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A bstract

Three kinds of oxide glasses doped with Er3+ ions were chosen for investigation. 
Both the properties of glass and fluorescence from rare earth dopant ions are 
measured and discussed.

In Er3+ ion doped silicate glass, the changes in the structure of glass as a result of 
fluorine addition are studied by measuring the glass properties: density, molar 
volume, refractive index, IR and UV edges. The absorption and emission cross- 
sections of Er3+ ion increase with increasing value of F/O ratio as do the full width of 
half maximum (FWHM) and figure-of-merit (FOM) for gain and bandwidth.

In Er3+ ion doped heavy metal germanate glass, the structural units of forming 
network in germanate glass change with the addition of PbO, Bi2C>3 , Ga2C>3 and TeC>2 . 
The molar volume, glass transition temperature Tg, IR and UV edges have been 
measured and discussed with the relation of glass structure. More Er3+ ion sites result 
in the increase of absorption and emission cross-sections, emission FWHM and FOM 
for gain.

In Er3+ doped Te0 2  - ZnO - R2O (R2O = Li2 0 , Na2 0  and K2O) tellurite glass 
system, glass properties such as density, molar volume, transition temperature Tg, IR 
and UV edges are measured and discussed. The glass structure has been characterised 
using Raman spectra. The role of F' and Cl' has also been studied in tellurite glass. 
Crystallisation kinetics has been analysed in tellurite glass using isothermal and non- 
isothermal methods. The properties of Er3+ absorption and emission have been 
measured and discussed with the change of glass structure and concentrations. FOM 
for gain and bandwidth have also been compared and discussed in Er3+ doped 
modifies silicate, HMO germanate, tellurite and ZBLAN fluoride glasses. The 
tellurite glass fibre has been made and the emission spectra of Er3+ ion in fibre have 
been measured.

I

Absorption and emission spectra have been studied in Tm -doped tellurite glass, 
it shows to be a highly promising host for a 1.47 (im amplifier capable of providing 
extended short-wavelength gain and a continuous band with the tellurite EDFA. Nd3+- 
doped tellurite and silicate glasses have also been studied, amplifier operating around 
1.34 (j.m is clearly desirable in tellurite glass. A continuous gain band extending from 
1310 to 1600 nm may become possible by using Nd3+, Tm3+ and Er3+ amplifiers.
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Chapter 1 

Introduction

1.1 Er3+-doped glass amplifiers at 1.5 pm

Fibre optic communications developed rapidly after the first low-loss fibres 

were produced in 1970. At that time, the poor amplification characteristics and lack of 

technical breakthroughs moved research away from active fibres. The basic 

mechanism of the optical fibre amplifier is very simple: it amplifies an optical signal 

in a fibre by using stimulated emission of optically excited rare-earth ions in the fibre 

core. The operating principle of amplifiers is the same of that of lasers, except that 

amplifiers do not need a cavity whereas lasers need one for oscillation.

With the development of both low-loss, long-length, high-silica fibres and 

highly reliable semiconductor laser diodes, an extension of the well-established 

modified chemical vapour deposition (MCVD) method made it possible to fabricate 

active fibres with excellent transmission characteristics. In addition, the laser 

technology, which was developed in the period from 1970 to 1985, enabled the 

efficient pumping of active ions. It can be said that active fibres and fibre amplifiers 

were reborn in 1985 [1] and in 1987 [2]. Since then, fibre amplifiers, especially 

erbium-doped fibre amplifiers (EDFAs), have become one of the most exciting new 

developments in the realm of optical communications, which has revolutionised our 

ability as human beings to communicate.

Figure 1.1 is a diagram of a conventional optical fibre transmission system with 

electrically regenerative repeaters. In this system, optical signals, which weaken as 

they propagate in the fibre, are converted to electrical signals in the repeaters, hence 

enabling the signals to be totally recovered by electronic circuits with 3R functions 

such as reshaping, retiming, and regeneration. The optical signal regenerated by this 

modulating semiconductor laser is then relaunched into the fibre for transmission. In 

general, these electrically regenerative repeaters require high-speed electronics, which 

become increasingly complex and problematic in terms of equipment size as the bit 

rate increases. In addition, since the reliability required for systems consisting a
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multichannel repeater is extremely high, this tends to make these repeaters very 

expensive once they exceed a few gigabits per second

Figure 1.2 shows the transmission system with fibre amplifiers. In this 

application system, the fibre amplifier repeaters do not require high-speed electronics 

and so the initial development investment is low, whereas electrically regenerative 

repeaters require high-speed electronics. This is because the fibre amplifier reshapes 

the transmission signals completely in the optical domain. This means that the optical 

gain of fibre amplifiers does not change with bit rate and makes fibre amplifier 

repeaters compatible with high-speed system. This feature allows system 

manufacturers to use the same fibre amplifier repeaters for different types of systems 

with different bit rates with no significant modification to the repeaters themselves.

Nowadays, silica glass optical fibres are the backbone of telecommunication 

networks. The loss in silica fibre determines the telecommunication transmission 

windows. Figure 1.3 shows the contribution to optical losses of the ultraviolet edge, 

the infrared edge and the intrinsic scattering losses in vitreous silica, together with the 

experimental loss curve [3]. From theoretical and experimental loss curves, silica 

glass has the lowest transmission loss about 0.2 dB km ' 1 at 1.5 pm. Therefore, a 1.5 

pm optical amplifier is essential for the third telecommunication window. Er3+-doped 

glasses can be used to provide amplification in the 1.5 pm band. Figure 1.4 and figure

1.5 illustrate the absorption cross section and energy levels of Er3+ in Ed-2 silicate [4]. 

From the energy level diagram of Er3+, the 4Ii3/2 -»  4Ii5/2 transition is ideal for making 

an optical amplifier in the 1.5 pm band.

In Er3+-doped glasses, 1.5 pm amplifier and laser can be pumped by different 

sources based on Er3+ absorption band in figure 1.4. There are three pump bands 

(800nm, 980nm and 1480nm) which are able to populate the excited 4Ii3/2 state, 

Because of the excited state absorption (ESA), the 980 and 1480 nm pump bands are 

better than 800 nm band for pumping 1.5 pm devices in oxide glasses. The 800 nm 

pump needs much higher minimum required pump power than 980 and 1480 nm 

pump bands.
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Figure 1.1 An example of conventional optical fibre transmission with electrical 
repeaters. TT is a transmitter terminal, MOD is an electrical signal modulator, 
and E/O and O/E are electrical-to-optical and optical-to-electrical signal converters. 
3R indicates repetitive signal regeneration, which involves reshaping, retiming, 
and regeneration and operates in the electrical domain.

Figure 1.2 A long distance transmission system with fibre amplifier repeaters
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Today, the erbium-doped silica fibre amplifier for 1.5 p.m telecommunication window 

has become a well-established component in telecom systems. The fibre amplifier has 

been used both in system demonstrations on land and under the sea, and operational 

systems are commercially available from a number of manufacturers. Their 

applications for a variety of requirements include high gain, high power, low noise, 

broadband, and high reliability. In addition, low cost and compactness are required. 

Unfortunately, however, no one amplifier currently meets all these requirements. 

Nevertheless, many significant advances have been made very rapidly.

1.2 Development of broadband amplifiers

The main advantage of optical amplifiers in communication systems is that they 

are useful for amplifying input signals of different bit rates or formats, and they can 

be used to achieve simultaneous amplification of multiwavelength optical signals over 

a wide spectral region. These multiwavelength optical signals can carry different 

signal formats, including digital data, digital video, and analogue video, allowing 

flexible upgrading in broadband distribution networks by adding extra wavelength 

division multiplexed (WDM) channels as needed. In WDM system, optical beams 

with different wavelengths propagate without interfering with one another, so several 

channels of information (each having a different carrier wavelength) can be 

transmitted simultaneously over a single fibre. This scheme increases the information 

carrying capacity of a fibre.

The wavelength region for telecommunications now extends from about 1250 

nm to 1650 nm, and silica fibres thus have a large potential for expanding huge 

bandwidth. The large bandwidth of the optical fibre allows for the use o f techniques 

such as WDM to increase the network capacity. At present, only part of this 

bandwidth is available for WDM transmissions by the introduction of the EDFA, the 

maximum unfiltered gain bandwidth of EDFA in silica fibre is about 20 nm [5], as the 

amplifier gain bandwidth is much smaller than the available wavelength region. 

Another drawback of the EDFA is that the Er3+ gain spectrum is not inherently flat, 

and spectral gain flattening techniques are necessary to equalise the amplification gain 

efficiencies for all the WDM signals. Thus, for efficient WDM operation, Er3+-doped 

amplifiers with broad band and flat gain characteristics are required.
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In order to satisfy the rising demand for more WDM channels in 

telecommunication industry, three main approaches have been adopted to increase the 

available gain bandwidth of EDFA. One is to expand the amplification band of EDFA 

by changing the Er3+ doped host glass [6,7]. The second approach involves using 

different band EDFA in a parallel configuration [8 ]. The third is to complement the 

EDFA gain with Raman amplifier gain [9]. At ECOC’97 Lucent also reported a 

cascaded EDFA with Bragg filters, achieving 80 nm bandwidths o f gain [10]. Non­

silica glass hosts intrinsically capable of broader gain than silica, have also been 

developed. Fluoride ZBLAN EDFA offers 30 nm of flat gain [6 ], and is available as a 

commercial device. Tellurite EDFA capable of 75 nm unfiltered flat gain has been 

reported by NTT at OFC’97 [7]. From this point, different host glass for EDFA will 

have significant effect on the gain bandwidth, it is the simplest configuration to 

achieve broadband EDFA.

1.3 Rare-earth doped host materials for amplifier

The essential amplification properties of active-ion-doped optical fibre depend 

strongly on the choice of active ions and fibre materials. There are many factors that 

influence the fabrication and characteristics of practical optical fibres for 

amplification. The most important of these are as follows:

1 . the homogeneous doping of active ions in host materials,

2 . the phonon energy properties of materials,

3. the refractive index properties and the controllability of the refractive-index 

profile in fibres,

4. low intrinsic loss and the potential for extrinsic loss reduction at operating 

wavelengths,

5. precise control of the shape and size of the cross-section are along the axial 

direction of fibres, and

6 . the high chemical and mechanical durability of materials.

The first five factors strongly affect the amplification characteristics of 

fibres. The clustering of active ions shortens the lifetime of radiative transitions. The 

phonon energy of host materials decides the radiative quantum efficiency. The



transmission loss and refractive-index difference between the core and cladding of 

fibres, which are related to factors 3 and 4, strongly influence the gain coefficient. 

Factor 6  is necessary for practical fibre fabrication and application. In order to 

increase the productivity and reliability of fibres and lower the fabrication cost, it is of 

paramount importance in system design that the fibre material itself has high chemical 

and mechanical durability.

These materials are classified into three groups: single crystalline, 

polycrystalline, and glasses. Single crystalline materials have essentially low intrinsic 

loss because Rayleigh scattering loss due to density fluctuation is very low. The 

active-ion doping, refractive-index control, and shape control of single crystalline 

materials are very difficult since doping the host with active ions or refractive index 

modifiers sometimes prevents single crystal growth and as-grown single crystals have 

rough specific crystal surface. In addition, because of the low speed of crystal growth, 

single crystal fibre is difficult to mass produce. By comparison, the speed of fibre 

fabrication with polycrystalline materials is high and there is little roughness on the 

surfaces and core/cladding interfaces of fibres. However, polycrystalline materials 

exhibit a large loss as a result of light scattering at the grain boundary. Glasses are 

made by cooling certain molten materials in such a manner that they do not crystallise 

but remain in an amorphous state. Therefore glasses with high thermal stability are 

easy to make into fibres and the Rayleigh scattering loss in glass is much smaller than 

the loss caused by grain boundary scattering in polycrystalline materials. Moreover, 

the refractive indices of these glasses are easily controlled by changing the constituent 

ratio, which does not severely limit the glass formation conditions.

Low-loss glass materials for fibre amplifiers can be divided into oxide glasses 

and non-oxide glasses. Oxide glasses can be divided into silica glass, multicomponent 

silicate glass, and non-silicate glass. Non-silicate glass includes germanate glass and 

tellurite glass. Silicate glass is the most stable and common glass, but it has some 

disadvantages in terms of its use as optical fibre for amplification. It is difficult to 

dope a large concentration of rare earth ions homogeneously. The phonon energy is 

high compared to other fibre materials. This greatly reduces the radiative quantum 

efficiency of certain doped ions e.g. Tm3+ and Pr3+ at 1460 nm and 1300 nm 

respectively under certain conditions.
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Non-oxide glass can be divided into halide glasses and chalcogenide glasses. 

There are many kinds of halide glass system including fluoride glass, chloride glass 

and mixed halide glass system. Fluoride glass system are divided into four groups: 

BeF2-based glasses, AlF3-based glasses, ZrF4 /HfTVbased glasses, and InF3 /GaF3- 

based glasses. Compared to oxide glass, these halide glasses are thermally not stable. 

They, in general, are sensitive to environment degradation, particularly in the 

presence of moisture. Although some fluoride systems can be fully vitrified when they 

are rapidly cooled from the molten state, they some times crystallize during a 

reheating process such as fibre drawing. It is very important to select a very stable 

glass system for fibre fabrication.

Although silica, silicate and fluoride glasses have been widely studied as the 

host of Er3 t*-doped fiber amplifiers, new glass host materials are being sought to 

satisfy the need for flattened gain broadband amplifiers. Because host materials have 

an important influence on the optical characteristic properties of the active ion, such 

as absorption and emission cross-sections, spectral shapes of the emission and 

absorption bands, excited state lifetimes, ion-ion interactions, as well as the static and 

dynamic ion-lattice interactions, these factors will change the Er3+ emission spectrum 

significantly.

Figure 1.6 and figure 1.7 illustrate the absorption cross sections and normalized 

emission spectra of Er3+ for the 4Ii5/2 <-» 4In /2 transition at 1.5|am in different glass 

types [4]. We can see the absorption cross-section and shape are changed in different 

kinds of host glasses. The emission spectra are becoming broader from silicate ED-2 

to fluorohafnate glass.

Tellurite and germanate glasses behave in a different manner compared to silica 

glass for realizing a broader flat-gain amplifier. Tellurite glass is particularly 

interesting, scientifically and technologically, on account of its attractive physical 

properties, some of which include high viscosity at the melting point, high refractive 

indices and extended mid-IR transmissions, high rare-earth ion solubility and a 

relatively low phonon energy among oxide glass formers. These properties enable the 

design of high-quality optical fibres for amplification, switching and laser power 

transmissions. As we cited above, in 1997, NTT announced a flat-gain Er3+-doped
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WAVELENGTH (nm)

Figure 1.6 Some 1.5 jn m absorption cross-section spectra for different glass types [4].

WAVELENGTH (nm)

Figure 1.7 Some 1.5 p m emission spectra normalised to emphasize variations in

bandwidth [4].
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tellurium oxide glass fibre amplifier [7]. The small-signal gain of more than 20 dB 

was obtained over a bandwidth as wide as 70 nm from 1530 to 1600 nm.

