
Social transmission of foraging behaviour 

in bottlenose dolphins and its interplay 

with climate change 
 

 

Sonja Wild 

 
 

Submitted in accordance with the requirements for the degree of Doctor of Philosophy 

 
 

The University of Leeds 

 
 

School of Biology 

 
 

December 2018 

 

 
  



ii 

 

The candidate confirms that the work submitted is their own, except where work which has formed 

part of jointly authored publications has been included. The contribution of the candidate and the 

other authors to this work has been explicitly indicated below. The candidate confirms that appropri-

ate credit has been given within the thesis where reference has been made to the work of others.  

 The work in Chapter 2 of this thesis has appeared in publication as follows: 

Wild, S. & Hoppitt, W.J.E. Choosing a sensible cut-off point: assessing the impact of uncer-
tainty in a social network on the performance of NBDA. Primates (2018). 
doi:10.1007/s10329-018-0693-4 

Author contributions: S. Wild and W.J.E. Hoppitt conceived the study. S. Wild wrote the R codes, ran sim-
ulations and drafted the manuscript. W.J.E. Hoppitt edited the R codes and contributed to writing.  

 

 The work in Chapter 3 of this thesis has been prepared as a manuscript for publication as fol-
lows: 

Wild, S., Allen, S.J., Hoppitt, W.J.E., Krützen, M.* Evidence for social transmission of a dol-
phin foraging technique within and between generations. In preparation.  

Author contributions: M. Krützen, S.J. Allen and S. Wild conceived the study. S. Wild and W.J.E. Hoppitt 
conducted statistical analyses. S. Wild and S.J. Allen collected data. M. Krützen secured funding. All au-
thors contributed to writing. (*alphabetical order of co-authors, subject to changes) 

 

 The work in Chapter 4 of this thesis has been prepared as a manuscript for publication as fol-
lows: 

Wild, S., Allen, S.J., Gerber, L., Hoppitt, W.J.E., King, S.L., Krützen, M.* Network-based Dif-
fusion Analysis shows vertical cultural transmission of sponge tool use within dol-
phin matrilines. In preparation.  

Author contributions: S. Wild, M. Krützen, S.J. Allen and W.J.E. Hoppitt conceived the study. S. Wild, S.J. 
Allen, L. Gerber and S.L. King collected data and conducted lab work. M. Krützen and S.L. King secured 
funding. S. Wild and W.J.E. Hoppitt conducted statistical analyses. All authors contributed to writing. (*al-
phabetical order of co-authors, subject to changes) 

 

 The work in Chapter 5 of this thesis has been prepared as a manuscript for publication as fol-
lows: 

Wild, S. Krützen, M., Rankin, R.R., Hoppitt, W.J.E., Gerber, L., Allen, S.J. Long-term decline 
in survival and reproduction of dolphins following a marine heatwave. Accepted. Cur-
rent Biology.  

Author contributions: S. Wild, M. Krützen and S.J. Allen conceived the study. S. Wild, S.J. Allen and L. Geber 
collected data. M. Krützen secured funding. S. Wild conducted statistical analyses with contributions of 
R.R. Rankin and W.J.E. Hoppitt. All authors contributed to writing. 

 

This copy has been supplied on the understanding that it is copyright material and that no quotation 

from the thesis may be published without proper acknowledgement. 



iii 

 

ACKNOWLEDGEMENTS 
A sincere and heartfelt thank you goes to all my supervisors for their time and support over the last 

few years.  

First, to Will Hoppitt for giving me the opportunity to join him in Leeds as his PhD student while being 

able to bring my own project with me. With undying patience, he introduced me to the world of prob-

abilities and statistical modelling, and also helped me discover my love for coding in R! Thank you, 

Will, for your generosity, your advice, your patience and simply for being the best supervisor I could 

have wished for.  

Second, to Michael Krützen and Simon Allen for giving me the opportunity to work with probably the 

most fascinating dolphin population on the planet and for doing an amazing job at supervising even 

half across the world. Your continuous support during the last six years has been invaluable in helping 

me get to where I am today. I am so thankful for all the brain picking, fruitful discussions, financial 

(and occasional emotional) support and the amazing field times. Thank you for the trust you have put 

in me and for the unique opportunity to contribute to the Dolphin Innovation Project over the last six 

years.  

Third, to Chris Hassall for advice he has provided during my time in Leeds and for taking over the 

official supervisory duties for the last six months of my PhD. Thank you for helping me navigate 

through university rules and guidelines and putting it all together in the end. 

Also a massive thank you to the whole SBDRA team, the numerous current and past team leaders and 

field assistants, particularly the ones who have helped me collect data during my PhD (Helen, Becca, 

Sara, Laura, Kat, Kay, Hera, Franky, Lucy), and everybody else who has contributed to successful data 

collection for the Dolphin Innovation Project since 2007. It is a massive effort to keep such a long-term 

project running, and it would not be possible without the logistic support of Shark Bay Resources and 

the Useless Loop community – thank you so much for your continued support and for welcoming the 

dolphineers back in town every year. Useless Loop is not only a fantastic place for field work, it will 

also forever be my home away from home.  

Thanks to Sam Wittwer for all the work on the database and the trouble shooting from afar. A big 

thanks to Stephanie King for exciting times in the field, motivating words and several more field sea-

sons worth of data. A huge thank you goes to Livia Gerber for re-introducing me to genetic lab work, 

nerdy science discussions and invaluable friendship across continents. Thanks to the Leeds crew, par-

ticularly Tom, Marianne, Laura (2x), Liz, Ed and all the others who brought a bit of colour to the grey 

rainy winters of Northern England.  



iv 

 

Another giant thank you goes to my partner Chris. Doing a PhD is a challenging undertaking with times 

where you feel on top of the world, and others where you doubt you can bring it to an end. Thank you 

for riding along and always believing in me, even when I sometimes struggled to do so myself.  

A huge thank you also to my whole family for the emotional and financial support, for being almost as 

excited about my PhD project as myself, visits in England, skype calls and for the warm welcomes at 

home. 

  



v 

 

ABSTRACT 
Cultural behaviour, i.e., that which is transmitted socially among conspecifics, is found in a variety of 

taxa, including cetaceans. Different methods have been used to detect social learning in animal pop-

ulations. ‘Network-based diffusion analysis’ (NBDA), for example, provides a statistical framework 

with which the importance of social learning on the spread of a behaviour can be quantified. It infers 

social learning if the diffusion of behaviour follows the social network and therefore relies on accurate 

association data among individuals. Incomplete association data can lead to uncertainty over the 

strengths of connections among individuals. Restricting analyses to only include individuals above a 

certain threshold of sightings can minimize such uncertainty, but at the same time reduce power of 

NBDA to detect learning when linking individuals are removed from the network. Following my Gen-

eral Introduction, Chapter 2 of this thesis therefore provides a tool for researchers to select an appro-

priate threshold for the inclusion of individuals that maximizes the power of NBDA to detect social 

learning. In the study of the rise and spread of cultural behaviour, ecology and genetics are potentially 

confounding factors as they too can drive behavioural variation between individuals, communities and 

populations. I use a multi-network version of NBDA, which can account for these potential confounds 

by including networks reflecting association patterns, genetic relatedness and habitat use, in Chapters 

3 and 4 to investigate the spread of two foraging strategies, ‘shelling’ and ‘sponging’, in a population 

of Indo-Pacific bottlenose dolphins (Tursiops aduncus) in the western gulf of Shark Bay, Western Aus-

tralia, between 2007 and 2018. Shelling (Chapter 3) appears to spread horizontally among associated 

individuals, which stands in stark contrast to the predominantly vertically transmitted foraging strat-

egies, from mother to offspring, in Shark Bay dolphins and indeed toothed whales in general. My study 

provides the first quantitative evidence of horizontal transmission in any toothed whale species and 

suggests similarities in the cultural nature of cetaceans and great apes, which rely extensively on both 

vertical and horizontal social learning. Conversely, the findings presented in Chapter 4 suggest vertical 

social transmission of sponging from mother to primarily female offspring, confirming the results of 

previous research using different methods. Chapters 3 and 4 illustrate how long-term data sets on 

individual associations, habitat use and genetics, in combination with new statistical tools like NBDA, 

provide an ideal framework to assess the spread of behaviour in free-ranging animal populations. In 

Chapter 5, I investigate the impacts of a marine heatwave, which led to catastrophic losses of habitat-

forming seagrass beds and mass mortalities of fish and invertebrates in Shark Bay, on the vital rates 

of the resident dolphin population. Long-term demographic data and capture-recapture analyses on 

data collected before and after the heatwave indicate immediate and on-going reductions in both 

survival and reproductive rates within the dolphin population, presumably due to the cascading ef-
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fects of the heatwave on lower-trophic organisms combined with a lack of ecosystem recovery. Re-

markably, survival rates of sponging dolphins appear less adversely impacted compared to those of 

non-spongers, suggesting that their foraging niche may have buffered them against more negative 

impacts. Whether or not culturally different communities within a population may respond differently 

to environmental change remains an exciting avenue of research in the future. Finally, I discuss the 

broader ramifications of this thesis in the General Discussion and suggest further directions in the 

study of cultural behaviour in bottlenose dolphins.    
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A NOTE ON STYLE 
Chapters 2-5 of this thesis have been written in manuscript form intended for publication. I am lead 

author on all data chapters, but I acknowledge contributions of co-authors by using terms ‘we’ and 

‘our’ throughout those chapters. General Introduction and Discussion represent my sole work, and 

terms ‘I’ and ‘my’ are therefore used throughout.  

While Chapters 2-4 follow classic manuscript format with introduction, methods, results and discus-

sion, Chapter 5 has been written in short correspondence format with a 1000 word limit and a contin-

uous main text as was required by the editorial team of Current Biology where the manuscript is cur-

rently in review after resubmission of a revised version. Detailed methods and results for Chapter 5 

can be found in the Appendix of this thesis.  
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CHAPTER 1.  
General Introduction 
__________________________________________________________________________________ 

1.0. Animal culture? 

1.0.1. Culture defined 

The existence of animal culture and the methods for providing evidence for it in nature have been 

debated among researchers (e.g. Laland and Hoppitt, 2003; Laland and Janik, 2006, 2007; Krützen et 

al., 2007). Part of this debate stems from the lack of a universally accepted definition of the term 

‘culture’. Galef, (1992), for example, restricted culture to cases where the transfer of information 

takes place exclusively through complex forms of social learning such as imitation or teaching, which 

are thought to be restricted to species with high cognitive abilities. Boyd and Richerson, (1995), on 

the other hand, used a rather broad approach and refer to culture if a behavioural trait is acquired 

through some form of social learning from conspecifics. Furthermore, a widely accepted definition by 

Whiten and van Schaik, (2007) stated that culture requires the possession of a series of traditions – 

defined as shared behaviour that persists over time and is acquired through socially aided learning 

(Fragaszy and Perry, 2003) [page 12] - in different behavioural contexts.  

As my primary interest lies in the mechanisms underlying the spread of animal culture, I will, through-

out this thesis, refer to culture according to Boyd and Richerson's, (1995) definition from above. Many 

might argue that such a broad definition is too inclusive and is far from what we intuitively perceive 

as 'culture' in our own species. However, such a definition allows the comparison of socially learned 

behaviours across taxa with different social systems and from different environments, which can help 

us understand the emergence and spread of culture (Whitehead and Rendell, 2014).  

1.0.2. From innovation to culture 

All cultural traditions begin with an innovation by an individual, which can include the discovery of 

novel information, the establishment of a new behaviour or the performance of an already established 

behaviour in a different context (Reader and Laland, 2001). Innovations are essentially products of 

independent learning (also called ‘asocial learning’), which requires sampling of the environment and 

subsequently finding an appropriate response, often involving trial and error learning. Innovations 

therefore allow organisms to cope with new conditions in changing environments (Kawai, 1965; Sol et 

al., 2005).  
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However, trial and error learning can potentially incur considerable costs for an individual, and these 

costs can vary. For example, individual learning can be time-consuming if the process requires exten-

sive sampling of the environment or if many attempts are required to find an appropriate response to 

a challenge. Costs can also be severe if errors during the learning process increase the risk of mortality, 

as in predator avoidance or ingestion of potentially poisonous food. In such cases, it is more beneficial 

for an individual to use information already gathered by others, i.e., to acquire information through 

social learning rather than independent sampling of the environment (Galef and Laland, 2005; 

Webster and Laland, 2008; Galef, 2009). Social learning is thus often, though not exclusively, found in 

contexts where costs associated with individual learning are potentially high. For instance, when de-

ciding to remain in or leave a food patch, minnows (Phoxinus phoxinus) relied increasingly on social 

learning as predation risk increased, confirming a strategy to copy others when asocial learning is 

costly (Webster and Laland, 2008). Social learning is also found in lower-risk contexts such as hygiene 

or even play. In Japanese macaques (Macaca fuscata spp.), for example, louse egg-handling tech-

niques while grooming for parasite elimination (Tanaka, 1998) and stone-handling techniques in a play 

context (Leca et al., 2007) were passed on through social learning. Most reports on social learning in 

animals, however, come from a foraging context. Information on what, how and where to eat have 

been found to be transmitted socially in various animal species, for example in orangutans (Pongo 

pygmaeus wurmbii) (Van Schaik and Knott, 2001; Jaeggi et al., 2010), black bears (Ursus americanus) 

(Mazur and Seher, 2008), and songbirds (family Paridae) (Aplin et al., 2012). 

The acquisition of information from others is particularly important for young, dependent individuals. 

They have to acquire skills crucial for survival, including foraging techniques, knowledge about diet, 

predator avoidance, seeking shelter and social interactions with conspecifics. Using information from 

older, more experienced individuals may thereby increase the efficiency with which young individuals 

learn such skills. Learning from older generations is referred to either as ‘oblique social learning’ or, if 

it occurs specifically between parent and offspring, ‘vertical social learning’. This is particularly preva-

lent in social species with prolonged parental care (Roper, 1986), such as primates and cetaceans, 

where nursing and offspring-foraging overlap, providing numerous opportunities for social learning of 

behaviour (Mann and Sargeant, 2003; Jaeggi et al., 2010). In orangutans, for instance, offspring rely 

heavily on vertical social learning in a foraging context by following their mothers’ choice in how and 

what to eat (Jaeggi et al., 2010). Social learning can also occur between members of the same gener-

ation, which is referred to as ‘horizontal social learning’. For example, ‘moss-sponging’, an innovative 

technique to retrieve water from a hole, spread horizontally among free-ranging chimpanzees (Pan 

troglodytes schweinfurthii) (Hobaiter et al., 2014). 
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1.0.3. Identifying culture in natural populations 

Besides a lack of agreement on the term ‘culture’, there have been debates on how best to identify 

cultural behaviour in animal populations. To be considered cultural, a behaviour must be transmitted 

socially among individuals, leading to behavioural variation among groups or social units (cultural hy-

pothesis). However, critics have argued that there are alternative hypotheses to social transmission 

explaining the observed patterns of behavioural differences between groups (Laland and Hoppitt, 

2003; Laland and Janik, 2006). The genetic hypothesis states that different groups may be genetically 

predisposed to behave in different ways (Laland and Hoppitt, 2003). The ecological hypothesis, on the 

other hand, states that the local ecological conditions may differ between groups, and that by adapt-

ing to their local environment, individuals within a group tend to adopt a similar behavioural reper-

toire, which differs from that of individuals in other groups (Laland and Hoppitt, 2003). Researchers 

interested in putative culture therefore have to establish whether genetics and ecology are sufficient 

to explain observed patterns in the data. In order to disentangle the three hypotheses (social learning, 

ecological factors, genetics) to explain behavioural differences between groups or social units, several 

methods have been developed, which I will discuss in the following section.  

1.0.3.1. Method of exclusion  

Among primatologists, a commonly used method for the detection of social learning was the ‘ethno-

graphic method’ or ‘method of exclusion’ (Boesch, 1996; Whiten et al., 1999; van Schaik et al., 2003). 

The method of exclusion identifies patterns of variation in the behavioural repertoires of the popula-

tion in question and infers social transmission as at least partly responsible for the behavioural pattern 

by excluding genetic and ecological factors as sufficient explanations in causing the behavioural vari-

ation (Hoppitt and Laland, 2013 [p. 132]) (Fig. 1.1a). Thereby, the basic method of exclusion, following 

the categorisation of Hoppitt and Laland, (2013), infers social learning by arguing that it is implausible 

that ecological or genetic differences could influence the behavioural variation and that hence, social 

learning must be responsible. Laland and Janik, (2006), however, criticized that it is impossible to con-

sider all potential environmental and genetic factors that could be responsible for causing behavioural 

variation, and that therefore, social learning could never be inferred with certainty. Low power when 

assessing environmental and genetic factors could furthermore lead to false claims of social learning 

and therefore culture (Hoppitt and Laland, 2013). Since social learning, ecological and genetics factors 

are not necessarily mutually exclusive, but can be responsible for causing behavioural variation at the 

same time (Fig. 1.1b), both proponents (e.g. Krützen et al., 2007) and opponents (Laland and Janik, 

2006, 2007) of the method of exclusion agreed that the development of new methods that allow the 

quantification of social learning are desirable. 
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The advanced method of exclusion, following the categorisation of Hoppitt and Laland, (2013), takes 

the question of animal culture a step further by fitting a null model in which ecological and genetic 

factors influence the behaviour in question. It infers social learning, if the alternative explanations are 

insufficient in explaining the observed behavioural patterns. For example, Langergraber et al., (2011) 

assessed influences of genetic dissimilarity on previously documented behavioural differences be-

tween nine chimpanzee groups (Whiten et al., 1999). They found that behavioural and genetic dissim-

ilarity between groups were highly correlated and that therefore, genetic dissimilarity could not be 

entirely ruled out as playing a role in generating different behavioural repertoires between chimpan-

zee groups (Langergraber et al., 2011). In a similar approach, Krützen et al., (2011) used pairwise dis-

similarity matrices reflecting differences in behaviour, genetics and environment, to assess their im-

portance on behavioural variation in orangutans. Since behavioural variation was explained by neither 

genetic nor environmental differences, they inferred that it was a result of social transmission.  

 

Figure 1.1: Methods for detecting culture: a) The 'basic method of exclusion' identifies behavioural variation 
among populations as culture by ruling out genetic and environmental factors as being responsible for causing 
the behavioural differences. b) More recent approaches such as the ‘advanced method of exclusion’ or network-
based approaches like ‘network-based diffusion analysis’ (NBDA) treat social learning, ecological factors and 
genetic predispositions as non-mutually exclusive. 

__________________________________________________________________________________ 

1.0.3.2. Option-bias method 

Another approach which is based on a more subjective judgement of plausibility compared to the 

basic method of exclusion, the ‘option-bias’ method was introduced by Kendal et al., (2009). The 

method requires researchers to first assess the roles of genetic and ecological differences between 

populations. After accounting for these alternative factors, it is based on the assumption that social 

learning is expected to generate a greater within-population homogeneity in behaviour than would 
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be expected in its absence, i.e., when behaviour is generated through asocial learning (Kendal et al., 

2009). Using a randomization approach, social learning is inferred if a particular behaviour occurs 

more often than expected by chance and asocial learning alone, and can therefore be inferred or re-

futed at the 5% level (Kendal et al., 2009). However, if there is genetic or ecological heterogeneity 

between populations, estimates of the probability of each option in each population are required, 

which can be difficult to obtain, particularly in free-ranging populations.   

1.0.3.3. Network-based diffusion analysis (NBDA) 

New, network-based analyses were developed in an attempt to resolve the animal cultures debate 

(e.g. Franz and Nunn, 2009; Hoppitt et al., 2010), in order to provide a framework by which social 

learning within a group or population could be quantified. These approaches posit that social trans-

mission of a behaviour follows a social network. Usually, this network is taken to be the association 

pattern between individuals (Boogert et al., 2008), as closely associated individuals have more oppor-

tunity, and are therefore more likely to learn from each other (Coussi-Korbel and Fragaszy, 1995).  

'Network-based diffusion analysis’ (NBDA) has proven to be a powerful tool to detect and quantify 

social learning by comparing diffusion data, i.e., the order in which or timing at which individuals ac-

quire a behavioural trait, with a matrix that contains a measure of association among individuals 

(Hoppitt et al., 2010). Two variants of NBDA exist: The order of acquisition diffusion analysis (OADA) 

(Hoppitt et al., 2010) and the time of acquisition diffusion analysis (TADA) (Franz and Nunn, 2009), 

which both fit a model of social learning to the diffusion data based on maximum likelihood and test 

it against a model with no social transmission. 

NBDA not only serves as a tool for the detection of social learning, but also allows the estimation of 

the strength of the social transmission effect. A social transmission parameter, s, is fitted to the data 

and estimates the rate of transmission per unit association with informed individuals relative to the 

average rate of asocial learning (Hoppitt et al., 2010; Box 1). In addition, individual-level variables 

(ILVs) can be included in the analysis, which have potential influence on an individual’s learning rate, 

such as gender, rank or age. To date, these ILVs have been included in two different ways, either as 

additive or multiplicative models, which take different assumptions about the interaction of social 

learning and asocial variables (Hoppitt et al., 2010; Box 1). In the additive model, ILVs are modelled to 

only affect an individual’s asocial learning rate, while in the multiplicative model, ILVs affect social and 

asocial learning rate to the same extent (Box 1). Alternatively, one could also fit an unconstrained 
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model which allows the ILVs’ effects on social and asocial learning to be estimated separately (Hoppitt 

and Laland, 2013).  

 

1.0.3.4. Applications of NBDA 

NBDA can be used for two primary goals. It is i) a powerful tool to detect and quantify a social learning 

effect, as has been achieved in numerous studies on both captive and free-ranging populations across 

several taxa (Tab. 1.1); and ii) can be used to make inferences about the pathways of diffusion of 

information in a population and, for example, give insights into social learning strategies (Hoppitt, 

2017).  

Box 1.1: NBDA in detail  (Hoppitt et al., 2010; Hoppitt and Laland, 2013): 

NBDA can be generalized in the following form: 

𝜆𝑖(𝑡) = 𝜆0(𝑡)(1 − 𝑧𝑖(𝑡))(𝑠∑𝑎𝑖,𝑗𝑧𝑗(𝑡)

𝑁

𝑗=1

+ 1) 

where 𝜆𝑖(𝑡) denotes the rate of acquisition of individual i at time t, while 𝜆0(𝑡) is the baseline acquisition 

rate shared by all individuals. 𝑧𝑖(𝑡) and 𝑧𝑗(𝑡) represent the state of information of individuals i and j and 

take the value 1 for informed and 0 for uninformed individuals. Further, the social transmission parameter 

s estimates the strength of transmission as the rate of social transmission per unit association with informed 

individuals relative to the average rate of asocial learning (which is ensured by the term +1). For asocial 

models, the parameter s is set to 0. N denotes the number of individuals, 𝑎𝑖,𝑗  represents the strength of 

association between individuals i and j. Social learning is inferred if a model where s>0 outperforms a model 

where s=0. 

In the additive case, NBDA is defined as 

𝜆𝑖(𝑡) = 𝜆0(𝑡)(1 − 𝑧𝑖(𝑡))(𝑠∑𝑎𝑖,𝑗𝑧𝑗(𝑡)

𝑁

𝑗=1

+ 𝑒𝑥𝑝 (∑𝛽𝑘

𝑉

𝑘=1

𝑥𝑘,𝑖)) 

and in the multiplicative case as 

𝜆𝑖(𝑡) = 𝜆0(𝑡)(1 − 𝑧𝑖(𝑡))(𝑠∑𝑎𝑖,𝑗𝑧𝑗(𝑡)

𝑁

𝑗=1

+ 1)𝑒𝑥𝑝 (∑𝛽𝑘

𝑉

𝑘=1

𝑥𝑘,𝑖) 

where 𝑥1,𝑖…𝑥𝑉,𝑖  represent the V individual-level variables with potential effect on the asocial learning rate 

(in the additive models) or on both asocial and social learning rate (in the multiplicative model) and 𝛽𝑘 is the 

coefficient giving the effect of variable k on the learning rate.  
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Table 1.1: Application of NBDA (and similar approaches) to identify social transmission of behaviour in various 
animal species 

Species Behaviour Main results Authors Year 

Starlings 
(captive) 

Foraging in-
novations 

Reanalysing data (from Boogert et al., 2008) 
revealed social transmission of foraging in-
novations that had previously been missed.  

(Hoppitt et al., 
2010) 

2010 

Ring-tailed 
lemurs 
(wild) 

Artificial ex-
tractive for-
aging task 

Testing three different methods to detect 
social learning (inferential statistics, option-
bias method, NBDA), only the option-bias 
method suggested a social learning effect in 
the diffusion of an artificial foraging task, 
whereas NBDA did not. The authors suggest 
that this was due primarily to low power 
and the data set not being appropriate for 
applying NBDA.  

(Kendal et al., 
2010) 

2010 

Songbirds 
(wild) 

Discovery of 
food patches 

The order of arrival at new food patches 
was predicted by social associations. Indi-
viduals at the centre of the social network 
were more likely to discover the food 
patches than those with limited social con-
nections.  

(Aplin et al., 
2012) 

2012 

Three 
spine 
stickle-
backs 
(captive) 

Solving of a 
foraging task 

Discovery of the foraging task was influ-
enced by social network, but not the finding 
of a solution (untransmitted social effect). 
Individuals discovered a task sooner if a fa-
miliar individual had previously done so 
compared to if an unfamiliar individual had 
detected it. 

(Atton et al., 
2012; Atton et 
al., 2014) 

2012/2014 

Stickle-
backs 
(captive) 

Discovery of 
prey patches 

Discovery of prey patches followed the so-
cial network in structured environments, 
but not in open environments.  

(Webster et al., 
2013) 

2013 

Humpback 
whales 
(wild) 

Lobtail feed-
ing 

Lobtail feeding spread among associated in-
dividuals through horizontal social learning. 

(Allen et al., 
2013) 

2013 

Starlings 
(captive) 

Solving two 
foraging 
tasks 

Social learning increased the rate of acquisi-
tion of one foraging task solution by 6.67 
times and acquiring one of the two tasks fa-
cilitated asocial acquisition of the other. The 
spread followed the perching rather than 
the foraging social network.  

(Boogert et al., 
2014) 

2014 

Chimpan-
zees (wild) 

Moss-spong-
ing and leaf-
sponge re-
use 

Diffusion patterns of ‘moss-sponging’, but 
not ‘leaf-sponge re-use’ (two behaviours for 
drinking water), were significantly better ex-
plained by social than individual learning. A 

(Hobaiter et al., 
2014) 

2014/2017 
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subsequent study shows that ’moss-spong-
ing’ persisted and that the secondary radia-
tion of the behaviour followed the matri-
lines. 

(Lamon et al., 
2017) 

Songbirds 
(wild) 

Novel forag-
ing tech-
niques 

Experimentally introduced novel foraging 
techniques spread through social learning 
within the population. Individuals tended to 
adopt the most frequent local variant (= cul-
tural conformity).  

(Aplin et al., 
2015) 

2015 

Chimpan-
zees (cap-
tive) 

Extractive 
foraging 
tasks 

Strategies to extract food spread socially 
through four captive groups of chimpan-
zees, with biases to copy high-ranking and 
expert individuals when uncertain or of low 
rank.  

