moussa et al., 2010), GP1BA (GP Ib platelet subunit alpha) (Eisbacher et al., 2003), 

GP9 (Bastian et al., 1999; Eisbacher et al., 2003; Hart et al., 2000; Moussa et al., 

2010), HOXA10 (Homeobox A10) (Gosiengfiao et al., 2007), HPS4 (Biogenesis of 

lysosomal organelles complex 3 subunit 2), ITGA2B (Lemarchandel et al., 1993; 

Moussa et al., 2010; Zhang et al., 1993), MAFG (Moussa et al., 2010), MPL (Deveaux 

et al., 1996; Moussa et al., 2010), NFE2 (Moussa et al., 2010), PF4 (Lemarchandel et 

al., 1993; Moussa et al., 2010), RAB27B (Moussa et al., 2010; Zang et al., 2016), VWF 

(Von Willebrand factor) (Schwachtgen et al., 1997). 
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Table 4.1 Features of murine FLI1 deficiency models 
Model Phenotype 

Substitution of the ETS 
domain with a lacZ 
reporter gene (1)  
 

 Die at E11.5  

 Dysmegakaryopoiesis; undifferentiated MKs that show abnormal ultrastructural features including reduced α-granule numbers, 
disorganised platelet demarcation membranes (resembles patients with 11q deletions) 

 Compromised ability of Fli1-/- cells to contribute to vascular endothelium and MK lineages 

 Downregulation of Tek (TEK Receptor Tyrosine Kinase) and Gp9 

Substitution of the ETS 
domain with a  
loxP-flanked Neo 
cassette (2) 
 

 Bleed at E11.5 and die by E12.5 

 Endothelial related abnormalities at the site of haemorrhage at E11.0 

 Absence of red cells from the yolk sac vasculature at E11.0 

 Reduced progenitor numbers in the foetal livers at E11.0 

 In vitro cell culture of progenitor cells from Fli1-/- embryo yolk sacs at E10.0 showed absence of MK colonies and a moderate loss 
of erythroid progenitors 

 In vitro cell culture studies of embryonic stem cells and cells from the aorta-gonad-mesonephros region of E10.0 embryos (3) 

confirmed abnormal erythroid development and defective megakaryopoiesis that was partially explained by reduced Mpl 
expression 

Truncated Fli1 (amino 
acids 1 to 384)(4) 

 Early postnatal lethality (30% survival of homozygotes to adulthood) 

 Thrombocytopenia 

 Prolonged bleeding time 

 Abnormalities in platelet activation and aggregation 

 Downregulation of MK genes (Mpl, Itga2b, Cd36, Gp9, Pf4, Nfe2, Mafg and Rab27B) 

 Reduced binding of GATA1 to the promoters of some target genes 

Inducible Fli1 gene 
deletion by targetting 
exon 9 in adult mice (5) 

 Mild thrombocytopenia 

 Bone marrow has an increased number of bipotent MK-erythrocytic progenitors that are unable to generate mature MK colonies 

 Increased numbers of erythrocytes and natural killer cells, with a decreased number of granulocytic cells 

Conditional knockout of 
Fli1 in endothelial cells 
by targetting exons 3 
and 4 (6) 

 Severe abnormalities of the skin vasculature (recapitulates the scleroderma phenotype of dermal blood vessels) 

 Increased vessel permeability 

 Impaired pericyte/vascular smooth muscle cell coverage of the blood vessels 

 Alteration in the expression of some endothelial genes, including Cdh5 (Cadherin 5), Col4a1 (Collagen type IV alpha 1 chain), 
Mmp9 (Matrix metalloproteinase 9), Pdgfb (Platelet-derived growth factor subunit B), Pecam1 (Platelet and endothelial cell 
adhesion molecule 1), S1pr1 (sphingosine-1-phosphate receptor 1), Tek (TEK Receptor Tyrosine Kinase) 

(1) Hart et al., 2000, (2) Spyropoulos et al., 2000, (3) Kawada et al., 2001, (4) Moussa et al., 2010, (5) Starck et al., 2010, (6) Asano et al., 2010. ETS; ETS DNA binding domain, MK; 
megakaryocyte.
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4.1.5 The role of FLI1 in disease  

Aberrant FLI1 expression, as a result of inherited or acquired genetic alterations, has 

been implicated in the pathogenesis of haematological and non-haematological 

malignancies (Bonetti et al., 2013; Del Portillo et al., 2017; Delattre et al., 1992; 

Kornblau et al., 2011; Lee et al., 2015; Paulo et al., 2012; Scheiber et al., 2014; Song 

et al., 2015; Torlakovic et al., 2008), autoimmune disorders such as systemic lupus 

erythematosus (Georgiou et al., 1996; Mathenia et al., 2010; Zhang et al., 1995; Zhang 

et al., 2004) and systemic sclerosis (Asano et al., 2010; Kubo et al., 2003; Takahashi 

et al., 2017) and bleeding disorders (Poggi et al., 2015; Raslova et al., 2004; Saultier 

et al., 2017; Stevenson et al., 2015; Stockley et al., 2013; Vo et al., 2017). More 

recently, FLI1 deficiency has been implicated in the pathogenesis of pulmonary arterial 

hypertension (Looney et al., 2017). The broad spectrum of diseases associated with 

FLI1 defects most likely reflects the disturbed expression of different downstream 

targets of FLI1. The association between FLI1 and inherited platelet bleeding disorders 

(IPDs) is discussed further below.  

 

4.1.5.1 Bleeding disorders due to structural chromosomal abnormalities that 

result in deletion of FLI1: Jacobsen syndrome and Paris-Trousseau 

syndrome 

Jacobsen syndrome and Paris-Trousseau syndrome are caused by partial deletions of 

chromosome 11 (Breton-Gorius et al., 1995; Jacobsen et al., 1973), which result in 

loss of up to 16 megabases of genomic DNA that encompasses approximately 300 

genes, including FLI1. 

 

Also known as distal 11q deletion syndrome, Jacobsen syndrome is a rare congenital 

disorder that shows variable phenotypic expression depending on the size and location 

of the deletion affecting the q arm of chromosome 11 (Penny et al., 1995). Most 

commonly, patients present with cardiac defects, growth and psychomotor retardation, 

trigonocephaly, dysmorphic facies, digit anomalies, pancytopenia, thrombocytopenia 

(Penny et al., 1995) and dense granule storage pool deficiency (White, 2007). 

Jacobsen syndrome is also characterised by the presence of giant α-granules in 3-

20% of platelets (White, 2007), that have been shown to arise through fusion of α-

granules (Krishnamurti et al., 2001).  
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Paris-Trousseau syndrome (PTS) is an autosomal dominant disorder resulting from 

deletion of chromosome 11q23. Patients present with a lifelong mild haemorrhagic 

tendency, dysmegakaryopoiesis and macrothrombocytopenia (Breton-Gorius et al., 

1995; Favier et al., 1993; Favier et al., 2003). The dysmegakaryopoiesis manifests as 

an increase in the number of micro-MKs in the BM, the presence of large platelets in 

the peripheral blood, about 15% of which contain giant fused α-granules, and a defect 

in platelet secretion (Breton-Gorius et al., 1995). The presence of giant α-granules in 

platelets, but not MKs, of affected patients suggests that fusion occurs within the 

platelets (Breton-Gorius et al., 1995; Favier et al., 2003). Interestingly, Raslova et al. 

(2004) described two distinct populations of normal and small immature MKs in the BM 

of PTS patients which were thought to arise as a result of transient monoallelic 

expression of FLI1 early during megakaryopoiesis alongside the hemizygous loss of 

FLI1 (Raslova et al., 2004). However, Vo et al. (2017) did not confirm the presence of 

two different MK populations, hypothesising that FLI1 haploinsufficiency alone 

underlies PTS. The severity of bleeding in individuals with PTS does not correlate with 

their platelet count, indicating an intrinsic platelet defect (Grossfeld et al., 2004). This 

is supported by the reported correction of the thrombocytopenia within the first two 

years of life in some patients, while the platelet abnormality remains (Favier et al., 

2003; Grossfeld et al., 2004). The similarities in phenotype between patients with PTS 

and Jacobsen syndrome have led to the suggestion that PTS is a variant of Jacobsen 

syndrome (Favier et al., 2003; Krishnamurti et al., 2001).  

 

Deletions at 11q23 result in hemizygous expression of many genes, including ETS1 

and FLI1, loss of which were suggested to explain the defects observed in the MKs 

(Breton-Gorius et al., 1995). Considerable evidence supports the loss of FLI1 over that 

of ETS1 as the underlying cause of the dysmegakaryopoiesis observed. Firstly, MKs 

express 100-fold more FLI1 than ETS1 (Raslova et al., 2004). ETS1 is not essential 

for megakaryopoiesis as MKs were able to differentiate normally in Ets1 null mice 

(Bartel et al., 2000), while homozygous Fli1 null mice presented with 

dysmegakaryopoiesis similar to that observed in patients with terminal deletions of 11q 

(Hart et al., 2000; Spyropoulos et al., 2000). Moreover, studies at the single cell level 

revealed that MK maturation, assessed as the transition from a CD42a- to a CD42a+ 

phenotype, is sensitive to FLI1 level (Raslova et al., 2004), and overexpression of FLI1 

in haematopoietic stem cells (CD34+) derived from a PTS patient was shown to rescue 
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megakaryopoiesis in vitro (Raslova et al., 2004). Finally, in a recent study using MKs 

derived from induced pluripotent stem (iPS) cells from a PTS patient and a human iPS 

cell line with a targeted heterozygous FLI1 deletion, the features of derived MKs and 

platelets were shown to replicate the defects described in PTS and the phenotype was 

rescued when FLI1 was overexpressed (Vo et al., 2017). These results support the 

loss of FLI1 as the underlying cause of the MK/platelet abnormalities observed in 

Jacobsen syndrome and PTS, confirming the essential role of FLI1 in 

megakaryopoiesis, platelet production and function. 

 

4.1.5.2 Bleeding disorders due to intragenic FLI1 variation  

Heterozygous alterations in FLI1 were first associated with IPDs by the UK Genotyping 

and Phenotyping of Platelets (UK-GAPP) study group who reported enrichment of both 

FLI1 and RUNX1 defects among 13 index cases with a history of excessive bleeding 

that was characterised predominantly by a significant reduction in platelet dense 

granule secretion (Stockley et al., 2013). Thus, next-generation sequencing of a panel 

of 260 platelet genes identified two index cases with novel heterozygous missense 

mutations predicting p.Arg337Trp and p.Tyr343Cys substitutions in the ETS domain of 

FLI1, both of which resulted in a loss in transactivation capacity of FLI1. A third index 

case was found to be heterozygous for a 4 base pair deletion, p.Asn331Thrfs*4 

(Stockley et al., 2013). The p.Tyr343Cys variant was associated with 

thrombocytopenia in the affected index case and another affected family member, 

while the p.Asn331Thrfs*4 defect was associated with an increase in mean platelet 

volume (Stockley et al., 2013). Interestingly, in addition to their association with 

excessive bleeding, the missense FLI1 defects were associated with alopecia, eczema 

or psoriasis, as well as recurrent viral infections in the affected members of the two 

families identified. While this study was ongoing, four further novel FLI1 missense 

variants were reported in the literature, all of which were associated with bleeding and 

platelet granule abnormalities (Poggi et al., 2015; Saultier et al., 2017; Stevenson et 

al., 2015). 

 

 

4.2 Hypothesis and Aims 

 

The first part of this study (chapter 3) focused on 34 index cases with unexplained IPDs 

that were characterised by defects in either dense granule secretion or Gi-signalling, 
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all of whom were enrolled in the UK-GAPP study. Whole exome sequencing (WES) 

and bioinformatic analysis of the genetic data obtained for those 22 patients with dense 

granule secretion defects highlighted novel FLI1 variants in the index cases from two 

families; F1 (c.992-995del:p.Asn331Thrfs*4) and F11 (c.1018C>T:p.Arg340Cys). The 

4bp deletion identified in F1 was predicted to cause a frameshift and introduce a 

premature stop codon and no further work was undertaken on this variant as part of 

this study. The FLI1 defect in F11 (hereinafter referred to as family A) was of interest 

since it predicted a p.R340C substitution in a region of the protein that was previously 

shown to harbour defects (c.1009C>T:p.Arg337Trp and c.1028A>G:p.Tyr343Cys) in 

members of two other families enrolled in the UK-GAPP study with IPDs, which were 

characterised predominantly by defects in platelet secretion and other clinical features 

including mild thrombocytopenia, eczema, alopecia and recurrent viral infection 

(Stockley et al., 2013). However, in contrast to the defects identified previously, the 

predominant clinical feature in the patient with the p.Arg340Cys defect was in platelet 

secretion. It was therefore of interest to study this variant further to examine how it 

differs in its properties from the other two variants.  

 

During the course of this study, we were approached by Courtney D. Thornburg and 

Diane Masser-Fryeat from Rady Children’s Hospital, San Diego as they had identified 

another novel FLI1 variant also affecting codon 340, but which was predicted to result 

in substitution of arginine by histidine (c.1019G>A:p.Arg340His). Interestingly, the 

affected members of the family (referred to here as family B) who carried this FLI1 

variant were clinically similar to those cases previously reported by Stockley et al. 

(2013). 

 

Given the critical role of FLI1 in megakaryopoiesis, we hypothesised that the IPDs 

which affected the index case in family A, and three members of family B were due to 

the inherited FLI1 variants c.1018C>T:p.Arg340Cys and c.1019G>A:p.Arg340His 

respectively. Since neither of the index cases nor any of their family members were 

available for investigation, this hypothesis was explored using experimental 

approaches which aimed to reproduce the patient phenotypes in vitro. In addition, 

further work was undertaken to characterise the p.Arg337Trp and p.Tyr343Cys 

variants of FLI1 which were identified previously in our laboratory. The aims of the work 

described in this chapter were therefore to:  
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i. Predict the DNA binding capability of four FLI1 variants p.R340C, p.R340H, 

p.R337W and p.Y343C 

ii. Assess the transactivation capacity of two novel FLI1 variants in which arginine 

340 is substituted by either cysteine or histidine, p.R340C and p.R340H, and 

further investigate the transactivation capacity of the previously described 

variants, p.R337W and p.Y343C 

iii. Evaluate nuclear localisation of all four FLI1 variants p.R340C, p.R340H, 

p.R337W and p.Y343C 

 

 

4.3 Methods 

 

4.3.1 Prediction of the effects of amino acid substitutions in FLI1  

The possible effects of the R340C, R340H, R337W and Y343C amino acid 

substitutions on the structure of FLI1 and on the FLI1-DNA interaction were predicted 

using the crystal structure of the ETS domain of FLI1 (amino acids 279-371) bound to 

the double-stranded oligonucleotide GACCGGAAGTG which was deposited in the 

RCSB Protein Data Bank (PDB ID: 5JVT) (Hou et al., 2016). The structure was 

visualised, in silico mutagenesis was carried out, and polar interactions were predicted 

using the tools available in Pymol (version 0.99rc6). The most common amino acid 

side chain orientations were used in the simulations.  

 

4.3.2 Assessment of transcriptional activity of overexpressed FLI1 variants 

using dual luciferase reporter assays in mammalian cell lines 

Dual luciferase reporter assays were performed to examine the ability of FLI1 variants 

to transactivate the GP6 (glycoprotein VI) promoter in HEK 293T cells and the 

megakaryocytic Dami cell line as described in section 2.2.11. 

 

4.3.3 Evaluation of the subcellular localisation of overexpressed FLI1 variants 

in mammalian cell lines using wide-field microscopy 

To evaluate nuclear localisation of FLI1 variants, FLI1 was detected either by 

immunostaining or by assessing the enhanced green fluorescent protein (EGFP) signal 

from FLI1-EGFP fusion proteins as described in section 2.2.12.  
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4.3.4 Evaluation of the subcellular localisation of overexpressed FLI1 variants 

in HEK 293T cells using lithium dodecyl sulphate polyacrylamide gel 

electrophoresis and western blotting  

Subcellular localisation of FLI1 was evaluated by electrophoresis and immunoblotting 

of cytoplasmic and nuclear fractions of lysates from HEK 293T cells that transiently 

overexpressed different FLI1 variants as described in section 2.2.13. 

 

 

4.4 Results 

 

4.4.1 Identification of two FLI1 defects which predict substitution of arginine 

340 in FLI1  

 

4.4.1.1 Clinical features of index cases with FLI1 variants 

Figure 4.2 shows the pedigrees for families A and B. The index case in family A 

(F.A.II.1) was recruited to the UK-GAPP study with a history of bleeding and a 

diagnosis of storage pool disease. Phenotyping of her platelets confirmed a reduction 

in agonist-induced dense granule ATP secretion. Following the referral of the index 

case, her daughter, F.A.III.1 and son, F.A.III.2 were both diagnosed with the same 

condition. Both were reported to have thrombocytopenia at birth, which was confirmed 

by the medical record in the case of F.A.III.1. However, the platelet counts for all three 

affected family members were within the normal range on later occasions. While 

F.A.II.1 and F.A.III.1 both had a history of bleeding, F.A.III.2 had no bleeding symptoms 

though he developed arthritis at the age of 18. DNA was available only from subject 

F.A.III.2. 

 

The index case (F.B.I.1) in family B, and her two sons (F.B.II.1, F.B.II.2), all had a 

history of mucocutaneous bleeding symptoms and a diagnosis of storage pool disease, 

which was defined by a reduction in dense granule secretion. They also suffered from 

mild eczema and had a history of thrombocytopenia. The index case (F.B.I.1) had been 

diagnosed with Ehlers-Danlos syndrome III. Additionally, F.B.I.1 and F.B.II.1 had a 

history of recurrent infections and F.B.II.2 had a history of mild neutropenia. 
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Figure 4.2 Inheritance of dense granule secretion defects and other clinical features in families with FLI1 variants  
Individuals heterozygous for the c.1018C>T and c.1019G>A transitions in FLI1 are indicated. The index case in each family is indicated by an arrow. Members of 
family A diagnosed with storage pool disease and having a confirmed dense granule secretion defect are indicated by black filled symbols. The presence of a bleeding 
history is indicated by a “B”. History of thrombocytopenia is indicated by an asterisk, and a history of arthritis is indicated by the “~” symbol. Members of family B 
diagnosed with storage pool disease and having bleeding symptoms, a history of thrombocytopenia and eczema are indicated by black filled symbols. A “+” symbol 
indicates a history of recurrent infections while “N” indicates a history of neutropenia. 
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4.4.1.2 Confirmation of FLI1 c.1018C>T and c.1019G>A by Sanger sequencing 

Analysis of WES data from participants enrolled in the UK-GAPP study identified a 

novel heterozygous SNV in FLI1 (c.1018C>T) in one participant, F11.1 (chapter 3). For 

simplification, F11 will be named family A from here. The presence of the c.1018C>T 

transition, predicting substitution of arginine by cysteine at amino acid position 340 in 

FLI1 (p.R340C), was confirmed by Sanger sequencing following PCR amplification of 

a genomic DNA fragment spanning the candidate defect from F.A.III.2 (Figure 4.3).  

 

 

 
Figure 4.3 Sequencing of a fragment of FLI1 amplified from the DNA of index 
case F.A.III.2 and a healthy control subject  
Sanger sequencing confirmed the presence of the heterozygous FLI1:c.1018C>T transition (shaded in 
blue) in F.A.III.2 (previously F11.1).  

 

 

WES analysis was undertaken for three members of family B resulting in the 

identification of a novel heterozygous c.1019G>A transition in FLI1 which predicts 

substitution of arginine by histidine at amino acid position 340 (p.R340H). The 

presence of this defect was confirmed by Sanger sequencing in all three family 

members at the referring centre in San Diego.  

 

4.4.2 Predicted interactions of FLI1 variants with DNA  

Assessment of the polar interactions between the ETS domain of FLI1 and a double-

stranded DNA oligonucleotide incorporating the FLI1 consensus sequence 

(GACCGGAAGTG), identified thirteen amino acids in FLI1 which were predicted to 

interact directly with the DNA. These were Q282, L283, W321, K325, N329, K334, 

R337, R340, Y341, Y342, Y343, K350, and Y356 (Figure 4.4).  

 

Arginine residues 337 and 340 and tyrosine 343 are located in the ETS-H3 helix (332-

344), the primary helix that interacts with DNA. The positively charged guanidinium 

group of arginine 337 is predicted to have polar interactions with the third guanine in 
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the DNA sequence GACCGGAAGTG, also with tyrosine 341 in FLI1. Similarly, 

arginine 340 is predicted to have polar interactions with the second guanine in the DNA 

sequence GACCGGAAGTG, also with serine 336 in FLI1. The aromatic ring in tyrosine 

343 is predicted to have two polar interactions with the second cytosine in the DNA 

sequence GACCGGAAGTG (Figure 4.5 A-C, Appendix 5). 

 

In silico substitution of arginine 337 by tryptophan is predicted to maintain the 

interactions between FLI1 and DNA, while the interaction with tyrosine 341 is lost. 

Substitution of arginine 340 by cysteine is predicted to lead to loss of the interactions 

made by the guanidine group with DNA and with serine 336, while substitution with a 

histidine residue at the same position, which introduces a positively charged imidazole 

ring, maintains the interaction with the consensus DNA sequence, though the 

interaction with serine 336 is lost. Similarly, substitution of tyrosine 343 by cysteine 

was predicted to result in a complete loss of the interaction between FLI1 and DNA. 

Interestingly, the free thiol group introduced by the Y343C and R340C substitutions is 

not anticipated to interact with other residues in the vicinity (Figure 4.5 D-G, Appendix 

5). 
 

 

Figure 4.4 Partial structure of FLI1 showing those amino acids that are predicted 
to interact with the double-stranded DNA fragment GACCGGAAGTG 
The amino acids that interact with DNA are shown as sticks. Polar interactions are indicated by dashed 
lines. Colour coding: cyan; helices, magenta; sheets, loops; pink.
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Figure 4.5 Predicted interactions of the residues located at positions 337, 340 and 343 with neighbouring residues and with DNA 
and the predicted effect of their substitutions found in patients with the FLI1 defect 
The predicted interactions of FLI1 with DNA and within FLI1 at (A) R337, (B) R340, (C) Y343 and the effect of their substitutions to (D) R337W (E) R340C, (F) R340H, 
and (G) Y343C. Dashed lines indicate polar interactions. Colour coding: cyan; helices, magenta; sheets, loops; pink. 
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4.4.3 Effects of the FLI1 variants on gene transcription  

FLI1 promotes the expression of several genes in MKs including GP1BA, GP6, GP9 

and ITGA2B. The FLI1 binding sites in the promoters of these genes have been used 

in previous studies to evaluate transactivation by different FLI1 variants (Bastian et al., 

1999; Hu et al., 2005; Stevenson et al., 2015; Stockley et al., 2013). To examine the 

effects of the p.R340C and p.R340H substitutions on the transcriptional activity of FLI1, 

the ability of the corresponding recombinant FLI1 variants to transactivate the GP6 

promoter was assessed in both HEK 293T and Dami cells using a dual luciferase 

reporter assay. In addition to the R340C and R340H plasmids generated as part of this 

study, derivatives of pSG5-FLI1 encoding the R337W- and Y343C-FLI1 variants, which 

were previously generated in our lab and shown to have reduced capacity to 

transactivate GP6 in HEK 293T cells, were also used in these experiments (Stockley 

et al., 2013). 

 

4.4.3.1 FLI1 variants show reduced transactivation of the GP6 promoter in HEK 

293T cells 

Compared to HEK 293T cells which were transfected with the empty vector (EV; 

pSG5), a 5-fold increase in luciferase activity was observed in cells expressing wild-

type (WT) FLI1 (p<0.0001). There was a significant reduction in luciferase activity in 

the presence of the R337W (86.58% reduction compared to WT-FLI1; p=0.0124) and 

the Y343C (88.33% reduction compared to WT-FLI1; p<0.0001) variants, confirming 

previous results (Stockley et al., 2013). Similarly, there was a significant reduction in 

GP6 promoter activity in the presence of either the R340C- or the R340H-FLI1 variant 

when compared to cells expressing WT-FLI1. Interestingly, while GP6 transactivation 

by the R340C variant was reduced to a similar extent to that observed with the R337W 

and Y343C variants (83.27% reduction compared to WT-FLI1; p<0.0001), there was a 

less dramatic reduction in GP6 transactivation in the presence of the R340H variant 

(64.20% reduction compared to WT-FLI1; p=0.0007). 

 

Co-expression of either the R337W or the Y343C variant with WT-FLI1 to mimic 

heterozygosity resulted in significant reductions in luciferase activity compared to cells 

expressing WT-FLI1 alone (R337W+WT-FLI1 68.68% reduction, p=0.009; 

Y343C+WT-FLI1 43.19% reduction, p=0.0284), confirming previous results (Stockley 

et al., 2013). Likewise, co-expression of either the R340C or the R340H variant with 
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WT-FLI1 led to 31.32% (p=0.0348) and 41.83% (p=0.0001) reductions in luciferase 

activity respectively when compared to cells expressing WT-FLI1 alone (Figure 4.6 A, 

Table 4.2). 

 

4.4.3.2 FLI1 variants show reduced transactivation of the GP6 promoter in Dami 

cells 

Having demonstrated a loss of transactivation capacity of the two R340 variants in 

HEK 293T cells, their ability to induce GP6 promoter activity was investigated in 

megakaryocytic Dami cells along with the R337W and Y343C variants, the activity of 

which had not previously been studied in Dami cells. Luciferase activity was increased 

2-fold in Dami cells expressing WT-FLI1 (p<0.0001) when compared with cells 

transfected with the EV. There were significant reductions, between 31 and 57%, in 

GP6 promoter activity in the presence of each of the four FLI1 variants studied when 

compared to cells expressing WT-FLI1 (R337W: 31.28%, p<0.0001; Y343C: 56.41%, 

p<0.0001; R340C: 44.10%, p=0.0002; R340H: 49.74%, p<0.0001). Similarly, 

compared with cells expressing WT-FLI1 alone, a significant reduction in luciferase 

activity was observed when each of the variants was co-expressed with WT-FLI1 to 

mimic heterozygosity (R337W: 26.15%, p=0.0025; Y343C: 29.23%, p=0.0009; R340C: 

22.56%, p=0.0009; R340H: 21.54%, p=0.0006) (Figure 4.6 B, Table 4.3). Interestingly, 

the R340C and R340H variants displayed similar transactivation capacity in Dami cells. 
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Figure 4.6 Transactivation of the GP6 promoter by wild-type and mutated FLI1 variants 
(A) HEK 293T and (B) Dami cells were transfected with wild-type (WT) or mutated FLI1 constructs, or combinations thereof, or with the empty vector (EV), in addition 
to pGL3-GP6-luciferase and pRLnull-Renilla reporters as described. Firefly and Renilla luciferase expression were assessed in cell lysates 48 hours later. 
Transcriptional activity of FLI1 variants was measured by calculating the ratio of signal from the GP6 promoter (Firefly) compared to a control promoter (Renilla). The 
data are expressed as fold change in luciferase activity relative to that observed in cells transfected with EV and represent the mean ± standard error of the mean of 
at least three independent experiments. Paired t-tests were used for comparison, NS p>0.05, * p≤0.05, ** p≤0.01, *** p≤0.001, **** p≤0.0001. 
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Table 4.2 Comparison of the transactivation capacity of FLI1 variants in HEK 293T cells 
 

WT EV 
R337W+

WT 
R337W 

R340C+W
T 

R340C 
R340H+W

T 
R340H 

Y343C 
+WT 

Y343C 

Mean 5.14 0.80 1.61 0.69 3.53 0.86 2.99 1.84 2.92 0.60 

% activity compared to WT-
FLI1 

100 --- 31.32 13.42 68.68 16.73 58.17 35.80 56.81 11.67 

% reduction in activity 
compared to WT-FLI1 

--- --- 68.68 86.58 31.32 83.27 41.83 64.20 43.19 88.33 

p-value --- <0.0001 0.009 0.0124 0.0348 <0.0001 0.0001 0.0007 0.0284 <0.0001 

Number of repeats (each in 
triplicate) 

--- 15 3 5 4 5 4 4 3 4 

For further details, see the legend to Figure 4.6. EV; empty vector, WT; wild-type. 

 

 

Table 4.3 Comparison of the transactivation capacity of FLI1 variants in Dami cells 
 

WT EV 
R337W+

WT 
R337W 

R340C+W
T 

R340C 
R340H+W

T 
R340H 

Y343C 
+WT 

Y343C 

Mean 1.95 1.00 1.44 1.34 1.51 1.09 1.53 0.98 1.38 0.85 

% activity compared to WT-
FLI1 

100  73.85 68.72 77.44 55.90 78.46 50.26 70.77 43.59 

% reduction in activity 
compared to WT-FLI1 

--- --- 26.15 31.28 22.56 44.10 21.54 49.74 29.23 56.41 

p-value --- <0.0001 0.0025 <0.0001 0.0009 0.0002 0.0006 <0.0001 0.0009 <0.0001 

Number of repeats (each in 
triplicate) 

--- 10 3 3 4 3 4 3 4 3 

For further details, see the legend to Figure 4.6. EV; empty vector, WT; wild-type. 

.
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4.4.4 Intracellular distribution of wild-type and mutated FLI1-EGFP fusion 

proteins  

The intracellular expression of a particular gene of interest can be examined following 

its expression as a recombinant fusion protein formed by cloning the cDNA of the gene 

of interest in-frame with the cDNA for a fluorescent protein without an intermediate stop 

codon. This fusion results in expression of a fluorescently tagged protein that can be 

easily detected by microscopy in transfected mammalian cells. HEK 293T and Dami 

cells were transfected with pEGFP-N2-WT-FLI1 or derivative constructs encoding 

each of the four FLI1 variants (R337W, R340C/H, Y343C) being investigated. The 

localisation of FLI1 within the cells was then assessed using wide-field and super-

resolution microscopy, with images being taken for quantification purposes.  

 

4.4.4.1 Reduced nuclear localisation of EGFP-tagged FLI1 variants in HEK 293T 

cells  

Analysis of the expression of the WT-FLI1-EGFP fusion protein in HEK 293T cells 

revealed it to be localised entirely to the nucleus. Compared to cells expressing the 

WT fusion protein, there was a significant reduction in nuclear expression of the 

R337W-, R340C-, R340H- and Y343C-FLI1-EGFP fusion proteins, with 69.64% of the 

R340C variant, and 72.17% of the R340H variant locating to the nucleus (p<0.0001) 

(Figure 4.7 A and B, Appendix 6). The R337W and Y343C fusion variants also showed 

reduced nuclear accumulation, 65% and 58.01% being located to the nucleus 

respectively (p< 0.0001).  

 

In contrast to the WT-FLI1 fusion protein, which appeared to be evenly distributed in 

the nuclei of HEK 293T cells, the fusion proteins of the four FLI1 variants appeared to 

condense, forming aggregates within the nucleus, while the fraction of the variants that 

was located in the cytoplasm was evenly distributed. This pattern of aggregation within 

the nucleus was confirmed for the R340C-FLI1 variant when the cells were imaged by 

super-resolution microscopy (Figure 4.7 C).  
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Figure 4.7 Reduced nuclear localisation of EGFP-tagged FLI1 variants in HEK 
293T cells 
Cells were transfected with pEGFP-N2 constructs encoding fusion proteins of wild-type (WT) or variant 
forms of FLI1 with enhanced green fluorescent protein (EGFP). (A) Fluorescence images captured by 
wide-field microscopy of HEK 293T cells transiently expressing EGFP-tagged WT, the indicated FLI1 
variants or empty vector (EV). 4',6-diamidino-2-phenylindole (DAPI) was used as a nuclear counterstain 
and appears blue. Merged images that contain both fluorescent signals are also included. The scale bar 
represents 5 µm in all images. (B) The percentage of FLI1 located to the nucleus was determined in at 
least 20 cells per experiment (n=3). The t-test was used to compare results,****p<0.0001. (C) Super-
resolution microscopy images of HEK 293T cells expressing EGFP-tagged WT-FLI1 and the R340C-
FLI1 variant.  

 

 

4.4.4.2 Reduced nuclear localisation of EGFP-tagged FLI1 variants in Dami cells 

Analysis of the distribution of WT-FLI1-EGFP fusion protein in Dami cells revealed 

78.16% of the fluorescent signal to be localised to the nucleus. Compared to cells 

expressing the WT-FLI1 fusion protein, there was a significant reduction in nuclear 

expression in cells expressing either the R340C or the R340H-FLI1-EGFP fusion 
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proteins, with 51.73% of the R340C variant and 45.18% of the R340H variant reaching 

the nucleus (p<0.0001) (Figure 4.8, Appendix 7). The R337W and Y343C variants also 

showed reduced nuclear accumulation with 44.64% and 46.88% of the signal locating 

to the nucleus respectively (p<0.0001).  