Tellurite and germanate glasses have the following properties:

1. a reasonably wide transmission region (0.38-5pm), compared with only 0.2-3 

pm for silicate glasses;

2 . good glass stability and corrosion resistance compared to fluoride glasses 

which pose major problems;

3. a relatively low phonon energy among oxide glass formers;

4. high linear and nonlinear refractive indices, which are much higher than either 

fluoride or silicate glasses.

A comparison of the selected optical properties among tellurite, germanate, 

silica, fluoride and chalcogenide glasses is shown in table 1 .1  [ 1 1 ],

Table 1.1 Optical and physical properties of glasses for device applications [11],

Properties Tellurite Germanate Silica Fluoride Chalcogenide

Optical properties

Refractive index (n) 1.9-2.3 1.7-1.8 1.46 1.4-1 .6 2-2.83

Abbe number (v) 1 0 - 2 0 25-40 80 60-100

Nonlinear RI (n2,m /w) 2.5xl0 ' 19 1 0 '19 io -20 1 0 ‘21 higher

Transmission range (pm) 0.4-5 0.38-5 0 .2 -2 .5 0.2-7 0.45-11

Highest phonon energy 
(cm '1)

800 900 1 0 0 0 500-600 200-300

Bandgap (ev) 3 3.5-4 1 0 9-11 1-3

Physical properties

Glass transition (Tg, °c) 300 450 1 0 0 0 270-300 300-420

Thermal expansion(10 ' 7 °c‘*) 120-170 100-130 5 150 140

Density (g/cm3) 5.5 6.4 2 . 2 5.0 4.5
Dielectric constant 13-35 — 4.0 — —

Fiber loss (dB/km) -- -- 0 . 2

(1.5pm)
15
(1.5 pm)

0.4 (6.5pm)

Bonding covalent-
ionic

covalent-
ionic

covalent-
ionic

ionic covalent

Solubility in water < 1 0 '2 < 1 0 '2 < 1 0 '3 soluble < 10~4
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The high nonlinear refractive index and low phonon energy make the tellurite 

glass particularly suitable for nonlinear and laser application. For example, in a Pr3+- 

doped tellurite galss, the lower phonon energy results in a lower nonradiative 

transition rate from the metastable upper level leading to a more efficient device for

1.3 |_im amplification than in silica [11].

TeC>2 and GeC>2 -based glasses, having lower phonon energy and high refractive 

indices, make them suitable candidates for designing high quantum efficiency 

devices. The low phonon energy as a device property could be useful in realizing 

important infrared lasers for sensors. It is also believed that tellurite glasses have 

better glass stability and chemical durability than halide glasses and some low-Tg 

chalcogenide glasses. Glasses with relatively low refractive indices can be designed 

for device applications that will have a lower insertion loss than a chalcogenide glass 

fiber device.

Although tellurites and germanates have been known for some time to form 

stable glasses, and selected properties of some rare earth ions have been reported [1 2 ], 

their application has not been extended to fibre optics where advantage could be taken 

o f their nonlinear properties and desirable fluorescence properties associated with 

their low phonon energy spectrum and high refractive index. At this moment, the 

backbone of the telecom fibre is silica, therefore if  Er3+-doped silica glass fibre can be 

modified to achieve a broadband emission, it will have advantage in connecting the 

active and passive fibres. In the present research work on rare-earth ion doped glasses 

for broadband amplifiers, Er3+-doped modified silicate glass, germanate glass and 

tellurite glass have been made and fluorescence properties of Er3+ have been 

compared. Special attention has been paid to Er3+-doped tellurite glass because of its 

widest emission spectrum, and it is the most promising glass host for broadband and 

flat gain amplifiers. Lastly, Tm3+-doped tellurite glass has been studied and the 

possibility of making Tm3+-doped fibre amplifier (TDFA) at 1.46 (im has been 

discussed.

1.4 Outline of this thesis

Although the EDFA for the spectral region around 1.5 jam has already been 

available commercially since 1990, the broadband and flat gain EDFA is necessary
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for WDM communication systems. Because the glass host has a large effect on the 

emission spectrum of Er3+ ion, various glasses were studied as host materials for this 

purpose. These glasses include modified silicate glass, heavy metal oxide germanate 

glass and tellurite glass. Finally, Nd3+-doped fibre amplifier (NDFA) and TDFA in 

tellurite glass are discussed and the possibility of covering the whole silica 

transmission band is also considered by connecting the 2nd and 3rd windows using 

TDFA.

The thesis is divided into 8  chapters following Introduction:

In chapter 2 “literature review” reviews references related to rare earth doped 

glass and fibre amplifiers, especially on Er3+ doped germanate and tellurite glasses.

In chapter 3 “experimental procedure” describes the techniques used in 

experiments and measurements.

In chapter 4 “radiative theory of rare earth doped glass” describes the 

fluorescence theory. With Judd-Ofelt analysis we can determine the emission lifetime 

and the cross-sections for absorption and stimulated emission. Non-radiative 

processes include ion-ion transition and multiphonon relaxation.

In chapter 5 “Er3+-doped modified silicate glass” describes the absorption and 

emission properties of Er3+ ions in modified silicate glass.

In chapter 6  “Er3+-doped heavy metal oxide germanate glass” describes the 

absorption and emission properties of Er3+ ions in heavy metal oxide germanate glass.

In chapter 7 “physical properties and structure of tellurite glass” describes the 

physical properties of tellurite glass and the analysis of glass structure change using 

Raman spectroscopy.

In chapter 8  “Er3+-doped tellurite glass” studies the absorption and emission 

properties of Er3+ ions in different tellurite glasses and at various Er3+ ion 

concentration.

In chapter 9 “Tm3+-doped tellurite glass for a broadband amplifier at 1.46 p,m” 

discusses the TDFA in tellurite glass and possibility of bridging the second and third 

communication windows.

In chapter 10, further work on the above research areas has been recommended.
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Chapter 2 

L iterature R eview

2.1 Er3T-doped silicate glass

Since the invention of the laser in 1960 [1], the first laser action in a glass host 

material was reported by E. Snitzer in 1961 using a potassium barium silicate glass 

containing 2 wt% neodymium oxide [2]. The first Er3+-doped glass laser was 

demonstrated by Snitzer and Woodcock using the 4Ib /2 -»  4Iis/2 transition at 1.5 (im 

in 1965 [3]. The basic ideas that led to the unidirectional travelling-wave optical 

amplifier were presented in 1962 by J. E. Geusic and H. E. D. Scovil [4], After that, 

the first experiments on fibre amplifiers were presented by C. J. Koester and E. 

Snitzer in 1963 [5] and 1964 [6 ] inN d3+-doped silicate glass.

The real breakthrough in fibre amplifier technology came in 1987 when a group 

from Southampton University reported high-gain fibre amplifiers operating in the 1.5 

(j.m wavelength region, which they achieved using Er3+-doped silica-based fibres [7]. 

After that, fibre amplifiers, especially Er3+-doped fibre amplifiers (EDFAs), have 

become one of the most exciting new developments in the realm of optical 

communications. It is widely recognised that no subject has received more attention 

than Er3+-doped fibre amplifiers.

EDFAs for different application purposes such as broadband [8-10], high gain 

[11-13], low noise [14, 15], high power [16,17] and reliability [18-20] have been 

developed.

One of the reasons for the successful and rapid development of EDFAs has been 

that manufacturing technology could refer to mature silica fibre production methods. 

Another reason for the success of EDFA was determined by the development of 

semiconductor lasers which are used to pump amplifiers using the 800, 980, and 

1480 nm absorption bands.

Although high silica glasses provide effective host materials for EDFAs, for 

achieving broadband gain characteristics on WDM systems, alternative glass hosts
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may offer improvements in terms of operational gain bandwidths. Except fluoride 

glasses for broadband amplifier [2 1 , 2 2 ], multicomponent silicate glasses, such as 

aluminosilicate, sodium silicate glass, soda-lime-silicate glasses, have been studied as 

hosts for EDFA [23, 24], The absorption and emission spectra of Er3+ ions have been 

studied in these glasses. Broadening occurred with the incorporation of either i) other 

high field strength ion oxides such as Z r0 2 and H f02, or ii) glass forming 

intermediates such as AI2O3 , Ga20 3 and In20 3 . There is no significant change 

observed in the absorption or emission spectra for the glass containing glass former 

G e0 2 [25]. The observed broadening may be due to distortions of the network which
34" • 34-affects the local coordination symmetry of the Er ions. For Er -doped silicate 

glass, the magnitude of the Stark split is slightly different in each ion because of the 

site-to-site difference in the crystal field surrounding the rare-earth ions. Next part is 

going to review Er3+ different sites in silicate glass.

2.2 Er3+ ion sites in silicate glass

Structurally, silicate glass is a continuous random network lacking of both 

symmetry and periodicity. The basic structural units which make up the network, 

S i0 4 tetrahedra, have a definite geometry but connected at corners to form a random 

three-dimensional network [26]. Network modifier cations, such as alkali, alkaline 

earth, and higher valence state ions, are accommodated randomly in the network in 

close proximity to non-bridging anions. On a macroscopic scale, glass is 

homogeneous, on a microscopic, it epitomises an inhomogeneous system. Being a 

disordered medium, the environment of each ion in a glass is not identical as in a 

crystal. In addition, due to differences in the bonding to nearest neighbour ions in 

multicomponent glass, the local fields at individual ion sites vary. This results in site- 

to-site differences in the energy levels and the radiative and nonradiative transition 

probabilities of paramagnetic ions in glasses.

Because the Stark splitting is caused by the crystal field and local coordination, 

the magnitude of the Stark split ranges from 200 to 400 cm ' 1 for Er3+-doped fluoride, 

fluorophosphate, and silicate glasses [27-30]. Due to the site-to-site difference in the 

crystal field surrounding the rare-earth ions, the Stark level has an apparent 

broadening originating from this difference in the Stark levels of individual ions. 

This broadening is commonly called the inhomogeneous broadening and originates
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from the local differences in the material structure [31]. In addition, the individual 

Stark levels fluctuate and broaden as a result of the fluctuation of the crystal fields 

caused by thermal atomic motions. This broadening due to thermal fluctuation is 

commonly called the homogeneous broadening [32]. The magnitudes of 

inhomogeneous and homogeneous broadening are about 27 to 60 cm ' 1 [33-36] and 8  

to 49 cm’ 1 [33, 34, 36-38], respectively. The energy spacing AE between adjacent 

Stark sub-levels range from 20 to 80 cm ' 1 and its average value is 50 cm '1.

The luminescence detection of transitions between individual Stark levels is 

obscured by the broadening (both homogeneous and inhomogeneous) present in the 

emission spectrum of rare earth ions in glasses. The homogeneous broadening of 

individual Stark levels can be made negligible by cooling the samples to cryogenic 

temperature [39]. In order to reduce the effect of inhomogeneous broadening, the 

technique of fluorescence line narrowing (FLN) was employed to detect the different 

sites.

When a narrow band source is used for excitation, only those ions resonant with 

the excitation quanta to within the homogeneous linewidth are excited. This site- 

selective excitation effectively reduces the inhomogeneous broadening and a line- 

narrowed fluorescence spectrum is obtained. Pioneering investigation on glass 

structure using FLN was carried out by Denisov and Kizel in 1967 [40]. With the 

advent of laser-excited FLN, we have a unique microscopic probe of the environment 

at an impurity site with which to test any proposed structure model. Equipped with 

FLN measurements of site-to-site variations in energy levels and transition 

probabilities, one can also invert this information to create a geometric model of 

glass structure. It is very useful tool to detect micro-structure of glass. This was
O |

attempted firstly by Brecher and Riseberg using FLN data of Eu first in a silicate 

glass [41] and later in a fluoroberyllate glass [42],

In order to simplify the interpretation, it is important to perform the experiments 

at temperatures low enough to ensure that only the lowest energy Stark level of a 

given J-manifold is thermally excited. Thus, the Stark split of a given J-manifold 

was deduced and shown to be on the order the site-to-site variations. 

Zemon et al [27, 37] first studied Er3+-doped fluoride, fluorophosphate, and silicate
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bulk glasses from FLN measurement at 4.2K. The Stark levels of the 4Ii5/2 ground 

state manifold for these glasses have been determined. Splits between adjacent Stark 

levels were observed to be 20-80 cm '1. The total energy spread of the manifold

ranged from 335 to 400 cm’1. The Stark energies varied from 0 to 60 cm ' 1 for the
i  i

range of Er sites. The site-to-site variations are of the same order of magnitude as 

the Stark splits.

In alkali silicate binary glass doped with Er2 0 3 , C. C. Robinson [43, 44] provided 

evidence for the existence of different Er3+ sites using low temperature spectra and
<3 i

pointed out that there are four distinguishable sites for Er ion which are assigned as 

A, B, C and D. The A site is the most common and appears in all glasses regardless
o i t

of the alkali size. The Er is sixfold coordinated in a site which approaches 

octahedral. The B site occurs only in Li+ and Na+ binary silicate glasses. This site 

may also be sixfold coordinated, with the rare-earth ion appearing at more than one 

edge of the silica tetrahedra. The presence of this site is sensitive to alkali size, and it 

does not appear for the larger alkali ions. The C site is present only in the K+, Rb+,
• • • O-L

and Cs+ silicate glasses. This site may be similar to the Er C2 site in Er2 0 3  crystal 

structure. The D site, which observed in the K+ and Cs+ glasses, may be a variation of 

the B site in which not as many rare-earth ions appear at the edges of the S i0 4 

tetrahedra, thus producing a spectrum more similar to that of the site A.

In Er3+-doped silica fibre amplifier, E. Desurvire et al [33, 34, 38, 45] were the 

first to measure the homogeneous and inhomogeneous broadening. When the fibre 

core is alumino-silicate, the spectral gain hole-burning at A-o = 1.53 jam was observed 

at temperature 4.2 and 77 K, the room-temperature homogeneous linewidth for this 

transition is determined to be AA,h =11.5 nm [38]. In this glass amplifier, it has large 

(26 nm) homogeneous gain bandwidth with comparatively small (11.5 nm) 

inhomogeneous component [38]. A theoretical model is presented to model both 

homogeneous and inhomogeneous gain saturation in EDFA [45]. The strong spectral 

dependence of gain saturation is described very well by the homogeneous model. The 

in homogeneous model is seen to provide a more detailed description on the change 

in the amplified spontaneous emission (ASE) spectrum. In EDFA with GeC^iSiCb 

core, J. L. Zyskind has measured the homogeneous linewidth by spectral gain hole- 

burning [33], At room temperature, the extrapolated homogeneous linewidth is 4 nm
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and the inhomogeneous linewidth is 8  nm. It shows that for fibres the homogeneous 

linewidth is less than the inhomogeneous linewidth and considerably smaller than for 

AbOs-doped silica fibres. This smaller homogeneous linewidth explains the fact that 

inhomogeneous gain saturation is observed to be more important in germano-silicate 

EDFA than in aluminosilicate EDFA.

