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Abstract 

The functionality and durability of concrete overlays is compromised by delamination and large cracks that 

result from excessive shear and tensile stresses due to restrained shrinkage. Expansive cements could 

mitigate shrinkage problems, but as they are usually brittle, they still develop cracks under mechanical 

loads. Manufactured Steel fibres (MSF) can be used to control crack widths of repairs. However, to promote 

the sustainability of repairs, recycled fibres extracted from un-vulcanised rubber belt off-cuts can be used. 

They are also more cost effective than MSF. Currently, there is no accepted design approach to limit crack 

widths or to accurately quantify the effect of fibres on crack widths and crack spacings of overlays. 

The aim of this study is to contribute to the understanding of flexural performance and restrained shrinkage 

and subsequent deterioration of plain and recycled fibre reinforced rapid hardening overlays, especially the 

fibre effect on crack widths of overlays, and to promote more sustainable, yet efficient solutions. A 

combination of experimental, analytical and numerical investigation is employed to study: a) the effect of 

recycled clean steel fibres (RCSF) on the compressive and flexural behaviour of rapid hardening mixes, b) 

the effect of RCSF on the crack development of overlays and shear stresses at the interface and c) the effect 

of non-uniform shrinkage distribution across the depth of overlays on the tensile stress development, and 

therefore, on the risk of cracking in overlays.  

It was found that the RCSF are efficient in bridging cracks, resulting in flexural hardening properties. The 

RCSF reduce crack widths in overlays by about 60%. The available methods for predicting crack widths 

are found to be inaccurate. Therefore, a modified crack width equation is proposed and validated, and a 

new equation for estimating crack spacing is derived. The fibres are also found to positively contribute in 

reducing the risk of delamination. They are shown to enhance the shear strength and proven to reduce the 

shear stress development after crack development and reduce the level of deterioration of shear interface 

by controlling crack widths. The assumption of uniform shrinkage distribution in overlays underestimates 

the extent of hygral tensile stresses. An empirical equation to consider this effect is proposed.  
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This work is expected to enable better and more sustainable designs for overlay repairs and strengthening.  
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Chapter 1: Introduction 

This chapter provides the background to the research problem and scientific challenges, the aim and 

objective of the research, as well as methodology and thesis layout.  
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1.1 Background 

Deterioration of infrastructure, particularly pavements, is progressive and without appropriate 

interventions, serious service disruptions and high costs can result.  Concrete overlays are increasingly used 

in repairs of deteriorated elements and strengthening of concrete structures.  Drying shrinkage is expected 

to develop swiftly in overlays, as the fresh layer not only loses moisture to the environment, but also to the 

concrete substrate. Repair mortars are usually rich in cement, often with rapid hardening cements, and thus 

their autogenous and drying shrinkage is expected to be high as well. As the substrate layer restrains the 

ability of the overlay to shrink, tensile and interfacial shear stresses develop which can lead to cracking 

and/or delamination if they exceed the material capacity [1].  

Cracking and delamination are the main structural issues that affect repairs. Cracks provide easy access 

passages for deleterious agents like water to penetrate concrete, leading to early saturation, freeze–thaw 

damage, scaling, and steel corrosion, which accelerate the rate of deterioration [2]. Shrinkage induced 

cracks can propagate and coalesce into wider cracks under the effect of mechanical loads, compromising 

the integrity of repaired structures.  Repaired elements are in general designed to behave as monolithic 

elements.  

Early age deterioration was reported by Lin and Wang [3] when concrete overlays, with high cement content 

and low w/c ratio, were used to achieve high early strength, sufficient to quickly reopen a repaired asphalt 

pavement in Taiwan. Nevertheless, the thin concrete overlay, which was used to restore the structural 

capacity of the asphalt pavement, suffered from early deterioration and distresses after being in service for 

just two months, due to restrained shrinkage which led to large cracks, as illustrated in (Figure 1.1).  
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Figure 1.1. Failure of UTW in Taiwan (After Lin & Wang [3]) 

Restrained shrinkage strain can also impact the structural capacity of repaired structures. Lampropoulos et 

al. [4] studied the effect of restrained shrinkage strain on the compressive strength of jacketed concrete 

columns. They found that the strength of a jacket is reduced by 30-40% due to the tensile stress development 

in the jacket. Jafarifar et al. [5] found that the tensile capacity at the top of a concrete pavement can be 

reduced by up to 50 % due to drying shrinkage. They also found that when ignoring shrinkage distress, the 

load bearing capacity of SFRC pavements can be overestimated by twofold in short-term calculations as 

well as when including fatigue loading. Younis [6] experimentally investigated the effect of end restrained 

shrinkage strain on the flexural strength of concrete mixes with different w/c ratios. He found that shrinkage 

induced cracks lowers the flexural strength of concrete by approximately 2-24% depending on the w/c ratio, 

with higher reductions in specimens with lower w/c ratios, possibly due to high autogenous shrinkage of 

these specimens and lower creep compliance.   

Expansive cements can mitigate shrinkage and subsequent cracking problems in overlays. However, due to 

the inherent brittleness of these materials, cracks can still develop under applied loads.  Manufactured Steel 

fibres (MSF) can be used to control crack widths [7] and increase the toughness of a concrete layer [8-13], 
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thus, preventing deterioration and enhancing the durability of repairs. Nonetheless, Carlsward [8] points 

out that fibres may not play a vital role in concrete overlays as multiple narrow cracks developed in both 

well bonded plain (PC I and PC II as shown in Figure 2.1) and fibre reinforced overlays (FRSC 30 I, FRSC 

60 I, FRSC 30 II and FRSC 60 II). However, in delaminated areas of overlays (shown as gray areas in 

Figure 1.2), fibre were found to reduce the crack widths, Figure 1.2. 

Steel fibres can be obtained from end of life tyres. Since 1999, extensive experimental and analytical work 

has been conducted at the University of Sheffield [14-21] to investigate the mechanical properties of post-

consumer recycled Tyre Steel Fibres (RTSF) obtained from end of life tyres and their potential applications. 

These fibres are found to control cracks well at serviceability limits, however, due to their short and variable 

lengths, they are less effective than MSF in controlling bigger cracks. Though using such materials in 

repairs can increase the sustainability of repairs, they may not offer an excellent performance compared to 

MSF.   

About 1.5 billion tyres are produced per annum worldwide [22]. During the process of tyre manufacturing, 

roughly 5% (by weight) of un-vulcanised rubber belt offcuts which contain a large amount of steel cords is 

generated. Each steel cord consists of a number of steel filaments twisted together with a filament helically 

wound around them. Despite being high quality material, most of steel cords are disposed of as waste or 

used for energy recovery together with rubber. Recently, the industry of tyre recycling has developed a 

novel cryogenic process to extract the steel cords undisturbed from un-vulcanised offcuts, and these cords 

are cut to predetermined lengths suitable for concrete reinforcement, called Recycled Clean Steel Fibres 

(RCSF) as they are not contaminated with rubber [23]. Therefore, the cost of their production is expected 

to be less than the cost of MSF. 

Hu et al. [24] showed that concrete mixes reinforced with different dosages of RCSF exhibited flexural 

hardening properties. This indicates their potential efficiency in controlling cracks of materials with high 

shrinkage values. Therefore, to further promote the sustainability of repairs and enhance their durability, 



5 

 

RCSF could be used in concrete repairs.  

It is known that bond strength of repairs is mainly affected by interface cleanliness, absence of weak loose 

substances and surface roughness [8, 25, 26]. It is also understood that the strength of the weaker layer of 

a composite structure provides the upper limit for the interfacial shear strength [25]. Kim et al. [27] studied 

the effect of fibre reinforcement on the tensile and shear bond strength of mortar overlays by using wedge 

splitting test and bi-surface shear test, respectively. They found that the failure load is not affected by fibre 

addition to the mix, though the tensile debonding energy is increased with the increase in fibres content 

especially when the failure path crosses the mortar layer.  

 

 

Figure 1.2. Cracking and de-bonding (shaded areas) with the final width of cracks and time to cracking in overlay 

strips cast on: (a) Smooth and dry substrate slab; (b) Rough and moistened substrate slab (After Carlward [8]). 
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1.2 Scientific Challenges 

Cracking is one of the main challenges in concrete repairs that can impact not only the functionality of 

repairs, but also their durability. To predict crack widths in plain overlays, concrete free shrinkage ɛcs is 

multiplied by the crack spacing. The free shrinkage strain of overlays made with conventional cement types 

can be estimated using code procedures [25, 28, 29] with a good accuracy. However, these procedures do 

not consider rapid hardening cements or fibres in their predictive equations. Using total free shrinkage 

provides un upper limit for the estimated crack widths of overlays as the restraint level does not reach 100% 

for most practical applications.   

Currently, there is no widely accepted design approach to limit crack widths in overlays or accurately 

quantify the effect of fibres on crack width and crack spacing of overlays. The available procedures in 

literature [30, 31] use fracture properties in fibre reinforced overlays, in particular, the residual strength 

parameters to consider the effect of industrial fibres. However, such procedures can lead to negative crack 

width in fibre reinforced overlays with deflection hardening properties.  Furthermore, the few existing 

methods to calculate crack spacings in overlays rely mainly on experience and experimental observations. 

Hence, as there are no experimental data or analytical models that show the effect of rapid hardening 

cements and recycled clean steal fibres (RCSF) on cracks, it is uncertain whether those methods can still 

be applied. Furthermore, the effect of restrained shrinkage distress on the strength of concrete overlays with 

and without fibres is not well understood. There is also a need to understand the role of fibres on interfacial 

shear stress and strength and the risk of delamination.  

Cracking and delamination due to restrained shrinkage in overlays depends on several overlay, base and 

interface properties as well as their interactions and it can be quite expensive and time consuming to 

investigate all the parameters experimentally. Likewise, analytical procedures may not be very accurate in 

predicting their behaviour as restrained shrinkage and its subsequent cracking and/or delamination are 

rather complex. Thus, a fracture-based analysis with appropriate time dependent material properties is 
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needed to provide more accurate and in-depth insight into the behaviour of overlays under restrained 

shrinkage.  

Analytical equations for calculating the tensile stresses of overlays assume uniform shrinkage distribution 

[32]. In overlays, the top layer tends to shrink faster than the lower layer as the top layer loses moisture to 

the environment while the lower layer loses moisture to the substrate, and thus the rate of drying at the 

interface is smaller. This shrinkage gradient is expected to affect the stress state of overlays and should be 

quantified and considered into account to provide better estimation of the risk of cracking in overlays.  

1.3 Aims and Objectives 

This study aims to contribute to the understanding of restrained shrinkage in overlays made with plain and 

RCSF reinforced rapid hardening mixes with special attention towards quantifying the fibre effect on crack 

widths of overlays and to promote more sustainable solutions. This aim will be achieved through the 

following objectives:  

1. To characterise the flexural and compressive behaviour of mortars made with different rapid hardening 

cements with special focus on the effect of RCSF and development of their properties with time and 

quantify the residual strength parameters for the tested fibre reinforced mixes. 

2. Assess the suitability of available procedures given by codes and by others to model the flexural 

behaviour of rapid hardening RCSF materials and compare their results with inverse analysis results.   

Using inverse analysis to derive σ-ɛ models that facilitate the modelling of such materials. 

3. Investigate the time dependent moisture movement and free shrinkage behaviour of rapid hardening 

materials. 

4. Evaluate the available code procedures to estimate the shrinkage evolution of these mixes over time 

and propose new factors for each cement type. Determine essential hygral and moisture transfer 

properties for computational modelling including moisture diffusion coefficient, surface factor and 
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shrinkage hygral coefficient.  

5. Compare the values of shrinkage strain predicted by computational models over time with code 

predicted values. Validate the hygral numerical stresses by using simple analytical procedures. 

6. Assess the risk of cracking and delamination for overlays made with rapid hardening materials.  

7. Investigate experimentally and analytically the restrained shrinkage of overlays made with rapid 

hardening materials. 

8. Propose crack spacing prediction equations for overlays under restrained shrinkage. 

9. Review crack widths models and modify them to consider RCSF effect. 

10. Examine the effect of fibres on interfacial shear strength of overlays.  

11. Perform computational modelling of composite prisms under restrained shrinkage. 

12. Undertake parametric investigations to study the effect of base and interface properties on the 

performance of overlays. 

13. Quantify the effect of stress gradient on tensile stresses of overlays and include this effect into stress 

predictions.  

1.4 Research Methodology 

To address the above objectives, a combination of experimental, analytical and numerical investigations is 

used. To investigate the tensile properties of SFRC, uniaxial tension tests could be used. However, as 

performing the direct tests and interpreting results are difficult [14,17, 25, 33], flexural tests are adopted in 

this study. The first experimental study involves flexural testing of notched and unnotched mortar prisms 

at different ages. It also includes measuring the compressive strength of those mixes as well as determining 

their flexural modulus., By using inverse analysis, the tensile characteristics of fibre reinforced mortars (σ-

ε models) are back calculated using results of the first experimental study. 

The second experimental study deals with moisture measurement and free shrinkage tests. By using inverse 

analysis, moisture diffusivity, surface factor and hygral contraction coefficient are back calculated using 
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data from the second experimental study.  

The third experimental study involves restrained shrinkage evaluation of 16 composite prisms overlaid with 

rapid hardening plain and fibre reinforced mixes. After shrinkage stabilisation, the prisms are tested in four-

point bending to understand the effect of cracking on the bearing capacity of repaired prisms. Benefiting 

from equilibrium concepts, a simple analytical model for crack spacing estimation is developed and 

validated and used in calculations of crack widths of overlays. Overlaid prisms are numerically modelled 

using material properties obtained from inverse analysis.  Based on the analysis results, the analytical 

equations for predicting tensile stresses in overlays are modified to consider this effect.  

The last experimental study examines the effect of fibres on interfacial shear strength of overlays. Bi-surface 

shear tests are performed on composite cube prisms of 120 × 120 ×150 mm. The Shear test was also 

numerically modelled to have a better understanding on the interfacial shear behaviour of different mixes. 

1.5 Thesis layout  

This thesis comprises six chapters and four appendices. Chapter one and six are written in normal thesis 

format while other the chapters are written in journal paper format. A brief description of each chapter is 

given as follows: 

Chapter 2 entitled “Performance of rapid hardening recycled clean steel fibre materials” is based on Al-

musawi et al. [34], published in Construction and Building Materials. It addresses objectives 1,2 and 9. It 

presents extensive experimental and numerical studies on the flexural performance of recycled clean steel 

fibres (RCSF) on rapid hardening mortars produced using two commercial cement types; calcium sulfo-

aluminate cement and calcium aluminate cement as sole cementitious materials. The chapter describes the 

compressive and flexural behaviour of these mixes tested at different ages, ranging from one hour to one 

year. Constitutive equations based on the RILEM [35] and Model Code 2010 [25] recommendations and 
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suggested by others [36, 37] are used to predict flexural behaviour of the tested mixes. The analytical results 

are compared with predictions obtained from inverse analysis. 

Chapter 3 entitled “Shrinkage properties of plain and recycled steel–fibre-reinforced rapid hardening 

mortars for repairs” is based on Al-musawi et al. [38], published in Construction and Building Materials 

and addresses objectives 3-6 and 11. It comprises experimental and numerical investigations of the time 

dependent transport properties and shrinkage behaviour of the mixes that develop in the first experimental 

study described in chapter 2. Inverse analysis using finite element method is used to determine the moisture 

diffusivity and the hygral contraction coefficient of each mix. The available code predictive procedures are 

evaluated and new factors for each cement type are proposed. A comparison is made between the predicted 

values of shrinkage strain over time, for different depths, using these procedures and obtained values from 

the numerical models.  

Chapter 4 entitled “Effect of shrinkage on rapid hardening plain and recycled steel fibre concrete overlays” 

is based on Al-musawi et al. [39], submitted to Cement and Concrete Composites and addresses objectives 

7-10. This chapter presents experimental and analytical studies on restrained shrinkage of overlays made 

with rapid hardening mortar mixes reinforced with recycled fibres. A simple analytical model for predicting 

crack spacing is developed and the results are compared with experimental values. The available methods 

in literature for predicting the crack width are reviewed and a modified crack width predictive model for 

plain and RCSF reinforced overlays is proposed and evaluated.  

Chapter 5 entitled “A numerical study on the effect of shrinkage on rapid hardening plain and recycled steel 

fibre concrete overlays” is based on Al-musawi et al. [40], submitted to Construction and Building Materials 

and addresses objectives 11-13. This chapter focuses on numerical analysis and examines the performance 

of overlays under restrained shrinkage. The experimental results presented in chapter 4 were modelled in 

Abaqus. The FE analysis results are validated by comparing the numerical stresses to the predictions of the 

Silfwerbrand analytical procedure [32]. Parametric studies are preformed to investigate the shrinkage 
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behaviour of rapid hardening overlays. The studied parameters include overlay depth, interface properties 

and moisture content of the substrate with special attention on the effect of non-uniform shrinkage 

distribution on the hygral stresses in overlays. Based on the analysis results, an empirical method to consider 

this effect is proposed. Finally, the experimental results of interfacial shear specimens are modelled. 

Chapter Six includes concluding remarks and recommendations for future work. 
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Chapter 2: Performance of rapid hardening recycled clean steel fibre 

materials  

Al-musawi, H., Figueiredo, F., Bernal, S.A., Guadagnini, M., Pilakoutas, K., (2019). Performance of rapid 

hardening recycled clean steel fibre materials. Constr. Build. Mater., 195, 483-496. 

 

Abstract  

To minimise disruption due to repairs of concrete pavements, rapid hardening and tough materials need to 

be used. This paper investigates the flexural performance of rapid hardening mortar mixes made with two 

commercial cement types, calcium sulfo-aluminate cement and calcium aluminate cement, for thin concrete 

repair applications. Three-point bending tests are performed on plain and steel fibre reinforced concrete 

specimens containing 45 kg/m3 of recycled clean steel fibres to characterise the flexural performance of 

notched and unnotched prisms at different ages, ranging from one hour up to one year. The recycled fibers 

are shown to enhance both the flexural strength and toughness of FRC prisms, leading to hardening 

behaviour. Constitutive equations based on the RILEM and Model Code 2010 recommendations are found 

to overestimate the loading capacity of the bending tests. FE analyses using multilinear σ – ɛ tensile curves 

obtained by employing inverse analysis can capture better the post cracking strength and cracking pattern 

of the tested prisms.   

This chapter consists of a “stand alone” journal paper and includes a relevant bibliography at the 

end of the chapter. Additional information and details are presented in Appendix A. 
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2.1 Introduction  

Progressive deterioration of infrastructure, particularly pavements, occurs due to increasing vehicular axle 

loads, worsening environmental conditions (due to climate change) and higher traffic volumes. Excessive 

deterioration can lead to serious service disruptions and higher costs for infrastructure owners and road 

users. Conventional ordinary Portland cement (OPC) based repair materials attain their strength rather 

slowly and need between 12h to 24h to develop sufficient strength before roads can be back in service, 

adding to delays and disruption during maintenance. To minimise disruption, rapid hardening cements can 

be used in repairs. There are several special rapid hardening Portland-free cements available in the market; 

such as calcium sulfo-aluminate (CSA) cement and calcium aluminate (CA) cement. CSA can achieve early 

rapid strength development and can have expansive properties [1]. It is reported to have good durability in 

aggressive environments, particularly when exposed to sulfates [2]. Furthermore, this cement requires less 

energy for its production compared to OPC [1], thus it is considered to be environmentally friendly. 

However, despite its lower energy demand, it is still more expensive due to the cost of its raw materials.  

CA cements are characterised by high early strength development and high resistance to elevated 

temperatures, depending on their aluminum content. An important aspect for the rapid strength development 

of this cement is the substantial amount of heat of hydration which can result in high heat generation [3]. 

Self-heating may be a concern in sections thicker than 100 mm [3], but not necessarily for thinner repair 

layers. Despite the high temperature rise during hydration, CA concretes do not seem to be overly 

susceptible to thermal cracking. This may be due to creep relaxation of thermally induced strains, facilitated 

by a conversion reaction, during which some metastable phases of this cement convert to stable phases of 

lower volume [3, 4]. As porosity increases, the densification due to conversion causes loss of strength [3]. 

Hence, when used for repairs, the key concern to be addressed is cracking due to restrained shrinkage.  

Restrained shrinkage is one of the main factors that govern the serviceability and durability of concrete 

repairs [5,6]. Shrinkage in concrete results due to moisture diffusion from the new concrete to the 
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environment and to the concrete substrate [7] if not adequately saturated. However, shrinkage deformation 

(of the new layer) is restrained by the substrate layer leading to the development of tensile and interfacial 

shear stresses. If these stresses exceed the material capacity at any time, cracking will develop in the repair 

material and/or debonding along the interface between the repair material and the substrate. Micro-cracks 

induced by shrinkage can propagate and coalesce into macro-cracks under the effect of applied loads.  

Cracks beyond a certain width can adversely affect the durability of repair materials by creating easy access 

for deleterious agents leading to early saturation, freeze–thaw damage, scaling, and steel corrosion, which 

promote further internal and external cracking and accelerate the rate of deterioration [8]. This issue can be 

worsen with rapid hardening (non-expansive) materials due to the rapid hydration rate which accelerates 

shrinkage development. Furthermore, due to the rapid stiffness development and decrease in creep 

compliance of rapid hardening cements [9], their ability to redistribute stresses may be affected, thereby 

increasing cracking potential. To address this issue, fibres can be added to control crack widths [10] as well 

as increase the tensile strength and fatigue resistance [11], thus resulting in more durable layers. To reduce 

the environmental impact of manufactured steel fibres (MSF), recycled clean steel fibres (RCSF) can be 

used as alternative fibre reinforcement.  

During the manufacture of tyres, parallel steel cords are embedded in continuous thin rubber belts. After 

being cut to shape, these are placed in overlapping layers to provide flexible reinforcement within the tread 

and side walls of the tyre. The complex configuration of each layer generates significant levels of waste 

(approximately 5% by mass). The available amount of waste steel cord is therefore around 100,000 tonnes 

per year worldwide. The steel reinforcement used in tyre manufacture typically consists of parallel filaments 

of very fine wire (0.1-0.4 mm dia.) twisted together to form a cord about 0.5-1.0 mm in diameter [12]. 

Recycled clean steel fibre (RCSF) filaments extracted from pre-vulcanised rubber belt offcuts have become 

available recently and were adopted in this study. However, knowledge on their use in concrete is scarce 

and it is limited to research at the University of Sheffield [13]. Knowledge of the effect of industrial fibres 
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on CSA and CA matrices is also rather limited [9,14-16] and no published data exist regarding the effect of 

RCSF. A study on the effect of CSA matrix on pullout performance of steel fibres [9] suggests that the 

synergetic effect of a stiff matrix like ettringite and high modulus steel fibres can increase crack propagation 

resistance in the composite material, evidenced by an increase in debonding energy density.  

Since cracking is the main concern for repairs, understanding the effect of fibres in controlling crack widths 

under mechanical and hygral loads, as well as the complex interaction of shrinkage, stiffness and tensile 

strength evolution are of paramount importance. For this purpose, finite element analysis can be a useful 

tool. However, appropriate material parameters need to be determined experimentally and the tensile σ-ɛ 

curves of the repair materials need to be derived from direct tension or bending results.  Although there are 

several procedures in the literature to derive the σ-ɛ of SFRC in tension [17-20], they may not be entirely 

suitable for modelling mortars reinforced with RCSF due to the different fracture energies of the two 

concretes. Matrices reinforced with MSF usually show deflection softening performance while concretes 

reinforced with RCSF are reported to have hardening performance [13]. In numerical studies performed by 

Hu et al. [20] and Neocleous et al. [21], it was found that RILEM proposed σ-ɛ equations overestimate the 

predicted capacity of FRC. As a result, a simplified σ-ɛ model was suggested to overcome issues in the 

other methods and to include the post-consumer tyres steel fibres (RTSF) effect.  

This paper presents experimental and numerical work on the flexural performance of RCSF on rapid 

hardening mortars produced using CSA or CA as sole cementitious materials. Constitutive relationships 

derived based on code recommendations and by others [19, 20] are used to predict flexural behaviour and 

the results are compared with predictions obtained from inverse analysis.   

This chapter addresses objectives 1,2 and 9 of the thesis.  
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2.2 Experimental details and methodology 

2.2.1 Materials 

Two commercial cement types were used in this study; calcium sulfoaluminate cement1 (CSA) and rapid 

setting calcium aluminate cement2 (RSC). According to the manufacturer, RSC consists of hydrated 

alumina, oxides of iron and titanium, with small amounts of silica. For production of mortars, fine 

aggregates, medium grade river washed sand (0-5mm sourced from Shardlow in Derbyshire, UK, SG=2.65, 

A = 0.5, FM = 2.64), were used. Recycled clean steel fibres (RCSF) were obtained from tyre cords extracted 

from un-vulcanised rubber belts (see Figure 2.1). The length of the RSCF used in this study was 21 mm 

and the diameter 0.2 mm. They are uniform as MSF. The strength of these fibres is reported to exceed 2600 

MPa [13]. Superplasticiser3 was added to enhance the workability and adjust the setting time. 

 

 

Figure 2.1. Photograph of the RCSF used in this study 

 

 

 

1 provided by Kershin International Co., Ltd 

2 sourced from Instarmac 

3 Sika Viscoflow 2000 
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2.2.2 Mortar mix design 

A total of 600 kg/m3 of cement was used with low w/c ratios to obtain high early strength. For durability 

requirements, w/c should be kept lower than 0.4 [22]. However, as CSA cement consumes more water to 

form hydration products than ordinary Portland cement [23], this limit can be relaxed slightly for this 

cement. As a result, two different w/c ratios and superplasticiser (SP) dosages were tested. The w/c ratios 

for mixes with CSA cement were 0.4 and 0.41, and 0.35 and 0.36 for RSC mixes. The water content and 

SP were carefully selected to achieve a workable mix with setting time of no longer than 15 minutes. Fibre 

dosage of 45 kg/m3 (Vf = 0.57%) was investigated as is commonly used in European practice for structural 

applications. The plain and fibre reinforced mortar mixes for each cement type are almost identical, to 

reliably investigate the effect of fibres on the mechanical properties. The details of the optimised mortar 

mixes that meet the setting, durability and workability requirements are summarised in Table 2.1.4 

The specimens were cured for one hour before demoulding and exposure to standard laboratory conditions.  