 



 
 

 
121 

 

 

Figure 4.8 Reduced nuclear localisation of EGFP-tagged FLI1 variants in Dami 
cells 
Cells were transfected with pEGFP-N2 constructs encoding fusion proteins of wild-type (WT) or variant 
forms of FLI1 with enhanced green fluorescent protein (EGFP). (A) Fluorescence images captured by 
wide-field microscopy of Dami cells transiently expressing EGFP-tagged WT-FLI1, the indicated FLI1 
variants or empty vector (EV). 4',6-diamidino-2-phenylindole (DAPI) was used as a nuclear counterstain 
which appears blue. Merged images that contain both fluorescent signals are also included. The scale 
bar represents 10 µm in all images. (B) The percentage of FLI1 located to the nucleus was determined 
in at least 8 cells per experiment (n=3) and the t-test was used to compare results, ****p<0.0001.  

 

 

4.4.5 Assessment of nuclear localisation of FLI1 variants in HEK 293T after 

immunological detection of FLI1 

The above studies demonstrated a reduction in nuclear localisation of the EGFP-

tagged FLI1 variants in HEK 293T and Dami cells. As it was possible that the EGFP 

tag could affect trafficking of FLI1 in these cells, the intracellular distribution of the FLI1 

variants was further investigated by expressing them in HEK 293T cells, which are not 

known to express endogenous FLI1, and then detecting the expressed FLI1 using an 

anti-FLI1 antibody.  

 

The microscope images showed that the majority of the WT-FLI1 signal originated in 

the nucleus, with a weak cytoplasmic signal also being observed. In contrast, all four 

FLI1 variants showed diffuse patterns of staining, both within the nucleus and the 

cytoplasm. Almost 70% of WT-FLI1 expression was localised to the nucleus compared 

to approximately 43% for each of the R340C, R340H and R337W variants and 47.39% 
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of the Y343C variant (p<0.0001 for comparisons between all variants and WT-FLI1) 

(Figure 4.9, Appendix 8).  
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Figure 4.9 Reduced nuclear localisation of the FLI1 variants in HEK 293T cells 
Cells were transfected with pSG5-WT-FLI1 or derivatives encoding the identified FLI1 variants. FLI1 
was detected using a primary anti-FLI1 antibody and a secondary antibody conjugated to Alexa Fluor™ 
488. (A) Fluorescence images using wide-field microscopy of HEK 293T cells transiently expressing 
wild-type (WT)-FLI1, the indicated FLI1 variants, or the empty vector (EV) appears green. 4',6-
diamidino-2-phenylindole (DAPI) was used as a nuclear counterstain and appears blue. Merged images 
containing both fluorescent signals are also shown. The scale bar represents 5 µm. (B) The percentage 
of FLI1 located to the nucleus was determined in at least 20 cells per experiment (n=3), and the t-test 
was used to compare results, ****p<0.0001. 

 

 

4.4.6 Assessment of the subcellular distribution of FLI1 variants in HEK 293T 

cells 

The effects of the R337W, R340C, R340H and Y343C amino acid substitutions in FLI1 

on its subcellular localisation were also investigated by electrophoresis and 

immunoblotting of cytoplasmic and nuclear fractions of lysates from HEK 293T cells 

transiently overexpressing the different FLI1 variants.  

 

Electrophoresis and immunoblotting of fractions extracted from cells expressing WT-

FLI1 revealed that FLI1 was present in both nuclear and cytoplasmic extracts. 

Densitometric analysis of the blots and calculation of the normalised nuclear to 

cytoplasmic ratios of FLI1, using the relevant housekeeping protein, revealed 5.6-fold 

enrichment of WT-FLI1 in the nucleus when compared with that present in the 

cytoplasm. All four FLI1 variants were also distributed between both cellular fractions 

(Figure 4.10 A). However, in contrast to WT-FLI1, the R340C, R340H and R337W-

FLI1 variants were located primarily in the cytoplasm and showed significant 
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reductions in nuclear accumulation (ratio of FLI1 nuclear: FLI1 cytoplasmic 0.8; 

p=0.0286 for all three variants). The Y343C variant was also confined mostly to the 

cytoplasm, though it showed a slightly greater capacity to reach the nucleus (ratio of 

nuclear: cytoplasmic FLI1 1.32, p=0.0286) (Figure 4.10 B,  

Appendix 9).  

 

Quantification of the immunoblotting results revealed 80.61% of WT-FLI1 to be present 

in the nuclear extract. In contrast, the proportion of FLI1 present in the nuclear fraction 

was reduced to less than 55% (range between 40.57-54.58%) in lysates from HEK 

293T cells expressing each of the four FLI1 variants studied (Figure 4.10 C, Appendix 

10).  
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Figure 4.10 Amino acid substitutions in the ETS domain impair nuclear localisation of FLI1  
(A) Detection of FLI1 in western blots of cytoplasmic and nuclear fractions from HEK 293T cells transiently overexpressing wild-type (WT)-FLI1 and the R340C-, 
R340H-, R337W- and Y343C-FLI1 variants. The blot was also probed for TATA-binding protein (TBP) and cyclophilin B which act as markers of nuclear and cytoplasmic 
fractions respectively. (B) Nuclear: Cytoplasmic ratios of FLI1 and (C) percentage of FLI1 localised to the nucleus derived from densitometric analysis of the western 
blots. The Mann-Whitney test was used for comparison, * p≤0.05. Data shown represent a minimum of three independent experiments.  
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4.5 Discussion 

 

FLI1 belongs to the ETS family of transcription factors and is known to regulate a 

number of genes that are crucial for the formation of haematopoietic and vascular 

endothelial cells as well as regulation of megakaryopoiesis. In Jacobsen syndrome and 

PTS, a partial deletion of the long arm of chromosome 11, which includes FLI1, is 

associated with bleeding, thrombocytopenia, dense granule storage pool deficiency 

and the presence of characteristic giant α-granules in platelets (Breton-Gorius et al., 

1995; Favier et al., 1993; Favier et al., 2003; Grossfeld et al., 2004; Krishnamurti et al., 

2001; Penny et al., 1995; White, 2007). More recently, alterations in FLI1 were found 

by our group to be enriched among patients with IPDs, which were characterised by 

excessive bleeding and a failure in dense granule secretion (Stockley et al., 2013). In 

particular, the R337W and Y343C variants of FLI1 were identified and shown to have 

a complete loss in transactivation capacity (Stockley et al., 2013). However, the 

possibility that this could be due to a failure in nuclear translocation was not explored. 

Since the report by Stockley et al. (2013), several other novel FLI1 variants have been 

identified in patients with IPDs (Poggi et al., 2015; Saultier et al., 2017; Stevenson et 

al., 2015) (Figure 4.1, Table 4.4).  

 

In this chapter, two novel variants of FLI1, both predicting substitution of arginine 340 

in the ETS domain, but which are associated with different clinical features in the 

affected patients, were investigated to assess their possible pathogenic effects and 

association with bleeding symptoms. In silico and in vitro expression studies were used 

to predict their DNA binding capability, assess their transactivation capacity and 

investigate their effects on nuclear translocation of FLI1. The R337W and Y343C 

variants of FLI1, which had been previously identified by our group, were included in 

these studies. The c.1018C>T defect in FLI1 which predicts the p.R340C substitution 

was identified in a patient enrolled in the UK-GAPP study who had been diagnosed 

with storage pool disorder, and whose platelets showed a reduction in dense granule 

secretion. He also had thrombocytopenia at birth, though this later resolved. There was 

a history of bleeding in the family affecting both the mother and the sister of the patient. 

Interestingly, while he did not have a bleeding history, he developed arthritis at the age 

of 18 years. The c.1019G>A transition in FLI1, which predicted the p.R340H 

substitution, was identified in three members of a family referred for investigation of a 
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bleeding history, all of whom had a diagnosis of storage pool deficiency characterised 

by a reduction in dense granule secretion. They also suffered from eczema and mild 

thrombocytopenia. Two of the affected family members had a history of recurrent 

infections, while the third had a history of mild neutropenia.  

 

Arginine 337, arginine 340 and tyrosine 343 are located within the highly conserved 

ETS DNA binding domain of FLI1. This region also encompasses one of two NLSs that 

are known to occur in FLI1. Structural modelling predicted that these three amino acids 

all directly contact DNA. Furthermore, substitution of either R340 or Y343 by a cysteine 

residue was predicted to entirely abolish the interaction of FLI1 with DNA and the 

interactions of these amino acids with other residues in FLI1. In contrast, substitution 

of R340 by histidine or of R337 by tryptophan was predicted to disrupt intramolecular 

interactions within FLI1, while maintaining the interaction of these variants with DNA. 

It is also possible that the loss of intramolecular interactions as a result of the amino 

acid substitutions at positions 337, 340 and 343 could, in turn, cause conformational 

changes in the ETS domain that affect its ability to bind to its target DNA sequence. 

This was supported by previous work which showed that substitution of either arginine 

337 or 340 by alanine, lysine, aspartic acid, asparagine, or glutamic acid abolished the 

ability of FLI1 to bind to DNA when tested using electrophoretic mobility shift assays 

(Hu et al., 2005; Liang et al., 1994). In addition arginine 324 that is not involved in any 

direct interactions with DNA, however, it provides structural stability to the H2 helix and 

aids in positioning the loop between the H2 and H3 helices by forming a salt bridge 

with aspartate 289 (Hou & Tsodikov, 2015). It is noteworthy that disruption of this salt 

bridge as a result of the c.970C>T transition in FLI1 that predicted substitution of 

arginine 324 by tryptophan was identified in patients who presented with an IPD that 

mimicked PTS (Stevenson et al., 2015).  

 

The effects of the amino acid substitutions at R337, R340 and Y343 were assessed in 

vitro by examining the transactivation capacity of the corresponding FLI1 variants and 

their ability to undergo nuclear translocation in two mammalian cell lines. Thus, HEK 

293T cells, which do not express FLI1, were used for initial investigations, with further 

work being undertaken in Dami cells derived from the blood of a patient with 

megakaryoblastic leukaemia, an established model for MK/platelets (Briquet-Laugier 

et al., 2004; Greenberg et al., 1988; Lev et al., 2011).  
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The transactivation capacity of FLI1 variants was assessed by investigating their ability 

to bind to an ETS binding site in the promoter of a known FLI1 target gene, GP6, using 

a dual luciferase reporter assay. All four variants, R337W, R340C/H and Y343C, 

showed significant reductions in their ability to transactivate the GP6 promoter, both in 

HEK 293T and Dami cells. Furthermore, co-expression of each of the four variants with 

WT-FLI1 in order to mimic the heterozygous situation in the patients also led to 

significant reductions in transcriptional activity. These results confirm the earlier 

findings for the R337W and Y343C variants (Stockley et al., 2013), suggesting that the 

R340C and R340H variants could similarly contribute to the bleeding tendency 

observed in patients by causing a reduction in transcription of MK-specific genes. 

Although the modelling predicts a greater impact of the R340C and Y343C 

substitutions on the interaction of FLI1 with DNA, all four variants appear to have 

comparable transactivation capacity. This is perhaps not surprising given the similar 

reductions in transcription capacity of other FLI1 variants described while this work was 

ongoing, which also have substitutions within the ETS domain, the activities of which 

have been studied by luciferase assays using a variety of promoter sequences 

(Saultier et al., 2017; Stevenson et al., 2015). The failure to distinguish between the 

variants in terms of their ability to interact with DNA to promote transcription may reflect 

the blunt nature of the luciferase assay as a tool to distinguish subtle differences in 

ability to promote transcription, or indeed could be a reflection of the necessity for the 

integrity of the ETS domain of FLI1. Interestingly, the R324W variant of FLI1 

demonstrated a reduced ability to drive the expression of several target genes, despite 

predictions that the arginine 324 does not directly contact DNA (Hou & Tsodikov, 2015; 

Stevenson et al., 2015). Overall, however, the results of the reporter gene assays 

suggest that the R337W, R340C/H and Y343C substitutions disrupt the binding of FLI1 

to DNA, therefore the ability of FLI1 to activate MK-specific genes.  

 

One of the factors that could contribute to the observed reduction in transactivation of 

FLI1 variants, is an impaired ability to translocate to the nucleus. The effects of the 

amino acid substitutions at R337, R340 and Y343 on nuclear accumulation of FLI1 

were therefore assessed in HEK 293T and Dami cells. There was a 30-40% reduction 

in nuclear accumulation of each of the FLI1 variants following their overexpression as 

EGFP-tagged proteins in both HEK 293T and Dami cells. Similar results were obtained 

both by microscopic analysis of the cellular distribution of FLI1 and densitometric 
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analysis of western blots of nuclear and cytoplasmic extracts of HEK 293T cells 

expressing the non-GFP-tagged FLI1 variants. Interestingly, in contrast to WT-FLI1, 

each of the four FLI1 variants displayed a speckled distribution pattern in the nuclei of 

HEK 293T cells, suggesting that they may be interacting abnormally with other nuclear 

proteins and/or DNA to form nuclear aggregates. However, it is also possible that the 

EGFP tag interfered with trafficking of the FLI1 variants in HEK 293T cells. The 

absence of the speckled pattern of FLI1 distribution following expression of the FLI1 

variants without GFP tags in HEK 293T cells would support this possibility. The 

presence of FLI1 in the nucleus, albeit at reduced levels, can be partly explained by 

the presence of a second intact NLS (NLS1) that is known to independently direct FLI1 

to the nucleus (Hu et al., 2005). These findings also agree with those of Hu et al. (2005) 

who showed that substitution of either arginine 340 or arginine 337 with alanine 

inhibited accumulation of FLI1 in the nucleus as a result of a loss of the interaction 

between NLS2 and the nucleocytoplasmic shuttling receptors (Hu et al., 2005). 

Similarly, other FLI1 variants having amino acid substitutions in the ETS domain, such 

as R337Q and K345E, demonstrated an increased cytoplasmic accumulation of FLI1 

(Saultier et al., 2017).  

 

Overall, the reduction in transcriptional activity and nuclear accumulation of the R340C 

and R340H-FLI1 variants support the hypothesis that these variants interfere with 

normal FLI1 regulation of essential MK genes and are likely to explain the bleeding 

tendency in affected members of families A and B.  

 

To date, the affected members of families with inherited defects in FLI1 have all been 

reported to present with a bleeding tendency and a platelet disorder that was 

characterised predominantly by a defect in platelet granule secretion, though they have 

also shown variation in phenotypic expression of the platelet disorder, also in whether 

or not additional clinical features have been present (Poggi et al., 2015; Saultier et al., 

2017; Stevenson et al., 2015; Stockley et al., 2013). Thus, while the predominant 

abnormality in individuals carrying the R340C and R324W variants was a defect in 

platelet dense granule secretion, the R340H, R337W and Y343C variants were also 

associated with other clinical features including recurrent infections, eczema, psoriasis 

and alopecia. In addition to MKs, FLI1 is expressed in endothelial cells and other 

haematopoietic lineages and there is also evidence supporting a role for FLI1 in 
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leukocyte differentiation (Masuya et al., 2005; Mélet et al., 1996; Starck et al., 2010; 

Suzuki et al., 2013; Zhang et al., 1995; Zhang et al., 2008). It is therefore possible that 

the additional clinical features observed in patients with FLI1 defects are due, at least 

partly, to abnormal regulation of target genes in these cell types. Similarly, the transient 

monoallelic expression of FLI1 during early megakaryopoiesis may explain the 

variation in platelet phenotype observed among different affected members of the 

same family (Raslova et al., 2004). 

 

Further work is required to explain the platelet granule abnormalities associated with 

FLI1 defects. Electron microscope images of platelets from patients with FLI1 variants 

have revealed the presence of giant α-granules that resemble those seen in platelets 

from patients with PTS (Saultier et al., 2017; Stevenson et al., 2015). They also show 

a dramatic reduction in dense granules, the accumulation of glycogen in vacuoles in 

the cytoplasm and the existence of autophagosome-like structures in a subpopulation 

of platelets (Saultier et al., 2017). Given the role of FLI1 in regulating megakaryocytic 

genes, and the association between FLI1 gene defects and platelet granule 

abnormalities, further investigation of the genes that are regulated by FLI1 in MKs and 

in platelets from patients with FLI1 defects may yield insights into the mechanisms 

governing platelet granule biogenesis and secretion, identifying novel genes defects 

which may be associated with IPDs. This hypothesis will be the focus of the work 

described in chapter 6 of this thesis.
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Table 4.4 Germline FLI1 variants associated with inherited platelet bleeding disorders 

FLI1 defect 
Location 
within the 

protein 

Mode of 
inheritance 

Bleeding 
Platelet 
count 

Platelet 
size (MPV) 

Platelet phenotype Other clinical feature 

p.R144Q(1) PNT --- No Low --- --- --- 

c.970C>T: 
p.R324W (2) 

ETS 
(Not in contact 

with DNA) 
Hom Yes Low Increase 

Defect in dense granule 
secretion; 4% of platelets 

displayed fused α-granules 
No other features 

c.992-995del; 
p.Asn331Thrfs*4 (3) 

ETS Het Yes 
Normal/ 

Low 
Normal 

Defect in dense granule 
secretion 

--- 

c.1009 C>T: 
p.R337W (3) 

ETS Het Yes Normal Normal 
Defect in dense granule 

secretion; Presence of fused α-
granules 

Eczema; Recurrent viral 
infections; Psoriasis; 

Alopecia 

c.1010G>A: 
p.R337Q (4) 

ETS Het No Low Increase 
Absence of dense granules; 

25% of patients’ platelets 
displayed giant α-granules 

No other features 

c.1018C>T: 
p.R340C 

ETS Het Yes/No 
Low at 
birth/ 

Normal 
--- 

Storage pool disease; Defect in 
dense granule secretion 

Arthritis 

c.1019G>A: 
p.R340H 

ETS Het Yes Low --- 
Dense granule storage pool 

disease 
Eczema; Recurrent 

infections 

c.1028 A>G: 
p.Y343C (3) 

ETS Het Yes Low Normal 
Defect in dense granule 

secretion; Presence of fused α-
granules 

Infective endocarditis; 
Eczema; Colitis; Alopecia 

c.1033A>G: 
p.K345E (4) 

ETS Het Yes Low Increase 
Absence of dense granules; 

29% of patients’ platelets 
displayed giant α-granules 

No other features 

(1) Poggi et al., 2015; (2) Stevenson et al., 2015; (3) Stockley et al., 2013; (4) Saultier et al., 2017. ETS; ETS DNA binding domain, Het; heterozygous, Hom; homozygous, MPV; mean 
platelet volume, PNT; pointed N-terminal domain.  
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5 Chapter 5. Characterisation of a Novel Nonsense Variant 

in ETV6 Identified in a Patient with a Platelet Secretion 

Disorders 
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5.1 Introduction 

 

5.1.1 Discovery of ETV6 

ETV6 was first identified as a novel ETS-like gene on chromosome 12 that was 

disrupted by a t(5;12) translocation in a subgroup of patients with chronic 

myelomonocytic leukaemia (Golub et al., 1994). This translocation was found to result 

in a chimeric transcript that fuses the N-terminal domain of ETV6 to the tyrosine kinase 

domain of platelet-derived growth factor receptor β (Golub et al., 1994). Subsequently, 

ETV6 was shown to form part of chimeric proteins that have been identified in many 

haematological (De Braekeleer et al., 2012) and non-haematological malignancies 

(Brenca et al., 2016; Knezevich et al., 1998a; Knezevich et al., 1998b; Leeman‐Neill et 

al., 2014; Tognon et al., 2002) and about 30 ETV6 partner genes have been identified 

(De Braekeleer et al., 2012).  

 

5.1.2 The ETV6 gene 

ETV6, also known as TEL (Translocation Leukaemia) or TEL1 (ETS-Related Protein 

Tel1) or THC5 (Thrombocytopenia 5), was assigned to the E26 transformation-specific 

or E-twenty-six (ETS) family of transcription factors based on its amino acid homology 

with other members of this family (Golub et al., 1994) and to the “Yan” subfamily, which 

is the only ETS subfamily in which all members (ETV6, ETV7 and yan) are repressors 

(Hollenhorst et al., 2011; Lopez et al., 1999; Poirel et al., 2000). The ETV6 gene has 

been localised to chromosome position 12p13.1 and spans 250 kilobase (Kb) of 

genomic DNA. The ETV6 transcript (NM_001987) is approximately 6 Kb in size, 

comprising 8 exons that are translated to yield a 53 kilodalton (kDa) protein comprising 

452 amino acids (NP_001978). 

 

5.1.3 The ETV6 protein 

ETV6 is expressed in multiple tissues including heart, brain, placenta, lung, liver, 

skeletal muscle, kidney and pancreas (Golub et al., 1994). In addition to the ETS 

domain (residues 338-424), ETV6 has three important functional domains: the pointed 

N-terminal domain (PNT; residues 56-123), the linker inhibitory damper domain (LID; 

residues 124-337) and the C-terminal inhibitory domain (CID; residues 423-452) 

(Green et al., 2010) (Figure 5.1). 
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Figure 5.1 Human ETV6 protein domain structure 
The domain structure of the ETV6 protein (NP_001978) and the locations of amino acid substitutions 
reported in patients with inherited platelet bleeding disorders are indicated. p.P214L (Zhang et al., 2015, 
Noetzli et al., 2015, Melazzini et al., 2016, Poggi et al., 2017); p.L349P (Topka et al., 2015); p.I358M 
(Poggi et al., 2017); p.R359* (Moriyama et al., 2015); p.R369W (Melazzini et al., 2016); p.R369Q (Zhang 
et al., 2015); p.A377T (Poggi et al., 2017); p.W380R (Melazzini et al., 2016); p.N385fs (Topka et al., 
2015; Melazzini et al., 2016); p.R396G (Poggi et al., 2017); p.R399C (Zhang et al., 2015); p.Y401N 
(Poggi et al., 2017); p.Y401H (Poggi et al., 2017); p.R418G+p.N385Vfs*7p.N 385_418del  (Noetzli et 
al., 2015, Melazzini et al., 2016). CID; C-terminal inhibitory domain, ETS; ETS DNA binding domain, 
LID; Linker inhibitory damper domain, NES; nuclear export signal, NLS; nuclear localisation signal, PNT; 
pointed N-terminal domain.  

 

 

 

5.1.3.1 The ETS domain of ETV6 

Like other members of the ETS family, ETV6 possesses a conserved ETS domain that 

preferentially binds T(C/G/T)(A/C)GGAAGT sequences in the regulatory elements of 

target genes (Buijs et al., 2000; Szymczyna & Arrowsmith, 2000). Residues in the ETS 

domain, as well as the adjacent CID domain, have also been shown to form a nuclear 

localisation signal (Park et al., 2006) (section 5.1.3.5) and to aid in recruitment of 

proteins that modulate the transcription repression activity of ETV6 (Nordentoft & 

Jørgensen, 2003; Roukens et al., 2010).  

 

5.1.3.2 The pointed N-terminal domain of ETV6 

The PNT domain of ETV6 acts primarily as a homo- and hetero-oligomerisation domain 

(Kwiatkowski et al., 1998; Poirel et al., 2000). It also plays a role in determining the 

subcellular distribution of ETV6 as it contains part of the nuclear export signal (Wood 

et al., 2003) (section 5.1.3.5). 

 

ETV6 was found to partner with itself through the PNT in normal haematopoietic cell 

development (Kwiatkowski et al., 1998). However, the functional relevance of ETV6 

dimerisation was not realised until monomeric ETV6 was shown to be inactive and 

unable to repress transcription of the known ETV6 target, MMP3 (Matrix 

Metallopeptidase 3) (Wood et al., 2003). Monomeric ETV6 has been shown to bind to 
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its target DNA sequence with ten-fold lower affinity than the dimeric protein (Green et 

al., 2010). In addition, ETV6 dimerisation was found to stabilise binding of the ETS 

domain to its target sequence in DNA by overcoming the autoinhibition effect of the 

CID (Green et al., 2010). 

 

ETV6 also forms heterodimers through its PNT domain with other ETS proteins 

including FLI1 and ETV7. While the functional significance of ETV6-ETV7 dimerisation 

remains to be determined (Poirel et al., 2000; Potter et al., 2000), ETV6-FLI1 

dimerisation has been shown to suppress the transactivation capacity of FLI1 

(Kwiatkowski et al., 1998). ETV6 has also been reported to heterodimerise through its 

PNT with other proteins such as UBE2I (Ubiquitin-conjugating enzyme E2 I) 

(Chakrabarti et al., 1999; Chakrabarti et al., 2000), and SIN3A (SIN3 transcription 

regulator family member A) (Fenrick et al., 1999) and these interactions modulate the 

transcriptional activity of ETV6 and its subcellular localisation.  

 

5.1.3.3 The C-terminal inhibitory domain of ETV6 

Self-regulatory capacity is a feature of several ETS family members which is well 

characterised for ETV6 (Coyne et al., 2012; Green et al., 2010). The CID of ETV6 is 

formed by two helices, H4 and H5, which are in close contact with the three helices 

that form the ETS domain (Coyne et al., 2012). Deletion of the CID caused a 10-fold 

increase in affinity of the ETV6 monomer for DNA to a level that was similar to the DNA 

affinity of the wild-type (WT) ETV6 dimer (Green et al., 2010). In another study, a C-

terminal fragment of ETV6 that contained both the ETS and CID domains (without the 

LID), was found to repress DNA binding by the ETS domain by approximately 50-fold 

compared to the ETS domain alone (Coyne et al., 2012).  

 

The CID domain regulates ETV6 function through steric hindrance of the ETS domain. 

The H5 helix is packed anti-parallel to H3 helix, preventing it from entering the DNA 

major groove (Coyne et al., 2012). Furthermore, H4 and H5 helices are stacked against 

an N-terminal portion of H1 helix and some residues in the H2-H3 turn, which prevents 

these helices from contacting the negatively charged phosphodiester backbone of 

DNA that is essential for the ETS domain to fall into the DNA minor groove (Coyne et 

al., 2012). Additionally, the dynamic flexibility of the ETS domain, which is necessary 

for DNA binding, is found to be quenched in ETV6 by the CID (Coyne et al., 2012).  
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The two amphipathic helices H4 and H5 have been shown to be only marginally stable 

(Coyne et al., 2012) and a conformational equilibrium between inhibited and 

uninhibited structures of ETV6, which is determined by the folding and unfolding of H5 

helix, is suggested to regulate ETV6 function. When H5 is folded, ETV6 has an 

inhibited conformation, but when it unfolds, ETV6 adopts a flexible unblocked 

conformation in which the CID is displaced and the ETS domain is exposed for DNA 

binding (Green et al., 2010). This model is supported by the finding that both of the 

negatively charged glutamate residues at positions 431 and 434 in murine ETV6 

(equivalent to glutamine residues 435 and 438 in human ETV6) are essential for the 

conformational equilibrium of the CID domain (Green et al., 2010). 

 

5.1.3.4 The central domain / linker inhibitory damper domain of ETV6 

The linker inhibitory damper (LID) domain is located between the PNT and the ETS 

domains and it interferes with the full inhibitory potential of the CID through its 

interaction with H5 (Green et al., 2010). ETV6 lacking the LID showed a 50 to 100-fold 

lower affinity for the target DNA sequence than the full-length ETV6 dimer (Green et 

al., 2010). The dampening of CID autoinhibition by the LID has been suggested to be 

due to competition between the CID-LID and CID-ETS interactions (Green et al., 2010). 

Similar to the PNT, the LID is involved in the recruitment of other co-repressors 

(Chakrabarti & Nucifora, 1999; Guidez et al., 2000; Wang & Hiebert, 2001) that 

modulate ETV6 repressor function. 

 

5.1.3.5 The nuclear localisation and export signals of ETV6 

ETV6 is mainly located in the nucleus (Poirel et al., 1997), and a nuclear localisation 

signal (NLS) has been identified between residues 332 and 452 in the C-terminal 

region of the protein (Park et al., 2006). A small fraction of ETV6 is found in the 

cytoplasm (Van Rompaey et al., 1999; Wood et al., 2003) and a nuclear export signal 

(NES) has been located between residues 40 and 104 (Wood et al., 2003). Post-

translational modification of specific residues within the PNT domain has been shown 

to play a role in determining the subcellular distribution and function of ETV6 

(Chakrabarti et al., 2000; Wood et al., 2003). 
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5.1.4 Function of ETV6 

ETV6 is one of a small subset of ETS family members that function primarily as 

transcriptional repressors (Hollenhorst et al., 2011; Lopez et al., 1999). It has also been 

described as a putative tumour suppressor (Fenrick et al., 2000; Irvin et al., 2003; Van 

Rompaey et al., 2000).  

 

Animal models have shown that ETV6 is essential for embryonic development, 

angiogenesis and hematopoiesis. Etv6-/- mice are embryonic lethal between E10.5 and 

E11.5, with embryos at this stage displaying growth retardation, defects in yolk sac 

angiogenesis and patches of apoptosis in the neural tube and mesenchymal tissues 

while hematopoiesis appears unaffected (Wang et al., 1997). The importance of Etv6 

in haematopoietic stem cell production was demonstrated in Xenopus embryos, where 

its depletion resulted in the failure of the dorsal aorta to be specified as an artery, 

subsequently preventing the emergence of the first haematopoietic stem cell (Ciau-

Uitz et al., 2010). A mouse model generated from Etv6-/- embryonic stem cells 

highlighted the essential role of ETV6 in the shift of hematopoiesis from foetal liver to 

bone marrow (Wang et al., 1998). The importance of ETV6 for the survival of adult 

haematopoietic stem cells was revealed in a murine conditional Etv6 knockout model 

(Hock et al., 2004). Thus, no defects were observed for any committed lineage, apart 

from megakaryopoiesis which showed a five-fold increase in megakaryocyte (MK) 

colony-forming cells, but an approximate 50% reduction in platelet counts suggesting 

a defect in the later stages of megakaryopoiesis (Hock et al., 2004). Additionally, 

morpholino-mediated knockdown of etv6 in zebrafish highlighted the importance of 

Etv6 for angiogenesis (Roukens et al., 2010) and for the development of multiple 

haematopoietic lineages (Rasighaemi et al., 2015). Thus, Etv6 has been shown to be 

essential for sprouting and branching of endothelial cells, also in haematopoietic cell 

differentiation and lineage maturation (Rasighaemi et al., 2015; Roukens et al., 2010).  

 

Overexpression of ETV6 in a human leukaemia cell line led to accumulation of 

transcripts which were specific to erythroid differentiation following erythropoietin 

treatment, and to a reduction in transcripts which were specific to megakaryocytic 

differentiation following thrombopoietin treatment (Takahashi et al., 2005). This finding 

indicates that ETV6 controls the fate of common progenitors of the human erythroid 
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and MK lineages, promoting differentiation of the erythroid lineage and hindering 

megakaryocytic differentiation (Takahashi et al., 2005).  

 

5.1.5 Role of ETV6 in disease  

ETV6 was initially recognised in patients with chronic myelomonocytic leukaemia 

characterised by a t(5;12) translocation that resulted in the fusion of the N-terminal 

region of ETV6 encompassing the PNT and central domains with the tyrosine kinase 

domain of platelet-derived growth factor receptor β (Golub et al., 1994). Somatic 

mutations in ETV6 have been described in many haematological malignancies (De 

Braekeleer et al., 2012) and are associated with poor overall survival (Bejar et al., 

2011). Non-haematological malignancies including congenital fibrosarcoma 

(Knezevich et al., 1998b), gastrointestinal stromal tumours (Brenca et al., 2016), breast 

cancer (Tognon et al., 2002), renal neoplasms (Knezevich et al., 1998a) and thyroid 

cancer (Leeman‐Neill et al., 2014) have also been associated with somatic ETV6 

rearrangement. Although the majority of genetic rearrangements that include ETV6 in 

the oncogenic chimaeras involve the PNT, rearrangements involving the ETS domain 

have also been described (Buijs et al., 2000).  