I 1 I
With the success of the Er -doped fibre amplifiers, Er doped fluoride glass has 

been studied [21, 46]. In fluoride glasses rare earth ions are believed to substitute 

only for network former, resulting in less inhomogeneous broadening as well as a 

more symmetric and lower crystal field strength than for oxide glasses [47]. This is 

consistent with the observed Stark splitting [48], and on the basis alone narrower 

emission bands would be expected. The large measured bandwidths lead one to the 

conclusion that the distribution of strengths among the Stark transitions determines 

the spectral shape rather than the Stark splits. From this dense and packed spectrum 

in the 1.5 jun region, the fluoride based EDFA has a wider and flatter gain spectrum 

than silica-based EDFA. Thus, the fluoride environment is better than the oxide one. 

The solubility of the rare earth is also better in the fluoride medium than in the oxide 

one. Oxyfluoride silicate glass doped with rare earth ions has also been studied for 

photonic applications such as amplifiers at 1.31, 1.46, 1.55 ^im, for up-conversion 

lasers and three dimensional displays [49]. This kind of glass can benefit from the 

low phonon energy of a fluoride and the durability and mechanical properties of 

silicate glass.

2.3 Er3+ doped germanate glasses

Germanium oxide (G e02) has long been recognised as a good glass former. GeCh 

based glasses exhibit better infrared transmission than Si0 2 -based glasses due to the 

larger size and the heavier mass of germanium compared to that o f silicon. Ternary 

glass-forming systems with all kinds of oxides such as R20 , RO, R2O3, R 0 2, R2O5 

and R 0 3 based on Ge0 2  were studied [50]. The research data showed the glass- 

forming regions in the GeC>2 liquid with the addition of above oxides and some 

physical and chemical properties of these glasses are also reported.

The structure of binary alkali germanate glasses was studied using laser Raman 

spectroscopy, and FTIR techniques were used to study the structure of these glasses
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[51,52], When small amounts of alkali oxide are added to GeCh, the glass creates 6 - 

and 5- coordinated Ge atoms without forming non-bridging oxygens (NBOs). The 

network has comer-shared [GeO^ tetrahedra connected in a random structure. The 

refractive index and dispersion in Na20 -Ge0 2  glasses were also studied [53]. The 

refractive index of GeC>2 glasses containing 5-30 mol% Na2<3 were measured in the 

wavelength range of 0.334 pm to 1.71 pm using the minimum deviation method. 

With the addition of Na20 , the refractive index nd increased at 5 < Na20  < 15 

mol%. The refractive index showed a maximum around 15 mol% Na2 0  and 

decreased with further addition. The Abbe number Vd decreased monotonically. The 

variation of nd and Vd with Na2 0  content was related to the oxygen coordination 

number of Ge ions.

Since the invention of glass lasers, rare earth ion doped germanate glasses have 

been widely studied. Optical spectra of Er3+ in K20-B a0-G e0 2 germanate glass have 

been reported by Reisfeld [54, 55]. Oscillator strengths, emission spectra and 

excitation decay lifetimes of Er3+ and Tm3+ were measured. The spontaneous 

transition probabilities of the 4 S3/2 and 4Fg/2 to all terminal levels of Er3+ were 

calculated using the Judd-Ofelt theory. Quantum efficiencies of the 4S3/2 and 4F9/2 

fluorescence were also measured in germanate glass.

i  I

For most of the researches on the Er doped germanate glasses, the interest is 

focused on the upconversion. In Na20 -G e0 2 sodium germanate glass, upconversion 

fluorescences of the green 4S3/2—>4Ii5/2 and red 4F9/2—>4Ii5/2 transitions of the Er3+ ions 

were studied by Murata using Yb3+ and Er3+ codopants [56], The phonon energy of 

the glass network is discussed in terms of glass structure. With the lower phonon 

energy of glass, the Er3+ ions have higher upconversion fluorescence efficiency.

3+
Er doped Pb0 -Ge0 2  and Pb0 -Te0 2 -Ge0 2  glasses have been studied by Pan 

[57-59]. The research concentrated on the infrared-visible upconversion. It has also 

been found that the 4S3/2--4Ii5/2 radiative transition rate of Er3+ in the Pb0 -Te0 2 -Ge0 2  

glass is about twice as large as observed in Pb0 -Ge0 2  glass and the upconversion 

efficiency in the Pb0-T e0 2-G e02 glass is about four times larger than that in the 

Pb0-G e0 2 glass. These host-dependent properties are mainly attributed to the
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enhanced local oscillator fields and the reduced multiphonon rates in lead-tellurium- 

germanate glass compared to lead-germanate glass.

In Pb0-G e0 2 germanate glass, optical properties of rare earth ions (Pr, Nd, Sm, 

Eu, Dy, Ho, Er, and Tm) have also been studied by Wachtler et al [60], As the 

amount of lead increases, the covalency of the rare earth ion and oxygen bond 

changes, this affects the symmetry of the rare earth site and the dopant site 

distribution, the peak of stimulated emission cross-section rank among the highest 

found for oxide glasses. Therefore, it is worthwhile to study the fluorescence 

properties in Er3+-doped heavy metal oxide germanate glass.

2.4 Rare earth doped tellurite glasses

Tellurium oxide (Te02) does not form glass by itself, but it forms glasses with 

modifying oxides [64]. T e0 2 based glasses also exhibit better infrared transmission 

than S i0 2 based glasses due to the larger size and the heavier mass of tellurium when 

compared to that of silicon. Tellurium oxide with R20 , RO, R2O3 , R 0 2, R2Os and 

RO3, glass forming- systems were studied [50]. These research data showed the glass 

formation regions of T e0 2 with all kinds of oxides and some physical and chemical 

properties of these glasses.

The structure of binary T e0 2-Na20  glass was studied by using the magic angle 

spinning NMR experiment [62], The sodium coordination change was found to vary 

from about six at low modifier concentration to about five at high concentration. 

Mixed alkali effect was also investigated in tellurite glass system 30[(l-x)Li20  

xNa20]: 70Te02 [63]. Electrical conductivity and glass transition temperature were 

measured, a  and Tg all showed non-linear behaviour upon substitution of one alkali 

ion by another. The minima in a  and Tg at Na/(Na+Li) = 0.6 were observed.

The structure of binary R20 -T e0 2 (R = Li, Na, K) glass, binary M 0-T e0 2 (M = 

Mg, Sr, Ba and Zn) glass and binary tellurite glasses containing tri- or tetra-valent 

cations was studied by Raman spectroscopy [64-67]. The structure change has been 

also measured from room temperature to high temperature [6 8 ]. The glasses have a 

continuous network based on T e0 4 trigonal bipyramids and T e03+i polyhedra having 

one non-bridging oxygen (NBO) atom per unit structure. In these glasses, TeC>3
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trigonal pyramids with NBO are also formed in the continuous network. The glass 

formation, thermal properties and structure of ZnO-TeC^ and Pb0 -Ge0 2 -Te0 2  glass 

system were also studied by using DSC, X-ray diffraction and Raman spectroscopy 

[69, 70].

Rare-earth doped tellurite glasses have been studied widely because of their 

lowest phonon energy in oxide glasses.

In Pr3+-doped tellurite glass, radiative and non-radiative transition probabilities of 

the luminescent levels Pj, D2 and G4 were measured [71]. Their lifetimes and the 

concentration dependence of the cross-relaxation rates were also measured. 

Upconversion fluorescence of Pr3+ in tellurite glass was observed at 487nm (3P0-3H4), 

following excitation with 593 nm tuned to the ^ 2  level [72]. In Pr3+-doped Na2 0 - 

ZnO-TeC>2 glass [73], ’G4—»3H5 fluorescence spectrum of Pr3+ was measured which 

was pumped at 1.02 pm. The peak fluorescence appears at 1.33 pm and the 

bandwidth is around 90 nm, the measured lifetime is 22 ps. The lifetime is shorter 

than in fluoride glasses because of the higher phonon energy of TeC^-based glass and 

the peak of emission shifts to longer wavelengths as a result of the nephelauxleutic 

effect. Pr3+-doped tellurite glass for 1.3 pm optical amplifiers have been reported 

[74]. The emission from transition has a spectral bandwidth of 100 nm.

The lifetime of the ’G4 level is 24 ps, and the quantum efficiency is about 2.6%, 

which is comparable to that in fluorozirconate glasses.

With regarded to Nd3+-doped tellurite glasses, in 4F3/2—>4Ii 1/2 transition, bulk 

glass laser operating at 1.06 pm was described [75]. Single mode tellurite glass fibre 

laser at 1.06 pm was also developed in this transition [76]. In order to optimise the

1.3 pm amplification, Nd3̂ -doped Na20 -Zn0 -Te0 2  glass was studied [73]. 

Comparisons of spectroscopic and laser properties of the 4F3/2—>4Ii3/2 transition 

among various glasses were given. Nd3+-doped tellurite glass appears to be a less 

promising material for the 1.3 pm window telecommunication application because 

the emission spectrum red-shifts outside the 1.3 pm window.

Er3+-doped glasses were first investigated for eye safe range finders, the great 

interest of Er3+ dope glasses is the fibre amplifiers for the 1.55 pm
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telecommunication window [77, 78]. As the development of EDFA, it is important to 

flatten the gain spectrum and broaden the amplification bandwidth of EDFA in order 

to increase the transmission capacity of wavelength-division-multiplex (WDM) 

transmission networks. As we introduced in chapter 1, there are three approaches to 

achieve broad amplification bandwidth. Of these approaches changing the host is the 

simplest configuration. As tellurite glass has high refractive index n, relatively low 

phonon energy, high rare earth solubility and good glass stability [73], the stimulated 

emission cross section a e is related to the refractive index (n) of host glasses, 

expressed by: a e cc (n2+2)2/9n, thus tellurite glasses are capable of providing a 

large stimulated emission cross section over a broad bandwidth. The Er3+-doped 

tellurite fibre amplifier has the potential for greatly broadening the flat amplification 

bandwidth.

In Er3+-doped T e0 2-R20  glass (where R20  = Li20 , Na20 , K20 , Rb20 , Cs20), 

with about lwt% Er20 3 , the Judd-Ofelt parameters and radiative lifetimes for the 

transitions 4Ii3/2 —>4Iis/2 and 4In /2 ->4Ii5/2 have been reported [79]. The spontaneous 

transition probabilities of the 4S3/2 and 4Fg/2 to all terminal levels o f Er3+ were 

calculated using the Judd-Ofelt theory [80]. The absorption and emission cross 

sections, fluorescence spectra of the 4Ii3/2 —>4Ii5/2 transition at 1.54 pm with different 

concentrations of Er3+ were measured in T e0 2-R20 -Z n0  glass [73]. The lifetimes of 

the 4In /2 —>4Ii5/2 transition were 2 ~ 4 ms when doped Er3+ concentration in this glass 

was varied from 0.05 to 2.55 mol%.

Er3+-doped tellurite single mode fibre was fabricated and signal amplification and 

laser oscillation were demonstrated for the first time by Mori et al in 1996 [81]. A 

small signal gain of 16 dB at 1.56 pm was obtained with a pump power of 130 mW 

at 978 nm. After that, tellurite-based Er3+-doped fibre amplifier (EDFA) was 

demonstrated by a research group in NTT Opto-Electronics Laboratories for flattened 

gain amplifier application [82]. Small signal gains exceeding 20 dB were obtained 

over a bandwidth as wide as 80 nm from 1530 to 1610 nm. Low-noise and gain- 

flattened tellurite-based EDFA has been developed by employing a hybrid 

configuration in which tellurite EDFA joined to a 0.98 pm pumped silica EDFA. The 

gain flatness was improved by employing a Mach-Zehnder type gain equalizer [83- 

85], They also demonstrated a parallel-type amplifier with a flat amplification
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bandwidth 113 nm [8 6 ], it is composed of a tellurite based EDFA and a 1.45 pm 

band gain flattened Tm-doped fluoride fibre amplifier, the flat and wide gain 

spectrum of these amplifiers will allow us to greatly increase the capacity of WDM 

networks. In tellurite based EDFA, signal gain and noise figure were compared as 

pump at 980 and 1480 nm [87]. A small signal gain of 34 dB was obtained at 1533 

nm for a pump power of 150 mW + 50 mW at 980 nm. The higher gain was obtained 

with less pump power at 1480 nm. Regarding noise figure characteristics, 980 nm 

pumping shows a lower noise figure than 1480 nm pumping.

| *1 I O i _ 3 I
In addition to Pr , Nd and Er , Tm has been intensively studied for use in 

optical amplifiers [88,89]. Eigen states and radiative transition probabilities for Tm3+ 

in tellurite glass have been calculated [90], Both 2.3 pm (3H4—»3H5) and 1.88 pm (3F4

•5 "5-1- ■
—> H6) emission in Tm are attractive for chemical sensing, medical and atmosphere 

transmission application, and the 1.47 pm (3H4—>3F4 ) emission is near the third
i  I

telecommunication window of silica fiber. TDFA (Tm doped fibre amplifier) is 

potential to expand the 1.5 pm transmission window and then increases the WDM 

channels. Although Tm doped silica fibre laser [90] and fluorozirconate fibre laser 

[89] have been reported, the former suffer from high phonon energy (1100 cm '1) and 

the later from the poor glass stability, the low phonon energy tellurite glass (650 cm' 

!) will provide much higher quantum efficiencies than silica glass at 1.47 pm and

1 . 8 8  pm.

For 1.47 pm lasing action to occur, it is necessary to quench the relatively long- 

lived lower laser level to eliminate the self-terminating behaviour of thulium. 

Codoping with terbium [91] and holmium [92] for thulium in the fluoride glasses has 

been demonstrated. The results indicated that holmium co-doping decreased the 

lifetime of lower lasing level by nearly two orders of magnitude with much less 

effect on the upper lasing level. Therefore, Ho3+ was selected for quenching the 

lower lasing level of Tm3+ emitting at 1.47 pm. Tm3+ -Ho3+ co-doped Te0 2 -Ba0  

glasses have been reported by J. S. Wang et al [93, 94], Emission from 1.47, 1.88 and

2.3 pm has been measured and the effect of Ho3+ concentration on the fluorescence 

strength of these transitions has been discussed. At the Tm2 0 3  concentration of 0.2 

wt%, the lifetimes of 3H4 and 3F4 levels are 290 and 1879 ps, respectively. From the
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emission spectrum of 3H4, it extends over 1.5 pm region, it is very possible to make 

amplifier to compensate C-band of EDFA at short wavelength and then increase the 

communication wavelength band, providing more choice for broadband optical fibre 

amplifier.

2.5 Objectives of the research

The objectives of this thesis are to search a glass host for broadband and flat 

gain EDFA, therefore different kinds of glasses include modified silicate glass, heavy 

metal oxide germanate glass and tellurite glass doped with Er3+ ion are studied. 