Table 2.1 Mortar mix composition 

mix 
Cement 

(kg/m3) 
w/c 

Sand 

(kg/m3) 

SPa 
Fibre dosage       

(kg/m3) 

CSA 600 0.40 1420 0.60 0 

FCSA 600 0.41 1420 0.61 45 

RSCb 600 0.35 1300 0.20 0 

FRSC 600 0.36 1300 0.21 45 

a % by cement mass.     b mixes containing CA cement are called RSC in this study. 
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2.2.3 Fresh state properties 

2.2.3.1 Vicat test 

The setting time of cement pastes was assessed using an automatic Vicat apparatus according to ASTM 

C191 (2013) [24]. As the cements used in this study are fast setting, the instrument was set to take 

measurements every 30 seconds.  

2.2.3.2 Semi-adiabatic calorimetry 

The semi-adiabatic calorimeter records the temperature evolution and key temperature related properties 

for a tested mix, such as time to peak heat, peak heat, and cumulative heat [25]. Since the mortar mixes are 

designed for thin repairs, heat loss due to dissipation is expected to take place and hence, the semi-adiabatic 

test could reveal a temperature evolution that is close to practical applications. After mixing the required 

quantity for each mix, the mortar was directly placed in an insulated thermal flask cylinder of 0.5 l and a 

thermocouple was inserted inside the mortar to record the temperature. 

2.2.4 Flexural tests  

To characterise the flexural performance, mortar prisms of 40 × 40 × 160 mm were tested according to BS 

EN 13892-2 [26]. To obtain the load deflection curve after the peak load, displacement control was adopted 

rather than load control as required by the standard [26]. The rate of loading was 0.25 mm/min until 1 mm 

deflection, and 1 mm/min after that. To eliminate errors due to machine stiffness, spurious support 

displacements and local concrete crushing, a specially designed aluminum yoke (based on the Japanese 

standard JSCE-SF4 [27]) was mounted on the specimens. To assess the flexural behaviour over time, the 

prisms were tested at one hour, three hours, one day, seven days, 28 days and 365 days as the strength 

evolves fast for rapid hardening materials. The test was also performed on notched prisms (the notch depths 

range from 3.57 to 4.94 mm) to assess crack development. The Crack Mouth Opening Displacement 

(CMOD) was measured at mid span with a 12.5 mm clip gauge (mounted across the bottom part of the 
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notch, Figure 2.2). For practical reasons (time limitations), this test was performed at 2 days (at the earliest 

age) and up to one year. 

 

Figure 2.2. Flexural test set up 

2.2.5 Compressive strength  

Directly after flexural testing, the halves of the fractured prisms were tested in uniaxial compression 

according to BS EN 13892-2 [26]. Only the one-hour compressive strength of FRC specimens was 

examined separately due to practical time constrains.  

2.3 Experimental Results and Discussion  

2.3.1 Fresh state properties of rapid hardening materials 

The water content and SP dosage were optimised for each mix to achieve a workable mix with setting time 

of no longer than 15 minutes. As shown in Table 2.2, the CSA cement had a relatively shorter setting time 

compared to the RSC cement. Slightly higher water content and SP dosages for the fibre reinforced mixes 

lead to a slight increase of the setting time for these mixes.  
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Table 2.2 Setting time and maximum temperature (Tpeak) for different mixes 

Mixes 
Vicat setting time (min.) 

Tpeak (C°) 
Initial Final 

CSA 9.5 10.5 68 

FCSA 9.5 11.0 68 

RSC 12.0 14.5 91 

FRSC 12.5 15.0 88 

 

The results of the semi-adiabatic calorimetry test (for the first 36 hours) are shown in Figure 2.3. For mixes 

with CSA cement, the peak temperature (Tpeak) was about 68° C (see Table 2.2) occurring during the first 

hour regardless of fibre content. The temperature rise in RSC mixes was much higher than in mixes with 

CSA cement, with Tpeak at 91° and 88° C for RSC and FRSC, respectively. The time half way to the peak 

(T1/2 peak) can be taken as an indication of the initial setting time of cementitious mixes [28]. For CSA and 

FCSA, T1/2 peak was achieved at around 11 minutes, whilst for RSC and FRSC, it was recorded at around 16 

minutes.  These results agree well with the results of the vicat test. The temperature achieved for these 

cements upon hydration dropped to laboratory temperature in less than 24 hours. Heat dissipation is 

expected to occur faster onsite than in the semi-adiabatic test and, therefore, no major thermal cracking is 

expected for thin repairs, especially when curing is applied during the first two hours when Tpeak occurs.  

 

Figure 2.3. Temperature rise for mixes in semi-adiabatic test 
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2.3.2 Mechanical performance of rapid hardening mortars  

2.3.2.1 Compressive strength  

The average compressive strength fcu (from six specimens) and standard deviation developed over time is 

shown in Figure 2.4. At one hour, FCSA achieved the highest compressive strength of 26.1 MPa while RSC 

achieved 17.2 MPa. This behavior changes at later ages as RSC achieves a higher strength than FCSA by 

approximately 6% after one-year. The fibres seem to have a positive effect on the compressive strength of 

both mortars, with the highest strength increase noticed at one hour (24% increase in fcu). At later ages, this 

increase ranges from 10% to 17%. The strength increase at early ages might be attributed to the fact that 

stiff steel fibres contributes to the strength of FRC mixes that are not fully mature.  

There is no consensus in literature on the effect of fibers on compressive strength. While some researchers 

[29-31] report a strength enhancement of up to 20% for Portland cement-based specimens containing 

recycled fibres with dosages less than 50 kg/m3, others [32-34] found only a marginal effect due to air 

entrainment.  

No strength reduction has been observed for any of the mixes at the age of one-year, indicating that there 

were no significant conversion issues. It should be noted that for fully cured rapid hardening CSA mortar-

based samples (tested at 28 days), a compressive strength of 31.4 – 52.6 MPa for w/c ratios 0.4 – 0.5 was 

reported in literature [35] and this agrees well with the results of this study.    
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Figure 2.4. Development of fcu as a function of time  

To describe the compressive strength development with time, the βcc(t) function that describes the strength 

development with time used in Model Code 2010 [18] is followed (Equation 2.1).  

βcc(t) = exp {s. [1-(28/t)0.5]}                                    
Equation 2.1 

where, t is the concrete age in days, s is a coefficient that depends on the class of cement which ranges from 

0.2 – 0.38 for fcm ≤ 60 MPa. As the cements used in this study are rapid hardening, a 0.2 value for s was 

adopted (as recommended by the Model Code 2010 [18]). To obtain the strength at various ages, βcc(t) is 

multiplied by the mean compressive strength at the age of 28 days (fcm). The estimated compressive strength 

(-MC) at various ages is shown against the experimental results in Figure 2.5. As expected, the function 

underestimates the strength at the early ages by approximately 100% for the different rapid hardening 

mixes. As the strength evolves very rapidly at the early ages and then it slows down, smaller s values could 

offer a better representation for strength development with time. The s values of 0.024 and 0.044 for mixes 

with CSA and RSC cements, respectively, were found by regression analysis for experimental results (-

MC-NR) to represent well the strength evolution with time (Figure 2.5).  

one 

hour 

3 hours 

7 days 

28 days 

one day 

365 days 
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Figure 2.5. Development of experimental and estimated fcm as a function of time using s = 0.2 (dashed lines) and 

suggested s values (solid lines-NR) 

2.3.2.2 Flexural behaviour 

    The average flexural strength development over time (and standard deviation) is illustrated in Figure 2.6. 

Data points given in this figure represent the limit of proportionality (LOP), or first cracking strength (fctm,fl), 

determined according to BS EN 14651:2005 [36] as given in Equation 2.2 

𝑓𝑐𝑡𝑚,𝑓𝑙 =  
3 𝐹𝑙  𝑙𝑏

2 𝑏𝑏 ℎ2
 Equation 2.2 

where, Fl is the load corresponding to LOP [36] (taken from Figure 2.7); lb is the span length; bb is the width 

of the beam; h is the beam depth. 

It is noted that strength develops very fast and both plain and fibre reinforced specimens achieved 90% of 

their one-year strength in one day. The specimens made with CSA cement showed higher flexural strength 

than those with CA cement tested at the same age, probably due to the rigid dense crystal microstructure of 

the CSA cement [9]. RSC mixes have lower w/c ratio, hence, their compressive strength is expected to be 
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higher in the long term. Due to high shrinkage in RSC mixes, their flexural strength is reduced. The effect 

of RCSF on the flexural strength enhancement of the mixes is evident at all ages. Compared to their plain 

counterparts, FCSA and FRSC mixes showed a flexural strength increase of approximately 36% to 70% 

and 24% to 41%, respectively. This agrees well with Hu et al. [34], who reported an increase of 45% - 70% 

in fctm,fl of concrete reinforced with blends of manufactured and post-consumer recycled fibres.   

 

Figure 2.6. The flexural strength fctm,fl development as a function of time  

The load-deflection curves for FCSA and FRSC prisms are shown in Figure 2.7. The behaviour of the 

specimens made with the unreinforced mixes is not shown as they failed suddenly after peak load without 

any post cracking strength, highlighting the poor toughness of plain mortars in tension. The deflection 

hardening shown by reinforced mixes can be attributed to the high number of fibres spanning the cracked 

section and the excellent bond between steel fibres and dense matrix systems, like the CSA cement. This 

hypothesis is supported by the fact that in the current study, many specimens developed more than one 

principal crack, confirming the excellent load transfer by the RCSF. It should be noted that the preferential 

alignment of the fibres in the direction of stress due to the small mould size (40 × 40 × 160 mm) may have 
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contributed to this. Deflection hardening was also reported in a study by Bordelon [37] for concrete 

specimens cut from prisms of 150 × 150 × 450 mm and tested using a 50 mm beam depth (to simulate a 

thin overlay). Deflection hardening performance for notched concrete prisms reinforced with 45kg/m3 of 

blends of recycled post-consumer and manufactured steel fibres was also reported in a recent study 

published by Hu et al. [34]. 

At large deflections (greater than 2 mm), the FCSA specimens show a slight reduction in load resistance 

compared to FRSC specimens, possibly due to the inherent brittleness of the CSA cement. However, in 

most repair applications, it is not expected that the mortar will reach such high level of deformation and as 

a result, minimal cracking is expected. 

 

Figure 2.7. Load-deflection response of rapid hardening fibre reinforced mortars tested at different ages: (a) FCSA; 

(b) FRSC 

2.3.2.3 Flexural modulus of elasticity (Efm) 

The flexural modulus of elasticity (Efm) was determined from load-deflection curves using elastic analysis 

and ignoring shear deformations. Efm is the maximum flexural modulus between 30 – 60% of the peak load 

(Ppeak) [38]. Figure 2.8 shows the development of Efm and related standard deviations over time for all mixes. 

 

 

(a) (b) 



31 

 

The plain mortar mixes are shown in dotted lines. As with flexural strength, the stiffness of the mixes 

develops quickly and reaches around 90% of the one year modulus within 7 days.  

The fibres have a remarkable effect on the modulus of elasticity. FCSA and FRSC have higher Efm compared 

to CSA and RSC mixes respectively with the highest noticeable increase (29.7%) for FCSA occurring at 

one-hour of age. This behaviour was not reported in [34] and [39] who only noticed a marginal effect on 

the modulus of concrete with fibre addition. The remarkable increase in modulus of elasticity, though also 

reflected in the flexural strength, is beyond what is expected from a perfect composite. This may be partially 

due to fibre alignment, but also to the slightly longer mixing time that was necessary to integrate the fibres. 

This may increase the density of FRC mixes and affect the modulus results. An increase of approximately 

36% in the modulus of elasticity of OPC based mortars reinforced with 2% (by volume) industrial steel 

fibres was reported in literature [40].  

To estimate the modulus of elasticity of the mixes, based on compressive strength, equations from Model 

code [18], ACI 318-05 [22] and Kosaka et al. [41] were used. The latter equation was developed specifically 

for mortars. The estimated modulus of elasticity (Ec) for CSA (using the above equations) is presented in 

Figure 2.9. As shown, these equations overestimate Ec for CSA mix, especially at the early ages as the 

equations are usually used to determine the modulus of elasticity of concretes, not mortars. It should be 

noted that both Model code and ACI code adopt equations that use the 1/3 and 1/2 power of fcm respectively. 

However, the results show that for these mortars, the linear relationship is more appropriate and the constant 

values of 720, 580, 640 and 520 were determined by regression analysis for FCSA, FRSC, CSA and RSC 

mixes respectively.  
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Figure 2.8. Flexural modulus (Efm) of fast setting fibre reinforced mortars as a function of time  

 

Figure 2.9. The relationship between fcm and Ec using different equations for CSA mix 
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2.3.2.4 Relationship between measured deflection and CMOD values 

A linear relationship between CMOD and average deflection is suggested in BS EN 14651:2005 [36], as 

given below (Equation 2.3), 

Average deflection (mm) = k × CMOD (mm) + 0.04 mm, k = 0.85 Equation 2.3 

This linearity has also been confirmed for FCSA and FRSC at all ages tested with coefficients of 

determination R2 > 0.99, but as expected with lower K values, between 0.55 and 0.65, due to the different 

geometry of the testing arrangement. It should be noted that the CMOD measured by the clip gauge is 

corrected for the position of the clip gauge using the BS EN 14651:2005 [36].   

A relationship between deflection and CMOD can facilitate the testing of such materials by using clip 

gauges only to measure the CMOD as accurate measurement of deflection requires the use of a special 

frame (yoke) to obtain net deflection. It also provides a benchmark for comparisons.  

2.3.2.5 Residual flexural tensile strength (fR) 

RILEM TC 162-TDF [42] presents a methodology to calculate the residual flexural tensile strength of SFRC 

prisms, which was later adopted by BS EN 14651:2005 [36]. Residual flexural stresses (fR1, fR2, fR3 and fR4) 

are calculated from the load-CMOD curves at 0.5, 1.5, 2.5 and 3.5 mm of CMOD, respectively. However, 

these CMODs are suggested for concrete prisms of 500 mm span length. For this study, the residual stresses 

are calculated at CMOD equal to 1/5 of those used for 500 mm span specimens; i.e. 0.1, 0.3, 0.5 and 0.7. 

Figure 2.10 shows the fRi values of all FCSA and FRSC mixes tested at different ages.  The fR values for 

FCSAs are shown in solid lines while FRSCs are shown in dashed lines. It is noticed that for both mixes 

the fR values continue to increase from CMOD 0.1 mm to 0.7 mm which shows the high efficiency of the 

RCSF in carrying the loads across cracks. This is also evidenced by the multiple cracks that form in some 

samples at, or more than, seven days of age. The residual strengths of FCSA are higher than those of FRSC 

for the same crack width, which implies better bond strength for RCSF in FCSA matrices.  
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The fR values continue to increase with time for both FRC mixes and reach their peak values at 28 days. 

However, there is a slight strength reduction at one year compared to 28 days. This could be attributed to 

the effect of the conversion reaction occurring in the RSC cement. This is unlikely, however, as there was 

no reduction in compression strength at one-year of age. Another possible explanation is the effect of 

shrinkage on the bond strength of RCSF. This reduction in fR is more obvious at higher CMOD levels (for 

fR2 to fR4), which means that the frictional resistance along the fibres reduces slightly at one year.  

 

 FCSA FRSC 

Time 
 

 

   
 

  

2 6.8 (0.6) 7.6 (1.8) 8.3 (0.4) 8.8 (1.6) 6.3 (1.1) 8.0 (0.3) 8.7 (3.2) 8.8 (2.3) 

7 11.0 (0.6) 12.5 (2.2) 12.9 (0.8) 13.0 (2.1) 6.8 (1.8) 8.0 (1.0) 9.0 (3.1) 9.5 (2.5) 

28 11.1 (0.6) 13.2 (1.9) 13.5 (1.0) 13.9 (2.0) 9.6 (1.9) 11.5 (1.1) 12.1 (2.8) 12.5 (1.7) 

365 10.7 (0.6) 12.2 (2.1) 12.7 (1.5) 13.0 (1.6) 9.5 (1.5) 10.6 (1.1) 10.9 (2.5) 11.2 (0.9) 

Figure 2.10. fR values of FCSA and FRSC prisms (in MPa) development with age and standard deviation (given in 

brackets). 

Figure 2.11 and Figure 2.12 show the relationship of fR1 vs fR2, fR1 vs fR3 and fR1 vs fR4 for FCSA and FRSC, 

respectively. The values of fR2, fR3 and fR4 correlate very well with fR1 for FCSA prisms with R2 ≥ 0.98. A 
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similar trend was also found for FRSC prisms, however, with a relatively smaller coefficient of 

determination (R2 ≥ 0.92). A linear relationship between fR1 vs fR3, fR1 vs fR4 were also reported by 

Zamanzadeh et al. [43] for unclassified RTSF. The strong correlation between the fR values can lead to 

simpler design guidelines. 

 

Figure 2.11. Correlation between fR1 and f R2, fR1 and fR3, fR1 and fR4 of FCSA prisms 

 

Figure 2.12. Correlation between fR1 and f R2, fR1 and fR3, fR1 and fR4 of FRSC prisms 
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Model code 2010 [18] suggests that if the value of fR1/ fL > 0.4 and fR3/ fR1 > 0.5, then the fibre reinforcement 

can substitute (also partially) some of the required steel reinforcement. By looking at the results of this 

study, it can be seen that these requirements are fulfilled and, thus, the RCSF can be used to substitute some 

of the reinforcement in concrete structures.  

2.4 Numerical study 

2.4.1 FE modelling  

To model the flexural performance of these materials, the FE package ABAQUS is used, which offers three 

material models for concrete simulation; Concrete Smeared Cracking (CSC), Brittle Cracking (BC) and 

Concrete Damaged Plasticity (CDP) [44]. It was found that, for this application, CSC is prone to numerical 

instabilities soon after crack development. Similar issues were also reported in [45] when modelling SFRC 

prisms using CSC. Although the BC model was applied successfully to model FRSC [46], it was considered 

unsuitable for the current study as it assumes that the concrete remains elastic in compression. Since, due 

to the high flexural strength of the mortars, in this study, the material is expected to become non-linear in 

compression. Therefore, the analysis was performed by using the concrete damage plasticity (CDP) model 

for which the user can define the tensile and compression behavior of concrete in as many steps as required. 

In CDP, the ratio of biaxial to uniaxial compressive strength (σb0/σc0) and the ratio of the second stress 

invariant on tensile meridian to that on the compressive meridian (Kc) characterise the failure surface of 

concrete. The dilation angle (ψ0) and flow potential eccentricity (ɛ0) are used to define the flow rule [44]. 

σb0/σc0 was taken as 1.2 (slightly higher than the value usually assigned for plain concrete due to presence 

of fibres), Kc was 0.667, ψ0 was 31° and after a sensitivity analysis for ɛ0, the default value of 0.1 was 

adopted. The CDP model can be regularised by using viscoplasticity to assist in overcoming convergence 

issues, that occur in materials exhibiting softening behaviour in implicit analysis computations, by 

permitting the stress to be outside the yield surface. Since high values of viscosity (µ0) compared to 

characteristic time increment can compromise the results, a value of zero was adopted.  
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Unnotched beams under 3-point bending were modelled in Abaqus with the same dimensions as tested. The 

mesh was kept constant at 10 mm size (two times the maximum aggregate size) (Figure 2.13) and a 3D 20-

noded quadratic brick element with reduced integration (C3D20R) was chosen, as second-order elements 

are very effective in bending-dominated problems [44]. Uniform displacement control loading was applied 

to minimise convergence problems and to better simulate the experimental loading conditions.  

 

Figure 2.13. Prism assembly in Abaqus 

2.4.2 Evaluation of tensile constitutive equations   

RILEM TC 162-TDF (RILEM) [17], MODEL CODE 2010 (MC) [18], Barros et al. (Barros) [19] and Hu 

et al. (Hu) [20] procedures were selected to derive the tensile constitutive equations.  Although MC allows 

the use of stress-crack width relationship, RILEM, Barros and Hu models all use stress-strain relationships, 

and since stress-crack width relationship also leads to mesh dependency in CDP, it was decided to the use 

stress-strain approach in modelling, to be able to make a direct comparison between different models.  The 

derived tensile σ-ɛ relationships (see Table 2.3) using the aforementioned procedures were implemented in 

Abaqus to determine the load-deflection response of FCSA and FRSC prisms (at 28 days). MC requires the 

maximum value of crack width (wu) to calculate the stress at ultimate strain. The value 0.5 mm was used 

for the max crack width as it corresponds to CMOD3.  
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The predicted numerical load-deflection curves are compared against the experimental results for FCSA in 

Figure 2.14. It can be seen that all the approaches fail to model the full behaviour of the prisms and for most 

of them the analysis does not converge beyond 0.6 mm (even after using high values of µ0). At 0.2 mm 

deflection, RILEM, MC and Barros overestimate the loading capacity by 29.44%, 16.65% and 7.11% while 

Hu underestimates the loading by 14.88% respectively. Barros’s model, however, can capture the post-

cracking behaviour of FCSA up to a certain extent. The models are even less effective in predicting the 

flexural behaviour of FRSC (see Figure 2.14). Overall, none of the above models seem to be able to capture 

the complete load-deflection behaviour of the tested specimens. 

Table 2.3 σ-ɛ relationships for FCSA and FRSC at 28 days using different approaches 

Mixes 
RILEM MC Barros Hu 

σ ɛ σ ɛ σ ɛ σ ɛ 

FCSA 

9.473 0 2.980 0 7.037 0 4.771 0 

4.977 0.000263 3.311 0.000030 3.981 0.001056 2.986 0.001892 

5.140 0.024814 4.977 0.002319 3.751 0.103864 3.929 0.024857 

0.095 0.025000 4.561 0.012335 0.080 0.104000 0.050 0.025000 

0.090 0.500000 0.030 0.012500 0.074 0.500000 0.048 0.500000 

  0.029 0.500000     

FRSC 

6.165 0 3.354 0 4.580 0 3.105 0 

4.340 0.00017 3.727 0.000006 3.472 0.001066 2.604 0.002019 

4.619 0.024822 4.340 0.002333 3.370 0.103870 3.523 0.024864 

0.070 0.025000 4.145 0.012340 0.050 0.104000 0.040 0.025000 

0.065 0.500000 0.040 0.012600 0.046 0.500000 0.035 0.500000 

  0.035 0.500000     
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Figure 2.14. Comparison between experimental and numerical load-deflection curves at 28 days for: (a) FCSA; (b) 

FRSC  

2.4.3 Numerical approach using inverse analysis 

Inverse analysis was adopted to determine the post-cracking σ – ɛ relationships for the different SFRC 

mixes and obtain a better prediction of the flexural performance of the tested specimens. The tensile 

properties are defined by using multilinear σ – ɛ curves. The analysis is repeated while adjusting the tensile 

parameters until the numerical load-deflection curve matches the experimental response in capacity and 

energy dissipation within 2%.  

The determined tensile σ – ɛ curves shown in Figure 2.15 are then used to predict the structural behaviour 

of the FRC tested specimens.  To better capture the flexural performance at larger displacements, the strain 

at failure should be accurately determined. The failure strain is calculated by dividing the ultimate width of 

crack (which is considered to be equal to half of the fibre length (lf)) by the characteristic length.  It was 

shown in a previous study on SFRC [45] that using a characteristic length of hsp/2 (the depth of a notched 

prism divided by 2) gives good results when converting displacements into equivalent strains. Thus, for this 

study, a value of 0.5 was adopted as a strain failure which is fairly close to lf/2 divided by half of the prism 

depth. It should be noted though that most tests were stopped at 5 mm deflection as not to damage the 

 

 

(a) (b) 
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LVDTs and thus, complete failure was never reached. For design purposes, a max strain of 0.025 is deemed 

sufficient so as to prevent the development of large crack widths.   

The predicted curves are shown together with the experimental results in Figure 2.16 through Figure 2.16. 

As expected, the predictions match well the results. 

The results for FCSA at 28 days was further analysed (using the same material model for the 10mm mesh 

size) with two mesh sizes; 16.6 mm and 5 mm to examine the effect of mesh size. The results (Figure 2.17) 

confirm that there is a slight mesh dependence when using this approach.  

 

Figure 2.15. Tensile σ – ɛ curves for mixes at different ages for: (a) FCSA; (b) FRSC 

2.4.4 Cracking 

In the CDP model, cracking can be assumed to initiate at points where the tensile equivalent plastic strain 

is greater than zero and the maximum principal plastic strain is positive. The direction of the vector normal 

to the crack plane is assumed to be parallel to the direction of the maximum principal plastic strain [44]. 

Figure 2.18 shows maximum principal strain contours for FCSA prism at 28 days. It is clear that the failure 

of the prisms is characterised by tensile cracking at the midspan of the beam as occurred in the experiments.  