 

Early in 2015, Zhang et al. (2015) described three germline ETV6 mutations in familial 

thrombocytopenia and haematologic malignancy. Soon after, while the present study 

was ongoing, further germline ETV6 defects were reported, representing a new form 

of autosomal dominant thrombocytopenia called “thrombocytopenia 5 or ETV6-related 

thrombocytopenia”, which is characterised by a reduced number of normal sized 

platelets in the circulation, and a predisposition to malignancy, similar in clinical 

presentation to that of patients with RUNX1 (Runt Related Transcription Factor 1) or 

ANKRD26 (Ankyrin Repeat Domain 26) defects. To date, six different studies 

describing 18 families with germline ETV6 mutations in patients with inherited platelet 

bleeding disorders (IPDs) have been reported (Melazzini et al., 2016; Moriyama et al., 

2015; Noetzli et al., 2015; Poggi et al., 2017; Topka et al., 2015; Zhang et al., 2015).  
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5.2 Hypothesis and Aims 

 

The work described in chapter 3 of this thesis focused on 34 patients who had been 

diagnosed with IPDs that were characterised phenotypically by defects in either dense 

granule secretion or in Gi-signalling, all of whom were recruited for investigation by the 

UK Genotyping and Phenotyping of Platelets (UK-GAPP) study. Whole exome 

sequencing (WES) and downstream bioinformatic analysis, identified a novel 

nonsense ETV6 variant (NM_001987:c.1288C>T:p.Arg430*) in participant F4.1 who 

had been diagnosed with a platelet secretion disorder. This ETV6 defect was predicted 

to be deleterious using the Combined Annotation Dependent Depletion (CADD) tool, 

and was assigned a PHRED score of 45. It was, therefore, a strong candidate for the 

causative defect underlying the bleeding disorder in patient F4.1. However, prior to this 

study, the predominant clinical phenotype of patients with platelet disorders in whom 

ETV6 variants had been identified was thrombocytopenia with a predisposition to 

malignancy (Noetzli et al., 2015; Topka et al., 2015; Zhang et al., 2015), in contrast to 

patient F4.1 in whom the predominant clinical feature was a reduction in platelet dense 

granule secretion. Given the atypical phenotypic expression of the ETV6 variant 

identified in F4.1, further studies were warranted to examine how it differs in its 

properties from previously characterised ETV6 variants.  

 

The work described in this chapter explored the hypothesis that the 

c.1288C>T:p.Arg430*-ETV6 variant is the pathogenic defect underlying the bleeding 

tendency in F4.1. As patient F4.1 and their family members were unavailable for further 

studies, a combination of in silico and in vitro methods were used to achieve the 

following aims:  

i. Model and predict the potential effects of the c.1288C>T ETV6 variant 

ii. Examine the expression of the p.R430*-ETV6 variant in vitro and evaluate its 

ability to translocate to the nucleus 

iii. Assess the transactivation capacity of the p.R430*-ETV6 variant 
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5.3 Methods  

 

5.3.1 Predicting the effects of the c.1288C>T transition on splicing of the ETV6 

RNA 

The impact of the NM_001987:c.1288C>T transition in ETV6 on RNA splicing was 

predicted using Human Splicing Finder (Version 3.1) (http://www.umd.be/HSF3/) 

[accessed 2018]. 

 

5.3.2 Modelling the truncated p.R430*-ETV6 variant  

The location of R430 in ETV6 was visualised by modelling the C-terminal region of 

ETV6 (NP_001978) (residues 339-451) using the web-based SWISS-MODEL tool 

(https://swissmodel.expasy.org/) [accessed 2018], and the structure for Mus musculus 

ETV6 (PDB ID: 2lf8.1) (Coyne et al., 2012) as a template. The structure was visualised 

using Pymol (version 0.99rc6).  

 

5.3.3 Assessment of the subcellular localisation of overexpressed ETV6 

variants in HEK 293T cells using lithium dodecyl sulphate polyacrylamide 

gel electrophoresis and western blotting  

The expression and subcellular localisation of ETV6 variants was evaluated following 

electrophoresis and immunoblotting of cytoplasmic and nuclear fractions of lysates 

from HEK 293T cells that were transiently overexpressing the different ETV6 variants 

as described earlier (section 2.2.13). 

 

5.3.4 Assessment of the transcriptional activity of overexpressed ETV6 variants 

using dual-luciferase reporter assays in mammalian cell lines 

Dual luciferase reporter assays were conducted to examine the ability of ETV6 variants 

to transrepress the MMP3 and PF4 (Platelet factor 4) promoters in HEK 293T and 

megakaryocytic Dami cells as described earlier (section 2.2.11). 

 

 

 

 

 

http://www.umd.be/HSF3/
https://swissmodel.expasy.org/
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5.4 Results 

 

5.4.1 The clinical phenotype of index case F4.1  

Index case F4.1 is a female with a history of excessive cutaneous bruising at exposed 

sites. At 13 years, she had a bleeding episode that lasted for 10 days after dental 

extraction, which required packing and suturing. She suffered from menorrhagia after 

menarche, and experienced post-partum bleeding after at least one of her three 

deliveries. At 25 years, she had an ovarian cyst removed and the surgeon reported 

excessive bleeding. Treatments for her bleeding included iron therapy, emergency 

treatment with blood products and hysterectomy. On recruitment to the UK-GAPP 

study, her platelet count and mean platelet volume were within the normal range. 

However, assessment of platelet aggregation and ATP secretion in response to a 

range of agonists by lumiaggregometry revealed a profound reduction in ATP secretion 

(Figure 5.2, Data provided by Dr Neil Morgan, University of Birmingham). 

 

5.4.2 Confirmation of a c.1288C>T transition in ETV6 in index case F4.1 

WES analysis identified a novel heterozygous transition in ETV6 

(NM_001987:c.1288C>T) in participant F4.1 (section 3.4.3) that was confirmed by 

PCR amplification and direct sequencing of a DNA fragment spanning the candidate 

defect (Figure 5.3). 

 

5.4.3 Predicted effect of the c.1288C>T transition on ETV6 splicing  

The c.1288C>T transition was not predicted to introduce a new splice site that would 

affect processing of the ETV6 RNA. However, it was predicted to introduce an exon 

splice enhancer site, though this was not expected to have an impact on splicing. The 

output from the Human Splicing Finder tool is shown in Figure 5.4. 

 

5.4.4 Modelling the truncated p.R430*-ETV6 variant 

The arginine residue at amino acid position 430 in ETV6 was visualised by modelling 

the C-terminal region of human ETV6 using the structure for murine ETV6 as a 

template. Clearly, truncation of ETV6 at residue 430 results in loss of the remaining 22 

amino acids of the protein, which encompass all of H5 helix in the CID domain (Figure 

5.5).  
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ADP 30 µM 

Red: control aggregation  
Green: control secretion 
Blue: patient aggregation  
Black: patient secretion 

Arachidonic acid 1.5 mM 
Red: control aggregation  
Green: control secretion 
Blue: patient aggregation  
Black: patient secretion 

Adrenaline 30 µM 
Red: control aggregation  
Green: control secretion 
Blue: patient aggregation  
Black: patient secretion 

   
PAR-1 peptide 100 µM 
Red: control aggregation  
Green: control secretion 
Blue: patient aggregation  
Black: patient secretion 

Collagen 10 µg/m 
Red: control aggregation 
Green: control secretion 
Blue: patient aggregation 
Black: patient secretion 

CRP 3 µg/mL  
Red: control aggregation 
Green: control secretion 
Blue: patient aggregation 
Black: patient secretion 

Figure 5.2 Platelet aggregation and ATP secretion in response to a range of 
agonists in index case F4.1 and a normal subject (control)  
ADP; Adenosine diphosphate, CRP; Collagen-related peptide, PAR-1; Protease-activated receptor-1. 
Data provided by Dr Neil Morgan, University of Birmingham.  
 
 

 

Figure 5.3 Sequencing traces of ETV6 fragment amplified from the DNA of the 
index case F4.1 and a healthy control subject 
Sanger sequencing confirmed the presence of the heterozygous ETV6:c.1288C>T transition (shaded in 
blue) in F4.1.  



 
 

 
143 

 

 

Figure 5.4 The output from Human Splicing Finder tool shows the predicted 
effect of the c.1288C>T transition on ETV6 splicing 

 

 

 

Figure 5.5 Partial structure of ETV6 showing the ETS domain, the C-terminal 
inhibitory domain and the location of arginine 430 
Arginine 430 is shown as a stick. Colour coding: red; helices, yellow; sheets, loops; green.  

 

 

5.4.5 Expression and subcellular localisation of the p.R430*-ETV6 variant 

The c.1288C>T transition in ETV6 is predicted to result in premature termination of 

protein translation at residue 430. To investigate whether the truncated ETV6 molecule 
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is stable in vitro, the transition was introduced into the ETV6 expression vector pCMV6-

ETV6 and the plasmid was then transfected into HEK 293T cells. While the truncated 

ETV6 variant is predicted to retain all of the ETS domain, part of the NLS will be 

removed. For this reason, the effect of the p.R430* defect on subcellular localisation 

of ETV6 was also determined. Two additional variants were made for inclusion in these 

experiments. Firstly, R399C-ETV6 was included as an example of a previously 

characterised variant which has been shown to have reduced nuclear localisation and 

was therefore used as an internal control. A second truncated variant, R399*-ETV6, 

was made to allow comparison of the effect of premature termination of protein 

translation within the ETS domain to that within the CID domain. 

 

Electrophoresis and immunoblotting of cytoplasmic and nuclear fractions extracted 

from cells transfected with WT and variant forms of ETV6 revealed both WT-ETV6 and 

the R399C-ETV6 variant migrated as a single protein species with the expected 

molecular weight of 53 kDa. In contrast, the R430*-ETV6 variant migrated as a protein 

species, which was estimated using the Protein Molecular Weight tool 

(https://www.bioinformatics.org/sms/prot_mw.html) [accessed 2016-2017] to have a 

molecular weight of 50 kDa. As expected, the R399*-ETV6 variant migrated faster than 

both WT-ETV6 and the R430*-ETV6 variant, having a molecular weight of 

approximately 45 kDa (Figure 5.6.A).  

 

WT-ETV6 was present mostly in the nuclear, but also in the cytoplasmic, extracts when 

overexpressed in HEK 293T cells, and densitometric analysis of the blots revealed an 

89-fold enrichment of WT-ETV6 in the nucleus when compared with that present in the 

cytoplasm (Appendix 11). All three of the ETV6 variants studied were also detected in 

both cellular fractions (Figure 5.6 A). However, in contrast to WT-ETV6, which was 

predominantly associated with the nucleus, the R399C displayed only five-fold 

enrichment in the nuclear fraction (p=0.04), the R399* variant was equally distributed 

between the nucleus and the cytoplasm (p=0.04), while R430* exhibited approximately 

22-fold enrichment in the nucleus compared to the cytoplasm (p=0.06) (Figure 5.6 B, 

Appendix 11). All three ETV6 variants appeared to be present at higher levels in the 

cytoplasmic fractions than the WT-ETV6, which suggests an impaired ability to traffic 

to the nucleus (Figure 5.6 C). However, blots of the nuclear fractions revealed reduced 

https://www.bioinformatics.org/sms/prot_mw.html
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levels of the p.R399C and p.R399* variants and increased levels of the R430* variant 

when compared to WT-ETV6.  

 

 

Figure 5.6 Subcellular localisation of wild-type and variant forms of ETV6  
(A) Detection of ETV6 following western blotting of cytoplasmic and nuclear fractions from HEK 293T 
cells transiently overexpressing wild-type (WT)-ETV6 and the R430*, R399C and R399*-ETV6 variants. 
The blot was also probed for TATA-binding protein TBP (TBP) and cyclophilin B which act as markers 
of nuclear and cytoplasmic fractions respectively (B) Nuclear:cytoplasmic ratios of ETV6 calculated by 
densitometric analysis of the western blots (C-D) Normalised ETV6 ratios for nuclear and cytoplasmic 
fractions. The Mann-Whitney test was used for comparison, NS p>0.05, * p≤0.05. Data represent a 
minimum of three independent experiments.  
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5.4.6 Effect of the R430*-ETV6 variant on transrepression of ETV6 target genes 

ETV6 is known to downregulate MMP3 and PF4 expression, with previous studies 

using these genes in reporter assays to investigate the repression activity of different 

ETV6 variants (Noetzli et al., 2015; Topka et al., 2015; Zhang et al., 2015). The 

transrepression capacity of the recombinant R430*-ETV6 variant was therefore 

compared with that of WT-ETV6 using a dual luciferase reporter assay to measure 

repression of MMP3 and PF4 promoter activity in both HEK 293T and Dami cells. In 

addition to the R430* variant, derivatives of pCMV6-ETV6 encoding the R399C variant, 

which had been previously shown to have reduced transrepression capacity, and the 

R399* variant were used in these experiments. 

 

5.4.6.1 Transrepression ability of ETV6 variants in HEK 293T cells  

There was an approximate 50% reduction in MMP3 promoter activity in the presence 

of WT-ETV6 compared to that observed in cells transfected with the empty vector 

(EV=1), confirming the ability of WT-ETV6 to repress MMP3 expression (0.49-fold, 

p≤0.0001). Compared to cells expressing WT-ETV6, there were significant increases 

in luciferase activity, to almost the same levels as those observed in cells transfected 

with the EV, in the presence of both R399C (1.03-fold, p<0.0001) and R399* (0.70-

fold, p<0.0001) variants, indicating significant reductions in repression activity. 

Interestingly, the R430*-ETV6 variant showed similar transrepression activity to that of 

WT-ETV6 (0.55 fold, p=0.1392) (Figure 5.7 A, Table 5.1).  

 

Similar results were obtained using the PF4 luciferase reporter construct. Compared 

to cells transfected with the EV, there was a 65% reduction in luciferase activity in the 

presence of WT-ETV6, confirming repression of PF4 promoter activity (0.35-fold, 

p<0.0001). Both of R399 variants showed a loss in repression capacity (R399C 1.03-

fold, p<0.0001; R399* 0.83-fold, p<0.0001). The R430* variant was able to repress 

PF4 promoter activity, to a level which was comparable with that of WT-ETV6 (0.34-

fold, p=0.7645) (Figure 5.7 B, Table 5.2) 

 

The possibility that the R430* variant interferes with the transrepressor function of WT-

ETV6 through a dominant-negative effect was explored by co-expressing different 

amounts of the R430* variant and WT-ETV6 in HEK 293T cells. However, co-

expression of the R430* variant with WT-ETV6, using different ratios of the two 
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expression plasmids, resulted in transrepression of the MMP3 promoter (25% R430* 

+75% WT-ETV6 0.6-fold, p=0.0104; 50% R430* + 50% WT-ETV6 0.62- fold, p=0.0618; 

75% R430* + 25% WT-ETV6 0.48-fold, p=0.2304) and PF4 (25% R430* + 75% WT-

ETV6 0.38-fold, p=0.212; 50% R430* + 50% WT-ETV6 0.34-fold, p=0.4512; 75% 

R430* + 25% WT-ETV6 0.29-fold, p=0.0514) which was comparable to that observed 

in cells expressing WT-ETV6 alone (Figure 5.7, Table 5.1, Table 5.2). In contrast, co-

expression of equal amounts of either the R399C or the R399* expression plasmid with 

the WT-ETV6 expression plasmid resulted in a significant increase in luciferase activity 

compared to cells expressing WT-ETV6 alone (MMP3: 50% R399C + 50% WT-ETV6 

0.76-fold, p=0.0022; 50% R399* + 50% WT-ETV6 0.57-fold, p=0.0096; PF4: 50% 

R399C + 50% WT-ETV6 0.72-fold, p=0.0054; 50% R399* + 50% WT-ETV6 0.61-fold, 

p<0.0001). These results confirm those previously reported for the R399C-ETV6 

variant (Topka et al., 2015; Zhang et al., 2015).  
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Figure 5.7 Transrepression of MMP3 and PF4 promoter activity by wild-type and 
variant forms of ETV6 in HEK 293T cells 
Cells were transfected with wild-type (WT) or mutated ETV6 constructs, or with the empty vector (EV), 
in addition to either pGL3-MMP3-luciferase (A) or pGL3-PF4-luciferase (B) and pRLnull-Renilla 
reporters as described. Cells were also co-transfected with different ratios of the WT-ETV6 and ETV6 
variant expression plasmids as indicated, maintaining a constant amount of the total DNA introduced 
into the cells. Firefly and Renilla luciferase expression were assessed in cell lysates 48 hours later. 
Transcriptional activity of ETV6 variants was measured by calculating the ratio of signal from the 
MMP3/PF4 promoter (Firefly) compared to a control promoter (Renilla). The data are expressed as fold 
change in luciferase activity and represent the mean ± standard error of the mean of at least three 
independent experiments. Paired t-test was used for comparison NS p>0.05, * p≤0.05, ** p≤0.01, *** 
p≤0.001, **** p≤0.0001. 
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Table 5.1 Comparison of the transrepression capacity of ETV6 variants in HEK 293T cells on the MMP3 promotor 

 EV WT 
25%  
R430 

50% 
R430 

75% 
R430 

R430* 
50% 

R399C 
R399C 

50% 
R399* 

R399* 

Mean 1.00 0.49 0.62 0.62 0.48 0.55 0.76 1.03 0.57 0.70 

% activity compared to EV 100 48.77 62.22 61.94 47.90 54.51 75.71 102.60 56.62 69.78 

% reduction in activity 
compare to EV 

0 51.23 37.78 38.06 52.10 45.49 24.29 -2.60 43.38 30.22 

p-value <0.0001 --- 0.0104 0.0618 0.2304 0.1392 0.0022 <0.0001 0.0096 <0.0001 

Number of repeats (each in 
triplicate) 

7 --- 3 5 3 6 3 4 3 4 

For further details, see the legend to Figure 5.7. EV; empty vector, WT; wild-type. 

 

Table 5.2 Comparison of the transrepression capacity of ETV6 variants in HEK 293T cells on the PF4 promotor 

 EV WT 
25%  
R430 

50% 
R430 

75% 
R430 

R430* 
50% 

R399C 
R399C 

50% 
R399* 

R399* 

Mean 1.00 0.35 0.38 0.34 0.29 0.34 0.72 1.03 0.61 0.83 

% activity compared to EV 100.00 35.37 38.43 34.36 28.65 34.34 72.36 103.30 61.20 83.03 

% reduction in activity 
compare to EV 

0.00 64.63 61.57 65.64 71.35 65.66 27.64 -3.30 38.80 16.97 

p-value <0.0001 --- 0.212 0.4512 0.0514 0.7645 0.0054 <0.0001 <0.0001 <0.0001 

Number of repeats (each in 
triplicate) 

8 --- 3 7 3 8 3 4 3 4 

For further details, see the legend to Figure 5.7. EV; empty vector, WT; wild-type. 
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5.4.6.2 Transrepression ability of the ETV6 variants in Dami cells 

The capacity of the R430*-ETV6 variant to transrepress PF4 and MMP3 promoter 

activity was also investigated in the megakaryocytic Dami cell line. There was a 23.5% 

reduction in MMP3 reporter activity in Dami cells in the presence of WT-ETV6 

compared to cells transfected with the EV (0.77-fold; p<0.0001), confirming the ability 

of ETV6 to repress target gene expression. There was a significant increase in 

luciferase activity in the presence of both the R399C (1.06-fold, p<0.0001) and the 

R399* (0.98-fold, p=0.0004) variants compared to cells expressing WT-ETV6, which 

confirm the findings in HEK 293T cells. Interestingly, a small, but significant, increase 

in luciferase activity was also observed in the presence of the R430*-ETV6 (0.89-fold, 

p=0.0036) suggesting that it may have impaired transrepression activity in Dami cells 

(Figure 5.8 A, Table 5.3). 

 

The effects of WT and variant forms of ETV6 were similar when promoter activity was 

assessed using the PF4 luciferase reporter in Dami cells. Thus, there was a 46% 

reduction in PF4 promoter activity in the presence of WT-ETV6 compared to cells 

transfected with the EV (0.54-fold, p<0.0001).The two R399-ETV6 variants failed to 

repress PF4 promoter activity (R399C 1.20-fold; R399* 1.27-fold; p<0.0001), while the 

R430* variant led to a small but significant loss in transrepression activity (0.61-fold, 

p<0.0001) when compared with that observed in the presence of WT-ETV6 (Figure 5.8 

B, Table 5.3). 
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Figure 5.8 Transrepression of MMP3 and PF4 promoter activity by wild-type and 
variant forms of ETV6 in Dami cells 
Cells were transfected with wild-type (WT) or mutated ETV6 constructs, or with the empty vector (EV), 
in addition to either pGL3-MMP3-luciferase (A) or pGL3-PF4-luciferase (B) and pRLnull-Renilla 
reporters as described. Firefly and Renilla luciferase expression were assessed in cell lysates 48 hours 
later. Transcriptional activity of ETV6 variants was measured by calculating the ratio of signal from the 
MMP3/PF4 promoter (Firefly) compared to a control promoter (Renilla). The data are expressed as fold 
change in luciferase activity and represent the mean ± standard error of the mean of at least three 
independent experiments. Paired t-test was used for comparison, NS p>0.05, * p≤0.05, ** p≤0.01, *** 
p≤0.001, **** p≤0.0001. 
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Table 5.3 Transrepression of the MMP3 and PF4 promoters by wild-type and 
variant forms of ETV6 in Dami cells 

MMP3 

 EV WT R430* R399C R399* 

Mean 1.00 0.77 0.89 1.06 0.98 

% activity compared to EV 100.00 76.50 88.95 105.70 98.27 

% reduction in activity compare 
to EV 

0.00 23.50 11.05 -5.70 1.73 

p-value <0.0001 --- 0.0036 <0.0001 0.0004 

Number of repeats (each in 
triplicate) 

5 --- 5 5 5 

 

PF4 

 EV WT R430* R399C R399* 

Mean 1.00 0.54 0.61 1.20 1.27 

% activity compared to EV 100.00 53.74 61.34 119.90 127.40 

% reduction in activity compare 
to EV 

0.00 46.26 38.66 -19.90 -27.40 

p-value <0.0001 --- <0.0001 <0.0001 <0.0001 

Number of repeats (each in 
triplicate) 

5 --- 5 5 5 

For further details, see the legend to Figure 5.8. EV; empty vector, WT; wild-type. 

 

 

5.5 Discussion 

 

ETV6 is a transcriptional repressor that belongs to the ETS family of transcription 

factors (Golub et al., 1994; Lopez et al., 1999), which plays a role in hematopoiesis 

(Ciau-Uitz et al., 2010; Hock et al., 2004; Rasighaemi et al., 2015; Wang et al., 1998), 

including in the late stages of megakaryopoiesis (Hock et al., 2004). In 2015, Zhang et 

al. reported three germline missense variations in ETV6 that segregated with dominant 

transmission of thrombocytopenia and haematologic malignancy. Since then, germline 

defects in ETV6 have been associated with a new form of IPD called 

“Thrombocytopenia 5” (THC5).  

 

To date, a total of 15 ETV6 alterations have been reported to be associated with THC5 

(Figure 5.1 and Table 5.4). Patients have presented with a history of mild to moderate 

bleeding, mild thrombocytopenia usually with normal sized platelets, and a 

predisposition to various neoplasms (Melazzini et al., 2016; Moriyama et al., 2015; 

Noetzli et al., 2015; Poggi et al., 2017; Topka et al., 2015; Zhang et al., 2015). Where 

platelets from affected individuals have been evaluated, they display mild defects in 

spreading, aggregation, clot retraction velocity and a shortened lifespan (Melazzini et 

al., 2016; Poggi et al., 2017). Ultrastructural analyses revealed round hypogranular 
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platelets with elongated α-granules and a disorganised open canalicular system (Poggi 

et al., 2017). ETV6 alterations were also associated with MK hyperplasia characterised 

by defects in MK maturation and in proplatelet production, as indicated by the presence 

of small hypolobulated MKs, and a decrease in the number and length of proplatelet 

branches (Poggi et al., 2017). However, the exact role of ETV6 in megakaryopoiesis 

requires further elucidation, and the targets of ETV6 remain to be fully characterised. 

 

In this chapter, a novel nonsense ETV6 alteration that was predicted to result in 

premature termination of protein translation at residue 430 was investigated to assess 

its possible contribution to the bleeding phenotype observed in the affected patient. 

The p.R430* defect is different to previously reported ETV6 variants in that protein 

translation is predicted to terminate in the CID domain which has not previously been 

shown to harbour defects related to IPDs. Additionally, the p.R430* variant was 

associated with a reduction in dense granule secretion and not with thrombocytopenia, 

as was the case for all other reported ETV6 variants. In silico and in vitro expression 

studies were used to explore the possible effects of the c.1288C>T:p.R430* defect, 

alongside the previously characterised p.R399C-ETV6 variant. In addition, a truncated 

variant of ETV6 caused by the introduction of a stop codon at position 399 in the cDNA 

(p.R399*) was included in the experiments.  
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Table 5.4 Germline variants in ETV6 associated with inherited platelet bleeding disorders 

ETV6 defect Domain 
Platelet 
count 

Platelet 
size 

(MPV) 
Bleeding / Platelets / MK phenotype 

Other 
haematological 

features 
Malignancies / Additional features 

c.641C>T:p.P214L 
(1, 2, 5, 6) 

LID Low N/Dec 

Mild to moderate bleeding; Normal 
platelets ultrastructure; Elongated α-
granules; Small hypolobulated MK in 
BM; Decreased TPO plasma level; 

Reduced platelet half-life; Decrease in 
proplatelet-bearing MKs 

Variable MCV; 
Abnormal RBC 

precursors in BM 

ALL; MDS; MPAL; Breast 
fibroadenoma; Meningioma 

c.1046T>C:p.L349P 

(3) 
ETS Low --- --- 

Anaemia; Dec/N 
MCV 

ALL; Arthritis; Ankylosing 
spondylitis; Uveitis; Secondary 

amenorrhea; Cleft lip/palate 

p.I358M(6) ETS Low Inc 
Round larger and smaller platelets; 

Elongated α-granules; Hypolobulated 
small MKs in BM 

--- AML 

c.1075C>T:p.R359* (4) ETS Low Dec --- --- 
ALL; Mild intellectual disability; 

Learning disability 

c.1105C>T:p.R369W 

(5) 
ETS Low Dec --- --- --- 

c.1106G>A:p.R369Q 

(1) 
ETS Low Dec Petechia; Epistaxis --- 

Skin cancer; Colon cancer; Reading 
disability; GERD oesophagal 

stricture 

p.A377T(6) ETS Low Dec 
Platelet anisocytosis; Hypogranular 

platelets; Poorly organised open 
canalicular system 

Dyserythropoiesis; 
Delay granulocyte 
maturation in BM 

--- 

c.1138T>A:p.W380R 

(5) 
ETS Low Dec Bleeding N/Inc MCV ALL; PCV 
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c.1153- 
5_1153_1delAACAG:

p.N385fs (3) 
ETS Low --- --- --- 

ALL; MDS; AML; Craniofacial and 
musculoskeletal anomalies; Right 
ear anterior placement; Downward 
shaped mouth; Joint hypermobility; 

CNS heterotopias 

c.1153-
1_1165del:p.N385Vfs

*7 (5) 
ETS Low N/Dec Mildly reduced platelet aggregation Inc MCV ALL; Breast cancer; Breast fibroma 

p.R396G(6) ETS Low N 
Mild bleeding; Dysmegakaryopoiesis; 

Almost no mature MK in BM 
--- --- 

c.1195C>T:p.R399C 

(1) 
ETS Low Dec Bruising; Menorrhagia 

Refractory 
anaemia; RAEB-I; 

Neutropenia 

MDS; MM; ALL; Colorectal 
carcinoma; 

Myopathy; Gastrointestinal 
dysmotility; GERD; Developmental 
delay; Seizures; Dental disease; 

Delayed puberty 

p.Y401N(6) ETS Low Inc 
Decreased platelet lifespan; Decrease 

in proplatelet-bearing MKs 
--- --- 

p.Y401H(6) ETS Low 
--- 
 

Platelet dense storage pool 
deficiency; Platelet aggregation 

defects; Abnormal dense granules 
--- --- 

c.1252A>G:p.R418G
+p.N385Vfs*7p.N 
385_418del (2, 5) 

ETS Low Dec 
Severe menorrhagia; Bruising; Nose 

bleeding 
--- --- 

c.1288C>T:p.R430* CID N N Bleeding; Granule secretion defect --- --- 
(1) Zhang et al., 2015, (2) Noetzli et al., 2015, (3) Topka et al., 2015, (4) Moriyama et al., 2015, (5) Melazzini et al., 2016, (6) Poggi et al., 2017. ALL; acute lymphoblastic leukaemia, 
AML; acute myeloid leukaemia, BM; bone marrow, CMML; chronic myelomonocytic leukaemia , Dec; decrease, ETS; ETS DNA binding domain, GERD; gastrointestinal oesophageal 
reflux disease, Inc; increase, LID; linker inhibitory damper domain, MCV; mean corpuscular volume, MDS; myelodysplastic syndrome, MK; megakaryocyte, MM; multiple myeloma, 
MPAL; mixed-phenotype acute leukaemia, MPV; mean platelet volume, N; normal, PCV; polycythemia vera, RAEB-I; refractory anaemia with excess blasts type I, RBC; red blood cell, 
TPO; thrombopoietin, WBC; white blood cells. 
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The c.1288 C>T transition in ETV6 was identified in index case F4.1, who had enrolled 

in the UK-GAPP study with a history of bleeding, and whose platelets displayed a 

defect in dense granule secretion. The transition was predicted to introduce a 

premature stop codon at position 430 that would result in a truncated protein lacking 

H5 helix of the CID, a region known to negatively regulate the activity of the ETS 

domain. ETV6 and the other ETS family member, ETS1, are both described as having 

two autoinhibitory helices at the C-terminal end of the ETS domains (Coyne et al., 

2012). In the case of ETS1, two additional autoinhibitory helices at the N-terminal of 

the ETS domain have been described and all four helices were found to interfere with 

binding of DNA to the ETS domain through allosteric mechanisms (Lee et al., 2005). 

Deletion of the two N-terminal inhibitory helices in ETS1 was found to abrogate the 

autoinhibitory function allowing ETS1 to bind DNA with higher affinity (Garvie & 

Wolberger, 2001), while deletion of the two C-terminal inhibitory helices impaired 

expression and/or solubility of ETS1 (Donaldson et al., 1994; Werner et al., 1997). 

These studies highlight the importance of the ETS appendix helices in regulating the 

function, folding and stability of the ETS domain. In ETV6, the CID region comprising 

residues 424 to 452 also contains the C-terminal part of the NLS, which encompasses 

amino acids 332 to 452 and includes the entire ETS domain (Park et al., 2006). Based 

on previous studies, it was predicted that the truncated R430*-ETV6 protein would be 

less stable than full-length ETV6, show reduced nuclear accumulation and have 

reduced ability to transrepress target genes. We therefore investigated the 

consequences of loss of H5 helix on ETV6 function by examining nuclear localisation 

of the truncated R430*-ETV6 and its ability to transrepress the activity of known ETV6 

target genes, MMP3 and PF4. 

 

The c.1288C>T transition in ETV6 that results in the p.R430* variant occurs in exon 8 

of ETV6, which is the last exon of the gene. Nonsense variants that occur in the closing 

exons of genes have been reported to be less likely to result in nonsense-mediated 

decay (Lejeune & Maquat, 2005). In HEK 293T cells, the R430* variant was expressed 

as a stable truncated protein, though its subcellular distribution pattern differed from 

that of WT-ETV6. While the level of nuclear R430*-ETV6 was comparable with that of 

WT-ETV6, and higher than that of the R399C and R399* ETV6 variants, the level of 

cytoplasmic ETV6 was elevated in cells expressing R430*-ETV6 or either of the two 

R399 variants compared with those expressing WT-ETV6. When the level of ETV6 
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distributed between the nuclear and cytoplasmic fractions was expressed as a ratio, 

the ratio for the R430*-ETV6 variant was reduced compared with that for WT-ETV6 

due to the elevation in the level of cytoplasmic R430*-ETV6 variant, though not 

significantly. The increase in cytoplasmic levels and a decrease in nuclear localisation 

for both R399C- and R399*-ETV6 variants were in agreement with previous findings 

for the R399C variant (Topka et al., 2015; Zhang et al., 2015) and other previously 

described ETV6 variants (Noetzli et al., 2015; Topka et al., 2015; Zhang et al., 2015).  

 

The ability of the three ETV6 variants to transrepress the MMP3 and PF4 promoters 

was compared with that of WT-ETV6 using dual luciferase reporter assays in HEK 

293T cells and in the megakaryocytic Dami cell line. Interestingly, the R430* variant 

demonstrated repression activity comparable to that of WT-ETV6 in HEK 293T cells. 