Tellurite glass fibre will be drawn and fluorescence property of Er3+ ion in fibre will 

be measured. Another way to increase the communication bandwidths is to connect 

the 2nd and 3rd windows using TDFA. Therefore, Nd3+ and Tm3+-doped tellurite glass 

are studied and NDFA and TDFA in tellurite glass are discussed.
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Chapter 3

T heory o f  radiative and non-radiative transitions o f  rare earth ions 

in glass

Rare earth ions have a long history of applications in optical and magnetic 

decices. Among these, luminescent devices using single crystals, powders and glasses 

have been particularly important. For rare-earth doped glasses, such as glass fibre 

lasers and amplifiers, the radiative and non-radiative energy transitions of rare earth 

ions are critical to the properties of application. They decide the absorption and 

emission spectra lineshape, the lifetime of excited energy level and quantum 

efficiency of rare-earth ions in glass. Thus the performance of glass laser and fibre 

amplifier is greatly affected by the radiative and non-radiative properties.

In this chapter we will describe the radiative transition rates, transition intensity, 

and Judd-Ofelt theory. We will also describe the nonradiative processes, including the 

multiphonon relaxation process and ion-ion interactions, which influence the quantum 

efficiency of rare earth doped devices, especially radiative and nonradiative properties 

of Er3+-doped glasses. Finally, the pump wavelengths for Er3+-doped fibre amplifier 

will be discussed.

3.1 Radiative Rates

The rare earth series in the periodic table consist of 14 elements from Ce (atomic 

number Z of 56) to Lu (Z = 71). In condensed matter, the trivalent (3+) state is the 

most stable for rare earth ions, and most optical devices use the properties of the 

trivalent state. The electronic configuration of trivalent rare earth elements is given by

ls 22s22p63s23p63d,04s24p64d,04 f5 s 25p (N = 1, . . . ,  14)

The radiative relaxation rate between electronic energy levels of rare-earth ions in 

a solid depends on the nature of the electronic wave function. These wave functions 

are determined by the Hamiltonian, which can be written as:

H -  Ho + Hcoui + Hso + HCf 3.1
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where Ho represents the interaction of electrons with the nucleus in a free ion, Hcoui 

represents the Coulomb interaction of the electrons, Hso is the spin-orbit interaction, 

Hcf is the interaction of the electrons with the crystal field from the surrounding ions 

in the solid. The relative strengths of the different terms in Equation 3.1 are different 

for rare-earth ions, so each must be treated separately.

(L.S.J)

(4f)n

H o  H c o u l  +  H s o  Hcf

Fig 3.1 Effect of different terms in the Hamiltonian on energy level positions

For rare-earth doped materials, the observed infrared and visible optical spectra 

are a consequence of transitions between 4f states. Since the outer 5s and 5p electrons 

shield the 4f electrons from the effects of the environment, the effect of crystal field 

on the optical transitions involved in the 4 f electrons is the smallest in Eq.3.1. It can 

be treated as a perturbation. The other three terms give rise to a set of states labelled 

by total spin S, total orbital angular momentum L , and total angular momentum J. J is 

the total of L and S which are vectorially added to form. Each one is (2J+l)-fold 

degenerate. The multiplets are usually identified by using Russell-Saunders coupling 

which are labelled 2S+iL j.

The crystal field interaction HCf breaks the spherical symmetry of the Hamiltonian, 

and removes the (2J+1) degeneracy of the levels. This so-called Stark splitting is 

generally a few hundred cm ' 1 in magnitude, compared with a few thousand cm"1 for 

the splitting between {L, S, J} levels. Radiative transitions can occur from any Stark
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component of one {L, S, J} multiplet to any Stark component of another {L, S, J} 

multiplet as shown in figure 3.1.

For Er3+-doped tellurite glass, figure 3.2 shows the absorption cross-section 

spectrum and figure 1.5 illustrates the corresponding energy level diagram. The eight 

lasing transitions reported for crystalline hosts [1] are also indicated in figure 1.5. 

Because of the application Er3+ doped fibre amplifier (EDFA) in optical 

communication, most of the following discussion on the fluorescence properties 

pertains to the Al\y 2 -* 4Ii5/2 transition at 1500 nm, since this is the most important and 

most extensively studied one.

£o

co

a
2o£Z.O
9r
8

Wavelength nm

Fig. 3.2 Absorption cross-section of Er3+ in 8QTeO -10Na CMOZnO glass

The usual definition for oscillator strength is in terms of the integrated absorption 

cross-sections from the ground {L, S, J} multiplet to some higher multiplet.

f  ̂  = V K s } ^ \ < 7 J y ) d vJL (J
3.2
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where m and e are the mass and charge of the electron, c is the speed of light, and v is 

the frequency. The integral is over the entire absorption lineshape (i.e., all Stark 

components are included), and the optional prefactor in square brackets is for SI units. 

One can similarly define an oscillator strength for emission as follows:

where ctse is the stimulated emission cross-section. For a given pair of levels 1 and 2, 

the absorption and emission oscillator strengths are related by

f  = Ml f  3 . 4
J  emit ( j  J  abs 

0 2

where gi is the degeneracy of the lower level, and g2 that of upper level. Eq. 3.4 is an 

exact result only if the upper and lower levels of interest are truly degenerate. The 

radiative rate from level 2  (upper level) to level 1 (lower level) is related to the 

integrated emission cross-section by

A  J J D U L  l a J v ) d v  3. 5

or to the emission oscillator strength by

„  2 2 2 2 
v _ &7T v e n  s

\ A K E ( ) \ m c  3 6

where A is the probability per unit time for a radiative transition, and n is the index of 

refraction of the medium.

If a is an excited state that decays only by the emission of photons, its observed 

relaxation rate is the sum of the probabilities for transitions to all possible final states, 

/ ,  the total rate is the reciprocal of the excited state lifetime Ta:
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7 - I  A ,Ta f

SAa is the sum of all transition from excited level a. The branching ratio pab, for the 

transition a -> b is the fraction of all spontaneous decay processes that occur through 

that channel and defined as follows:

P a * ~  Y j  A  f ~  ^ ° ' b T “  3 - 8

/

The branching ratio, which has an important influence on the performance of a 

device based on particular transition, appears often in the discussion of specific ions. 

It has a significant impact on the threshold of a laser and the efficiency of an 

amplifier. For the -> 4115/2 transition of Er3+ in tellurite glass, the branching ratio P 

is 1 , because there is only one decay channel.

The oscillator strength / abs for each transition can be calculated from Eq.3.2. In 

general, the measured oscillator strength has contributions from both electric dipole 

and magnetic dipole/md transitions:

fabs ~~ fed fmd 3.9

The magnetic dipole contribution can be found directly by calculating the matrix 

elements of the angular momentum operators:

h v  ymd
6 (2 J  + 1 ) n  m e

{a L+2S b) 3.10

where Xmd = n3 is the local field correction for magnetic dipole transitions.

Oscillator strengths are approximately one for fully allowed electron-dipole 

transitions and are roughly seven orders of magnitude weaker for magnetic dipole 

transitions. Most of the time, magnetic dipole transitions can be neglected. But for the
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113/2 —>4Ii5/2 transition of Er3+ ion, the magnetic dipole transition contributes 

significantly to the oscillator strength, it is about 20 ~ 30 % of the total strength.

A useful semi-empirical technique for calculating the strength of rare earth 

transitions was developed independently by Judd [2] and Ofelt [3]. The Judd-Ofelt 

theory is a powerful tool to characterise the electric dipole 4f transitions in rare earth -  

doped glasses. The calculation of 4 f transition probabilities is made tractable by 

assuming that all the states of the perturbing opposite parity configurations have a 

single average energy and by introducing a small number of phenomenological 

intensity parameters which contain the strength of the electric field. The spectrally 

integrated, electric-dipole strength of the transition from level a and b then reduced to 

a simple expression involving three empirical parameters (Q2 , ^ 4  and Q6) and the 

appropriate reduced matrix elements in Eq 3.11:

8 7r m v Y  .,.11  i2

where Xed= n(n2+2)2/9 is a local field correction factor for electric dipole radiation, J 

is the angular momentum quantum number of the initial level in the transition, and the 

I (a I I U(t) I lb) I are doubly reduced matrix elements of the tensor operator U(t). They 

are almost independent of material and have been tabulated by Carnall (1977) [4], The 

host dependence is contained in three intensity parameters Q t, which are empirically 

determined for a given combination of dopant and host. The Judd-Ofelt parameters 

Q2, Q 4 and Q 6 are determined by first measuring the integrated absorption cross- 

section for a number of transitions from the ground {L,S,J} state multiplet to higher 

{L,S,J} multiplets. There is no clear physical meaning to the intensity parameters 

other than that Q2 is correlated with the degree of covalence: ionic materials like 

fluorides have very small values of Q2, while covalent materials like silicates have 

large values. It will be seen that this gives rise to a significant composition 

dependence for some important transitions. The Judd-Ofelt analysis is accurate to 

about 10-15% and is particularly valuable for obtaining strengths of transitions for 

which direct measurements are difficult or impossible. It is possible to calculate all
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the oscillator strengths and rates of absorption and emission transitions in the 4f 

configuration on the basis of the absorption spectrum and can subsequently be used to 

determine important radiative lifetimes, cross sections for stimulated emission and 

ESA (excited state absorption) transitions.

For Er3+ doped tellurite glass, by connecting Eq.3.2 and Eq.3.11, Eq.3.12 can be 

obtained and can be used to calculate the Judd-Ofelt parameters Q2, Q4 and Q6 by 

performing a least-squares fit of this equation.

21hc£Q(2j + \)n \<J(v)dv

2 n  e ( n 2+ 2 )
- Z  Cl (a U(t)\\bi 3.12

<=2,4,6

In a two-level system, the stimulated emission cross-section for a rare-earth ion 

transition can be calculated from the absorption cross-section [5]. If the lower state 

(level 1) and the upper state (level 2) are split into multiple components, the 

relationship becomes:

g ,  jV CJa{y)dv=  g j y  (jM)dv 3.13

where gi is the degeneracy of the lower level 1, and g2 is that of upper level 2, v is the 

photon frequency, cra and a e are the absorption and stimulated emission cross- 

sections. Equation 3.13 is valid for rare-earth ions only if one of the two following 

conditions is met: (1) all components of the two levels must be equally populated, and 

(2) all the transitions must have the same strength regardless of the components 

involved. This method is very convenient. However, the relationship does not always 

provide accurate emission cross-sections of rare earths because the manifold width of 

the 4f state often exceeds 300 cm '1, and the first condition is not satisfied at room 

temperature (kT -200 cm '1). Furthermore, the transition strength is sensitive to the 

Stark levels [6],

The McCumber theory provides another method of transformation between the 

absorption and emission cross-sections. The only assumption needed by this theory is 

that the time required to establish thermal distribution within each manifold be short
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compared with the lifetime of the manifold. The absorption and emission cross- 

sections are then related by [7]

CTe(*') = 0"a( '/)e*  p [ (* - A v ) /* T ]  3.14

where s is the temperature-dependent excitation energy. The physical inteipretation of 

s is as the net free energy required to excite electrons from the ground state to an 

excited state at temperature T. At frequency v higher than vc (vc = s/h), the emission 

cross section is smaller than the absorption cross section and vice versa for v< vc.

In rare-earth ion doped glass, the crystal field interaction is responsible for the 

observed shape of the emission and the absorption. Considering a transition between 

two J multiplets, the interaction determines the positions of the Stark components for 

each multiplet and therefore the wavelengths at which emission or absorption occurs. 

It also determines the intensity of the process for each pair o f components involved. 

The crystal field terms vary from material to material, and this is the most important 

factor affecting the host dependence of spectra. The optical transitions can be 

broadened by three distinct processes. First, the degeneracy of a level can be split (the 

Stark splitting), resulting in a manifold of levels wider than the original level. Each of 

the resulting individual levels can then be widened by either homogeneous or 

inhomogeneous broadening. Homogeneous broadening refers to the width o f each 

individual ion’s transition, whereas inhomogeneous broadening refers to the ensemble 

width that results from the variation of the ion’s optical properties from site to site.

Transition rates, emission cross-section and the emission oscillator strength of Er3+ 

ion in tellurite glass can be calculated from Eq.3.6, Eq.3.5 and Eq.3.11 respectively. 

From Eq.3.6, when the refractive index of glass is higher, the radiative transition rate 

is higher, the excited state lifetime will be lower. From Eq.3.10 and 3.11, the 

magnetic dipole and electric dipole oscillator strength is higher when the glass has a 

higher refractive index. We can compare these properties in different glass 

compositions and try to analyse the relation between fluorescence properties of Er3+ in 

different glass host. From the McCumber theory, we also can calculate the emission 

cross section and spectrum from the absorption spectrum, and compare these results 

with the Judd-Ofelt calculation and the measurement.
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3.2. Non-radiative Transition

If the radiative relaxation were the only process depopulating an excited state, the 

measured fluorescence lifetime of that level would be given by 1 /t  = A . However it 

is sometime found to be too long to account for the measured value of t . This can be 

due to a non-radiative relaxation process, in which the energy of an excited state is 

dissipated via phonon vibration. For rare-earth ions in glasses there exist two types of 

non-radiative transition processes: one is the interaction of rare-earth ions, energy 

transfer, the other is that between the rare earth ions and the glass hosts, non-radiative 

relaxation process.

The total decay rate of an excited state can then be written

l~  = A + W , r + W ,  3.15

where Wnr is the single ion nonradiative rate due to the multiphonon energy 

relaxation, and Wx is the effective nonradiative rate due to energy transfer.

3.2.1 Multiphonon relaxation

Multiphonon relaxation between various 4f states occurs as a result of the 

simultaneous emission of several phonons that conserve the energy of the transitions. 

These multiphonon processes arise from the interaction of the electronic levels of the 

rare-earth ions with the vibration of the host lattice. The lattice vibrations are 

quantized as phonons having excited energies determined by the masses of the 

constituent ions and the bond energies between the ions.

The theory of multiphonon relaxation of rare earth ions was first formulated for 

crystals by Kiel [8 ] and extended by Risberg and Moos [9]. Layne and coworkers 

extended it to glass hosts [10]. The large variation in vibration spectra among 

materials makes the nonradiative relaxation rate extremely host dependent. For energy 

gaps much larger than the energy of the phonons involved, the nonradiative decay rate 

Wnr is inversely proportional to the exponential of energy gap separating the two 

levels [1 0 , 1 1 ]
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wlr = c[n(T)+l ]Y aAE) 3.16

In this expression C and a  are host dependent parameters, AE is the energy gap, p is 

the number of phonons required to bridge the gap, n(T) is the Bose-Einstein 

occupation number for the effective phonon mode,

n(T) =
1

exp(hco / kT) — 1 3.17

where hco is the phonon energy. The parameter a  is related to the coupling constant 

for the interaction y, by a  = -ln(y)/hco. From Eq.3.16 and 3.17, the nonradiative rate 

decreases with decreasing temperature. In practice, C, a , and p (or hco) are regarded 

as empirical parameters that are host dependent but insensitive to the rare earth ion 

and energy levels involved. They are obtained by fitting Eq.3.16 to the non-radiative 

rates observed for as many energy gap as possible using different levels and ions in 

the same host. Reisfeld and Jorgenson have assembled these parameters from 

measurements by a large number of authors [11] and the values are listed in table 3.1.