(Kendal et al., 
2015) 

2015 

Songbirds 
(wild) 

Artificial 
food patch 

The authors applied NBDA to both inter- 
and intraspecific social networks, which 
both contributed to the spread of infor-
mation.  

(Farine et al., 
2015a) 

2015 

Zebra 
finches 

Foraging 
skills 

Juvenile zebra finches, who, as nestlings 
were exposed to experimentally elevated 
stress hormone levels, changed learning 
strategies from learning from parents (verti-
cal) to learning from unrelated adults 
(oblique).  

(Farine et al., 
2015b) 

2015 

Ravens 
(captive) 

Artificial for-
aging task 

The authors tested the relationships be-
tween social connections, observation and 
learning. NBDA revealed that the order of 
acquisition was best predicted by connec-
tions in the affiliative network (rather than 
aggressiveness or proximity) and by social 
rank and kinship.  

(Kulahci et al., 
2016) 

2016 

Songbirds 
(wild) 

Selective 
feeding sta-
tions 

By controlling which individuals could feed 
together, they manipulated the social struc-
ture of a community of songbirds. Discovery 
of new food patches followed the experi-
mentally introduced social structure (con-
text specific learning).  

(Firth et al., 
2016) 

2016 

Bees (cap-
tive) 

Object ma-
nipulation 

After some demonstrator bees were taught 
to pull a string to receive a food reward, the 
technique diffused through the population 
over several sets of learners (‘generations’). 

(Alem et al., 
2016) 

2016 

Guppy 
(captive) 

Discovery of 
foraging 
sites 

Groups with individuals all familiar with 
each other, all unfamiliar, or a mix of the 
two were analysed regarding network struc-
ture and the speed of diffusion of foraging 

(Hasenjager and 
Dugatkin, 2016) 

2016 
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 information. Even though speed and order 
of discovery of a food patch was socially in-
fluenced, there was little evidence for social 
transmission. 

Guppy 
(captive) 

Approaching 
and solving a 
foraging task 

Risk predation in guppies was manipulated 
and latency to approach and solve a task 
was recorded. In low-risk contexts, social 
transmission of the task solution occurred 
at higher rate. Furthermore, individuals in 
high-risk groups were more likely to investi-
gate the task when associated with pre-
ferred social partners.  

(Hasenjager and 
Dugatkin, 2017) 

2017 

Otters 
(captive) 

Foraging 
tasks 

One of two tested otter species was shown 
to be capable of social learning and presum-
ably using a ’copy-when-young‘ strategy. 

(Ladds et al., 
2017) 

2017 

Amazon 
parrots 
(captive) 

Two-action 
foraging box 

Two groups (experimental and control) 
were exposed to a foraging experiment. The 
experimental group was more likely to in-
teract with and open the box, but not more 
likely to use the demonstrated technique, 
which makes local or stimulus enhancement 
the most likely mechanism. 

(Picard et al., 
2017) 

2017 

Capuchin 
monkeys 
(wild) 

Extractive 
foraging task 

The authors did not use NBDA per se, but a 
Bayesian approach that is similar. They 
found that pay-off biased and age-biased 
social learning were primarily responsible 
for the diffusion of new techniques, with 
rare techniques receiving more attention 
and younger individuals.  

(Barrett et al., 
2017) 

2017 

Black-
capped 
chickadees 
(wild) 

Locating 
food patches 

The rates of social learning were higher in 
high-ranked individuals and in rural over ur-
ban environments, while age, sex and ex-
plorative personality did not influence an in-
dividual’s rate of acquisition. 

(Jones et al., 
2017) 

2017 

Chimpan-
zees (cap-
tive) 

Two-action 
puzzle box 

Social transmission of successful manipula-
tion of the puzzle box occurred only in a 
group with subordinate models, but not in 
the group with a dominant model. 

(Watson et al., 
2017) 

2017 

House 
sparrows 
(captive) 

Discovery of 
hidden food 
patches 

Discovery of the first but not the second 
food patch was predicted by social connec-
tions. Males discovered the food sooner 
than females, while age had no influence. 

(Tóth et al., 
2017) 

2017 
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1.0.3.5. NBDA – case studies 

Here, I will review several of the studies using NBDA, showing some of the characteristics and ad-

vantages of the method. I will first compare the power of NBDA to detect social learning to alternative 

methods; then show how NBDA can be used to identify social learning strategies in a population; and, 

finally, highlight some studies where NBDA has been modified from its original form.  

In a study on the diffusion of foraging innovations in captive starlings (Sturnus vulgaris), the use of 

linear mixed models (LMM) and generalized linear mixed models (GLMM) revealed that object neo-

phobia and rank were influencing the rate of the acquisition of a foraging task, but no social learning 

effect could be detected (Boogert et al., 2008). However, when reanalysing the same data, NBDA was 

able to detect a social transmission effect that had been previously missed (Hoppitt et al., 2010). This 

demonstrates the greater power of NBDA to detect a social learning effect compared to alternative 

methods, which helps to reduce rates of false negative results (Hoppitt and Laland, 2011). Conversely, 

in a study on free-ranging ring-tailed lemurs (Lemur catta), Kendal et al., (2010) applied both option-

bias methods as well as NBDA to the diffusion of solutions to an artificial extractive foraging task to 

infer if the different solutions spread socially or not. Interestingly, results from the option-bias analysis 

suggested a social learning effect, while results from NBDA did not – indicating lower power of NBDA 

to detect social learning. From where does this apparent contradiction on the power of NBDA stem? 

Kendal et al., (2010) stated that such a result was not unsurprising, since the option-bias method 

worked at subgroup level and for specific option use (where social learning occurred), while NBDA 

considered the learning of the task in general at the group level. Furthermore, they hypothesized that 

the low power of NBDA may have been caused by small sample size (Franz and Nunn, 2010; Kendal et 

al., 2010; Hoppitt et al., 2010). In conclusion, NBDA can be a powerful tool to detect and quantify 

social learning, but power to detect learning has been shown to vary with sample size (i.e., the number 

of learners), network structure, and uncertainty within the social network (Franz and Nunn, 2009; 

Franz and Nunn, 2010; Hoppitt et al., 2010).  

NBDA is not only a useful tool to infer social learning, but can also give insight on underlying mecha-

nisms such as social learning strategies, for example when or who it is beneficial to copy (Laland, 2004). 

In an experimental approach, for example, stress levels in zebra finches (Taeniopygia guttata) during 

early development were found to influence social learning strategies: While control juveniles learned 

foraging skills from their parents, juveniles exposed to elevated stress hormones as nestlings learned 

exclusively from unrelated adults (Farine et al., 2015b). Similarly, Aplin et al., (2015) used NBDA to 

investigate the spread of an experimentally introduced foraging technique in sub-populations of great 

tits (Parus major). Besides a rapid spread of the novel behaviour, they demonstrated a strong effect 
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of conformity, i.e., the tendency to disproportionally copy the most frequently used variant in the area 

(Aplin et al., 2015).    

A further advantage of NBDA is its potential for modifications. Several studies have improved NBDA’s 

power to detect social learning by adapting its form to their specific study design and available data. 

A study on a wild population of chimpanzees (Pan troglodytes schweinfurthii) in Budongo, Uganda, for 

example, addressed one limitation of NBDA, namely that it treats the social network as static, i.e., that 

it has no time dimension and thus does not take into account that an observation can only influence 

the acquisition of a novel behaviour in the future, but not in the past (Hobaiter et al., 2014). In this 

particular study, the authors overcame this issue by using both a dynamic and a static network. 

Thereby, the dynamic network reflected an exact documentation of individuals that were present at 

the waterhole during the occurrence of two behaviours to drink water ('moss-sponging' and 'leaf-

sponge re-use') (Hobaiter et al., 2014). Both the static and dynamic network model revealed that the 

diffusion of moss-sponging, but not leaf-sponge re-use, was significantly better explained by social 

transmission than independent learning (Hobaiter et al., 2014). Dynamic data, however, is often not 

available, in which case the original form of NBDA is preferred. A further study on songbirds investi-

gated the influence of different networks (i.e., intra-specific versus inter-specific) on arrival of these 

birds at new foraging sites (Farine et al., 2015a). Since the standard NBDA model cannot determine 

whether rates of learning differ between individuals within the network, the authors extended NBDA 

to include two different networks at the same time. They found that information about the location 

of the food patches diffused through both networks, but travelled faster between conspecifics com-

pared to heterospecifics. Hence, NBDA can also serve as a tool to estimate strengths of transmission 

along different pathways.  

Dynamic (Hobaiter et al., 2014) and multi-network (Farine et al., 2015a) NBDA are just two of the 

extensions developed that show the potential of NBDA for modifications. Further adaptations of NBDA 

include NBDA in a Bayesian context (Whalen and Hoppitt, 2016), or spatial NBDA, which incorporates 

information on the spatial locations of individuals in the study population (Nightingale et al., 2015).  

1.1. Cetacean culture 

1.1.1. Why study cetacean culture? 

Cetaceans are large-brained, long-lived animals who rely extensively on social learning (Whitehead 

and Rendell, 2014). The logistical difficulties of studying diving organisms in the marine environment, 



CHAPTER 1 2018 PhD thesis S. Wild 
__________________________________________________________________________________ 

27 

 

however, often lead to incomplete information, which makes studies on cultural phenomena chal-

lenging. Nevertheless, there is a growing body of research into cetacean culture, and compelling rea-

sons why this is a topic worth pursuing.  

First, cetaceans are large-brained animals known to be capable of behavioural innovations (Marino et 

al., 2007). Their capacity for innovation becomes apparent when considering, for example, the variety 

of foraging techniques that have emerged in different populations and species. Some bottlenose dol-

phins (Tursiops truncatus) in Laguna, Brazil, cooperate with local fishermen to catch mullet (Simões-

Lopes et al., 1998), while others in the same population do not (Daura-Jorge et al., 2012). Other 

toothed cetaceans, including killer whales (Orcinus orca) and sperm whales (Physeter microcephalus), 

have figured out how to depredate fishing lines of their catch (Kock et al., 2006). Furthermore, dol-

phins in captivity have even been trained to ‘innovate’, i.e., perform a completely novel behaviour not 

part of their established behavioural repertoire (Kuczaj II and Eskelinen, 2014).  

Second, their social nature and complex societies combined with long lifespans provide countless op-

portunities for social learning. Despite differences in adult sociability between different species, all 

cetaceans are characterized by prolonged periods of maternal care, during which nursing and first 

foraging attempts by the calf overlap (Mann and Sargeant, 2003). During this period, calves acquire 

information on what to eat, how to eat, on social relationships with community members as well as 

unfamiliar individuals, predator avoidance and movement patterns – some of which is undoubtedly 

transferred through social learning (Whitehead and Rendell, 2014).  

Finally, contrasting the similarities and differences of culture in cetaceans, which inhabit such a vastly 

different environment from our own, with that of great apes and humans can help us to understand 

the evolutionary roots of culture across markedly divergent societies (Whitehead and Rendell, 2014). 

1.1.2. Cases of (putative) culture in cetaceans 

There is growing evidence of cultural phenomena occurring in several cetacean species. Whitehead 

and Rendell, (2014) provide a detailed discussion of putative cultural behaviour in various cetacean 

species. The logistical difficulties of studying marine mammals can result in incomplete data sets, giv-

ing rise to uncertainty around whether particular behaviours actually qualify as culture. Even in data 

rich circumstances, it is often difficult to account for alternative explanations for behavioural differ-

ences between social groups, such as genetic or environmental factors. In table 1.2, I have compiled 

a (non-exhaustive) list of reports of (putative) cultural behaviour in cetaceans.  

Here, I will outline a few cases of culture in humpback (Megaptera novaeangliae) and killer whales to 

illustrate how evidence for social learning can be obtained and what difficulties arise in determining 
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whether a behaviour qualifies as culture, before examining cultural behaviour in Indo-Pacific bottle-

nose dolphins (T. aduncus) in more detail. Living in predominantly dark or opaque environments, it is 

not surprising that many cetaceans rely on sound as their primary means of navigation and communi-

cation. Sounds travels much further and faster through water than air, allowing individuals to com-

municate over vast distances. It is, perhaps, not surprising that many cultural phenomena in cetaceans 

occur in the acoustic domain. The highly structured and repetitive vocalizations, or ‘songs’, of male 

humpback whales, for example, have evolved as a vocal sexual display (Payne and McVay, 1971; Smith 

et al., 2008). 

Their structure and transmission mechanisms have been studied in great detail for half a century. A 

song cycle is a repetition of so-called ‘themes’, which appear in a very distinctive, invariant order but 

which evolve over time. Males within a population conform to the most frequently used song type 

(‘conformism’), while populations in different oceans (separated by continents) have unrelated songs 

(Cato, 1991). Noad et al., (2000) showed evidence for rapid horizontal social learning of humpback 

whale songs: those on the east coast of Australia were reported to have undergone radical song 

changes after being exposed to a handful of singers from the west coast, who appeared to have taken 

an unusual migratory route. Within only two years, the eastern songs were entirely replaced by the 

songs from the western population. Given the large distances (and dividing land mass) between the 

populations and the short time span for this complete change of songs, horizontal social learning 

seemed the only plausible explanation for this cultural 'revolution' of east coast humpback whale 

songs (Noad et al., 2000).  

Further compelling evidence for horizontal social learning of humpback whale songs was delivered by 

Garland et al., (2011), who showed how the distinct song types in different humpback whale subpop-

ulations have moved in an easterly direction, from eastern Australia to French Polynesia within only a 

couple of years. While an underlying genetic basis for song could not be excluded, the rapid speed at 

which these different song types diffused across populations made a genetic explanation for the ob-

served diffusion unlikely. Similarly, an ecological explanation was unlikely, since whales using areas 

with entirely different ecology were using the same songs. Thus, humpback whale song represents a 

compelling case of cetacean culture.    
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Table 1.2: Transmission mechanisms of cultural behaviour in cetacean species 

Species Behaviour Domain Mechanism Authors 

Bottlenose 
dolphins 

Sponge carrying Foraging Likely vertically socially learned 
influenced by distribution of 
sponges, and with cultural trans-
mission shaping the genetic struc-
ture within the population. 

(Krützen et al., 
2005; Tyne et al., 
2012; Kopps and 
Sherwin, 2012; 
Kopps et al., 2014) 

Bottlenose 
dolphins 

Human provisioning Foraging Social learning plausible (Mann and 
Sargeant, 2003) 

Bottlenose 
dolphin 

Cooperative hunting 
with humans 

Foraging Social learning plausible (Simões-Lopes et 
al., 1998; Cantor 
et al., 2018) 

Bottlenose 
dolphins 

Accepting food 
handouts from hu-
man provisioners 

Foraging Social learning plausible, influ-
ences of ecology likely: both asso-
ciations with already provisioned 
dolphins and use of areas with 
high boat density predicted ac-
quisition of behaviour. 

(Donaldson et al., 
2012) 

Bottlenose 
dolphin 

‘Tail-walking’   Motor Likely social learning, has disap-
peared from population 

(Bossley et al., 
2018) 

Humpback 
whales 

Radical song changes Vocal Horizontal social learning (Noad et al., 2000) 

Humpback 
whales 

‘Lobtail-feeding’ Foraging Social learning with influence of 
ecological factors 

(Allen et al., 2013) 

Humpback 
whales 

’Trap-feeding’ Foraging Social learning plausible  (McMillan et al., 
2018) 

Killer 
whales 

Intentional stranding Foraging Social learning, influence of mito-
chondrial genes difficult to ex-
clude  

(Lopez and Lopez, 
1985; Guinet and 
Bouvier, 1995) 

Killer 
whales 

Vocal dialects Vocal Social learning, influence of mito-
chondrial genes difficult to ex-
clude 

(Yurk et al., 2002; 
Filatova et al., 
2015) 

Killer 
whales 

Dead salmon carrying Play? Most likely social learning – has 
disappeared from the population 

(Whitehead et al., 
2004) 

Sperm 
whales 

Vocal clans Vocal Social learning plausible (Rendell and 
Whitehead, 2003) 



CHAPTER 1 2018 PhD thesis S. Wild 
__________________________________________________________________________________ 

30 

 

Further evidence for cultural transmission in humpback whales was found in a feeding-related context. 

Using NBDA, Allen et al., (2013) were able to show that a foraging technique named ‘lobtail-feeding’ 

spread through the population via horizontal social learning in combination with ecological factors - 

i.e., a whale’s proportion of time spent in a specific area. Furthermore, lobtail-feeding was more prev-

alent in years with higher annual abundance of sand lances, suggesting that lobtail-feeding targets 

specific prey. Lobtail-feeding therefore represents an example of how combinations of social learning, 

ecological (and genetic factors) can contribute to creating behavioural differences between social 

groups, and that they are not mutually exclusive. 

In some cases of putative culture, genetic, ecological factors and social learning are not easy to tease 

apart, particularly when social units consist of highly related individuals, as is the case in highly matri-

lineal societies of killer whales, for example (Hoelzel et al., 1998). In Alaskan resident killer whales, 

individuals within different pods were found to share discrete vocal repertoires and, as usual in the 

matrilineal societies, these pods consist of closely related individuals belonging to the same matriline 

(Yurk et al., 2002; Filatova et al., 2015). Given the high degree of relatedness within pods, it appeared 

plausible that a genetic predisposition could be responsible for the emergence of vocal clans. Filatova 

et al., (2015), however, argued that, if call repertoire was genetically inherited from both parents, the 

offspring's repertoire would be expected to be an intermediate mixture of its parents' dialects. Off-

spring, however, were found to share the vocal repertoire of their maternal kin within their pods (Yurk 

et al., 2002; Filatova et al., 2015). A genetic explanation could still not be dismissed, since the call 

repertoire could also be encoded on the maternally inherited mitochondrial DNA or the maternal sex 

chromosome. The authors argued that the call types were too complex to be the result of genetic 

inheritance through mitochondrial or maternal sex chromosomes and thus, that the formation of vo-

cal clans must have been the result of vertical social transmission (Yurk et al., 2002). Furthermore, the 

correlation between vocal repertoire and patterns of association was found to be stronger than that 

between vocal repertoire and genetic relatedness (Deecke et al., 2010). Captive studies also suggested 

that killer whales are, in fact, capable of imitating calls of unrelated tank mates (e.g. Crance et al., 

2014). While I agree that it appears unlikely that a complex vocal repertoire could be somehow genet-

ically encoded on the mitochondrial DNA, the killer whale case provides an excellent example of the 

difficulties that can arise when trying to assess patterns of transmission when highly related individu-

als are also closely associated and live under the same ecological conditions.  
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1.1.3. Foraging strategies in the bottlenose dolphins in Shark Bay 

1.1.3.1. Vertical cultural transmission of sponge carrying 

The Indo-Pacific bottlenose dolphins in Shark Bay, Western Australia, have been extensively studied 

for over 35 years (Connor and Smolker, 1985) and thus provide an excellent opportunity to investigate 

cetacean culture. They exhibit a remarkable variety of foraging strategies within a single population 

(e.g. Smolker et al., 1997; Connor et al., 2000; Sargeant et al., 2005), which female offspring appear to 

adopt from their mothers through vertical social learning (Mann and Sargeant, 2003; Krützen et al., 

2005). Sponge carrying, or ‘sponging’, is the most thoroughly studied foraging strategy which involves 

a dolphin carrying a marine sponge on its rostrum and, it is inferred, probing the substrate for buried 

prey, such as small fish (Smolker et al., 1997). The sponge likely protects the dolphin’s rostrum from 

the rough seafloor and, to date, represents the only reported case of tool use in bottlenose dolphins 

(Smolker et al., 1997; Krützen et al., 2005; Mann et al., 2008).  

Using the ethnographic method, Krützen et al., (2005) inferred that sponging was vertically socially 

transmitted primarily from mother to female offspring. Sponging was heavily female biased and all 

spongers but one shared the same mitochondrial haplotype (Krützen et al., 2005). Spongers were also 

more closely related than expected by chance, suggesting common ancestry (Krützen et al., 2005). 

The authors considered 10 different scenarios of genetic inheritance (x-linked or autosomal), which 

were all inconsistent with the observed data: The lack of an equal sex-ratio in sponging was incon-

sistent with autosomal as well as x-linked inheritance of sponging as, in both cases, a higher proportion 

of male spongers would have been expected (Krützen et al., 2005). The authors thus concluded that 

sponging appeared to be transmitted socially rather than genetically from mother to female offspring 

(Krützen et al., 2005). Simulations supported the finding that social transmission was a more feasible 

mechanism explaining the spread of sponging compared to genetic inheritance (Kopps and Sherwin, 

2012). 

Sargeant et al. (2007), however, argued that sponging could potentially be explained by ecological 

factors, as sponging occurred primarily in deep-water channels. Tyne et al.’s (2012) findings supported 

the theory of an additional influence of ecological factors, as sponging was positively correlated with 

the distribution of conical sponges, more abundant in deeper waters. Nevertheless, non-sponging dol-

phins used the same habitat for foraging, suggesting that ecology alone could not fully account for the 

observed diffusion pattern of sponging (Krützen et al., 2005).  

Although all evidence strongly supports social learning of sponging as a transmission mechanism, no 

attempt has thus far been made to quantitatively assess the relative importance of social learning, 

genetics and ecology in promoting the diffusion of sponging behaviour.  
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1.1.3.2. Shelling – another remarkable foraging strategy in Shark Bay 

More recent observations suggest the existence of another foraging technique, referred to as 

'shelling', in the Shark Bay bottlenose dolphin population (Allen et al., 2011). During shelling, an indi-

vidual dolphin surfaces carrying a large shell in front of its melon by inserting its rostrum in the aper-

ture of the shell (Allen et al., 2011). The shell, either one of the two giant gastropod species Syrinx 

aruanus and Melo amphora, is lifted above the water surface and shaken from one side to the other 

(Allen et al., 2011). Photographs indicated that the dolphins were attempting to access the prey items 

that were using the empty shell as shelter (Allen et al., 2011). Shelling had only been observed seven 

times between 1996 and 2009 in Shark Bay (Allen et al., 2011). Given the large distances between 

sightings in the eastern and western gulfs of Shark Bay, the authors suggested that shelling was inde-

pendently innovated (Allen et al., 2011), since both sexes are philopatric and not known for move-

ments over large distances (Krützen et al., 2004; Tsai and Mann, 2013). The transmission patterns of 

shelling, however, had not been investigated.  

1.2. My PhD Chapters 

1.2.1. Overview 

Chapter 1 provides a general introduction to the topic of animal social learning, as well as culture in 

cetaceans, with a focus on bottlenose dolphins. The following four chapters (2-5) revolve around 

NBDA, as well as the two foraging strategies ‘shelling’ and ‘sponging’ in the bottlenose dolphin popu-

lation in the western gulf of Shark Bay, Western Australia, using data collected between 2007 and 

2018. The second chapter provides a methodological approach on how to deal with observational 

error when applying NBDA. Chapters 3 and 4 investigate the transmission mechanisms of ‘shelling’ 

and ‘sponging’, respectively, using a multi-network version of NBDA (Farine et al., 2015a). Chapter 5 

investigates the impacts of a marine heatwave on the vital rates of the western Shark Bay dolphins, 

while assessing differences in survival and reproduction between sponging individuals and those that 

do not use sponges for foraging. Finally, Chapter 6 provides an overall discussion and synthesis of the 

thesis. Here I overview each of my data chapters (2-5).  

1.2.2. Chapter 2 – Choosing a sensible cut-off point: Assessing the impact of uncertainty in a 

social network on the performance of NBDA 

Chapter 2 proposes a methodological approach to help select an appropriate threshold for including 

individuals in an NBDA analysis, which maximises power to detect social learning when association 

data is incomplete. In many studies on social networks, there is a trade-off between including as many 
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individuals as possible to have a complete record of connections, and having reliable data, since cer-

tainty about the strength of connections increases with the number of sightings. Chapter 2 presents a 

simulation approach with which power of NBDA to detect social learning can be assessed for different 

thresholds when dealing with incomplete association data.  

1.2.3. Chapter 3 – Evidence for social transmission of a dolphin foraging technique within and 

between generations 

In Chapter 3, I investigate how shelling behaviour spreads in the western gulf of Shark Bay. Using multi-

network NBDA (Farine et al., 2015a), I assess the relative importance of social learning, as well as 

ecological and genetic factors in promoting the spread of the behaviour. Besides an association net-

work, l include a network depicting dyadic home range overlap as a measure to which extent two 

individuals experience the same ecology. The influence of genetics is assessed with a network con-

taining biparental relatedness estimates, i.e., the percentage of genes shared by two individuals.  

1.2.4. Chapter 4 – Network-based Diffusion Analysis shows vertical cultural transmission of 

sponge tool use within dolphin matrilines 

Using the ethnographic method, Krützen et al., (2005) suggested sponging behaviour is transmitted 

vertically from mother to female offspring, though this approach has been criticized (Laland and Janik, 

2006, 2007; Sargeant et al., 2007). With new methods available, I revise the transmission mechanisms 

of sponging in Chapter 4, using the multi-network NBDA approach described above (Farine et al., 

2015a) to test for influences of social learning, ecology and genetics on the spread of sponging. For 

pathways of social learning, I furthermore assess the importance of vertical versus horizontal/oblique 

learning.  

1.2.5. Chapter 5 – Long-term decline in survival and reproduction of dolphins following a ma-

rine heatwave    

Chapter 5 deals with the impacts of habitat degradation following a marine heatwave on the survivor-

ship and reproductive rates of the western gulf dolphin population. During an unprecedented marine 

heatwave in the Austral summer/autumn of 2011 along the western Australian coastline, water tem-

peratures rose to 2-4° Celsius above long-term averages for more than two months (Wernberg et al., 

2012). The heatwave occurred when strong Easterly winds forced large volumes of warm water south-

wards along the coast during a strong La Niña event (Feng et al., 2013; Pearce and Feng, 2013). The 

effect was heightened by an anomalously high air-sea heat flux entering the ocean (Feng et al., 2013). 

Numerous consequences of the heatwave along the coastline were reported, including fish and inver-

tebrate die-offs (Pearce et al., 2011; Caputi et al., 2014), contractions of seagrass and kelp distribution 
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(Smale and Wernberg, 2013; Wernberg et al., 2016), coral bleaching (Depczynski et al., 2013), the 

‘tropicalisation’ of entire communities (Hyndes et al., 2016), and lower breeding success in penguins 

(Cannell et al., 2012; Caputi et al., 2014).  

The affected area included the iconic World Heritage Area of Shark Bay, a relatively shallow, subtrop-

ical embayment with the most diverse assemblage of seagrasses worldwide (Walker et al., 1988). An 

estimated 36% of the bay’s seagrass meadows were damaged in the 2011 heatwave (Arias-Ortiz et al., 

2018), and mortality events of invertebrate and fish communities followed, as well as declines in the 

health status of herbivorous marine turtles (Fraser et al., 2014; Thomson et al., 2014). Furthermore, 

several fisheries were closed in 2012 due to low yields (Caputi et al., 2014).  