However, it showed a small, but significant, reduction in repression activity in 

megakaryocytic Dami cells. These findings could be explained by tissue-specific 

differences between the two cell lines, as the presence of specific cofactors or signal 

specific post-transcriptional modifications have a direct impact on subcellular 

localisation and activity of ETV6 (Chakrabarti et al., 1999; Chakrabarti et al., 2000). 

Given that several previously described ETV6 variants were shown to interact with WT-

ETV6 to exert a dominant-negative effect on target gene repression (Noetzli et al., 

2015; Poggi et al., 2017; Topka et al., 2015; Zhang et al., 2015), the effect of the R430*-

ETV6 variant on target gene repression was also examined in the presence of WT-

ETV6. However, co-expression of the R430*-ETV6 variant with WT-ETV6 at different 

ratios resulted in repression activity comparable to that observed in the presence of 

WT-ETV6 alone. The R399C variant showed a reduction in ETV6 transrepression 

activity in both cell lines, which confirms previous reports for this variant (Topka et al., 

2015; Zhang et al., 2015). Similarly, the R399* truncation variant also showed a 

reduction in transrepression activity in both cell lines, consistent with previous findings 

that the integrity of the ETS domain is required for ETV6 to bind to DNA (Noetzli et al., 

2015; Poggi et al., 2017; Topka et al., 2015; Zhang et al., 2015).  

 

The findings reported here do not support the hypothesis that the c.1288C>T:p.R430* 

ETV6 variant is the pathogenic defect underlying the bleeding tendency in F4.1. It is 

possible that the truncated ETV6 is not stably expressed in the patient’s platelets. 

Indeed, a previously described ETV6 variant that was predicted to result in a truncated 
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ETV6 molecule (c.1252A>G:p.Asn385Valfs*7) was found to be expressed as a 

truncated protein in HEK 293T, but not in platelets from the affected patients (Noetzli 

et al., 2015).  

 

If the truncated R430*-ETV6 is expressed as a stable protein in the patient’s platelets, 

we might expect loss of H5 helix of the CID, which is known to repress ETV6 function 

by 10-50 fold, to lead to a gain of function for ETV6 (Coyne et al., 2012). Deletion of 

the CID region of ETV6 was previously shown to cause a 10-fold increase in the affinity 

of the ETV6 monomer for DNA to a level that was similar to the DNA affinity of the WT 

dimer (Green et al., 2010). The truncated R430*-ETV6 could therefore act as a more 

potent repressor of its target genes, or continuously repress target gene activity and/or 

repress expression of genes that it does not normally target. This abnormal repression 

activity could, in turn, alter expression of essential MK/platelet genes which could 

potentially contribute to the bleeding phenotype observed in our patient. While this 

hypothesis needs to be tested, a gain of function effect was recently described in a 

similar condition, where a nonsense mutation in DIAPH1 (Rho-effector diaphanous-

related formin 1) leading to loss of the C-terminal autoregulatory domain of DIAPH1 

was described in a patient with macrothrombocytopenia and progressive hearing loss 

(Neuhaus et al., 2017; Stritt et al., 2016). DIAPH1 has a recognisable role in actin 

remodelling in the platelet cytosol (Higashi et al., 2008), and more recently, was found 

to play a critical regulatory role in proplatelet formation in MKs (Pan et al., 2014). Loss 

of the diaphanous autoregulatory domain resulted in constitutive activation of DIAPH1, 

resulting in reduced proplatelet formation and altered cytoskeletal regulation in 

platelets (Stritt et al., 2016).  

 

It is possible that the nonsense c.1288C>T transition in ETV6 does not contribute to 

the bleeding tendency observed in our patient, in which case, my findings highlight the 

necessity to exercise caution when interpreting the bioinformatic predictions of the 

likely pathogenicity of candidate genetic variations, and the importance of conducting 

functional studies on identified variants. Re-examination of the WES data for index 

case F4.1 (Appendix 12) revealed the presence of a heterozygous non-frameshift 

insertion in ZFPM1, the gene encoding Zinc Finger Protein, FOG Family Member 1, 

which could potentially be of interest. ZFPM1 is a transcription factor required for the 

formation of committed MK and erythroid progenitors (Mancini et al., 2012) and mice 
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with disrupted ZFPM1 showed Grey platelet syndrome-like macrothrombocytopenia 

and pleiotropic platelet defects, including abnormal granule formation and a dramatic 

decrease in P-selectin expression (Wang et al., 2011). ZFPM1 alterations have not 

been associated with IPDs and the alteration that occurs in F4.1 

(c.1685_1686insGGGCGC:p.A562delinsAGA) was not predicted to disrupt any of the 

zinc finger or other recognised functional domains of ZFPM1 when it was inspected 

using the InterPro online tool (https://www.ebi.ac.uk/interpro/) [accessed 2015-2016]. 

Nonetheless, the possibility that this variant contributes, either alone or in combination 

with other genetic variants, to the bleeding tendency in the patient warrants further 

investigation.  

 

Further studies of the c.1288C>T:R430*-ETV6 variant would ideally involve analysis 

of RNA in platelets from the index case F4.1, as well as other affected and unaffected 

family members. In particular, quantitative measurement of the ETV6 transcript by 

qPCR would determine whether it was stably expressed or removed via nonsense-

mediated decay. Failure to detect a stable ETV6 transcript would provide strong 

support for the hypothesis that the c.1288 C>T transition is the underlying pathogenic 

defect in the patient. However, if the variant is stably expressed as a truncated protein, 

transcriptomic analysis could be undertaken to evaluate the expression of known ETV6 

target genes (e.g. EGR1 and TRAF1). This approach also has the potential to identify 

other genes that may be differentially expressed in the patient’s platelets compared to 

control subjects, possibly as a result of a gain of function of ETV6. 

https://www.ebi.ac.uk/interpro/
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6 Chapter 6. CRISPR-generated FLI1 knockdown in 

megakaryocytic Dami cell line as in vitro cell model to 

study FLI1 role in megakaryopoiesis 
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6.1 Introduction, hypothesis and aims 

 

Whole exome sequencing (WES) has contributed to the establishment of the genetic 

basis for many disorders, including inherited platelet bleeding disorders (IPDs) (see 

section 3.1.1). However, despite continuous advancements in the field, identification 

of disease-causing genetic variants in the exomes from single patients with 

heterogeneous disorders is still a major challenge. Chapter 3 summarised the findings 

obtained when WES was applied to the identification of potential disease-causing 

variants in 34 index cases with uncharacterised IPDs. In a subgroup of 22 index cases 

whose platelets displayed defects in platelet secretion, WES highlighted 1,465 variants 

in 1,130 genes, of which only nine variants, affecting ETV6 (chapter 5), FLNA, FLI1 

(chapter 4), GFI1B, ITGB3, P2RX1 and RUNX1, were considered likely to contribute 

to the bleeding symptoms in eight patients. The recognition of these variants was 

primarily due to the previously described association of defects in these genes with 

IPDs. However, a median of 70 candidate gene defects was identified in each of the 

remaining 14 index cases. Clearly a systematic exploration of each of these defects to 

determine its likelihood of being causative would be impractical. An alternative 

approach was therefore sought to identify novel candidate genes that could contribute 

to the bleeding disorder in these patients.  

 

Given the essential role of FLI1 as a master regulator of megakaryopoiesis and the 

association of FLI1 defects with abnormal platelet secretion, it is likely that the genes 

which are differentially expressed due to the loss of FLI1 activity will also have a role 

in platelet granule biogenesis and secretion. Variants that are harboured by these 

genes and present in patients with platelet secretion defects, would be more likely to 

be causative, though further work would be required to confirm this. Therefore, the 

work in this chapter explored the hypothesis that variants in genes that are differentially 

expressed following knockout/down of FLI1 in megakaryocytes (MKs) will be enriched 

among subjects with abnormalities in platelet secretion. This was achieved by (i) 

knockout/down of FLI1 in the megakaryocytic Dami cell line; (ii) transcriptome analysis 

of Dami cells following FLI1 knockout/down; (iii) identification of differentially expressed 

genes that also harbour candidate defects in index cases with unexplained IPDs 

characterised by defects in platelet secretion.  
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A CRISPR/Cas9 (Clustered regularly interspaced short palindromic repeats / CRISPR 

associated protein 9) based method was used to knockout/down FLI1. The 

CRISPR/Cas system is a prokaryotic adaptive immune system against phage infection 

and plasmid transfer that occurs in nature (Barrangou et al., 2007). It comprises a non-

specific nuclease (Cas) that mediates a nucleic acid double-strand break (DSB) at the 

target site when guided by a sequence-specific guide RNA (gRNA). The use of type II 

CRISPR/Cas9 systems for gene editing in mammalian cells was described in 2013 

(Cong et al., 2013; Mali et al., 2013). Since then, the simplicity, reliability, high 

efficiency and cost-effectiveness of CRISPR/Cas9 technology have led to its 

widespread use in genome editing applications (Adli, 2018).  

 

 

6.2 Materials and Methods  

 

CRISPR/Cas9 knockout/down of FLI1 in Dami cells was executed following the 

protocol described by Bauer et al. (2015). The workflow for this procedure is illustrated 

in Figure 6.1, and the detailed methodology is provided in section 2.2.14. The 

knockout/down relies on the introduction of simultaneous DSBs in DNA by Cas9, 

guided by a pair of gRNAs that target two different exons which result in loss of the 

intervening genomic sequence through the mechanism of non-homologous end joining 

repair (Canver et al., 2014). The CRISPR/Cas9 was delivered using the CRISPR 

pX458 plasmid (~9.3 kb) that contains a cassette encoding Streptococcus pyogenes 

(Sp)-Cas9 with enhanced green fluorescent protein (EGFP) as a selection marker, and 

the cloning backbone for a single gRNA.  
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Figure 6.1 The workflow for CRISPR-mediated FLI1 knockdown/out in Dami cells 
EGFP; enhanced green fluorescent protein, gRNA; guide RNA, h; hours. 
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6.2.1 Design and cloning of guide RNAs  

Several factors were considered when designing the CRISPR gRNA molecules for 

FLI1 knockout/down. Coding regions that are present in all FLI1 coding transcripts 

were targeted to increase the likelihood of gene knockout by introducing a small indel 

within the exon if the simultaneous DSBs did not occur. Given that the likelihood of 

introducing a specific deletion is inversely related to its size (Bauer et al., 2015), gRNAs 

were positioned to achieve a deletion of less than 5 kb, with the highest possible 

binding specificity and cutting efficiency (Appendix 13). Accordingly, exons 7 and 9 

were selected as the locations for the gRNAs (Figure 6.2).  

 

Additional nucleotides were added to each gRNA oligonucleotide to facilitate their 

cloning and expression (Table 6.1). The guides were then cloned separately into the 

CRISPR pX458 plasmid using the “Golden Gate assembly” cloning strategy. 

 

 

Table 6.1 Sequences of CRISPR guides targeting exons 7 and 9 of FLI1  
 5´-Guide Sequence-3´ 5´-Reverse complement-3´ Direction 

Exon 7 CACCGATCGTTTGTGCCCCTCC
AA 

AAACTTGGAGGGGCACAAACGA
TC 

- 

Exon 9 CACCgAATGACGGACCCCGATG
AGG 

AAACCCTCATCGGGGTCCGTCA
TTc 

+ 

Additional nucleotides are indicated in bold. 

 

 

6.2.2 Transfection of Dami cells with CRISPR plasmids and fluorescence-

activated cell sorting  

Dami cells were transfected with 1,500 ng of each pX458 CRISPR plasmid, pX458-

Ex7 (targeting exon 7) and pX458-Ex9 (targeting exon 9), using a 3:1 ratio of jetPEI to 

DNA. They were also transfected with the native pX458 CRISPR plasmid as a control. 

The transfected cells were allowed to recover for 48 hours, before they were sorted 

into single cells in 96-well plates and allowed to expand undisturbed for 14 days.  
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Figure 6.2 Screenshot from UCSC showing the four human FLI1 transcripts and the location of binding of the CRISPR guide 
RNAs and FLI1 TaqManTM probe  

The transcripts were annotated manually with the RefSeq coding, number of exons and the size of the translated protein. CRISPR gRNAs were designed to target 
exons 7 and 9 in NM_002017 and delete the intervening sequence. The binding location for the FLI1 TaqMan™ probe is also indicated.  
 



 
 

 
166 

 

6.2.3 Screening for CRISPR-mediated edits at the DNA level 

QuickExtract™ solution was used to extract PCR-ready genomic DNA (gDNA) from an 

aliquot of cells growing in 96-well plate. Preliminary screening for the desired FLI1 

deletion was carried out by PCR amplification of the extracted gDNA using primers 

designed to amplify across the deleted region (Ex7_F and Ex9_R), which would 

typically result in an amplicon of approximately 539 bp in those cells where a deletion 

had occurred. DNA samples from clones that were positive for the deletion were then 

screened by PCR using a second set of primers, which were designed to amplify a 244 

bp fragment of exon 8 (Ex8_F and Ex8_R), to detect alleles where the desired edit had 

not occurred. Given that Dami cells are triploid (Greenberg et al., 1988), the smaller 

244 bp fragment would fail to be amplified only in those cells where the deletion had 

occurred on all three FLI1 alleles.  

 

6.2.4 Characterisation of CRISPR-edited clones  

FLI1 knockout/down was evaluated at protein and RNA level in clones that were 

positive for deletion by DNA analysis. Following extraction of total cellular protein using 

radioimmunoprecipitation assay (RIPA) buffer, FLI1 protein expression was assessed 

by lithium dodecyl sulphate - polyacrylamide gel electrophoresis (LDS-PAGE) and 

immunoblotting using antibodies to FLI1 and β-tubulin. The intensity of the 51 

kilodalton (kDa) FLI1 protein detected on blots was normalised to that of the β-tubulin 

housekeeping protein and calculated as a percentage relative to the FLI1 species 

detected in wild-type (WT) Dami cells. 

 

FLI1 RNA was quantified by qPCR using TaqMan™ probes for FLI1 and the 

housekeeping beta-2 microglobulin RNA. FLI1 RNA levels in each clone were 

normalised to those of the housekeeping gene and expressed relative to RNA levels 

in WT Dami cells. Results were plotted as log 10 of the relative quantity (RQ) from 

three replicates per sample. 

 

Following extraction of gDNA using the GenElute™ mammalian genomic DNA mini-

prep kit, the precise DSB points were determined for selected clones by sequencing 

amplified DNA spanning the targeted region, either directly, or following TA cloning.  
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6.2.5 Transcriptome analysis of wild-type Dami cells and cells displaying 

reduced FLI1 expression  

Selected FLI1 knockdown and control clones were seeded in parallel into two culture 

flasks. The cells in one flask were stimulated to differentiate over six days by daily 

treatment with thrombopoietin (TPO) and phorbol 12-myristate 13-acetate (PMA), 

while the cells in the second flask were left untreated. RNA was purified from the 

differentiated, and undifferentiated cells and subjected to transcriptome analysis using 

the Affymetrix Gene Chip Microarray system and ClariomTM D Assay_human chips 

(Affymetrix; Applied Biosystems™). Transcriptome data from clones that had been 

treated similarly was combined prior to analysis and transcripts showing a ≥1.5 or ≤-

1.5 fold log change in expression, at a p<0.05 level of significance were highlighted. 

 

Platelet transcriptome data which was obtained for two affected members of a family 

with an inherited bleeding tendency who also carried the FLI1 c.1028A>G:p.Tyr343Cys 

variant, and three matched control subjects were kindly made available for use in the 

comparative analysis as part of this study by Dr Simon Webster, Haemostasis Group, 

Sheffield. 

 

The Database for Annotation, Visualization and Integrated Discovery (DAVID) 

functional annotation tool was used to analyse and compare the transcriptomic data. 

DAVID is a web-accessible programme (see Appendix 3 for link) that allows clustering 

of genes as defined by the user. The Gene Ontology (GO) options 

“GOTERM_BP_FAT, GOTERM_CC_FAT and GOTERM_MF_FAT” which generate 

clusters of genes according to their associated biological process, cellular component 

and molecular function GO terms respectively, and a classification stringency setting 

of “Medium” were selected for the analysis. Appendix 14 is a screenshot showing the 

settings used for functional annotation analysis in DAVID. The group enrichment 

scores, defined as the geometric mean of the p-values associated with each annotation 

in a cluster, were used to rank their significance, with an enrichment score greater than 

1.3, which is equivalent to a p-value of 0.05, being considered significant. 
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6.3 Results 

 

6.3.1 Optimising transfection of Dami cells using jetPEI 

Transfection of Dami cells using jetPEI was optimised experimentally utilising flow 

cytometry to evaluate transfection efficiency and cell viability. First, cells were 

transfected with varying amounts of the pEGFP-N3 plasmid using the recommended 

2:1 ratio of jetPEI:DNA (Table 6.2). The results indicated that 3,000 ng was the optimal 

amount of DNA to use for transfection. Cells were then transfected with 3,000 ng of 

the same plasmid at varying ratios of jetPEI to DNA, which showed that a 3:1 ratio of 

jetPEI to DNA resulted in the highest transfection efficiency without compromising cell 

viability (Table 6.2).  

 

 

Table 6.2 Optimising transfection of Dami cells with jetPEI 

 
Amount of pEGFP-N3 plasmid used 

1 µg 3 µg 6 µg 8 µg 10 µg 12 µg 

Viability 82% 75.1% 58.4% 44.5% 34.4% 20.5% 

Transfection efficiency 0.5% 4.7% 2.6% 2% 1.7% 1.1% 

 

 
jetPEI: DNA ratio 

3 µg (1:1) 3 µg (2:1) 3 µg (3:1) 3 µg (4:1) 

Viability 79.4% 75.1% 73.6% 70.4% 

Transfection efficiency 0.5% 4.7% 7.7% 8.2% 

 

 

6.3.2 Screening for genomic edits in FLI1  

DNA samples from approximately 80 single cell clones were screened by PCR for the 

539 bp fragment that indicated loss of 3.9 Kb of DNA, which was predicted to occur by 

targeting exons 7 and 9 of FLI1 by CRISPR/Cas9. The 539 bp fragment was amplified 

from DNA isolated from nine clones; #1, #8, #12, #18, #25, #29, #44, #60 and #B 

(Figure 6.3 A). Sanger sequencing of the amplified fragment identified the deletion 

breakpoints for clones #29 and #44 (Figure 6.3 C). A 244 bp fragment corresponding 

to exon 8 of FLI1 was amplified from all nine clones, indicating that none of them had 

deletions of exons 7 to 9 on all three FLI1 alleles (Figure 6.3 B).   
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Figure 6.3 Screening of Dami cell clones for genomic edits introduced by targeting exons 7 and 9 of FLI1 by CRISPR/Cas9  
Agarose gel electrophoresis of PCR fragments amplified from Dami cell clones showing (A) the 539 bp deletion-specific fragment amplified using primers located in 
exons 7 and 9 and (B) the 244 bp fragment of exon 8. (C) The locations of the double-strand break points in clones #29 and #44 were identified by sequencing the 
corresponding 539 bp deletion-specific fragments. The guide RNA sequence is shown in bold font highlighted in either yellow (exon 7) or blue (exon 9). The protospacer 
adjacent motif (PAM) sequence is in bold, italic font and highlighted in green. The predicted cutting site is indicated by the red arrows and vertical broken lines.
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It is noteworthy that several of the single cell clones that began to expand after sorting 

became non-viable after 14 days in the absence of any apparent infection. Otherwise, 

there were no obvious differences in the rate of growth of the control clones (numbered 

C1 to C6) and the CRISPR-edited clones, with the exception of clones #60 and #B, 

which took longer to reach confluency (~21 days and ~60 days respectively). 

 

6.3.3 FLI1 protein and RNA levels in CRISPR-edited Dami cell clones  

LDS-PAGE and western blotting of FLI1 in cell extracts from native Dami cells and 

from the CRISPR-edited clones identified above resulted in detection of a protein with 

the expected molecular weight of FLI1 (~51 kDa) in all but one clone (clone #B). 

Densitometric analysis showed that compared to the WT cells, clones #1, #12, #25, 

#29, #60 and #B all had lower levels of the 51 kDa FLI1 species. Additionally, lower 

molecular weight forms of FLI1 were detected in clones #1, #12, #29, #44, #60 and 

#B. The polyclonal antibody to FLI1 that was used in this study was raised to the N-

terminal 222 amino acids of FLI1 derived from transcript NM_002017 (51 kDa), which 

are also present in the FLI1 isoforms NM_001167681 (~ 48 kDa) and NM_001271010 

(~44 kDa). This suggests that the lower molecular weight proteins detected by western 

blotting could be other FLI1 isoforms or degraded FLI1 protein (Figure 6.4).  

 

Similarly, qPCR of FLI1 RNA in the CRISPR-edited clones showed that clones #1, #25, 

#29, #44, #60 and #B all had lower FLI1 expression relative to that of polyclonal Dami 

cells (Figure 6.5). The TaqMan™ probe used for qPCR of FLI1 RNA binds to exons 6-

7 of the coding sequence, and therefore should detect all four FLI1 transcripts. 
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Figure 6.4 Reduced FLI1 protein expression in CRISPR-edited clones relative to wild-type polyclonal Dami cells 
Western blotting of protein extracted using radioimmunoprecipitation assay (RIPA) buffer was used to evaluate FLI1 protein expression in CRISPR-edited clones. The 
blot was also probed for β-tubulin as a housekeeping protein. FLI1 expression by the clones was calculated as a percentage relative to that in wild-type polyclonal 
Dami cells. 
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Figure 6.5 Reduced FLI1 RNA expression in CRISPR-edited clones relative to wild-type polyclonal Dami cells  
Quantitative polymerase chain reaction (qPCR) was used to evaluate relative FLI1 RNA expression in CRISPR-edited clones and six single wild-type Dami clones 

(C1-C6). FLI1 RNA expression relative to that of polyclonal Dami cells following normalisation to beta-2 microglobulin gene expression is shown. The data are plotted 
as relative quantity (RQ) from triplicate samples and the error bar represents the calculated maximum and minimum expression levels at the 99% confidence level.  
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6.3.4 Mapping of genomic edits in selected clones 

Based on the results above, clones #1, #25, #60 and #B were selected for further study 

as they all expressed approximately 50% or less of FLI1 at protein level, thereby 

mimicking the situation in platelets from a patient with FLI1 haploinsufficiency. The 

deletion breakpoints were mapped for clones #1, #25 and #60 by sequencing the PCR 

amplified products corresponding to exons 7 and 9, and the product amplified using 

primers that flanked the deleted region (Figure 6.6), either directly or following TA 

cloning. Figure 6.7 shows the breakpoints of the deletions in clones #1, #25, #60, while 

the breakpoints in clone #B were not characterised. 

 

 

 

Figure 6.6 Amplification of CRISPR/Cas9 targeted exons in selected FLI1 
knockdown clones 
Amplified PCR products corresponding to FLI1 exons 7 and 9 were separated in 2% agarose. The 
expected sizes of the exon 7 and exon 9 amplicons are 254 and 711 bp respectively. 
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Figure 6.7 Mapping of genomic edits in selected FLI1 knockdown clones 
Guide sequences are indicated in bold font and highlighted in either yellow (targeting exon 7) or blue (targeting exon 9). Proto-spacer adjacent motif (PAM) sequences 
are shown in bold, italic font, with green highlight. Genomic changes are shown in red font. Dashed red lines indicated deleted sequence.
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6.3.5 Transcriptome analysis of differentiated and undifferentiated Dami cell 

clones  

Dami cell clones #1, #25, #60 and #B were selected for transcriptome analysis in 

parallel with two WT Dami single cell clones, C1 and C4, which were selected as they 

showed minimal differences in FLI1 expression relative to the polyclonal Dami cell line 

(Figure 6.5). Transcriptomes were analysed, both before and following differentiation 

using PMA and TPO. Transcriptomic profiling was usually performed on two samples, 

derived from consecutive passages, of each clone (FLI1 knockdown: #1, #25, #60; WT 

control: C1 and C4), both before and following differentiation for six days. The 

transcriptome of only one sample of clone #B was analysed without differentiation of 

the cells.  

 

6.3.5.1 Effect of PMA and TPO on gene expression in wild-type Dami cell clones  

Transcriptomic profiling highlighted 19,937 transcripts which were differentially 

expressed in WT Dami cells (C1 and C4) following treatment with TPO and PMA (≥1.5 

or ≤-1.5 fold log change in expression after differentiation and p<0.05). These included 

1,676 coding transcripts which were significantly upregulated and 5,608 coding 

transcripts significantly downregulated in differentiated cells relative to untreated cells 

(Table 6.3, Figure 6.8, Supplementary Data #3).  

 

 

Table 6.3 Numbers of differentially expressed transcripts following 
differentiation of Dami cells  

 
Downregulated 

after 
differentiation 

Upregulated after 
differentiation 

No. of differentially expressed transcripts (1.5-fold 
change, p< 0.05) 

19,937 

8,898 11,039 

No. of differentially expressed coding transcripts 
(1.5-fold change, p< 0.05) 

7,284 

5,608 1,676 
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Figure 6.8 Scatter plot of 7,284 coding transcripts that were differentially 
expressed following differentiation of Dami cells relative to undifferentiated cells 
The 1,676 upregulated transcripts are shown in red, and the 5,608 downregulated transcripts are shown 
in green.  

 

 

Functional annotation analysis is an approach which, for a given list of genes, allows 

identification of subsets or clusters of those genes that encode proteins which are 

related by function, biological pathway or interaction. Using the functional annotation 

analysis tool in DAVID, this approach was applied to assess the changes in gene 

expression that occurred due to differentiation in Dami cells. Thus, functional 

annotation analysis of the 3,000 transcripts showing the greatest change in expression 

with differentiation (i.e. the 1,500 most upregulated and 1,500 most downregulated 

genes) identified 109 significant gene clusters, some of which had associated GO 

terms relating to erythrocyte differentiation, platelet activation and vacuolar transport 

(Supplementary Data #4).  
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6.3.5.2 Effect of FLI1 knockdown on gene expression in Dami cells before and 

after differentiation  

Changes in gene expression after FLI1 knockdown were investigated in Dami cells 

both before and following differentiation. Compared to WT Dami cells, 1,385 and 817 

genes were differentially expressed after FLI1 knockdown in untreated cells and 

following differentiation respectively (Table 6.4, Figure 6.9, Supplementary Data #5 & 

#6).  

 

 

Table 6.4 Numbers of differentially expressed transcripts following FLI1 
knockdown in differentiated and undifferentiated Dami cells 

 

Undifferentiated Dami Differentiated Dami 

Down-
regulated 

Up-regulated 
Down-

regulated 
Up-regulated 

No. of differentially 
expressed transcripts (1.5-

fold change, p<0.05) 

3,386 2,724 

2,013 1,373 1,395 1,329 

No. of differentially 
expressed 

coding transcripts (1.5-fold 
change, p<0.05) 

1,385 817 

1,163 222 489 328 

2,052* 

*150 transcripts were represented in both conditions. 

 

 

The 2,052 genes that were differentially expressed following FLI1 knockdown either 

before or following differentiation were subjected to functional annotation analysis 

using DAVID. This identified 62 clusters which had significantly associated GO 

annotations. Interestingly, the five clusters with the highest enrichment scores had 

associated GO terms that included ‘haemostasis’, ‘wound healing’, ‘platelet activation’, 

‘membrane-bound vesicle’, ‘extracellular vesicle’ and ‘platelet activation’ (Table 6.5, 

Supplementary Data #7).  
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Figure 6.9 Scatter plots of coding transcripts that were differentially expressed in Dami cell clones following FLI1 knockdown 
A total of (A) 1,385 coding transcripts in untreated and (B) 817 coding transcripts in differentiated conditions were differentially expressed in FLI1 knockdown clones 
relative to wild-type clones. Upregulated genes are shown in red and downregulated genes are shown in green.  
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Table 6.5 Top five gene clusters identified by functional annotation analysis of 
2,052 genes that were differentially expressed following FLI1 knockdown in 
untreated and differentiated Dami cells 

Cluster 
Enrichment 

score 
Clustered Gene Ontology terms 

Gene 
count 

1 6.6 
Wound healing / platelet activation / haemostasis / response 
to wounding / blood coagulation / coagulation / regulation of 
body fluid levels 

119 

2 5.24 

Nucleosome / protein-DNA complex / nuclear chromosome 
part / DNA packaging complex / nuclear chromosome / 
chromosome organisation / nuclear chromatin / chromosome 
/ chromatin / chromosomal part 

197 

3 4.73 
Membrane-bound vesicle / extracellular vesicle / extracellular 
organelle / extracellular exosome / extracellular region part / 
extracellular region 

544 

4 3.83 
Platelet activation / platelet aggregation / homotypic cell-cell 
adhesion 

39 

5 3.81 

Establishment of protein localisation / cellular localisation / 
protein localisation / protein transport / intracellular transport 
/ macromolecule localisation / establishment of localisation in 
cell / cellular macromolecule localisation / cellular protein 
localisation / intracellular protein transport / protein 
localisation to organelle / single-organism intracellular 
transport / single-organism cellular localisation / protein 
targeting / establishment of protein localisation to organelle / 
protein import 

397 

 

 

6.3.5.3 Platelet gene expression in subjects with a heterozygous FLI1 defect  

While this work was ongoing, platelets became available from two affected members 

of a previously studied family with an inherited bleeding tendency characterised 

predominantly by a defect in dense granule secretion, both of whom carried the 

c.1028A>G:p.Tyr343Cys FLI1 variant. The platelet RNA isolated from the patients and 

three matched control subjects was subjected to transcriptome analysis using the 

ClariomTM D Assay_human chips by Dr Simon Webster, Haemostasis Group, 

Sheffield. Analysis of coding transcript expression, adopting the same criteria as those 

used above (≥1.5; ≤-1.5-fold log change, p<0.05) highlighted a total of 2,836 

differentially expressed coding transcripts (1,834 upregulated; 1,002 downregulated). 

These data were kindly made available for comparative analysis as part of this study 

by Dr Simon Webster.  

 

6.3.6 Comparative studies 

Comparison of gene expression data for untreated and differentiated Dami cells in 

which FLI1 was knocked down with that from platelets expressing a heterozygous FLI1 
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gene defect, and with the WES data from 22 index cases with platelet secretion defects 

should allow prioritisation of candidate genes for investigation of function.  

 

6.3.6.1 Comparison of candidate genes identified by whole exome sequencing 

and following FLI1 knockdown 

WES analysis of samples from 22 patients with platelet secretion defects identified 

variants in 1,130 candidate genes (see chapter 3). Comparison of these genes with 

the list of 2,052 genes that were differentially expressed following FLI1 knockdown in 

Dami cells identified 135 shared genes (Table 6.6). Of these, 62 genes had previously 

been reported to be regulated by FLI1 or by a transcription factor complex which 

included FLI1 (GATA1/2, RUNX1, FLI1, and SCL) in MKs (Tijssen et al., 2011).  

 

 

Table 6.6 Candidate genes identified by whole exome sequencing and also 
showing differential expression in response to FLI1 knockdown  

112 down-
regulated 

ACOT8, ACSF3, ADAMTS9, ALKBH5, AP2A1, ARHGEF18, ATAD3B, ATG4D, 
ATP7B, BLOC1S3, BLVRB, CABIN1, CARS2, CC2D1A, CCDC51, CCDC88B, 
CDC16, CDK16, CHURC1-FNTB, CLIC6, COPE, COTL1, CSK, DCHS1, EML3, 
EPN1, FAM160B2, FBL, FBLN2, FERMT3, FHOD1, FLNA, GATAD2A, GCDH, 
GMIP, HDAC5, HIP1, HNRNPUL2, IFT80, IGFBP2, IL12RB2, ILVBL, INPP4B, 
IP6K2, IPO13, IRF3, LAMTOR4, LMNA, MAEA, MAN2B1, MAPK3, MCM5, MED16, 
MRPS34, MYO1E, NUCB1, P2RX1, PAQR7, PCIF1, PCNXL2, PDLIM7, PFKFB3, 
PGLS, PHKA2, PLCG2, PLEKHG3, PLEKHG4, PLTP, PRKAR2A, PROSER2, 
PSRC1, PVRL2, RCOR1, ROMO1, RRBP1, RRP36, RUVBL2, SCFD2, SCNM1, 
SDSL, SEMA4B, SEMA6C, SIPA1, SLC4A11, SLC7A1, SPOPL, SRM, SSRP1, 
STEAP3, SUGT1, SULT1A2, TBC1D9B, TC2N, TKT, TLN1, TSC22D1, TTYH3, 
TUBB8, TYK2, UBR7, UPF1, UROD, VAC14, VPS52, WDR91, WRNIP1, XPNPEP1, 
YLPM1, ZBTB45, ZNF358, ZNF385A, ZNF592 

23 up-
regulated 

AAK1, C18orf32, CAPG, CHST11, CMTM6, ESAM, GPATCH8, KRT79, LAPTM4B, 
MACF1, MICAL1, MTMR3, NEK6, ORMDL1, PDE3A, PKLR, RALGDS, SLC24A3, 
SLC8A3, ST8SIA6, WDPCP, ZBTB26, ZNF385D 

Genes regulated by FLI1 (Tijssen et al., 2011) are indicated in bold.  