Table 3.1 Parameters describing the nonradiative relaxation of rare earth ions in glass

Host C (s-1) a  ( 10~3 cm) fico (cm '!)

Borate 2.9 x 1012 3.8 1400

Phosphate 5.4 x 1012 4.7 1 2 0 0

Silicate 1.4 x 1012 4.7 1 1 0 0

Germanate 3.4 x 1012 4.9 900

Tellurite 6.3 x 1012 4.7 700

Fluorozirconate 1.59 x 1012 5.2 500

Sulfide 1 0 6 2.9 350

LaF3 (Crystal) 6 . 6  x 1 0 8 5.6 350

For different hosts, the oxide glasses have larger non-radiative rates because their 

strong covalent bonds result in higher phonon frequencies. The weaker ionic bonds of 

halide and sulphide glasses lead to a much lower Wnr as well as higher transparency at 

mid-infrared wavelengths. In general, glasses have much larger non-radiative rates
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than the crystals of similar composition because of the larger effective phonon 

frequencies (larger C) and stronger electron-phonon coupling (small a). For glasses 

the vibrations causing nonradiative relaxation are the high energy, relatively localised, 

stretching modes of polyhedra forming the network.

For Er3+ doped tellurite glass, the transition 4I]3/2 —>4Ii5/2 has an energy gap 6500 

cm ' 1 which is responsible for the 1500 nm emission. From Eq.3.16, 3.17 and 

table 3.1, the multiphonon relaxation rate Wnr is 4.3 x 1 0 '3 s '1, and is very small 

compared with the radiative rate A which is about 200 ~ 400 s'1. The nonradiative 

relaxation is significant at room temperature only for borates [12]. In phosphate glass, 

there have been reports of slightly reduced quantum efficiencies for this level [13].

3.2.2 Energy transfer

There are three basic types of energy transfer illustrated in figure 3.3. In process 1, 

referred to as energy migration, the donor in an excited state transfers all of its 

excitation energy to a similar acceptor ion that is initially in the ground state. This 

leaves the donor in the ground state and the acceptor in the excited state. This process 

can be repeated many times, resulting in the migration of the excitation energy 

through the material. The energy migration will continue until some other mechanism 

depletes the excited state. The excitation energy may be transferred to a trap site, at 

which a defect or an ion in a perturbed environment dissipates the energy 

nonradiatively. Luminescence is quenched by transfer to trap sites, but not by the 

energy migration process itself.

The second energy transfer process shown in figure 3.3 is referred to as cross 

relaxation. If an ion excited to the metastable c level interacts with a nearby ion in the 

ground state, the first ion transfers part of its energy to the second. Both ions occupy 

the intermediate b states. When the energy gaps to the lower lying states are small, 

both ions decay nonradiatively to the ground state from the intermediate state. As a 

result, part of the excitation energy is converted into heat. Since the population of 

upper level is decreased every time such a cross relaxation occurs, it is much more 

effective than energy migration in quenching the luminescence from the upper level.
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The third energy transfer process is co-operative up-conversion shown in figure 3.3 

and is the inverse of cross relaxation. When two ions are in an excited state b, one 

transfers its energy to the other, leaving itself in the ground state a and the other in a 

higher excited state c.

Concentration quenching is a phenomenon of the quantum efficiency reduction of 

an emission transition of an ion with increasing concentration of that ion due to the 

ion-ion interactions. It can occur as a result of the energy transfer processes of cross­

relaxation and co-operative up-conversion and have important implications for the 

performance of fibre amplifiers because it leads to a reduction in pump efficiency. It 

usually manifests itself as a shortening of the excited state lifetime.

For Er34 doped devices, co-operative up-conversion and impurity quenching are 

believed to be the major cause of inefficiency at 1500 nm.

For Er3+-doped tellurite glass, concentration quenching is mainly due to up­

conversion process, the process is shown in figure 3.4. In A, both interacting ions are 

excited to the metastable level. In B, the donor ion transfers all its energy to the 

acceptor, leaving itself in the ground state 4Ii5/2 and the acceptor in the 4Ig/2 state. For 

tellurite glass, the acceptor ion quickly decays nonradiatively back to the 4Ii3/2 level.

Another deleterious process for the metastable 4Ii3/2 level involves energy transfer 

to the OH" complex, which serves as a trap and is extremely effective in quenching 

excited rare earth ions. At high OH' concentration, this can occur through direct 

transfer from an excited ion. At low OIT concentration, there is fast energy transfer 

between interacting donor ions until the excitation reaches one near an OH" impurity 

[12], this behaves like the energy transfer process 1 in figure 3.3. This process 

depends on Er3+ concentration, it will control the quenching rate.

From Eq.3.15, at very low concentration of rare earth ion, the energy transfer rate 

is very small, Wx becomes negligible. The nonradiative rate can be determined from 

measured fluorescence lifetime and the calculated radiative rate:

= 3.18
^  exp
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Figure 3.3 Three types of energy transfer
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Figure 3.4 The cooperative up-conversion process for Er3+
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In Er^-doped tellurite glass, the nonradiative rate for 4Ib /2 —>4Ii5/2 transition at 

room temperature, Wnr, is also negligibly small. At a certain Er3+ concentration, the 

energy transfer rate Wx or concentration quenching rate can be calculated from the 

measured lifetime and calculated radiative rate by the following Eq.3.19.

W ,  = ^ r - A *  3 1 9
£ exp

3.3 Pump wavelengths for Er3+-doped fibre amplifier (EDFA)

For Er3+ doped fibre amplifier, pump wavelength can be selected from every Er3 1 

absorption band in Figure 3.2 which lies at wavelengths greater than 450 nm. The first 

consideration in the choice of pump wavelength is the gain transition desired, 

followed by efficiency and the availability of pump sources. In EDFA at 1.5 pm, three 

wavelengths 800 nm, 980 nm and 1480 nm are used to create the excited 4Ii3/2 state. 

Figure 3.5 shows several well-known gain degradation processes associated with 

pumping schemes in EDFAs [14-17].

• 800 nm pump band

The 4Ii5/2 ->4l9/2 transition gives rise to an absorption band peaking near 800 nm. 

The % / 2  state is short-lived, decaying to metastable 4Ii3/2 by multiphonon emission. 

An ion in this metastable state can then be promoted to the 2Hn /2 level through the 

absorption of a second 800 nm phonon. This is called pump excited state absorption 

(ESA). In high phonon energy oxide glasses, the 2H n /2 terminal state for this 800 nm 

ESA process quickly decays through the intervening levels back to the 4Ii3/2 state 

through multiphonon emission, the net result being the conversion of the second pump 

phonon into heat. In low phonon energy oxide glass like tellurite, 800 nm pump ESA 

can have 550 nm emission from 4S3/2 state. As a result, pumping at 800 nm is 

inefficient. It needs much higher pump power to achieve a specified signal output 

power, pump ESA is a serious dissipative process for these materials and avoiding it 

is a primary concern in optimising device performance. In most instances, the 

performance of 1500 nm amplifiers pumped in this band has been rather poor because 

the ground state absorption (GSA) is weak and overlaps a much stronger 4Ii3/2 ESA.
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• 980 nm pump band

The 4I15/2 - A  1/2 transition of Er3+ corresponds to an absorption band peaking near 

980 nm, which has proved to be very valuable for exciting fibre devices at 1.5 pm. 

This success is due to the large absorption cross section for this band. Pumping the 

980 nm band, the excited state 4In /2 can have radiative 2700 nm emission or non­

radiative relaxation to 4Ii3/2 level depending on the host glass. At pump level 4In/2, 

there is 980 nm pump ESA (4In /2 ), it results in strong 550 nm emission from

4S3/2 state. The advantage of 980 nm pump band is that it overcomes the 4Ii3/2 level 

ESA which is a serious problem for 800 nm band. It needs small pump power that it is 

with in the reach of semiconductor pump diodes. Therefore, the pumping at 980 nm 

band has shown to be both practical and very attractive. It produces small signal noise 

and high gain efficient at 1.5 pm EDFA.

• 1480 nm pump band

From figure 3.2, there is a strong absorption peak near 1480 nm due to the Al\sn 

—>4Ii3/2 transition. Snizer et al. first demonstrated that 1500 nm Er3' amplifiers and 

lasers can be excited directly into the 4Ib /2 metastable state by pumping near 1480 nm 

[18]. ESA is not a problem for this band because 4Ii3/2 —>4l9/2 transition lies near 1670 

nm, too long a wavelength to effectively pump the level. But there is co-operative up­

conversion from the excited 4I[3/2 level which will decrease the quantum efficiency. It 

can also create 980 nm emission from 4In /2 state. Excellent results have been obtained 

by pumping silica and fluorozirconate 1500 nm lasers and amplifiers in the 1470-1490 

nm range. This procedure, combined with the commercial availability of high power 

diode lasers for this band, has led to extensive use of resonantly pumped amplifiers in 

systems demonstrations and field trials optical communication applications. The 

disadvantage of this pump is that there is no gain below 1530 nm.

In general, the available evidence indicates that the 980 and 1480 nm pump bands 

are the best for pumping 1.5pm devices in oxide glasses, with the 800 nm band a 

distant third. Because of its inefficiency, the 800 nm pump needs much higher 

minimum required pump power than 980 and 1480 nm pump bands. It is commonly 

recognised that a 1480- nm pumping scheme is more suitable for high-power



47

operation and 980-nm pumping scheme is more suitable for low noise operation. At 

the same time, the reliability and availability have to be taken into account.
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Chapter 4

Experim ental Procedure

4.1 Preparation of bulk glass

Three kinds of glass were prepared. For making heavy metal oxide (HMO) 

germanate glass, high-purity commercial oxides and carbonates such as Ge0 2 , PbO, 

Bi20 3, Ga20 3, Te02i Na2C03 respectively, and rare-earth oxide Er20 3 as a dopant 

were used. For making oxyfluoride silicate glass, commercial chemicals Si02, Ge02> 

N aP03, B20 3, A120 , Na2C 03, NaF, A1F3, LaF3, PbF2 and ErF3 were used. For 

making tellurium oxide glasses, oxides (Te02, ZnO, Ga20 3, Ge02, Nb20 5 , W 03), 

carbonates (Na2C 03> K2C 03, Li2CO, BaC03), fluorides (NaF, BaF2), and Chlorides 

(NaCl, BaCl2) were used. Rare earth oxides (Er20 3, Tm20 3 and Nd20 3) were added 

as dopants. All of these chemicals were supplied by Aldrich. The purity of each 

chemical was 99.99% or above. These chemicals were stored in a sealed glove box 

under dry nitrogen. Powders of these materials, weighed to conform to the molar 

percentages as indicated in the text, were mixed homogeneously and then transferred 

to a melting crucible. The melting process of these three kinds of glasses is shown in 

table 4.1. Melts were cast into preheated brass moulds and put into an annealing 

furnace to cool to room temperature naturally. Samples were cut from these glasses, 

and the surfaces were polished to a 0.3-1 pm finish for different optical and 

spectroscopic characterization

Table 4.1 Preparing process of glasses

Glass Melting T 

(°C)

Melting 

time (hr)

Annealing

T(°C)

Crucible

HMO germanate glass 1 1 0 0 - 1 2 0 0 1 - 2 380 -4 0 0 Platinum

Oxyfluoride glass 1350- 1500 1 - 2 460 -5 0 0 Platinum

Tellurite glass 750 -900 1 - 2 240 -  280 Gold
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4.2 Density measurement

The density is defined as the ratio of mass of the material to its volume. The bulk 

glass density was measured using a Doulton Densometer. This method is based on 

the Archimede’s principle. When an object is immersed in a fluid, the buoyancy is 

equal to the weight of fluid displaced by the object. In this measurement, mercury is 

used as the buoyant fluid. The bulk glass sample density (pg) can be calculated from 

the following equation:

pg = (Wl/W2)  x p Hg 4.1

where Wi is the weight of the sample, W2 is the buoyancy, png is the density of 

mercury. The accuracy of weighing is O.Olg. For different room temperature, an 

appropriate value of density png can be selected from a table of mercury density as a 

function of temperature.

4.3 Thermal characterisation

Thermal analysis was employed to determine the effect of glass composition on 

glass stability. Differential scanning calorimetry (DSC) is a very effective tool for 

glass thermal property study. Figure 4.1 shows the principle of DSC. Sample and 

reference are put into different holders with separated heater and thermocouple. The 

sample is kept at the same temperature with the reference by controlling the heat 

flow. At a constant power supply, the variation of input current is proportional to the 

input power. Therefore, if sample has energy absorbed or radiated at some 

temperature, the energy can be compensated by adding or subtracting an equivalent 

amount of electrical energy to a heater located in the sample holder to sustain the 

same temperature between the sample and reference. At a certain heating rate, the 

heat flow can be plotted against time or temperature. Platinum resistance heaters and 

thermometer are used in the DSC7 to accomplish the temperature and energy 

measurements in this design.

In a Perkin-Elmer DSC7, samples weighing 10-20 mg were sealed in aluminium 

pans and usually heated at a rate of 10 °C/min in the range of 200-550°C. The data
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and graph were recorded by computer. Glass transition temperature Tg and 

crystallisation temperature Tx can be calculated from the recorded data, as can be 

seen in subsequent chapter. Using isothermal and non-isothermal methods, 

crystallisation kinetics of tellurite glasses was studied.

Sample AT =0 Reference

Es
\ / \ / \ /

Er

1r T i r

Average temperature

Figure 4.1 Principle of DSC

Analysis of crystallization kinetics of telluride glasses is based on the 

Johnson-Mehl-Avrami theory which describes the growth of crystals in a glass at a 

constant temperature:

- I n  (1 - x )  — ( k t ) n 4.2

where x is the volume fraction of crystals after time t, k is the rate constant, and n is a 

dimensionless exponent related to the morphology of crystal growth. Taking the 

logarithm of Equation 4.2 produces a linear relationship:

In [  - I n  (1 - x ) ]  = n In k + n In t 4.3

Using Equation 4.3, the constants n and k can be determined from an isothermal 

DSC scan by a linear fit. The rate constant k is temperature dependent, as described 

by the Arrhenius equation:

k = vexp ( - E / RT) 4.4
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or In k = In v -E /R T

where v is a frequency constant, E is the activation energy for crystallization, R is the 

gas constant, and T is the absolute temperature. By performing isothermal scans at 

different temperatures, the activation energy E and the constant v  can be determined 

from a linear fit to Equation 4.4. Alternatively, it may be assumed that at the 

exotherm maximum tm the volume fraction crystallized xm is independent of the 

temperature, and that xm= 0.5. Then, from Equations 4.3 and 4.4:

lntm-  -  0.367/n -  In v + E/RT 4.5

which also yields E and v  through a linear fit. Once v, E  and n are known, time- 

temperature-transformation (TTT) curves can be calculated from Equations 4.2 and

4.3 for different values of x, and are usually plotted as T versus In (t).