Using long-term demographic data, I assess effects of the heatwave and subsequent habitat degrada-

tion on survival and reproduction of the resident dolphin population. I furthermore assess differences 

in survival and reproduction between individuals that use sponges as foraging tools and those that do 

not, to investigate if culturally different subgroups are affected adversely by extreme climatic events.  
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CHAPTER 2. 
Choosing a sensible cut-off point: Assessing the impact 
of uncertainty on the performance of NBDA 
__________________________________________________________________________________ 

2.0. Abstract 

‘Network-based diffusion analysis’ (NBDA) has become a widely used tool to detect and quantify social 

learning in animal populations. NBDA infers social learning if the spread of a novel behaviour follows 

the social network and hence relies on appropriate information on individuals’ network connections. 

Most studies on animal populations, however, lack a complete record of all associations, which creates 

uncertainty in the social network. To reduce this uncertainty, researchers often use a certain threshold 

of sightings for the inclusion of animals (which is often arbitrarily chosen), as observational error de-

creases with increasing numbers of observations. Dropping individuals with only few sightings, how-

ever, can lead to information loss in the network if connecting individuals are removed. Hence, there 

is a trade-off between including as many individuals as possible and having reliable data. We here 

provide a tool in R that assesses the sensitivity of NBDA to error in the social network given a certain 

threshold for the inclusion of individuals. It simulates a social learning process through a population 

and then tests the power of NBDA to reliably detect social learning after introducing observational 

error into the social network, which is repeated for different thresholds. Our tool can help researchers 

using NBDA to select a threshold - specific to their data set - that maximizes power to reliably quantify 

social learning in their study population. 

2.1. Introduction 

Cultural behaviour, broadly defined, is behaviour that is passed on among individuals through social 

learning (Boyd and Richerson, 1995). Therefore, if researchers are to understand the importance of 

cultural behaviour in nonhuman primates and other animals, they need to be able to infer when social 

learning is responsible for the spread of behaviour in natural settings. Recent years have seen the 

development of novel methods that quantify the importance of social learning on the spread of a 

behaviour in freely interacting groups of animals. A method that has gained increasing popularity is 

‘network-based diffusion analysis’ (NBDA), a statistical tool which can quantify the effect of social 

learning among a group or population of animals (including humans) (Franz and Nunn, 2009; Hoppitt 

et al., 2010). NBDA has been used in numerous studies to detect and quantify social learning in both 

free-ranging as well as captive animal populations across many taxa, including birds (e.g. Aplin et al. 
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2012; Boogert et al. 2014), insects (Alem et al., 2016), primates (Kendal et al., 2010; Schnoell and 

Fichtel, 2012; Hobaiter et al., 2014) and cetaceans (Allen et al., 2013).  

NBDA, first developed by Franz and Nunn (2009), infers social learning if the diffusion of a behaviour 

follows the social network, (i.e., a representation of connections among individuals within a social 

group or population), as it is based on the assumption that more closely associated individuals are also 

more likely to learn from each other (Coussi-Korbel and Fragaszy, 1995). NBDA compares diffusion 

data with a matrix that contains a measure of association among individuals (Hoppitt et al., 2010), i.e., 

a measure of how frequently two individuals are observed together or in proximity. Diffusion data can 

either be the order with which individuals acquire a behaviour (‘order of acquisition diffusion analysis’ 

– OADA) (Hoppitt et al., 2010) or it can be the time at which they acquire a behaviour (‘time of acqui-

sition diffusion analysis’ – TADA) (Franz and Nunn, 2009; Hoppitt et al., 2010).  

As both OADA and TADA track the spread of a novel behaviour through the social network, accurate 

data on individuals’ network connections are desirable. Ideally, information on all individuals’ network 

connections is captured at once (Hoppitt and Farine, 2017). However, for most studies on animal pop-

ulations, especially free-ranging, this is not feasible, either due to sampling restrictions (time or space) 

or the inability to reliably identify all individuals, resulting in an incomplete record of all associations. 

Missing information can lead to imperfect relationships, which creates uncertainty about association 

strengths among individuals in the social network (Hoppitt and Farine, 2017) with potential negative 

impacts on the power of NBDA to reliably quantify the importance of social learning (Hoppitt, 2017).  

Uncertainty decreases with the number of times an individual has been seen, and information on its 

connections with other individuals and estimates of association strengths between them gets more 

reliable. Several studies have outlined that collecting enough information on individuals’ associations 

is key to construct an accurate social network (Lusseau et al., 2008; Franks et al., 2010; Farine and 

Strandburg-Peshkin, 2015; Silk et al., 2015). Thereby, the minimum number of observations for an 

accurate depiction of the social network depends on the level of social differentiation within the pop-

ulation, i.e., how varied the social system is, with more data required for populations with low social 

differentiation (Whitehead, 2008). To minimize uncertainty, researchers often restrict their analysis 

by only including individuals above a certain threshold of sightings. A further argument for excluding 

animals with only few sightings when using NBDA, is when not all individuals can be observed at all 

times and the target behaviour is short or rare and hence easily missed by observers. In that case, a 

high cut-off point for the inclusion of animals can increase the certainty about an individual’s infor-

mation status, i.e., to reliably distinguish if it is naïve or informed.  
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Franks et al., (2010) support the notion that sampling should in fact maximize the amount of data 

collected on known individuals, rather than maximizing the number of sampled individuals, as uncer-

tainty in the social network is more problematic than missing individuals altogether. This is supported 

by Silk et al., (2015), who found that knowing even only 30% of individuals in a population can be 

enough to create informative social networks, as judged by network measures of connectivity at a 

node level. Both findings support having a large and conservative cut-off point for the inclusion of 

animals to reduce uncertainty in the network, if the aim is to make inferences about network struc-

ture.  

However, it is less clear that a large, conservative cut-off point is appropriate when using NBDA. Drop-

ping individuals with few sightings from a social network comes at the cost of information loss, if net-

work connections between individuals are lost due to linking individuals being removed. For example, 

imagine that novel behaviour is transmitted from A to B to C, where A and C are not directly linked. If 

B is removed due to a lack of data, it would appear that C has acquired the behaviour by asocial learn-

ing and not by social learning. Even if the connections from A to B and B to C are inaccurately esti-

mated, inclusion of B may nonetheless more accurately portray the transmission of information. Thus, 

missing network connections might result in lower power of NBDA to detect a social learning effect, 

and the recommendations of Franks et al., (2010) and Silk et al., (2015) may not stand for NBDA. In-

stead, having a lower threshold and including more individuals, while risking larger uncertainty in the 

network, may be preferable. Hence, there is a trade-off in the selection of a criterion for including 

individuals in the analysis between including as many as possible to have complete information on 

social network, and restricting inclusion of animals to reduce uncertainty (Bejder et al., 1998). 

To resolve this issue, we provide a tool which can help researchers using NBDA to choose an appro-

priate threshold for the inclusion of individuals that maximizes the power of NBDA to reliably quantify 

social learning. For our simulations, we use OADA, which uses the order of acquisition as diffusion 

data. Our results still stand for TADA using continuous time data (Hoppitt et al., 2010); the log-likeli-

hood function for continuous TADA is equivalent to the sum of the log-likelihood of the order of ac-

quisition (used in OADA) and the log-likelihood for the time course of the diffusion independent of the 

identities of the learners. Thus, impacts of network inaccuracies on the power of OADA will similarly 

affect continuous TADA. Furthermore, results of the discrete time version of TADA (Franz and Nunn, 

2009) converge on those of the continuous TADA for small time periods (Hoppitt et al., 2010) suggest-

ing that it will be similarly affected. Therefore, we suggest that researchers use the same technique 

described here to determine which individuals to include in a TADA, by omitting the time data from 

the procedure to determine the cut-off point that maximises statistical power. Using a simulated data 

set, we simulate a learning process through the population and then assess the rate of false negatives 
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(type 2 error) and false positives (type 1 error) of NBDA for different cut-off points after introducing 

noise into the social network. We furthermore assess if keeping individuals that learned (i.e., informed 

individuals) regardless of the number of times they have been seen, improves the power to detect 

social learning and assess the rates of false positives (type 1 error). 

NBDA can also be applied to interaction data instead of association data (Franz and Nunn, 2009; 

Hoppitt, 2017). In this paper we focus on the use of association networks since these have been most 

commonly utilised in NBDA - thus, the method we present is only directly applicable to association 

networks. However, the procedure could be modified to account for the sampling variation present in 

interaction data for differing observation periods across individuals. 

2.2. Methods 

All simulations and analyses were run using R Studio v1.1.423 (R Core Team 2015). The supplementary 

material* contains the R code to simulate observational data (SM1), the NBDA code (SM2) and the 

code for the simulations for assessing sensitivity of NBDA to observational error (SM3), the code for 

the application of the simulations to the simulated observational data (SM4), the simulated observa-

tional data (SM5) and resulting social network (SM6) and summary of results of all simulations (SM7-

10), as well as a guide on how to use the codes (SM11) and further detail on the algorithm with which 

the observational data was simulated (SM12; Appendix SI Chapter 2; Tab. 2.1). 

2.2.1. Input data set 

In developing our methodology we assume that researchers possess association data in an observa-

tion by individual matrix (see Farine (2013) for transformation of data), where a number of observa-

tions are made, with each individual in the population being recorded as being present during that 

observation (1) or absent (0). We assume these data are formatted as a matrix with observations 

(rows) x individuals (columns). In order to test and illustrate the method developed, we simulated 

data of this form by developing an algorithm that resulted in a reasonable level of underlying social 

structure, which is necessary for NBDA to reliably detect social learning. We provide details of this 

algorithm in the supplementary material (SM12; Appendix SI Chapter 2). 

In our simulated data set we obtained a group by individual matrix with 60 individuals and 331 obser-

vations (SM5). Group size varied from 1 to a maximum of 10 individuals with a mean of 1.92 individuals 

per observation.  

__________________________________________________________________________________________ 

* all supplementary material available under https://doi.org/10.1007/s10329-018-0693-4 
 SM12 additionally available in the Appendix (SI chapter 2) of this thesis 
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Table 2.1: Structure of online resources 

Supplementary 
Materials 

File name Content 

SM 1 Simulating data set R code to simulate observational data for 60 individuals 

SM2 Sensitivity functions R code for simulations on the sensitivity of NBDA to observa-
tional error for different cut-off points 

SM3 NBDA code 1.2.15. R code NBDA 

SM4 Application to simu-
lated data set 

R code where we apply our simulations (SM3) the to the simu-
lated observational data (SM5) 

SM5 Simulated observa-
tional data 

CSV file with simulated observational data 

SM6 Social network CSV file with association matrix resulting from simulated data 
set 

SM7-10 sensitivity summary CSV files with summary of results of simulations applied to our 
simulated data set 

SM11 How to use the code Word document with guide on how to apply the sensitivity func-
tions and specify the necessary parameters 

SM12 Appendix Word document that describes the algorithm we used to simu-
late observational data 

 

__________________________________________________________________________________ 

 

From the simulated data set, we created a social network using the simple ratio association index (for 

details see below; R package ‘asnipe’; OR6) for illustrative purposes (Cairns and Schwager, 1987; 

Farine, 2013; R Core Team, 2015). Illustration of the social network (Fig. 2.1) was created using the 

Force Atlas 2 algorithm in Gephi (Bastian et al., 2009).  

To this end, the algorithm we use to generate our illustrative data set arbitrarily assumes a network 

with high modularity and that 33% of individuals account for most of the observations in the associa-

tion data. However, these are not assumptions of the procedure presented here, which accounts for 

modularity in the social network as well as the pattern of variability in the number of times individuals 

are observed in the specific data set being analysed.  
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Figure 2.1: Weighted and undirected social network of a simulated data set with 60 individuals and 331 obser-
vations: Individuals (=nodes) are represented with red circles, associations between them (=edges) with black 
lines. The closer together nodes are and the thicker the edges, the stronger the association is between them. 

2.2.2. Process overview 

We developed a process that enables researchers to choose a justified cut-off point for the amount of 

association data (number of observations) that is required for inclusion of an individual into an NBDA 

(Fig. 2.2). This process consists of two steps: First, we simulated a social learning process, which we 

then analysed using NBDA after introducing noise into the social network while applying different cut-

off points for the inclusion of individuals to see which yielded the highest statistical power, i.e., the 

highest percentage of models where social learning correctly outperformed the null model with aso-

cial learning, i.e., having lower AICc. Secondly, we repeated the process of simulating a diffusion that 
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was a result of only asocial learning to see which cut-off points yielded an appropriate false positive 

error rate, i.e., where social models erroneously outperformed asocial learning models. We illustrate 

this process by applying both steps to the simulated data set described above. 

Power of NBDA to detect social learning will inevitably decline if linking individuals within diffusion 

pathways are removed. Therefore, to investigate how retaining learners (i.e., only excluding non-

learners) influences power of NBDA to detect social learning, we then repeated the two steps, this 

time retaining all individuals who learned the behaviour regardless of how many times they had been 

observed. 

2.2.3. Assessing statistical power of NBDA for different cut-off points after introducing obser-

vational error 

Here we propose a procedure for assessing the performance of NBDA, using different cut-off points, 

for a given data set. We first simulated a learning process through the population assuming learning 

follows the NBDA model. We then analysed the resulting diffusion data using different cut-off points, 

and assessed the performance of NBDA to detect social learning in each case after introducing noise, 

i.e., observational error, into the social network.  

As a first step, we created an association network from the simulated observational data. Association 

strengths (𝑎𝑎𝑏) are usually estimated based on how many times two individuals (a and b) have been 

observed together as well as the number of times they have been seen apart (for guidance on choosing 

an appropriate association index, see Cairns and Schwager (1987); Hoppitt and Farine (2017)). We 

used the ‘simple ratio association index’ (hereafter ‘SRI’; Cairns and Schwager, 1987), which is defined 

as  

𝑆𝑅𝐼 =
𝑥

𝑦𝑎 + 𝑦𝑏 + 𝑦𝑎𝑏 + 𝑥
 

where 𝑥 is the number of sampling periods individuals a and b were observed associated, 𝑦𝑎 is the 

number of sampling periods with just a identified, 𝑦𝑏 is the number of sampling periods with just 

individual b identified, and 𝑦𝑎𝑏 is the number of sampling periods where both individuals a and b were 

identified but not in association. 

As a next step, we modelled a diffusion (the documented spread of a novel behaviour pattern) using 

the resulting social network from the simulated data (N=60, 331 observations): In a first round, one 

individual was randomly chosen to learn. In each subsequent round, we calculated the total associa-

tion with informed individuals for each individual. Following the NBDA model (Hoppitt et al., 2010) we 

then calculated an individual’s learning rate 𝑅𝑖 as  
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𝑅𝑖 = 𝑠 ∗∑𝑎𝑖𝑗 + 1

𝑛

𝑗=1

 

where 𝑠 denotes the social learning parameter, which estimates the strength of social learning per 

unit association with informed individuals relative to the average rate of asocial learning; and ∑ 𝑎𝑖𝑗𝑛
𝑗=1  

the total association of individual 𝑗 with informed individuals. Here, s represents the strength of social 

learning relative to asocial learning and must be set by the user. The ultimate aim of this process is to 

determine which cut-off point has most power to detect social learning. If s is set too high then all 

simulations will have high power, whereas if s is set too low all simulations will have low power. The 

user must find a value of s (by trial and error) that results in a range of statistical power, in order to 

determine which cut-off point is most likely to detect social learning if it is occurring. For this simula-

tion, we set s=8, which corresponds to an 8-fold increase of the social learning rate per unit association 

with informed individuals compared to an individual’s asocial learning rate. The probability that each 

individual was next to learn is then given as: 

𝑅𝑖

∑ 𝑅𝑗𝑗

 

This process was repeated until 20 individuals had acquired the behaviour (this represents an arbitrar-

ily chosen number of learners - in practise this would be matched to the actual number observed to 

learn in the population).  

As a third step, we used a Bayesian approach to simulate a social network that introduced a level of 

error for each dyad that depended on the number of times each dyad had been seen together and the 

number of times they had been seen apart. Thereby, the more often members of a dyad had been 

seen, the closer their simulated association strength was to the real value. Similarly, if a dyad had only 

been seen a handful of times, the simulated values would be more varying (more noise) and poten-

tially further away from the real value. Since the value of 𝑎𝑖𝑗  is a proportion (proportion of times i and 

j are expected to be seen together), knowledge about 𝑎𝑖𝑗, given the data available, can be modelled 

as a Beta distribution (known as the ‘conjugate’ prior distribution for a proportion, meaning that they 

are part of the same probability distribution family) with parameters a and b:  

𝑎𝑖𝑗~𝐵𝑒𝑡𝑎(𝑎, 𝑏) 

When we have no data, we set a = b = 1, which gives a uniform distribution for 𝑎𝑖𝑗- i.e., we accept that 

𝑎𝑖𝑗  is equally likely to take any value from 0 to 1. After we collect data, we update our prior distribution 

for 𝑎𝑖𝑗  to yield a posterior distribution, giving our updated knowledge about 𝑎𝑖𝑗. 
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After collecting data of n independent observations the posterior distribution for 𝑎𝑖𝑗, given x, is given  

by 

𝑎𝑖𝑗|𝑑𝑎𝑡𝑎~𝐵𝑒𝑡𝑎(𝑎 + 𝑥, 𝑏 + 𝑛 − 𝑥) 

where 𝑥 represents the number of successes (i.e., number of times two individuals have been seen 

together) and 𝑛 − 𝑥 the number of failures (i.e., number of times two individuals have been seen 

apart). The smaller n is, the wider the Beta distribution will be, reflecting our increased uncertainty in 

the value of 𝑎𝑖𝑗. This conjugate method of updating our knowledge about a proportion based on in-

dependent Bernoulli trials is a standard and accepted method in Bayesian statistics. Therefore, this 

method of calculating the level of uncertainty is appropriate for the common situation where associ-

ation data is used to calculate the SRI with observations sufficiently spaced out that they can be con-

sidered independent. Researchers could, in principle, substitute an alternative appropriate expression 

for error for other indices (e.g. Hoppitt and Farine 2017).  

Hence, from the sightings record, we created a matrix containing the number of times each dyad had 

been observed together (successes). A second matrix contained the cumulative number of times each 

member of a dyad had been observed without the other individual in the dyad (failures). We provide 

a function that extracts said matrices from the observation record (SM3). Making no assumptions 

about the distribution of the association strengths within the social network, we used an uninforma-

tive (uniform) prior 𝐵𝑒𝑡𝑎(1,1). We then simulated association strengths 𝑎𝑖𝑗  using  

    𝑎𝑖𝑗|𝑑𝑎𝑡𝑎~𝐵𝑒𝑡𝑎(1 + 𝑥, 1 + 𝑛 − 𝑥) 

The resulting association matrix represented a social network with noise and was used to test for 

statistical power of NBDA for different cut-off points. For our simulated data, we used cut-off points 

of N = {1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 22, 24, 26, 27}. In each case all 

individuals with fewer sightings than N were dropped from the social network. Note that the user has 

the option to keep individuals who learned and only drop non-learners (as described at the bottom of 

the method section).  

The fourth step was to test the performance of NBDA to correctly identify social learning. We ran the 

OADA (‘order of acquisition diffusion analysis’; Hoppitt et al., 2010) variant using the simple ratio as-

sociation matrix (simulated – with observational error) and the simulated order of acquisition that was 

obtained using the error free network.  

From the OADA model, we extracted the estimates for the social learning parameter s, the p-value of 

the likelihood ratio test, the AICc (Akaike information criterion corrected for small sample size; 
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Burnham and Anderson, 2002) values for the social models as well as the models where s was con-

strained to zero, i.e., the asocial models. To select a model over an alternative model, differences in 

AICc values (delta AICc) need to cross a certain threshold (defaulted to 2 in our simulation; can be set 

by user; Burnham and Anderson, 2002). We hence calculated the delta AICc value between social and 

asocial models. Note that a more stringent threshold in AICc difference would reduce the percentage 

of models where one model outperforms the other, but would affect all cut-off points to the same 

extent. Therefore, the threshold at which power of NBDA is maximized, is unlikely to change even with 

a more stringent criteria for delta AICc. We furthermore recorded if the true value of s was within the 

95% confidence interval (C.I.) for set s (i.e., within 1.92 units on the log likelihood scale) and if outside 

of the confidence interval, we determined if s was an under- or overestimate. The whole process was 

repeated 10,000 times for each cut-off point.  

As a last step, we calculated the percentage of models where the delta AICc value was above the set 

threshold of 2, i.e., where one model (social or asocial) was outperforming the alternative model. 

From those models, we calculated i) the mean and standard deviation for the estimates of s for each 

cut-off point; ii) the percentage of models where social models performed better than asocial models 

- giving the power of NBDA to detect social learning; iii) the percentage of models where the true value 

of s fell within the 95% C.I. for s (this should be ~95% if the model is performing well); and iv) the 

percentage of models that over- or underestimated the value of s, i.e., were above the upper limit of 

the 95% C.I. or below the lower limit respectively (this should be approximately even if NBDA is per-

forming well).  

To investigate in how far NBDA’s power to reliably detect social learning is impacted by the removal 

of linking individuals within a transmission pathway, we then repeated the entire process, but this 

time retaining all individuals who had learned, irrespective of how many times they had been sighted, 

i.e., only excluding individuals that did not learn. We provide the option to retain all learners in our 

code.  
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Figure 2.2: Flow diagram of simulation assessing the sensitivity of NBDA after introducing noise into the 
social network. * The user has an option to keep individuals who learned in the simulation, even though 
they would not make the cut-off. 
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2.2.4. Assessing the false positives error rate in NBDA for different cut-off points 

In order to assess the rate of false positives, i.e., where NBDA identifies a social learning effect where 

there is in fact none, we repeated the procedure described above, but this time constraining s = 0, 

which corresponds to learning asocially, i.e., through independent innovations. We assessed the rate 

of false positives for both models where individuals were dropped regardless of their information sta-

tus as well as models where learners were retained regardless of how many times they had been 

sighted.  

2.3. Results 

2.3.1. Assessing statistical power of NBDA for different cut-off points 

In an NBDA, social learning is inferred if the AICc for the model including social learning is lower than 

for a model without social learning. Therefore, the percentage of occasions that social learning models 

outcompete asocial learning models gives a measure of statistical power for each cut-off point, when 

s>0.  

For models where all individuals were dropped with sightings below the cut-off point (regardless of 

information status), statistical power was highest at a cut-off point of 4 with 83.96% power (Fig. 2.3a, 

OR7). Averaged estimates for s were consistently higher than set in the simulation (s=8), ranging from 

307.68 to 784.11 (SM7). Estimates for s followed an upwards trend as the cut-off point increased 

(SM7) - we explain why this occurs in the Discussion, below. In 96.51% to 100% of models - depending 

on the cut-off point - the true value of s (8) fell within the 95% C.I. (Fig. 2.3a, OR7), suggesting that the 

95% C.I. for s can be trusted as being appropriate for all cut-off points, if s>0. 

For models, where learners were kept regardless of how many times they were observed, power to 

correctly detect social learning was highest at cut-off point 6 with 92.95% power (Fig. 2.3b, OR8). Av-

eraged estimates for s ranged between 267.23 and 383.64, and in between 95.59% and 99.19% of 

models – depending on the cut-off point – the true value of s (8) fell within the 95% C.I (Fig. 2.3b, OR8). 

For all cut-off points, retaining learners increased the power to detect social learning compared to 

when learners were dropped.  
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Figure 2.3: Power of NBDA to correctly identify social learning after introducing noise into a social network (black 
circles) and percentage of models where estimates for the social learning parameter s fell within the 95% C.I. of 
the set s (=8) for a given cut-off point (red triangles) for a) models where all individuals were dropped below the 
cut-off point and b) models where learners were retained regardless of how many times they had been observed.  

__________________________________________________________________________________________ 

2.3.2. Assessing the false positives error rate in NBDA for different cut-off points 

For models where all individuals were dropped below the cut-off regardless of their information sta-

tus, the percentage of models where social learning was incorrectly outperforming asocial models 

when s=0 (false positives) ranged between 0% and 2.23% (Fig. 2.4a, OR9). Therefore, for these data, 

the false positive error rate was always below that commonly accepted (5%) (‘commonly’ refers to all 

statistics that consider a p-value of <0.05 as statistically significant). In this case a researcher could 

safely choose whichever cut-off point gave the highest statistical power. Averaged estimates for s 

were again consistently higher than set in the simulation (s = 0), ranging from 23.18 to 488.5 and 

exponentially increasing with an increasing cut-off point (Fig. 2.4a, OR9). The true value of s (0) fell 

within the 95% C.I. of the estimated set s in 97.37%-100% of the models depending on the cut-off 

point (Fig. 2.4a, OR9), further supporting the fact that, for this data, all cut-off points can be trusted. 

For models where informed individuals (learners) were retained, the percentage of models where 

social models incorrectly outperformed asocial models (for s=0) ranged between 2.37% and 35.14%, 

and was for most cut-off points above the commonly accepted 5% (Fig. 2.4b, OR10). Averaged esti-

mates for s ranged between 38.23 and 245.28 and the true value of s (=0) fell within the 95% C.I. of 

the estimated s in 64.83%-97.2% of models (Fig. 2.4b, OR10).   
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Figure 2.4: Percentage of models where NBDA incorrectly identifies social learning after introducing noise into a 
social network (black circles) and percentage of models where estimates for the social learning parameter s fell 
within the 95% C.I. of the set s (=0) for a given cut-off point (red triangles) for a) models where all individuals 
were dropped below the cut-off point and b) models where learners were retained regardless of how many times 
they had been observed. 

__________________________________________________________________________________________ 

2.4. Discussion 

We present a method for choosing a cut-off point for the inclusion of individuals that maximizes power 

of NBDA to detect learning, based on the number of times they are observed in the construction of 

the social (association) network. Above, we illustrated this process by applying it to a simulated data 

set. Below, we discuss how the results obtained could be used to select an appropriate cut-off point 

for this data set. There is no reason to think that the cut-off point identified for our simulated data 

would be applicable in general - the appropriate cut-off point will depend on the properties of the 

data set in question. Nonetheless, the same logic could be used to choose a cut-off point for real data 

sets.  

After simulating a learning process through a social network, we used a Bayesian approach to simulate 

a social network that introduced a level of error for each dyad depending on the number of times each 

dyad had been seen together and apart. The diffusion data and the social network with observational 

error were then analysed using NBDA to find an appropriate cut-off point for the data set. 

 The same approach could be used to estimate the impacts of noise in a social network for real NBDA 

data, where the social network is constructed from association data. We provide a function that allows 

the extraction of one matrix with the number of times each dyad has been seen together and a second 
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matrix with the number of times they have been seen apart, which can then be used to simulate an 

association network including noise. Alternatively, users can provide their own matrices for the simu-

lation. The approach presented here is for an NBDA that assumes a static association network that is 

essentially unchanging over time. NBDA itself can be extended to allow the use of a dynamic instead 

of a static network (Hobaiter et al., 2014), but further work is needed to determine cut-off points 

under such circumstances. 

The simulations presented then allow researchers to test a) the statistical power and b) the false pos-

itive error rate of NDBA under different cut-off points. In our simulated data set – for models where 

all individuals were dropped below the cut-off point regardless of their information status - false pos-

itive error rates were appropriate across the range of cut-off points. Furthermore, for both s=0 and 

s=8, the true value of s was within the 95% C.I. approximately 95% of the time. This suggests that the 

validity of NBDA could be trusted for any cut-off point, and so the cut-off point should be chosen to 

maximise statistical power. Our results correspond broadly with Hoppitt's (2017) finding that error in 

the network does not increase false positives in NBDA but can act to make the analysis more conserva-

tive in detecting social learning (see also Whalen and Hoppitt 2016). However, it is uncertain if invari-

ability of false error rate to cut-off point choice is a general feature of NBDA, so we encourage re-

searchers to always run the simulations on their own data set before accepting a cut-off point. 