 

 

(a) (b) 
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The crack width at the bottom of the specimens can be determined from the analysis by examining the 

spreading of the beam using the horizontal deformation (U3) as shown in Figure 2.19. The crack width 

determined at 3 mm of deflection are compared with CMOD values measured by the clip gauge in Table 

2.4. The predicted values are slightly lower than the experimental values with the biggest error of 14.66% 

(presented in brackets) for FCSA at 28 days. This confirms that the numerical models were not only 

successful in predicting the flexural capacity, but also the crack widths of the tested prisms and as a result, 

they could be used for further studies on repair layers. 
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Figure 2.16. Experimental load-deflection versus numerical curves of FCSA and FRSC prisms at age of: (a) one-

hour; (b) three hours; (c) one-day; (d) seven days; (e) 28 days; (f) 365 days 
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Figure 2.17. Experimental load-deflection curve of FCSA at 28 days versus numerical curves using three different 

mesh sizes 

 

Figure 2.18. Max principal strain contour for FCSA prisms at 28 days at the end of analysis 

 

Figure 2.19. Horizontal displacement (U3) contour for FCSA prisms at 28 days at the end of analysis 
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Table 2.4 The measured and predicted crack widths for fibre reinforced mixes 

Mix Age 1hour 3 hours 1 day 7 days 28 days 365 days 

FCSA 

Numerical  

4.68 

(4.10) 

4.64 

(5.60) 

4.68 

(5.45) 

4.52 

(8.87) 

4.54 

(14.66) 

4.64 

(9.02) 

Experimental 4.88 4.903 4.953 4.96 5.32 5.10 

FRSC 

Numerical 

4.37 

(12.07) 

4.60 

(8.18) 

4.59 

(9.82) 

4.71 

(9.25) 

4.57 

(12.45) 

4.6 

(13.21) 

Experimental 4.97 5.01 5.09 5.19 5.22 5.3 

Note: Values in brackets represent the error (%) between experimental and numerical crack width 

2.5 Conclusions  

Experimental and numerical investigations were performed on plain and fibre reinforced rapid hardening 

mortars. The main findings of this study are: 

• Flexural strength evolves rapidly and both plain and fibre reinforced specimens achieved 90% of their 

one-year strength in one day. The specimens made with CSA cement showed higher flexural strength 

than those made with RSC cement tested at the same age due to the rigid dense crystal microstructure 

of the CSA cement.   

• For compressive strength, the highest strength increase of around 24% was observed at one hour. No 

compressive strength reduction was noticed for any of the mixes tested in this study up to the age of 

one-year. 

• The flexural residual strength for both FCSA and FRSC specimens continued to increase up to 0.7 mm, 

which corresponds to CMOD4. FCSA prisms show higher fR than FRSC prisms for the same crack 

width. The values of fR continue to increase with time for both FRC mixes and reach their peak values 

at 28 days. However, there is a slight strength reduction at one year compared to 28 days. 

• Strong correlations exist between fR1 and fR2, fR1 and fR3, fR1 and fR4 with R2 ≥ 0.98 and R2 ≥ 0.92 for 
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FCSA and FRSC, respectively. They can facilitate developing σ – ɛ design relationships.  

• FE-predictions using CDP overestimate the loading capacity of FCSA and FRSC when using the tensile 

constitutive laws based on RILEM TC 162-TDF, CEB FIB MODEL CODE 2010, Barros et al. 

Conversely, the use of the models proposed by Hu et al. leads to underestimation.  

• Inverse analysis was used successfully to obtain multilinear σ – ɛ tensile curves and model the global 

load-displacement behaviour.  

• Numerical analyses using the refined σ – ɛ curves were successful in capturing the cracking widths of 

FRC tested prisms.  
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Chapter 3: Shrinkage properties of plain and recycled steel–fibre-

reinforced rapid hardening mortars for repairs 

Al-musawi, H., Figueiredo, F., Guadagnini, M., Pilakoutas, K., (2019). Shrinkage properties of plain and 

recycled steel–fibre-reinforced rapid hardening mortars for repairs. Constr. Build. Mater., 197, 369-384. 

 

Abstract 

This article investigates the time dependent transport properties and shrinkage performance of rapid 

hardening plain and fibre reinforced mortars for repair applications. Two plain and two SFRC mixes with 

45 kg/m3 of recycled clean steel fibers made with rapid hardening cements (CSA - calcium sulfoaluminate 

cement and RSC - calcium aluminate cement) are studied. It is found that mixes with CSA cement have 

much lower shrinkage values (around 220 and 365 microstrains) compared to mixes with RSC cement 

(around 2690 and 2530 microstrains), but most of the shrinkage in these mixes is autogenous. Nonetheless, 

fibres reduce the drying shrinkage of RSC cement mixes by approximately 12%. Model code 2010 and ACI 

equations can be used to estimate the shrinkage development with time for these mixes provided suitable 

parameters for each cement type are adopted. Inverse analysis using finite element method is successfully 

employed to determine the moisture diffusivity and the hygral contraction coefficient of each mix. A 

comparison is made between the values of shrinkage strain predicted by the numerical models over time, 

for different depths, and code equations. A simple analytical procedure is used to assess cracking and/or 

delamination risks due to restrained shrinkage for these materials in overlay applications.  

 

This chapter consists of a “stand alone” journal paper and includes a relevant bibliography at the 

end of the chapter. Additional information and further test results are presented in Appendix B. 

 



52 

 

3.1 Introduction 

Concrete overlays are extensively used in the repair and strengthening of concrete structures either to 

replace damaged concrete or directly cast as a new layer. In both applications, moisture from the fresh layer 

does not only diffuse to the environment, but also to the concrete substrate, resulting in faster drying 

shrinkage. Shrinkage is restrained by the substrate layer leading to tensile and interfacial shear stresses in 

the repair layer. These stresses, if they exceed material capacity, can lead to cracking and/or debonding, 

accelerating the deterioration of the repairs [1]. The cracking potential of repairs increases in rapid 

hardening materials that are often used to minimise disruption during repair works, due to faster shrinkage 

rate [2] and lower creep compliance [3]. 

Although fibres are reported to have a marginal effect in preventing shrinkage strains from developing in 

concrete, they are used to control crack widths [4] as well as increase tensile strength and fatigue resistance 

[5] in an attempt to achieve more durable repair layers. To reduce the environmental impact of 

manufactured steel fibres (MSF), recycled clean steel fibres can also be used as alternative fibre 

reinforcement [6, 7].  

Recycled clean steel fibres (RCSF) were obtained by recycling steel fibre cords, left over from the 

manufacture of tyres. As a result, they have a consistent length as opposed to recycled tyre steel fibres 

(RTSF) which are extracted mechanically from post-consumer tyres and, thus, have more variable lengths. 

Since crack width is one of the main parameters that governs the durability of repairs [8], a thorough 

understanding of the effect of moisture movement and restraint from the substrate is needed to predict crack 

development in concrete, a material which has widely varied and dynamic porosity systems [9]. The 

moisture transport mechanism of cementitious mixes is complex and is the subject of extensive research 

[9-17]. FRC mixes, however, have been studied to a lesser extent [15, 18]. It is known that w/c ratio, cement 

content and cement type, directly affect moisture diffusion. Fibres may also affect the moisture transport 
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properties of concrete by changing the porosity structure and thus their effect needs to be better understood.  

Silfwerbrand [19] provided an analytical procedure to calculate the tensile and shear stresses that develop 

in overlaid concrete layers and determine the risk of cracking and/or delamination. However, this procedure 

does not calculate cracking widths, a vital aspect in predicting concrete performance.  Eurocode 2 (EC) 

[20], Model Code 2010 (MC) [21] and ACI 209.2R-08 (ACI) [22] provide procedures to predict shrinkage 

strain evolution for concrete structures of certain cement types with good accuracy. However, they do not 

account for rapid hardening cements for which often little information is provided by manufacturers other 

than setting time and strength. They also do not consider the effect of fibres on concrete shrinkage strain in 

the predictive equations.   

This paper presents a detailed investigation on the time dependent transport properties and shrinkage 

performance of rapid hardening plain and fibre reinforced mortars for repair applications. It starts by 

reviewing the factors involved in diffusion and shrinkage of both plain and FRC mixes.  It then presents 

experimental work on moisture movement and shrinkage. The results are used in inverse analysis to 

determine the moisture diffusion coefficient, surface factor and shrinkage hygral coefficient which are 

needed to predict shrinkage performance.  The available code procedures to predict the shrinkage of these 

mixes over time are also evaluated and new factors for each cement type are proposed. The Silfwerbrand 

procedure is then used to determine cracking and delamination risks. 

This chapter addresses objectives 3-6 and 11 of the thesis. 

3.2 Moisture diffusion and shrinkage 

Moisture movement during drying of concrete is characterised by two stages; a constant drying rate stage 

which is succeeded by a falling drying rate [12, 15, 23], depending on the degree of continuity between 

liquid and vapour phases and on driving force variations [16]. At the beginning of drying, the evaporation 

rate is constant and is approximately equal to the rate of evaporation of water exposed to the same conditions 
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[24-25]. As the cementitious material is fully saturated, there is no hydraulic potential gradient to drive the 

moisture movement inside the porous medium and the internal vapour pressure is equivalent to the saturated 

vapour pressure. However, at the boundary layer, there is a pressure variation from saturated vapour 

pressure to ambient vapour pressure, driving moisture out to the surrounding air. Moisture evaporation at 

the surface causes a slight reduction in vapour pressure [16]. This small vapour pressure gradient is 

sufficient to cause moisture flow towards the surface, since at this stage the hydraulic diffusivity is high 

[26]. As drying continues, moisture decreases inside the material. Drying is still considered to be in stage 

one as long as the capillary system is saturated.  When the liquid phase becomes discontinuous upon further 

drying, a transition from stage one to stage two takes place, at which diffusion of water vapour becomes 

the dominant mechanism for moisture transport [26]. During this stage, the evaporation rate drops, as 

moisture is only limited to movement of water vapour rather than liquid water diffusion [27] as is the case 

in the first stage, and the vapour pressure falls below the saturation vapour pressure value. The moisture 

content continues to decrease until vapour pressure reaches ambient level. Figure 3.1 shows a typical 

cumulative moisture loss and evaporation rate during stage one and stage two for a cement paste sample 

[15]. It is shown that during stage one, the drying behaviour is independent of capillary microstructure [26]. 

In a study performed by Bakhashi & Mobasher [15] to investigate the effect of curing time on the diffusion 

characteristics of cement paste, it was found that the moisture loss was substantially reduced by curing the 

cement paste for 24 hours and the transition from stage one to stage two took place quicker compared to 

non-cured samples. This can be attributed to microstructural and pore distribution changes with additional 

hydration. It can be argued that for fast setting materials, stage one is expected to be much shorter than for 

conventional mortar, as most hydration takes place during the first few hours and phase transition happens 

faster. This will be investigated in this paper to understand the role of cement type on diffusion properties.   

Fick’s second law (Equation 3.1) can be used to model moisture movement in concrete for various stages 

of drying, with a moisture diffusivity that represents liquid and vapour diffusion [16].  
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𝜕𝐶

𝜕𝑡
= 𝐷

𝜕2𝐶

𝜕𝑋2
      Equation 3.1  

 

where, C is the moisture concentration (kg/m3), D is the moisture diffusion coefficient (m2/s) and t is time 

(s).  

As the moisture transfer equations are analogous to heat transfer equations and heat transfer analysis is 

readily available in FEA packages, this analogy is often exploited for moisture transfer studies [16, 18, 28]. 

 

Figure 3.1. Typical cumulative moisture loss and evaporation rate of a cement paste sample versus time: (a) in 

linear scale; (b) in log scale [15] 

Another important factor in moisture distribution problems is the surface factor or convective factor (ƒ). 

This factor determines the moisture exchange between the concrete surface and the atmosphere. It depends 

on several other factors like the w/c ratio [11] and wind speed [29]. A wide range of surface factors is 

reported in literature [(0.75-7.5 mm/day [11]), 18, 29]. However, this parameter can be determined by 

inverse analysis for specific mortar mixes to improve the accuracy of the predicted moisture distribution.  

The hydro-shrinkage coefficient (also called hygral contraction coefficient) is a factor that links free 

shrinkage strain to moisture content. It is a unique material property for each mix type. An exponential 
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relationship was found by Ayano and Wittmann [13] while Huang et al. [28] used a linear relationship to 

simulate non-linear shrinkage in box girders. This factor can also be obtained through inverse analysis.  

3.3 Experimental program  

3.3.1 Mix proportions 

Two plain and two SFRC mixes with 45 kg/m3 (Vf = 0.57%) of recycled clean steel fibres (RCSF) were 

investigated in this study, details of which are given in Table 3.1. Two commercial cement types were used: 

calcium sulfoaluminate cement (CSA); and rapid setting calcium aluminate cement (RSC). River washed 

sand (0-5mm, SG=2.65) was used as fine aggregates. The length of the RCSF used in this study is 21 mm 

and the diameter is 0.2 mm. Further details on the mixes and material characteristics are given elsewhere 

[6].  

Table 3.1 Mix proportions  

Mix Cement (kg/m3) w/c SPa Sand (kg/m3) Fibre dosage (kg/m3) 

CSA 600 0.40 0.6 1420 0 

FCSA 600 0.41 0.61 1420 45 

RSC 600 0.35 0.2 1300 0 

FRSC 600 0.36 0.21 1300 45 

 % by cement mass.      

3.3.2 Flexural and Compressive strength 

To characterize the flexural performance, mortar prisms of 40*40*160 mm were tested according to BS EN 

13892-2, (2002) [30] in displacement control to better capture the post-peak behaviour. A specially 

designed aluminum yoke (based on the Japanese standard JSCE-SF4 [31]) was mounted on the specimens. 

The prisms were tested at different ages ranging from one hour up to one year to assess the flexural 

behaviour over time. After flexural testing, the two parts of the fractured prisms were tested under uniaxial 

compressive loading according to BS EN 13892-2, (2002) [30]. The results in terms of first cracking 

strength (fctm,fl) and compressive strength (fcu) (associated standard deviation is given in brackets) are shown 

in Table 3.2.  
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Table 3.2 Flexural strength (fctm,fl) and compressive strength (fcu) for all mixes (MPa) 

Time (Days) 
FCSA FRSC CSA RSC 

fctm,fl            fcu fctm,fl           fcu fctm,fl            fcu fctm,fl              fcu 

(1hr) 0.0417 3.52         26.13 (4.61) 3.52         21.3 (3.04) 2.58         21.14 (2.96) 2.53          17.23 (1.92) 

(3hrs) 0.125 6.76        31.55 (3.69) 3.54        28.29 (3.54) 3.98         26.92 (2.78) 2.86          24.16 (2.04) 

1 6.46         36.60 (2.27) 4.98        37.92 (2.40) 4.34         31.75 (2.51) 3.54          33.01 (2.00) 

7 8.18        41.05 (3.27) 5.54        46.16 (3.20) 5.30         35.97 (3.02) 4.22          40.38 (2.43) 

28 8.67        43.13 (3.23) 5.65        51.52 (2.88) 5.37         38.62 (2.30) 4.39          46.51 (2.61) 

365 8.67        45.47 (3.03) 5.63       54.49 (6.64) 5.40         40.90 (2.27) 4.48          48.09 (3.74) 

 

3.3.3 Moisture measurement in mortars 

To obtain the time history of the moisture profile, needed to obtain the moisture diffusivity of the repair 

layers, the modified gravimetric method was adopted following the approach of Jafarifar [18]. It involves 

casting all specimens at the same height and then cutting them at different depths before putting them back 

together. Thus, the boundary condition from the underlying depth of the concrete specimens is preserved 

by keeping both segments in contact for the duration of the measurements.  

The specimens were cast in 200*50*50 mm steel moulds. After around the expected setting time, water 

was added to the samples, while still in the moulds and they were covered with plastic sheets to prevent 

moisture evaporation. The setting time of cement pastes was assessed by the authors [6] using an automatic 

Vicat apparatus according to ASTM C191 (2013) [32]. The final setting time for CSA, FCSA, RSC and 

FRSC were 10.5, 11, 14.5 and 15 minutes. After around 40 minutes of curing, the samples were demoulded. 

Each prism was then immediately sliced into two segments at the prescribed depths of 10, 20, 30 mm, under 

wet conditions. Their weights were recorded, and the specimens were directly wrapped with cling film and 

sealed using a high performance ply laminated plastic foil tape. The surfaces 1-5 for the bottom segment 

and 1-4 for the upper part of the sliced specimens were sealed separately (Figure 3.2), creating one 

dimensional drying conditions.  
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Figure 3.2. Sealing specimens for the modified gravimetric method 

After each weight measurement, the two segments were assembled back together (Figure 3.2) and the joint 

was sealed using a new plastic tape (Figure 3.2). The weight measurements were taken at one hour and a 

half, three hours, one day and every day for one week. They were then recorded every week for one month 

and monthly for four months. After four months, the specimens were unwrapped and dried in the oven for 

ten days at 70 C0. After that, the two parts of each prism were weighed. The details of how to determine the 

moisture content at each depth over time are given in [11,18].   

3.3.4 Free shrinkage measurement 

The ASTM C157/C157M (2008) standard [33] for measuring shrinkage of mortars adopts prisms of 

dimension of 25*25*285 mm. However, due to the use of fibres with a length of 21 mm and to minimize 

the boundary effects, it was decided to use bigger prisms of 40*40*160 mm instead. As for the specimens 

used for moisture transport studies, the specimens were cured for around 40 minutes in the moulds. After 

the curing, the specimens were demolded and demec points were attached to them. The total number of 

shrinkage samples for each mix was six prisms. Three prisms were kept in an environmental chamber with 

a relative humidity of 40±3% and temperature of 21±2 C0 to measure the total shrinkage while the other 

three prisms were wrapped in cling film and left in a mist room to measure their autogenous shrinkage. 

After that, they were only unwrapped to take measurements. Shrinkage was measured on both faces of each 

prism using a 100 mm Demec gauge. The shrinkage measurements started at one hour and a half and 

continued at frequent time intervals up to 120 days.  

5 

1 
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3.4 Experimental results and discussion  

3.4.1 Moisture measurements  

The time history of moisture content for each mix is shown in Figure 3.3 (the moisture content at actual 

depths rather than prescribed depths are shown in this Figure). Each curve represents the mean value of two 

samples. The results confirm that drying is non-uniform across the depth of the specimens with faster drying 

at the top. For all the mixes, the water content of the upper layer ranges between 0.59 – 0.62 compared with 

0.67 – 0.78 for the lower layers. 

At the beginning of drying, the rate of drying is relatively faster for RSC and FRSC mixes compared to 

specimens with CSA and FCSA mixes. However, the rate of drying slows down towards the end of the 

drying period. The experimental moisture profiles are used in the following section to back calculate 

moisture diffusivity and surface factor for each mix.  

Although literature states that fibres may affect the moisture transport properties of concrete, in this article, 

however, the fibres inclusion was confirmed not to have a major role on the moisture transport properties 

of rapid hardening mortar mixes, which allows the use of the MC equation [21], that is usually used to 

estimate the moisture diffusivity of plain concrete, to calculate their moisture diffusivities. 
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Figure 3.3. Experimentally measured change of moisture overtime: (a) CSA and FCSA mixes; (b) RSC and FRSC 

mixes 

3.4.2 Free shrinkage results  

The shrinkage evolution with time for all mixes is shown in Figure 3.4. Although a direct comparison 

between the shrinkage of CSA and RSC mixes is not possible due to differences in w/c ratio, 
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superplasticizer dosage and aggregate content, the substantial difference in their shrinkage values can 

mainly be attributed to the different cement types. As expected, mixes with CSA cement showed much 

lower shrinkage strains than mixes with RSC cement. This is due to the expansive nature of their hydration 

products [34] and their higher water consumption during hydration [35]. For RSC cement, the reaction of 

its main component, monocalcium aluminate (CA), with water results in CAH10 and C2AH8 as the main 

hydration products as Equation 3.2 in Equation 3.3 and [2]: 

𝐶𝐴 + 10𝐻 → 𝐶𝐴𝐻10 Equation 3.2 

 2𝐶𝐴 + 16𝐻 → 𝐶2𝐴𝐻8 + 𝐴𝐻3 Equation 3.3 

The subsequent conversion reactions of the metastable phases to the stable phases are: 

2𝐶𝐴𝐻10  → 𝐶2𝐴𝐻8 + 𝐴𝐻3 + 9𝐻 

Equation 3.4 

3𝐶2𝐴𝐻8 → 2𝐶3𝐴𝐻6 + 𝐴𝐻3 + 9𝐻 
Equation 3.5       

While for CSA cement, the main crystalline hydration products (ettringite and monosulfate) require more 

water to form as per Equation 3.6 and Equation 3.7 [35]: 

𝐶4𝐴3𝑆 + 18𝐻 → 𝐶3𝐴. 𝐶𝑆. 12𝐻 + 2𝐴𝐻3 Equation 3.6 (monosulfate formation) 

𝐶4𝐴3𝑆 + 2𝐶𝑆𝐻2 + 34𝐻 → 𝐶3𝐴. 3𝐶𝑆. 32𝐻 + 2𝐴𝐻3 
Equation 3.7 

 

(ettringite formation) 

 

If less free water is available for drying, then less drying shrinkage can occur.  

FCSA develops higher shrinkage strains compared to CSA at all ages. It is known that fibre inclusion 

introduces air in the mix [18, 36]. Also, the water content and SP dosage are higher for FCSA compared to 

CSA mix which can contribute to the higher recorded shrinkage values. 

The provisions of EC, MC and ACI code were followed to obtain the shrinkage development of CSA and 

FCSA mixes with time. Both EC and MC require defining parameters αds1 and αds2 which depend on 
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cement type. For the cements used, these parameters were obtained by nonlinear regression analysis. The 

ACI requires defining the ultimate shrinkage strain εshu. This value was obtained by multiplying the 

cumulative product of the correction parameters (үsh, as defined in [22]) by a factor Ps, obtained by non-

linear regression analysis. The predicted and experimental free shrinkage strain for CSA and FCSA are 

given in Figure 3.5. As shown, the codes can predict the shrinkage evolution of these mixes reasonably well 

provided suitable parameters for cement type are used.  

The autogenous shrinkage strains obtained for both CSA and FCSA sealed specimens were very small 

which indicates that some expansive reactions took place and, hence, not shown in Figure 3.4. On the other 

hand, both RSC and FRSC mixes showed considerable autogenous shrinkage, 1644 µε and 1722 µε at the 

age of 60 days respectively, which accounts for about 64 % and 71% of their total shrinkage at this age, 

respectively. Mixes with RSC cement has higher compressive strength compared to CSA cement mixes. 

Autogenous shrinkage is known to be directly related to compressive strength. In addition to, RSC has 

higher cement fineness that can increase the shrinkage [37]. High autogenous shrinkage can also be 

attributed to conversion of RSC cement. Nevertheless, no compressive strength reduction was noticed for 

RSC and FRSC specimens stored in the same conditions [6].  

By examining further the RSC and FRSC results, it can be seen that drying shrinkage cannot be obtained 

by simply deducting autogenous shrinkage from the total shrinkage as the autogenous shrinkage continues 

at a faster rate than drying, possibly because drying affects the nature of the hydration reactions [38]. 

Therefore, less autogenous shrinkage develops in drying samples. Thus, an alternative method is needed to 

derive the drying shrinkage. MC relates the autogenous shrinkage (shrAuto) to the compressive strength at 

28 days and to the type of cement. As the hydration reactions directly affect the strength development, these 

methods can be used to predict ShrAuto for RSC and FRSC using the compressive strength of the sealed 

specimens, provided that αbs (a factor that is a function of cement type) is accurately calculated. The 

resulting shrAuto for RSC and FRSC, following the MC approach and regression analysis is shown in  Figure 
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3.6. The optimised αbs along with the compressive strength at 28 days of drying samples were used to 

predict the autogenous shrinkage component from the total shrinkage strain. FRSC has slightly higher 

autogenous shrinkage (4.79 %) than RSC prisms, likely due to its higher compressive strength.  

 

Figure 3.4. Experimental shrinkage development for all mixes with time 

The drying shrinkage is obtained by subtracting shrAuto from the total strain. The MC was also used to 

predict the drying shrinkage by assigning suitable αds1 and αds2 for RSC and FRSC, see Figure 3.7. 

Although the ACI code does not consider separate components of shrinkage, it can also be used to predict 

the total shrinkage (Figure 3.7). The shrinkage parameters used to estimate shrinkage for each mix based 

on the different codes are listed in Table 3.3.  

CSA 
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Figure 3.5. Experimental shrinkage of CSA and FCSA prisms and their predicted values based on MC, EC and ACI 

code 

Table 3.3 Shrinkage parameters for various mixes 

Mixes 

Codes 

MC EC ACI 

αds1 αds2 αds1 αds2 Ps α1 

CSA 0.1 0.012 0.29 0.11 108 1.32 

FCSA 1.7 0.012 0.77 0.009 180 1.32 

 

Mixes 

Codes 

MC ACI 

ShrAuto ShrDry ShrTotal 

αbs αds1 αds2 Ps α1 

RSC 17900 7 0.004 1320 1.65 

FRSC 16780 5 0.004 1260 1.63 
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Figure 3.6. Experimental and predicted MC autogenous shrinkage of RSC and FRSC 

 

Figure 3.7. Experimental and predicted total and drying shrinkage of RSC and FRSC 

It is interesting to note that the drying shrinkage of FRSC prisms seems to be smaller than RSC by around 

12.6 % at the age of 365 days. This may be due to the fibre restraining effect. However, it should be noted 

that there is no consensus in the literature about the role of fibres on the free shrinkage strain.  
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3.4.3 Relationship between water loss and shrinkage 

During the period of shrinkage monitoring, the weight of the prisms was recorded periodically.  Figure 3.8 

shows the relationship between water loss percent (W) and shrinkage for CSA and FCSA and RSC and 

FRSC respectively. It is clear that all mixes have a linear relationship between shrinkage and water content 

loss with strong correlations, although, as expected, with different multipliers.  

 

Figure 3.8. Experimental shrinkage versus measured water loss percent for: (a) CSA and FCSA; (b) RSC and FRSC 

prisms 

Such linearity was also reported in [36] for concrete reinforced with post-consumer recycled steel fibres. 

In general, CSA and FCSA have more water loss than RSC and FRSC as they have higher initial water 

content (w/c = 0.4, 0.41 for CSA and FCSA respectively). The relationship also clearly highlights the effect 

of cement type on the shrinkage behaviour of the mixes. For example, for a 2.5 % water loss, the equivalent 

shrinkage for the mixes is 0.000125, 0.000225, 0.00275 and 0.0025 for CSA, FCSA, RSC and FRSC 

respectively. The water loss is also plotted against the calculated drying shrinkage for RSC and FRSC 
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specimens (Figure 3.9). This relationship is essential when introducing shrinkage in FE modeling through 

the hygral contraction coefficient.  

 

Figure 3.9. Calculated drying shrinkage versus measured water loss percent for RSC and FRSC prisms 

3.5 Numerical studies 

3.5.1 Numerical analysis approach 

Heat transfer analysis available in FE package Abaqus was used to model moisture diffusion during drying. 