In non-isothermal DTA scans the temperature, and therefore k, changes 

continuously at a constant rate. As a consequence, Equations 4.4 can no longer be 

solved analytically, and approximate solutions are used to obtain parameters. The 

peak of crystallization exotherm Tp shifts to higher temperatures with increased scan 

rate a  in accordance with the relation:

In ( T p / a ) = l n ( E / R ) - l n v +  ( E/RTP)  4.6

By scanning at different rates, E and v can be determined from Equation 4.6. The 

exponent n is then approximated by the slope of the relationship valid for x < 0 .2 :

In ( Y )  = -  (n E/R ) ( 1/T) + C  4.7

where Y is the height of the exotherm and C is a constant

Although parameters obtained from isothermal data are more accurate than from 

non-isothermal scans, the two methods should yield similar parameter values. 

However, in some glasses, the kinetics of crystal growth may be affected by
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continuously increasing temperature, causing non-isothermal results to differ 

significantly from isothermal ones.

4.4 UV-VIS and FTIR absorption measurement

When the light waves propagates in a dielectric medium, the photon energy is 

absorbed both intrinsic and extrinsic. The intrinsic absorption is caused by UV 

absorption, IR absorption and Rayleigh scattering. The UV absorption takes place at 

short wavelengths and is due to the electronic band gap of the materials. The IR 

absorption is due to the lattice vibration of ions. Rayleigh scattering is caused by 

inhomogeneity of materials such as the density and compositional fluctuations. 

Extrinsic absorption is due to impurities present in the medium such as transition 

metal ions, rare earth ions and OH', SO42', NO3', CO32 etc. The photon energy in an 

isotropic medium can also be dissipated due to the presence of extrinsic scattering 

centres e.g. crystals, inclusions and gas bubbles. In designing glasses, the extrinsic 

absorption and scattering can be minimised, and in some cases eliminated to reach 

the theoretical limit. This is clearly demonstrated by the example of the development 

of ultralow loss silica fibre for telecommunication network.

If I0 is the intensity of a parallel beam of radiation incident normally on a glass, 

and I is the intensity of the transmitted beam, the absorption (a) follows Lambert- 

13 eer law,

I  =■ I0 exp(-sct) 4.8

where s is called the molar extinction coefficient given in terms of molar 

concentration un it, c is the concentration of absorbing ions and t is the thickness, a  

= (e c) is the absorption coefficient.

The transmission T is defined as:

T = 1001/Iq 4.9

The absorbance A is defined as:
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A -  log,„(Io/I) 4.10

Perkin-Elmer FT-IR Spectrometer 1725x was used to measure the IR absorption 

spectra of glass. The scanned range was from 4000 to 400 cm'1.

Perkin-Elmer UV/VIS/NIR Lamda-19 was used to measure the absorption 

spectra from UV range to near IR range ( 300 ~ 3200 nm). The scan speed was 30 ~ 

1 2 0  nm/min.

For all absorption measurement, air as a reference medium must be run as a 

background. The ambient temperature is room temperature.

4.5 Fluorescence and lifetime

Fluorescence is light emission due to electronic transitions. When an incident 

photon interacts with material, it can be completely absorbed and the molecule 

concerned is thereby raised to excited electronic level. The electrons or molecules 

dwell in the excited state before being de-excited. After a certain lifetime in this 

upper state, the molecule undergoes a downward transition and thereby radiates light 

of a frequency lower than the excitation wavelength. Fluorescence spectroscopy is a 

powerful tool for investigating the glass local structure, the spectroscopic properties 

of ions in glass, ion site-to-site variation, electron-phonon coupling, ion-ion 

interactions and the effects of these interactions on energy levels and relaxation 

processes.

The main excitation source used for fluorescence and lifetime measurements was 

a Schwarz Electro-optic Ti-sapphire CWBB laser pumped by two Coherent 200-5w 

argon ion lasers. The equipment setup is shown in figure 4.2. The pump laser 

wavelength is 980 nm for the measurement of the fluorescence spectra and lifetimes 

of the 4Ii3/2 —>4Ii5/2 transition at 1500 nm in Er3+ doped glasses and 800 nm for the 

fluorescence properties of Tm3+ and Nd3+ doped glasses. For fluorescence spectrum 

measurement, the sample was positioned in the pump beam to obtain a long path 

length. An InGaAs detector collected fluorescence signals through a scanning 

spectrometer designed by Macam Photometries, the computer read and recorded the 

signal at each wavelength. The fluorescence spectra were obtained by plotting



wavelengths and intensities. The lifetime measurements were made with a chopper 

between the pump light and the sample. The fluorescence signals were detected by 

fast response InGaAs detector. The signal decay curve can be checked by an 

oscilloscope and handled by a digital storage adapter. After that, the intensity decay 

was recorded by a computer. The lifetime of the metastable level can be determined 

by fitting the exponential function to the measured fluorescence intensity decay data.

Figure 4.2 Set-up of measuring Rare-earth fluorescent properties

4.6 Raman spectrum

Consider a clear substance (solid, liquid, or gas) irradiated by monochromic light 

vo (usually in visible region) whose frequency is chosen so that it does not 

correspond to any absorption line/band in the sample. Almost all of the light energy 

will pass through the sample unaffected, but a very small part of it will be scattered 

by molecules in directions different from that of the incident beam. When the 

scattered light is analysed spectroscopically, it is found that a high proportion of the
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scattered energy has the same frequency vo as the primary light. This is called 

Rayleigh scattering, it was first discovered by Rayleigh in 1871. Rayleigh scattering 

can be explained as the elastic collision of light with molecules. The scattering 

intensity is proportional to the fourth power of vo. A very small part of the scattered 

light also has a proportion of energy which is at a different frequency to the primary 

light vo. This effect was observed experimentally by Raman in 1928. The spectrum 

of the scattered light, which shows a pattern of lines of shifted frequency, is called 

the Raman spectrum. The shifts (Raman frequencies) are independent of the exciting 

frequency v0 and characteristic of the species giving rise to the scattering.

Raman effect can simply be understood by inelastic collision of phonon with 

molecule in sample. The energy transfer between phonon and molecule results in the 

frequency change of incident light. If the frequency of incident light is vo, the energy 

of phonon is hv0. After the collision, if it is inelastic, there may have two situations. 

The first is when molecule is in the low energy level, it may cause the molecule to 

undergo a quantum transition to a higher energy level, it absorb energy hvi with the 

result that the photon loses energy and is scattered with lower frequency (vo-vi). The 

other situation is if the molecule is already in an energy level above its lowest energy 

level, an encounter with the phonon may cause it to undergo a transition to a lower 

energy, in which case the photon will gain energy hvjand it is scattered with 

increased frequency (vo + vi). No matter which kind of situation, the frequency of 

scattered photon has been changed. It increases or decreases by vi. vj is called the 

Raman shift. Raman shift lines with negative (vo - vi) are called “Stokes lines”, lines 

with positive (vo + vi) are called “anti-Stokes lines”. The probability of the positive 

and negative shifts are the same, but the population of a higher level is less than that 

of a lower level, we can understand why the intensity of Stokes lines are stronger 

than anti-Stokes lines. Therefore, Stokes lines are the main lines measured in Raman 

spectrum application.

Inelastically scattered photons are produced by the interaction of the 

electromagnetic field of the incident photons with the electronic polarisability. As a 

function of frequency shift, the Raman spectrum displays peaks due to discrete 

vibrational modes, or features due to continuous modes, depending on selection rules
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and coupling strengths for Raman processes in particular geometry. The set of 

Raman frequencies of the scattering species constitutes its Raman spectrum. Study of 

glass structure using Raman scattering spectrum began in the 1950s. Since its 

development in 1960s, laser Raman spectroscopy has been used as a major tool for 

studying glass structure.

For analysing the vibrational structure of tellurite glass, Raman spectrometer was 

used. The principle set-up for Laser Raman spectrometer is shown in figure 4.3. The 

Raman spectra were measured at room temperature with a SPEX 1403 model double 

monochromator at 2 cm' 1 resolution, using an argon-ion laser (Spectra-Physics 2016) 

for excitation, at 488.0 nm or 514.5 nm, with a power of 100-500 mW at the source, 

and a photomultiplier detector (Hamamatsu) with photon-counting electronics. The 

scanned range is 10 ~ 1000 cm'1. Polarized Raman scattering measurements were 

performed in the 90° scattering geometry from a large face of the samples in the 

polarized (HH) and depolarized (HV) configurations. The monochromator was- 

scanned at 1cm' 1 increments, with a counting period of 5 s. The error in frequency 

values is estimated at ± 1  cm'1, from repeated scans.

Sample Chamber

Monochrometer Detector Amplifier Recorder

Filter

Argon Laser

Figure 4.3 Setup of Raman spectremeter
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Chapter 5

3_l_ a
Er -doped heavy metal oxide germ anate glasses

In order to obtain broadband and flat gain Er3+ doped amplifier, host glass is the 

critical factor. In oxide glass host, heavy metal germanate, modified silicate and 

tellurite glasses were selected. In the following chapters we compare the properties of 

the glass and rare-earth dopant ions. In this chapter, the optical and thermal properties 

of heavy metal oxide (HMO) germanate glass were measured, and the emission and 

absorption spectra of Er3+ dopant were measured. The potential for using germanate 

glasses as Er3+-doped fibre amplifier is also discussed.

5.1 Glass compositions

Ge0 2  has a similar glass-forming properties as Si0 2 - In the silica glass structure, 

distorted Si0 4  tetrahedra join each other at corners. Ge02 glass has a tetrahedral 

quartzlike structure. As the Ge/O radius ratio is 0.414, it is on the border between 

tetrahedral and octahedral structures. Neutron diffraction studies show that the 

primary Ge- 0  bond is 1.73 A, it is about 8 % larger than the Si-0 bond, the average 

Ge-O-Ge bond angle is 133° (compared to about 144° for the Si-O-Si bond angle in 

silica glass). With the addition of modifier alkali, the cordination number of Ge 

changes from 4 to 6 . The conversion continues to occur up to 35% [GeOe] at around 

30% added alkali [1].

The main reason for selecting Ge0 2  glasses was to achieve a larger emission cross- 

section and broadband emission bandwidths. The large emission cross-section is 

achievable because of the higher refractive index compared to silica. With increasing 

refractive index the emission and absorption cross-sections also increase. Another 

important reason for investigating heavy-metal oxide (HMO) glasses is to extend the 

absorption edge of oxide glasses as far as possible into the infrared to expand the IR 

communication range. The principle of forming glass with infrared transmission at 

longer wavelengths is based on the use of compounds whose cation-oxygen bonds are 

relatively weak, giving low fundamental vibration frequencies. The influence of a 

given cation-oxygen bond on the absorption edge can be estimated from equation 5 .1 .



where co is the vibrational frequency, f  is a force constant for the elastic restoring 

force, and p is the reduced mass of the vibrating ions, (mc+m0)/mcm0. Since a table of 

force constants for cation-oxygen bonds is not readily available, field strength has 

been used as an indication of relative magnitude of the force of attraction. Field 

strength is the charge on the cation divided by the square of the interionic distance. 

Bismuth and lead oxides with their low field strengths and large masses should 

produce glasses with the longest infrared cut-off. Ga2C>3 can impart resistance to 

devitrification in PbO- and Bi2C>3-based glass system [2]. Therefore, Gel is the typical 

Ge0 2 -Na20  binary glass. GE2 and GE3 were designed as lead germanate and heavy 

metal germanate glass. Based on HMO germanate glass, tellurite was added to this 

glass in order to study the effect of the mixture Ge0 2  and Te0 2  on the structure of 

glass and on the spectroscopy of Er . In GE4 and GE5 glasses, between 10 and 20 

mol% of Ge0 2  and Ga2 0 3 were replaced by Te0 2 , respectively. Table 5.1 shows the 

compositions of germanate glasses. The preparation processes of these glasses have 

been explained in chapter 4. The glasses were melted in platinum crucible at 1100 ~ 

1200 °C for 2 hours, melts were cast into preheated brass moulds and put into an 

annealing furnace at 380 ~ 400 °C to cool to room temperature naturally. Samples 

were cut from these glasses, and the surfaces were polished to a 0.3 ~ 1 pm finish for 

different optical and spectroscopic characterization There was no evidence for 

crystallization in these glasses.

Table 5.1 Compositions (mol%) of HMO germanate glasses

Sample Ge0 2 Na2 0 Ga2 0 3 PbO Bi20 3 Te02 Er2 0 3

GE1 80 19 — — —

GE2 59 — — 35 5 1

GE3 50 — 14 2 0 15 1

GE4 42 — 1 2 2 0 15 1 0  1

GE5 34 — 1 0 2 0 15 2 0  1
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5.2 Absorption in the UV

The UV edge absorption, which limits transparency at shorter wavelengths, is 

caused by transitions between the electronic states of the glass. This absorption is a 

function of the energy gap of the materials and the incident photon energy. As the 

frequency of the incident photons is increased, the fraction absorbed will also 

increase. The short wavelength cut-off is known as the Urbach tail. The absorption 

coefficient a uv at the tail can be expressed as:

auv = ao exp(-A(Eg-E)/kT) 5.2

where A and a 0 are material dependent parameters, Eg is the photon energy 

corresponding to the ultraviolet absorption edge, i.e. the optical bandgap, E is the 

energy of incident photons, k is the Boltzman constant and T is the absolute 

temperature. Temperature of glass will affect the UV edge absorption. At a constant 

temperature, Eq.5.2 can be simplified as following Eq.5.3:

ciuv = ao exp (A/A) 5.3

where A and ao are also material dependent parameters, and A, is the photon 

wavelength. This equation can be used to fit the measured absorption spectrum to 

calculate A and ao parameters.

Absorption spectra of germanate glass samples were obtained using a Perkin- 

Elmer UV/VIS/NIR Lamda 19. These spectra are shown in figure 5.1. The data were 

further processed using the SIGMA PLOT software, and the derivative of absorption 

against wavelength dA/dA, was calculated. The maximum point of the derivative 

curve in the UV edge range is designated as the UV edge cut-off wavelength of the 

glass. As these samples were doped with ErV! , the Er3+ absorption peak at 407 nm can 

be observed in all the samples, while peaks at 365 and 378 nm can only be seen in 

GE1 because the UV cut-off wavelength was shifted to much lower range.
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Fig. 5.1 UV absorption edge in HMO germanate glasses

Table 5.2 UV edge cut-off in germanate glass

GE1 GE2 GE3 GE4 GE5

UV edge ± 2 nm 324 385 395 396 398

In these germanate glasses, with the decrease of Ge0 2  content in the glass, the UV 

cut-off wavelength increases, the edge shifts to longer wavelength. From Eq.5.2, if the 

energy gap Eg of glass is higher, a uv will be smaller, it means E (incident photon 

energy) must be higher to increase a uv, therefore, the glass can transmit shorter 

wavelength, the UV edge will shift to shorter wavelength. Thus, in these germanate 

glasses with the decrease of Ge0 2  content and increase of heavy metal oxides, the UV 

cut-off wavelength increases, the energy band gap of this glass decreases.