In our simulated data set, power of OADA was maximized at a cut-off point of 4 sightings, which would 

result in the inclusion of 41 out of the 60 individuals (=68%). Silk et al.'s, (2015) finding that having 

data on as little as 30% of the population allows to create an informative social network, does not 

prove to be true for NBDA using our simulated data, as power to detect social learning dropped to 

only 60% with 20 individuals being included (which corresponds to a 30% threshold). Thus, we show 

that Silk et al.’s, (2015) threshold is not generally appropriate for NBDA (and was not suggested for 

this purpose). Instead, the threshold where power of OADA is maximized is likely to vary depending 

on the specific data set – the number of individuals in the population, the length of diffusion, associa-

tion strengths among individuals and the social differentiation of the population, i.e., how varied the 

social system is (Franz and Nunn, 2009; Hoppitt et al., 2010). Hence, we recommend using our pro-

posed methods to ensure a threshold for the inclusion of animals that is specific to the data set, and 

discourage the use of arbitrarily chosen thresholds when using NBDA.  

For models where all informed individuals were kept regardless of how many times they had been 

seen, power of NBDA to detect social learning was highest at a cut-off point of 6. Furthermore, power 

to detect social learning was higher compared to when learners were dropped. Dropping individuals 

will intuitively reduce power to detect social learning when linking individuals are being removed (as 
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explained in the Introduction). However, false positive rates (when s=0) for most cut-off points were 

high when all learners were retained (and above the commonly accepted 5%) for all but one cut-off 

and over 25% for the cut-off point of 6 which yielded highest statistical power. Hence, even though 

keeping learners may improve the statistical power to detect social learning, it may also substantially 

increase the risk of false positive results. Therefore, the option to keep all informed individuals in the 

simulation should only be made use of after ensuring that the rate of false positives falls below the 

5% threshold for the chosen cut-off point. For our simulated data set, we would conclude that we 

should drop learners both in the simulation as well as the actual NBDA analysis if they do not make 

the cut-off point, since risking a 25% chance of a false positive result would make a positive result 

untrustworthy. We suspect that it may prove to be a general pattern that retaining all learners results 

in an unacceptable false positive error rate. 

In order to run the simulation to assess statistical power researchers must choose a value of s. In a 

sense, this choice is arbitrary, since, allowing for sampling error, power will peak at approximately the 

same point for all s>0. However, if s is set too high, then statistical power will appear level at 100%, if 

s is set too low, statistical power will appear level at 0%. Therefore, some trial and error may be re-

quired to find a useful value for s. A value of 10 for s may be a good starting point, which can then be 

adjusted upwards or downwards depending on the percentages of power obtained.  

In all simulations on the sensitivity of NBDA (with s=8 and s=0, both with dropping and keeping learn-

ers), average estimates for the social learning parameter s across simulations were considerably 

higher than the true values set, even though when learners were dropped. Nevertheless, in ~95% of 

cases the true value of s fell within the 95% C.I. as would be expected if OADA was performing well. 

Hoppitt (2017) found the same effect in OADA. The bias arises because in cases where the diffusion 

follows the network very closely, the likelihood of the data increases and plateaus as s increases to 

infinity. Thus the optimisation algorithm used to fit the model converges on an arbitrarily large value 

for the estimate of s, which biases the average value of estimates of s upwards. In such cases there is 

also no upper limit for the 95% C.I. of s. Therefore, this is not a reason to generally distrust estimates 

of s obtained from an OADA. Instead, one should mistrust the estimated value of s if it appears unre-

alistically high and there is no upper limit for its 95% C.I. In such cases one can still take the lower 

bound of the 95% C.I. as providing a lower plausible limit on the strength of learning. The upper bound 

of infinity is merely indicating that it is plausible that everyone in the population who learned the 

behaviour while connected to an informed individual, did so by social learning. Overall, the results 

obtained here and by Hoppitt (2017) indicate the best way to interpret OADA is to consider the 95% 

C.I. as a plausible range of values for s, as opposed to focussing on the value of the maximum likelihood 
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estimate for s. Given this is a sensible strategy for interpreting the outputs of any statistical model, 

this is unlikely to represent a severe limitation of OADA.  

In the current form, our simulations do not take potential influences of individual-level variables on 

social and asocial learning rates into account, which can in theory be included in an NBDA model (Hop-

pitt et al., 2010). Our simulations could in principle be extended to allow for differences in learning 

rate among individuals (e.g. between sexes). However, there seems no obvious reason why such dif-

ferences would impact significantly on the optimal threshold for inclusion in the NBDA. The position 

of individuals in the network, and how this relates to the number of times they were observed is likely 

to be the dominant influence on this threshold. 

NBDA has gained increasing popularity to detect social learning in both captive and free-living popu-

lations of various species. It has proven to be a useful tool to detect and quantify social learning in 

animal (and human) populations (e.g. Kendal et al. 2010; Hoppitt et al. 2010; Aplin et al. 2012; Allen 

et al. 2013; Alem et al. 2016). We show that previously proposed thresholds for the inclusion of ani-

mals for building networks may not be applicable to studies using NBDA (Lusseau et al., 2008; Franks 

et al., 2010; Whitehead, 2008). Hence, we strongly encourage researchers to use our simulation to 

choose a cut-off point that maximizes power of NBDA that is specific to their data set, and discourage 

the use of arbitrarily chosen thresholds in order to minimize the risk of false negative and positive 

results.  
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CHAPTER 3.  
Evidence for social transmission of a dolphin foraging 
technique within and between generations 
__________________________________________________________________________________ 

3.0. Abstract  

Cultural behaviour, i.e., that which is socially learned, is found in a variety of animal taxa. Social learn-

ing is particularly important for young individuals during the transition to independency. Vertical social 

learning between parent and offspring is therefore commonly found, particularly in species with pro-

longed parental care. Conversely, horizontal learning among generations, particularly adults, is 

thought to primarily occur in species with extensive cultural repertoires, such as great apes. Here we 

investigate the spread of a unique foraging strategy, ‘shelling’, in a population of Indo-Pacific bottle-

nose dolphins (Tursiops aduncus) in Shark Bay, Western Australia, between 2007 and 2018. Using ‘net-

work-based diffusion analysis’ (NBDA), we show that shelling behaviour spreads through horizontal 

social learning, standing in stark contrast to the predominantly vertically transmitted foraging behav-

iours in this population and toothed whales in general. Our study - establishing horizontal cultural 

transmission of a foraging tactic in toothed whales in a quantitative manner - suggests similarities in 

the nature of cultural transmission between great apes and cetaceans.  

3.1. Introduction 

Cultural behaviour, i.e., behaviour that is transmitted among conspecifics through social learning 

(Boyd and Richerson, 1995), is found in a variety of animal taxa, including insects (e.g. Alem et al., 

2016), reptiles (e.g. Kis et al., 2015), birds (e.g. Farine et al., 2015), primates (e.g. Hobaiter et al., 2014) 

and cetaceans (e.g. Krützen et al., 2005; Krützen et al., 2014). Social learning can greatly increase the 

efficiency with which formerly naïve individuals acquire new skills. It is, therefore, particularly im-

portant for young, dependent individuals having to acquire knowledge crucial for survival, such as how 

to forage, avoid predators, find shelter or interact with conspecifics (Galef and Laland, 2005).  

Vertical social learning (i.e., social transmission from parent to offspring (Cavalli-Sforza and Feldman, 

1981)), is usually adaptive because the parental generation is likely to be more skilled than maturing 

individuals. Information transfer between generations is therefore commonly found throughout the 

animal kingdom, particularly in species with prolonged parental care (e.g. Mann and Sargeant, 2003; 

Jaeggi et al., 2010). For example, in vervet monkeys (Chlorocebus aethiops) similarities in food cleaning 
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techniques within matrilines suggested vertical social transmission between mother and offspring 

(van de Waal et al., 2012).  

Learning can also occur among members of the same generation, i.e., through horizontal social learn-

ing (Cavalli-Sforza and Feldman, 1981). Horizontal learning has, for example, been demonstrated 

among free-ranging populations in several animal species such as vervet monkeys (Van De Waal et al., 

2013), American crows (Corvus brachyrhynchos) (Cornell et al., 2012, both vertical and horizontal) and 

songbirds (Farine et al., 2015). It has been suggested that learning horizontally (particularly among 

adults) may be biased towards species with extensive cultural repertoires (Van Schaik, 2010). In great 

apes, for example, who exhibit a wide range of cultural behaviour (e.g. Whiten et al., 1999; van Schaik 

et al., 2003; Lamon et al., 2017), learning was found to occur both vertically as well as horizontally 

(Whiten, 2017). For instance, immature Bornean orangutans were found to consistently follow their 

mothers’ choice in what and how to eat (Jaeggi et al., 2010), thereby strictly relying on vertical acqui-

sition of information. Meanwhile, ‘moss-sponging’, a technique to retrieve water from a hole, was 

found to spread horizontally among associated individuals in a group of chimpanzees (Hobaiter et al., 

2014). Since horizontal learning tends to homogenize behaviour within a social unit (Kendal et al., 

2009), behavioural variation in great apes is usually best documented between populations (Whiten 

et al., 1999; Van Schaik and Knott, 2001; Krützen, 2012).  

Conversely, in cetaceans, who are also known to rely extensively on social acquisition of behaviour or 

information (Rendell and Whitehead, 2001), behavioural variation is mostly found within populations 

due to primarily vertical transmission pathways from mother to offspring (e.g. Yurk et al., 2002; Mann 

and Sargeant, 2003; Krützen et al., 2005). Horizontal social learning, on the other hand, seems rela-

tively rare and has thus far been described in few species, e.g. bottlenose dolphins (Donaldson et al., 

2012; Bossley et al., 2018), killer whales (Whitehead et al., 2004) and humpback whales (McMillan et 

al., 2018), but quantitatively assessed in only the humpback whale (lobtail feeding - Allen et al., 2013; 

songs - Noad et al., 2000; Garland et al., 2011).  

Behavioural transmission patterns have been extensively studied in the Indo-Pacific bottlenose dol-

phin population (Tursiops aduncus) of Shark Bay, Western Australia. Foraging techniques in this pop-

ulation appear to be almost exclusively passed on through vertical social transmission from mother to 

primarily female offspring (e.g. Mann and Sargeant, 2003; Krützen et al., 2005). Such strict reliance on 

vertical transmission has reportedly led to matriline-specific foraging techniques and patterns of hap-

lotype similarity among individuals engaging in the same technique, since the mitochondrial haplotype 

is maternally inherited (genetically) (Kopps et al., 2014). Horizontal learning of any foraging strategy 

in this population has yet to be demonstrated.  
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During ‘shelling’, a novel behaviour described in the Shark Bay dolphin population, dolphins surface 

carrying empty shells of the two giant gastropod species (Melo amphora or Syrinx aruanus), shaking 

them vigorously above the surface (Allen et al., 2011). Photos and observations indicated that shelling 

behaviour serves the purpose of extracting prey that have sought refuge inside the empty shell, and 

therefore represents a further foraging behaviour in the Shark Bay population (Allen et al., 2011). 

Transmission pathways, including a potential role of social learning of shelling, have thus far not been 

investigated. Here, we use ‘network-based diffusion analysis’ (NBDA) (Franz & Nunn 2009; Hoppitt et 

al. 2010), which infers social transmission if the diffusion follows the social network, on an extensive 

data set to investigate the diffusion of shelling in this population.  

There are, however, other, non-mutually exclusive factors that can influence behavioural variation, 

namely ecology and genetics, which could plausibly result in patterns that superficially resemble social 

learning (Laland and Hoppitt, 2003). For example, dolphins that have strong social connections may 

also be subject to similar local ecology by sharing similar habitats. If an ecological factor drives the 

adoption of shelling, then a pattern could result that resembles social transmission.  

To avoid such issues, we used a multi-network approach of NBDA (Farine et al., 2015), with three 

networks modelling the effect of social transmission, shared ecological factors and genetic similarity. 

This allowed us to establish which network, or combination of networks, best predicted the pathways 

of diffusion, and quantify the effects of each network whilst statistically controlling for the others. 

3.2. Methods 

3.2.1. Field methods  

We collected data between 2007 and 2018 during boat-based surveys off the township of Useless 

Loop in the western gulf of Shark Bay, Western Australia (Fig. 3.1), using standardized behavioural 

sampling methods. On approach to each dolphin group, observers took a GPS location within 30 m of 

the initial sighting, and determined group composition using individual photo-identification (Würsig 

and Jefferson, 1990). All individuals within 10 m of any other dolphin (10 m chain rule) during the first 

five mins of each encounter were considered part of the same group (Smolker et al., 1992). All occur-

rences of shelling behaviour were noted, including the identity of the individual performing the be-

haviour. Given the distinctiveness of the behaviour and its obvious function, any individual observed 

performing the behaviour at least once was considered a ‘sheller’. We also obtained small tissue sam-

ples on an opportunistic basis using a biopsy system developed specifically for cetaceans (Krützen et 

al., 2002).  
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3.2.2. Determining biparental relatedness and matrilineal membership 

We wished to control for the possibility that genetically related individuals might be similarly predis-

posed to learn shelling, and therefore obtained a dyadic measure of biparental relatedness to include 

as a network in the analysis. We also wanted to allow for the possibility that shelling might be vertically 

socially transmitted to some degree. Previous work on bottlenose dolphins provides evidence that 

foraging skills tend to be socially learned from the mother (Mann and Sargeant, 2003; Krützen et al., 

2005). As these foraging techniques are matrilineally transmitted, they show an association with mi-

tochondrial haplotype (henceforth ‘haplotype’), which is also maternally inherited. Thus, inclusion of 

haplotype as a factor in the analysis models the potential effects of vertical transmission down the 

matriline.  

Sampled individuals (N = 295) were genetically sexed (Gilson et al., 1998) and genotyped based on 27 

microsatellite markers (Appendix SI Chapter 3, Tab. A3.1). To assign dolphins to defined haplotypes 

(Krützen et al., 2004), we sequenced a 468 bp-long fragment of the mtDNA (D-Loop). We then calcu-

lated dyadic biparental relatedness for individuals with no more than three loci missing (N = 293) using 

COANCESTRY 1.0.1.7 (Wang, 2011). To determine which of the seven proposed relatedness estimators 

performed best, we simulated 1,000 genotypes based on the allele frequency distribution in the pop-

ulation (Appendix SI Chapter 3, Tab. A3.2). Subsequently, we simulated 100 dyads each for half siblings 

(relatedness (r) = 0.25), parent-offspring (r = 0.5), full siblings (r = 0.5), first cousins (r = 0.125), and 

unrelated individuals (r = 0). The estimator TrioML showed lowest variance (Appendix SI Chapter 3, 

Tab. A3.3) and highest correlation with the true data (Appendix SI Chapter 3, Tab. A3.4) and was sub-

sequently chosen as the best performing estimator for this study population. Using the empirical data, 

we calculated relatedness for each dyad within the population using TrioML. For dyads where no ge-

netic information was available, we used the population average relatedness of 0.043. Error rates 

were determined based on 29 individuals that had been genotyped more than once (Appendix SI 

Chapter 3, Tab. A3.1). 

3.2.3. Inclusion of individuals 

When using NBDA, there is a trade-off between sample size and data quality: dropping individuals 

with only a few sightings can increase certainty about the strength of connections within the social 

network but, at the same time, impact the power of NBDA to detect social learning if connecting indi-

viduals are removed (Wild and Hoppitt, 2018; Chapter 2). We therefore used a simulation approach 

to choose a cut-off point that maximizes the power of NBDA to reliably detect social learning (Wild 

and Hoppitt, 2018; Chapter 2). For computational reasons, we only considered individuals with at least 

5 sightings (N = 538 individuals). We ran the simulations with parameters s = 14 (selected by trial and 
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error) and set the number of learners at 18 (which corresponds to the actual number of shellers at a 

cut-off point of five sightings in the empirical data set), and tested for the power of NBDA to detect 

social learning for cut-offs of 5-20 sightings. The parameter s estimates the strength of social trans-

mission per unit of association with informed individuals relative to the rate of asocial learning 

(Hoppitt et al., 2010). A cut-off point of 11 yielded highest statistical power, with an acceptable level 

of false positives (= 1.3% at 5% significance level).  

3.2.4. Association strengths 

Dyadic association strengths were calculated considering individuals that were part of the group 

within the first five mins of each encounter and with at least 11 observations, but disregarding sight-

ings of the same group (or a subset thereof) within two hours of the initial encounter. We calculated 

association strengths using the ‘simple ratio index’ (SRI), which ranges from 0 (never seen together) 

to 1 (always seen together) (Cairns and Schwager, 1987), using R package ‘asnipe’ (Farine, 2013). 

3.2.5. Calculating home range overlaps 

Diffusion of a foraging skill, like shelling, might follow an association network simply because individ-

uals who spend a lot of time together also experience the same environments. Thereby, being subject 

to the same ecological conditions, individuals would tend to asocially learn the same foraging skills. If 

this were the case, we would expect a network of similarity in environmental usage to be a better 

predictor of the pattern of diffusion, since individuals who do not spend time together but utilise the 

same environments would be similarly predisposed to learn the skill. Therefore, unless environmental 

usage and the social network are highly correlated, one could distinguish these two alternatives 

and/or quantify the relative influence of each. We used dyadic home range overlap as a proxy for the 

extent to which two individuals experience the same ecological conditions. For each individual with at 

least 11 sightings, a home range was defined using 95% kernel density estimates (R package adehabi-

tatHR (Calenge, 2015); Epanechnikov kernel). When calculating kernel densities, the choice of the 

smoothing factor greatly influences the accuracy of the estimated home range and should therefore 

be carefully considered (Jones et al., 1996). The commonly used smoothing factor href (reference 

bandwidth), which is defined as  

 ℎ𝑟𝑒𝑓 = 𝜎 ∗ 𝑛−1 6⁄       

where 𝜎 = 0.5(𝜎𝑥 + 𝜎𝑦).  

assumes that the true distribution of observations follows a normal distribution (Silverman, 1986). If 

this assumption is violated, href tends to over-smooth and therefore overestimate home ranges 

(Seaman et al., 1998; Fig. 3.1). Nevertheless, it is often preferred over alternative methods, such as 
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least-square cross validation (LSCV), which makes no assumption about the true distribution but tends 

to under-smooth and cannot be estimated in many cases (Calenge, 2015). Visual inspection, which can 

aid in finding an appropriate smoothing factor (Jones et al., 1996), of 12 different dolphin home ranges 

revealed that href tended to over-smooth home ranges, particularly in cases where relocations were 

far apart, but under-smooth for home ranges with only a few relocations that were close together. 

We therefore selected a subjective smoothing parameter by setting a lower limit of 1,000 and an up-

per limit of 4,000 for href, and then calculated a new smoothing factor for each individual as 

ℎ = 0.5(ℎ𝑟𝑒𝑓) + 1500  

where 1000 ≤ href ≤ 4000 

which appeared to accurately reflect the twelve inspected home ranges given the number and distri-

bution of the sightings.   

In order to remove land from the estimated kernel densities (the land boundaries in our study area 

were too complex to implement the ‘boundary’ parameter provided in adehabitatHR (Calenge, 2015)), 

each individual’s utilisation distribution was multiplied with a grid (100 m resolution) with values of 1 

for grid cells on water and 0 for grid cells on land. We then re-weighted each grid cell within an indi-

vidual’s home range to ensure that, overall, the kernel density added up to 1 again (Fig. 3.1). We then 

calculated dyadic home range overlap (95%) using the method UDOI (adehabitatHR (Calenge, 2015)), 

considered most accurate when quantifying space-use sharing (Fieberg and Kochanny, 2005).  

 

Figure 3.1: Contours (95%) of home ranges with reference bandwidth (href; dark grey) and customized smooth-
ing factor after land removal (light grey) for a) a home range with small smoothing factor (href: 632; custom: 
2000; 29 sightings); b) a home range with an average smoothing factor (href: 3181; custom: 3090; 12 sight-
ings); and c) a home range with large smoothing factor (href: 5703; custom: 3500; 11 sightings).   
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3.2.6. NBDA: networks and individual-level-variables 

Analyses were run using the NBDA package v0.6.1 (Hoppitt et al., 2018). We then applied multi-net-

work NBDA (Farine et al., 2015) to our data to assess the importance of social learning on the spread 

of shelling, while accounting for the importance of ecological factors (measured as dyadic home range 

overlap) as well as a potential genetic predisposition (measured as dyadic biparental relatedness). We 

applied the ‘order of acquisition diffusion analysis’ (OADA), while additionally including several indi-

vidual-level variables (ILVs) with potential influence on an individual’s rate of acquisition, namely: an 

individual’s gender (-0.5 for females, 0.5 for males, 0 for unknown sex); the number of times each 

individual had been seen (to control for spurious effects of frequently sighted individuals being more 

likely to be observed with shells); the average water depth of each individual’s sightings (as a proxy 

for habitat use); the average group size; and maternal relatedness as a factor (reduced to 3 levels: 

haplotypes E, D and other; Appendix SI Chapter 3). Gender was determined genetically or, for adult 

females, by the presence of a dependent calf.  

The main effects each ILV had, and its interaction with the effects of the network(s) were modelled 

independently (the ‘unconstrained’ model (Hoppitt and Laland, 2013); Appendix SI Chapter 3). We 

fitted OADA to the data with social transmission (s > 0) and without social transmission (s = 0) and 

with all possible combinations of the three networks and the eight ILVs on asocial and social effects 

(Appendix SI Chapter 3). Support for each model was calculated using the Akaike Information Criterion 

corrected for sample size (AICc) (Burnham and Anderson, 2002). This allowed us to derive the support 

for each combination of networks, and for each ILV (separately for main effects and network interac-

tion).  Model averaging methods were used to provide a more stabilized inference about the strength 

of the transmission parameter for the three different networks and the influence of ILVs on the social 

and asocial acquisition of shelling (Burnham and Anderson, 2002). The calculation of the profile likeli-

hood intervals for the transmission parameter s conditional on the best model with social transmission 

allowed a measure of certainty of the estimate of the strength of transmission (Appendix SI Chapter 

3).  

3.2.7. Correlations between sea surface temperatures and shelling 

Since the number of observations of shelling showed a pattern of peaks and troughs, we further tested 

the influence of sea surface temperatures (SST) on the number of shelling events in each field season 

(considering all shelling events during each encounter, i.e., not restricted to the first five mins of each 

encounter – but excluding events occurring during designated focal follows). Daily SST data were 

downloaded from the National Oceanic and Atmospheric Administration’s Advanced Very High-Reso-

lution Radiometer Optimally Interpolated Sea Surface Temperature (Reynolds et al., 2007) (grid cell: -
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26.125/113.375 WSG84) and averaged across each month. We then selected the highest monthly 

temperature each season (usually in Feb or Mar) and tested its correlation with the number of shelling 

events (Poisson GLM). We controlled for varying effort between different field seasons by including 

the number of shellers seen each season (again considering all observations, i.e., not restricted to the 

first five mins) as a model offset.  

3.3. Results 

Over 5,300 dolphin groups were encountered in the western gulf of Shark Bay between 2007 and 2018 

(Fig. 3.1), with over 1,000 different dolphins identified. A total of 42 shelling events were documented 

in that period (Fig. 3.1; Fig. 3.2), performed by 19 identified individuals. With a cut-off point of 11 

observations (see methods), a total of 310 individuals remained for analyses, of which 15 were shellers 

(six females; nine males).  

Results of OADA analyses revealed most support for models including only the social network (∑𝑤𝑖 =

0.771; Fig. 3.3). Models with asocial learning or other network combinations received little support 

(∑𝑤𝑖 < 0.1; Fig. 3.3).  

__________________________________________________________________________________ 

 

Figure 3.2: Locations of all dolphin group encounters (orange dots) and 42 documented shelling events (red tri-
angles) in the western gulf of Shark Bay, Western Australia, between 2007 and 2018. 
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Figure 3.3: Number of shelling events (grey bars; controlled for the number of shellers seen each field season) 
and maximum monthly sea surface temperatures (SST) (in red) in western Shark Bay between 2007 and 2018. 

 

Figure 3.4: Relative support for different network combinations resulting from multi-network NBDA. 

__________________________________________________________________________________ 

The best performing model included social transmission via the social network, affected negatively by 

average group size, with haplotype affecting the rate of asocial learning. An individual’s horizontal 

social transmission rate per unit network connection (s) was found to decrease by a factor of 2.0 [95% 

C.I. 1.18-3.91] per associate (∑𝑤𝑖=0.629), which corresponds to the back-transformed parameter es-

timate for the average group size obtained from the best performing model. This may be because 

dolphins that tended to spend time in larger groups will have their attention divided among more 

associates, and thus learn at a lower rate per unit of association. None of the other ILVs (gender, 
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number of sightings, av. water depth, haplotype) had an influence on an individual’s horizontal social 

learning rate (all ∑𝑤𝑖<0.5; Appendix SI Chapter 3). For an individual with average group size, s was 

estimated to be 15.6 [95% C.I. 2.06-145], indicating a 15.6-fold increase in learning rate per unit con-

nection relative to the baseline level of learning (set to be the learning rate for individuals with haplo-

type E). This corresponds to an estimated 57% [95% C.I. 41-74] of dolphins learning shelling by hori-

zontal social transmission. The estimated strength of social transmission stayed the same even if the 

ecological network or relatedness network were added to the best model.    

There was strong support for a difference in learning rates among dolphins with different haplotypes 

(∑𝑤𝑖=0.973). Dolphins with haplotype D were an estimated 47.1x [95% C.I. 5.6-303] faster to learn 

than those with haplotype E, whilst dolphins with haplotype E were an estimated 1.5x109x [95% C.I. 

3.1-Inf] faster to learn than those of other haplotypes. These inferences are largely influenced by the 

fact that hitherto only dolphins of haplotypes E and D have learned shelling while having no social 

network connections to shellers (3 individuals). Given the limited sample size, the large estimates of 

the size of this effect are unlikely to be accurate, however, the 95% confidence intervals provide a 

reasonable lower limit for the effect.  

 

Figure 3.5: Social network (undirected, and displayed as unweighted) of 310 bottlenose dolphins in the western 
gulf of Shark Bay (Force Atlas 2 algorithm (Jacomy et al., 2014) in Gephi (Bastian et al., 2009)). Blue nodes depict 
individuals who have never been observed carrying shells; red nodes depict individuals who are likely (>50%) to 
have learned shelling socially, while yellow nodes represent individuals who have learned shelling asocially 
(<50%). Nodes that are closer together are also more closely associated (spring-embedded network).   

__________________________________________________________________________________ 



CHAPTER 3 2018 PhD thesis S. Wild 
__________________________________________________________________________________ 

70 

 

The number of shelling events documented each year was significantly correlated with the maximum 

monthly SST (Poisson GLM; effect size=33.29%; 95% C.I. = [6.25%; 59.01%]; z=2.486; p=0.01), with 

more shelling events occurring in years with higher SST (Fig. 3.2).  