For this analysis, two parameters are essential; moisture diffusion and surface factor. The MC uses an 

equation that relates moisture diffusivity to relative humidity. As from the measurements taken only the 

normalised moisture content (Cnorm) can be determined, this parameter is adopted instead of relative 

humidity as shown in Equation 3.8. 

𝐷(𝐶𝑛𝑜𝑟𝑚) = 𝐷1(𝛼0 +
1 − 𝛼0

1 + (
1 − 𝐶𝑛𝑜𝑟𝑚

1 − 𝐶𝑐
)

𝑛) 
Equation 3.8                          

where, D(Cnorm) is the moisture diffusivity, D1 is the max diffusion coefficient when Cnorm equals 1.0 and 

the samples are fully saturated (D1 = 1 × 10-8/fck, fck = characteristic concrete strength), α0 represents the 

ratio D0/D1; D0 is the minimum D, Cc is the normalised moisture concentration at D(Cnorm) = 0.5D1.  
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The MC suggested values of α0 = 0.05, Cc = 0.8 and n = 15 were initially used to calculate the diffusion 

coefficient. The resultant D(Cnorm) for each mix was then adopted in the heat transfer analysis.  Diffusive 

heat transfer 20-node quadratic brick elements (DC3D20) were used for the thermal analysis. As in the 

experiments, drying was only permitted through the top surface, which was assigned a surface factor, and 

the other surfaces were considered sealed having no moisture interaction with the environment. At the 

beginning of the drying, the normalised moisture concentration was 100% and the ambient relative humidity 

was considered constant at 40%. Initial values of the parameters for model code model of D(Cnorm) as well 

as surface factors were optimized (Table 3.4) to minimize the difference between numerical and 

experimental moisture profile of each mix.  

To calculate shrinkage deformations, the thermal analysis was coupled with a structural analysis in which 

the thermal expansion is replaced by a hygral contraction coefficient. C3D20R element type was used for 

the structural analysis. The tensile and compressive material characteristics were obtained from the 

experimental results and inverse analysis studies; further details on the procedures used are given elsewhere 

[6]. To accurately predict the shrinkage history, the development of the material properties with time was 

incorporated into the structural analysis through the implementation of the user subroutine, USDFLD. This 

allows the use of solution-dependent material properties and thus the user can define the field variables at 

a material point as a function of time [39]. The hygral coefficient was optimised to minimise the difference 

between measured experimental and FE predicted shrinkage strain.  
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3.5.2 Numerical results and discussion 

3.5.2.1 Determination of moisture diffusivities and surface factor  

The set of parameters implemented in MC equation (Equation 3.8) [21] to determine the moisture 

diffusivity coefficient for each mix are listed in Table 3.4. The calculated moisture diffusivities for different 

mixes, as functions of normalized moisture content, Cnorm, are shown in Figure 3.10. The results show that 

CSA has the highest moisture diffusion at the beginning of drying (34.8 mm2/day) while FRSC has the 

lowest moisture diffusion (24.1 mm2/day). The diffusivity is almost constant at the beginning of drying (for 

1 - 0.77 moisture content), and then decreases sharply before stabilizing again. This behaviour is congruent 

with the mechanism of drying reported for conventional cementitious materials [12, 15, 16, 18]. For RSC 

and FRSC, to minimize the difference between measured and numerical moisture profiles, a slight change 

to MC approach was adopted. The slope of the tail of the moisture diffusivity against moisture content was 

reduced to zero (from Cnorm = 0.66 downwards) instead of being almost constant as predicted by the MC 

equation. 

Figure 3.10. Moisture diffusivity versus normalized moisture content Cnorm 
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A wide range of values is reported for moisture diffusivity (25.92 – 4665.6 mm2/day) for well cured 

concrete specimens [29, 40, 41] and the results of this study seem to agree well with the lower bound of 

this range. 

The back calculated surface factors for the tested mixes range from 4 – 6 mm/day. In addition, it was found 

that this factor only affects the moisture profiles near the drying surface and its effect diminishes quickly 

far from the top surface [18].   

Table 3.4 Optimised parameters for MC equation and inverse analysis  

Mix 

Optimised parameters of Equation 3.8 

SF β(C) 

D1 α0 Cc n 

CSA 34.801 0.05 0.8 15 5 0.00038 

FCSA 30.146 0.06 0.8 20 6 0.00065 

RSC 27.399 0.035 0.7 20 4 0.0048 

FRSC 24.139 0.05 0.7 20 4 0.0045 

 

3.5.2.2 Determination of the hygral contraction coefficient 

The hygral contraction coefficients for the mixes were back-calculated as functions of moisture content, C, 

using the free shrinkage test results. It was found that there is a strong linear relationship between shrinkage 

strain and moisture loss (Section 3.4.3), Equation 3.9.   

(εsh)M =  β(C)  × (C0 − C)           Equation 3.9 

where, (ɛsh)M is the free shrinkage strain, β(C) is the contraction coefficient and C0 is the reference moisture 

content, 1.0. It should be noted that since both the total and drying shrinkage of RSC and FRSC show a 

linear relationship with water loss, the total shrinkage for samples of these mixes was modeled using a 

single hygral contraction coefficient. The calculated values of β(C) are listed in Table 3.4. As expected, 

mixes with calcium aluminate cement (CSA and FCSA) have much smaller contraction coefficient 

compared to the other mixes. However, for FCSA, β(C) is approximately 70% higher than that of CSA. This 
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increase of shrinkage due to fibre addition is much higher than reported in literature. Nonetheless, those 

studies are only limited to Portland cement with/without pozzolanic additions. The value of β(C) for FRSC 

is slightly lower than that of RSC, possibly due to the restraining effect of the fibres at the large shrinkage 

strains developed.  

3.5.2.3 Numerical moisture profiles: Results and Discussion 

 The numerical and experimental moisture profiles are compared in Figure 3.11. As it can be seen, the heat 

transfer analysis based on moisture diffusivities, calculated based on MC equation, predicts well the 

experimental moisture profiles with less than 5% difference.  

3.5.2.4 Numerical shrinkage strain  

The development of shrinkage strain with time, using parameters calculated in the previous sections, is 

compared to the experimental curves in Figure 3.12. As seen in Figure 3.12, the FE analysis satisfactorily 

represents the measured shrinkage, validating the factors adopted in the analysis.  
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Figure 3.11. Numerical and experimental moisture profiles: (a) CSA; (b) FCSA; (c) RSC; (d) FRSC 

  

  

(a) (b) 

(c) (d) 

  

  

(a) (b) 

(c) (d) 
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Figure 3.12. Numerical free shrinkage strain compared with experimental results: (a) CSA & FCSA; (b) RSC & 

FRSC  
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3.5.3 Comparison between numerical shrinkage and shrinkage predicted using MC, EC and ACI 

Code procedures  

The parameters proposed for each code procedure to predict free shrinkage strain are used to obtain the free 

shrinkage of prisms of each mix with four different heights; 20, 30, 50 and 100 mm. The resulting curve 

for each mix, for a specific height, are compared with the FE predicted shrinkage (for that specific height) 

using the same parameters given in previous sections, Figure 3.13- Figure 3.16.  

 

Figure 3.13. Numerical free shrinkage strain compared to shrinkage predicted using different codes for CSA prisms 

of heights: (a) 20 mm; (b) 30 mm; (c) 50 mm; (d) 100 mm 

As seen in Figure 3.13 and Figure 3.14, the procedures are able to predict the shrinkage development of 

CSA and FCSA samples, respectively, over time with reasonable accuracy, especially for thinner sections. 

 

  

 

(b) (a) 

(c) (d) 
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The MC seems to offer the best estimate at both the beginning and the end of drying. However, EC appears 

to slightly overestimate the shrinkage at the beginning of drying while underestimates it towards the end of 

the testing period.  

The estimated curves for total shrinkage development of RSC and FRSC over time against FE predicted 

curves are given in Figure 3.15 and Figure 3.16, respectively. It should be noted that EC was not used to 

predict shrinkage of RSC and FRSC mixes as it does not consider parameters for cement type in autogenous 

shrinkage prediction as it is the case in MC and, thus, was not used to model the shrinkage of RSC and 

FRSC mixes. 
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Figure 3.14 Numerical free shrinkage strain compared to shrinkage predicted using different codes for FCSA 

prisms of depths: (a) 20 mm; (b) 30 mm; (c) 50 mm; (d) 100 mm 

As shown, for very thin sections, ACI offers slightly better predictions of shrinkage development with time 

compared to MC. At thicker sections, however, the MC seems to better capture the shrinkage history as 

ACI tends to overestimate the shrinkage development at the beginning of the testing and rather 

underestimates the shrinkage at later stages.  

 

 

 

(b) (a) 

(c) (d) 
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Figure 3.15. Numerical free shrinkage strain compared to shrinkage predicted using different codes for RSC prisms 

of heights: (a) 20 mm; (b) 30 mm; (c) 50 mm; (d) 100 mm 
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(c) (d) 



78 

 

 

Figure 3.16. Numerical free shrinkage strain compared to shrinkage predicted using different codes for FRSC 

prisms of heights: (a) 20 mm; (b) 30 mm; (c) 50 mm; (d) 100 mm 

3.6 Case studies 

To assess the risk of cracking and/or delamination due to restrained shrinkage in repair layers prepared 

from the mixes developed in this study, the Silfwerbrand procedure [19] is followed. This requires knowing 

the free shrinkage of the overlay, the elastic modulus of the overlay layer and the substrate concrete as well 

as the tensile strength of the repair layer. The interface shear strength and the stiffness (K) should also be 

known.  

To assess the risk of cracking and/or delamination, at one-year of age, the bonding conditions shown in 

Table 3.5 are considered. A layer with dimensions of 50*150*1000 mm is overlaid above an old concrete 

substrate with 200*150*1000 mm. The analysis is run twice for each mix; with and without creep in the 

 

 

 (d) (c) 

(a) (b) 
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overlay. When considering creep, the stresses were calculated by using the modulus of elasticity modified 

by creep coefficients (calculated based on the recommendations of MC 2010 [21]). The modulus of 

elasticity modified by creep is calculated as in Equation 3.10. As the substrate is already a few years old, it 

is considered conservative to neglect its creep deformations.  

𝐸𝑐𝑟 =
𝐸𝑐

(1 +  𝜃𝑐)
 

Equation 3.10 

where, Ecr is the modulus of elasticity modified by creep; θc creep coefficient.   

The calculated tensile stresses for CSA and FCSA overlaid prisms are shown in Figure 3.17 while the shear 

stresses that develop at the interface are presented in Figure 3.18 for different bond conditions (ranging 

from 1-100 to represent very weak to strong bond). The effect of creep is also shown (curves labelled -c).  

Table 3.5 Material properties used for the case studies 

Layer type Ec (GPa) Ecr (GPa) Tensile strength (MPa) 

λL 

 

Substrate 35 ------ ------ 1 

CSA 21.73 9.23 3.52 3 

FCSA 28.00 12.80 4.00 10 

RSC 20.56 10.55 3.02 30 

FRSC 26.11 14.17 3.3 100 

 

As shown in Figure 3.17 and Figure 3.18, neglecting creep leads to an overestimation of both tensile and 

shear stresses. When considering creep, for both CSA and FCSA overlays, the maximum tensile stress that 

develops at the interface is lower than the overlay tensile strength and thus it is predicted that cracking is 

unlikely to develop. However, for the strongest bond condition assumed (λL=100), high values of shear 

stresses develop with 6.11 MPa and 13.15 MPa for CSA and FSCA, respectively, at the edge of the 

composite prism, implying delamination if the shear strength at the interface is assumed to be similar to the 

tensile strength of concrete for well-prepared surfaces.  

For RSC and FRSC overlays, cracking is predicted to occur for most bond conditions as the shrinkage 

strains are very high. The calculated shear stresses are also very high, indicating horizontal separation at 

the interface. However, in practice, as cracks develop, energy is released and shear stresses can drop.  
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The Silfwerbrand procedure does not clearly specify how to determine λL for different surface preparations 

and it is only useful in predicting cracking risk and, thus, the beneficial role of fibres cannot be quantified. 

Therefore, more experimental and analytical work is needed to understand how to accurately estimate λL 

and K for different bond conditions. Such work can help provide better predictions of cracking and 

delamination risks, quantify the role of fibres in materials with high shrinkage values (over 2500 µɛ) and 

residual strength higher than the cracking strength and determine whether or not fibres have a beneficial 

role in resisting/delaying delamination.  

 

 

Figure 3.17. Normal stresses that develop at the interface between CSA overlay and substrate with and without 

creep for; (a) CSA overlay; (b) FCSA overlay 

(a) 

 

(b) 
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Figure 3.18. Shear stresses that develop at the interface between overlay and substrate with and without creep for; 

(a) CSA overlay; (b) FCSA overlay 

 

 

(b) 

(a) 
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3.7 Conclusions 

This paper presents the main outcomes of a series of experimental and numerical studies on the time 

dependent transport properties of rapid hardening plain and fibre reinforced mortars for repair applications 

and on their shrinkage performance. Fibres are necessary to control crack widths in restrained conditions. 

The main findings of this study are: 

• The fibre inclusion was confirmed not to have a major role on the moisture transport properties of rapid 

hardening mortar mixes, which allows the use of the MC equation, usually used to estimate the moisture 

diffusivity of plain concrete, to calculate their moisture diffusivities with good accuracy. 

• Mixes with CSA cement showed much lower shrinkage strains (211 and 367 µɛ) compared to mixes 

with RSC cement (2690 and 2532 µɛ) at 120 days as CSA is expansive cement. Unlike CSA and FCSA, 

RSC and FRSC mixes showed considerable autogenous shrinkage which accounts for around 64 % and 

71% of their total shrinkage at the age of 60 days possibly due to conversion. 

• FE analyses were used in combination with experimental moisture distribution measurements to back 

calculate the moisture diffusivity of the tested mixes. It was found that the moisture diffusivities for 

mixes with rapid hardening cements are high at the beginning of drying (34.8 – 24.14 mm2/day) and 

remain almost constant up to moisture contents of 85% - 75%, for different mixes, then sharply 

decreases upon further drying.  

• There is a linear relationship between shrinkage and moisture loss for all the mixes with good 

correlation ratios.  

• The hygral contraction coefficient, for each mix, were back calculated using inverse analysis for 

measured shrinkage strains. The coefficients range from 0.00038 to 0.0048 depending on the cement 

type and fibre inclusion.  

• MC and ACI equations can be used to predict the shrinkage development with time provided 

appropriate coefficients for each cement type are used.  



83 

 

• Creep was found to play an important role in moderating tensile and shear stresses of the overlays. 

• The Silfwerbrand procedure is used to determine normal and shear stresses in an overlay case study. 

Though the procedure is simple, it relies on parameters (λL and K) that are not easy to determine.  
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Chapter 4: Effect of shrinkage on rapid hardening plain and recycled steel 

fibre concrete overlays 

Al-musawi, H., Huang, H., Benedetti, M., Guadagnini, M., Pilakoutas, K., (2019). Effect of shrinkage on 

rapid hardening plain and recycled steel fibre concrete overlays. Submitted for publication.  

 

Abstract  

The durability and functionality of concrete overlay repairs are highly dependent on the extent of cracking 

and crack widths, which are difficult to predict. This article presents an experimental and analytical 

investigation on restrained shrinkage of overlays made with rapid hardening mortar mixes reinforced with 

recycled fibres. The investigated parameters include cement type (calcium sulfoaluminate cement-CSA and 

calcium aluminate cement-RSC), overlay depth, bond condition and fibre dosage. Sixteen composite prisms 

were tested to determine shrinkage strains and cracking development over time. Both plain (RSC) and fibre 

reinforced (FRSC) overlaid prisms made of calcium aluminate cement developed multiple cracks in less 

than 16 hours due to their high shrinkage values, but 60% lower crack widths developed in FRSC. An 

effective analytical model is derived to estimate the crack spacing of concrete overlays. As concrete crack 

width predictive models are shown to be deficient in predicting the crack width of materials with flexural 

hardening properties, a semi-empirical approach is adopted to quantify the effect of fibres in such matrices. 

The predicted crack widths are in a good agreement with the experimentally measured values. The 

suggested model is expected to make a contribution towards safer and more sustainable solutions for 

concrete repairs. 

This chapter consists of a “stand alone” journal paper and includes a relevant bibliography at the 

end of the chapter. Additional information and further details are presented in Appendix C. 
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4.1 Introduction 

Concrete overlays are increasingly used in both structural and non-structural repairs of concrete structures. 

Cracking and/or delamination are their main structural performance issues, due to tensile and shear stresses 

that develop as a result of restrained shrinkage [1]. Shrinkage in repair mortars (without expansive cements) 

is expected to be high since they are made with cement rich mixes, often with rapid hardening cements, and 

are laid on substrates that can easily absorb moisture. Thus, to preserve the durability and functionality of 

overlays, it is essential to limit crack widths and prevent delamination along the interface.  

Manufactured steel fibres (MSF) are often used as a reinforcement to control shrinkage cracks [2,3]. An 

illustrative example on the beneficial role of fibres in controlling crack widths is a highway in Canada that 

was repaired with plain and fibre reinforced concrete overlays. While the plain sections deteriorated rapidly 

with big cracks and extensive delamination within less than 24 months in service, the fibre reinforced 

overlays showed much less debonding and limited crack widths for the duration of the 12-year monitoring 

period [4-7].  

To promote the sustainability of repairs, suitable alternative recycled materials could be used in concrete 

repairs. Recent research studies at University of Sheffield [8,9] showed that concrete mixes reinforced with 

recycled clean steel fibres, extracted from pre-vulcanised rubber belt offcuts, can result in comparable or 

even better flexural performance than MSF reinforced concrete. These mixes exhibited flexural hardening 

properties even at dosages of 30 kg/m3, indicating their efficiency in resisting loads even after significant 

cracking possibly due to high bond strength. Using such materials is expected to not only enhance 

functionality, but also promote the sustainability of repairs.  

Al-Kamyani et al. [10] found that using 1% blends of MSF and post-consumer recycled tyre steel fibres 

(RTSF) can reduce crack widths by about 34% in structural beams reinforced with steel bars of about 

0.42%. It was also shown that steel fibres contributed in reducing the transfer length between cracks by 
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lowering the tensile strain in the horizontal reinforcement. However, the fibre effect on crack spacing may 

not be the same in overlays [2,11] as fine distributed cracks develop in well bonded overlays made with 

both plain concrete and SFRC, while in unbonded areas of overlays (the overlays are partially bonded), a 

single wide crack developed in which case fibres can help control the cracks [2].  

To estimate crack widths in plain overlays, as for reinforced concrete, the crack spacing is multiplied by 

the concrete free shrinkage ɛcs. In the case of fibre reinforced overlays, the crack reduction attained by fibre 

bridging is often accounted for by utilising the FRC fracture characteristics. For instance, the Swedish 

Concrete Society, in report no 13 [12], considers the effect of fibres by introducing the material residual 

strength factor (R10,20) (Equation 4.1): 

wcr = S. εcs . (1 −
R10,20

100
) Equation 4.1 

where, wcr is the crack width; S is the crack spacing and R10,20 is the residual strength factor (further details 

on how to calculate this factor are given in [13]).  

A similar approach is suggested by Kim et. al. [14] to predict the width of joint openings in thin FRC 

overlays, by utilising either the residual flexural strength factor calculated at (span/150) deflection or the 

fiber aspect ratio (lf/df) as shown in Equation 4.2 & Equation 4.3:  

wCR =  C𝑏 . S. (αt∆T +  εcs){Ka or Kb} Equation 4.2 

 Ka =
50
lf
df

 ≤ 1.0 or Kb = 1 −
fres,FRC

fmor,FRC
 Equation 4.3 

where, Cb: is an adjustment factor to account for the subgrade restraint effect; S is the crack spacing, αt: is 

a coefficient of thermal expansion of FRC; ΔT: is the temperature gradient; fres,FRC : is residual strength of 

FRC obtained from a flexural prism test based on ASTM C1609/C1609M (MPa) [15]; fmor,FRC: is a flexural 

strength of the mortar (MPa). 
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None of the above approaches can be used to predict crack widths in SFRC with flexural hardening 

characteristics, as their flexural residual strength factor will be over one, which surprisingly results in 

negative cracking values for such materials. It should be noted that the onset of cracking is rather related to 

the tensile strength of the matrix rather than their residual characteristics. In addition, the use of the residual 

strength at (span/150) 3 mm deflection (ultimate state) to predict the shrinkage crack widths may 

underestimate the contribution of shorter fibres. Short fibres from post-consumer recycled tyre steel fibres 

(RTSF) were found to control well restrained shrinkage cracks at serviceability limit states [10].  

Furthermore, there is currently no universally accepted design approach to control crack widths or quantify 

accurately the effect of fibres on crack width and spacing of overlays. There are also no experimental data 

or analytical models that show the effect of RCSF on cracks in concrete and mortar repairs.  

The other important aspect for durability and functionality of repairs is having sufficient bond. It is not only 

necessary to obtain distributed small shrinkage cracks [2,11], but it is also crucial to avoid delamination 

and subsequent deterioration. Surface cleaning and treatment, roughness, strength and stiffness of both 

layers and moisture level of the substrate [2, 16-18] were all found to have an impact on the quality of the 

bond. However, the role of fibres on the bond quality is inconclusive. Whilst some researchers [19] point 

out that fibres may not be beneficial in avoiding delamination, as by controlling crack widths less energy 

is released through cracks which means higher bond strengths are required to prevent delamination, others 

[20] argue that the inclusion of 0.5 - 1% (by volume) fibres increases the adhesive bond strength by 100%.   

To address these issues, restrained shrinkage of overlays made of rapid hardening mortar mixes is 

investigated experimentally and analytically in this paper. The parameters examined include cement type 

(two types of rapid hardening cements), overlay depth, bond condition and fibre dosage.  

This paper presents details on the experimental work on restrained shrinkage of overlaid prisms. By using 

the experimental results, a simple analytical model for predicting crack spacing is developed. The available 
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methods of predicting the crack width are reviewed and a modified crack width prediction model is 

developed.  

This chapter addresses objectives 7-10 of the thesis. 

4.2 Experimental program  

4.2.1 Mix proportions and mechanical properties 

Two plain and two SFRC mixes with 45 kg/m3 (Vf = 0.57%) of RCSF were investigated in this study, 

details of which are given Table 4.1. Two commercial cement types were used; calcium sulfoaluminate 

cement (CSA) and rapid setting calcium aluminate cement (RSC), each at 600 kg/m3. River washed sand 

(0-5mm, SG=2.65) was used as fine aggregates. Recycled clean steel fibres (RCSF) were sourced from tyre 

cords extracted from un-vulcanised rubber belts. Their strength is reported to exceed 2600 MPa [8]. The 

length of the RCSF used in this study was 21 mm and the diameter 0.2 mm. Further details on the mixes 

and material characteristics are given elsewhere [9].  

To characterize flexural performance, three 40*40*160 mm mortar prisms were tested according to BS EN 

13892-2, (2002) [21], but using displacement control instead of load control, to better capture the post-peak 

behaviour. A specially designed aluminum yoke was mounted on the specimens to eliminate support 

movements. To assess the flexural behaviour over time, the prisms were tested at various ages, ranging 

from one hour up to one year. After flexural testing, the two fractured parts were tested under uniaxial 

compressive loading according to BS EN 13892-2, (2002) [21]. The results in terms of first cracking 

strength (fctm,fl) and compressive strength (fcu) with their corresponding standard deviation values (listed in 

brackets) are shown in Table 4.1. 
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Table 4.1 Mix proportions and flexural strength (fctm,fl) and compressive strength (fcu) for all mixes (MPa)  

Mix 
Fibre 

dosage 
(kg/m3) 

Sand 
(kg/m3) 

SPa 
w/c 
ratio 

1 hr 3 hrs 1 day 7 days 28 days 365 days 

fctm,fl    
fcu 

fctm,fl   

fcu 
fctm,fl   

fcu 
fctm,fl  

 fcu 
fctm,fl   

fcu 
fctm,fl  

 fcu 

CSA 0 1420 0.60 0.40 
2.6  (0.2)       
21.1 (3.0) 

4.0  (0.2)       
26.9 (2.8) 

4.3   (0.2)      
31.8 (2.5) 

5.3   (0.3)      
36.0 (3.0) 

5.4   (0.3)      
38.6 (2.3) 

5.4  (0.3)       
40.9 (2.3) 

FCSA 45 1420 0.61 0.41 
3.5  (0.4)       
26.1 (4.6) 

6.8  (0.5)      
31.6 (3.7) 

6.5  (0.5)       
36.6 (2.3) 

8.2   (0.8)     
41.1 (3.3) 

8.7   (0.9)     
43.1 (3.2) 

8.7  (1.0)      
45.5 (3.0) 

RSC 0 1300 0.20 0.35 
2.5   (0.2)         
17.2 (1.9) 

2.9  (0.2)        
24.2 (2.0) 

3.5   (0.1)       
33.0 (2.0) 

4.2  (0.2)        
40.4 (2.4) 

4.4   (0.2)       
46.5 (2.6) 

4.5  (0.1)        
48.1 (3.7) 

FRSC 45 1300 0.21 0.36 
3.5 (0.2)       

21.3 (3.0) 
3.5  (0.2)     
28.3 (3.5) 

5.0    (0.2)    
37.9 (2.4) 

5.5   (0.3)    
46.2 (3.2) 

5.7   (0.3)     
51.5 (2.9) 

5.6  (0.3)     
54.5 (6.6) 

a % by cement mass. 