The ultraviolet cut-off wavelength of inorganic glasses mainly depends on the 

atomic number of anions and cations. The main influence on the UV absorption 

wavelength is of non-bridging oxygen ions. The electronic shell of oxygen ions is 

affected by the polarizing action of modifying ions, which decreases with increasing 

ionic radius, thus resulting in progressive loosening of the electronic shell of non­

bridging oxygen and consequently leads to increased absorption wavelength. For 

cations like Pb2+ and Bi3+, which have loose electronic structure with 6 s2 electrons in
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the outer shell, will lower the energy gap in glass between conduction and valence 

band. Glasses containing these cations have longer cut-off wavelength value. With the 

decrease of GeC>2 content and the increase of heavy metal oxide, the non-bridging 

oxygen in HMO germanate glass increases and the field strength (Z/a2) decreases, the 

energy gap drops, therefore, the UV cut-off wavelength shifts to longer wavelength.

5.3 Absorption in the IR

In glass IR absorption is due to lattice vibrations. It is a dominant factor in 

determining the intrinsic minimum losses. In general, the IR spectrum can be divided 

into the fundamental and multiphonon regions. The fundamental resonances provide 

intense absorption and can be used to understand the glass structure. The frequency of 

the fundamental has been determined empirically to obey the Szigeti equation which 

is shown in Eq.5.1. From this equation, we can conclude that heavier ions and weaker 

bonding are preferable for extended IR transmission.

The position of the multiphonon edge is related to the fundamental absorption. At 

shorter wavelengths the multiphonon edge tails back into the visible region and 

determines the minimum losses. The absorption coefficient of the tail, ajR, follows the 

expression

am= Aexp(-ycc/coo) 5.3

where A and y are constants characteristic of the materials and coo is the fundamental 

optical phonon frequency, the vibrational frequency ©o is expressed in Eq.5.1, and co 

is the frequency of the incident photon.

Each material has a number of characteristic lattice vibration frequencies, related 

to particular structural units. Depending upon the vibrational mode i.e. stretching or 

bending, the frequency will be different. The IR absorption or the multiphonon edge is 

the sum of all the frequencies, i.e. fundamental vibration, 1st and other smaller 

harmonics.

For most oxide glasses the multiphonon edge (IR cut-off) lies in the range of 2200- 

1500 cm' 1 (4500-6500 nm). Clearly the edge will be determined by the glass
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composition. To increase the ER cut-off (longer wavelength), heavier ions and weaker 

bonds are required.

The IR absorption spectra of these HMO germanate glasses were obtained using a 

Perkin-Elmer FTIR Spectrophotometer 1725x. Figure 5.2 shows the edge absorption 

spectra. The data were further processed using the SIGMA PLOT software, and the 

derivative of absorption against frequency dA/dv is calculated. The maximum point at 

this curve is designated as the IR cut-off wavenumber of the glass. The multiphonon 

cut-off edges are shown in table 5.3.

Table 5.3 IR edge cut-off in germanate glass

GE1 GE2 GE3 GE4 GE5

IR edge ± 10cm' 1 1740 1685 1650 1595 1585

From figure 5.2, it shows the IR cut-off shifts to lower frequency as Ge0 2  was 

replaced by heavy metal oxides such as PbO, Bi20 3  and Te02. In Gel glasses, the IR 

edge is at 1740 cm'1, when heavy metals were incorporated in germanate glass in 

place of Ge02 and Na20, the IR edge shifted to 1740 to 1685-1650 cm"1. When the 

G e02 was replaced by a weaker bond oxide Te02, the IR edge shifted further to lower 

frequency 1595-1580 cm'1.

In binary lead germanate glass system [3], PbO can be up to 57 mol% to form 

glass. There is an equilibrium between Pb2+ o  Pb4+ to form [Pb02] and [Pb0 4 ] 

respectively. [Pb0 4 ] tetrahedron is a pure network while [Pb02] exists as a dispersed 

molecule in glass. Pure Bi20 3  glass cannot be obtained, in line with the low field 

strength of Bi3+. However, very small additions (e.g. 1% Si02 or B20 3 , but also of 

some CdO, BaO, ZnO, PbO) promote reasonably good glass formation [3]. In Bi20 3 - 

Cd0-Ge02 glass system, Rao et al. [4] deduced that Bi3+ ions form clusters 

consisting of Bi06 group, acting as a network former. From the IR spectra of Bi20 3- 

B20 3 glasses, B i03 trigonal pyramids are also structural units [5-8]. Bi3+ ions act as a 

network modifier at low Bi20 3 content and network former at high Bi20 3 content in 

Bi20 3 -B20 3 glasses. From X-ray radial distribution analysis, IR and Raman 

spectroscopy indicated Ga3+ ions are tetrahedrally coordinated in binary alkali and 

alkaline earth gallate glasses [9, 10]. In Pb0-Bi20 3-Ga20 3 glass system, the fraction
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of non-bridging oxygen in GaC>4 tetrahedra decreases with increasing PbO and BiiOs 

contents [11]. Most of Pb2+ and Bi3+ ions act as a network-former, and Pb2+ and Bi3+ 

ions may be present as Pb0 4  square pyramids and distorted Bi0 6  octahedra, 

respectively.

In theses HMO germanate glass, the oxides which become a part of the network 

forming unit in the structure, shift the multiphonon edge to longer wavelengths than 

those which simply modify the structure. PbO, Bi2 0 3  and Ga2 0 3  all form glass with 

Ge0 2  and therefore may contribute to the IR edge shift. Heavy metal oxides in 

germanate glass increase the IR transmission range and decrease the multiphonon 

energy.

5.4 Molar volume and thermal properties of glass

In order to study the effect of the modifying oxide additions on the basic glass 

structure, density p and molar volume Vm were measured. These two properties are 

governed both by the atomic mass of the components and by the structure of glass 

network. The molar volume was calculated using the following equation:

k = ypz*M  5.4
i

where Xj is the molar fraction of component i, Mj is its molar mass, p is the density.

To investigate the glass stability, differential scanning calorimetry (DSC) was 

adopted. The glass transition temperature (Tg) is important information in the thermal
19 1 ̂analysis. In the transformation range, it corresponds to a viscosity of 10 ~10 Pa-s 

and is defined as the temperature region in which the behaviour of the material 

changes from solid-like to liquid-like.

Molar volume and Tg of all the samples are shown in table 5.4. Figure 5.3 

illustrates how these properties change with Ge0 2  concentration. From this figure, we 

can see that the molar volume increases sharply and then decreases gently with 

decreasing Ge0 2  content. As we explained above, PbO, Bi20 3 , and Ga2 0 3  are 

intermediates in glass. With these heavy metal oxides (HMO) in place of Ge0 2 , a part 

of HMO behaviour as network modifiers, the other part of them behaviour as a
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Fig. 5.2 IR absorption edge in HMO germanate glasses
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network former. They increase the non-bridging oxygen in the glass, thus the [Ge0 4 ] 

tetrahedral continuous network is broken. It results in the glass structure becoming 

looser.

Table 5.4 Molar volume and transition temperature in germanate glass

GE1 GE2 GE3 GE4 GE5
Vm ±0.2 cm3 24.8 26.5 30.8 31.5 31.1
Tg ±2 K 793 743 738 733 714

Normally, in Na2 0 -Ge0 2  binary system, when the modifier ions exceed 30 mol%, 

[GeC>4] begins to form [Ge06], the network is broken more severely [1], In HMO 

germanate glass, the ability of HMO is less than Na+ ion because of the larger ion 

size, the small field strength (Z/a2) comparing with Na+ ion, the molar volume 

increases sharply when the modifier ions exceed 40 mol%. With Te0 2  in place of 

Ge0 2 , the molar volume changes very little, because Te0 2  can exist as network 

former [Te0 4 ] to connect the structure, it should decrease the Vm of the glass; on the 

other hand, the structure unit of [Te0 4 ] is larger than [Ge0 4 ] because the distance of 

Te-O-Te is longer than Ge-O-Ge. Furthermore, Te0 2  can also exist as [TeOs] trigonal 

pyramid in the gap of network to enlarge the molar volume. By balancing these 

factors, the Vm changes slightly with 20 mol% Te0 2 in place of Ge0 2 .

The variation of Tg in HMO germanate glass also reflects the glass structure 

change. The same reason results in the changing trend of Tg with the Vm. Higher Tg 

shows higher strength of glass. Because the bond strength of Te-0 is lower than that 

of Ge-O, the Tg of glass decreases with Te0 2  in stead of Ge0 2  even though the Vm 

decreases.

5.5 Absorption and emission spectra Er3+ ion doped HMO germanate glasses at

1.5 pm

For Er3+ doped glasses, the 4Ii3/2 —>4Iis/2 transition is the most important because it 

can provide high gain and low noise at the important optical communications 

wavelength of 1.5 pm. For this 3-level gain system, not only the stimulated emission, 

but also the absorption cross-section play important roles in determining the 

performance of a device. In HMO germanate glass, the absorption cross-section,
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emission spectra and lifetimes have been measured and discussed together with the 

figures of merit for gain.

Figure 5.4 shows the absorption cross-sections of Er3+ at the 4Ii5/2 —>4Ii3/2 transition 

in HMO germanate glasses. From figure 5.4, the absorption cross-section and the 

shoulder at 1.49 pm are changing remarkably. The absorption cross-section at 1.53 

pm and the ratio of shoulder cross-section at 1.49 pm against the peak at 1.53 pm are 

shown in figure 5.5. The ratio reflects the absorption bandwidth. From figure 5.5, It 

illustrates the absorption cross-section and the ratio increase as the content of Ge02 

decreases when HMO are added into these glasses. Er3+ ion has significantly higher 

absorption cross-section and peak ratio in HMO germanate glass than in Na20-G e0 2 

binary glass. Among HMO germanate glasses, these properties change very gently.

Figure 5.6 shows the normalised emission spectra of Er3+ ion at the 4Ii3/2 —>4Ii5/2 

transition in HMO germanate glasses. From the normalised emission spectra, the 

spectrum shape has changed and peak wavelength also shifts to shorter wavelength 

when the content of Ge02 decreases and HMO are added into these glasses. From 

some point, the emission spectra also become broader. The shoulder of emission 

spectrum also increases. The lifetime of this transition 4Ii3/2 —>4Ii5/2 in these glasses is 

shown in table 5.5. It increases as the content of Ge02 decreases and HMO increase. 

When Te02 replaces Ge02, the lifetime starts to decrease.

Table 5.5 Lifetime of Er3+ ion at 4Ii3/2 level in germanate glass

GE1 GE2 GE3 GE4 GE5

x ±0 .2  ms 3.0 3.8 4.5 4.3 3.2

5.6 Discussion

In order to compare the difference of the shape of the emission spectrum in 

different hosts, FWHM (full-width at half maximum) is used as the indication of 

bandwidth. From the normalised emission spectra, the FWHM of these glasses have 

been calculated. The figure-of-merit (FOM) for gain is defined as the product of
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lifetime x and emission cross-section a e. The emission cross-section ae can be 

calculated from the McCumber equation which was shown in chapter 3.

The calculated results of FWHM and FOM with various Ge0 2  content are shown 

in figure 5.7. With the addition of HMO in germanate glass, FWHM increases from 

28 nm to 51 nm. It reflects the emission spectra broadening. The FOM of gain has a 

peak around 40-50 mol% Ge02, When PbO and Bi20 3 replace Ge02 in the glass 

structure, the lifetime x and emission cross-section ae increase. However, when Te02 

substitutes for Ge02, the values of c e increases and the lifetime x decreases, thereby 

lowering the FOM.

From the results of Vm, Tg, UV and IR cut-off in HMO germanate glass, they show 

the glasses have lower Tg, higher Vm, longer IR cut-off wavelength and lower energy 

bandgap with the addition of HMO in germanate glass. These are caused by the 

structural changes in glass. The substitution of HMO in the Ge02 glass network 

increases the non-bridging oxygen sites and the glass network comprises of different 

units e.g. [Te04], [Pb04], [BiOe], and [Ga04]. The bond strength of these structural 

units is weaker than [Ge04], which is apparent from the phonon energy values hco 

(Te04) -750 cm'1, hco (Ga04) = 570 cm'1, hco (Pb04 and BiOe) = 400-550 cm' 1 [11], 

The energy bandgap decreases and multiphonon edge shifts to longer wavelength, 

which strongly suggests that the glass has weaker field strength of cations.

The ligand fields of cations, such as [Te04], [Pb04], [BiOe], and [Ga04] etc, also
-> i #

affect the absorption and emission cross-sections of Er ion. Normally, when glasses 

are formed with small amounts of Er3"1 ions, these ions enter the glass structure mainly 

as network modifier ions. A glass has a large number of sites to accommodate ions, 

and these sites differ from each other in the arrangement of the neighbouring ions. 

Consequently, the energy levels of the Er3+ ions in these sites are not identical. Under 

broadband optical pumping, whereby Er3+ ions in all different sites are excited, the 

luminescence is inhomogeneously broadened, due to the convolution of all of 

emissions from the ions in the different sites. The variation in cationic field strength 

thus represents the site-to-site variation.
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In HMO germanate glasses, Er3+ ions exist as [ErOg]. When HMO and Te02 

replace Ge02, there are more different sites such as [GeO^, [Ge06], [TeO^, [TeOs], 

[Pb02], [Pb0 4 ], [BiOs], [BiOg], and [Ga0 4 ] around Er3+ ion. As the bond strength of 

these structural units is weaker than [Ge04], the field strength around [Er06] thus 

becomes weaker with more HMO in place of Ge02, the strength of Er-O bond
• T_l_

becomes relatively stronger, this increases the interaction of Er ions with the glass 

host. Therefore, the Stark split of Er3+ ion energy levels shifts to a wider range, it 

causes higher and wider absorption and broader emission range. More sites and 

stronger crystal field strength are the reasons that the absorption and emission spectra 

become broader with the addition of HMO and Te02.

5.7 Conclusions

1. With the increase of heavy metal oxides in germanate glass, the molar volume Vm 

increases, Tg decreases, the ER. edge and UV edge shift to longer wavelengths.

2. In Er3+ doped HMO germanate glass, the absorption and emission cross-sections, 

FWHM and FOM for gain increase with HMO in place of Ge02.

3. In Er3+ doped HMO germanate glass, with Te02 in place of Ge02, the emission 

spectrum of Er3+ ion becomes broader, the lifetime becomes shorter, and FOM for 

gain decreases.
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Chapter 6

Er3T-doped modified silicate glasses

Virtually all present-day optical communications make use of fibres in which the 

core and cladding glasses are composed of virtreous silica (Si02), often doped with 

small amounts of germanium (Ge02), boron (B20 3), alumina (A120 3) or phosphorus 

(P20 5) compounds to produce the appropriate refractive index difference. Fused silica 

is a highly durable and refractory glass. Silica based EDFA is a very important device 

for optical communications. In order to increase the capacity of communications, 

broadband and flat gain EDFA is required for WDM system. Non-silica glass hosts 

intrinsically capable of broader gain than silica, have also been developed [1-3]. 