3.4. Discussion 

Shelling represents the first quantitatively assessed evidence of a horizontally learned foraging behav-

iour in Shark Bay dolphins or, indeed, any toothed whale species, and the second in any cetacean 

(following Allen et al., 2013). Overall, the multi-network NBDA indicates that the pathway of diffusion 

of shelling is consistent with the scenario in which dolphins with haplotype D and some with haplotype 

E learn independently of the social network (either by independent learning or perhaps by vertical 

social transmission) and other dolphins of haplotypes E and H learn from their peers by horizontal 

social transmission. Horizontal social transmission is supported because the pattern of diffusion fol-

lows the connections of the social (association) network, suggesting dolphins learn shelling if they 

spend time with other shellers.  

It is possible that such a statistical pattern could arise due to the influence of another confounding 

variable that influences learning of shelling and is correlated with the social network. However, our 

analysis suggests that the most plausible confounds are unlikely to account for the data: when pat-

terns of home range overlap and relatedness are statistically controlled for, the effect of the social 

network remains.  

Another alternative explanation is that dolphins learn shelling from their mothers before weaning (cf. 

sponging (Krützen et al., 2005)), or at least observation of their mothers’ shelling predisposes them to 

learn the behaviour pattern later in life. This could result in a spurious horizontal social transmission 

effect if dolphins from the same matrilines tend to associate. Our record of parentage and of shelling 

status is not sufficiently complete to allow us to model this transmission pathway directly. However, 

by including mitochondrial haplotype as a factor in the analysis, we are able to control for it - since 

vertical transmission from mother to offspring would result in a correlation of shelling with haplotype. 

Our analysis shows that haplotype does not sufficiently explain the pathway of diffusion, and when 

controlling for it, there is still a sizable effect of the social network. 

Whilst the influence of mitochondrial haplotype was included primarily as a statistical control, the 

propensity of dolphins with haplotypes D and E to exhibit shelling could be taken as evidence for a 

vertical (maternal) component to social transmission. Profile likelihood intervals suggest that in fact, 
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such a pattern is unlikely to have arisen by chance alone. However, given small sample sizes, the im-

portance of a potential role of vertical learning and size of potential effects of haplotypes cannot be 

estimated reliably at this stage.  

Given the high support for transmission along the association network, there is evidence for a strong 

horizontal transmission effect. Vertical social learning has been established as the primary transmis-

sion mechanism for most foraging behaviours in Shark Bay’s bottlenose dolphins (e.g. Mann and 

Sargeant, 2003; Sargeant et al., 2005; Krützen et al., 2005) and cetacean behaviour in general (e.g. 

Simões-Lopes et al., 1998; Boran and Heimlich, 1999; Yurk et al., 2002). The pattern of vertical social 

learning from mother to female offspring within Shark Bay dolphins has reportedly led to haplotype 

similarity (both eastern and western gulf of Shark Bay) and higher genetic relatedness (eastern gulf of 

Shark Bay) among individuals engaging in the same technique (Krützen et al., 2005; Kopps et al., 2014). 

The low support for transmission of shelling along the relatedness network and the fact that individu-

als from three different matrilines engaged in shelling appears to be consistent with a strong horizon-

tal component of social learning.  

Shelling can only occur where dead shells (and appropriate prey) are available and is therefore directly 

dependent on the distribution and abundance of Melo amphora and Syrinx aruanus. Shelling appeared 

to have occurred more frequently in the field seasons 2011 and 2012, following a marine heatwave in 

early 2011, which caused catastrophic seagrass die-off (Thomson et al., 2014; Arias-Ortiz et al., 2018), 

and mass mortalities of fish and invertebrates followed (Pearce et al., 2011). Given the increase in 

shelling events immediately following the marine heatwave, we assume that high water temperatures 

may also have had negative effects on large gastropods, leading to increased abundance of dead shells 

and thus more opportunity for shelling behaviour. In fact, our analyses revealed that shelling occurred 

significantly more often in years with higher SSTs, which suggests temperature sensitivity in M. am-

phora and S. aruanus. 

The 2011 heatwave caused catastrophic seagrass die-off and subsequent ecological disturbance 

across trophic levels in Shark Bay (Cheung et al., 2012; Thomson et al., 2014; Arias-Ortiz et al., 2018). 

In fact, long-term declines in dolphin survival and female reproduction following the heatwave suggest 

protracted habitat degradation and delays in prey stock recovery (Chapter 5). Theory predicts that 

stable environments should favour cultural conservatism, i.e., reliance on already established infor-

mation obtained from older generations, since it is tested, experience-based and therefore most likely 

adapted to current ecological conditions (Whitehead et al., 2004). Rapid environmental change, how-

ever, should thus favour cultural progressivism, as such information can become out-dated, promot-
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ing the acquisition of innovative behaviour from conspecifics in order to rapidly adapt to novel eco-

logical conditions (Whitehead et al., 2004). It has been suggested that species with the capacity for 

horizontal transmission may be better able to survive (Whitehead et al., 2004). It remains unclear 

though, if and to what extent horizontal social transmission among shelling dolphins was a response 

to ecological perturbation, or if it had any impact on survival, since this has not been formally tested. 

Given the predicted increase in extreme weather events due to anthropogenic climate breakdown 

(Oliver et al., 2018), selection may favour a shift from the extensive cultural conservatism to more 

progressive behaviour. 

Our findings of horizontal social transmission of shelling support previous (anecdotal or descriptive, 

but long-suspected) cases of plausible horizontal transmission in toothed whales (Whitehead et al., 

2004; Donaldson et al., 2012; Bossley et al., 2018). For example, some bottlenose dolphins accepted 

food handouts from recreational boaters. Both the use of areas with high boat density and association 

rates with already conditioned individuals predicted whether dolphins became conditioned to accept-

ing handouts themselves, suggesting a combination of ecological factors and horizontal social learning 

driving the spread of the behaviour (Donaldson et al., 2012; Krützen, 2012). Two cultural ‘fads’ (i.e., 

non-adaptive behaviours) were further suggestive of horizontal transmission in cetaceans: ‘dead 

salmon-carrying’ in a subset of killer whales (Whitehead et al., 2004); and ‘tail-walking’ in a community 

of bottlenose dolphins (Bossley et al., 2018). 

While young individuals of many animal species rely heavily on social information, the benefits of 

learning socially are thought to decrease as maturing individuals become more skilled (Van Schaik, 

2010). However, species with extensive cultural repertoires, like great apes, tend to exhibit both ver-

tical and  horizontal behavioural transmission (Van Schaik, 2010; Hobaiter et al., 2014). The horizontal 

social transmission of shelling among adult dolphins thus sets an important milestone in assessing 

pathways of transmission in dolphins, and suggests that the cultural nature between great apes and 

dolphins may not be so different. Indeed, despite living in markedly disparate environments (terres-

trial and aquatic), great apes and dolphins show striking similarities in cognitive abilities, life history 

characteristics and social systems. They are long-lived, large-brained mammals with high capacities 

for innovation (Reader and Laland, 2001; Marino, 2007). Furthermore, many dolphin species live in 

fission-fusion societies (e.g. Connor et al., 2000) similar to those found in chimpanzees (Nishida, 1968). 

These societies are characterised by extensive social tolerance, which provides many opportunities 

for social interactions, thought to be a predictor of social learning rates in a species (Van Schaik et al., 

2003; Van Schaik, 2010). 
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Shelling represents the first quantitative evidence of horizontal social transmission in any toothed 

whale species, where alternative pathways of transmission (genetic and ecological) have been statis-

tically controlled for. Our results provide further evidence supporting suggestions of similarities in the 

cultural nature between great apes and cetaceans (e.g. Rendell and Whitehead, 2001; Krützen et al., 

2005; Allen et al., 2013). Furthermore, relying on social information as adults through horizontal learn-

ing can be advantageous in fast changing environments (Rendell and Whitehead, 2001; Whitehead et 

al., 2004), and may help buffer against the effects of ecological disturbances and habitat degradation 

associated with global climate breakdown. 
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CHAPTER 4.  
Network-based Diffusion Analysis shows vertical cultural 
transmission of sponge tool use within dolphin matrilines 
__________________________________________________________________________________ 

4.0. Abstract 

Behavioural differences among social groups, communities or populations can arise from differing 

ecological conditions, genetic predispositions or be the result of social learning. These potential driv-

ers have been treated as mutually exclusive in the past, and social learning has typically been inferred 

as being responsible for the spread of behaviour by the exclusion of ecological and genetic factors. 

This ‘ethnographic’ method was used to infer that ‘sponging’, a foraging behaviour involving tool use 

in the bottlenose dolphin (Tursiops aduncus) population in Shark Bay, Western Australia, was socially 

transmitted. However, critics have argued that the method can never fully account for alternative 

factors, and that social learning, ecology and genetics are not mutually exclusive in causing behav-

ioural variation. Here, we use a multi-network version of ‘network-based diffusion analysis’ (NBDA) to 

quantify the importance of social learning on the diffusion of sponging in the western gulf of Shark 

Bay, while also accounting for ecological and genetic similarity. Our results provide compelling support 

for previous findings that sponging is vertically socially transmitted from mother to (primarily female) 

offspring. Further, this research provides an example of the utility of social network analysis in eluci-

dating the explanatory mechanisms behind the transmission of behaviour in wild animal populations.   

4.1. Introduction 

Various mechanisms can be responsible for causing behavioural differences between social groups or 

populations (Boyd and Richerson, 1995). The cultural hypothesis states that behavioural variation be-

tween groups is the result of social transmission of different behavioural innovations. The ecological 

hypothesis, on the other hand, proposes that behavioural variation may be the result of geographic 

variation, and that differences between groups can be attributed to differing ecological conditions. 

Finally, the genetic hypothesis assumes that different groups are genetically predisposed to behave in 

different ways (Boyd and Richerson, 1995; Laland and Hoppitt, 2003). 

The last few decades have seen increasing interest in animal cultural phenomena (e.g. Boesch, 1996; 

Madden, 2008; Wich et al., 2012), i.e., behaviours that are socially transmitted among conspecifics 

(Boyd and Richerson, 1995). As a result, various methods have been used to identify social learning in 

animal populations. For example, the method of exclusion or ethnographic method identifies patterns 
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of variation in the behavioural repertoires of the population in question and infers social transmission 

as at least partly responsible for the behavioural pattern by excluding genetic and ecological factors 

as sufficient explanations (Hoppitt and Laland, 2013) [p. 132]. The method of exclusion has been com-

monly used among primatologist in the past, for example to identify cultural behaviour in orangutans 

(van Schaik et al., 2003) or chimpanzees (Whiten et al., 1999).  

The method of exclusion has also been used to assess patterns of transmission of ‘sponging’, a foraging 

behaviour involving tool use in a population of Indo-Pacific bottlenose dolphins (Tursiops aduncus) in 

Shark Bay, Western Australia (Smolker et al., 1997; Krützen et al., 2005). This behaviour involves dol-

phins carrying conical sponges as protective ‘gloves’ on their rostra when foraging for prey buried in 

the substrate (Smolker et al., 1997). Sponging was found to be female-biased with only a few males 

regularly engaging in sponging behaviour, with almost all sponging dolphins possessing the same mi-

tochondrial haplotype, i.e., belonging to the same matriline (Krützen et al., 2005; Kopps et al., 2014a). 

As the deep-water channels where sponging occurs were used by both spongers and non-spongers, a 

purely ecological explanation seemed unlikely (Krützen et al., 2005). By considering 10 different path-

ways of genetic inheritance (x-linked and autosomal), Krützen et al., (2005) inferred that sponging was 

vertically socially transmitted from mother to female offspring. 

The method of exclusion has been criticised, however, with considerable debate over its utility among 

its proponents and opponents ensuing (Laland and Janik, 2006; Krützen et al., 2007; Laland and Janik, 

2007). Laland and Janik, (2006) argued that it is impossible to take all plausible explanations for the 

spread of behaviour into account, and therefore that social learning can never be inferred with abso-

lute certainty. This, in turn, would lead to increased rates of false positive results (Hoppitt and Laland, 

2013). Furthermore, they argued that social learning, ecology and genetics are not necessarily mutu-

ally exclusive but can be responsible for causing behavioural variation at the same time (Laland and 

Janik, 2006; Laland and Janik, 2007; Sargeant et al., 2007).  

Therefore, in a more quantitative approach, Krützen et al., (2011) inferred social learning to be re-

sponsible for causing behavioural variation among orangutans by assessing the relative importance of 

ecology, genetics and social learning on orangutan behavioural variation using dissimilarity matrices, 

which contained measures of behavioural, geographic and genetic dissimilarity among each dyad. 

Langergraber et al., (2011) used a similar approach, showing that genetic dissimilarity among chim-

panzee groups could not be ruled out as an important factor generating previously documented be-

havioural variation.  

In a further attempt to resolve the animal cultures debate, new methods have been developed with 

which to quantify the importance of social learning on the spread of novel behaviour. In particular, 
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‘network-based diffusion analysis’ (henceforth NBDA) (Franz and Nunn, 2009; Hoppitt et al., 2010), 

has been used increasingly in recent years to detect and quantify social learning in both captive and 

free-ranging animal populations (e.g. Allen et al., 2013; Hobaiter et al., 2014; Farine et al., 2015). NBDA 

infers social transmission if the spread of a behaviour follows the social network, assuming that more 

closely associated individuals have more opportunities to learn from each other (Coussi-Korbel and 

Fragaszy, 1995; Hoppitt et al., 2010). Multi-network NBDA allows the inclusion of several different 

networks to quantify the relative importance of transmission along different pathways (Farine et al., 

2015).  

Here, we apply new methods to assess the transmission mechanisms of sponging in the dolphin pop-

ulation of Shark Bay, Western Australia. Using multi-network NBDA, we quantify the relative im-

portance of social learning (distinguishing between vertical and horizontal/oblique pathways), ecolog-

ical factors and genetic relatedness on the spread of this tool using behaviour. 

4.2. Methods 

4.2.1. Field methods 

We collected association and behavioural data during boat-based surveys using standardised sampling 

methods for cetaceans between 2007 and 2018 in the western gulf of Shark Bay, Western Australia. 

On approach of each dolphin group (≥1 individuals), we took a GPS location within 30m of the initial 

sighting. Group composition during the first five mins was determined using standard photo-identifi-

cation techniques (Würsig and Jefferson, 1990), and individuals were considered part of the same 

group according to the 10m-chain-rule, i.e., if within 10m of any other group member during the first 

five minutes of an encounter (Smolker et al., 1992). Predominant group behaviour was recorded dur-

ing the first five minutes as foraging, travelling, socializing or resting. All occurrences of sponging (i.e., 

not restricted to the first five mins) were recorded, including the identity of the dolphin carrying the 

sponge. An individual was deemed a ‘sponger’ once it had been seen carrying a sponge on at least two 

independent occasions. Small biopsy samples were taken on an opportunistic basis using a system 

designed specifically for sampling cetaceans (Krützen et al., 2002).  

4.2.2. Genetic methods 

4.2.2.1. Estimating pairwise biparental relatedness and determining matriline membership 

In order to test if genetically similar individuals shared a predisposition to develop sponging behaviour, 

we wanted to obtain a measure of genetic biparental relatedness for each dyad. Since critics had ar-

gued that a predisposition for sponging could, in theory, be a result of differences in energy budgets 

due to genetic variation in mitochondrial efficiency (Laland and Janik, 2006) - although this was refuted 
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both theoretically (Krützen et al., 2007) and empirically (Bacher et al., 2010) - we also statistically 

controlled for a correlation between matriline membership and sponging behaviour.  

Individuals for which biopsies were available (N=295) were genetically sexed (Gilson et al., 1998) and 

genotypes determined based on 27 microsatellite markers (Appendix SI Chapter 4, Tab. A4.1) 

(Shinohara et al., 1997; Krützen et al., 2001; Nater et al., 2009). We sequenced a 468 bp-long mtDNA 

fragment (D-Loop) to assign dolphins to predefined haplotypes, i.e., to determine their genetic mater-

nal lineage (Krützen et al., 2004). Using COANCESTRY 1.0.1.7 (Wang, 2011), we calculated dyadic bipa-

rental relatedness based on genotypes for individuals with no more than three microsatellite loci miss-

ing (N=293). To select the best performing relatedness estimator, we simulated 1,000 genotypes 

based on the empiric allele frequency in the population (Appendix SI Chapter 4, Tab. A4.2). Subse-

quently, we simulated 100 dyads each for half sibling (relatedness (r) = 0.25), parent-offspring (r = 0.5), 

full siblings (r = 0.5), first cousins (r = 0.125) and unrelated individuals (r = 0). The estimator TrioML 

was chosen as the most accurate estimator, showing lowest variance and highest correlation with the 

true data (Appendix SI Chapter 4, Tab. A4.3; Tab. A4.4). We then calculated dyadic biparental related-

ness among individuals using TrioML. For dyads where no genetic information was available, the pop-

ulation average relatedness of 0.043 was used. We obtained error rates for each locus based on 29 

individuals that had been genotyped more than once (Appendix SI Chapter 4, Tab. A4.1). 

4.2.2.2. Maternity analyses 

To test for influences of vertical social learning, we created a network reflecting the mother-offspring 

relationship based on field observations of 278 mother-offspring pairs. In addition, we ran maternity 

analyses in CERVUS 3.0.7 (Kalinowski et al., 2007) for individuals with haplotype E and H (since 42 

spongers with known haplotype in our empirical data set carried haplotype E, and one sponger carried 

haplotype H) and with no more than three microsatellite loci missing.  

First, in order to obtain critical values of likelihood ratios used for parentage analysis on empirical 

data, a maternity simulation was run for individuals with haplotypes E and H separately. As the mito-

chondrial haplotype is maternally inherited, candidate mother and offspring always carry the same 

haplotype. To determine the number of candidate mothers for all offspring in the E and H data set, 

respectively, we created a home range with all GPS locations of observations of individuals carrying 

haplotypes E and H, respectively (for details on calculating home ranges see below). We then calcu-

lated home range overlap of all individuals who were either female or of unknown sex (i.e., excluding 

genetically known males) who had any overlap with the E or H home range, respectively. This resulted 

in 355 candidate mothers for the haplotype E data set and 343 candidate mothers for the H data set, 

both of which are likely a conservative over-estimate (since some individuals of unknown sex will be 
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male). Other input parameters were set as following: the proportion of sampled individuals (calculated 

as the proportion of sampled females out of the total number of candidate mothers) was set to 0.44 

(for both E and H), while the allele frequency (Appendix SI Chapter 4; Tab. A4.1.), the proportion of 

loci typed (=0.995) and the proportion of loci mistyped (=0.0038) were obtained from empirical data 

– the latter stemming from 29 individuals who had been genotyped more than once.  

The simulations (run for 1,000 offspring) were then used to run the maternity analyses on empirical 

data. To match mother-offspring pairs reliably, we only considered matches with ‘logarithm of the 

odds’ (LOD) scores significantly higher (at 5% level) than the critical value obtained from simulations 

(Kalinowski et al., 2007) and with dyadic relatedness estimates between 0.4265 and 0.6308, which 

corresponded to the range of relatedness estimates between known mother-offspring pairs. Further-

more, we only matched mother-offspring pairs where approximate birth date of both candidates 

(based on speckle levels (Krzyszczyk and Mann, 2012), body size and time of first offspring for females) 

was known and at least 10 years apart (Wallen et al., 2016).  

4.2.3. Network constructions & NBDA 

To test for the relative importance of social learning, ecological factors and genetics in promoting 

the spread of sponging, we ran multi-network NBDA (Farine et al., 2015) using four different networks. 

All network constructions and data analysis were conducted in R studio v1.1.423 (R Core Team, 2015), 

using the NBDA package v0.6.1 (Hoppitt et al., 2018). The first network (social) tested for learning 

between mother and offspring with entries of 1 between mother and known offspring pairs and all 

other connections set to 0. The second network (social) allowed for horizontal/oblique (henceforth 

‘horizontal’) learning using dyadic association strengths (Simple Ratio Index (Cairns and Schwager, 

1987)) among all individuals but excluding mother-offspring associations, which were set to 0. Associ-

ation strengths among individuals were calculated using only association data recorded during the 

first five mins of each survey. Restriction to the use of just the first five minutes of each observation 

ensured that association measures were comparable across all surveys. Resights (=same or a subset 

of the original group within two hours) were excluded. Association matrices were created using R 

package ‘asnipe’ (Farine, 2013). The third network (ecological) contained a proxy of the environmental 

similarity experienced by individuals, i.e., dyadic home range overlap. We created a home range using 

individual GPS locations based on 95% (Epanechnikov) kernel density estimates (‘adehabitatHR’ 

(Calenge, 2015)) with a customized smoothing factor, as detailed in Chapter 3. Dyadic home range 

overlap (95%) was calculated using the method UDOI (‘adehabitatHR’) (Calenge, 2015), which has 

been suggested as most appropriate when quantifying space-use sharing (Fieberg and Kochanny, 
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2005). Finally, the fourth network (genetics) contained measures of biparental genetic relatedness 

among individuals. 

Since NBDA infers social learning if a behaviour follows the social network, there is a trade-off 

between sample size and data quality. Only considering individuals above a certain threshold of sight-

ings (i.e., dropping individuals with only few sightings) can increase certainty about the strengths of 

connections within the network, but at the same time decrease power of NBDA to reliably detect 

social learning, if linking individuals are removed (Wild and Hoppitt, 2018; Chapter 2). A simulation 

approach (Wild and Hoppitt, 2018; Chapter 2) revealed highest power to detect social learning at a 

cut-off point of 7 sightings (Appendix SI Chapter 4).   

Since exact dates of acquisition of sponging were not known, we applied the ‘order-of acquisition 

diffusion analysis’ (OADA) (Hoppitt et al., 2010). In OADA, social learning is inferred if the order with 

which individuals learn the behaviour follows the social network. Unlike the alternative time of acqui-

sition diffusion analysis (TADA), OADA does not make any assumptions about the baseline rate of ac-

quisition, which may have fluctuated over time as changing prey availability and environmental con-

ditions made sponging more or less likely to be learned, across the population. For several individuals, 

the order of acquisition of sponging was unknown, as they were likely already spongers when first 

encountered. In an NBDA model, such individuals can be taken to be ‘informed’ at the start of the 

diffusion (termed ‘demonstrators’) - thus they can potentially transmit behaviour to others, but their 

own acquisition of the behaviour is not used to fit the model (Hoppitt et al., 2010). We considered all 

individuals as demonstrators who had been seen carrying a sponge within the first two encounters 

where predominant group behaviour was foraging. We argue that an individual’s information state 

can be determined with reasonable certainty after two sightings, given spongers carry sponges 96% 

of the time when foraging (Mann et al., 2008). Furthermore, for nine individuals who acquired spong-

ing after 2007, maternity data was unavailable. These nine individuals were excluded as learners using 

the filteredNBDAdata function provided in the NBDA package v0.6.1 (Hoppitt et al., 2018)  

For all possible combinations of the four networks described above, we applied the ‘order-of ac-

quisition diffusion analysis’ (OADA) (Hoppitt et al., 2010), while additionally including several individ-

ual-level variables (ILVs) with potential influence on an individual’s social and asocial rate of acquisi-

tion, namely: an individual’s gender; the average water depth of each individual’s sightings (as a proxy 

for habitat use since sponging occurs in deep water channels (Sargeant et al., 2007)); as well as the 

average group size (since sponging was demonstrated to be a solitary activity (Mann et al., 2008)) and 

mitochondrial haplotype. Since all spongers but one carried haplotype E, we included haplotype as a 
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two-level factor with either haplotype E or ‘other’ (B, D, F, H, K, unknown). Gender was determined 

genetically and/or by the presence of a dependent calf for females.  

The strength of transmission along a network (s parameter) is estimated relative to a baseline 

rate of asocial learning. Continuous variables were standardized to a mean of 0 and the baseline rate 

of asocial learning was set to the mean of all continuous variables and a mid-point between male and 

female and haplotype E, in order to obtain a more stable parameterization.  

We fitted OADA with and without transmission along the networks and with all possible combi-

nations of networks and ILVs (Hoppitt et al., 2010). Thereby, ILVs were allowed to influence both social 

and asocial learning rate independently (‘unconstrained’ models (Hoppitt and Laland, 2013; Appendix 

SI Chapter 4), resulting in 4096 different models. Unfitted models (300) were removed, as these were 

all models with a large number of parameters and, therefore, likely over-parametrised. Support for 

each model was calculated based on the Akaike Information Criterion corrected for sample size (AICc) 

(Burnham and Anderson, 2002). To provide a more stabilized inference about strength of transmission 

for the different networks and the influence of ILVs, model averaging methods were employed 

(Burnham and Anderson, 2002). The calculation of the profile likelihood intervals for the transmission 

parameter s conditional on the best performing model with social transmission allowed a measure of 

reliability of the estimate of the strength of transmission (Appendix SI Chapter 4). We obtained an 

estimate of the proportion of individuals having learned socially in the best performing model using 

the oadaPropSolveByST function provided in the NBDA package v0.6.1 (Hoppitt et al., 2018).  

4.3. Results 

Between 2007 and 2018, over 5,300 dolphin groups were encountered in the western gulf of Shark 

Bay and >1,000 different dolphins identified (Fig. 4.1a). Sponging was observed on 825 occasions and 

restricted to the deep-water channels within the study area (Fig. 4.1b). A total of 76 individuals were 

identified as spongers, of which 49 were confirmed female, 14 male and 13 of unknown sex. We 

matched a further 16 mother-calf pairs to 278 already known (see Methods).  

 

After removal of individuals with fewer than seven sightings, as well as eight offspring that were either 

dependent calves at the time of analyses or had died before weaning, 415 individuals remained of 

which 62 were spongers (18 learners [of which 9 were filtered out], 44 as demonstrators). All spongers 

with maternity data available were born to sponging mothers. All spongers with genetic data available 

carried haplotype E, with one exception: a male sponger with haplotype H.  
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Figure 4.1: Locations of a) dolphin groups encountered in the western gulf of Shark Bay between 2007 and 2018; 
and b) observations of sponging behaviour, which was restricted to deep (>10m) water channels (white areas). 

__________________________________________________________________________________ 

Multi-network NBDA revealed most support for models with transmission along the vertical social 

network (∑𝑤𝑖=0.986), while asocial learning, and transmission along the horizontal, environmental 

or genetic network (or any combination of the four networks) received little support (∑𝑤𝑖 < 0.1) (Fig. 

4.2). In the best performing model, which included vertical social transmission and gender influencing 

social learning, an individual’s learning rate of sponging increased by a factor of 126 (95% C.I. [9.5; 

2897]) when being female (∑𝑤𝑖=0.975), while average group size, average water depth or haplotype 

had no influence on an individual’s social or asocial learning rate (all ∑𝑤𝑖<0.5). In the best model 100% 

were estimated to have learned sponging socially from their mothers (95% C.I. [98.9; 100]).   

 

Figure 4.2: Multi-network NBDA reveals most support for transmission of sponging along the vertical social net-
work, while transmission along the horizontal network, ecological and relatedness network receive little support. 
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4.4. Discussion 

Using over 10 years of data on dolphin associations, habitat use and genetics, multi-network NBDA 

revealed overwhelming support for social transmission along the vertical mother-offspring network, 

with little or no support along the horizontal association network, the ecological or genetic networks. 