4.2.2 Restrained shrinkage  

4.2.2.1 Construction of concrete substrates and overlays  

For the concrete substrates, 16 prisms 500 mm long, 150 mm wide and with two different depths (120 and 

130 mm) were cast in wooden moulds using conventional ready mixed concrete (CEM I 52,5N; 20 mm 

graded Limestone as coarse aggregate), details of which are given in  

Table 4.2. The top surface of the prisms was mildly steel wire brushed, the day after casting, to expose 

aggregate surfaces. In some specimens (the prisms to be overlaid with RSC and FRSC layers), the top 

surface was further steel wire brushed to accomplish rougher surfaces so as to study the effect of surface 

texture. The specimens, then, were demoulded and kept in a mist chamber for 27 days. To accelerate their 

drying, the specimens were placed in an oven at 80 °C for a week and then left in a standard laboratory 

environment for a few days to cool down. Their top surfaces were thoroughly cleaned. A few hours before 

casting the overlay, water was sprayed on the substrate upper surface and let to dry out to achieve a saturated 

surface dry condition.  

Each batch was used to cast two overlays (the final depths are listed in Table 4.3). After the estimated 

setting time, while still in the moulds, water was added to the top surface of the prisms which were then 

covered with plastic foil up to approximately one hour. They were then demoulded and placed in an 

environmental chamber with a relative humidity of 50 ± 5% and a temperature of 20 ± 2 °C.  
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Table 4.2 Mix proportions of substrate 

Component Cement GGBS Sand Gravel w/c Plasticisera 

Amount (kg/m3) 86 105 900 1060 0.5 1.14 
a Pozzolith 324N Plasticiser (Litre) 

Table 4.3 The depths of overlays and substrate layers (all dimensions are in mm) 

Mixes 
1 2 3 4 

Substrate  Overlay  Substrate Overlay  Substrate  Overlay  Substrate  Overlay  

CSA 120 31 120 30 113 40 113 40 

FCSA 117 35 125 30 112 42 112 42 

RSC 122 28 117 33 116 37 110 40 

FRSC 118 34 124 26 116 37 116 34 

         

4.2.2.2 Restrained shrinkage measurements  

The shrinkage measurements were recorded for the 16 composite prisms at frequent time intervals starting 

from the day of casting and up to approximately 4 months, using a 200 mm Demec gauge. Six measurements 

were taken for each prism; two at the top layer of the overlay (Top1 and Top 2 in Figure 4.1) and two 

readings at each side of the prism (R1 and R2) as shown in Figure 4.1. R1 is around 7-10 from the top while 

R2 is 5-7 mm from the interface. The prisms were also checked for cracks and their widths were recorded 

using a digital microscope with a 300 magnification. The same device was also used to check for any 

horizontal cracking or separation along the interface.  

 

Figure 4.1. The locations of restrained shrinkage measurements for a composite prism 

4.2.2.3 Flexural testing of composite prisms 

After 18 months from casting the overlays, the prisms were tested under a 4-point bending arrangement 
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using a 300 kN universal electromechanical testing machine. Central deflections were measured by using 

Linear Variable Differential Transducers (LVDTs) mounted on a yoke frame, first adopted by Japanese 

Society of Civil Engineers standard [22], to eliminate torsional and local crushing effects. The testing was 

displacement controlled at a rate of 0.3 mm/min until failure. Additional LVDTs were fitted at the interface 

of the opposite ends of each prism to measure any delamination between the interface and the substrate as 

shown in Figure 4.2. The prisms were flipped over so that the overlay is subjected to tension during the 

test. For fibre reinforced specimens, a clip gauge of 12.5 mm length was attached to the overlay at the centre 

to record the local extensions.  

 

Figure 4.2. Flexural testing of overlaid prism 

4.2.2.4 Shear tests on composite sections 

There are several methods to measure the shear bond strength of repairs. A rather easy to preform test is 

the bi-shear test originally proposed by Momayez et al. [23] which is expected to result in low coefficients 

of variation. In this test, three-point loads are applied on composite cube specimens, where the repair layer 

roughly constitutes third of the cube volume, to produce a predominantly shear stress at the overlay 

interface. To avoid boundary effects (mainly due to fibre alignment), it was decided to cast a linear 

composite prism for each mix, similar to those used in shrinkage measurements. The prisms were kept in a 

mist room before testing. As the overlays for these testes were 40 mm deep, the prisms were reduced to a 

depth of 120 mm to comply with the requirements of the three-point test. Their overall dimensions were 

120 ×150 × 150 mm (see Figure 4.3). Three specimens were produced from each prism. A 300 kN universal 
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testing machine was used to apply the load. The tests were displacement controlled at a rate of 0.3 mm/min. 

One LVDT was used to measure the shear displacement, as a DIC system monitored the other side of the 

specimen.   

 

Figure 4.3. Shear specimen after testing 

4.2.2.5 Experimental results and discussion 

The shrinkage development with time for all prisms is shown in Figure 4.4 to Figure 4.7. The measurements 

at the top (Top1 and Top2) and sides (R1-S1 and R1-S2 [R1-avg], R2-S1 and R2-S2 [R2-avg]) were averaged for 

each prism. In Figure 4.4 to Figure 4.7, only the average readings (Topavg, R1-avg and R2-avg) are reported. 

For comparison purposes, the predicted free shrinkage strain of each overlay is shown in those Figures as 

well. Free shrinkage strain for each overlay can either predicted using numerical tools or estimated using 

code equations and parameters suggested in a previous work published by the authors [24]. Free shrinkage 

strain shown in these Figures is numerically predicted. As the pair CSA1 and CSA2 as well as the pair CSA3 

and CSA4 have approximately the same dimensions and similar interface characteristics, their shrinkage 

values were averaged (see Figure 4.4). Overall, CSA prisms show less measured shrinkage strains (losses) 

compared to FCSA prisms (see Figure 4.4 and Figure 4.5), as the total free shrinkage of FCSA mix is higher 

than CSA. However, a direct comparison between CSA and FCSA composite prisms is not entirely possible 

due to different bond preparations for each mix. FCSA prisms had rougher interface surfaces than CSA 

LVDT 
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prisms (see Figure 4.8) and thus, their interface stiffness is expected to be higher, resulting in bigger restraint 

of shrinkage of overlays. It should be noted that neither CSA nor FCSA overlaid prisms showed any cracks 

until flexural testing at one and a half years’ time. On the other hand, cracks were developed on RSC and 

FRSC prisms in less than 16 hours after mixing. Further cracks appeared a few days after casting and no 

additional cracks were noticed 7 days after casting. The final crack locations are shown diagrammatically 

in Figure 4.9 for RSC and FRSC prisms. Hence, for the RSC and FRSC composite prisms, the strain 

measurements are heavily influenced by the presence of shrinkage cracks. Despite the higher free shrinkage 

strain of RSC mix (Figure 4.6), RSC composite prisms showed less shrinkage strains in comparison with 

FRSC prisms.  

 It is worth mentioning that only two RSC prisms showed local delamination at one end of the prism at nine 

months age. However, the horizontal cracks did not propagate into the inner parts of the prisms until testing 

in flexure.  
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Figure 4.4. Shrinkage development with time for composite prisms: (a) Average of CSA1 &CSA2; (b) CSA3 & CSA4 

 

Figure 4.5. Shrinkage development with time for composite prisms: (a) FCSA1; (b) FCSA2; (c) FCSA3; (d) FCSA4 

  

Fig. 4. Shrinkage development with time for composite prisms: (a) Average of CSA1 &CSA2; (b) CSA3 & CSA4 

  

  

(c) (d) 

(a) 
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Figure 4.6. Shrinkage development with time for composite prisms: (a) RSC1; (b)RSC2; (c) RSC3; (d) RSC4 

  

  

(c) 

(a) (b) 
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.  

Figure 4.7. Shrinkage development with time for composite prisms: (a) FRSC1; (b) FRSC2; (c) FRSC3; (d) FRSC4 

  

  

(b) 

(c) (d) 
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Figure 4.8. Substrate prisms to be overlaid with: (a) CSA prisms; (b) FCSA prisms 

It should be noted that at the time of casting the overlays, the base prisms had approximately 50 % humidity. 

Although their top surfaces were moistened prior to overlying, it is expected that the base layer would 

absorb some moisture from the overlay. Therefore, the base layer can swell depending on the amount of 

moisture transferred from the overlay, creating a shrinkage gradient across the depth of the prism. This is 

because the overlay dries faster from the top surface than towards the substrate. This is exacerbated by the 

fact that the top layer tends to have more shrinkage than the lower layer due to non-uniform constituents’ 

distribution (as more aggregate tend to settle in the lower part of the section) [25] and bleeding [26]. This 

can be noticed in the shrinkage strain results of the composite prisms, where the top layer shrinks more than 

the lower sides of the prisms. This is more pronounced in prisms with higher shrinkage strains. Differential 

shrinkage is expected to cause higher peak tensile stresses in the overlays compared with the simple uniform 

shrinkage distribution usually assumed in generic models for shrinkage estimation. Non-uniform shrinkage 

was also reported by Younis et al. [26] and Al-Kamyani et al. [27].  

 

 

 

 

 

 

(a) (b) 
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Figure 4.9. Crack spacing for composite prisms: (a) RSC1; (b) RSC2; (c) RSC3; (d) RSC4; (e)FRSC1; (f)FRSC2; (g) 

FRSC3; (h)FRSC4 

 

RSC1 RSC2 

RSC3 RSC4 

FRSC1 FRSC2 

FRSC3 FRSC4 
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4.3 Degree of restraint of the base layer 

To understand the role of the base in restraining the overlay, Carlsward [2] calculated the degree of restraint 

(ψ) for various stiffness ratios m (m = Eb/Eo, where Eb is the modulus of elasticity of the base layer while 

Eo is the modulus of elasticity of the overlay layer) and geometrical relations α (α = ho/H where ho is the 

overlay depth and H is the total depth of the composite prism) based on Silfwerbrand [28], Equation 4.4: 

ψ =
m. (1 − α). (m.  (1 − α)3 +  α2 . (3 +  α))

m + (m − 1). (m. (1 − α)4 − α4 )
 Equation 4.4 

He concluded that the degree of restraint increases rapidly for α smaller than 0.15, while it is almost constant 

for α values in the range of approximately 0.15-0.75. For bigger α values, the restraint will diminish, see 

Figure 4.10.  

The ψ values for RSC and FRSC prisms are plotted in Figure 4.11 using time dependent values of modulus 

of elasticity for both layers. As shown, the restraint levels range approximately between 0.71 – 0.81 at early 

ages and then decrease with time as the overlay stiffness evolves. It should be noted that those prisms 

developed cracks in less than 24 hours and thus, it can be assumed that the restraint levels were very high 

already from early ages.  

 

Figure 4.10. Degree of restraint ψ as a function of the relative overlay depth α for different stiffness relations 

between overlay and substrate m based on the Silfwerbrand model (after Carlsward [2]). 

ages.  

 
 

α 

 

ψ 
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The degree of restraint offered by the reinforcement in conventional RC is much lower, in the level of 0.1 

- 0.2, which means the crack spacings of overlays will be dominated by the total free shrinkage rather than 

the strain in the reinforcement. This means that the crack spacing and development will be different than in 

RC and more influenced by how fast the interface bond can develop the overlay tensile force. 

 

Figure 4.11. Degree of restraint ψ for RSC and FRSC prisms with time 

4.4 Cracking Results 

4.4.1 Crack spacing 

4.4.1.1 Experimental crack spacings 

The crack spacings of RSC and FRSC are shown in Figure 4.9. MC 2010 [16] adopts a value of 1.7 for the 

ratio between maximum and average crack spacing when calculating the crack widths of conventional 

reinforced structural concrete beams. To understand the relation between average and maximum crack 

spacing of overlays, their distribution should be examined first. After performing the normality tests in 

SPSS [29], the distribution of spacings and normalised spacings appear to follow the normal distribution 

curve despite some variation due to inhomogeneity of the materials. Figure 4.12 shows the frequency 

distribution of the measured crack spacings while Figure 4.13 shows the frequency distribution of the 
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normalised measured crack spacing to the average crack spacing of all prisms. The calculated 5% 

exceedance value for the normalised distribution curve is 1.64. This value can be used to determine the 

ratio of the maximum crack spacing to the average crack spacing (Smax/Savg) and is very close to the MC 

adopted value of 1.7 for the ratio between max and average crack spacing. Hence, it is reasonable and 

conservative to accept that MC value of 1.7 can be used to predict maximum crack widths for overlays.  

 

Figure 4.12. Frequency distribution of the measured crack spacings of all cracked prisms 

 

Figure 4.13. Frequency distribution of the normalised crack spacings 

 

 



107 

 

4.4.1.2 Predicting crack spacings 

4.4.1.2.1 RC  

To examine crack spacing in FRC overlays, it is worth examining the effect of fibres on cracks in 

conventional reinforced concrete (RC). The addition of fibres to RC is expected to reduce crack spacing 

compared with conventional RC without fibres, due to the reduction in the tensile stresses in the longitudinal 

bars at the cracked section [10, 30]. Assuming the bond stress along the bar is constant, the transfer length 

is expected to reduce to maintain equilibrium of forces between the cracked section and the no-slip section 

(Figure 4.14). It should be noted that the shear stress τsm is not uniform along the length of the bar, but the 

equilibrium principle is still valid when an average bond stress is assumed.  

 

Figure 4.14. Effect of fibres in reducing transfer length, Groli (2014) [30]. 

4.4.1.2.2 No Fibres 

Now, to understand the role of fibres on shrinkage crack spacing for composite concrete sections without 

conventional reinforcement, the crack spacing should be quantified for composite sections without fibres 

first.  
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Figure 4.15. Concrete overly system with multiple cracks: (a) Plain overlay; (b) FRSC overlay 

Figure 4.15shows a composite section with multiple cracks developed in an overlay layer due to shrinkage, 

as the base layer restrains the free shrinkage of the overlay through bond stress at the interface. As in the 

previous example, the stress levels shown in the figure along sections represent averages rather than the 

actual stress distributions which are more complex. In fact, the normal stress across the depth of each layer 

is not uniform due to shrinkage gradient and the shear stresses are also highly nonlinear. To facilitate 

calculations, average stresses and shrinkage strains are used.  

To maintain equilibrium conditions between the cracked and free section, the following expressions are 

obtained: 

σb1Ab =  σb2Ab +  σ0A0        Equation 4.5 

σb1Ab =  σb2Ab + 0.5 Smτ b                                              Equation 4.6 

 

 

 

σb2Ab 

σb1Ab 

σoAo 

σb2Ab 
σb1Ab 

σoAo 

(a) 

(b) 
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where, σb1 is the nominal average stress of the base layer at the cracked section; Ab is the cross-sectional 

area of the base; σb2 is the average stress of the base layer at the crack-free section; σo is the average stress 

of the overlay at the crack-free section; Ao is the cross-sectional area of the overlay; Sm is the average crack 

spacing; τ is the average shear stress at the interface between the overlay and the base; and b is the width 

of the overlay. 

Since no reinforcement is added to the overlay, the contribution of the concrete layer is taken as zero at the 

cracked section. By using Equation 4.5 & Equation 4.6, the average crack spacing can be determined by: 

𝑆𝑚 =
2𝜎0ℎ0

𝜏 
                                         Equation 4.7 

                            

4.4.1.2.3 With fibres 

When fibre reinforced overlays crack, the stress at the crack locations does not drop to zero. Therefore, the 

shear stress at crack locations is expected to be smaller than the shear stress developed in plain overlays 

and the tensile contribution of the overlay, f(w) Ao,eff (residual tensile strength multiplied by the effective 

area, see Figure 4.15.a) needs to be taken into account. This term should be included in Equation 4.5, 

resulting in Equation 4.8 for Sm of FRC overlays: 

Sm =
2 (σoho − fw h0,eff )

τ
 Equation 4.8 

Though the numerator is reduced, the average crack spacing is not anticipated to significantly decrease as 

the shear stress value will reduce as well. This is natural since the onset of cracking is dependent on the 

matrix tensile strength itself and not on the presence of fibres. This result differs from the case of 

conventional RC with fibres where the fibres are expected to reduce the crack spacing. In addition, the risk 

of delamination in FRSC overlays is lower as the developed shear stresses are smaller than in plain overlays. 

This may explain the absence of any delamination in the FRSC prisms examined in this study while two of 

the plain prisms locally debonded at their free edges.  
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Equation 4.7 and Equation 4.8 show that the crack spacing is proportional to the overlay depth and to the 

ratio of axial tensile stress to shear stress at the interface. Using these equations, the ratio of σ/τ is calculated 

using experimental crack spacings and the overlay depths, as shown in Table 4.4. The distribution of the 

calculated ratios rather follows the log normal distribution. If the average σ/τ value of 1.34 is used, then the 

average crack spacing of overlays is as in Equation 4.9: 

Sm = 2.68 ho Equation 4.9 

Table 4.4 The calculated σ/τ using experimental crack spacings and the overlay depths 

Spacing 

(mm) 

Overlay 

depth 

(mm) 

σ/τ 
Spacing 

(mm) 

Overlay 

depth 

(mm) 

σ/τ 
Spacing 

(mm) 

Overlay 

depth 

(mm) 

σ/τ 

216 34 3.176 108 34 1.588 74 26 1.423 

177 33 2.682 107 40 1.338 73 37 0.986 

176 34 2.588 105 37 1.419 72 37 0.973 

169 34 2.485 103 34 1.515 72 37 0.973 

164 28 2.929 102 34 1.500 71 37 0.959 

161 34 2.368 101 28 1.804 71 37 0.959 

156 37 2.108 101 34 1.485 120 40 1.500 

146 28 2.607 100 33 1.515 69 26 1.327 

144 26 2.769 100 37 1.351 66 26 1.269 

138 28 2.464 100 40 1.250 64 28 1.143 

138 34 2.029 100 34 1.471 64 37 0.865 

138 34 2.029 98 37 1.324 62 37 0.838 

137 26 2.635 98 34 1.441 59 40 0.738 

134 28 2.393 93 37 1.257 56 33 0.848 

134 33 2.030 91 26 1.750 56 37 0.757 

133 28 2.375 90 40 1.125 56 26 1.077 

133 33 2.015 90 40 1.125 54 33 0.818 

129 40 1.613 85 26 1.635 54 34 0.794 

127 34 1.868 83 26 1.596 54 34 0.794 

127 37 1.716 80 37 1.081 52 37 0.703 

126 37 1.703 80 26 1.538 48 37 0.649 

123 33 1.864 79 26 1.519 42 37 0.568 

120 28 2.143 78 37 1.054 39 37 0.527 

116 40 1.450 78 34 1.147 38 37 0.514 

115 40 1.438 77 37 1.041 36 26 0.692 

113 33 1.712 77 34 1.132 16 37 0.216 

110 33 1.667 76 37 1.027       

108 37 1.459 74 40 0.925       
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However, as the above result utilises average shear stress values, it is worth examining the expected shear 

distribution in cracked and uncracked overlays as high shear stresses could lead to delamination rather than 

cracking. 

4.4.1.2.4 Shear distribution  

For non-cracked prisms, the shear stress is expected to peak at the edges and substantially reduce towards 

the middle of the prism. The axial stresses are zero at the free edges and increase over a distance, defined 

as lt, to a constant value (σx,max) (see Figure 4.16). When σx,max exceeds the tensile strength of the overlay, 

the overlay section cracks and the tensile stress drops to zero and the shear stresses change accordingly. To 

quantify the stresses for non-cracked overlaid prisms, Jonasson [31,32] adopted the following equilibrium 

equations: 

𝑁𝑥 = ∫ 𝜎𝑥
−

𝐻

2
+ℎ𝑜

−𝐻/2
. 𝑑𝑧    Equation 4.10 

∫ τxz . dx = Nx
l

0
   Equation 4.11 

where, Nx is the normal force; σx is the overlay normal stress; τxz is the average shear stress along the 

interface; ho is the overlay depth.  

With the use of numerical analysis and assuming a triangular shear stress distribution with a maximum 

value of τxz,max at the free edge (Figure 4.17), Jonasson found that the shear distance (X2) at which shear 

stresses reduce to zero is approximately three times the overlay depth (3ho).  As this distance leads to the 

peak normal stress σx, it means that this distance will eventually be the minimum crack spacing. This 

spacing value is slightly higher than the value of 2.68 found for the average spacing of the cracked overlay 

sections, which indicates that the triangular shear stress distribution is a conservative estimate.  

For both RSC and FRSC, multiple cracks developed in the overlay layer (Figure 4.9) which indicates a 

strong bond condition. If the surfaces were not prepared well to develop good shear strength, then 

delamination might have occurred first. The recorded crack spacings approximately ranged between ho and 
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5ho.  The results of this study agree with the observations of Laurence et al. [33] who noticed that, for 400 

× 400 mm overlays, the crack pattern was rather related to the overlay depth, such that thicker overlays 

have bigger crack spacings and wider cracks. The reported spacings were of the order of 1-3 times the 

overlay depth. It should be remembered that smaller crack spacings are not necessarily an issue, as it is the 

maximum crack spacing that determines the maximum crack width.    

 

Figure 4.16. Assumed distribution of tensile stresses in the overlay and interfacial shear stresses (after Carlsward 

[2]) 

 

Figure 4.17. Interfacial shear stresses in the end zone due to normal stress σx at a distance l from the support, 

Jonasson [31] 

It should also be noted that when assuming uniform shrinkage strain distribution and homogenous material 

properties, the crack is expected to start at the interface and propagate towards the upper layer of the overlay. 
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However, since the shrinkage distribution is in fact non-linear, with faster drying from the top layer that is 

relatively weaker, the crack starts at the top of the overlays and propagates downwards.  

4.4.2 Restrained shrinkage  

To estimate crack widths in overlays, the Swedish Concrete Society utilises the concrete free shrinkage 

strain ɛcs (see Equation 4.1). However, using the total free shrinkage strain will naturally overestimate the 

crack widths, as concrete is still restrained in between cracks.  

The restrained shrinkage strain depends on the restraint level provided from the base (which can be 

quantified by using ψ). By using the restraint values shown in Figure 4.11, the predicted restrained 

shrinkage strain (ɛre) versus the experimentally determined restrained strain values (obtained by subtracting 

the measured shrinkage strain on the top of the overlays from the free shrinkage strain) are given in Figure 

4.18.  It can be seen that using a constant ψ yields a fairly accurate value for the restrained shrinkage strain 

and can be adopted to predict crack widths in overlays. However, creep (ɛcr) should also be taken into 

account to obtain more accurate results.  

It should be noted that the shrinkage at the top of the overlays should be used to predict crack widths due 

to restrained shrinkage. However, this is more difficult to obtain than the average shrinkage of free overlays 

with uniform shrinkage distribution, which can be easily obtained by using current code equations and 

parameters suggested by the authors in a previous study [24] or can be predicted numerically. A comparison 

between the two shrinkage values for RSC1 is shown in Figure 4.19. Apart from the slight difference at the 

early ages, the uniform average shrinkage of overlays is accurate in predicting the shrinkage strain 

development at the top of restrained overlays and, hence, can be adopted in design.   
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Figure 4.18. Calculated versus predicted restrained shrinkage of: (a) RSC; (b) FRSC prisms 

 

Figure 4.19. A comparison between shrinkage at the top of overlays and average shrinkage of RSC1 

4.4.3 Crack width analysis 

Based on the analytical crack spacing and experimental observations, the average crack width for 

unreinforced overlays can be roughly estimated as:  

wcr,avg = Sm . (εcs −  εl − εcr )                        Equation 4.12 
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where, ɛcs is the free shrinkage strain; ɛl is the losses (unrestrained) strain and ɛcr is the creep strain.  This 

equation can be written as: 

wcr,avg = Sm . (ψ. εcs −  εcr )     Equation 4.13 

where, ψ is the restraint factor obtained using Equation 4.4. 

The maximum crack width that develops in a plain overlay can be calculated by multiplying the average 

crack spacing by P (the percent of Smax/ Savg , 1.7) . The maximum crack width thus can be estimated as: 

wcr,max = P. Sm . (ψ. εcs −  εcr )   Equation 4.14 

For fibre reinforced overlays, the effect of fibres on cracking is normally considered by using the post-

cracking flexural residual strength concept [12,14]. However, the flexural results of this study (see Figure 

4.20) show a clear deflection hardening for all tests and, thus, the flexural residual strength factor will 

greater than one and negative cracking values will be predicted for such materials. Therefore, this concept 

should be adjusted to better consider the effect of fibres on shrinkage cracks.  

 

Figure 4.20. Load-deflection response of rapid hardening fibre reinforced mortars tested at different ages: (a) 

FCSA; (b) FRSC [9] 

 

 

(a) (b) 
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A close look at the tensile σ – ɛ relationships obtained by inverse analysis in a previous study conducted by 

the authors [9] (Figure 4.21) reveals that deflection hardening in the flexural test does not necessarily mean 

strain hardening in tension. Therefore, the tensile strength and post-cracking tensile stresses may offer a 

better material parameter to quantify the effect of fibres.  

 

Figure 4.21. Tensile σ – ɛ curves for mixes at different ages for FRSC mixes 

MC 2010 [16] uses the loss in stress fctm- fFtsm (where fctm is the concrete mean tensile strength and fFtsm is the 

average value of the residual strength of FRC) to consider the contribution of fibers in reducing crack widths 

in structural beams. Although the stress at the cracked section of FRC is a function of the crack width (f(w)), 

it is reasonable to consider a constant stress value for serviceability limit checks. 

Based on the above discussion, it is proposed that the maximum crack width of SFRC overlays is calculated 

by using the following equation: 

wcr,max = P. sm. (ψ. εcs. − εcr). (1 −
fFtsm

fct

) Equation 4.15 

MC 2010 [16] adopts the value of 0.45fR1 (residual flexural strength calculated at 0.5 mm CMOD) for fFtsm. 

This value, however, seems to overestimate the energy absorption capacity of FRSC at service loads for the 

mixes used in this study [9]. Similar observations were reported by Hu et al. [34] when modeling flexural 

results of concrete reinforced with industrial and post-consumer recycled steel fibres. Therefore, Hu et al. 

[34] suggested using 0.27fR1 for predicting the stress at the serviceability limits of concrete reinforced with 

blends of MSF and RTSF.  
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To determine the relationship between the actual tensile stress (σ1) obtained from inverse analysis [9] at the 

serviceability limit and the residual strength (fR1) for matrices reinforced with RCSF, it was decided to 

normalise σ1 by fR1 obtained from flexural tests. As only one fibre dosage and one fibre length was used in 

this study, the results of Hu et al. [8], who tested concrete prisms reinforced with different RSCF and RTSF 

dosages, are also considered. Three mixes reinforced with 45 kg/m3 of 60 mm RCSF, 30 kg/m3 of 60 mm 

RCSF and a mix with 35 kg/m3 of 60 mm and 10 kg/m3 of post-consumer steel fibres are included. For the 

mixes tested in this study, only the results of mature mixes (at ages of 28 days and 365 days) are considered. 