 

 

6.3.6.2 Comparison of genes identified by whole exome sequencing and genes 

differentially expressed in FLI1-deficient platelets  

Similarly, comparison of the 2,836 genes which were differentially expressed in FLI1-

deficient platelets with the list of 1,130 candidate genes highlighted by WES in patients 

with defects in platelet secretion identified 215 shared genes, 92 of which had been 

previously described to be regulated by FLI1 (Tijssen et al., 2011) (Table 6.7). 

Functional annotation analysis of these 215 genes identified four significant gene 

clusters (Table 6.8, Supplementary Data #8). 
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Table 6.7 Candidate genes identified by whole exome sequencing and also 
showing differential expression in FLI1-deficient platelets  

74 down-
regulated 

AARS, AFTPH, ALAD, ANK2, ANKRD27, ANO2, ARAP1, BACH1, BCOR, BICD1, 
C10orf76, CACNB1, CAMTA1, CAPN11, CDKN1A, CREM, DGKI, DYNC1I1, 
ERGIC1, ETV6, FBXO11, FOCAD, FSTL4, GFI1B, GPATCH8, HADHB, HECTD1, 
HGD, HIST1H2AH, HIST1H2BD, IGFBP2, KDM5B, KRT18, LAPTM4B, LCORL, 
LRMP, MCF2L2, MEF2D, NBEA, NID2, ODF3, PAM, PHF14, PLCG2, POTEE, 
PPHLN1, PPIL3, PPP1R15A, PTGIR, PYGL, RGS3, RIN2, RUNX1, SCFD2, 
SH3TC2, SHANK2, SLC2A3, SMOX, STARD9, STK39, TAF1D, TCF20, THEM5, 
TOX, TTC13, UBA7, UBR2, WRN, XYLT1, ZBTB45, ZC3H4, ZNF385D, ZNF462, 
ZNF506  

141 up-
regulated 

ABCB6, ABCC3, ADIPOR1, AKAP7, ALKBH5, AMZ2, API5, ARL6IP5, ATAD2B, 
ATP11B, B4GALT3, BMP2K, BTBD7, C18orf32, C18orf8, C1orf27, C21orf58, 
C6orf62, CALCOCO2, CARD6, CCBL2, CCDC175, CCP110, CCT6A, CDK12, 
CHURC1-FNTB, COTL1, CRTAP, CTBS, CTSZ, DAPK1, DARS, DDOST, DEK, 
DENND4A, DENR, DZIP1, ELAVL1, ERICH1, EXOC5, FYCO1, GAB1, GATAD2A, 
GCOM1, GMPS, GOLGB1, GORASP1, GPD1L, GRIPAP1, HADH, HBD, HMGB1, 
HMGB2, HN1, HNRNPUL2, HOMER2, HYOU1, INPP4B, IRAK4, ITGB3, KIAA0100, 
KIDINS220, LMNB2, LXN, MORC1, MORF4L1, MPV17, MRVI1, MTR, NAB1, 
NAGA, NCAPD2, NEK4, NIPA1, NMRK1, NPHP3, NRP2, NSUN2, PABPC1, PAK2, 
PANK2, PDE4DIP, PEX19, PGM2, PITRM1, PLTP, PLXNB3, POU2F1, PPT2, 
PTPN12, PTPRJ, RAB3GAP1, RANBP10, RB1, REXO2, RNF6, RNPS1, ROS1, 
SAV1, SCFD1, SERPINB9, SLC24A3, SLC25A20, SLC30A9, SLC35F5, SLC45A3, 
SNAP29, SNF8, SNRPB2, SNX31, SPOPL, SPTBN1, SRP14, ST8SIA6, TANGO2, 
TBC1D13, TBC1D9B, TC2N, TCF25, TEX2, TFDP2, TMEM183A, TRAPPC6B, 
TREML2, TRIM10, TRPM7, TTYH3, TXNDC16, UBE2Q2, UBQLN1, UBR7, VAPA, 
VEZT, VNN1, VPS39, WASL, XIRP2, XPOT, YWHAH, ZNF418, ZNF592 

Genes regulated by FLI1 (Tijssen et al., 2011) are indicated in bold.  

 

 

Table 6.8 Significant gene clusters identified by functional annotation analysis 
of 215 candidate genes identified by whole exome sequencing and also showing 
differential expression in FLI1-deficient platelets  

Cluster 
Enrichment 

score 
Clustered Gene Ontology terms* 

Gene 
count 

1 2.23 

ER to Golgi vesicle-mediated transport / establishment of 
vesicle localisation / vesicle localisation / Golgi vesicle 
transport / vesicle targeting / vesicle organisation / COPII-
coated vesicle budding / membrane budding / establishment 
of organelle localisation / organelle localisation  

32 

2 1.63 
Vesicle organisation / organelle fusion / vesicle fusion / 
organelle membrane fusion / SNARE binding / membrane 
fusion / single-organism membrane fusion  

15 

3 1.49 

Negative regulation of platelet-derived growth factor receptor 
signalling pathway / regulation of platelet-derived growth 
factor receptor signalling pathway / platelet-derived growth 
factor receptor signalling pathway / negative regulation of cell 
proliferation 

7 

4 1.37 

Vacuole fusion / organelle fusion / autophagosome 
maturation / positive regulation of vacuole organisation / 
vacuole organisation / regulation of vacuole organisation / 
autophagosome / macroautophagy / positive regulation of 
macroautophagy / autophagy  

18 

* The first 10 Gene Ontology terms are listed for each cluster. 
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6.3.6.3 Comparison of genes showing differential expression in FLI1-deficient 

platelets and in response to FLI1 knockdown 

Comparison of the 2,836 differentially expressed genes in FLI1-deficient platelets with 

the 2,052 genes that were differentially expressed in Dami cells following FLI1 

knockdown identified 390 shared genes. Of the 186 genes that were differentially 

expressed in the same direction in both platelets and Dami cells, 74 genes had been 

previously shown to be regulated by FLI1 (Tijssen et al., 2011) (Table 6.9). Functional 

annotation analysis of the 186 genes that were differentially expressed in the same 

direction in both FLI1 deficient Dami cells and platelets identified six significant gene 

clusters (Table 6.10, Supplementary Data #9).  

 

 

Table 6.9 Genes showing differential expression in the same direction in FLI1-
deficient platelets and in Dami cells following FLI1 knockdown  

110 down-
regulated 

ABCA3, ACOT7, ACP6, ACSF2, ADCY6, AP1S3, AP2S1, BSDC1, C1orf116, 
C1orf21, CABLES1, CARD19, CLN6, COMMD7, COX4I1, CTNS, CTSW, CUL4A, 
DLST, DNM1, DOK2, DPYD, EIF2B2, ELOF1, ENO2, ERI3, ERI3-IT1, FAH, 
FAM58A, FCER1G, FRMD3, GRB14, GRIK4, GRTP1, HIST1H2AB, HIST1H2AD, 
HIST1H2AE, HIST1H2AM, HIST1H2BB, HIST1H2BJ, HIST1H2BL, HIST1H3D, 
HIST1H3G, HIST1H3H, HIST1H3J, HIST2H2BD, HIST2H2BE, HIST2H2BF, 
HIST2H4A, HIST2H4A, HIST2H4B, HIST2H4B, HMG20B, HSD17B3, IGFBP2, 
KDM4B, LGALS12, LOC650293, LYL1, LYST, MAFK, MEA1, MIEF1, MIR4701, 
MIR6823, MIR7641-2, NDUFA11, PAPSS1, PFKFB4, PHEX, PIH1D1, PIK3C3, 
PLCG2, PRKCD, PTENP1-AS, RASGRP2, RECK, RGS9, RHCE, RHD, RNU5F-1, 
SCARB1, SCFD2, SLA2, SLC37A1, SNX2, SPHK1, SRY, SUSD3, SUV39H1, 
TMCC2, TMEM9, TNFAIP8L1, TPRA1, TRBV26OR9-2, TREML1, TSPAN15, 
TUBA4A, TWF2, U3, UBE2E3, VKORC1, VN1R110P, VTRNA2-1, WDR75, WFDC1, 
XPO7, ZBTB45, ZNF317, ZNF672 

76 up-
regulated 

AK3, ALS2CR12, APLF, ARCN1, B3GNT2, C18orf32, CCDC117, CCND1, CD36, 
CDC27, CEP57L1, CITED2, CTCFL, DCBLD2, EHD2, FAM60BP, GCNT1, GFOD1, 
GTDC1, GYPB, HERC2P7, HLA-E, ID2, IDE, ITGA2, KCTD13, LSM3, MAGT1, 
MBD5, MED4, MINPP1, NCOA4, NEK1, NOL7, OCIAD1, PABPC1P9, PBX2, 
PCMT1, PDCD6IPP2, PELI2, PLEKHF2, PLXNA3, RCL1, RHAG, RPL12P32, 
RPL23AP45, RPL35AP33, RPL6P12, RPS3A, RPS7P8, RSAD2, SC5D, SDHC, 
SELT, SELT.1, SIAE, SKA2, SKP1P1, SLC24A3, SLC7A5, SNCA, SNORD73A, 
SNX16, ST8SIA6, STAU2, SURF4, TMEM154, TMEM167B, TNFSF13B, UBLCP1, 
UQCRB, WHAMMP1, ZBTB44, ZDHHC20, ZDHHC21, ZMYM5 

Genes regulated by FLI1 (Tijssen et al., 2011) are indicated in bold.   
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Table 6.10 Significant gene clusters identified by functional annotation analysis 
of 186 genes that were differentially expressed in the same direction in FLI1-
deficient platelets and in Dami cells following FLI1 knockdown  

Cluster 
Enrichment 

score 
Clustered Gene Ontology terms*  

Gene 
count 

1 5.25 
Blood coagulation / coagulation / haemostasis / wound 
healing / regulation of body fluid levels / response to 
wounding  

20 

2 2.70 

Nucleosome / DNA packaging complex / protein-DNA 
complex / nuclear nucleosome / chromatin organisation / 
nucleosome assembly / chromatin silencing / protein 
heterodimerisation activity / chromatin assembly / nuclear 
chromatin 

106 

3 1.92 
Membrane-bounded vesicle / extracellular exosome / 
extracellular vesicle / extracellular organelle / extracellular 
region part / extracellular region / 

57 

4 1.62 

Nucleoside metabolic process / purine ribonucleoside 
metabolic process / purine nucleoside metabolic process / 
glycosyl compound metabolic process / ribonucleoside 
metabolic process / purine ribonucleoside triphosphate 
metabolic process / ribonucleoside triphosphate metabolic 
process / purine nucleoside / triphosphate metabolic process 
/ purine ribonucleoside monophosphate metabolic process  

50 

5 1.58 

Nitrogen utilisation / ammonium transmembrane transport / 
organic cation transport / ammonium transmembrane 
transporter activity / ammonium transport / cation 
transmembrane transport / nitrogen compound transport / 
cation transmembrane transporter activity  

13 

6 1.37 
Vacuolar membrane / endosome membrane / endosomal 
part / vacuole / vacuolar part / late endosome / endosome / 
early endosome membrane / early endosome  

19 

* The first 10 Gene Ontology terms are listed for each cluster. 

 

 

6.3.6.4 Candidate genes identified through whole exome sequencing, and 

differentially expressed in both FLI1-deficient platelets and following 

FLI1 knockdown in Dami cells  

Finally, comparison of the candidate genes identified through WES, which were also 

differentially expressed in FLI1-deficient platelets and following FLI1 knockdown in 

Dami cells highlighted 23 genes, 14 of which are known to be regulated by FLI1 

(Tijssen et al., 2011) (Table 6.11, Figure 6.10). Of these 23 genes, only seven were 

found to exhibit differential expression in the same direction in both the Dami cell 

model, and in FLI1-deficient platelets, three were upregulated (C18orf32, SLC24A3, 

and ST8SIA6) and four were downregulated (IGFBP2, PLCG2, SCFD2, and ZBTB45).  
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Table 6.11 Candidate genes identified through whole exome sequencing, and 
differentially expressed in FLI1-deficient platelets and following FLI1 knockdown 
in Dami cells  

ZNF385D, SCFD2, LAPTM4B, GPATCH8, IGFBP2, PLCG2, ZBTB45, UBR7, ALKBH5, PLTP, 
COTL1, SLC24A3, GATAD2A, CHURC1-FNTB, HNRNPUL2, SPOPL, ST8SIA6, TBC1D9B, 
ZNF592, C18orf32, INPP4B, TC2N, TTYH3 

Genes regulated by FLI1 (Tijssen et al., 2011) are indicated in bold. Genes differentially expressed in the same 
direction in FLI1-deficient platelets and following FLI1 knockdown in Dami cells are underlined.  

 

 

 

Figure 6.10 Numbers of candidate genes identified by whole exome sequencing, 
and by gene expression analysis in FLI1-deficient platelets and Dami cells 
following FLI1 knockdown  
The numbers in parentheses indicate genes that are differentially expressed in the same direction. Red 
arrows signify upregulated genes, while green arrows represent downregulated genes.  

 

 

6.3.7 Assessment of off-target effects 

One of the drawbacks of using CRISPR/Cas9 as a gene editing tool is the potential for 

off-target effects. In this study, high gRNA specificity was a criterion at the design 

stage. Despite this, the Zhang lab tool highlighted 14 other coding regions as potential 

off-target sites for the gRNAs, five with the gRNA targeting exon 7 and nine with the 

gRNA targeting exon 9. One of these potential off-target sites had three mismatches 

with the gRNA sequence, while the remainder had four mismatches (Table 6.12). 

 

Although DNA sequencing of these loci would directly confirm or exclude off-target 

effects, the absence of a significant reduction in the expression of these genes in 

CRISPR-edited clones when compared to WT cells is an indirect way of exploring 
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whether off-target effects have occurred. However, it should be noted that a significant 

reduction in expression of an alternative target could indicate that it has been edited 

as a result of an off-target effect or that it has been downregulated as a result of FLI1 

knockdown.  

 

Of the possible off-target genes, only the CALCR (Calcitonin receptor) gene showed a 

significant reduction in expression in the undifferentiated CRISPR-edited clones, while 

KLHL38 (Kelch Like Family Member 38) and TNS2 (Tensin 2) both showed reduced 

expression following differentiation (Table 6.12). 

 

 

Table 6.12 Predicted exonic off-target sites for the guide RNAs used to 
knockdown FLI1 highlighted using the Zhang lab tool 

Off-target site “Gene” 
Number of 

mismatches 

FLI1 Untreated 
conditions 

FLI1 Differentiated 
conditions 

Fold 
change 

p-value 
Fold 

change 
p-value 

Guide RNA targeting exon 7 GATCGTTTGTGCCCCTCCAAGGG  
 Guiding quality score 83 

GCAT 
 

4 -1.06 0.5943 -1.05 0.4958 

EVC2 4 1.07 0.5793 -1.14 0.4222 

SDK1 4 -1.01 0.4493 
 

1.16 0.2151 
 KLHL38 4 -1.12 0.3616 -1.3 0.0362 

COL14A1 4 1.01 0.4567 1.18 0.3488 

Guide RNA targeting exon 9 AATGACGGACCCCGATGAGGTGG 
 Guiding quality score 92 

FBXL19-AS1 
 

4 -1.23 0.2458 -1.07 0.8212 

ERG 3 1.37 0.9156 -1.98 0.3314 

CADPS 4 1.1 0.6547 1.17 0.3215 

STAT5A 4 -1.13 0.0517 1.07 0.8877 

TNS2 4 -1.2 0.5820 -1.71 0.0073 

SPPL2B 4 -1.22 0.0824 -1.17 0.4387 

FNDC3B 4 -1.23 0.3294 -1.67 0.7012 

CALCR 
 

4 -1.43 0.0016 1.23 0.3090 

KMT2D 
 

4 -1.1 0.2768 1.02 0.6258 

Proto-spacer adjacent motif (PAM) sequences are underlined. 
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6.4 Discussion 

 

The study described in chapter 3 of this thesis highlighted the shortcomings of using 

WES as a genetic diagnosis tool to identify the underlying causative defects in 

unrelated patients with heterogeneous IPDs. Thus, while likely candidate defects were 

identified in a small number of cases with IPDs that were characterised by defects in 

platelet secretion, a median of 70 candidate variants was detected in the majority of 

cases. Rather than systematically investigating each of these candidate defects in turn, 

an alternative approach was required to identify novel candidate genes that could 

contribute to the bleeding disorder in these cases. Given the essential role that FLI1 

plays in megakaryopoiesis and the association of FLI1 defects with abnormal platelet 

secretion, it was hypothesised that knockout/down of FLI1 would lead to changes in 

expression of genes having a role in platelet granule biogenesis and secretion, 

furthermore, that defects in these genes would be represented among patients with 

IPDs that were characterised by defects in platelet secretion.  

 

A CRISPR/Cas9 approach, which involved introducing two DSBs into FLI1 and 

deletion of the intervening sequence by non-homologous end joining, was therefore 

used to knockout/down FLI1 expression in the megakaryocytic Dami cell line prior to 

transcriptome analysis to identify changes in expression of genes that may be 

important in platelet granule biogenesis and secretion. CRISPR/Cas9 editing in 

mammalian cells using this approach has previously been reported to be effective for 

introducing deletions ranging from 1.3 Kb to over 1000 Kb in size (Canver et al., 2014). 

Although the use of two gRNAs increases the potential for off-target effects, it also has 

advantages. Firstly, it allows cheap, quick and straightforward screening for clones with 

the desired edit by conventional PCR amplification across the deletion breakpoints, 

which can then be analysed by agarose gel electrophoresis. Secondly, the use of two 

gRNAs increases the likelihood of target gene knockout by introducing the intended 

genomic deletion or other small indels within coding regions.  

 

Following transfection of Dami cells with CRISPR plasmids and enrichment of the 

successfully transfected cells, single Dami cell clones were initially screened for 

alterations in FLI1 by PCR amplification of a DNA fragment that spanned the region 

targeted for deletion. The degree of FLI1 knockdown was then evaluated in edited 
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clones at both RNA and protein levels, and for some clones, the locations of the DSB 

points were also defined. The use of two gRNAs for CRISPR-mediated targeting of 

coding regions was reported to be highly efficient, as the intended genomic deletions 

were found to occur at a greater than expected frequency in edited clones (Bauer et 

al., 2015; Canver et al., 2014). Thus, one study reported successful mono- or bi-allelic 

deletion of between 2.8 and 4.5 Kb of DNA in 12-61% edited clones (Canver et al., 

2014). In this study, 11% of the transfected clones had the desired deletion of 

approximately 3.9 Kb of FLI1. This lower editing rate could be explained by a reduced 

efficiency of the gRNAs used to introduce DSBs, or due to the essential role of FLI1 in 

the cells, hence lower tolerance of genetic alterations. The failure of several single cell 

clones to survive following expansion after sorting would support the latter suggestion, 

as does the observed lower proliferative capacity and/or increased apoptosis of 

embryonic stem cells in an in vivo Fli1 knockout model (Hart et al., 2000). Previous 

studies involving targeting of essential gene transcripts in in vitro and in vivo models 

have reported the development of host resistance, presumably as a physiological 

necessity to cope with the hostile perturbation (Ajiro et al., 2015; Gu et al., 2011; Tang 

et al., 2006). Dosage compensation (increased transcription of a target gene from a 

single allele to result in the same expression level) and genetic compensation 

(changes in RNA or protein levels of another gene(s) that can functionally compensate 

for the loss of function) have been also described in response to gene knockout 

(reviewed in El-Brolosy & Stainier (2017)). 

 

Studies have shown that gRNA sequence mismatches are tolerated by the 

CRISPR/Cas9 system, raising the potential for undesired off-target effects when 

CRISPR-based approaches are used for gene editing (Hsu et al., 2013). Comparison 

of the transcript levels for the predicted off-target loci in FLI1 edited clones with those 

in WT clones revealed significant reductions in CALCR, KLHL38 and TNS2 

expression, despite the presence of four mismatches between the gRNA sequences 

and the complementary regions in these genes (Table 6.12). Given that four 

mismatches are less likely to be tolerated by the CRISPR/Cas9 system (Hsu et al., 

2013), and the absence of a consistent reduction in expression of these genes both 

before and following differentiation, the likelihood of these being true off-target effects 

is low, though it would be of interest to sequence these three genes to confirm this.  
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Transcriptomic profiling was undertaken for four Dami cell clones which showed FLI1 

knockdown due to genomic editing and expressed approximately 50% or less of the 

levels of FLI1 observed in WT Dami cell clones, and two WT single cell Dami clones. 

The transcriptomes were examined both before and following treatment with PMA and 

TPO to induce megakaryocytic differentiation. 

 

The transcriptomic profile of WT Dami cells identified 7,284 coding transcripts that were 

differentially regulated in WT clones in response to differentiation. Functional 

annotation analysis of the 3,000 most up- or downregulated genes, revealed, among 

others, enrichment for GO terms relating to erythrocyte differentiation, platelet 

activation and vacuolar transport, which is not surprising given that Dami cells are 

derived from the blood of a patient with megakaryoblastic leukaemia, as well as their 

ability to differentiate to form proplatelet-like extensions and platelet-like particles 

containing α- and dense granules (Briquet-Laugier et al., 2004; Greenberg et al., 1988; 

Lev et al., 2011). 

 

Similarly, comparison of the transcriptomic profile of Dami cells showing FLI1 

knockdown with that of WT cells, before and following differentiation, identified a total 

of 2,052 genes that were differentially expressed. Functional annotation analysis of 

these genes identified 62 significant clusters, of which those showing the highest 

enrichment scores had associated GO terms that included ‘haemostasis’, ‘wound 

healing’, ‘platelet activation’, ‘nucleosome’, ‘membrane-bound vesicle’, ‘extracellular 

vesicle’ and ‘platelet activation’, reflecting once again the regulatory role of FLI1 in 

multiple aspects of MK and platelet biology. 

 

In addition to the gene expression data for Dami cells showing FLI1 knockdown, and 

the WES findings for patients with platelet secretion disorders, platelet transcriptome 

profiles were available for two members of a family affected by a bleeding disorder, 

whose platelets showed a profound loss in dense granule secretion, both of whom also 

carried a FLI1 defect. This allowed comparative analysis to identify and prioritise novel 

FLI1-regulated genes that could be implicated in platelet granule biogenesis and 

secretion. This approach highlighted several genes of interest. An exhaustive 

discussion of the potential role of each of these in platelet biology is not possible here. 

However, in the remainder of this chapter, I have highlighted the genes which are 
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known to be regulated by FLI1 (Tijssen et al., 2011) and have previously been 

associated with IPDs, along with those for which there is evidence supporting a role in 

platelet biology, as well as those where the evidence is more tenuous (see tables 

below). The final part of this chapter focuses on those genes that are shared across 

the three data sets that were used for the comparative analysis. 

 

Comparison of those genes which were differentially expressed after FLI1 knockdown 

in Dami cells with those genes that harboured defects in patients with platelet secretion 

disorders highlighted 135 genes that were shared between the two groups, of which, 

62 were known to be regulated by FLI1. As shown in Table 6.13, of these, two genes 

FERMT3 and P2RX1 had been previously associated with IPDs, while several others 

had been implicated in platelet secretion (CSK, FHOD1, VAC14) and other aspects of 

platelet function (PDE3A, PDLIM7, PLCG2, SLC8A3, TLN1). The two datasets also 

shared a subset of genes, which have not been implicated in IPDs or directly with 

platelet formation or function, and a selection of these, which may be worthy of further 

investigation for potential roles in platelet biology has been included (see Table 6.13).  
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Table 6.13 Selection of FLI1-regulated genes which were differentially expressed after FLI1 knockdown in Dami cells and which 
harboured defects in patients with platelet secretion disorders* 

 Gene Role of the corresponding gene product Reference 

IPDs and/or 
platelet 
secretion 
defects 

FERMT3 (Fermitin Family Member 3/ Kindlin-3) 
Encodes kindlin-3, which mediates linkage of the cytoskeleton to αIIbβ3 
triggering platelet activation and aggregation 

(Kuijpers et al., 2009; Moser et 
al., 2008) 

P2RX1 (Purinergic Receptor P2X 1) Acts as an ATP-gated ion channel (Oury et al., 2000) 

Important in 
platelet 
secretion/ 
granule 
formation 

CSK (C-Terminal Src Kinase) Negatively regulates SFKs inhibiting integrin activation in resting platelets (Obergfell et al., 2002)  

FHOD1 (Formin Homology 2 Domain Containing 
1) 

Acts as a key regulator of platelet stress fibre formation (Thomas et al., 2011) 

VAC14 (Vac14, PIKFYVE Complex Component) 
Interacts with NBEAL2 in human MK. Some NBEAL2 variants causing Grey 
platelet syndrome disrupt binding to Vac14 

(Mayer et al., 2018) 

Other 
aspects of 
platelet 
biology 

PDE3A (Phosphodiesterase 3A) Mediates platelet aggregation by blocking the inhibitory effect of cAMP (Feijge et al., 2004) 

PDLIM7 (PDZ And LIM Domain 7) 
Involved in organising the actin cytoskeleton by regulating cycling between 
the GTP/GDP-bound states of Arf6  

(Urban et al., 2016) 

PLCG2 (Phospholipase C Gamma 2) 
A transmembrane signalling enzyme that, through the production of second 
messengers, transmits signals from multiple platelet receptors across the 
cell membrane to activate platelets 

(Li et al., 2010) 

SLC8A3 (Solute Carrier Family 8 Member A3) 
Encodes K+ -independent Na+/Ca2+ exchanger, NCX3, which promotes 
transient calcium influx to increase platelet cytosolic calcium during 
collagen activation 

(Roberts et al., 2012) 

TLN1 (Talin 1) 
A cytoskeletal protein that binds to the cytoplasmic domain of the β3 subunit 
and is required for inside-out activation of platelet integrin 

(Nieswandt et al., 2007; 
Tadokoro et al., 2003) 

Other genes 
of potential 
interest  

AAK1 (AP2 Associated Kinase 1) 
During endocytosis, it phosphorylates the AP2 complex to enhance its 
affinity for membrane protein sorting signals 

(Ricotta et al., 2002) 

AP2A1 (Adaptor-Related Protein Complex 2 
Subunit Alpha 1) 

Subunit of AP2 adaptor complex that facilitates clathrin-mediated 
endocytosis 

(Jackson et al., 2010) 

ARHGEF18 (Rho/Rac Guanine Nucleotide 

Exchange Factor 18) 

Regulates actin and myosin distribution through RhoA signalling at the 
junctional complex which regulates tight junction assembly and epithelial 
morphogenesis 

(Terry et al., 2011) 

CABIN1 (Calcineurin Binding Protein 1) Regulates synaptic vesicle endocytosis (Lai et al., 2000) 

CAPG (Capping Actin Protein, Gelsolin Like)  

Involved in regulating actin-based movement in macrophages which 
coincides with calcium oscillations in the formation of membrane 
protrusions (ruffling), phagocytosis, and vesicle movement within the 
cytoplasm (rocketing) 

(Witke et al., 2001) 

CLIC6 (Chloride Intracellular Channel 6) 
CLIC4 has been found to regulate apical exocytosis through retromer- and 
actin-mediated endocytic trafficking in renal cells 

(Chou et al., 2016) 

COPE (Coatomer Protein Complex Subunit 

Epsilon) 
One of the proteins of the COPI vesicular coat complex that mediates 
transport from the Golgi apparatus to the ER and within the Golgi stacks 

(Béthune & Wieland, 2018) 
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COTL1 (Coactosin Like F-Actin Binding Protein 1) 
Regulates actin dynamics of T-cells to promote lamellipodial protrusion at 
the immune synapse towards antigen-presenting cells or target cells  

(Kim et al., 2014a) 

EPN1 (Epsin 1) Adaptor protein for synaptic vesicle endocytosis at neuronal synapses (Kyung et al., 2016) 

HIP1 (Huntingtin-interacting protein 1)  Involved in clathrin-mediated endocytosis (Gottfried et al., 2010) 

INPP4B (Inositol polyphosphate 4-phosphatase 
type II)  

Regulates signalling associated with endocytic trafficking (Chew et al., 2016) 

LAPTM4B (Lysosomal Protein Transmembrane 4 

Beta) 
An endosomal transmembrane protein that regulates lysosomal sorting and 
degradation 

(Tan et al., 2015)  

MACF1 (Microtubule-Actin Crosslinking Factor 1) 
Cross-links actin to other cytoskeletal proteins and binds to microtubules to 
mediate cell migration, focal adhesions, signalling and vesicle transport 
from the trans-Golgi network to the cell periphery 

(Hu et al., 2016) 

PSRC1 (Proline And Serine Rich Coiled-Coil 1) 
A microtubule-associated protein that orchestrates microtubule dynamics 
and directional cell migration 

(Zhang et al., 2013) 

RALGDS (Ral Guanine Nucleotide Dissociation 
Stimulator) 

Responsible for Ral-dependent exocytosis of WPBs in endothelial cells (Rondaij et al., 2008) 

SCFD2 (Sec1 Family Domain Containing 2)  
Member of the Sec1/Munc18 family of proteins that cooperate with SNARE 
complexes in membrane fusion events through their interactions with 
syntaxins 

(Halachmi & Lev, 1996; Li et al., 
2013) 

SLC24A3 (Solute Carrier Family 24 Member 3) 
Belongs to the SLC24–Na+/(Ca2+–K+) exchanger family of proteins known 
to play an important role in intracellular calcium homeostasis 

(Schnetkamp, 2013) 

*Genes highlighted in this table are derived from a manual search of the GeneCards website (https://www.genecards.org/) [accessed 2018]. AP2; adaptor protein 2, Arf6; ADP-

ribosylation factor 6, COPII; coat protein complex II, GPCR; G-protein-coupled receptor, IPDs: inherited platelet bleeding disorders, MK; megakaryocyte, SFKs; Src family kinases, 
SNARE; soluble N-ethylmaleimide-sensitive factor attachment receptor, WPBs; Weibel-Palade bodies. 
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Of the genes that were differentially expressed in platelets from patients with a FLI1 

defect, 215 were also represented among the genes that harboured defects in patients 

with platelet secretion disorders. Out of these, 92 genes were known to be regulated 

by FLI1 (Table 6.7). As shown in Table 6.14, these included five genes which have 

previously been associated with IPDs (ETV6, GFI1B, ITGB3, PTPRJ, RUNX1) and 

others which encode proteins involved in platelet secretion (SLC2A3, SNAP29), and 

other aspects of platelet function (CDKN1A, GAB1, MRVI1, PAK2, PLCG2, PTGIR, 

WASL). There were also several genes that could potentially have a role in regulating 

the platelet secretory pathways, though further investigation is required to explore this 

possibility (Table 6.14).  

 

There were 186 genes that were differentially expressed in the same direction in 

platelets from patients with a FLI1 defect and following FLI1 knockdown in Dami cells. 