These results suggest a strong role of vertical social learning of sponging from mother to offspring, as 

has been described in previous work using different methods (Mann and Sargeant, 2003; Krützen et 

al., 2005; Kopps and Sherwin, 2012).  

Previous findings suggested that the distribution of conical sponges, which are more abundant in 

deeper water, restricts sponging to deep water channels in Shark Bay (Sargeant et al., 2007; Tyne et 

al., 2012; Kopps et al., 2014b). Locations of sponging sightings in our more extensive data set confirm 

these results. However, despite the restriction of sponging to the deep-water habitat, our analysis 

suggests that environmental factors only play a minor role once vertical social learning has been taken 

into account.  

Low support for transmission due to genetic similarity among individuals confirms previous findings 

that sponging individuals in the western gulf are not more closely related than expected by chance 

(Kopps et al., 2014a). This stands in contrast to findings from the eastern gulf, where spongers show 

higher relatedness compared to population average, suggesting recent common coancestry (Krützen 

et al., 2005). 

We also confirm a previously documented female sex-bias (Mann and Sargeant, 2003; Mann et al., 

2008; Kopps et al., 2014b). It has been suggested that the female sex-bias is due to differing sex-spe-

cific reproductive strategies between males and females (Mann et al., 2008). After weaning, male dol-

phins have to focus on forming multi-male alliances to coerce and consort oestrous females (Connor 

et al., 1992; Connor and Krützen, 2015), which requires significant investment in social relationships 

and is therefore incompatible with a time-consuming, solitary and difficult-to-master activity like 

sponging (Mann et al., 2008; Mann et al., 2012; Patterson et al., 2015). Meanwhile, female offspring 

are expected to primarily invest in feeding related activities such as developing foraging skills to max-

imize food intake (Gibson and Mann, 2008). Thereby, since female offspring preferentially associate 

with their mothers after weaning, and thus use similar habitat, selection should favour similar foraging 

strategies (Mann and Sargeant, 2003). Alternatively, Zefferman, (2016) proposed that the female sex-

bias could be the result of a maternal teaching strategy, arguing that teaching a daughter would result 

in higher long-term fitness for a female: a potential advantage of sponging for a son would last only 

one generation, while a daughter can pass on the behaviour to subsequent generations which all gain 

potential benefits associated with sponging.  
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Nevertheless, 22% of spongers with known sex in the western gulf were males, which corresponded 

to previously suggested proportions of male offspring learning sponging from their mothers in the 

eastern gulf (Mann et al. 2008; but see Mann and Patterson 2013). Sponging males in the western gulf 

were found to be closely associated, often even part of the same reproductive alliance (Bizzozzero et 

al., unpublished data). The preference of forming alliances with males that engage in the same spe-

cialized foraging technique (i.e., homophilic tendencies) may help to reduce the costs associated with 

sponging (Mann et al., 2008; Mann et al., 2012), since all males within the alliance use similar habitat 

and have similar activity budgets (Bizzozzero et al., unpublished data). 

All but one of the western gulf spongers with genetic data available carried haplotype E. The single 

male sponger carrying haplotype H was only seen with a sponge twice out of 25 observations. Haplo-

type similarity among spongers had previously been described for both the eastern and western gulfs 

of Shark Bay (Krützen et al., 2005; Kopps et al., 2014a, respectively), although sponging haplotypes 

differ between the gulfs. Laland & Janik (2006) had argued that, strictly speaking, mitochondrial genes 

could be responsible for the spread of sponging. However, Bacher et al. (2010) showed that the non-

coding HVRI (hypervariable region I) of the mitochondrial DNA was a predictor of sponging, and that 

the mitochondrial coding genes were not: there was no evidence of selection in the investigated 

genes. In our analysis, carrying the haplotype E did not influence an individual’s rate of acquisition of 

sponging, presumably because only 50% of the individuals with this haplotype in our data set were 

actually spongers. Our results thus support the notion that spongers sharing the same haplotype is 

not due to a genetic inheritance of sponging but, rather, a result of the simultaneous transmission of 

a vertically transmitted behaviour and the maternally inherited mitochondrial DNA, a phenomenon 

referred to as ‘cultural hitchhiking’ (Kopps et al., 2014a). 

To conclude, multi-network NBDA provides a useful tool to quantify the effects of social learning on a 

behaviour while explicitly accounting for the influence of ecological and genetic factors. Applying 

NBDA to sponging behaviour in the dolphins of western Shark Bay, we show a strong effect of vertical 

social learning in the spread of sponging, which, as such, had not been previously quantified. A long-

term data set on individuals’ associations, habitat use and genetics, in combination with new statistical 

tools like NBDA provides an ideal framework to assess patterns of transmission of behaviour in free-

ranging wild animal populations.  
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CHAPTER 5.  
Long-term decline in survival and reproduction of dol-
phins following a marine heatwave 
__________________________________________________________________________________ 

5.0. Main text* 

One of many challenges in the conservation of biodiversity is the recent trend and predicted increase 

in the frequency and duration of extreme climatic events (Oliver et al., 2018). The Shark Bay World 

Heritage Area, Western Australia, endured an unprecedented marine heatwave in 2011. Catastrophic 

losses of habitat-forming seagrass meadows throughout the bay followed (Arias-Ortiz et al., 2018), 

along with mass mortalities of invertebrate and fish communities (Pearce et al., 2011). Our long-term 

demographic data on Shark Bay’s iconic population of resident Indo-Pacific bottlenose dolphins (Tur-

siops aduncus) revealed a significant decline in female reproductive rates subsequent to the heat-

wave. Moreover, capture-recapture analyses indicated 5.9% and 12.2% post-heatwave declines in the 

survival of dolphins that use tools to forage and those that do not, respectively. This implies that the 

tool-using dolphins may have been somewhat buffered against the cascading effects of habitat loss 

following the heatwave by having access to a less severely affected foraging niche (Krützen et al., 

2014). Overall, however, lower survival levels have persisted post-heatwave, suggesting that habitat 

loss following extreme weather events may have prolonged negative impacts on even behaviourally 

flexible predators feeding at the highest trophic level.  

In the Austral summer/autumn of 2011, the coastal waters of Western Australia experienced an un-

precedented marine heatwave, with water temperatures rising to 2-4° Celsius above long-term aver-

ages for more than two months (Wernberg et al., 2012). In the shallow, subtropical embayment of 

Shark Bay, an estimated 36% of seagrass meadows were damaged (Arias-Ortiz et al., 2018). Wide-

ranging effects associated with the heatwave were documented across lower trophic levels, while 

those on long-lived or large vertebrates remained more elusive. We investigated the vital rates, i.e., 

survival and reproduction, of dolphins in the western gulf of Shark Bay, using long-term demographic 

and behavioural data collected between 2007 and 2017 (Fig. 5.1a; Appendix SI Chapter 5).  

* Chapter 5 has been written in short correspondence format (1000 word limit, continuous main text) and 
has been accepted for publication in Current Biology. Detailed descriptions of methods and results can be 
found in the Appendix (SI Chapter 5).  
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We assessed changes in apparent survival of dolphins over time using capture-recapture analyses 

(Pollock, 1982) (Fig. 5.1a; Appendix SI Chapter 5). Using Akaike weights as approximate model proba-

bilities, there was evidence of a considerable decrease in survival after the heatwave. We suggest that 

this was likely linked to the well-documented and sizeable losses of prey during the heatwave (Pearce 

et al., 2011). We also found that, on average, survival remained lower in the seven years after the 

heatwave compared to before. Again, having most support from the Akaike weights, we suggest that 

this result is best interpreted as evidence that dolphin mortality was impacted over a protracted pe-

riod, rather than a single peak following the temperature anomaly, which had much lower support by 

AIC. As such, the catastrophic reduction in seagrass coverage (Arias-Ortiz et al., 2018), which shows 

little sign of recovery (Nowicki et al., 2017), appears to be responsible for preventing fish stock recov-

ery, since well-established seagrass meadows represent important breeding grounds and refuge hab-

itat for numerous species (Heithaus, 2004). 

We also tested for potential differences in survival between dolphins occupying different habitats, and 

those that use marine sponges as foraging tools (‘spongers’) versus those that do not (‘non-spongers’) 

(Krützen et al., 2014). Interestingly, the best performing models based on Akaike weights included an 

interaction term of the heatwave and individual foraging strategy: while there was an overall decline 

in dolphin survival post-heatwave, survival of spongers was not as adversely impacted as that of non-

spongers (5.9% versus 12.2% decline in survival from pre- to post-heatwave, respectively; Fig. 5.1b; 

Appendix SI Chapter 5). Sponge use is restricted to deeper channel habitats with no seagrass cover. 

While both spongers and non-spongers use these channels for foraging, sponge use allows access to 

a foraging niche which dolphins without the tool-using know-how cannot access (Krützen et al., 2014), 

implying that the spongers’ foraging niche may have been less severely impacted by the heatwave and 

subsequent seagrass losses (Fig. 5.1b). 

A significantly greater number of calves per female per year was detected pre-heatwave compared to 

post-heatwave (Poisson GLM; z = -2.579; effect size = 31.6%; 95% C.I. = [7.5%, 55.7%]; p < 0.010; Fig. 

5.1c), while no significant differences were found when comparing reproductive success for females 

from different habitat types (Poisson GLM; z = 1.468; effect size = 18.17%; 95% C.I. = [-6.0%; 42.6%]; 

p = 0.142), or using different foraging techniques (spongers, non-spongers; Poisson GLM; z = -0.673; 

effect size = -9.6%; 95% C.I. = [-38.5%; 17.8%]; p = 0.501). This suggests that spongers’ access to a 

different foraging niche may have led to less severe effects on survival, but not reproduction. Reduced 

reproductive success as a consequence of significant ecological changes is not surprising, since a de-

cline in food availability is expected to affect the most vulnerable members of a population, i.e., young 

individuals and those with high nutritional demands, such as pregnant or lactating females (Trites and 

Donnelly, 2003).  
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Figure 5.1: Dolphin vital rates before and after the 2011 marine heatwave in western Shark Bay. a) The study 
area in the western gulf of Shark Bay, Western Australia, encompassing approximately 1,500 km2. Over 5,000 
dolphin group encounters have been documented between 2007 and 2017 (all dots). To account for unequal 
survey effort in each field season, the study area was overlaid with a grid of 2 km x 2 km cells. Only encounters 
within grid cells covered in all seasons (‘core’ study area) were considered for capture-recapture analyses (dark 
red dots). b) While both spongers and non-spongers experienced a decline in survival from pre- to post-heatwave, 
spongers were less affected than non-spongers (5.9% decline versus 12.2% decline, respectively). c) The number 
of calves detected (controlled for number of known mothers observed each field season) was significantly higher 
pre- compared to post-heatwave, suggesting that female dolphin reproductive success was also negatively im-
pacted by habitat degradation and prey species loss following the heatwave. (Note that the pre-heatwave data 
set encompassed only four years, while that post-heatwave was seven). 
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There are several plausible explanations for this reduced reproductive success: First, lower prey avail-

ability is likely to have forced female dolphins to spend more time foraging, leading to reduced vigi-

lance and, ultimately, greater shark predation on calves. Second, reduced food availability can lead to 

either increased rates of abortion during pregnancy or increased neonate mortality, when both the 

mother’s and the offspring’s nutritional needs cannot be sustained (Trites and Donnelly, 2003). Both 

abortions and increased mortality of young calves would effectively appear as lower reproductive suc-

cess in the demographic data. Third, suppressed ovulation or delayed sexual maturity may have oc-

curred when females did not reach a certain threshold of body weight (Boyd et al., 1999). Indeed, 

along with juvenile survival, fertility is the vital rate most sensitive to changes in resource availability 

in marine mammals (King et al., 2015).  

Western Australia’s 2011 marine heatwave negatively impacted habitat-forming and lower-trophic 

level organisms (Pearce et al., 2011; Wernberg et al., 2012; Arias-Ortiz et al., 2018), and our results 

suggest a cascading effect on a behaviourally flexible, top-order predator. Long-lived taxa, such as 

some birds, great apes and cetaceans, are likely to experience changing ecological conditions through-

out their lifetimes and, hence, may display behavioural plasticity in adapting to such changes (e.g. 

Krützen et al., 2011). However, our findings suggest that the ecological consequences of extreme 

weather events may be too sudden or disruptive for even highly adaptable, cognitively advanced ani-

mals to respond, leading to long-term negative impacts on their population viability. Such impacts 

may persist if ecosystems fail to recover. Furthermore, our study adds to prior research illustrating 

that extreme events can drive biodiversity patterns and cause shifts in community structure toward 

more depauperate states (Wernberg et al., 2012; Cheung et al., 2012). These findings raise concerns 

over the long-term viability of the dolphin population, given that marine heatwaves are occurring with 

greater frequency and duration in association with anthropogenic climate change (Oliver et al., 2018).  
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CHAPTER 6.  
General Discussion 
__________________________________________________________________________________ 

6.1. Chapter overview 

All four PhD chapters revolved around network-based diffusion analysis (NBDA) and the two foraging 

strategies, ‘shelling’ and ‘sponging’, in the bottlenose dolphin population in Shark Bay, Western Aus-

tralia. The first of my data chapters (Chapter 2) provided a tool in R to help researchers select an 

appropriate threshold for the inclusion of individuals in an NBDA when dealing with incomplete asso-

ciation data. Chapter 3 inferred that shelling was horizontally socially transmitted among associated 

individuals using a multi-network version of NBDA (Farine et al., 2015a), which assessed the im-

portance of social learning while accounting for the influences of ecology and genetics on the spread 

of the behaviour. In Chapter 4, multi-network NBDA revealed vertical social transmission of sponging 

from mother to (primarily) female offspring, confirming previously established pathways with new 

methods (Krützen et al., 2005; Kopps and Sherwin, 2012). Finally, Chapter 5 showed how dolphin vital 

rates, i.e., reproduction and survival, were negatively affected following a catastrophic marine heat-

wave in 2011 along the west coast of Australia (Pearce and Feng, 2013; Thomson et al., 2014; Arias-

Ortiz et al., 2018), with less adverse effects on sponging individuals compared to individuals without 

the tool using knowledge.  

6.2. NBDA – a powerful and flexible tool to detect and quantify social learning 

The last few decades have seen increased interest in questions revolving around animal culture. The 

development of novel methods like NBDA (Franz and Nunn, 2009; Hoppitt et al., 2010) have brought 

quantitative statistical tools with which social learning can be detected and quantified in both captive 

and free-ranging animal populations (e.g. Allen et al., 2013; Watson et al., 2017), and have therefore 

considerably advanced the field of animal social learning. NBDA has been used not only in its original 

form to quantify social learning per se, but also, for example, to detect social learning strategies (Farine 

et al., 2015b), and to assess differences in learning between and within species (e.g. Farine et al., 

2015a). NBDA’s flexibility and potential to be modified from its original form and adapted to improve 

power to detect learning makes it a valuable and popular tool in studies on animal culture.  

The second of my chapters contributes to NBDA’s power to detect social learning when dealing with 

incomplete association data and the resulting uncertainty in social networks. It provides a tool for 

researchers using NBDA to select a threshold for including individuals when dealing with data on free-

ranging populations where not all individuals can be observed at all times. In fact, I have been able to 



CHAPTER 6 2018 PhD thesis S. Wild 
__________________________________________________________________________________ 

98 

 

successfully implement the developed simulation approach to the data used in Chapters 3 and 4 to 

find an appropriate cut-off point for the inclusion of dolphins into the respective data sets that max-

imized power to detect social learning.  

Multi-network NBDA allows the inclusion of several different networks to investigate the spread of a 

behaviour along different pathways (Farine et al., 2015a). Originally, the multi-network version was 

used to quantify learning between and within species in populations of wild songbirds (Farine et al., 

2015a). In this thesis, I have used multi-network NBDA to assess transmission patterns of shelling 

(Chapter 3) and sponging (Chapter 4) to quantify the influence of social learning, ecological and ge-

netic factors on their spread. As such, multi-network NBDA takes a further step towards solving the 

animal cultures debate (Laland and Janik, 2006; Krützen et al., 2007; Laland and Janik, 2007), since it 

permits not only the quantification of social learning, but also the assessment of the influence of ecol-

ogy and genetics at the same time, building upon and providing an alternative to repertoire-based 

methods (Madden et al., 2004; Krützen et al., 2011; Rendell et al., 2012).  

6.3. Does shelling qualify as tool use? 

Tool use is defined as ‘the conditional external employment of an unattached environmental object 

to alter more efficiently the form, position, or condition of another object, another organism, or the 

user itself when the user holds or carries the tool during or just before use and is responsible for the 

proper and effective orientation of the tool’ (Mann and Patterson, 2013) based on (Shumaker et al., 

2011 [page 5]). Even though tool use is scarce in animals, it is found across several taxa including birds 

(e.g. Bird and Emery, 2009; Uomini and Hunt, 2017), primates (e.g. Ottoni and Mannu, 2001; Biro et 

al., 2003), cetaceans (e.g. Krützen et al., 2005; Fujii et al., 2015) and even cephalopods (Finn et al., 

2009). In cetaceans, the most famous case of tool use is undoubtedly the use of sponges as foraging 

tools by bottlenose dolphins in Shark Bay (Smolker et al., 1997; Krützen et al., 2005). The same popu-

lation of dolphins engages in shelling (Chapter 3), during which dolphins lift empty shells above the 

surface to gain access to prey items hiding therein (Allen et al., 2011). When shelling, the dolphins use 

the shell (an unattached environmental object) to expose the prey item to gravity by lifting the shell 

out of the water (change of the position of another organism, when the user holds the tool) in order 

to facilitate prey capture and consumption. Therefore, I argue that shelling qualifies as tool use fol-

lowing the Mann and Patterson, (2013) definition, and is therefore the second report of tool use within 

the Shark Bay dolphin population and in bottlenose dolphins in general.  
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6.4. Changing climate and behavioural responses 

Global climate change is predicted to lead to an increase in the frequency and duration of extreme 

weather events (Easterling et al., 2000). In a marine environment, such events can include unusual 

fluctuations in water temperatures, heavy rainfalls, droughts, changes in ocean currents and changes 

in the frequency of extremes in the El Niño Southern Oscillation cycle (Wu et al., 2012; Cai et al., 2014; 

Cai et al., 2015). The resulting environmental changes have impacts on marine mammals (and other 

species) living within the affected ecosystems. Thereby, environmental change can affect a population 

either directly, for example through rising sea levels or changes in water temperature, or indirectly, 

such as through changes in the availability of prey or shelter (Learmonth et al., 2006). Combined, both 

direct and indirect effects can have impacts on community structure, abundance, migration patterns 

or susceptibility to diseases. These can, in turn, influence reproduction and mortality and hence are 

important factors in determining if a population persists in the new environment or goes extinct 

(Learmonth et al., 2006). When faced with environmental changes, individuals may be able to mitigate 

environmental challenges either by migration to a more suitable habitat or by staying in the affected 

environment and adapting behaviourally (Learmonth et al., 2006). Behavioural adaptations can, for 

example, include increases in foraging rates (e.g. Bearzi et al., 1999), temporal shifts of seasonal mi-

gration (e.g. Ramp et al., 2015), or changes in reproductive behaviour such as delayed sexual maturity 

(e.g. Read and Gaskin, 1990; Boyd et al., 1999). If neither migration nor behavioural adaptations are 

sufficient to buffer environmental changes (if they are too sudden, for example), mortality will in-

crease and, in extreme cases, extirpation or local extinction may occur. In an example of this, an unu-

sual cold-water event combined with two other environmental stressors led to a mass mortality event 

in a dolphin population in the Gulf of Mexico (Carmichael et al., 2012).  

The 2011 marine heatwave in Shark Bay caused a catastrophic die-off of habitat forming seagrass 

meadows (Thomson et al., 2014; Arias-Ortiz et al., 2018) and mass mortalities in fish and invertebrate 

communities (Caputi et al., 2014), likely affecting prey availability for the dolphin population. Findings 

from Chapter 3 suggest that some potential behavioural adaptations may have occurred. First, in-

creased rates of shelling behaviour in years with higher sea surface temperatures suggest that shelling 

could be a behavioural response to the greater numbers of dead giant gastropod shells available fol-

lowing the 2011 marine heatwave. Second, horizontal social transmission of shelling among adults 

(rather than the sole reliance on vertically learned foraging strategies during dependency) may repre-

sent an adaptation to reduced prey availability through a change in social learning strategies: While 

stable environments favour conservative behaviour, ecological changes warrant more innovative be-

haviour to counter-act ecological pressures (Heyes and Galef Jr, 1996; Rendell and Whitehead, 2001; 
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Whitehead et al., 2004). Horizontal social learning can facilitate the rapid spread of novel adaptive 

behaviour (Whitehead et al., 2004; Aplin, 2016). Shark Bay dolphins, similar to other toothed whales, 

are known to be culturally conservative (Rendell and Whitehead, 2001; Whitehead et al., 2004; 

Barrett-Lennard, 2011), i.e., to heavily rely on the transmission of information and behaviour from 

mother to offspring (e.g. Yurk et al., 2002; Mann and Sargeant, 2003). I therefore hypothesize that 

reductions in prey availability after the heatwave may have increased dolphins’ willingness to copy 

novel foraging behaviour from others, i.e., causing a switch in social learning strategies from exclu-

sively using foraging techniques learned from mothers during dependency to also copying novel adap-

tive behaviour from associates. A switch in social learning strategies due to raised stress levels has 

been observed in zebra finches (Taeniopygia guttata), for example. While juvenile zebra finches would 

normally adopt foraging skills from their parents (vertically), finches whose stress levels were artifi-

cially increased during development learned exclusively from unrelated adults (Farine et al., 2015b). 

However, in how far the 2011 marine heatwave was responsible for a reliance on horizontal social 

learning of shelling is difficult to assess without experimental evidence and suitable control data. 

Given previous anecdotal evidence of horizontal social learning in dolphins (Donaldson et al., 2012; 

Bossley et al., 2018), such a transmission mechanism appears well within dolphins’ capacities, despite 

being rarely observed.  

It is plausible that, when previously learned strategies no longer pay off, behaviourally flexible species, 

like dolphins, although normally conservative, could adopt novel adaptive behaviours from associates 

(Whitehead et al., 2004). Nevertheless, Chapter 5 reports long-lasting reductions in survival rates in 

the Shark Bay dolphin population after the 2011 marine heatwave, suggesting that potential behav-

ioural responses have not been enough to buffer the rapid environmental changes. Mass mortalities 

in fish and invertebrate communities during and immediately following the heatwave (Pearce et al., 

2011; Thomson et al., 2014; Arias-Ortiz et al., 2018) reduced prey availability for higher trophic levels, 

and the on-going lower survival rates in the dolphin population are likely to reflect a lack of recovery 

in these stocks. The massive losses of seagrass coverage, combined with slow recovery of the ecolog-

ically important seagrass Amphibolis antarctica (Nowicki et al., 2017), is thereby most likely preventing 

prey stock recovery, as seagrass meadows represent important breeding grounds and refuge habitat 

(Francour, 1997; Heithaus, 2004). Changes in survival have been linked to reduced prey availability in 

other delphinids. In several killer whale populations, for example, the limited availability of Chinook 

salmon (Oncorhynchus tshawytscha) appeared to have been an important driver of increased mortal-

ity (Ford et al., 2010). Further, massive declines in the encounter rates of common dolphins (Delphinus 

delphis) and other high-order predators in the Ionian Sea have been attributed to prey depletion 

caused by over-fishing (Bearzi et al., 2006). 
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Chapter 5 further reports a long-term reduction in reproductive rates among female dolphins, which 

is not surprising since a decline in food availability is expected to primarily affect the most vulnerable 

members of a population, i.e., young individuals, and those with increased nutritional needs, such as 

pregnant or lactating females (Trites and Donnelly, 2003). I proposed three, perhaps non-mutually 

exclusive, plausible explanations for the lower reproductive rates detected in the dolphin population 

post-heatwave (Chapter 5): i) higher shark predation on dolphin calves due to reduced vigilance of 

females (Smith et al., 2018); ii) increased rates of abortions or neonate mortality (Trites and Donnelly, 

2003); or iii) suppressed ovulation or delayed sexual maturity in female dolphins (Boyd et al., 1999). 

Increased mortality of very young individuals as a result of environmental stressors was documented 

in the Gulf of Mexico, where the Deepwater Horizon spill, combined with an unusual influx of cold 

water, resulted in unusually high mortality of young bottlenose dolphins, twice the rate recorded in a 

comparable period prior to the events (Carmichael et al., 2012).  

Lowered reproductive rates in times of food scarcity have been reported in other marine mammals 

(Lockyer, 1986; Read and Gaskin, 1990; Boyd, 1996; Boyd et al., 1999). In harbour porpoises (Phocoena 

phocoena), for example, growth rate and age of sexual maturity were found to be related to prey 

availability (Read and Gaskin, 1990), and, in Antarctic fur seals (Arctocephalus gazella), pregnancy du-

ration was longer and reproduction occurred later in life in times of decreased food abundance (Boyd, 

1996). Hence, female dolphin ovulation in Shark Bay may have been suppressed in order to conserve 

energy in response to reduced prey availability. In this case, reduced reproduction may present an 

adaptation to a new ecosystem in which food is not as abundant.  

Both survival and reproduction are important vital rates determining a population’s viability. For K-

selected species, such as cetaceans, adult survival has been shown to be more important for a popu-

lation’s viability compared to reproduction (Heppell et al., 2000; Crone, 2001; Oli and Dobson, 2003). 

However, a comparison of two bottlenose dolphin populations in Western Australia found that differ-

ences in viability between the Shark Bay and Bunbury populations were best explained by differences 

in reproduction, rather than adult survival (Manlik et al., 2016). Therefore, while lower survival after 

the heatwave may have impacted viability in the Shark Bay population to some extent, reduced re-

productive rates are, arguably, more problematic for the future viability of this population.  

Long-lasting reduced rates of survival and reproduction are eventually going to affect population 

structure, including association patterns and, potentially, the formation and maintenance of male al-

liances (Connor et al., 1992; Connor and Krützen, 2015). Male alliances in Shark Bay dolphins serve 

the purpose of gaining access to oestrous females and defending them against theft by other alliances 
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(Connor and Krützen, 2015). Alliances are formed in the years after weaning, preferentially with al-

ready familiar males of similar age (Gerber et al., in review). Continued reduced reproductive rates, 

however, may decrease the pool of available allies, forcing young males into suboptimal choices in the 

formation of alliances. This may mean allying with males with larger age differences, or forming 

smaller alliances, when successful alliance formation is critical to gaining paternities (Connor and 

Krützen, 2015; Gerber et al., in review). 

6.5. Maintenance of sponging 

Krützen et al., (2005) originally inferred vertical social transmission of sponging using the ethnographic 

method. I used multi-network NBDA in Chapter 4 to show that there is indeed a strong social learning 

component in promoting the spread of sponging, while ecological and genetic influences were con-

siderably less important. I further confirmed previously suggested vertical pathways of social trans-

mission of sponging from mother to primarily female offspring (Krützen et al., 2005; Mann et al., 

2012). 