The σ1/ fR1 ratios for the five mixes are shown in Figure 4.22. As the value are characterised by a low scatter, 

the average value of 0.2fR1 is considered reasonable to calculate the fFtsm for matrices reinforced with RCSF.  

 

Figure 4.22.  Relationship between RCSF dosage contained in each SFRC mix and σ1/fR1 ratio 

The predicted maximum crack widths of RSC and FRSC overlays using Equation 4.14 & Equation 4.15  

versus the measured maximum crack widths are given in Figure 4.23. The average value for the ratio of 

predicted crack width to measured crack width is 1.08 and 1.06 for RSC and FRSC, respectively, while 

their corresponding standard deviations are 0.51 and 0.19. It can be seen that the proposed equations can 

predict the maximum crack widths fairly well.  
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Figure 4.23. Predicted versus measured crack widths for overlays of: (a) RSC; (b) FRSC 

4.5 Flexural behaviour of composite prisms  

The load - deflection behaviour of all fibre reinforced composite prisms is shown in Figure 4.24. It should 

be kept in mind that RSC and FRSC prims were cracked prior to testing due to restrained shrinkage, while 

CSA and FCSA composite prisms were uncracked. The plain prisms failed directly after developing a major 

crack at the middle third part of the prism that started at the lower surface of the overlay and propagated 

into the substrate layer. For clarity, these results are not shown in Figure 4.24. The composite flexural load 

and the estimated capacity of the substrate layers alone (shown in brackets) are listed in Table 4.5. The RSC 

prisms presented the lowest loading capacity (very near the capacity of the overlay alone), while the FRSC 

specimens showed considerable resistance despite being cracked. Both FCSA and FRSC prisms continued 

to carry load after the peak load, but their capacity gradually decreased with increasing displacement. For 

RSC and FRSC prisms, the failure flexural crack always developed from a shrinkage crack. The flexural 

capacity of FCSA prisms is much higher than that of the cracked FRSC specimens.  It should be noted that 

the two RSC prisms, which exhibited local debonding at the end of the drying period, did not show any 

further delamination upon loading and development of flexural cracking.  

 

  

(a) 
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Table 4.5 Maximum load capacity for all composite prisms and their estimated substrate capacity (in brackets). All 
values are in kN. 

Mix Prisms 

CSA 
CSA1 CSA2 CSA3 CSA4 

31.99 (22.19) 32.89 (22.19) 33.25 (19.99) 33.12 (19.99) 

FCSA 
FCSA1 FCSA2 FCSA3 FCSA4 

46.80 (21.24) 40.97 (23.83) 48.38 (19.69) 47.44 (19.69) 

RSC 
RSC1 RSC2 RSC3 RSC4 

23.56 (22.84) 23.42 (21.24) 25.13 (20.92) 18.50 (19.08) 

FRSC 
FRSC1 FRSC2 FRSC3 FRSC4 

32.34 (21.55) 35.87 (23.50) 37.16 (20.92) 37.15 (20.92) 

  

Figure 4.24. Load versus average deflection of composite prisms with: (a) FCSA; (b) FRSC overlays 

In order to analyse a fully bonded composite beam, Gere [35] employed the classical beam theory concepts 

and derived the following expressions (Equation 4.16 & Equation 4.17): 

E1 ∫ ydA
1

1

+ E2  ∫ ydA
1

2

= 0 Equation 4.16 

σ2 =
MyE2

E1I1 + E2I2

 Equation 4.17 

 

 



120 

 

where, σ2 is the flexural stress of the lower layer; M is the applied bending moment; y is the distance from 

the bottom fibre to the neutral axis, E1 & E2 are the moduli of elasticity of the top and lower layer materials, 

respectively; I1 & I2 are the moments of inertia of the top and bottom layer materials with respect to the 

neutral axis, respectively.  

The predicted capacity of the fully composite prisms, using these Equations, is given in Table 4.6. As can 

be seen, shrinkage has a considerable impact on the flexural capacity of overlays. However, the fibres 

reduced this effect after hygral cracking development. Therefore, it is expected that fibre reinforced overlaid 

pavements will withstand much higher fatigue loads than plain overlays.  

Table 4.6 Tensile stresses that develop at the overlay bottom under the flexural loading (MPa) 

Mix Prisms  
Average 

stress 
fctm,fl 

Loss in flexural 

strength (%) 

CSA 
CSA1 CSA2 CSA3 CSA4 

3.52 5.40  34.8 
3.40 3.54 3.57 3.56 

FCSA 
FCSA1 FCSA2 FCSA3 FCSA4 

5.41 8.67 37.6 
5.62 4.68 5.72 5.61 

RSC 
RSC1 RSC2 RSC3 RSC4 

2.38 4.48 46.9 
2.42 2.48 2.60 2.03 

FRSC 
FRSC1 FRSC2 FRSC3 FRSC4 

4.16 5.63  26.11 
3.75 4.18 4.29 4.43 

4.6 Shear tests results  

The max shear load, displacement and strength values of all specimens tested in shear are reported in Table 

4.7 along with their standard deviation (listed in brackets). As the interface surface of all prisms was rough 

and clean when overlaid, the shear strength of these mixes was expected to be relatively high. It should be 

noted that several plain and fibre reinforced specimens developed two shear plane failures.  

MC 2010 [16] suggests the following equation to predict the design shear strength of composite concrete 

sections without reinforcement crossing the interface: 

𝑉𝑢 = 𝐶ℎ . 𝑓𝑐𝑡𝑑         Equation 4.18 
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where, Vu is the ultimate shear strength, (MPa); Ch is a coefficient of cohesion, a value of 0.5 is suggested 

for an indented surface (shear keys).  

If the tensile strength of the weakest surface is considered (substrate) (based on recommendations of MC 

[16]), then the predicted shear strength (using Equation 4.18) is around 1.5 MPa. This value is significantly 

lower than the experimental values obtained for well-prepared surfaces.  It should also be mentioned that 

the fibres seems to have a positive effect on the shear strength of overlays.  

Table 4.7 Maximum shear load (kN), displacement (mm) and strength (MPa) for different mixes 

Specimen FCSA1 FCSA2 FCSA3 CSA1 CSA2 CSA3 

Load 

Displacement 

126 

(0.007) 

117 

(0.006) 

154 

(0.014) 

96 

(0.002) 

140 

(0.015) 

139 

(0.009) 

Shear mean load 132 125 

Shear strength  

Mean 

2.8 2.6 3.4 2.1 3.1 3.1 

2.9 (0.4) 2.8 (0.6) 

Specimen FRSC1 FRSC2 FRSC3 RSC1 RSC2 RSC3 

Load 

Displacement 

171 

(0.004) 

129 

(0.008) 

118 

(0.008) 

100 

(0.005) 

97 

(0.012) 

107 

(0.004) 

Shear mean load 139 101 

Shear strength  

Mean 

3.8 2.9 2.6 2.2 2.2 2.4 

3.1 (0.6) 2.2 (0.1) 

 

4.7 Conclusions  

This paper presents an experimental and analytical investigation of on the evolution of hygral stresses, 

strains and cracking in rapid hardening plain and fibre reinforced mortar layers used for repairs. The main 

findings are: 

• The measured shrinkage strain on composite prisms depends on the free shrinkage strain of the overlay 

mix and the relative dimensions of the layers.  

• None of the CSA and FCSA overlays showed any cracking for the duration of the test. Although RSC 
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and FRSC overlays developed multiple cracks at the edges of the prisms in less than 16 hours, minimum 

or no delamination was observed. This is attributed to the good bond conditions developed by good 

surface preparations.   

• Shrinkage strains are not uniform across the depth of the overlay as the top layer tends to have higher 

shrinkage values compared to the lower part of the overlay. This results in shrinkage gradient across 

the depth, and bigger shrinkage cracks at the top.  

• It is shown that fibres have little effect on the crack spacing of concrete overlays and that the ratio 

between maximum and average crack spacings is approximately 1.7, which coincides well with the 

value suggested by MC 2010 to quantify the ratio of crack spacing for conventional RC. A simple 

analytical model is presented to estimate the spacing of cracks of overlays. 

• None of the available approaches in literature can predict the contribution of RCSF on the crack width 

of overlays.  A simple approach, based on tensile stress loss, is developed to predict the crack width of 

RCSF reinforced overlays. The predicted widths of cracks of RSC and FRSC composite prisms using 

the suggested approaches agree well with the measured experimental crack widths.  

• RCSF was found to reduce the width of cracks by around 60% for fibre reinforced overlays compared 

to plain overlays.  

• Restrained shrinkage and subsequent cracking have a negative impact on the flexural capacity of 

composite prisms. However, RSCF tend to mitigate this effect by bridging cracks and providing higher 

resistance to flexural loads. Therefore, the use of fibre reinforced concrete for the repair of structures 

is expected result in better durability and extended fatigue life.  

• Fibres are found to have a positive effect on the interfacial shear strength of overlays.  
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Chapter 5: A numerical study on the effect of restrained shrinkage on 

rapid hardening plain and recycled clean steel fibre concrete overlays  

 

Al-musawi, H., Huang, H., Guadagnini, M., Pilakoutas, K., (2019). A numerical study on the effect of 

shrinkage on rapid hardening plain and recycled steel fibre concrete overlays. Submitted for publication.  

 

Abstract  

This article presents FE numerical studies on restrained shrinkage of plain and fibre reinforced rapid 

hardening mortars. Moisture diffusivity analysis is coupled with structural analysis to calculate the 

evolution of hygral stresses, strains and cracking over time. The numerical results are validated against 

results from analytical models and compared to measured experimental values. Parametric studies are 

carried out to examine the effect of the interface stiffness, moisture content of the substrate layer and overlay 

depth on restrained shrinkage strain and stresses of overlays. Fibre inclusion is shown to reduce the risk of 

deterioration by slowing down the evolution of local slippage and controlling crack widths. It is also found 

that the uniform shrinkage strain distribution that is assumed in analytical models underestimates the hygral 

tensile stresses of overlays compared to real non-linear strain distribution. A modification to account for 

this effect is proposed through shrinkage amplification factor. This approach is expected to provide a better 

estimation of the risk of cracking in overlays. 

 

This chapter consists of a “stand alone” journal paper and includes a relevant bibliography at the 

end of the chapter. Additional information and further test results are presented in Appendix A, B and C. 
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5.1 Introduction  

Restrained shrinkage can lead to cracking and/or delamination of concrete overlays and is a dominant 

mechanism in overlay deterioration. Modelling restrained shrinkage of concrete overlays is rather complex 

since it depends on multiple time-dependent properties relating to geometrical, hygral and material 

characteristics. Thus, for accurate prediction of shrinkage strain and concrete damage development with 

time, a time dependent fracture-based analysis that considers the stress-strain behaviour of the materials at 

different ages, accurate interfacial properties and moisture transfer characteristics should be used.  

Groth [1] analysed the cracking performance of restrained shrinkage of concrete overlays of various depths 

using a fracture-based approach referred to as the inner softening band (ISB) method. The analysis shows 

that, for well bonded overlays, multiple cracks develop during the first week followed by selective crack 

growth in the weeks after. The density of cracks tends to increase for thinner overlays, for which the 

presence of fibres was found to be less important in distributing cracks. For thicker overlays, however, 

fibres were shown to play a dominant role in cracks distribution. However, in his study, the restraint from 

the substrate was assumed to be 100% and the effect of moisture transfer between the overlay and the base 

layer was not examined. These simplifications can lead to errors as even for very thin overlays, the restraint 

level is not expected to be 100% and there is always some moisture exchange with the base layer.  

Kim and Bordelon [2] modeled FRC overlays constructed over hot mixed asphalt (HMA) pavements to 

investigate the effect of the fracture properties of the FRC overlay and the interface on joint opening width 

and interface delamination. Cohesive based surfaces with linear traction-separation behaviour were 

assigned for both contact areas across the joint location and along the interface between FRC overlays and 

HMA. The results show that for large slab sizes (3.35 m long), increasing the fracture energy of the FRC 

leads to reductions in joint crack width of 11%. The crack widths and debonding lengths at the interface 

reduce when the fracture energy of the FRC increases and when the interfacial tensile bond strength 

increases. However, the development of the fracture properties with time was not considered and the 
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shrinkage and thermal strains were calculated using simple constant thermal loads applied at specific ages 

by using equivalent deflection.  

Orta and Bartlett [3,4] presented investigations on the time dependent stress distributions in concrete bridge 

deck overlays due to restrained shrinkage. The drying humidity movement was modelled by using nonlinear 

application of Fick’s second law of diffusion, while the autogenous humidity loss was modelled by using 

an empirical equation. It was found that the moisture distribution, and consequently the shrinkage strain, is 

nonlinear across the depth of the overlay. The maximum shrinkage strains occurred at the top and bottom 

fibres while the maximum swelling strain for the substrate was at the interface (see Figure 5.1). Humidity 

profiles were found to depend on the overall depths of the overlay and the substrate layers. At early ages of 

drying, the overlay experiences large gradients of stresses at its top and bottom parts while maximum tensile 

stresses develop at mid-depth of the overlay at later ages (Figure 5.2). This approach can be used to assess 

the likelihood of cracking of plain concrete overlays. However, the beneficial role of fibres in controlling 

the width of cracking cannot be quantified as the overlay was assumed to be a linear elastic material.  

This paper focuses on the numerical prediction of overlays performance under restrained shrinkage and 

subsequent deterioration, using non-linear time dependent material properties and variable moisture levels. 

Initially, a brief on experimental studies performed is presented. Then, the numerical modelling details and 

approaches are introduced, and the FE analysis results are validated using predictions from the Silfwerbrand 

analytical procedure [5]. Experimental results undertaken by the authors are modelled in Abaqus [6] and 

the numerical shrinkage evolution with time is compared with experimentally measured strains. Parametric 

studies are preformed to investigate the effect of overlay depth, mechanical and hygral properties of the 

interface and moisture content of the substrate on the shrinkage and cracking behaviour of rapid hardening 

overlays. Additional parametric studies are conducted to investigate the impact of non-linear shrinkage 

distribution across the depth of overlays on the development of tensile stresses and, thus, on the risk of 

cracking estimation. Finally, the experimental results of interfacial shear strength of small prismatic 
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specimens are modelled and analysed. 

This This chapter addresses objectives 11-13 of the thesis. 

 

Figure 5.1. Humidity profiles at different drying times for: (a) 70 mm; (b) 150 mm overlay (after Orta and Bartlett) 

 

Figure 5.2. Overlay stress profiles for different overlay depths: (a) ℓny = 70 mm; (b) ℓny = 150 mm overlay (after 

Orta and Bartlett) 

5.2 Experimental studies  

5.2.1 Mix proportions, characteristics and mechanical properties 

Two plain and two SFRC mixes are examined for overlay layers, details of which are presented in  Table 

5.1. Two commercial cement types are used; calcium sulfoaluminate cement (CSA) and rapid setting 

calcium aluminate cement (RSC), each at 600 kg/m3. River washed sand (0-5mm, SG=2.65) is used as fine 

aggregate. Recycled clean steel fibres (RCSF) were sourced from tyre cords extracted from un-vulcanised 

rubber belts at a length of 21 mm and diameter of 0.2 mm. Further details on the mixes and material 

characteristics are given elsewhere [7]. For the concrete substrates (Sub, see Table 5.1), conventional ready 
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mixed concrete (86 kg/m3 of CEM I 52,5N; 105 kg/m3 of GGBS, 1060 kg/m3 of 20 mm graded Limestone 

as coarse aggregate and 900 kg/m3 of fine aggregate) are used.  

To characterize the flexural performance of overlay mixes, three 40*40*160 mm mortar prisms (Figure 

5.3) were tested according to BS EN 13892-2, (2002) [8] in displacement control. To obtain net deflection, 

a specially designed aluminum yoke was mounted on the specimens. After flexural testing, the two fractured 

parts were tested under uniaxial compressive loading, according to BS EN 13892-2, (2002) [8]. The prisms 

were tested at various ages, ranging from one hour up to one year. The results of first cracking strength 

(fctm,fl) and compressive strength (fcu), with corresponding standard deviation values (listed in brackets) are 

given in Table 5.1.   

To determine the compressive strength of the substrate mix, 6 cubes of 150 mm were tested under uniaxial 

compressive loading according to BS EN 12390-3 (2009) [9] at the age of 28 days (see Table 5.1). 

 

Figure 5.3. Flexural test set up of overlay mixes 
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Table 5.1 Mix proportions and flexural strength (fctm,fl) and compressive strength (fcu) for all mixes (MPa) 

Mix 
Fibre 

dosage 
(kg/m3) 

Sand 
(kg/m3) 

SPa 
w/c 
ratio 

1 hr 3 hrs 1 day 7 days 28 days 365 days 

fctm,fl   fcu fctm,fl    fcu fctm,fl   fcu fctm,fl    fcu fctm,fl   fcu fctm,fl    fcu 

CSA 0 1420 0.60 0.40 
 2.6  21.1 
(0.2) (3.0) 

4.0  26.9 
(0.2) (2.8)     

4.3   31.8 
(0.2) (2.5)       

5.3   36.0 
(0.3) (3.0)       

5.4   38.6  
(0.3) (2.3)       

5.4   40.9 
(0.3) (2.3)       

FCSA 45 1420 0.61 0.41 
3.5   26.1 
(0.4) (4.6)       

6.8   31.6 
(0.5) (3.7)      

6.5   36.6 
(0.5) (2.3)       

 8.2   41.1  
(0.8) (3.3)     

 8.7   43.1  
(0.9) (3.2)     

 8.7   45.5 
(1.0) (3.0)      

RSC 0 1300 0.20 0.35 
2.5  17.2  

(0.2) (1.9)          
 2.9   24.2 
(0.2) (2.0)         

 3.5   33.0  
(0.1) (2.0)        

4.2  (0.2)        
40.4 (2.4) 

 4.4   46.5 
(0.2) (2.6)        

 4.5   48.1 
(0.1) (3.7)         

FRSC 45 1300 0.21 0.36 
3.5 (0.2)       

21.3 (3.0) 
3.5  (0.2)     
28.3 (3.5) 

5.0    (0.2)    
37.9 (2.4) 

5.5   (0.3)    
46.2 (3.2) 

5.7   (0.3)     
51.5 (2.9) 

5.6   54.5 
(0.3) (6.6)      

Sub 0 900 1.14b 0.5 - - - - 27.0 (3.0) - 

 a % by cement mass, b Pozzolith 324N Plasticiser (Litre). 

5.2.2 Moisture transfer and shrinkage properties 

To obtain the time history of the moisture profile, needed to obtain the moisture diffusivity of the repair 

layers, a modified gravimetric method was used by the authors in a previous study [10]. The MC equation 

[11] that relates moisture diffusivity to relative humidity was used to obtain the first estimate of moisture 

diffusivity. These values were then used in heat transfer analysis (capitalising on the analogy between heat 

and moisture transfer analysis) to obtain the moisture distribution over time. The moisture diffusivity curve 

was determined through back analysis, until the numerical moisture profile approximately matches the 

experimental profile. The moisture diffusivity curve for each mix is shown in Figure 5.4. Free shrinkage 

was measured using the 40*40*160 mm prisms. The shrinkage evolution for each mix is shown in Figure 

5.5. The hygral contraction coefficient (essential in shrinkage modeling in FE analysis) was back calculated 

by coupling thermal analysis with structural analysis. The obtained hygral contraction coefficient values 

were: 0.00038; 0.00065; 0.0048 and 0.0045 for CSA, FCSA, RSC and FRSC, respectively. Further details 

are given elsewhere [10]. 
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Figure 5.4. Moisture diffusivity versus normalized moisture content Cnorm. 

 

Figure 5.5. Experimental shrinkage development for all mixes with time (lines represent average for each mix)  

CSA 

FCSA 
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5.2.3 Construction and restrained shrinkage of composite prisms  

Sixteen concrete substrate prisms, 500 mm long, 150 mm wide and with two different depths (120 and 130 

mm) were cast in wooden moulds. The top surface of the substrates was steel wire brushed, the day after 

casting, to expose aggregate surfaces. The top surface of prisms to be overlaid with RSC and FRSC layers 

was further steel wire brushed to accomplish rougher surfaces. After that, the specimens were kept in a mist 

chamber for 27 days and then dried in an oven at 80 °C for a week. Their top surfaces were thoroughly 

cleaned and saturated surface dry, just a few hours before overlaying. After overlay casting and setting, the 

specimens were kept moist for approximately one hour before they were demoulded and placed in an 

environmental chamber with a relative humidity of 50 ± 5% and a temperature of 20 ± 2 °C. The final 

depths of the overlay composite prism are listed in Table 5.2.   

The shrinkage measurements were taken for the composite prisms at frequent time intervals using a 200 

mm Demec gauge. Six measurements were recorded for each prism; two readings at the top layer of the 

overlay and two at each side of the prism as shown in Figure 5.6.   

Table 5.2 The depths of substrate and overlays layers (all dimensions are in mm) 

Prisms  
1 2 3 4 

Substrate  Overlay  Substrate Overlay  Substrate  Overlay  Substrate  Overlay  

CSA 120 31 120 30 113 40 113 40 

FCSA 117 35 125 30 112 42 112 42 

RSC 122 28 117 33 116 37 110 40 

FRSC 118 34 124 26 116 37 116 34 
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Figure 5.6. Location of shrinkage measurements for a composite prism 

The shrinkage development over time for all prisms is shown in Figure 5.7 to Figure 5.10. The 

measurements at the top (Top1 and Top2) and the sides (R1-S1 and R1-S2 [R1-avg], R2-S1 and R2-S2 [R2-avg]) 

were averaged for each prism and only the average readings (Topavg, R1-avg and R2-avg) are reported. As the 

pair CSA1 and CSA2 as well as CSA3 and CSA4 have approximately the same dimensions and similar 

interface characteristics, their shrinkage values were averaged (Figure 5.7). Further details and discussion 

on shrinkage results are given elsewhere [12].  

 

Figure 5.7. Shrinkage development with time for composite prisms: (a) Average of CSA1 &CSA2; (b) CSA3 & CSA4 
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      Overlay  
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Figure 5.8. Shrinkage development with time for composite prisms: (a) FCSA1; (b) FCSA2; (c) FCSA3; (d) FCSA4 

  

  

(c) (d) 

(a) 
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Figure 5.9. Shrinkage development over time for composite prisms: (a) RSC1; (b)RSC2; (c) RSC3; (d) RSC4 

 

Figure 5.10. Shrinkage development over time for composite prisms: (a) FRSC1; (b)FRSC2; (c) FRSC3; (d) FRSC4 

  

  

(c) 

(a) (b) 

 

  

  

(b) 

(c) (d) 
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5.3 Numerical Studies 

5.3.1 Modelling and validation 

5.3.1.1 Material models and elements used 

The FE package, Abaqus [6], was used to model each composite prism during the drying process. The 

analysis was performed by using the concrete damage plasticity (CDP) model. Moisture profiles as well as 

tensile and compressive properties are obtained from the experimental data using inverse analysis, details 

of which details are given elsewhere [7, 10]. Moisture analysis is performed first to obtain the spatial 

moisture distribution inside the repaired system with time. Conductivity properties were assigned to the 

interface so as to model the moisture transfer from the overlay to the substrate. Then, the moisture (thermal) 

analysis is coupled with structural analysis to obtain the time history of stresses and strains. The 

development of the material properties with time was incorporated into the structural analysis through the 

implementation of the user subroutine, USDFLD. Diffusive heat transfer 20-node quadratic brick elements 

(DC3D20) were used for the thermal analysis while C3D20R elements were used for the structural analysis. 

As no tensile cracks developed in the substrate layer, this layer was modelled as an elastic layer. The thermal 

and mechanical material properties for this layer were obtained by using values for normal concrete from 

Model Code 2010 (MC 2010) [11].  

As 40 × 40 × 160 mm flexural prims without fibres (RSC and CSA prisms) failed without any softening or 

residual strength after cracking [7] and it was not possible to determine their post-peak stress characteristics. 

MC 2010 [11] proposed using bi-linear tension stiffening model for plain concrete. In this study, however, 

tri-linear model was adopted to avoid numerical convergence issues. (See Figure 5.11 for RSC).  
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Figure 5.11. Tensile stress strain at different ages of RSC prisms 

5.3.1.2 Interface modelling approach 

Two approaches are adopted for modeling the interface between the overlay and the substrate. The first 

approach is cohesive surface based and is suitable for modelling bond when the interface thickness is quite 

small. Traction-separation constitutive laws defines the cohesive surface behaviour which initially has 

linear elastic behavior specified by an elastic constitutive matrix in which the normal and shear stresses are 

related to the normal and shear separations across the interface [6].  The model requires definition of the 

normal and tangential stiffness components (Knn, Ktt and Kss) for uncoupled traction-separation behavior. 

The degradation of the bond and the eventual delamination can be modeled by incorporating damage to the 

cohesive behaviour, through progressive degradation of the cohesive stiffness. The parameters for the initial 

cohesive behaviour, the criteria for damage initiation and the subsequent damage evolution law that 

specifies the rate of stiffness degradation have to be determined experimentally. This approach has been 

successfully used to model the interface between concrete and CFRP [13], steel and concrete [14] and 

concrete and asphalt layers [2].  

The second approach is frictional based, utilising the concept of the classical isotropic Coulomb friction 

model. It allows the user to introduce a shear stress limit (τmax), the maximum value of shear stress that the 

interface can carry before sliding begins. It also permits relative slippage (elastic slip) while the surfaces 

are in the “sticking” state. This approach has been exploited by Jafarifar et al. [15] to model the interface 
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between a concrete slab and the base layer and by Baek [16] to model the interface between concrete and 

asphalt layers.  