Further inspection of the subset of 74 genes known to be regulated by FLI1 (Table 

6.9), highlighted genes associated with IPDs (CD36, LYST, RASGRP2, SCARB1), 

genes encoding proteins that have a role in platelet secretion (PIK3C3, PRKCD) and 

other aspects of platelet biology (ADCY6, CABLES1, COMMD7, PLCG2, FCER1G, 

SNCA) as well as genes encoding proteins that could potentially have a role in platelet 

function (Table 6.15). Interestingly, inspection of the 186 genes that were differentially 

regulated (Table 6.9) identified several groups of related genes (e.g. DOK2, DOK3 / 

SUSD3, SUSD6 / TMEM108, TMEM9, TMEM154, TMEM167B / ZDHHC20, ZDHHC21 

/ ZNF317, ZNF672, ZNF98), which could reflect direct or indirect regulation of several 

genes in similar biological pathways by FLI1. Of particular interest, was the cluster of 

14 histone genes. Although the exact role of histones in platelets remains to be fully 

elucidated, initial studies have shown that histones H1, H2, H3 and H4 induce 

platelet activation (Carestia et al., 2013) via a mechanism that is regulated by albumin 

(Lam et al., 2013).  
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Table 6.14 Selection of FLI1-regulated genes which were differentially expressed in platelets from patients with FLI1 defects and 
which harboured defects in patients with platelet secretion disorders* 

 Gene Role of the corresponding gene product Reference 

IPDs and/or 
platelet 
secretion 
defects 

ETV6 (ETS Variant 6) 
Transcriptional repressor that has a role in embryonic development, 
angiogenesis, haematopoiesis and megakaryopoiesis 

(Zhang et al., 2015) 

GFI1B (Growth Factor-Independent 1B 
Transcriptional Repressor) 

Transcription factor which has a pivotal role in haematopoiesis 
(erythropoiesis and megakaryocyte development) 

(Stevenson et al., 2013) 

ITGB3 (Integrin Subunit Beta 3) 

Subunit of the platelet αIIbβ3 receptor which mediates platelet adhesion 
and aggregation and triggers “outside-in” signalling. αIIbβ3 plays a role in 
proplatelet formation by regulating actin remodelling; Subunit of the αvβ3 
receptor that has a role in platelet adhesion, and aggregation, and 
endothelial cell adhesion migration and angiogenesis 

(Ghevaert et al., 2008; Nurden & 
Caen, 1975) 

PTPRJ (Protein Tyrosine Phosphatase, Receptor 
Type J) 

A receptor-like protein tyrosine phosphatase that is critical for initiating 
GPVI signalling in platelets through activation of Src family kinases 

(Marconi et al., 2018) 

RUNX1 (Runt Related Transcription Factor 1) 

Transcription factor required for haematopoietic stem cell generation; It is 
also essential for the maturation of T and B lymphocytes; In 
megakaryopoiesis, it acts as a core regulator of early and late MK 
differentiation 

(Heller et al., 2005) 

Important in 
platelet 
secretion/ 
granule 
formation 

SLC2A3 (Solute Carrier Family 2 Member 3) 
Mediates glucose utilization and glycogenolysis in platelets, promotes α-
granule release, platelet activation and postactivation functions 

(Fidler et al., 2017) 

SNAP29 (Synaptosome Associated Protein 29) 
Contributes to the regulation of platelet α-granule secretion and thrombus 
stability 

(Williams et al., 2016) 

Other 
aspects of 
platelet 
biology 

CDKN1A (Cyclin-Dependent Kinase Inhibitor 1A) Regulates MK differentiation (Rubinstein et al., 2012) 

GAB1 (GRB2 Associated Binding Protein 1) Signalling molecule in collagen‐stimulated PI3K signalling pathway (Moraes et al., 2010) 

MRVI1 (Murine Retrovirus Integration Site 1 
Homolog) 

Plays a central role in NO/cGMP dependent inhibition of platelet 
aggregation and thrombus formation 

(Antl et al., 2007) 

PAK2 (P21 (RAC1) Activated Kinase 2) 
 

A critical effector of Rho GTPases (CDC42 and RAC1) that plays a role 
during spreading of platelet lamellipodia (early shape change) and 
shedding of platelet microvesicles  

(Crespin et al., 2009; Vidal et al., 
2002) 
 

PLCG2 (Phospholipase C Gamma 2) See Table 6.13  

PTGIR (Prostaglandin I2 Receptor) A GPCR that plays a role in inhibiting platelet activation (Li et al., 2010) 

WASL (Wiskott-Aldrich Syndrome Like) 
Major mediator of early rapid actin cytoskeleton responses, including 
filopodia formation; Positively regulates demarcation membrane system 
development and proplatelet formation being a direct target of CDC42 

(Palazzo et al., 2016; Shcherbina 
et al., 2001) 

Other genes 
of potential 
interest 

AFTPH (Aftiphilin) 
Binds to clathrin AP-1 and 2; Involved in the response of WPBs to 
secretagogues and release of their contents; Involved in clathrin-mediated 
trafficking in neurons 

(Burman et al., 2005; Lui-Roberts 
et al., 2008) 

ANO2 (Anoctamin 2) 
Transmembrane calcium-activated chloride channel that facilitates the 
scrambling of phospholipids between leaflets of the membrane bilayer 
leading to the release of extracellular vesicles 

(Whitlock & Hartzell, 2017) 
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ARAP1 (ArfGAP With RhoGAP Domain, Ankyrin 
Repeat And PH Domain 1) 

Regulates Arf-, Rho-, and Cdc42-dependent actin cytoskeleton-related 
activities including  cell shape change, filopodia and stress fibre formation 

(Miura et al., 2002) 

CACNB1 (Calcium Voltage-Gated Channel 
Auxiliary Subunit Beta 1) 

Auxiliary- cytosolic- subunit of the voltage-gated calcium channel that 
controls trafficking of the main α1-subunit to the plasma membrane, its 
regulation and its gating properties; Interacts with a number of proteins 
involved in diverse aspects of cell signalling; Other family members 
interact with synaptic proteins 

(Rima et al., 2016) 

C1orf27 (ODR4 (Odr-4 GPCR Localization Factor 
Homolog) 

Transmembrane protein in the endoplasmic reticulum that has a role in the 
maturation, trafficking or localisation of a subset of GPCRs to sensory cilia 

(Chen et al., 2014; Dwyer et al., 
1998) 

COTL1 (Coactosin Like F-Actin Binding Protein 1) See Table 6.13  

CTSZ (Cathepsin Z) 
 

Cleaves regulatory motifs of several integrins (e.g. β2, β3 subunits) 
affecting their function (cell adhesion, phagocytosis, maturation, 
proliferation, activation, and cytoskeletal rearrangment) in macrophages, 
T lymphocytes, dendritic cells, and neuronal cells 

(Kos et al., 2009) 

DENND4A (DENN Domain Containing 4A) 

 

DENND4 ortholog regulates the polarised secretion of basement 
membrane components; DENND4A-C proteins have GEF activity towards 
Rab10, a Rab involved in the regulation of basolateral trafficking in 
polarised cells 

(Marat et al., 2011) 

ERGIC1 (Endoplasmic Reticulum-Golgi 

Intermediate Compartment 1) 
Cycling membrane protein that may have a role in transport between the 
ER and Golgi 

(Breuza et al., 2004) 

FSTL4 (Follistatin Like 4) Regulates synaptic plasticity in neuronal cells (Suzuki et al., 2018) 

HOMER2 (Homer Scaffold Protein 2) 
Interaction with CDC42 influences actin cytoskeleton organization and cell 
morphology; modifies calcium signalling through a GPCR to regulate the 
frequency of calcium oscillations in pancreatic acini 

(Shin et al., 2003; Shiraishi-
Yamaguchi et al., 2009) 

INPP4B (inositol polyphosphate 4-phosphatase 
type II) 

See Table 6.13  

PDE4DIP (Phosphodiesterase 4D Interacting 
Protein) 

Involved in tethering non-centrosomal microtubules to Golgi membranes (Wu et al., 2016) 

LAPTM4B (Lysosomal Protein Transmembrane 4 
Beta) 

See Table 6.13  

PLXNB3 (Plexin B3) 

Acts as a transmembrane receptor for semaphorin 5A that suppresses 
human glioma cell motility and morphology through Rac1 and the actin 
cytoskeleton by mediating disassembly of F-actin stress fibres, and 
disruption of focal adhesions 

(Li et al., 2012) 

PTPN12 (Protein Tyrosine Phosphatase, Non-
Receptor Type 12) 

Involved in immunity, vascular development, adhesion, cell migration and 
embryonic viability being a key regulator of signalling pathways in cell-cell  
and cell-extracellular matrix interactions; Acts as binding partner for 
Filamin A 

(Duval et al., 2015; Rhee et al., 
2014; Souza et al., 2012) 

RGS3 (Regulator Of G Protein Signalling 3) 
Negatively regulates intracellular calcium release via inactivation of Gα; 
Other family members (RGS1, 2, 13, 14, 16, 18) have roles in 
haematopoiesis, megakaryopoiesis and platelet function 

(Freisinger et al., 2010; Louwette 
et al., 2012) 
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SCFD1 (Sec1 Family Domain Containing 1) 
 

Member of the Sec1/Munc18 family that cooperate with SNARE 
complexes in membrane fusion events through their interactions with 
syntaxins; Involved in vesicle transport from ER to Golgi; Binds to ER-
localized Syntaxin5 where it is possibly involved in stabilizing the open 
conformation of the SNARE, a prerequisite for Q-SNARE complex 
assembly and sorting into COPII-coated vesicles 

(Adolf et al., 2018; Dascher & 
Balch, 1996; Li et al., 2013) 

SCFD2 (Sec1 Family Domain Containing 2) See Table 6.13  

SHANK2 (SH3 And Multiple Ankyrin Repeat 
Domains 2) 

Acts as binding partner for dynamin and cortactin (Okamoto et al., 2001) 

SLC24A3 (Solute Carrier Family 24 Member 3) See Table 6.13  

SNF8 (SNF8, ESCRT-II Complex Subunit) 

Component of the ESCRT-II complex that is required for endocytosis and 
lysosomal degradation of transmembrane proteins; SNF8 acts as a 
regulator of the calcium-permeable cation channels TRPC6 (Transient 
receptor potential canonical channel) 

(Babst et al., 2002; Carrasquillo 
et al., 2012) 

TRAPPC6B (Trafficking Protein Particle Complex 
6B) 

A component of the TRAPP tethering complexes that function in specific 
stages of inter-organelle traffic and also can activate the GTPase Rab1; 
TRAPPC6A could be involved in hypopigmentation 

(Brunet & Sacher, 2014) 

TREML2 (Triggering Receptor Expressed On 

Myeloid Cells Like 2) 

Another family member (TREML1) is known to regulate granule 
construction in platelets and is associated with IPDs due to platelet 
secretion defect 

(Nurden et al., 2008) 

VPS39 (VPS39, HOPS Complex Subunit) 
 

A subunit of the HOPS-tethering complex that acts as a Rab7-binding 
subunit; the HOPS complex promotes clustering, tethering and fusion of 
late endosomes with lysosomes and vacuoles by binding and stabilising 
SNARE complexes preventing their dissociation 

(Kleine Balderhaar & 
Ungermann, 2013; Starai et al., 
2008) 

*Genes highlighted in this table are derived from a manual search of the GeneCards website (https://www.genecards.org/) [accessed 2018]. AP; adaptor protein , COPII; coat protein 
complex II , ER; endoplasmic reticulum, ESCRT; endosomal sorting complex required for transport, GEF; guanine-nucleotide exchange factor, GP; glycoprotein, GPCR; G-protein-
coupled receptor, HOPS; homotypic fusion and protein sorting, IPDs: inherited platelet bleeding disorders, MK; megakaryocyte, NO; nitric oxide PI3K; phosphatidylinositol 3-kinase, 
SNARE; soluble N-ethylmaleimide-sensitive factor attachment receptor, TRAPP; transport protein particle, WPBs; Weibel-Palade bodies. 
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Table 6.15 Selection of FLI1-regulated genes which are differentially expressed in platelets from patients with a FLI1 defect, and 
following FLI1 knockdown in Dami cells* 

 Gene Role of the corresponding gene product Reference 

IPDs and/or 
platelet 
secretion 
defects  

CD36 (CD36 Molecule)  Multi-ligand receptor that induces platelet adhesion and activation (Kashiwagi et al., 1994) 

LYST (Lysosomal Trafficking Regulator)  
Scaffolding protein that facilitates membrane events, including both 
fission and fusion 

(Nagle et al., 1996) 

RASGRP2 (RAS Guanyl Releasing Protein 2)  
Guanine nucleotide exchange factor that is critical for activation of small 
GTPases, including RAP1 

(Canault et al., 2014) 

SCARB1 (Scavenger Receptor Class B Member 
1) 

Plays a role in megakaryopoiesis and platelet production and in regulating 
platelet activation and aggregation 

(Vergeer et al., 2011) 

Important in 
platelet 
secretion/ 
granule 
formation 

PIK3C3 (Phosphatidylinositol 3-Kinase Catalytic 
Subunit Type 3) 

Lipid kinase that catalyses the conversion of phosphatidylinositol into 
PI3P; Controls granule biogenesis, intracellular trafficking, migration and 
platelet production in MK; Regulates platelet secretion and thrombus 
growth 

(Valet et al., 2017) 

PRKCD (Protein Kinase C Delta)  
Signalling protein that regulates platelet functional responses including 
dense granule secretion and TXA2 generation downstream of PARs and 
GPVI receptors 

(Chari et al., 2009) 

Other 
aspects of 
platelet 
biology 

ADCY6 (Adenylate Cyclase 6) 
Encodes a protein that belongs to the adenylyl cyclase family, which is 
required for the synthesis of cAMP downstream of GPCR-Gs subunits that 
are activated when prostacyclin binds to its receptor 

(Smolenski, 2012) 

CABLES1 (Cdk5 And Abl Enzyme Substrate 1) Regulates HSCs and the process of megakaryopoiesis (He, 2018) 

COMMD7 (COMM Domain Containing 7)  
Positive regulator of thrombus formation in zebrafish after laser injury; Acts 
as a repressor of transcription of the NFKB1 

(Burstein et al., 2005; 
Vermeersch et al., 2018) 

FCER1G (Fc Fragment Of IgE Receptor Ig) 
Immunoglobulin receptor that non-covalently binds to GPVI and mediates 
platelet activation by collagen; Plays a role in mediating signalling via the 
platelet GPIb-IX-V complex 

(Li et al., 2010) 

PLCG2 (Phospholipase C Gamma 2) See Table 6.13  

SNCA (Synuclein Alpha)  
Inhibits thrombin-induced platelet α-granule release in vitro; Negatively 
regulates dopamine neurotransmission 

(Abeliovich et al., 2000; Park et 
al., 2002) 

Other genes 
of potential 
interest 

AP2S1 (Adaptor-Related Protein Complex 2 

Subunit Sigma 1) 

Component of the AP2 complex that acts in clathrin-mediated endocytosis 
of the plasma membrane; Plays a role in extracellular-calcium 
homeostasis 

(Nesbit et al., 2013; Ohno, 2006) 

ARCN1 (Archain 1)  
Encodes the coatomer subunit delta of COPI that is required for vesicle 
budding in the early secretory pathway 

(Beck et al., 2009) 

ABCA3 (ATP Binding Cassette Subfamily A 
Member 3) 

A lipid transporter involved in the biogenesis of intracellular multi-lamellar 
vesicles in alveolar epithelial cells 

(Yamano et al., 2001) 

EHD2 (EH Domain Containing 2) Links clathrin-mediated endocytosis to the actin cytoskeleton (Guilherme et al., 2004)  

DNM1 (Dynamin 1)  
Plays a role in regulating fusion pore geometry and kinetics of endo- and 
exocytotic vesicles; Mutations in DNM2 have been associated with 

(Lasič et al., 2017; Züchner et al., 
2005) 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/kinetics
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subclinically low counts of neutrophils, lymphocytes, erythrocytes and 
platelets in Charcot-Marie-Tooth disease 

LYL1 (LYL1, Basic Helix-Loop-Helix Family 
Member) 

Required for survival of adult haematopoietic stem and progenitor cells (Souroullas et al., 2009) 

MAFK (MAF BZIP Transcription Factor K) Plays a role in erythropoiesis, megakaryopoiesis and platelet production (Onodera et al., 2000) 

PLEKHF2 (Pleckstrin Homology And FYVE 
Domain Containing 2) 

Modulates the structure and function of endosomes by a Rab5-dependent 
mechanism 

(Lin et al., 2010) 

SCFD2 (Sec1 Family Domain Containing 2)  See Table 6.13 

SLC24A3 (Solute Carrier Family 24 Member 3) See Table 6.13 

SNX16 (Sorting Nexin 16)  
Regulates traffic between early and late endosomal compartments; 
Regulates recycling and trafficking of E-cadherin 

(Hanson & Hong, 2003; Xu et al., 
2017) 

SURF4 (Surfeit 4) 
Required to maintain the architecture of the ER-Golgi intermediate 
compartment and Golgi apparatus by controlling COPI recruitment 

(Mitrovic et al., 2008) 

*Genes highlighted in this table are derived from a manual search in GeneCards website (https://www.genecards.org/) [accessed 2018]. AP; adaptor protein, COPI; coat protein complex 
I, ER; endoplasmic reticulum, GP; glycoprotein, GPCR; G-protein-coupled receptor, IPDs: inherited platelet bleeding disorders, MK; megakaryocyte, NFKB1; Nuclear Factor Kappa B 
Subunit 1, PAR; protease-activated receptor, TXA2; thromboxane A2. 
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Of the genes that were differentially expressed in FLI1 deficient Dami cells and 

platelets, twenty-three also harboured defects in patients with platelet secretion 

disorders. Of these, seven genes were differentially expressed in the same direction 

in both the Dami cells and platelets (Table 6.11). Thus, C18orf32 (Chromosome 18 

Open Reading Frame 32), SLC24A3 (Solute Carrier Family 24 Member 3), and 

ST8SIA6 (ST8 Alpha-N-Acetyl-Neuraminide Alpha-2,8-Sialyltransferase 6) were all 

upregulated, while IGFBP2 (Insulin-Like Growth Factor Binding Protein 2), PLCG2 

(Phospholipase C Gamma 2), SCFD2 (Sec1 Family Domain Containing 2), and 

ZBTB45 (Zinc Finger And BTB Domain Containing 45) were downregulated. Each of 

these genes will be briefly described below, along with the evidence where it exists, for 

them having a role in platelet biology.  

 

C18orf32 is a 76 amino acid protein that activates the NFκB (Nuclear factor kappa B) 

signalling pathway (Matsuda et al., 2003), which is known to have a dual regulatory 

role in platelet function (Fuentes et al., 2016). Through activation of NFκB signalling, it 

leads to phosphorylation of SNAP23, which enhances soluble N-ethylmaleimide-

sensitive factor attachment receptor (SNARE) complex formation, resulting in 

membrane fusion and granule release (Karim et al., 2013). C18orf32 is also involved 

in regulating the posttranslational modification process that anchors 

glycosylphosphatidylinositol (GPI) to proteins (Liu et al., 2018) in the endoplasmic 

reticulum. The GPI in the anchored proteins then acts as a sorting signal to transport 

the proteins through the Golgi apparatus via vesicles to the plasma membrane (Muñiz 

& Riezman, 2016). C18orf32 has also been shown to interact with glucagon-like 

peptide 1 receptor (GLP1R) (Huang et al., 2013). GLP1R is a guanine nucleotide-

binding G-protein-coupled receptor (GPCR) that signals through a Gs-protein complex 

and cAMP on ligand binding and attenuates platelet aggregation and thrombosis 

(Cameron-Vendrig et al., 2016). However, the physiological relevance of the C18orf32-

GLP1R interaction remains to be determined. Despite the interesting role of C18orf32 

in platelets, the missense defect identified in the corresponding gene c.83T>C:p.V28A 

in index case F11 was inherited along with a defect in FLI1 

(NM_002017:c.1018C>T:p.R340C), that was more likely to explain the bleeding 

phenotype (Table 6.16). 
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SLC24A3 encodes the 644 amino acid NCKX3 protein (Na+/Ca2+/K+ exchanger 3) that 

belongs to the SLC24-Na+/(Ca2+-K+) exchanger family of proteins known to play an 

important role in intracellular calcium homeostasis (reviewed in Schnetkamp (2013)). 

Members of this family are widely expressed and known to have critical roles in sensory 

cells (retinal and olfactory), throughout the brain, epidermal melanocytes and in 

pigment-producing cells. Although very little is known about the physiological role of 

SLC24A3, a number of variants have been associated with pathophysiological 

changes in systolic blood pressure (Citterio et al., 2011). In platelets, SLC24A3 was 

found to be upregulated in response to aspirin (Voora et al., 2013) and 

downregulated in platelets from a patient with a RUNX1 mutation (Sun et al., 2007). 

Interestingly, SLC24A3 expression was found to increase with FLI1 deficiency, which 

suggests it is normally repressed by FLI1 to regulate intracellular calcium homeostasis 

in platelets. The missense defect in SLC24A3 that was identified in index case F7 

(c.650C>G:p.S217C) predicted an amino acid substitution within one of the Na+/Ca2+ 

exchanger membrane region domains. However, the index case also carried a 

candidate genetic defect in RUNX1 (NM_001001890:c.270+1G>T) that was more 

likely explain the bleeding phenotype (Table 6.16). 

 

ST8SIA6 encodes the 398 amino acid ST8 α-N-Acetyl-Neuraminide α-2,8-

sialyltransferase protein which belongs to the α2,8-sialyltransferase (ST8Sia) family of 

enzymes and catalyses the transfer of α-2,8-linked disialic acid to glycoconjugates 

(reviewed in Huang et al. (2017)). ST8SIA6 has been shown to be responsible for 

modifying the natural killer inhibitory receptor, sialic acid binding Ig-like lectin 7 (Siglec-

7) (Avril et al., 2006). Interestingly, Siglec-7 is expressed on the membranes of α-

granules and colocalises with CD62P in platelets (Nguyen et al., 2014). Furthermore, 

activation of platelets causes an increase in Siglec-7 expression, which correlates 

closely with the increase in CD62P expression (Nguyen et al., 2014). Moreover, when 

Siglec-7 was cross-linked with its ligand, ganglioside, it was found to promote platelet 

apoptosis without affecting any other platelet functions (Nguyen et al., 2014). In this 

study, ST8SIA6 was found to be upregulated with FLI1 deficiency.  This could 

potentially lead to an increase in modification of SIGLEC7, which, when cross-linked 

with its ligand, will drive platelets to apoptosis, contributing to the mild 

thrombocytopenia associated with FLI1 defects. The non-frameshift deletion 

(c.40_42del:p.14_14del) that was identified in ST8SIA6 in index case F9.1 was not co-
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inherited with any other obvious causative gene defects (Table 6.16), supporting the 

need for further investigation of the role of this gene in platelet granule biogenesis and 

secretion, and a possible contribution of ST8SIA6 to the pathogenesis of IPDs.  

 

The 325 amino acid protein encoded by IGFBP2 is one of six similar IGFBPs (Insulin-

like growth factor binding proteins) which bind and modulate the biologic effects of 

Insulin-like growth factors I and II (IGFI and IGFII). They also have IGF-independent 

bioactivity mediated through their interaction with cell surface receptors (e.g. α5β1 and 

αvβ3) or the intracellular actions of IGFBP2 (reviewed in Bach (2018)). IGFBP2, similar 

to other IGFBPs (IGFBP3-6) has been found to increase intracellular calcium levels 

(Seurin et al., 2013). Knockdown of igfbp2 in zebrafish embryos disrupted 

cardiovascular development and resulted in specific angiogenic abnormalities (Wood 

et al., 2005), while Igfbp2 knockout mice were phenotypically normal apart from 

minor gender-specific changes in bone structure and in the weights of spleen and 

liver (DeMambro et al., 2008; Wood et al., 2000). The normal phenotype in the 

knockout mice was explained by an elevation in the level of other IGFBPs to 

compensate for the loss of Igfbp2 (Wood et al., 2000). IGFBP2 has been found to 

support expansion/proliferation, survival and cycling of hematopoietic stem cells 

(Huynh et al., 2008; Huynh et al., 2011), and migration of human haematopoietic stem 

and progenitor cells (Bartling et al., 2010). More recently, under turbulent flow, IGFBP2 

was found to be released from MKs and to facilitate platelet shedding ex vivo (Ito et 

al., 2018). It could be hypothesised that IGFBP2 plays a role in platelet secretion via 

IGF-independent mechanisms, that are likely to involve interactions with integrins or 

other cell surface receptors or which could be mediated through the intracellular action 

of IGFBP2. Interestingly, this study identified three different non-frameshift deletions in 

IGFBP2 in three index cases, F1.1, F12.1 and F17.1. However, the IGFBP2 defect that 

was identified in index case F1.1 and their affected relative, F1.2, was co-inherited with 

a 4 bp deletion in FLI1 (NM_002017:c.992_995del:p.331_332del) that is likely to 

explain the bleeding phenotype (Table 6.16). Nevertheless, the presence of IGFBP2 

defects in three index cases with defects in platelet secretion is interesting and 

warrants further investigation of the potential contribution of IGFBP2 to platelet granule 

biogenesis and secretion.  
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The 1,265 amino acid protein encoded by PLCG2 (Phospholipase C Gamma 2), 

PLCγ2, has a well-established role in platelet activation. Activation of PLCγ2 occurs 

downstream of signalling through the GPIb-IX-V, GPVI and αIIbβ3 receptors and is 

regulated by phosphatidylinositol 3-kinase (PI3K) (Li et al., 2010). Activation of PLC is 

critical for efficient platelet activation, as it catalyses the formation of inositol-1,4,5-

trisphosphate (IP3) which promotes intracellular calcium release and diacylglycerol 

(DAG) required for activation of protein kinase C (PKC) (Li et al., 2010). Plcg2-/- mice 

are viable, but exhibit increased perinatal lethality, internal bleeding, reduced B-cell 

numbers and major functional defects in B-cells, platelets, mast cells and natural killer 

cells (Wang et al., 2000). However, in addition to PLCγ2, platelets also express the 

PLCγ1 isoform, which is able to support activation downstream of GPVI in PLCγ2‐

deficient murine platelets (Suzuki-Inoue et al., 2003). Heterozygous variants of PLCG2 

have been associated with auto-inflammation, antibody deficiency and an immune 

dysregulation syndrome known as familial cold autoinflammatory syndrome 3 

(Ombrello et al., 2012; Zhou et al., 2012). Interestingly, despite the role of PLCG2 in 

platelet activation, defects in platelet function or bleeding have not been reported, 

though affected patients have not been assessed for a bleeding tendency. This study 

identified non-synonymous heterozygous PLCG2 variants (c.1712A>G:p.N571S and 

c.2032G>A:p.D678N) in two index cases (F9.1 and F21.1), both of which predict 

substitutions of residues located within the Src homology 2 (SH2) domains involved in 

signal transduction. In the case of F21.1 however, the PLCG2 defect was co-inherited 

with a heterozygous GFI1B defect (NM_004188: c.289G>A:p.D97N) which, given the 

association of GFI1B with IPDs, is more likely to explain the bleeding phenotype (Table 

6.16). The presence of a platelet defect in the knockout mouse model would support a 

contribution from the two heterozygous PLCG2 variants to the bleeding phenotype, 

which requires further investigation. 

 

SCFD2 is a 684 amino acid protein that belongs to the Sec1/Munc18 protein 

superfamily (Li et al., 2013). By interacting with SNARE proteins, members of this 

superfamily, which includes the Sec1 family (STXBP1, STXBP2 and STXBP3), Vps45 

family (VPS45), Vps33 family (Vps33A and Vps33B), Sly1 family (SCFD1), and 

MIP3/SCFD2 family (SCFD2), act as indispensable regulators of vesicle fusion in 

eukaryotic cells (Halachmi & Lev, 1996; Lobingier & Merz, 2012). Defects in members 

of the Sec1/Munc18 protein superfamily have been found to be associated with IPDs 
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characterised by abnormalities in platelet granules, platelet secretion and, in some 

cases, thrombocytopenia. Familial haemophagocytic lymphohistiocytosis type 5 is 

associated with autoimmune disease, anaemia, thrombocytopenia, abnormalities in all 

platelet granules, and impaired cytotoxic granule exocytosis in the patient’s natural 

killer cells due to homozygous, compound heterozygous or heterozygous defects in 

STXBP2 (Al Hawas et al., 2012; Cote et al., 2009). A homozygous variant of VPS45 

was associated with a significant bleeding tendency due to life-threatening 

thrombocytopenia and platelet dysfunction, life‐threatening infections, congenital 

neutropenia, lack of lysosomes in patients’ fibroblasts, primary myelofibrosis, 

extramedullary haematopoiesis and progressive bone marrow failure (Stepensky et al., 

2013). Platelets from affected patients displayed defective platelet aggregation, 

reduced α-granules and a distorted open canalicular system (Stepensky et al., 2013). 

A mouse with a homozygous missense mutation in Vps33a (vacuolar protein sorting-

associated protein 33 A), buff mouse, exhibited hypopigmentation and decreased 

platelet activity, resembling the phenotype of Hermansky-Pudlak syndrome (HPS) in 

humans (Suzuki et al., 2003). More recently, homozygous VPS33A variants were 

described in a human mucopolysaccharidosis-like condition (lysosomal storage 

disease), where the characteristic symptoms of HPS, including cutaneous albinism and 

bleeding diathesis, were not observed (Dursun et al., 2017; Kondo et al., 2016).  

However, patients developed haematopoietic disorders including anaemia, 

thrombocytopenia, leukocytopenia as well as recurrent infections and bone marrow 

hypoplasia (Dursun et al., 2017; Kondo et al., 2016). Mutations in VPS33B are 

associated with the autosomal recessive arthrogryposis-renal dysfunction cholestasis 

(ARC) syndrome, where enlarged platelets with absent or deficient platelet α-granules 

are documented (Gissen et al., 2004; Kim et al., 2010). Studies in a murine model of 

VPS33B deficiency highlighted that VPS33B regulates protein sorting into α-granule 

destined organelles during megakaryopoiesis (Bem et al., 2015). The role, if any, of 

SCFD2 in intracellular vesicle fusion remains to be clarified. Interestingly, SCFD2 

downregulation was observed in platelets from a patient with a heterozygous RUNX1 

mutation (Sun et al., 2007). Similarly, in this study, FLI1 deficiency was associated with 

reduced SCFD2 expression, which suggests that SCFD2 is upregulated by RUNX1 

and FLI1, either individually or as a complex, and is required for vesicle formation 

and/or trafficking. The identification of a heterozygous SCFD2 variant 

(c.469C>T:p.P157S) in index case F2.1, in the absence of other obvious likely 
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candidate gene defects, supports a contribution from this variant to the defect in 

platelet secretion and bleeding symptoms observed in the index case, which merits 

further investigation (Table 6.16).  

 

Very little is known about the role of the Zinc finger and BTB domain containing 45 

protein encoded by ZBTB45. It is proposed to be a regulator for glial differentiation 

(Södersten et al., 2010) and has also been found to induce cell cycle arrest and to 

inhibit cell proliferation by activating genes of the p53 pathway (Kim et al., 2011). The 

missense ZBTB45 variant (c.976G>A:p.G326R) identified in F2.1 was not co-inherited 

with candidate defects in other established IPD genes, which increases the likelihood 

of it being a causative defect. Further work is therefore warranted to investigate the 

role, if any, of ZBTB45 in platelets and its possible association with IPDs. 

 

The defects in the seven genes (C18orf32, SLC24A3, ST8SIA6, IGFBP2, PLCG2, 

SCFD2, and ZBTB45) highlighted above were co-inherited in some cases with defects 

in other genes, for which there is strong evidence of an association with bleeding. 

Although this reduces the likelihood of them being causative, given the known 

heterogeneity of IPDs, and the variations in bleeding severity observed among patients 

carrying the same or similar gene defects, it is possible that they still contribute to the 

phenotypic expression of the bleeding tendency. Given that this study focused 

primarily on single unrelated index cases, family studies would help in directing further 

investigation of the above genes. Alternatively, validation of the association of these 

genes with platelet secretion defects, which could commence with characterisation of 

the PLCG2 variants, could utilise CRISPR/Cas9 knockout/down of the candidate 

genes, followed by functional characterisation of the resulting clones to determine their 

role in platelet granule biogenesis and secretion.  