Mathematical modelling has shown that a behavioural trait socially inherited from only one cultural 

parent is unlikely to be maintained in a population since, in the absence of a fitness benefit of the 

behaviour, cultural drift, i.e., random fluctuations in the number of individuals performing a behav-

iour, is likely to eliminate the behaviour (Enquist et al., 2010). Such cultural ‘fads’, behaviour that ap-

pears and disappears again, have been found in killer whales, for example, who started to carry dead 

salmon (Rendell and Whitehead, 2001), and in bottlenose dolphins, where ‘tail-walking’ spread among 

members of the population before disappearing again (Bossley et al., 2018). Kopps and Sherwin, 

(2012) argued that sponging could be maintained even in the absence of a fitness benefit in the pop-

ulation under some restrictions, specifically, if virtually all daughters acquired sponging from their 

mothers. Large estimates of the strength of social transmission from mother to female offspring 

(Chapter 4) indeed suggested that nearly all female offspring of spongers adopt sponging themselves, 

and hence, sponging could in theory be maintained in the population even in the absence of a fitness 

benefit. In fact, Mann et al., (2008) could not find any significant differences in reproductive success 

between sponging and non-sponging females. Results from Chapter 5 confirm that reproductive rates 

were negatively impacted to the same extent for all females, regardless of foraging specialization. 

However, while survival rates of all dolphins decreased after the heatwave, spongers were less nega-

tively affected compared to non-spongers, suggesting that sponge tool use, by enabling access to a 

different foraging niche (Krützen et al., 2014) that may have escaped the effects of the heatwave, may 

provide a fitness benefit compared to foraging without tools. This may help maintain sponging in the 

population, even if not all female offspring adopt the behaviour. 
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6.6. Future research 

Multi-network NBDA tracks the spread of a behaviour through different networks. When behaviour is 

socially transmitted among associated individuals, an individual’s likelihood of learning the behaviour 

increases with the number of informed individuals with whom it associates, since it is more likely to 

be exposed to the behaviour. An individual’s likelihood of being next to learn therefore changes with 

each acquisition event. Conversely, if a behaviour is purely ecologically driven, an individual’s rate of 

learning is, theoretically, independent of the number of informed individuals with whom it shares a 

home range and stays constant throughout all acquisition events. Similarly, if individuals were genet-

ically predisposed to behave in a certain way (and there was no effect of social learning), their likeli-

hood of performing the behaviour would remain constant, since they either carry the genetic variant 

or they do not. In the multi-network NBDA model, however, which tracks the spread of the behaviour 

with the ecological or genetic network, the likelihood of an individual being next to learn changes with 

the number of informed individuals that share the same habitat or are closely related. As such, future 

research should focus on extending the framework of NBDA to include ecological and genetic similarity 

among individuals as covariates, while testing if the spread of behaviour follows the association net-

works.  

Both shelling and sponging behaviour can only occur where appropriate tools (i.e., empty shells and 

sponges, respectively) are available. To adequately quantify the influence of ecological factors on the 

spread of shelling and sponging it is thus desirable to include the number of shells and sponges occur-

ring in each dolphin’s home range as covariates in the NBDA models. While prior work has identified 

ecological characteristics that influence sponge distribution within Shark Bay (Tyne et al., 2012), 

knowledge of the distribution of shells is not available as yet. Work from other Australian locations 

shows that both gastropods occur on soft, sandy or muddy substrates, up to 30m and 10m depth for 

S. aruanus and M. amphora, respectively (Poutiers, 1998; Slack-Smith and Bryce, 2004). S. aruanus is 

known to feed on polychaete worms, M. amphora on sea hares and other molluscs (Coleman, 1975; 

Taylor and Glover, 2003). Benthic habitat sampling and subsequent habitat suitability modelling may 

provide insight into the biotic and abiotic factors influencing the abundance and distribution of these 

giant gastropods within Shark Bay so that, ultimately, shell abundance may be incorporated into fu-

ture analyses on the spread of shelling behaviour.  

Extreme weather events can have long-lasting negative effects on ecosystems and their inhabitants, 

(e.g. Thomson et al., 2014; Chapter 5). In order to assess the impacts of such events, it is crucial to 

have ecological and demographic data available from both before and after the event (Smith, 2006). 

Given the unpredictability of such climatic events, long-term projects are invaluable for research into 
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the impacts of climate change. Research has shown that the below-ground biomass of the seagrass 

was lowered after the 2011 heatwave, which reduces resilience to disturbances (Fraser et al., 2014). 

Hence, future extreme heatwaves may have severe consequences on the ecosystem, including higher 

trophic level predators like bottlenose dolphins. Continued demographic assessments will help to as-

sess the impacts of future ecological disturbances and inform on potential conservation measures.  

6.7. Conclusion 

Extreme climatic events are occurring with increased frequency (Easterling et al., 2000; Oliver et al., 

2018), leading to rapid and potentially long-lasting ecological changes, particularly where habitat 

forming species are reduced and fail to recover (Thomson et al., 2014; Nowicki et al., 2017). Both 

effects of and potential responses to such events are difficult to measure in the absence of experi-

mental controls, but can be inferred from observational data collected before and after the impact. 

Following the 2011 marine heatwave in Shark Bay, three observations are suggestive of behavioural 

adaptations by dolphins as a response to the environmental stress: i) significantly more shelling be-

haviour in years with higher sea surface temperatures (Chapter 3); ii) horizontal social transmission of 

shelling behaviour (Chapter 3); and iii) reduced reproductive rates in female dolphins after the heat-

wave (Chapter 5). The extent to which they represent responses to the heatwave and subsequent 

environmental changes, however, requires further investigation. Post-heatwave reductions in survival 

(Chapter 5) suggest that, though some behavioural responses may have occurred, they were not suf-

ficient to buffer environmental impacts. Sponging individuals were less adversely affected than non-

sponging individuals (Chapter 5), so culturally different subpopulations may face different conserva-

tion threats, i.e., they may respond to the same threat in different ways (Whitehead et al., 2004). 

Overall, however, the population experienced long-term reductions in vital rates which may further 

affect population structure and social dynamics, including association patterns and, potentially, the 

maintenance of male reproductive alliances (Connor and Krützen, 2015). 
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APPENDIX 
__________________________________________________________________________________ 

A2. SI CHAPTER 2 

A2.1 Generation of simulated association data 

We first simulated a data set with 60 animals. The goal here was simply to generate a typical set of 

data to test the proposed method developed. The form of the data is similar to the data typically 

collected by researchers aiming to construct social networks based on association data (for transfor-

mation of data formats see Farine, (2013)).  We generated a binary data matrix: where each row rep-

resents an observation or group, whereas each column represents an individual, with 1 denoting pres-

ence in that observation and 0 denoting absence. To generate data of this form, we first simulated 

how many times each individual was seen using Poisson distributions with 5 different means (25 indi-

viduals with a mean of 1, 15 individuals with a mean of 5, 10 individuals with a mean of 20 and 5 

individuals each with a mean of 20 and 30 respectively), in random order. This was done as a method 

to represent heterogeneity in the sampling observation/detection of individuals.  

We first simulated the presence/absence of the first individual A in 600 observations by randomly 

attributing a 1 (presence) to the observations with a probability of n/600 (n = number of sightings for 

individual A) and 0 (absence) otherwise. For the next, randomly chosen, individual (e.g. individual B), 

we first chose an associate (i.e., an animal whose sightings had already been assigned), which in the 

first round was only individual A. We then determined if the two individuals were associated (with a 

probability of 0.7 of them being associated). If A and B were chosen to be associates, we simulated 

the strength of association between them using a uniform distribution ranging between 0.5 and 1 (e.g. 

0.7). For each observation in which the A was present, we simulated B’s presence using their associa-

tion strength (i.e., 0.7) as a probability of B being present in the same observation. For observations 

in which A was absent, we determined B’s presence as follows: First, we first extracted B’s simulated 

number of sightings (from the Poisson distribution). From that number, we then subtracted both the 

number of times B had already been seen without A as well as the number of times we would expect 

A and B to be seen in association (number of sightings for A times the association strength of A and B 

(i.e., 0.7)). This resulted in an estimate of the remaining number of observations where we expected 

B to be seen without A. We then divided this number by the remaining number of observations where 

no other individual was present, which resulted in a probability of B’s presence in the observations 

where A was absent. To reduce noise, we multiplied that probability of B’s presence – in absence of A 

– by 0.001 in all observations where another individual (other than A) was already present. This step 
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prevented B being associated with random individuals. For observations where no other individual 

was present yet (and A was absent), we multiplied the probability of B’s presence by 0.999. After all 

of B’s sightings had been assigned, we chose a new individual from the 58 remaining and randomly 

selected an associate (i.e., for the second round either A or B) and followed the process as described 

above. We repeated this process until observations for all 60 individuals had been assigned. We then 

removed observations where no individual had been assigned, which resulted in 331 remaining ob-

servations (SM5). 
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A3. SI CHAPTER 3 

A3.1. Genetic simulations – Input data and summary statistics 

Biopsy sampled individuals were genotyped based on 27 microsatellite markers (Tab. A3.1). We ob-

tained allele frequencies for each locus (Tab. A3.1 and A3.2), missing and error rates (Tab. A3.1) from 

empirical data and used them as input parameters for simulations in COANCESTRY (Wang, 2011). We 

chose the estimator with the lowest variance (Tab. A3.3) and the highest correlation with the true 

value (Tab. A3.4) as the most appropriate estimator for the study population (TrioML).   

Table A3.1: Microsatellite markers used to assign genotypes, including error and missing rate 

Locus Missing rate Error rate Reference 

E12 0.003 0.000 (Nater et al., 2009) 

MK6 0.003 0.000 (Krützen et al., 2001) 

Tur4_105 0.000 0.000 (Nater et al., 2009) 

Tur4_108 0.000 0.000 (Nater et al., 2009) 

Tur4_111 0.017 0.000 (Nater et al., 2009) 

Tur4_117 0.000 0.034 (Nater et al., 2009) 

Tur4_128 0.007 0.000 (Nater et al., 2009) 

Tur4_66 0.000 0.000 (Nater et al., 2009) 

Tur4_98 0.000 0.000 (Nater et al., 2009) 

D22 0.003 0.000 (Shinohara et al., 1997) 

D8 0.047 0.000 (Nater et al., 2009) 

F10 0.007 0.000 (Nater et al., 2009) 

Tur4_138 0.000 0.000 (Nater et al., 2009) 

Tur4_141 0.000 0.000 (Nater et al., 2009) 

Tur4_87 0.000 0.034 (Nater et al., 2009) 

Tur4_91 0.000 0.000 (Nater et al., 2009) 

Tur4_162 0.000 0.000 (Nater et al., 2009) 

MK9 0.007 0.000 (Krützen et al., 2001) 

MK5 0.000 0.000 (Krützen et al., 2001) 

Tur4_132 0.000 0.000 (Nater et al., 2009) 

KWM12 0.000 0.000 (Hoelzel et al., 1998) 

EV37 0.041 0.000 (Valsecchi and Amos, 1996) 

Tur4_80 0.000 0.000 (Nater et al., 2009) 

MK3 0.007 0.000 (Krützen et al., 2001) 

Tur4_142 0.000 0.034 (Nater et al., 2009) 

Tur4_153 0.000 0.000 (Nater et al., 2009) 

MK8 0.007 0.000 (Krützen et al., 2001) 
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Table A3.2: Allele frequencies in the western gulf Indo-Pacific bottlenose dolphin population 

Locus                                 

E12 Alleles 260 276 280 264 272 256          

  Frq 0.1854 0.2007 0.051 0.1412 0.3793 0.0425          

MK6 Alleles 154 166 156 174 182 184 172 160 176 152 188 168 180 190 186 

  Frq 0.0969 0.0289 0.1156 0.0969 0.017 0.0714 0.1497 0.0697 0.1259 0.1803 0.0374 0.0034 0.0017 0.0017 0.0034 

Tur4_105 Alleles 391 367 395 399 387 403          

  Frq 0.1746 0.5458 0.1153 0.0915 0.039 0.0339          

Tur4_108 Alleles 270 258              

  Frq 0.7271 0.2729              

Tur4_111 Alleles 299 303 307 287 295           

  Frq 0.1052 0.7776 0.0672 0.0448 0.0052           

Tur4_117 Alleles 183 179 187 175            

  Frq 0.5915 0.3288 0.0661 0.0136            

Tur4_128 Alleles 303 307 295 299 311           

  Frq 0.5973 0.2031 0.1229 0.0751 0.0017           

Tur4_66 Alleles 201 193 197 205 189           

  Frq 0.7932 0.1644 0.0102 0.0237 0.0085           

Tur4_98 Alleles 192 196              

  Frq 0.4051 0.5949              

D22 Alleles 116 118 110 120            

  Frq 0.4031 0.4677 0.0731 0.0561            

D8 Alleles 326 342 322             

  Frq 0.4751 0.306 0.2189             

F10 Alleles 386 390 382 378            

  Frq 0.3549 0.07 0.43 0.1451            
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Tur4_138 Alleles 223 215 207 219 227 211          

  Frq 0.2746 0.4102 0.0644 0.0915 0.1576 0.0017          

Tur4_141 Alleles 238 250 242 282 246 278 254 234 230 218      

  Frq 0.0576 0.2746 0.2542 0.0458 0.1288 0.0254 0.1119 0.061 0.0136 0.0271      

Tur4_87 Alleles 186 178 190 182 194           

  Frq 0.6492 0.1305 0.178 0.0237 0.0186           

Tur4_91 Alleles 227 207 223 231 235 215 211 219        

  Frq 0.3932 0.239 0.0373 0.2085 0.0373 0.0254 0.0237 0.0356        

Tur4_162 Alleles 407 411 403             

  Frq 0.3542 0.5797 0.0661             

MK9 Alleles 168 174 172 170 176 178          

  Frq 0.4352 0.1177 0.2133 0.2116 0.0205 0.0017          

MK5 Alleles 205 213 211 215 219           

  Frq 0.1288 0.3356 0.2949 0.2322 0.0085           

Tur4_132 Alleles 330 334 326             

  Frq 0.9136 0.078 0.0085             

KWM12 Alleles 166 170 174 186 156 164 168 182 190 184 160 188 178 162 161 

  Frq 0.3576 0.1729 0.1763 0.0881 0.0712 0.0153 0.0136 0.039 0.0034 0.0475 0.0017 0.0017 0.0017 0.0085 0.0017 

EV37 Alleles 204 210 216 202 220 212 194 222 218 224 206 208    

  Frq 0.3339 0.3145 0.0901 0.0495 0.0389 0.0689 0.0477 0.03 0.0159 0.0053 0.0018 0.0035    

Tur4_80 Alleles 311 323 291 315 319 303 327         

  Frq 0.0458 0.3356 0.1305 0.2525 0.1831 0.0305 0.022         

MK3 Alleles 161 163 157 165 167 147 169         

  Frq 0.099 0.3567 0.0956 0.3891 0.0256 0.0034 0.0307         

Tur4_142 Alleles 330 342 334 338            

  Frq 0.1458 0.0492 0.1559 0.6492            
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Tur4_153 Alleles 215 219              

  Frq 0.7271 0.2729              

Tur4_MK8 Alleles 103 109 111 107 113 105 87 115 97       

  Frq 0.1451 0.0939 0.4471 0.244 0.0119 0.0222 0.0256 0.0068 0.0034       
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Table A3.3: Summary statistics of seven relatedness estimators resulting from simulations in COANCESTRY 

n=600 TrioML Wang LynchLi LynchRd Ritland QuellerGt DyadML TrueValue 

Mean 0.267 0.268 0.265 0.269 0.278 0.262 0.289 0.271 

Variance 0.038 0.046 0.047 0.052 0.095 0.046 0.039 0.033 

MSE 0.010 0.015 0.015 0.019 0.060 0.015 0.011  

 

Table A3.4: Correlation matrix of seven relatedness estimators and the simulated true value. 

Correlation 
Coef TrioML Wang LynchLi LynchRd Ritland QuellerGt DyadML TrueValue 

TrioML 1        

Wang 0.927 1       

LynchLi 0.927 0.969 1      

LynchRd 0.884 0.840 0.841 1     

Ritland 0.666 0.560 0.610 0.820 1    

QuellerGt 0.923 0.930 0.962 0.844 0.635 1   

DyadML 0.995 0.938 0.936 0.894 0.669 0.932 1  

TrueValue 0.860 0.820 0.822 0.790 0.610 0.820 0.859 1 

 

A3.2. Modelling vertical transmission using mitochondrial haplotype 

We wished to allow for the possibility that shelling might be vertically socially transmitted to some 

degree. Previous work on bottlenose dolphins provides evidence that foraging skills tend to be socially 

learned from the mother (Mann and Sargeant, 2003; Krützen et al., 2005). Foraging skills learned in 

this way show an association with mitochondrial haplotype (henceforth ‘haplotype’) which is also ma-

ternally inherited. Thus, inclusion of haplotype as a factor in the analysis models the potential effects 

of vertical transmission down the matriline. It is important to include haplotype in the analysis for two 

reasons: a) individuals with the same haplotype might tend to associate, thus if the effects of haplo-

type are ignored, vertical social transmission might result in a spurious horizontal transmission effect; 

and b) it allows us to examine at the relative effects of horizontal and vertical social transmission. 

Haplotypes A, B, D, E, H, F, I and K were identified in the population. However, including ‘haplotype’ 

as an 8-level factor is not feasible given the number of acquisition events observed, since it would 

result in model overfitting. The factor would also be heavily penalized by AICc. We would also not 

expect all levels of haplotype to differ in their propensity to learn shelling, rather we would expect 

one or a few haplotypes to show an enhanced propensity to learning shelling due to its presence in 

the associated matriline. Here our aim is to allow for any confounding effects of vertical transmission. 
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Consequently, we reduced the levels of ‘haplotype’ to better reflect the potential effects of vertical 

transmission. It seems clear that Haplotypes E and D had the strongest association with shelling, pos-

sibly followed by H. Therefore, we tried three versions of the variable, and ran the full set of NBDA 

models that included haplotype with each, allowing us to obtain the relative support for each version: 

Table A3.5: Support for the haplotype variable with different number of levels 

Number of levels Levels Support 

5 Haplotype E, Haplotype D, Haplotype H, Haplotype F, Haplotypes A,B,I,K 0.4% 

4 Haplotype E, Haplotype D, Haplotype H, Haplotypes A,B,I,K,F 8.1% 

3 Haplotype E, Haplotype D, Haplotypes A,B,I,K,F,H 88.8% 

 

We therefore based our inferences on analyses using the 3-level version of haplotype. We used Hap-

lotype E as the reference/baseline level since this resulted in a more stable parameterization of the 

model, and more easily interpreted estimates for s (social learning) parameters.  

A3.3. Applying network-based diffusion analysis 

Analyses were run using the NBDA package v0.6.1 (Hoppitt et al., 2018). We used the multi-network 

variant of NBDA (Farine et al. 2015), to accommodate our three networks (social association, home 

range overlap and genetic relatedness). We used the order of acquisition diffusion analysis (OADA) 

variant of NBDA, which is sensitive only to the order in which individual learned and not the exact 

times of learning, and makes fewer assumptions (Hoppitt et al., 2010). We included several individual-

level variables (ILVs) with potential influence on an individual’s rate of acquisition, namely: an individ-

ual’s gender (-0.5 for females, 0.5 for males, 0 for unknown sex); the number of times each individual 

had been seen (to control for spurious effects of frequently sighted individuals being more likely to be 

observed with shells); the average water depth of each individual’s sightings (as a proxy for habitat 

use); the average group size; and mitochondrial haplotype as a factor (reduced to 3 levels: E, D and 

other; see above).  

The parameter s (the relative rate of social transmission through each network per unit connection) is 

estimated relative to a baseline rate of asocial learning. Continuous variables were standardized to 

have a mean of 0, such that s is estimated relative to the asocial learning rate for an individual with 

mean values for all such variables. The baseline asocial learning rate was set to the midpoint of males 

and females, and for Haplotype E (which was found to give the most stable parameterization). 
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Previous studies using NBDA with the inclusion of individual-level variables have selected between an 

‘additive’ model in which the ILVs affect only the rate of asocial learning, and a ‘multiplicative’ model 

in which the ILVs all affect both asocial learning and social transmission in the same way. In most 

published cases so far, either the additive or multiplicative data has been strongly favoured by the 

data, justifying the use of that model for inference, e.g. (Hasenjager and Dugatkin, 2016; Ladds et al., 

2017). In cases where support has been equivocal, the key results have been found to be robust to 

selection of the additive or multiplicative model. However, we found that different networks were 

favoured by the additive model (social association network) and multiplicative model (ecological home 

range overlap). Whilst the additive model was favoured, the difference in support was not large 

enough for us to be confident in the result. 

We therefore used an approach suggested by (Hoppitt and Laland, 2013) and fit a more general ‘un-

constrained’ model in which the effects of each ILV on asocial and social learning are estimated as 

independent parameters. Thus, we allow for the fact that a) some variables might influence social 

learning without forcing the model to assume that all variables do so; and b) variables might have a 

different effect on asocial and social learning. 

Here note that the ILV ‘haplotype’ is intended to model the effects of vertical social transmission (see 

above). In the standard terminology of NBDA, this ILV is modelled as potentially having an effect on 

‘asocial’ learning and an effect on social transmission. However, note that in this case the first so-

called ‘asocial’ effect is intended to model vertical social transmission.  

We fit models with every combination of ILVs affecting social and asocial learning, and every combi-

nation of the three networks resulting in 7,200 different models. 123 models could not be fitted and 

were dropped from the analysis - these were models with a large number of parameters. This is not 

surprising since we would expect some combinations of variables to result in over-parameterised 

models given the low number of acquisition events. Such models, if they could be fitted are highly 

unlikely to yield a favourable AICc and therefore dropping these models is unlikely to affect our con-

clusions. 

Support for each model was calculated using the Akaike Information Criterion corrected for sample 

size (AICc) (Burnham and Anderson, 2002). This allowed us to derive the support for each combination 

of networks, and for each ILV (effects on asocial and social learning). We found that standard errors 

could not be reliably obtained, probably because too many of the key parameters had a highly asym-

metrical profile likelihood. For example, for the effect of social transmission we have more information 

about the lower bound of the effect than about the upper bound. This also makes standards errors a 

misleading measure of precision, as standard errors may be large due to the uncertainty about the 
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upper bound, obscuring the high degree of confidence in the lower bound. This prevents use of a full 

model-averaged approach in which one presents unconditional standard errors as a measure of pre-

cision (Burnham and Anderson, 2002). Instead we derive 95% confidence intervals using profile likeli-

hood techniques (Morgan, 2008) based on the best predictive model. 

A3.4. Influence of ILVs on social and asocial learning of shelling 

Analyses suggested a decrease in horizontal learning of shelling with increasing group size, and indi-

viduals with haplotype E and D were more likely to acquire shelling independent of the horizontal 

social network (Tab. 3.6). None of the other ILVs were associated with shelling behaviour (Tab. A3.6).  

Table A3.6: Support for ILVs and model averaged estimates 

ILV Gender Number of 
sightings 

Average wa-
ter depth 

Average group 
size 

Haplotype 

Relative support 
for effect on so-
cial learning 

0.136 0.108 0.119 0.629 0.025 

Model averaged 
estimate* (back-
transformed) 

- - - x1.99 per as-
sociate 

- 

Profile likelihood 
confidence inter-
val conditional on 
the best model 

- - - [1.18-3.91] 
per associate 

- 

Relative support 
for effect on aso-
cial learning 

0.199 0.097 0.444 0.093 0.973 

Model averaged 
estimate* (back-
transformed) 

- - - - E/others: 1.46E9 

D/E: 41.7 

Profile likelihood 
confidence inter-
val conditional on 
the best model 

- - - - E/others: [3.1-Inf]  

D/E: [5.6-303]  

* Model averaged estimates are weighted medians across the set of values. In OADA extreme values 

can badly skew weighted means, even in models with a very small model weighting. Thus, we used 

weighted medians as a more robust estimate.   
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A4. SI CHAPTER 4 

A4.1. Genetic simulations – input data and summary statistics 

Biopsied individuals were genotyped based on 27 microsatellite markers (Tab. A4.1). We obtained 

allele frequency for each locus (Tab. A4.1 and A4.2), missing and error rates (Tab. A4.1) from empiric 

data and used them as input parameters for simulations in COANCESTRY (Wang, 2011). We chose the 

estimator with the lowest variance (Tab. A4.3) and the highest correlation with the true value (Tab. 

A4.4) as the most appropriate estimator for the study population (TrioML).   