Based on the experimental observations of higher shrinkage strains at the top layer (from the experimental 

part of this study), it was decided to use a bigger surface factor for the top surface than for the other surfaces 

in the numerical analysis. This factor ranged from 9-12 mm/day while the surface factors for the other 

surfaces were the same as determined previously by inverse analysis in another study done by the authors 

[10]. At the beginning of drying, the moisture concentration throughout the overlay was 100% while the 

ambient relative humidity was considered constant at 50%. The substrate is assumed to be in equilibrium 

with the surrounding environment and, hence, initial humidity similar to humidity of the surrounding 

environment was given to the substrate.  Due to symmetry, only a quarter of the composite prisms has been 

modelled.  

5.3.1.3 Validation of numerical models using analytical predictions 

The hygral stresses generated from the numerical modeling are compared with analytically predicted 

stresses obtained using the Silfwerbrand [5] procedure. This procedure assumes that both substrate and 

overlay have linear elastic properties and the shrinkage of the overlay is uniform across the depth.  CSA2 

and CSA3 were selected for the purposes of this comparison. Only the cohesive interface approach is used 

as it uses interface bond stiffness and allows a direct comparison with Silfwerbrand analysis. To achieve as 

uniform shrinkage across the section as possible, the top and bottom surfaces of CSA2 and CSA3 were 

assigned the same thermal properties (surface factor). Four different bond stiffnesses were used for each 

prism, ranging from 2.5 N/mm3 and up to 50 N/mm3. The numerical and analytical tensile stresses at the 

interface and at the top of overlaid prisms (CSA2 and CSA3) at 365 days are shown in Figure 5.12 and 

Figure 5.13, respectively, while the maximum shear stresses at the interface are listed in Table 5.3.  
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Table 5.3 The numerical and analytical shear stresses (MPa) at the interface 

K 
(N/mm3) 

2.5 5 10 50 

Analytical Numerical  Analytical Numerical  Analytical Numerical  Analytical Numerical  

CSA1 0.10 0.11 0.18 0.19 0.30 0.30 0.77 0.69 

CSA2 0.10 0.11 0.19 0.19 0.31 0.31 0.8 0.71 

 

The results confirm that the numerical analysis is successful in predicting both the tensile and shear stresses 

that develop in the overlays due to restrained shrinkage for this simple case and can be used to analyse more 

complex cases.  The results differ near the ends possibly due to stress concentrations and shear lag which 

distort the shape of the overlay in those locations.  

 

Figure 5.12. The numerical and analytical tensile stresses of CSA2 at: (a) Top of the overlay; (b) The interface 

 

 

 

(a) 
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Figure 5.13. The numerical and analytical tensile stresses of CSA3 at: (a) Top of the overlay; (b) The interface 

5.3.2 Modelling interface parameters 

A wide range of interface shear stiffnesses (0.5 – 95 N/mm3) were determined by Tsioulou and Dritsos [17], 

for various interface conditions, based on results from experimental studies reported in literature [18-25]. 

Interface properties can be quantitatively estimated from the interface level of preparation [11]. A minimum 

coefficient of friction (µ) of 0.5 between concrete surfaces is suggested in BS EN 12812 (2008) [26] while 

the value of µ of 10 was reported to result in behaviour approximating monolithic for modelled columns 

strengthened by jacketed concrete [27].  

of CSA2 at: (a) Top of the overlay; (b) The interface 

 

  

(a) 

(b) 



144 

 

As the mechanical properties of the interface are not known a-priori, they can be determined iteratively by 

considering the difference between the measured shrinkage strain of composite prisms to the free shrinkage 

strain predicted for overlays of the same dimensions, but without substrate. Stronger restraint conditions 

due to higher bond stiffness or higher coefficient of friction will result in lower shrinkage strain measured 

on the overlay layer compared to the free shrinkage strain. Using numerical back analysis, the interface 

properties for modelling purposes for all prisms were determined as shown in Table 5.4. As there is some 

moisture exchange through the interface, this parameter was also considered when modelling the interface, 

using a moisture (thermal) conductivity factor (value of 0.1), also obtained through back analysis.  

Prims with overlay shrinkage strain values close to the free shrinkage values were given lower interface 

stiffnesses and lower coefficients of friction. Using the values listed in Table 5.4, the predicted shrinkage 

strain (using cohesive -coh and friction -fric approaches) against the experimental measured values are 

shown in Figure 5.14, Figure 5.15 and Figure 5.17 - Figure 5.19. The experimental shrinkage strain at the 

top and two side surfaces are shown in the graphs as Top, R1 (near the top of the overlay) and R2 (near the 

interface), respectively. For CSA and FCSA composite prisms, the numerical shrinkage development with 

time is shown in Fig. 6 and Fig. 7, respectively. It is clear from the graphs that both modeling approaches 

capture well the development of shrinkage strains with time. Overall, substrate prisms overlaid with CSA 

mixes had the smoothest interfaces and thus it is expected that they also have the lower interface 

characteristics (see Table 5.4). FCSA prisms, on the other hand, had rougher surfaces and higher restraint 

conditions.  

MC 2010 [11] suggest values of 1.5-2.5 MPa for the mean interfacial strength for rough interfaces and 2.5-

3.5 MPa for very rough interfaces, provided that the surfaces are clean and appropriate roughening are used. 

The back calculated values (τmax, shown in Table 5.4) in this study are in well congruent with MC proposed 

values.  
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Table 5.4 Parameters used to model the interface of CSA and FCSA overlaid prisms  

 
Cohesive stiffnesses (N/mm3) Friction parameters 

Knn Ktt Kss µ τmax (MPa)  Elastic slip 

CSA1 3 3 3 1.3 1.0 0.04 

CSA2 3 3 3 1.3 1.0 0.04 

CSA3 4 4 4 1.4 1.3 0.04 

CSA4 4 4 4 1.4 1.3 0.04 

FCSA1 10 10 10 1.5 2.0 0.03 

FCSA2 14 14 14 2.2 2.0 0.02 

FCSA3 40 40 40 2 3.0 0.009 

FCSA4 25 25 25 2 3.0 0.015 

RSC1 75 75 75 --- --- ---- 

RSC2 75 75 75 --- --- --- 

RSC3 75 75 75 --- --- --- 

RSC4 65 65 65 --- --- --- 

FRSC1 100 100 100 2.3 3.0 0.0065 

FRSC2 100 100 100 2.0 3.0 0.0055 

FRSC3 100 100 100 2.3 3.0 0.0078 

FRSC4 100 100 100 2.0 3.0 0.0065 

 

The maximum principal plastic strain, in the CDP model, can be related to cracking occurrence. The 

maximum principal plastic strain for CSA1 is shown in Figure 5.16. As the plastic strain is zero everywhere, 

this means that no cracking has developed in the numerical model, which agrees with the experimental 

observations.  The FCSA prisms, however, despite not having cracked in the experiments, are predicted to 

develop some cracking at the upper edges of the prisms (Figure 5.16), where stresses are high, as the edges 

loose moisture faster than the inner parts of the prism. This indicates that there is a relaxing mechanism that 

relieves stresses.  The analysis of those prims was repeated by considering the effect of creep, calculated 

using MC 2010 [11]. This was done was reducing the modulus of elasticity of the mixes (as given in 

Equation 3.10). In this case, the results of the maximum principal plastic strain of FCSA3, shown in Figure 

5.16, agree with the experimental observations that no cracking should occur. This shows that it is important 

to consider creep when calculating hygral stresses in repair materials.  
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Figure 5.14. Experimental versus numerical shrinkage strain for overlays: (a) CSA1 & CSA2; (b) CSA3 & CSA4 

 

Figure 5.15. Experimental versus numerical shrinkage strain for overlays: (a) FCSA1; (b) FCSA2; (c) FCSA3 ;(d) 

FCSA4 

 

(b) (a) 
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Figure 5.16. Max principal plastic strain of overlays: (a) CSA1; (b) FCSA3 without creep; (c) FCSA3 with creep 

The numerically predicted shrinkage strain development with time for FRSC1 is presented in Figure 5.17. 

It can be seen that the use of constant interface stiffness overestimated the restraint of the overlay. This may 

be because at crack locations, in overlay composite prisms, there is high shear demand resulting in local 

slippage and as a result, the local interface stiffness decreases. As the numerical model utilises the smeared 

crack approach which averages this effect, the interface stiffness was decreased with crack development in 

the cohesive approach to consider the effect of slip adjacent to cracks using damage evolution. Details on 

the parameters determined for damage initiation and damage evolution are listed in Table 5.5. As expected, 

the damage evolution in FRSC prisms is much lower since crack openings are controlled by fibres and, 

hence, less slip is anticipated to occur and thus the reduction in interface stiffness is smaller.   

Table 5.5 Damage parameters for cohesive interface of RSC and FRSC composite specimens (displacements are in 
mm) 

Prisms 
Damage initiation (Max separation) Damage evolution 

Normal Shear-1 Shear-2 Displacement at failure Softening Parameter 

RSC1 0.005 0.005 0.005 0.4 exponential 9 

RSC2 0.006 0.006 0.006 0.41 exponential 8 

RSC3 0.0055 0.0055 0.0055 0.495 exponential 9 

RSC4 0.00535 0.00535 0.00535 0.5 exponential 4 

FRSC1 0.0065 0.0065 0.0065 1.1 exponential 2 

FRSC2 0.0055 0.0055 0.0055 1.0 exponential 2 

FRSC3 0.0078 0.0078 0.0078 0.9 exponential 2 

FRSC4 0.0065 0.0065 0.0065 1.2 exponential 2 

 

The numerical shrinkage strain development with time against average experimental values for RSC and 

FRSC composite prisms using the parameters listed in Table 5.4 and Table 5.5 are shown in Figure 5.18 

(a) (b) (c) 
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and Figure 5.19, respectively. As seen, the numerical models predict fairly well the shrinkage development 

of the tested prisms. 

 

Figure 5.17. Experimental versus numerical shrinkage strain for FRSC1 overlay (with constant interface stiffness) 

 

Figure 5.18. Experimental versus numerical shrinkage strain for overlays: (a) RSC1; (b) RSC2; (c) RSC3; (d) RSC4 

 

 

 

  

  

(a) 
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Figure 5.19. Experimental versus numerical shrinkage strain for overlays: (a) FRSC1; (b) FRSC2; (c) FRSC3; (d) 

FRSC4 

5.4 Results of parametric Studies and discussion 

The Silfwerbrand analytical procedure for crack risk analysis assumes that shrinkage is uniform across the 

section. However, there is an evidence that a shrinkage gradient developed in all prisms tested in the study, 

as the top layer tends to shrink more, since the rate of drying from the top surface to the environment is 

much higher than moisture absorption towards the base layer, and possibly due to non-uniform aggregate 

distribution [28] and bleeding [29]. Furthermore, the substrates can have various moisture content levels 

(depending on their age) and thus, different shrinkage states. To understand the effect of shrinkage gradient 
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in the overlay and moisture conditions of the substrate layer on the tensile stress development in the 

overlays, a parametric numerical study was conducted. Eight CSA overlaid prisms were modelled with four 

moisture conditions and two interface stiffnesses (5 and 50 N/mm3).  

• The first condition assumes uniform shrinkage distribution across the overlay depth.  

• The second condition neglects the moisture properties of the base and assumes no moisture interaction 

between the two layers, and therefore, the drying of the overlay occurs through the top surface only.  

• The third condition assumes that the base layer has 75% humidity and the interface has moisture 

conductivity properties, allowing humidity transfer between the base and the overlay.  

The last condition is as the third condition, except that the base layer has 50% humidity.  

The depth of the overlay chosen is 50 mm and the depth of the base layer is 100 mm. The numerical results, 

in terms of tensile stress at the interface, are shown in Figure 5.20. It can be seen that the assumption of 

uniform shrinkage results in the lowest stress values while the conditions with shrinkage gradient and drier 

substrates yield the highest stress values. This means that the Silfwerbrand analytical equations, which only 

consider uniform shrinkage, underestimate the hygral stresses that develop in real overlays with different 

moisture conditions.  

 

Figure 5.20. The tensile stresses of CSA overlaid prisms at the interface 
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To better investigate the issue of non-uniform shrinkage more, a parametric study is performed for CSA 

prisms with different depths ranging from 30-60 mm. The depth of the base layer was kept constant at 150 

mm and the length of both layers is 1000 mm. As the risk of cracking is higher for composite prisms with 

high stiffness values, only stiffnesses of 50 and 100 N/mm3 were considered in the analysis. The base layer 

was assumed to be relatively dry (has 50% relative humidity) as this condition is shown above (Figure 5.20) 

to be resulting in higher tensile stress values. The analysis results of this parametric study, in terms of the 

tensile stress at the interface, are shown in Figure 5.21. It is clear that the underestimation of the resulting 

tensile stresses is more pronounced for thicker overlays such as 50 and 60 mm compared to thin overlays 

(e.g. 30 mm). Therefore, to effectively use Silfwerbrand analytical equations in predicting the risk of 

cracking of concrete overlays, the effect of additional stresses due to non-uniform shrinkage has to be taken 

into account. One efficient yet easy solution to address this issue is to increase the free shrinkage strain of 

the overlay layer by a given amplification factor (AF). This factor is expected to increase with an increase 

in overlays depth as non-uniform shrinkage is more prominent in thicker overlays. The previous parametric 

study was extended to include different substrate depths and different lengths to determine the amplification 

factor for each case. By using regression analysis, the factor obtained for each overlay depth is listed in 

Table 5.6 and defined in Equation 5.1.  

AF = 1 + (
ho

100
− 0.2)           Equation 5.1 

where, ho: is the depth of the overlay in mm, 20 ≤ ho ≤ 100.  

It can be seen that the factor increases linearly with an increase in overlay depth. The analytical stresses 

calculated using the adjusted shrinkage strains by using these the factors (for the same overlay dimensions 

mentioned above) against their predicted numerical values are given in Figure 5.22. It can be seen that the 

calculated stresses match much better their numerically predicted stress values. Therefore, it is suggested 

to use an adjusted shrinkage strain to assess the risk of cracking of overlays with rapid hardening materials.  
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Figure 5.21. The tensile stresses at the interface of CSA overlaid prisms with depths of: (a) 30 mm; (b) 40 mm; (c) 

50 mm; (d) 60 mm 

Table 5.6 The calculated shrinkage factors for different overlay depths 

Overlay depth (mm) 30 40 50 60 

Shrinkage factor 1.1 1.2 1.3 1.4 

 

 

  

  

(a) 
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Figure 5.22. The tensile stresses using adjusted shrinkage strain at the interface of CSA overlaid prisms with depths 

of: (a) 30 mm; (b) 40 mm; (c) 50 mm; (d) 60 mm 

5.5 Analysis of shear tests 

Numerical analysis was performed on 12 composite specimens similar to the ones presented in a previous 

paper by the authors [12]. The analysis uses similar material models as in the previous numerical studies to 

have a better understanding on the shear behaviour of composite prisms. To define the contact properties 

at the interface, the cohesive approach is used. The properties of the interface were derived from 

experiments and are listed in Table 5.7. The initial stiffness was determined by dividing the shear strength 

values by the shear displacement values given in Table 4.7. The analysis assumes that the damage will 
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initiate when the experimentally obtained shear strength is reached.  Those values were given previously in 

Table 4.7 and listed here in Table 5.7. As in experiments, three-point loading was applied to the specimen 

through three steel plates (see Figure 5.23). The lower two plates are fixed while a downward displacement 

is applied on the top plate to create the shear forces. As the specimen is symmetrical along X-axis, only 

half of the prism is modelled. The results, in terms of the maximum load at failure, are given in Table 5.7. 

It can be seen that the numerical models are able to predict the maximum shear load with reasonable 

accuracy (5.3%) except for RSC which failed at a lower load (-22.4%) in the experiments. This may be due 

to material variabilities in the substrate.  This analysis confirm that good preparation of the surface can lead 

to high shear strength which is essential to avoid delamination and to obtain distributed cracks in overlays. 

The stiffness values are rather high and bigger than the numerical obtained stiffness values for SFRC prisms 

(100 N/mm3). It should be noted that due to restrained shrinkage in composite prisms, the interface 

undergoes creep and thus, the interface stiffness decreases over time, while the shear tests develop the stress 

rather quickly, hence no significant creep is expected to occur.     

Table 5.7 Interface cohesive properties and analysis results 

Specimen 
Initial stiffness 

K (N/mm3) 

Damage parameters Failure load (kN) 

Shear 1 Shear 2 Experimental Numerical 

FCSA 330 2.94 2.94 132.1 132.6 

CSA 470 2.78 2.78 124.9 131.5 

FRSC 480 3.10 3.10 139.3 135.4 

RSC 325 2.24 2.24 101.0 123.6 
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Figure 5.23. Shear assembly in FE analysis 

5.6 Conclusions 

• The numerical FE analysis (sequential heat analysis coupled with structural analysis to obtain the time 

history of stresses and strains) was demonstrated to successfully predict the shrinkage development 

with time for the tested composite prisms using both frictional and cohesive approaches.  

• The numerical tensile and shear stresses developed at the interface are in good agreement with those 

estimated using Silfwerbrand analytical approach when assuming the shrinkage is uniform across the 

depth. However, this condition underestimates the stress development in overlays. A modification to 

consider this effect is introduced through a shrinkage amplification factor.  

• The interface stiffness has a major role on restraining shrinkage of overlays, as with higher stiffness, 

more restraint is developed and possibly the risk of cracking increases. However, it is noticed that the 

well-prepared surfaces not only have high stiffness interface values but also high interfacial strengths 

which are shown to be a vital parameter in preventing the delamination especially when the shrinkage 

strains in overlays are very high. In cases of strong interface bond, tensile cracking is more likely to 

develop due to restrained shrinkage strain, rather than delamination, however, cracking can be 
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controlled by using fibres in the mix.  

• Fibre inclusion in the mix is shown to slow down the evolution of local slippage at the interface when 

cracks are developed by controlling the cracking widths and, thus, can contribute in reducing the risk 

of delamination at crack locations. This was reflected in numerical models by introducing a slower 

damage evolution to interface stiffnesses.  

• The moisture content of the substrate and interface absorption properties have an effect on restrained 

shrinkage and therefore on tensile stress development as drier substrates tend to absorb more moisture 

form the overlay layer.  

• The cohesive approach is successful in predicting the shear capacity of composite prisms. The well-

prepared surfaces are quite necessary to obtain high interfacial shear strength and to avoid the risk of 

delamination.  

• The high interface stiffness increases the risk of cracking, but it reduces the risk of delamination as the 

interfacial strength for such surfaces are usually high. It should be mentioned that cracking is preferable 

to delamination as it is possible to control crack widths by adding fibres.  
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Chapter 6: Conclusions and Recommendations for Future Work 

This chapter summarises the findings from all chapters and presents the main conclusion drawn from the 

work undertaken in this study. It also recommends some future research works for recycled materials 

aiming to better understand their behaviour and facilitate wider application of these materials. 
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6.1 Summary and conclusions 

The study aims to contribute to a better understanding of fibres effect the shrinkage behaviour of overlays 

concrete made of rapid hardening concrete. In particular, the effect of recycled clean steel fibres on the 

crack widths of overlays so as to lead to better predictions that can enhance the functionality, durability and 

sustainability of repairs. The study utilised 100% recycled fibres only. The main findings can be 

summarised as follows. 

6.1.1 Mechanical properties of rapid hardening mortars: Experimental and numerical findings 

• The fibres have a positive effect on the strength of mortar prisms. FRC mixes showed a compressive 

strength increase of approximately 10% to 24% at different ages, with the highest strength increase of 

around 24% observed at one hour.  No compressive strength reduction was observed for any of the 

mixes tested in this study up to the age of 365 days.  

• The MC function βcc(t) underestimates the strength evolution of rapid hardening mixes at early ages by 

100% as the strength evolves so rapidly. Therefore, new parameters are proposed to better predict the 

strength development with time for mixes with CSA and RSC cements. FCSA and FRSC mixes 

demonstrated a flexural strength increase of approximately 36% to 70% and 24% to 41% respectively. 

For Efm, an increase of around 25% to 29% was found for FCSA and FRSC mixes tested at different 

ages.  

• Flexural strength of both plain and fibre reinforced specimens evolves rapidly, e.g. 90% of their one-

year strength achieved in one day. The specimens made with CSA cement showed higher flexural 

strength compared to mixes made with RSC cement tested at the same age. 

• The flexural residual strength for both FCSA and FRSC specimens continued to increase with bigger 

CMOD (CMOD4). FCSA prisms show higher flexural residual strength than FRSC prisms for the same 

crack width. The values of fR continue to increase with time for both fibre reinforced mixes and reach 

their peak values at 28 days. However, there is a slight strength reduction at the age of one year 
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compared to 28 days. Strong correlations are found between fR1 and fR2, fR1 and fR3, fR1 and fR4 with R2 

≥ 0.98 and R2 ≥ 0.92 for FCSA and FRSC, respectively. 

• FE-predictions using the tensile constitutive laws based on RILEM TC 162-TDF, CEB FIB MODEL 

CODE 2010, Barros et al. [1] overestimate the loading capacity of FCSA and FRSC specimens. 

Conversely, the use of the models proposed by Hu et al. [2] leads to underestimation.  

• Numerical analyses using σ – ɛ curves obtained from inverse analysis were successful in modelling the 

global load-displacement behaviour as well as capturing the cracking widths of FRC tested prisms.  

6.1.2 Moisture and free shrinkage properties findings  

• The fibre inclusion in rapid hardening mortar mixes was shown not to have a major role on the moisture 

transport properties of these mixes, which allows the use of the MC equation for plain concrete to 

calculate their moisture diffusivities with a good accuracy. 

• Mixes with RSC cement showed much higher shrinkage strains (2690 and 2532 µɛ) compared to mixes 

with CSA cement (211 and 367 µɛ) at 120 days. Unlike CSA and FCSA, RSC and FRSC mixes showed 

considerable autogenous shrinkage which accounts for around 64 % and 71% of their total shrinkage 

at the age of 60 days. 

• The moisture diffusivity of the tested mixes was back calculated by using a combination of FE analyses 

and experimental moisture distribution measurements. It was found that the moisture diffusivities for 

the mixes are high at the beginning of drying (34.8 – 24.14 mm2/day) and remain almost unchanged up 

to moisture contents of 85% - 75%, for different mixes, then sharply decrease with further drying.   

• A linear relationship was found between shrinkage and moisture loss for all the mixes with good 

correlation ratios. 

• The back calculated hygral contraction coefficient, for each mix, range from 0.00038 to 0.0048 

depending on the cement type and fibre inclusion.  

• New appropriate coefficients for each cement type are proposed to predict the shrinkage development 

with time using MC and ACI equations. 
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• Although the Silfwerbrand procedure, used to determine normal and shear stresses in overlay case 

studies, is rather simple, it relies on parameters (λL and K) that are not easy to determine, and it assumes 

uniform shrinkage distribution through the depth of the layer which may not be true.  

6.1.3 Restrained shrinkage of overlays: Experimental and analytical findings  

• The restrained shrinkage of composite prisms depends on the free shrinkage strain of the mix and level 

of restraint. CSA composite prisms showed less measured shrinkage strains compared to FCSA 

composite prisms due to the lower free shrinkage strain of CSA mix. 

• CSA and FCSA prisms showed no cracking for the duration of the test. However, RSC and FRSC mixes 

developed multiple cracking at the outer edges of the prisms in less than 16 hours. It should be noted 

though that only two RSC prisms showed local debonding at one end which did not propagate further 

under flexural testing.  

• There a shrinkage gradient across the depth of an overlay with higher shrinkage strains at the top layer 

compared to the lower part of the overlay. This gradient resulted in bigger cracks at the top of the layer.  

• A simple analytical model for estimating crack spacings of overlays is presented. Fibres are found not 

to have a significant effect on the crack spacing of concrete overlays. It was found that the ratio between 

maximum and average crack spacings is approximately 1.7. This value is well consistent with the ratio 

suggested by MC for the ratio of crack spacing in conventional RC. 

• The available approaches in literature to estimate the crack widths of FRC overlays fail to predict the 

contribution of RCSF on the crack width of overlays.  A simple approach, based on stress loss rather 

than flexural post cracking, is proposed to consider the effect of RSCF fibres on the width of cracks 

and evaluated. A good agreement between the measured experimental crack widths of RSC and FRSC 

composite prisms and those predicted using the suggested approaches is obtained. 

• Both plain and fibre reinforced overlays showed multiple cracking due to restrained shrinkage, 

however, around 60% smaller widths are measured on FRSC prisms.  
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• Restrained shrinkage has a negative effect on the flexural capacity of composite prisms. However, 

RSCF are found to mitigate this effect by bridging cracks and providing higher resistance to flexural 

loads. Therefore, repaired structures with fibre reinforced concrete are expected to have a better 

durability and extended fatigue life.  

• Fibres are found to insignificantly affect the interfacial shear strength of overlays. Nevertheless, as the 

fibres carry loads at the cracked sections along the overlay, the resulting shear stresses at the interface 

are expected to be smaller than those at the interface of plain prisms, and thus, reduce the risk of 

delamination after cracking development.  

6.1.4 Restrained shrinkage of overlays: Numerical findings 

• The sequential heat analysis coupled with structural analysis is successful in predicting the shrinkage 

development with time for the tested composite prisms. Both the frictional and cohesive approaches 

examined are efficient in modelling the interface between concrete layers. The CSA prisms showed no 

cracking in numerical modeling as it is the case in experimental study. FCSA prisms showed minor 

cracking at the edges which disappear when incorporating creep in the FE analysis. This highlights the 

important role of creep in estimating hygral stresses of concrete repairs. 

• The FE predicted tensile and shear stresses were consistent with those estimated using Silfwerbrand 

analytical approach when assuming uniform shrinkage across the depth of the overlay. However, it is 

shown that the uniform shrinkage strain assumption underestimates the tensile stresses that develop in 

overlays. An empirical approach to consider this effect in the Silfwerbrand approach is proposed.  

• The interface stiffness has a considerable effect on restrained shrinkage of overlays, as more restraint 

is developed for interfaces with higher stiffness values, therefore, bigger risk of cracking. However, for 

well-prepared surfaces, both interfacial stiffness and strength values are shown to increase. Having 

sufficient bond strength is crucial to prevent the delamination, especially when the shrinkage strains 

are very high.  