 

In addition to further investigation of the seven genes discussed above, further studies 

of genes highlighted by other comparisons could be undertaken, particularly those 

genes that are differentially expressed in platelets from patients with a FLI1 defect and 

in Dami cells following FLI1 knockdown. Transcriptomic profiling of platelets from 

additional patients carrying FLI1 variants would increase the power of this approach to 

detect novel genes involved in platelet secretion by excluding transcriptomic variation 

that is unrelated to the FLI1 defect. Interestingly, a very recent publication identified a 
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novel form of inherited thrombocytopenia which was due to a defect in PTPRJ (Protein 

Tyrosine Phosphatase, Receptor Type J) (Marconi et al., 2018), a gene that was 

identified as harbouring a candidate defect in the WES analysis of an index case in 

this study (F11.1), which also showed differential expression in FLI1-deficient platelets, 

providing support for this approach.  
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Table 6.16 Defects identified by whole exome sequencing analysis in patients with platelet secretion disorders, which occurred 
in genes that were differentially expressed in FLI1 deficient Dami cells and platelets  

Gene Patient 
Type of 
variant 

Zygosity Change Domain* 
CADD 

_PHRED 
score 

ExAC**  rs number*** 
Other IPD 

genes 

C18orf32 F11.1+F11.2 NS Het NM_001035005:c.83T>C:p.V28A --- 22.8 --- --- 
FLI1, 

ABCG8 
PTPRJ 

SLC24A3 F7.1 NS Het NM_020689: c.650C>G:p.S217C 

N-terminal 
Na+/Ca2+ 

exchanger 
membrane 

region 

24.9 0.002447 rs147680736 
RUNX1, 

BLOC1S3 

ST8SIA6 F9.1 NFD Het 
NM_001004470:c.40_42del:p.14

_14del 
--- --- --- --- --- 

IGFBP2 F1.1+F1.2 NFD Het 
NM_000597:c.41_42insCCCGC

CGCT:p.P14delinsPPPL 
--- --- --- --- FLI1 

IGFBP2 F12.1 NFD Het 
NM_000597:c.61_62insGGCCG

CTGC:p.L21delinsRPLL 
--- --- --- --- BLOC1S3 

IGFBP2 F17.1 NFD Het 
NM_000597:c.46_47insAGCTG

CTGC:p.P16delinsQLLP 
--- --- --- --- --- 

PLCG2 F9.1 NS Het 
NM_002661:c.1712A>G:p.N571

S 
N-SH2 
domain 

22.9 0.006559 rs75472618 --- 

PLCG2 F21.1 NS Het 
NM_002661: 

c.2032G>A:p.D678N 
C-SH2 
domain 

22.3 0.0003306 rs541071022 
GFI1B, 

BLOC1S3 

SCFD2 F2.1 NS Het NM_152540: c.469C>T:p.P157S --- 23.5 0.002365 rs144687608 --- 

ZBTB45 F2.1 NS Het NM_032792:c.976G>A:p.G326R --- 25.5 0.002012 rs140831088 --- 

*Using InterPro - version 7 [accessed October-2018]. **ExAC Browser (Beta) (version 0.3.1) from Exome Aggregation Consortium (http://exac.broadinstitute.org/) [accessed 2018]. ***rs 
number from the dbSNP database [accessed 2018]. CADD: Combined Annotation Dependent Depletion; Het: heterozygous; IPDs: inherited platelet bleeding disorders; NFD: non-
frameshift deletion; NS: non-synonymous single nucleotide variants.  
 

http://exac.broadinstitute.org/
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7 Chapter 7. General discussion, final summary and future 

work  
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Inherited platelet bleeding disorders (IPDs) are a heterogeneous group of conditions 

that arise from defects in genes which have a role in platelet production or function, 

and result in an increased risk of bleeding. This study commenced with a cohort of 34 

individuals who had enrolled in the UK Genotyping and Phenotyping of Platelets (UK-

GAPP) study, with a clinical diagnosis of unexplained excessive bleeding symptoms 

that was suspected to be due to a platelet disorder. Prior to studies undertaken in this 

thesis, extensive platelet phenotyping had been undertaken for all patients, which had 

resulted in them being categorised into two subgroups. Thus, 12 patients were 

diagnosed as having a Gi-signalling defect, while platelets from the remaining 22 

patients displayed defects in platelet secretion. The study aimed to identify the 

underlying genetic defects in these patients and to highlight novel genes associated 

with IPDs. Ultimately, results of this work should, in the future, provide valuable insights 

into the pathogenesis of IPDs, contribute to our understanding of platelet physiology 

and allow identification of novel targets for potential therapeutic intervention.  

 

Whole exome sequencing (WES) analysis was undertaken in order to identify 

candidate genetic defects underlying the IPDs in all patients studied. The bioinformatic 

pipeline, devised to prioritise candidate defects for further investigation, filtered 

variants according to their frequency in the population, the variant type, its predicted 

effect and whether or not it occurred in a gene that is expressed in platelets. These 

steps reduced the number of candidate variants from an median of 24,774 to 

approximately 100 for each index case. Further analysis, which grouped patients 

according to their platelet phenotype and assumed that causative variants in each 

group would occur within subsets of genes that function in different pathways, which 

would be specific to each phenotype, resulted in a further reduction in the number of 

candidate single nucleotide variants (SNVs) per patient. Thus, a median of 70 plausible 

candidate variants, affecting a total of 1,130 genes, were identified for each of the 22 

patients with secretion defects, while a median of 45 candidate variants affecting a 

total of 545 genes were detected in each of the patients with the Gi-signalling defects. 

The large number of candidate gene defects in each group highlighted the 

heterogeneity and complexity of the IPDs and the difficulty in achieving a genetic 

diagnosis, particularly for single index cases. 

 

Given the interests of the Sheffield Haemostasis group in platelet granule biogenesis 

and secretion and related disorders, subsequent investigations focused on those 22 
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patients whose platelets displayed defects in secretion. Of 1,465 potential disease-

causing variants that may have contributed to the bleeding disorder, only 16 occurred 

in genes that have previously been implicated in IPDs and, based on the existing 

knowledge about their IPD-related conditions, nine of these, affecting ETV6, FLNA, 

FLI1, GFI1B, ITGB3, P2RX1 and RUNX1 in 8 index cases, were considered likely to 

contribute to the bleeding tendency. 

 

Interestingly, six of the nine highlighted variants occurred in genes encoding 

transcription factors. Recent studies have associated defects in the haematopoietic 

transcription factors RUNX1, GFI1B, GATA1, FLI1 and ETV6 with both quantitative 

and qualitative platelet disorders and variable bleeding symptoms in affected patients 

(reviewed in Daly (2017)). In this study, novel variants affecting FLI1 and ETV6 that 

were identified by WES in patients with platelet secretion disorders were selected for 

further characterisation. FLI1 and ETV6 are E26 transformation-specific or E-twenty-

six (ETS) transcription factors that are known to have a role in megakaryopoiesis (Hart 

et al., 2000; Hock et al., 2004; Kawada et al., 2001; Moussa et al., 2010; Starck et al., 

2010; Takahashi et al., 2005). FLI1 acts mainly as a transcriptional activator (Rao et 

al., 1993), while ETV6 is known to act as a transcriptional repressor (Lopez et al., 

1999). The association between these two ETS family members and IPDs was 

established re latively recently (Stockley et al., 2013; Zhang et al., 2015), and while 

this work was ongoing, several germline variants were identified in both genes in 

patients with IPDs. All of the FLI1 variants that have been described to date have been 

associated with a profound defect in platelet secretion in the affected patients (Poggi 

et al., 2015; Saultier et al., 2017; Stevenson et al., 2015), while the germline ETV6 

defects have mainly been associated with thrombocytopenia and a predisposition to 

haematologic malignancy (Melazzini et al., 2016; Moriyama et al., 2015; Noetzli et al., 

2015; Poggi et al., 2017; Topka et al., 2015; Zhang et al., 2015).  

 

The association between platelet secretion defects and variants of FLI1 was first 

described by the UK-GAPP study group (Stockley et al., 2013). Members of affected 

families carrying FLI1 variants (c.1009C>T:p.Arg337Trp and c.1028A>G:p.Tyr343Cys) 

presented with bleeding disorders as a result of defects in platelet dense granule 

secretion which, in the majority of cases, were accompanied by mild thrombocytopenia 

and other immune disorders (Stockley et al., 2013). Initial investigation of these 

variants revealed them both to have reduced transactivation capacity (Stockley et al., 
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2013). In this study, the identification of a third FLI1 variant (c.1018C>T:p.Arg340Cys) 

in index case F11.1 that also predicted an amino acid substitution in the DNA binding 

domain of FLI1 was of interest. In contrast to the two previously described variants, it 

was associated with a defect in platelet secretion in the absence of thrombocytopenia 

or any accompanying immune features. During the course of this study, we 

collaborated with colleagues to investigate a fourth novel FLI1 variant that also affected 

codon 340, but which was predicted to result in substitution of arginine by histidine 

(c.1019G>A:p.Arg340His). Interestingly, the affected members of the family who 

carried this FLI1 variant were clinically similar to the cases previously reported by 

Stockley et al. (2013). Characterisation of the two novel FLI1 variants identified in this 

study (p.Arg340Cys and p.Arg340His) revealed them both to have reduced 

transcriptional activity and nuclear accumulation, leading to the conclusion that these 

variants interfere with the regulation of essential megakaryocyte-specific genes by 

FLI1 and are likely to explain the bleeding tendency in the affected patients. In addition 

to megakaryocytes, FLI1 is expressed in endothelial cells and in many haematopoietic 

lineages (Bastian et al., 1999; Masuya et al., 2005; Mélet et al., 1996; Starck et al., 

2010; Suzuki et al., 2013; Zhang et al., 1995; Zhang et al., 2008). This possibly 

explains the association of FLI1 defects with other clinical features, including alopecia, 

eczema, psoriasis and recurrent viral infections in some families. It is possible that the 

observed heterogeneity of the clinical phenotypes is a reflection of the presence of four 

coding FLI1 transcripts which may have tissue-specific differences in expression and 

activity, about which little is known. It would therefore be interesting to compare the 

expression of different FLI1 transcripts and functional activity of FLI1 in endothelial 

cells, B-lymphocytes, T-lymphocytes, granulocytes, monocytes and other cells. In 

addition, evaluation of the effects of FLI1 variants in these cells, for example by 

comparing the transcriptomic profiles in affected patients with those of control subjects, 

could help in understanding tissue-specific differences in the role of FLI1. 

 

The novel ETV6 defect identified in index case F4.1 (c.1288C>T:p.Arg430*), who had 

been diagnosed as having a platelet secretion defect, was a strong candidate for 

causing the underlying bleeding disorder, particularly given the recently described 

association of ETV6 variants with IPDs and the predicted highly deleterious effects of 

the SNV compared to all other SNVs identified by WES analysis across the 22 index 

cases with platelet secretion defects. It was therefore selected for further 
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characterisation. Interestingly, the identified ETV6 SNV occurred in a region of the 

gene that had not previously been associated with IPDs and the predominant clinical 

feature was a reduction in platelet dense granule secretion rather than the 

thrombocytopenia associated with previously reported ETV6 variants (Melazzini et al., 

2016; Moriyama et al., 2015; Noetzli et al., 2015; Poggi et al., 2017; Topka et al., 2015; 

Zhang et al., 2015). The studies reported in chapter 5 showed that the truncated 

R430*-ETV6 variant was expressed as a stable protein in the nucleus and the 

cytoplasm of human embryonic kidney (HEK) 293T cells. Also, while no significant 

difference in the ability of the R430*-ETV6 variant to repress transcription was 

observed in HEK 293T cells, a small, but significant, reduction in repressor activity was 

observed in the presence of the R430*-ETV6 variant in Dami cells. Thus, there was 

insufficient evidence from the in vitro studies to support an association of the R430*-

ETV6 variant with the bleeding symptoms in the index case with the c.1288C>T ETV6 

variant, and further studies would be required to confirm the pathogenicity of this 

nonsense ETV6 variant. The experimental approach used in this study to investigate 

the ETV6 variant had some limitations. In particular, overexpression of a cDNA 

encoding the truncated variant did not allow assessment of the effect of the ETV6 

variant on RNA stability. As the results of the luciferase reporter assays indicated a 

defect in transrepression of the truncated ETV6 variant in Dami cells, but not in HEK 

293T, further studies in Dami cells, particularly to assess expression of an N-terminal 

tagged truncated variant, would be of interest. More importantly, ETV6 transcript 

analysis should be carried out following isolation of platelet RNA from the affected 

index case to determine whether it is stably expressed in vivo. Notwithstanding, the 

findings of this study emphasise the necessity to exercise caution when interpreting 

the possible effects of nonsense variants and to undertake appropriate functional 

studies to confirm bioinformatic predictions where possible.  

 

In this study, recognition of potential disease-causing variants in 8 out of 22 index 

cases with platelet secretion defects was primarily due to the previously described 

association of defects in these genes with IPDs. This outcome highlights the limitations 

of using WES as a genetic diagnosis tool to identify the underlying causative defects 

in unrelated patients with heterogeneous IPDs. However, the ultimate aim of this study 

was to identify novel genes that have a role in megakaryopoiesis and platelet function 



 
 

 
211 

 

(mainly secretion), impairment of which could be associated with a bleeding tendency 

and thus to improve diagnosis of the IPDs in affected patients. 

 

Platelet granule biogenesis occurs within the MKs and results in three main types of 

platelet granule that differ in size, number and cargo. Additionally, heterogeneity of 

each granule type, as a result of differences in their size, composition and localisation 

that are then reflected by differences in transport, release time and ultimately function, 

has been described (Jena et al., 2017; Peters et al., 2012). Degranulation is the 

process by which platelets, in response to specific stimuli, release cargo from their 

storage granules to influence the surrounding microenvironment, with the strength of 

the stimulation (concentration and potency) controlling the rate and extent of platelet 

secretion (Chatterjee et al., 2011; Jonnalagadda et al., 2012). The concept of agonist-

dependent patterns of released cargo remains controversial (Jonnalagadda et al., 

2012; van Holten et al., 2014). Granule biogenesis and secretion is a complex, tightly 

regulated process that has some degree of redundancy and is mediated by the 

formation of SNARE (soluble N-ethylmaleimide-sensitive fusion attachment protein 

receptor) complexes and regulated by a number of SNARE regulators (reviewed in 

Golebiewska & Poole (2015); Heijnen & Van der Sluijs (2015); Sharda & Flaumenhaft 

(2018)). Despite the different granule types, their reported heterogeneity and the 

presence of multiple SNAREs and SNARE regulators in platelets, a single model of 

platelet granule secretion has been proposed (Golebiewska & Poole, 2015; Heijnen & 

Van der Sluijs, 2015; Sharda & Flaumenhaft, 2018) (Figure 1.3). In contrast to this 

model, some studies report that certain SNAREs or SNARE regulators are associated 

with specific granule types or have differential effects on different types of granule. For 

example, Rab4 is crucial for the exocytosis of α-granules, while Rab27b is a key 

regulator of dense granule biogenesis and exocytosis (Shirakawa et al., 2000; 

Tolmachova et al., 2007). Additionally, in a VAMP8 knock-out mouse model, while mild 

agonist-evoked release was impaired for all three granule types, release from 

lysosomes and α-granules was affected to a greater degree than that from dense 

granules (Graham et al., 2009).  

 

Very little is known about the role of transcription factor defects in platelet granule formation or 

secretion, though it is likely that their effects are mediated through the differential expression 

of genes that are normally regulated by these transcription factors. For example, dysregulation 

of the gene encoding Palladin (PLDN), a subunit of BLOC-1 which is involved in granule 
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biogenesis, was recently found to be just one possible explanation for the platelet dense 

granule deficiency observed in a patient with RUNX1 haploinsufficiency (Mao et al., 2017). 

Indeed, several studies have highlighted genes that were downregulated in a patient with a 

RUNX1 defect which could explain the associated platelet phenotype (Aneja et al., 2011; 

Jalagadugula et al., 2018; Jalagadugula et al., 2011; Jalagadugula et al., 2010; Kaur et al., 

2010). Since transcription factors regulate multiple genes, defects in transcription factor genes 

in patients with IPDs are likely to be associated with a combination of qualitative and 

quantitative defects in platelets and may also affect other blood cells. Thus, abnormalities in 

platelet dense granule secretion could represent just one aspect of a bleeding disorder caused 

by a transcription factor defect. Identification of the genes that are regulated by these 

transcription factors would improve our understanding of the molecular mechanisms that 

govern platelet granule biogenesis and secretion and ultimately aid diagnosis of such 

conditions. 

 

Much of what is already known about platelet granule biogenesis and secretion has 

originated from the detailed investigation of patients with IPDs that are characterised 

by granule abnormalities, such as Hermansky-Pudlak syndrome (Ammann et al., 2016; 

Anikster et al., 2001; Cullinane et al., 2011; Li et al., 2003a; Morgan et al., 2006; Oh et 

al., 1996; Shotelersuk et al., 2000; Suzuki et al., 2002; Zhang et al., 2003) or Grey 

platelet syndrome (Albers et al., 2011; Gunay-Aygun et al., 2011; Kahr et al., 2011). 

Similarly, in this study, the FLI1-related platelet granule secretion defect was utilised 

to highlight a number of FLI1 effector genes involved in platelet granule function (see 

chapter 6). FLI1 knockdown in Dami cells highlighted differentially expressed coding 

transcripts of 2,052 genes that showed enrichment for Gene Ontology terms relating 

to ‘haemostasis’, ‘wound healing’, ‘platelet activation’, ‘membrane-bound vesicle’, 

‘extracellular vesicle’ and ‘platelet activation’. Similarly, platelet transcriptome data for 

two members of a family who carried the c.1028A>G FLI1 variant predicting the 

p.Tyr343Cys substitution in the DNA binding domain of FLI1, made available by Dr 

Simon Webster, Sheffield, highlighted differentially expressed coding transcripts of 

2,836 genes. Comparison of the platelet transcriptome data with that from FLI1 

deficient Dami cells identified 186 genes which were differentially expressed in the 

same direction in both datasets. Interestingly, of those genes known to be regulated 

by FLI1, four were previously associated with IPDs (CD36, LYST, RASGRP2, 

SCARB1), while other genes were associated with platelet secretion and other aspects 

of platelet biology (ADCY6, CABLES1, COMMD7, FCER1G, PIK3C3, PLCG2, 
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PRKCD, SNCA), though none of these had been previously associated with IPDs (see 

table Table 6.15 for references).  

 

Comparison of those genes that were shown by WES analysis to harbour deleterious 

defects in patients with IPDs (from chapter 3) with those which were differentially 

expressed either in FLI1-deficient Dami cells or platelets (from chapter 6) identified 135 

and 215 genes respectively that were shared between the datasets. Among those 

genes known to be regulated by FLI1, several had previously been associated with 

IPDs, including ETV6, FERMT3, GFI1B, ITGB3, P2RX1, PTPRJ and RUNX1. Others, 

which were known to be regulated by FLI1 but had not previously been associated with 

IPDs, played a role in platelet secretion or other aspects of platelet biology (CDKN1A, 

CSK, FHOD1, GAB1, MRVI1, PAK2, PDE3A, PDLIM7, PLCG2, PTGIR, SLC2A3, 

SLC8A3, SNAP29, TLN1, VAC14, WASL) (see tables Table 6.13 and Table 6.14 for 

references). Only 23 genes were shared by all three datasets, of which seven were 

differentially expressed in the same direction in both FLI1-deficient Dami cells and 

platelets: C18orf32, SLC24A3, ST8SIA6, IGFBP2, PLCG2, SCFD2 and ZBTB45. It 

would be interesting to explore the roles of these genes in platelet granule biogenesis 

and secretion, as well as their possible contribution to the bleeding symptoms among 

the affected index cases.  

 

There were several limitations to the work described in this thesis, not least being the 

lack of availability of index cases and their family members for follow up studies. As 

mentioned earlier, analysis of platelet RNA from index case F4.1 to determine whether 

the nonsense ETV6 variant that they had inherited was stably expressed would have 

facilitated further investigation of the pathogenicity of this variant. Additionally, the 

availability of DNA samples from other affected and unaffected family members would 

have allowed association of candidate gene defects identified by WES with platelet 

secretion defects. Indeed, WES analysis in DNA samples from other first-degree 

relatives of index cases would greatly increase the likelihood of genetic diagnosis by 

WES alone.  

 

The use of in vitro cell-based models for functional studies of candidate gene defects 

was also a limitation. Generally, all established cell lines are induced by genetic 

alterations to be immortal and able to proliferate indefinitely, which frequently causes 

them to behave differently to the primary cells from which they are derived. Both HEK 



 
 

 
214 

 

293T cells and megakaryocytic Dami cells were used in the studies described in this 

thesis. While HEK 293T cells are readily transfected and widely used for in vitro 

investigations, they are derived from kidney cells that express neither ETV6 nor FLI1. 

On the other hand, Dami cells display many of the morphologic and biochemical 

features of the megakaryocytic lineage and express both ETV6 and FLI1. However, 

they require treatment with TPO and PMA to induce differentiation and may not 

faithfully reflect the differences in the expression of FLI1 and other transcription factors 

that occur during megakaryopoiesis and platelet production. In addition to the 

limitations associated with the mammalian cell lines, assessments of the 

transactivation capacity and cellular localisation of FLI1 and ETV6 variants were 

performed following overexpression of the variants using naked plasmid DNA, which 

does not reflect the normal in vivo situation.  

 

There were also limitations to the transcriptomic profiling and its related analysis. For 

instance, analysis of platelet transcriptomes from two related members of a family, both 

with the same FLI1 defect, could detect changes in gene expression that were due to 

the subjects being related, rather than the FLI1 defect. Similarly, the use of the Dami 

cell line as a model to evaluate the effect of FLI1 knockdown/out could highlight genetic 

variations within the cells that do not accurately reflect FLI1 deficiency in vivo. In 

addition, the transcriptome data were derived from FLI1 knockdown clones and a 

complete knockout might be more useful for identifying FLI1-regulated genes involved 

in granule biogenesis and secretion, though a complete knockout may not be viable. 

Furthermore, as with any CRISPR/Cas9 gene editing approach, the possibility of off-

target effects exists and should be considered by sequencing the likely off-target loci 

in relevant clones. Despite the strong correlation between gene expression profiling 

data obtained using microarrays and RNA sequence analysis, the latter would 

overcome many of the technical issues inherent to microarray probe performance, as 

well as the need for prior knowledge of the sequence. RNA sequence data are also 

amenable to re-interrogation when new knowledge becomes available.  
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Appendices  

 

Appendix 1. Genetic basis of inherited platelet defects  

Disease 
Features 

MOI 
Protein: Gene 

(Chromosomal location) Platelet and MK related Others 

ACTN1 -related thrombocytopenia = 
α-actinin- related disease (Kunishima 
et al., 2013) 

Macrothrombocytopenia --- AD Alpha-actinin-1: ACTN1 

(14q24) 

ANKRD18A -related 
thrombocytopenia (Morgan et al., 
2013) 

Severe thrombocytopenia; Marked impairment of 
platelet activation by a range of agonists 

--- AR Ankyrin repeat domain-
containing protein 18A: 
ANKRD18A (9p13.1) 

ANKRD26 -related thrombocytopenia 
= Autosomal dominant 
thrombocytopenia = 
Thrombocytopenia 2 (Gandhi et al., 
2003; Pippucci et al., 2011; Punzo et 
al., 2010) 

Many small, hypo-lobulated, dystrophic MKs in BM; 
Normal or small platelet size; MKs and platelets have 
particulate cytoplasmic structures, consisting of an 
accumulation of proteasome complexes and 
polyubiquitinated proteins that might contribute to mild 
to moderate thrombocytopenia; Platelets are deficient 
in GPIa and α-granules 

Leukocytosis; Increased 
haemoglobin levels; Potential 
association with haematological 
malignancies, particularly acute 
myeloid leukaemia 

AD Ankyrin repeat domain-
containing protein 26: 
ANKRD26 (10p12.1); 
Serine/threonine-protein 
kinase greatwall:  
MASTL (10p12.1); Acyl-CoA-

binding domain-containing 
protein 5: ACBD5 (10p12.1) 

ARPC1B -related thrombocytopenia 
(Kahr et al., 2017) 

Microthrombocytopenia; Dense granule deficiency; 
Defective platelet spreading 

Recurrent infections; Eosinophilia; 
Cutaneous vasculitis; Predisposition 
to inflammatory diseases 

AR Actin-related protein 2/3 
complex subunit 1B: 
ARPC1B (7q22.1) 

Arthrogryposis-renal dysfunction 
cholestasis syndrome (ARC) 
(Cullinane et al., 2010; Gissen et al., 
2004) 

Normal platelet count; Enlarged platelets; 
Absent/deficient platelet α-granules 

Arthrogryposis; Renal dysfunction; 
Cholestasis; High mortality rate in 
the first year after birth due to 
severe multisystem defects 

AR Vacuolar protein sorting-
associated protein 33B: 
VPS33B (15q26.1); 
Spermatogenesis-defective 
protein 39 homolog: VIPAS39 
(14q24.3)  

Bernard-Soulier syndrome (BSS) 
(Berndt et al., 1983; Clemetson et al., 
1982; Kunishima et al., 2001; Savoia 
et al., 2001) 

Moderate macrothrombocytopenia; GPIb-IX-V complex 
severely reduced; Failure of ristocetin-induced 
aggregation 

--- AR/AD Platelet glycoprotein Ib alpha 
chain: GP1BA (17p13.2); 
Platelet glycoprotein Ib beta 
chain:GP1BB (22q11.21);  
Platelet glycoprotein IX: GP9 
(3q21.3) 

Bleeding disorder, platelet-type, 17 = 
GFI1B -related thrombocytopenia = 
Monoallelic Grey platelet syndrome 
(Stevenson et al., 2013) 

Dysmorphic MKs; Macrothrombocytopenia; α-granule 
and dense granule deficiency 

Red blood cells anisocytosis; Mild 
myelofibrosis 

AD/AR Zinc finger protein Gfi1b: 
GFI1B (9q34-13) 
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Chediak-Higashi syndrome (Nagle et 
al., 1996) 
 

Normal platelet count; Absence of platelet dense 
granules; Reduced/absent ATP release from platelet 
granule 

Giant inclusions in granulocytes and 
their precursors; Severe 
immunodeficiency; Defective 
phagocytosis; Neutropenia; 
Increased susceptibility to infection 
and lymphoma; Progressive 
neurological dysfunction; Skin and 
hair hypopigmentation 

AR Lysosomal trafficking 
regulator: LYST (CHS1) 
(1q42.3) 

Congenital amegakaryocytic 
thrombocytopenia (Ihara et al., 1999) 

Absence of MKs in BM; Very severe thrombocytopenia; 
Normal size platelets  

Increased plasma TPO levels; 
Pancytopenia; Progress to BM 
aplasia; Neurological abnormalities 

AR Thrombopoietin receptor: 
MPL (1p34) 

CYCS -related thrombocytopenia = 
Thrombocytopenia Cargeeg (Morison 
et al., 2008) 

Mild thrombocytopenia; Normal size platelets --- AD Cytochrome c: CYCS 
(7p15.3) 

Cytosolic phospholipase A2 
deficiency (Adler et al., 2008) 

Normal platelet count; Decreased platelet aggregation 
with ADP and collagen 

Small intestinal ulceration AR Cytosolic phospholipase A2: 
PLA2G4A (1q25) 

Di Georges / Velocardiofacial 
syndrome = 22q11.2 deletion 
syndrome (Latger-Cannard et al., 
2004) 

Macrothrombocytopenia (sometimes) Immunodeficiency; Neuro-
psychomotor delay; Speech delay; 
Seizures; Congenital heart defect; 
Psychiatric disorder 

AD Chromosomal deletion 
(22q11.2) 

DIAPH1 -related thrombocytopenia 
(Stritt et al., 2016) 

Macrothrombocytopenia; Abnormal bleeding 
symptoms; Platelets show heterogeneity in size, shape, 
and granule abnormality 
 

Progressive loss of hearing; Mild 
neutropenia 

AD Protein diaphanous homolog 
1: DIAPH1 (5q31.3) 

EPHB2-related defect (Berrou et al., 
2018) 

Excessive recurrent bleeding; Normal platelet counts; 
Defect in platelet aggregation, αIIbβ3 activation, 
granule secretion and thrombus formation on collagen 
under flow 

--- AR  Ephrin type-B receptor 2 
EPHB2 (1p36.12) 

ETV6 -related thrombocytopenia = 
Thrombocytopenia 5 (Zhang et al., 
2015) 

Increased number of immature small and hypo-
lobulated MKs in BM; Thrombocytopenia; Normal size 
platelets; Elongated α-granules 

Red cell macrocytosis; Abnormal 
erythrocyte precursors; Association 
with different cancers and 
malignancies especially leukaemia 
and myelodysplastic syndromes 

AD Transcription factor ETV6: 
ETV6 (12p13) 

Familial haemophagocytic types 3-5  
(Cote et al., 2009; Feldmann et al., 
2003; Spessott et al., 2015; zur Stadt 
et al., 2005) 

Thrombocytopenia; Abnormal platelet aggregation due 
to secretion defects in all granules; Normal granule 
cargo 

Autoimmune disease; Reduced red 
cells number; Immune dysregulation 

AR/AD Protein unc-13 homolog D: 
UNC13D / Munc13–4 
(17q25.1); Syntaxin-11: 
STX11 (6q24.2); Syntaxin-
binding protein 2: STXBP2 / 
Munc18-2 (19p13.2) 
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Familial platelet disorder with 
propensity to develop acute myeloid 
Leukaemia (FPD/AML) (Song et al., 
1999) 

MKs are small but increased in number; Mild 
thrombocytopenia; Normal size platelets; Reduced α-
granules; Reduced platelet ATP secretion in response 
to all agonists, dense granule deficiency 

Hallmark is that 40% of affected 
individuals are at risk of 
haematological malignancies; 
Growth retardation; Malformations; 
Dysmorphic features; Mental 
retardation 

AD Runt-related transcription 
factor 1: RUNX1=AML1= 
CBFA2 (12q22.12) 

FLI1 dysfunction (Stockley et al., 
2013) 
 

Some have thrombocytopenia; Normal/large size 
platelets; Fused α-granules in 1-5% of circulating 
platelets; Dense granule secretion defect 

Eczema; Recurrent infection; 
Alopecia; Neutropenia 

AD Friend leukaemia integration 
transcription factor: FLI1 
(11q23) 

FLNA -related thrombocytopenia = 
Filamin A disorder (Nurden et al., 
2011) 

Macrothrombocytopenia; Enlarged α-granules; Present 
of abnormal fragmentation of the platelet cytoplasm 

Neurological, heart, skeletal and 
muscular developmental disease 
including periventricular nodular 
heterotopia 

XD Filamin A: FLNA (Xq28) 

 

FYB -related thrombocytopenia 
(Hamamy et al., 2014)  

Normal number of MKs in BM; Decreased number of 
mature multilobulated MKs in BM; 
Microthrombocytopenia; Reduced formation of platelet 
filopodia; Increased platelet clearance from circulation  

Eczema during infancy AR FYN-binding protein 1: FYB1 
(5p13.1) 

G6bB -related defect (Hofmann et 
al., 2017) 

Macrothrombocytopenia; Distinctive pattern of BM 
reticulin fibrosis centred around clusters of atypical 
MKs; Mild to moderate bleeding symptoms 

Myelofibrosis; Mild anaemia; Mild 
leukocytosis 

AR Megakaryocyte and platelet 
inhibitory receptor G6bB: 
MPIG6B (6p21.33) 

GATA1 -related thrombocytopenia: 
X-linked thrombocytopenia with 
thalassemia (XLTT) / 
Dyserythropoietic anaemia with 
thrombocytopenia (Nichols et al., 
2000) 

Dysmegakaryopoiesis; Variable degrees of 
macrothrombocytopenia (milder in XLTT); Decrease in 
platelet α-granules 

Dyserythropoiesis; Variable degrees 
of anaemia 

XR Erythroid transcription factor: 
GATA1 (X p11.23) 
 

Gaucher disease (Wan et al., 2017) 
 

Thrombocytopenia Splenomegaly; Anaemia; Low RBC 
count; Low β-glucocerebrosidase 
activity in leukocytes; Gaucher cells 
in BM; Gastric cancer 

AR Glucosylceramidase: GBA 
(1q22) 

Glanzmann thrombasthenia (GT) 
(Nurden & Caen, 1975) 

Normal platelet count; Quantitative or qualitative 
deficiency of the integrin αIIbβ3 (GPIIb/IIIa); Selective 
ability of platelets to aggregate in the presence of 
ristocetin 

--- AR Integrin alphaIIb: ITGA2B 

(7q21.11); Integrin beta3: 
ITGB3 (17q21.31) 

GPIV thrombospondin receptor 
defect (Kashiwagi et al., 1994) 

Normal platelet count; Deficiency of the GPIV receptor 
(CD36) 

Metabolic syndrome; Atherosclerotic 
cardiovascular disease; 
Cardiomyopathy 

AR Platelet glycoprotein IV: CD36 
(7q21.11) 

GPVI collagen receptor defect 
(Dumont et al., 2009) 

Normal platelet count; Absent/reduced platelets 
aggregation with collagen 

--- AR Platelet glycoprotein VI: GP6 

(19q13.42) 

Grey platelet syndrome (GPS)  Macrothrombocytopenia; Grey platelets in blood film; 
Defective α-granule formation; Shortened platelet 