Table A4.1: Microsatellite markers used to assign genotypes including error and missing rates 

Locus Missing rate Error rate Reference 

E12 0.003 0.000 (Nater et al., 2009) 

MK6 0.003 0.000 (Krützen et al., 2001) 

Tur4_105 0.000 0.000 (Nater et al., 2009) 

Tur4_108 0.000 0.000 (Nater et al., 2009) 

Tur4_111 0.017 0.000 (Nater et al., 2009) 

Tur4_117 0.000 0.034 (Nater et al., 2009) 

Tur4_128 0.007 0.000 (Nater et al., 2009) 

Tur4_66 0.000 0.000 (Nater et al., 2009) 

Tur4_98 0.000 0.000 (Nater et al., 2009) 

D22 0.003 0.000 (Shinohara et al., 1997) 

D8 0.047 0.000 (Nater et al., 2009) 

F10 0.007 0.000 (Nater et al., 2009) 

Tur4_138 0.000 0.000 (Nater et al., 2009) 

Tur4_141 0.000 0.000 (Nater et al., 2009) 

Tur4_87 0.000 0.034 (Nater et al., 2009) 

Tur4_91 0.000 0.000 (Nater et al., 2009) 

Tur4_162 0.000 0.000 (Nater et al., 2009) 

MK9 0.007 0.000 (Krützen et al., 2001) 

MK5 0.000 0.000 (Krützen et al., 2001) 

Tur4_132 0.000 0.000 (Nater et al., 2009) 

KWM12 0.000 0.000 (Hoelzel et al., 1998) 

EV37 0.041 0.000 (Valsecchi and Amos, 1996) 

Tur4_80 0.000 0.000 (Nater et al., 2009) 

MK3 0.007 0.000 (Krützen et al., 2001) 

Tur4_142 0.000 0.034 (Nater et al., 2009) 

Tur4_153 0.000 0.000 (Nater et al., 2009) 

MK8 0.007 0.000 (Krützen et al., 2001) 
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 Table A4.2: Allele frequencies in the western gulf bottlenose dolphin population 

Marker                                 

E12 Alleles 260 276 280 264 272 256          

  Frq 0.1854 0.2007 0.051 0.1412 0.3793 0.0425          

MK6 Alleles 154 166 156 174 182 184 172 160 176 152 188 168 180 190 186 

  Frq 0.0969 0.0289 0.1156 0.0969 0.017 0.0714 0.1497 0.0697 0.1259 0.1803 0.0374 0.0034 0.0017 0.0017 0.0034 

Tur4_105 Alleles 391 367 395 399 387 403          

  Frq 0.1746 0.5458 0.1153 0.0915 0.039 0.0339          

Tur4_108 Alleles 270 258              

  Frq 0.7271 0.2729              

Tur4_111 Alleles 299 303 307 287 295           

  Frq 0.1052 0.7776 0.0672 0.0448 0.0052           

Tur4_117 Alleles 183 179 187 175            

  Frq 0.5915 0.3288 0.0661 0.0136            

Tur4_128 Alleles 303 307 295 299 311           

  Frq 0.5973 0.2031 0.1229 0.0751 0.0017           

Tur4_66 Alleles 201 193 197 205 189           

  Frq 0.7932 0.1644 0.0102 0.0237 0.0085           

Tur4_98 Alleles 192 196              

  Frq 0.4051 0.5949              

D22 Alleles 116 118 110 120            

  Frq 0.4031 0.4677 0.0731 0.0561            

D8 Alleles 326 342 322             

  Frq 0.4751 0.306 0.2189             

F10 Alleles 386 390 382 378            

  Frq 0.3549 0.07 0.43 0.1451            



SI chapter 4 2018  PhD thesis S. Wild 
_______________________________________________________________________________________________________________________________ 

124 

 

Tur4_138 Alleles 223 215 207 219 227 211          

  Frq 0.2746 0.4102 0.0644 0.0915 0.1576 0.0017          

Tur4_141 Alleles 238 250 242 282 246 278 254 234 230 218      

  Frq 0.0576 0.2746 0.2542 0.0458 0.1288 0.0254 0.1119 0.061 0.0136 0.0271      

Tur4_87 Alleles 186 178 190 182 194           

  Frq 0.6492 0.1305 0.178 0.0237 0.0186           

Tur4_91 Alleles 227 207 223 231 235 215 211 219        

  Frq 0.3932 0.239 0.0373 0.2085 0.0373 0.0254 0.0237 0.0356        

Tur4_162 Alleles 407 411 403             

  Frq 0.3542 0.5797 0.0661             

MK9 Alleles 168 174 172 170 176 178          

  Frq 0.4352 0.1177 0.2133 0.2116 0.0205 0.0017          

MK5 Alleles 205 213 211 215 219           

  Frq 0.1288 0.3356 0.2949 0.2322 0.0085           

Tur4_132 Alleles 330 334 326             

  Frq 0.9136 0.078 0.0085             

KWM12 Alleles 166 170 174 186 156 164 168 182 190 184 160 188 178 162 161 

  Frq 0.3576 0.1729 0.1763 0.0881 0.0712 0.0153 0.0136 0.039 0.0034 0.0475 0.0017 0.0017 0.0017 0.0085 0.0017 

EV37 Alleles 204 210 216 202 220 212 194 222 218 224 206 208    

  Frq 0.3339 0.3145 0.0901 0.0495 0.0389 0.0689 0.0477 0.03 0.0159 0.0053 0.0018 0.0035    

Tur4_80 Alleles 311 323 291 315 319 303 327         

  Frq 0.0458 0.3356 0.1305 0.2525 0.1831 0.0305 0.022         

MK3 Alleles 161 163 157 165 167 147 169         

  Frq 0.099 0.3567 0.0956 0.3891 0.0256 0.0034 0.0307         

Tur4_142 Alleles 330 342 334 338            

  Frq 0.1458 0.0492 0.1559 0.6492            
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Tur4_153 Alleles 215 219              

  Frq 0.7271 0.2729              

Tur4_MK8 Alleles 103 109 111 107 113 105 87 115 97       

  Frq 0.1451 0.0939 0.4471 0.244 0.0119 0.0222 0.0256 0.0068 0.0034       
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Table A4.3: Summary statistics of seven relatedness estimators resulting from simulations in COANCESTRY 

n=600 TrioML Wang LynchLi LynchRd Ritland QuellerGt DyadML TrueValue 

Mean 0.267 0.268 0.265 0.269 0.278 0.262 0.289 0.271 

Variance 0.038 0.046 0.047 0.052 0.095 0.046 0.039 0.033 

MSE 0.010 0.015 0.015 0.019 0.060 0.015 0.011  

 

Table A4.4: Correlation matrix of seven relatedness estimators and the simulated true value 

Correlation 
Coef TrioML Wang LynchLi LynchRd Ritland QuellerGt DyadML TrueValue 

TrioML 1        

Wang 0.927 1       

LynchLi 0.927 0.969 1      

LynchRd 0.884 0.834 0.841 1     

Ritland 0.666 0.595 0.610 0.820 1    

QuellerGt 0.923 0.930 0.962 0.844 0.635 1   

DyadML 0.99 0.938 0.936 0.894 0.669 0.932 1  

TrueValue 0.860 0.820 0.822 0.790 0.610 0.821 0.859 1 

 

A4.2. Selecting a threshold for including individuals to maximize power of NBDA 

Since NBDA infers social learning if a behaviour follows the social network, there is a trade-off between 

sample size and data quality. Only considering individuals above a certain threshold of sightings (i.e., 

dropping individuals with only few sightings) can increase certainty about the strengths of connections 

within the network, but at the same time decrease power of NBDA to reliably detect social learning, 

if linking individuals are removed (Wild and Hoppitt, 2018; Chapter 2). To select a threshold that max-

imises power of NBDA to detect social learning, we ran a simulation approach (Wild and Hoppitt, 2018; 

Chapter 2),  – for computational reasons only considering individuals that had been seen at least five 

times (N=538 individuals). A social learning process is simulated though the population assuming 

learning follows the NBDA model. The resulting order of acquisition is then used in an NBDA which 

uses a social network with introduced observational error that varies with the number of times each 

dyad has been seen together or apart. Low numbers of sightings may result in greater error, while a 

large number of sightings results in a value that is closer to the real strength of association between 

individuals. Power of NBDA is then calculated as the percentage of models where social learning cor-

rectly outperforms asocial models. We ran the simulations with parameters s = 20 (selected through 

trial and error), number of learners = 9 and tested for cut-off points of 5-20 sightings. Thereby, the 
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social learning parameter s estimates the strength of social transmission per unit of association with 

informed individuals relative to the rate of asocial learning (Hoppitt et al., 2010). The number of indi-

viduals that learned sponging between 2007 and 2018 in our empirical data set was 18. However, for 

nine individuals maternity data was unavailable and they were therefore excluded from the NBDA 

analysis as learners (see manuscript), which is why we set the number of learners in the simulation to 

nine instead of 18. A threshold of seven sightings resulted in highest statistical power, with an ac-

ceptable (though slightly conservative) level of a false positive error rate (1.2%), in models where s 

was set to 0. The simulation approach is set up to simulate learning among associated individuals and 

does not take different pathways into account. Therefore, the threshold of seven is thought to max-

imize the power of NBDA to detect horizontal social learning in the sponging data set.  

A4.3. Applying NBDA 

Previous studies using NBDA with the inclusion of individual-level variables (ILVs) have selected be-

tween an ‘additive’ model in which the ILVs affect only the rate of asocial learning, and a ‘multiplica-

tive’ model in which the ILVs all affect both asocial learning and social transmission in the same way. 

Here, we used an approach suggested by (Hoppitt and Laland, 2013) and fit a more general ‘uncon-

strained’ model in which the effects of each ILV on asocial and social learning are estimated as inde-

pendent parameters. Thus, we allow for the fact that a) some variables might influence social learning 

without forcing the model to assume that all variables do so; and b) variables might have a different 

effect on asocial and social learning. 

We found that standard errors for transmission parameters s and for the ILVs could not be reliably 

obtained, because of highly asymmetrical profile likelihood. This also makes standard errors a mis-

leading measure of precision. Therefore, we derived 95% confidence intervals for parameters using 

profile likelihood techniques (Morgan, 2008) based on the best predictive model. 

A4.4. Influence of ILVs on social and asocial learning rates 

Results suggested an increase in vertical social learning of sponging when being female. None of the 

other ILVs were associated with the learning rate of sponging (socially or asocially) (Tab. A4.5).   
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Table A4.5: Support for ILVs and model averaged estimates 

ILV Gender Average water depth Average group size Haplotype 

Relative support for effect on 
social learning 

0.975 0.167 0.110 0.069 

Model averaged estimate* 
(log-scale) 

4.84 - - - 

Profile likelihood confidence 
interval conditional on the 
best model 

[-7.97, 2.24] - - - 

Relative support for effect on 
asocial learning 

0.056 0.017 0.060 0.056 

Model averaged estimate - - - - 

Profile likelihood confidence 
interval conditional on the 
best model 

- - - -  

* Model averaged estimates are weighted medians across the set of values. In OADA, extreme values 

can badly skew weighted means, even in models with a very small model weighting. Thus, we use 

weighted medians as a more robust estimate.   
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A5. SI CHAPTER 5 

A5.1. Field methods 

Boat-based surveys were conducted between April and October from 2007 to 2017 in the western gulf 

of Shark Bay, Western Australia, based at our long-term research site at the township of Useless Loop. 

The broader study area stretches over approximately 1,500 km2 (Fig. A5.1). Weather-dependent sam-

pling (daylight hours, low wind, no rain, Beaufort sea state ≤3) was carried out on either predeter-

mined, systematic transects or on a less structured basis within the boundaries of the study area (see 

below). On sighting, each dolphin group was approached for the purposes of recording GPS location 

and water depth, conducting individual photo-identification and observing behaviour over a minimum 

of five minutes (hereafter termed a ‘survey’). Individuals were identified based on the markings on 

and shape of their dorsal fins using standard photo-ID techniques (Würsig and Jefferson, 1990). Group 

composition was recorded based on the 10 m chain rule (Smolker et al., 1992). Foraging behaviour 

was recorded (as sponging or otherwise), and an individual was considered a ‘sponger’ after having 

been seen foraging with a sponge on at least two different days (Mann et al., 2008). Date of birth for 

266 calves was estimated based on body size, presence of foetal lines (Mann and Smuts, 1999) and 

time since the last encounter of the mother in absence of a calf. For 118 calves, birth dates were 

estimated with an accuracy of two years, for 148 calves accuracy was one year or less.  

A5.2. Demographic analyses 

Photographic capture-recapture data was used to estimate apparent survival (the product of true sur-

vival and permanent emigration), while controlling for temporary migration patterns and capture and 

recapture probabilities, using Pollock’s closed robust design (PCRD) (Pollock, 1982). The PCRD is a hi-

erarchical sampling strategy that includes repeated sampling of a population under ’closure’ (i.e., no 

births or deaths, called ‘secondary periods’), which are nested within broadly spaced ‘primary peri-

ods’. The sampling structure increases the effective capture-probability of animals that are difficult to 

detect and facilitates estimation of temporary emigration processes (Pollock, 1982; Kendall and 

Nichols, 1995; Kendall et al., 1997). The population is assumed ‘closed’ within primary periods and 

open between primary periods (Pollock, 1982). Consideration of temporary migration is especially im-

portant for populations with wide-ranging individuals, such as dolphins. In the case of Shark Bay dol-

phins, temporary migration can be viewed as movements in and out of the study area, given the well 

documented, strong philopatric tendencies of both sexes in this population (Krützen et al., 2004; Tsai 

and Mann, 2013; Allen et al., 2016).  
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Ideally, capture-recapture analyses are based on data collected along systematic transects designed 

to ensure consistent coverage of the study area. Since the Dolphin Innovation Project is long-term and 

multi-strategy, with foci on behaviour, social structure, genetics, ecology, and communication, sys-

tematic transects have not been conducted in all field seasons. In seasons in which transect-based 

sampling was not conducted, either particular areas or subsets of dolphins were targeted according 

to different scientific questions, or broad coverage of the study area was attempted in order to con-

tinue contributing to the long-term demographic data. To account for unequal survey effort across 

field seasons, we overlaid the study area with a 2 x 2 km grid and only included surveys within grid 

cells that had been covered in all field seasons (core study area) (Fig. A5.1a). To test for robustness of 

the model estimates, analyses were repeated with a more inclusive data set based on visual inspection 

(Fig. A5.1b), with more grid cells included in the Northern (shallower) part of the study area, where 

seagrass loss has been most severe (Arias-Ortiz et al., 2018) and survey effort had been intensified 

after 2008 (results on robustness follow the main results). 

 

 

Figure A5.1: The study area in the western gulf of Shark Bay, Western Australia, encompasses approximately 
1,500 km2. Over 5,000 dolphin group encounters have been documented between 2007 and 2017 (all dots).To 
account for unequal survey effort in each field season, the study area was overlaid with a grid of 2 km x 2 km 
cells. Capture-recapture analyses were run on data sets with two different levels of inclusiveness: a) the core 
study area consisting of grid cells that had been covered in all seasons; and b) a more inclusive area of mainly 
the Northern part of the study area where seagrass die-off had been most severe (Arias-Ortiz et al., 2018). Light 
green dots represent locations of all dolphin groups encountered between 2007 and 2017, whereas dark red dots 
represent the surveys that were included in the respective data set. 
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For application of PCRD, several assumptions have to be fulfilled (Pollock, 1982; Pollock et al., 1990): 

First, individuals have to possess unique markings and be correctly identified (Otis et al., 1978). Hence, 

many previous studies on the demographic characteristics of marine mammals, including survival or 

abundance, have excluded individuals with insufficient markings (e.g. Nicholson et al., 2012; Sprogis 

et al., 2016). This is usually the case for calves and juveniles, as they are born with ‘clean’ fins and only 

acquire marks throughout their lifetimes. However, we were interested primarily in survival rates 

across the population. We elected to keep all individuals in our data set, regardless of the distinctive-

ness of the fin, because calves and recently weaned juveniles are expected to be most vulnerable to 

environmental stressors (Trites and Donnelly, 2003). For identification, we also relied on more subtle 

features, such as small nicks, fin shape or scarring patterns for less distinctive individuals. Most indi-

viduals in the study population are very well known and have been photographed on numerous occa-

sions, allowing matching based on more subtle marks, including temporary scarring. To verify correct 

identification of individuals, all photo-identification data were double checked by a second observer.  

Second, populations are assumed to be closed within primary periods (i.e., no births, deaths or per-

manent emigration), but open between primary periods (Pollock, 1982). We chose years as primary 

periods, assuming population closure over the duration of one field season (two-four months), be-

cause reproduction is moderately seasonal in Shark Bay, with most births occurring between Septem-

ber and January (Austral summer) (Connor et al., 1996; Mann et al., 2000).  

Third, individuals are supposed to have equal probability of being captured within sampling periods. 

Unequal capture probability primarily influences abundance estimates, but is less likely to influence 

survival rates (Pollock, 1982), the main inference of our study. Nevertheless, we accounted for une-

qual capture probabilities by fitting full heterogeneity models, which allow for individual heterogene-

ity in both capture as well as recapture probabilities.  

Fourth, all individuals have equal probability of survival. This assumption is likely to be violated in our 

data, given we included all individuals regardless of age, and calf mortality in the Shark Bay dolphins 

is known to be high, at 44% by the age of three years (Mann et al., 2000). However, we were primarily 

interested in survival estimates as a whole-population index, and document changes over time (espe-

cially pre- and post-heatwave). This is somewhat confounded with changes in the demographic com-

position of the marked population over time (e.g., if the proportion of low-survival juveniles changes 

versus the proportion of high-survival adults). However, we assumed such changes were essentially 

random and exhibited no trend over the study.  
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Fifth, secondary period sampling occasions are supposed to be instantaneous. To ensure coverage of 

the entire core study area described above, we used calendar months as secondary periods, resulting 

in eleven primary (2007-2017) and two to five secondary periods per primary period, depending on 

the duration of the field seasons. Since calendar months as secondary periods are relatively large, the 

assumption of instantaneous sampling is violated. This places downward pressure on capture proba-

bilities (animals assumed to be in the study area during all secondary periods, but who have left, are 

scored as ‘missed-captures’), and potentially larger survival estimates. So long as the magnitude of 

the violation is constant over the study period, then the relative change in survival will be unbiased. 

Alternatively, we deemed it more plausible that periods of intense changes in survival may result in 

more intense in-and-out movement of animals between secondary periods (and, therefore, more 

downward bias in capture probabilities and more upward bias in point-survival efforts). Therefore, 

this bias works to reduce our power to detect changes in survival.  

Models were created fitting the parameters apparent survival rate (S), temporary migration rates 

(Gamma’, Gamma’’), capture probability (p), recapture probability (c), and the parameter pi, which 

controls individual capture and recapture heterogeneity. Gamma’’ is defined as the probability of an 

individual becoming a temporary emigrant, given it was alive and observed in the study area during 

the previous primary period (Kendall et al., 1997). Gamma’ describes the probability of an individual 

being a temporary emigrant given it was already a temporary emigrant in the previous primary sam-

pling period (Kendall et al., 1997).  

The models assumed that either survival was constant over time (denoted (.)), varied from year to 

year (denoted (time)), or varied only between the periods ‘pre’ (2007-2010) and ‘post’ (2011-2017) 

heatwave (denoted (heat)). We also included individual-level variables to investigate potential differ-

ences in survival among dolphins: forage allowed for a difference between spongers and non-spong-

ers, depth for a difference between habitat types. For depth, we averaged the water depth of all sight-

ings for each individual and assigned each individual to either shallow (<10 m) or deep (>10 m), since 

dolphins in the western gulf show strong natal habitat preferences for either shallow or deep water 

habitat (Kopps et al., 2014). Seagrass almost exclusively occupies depths of less than 12m in western 

Shark Bay (Tyne et al., 2012), which is why the two habitats may have been differentially affected by 

the heatwave. Where both forage and depth occurred in a model together, they were replaced with 

a single composite variable (composite) with three levels (‘shallow all’; ‘deep sponger’; ‘deep non-

sponger’), since, in our entire data set, only one sponger was found in shallow water. The variable 

‘composite’ served for avoiding three-way interactions and, hence, over-complexity of models. We 

also allowed for interactions between each individual-level variable (forage/depth/composite) and 

time variables (time/heat) (Fig. A5.2).  
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To estimate temporary emigration out of the study area (resulting in individuals being unavailable for 

capture), three patterns were considered: i) no emigration (Gamma’ and Gamma’’ = 0); ii) random 

temporary emigration, where the probability of an individual being present within a primary period is 

independent of its presence in the previous sampling period (Gamma’ = Gamma’’); and iii) Markovian 

emigration, where the presence of an individual within a primary period is dependent on whether it 

was present during the previous primary sampling period (Gamma’ and Gamma’’ independently esti-

mated). Both Gamma parameters were either i) set to be constant (.), ii) allowed to vary with years 

(time), the heatwave covariate (heat), foraging strategy (forage), habitat preference (depth) or the 

variable grouping individuals into habitat/forage categories (composite), or iii) were set to 0 (for no 

emigration). We did not specify any interaction terms among the Gamma parameters (Rankin et al., 

2016), in order to avoid over-complexity for the Gamma’ parameter that is not easily identifiable (Fig. 

A5.2).  

In a first set of models, both capture and recapture probabilities were either set to be constant (.), or 

varying with years (t = time) or both with years and months (ts = time.session). As such, setting pi = 1 

enforced no heterogeneity in individual capture or recapture probabilities. We further fitted full het-

erogeneity models, which allowed for individual heterogeneity in both capture as well as recapture 

probabilities (het, het2) while varying pi either with foraging strategy (forage), depth (depth), the com-

posite variable (composite) or setting it to be constant (.). Thereby, ‘het’ only allowed for individual 

heterogeneity in capture and recapture probability, while ‘het2’ also allowed for variation between 

primary and secondary periods.  

Models were fit using R package Rmark (White and Burnham, 1999; Laake and Rexstad, 2015) in all 

possible combinations of the parameters (as specified in Fig. A5.2), resulting in 7,548 different models. 

The Akaike’s Information Criterion corrected for small sample size (AICc) (Hurvich and Tsai, 1989; 

Anderson et al., 1998) was used to estimate relative model support, the model with the lowest AICc 

having the most evidential support (Anderson et al., 1998; Burnham and Anderson, 2002). Eleven 

models that did not result in parameter estimates were refitted with new initial parameters from sim-

ilar models.  
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S  apparent survival between primary periods 
Gamma’’ probability of leaving the study area between primary periods 
Gamma’  probability of staying outside the study area 
p  individual capture probability 
c  individual recapture probability 
pi  mixture parameter, allowing for heterogeneity in p and c; pi = 1 enforces no heterogeneity 
* Random temporary emigration (Gamma’’ = Gamma’) 
** Markovian temporary emigration (Gamma’’≠Gamma’) 
*** No temporary emigration (Gamma’’ = Gamma’ = 0) 

__________________________________________________________________________________

To assess changes in female reproductive rates, we used a Poisson Generalised Linear Model (GLM) 

to test for the number of calves born each year pre- and post-heatwave, while correcting (as an offset) 

for the number of females seen each season that were known to have had a least one calf between 

2007 and 2017. To investigate differences in reproduction between dolphins from different habitat 

types and/or with different foraging techniques, we ran the models i) on all females pooled together; 

ii) with depth as a covariate (shallow, deep); iii) with foraging technique as a covariate (non-sponger, 

sponger); and iv) with the composite variable as a covariate with levels as described above (shallow 

all, deep non-sponger, deep sponger). 

Figure A5.2: Set of Pollock’s Closed Robust Design (PCRD) models considered to assess apparent survival rates in 
the bottlenose dolphin population in the western gulf of Shark Bay, while controlling for temporary emigration 
and differences in capture and recapture probabilities. The notation (.) indicates that a parameter was kept 
constant; (heat) indicates that the parameter was allowed to vary with a binary heatwave variable (‘pre’ for the 
years 2007-2010 and ‘post’ for years 2011-2017); (time) indicates that the parameter was allowed to vary with 
the primary period (years); (forage) indicates that the parameter was allowed to vary with an individual’s forag-
ing technique (‘sponger’ or ‘non-sponger’; (depth) allowed a parameter to vary with a binary variable describing 
habitat preferences (‘deep’ or ‘shallow’); (composite) allowed the parameter to vary with a variable grouping 
individuals into habitat and foraging preferences (‘shallow all’; ‘deep sponger’; ‘deep non-sponger’); (ts) indi-
cates that capture (p) and recapture (c) probabilities were allowed to vary by both primary (years) and secondary 
periods (months); (het) allowed for individual heterogeneity in capture and recapture probabilities (when pi≠1), 
while (het2) allowed for individual heterogeneity in capture and recapture probabilities plus allowed for them to 
vary by primary and secondary periods (when pi≠1). 

Survival Temporary emigration 
Individual capture/recapture 

probabilities 

Encounter 
history 
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A5.3. Demographic results 

Between 2007 and 2017, over 5,000 dolphin groups were encountered in the western gulf of Shark 

Bay and 1,013 different individuals identified. After removal of surveys outside the core study area 

(see Methods), 2,005 surveys including 482 different individuals remained for fitting capture-recap-

ture models. Of these, 60 individuals were defined as spongers and 422 as non-spongers.  

A5.4. Reduced survival after the heatwave 

The top four models accounted for >95% of the posterior model probabilities. They shared several 

structural features: they included heatwave and foraging strategy as covariates for survival (either as 

S(heat*forage) or S(heat*composite)); they had time-varying random emigration; they included 

re/capture probabilities with temporal heterogeneity by primary and secondary periods, including 

habitat and/or foraging strategy dependent individual heterogeneity probabilities. Since S(heat*com-

posite) and S(heat*forage) refer to slightly different groups of dolphins (see Methods), and the top 

two models (both with S(heat*forage)) reached a cumulative Akaike weight of >0.8, estimates for ap-

parent survival were averaged across the first two models only. 

The fundamental motivation of AIC is not hypothesis testing. Instead, the AIC provides support for 

estimates that are (approximately) best at minimizing expected estimation error. In our study, models 

including the heatwave covariate received most support. Therefore, best approximation of the shape 

of the survival time series is one in which there is a sudden break following the heatwave. It is im-

portant to note that in reality, the survival time series could of course have a more complex shape 

(such as a recovery in survival since the heatwave or other forms). Such forms, however, were not 

favoured as evidenced by the low Akaike weights of models with survival varying by years. Note that 

a very large sample size would increase power sufficiently to reliably estimate year-to-year changes in 

survival. The AICc, however, suggests that, given the current sample size, more complex forms could 

not be reliably estimated.  If we use Akaike weights are approximate model probabilities (Link and 

Barker, 2006; Lukacs et al., 2007), then there is  evidence of a persistent effect of the heatwave and 

subsequent habitat degradation. 

Model averaged estimates indicate that apparent survival of spongers was less negatively affected 

than that of non-spongers (5.9% versus 12.2% decline in survival from pre- to post-heatwave, respec-

tively). The difference in the effect of the heatwave on spongers and non-spongers was estimated to 

be 6.3%. Apparent survival, normally encompassing both true survival and permanent emigration, is 

here assumed to be a good approximation of true survival, because both sexes are highly philopatric 
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and permanent emigration has not been documented in Shark Bay dolphins (Krützen et al., 2004; 

Nicholson et al., 2012). 

A5.5. Assessing robustness of survival estimates 

To account for unequal survey effort across seasons, we overlaid the study area with a 2x2 km grid 

and only included grid cells that had been covered in all seasons, i.e., contained at least one survey 

each year (see methods and main results). The demarcation of the ‘core study area’ has an element 

of reasoned arbitrariness to it. Therefore, to ensure robustness of our results, we repeated all sets of 

models with a more inclusive data set (Fig. A5.1b), as well as shorter secondary periods (calendar 

months and half months) for the core study area. For half months, all encounters on the 1st until the 

15th of each month were considered to be in the first half, while encounters between the 16th until the 

end of each month were considered to be in the second half of the month. With calendar months, the 

number of secondary periods varied between two and five for each primary period, whereas for half 

months the number of secondary periods within each primary period ranged between five and 10. 

Eight models not resulting in parameter estimates (inclusive data set) were rerun using initial param-

eters of similar models. The top 95% of models of each data set (based on their Akaike weights) were 

considered in the results.  

For both the core (main results) and inclusive data set, the top 95% of models (based on Akaike 

weights) showed most support for survival varying with the heatwave covariate as well as individual 

foraging strategy (Akaike weight core: 0.806; Akaike weight inclusive: 0.896). Model averaged param-

eter estimates for apparent survival of the more inclusive data set confirmed findings of the core study 

area: estimates for apparent survival were within 0.3% of estimates presented in the main results, and 

reductions in survival from pre- to post-heatwave for non-spongers were 11.7% (from 92.6% to 80.9%) 

and 6.3% for spongers (from 97.4% to 91.1%). For smaller secondary periods (half months), models 

with survival varying with the composite variable received most support (Akaike weight: 0.991), which 

further confirmed differential impacts of the heatwave depending on an individual’s foraging strategy. 

Reductions from pre- to post-heatwave were lowest for spongers in deep water (6.0% reduction from 

97.4% to 91.4%), followed by non-spongers in deep water (10.8% reduction from 92.6% to 81.8%) and 

all shallow water individuals (13.4% reduction from 92.4% to 79.0%). This suggests that, despite une-

qual survey effort across different field seasons and the ad libitum data collection in some field sea-

sons, results on differential impacts on spongers versus non-spongers are reliable. While models with 

half months as secondary period show differential survival for non-spongers from shallow and deep 

habitat, they confirm our main results, that i) survival estimates for all individuals declined post-heat-

wave, and ii) that spongers were less affected than non-spongers from both shallow and deep habitat. 
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Lower survival of shallow water individuals compared to deep water individuals (both spongers and 

non-spongers) further indicates that reductions in vital rates are most likely driven by losses of 

seagrass and a lack of recovery (Nowicki et al., 2017).  

A5.6. Ethics 

Permits for the use of animals for scientific purposes were granted by the Dept. of Biodiversity, Con-

servation and Attractions. The animal ethics committees of the University of Western Australia, Mur-

doch University and the University of Zurich provided approvals for the ethical treatment of animals 

in scientific research. 
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