• Fibres are demonstrated to slow down the evolution of local slippage at the interface at crack locations 
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by controlling the cracking widths and, thus, can contribute in reducing the risk of delamination. This 

was considered in numerical models by introducing a slower damage evolution to interface stiffnesses. 

• The moisture content of the substrate and interface absorption properties are shown to have an effect 

on restrained shrinkage of overlays and, therefore, on tensile stress development as drier bases tend to 

absorb more moisture from overlays.  

6.2 General conclusions 

The overall aim of this research was to quantify the fibre effect on the width of cracks of overlays under 

restrained shrinkage conditions, in particular, the effect of RCSF. This was successfully achieved.   

6.3 Recommendations for Future Work 

Based on the investigation and findings of this study, the following issues should be further investigated: 

• The effect of different fibre dosages on the fresh and mechanical properties of the mixes. Based on the 

results, σ-ɛ tensile models for design purposes can be developed.  

• The behaviour of other supplementary cementitious materials (e.g. GGBS, geopolymer and fly ash).  

• Investigate further the autogenous shrinkage of RSC and FRSC mixes.  

• Investigate shear stress distribution after crack development and the evolution of interfacial shear 

strength.  

• Establish a relationship between the level of preparation at the interface, in terms of interface roughness, 

and the interfacial strength and stiffness.  

• Investigate the creep of rapid hardening materials. 

• Investigate further the non-uniform shrinkage strain across the depth of overlays and provide analytical 

predictions to consider its effect.  

• Study the fatigue behaviour of overlays reinforced with RCSF.   
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Appendix: A 

This appendix presents more detailed photos and raw data for the experimental work described in Chapter 

2 of the thesis. 

 

Figure A. 1 Semi-adiabatic test  

 

Figure A. 2 Casting CSA flexural prisms  

 

Figure A. 3 Casting RSC flexural prisms 
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Figure A. 4 RCSF used in this study 

 

Figure A. 5 Compressive strength test of fractured prisms 
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Figure A. 6 Load deflection curve of FCSA prisms at the age of two days 

 

Figure A. 7 Load CMOD curve of FCSA prisms at the age of two days 
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Figure A. 8 Load deflection curve of FCSA prisms at the age of seven days 

 

Figure A. 9 Load CMOD curve of FCSA prisms at the age of seven days 
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Figure A. 10 Load deflection curve of FCSA prisms at the age of 28 days 

 

 

Figure A. 11 Load CMOD curve of FCSA prisms at the age of 28 days 
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Figure A. 12 Load deflection curve of FCSA prisms at the age of 365 days 

 

Figure A. 13 Load CMOD curve of FCSA prisms at the age of 365 days 
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Figure A. 14 Load deflection curve of FRSC prisms at the age of two days 

 

 

Figure A. 15 Load CMOD curve of FRSC prisms at the age of two days 
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Figure A. 16 Load deflection curve of FRSC prisms at the age of seven days 

 

Figure A. 17 Load CMOD curve of FRSC prisms at the age of seven days 
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Figure A. 18 Load deflection curve of FRSC prisms at the age of 28 days 

 

Figure A. 19 Load CMOD curve of FRSC prisms at the age of 28 days 
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Figure A. 20 Load deflection curve of FRSC prisms at the age of 365 days 

 

 

Figure A. 21 Load CMOD curve of FRSC prisms at the age of 365 day 
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Table A. 1 Compressive strength of the mixes fcu at different ages (MPa) 

 

 

 

 

 

0.04167 0.125 1 7 28 365

1 18.9 25.7 36.6 35.9 41.1 41.6

2 22.8 29.1 40.0 39.0 45.7 42.5

3 26.0 34.7 38.5 43.2 48.2 45.1

4 29.6 35.6 33.9 41.4 39.5 49.2

5 28.5 33.0 36.0 41.6 42.4 46.4

6 31.1 31.2 34.9 45.2 41.9 48.1

Avg. 26.1 31.6 36.6 41.1 43.1 45.5

1 17.0 23.0 34.9 31.9 39.2 38.9

2 18.3 26.5 33.5 34.4 42.0 39.6

3 22.0 24.9 28.0 40.0 35.4 45.3

4 22.6 27.2 29.8 38.4 36.8 40.0

5 25.0 30.4 32.5 34.2 39.2 40.5

6 22.0 29.5 31.8 36.9 39.1 41.1

Avg. 21.1 26.9 31.8 36.0 38.6 40.9

1 16.8 28.6 41.5 41.9 51.4 61.1

2 19.4 33.2 40.0 43.6 55.3 57.4

3 25.7 31.7 37.1 48.6 46.9 50.7

4 21.0 25.0 34.9 50.5 49.9 43.0

5 22.7 26.3 36.7 47.1 52.7 55.8

6 22.5 24.9 37.3 45.3 52.9 59.0

Avg. 21.3 28.3 37.9 46.2 51.5 54.5

1 14.7 23.1 35.8 39.3 48.6 52.1

2 15.6 20.5 33.1 37.3 50.2 49.1

3 20.1 24.7 33.1 44.2 46.7 50.9

4 17.6 25.4 34.4 42.2 45.5 49.5

5 18.3 26.1 30.4 40.1 43.0 43.2

6 17.0 25.2 31.2 39.3 45.0 43.7

Avg. 17.2 24.2 33.0 40.4 46.5 48.1

CSA

FRSC

RSC

Time (days)

FCSA
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Table A. 2 Load at limit of proportionality of the mixes at different ages (N) 

 

 

Table A. 3 Modulus of elasticity of the mixes at different ages (GPa) 

 

 

1 2 3 Avg. 1 2 3 Avg.

0.04167 1509.8 1666.8 1330.9 1502.5 1185.3 1010.0 1105.1 1100.1

0.125 3095.4 2689.9 2871.9 2885.7 1790.5 1645.2 1660.7 1698.8

1 2990.6 2592.8 2681.3 2754.9 1795.7 1929.1 1835.3 1853.4

7 3835.1 3479.8 3150.2 3488.4 2411.0 2155.8 2218.4 2261.7

28 4112.1 3303.2 3688.3 3701.2 2438.1 2264.4 2170.1 2290.9

365 4160.0 3630.3 3302.2 3697.5 2201.2 2419.1 2285.4 2301.9

1 2 3 Avg. 1 2 3 Avg.

0.04167 1360.6 1472.8 1669.1 1500.9 1142.6 998.8 1096.3 1079.3

0.125 1361.0 1478.4 1686.3 1508.6 1149.4 1282.4 1230.5 1220.8

1 2331.7 1939.6 2105.6 2125.6 1519.6 1554.3 1461.2 1511.7

7 2680.0 2379.7 2030.4 2363.4 1821.9 1863.8 1716.0 1800.5

28 2407.8 2818.4 2000.1 2408.8 1799.0 1955.8 1869.7 1874.9

365 2360.1 2781.2 2062.3 2401.2 1962.4 1900.7 1870.9 1911.3

Time
FRSC RSC

FCSA
Time

CSA

1 2 3 Avg. 1 2 3 Avg.

0.04167 13.83 17.58 15.59 15.67 13.12 11.80 11.29 12.07

0.125 16.26 19.00 17.38 17.54 14.44 13.41 12.90 13.59

1 24.59 20.10 22.19 22.29 18.25 17.62 16.78 17.55

7 22.12 24.21 28.75 25.03 21.56 18.96 18.56 19.69

28 32.11 25.28 25.31 27.57 23.56 21.43 19.50 21.50

365 30.95 25.91 27.12 28.00 24.17 19.15 21.88 21.73

1 2 3 Avg. 1 2 3 Avg.
0.04167 11.80 13.65 11.28 12.24 9.02 10.65 9.26 9.64

0.125 15.89 13.72 12.52 14.04 12.23 10.23 11.06 11.18

1 20.54 15.81 17.52 17.96 16.06 13.15 12.66 13.96

7 25.70 22.08 22.97 23.58 20.02 18.03 16.82 18.29

28 30.32 22.03 25.56 25.97 22.62 19.60 18.85 20.36

365 26.01 23.00 29.32 26.11 23.91 18.27 19.51 20.56

RSC
Time (days)

FCSA
Time (days)

CSA

FRSC
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Appendix: B 

This appendix presents more detailed photos and raw data for the experimental work described in Chapter 3 of the thesis.  

               Table B. 1 Moisture measurement test results of CSA mix 

Net weight of each sample during drying (unsealed weight) (gr)
*
 

Specimen No. S1-1 S1-2 S1-avg. S2-1 S2-2 S2-avg. S3-1 S3-2 S3-avg. 

Height of each sample 

(mm) 
7.52 7.84 7.68 18.71 17.75 18.23 29.47 28.01 28.74 

D
ry

in
g
 t

im
e 

(d
a
y
s)

 

0 160.23 169.27 164.75 403.60 390.42 397.01 632.18 623.66 627.92 

0.08 160.08 169.20 164.64 403.49 390.08 396.79 631.85 623.49 627.66 

0.16 159.95 169.03 164.49 403.34 389.92 396.63 631.71 623.27 627.49 

1 159.16 168.39 163.78 402.58 389.24 395.91 630.96 622.45 626.71 

2 158.41 168.01 163.21 402.02 388.57 395.30 630.29 621.85 626.07 

3 158.25 167.78 163.02 401.54 388.10 394.82 629.81 621.28 625.55 

4 158.14 167.66 162.90 401.30 387.71 394.51 629.36 620.82 625.09 

5 158.02 167.49 162.76 401.04 387.42 394.23 628.63 620.48 624.56 

6 157.97 167.46 162.72 400.66 387.10 393.88 628.24 619.96 624.10 

7 157.95 167.42 162.69 400.44 386.83 393.64 627.69 619.55 623.62 

10 157.83 167.33 162.58 400.19 386.65 393.42 627.32 619.09 623.21 

14 157.79 167.29 162.54 399.90 386.52 393.21 627.15 618.89 623.02 

21 157.71 167.22 162.47 399.39 386.01 392.70 626.35 618.31 622.33 

28 157.42 167.00 162.21 398.68 385.53 392.11 625.23 617.19 621.24 

60 156.98 166.44 161.71 397.64 384.13 390.89 623.49 614.61 619.05 

90 155.70 165.67 160.69 395.96 382.59 389.28 621.48 612.05 616.77 

120 155.41 165.25 160.33 395.11 381.75 388.43 620.33 611.26 615.80 

Weight after drying in 

the oven (gr) 
150.93 155.09 153.01 376.12 363.62 369.87 590.15 582.01 586.08 
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 Table B. 2 Moisture measurement test results of FCSA mix 

Weight of each sample during drying (unsealed weight) (gr)
*
 

Specimen No. S1-1 S1-2 S1-avg. S2-1 S2-2 S2-avg. S3-1 S3-2 S3-avg. 

Height of each sample 

(mm) 
9.29 8.91 9.10 15.27 17.09 16.18 27.42 29.99 28.71 

D
ry

in
g
 t

im
e 

(d
a
y
s)

 

0 203.99 196.03 200.01 352.98 363.48 358.23 614.31 634.69 624.50 

0.08 203.86 195.94 199.90 352.85 363.37 358.11 614.19 634.55 624.37 

0.16 203.71 195.78 199.75 352.65 363.18 357.92 613.92 634.42 624.17 

1 203.52 195.43 199.48 352.35 362.90 357.63 613.58 634.08 623.83 

2 203.08 194.95 199.02 351.82 362.48 357.15 613.11 633.55 623.33 

3 202.76 194.66 198.71 351.40 362.04 356.72 612.64 633.05 622.85 

4 202.62 194.53 198.58 351.11 361.79 356.45 612.24 632.69 622.47 

5 202.46 194.36 198.41 350.83 361.51 356.17 611.99 632.38 622.19 

6 202.29 194.23 198.26 350.48 361.16 355.82 611.19 631.71 621.45 

7 202.12 194.08 198.10 350.28 360.84 355.56 610.72 631.30 621.01 

10 201.92 193.89 197.91 349.89 360.41 355.15 610.40 630.86 620.63 

14 201.44 193.46 197.45 349.02 359.39 354.21 609.28 629.64 619.46 

21 201.20 193.22 197.21 348.67 358.86 353.77 608.41 628.82 618.62 

28 200.92 192.97 196.95 348.41 358.67 353.54 607.46 627.79 617.63 

60 199.80 191.84 195.82 346.65 356.84 351.75 603.78 625.89 614.84 

90 198.36 190.45 194.41 344.92 354.79 349.86 601.41 623.46 612.44 

120 197.94 189.96 193.95 344.06 353.90 348.98 599.66 621.92 610.79 

Weight after drying in 

the oven (gr) 
189.89 182.15 186.02 329.96 337.92 333.94 570.11 592.15 581.13 
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Table B. 3 Moisture measurement test results of RSC mix 

Weight of each sample during drying (unsealed weight) (gr)
*
 

Specimen No. S1-1 S1-2 S1-avg. S2-1 S2-2 S2-avg. S3-1 S3-2 S3-avg. 

Height of each sample 

(mm) 
8.11 9.24 8.68 18.01 19.11 18.56 29.49 28.57 29.03 

D
ry

in
g
 t

im
e 

(d
a
y
s)

 

0 189.12 196.45 192.79 415.13 425.88 420.51 640.82 650.96 645.89 

0.08 189.02 196.33 192.68 415.01 425.69 420.35 640.67 650.79 645.73 

0.16 188.74 196.04 192.39 414.69 425.43 420.06 640.39 650.46 645.43 

1 188.38 195.60 191.99 414.24 424.96 419.60 639.88 650.03 644.96 

2 188.13 195.31 191.72 414.01 424.74 419.38 639.71 649.75 644.73 

3 187.86 195.04 191.45 413.58 424.29 418.94 639.32 649.23 644.28 

4 187.58 194.78 191.18 413.26 423.94 418.60 639.01 648.84 643.93 

5 187.44 194.67 191.06 413.05 423.68 418.37 638.69 648.62 643.66 

6 187.38 194.57 190.98 412.76 423.41 418.09 638.28 648.30 643.29 

7 187.32 194.49 190.91 412.57 423.20 417.89 638.04 648.02 643.03 

10 187.20 194.36 190.78 412.04 422.74 417.39 637.36 647.28 642.32 

14 187.03 194.17 190.60 411.52 422.10 416.81 636.47 646.34 641.41 

21 186.82 193.99 190.41 410.91 421.53 416.22 635.39 645.25 640.32 

28 186.62 193.81 190.22 410.33 420.89 415.61 634.32 644.19 639.26 

60 185.85 192.98 189.42 409.03 418.94 413.99 631.42 641.20 636.31 

90 185.30 192.48 188.89 408.15 418.05 413.10 630.16 640.02 635.09 

120 184.97 192.04 188.51 407.37 417.38 412.38 629.23 639.02 634.13 

Weight after drying in the 

oven (gr) 
178.94 185.88 182.41 393.21 403.69 398.45 608.12 619.15 613.64 
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          Table B. 4 Moisture measurement test results of FRSC mix 

 

Weight of each sample during drying (unsealed weight) (gr)
*
 

Specimen No. S1-1 S1-2 S1-avg. S2-1 S2-2 S2-avg. S3-1 S3-2 S3-avg. 

Height of each sample 

(mm) 
8.49 8.79 8.64 19.31 20.33 19.82 28.29 29.14 28.72 

D
ry

in
g
 t

im
e 

(d
a
y
s)

 

0 192.05 200.77 196.41 446.99 456.92 451.96 647.87 663.94 655.91 

0.08 191.92 200.66 196.29 446.87 456.78 451.83 647.73 663.82 655.78 

0.16 191.64 200.38 196.01 446.55 456.49 451.52 647.40 663.52 655.46 

1 191.45 200.12 195.79 446.30 456.26 451.28 647.12 663.28 655.20 

2 191.22 199.87 195.55 446.04 456.01 451.03 646.87 663.03 654.95 

3 190.82 199.45 195.14 445.59 455.53 450.56 646.37 662.54 654.46 

4 190.56 199.21 194.89 445.17 455.09 450.13 645.93 662.10 654.02 

5 190.03 198.64 194.34 444.47 454.41 449.44 645.21 661.31 653.26 

6 189.81 198.44 194.13 444.03 453.98 449.01 644.80 660.78 652.79 

7 189.70 198.31 194.01 443.72 453.71 448.72 644.45 660.41 652.43 

10 189.58 198.19 193.89 443.15 453.11 448.13 643.79 659.73 651.76 

14 189.47 198.10 193.79 442.76 452.76 447.76 643.13 659.09 651.11 

21 189.26 197.89 193.58 442.04 452.00 447.02 641.89 657.83 649.86 

28 189.13 197.76 193.45 441.36 451.31 446.34 640.80 656.72 648.76 

60 188.63 197.23 192.93 439.89 449.86 444.88 638.37 654.33 646.35 

90 188.19 196.78 192.49 438.98 448.96 443.97 637.03 653.03 645.03 

120 187.64 196.32 191.98 437.97 448.01 442.99 635.80 651.82 643.81 

Weight after drying in the 

oven (gr) 
181.46 189.81 185.64 422.96 432.55 427.76 613.32 629.15 621.24 
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Table B. 5 Free shrinkage records at front side (S-F) and rear side (S-R) of each CSA specimen 

Time (days) 
Shrinkage records (µɛ) 

S1-F S1-R S2-F S2-R S3-F S3-R S-avg. 

1 48.9 16.3 -16.3 -32.6 -32.6 8.1 -1.4 

2 -97.8 -16.3 -65.2 -65.2 -32.6 -73.3 -58.4 

6 -32.6 -48.9 -114.1 -130.4 -114.1 -105.9 -91.0 

7 -32.6 -65.2 -65.2 -146.7 -97.8 -154.9 -93.7 

8 -32.6 -146.7 -97.8 -163.0 -97.8 -154.9 -115.5 

21 -97.8 -114.1 -163.0 -211.9 -179.3 -154.9 -153.5 

28 -114.1 -130.4 -179.3 -228.2 -195.6 -187.5 -172.5 

60 -146.7 -146.7 -195.6 -244.5 -228.2 -220.1 -197.0 

90 -146.7 -146.7 -211.9 -260.8 -211.9 -236.3 -202.4 

120 -163.0 -146.7 -228.2 -277.1 -195.6 -252.6 -210.5 

 

Table B. 6 Shrinkage records at front side (S-F) and rear side (S-R) of each FCSA specimen 

Time (days) 
Shrinkage records (µɛ) 

S1-F S1-R S2-F S2-R S3-F S3-R S-avg. 

1 0.0 -97.8 -130.4 -81.5 -130.4 -130.4 -95.1 

2 -32.6 -146.7 -179.3 -97.8 -163.0 -163.0 -130.4 

3 0.0 -146.7 -163.0 -130.4 -195.6 -163.0 -133.1 

8 -65.2 -211.9 -244.5 -179.3 -244.5 -228.2 -195.6 

14 -97.8 -244.5 -260.8 -244.5 -326.0 -277.1 -241.8 

21 -130.4 -293.4 -293.4 -277.1 -326.0 -309.7 -271.7 

28 -146.7 -293.4 -309.7 -277.1 -326.0 -326.0 -279.8 

60 -228.2 -342.3 -358.6 -293.4 -374.9 -358.6 -326.0 

90 -244.5 -342.3 -342.3 -342.3 -423.8 -374.9 -345.0 

120 -293.4 -358.6 -374.9 -358.6 -407.5 -407.5 -366.8 
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Table B. 7 Shrinkage records at front side (S-F) and rear side (S-R) of each RSC specimen 

T
o

ta
l 

sh
ri

n
k

a
g

e 
re

co
rd

s 
(µ

ɛ)
 

Time (days) S1-F S1-R S2-F S2-R S3-F S3-R S-avg. 

1 -1043.2 -847.6 -766.1 -733.5 -831.3 -635.7 -809.6 

2 -1271.4 -1222.5 -1157.3 -1108.4 -1173.6 -929.1 -1143.7 

3 -1809.3 -1727.8 -1711.5 -1613.7 -1662.6 -1418.1 -1657.2 

8 -1939.7 -1890.8 -1874.5 -1760.4 -1858.2 -1581.1 -1817.5 

14 -2102.7 -2021.2 -2086.4 -1939.7 -2021.2 -1776.7 -1991.3 

21 -2379.8 -2314.6 -2314.6 -2167.9 -2249.4 -1988.6 -2235.8 

28 -2510.2 -2428.7 -2477.6 -2314.6 -2363.5 -2102.7 -2366.2 

60 -2738.4 -2640.6 -2705.8 -2526.5 -2559.1 -2314.6 -2580.8 

90 -2787.3 -2689.5 -2754.7 -2575.4 -2591.7 -2347.2 -2624.3 

120 -2852.5 -2754.7 -2819.9 -2640.6 -2640.6 -2428.7 -2689.5 

A
u

to
g
e
n

o
u

s 
sh

ri
n

k
a
g
e 

re
co

rd
s 

(µ
ɛ)

 

Time (days) S1-F S1-R S2-F S2-R S3-F S3-R S-avg. 

1 -391.2 -309.7 -456.4 -309.7 -489.0 -423.8 -396.6 

2 -472.7 -554.2 -521.6 -521.6 -554.2 -554.2 -529.8 

3 -684.6 -635.7 -700.9 -586.8 -717.2 -749.8 -679.2 

8 -782.4 -831.3 -782.4 -749.8 -896.5 -880.2 -820.4 

14 -896.5 -945.4 -961.7 -880.2 -1010.6 -961.7 -942.7 

21 -1026.9 -1010.6 -1124.7 -1043.2 -1108.4 -1141.0 -1075.8 

28 -1173.6 -1141.0 -1271.4 -1173.6 -1238.8 -1271.4 -1211.6 

60 -1597.4 -1613.7 -1532.2 -1597.4 -1744.1 -1776.7 -1643.6 

Table B. 8 Shrinkage records at front side (S-F) and rear side (S-R) of each FRSC specimen 

T
o

ta
l 

sh
ri

n
k

a
g
e 

re
co

rd
s 

(µ
ɛ)

 

Time (days) S1-F S1-R S2-F S2-R S3-F S3-R S-avg. 

1 -945.4 -912.8 -945.4 -912.8 -961.7 -798.7 -912.8 

2 -1173.6 -1141.0 -1206.2 -1157.3 -1238.8 -1075.8 -1165.5 

7 -1678.9 -1695.2 -1760.4 -1678.9 -1841.9 -1564.8 -1703.4 

14 -2004.9 -2053.8 -2086.4 -1988.6 -2216.8 -1841.9 -2032.1 

21 -2135.3 -2200.5 -2233.1 -2119.0 -2396.1 -2004.9 -2181.5 

28 -2249.4 -2314.6 -2330.9 -2216.8 -2510.2 -2086.4 -2284.7 

60 -2379.8 -2461.3 -2461.3 -2379.8 -2722.1 -2200.5 -2434.1 

90 -2396.1 -2477.6 -2510.2 -2396.1 -2722.1 -2216.8 -2453.2 

120 -2493.9 -2575.4 -2575.4 -2445.0 -2803.6 -2298.3 -2531.9 

A
u

to
g

e
n

o
u

s 

sh
ri

n
k

a
g

e 
re

co
rd

s 

(µ
ɛ)

 

Time (days) S1-F S1-R S2-F S2-R S3-F S3-R S-avg. 

1 -554.2 -603.1 -505.3 -652.0 -603.1 -521.6 -573.2 

3 -619.4 -717.2 -586.8 -749.8 -733.5 -570.5 -662.9 

7 -847.6 -896.5 -766.1 -929.1 -896.5 -863.9 -866.6 

14 -1059.5 -1141.0 -961.7 -1189.9 -1108.4 -1092.1 -1092.1 

21 -1157.3 -1271.4 -1059.5 -1336.6 -1238.8 -1222.5 -1214.4 

28 -1255.1 -1369.2 -1157.3 -1450.7 -1369.2 -1336.6 -1323.0 
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60 -1662.6 -1776.7 -1548.5 -1874.5 -1793.0 -1678.9 -1722.4 

 

Figure B. 1 The process of slicing moisture transport specimens 

  

Figure B. 2 Free shrinkage specimens  
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Appendix: C 

This appendix presents more detailed photos and raw data for the experimental work described in 

Chapter 4 of the thesis.  

 

 

Figure C. 1 Substrate concrete casting 
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Figure C. 2 Overlaid prisms that kept in the control room for restrained shrinkage measurements 

 

Figure C. 3 Shear samples before testing 
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Figure C. 4 Shrinkage development with time for composite prisms with CSA1 

 

Figure C. 5 Shrinkage development with time for composite prisms with CSA2 
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Figure C. 6 Shrinkage development with time for composite prisms with CSA3 

 

Figure C. 7 Shrinkage development with time for composite prisms with CSA4 
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Figure C. 8 Shrinkage development with time for composite prisms with FCSA1 

 

Figure C. 9 Shrinkage development with time for composite prisms with FCSA2 
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Figure C. 10 Shrinkage development with time for composite prisms with FCSA3 

 

Figure C. 11 Shrinkage development with time for composite prisms with FCSA4 
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Figure C. 12 Shrinkage development with time for composite prisms with RSC1 

 

Figure C. 13 Shrinkage development with time for composite prisms with RSC2 
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Figure C. 14 Shrinkage development with time for composite prisms with RSC3 

 

Figure C. 15 Shrinkage development with time for composite prisms with RSC4 
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Figure C. 16 Shrinkage development with time for composite prisms with FRSC1 

 

Figure C. 17 Shrinkage development with time for composite prisms with FRSC2 
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Figure C. 18 Shrinkage development with time for composite prisms with FRSC3 

 

Figure C. 19 Shrinkage development with time for composite prisms with FRSC4 
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Table C. 1 Tests of normality In SPSS package for crack spacings and normalized crack spacings  

Tests of Normality 

  
Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Crack spacings 0.093 82 0.079 0.980 82 0.234 

Normalised crack spacing 0.093 82 0.079 0.980 82 0.234 

a Lilliefors Significance Correction 

 

 

 