Myelofibrosis; Splenomegaly; High 
serum vitamin B12 

AR/AD Neurobeachin-like protein 2: 
NBEAL2 (3 p21.31); Trem-
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(Gunay-Aygun et al., 2011; Nurden 
et al., 2008) 
 

lifespan; Defects in collagen and/or thrombin-induced 
platelet aggregation; Platelets deficient in GPVI (some 
patients) 

like transcript 1 protein: 
TREML1 (6p21.1) 

Griscelli syndrome type1-3  
(Ménasché et al., 2003; Ménasché et 
al., 2000; Pastural et al., 1997) 

Normal (type 1,3) or low (type 2) platelet count; 
Deficiency or abnormality in platelet dense granules 
 

Partial albinism; Neurological 
defects; Severe immunodeficiency 
with a defect in cytotoxic 
lymphocyte activity 

AR Type1: Unconventional 
myosin Va: MYO5A (15q21.2) 
; Type2: Ras-related protein 
Rab-27A: RAB27A (15q21.3); 
Type3: Melanophilin: MLPH 
(2q37.3) 

GT-like thrombocytopenia = ITGA2/ 
ITGB3- related thrombocytopenia 
(Ghevaert et al., 2008; Kunishima et 
al., 2011) 

Macrothrombocytopenia; Spontaneous partial 
activation of αIIbβ3 integrin; Enlarged α-granules 
 

--- AD Integrin alpha-IIb: ITGA2B 

(7q21.11);  
Integrin beta-3: ITGB3 
(17q21.31) 

Hermansky-Pudlak syndrome (HPS) 
(Ammann et al., 2016; Anikster et al., 
2001; Cullinane et al., 2011; Li et al., 
2003a; Morgan et al., 2006; Oh et al., 
1996; Shotelersuk et al., 2000; 
Suzuki et al., 2002; Zhang et al., 
2003) 
 

Normal platelet count; Absence of platelet dense 
granules; Reduced/absent ATP release from platelet 
granule 
 

Skin, eye and hair 
hypopigmentation; Pulmonary 
fibrosis; Ceroid accumulation; Colitis 

AR Hermansky-Pudlak syndrome 
1 protein: HPS1 (10q24.2); 
AP-3 complex subunit β-1 
(HPS2): AP3B1 (5q14.1); 
HPS 3 protein: HPS3 (3q24); 
HPS 4 protein: HPS4 
(22q12.1); HPS 5 protein: 
HPS5 (11p15.1); HPS 6 
protein: HPS6 (10q24.32); 
Dysbindin (HPS 7 protein): 
DTNBP1 / HPS7 (6p22.3); 
Biogenesis of lysosome-
related organelles complex 1 
subunit 3 (HPS 8 protein): 
BLOC1S3 / HPS8 (19q13.32); 
Biogenesis of lysosome-
related organelles complex 1 
subunit 6 (HPS 9 protein / 
Paladin): BLOC1S6 / HPS9 / 
PLDN (15q21.1); AP-3 
complex subunit delta-1 (HPS 
10 protein): AP3D1 / HPS10 
(19p13.3) 

IVIC syndrome (Paradisi & Arias, 
2007) 

Mild thrombocytopenia Upper limb anomalies; Extraocular 
motor disturbances; Congenital 
bilateral hearing loss; Heart 
problems; Leukocytosis; 
Hypoplasia; Kidney malrotation 

AD Sal-like protein 4: SALL4 

(20q13.2) 
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KDSR -related defect (Takeichi et al., 
2017) 

Thrombocytopenia; Impaired platelet function; Normal 
to increased number of MKs 

Hyperkeratosis, ichthyosis; 
Symmetric erythrokeratoderma 

AR 3-Ketodihydrosphingosine 
reductase: KDSR (18q21.33)  

Leukocyte adhesion deficiency type 
III syndrome (Kuijpers et al., 2009)  

Macrothrombocytopenia; Loss of ‘inside-out’ integrin 
activation in platelets 

Loss of ‘inside-out’ integrin 
activation in white blood cells, and 
endothelial cells; Increased 
susceptibility to infections without 
pus formation; Poor wound healing; 
Late detachment of the umbilical 
cord 

AR Fermitin family homolog 3 
(Kindlin-3): FERMT3 

(11q13.1) 

MYH9 -related diseases: 
May-hegglin anomaly, Sebastin 
syndrome, Fechtner syndrome, 
Epstein syndrome (Seri et al., 2000) 

Macrothrombocytopenia Dӧhle-like inclusions in neutrophils; 
Glomerulonephritis; Renal failure; 
Deafness; Presenile cataracts; 
Elevated liver enzyme 

AD Myosin-9: MYH9 (22q12.3) 
 

P2RY12 ADP receptor Defect 
(Hollopeter et al., 2001) 

Normal platelet count; Reduced transient aggregation 
to ADP 

--- AR P2Y purinoceptor 12: 
P2RY12 (17p13.2) 

P2X1 receptor (Oury et al., 2000) Normal platelet count; Decreased platelet ADP-
dependent response 

--- AD P2X purinoceptor 1: P2RX1 
(17p13.3) 

Paris-Trousseau syndrome (Breton-
Gorius et al., 1995) 

Increased number of small immature, hypo-lobulated, 
dystrophic MKs in BM; Severe macrothrombocytopenia 
in babies, but often increases with age to near normal 
levels; Giant α-granules with a deficiency in dense 
granule; Reduced platelet ATP secretion is in response 
to all agonists 

Mental retardation; Cardiac, facial 
and neurological defects; 
Developmental delay 

AD Chromosomal deletion 
(11q23), Between 170 to 

more than 340 genes deleted 

Platelet-type von Willebrand disease 
= Monoallelic BSS (Miller et al., 
1991) 

Mild macrothrombocytopenia; Platelets agglutinate 
spontaneously in response to low ristocetin 
concentrations  

Reduction of plasma von Willebrand 
factor 

AD Platelet glycoprotein Ib alpha 
chain: GP1BA (17q13.2) 

 

PRKACG and GNE -related disease 
(Izumi et al., 2014; Manchev et al., 
2014) 
 

Macrothrombocytopenia; Platelet dysfunction due to 
defective aggregation; FLNA is expressed at low-level; 
Complete abolition of CD62P (P-selectin) expression; 
Variable CD42b and CD41 expression level 

Myopathy with rimmed vacuoles or 
sialuria; Neurological symptoms; 
Developmental delay; Skull 
abnormalities; Severe body 
myopathy 

AR cAMP-dependent protein 
kinase catalytic subunit 
gamma: PRKACG (9q13); 

Bifunctional UDP-N-
acetylglucosamine 2-
epimerase/N-
acetylmannosamine kinase: 
GNE (9p13) 

PTPRJ-related thrombocytopenia 
(Marconi et al., 2018) 

Defect in late MK maturation; Reduction in the ability of 
MK to migrate toward BM extracellular matrix; 
Defective platelet production; Thrombocytopenia 

--- AR Receptor-type tyrosine-
protein phosphatase eta: 
PTPRJ (11p11.2) 



 
 

 
220 

 

Quebec platelet disorder (Paterson 
et al., 2010) 

Moderate thrombocytopenia; Gain-of-function defect in 
fibrinolysis; Increased urokinase-type plasminogen 
activator storage in platelets; Degradation of α-granule 
proteins despite normal ultrastructure; Lack of platelet 
aggregation in response to epinephrine 

--- AD Urokinase-type plasminogen 
activator: PLAU (10q22.2) 

Radioulnar synostosis with 
amegakaryocytic thrombocytopenia 
(RUSAT) = 
Congenital thrombocytopenia with 
radioulnar synostosis (Niihori et al., 
2015; Thompson & Nguyen, 2000) 

Severe reduction of MKs in BM; Thrombocytopenia; 
Normal size platelets 

Skeletal defects mainly a proximal 
fusion of the ulna and radius; 
Sensorineural deafness; Potential 
development of aplastic anaemia 

AD Homeobox protein HOX-
A11:HOXA11 (7p15.2); 

MDS1 and EVI1 complex 
locus protein: MECOM 

(3q26.2); Remains 
unidentified for many patients 

RASGRP2 -related defect (Canault 
et al., 2014) 

Severe bleeding; Normal platelet count; Normal granule 
content with slightly reduced α-granule secretion; 
Heterozygous have normal bleeding platelet 
aggregation, but their platelets failed to undergo normal 
adhesion under flow and spreading 

--- AR RAS guanyl releasing protein 
2: RASGRP2 (11q13) 

SBF2 -related thrombocytopenia 
(Either a new variant form of Griscelli 
syndrome or a variant Charcot-
Marie-Tooth type 4 disease) 
(Abuzenadah et al., 2013) 

Severe thrombocytopenia; Normal MKs; Mild bleeding 
 
 

Fair coloured hair and skin; 
Lymphocytosis; No neurologic or 
other immunologic abnormalities 

AR Myotubularin-related protein 
13: MTMR13 / SBF2 (11p15) 

SCARB1 (Vergeer et al., 2011) Normal platelet count; Increased unesterified 
cholesterol content in platelets; Diminished platelet-
aggregation response; Increased P-selectin expression 
(activated platelets); increased adhesion and spreading 
when exposed to immobilized fibrinogen 

High HDL cholesterol levels; 
Reduced capacity for efflux of 
cholesterol from macrophages; 
Decreased adrenal steroidogenesis 

AD Scavenger receptor class B 
member 1: SCARB1 

(12q24.31) 

Scott syndrome (Suzuki et al., 2010) Mild bleeding; Impaired surface exposure of 
procoagulant phosphatidylserine on platelets and a 
severe decrease in the production of microparticles 
following platelet activation; Reduced thrombin 
generation and impaired clot formation 

- AR  Anoctamin-6: ANO6 / 
TMEM16F (12q12) 

SLC35A1 -related thrombocytopenia 
(Kauskot et al., 2018) 

Moderate macrothrombocytopenia; Increased immature 
MKs in BM 

Delay psychomotor development; 
Epilepsy; Ataxia; Microcephaly; 
Choreiform movements 

AR CMP-sialic acid transporter: 
SLC35A1 (6q15) 

SLFN14 -related thrombocytopenia  
(Fletcher et al., 2015) 

Moderate thrombocytopenia; Excessive bleeding; 
Platelet secretion defects; Reduced aggregation and 
ATP secretion in response to ADP, collagen, and PAR-
1 peptide (Gi signalling pathway) 

--- AD Protein SLFN14: SLFN14 
(17q12) 

SRC -related thrombocytopenia 
(Turro et al., 2016) 
 

Hypercellular BM dysplasia with increased numbers of 
MKs; Dysmegakaryopoiesis; Alteration in MK actin 
organisation and reduction in proplatelet formation; 

Early onset myelofibrosis; Bone 
pathologies 

AD Proto-oncogene tyrosine-
protein kinase Src: SRC 
(20q11.23) 
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Thrombocytopenia; Dysmorphic platelet with highly 
variable in size; A paucity of α-granules; Elevated 
plasma TPO levels 

Stormorken York platelet syndrome 
(Markello et al., 2015) 
 

Mild macrothrombocytopenia; Presence of giant 
aberrant opaque organelles (abnormal lysosomes) in 
MKs and circulating platelets; Abnormalities in platelet 
ultrastructure; α-granules abnormality 

Mitochondrial myopathy AD  Stromal interaction molecule 
1: STIM1 (11p15.4) 

Takenouchi-Kosaki syndrome  
(Takenouchi et al., 2015) 

Macrothrombocytopenia Developmental delay; Dysmorphic 
facial features; Mild eczema, 
Sensorineural hearing loss; 
Camptodactyly; Lymphedema; 
Congenital hypothyroidism; 
Immunological disturbance 

AD Cell division control protein 42 
homolog: CDC42 (1p36) 

Thrombocytopenia associated with 
sitosterolemia = Mediterranean 
stomatocytosis/macrothrombocytope
nia 
(MSMT) (Rees et al., 2005) 

Normal or increased MK number in BM; 
Macrothrombocytopenia; Platelet in hyper-activated 
status 

Sterol storage disorder; 
Stomatocytic haemolysis; 
Splenomegaly; Xanthomas; 
Premature atherosclerosis; Arthritis 

AR ATP-binding cassette sub-
family G member 5 (Sterolin 
1): ABCG5 (2p21); ATP-
binding cassette sub-family G 
member 8 (Sterolin 2): 
ABCG8 (2p21) 

Thrombocytopenia in association 
with absent radii (TAR) (Albers et al., 
2011) 
 

Severely reduced MKs in BM; Thrombocytopenia and a 
severe bleeding tendency in the first years of life, 
however, platelet count tends to rise, often reaching 
normal values in adult life; Normal-size platelets 

Skeletal defects (Hallmark of the 
disease is bilateral radial aplasia); 
Facial dysmorphism; Shortness; 
Macrocephaly; Renal and cardiac 
defects; Capillary haemangiomata; 
Gastroenteritis and cow’s milk 
intolerance; Predisposition to acute 
myeloid and lymphoid leukaemias 

AR RNA-binding protein 8A: 
RBM8A (1q21.1) 

Thrombopoietin-related 
thrombocytopenia  
(Savoia et al., 2007) 

Mild thrombocytopenia in the heterozygous state  Normal plasma TPO level; Aplastic 
anaemia in the homozygous state 

AR Thrombopoietin: THPO 

(3q27.1) 

Thromboxane A synthase (Ghosal 
syndrome) (Genevieve et al., 2008) 

Thrombocytopenia; Defective platelet aggregation with 
arachidonic acid 

Increased bone density AR Thromboxane A synthase: 
TBXAS1 (7q34) 

Thromboxane A2 receptor (Hirata et 
al., 1994)  

Normal platelet count; Reduced platelet aggregation 
with arachidonic acid and thromboxane A2 in 
heterozygous and absent in homozygous conditions 

--- AD Thromboxane A2 receptor: 
TBXA2R (19p13.3) 

TUBB1 -related thrombocytopenia 
(Kunishima et al., 2009) 

Moderate macrothrombocytopenia; Normal platelet 
aggregation 

--- AD Tubulin beta-1 chain: TUBB1 
(20q13.32) 

VPS45 -related thrombocytopenia 
(Stepensky et al., 2013) 

Life-threatening thrombocytopenia; Significant bleeding 
tendency; Platelet dysfunction; Decreased α-granule; 
Distorted open-channel system 

Life‐threating infections; Congenital 

neutropenia; Primary myelofibrosis 
with extramedullary 

AR  Vacuolar protein sorting-
associated protein 45: VPS45 

(1q21.2) 
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haematopoiesis; Progressive BM 
failure 

WDR1 -related thrombocytopenia 
(Standing et al., 2017) 

Thrombocytopenia; Small, atypical MKs with no 
nucleus and failure of the demarcating membrane 
system to develop resulting in a large peripheral zone 
devoid of organelles and granules 

Life threating immunodeficiency; 
Autoinflammatory periodic fever 

AR WD repeat-containing protein 
1: WDR1 (4p16.1) 

Wiskott–Aldrich syndrome (WAS) / X-
link thrombocytopenia (XLT) (Derry 
et al., 1994) 

Microthrombocytopenia; Reduced number of dense 
and α-granules; Reduced platelet life span 

XLT has a milder clinical 
presentation than WAS; Severe 
immune deficiency; Susceptibility to 
infections, eczema, and 
autoimmune phenomena; At risk of 
lymphoproliferative disorders 

XR Wiskott-Aldrich syndrome 
protein: WAS (Xp11.23) 
 

Compiled from Bunimov et al. 2013; Savoia 2015; Nurden & Nurden 2014; Noetzli et al. 2015; Nurden & Nurden 2011; Pecci & Balduini 2014; Favier & Raslova 2015 and further updated. 
In all cases, the first report to link a gene to an IPD is referenced. AD; autosomal dominant, AR; autosomal recessive, BM; bone marrow, GP; glycoprotein, MK; megakaryocyte, MOI; 
mode of inheritance, PAR-1; protease-activated receptor 1, TPO; thrombopoietin, XD; X-linked dominant, XR; X-linked recessive. 
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Appendix 2. Schematic representations of plasmids used in this study  
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Appendix 3. Software and online tools used during this study 
Software Purpose Developer  Version 

CodonCode 
Aligner  

Viewing and analysing the trace data 
from Sanger DNA Sequencing 

CodonCode Corporation 6.0.2 

FinchTV  
 

Viewing and analysing the trace data 
from Sanger DNA Sequencing 

Geospiza, Inc. 1.4.0 

GraphPad Prism Statistical analysis GraphPad Software 7.03 

Image studio  
 

Software of the Odyssey® Sa infrared 
imaging system for imaging of blots 

LI-COR 2.0.13 

Image studio lite Processing blot images and measuring 
band intensities 

LI-COR 5.2 

ImageJ  Opening, processing and quantifying 
ND2 image files acquired by the 
inverted Ti-eclipse Nikon widefield 
microscope 

National Institutes of 
Health  

1.5 

NIS elements 
advance research 
software 

Software of the inverted Ti-eclipse 
Nikon widefield microscope used to 
acquire images  

Nikon  4 

Pymol Visualising 3D protein structures and 
introducing in silico mutagenesis 

DeLano Scientific LLC 0.99rc6 

Quantity One 
imaging 

Acquisition of images taken using the 
Bio-Rad Gel Doc 2000 ultraviolet (UV) 
transilluminator 

Bio-Rad 4.6.8 

RQ manager Analysis of results from the 7900HT 
Fast Real-Time PCR system 

Applied Biosystems™ 
 

1.2.1 

SDS Operating the 7900HT Fast Real-Time 
PCR system 

Applied Biosystems™ 
 

2.4 

SkanIt RE for 
VarioSkan Flash 
software 

The software of the Varioskan Flash 
plate reader 

Thermo Scientific 2.4.5 

SnapGene Viewer Generating vector maps GSL Biotech LLC 4.1.5 

Transcriptome 
Analysis Console 
(TAC)  

Microarray analysis  Affymetrix TM  4.0.1 

 

 

Online tool  Purpose Website Accessed 

CCTop - CRISPR/Cas9 
target online predictor 
(Stemmer et al., 2017)  

Designing gRNAs for a targeted 
sequence 

https://crispr.cos.uni-
heidelberg.de/  

2017-2018 

ChopChop  
(Labun et al., 2016; 
Montague et al., 2014) 

Designing gRNAs for a targeted 
sequence 

http://chopchop.cbu.
uib.no/index.php  

2017-2018 

Combined Annotation 
Dependent Depletion 
(CADD)  
(Kircher et al., 2014) 

Predicting and scoring the 
deleteriousness of SNVs and 
small indels in the human 
genome 

http://cadd.gs.washin
gton.edu/score  

2015-2016 
Version 1.3 

CRISPOR programme  
(Haeussler et al., 2016) 

Designing gRNAs for a targeted 
sequence 

http://crispor.tefor.net
/  

2017-2018 

CRISPR design Zhang 
lab MIT web-based tool 
(Hsu et al., 2013) 

Designing gRNAs for a targeted 
sequence 

http://crispr.mit.edu/  2017-2018 

The Database for 
Annotation, Visualization 
and Integrated 
Discovery (DAVID)  
(Huang da et al., 2009) 

Functional annotation tool  https://david.ncifcrf.g
ov/summary.jsp  
 

2018  
Version 6.8 

https://crispr.cos.uni-heidelberg.de/
https://crispr.cos.uni-heidelberg.de/
http://chopchop.cbu.uib.no/index.php
http://chopchop.cbu.uib.no/index.php
http://cadd.gs.washington.edu/score
http://cadd.gs.washington.edu/score
http://crispor.tefor.net/
http://crispor.tefor.net/
http://crispr.mit.edu/
https://david.ncifcrf.gov/summary.jsp
https://david.ncifcrf.gov/summary.jsp
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Efficiency Prediction 
Tool 
(Housden et al., 2015) 

Calculating efficiency of pre-
designed gRNAs and identifying 
any U6 terminator sequences 

http://www.flyrnai.org
/evaluateCrispr/input  

2017-2018 

Ensembl genome 
browser 

Genome browser  www.ensembl.org GRCh38 

Exome Aggregation 
Consortium “ExAC” 
database 

Database used to find the allele 
frequencies of certain SNV 

http://exac.broadinstit
ute.org 

2015 -2016 
Version 0.3 

Human Splicing Finder Predicts the effects of intronic 
and exonic SNV on splicing  

http://www.umd.be/H
SF3/  

2018 
Version 3.1 

Integrated and 
technologies (IDT) tool 

Designing gRNAs for a targeted 
sequence 

https://eu.idtdna.com
/site/order/designtool
/index/CRISPR_CUS
TOM 

2017-2018 

InterPro: protein 
sequence analysis & 
classification 
  
 

Database of protein families, 
domains and functional 
sites used to determine the 
location of variations within a 
protein 

https://www.ebi.ac.uk
/interpro/ 

2015-2016 

PaxDb.4 Proteomic database used to 
access the human platelet 
proteomic 

https://pax-db.org/  2015-2016 
Version 4 

Prime3Web Designing PCR primers  http://primer3.ut.ee/ 2015-2018 

Promega Biomath 
Ligations calculator 

Calculating the amount of insert 
required for TA cloning 

https://www.promega
.co.uk/resources/tool
s/biomath-
calculators/ 

2018 

Protein Molecular 
Weight tool 

Protein molecular weight 
estimation 

https://www.bioinfor
matics.org/sms/prot_
mw.html 

2016-2017 

QuikChange primer 
design tool 

Designing mutagenesis primers  http://www.genomics.
agilent.com/primerDe
signProgram.jsp 

2015-2016 

RCSB Protein Data 
Bank 

Database that contains 
information about 
experimentally-determined three-
dimensional structures 
of proteins, nucleic acids, and 
complex assemblies 

https://www.rcsb.org/ 2015-2018 

Standard Nucleotide 
BLAST tool 
 

 

Viewing and analysing trace data 
from Sanger DNA Sequencing 

http://blast.ncbi.nlm.n
ih.gov/Blast.cgi?PRO
GRAM=blastn&PAG
E_TYPE=BlastSearc
h&LINK_LOC=blasth
ome 

2015-2018 

SWISS-MODEL web-
based tool 

Automated protein structure 
homology-modelling server 

https://swissmodel.ex
pasy.org/ 

2018 

UCSC Genome Browser Genome browser  http://genome-
euro.ucsc.edu/cgi-
bin/hgGateway?redir
ect=manual 

2015-2018 

gRNAs; guide RNA, PCR; polymerase chain reaction, SNVs; single nucleotide variants. 

 

http://www.flyrnai.org/evaluateCrispr/input
http://www.flyrnai.org/evaluateCrispr/input
http://www.ensembl.org/
http://exac.broadinstitute.org/
http://exac.broadinstitute.org/
https://eu.idtdna.com/site/order/designtool/index/CRISPR_CUSTOM
https://eu.idtdna.com/site/order/designtool/index/CRISPR_CUSTOM
https://eu.idtdna.com/site/order/designtool/index/CRISPR_CUSTOM
https://eu.idtdna.com/site/order/designtool/index/CRISPR_CUSTOM
https://pax-db.org/
http://primer3.ut.ee/
https://www.promega.co.uk/resources/tools/biomath-calculators/
https://www.promega.co.uk/resources/tools/biomath-calculators/
https://www.promega.co.uk/resources/tools/biomath-calculators/
https://www.promega.co.uk/resources/tools/biomath-calculators/
https://www.bioinformatics.org/sms/prot_mw.html
https://www.bioinformatics.org/sms/prot_mw.html
https://www.bioinformatics.org/sms/prot_mw.html
http://www.genomics.agilent.com/primerDesignProgram.jsp
http://www.genomics.agilent.com/primerDesignProgram.jsp
http://www.genomics.agilent.com/primerDesignProgram.jsp
http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
https://swissmodel.expasy.org/
https://swissmodel.expasy.org/
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Appendix 4. Screenshot from the Affymetrix transcriptome analysis console software showing the settings used  
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Appendix 5. In silico prediction of alteration in the interaction of FLI1 with DNA for R337W, R340C/H and Y343C substitutions 

R340 

R340C R340H 

R337 

R337W 

Y343 

Y343C 

Mutation 62.6% 
(highest) 

Mutation 35.7% 
(highest) 

Mutation 26.9% 
(highest) 

Mutation 68.3% 
(highest) 

3.06 Å guanidino 
 5th G in the DNA 

--- 
2.84 Å  imidazole 
ring  5th G in the 
DNA  

3.12 Å  guanidino 
 6th G in the DNA 

2.78 Å  imidazole 
ring  6th G in the 
DNA 

3.33 Å  
aromatic ring 
4th C  

--- 

2.72 Å  guanidino 
 S336 in FLI1 

--- --- 
3.56 Å  guanidino 
 Y341 in FLI1 

--- 
 

2.91 Å  
aromatic ring 
4th C  

--- 

 

Appendix 6. Percentage of wild-type FLI1 and FLI1 variants showing nuclear accumulation in HEK 293T cells assessed using 
FLI1-EGFP fusion protein 

 WT R337W R340C R340H Y343C 

No. of cells evaluated 68 102 64 98 87 

% FLI1 localised to the nucleus 100 65 69.64 72.17 58.01 

% Reduction  35 30.36 27.83 41.99 

Standard error of the mean 1.747 1.891 1.93 1.764 1.538 

p-value --- <0.0001 <0.0001 <0.0001 <0.0001 
WT; wild-type. 

 

Appendix 7. Percentage of wild-type FLI1 and FLI1 variants showing nuclear accumulation in Dami cells assessed using FLI1-
EGFP fusion protein 

 WT R337W R340C R340H Y343C 

No. of cells evaluated 33 38 27 39 26 

% FLI1 localised to the nucleus 78.16 44.64 51.73 45.18 46.88 

% FLI1 localised to nucleus 
(normalised) 

100 57.11 66.18 57.80 59.98 

% Reduction --- 42.89 33.82 42.20 40.02 

Standard error of the mean 3.951 2.34 3.026 2.184 3.672 

p-value --- <0.0001 <0.0001 <0.0001 <0.0001 

WT; wild-type. 
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Appendix 8. Percentage of wild-type FLI1 and FLI1 variants showing nuclear 
accumulation in HEK 293T cells assessed using anti-FLI1 antibodies 

 WT R337W R340C R340H Y343C 

No. of cells evaluated 74 125 73 83 78 

% FLI1 localised to the 
nucleus 

69.60 43.99 42.32 42.95 47.39 

% FLI1 localised to 
nucleus (normalised) 

100 63.20 60.80 61.71 68.09 

% Reduction --- 36.80 39.20 38.29 31.91 

Standard error of the 
mean 

2.88 0.89 1.31 1.60 2.17 

p-value --- <0.0001 <0.0001 <0.0001 <0.0001 
WT; wild-type. 

 

Appendix 9. The ratio of FLI1 distributed between the nuclear and cytoplasmic 
fractions of HEK 293T cells expressing wild-type and variant forms of FLI1 as 
determined by immunoblotting 

 WT R337W R340C R340H Y343C 

No. of experiments 4 4 4 4 4 

Mean ratio of FLI1 (normalised) 5.60 0.80 0.79 0.80 1.32 

Standard error of the mean 1.98 0.27 0.22 0.11 0.33 

p-value --- 0.0286 0.0286 0.0286 0.0286 
WT; wild-type. 

 

Appendix 10. The percentage of wild-type FLI1 and FLI1 variants showing 
nuclear localisation as determined by immunoblotting 

 WT R337W R340C R340H Y343C 

No. of experiments 4 4 4 4 4 

% FLI1 in nuclear fraction 80.61 40.57 41.21 43.87 54.58 

% FLI1 localised to nucleus 
(normalised) 

100 50.33 51.12 54.42 67.71 

% Reduction --- 49.67 48.88 45.58 32.29 

Standard error of the mean 4.935 8.539 7.716 3.491 5.545 

p-value --- 0.0286 0.0286 0.0286 0.0286 
WT; wild-type. 

 
 

Appendix 11. The ratio of ETV6 distributed between the nuclear and cytoplasmic 
fractions of HEK 293T cells expressing wild-type and variant forms of ETV6 as 
determined by immunoblotting 

 WT R430* R399C R399* EV 

No. of experiments 5 4 3 3 3 

Mean ratio of ETV6 (normalised) 89.22 21.55 4.93 0.91 7.73 

Standard error of the mean 28.67 6.13 1.46 0.55 3.72 

p-value --- 0.06 0.04 0.04 0.04 
WT; wild-type. 

 
 

 

Appendix 12. Candidate genes in the F4.1 participant that were identified using 
whole exome sequencing and the used pipeline 

Gene 
CADD_ 
PHRED 

Gene 
CADD_ 
PHRED 

Gene 
CADD_ 
PHRED 

ETV6 45 PDLIM7 26.2 MYO6 23.4 

MSH6 35 PTH1R 25.5 KIF14 23.1 

GOLGA4 35 RNF6 25.2 ZNF236 23.1 

ABCB1 35 HLA-C 25 NT5C3A 23 

SRI 35 SPTAN1 24.9 CACNA1C 22.9 
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STRADA 34 USP32 24.8 ATG4B 22.7 

ADAM17 34 ARHGAP10 24.5 AAGAB 22.6 

MTMR3 34 PNLIPRP2 24.4 SULT1A2 22.6 

CIAO1 33 PPFIA2 24.3 HIST1H2AH 22.5 

ELOVL7 33 PNPLA6 24.3 GAPVD1 22 

FSTL4 33 NRP2 24.2 CCDC141 21.2 

KIAA1841 32 SRCAP 24 AFTPH 20.5 

NAGA 32 SUGP2 24 CCDC88B Unpredicted 

WDR60 32 ITSN2 24 RNF103 Unpredicted 

ACER2 32 NUP210L 23.9 AMPD1 Unpredicted 

GMPS 29.3 MPEG1 23.9 RAI1 Unpredicted 

LNPEP 29 TXNDC16 23.8 ATF7IP2 Unpredicted 

ALDH2 28.7 MED16 23.8 UPF1 Unpredicted 

ACSF3 27.8 SPTBN1 23.8 SRP14 Unpredicted 

SFI1 27.5 DND1 23.7 
ZFPM1 
(FOG1) 

Unpredicted 

DNAJC21 27.5 RAB11FIP3 23.6 REC8 Unpredicted 

KCNK6 27.1 IPO5 23.5 MCC Unpredicted 

COL12A1 27 TXNDC17 23.4 
GAS8-AS1 
(C16orf3) 

Unpredicted 

KMT2C 26.4 MBOAT7 23.4 SUPT20HL1 Unpredicted 

CADD; Combined Annotation Dependent Depletion 

 

Appendix 13. The top five designed guides for FLI1 exons 6, 7, 9 and 8, their 
specificity, and predicted cutting efficiency 

Guide sequence and proto-spacer adjacent motif (PAM)* 
Guiding 

quality score* 
Efficiency 

score** 

Exon 6 

1 CTTCTGACTGAGTCATAAGAAGG 65 3.47 

2 TGGGGCAATAACATGAATTCTGG 63 7.46 

3 TCTTATGACTCAGTCAGAAGAGG 57 7.28 

4 TTCTGACTGAGTCATAAGAAGGG 56 4.90 

5 CTCAGTCAGAAGAGGAGCTTGGG 56 6.01 

Exon 7 

1# GATCGTTTGTGCCCCTCCAAGGG 83 5.23 

2 TGATCGTTTGTGCCCCTCCAAGG 82 3.61 

3 ATCGTTTGTGCCCCTCCAAGGGG 79 3.79 

4 GTTTGTGCCCCTCCAAGGGGAGG 66 6.57 

5 TCAGTAAGAATACAGAGCAACGG 42 3.90 

Exon 8 

1 AGGGTTGGCTAGGCGACTGCTGG 86 6.63 

2 TGGCTAGGCGACTGCTGGTCGGG 78 5.22 

3 GTCGGGCCCAGGATCTGATACGG 77 6.03 

4 TTGGCTAGGCGACTGCTGGTCGG 75 9.35 

5 GGCGACTGCTGGTCGGGCCCAGG 74 4.14 

Exon 9 

1 CAAAATGACGGACCCCGATGAGG 94 4.27 

2# AATGACGGACCCCGATGAGGTGG 92 6.44 

3 CATAGTAATAACGGAGGGCCCGG 87 5.70 

4 ACAGCTGGCGTTGGCGCTGTCGG 83 6.20 

5 CCAGGTGATACAGCTGGCGTTGG 83 4.64 
* Data were generated from CRISPR design Zhang lab tool. ** Data were generated from Efficiency Prediction 
Tool. # The selected guide. 
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Appendix 14. Screenshot showing the settings used for functional annotation analysis in Database for Annotation, 
Visualization and Integrated Discovery (DAVID) 
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