However, non-silica devices pose problems in terms of compatibility with standard 

silica fibre, and none have been widely adopted by the industry. Therefore, modified 

silicate glass would combine the advantages of broadband gain and compatibility with 

silica fibres. In this chapter, we present a range of silicate glass hosts which are 

modified by fluorides, oxide modifiers and oxide formers and compare the 

fluorescence properties of Er ion in these glasses.

6.1 Glass composition

This investigation has been carried out to improve the spectral characteristic of 

Er3+ doped modified silicate glasses and try to achieve a broader and flatter emission 

spectrum. Based on the Si02-Na20  binary glass system, some oxides, fluorides, 

phosphate, germanate and borate were incorporated to modify the optical properties of 

the glass and Er3+ fluorescence. Table 6.1 shows the compositions of these glasses. 

F/O ratio is defined as the molar fraction of fluorine divided by that of oxygen in 

glass. The preparation processes of these glasses have been explained in chapter 4. 

There was no evidence for ciystallisation in these glasses.

Samples from MS 162 to MS 193 contain one glass former (Si02), oxide modifiers 

and fluorides. In these glasses the molar volume, refractive index, optical absorption 

and emission properties of Er3+ were measured or calculated. While samples from 

MS 179 to MS 189 contain another glass former such as Ge02, P2Os and B20 3 and less



fluorides, only fluorescent properties of Er3"" were measured and discussed in the 

following parts.
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Table 6.1 Modified silicate glass compositions

Number Glass compositions F/O ratio

MS 162 70Si02-15Na20-14NaF-lErF3 0 .1 1 0

MS 163 65Si02-15Na20 - 15NaF-4PbF2-lErF3 0.179

MS 164 65 S i02- 15Na20 - 10NaF-4PbF2-5 A1F3-1 ErF3 0.248

MS 168 65 S i0 2- 15Na20 - 10NaF-4PbF2-5 GaF3-1 ErF3 0.248

MS 176 65Si02-9Na20-3Al20 3-10LaF3-10PbF2-2NaP03-lErF3 0.344

MS 192 65S i0 2- 1 lNa20-3 A120 3- 10LaF3-10PbF2-1 ErF3 0.353

MS 193 61S i02-1 lNa20-3 A120 3- 12LaF3- 12PbF2-1 ErF3 0.444

MS 179 60Si02-10Na2O-5Al2O3- 10NaF-4PbF2-1 OGeOr  1 ErF3 0 .1 2 0

MS 181 65Si02-15Na20-5Al20 3-9NaF-5NaP03-lErF3 0.069

MS 189 6 6 S i0 2-11 Na20-2 A120 3- 10PbF2-1 ()B20 3-1 ErF3 0.128

6.2 Molar volume and refractive index in glasses

In oxyfluoride silicate glass, the fluorine/oxygen (F/O) ratio is the most important 

parameter determining the glass structure and properties. Figure 6.1 shows the density 

and molar volume (Vm) change with different F/O ratio and figure 6.2 shows the 

refractive index (nd) in these glasses, there is a decrease of na when F/O is 0.248, it 

does not mean special. With increasing F/O ratio, there is increasing non-bridging 

oxygen in the glass. Therefore, the volume of Vm increases and the glass structure 

becomes more open, at the same time, small cation ions fill in the gaps in the 

network, so that the density of the glass increases, and therefore the refractive index 

nd increases as well.
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6.3 UV edge and IR cut-off

Figure 6.3 and 6.4 show respectively the UV edge and IR cut-off spectra of these 

oxyfluoride silicate glasses. Table 6.2 lists the calculated results of UV edge and IR 

cut-off. These results were calculated in the same way that was explained in chapter

5.

Table 6.2 UV and IR cut-off in modified silicate glasses

Glass composition MS 162 MS 164 MS168 MS 176 MS 192

UV cut-off ±2 nm 268 288 291 304 308

IR cut-off ±10 cm' 1 2290 2250 2 2 0 0 2155 2 1 1 0

It is evident from figure 6.3 for oxyfluoride silicate glasses that as the F/O ratio 

increases, the UV edge cut-off shifts to longer wavelength indicating that the 

electronic bandgap of the glasses reduces. A similar trend is observed when heavy 

metal oxides are added. The electronic bandgap in silica glass is 11.7 eV, it is due to 

electron transition between bonding and anti-bonding levels of Si-0 chemical bond 

with bridging oxygen [4]. If non-bridging oxygen exists, the energy gap drops down 

to 10.5 eV. In Na20.2Si02 glass additional transition appears in energy gap at 8.5 eV, 

which is caused by electronic transition of Na-0 chemical bond with non-bridging 

oxygen [4], With more modified oxides, the energy gap drops more. In these fluorine 

modified silicate glasses, they are between 6.5 to 8.0 eV, lower than in Na2 0 .2 Si0 2  

glass. This is due to the Na-0 non-bridging oxygen and metal fluorine bond M-F 

forming additional transitions. By comparing modified silicate with HMO germanate 

glass, in which the UV edge cut-off is between 324 nm to 398 nm, the UV edge is 

shifted to much shorter wavelengths, which points out that the bonding electrons 

experience a much stronger cationic field than observed in HMO germanate glasses.

From figure 6.4, IR cut off has a red shift from 2290 cm' 1 (4.37 pm) to 2110 cm’ 1 

(4.74 pm) with increasing F/O ratio. Comparing with HMO germanate glass, in which 

the IR cut-off is between 1740 cm' 1 (5.75pm) to 1585 cm' 1 (6.31pm), the IR 

transparent range is much shorter in silicate glasses. The reason is that the strength of 

the inter-molecular bonds in silicate is much stronger than in HMO germanate, 

consequently, the IR edges in modified silicate have a short wavelength cut-off.
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Wavelength nm

Fig. 6.3 UV absorption edge in modified silicate glasses

Wavenumber cm"1 

Fig. 6.4 IR absorption edge in modified silicate glasses
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6.4 Er3+ ion absorption and fluorescence properties at 1.5 pm

For Er3+ doped oxyfluoride silicate glass, the research was only concentrated on 

the 4In /2 —»4Ii5/2 transition. The absorption cross-section, emission spectra and 

lifetime have been measured and discussed together with the figure of merit for gain. 

For amplifier, figure-of-merit (FOM) for gain is defined as the product of lifetime and 

emission cross-section T x a emiss- The gain bandwidth of an amplifier is determined 

largely by the width of the emission spectrum and the stimulated emission cross- 

section. We may therefore define a figure-of-merit (FOM) for bandwidth as the 

product aemissxFWHM. This character will be able to respond to the gain bandwidth 

broadness.

Figure 6.5 shows the changes in the absorption and emission cross-sections of the 

1.53 pm with different F/O ratio. The emission cross-section is calculated by 

McCumber theory, it is slightly higher than the absorption cross-section. With 

increasing the F/O ratio, the cross-sections of Er3+ ion increase. The integrated 

absorption Ka is calculated from equation 6.1. It reflects the transition intensity at 1.53 

pm. Figure 6.6 shows the change of Ka with F/O ratio. With increasing F/O ratio, the 

integrated absorption cross-section Ka also increases. The transition intensity becomes 

stronger.

K a = \<Jahs(v)dv 6.1

Figure 6.7 compares normalised emission spectra for 3 samples with various F/O 

ratio. Figure 6.8 illustrates the emission spectrum change in the full width at half 

maximum (FWHM) with the F/O ratio. With increasing F/O ratio, the FWHM 

increases from 19 to 36 nm and the emission spectra become broader. For pure silica, 

Ge/P silica and Al/P silica fibres, the FWHM respectively are 7.9 nm, 24.7 nm and

43.3 nm [5]. In these oxyfluoride silicate glasses, the widest is 36 nm and the 

emission shape changes smoothly. These mixed anion glasses result in 

inhomogeneous broadening. Although it is narrower than Al/P silica fibre, it is wider 

than most of silica fibres and easy to fabricate.
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F/O ratio

Fig. 6.5 Absorption and emission cross-section change with F/O ratio

F/O ratio
Fig. 6.6 Integrated absorption change with F/O ratio
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Wavelength nm

Fig. 6.7 Normalised emission spectra of Er3+ ions 
in silicate glass with various F/O ratio

F/O ratio

Fig. 6.8 FWHM change with F/O ratio
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Figure 6.9 illustrates the changes in the lifetime with the F/O ratio. With the 

increasing F/O ratio, lifetime increases, but its behaviour is not as sensitive as other 

properties to high F/O ratio. When F/O is higher than 0.15, the lifetimes are very 

close to each other. As it is mainly decided by the radiative rate. This rate is 

dependent on the crystal field strength around the doped Er3+ ion.

In the Er3+ doped oxyfluoride silicate glasses, we also measured the emission 

spectrum and lifetime when fluorides were replaced by another glass former. The 

values of FWHM and the measured lifetimes are shown in table 6.2. From this table, 

the ErJ+ emission spectrum in silicate glass becomes wider with the addition of Ge0 2 , 

NaPOs and B2O3. Among these three different glass formers, phosphate has the 

strongest effect, borate is the second and germanate has the least effect. Because 

phosphorous is 5+ valence cation, the [PO4] unit has P=0 double bond, borate is 3+ 

valence cation, it can form [BO4] and [BO3], germanate structure unit [Ge0 4 ] is very 

similar to silicate. Therefore, [P04] and [B04] can cause much more inhomogeneous 

broadening than [Ge04]. From the comparison of lifetime results, the samples MS 179 

and M SI81 are very close to MS 163. With the addition of B2 0 3, the lifetime 

decreases fast. Because B20 3 has the highest phonon energy (1400 cm'1) in oxides, it 

increases the non-radiative rate of Er3+ ion in 4In /2 —>4Iis/2 transition, this results in 

the decrease of lifetime.

Table 6.2 FWHM and lifetime for 4 kinds of glasses

Sample MS 163 MS 179 

(1 0 % Ge02)

MS181 

(5% NaP03)

MS 189 

( 1 0 % B 20 3)

FWHM ±1 nm 2 1 2 2 33 28

Lifetime ±0.2 ms 11.0 10.5 1 1 .8 3.8

6.5 Discussion

All the above results show a similar trend with the change in the F/O ratio. As the 

F/O ratio increases in oxyfluoride silicate glass, it results in more non-bridging 

oxygen, the glass has a open network structure, which is evident from the increase of 

molar volume of glass. The glass density is increasing due to the presence of heavier
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cations. The red shift in the UV and multiphonon edges strongly points out that glass 

has a decreasing field strength with the increase of F/O ratio. This weakening field 

strength in the glass network will result in the stronger field strength between Er3+ and 

non-bridging oxygen, which is responsible for increasing the interaction between rare 

earth ions and oxygen and fluorine sites. This effect will increase Stark split of Er3+ 

energy levels, it causes broader absorption and emission spectra and increases the 

absorption and emission cross-sections. On the other hand, with increasing F/O ratio, 

a part of Er3+ ions will connect with F' to form [ErF6], the interaction between Er-F is 

stronger than Er-O, this is another cause of broadening of the emission spectrum. 

Furthermore, a more open structure signals additional dopant sites with varying site 

configuration. Multiple dopant sites are also responsible for broader, absorption and 

emission spectra. All these effects increase the inhomogeneous broadening.

The figure-of-merit (FOM) for gain is a product of the emission cross-section and 

the measured lifetime a*x, whereas the FOM for bandwidth is defined by the product 

of a e times AX (FWHM). These two FOMs are compared in figure 6.10. With the 

increasing F/O ratio, both for amplifier gain (ae*x) and bandwidth (ore*FWHM) 

increase. In A1 silica, Ge/Al silica and Al/P silica fibres, ct*t respectively are 57.1,

59.4 and 59.2 (10'2‘ cm2.ms). By comparision in oxyfluoride silicate glass, the 

maximum cj*x  is about 95 (10'21 cm2.ms), which is much higher than those for 

standard silica fibres. The investigated oxyfluoride silicate glasses are therefore more 

promising hosts for EDFA with extended flat gain than the state-of-art silica fibres.

For the addition of different glass former, borate reduces the lifetime of Er3+, it has 

the lowest quantum efficiency because of its highest phonon energy which results in 

the highest non-radiative rate. The addition of phosphates appears on the other hand 

to favour broadening of emission band together with a modest increase in the lifetime. 

The broadening emission is due to the structural unit [PO4] which has a double bond. 

It is more effective than [BO4] and [Ge04] on the change of emission spectrum of 

Er3+ ion. The change in the glass structure however cannot be assumed to be 

continuous due to the immiscibility between the phosphates and silicates, which also 

limits the improvement in Er3+ ion spectrum. Germanate has very little effect on the 

emission spectrum and lifetime of Er3+ in oxyfluoride silicate glass, it is a kind of 

component which is suitable for modifying the refractive index of these glasses.
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F/O ratio
Fig. 6.9 Lifetimes change with F/O ratio

F/O Ratio

Fig. 6.10 Figure-of-merit for gain and bandwidth change 
with F/O ratio
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6.6 Conclusions

1. With the increase of F/O ratio, the modified silicate glass has increasing molar 

volume and refractive index. The change in the F/O ratio also shifts the IR edge 

and UV edge to longer wavelength.

2. In Er3+ doped modified silicate glasses, the absorption and emission cross- 

sections, emission FWHM and FOM for gain and bandwidth increase with the 

increase of F/O ratio.

3. The Er3+ doped modified silicate glasses having another oxide glass former, P2O5 

has the strongest effect in contributing to the spectral broadening of Er3+ ion than 

either B2O3 or Ge0 2 . The addition of B2O3 in the modified silicate glass quenches 

the lifetime of 4Ii3/2 level by promoting the non-radiative rate, which was not 

observed in the case of addition P20 5 or Ge0 2 , as they have much smaller phonon 

energies.
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Chapter 7

Physical properties and structure o f tellurite glass

The main advantages of tellurite family of glasses, as described in Chapter 1, are 

worth considering for designing optical devices. In this chapter, some physical 

properties of tellurite glass such as density, molar volume, thermal stability and 

optical properties were measured. The glass structure was analysed using the Raman 

spectroscopy technique. The relationships between the composition and the glass 

structure are also discussed.

7.1 Density and molar volume of tellurite glass

The density p is defined as the mass per unit volume. From the density of a glass, 

the volume of 1 mole of this glass can easily be determined with V = M/p, M is the 

molar weight of the glass.

For a binary (100-x)Te02 -  xNa20  tellurite glass composition studies, the densities 

and molar volumes are shown in figure 7.1. As Na20  concentration increases, the

Na20  concentration mol%

Fig. 7.1 Density and molar volume change with NazO concentration
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density of glass decreases, the molar volumes increase. The densities and molar 

volumes in the system Te0 2 -Na2 0  depend linearly on the molar concentration of 

components, and the linear relation is also shown in figure 7.1. The relation between 

the molar volume, Vm, of binary glass has been described by Yakkind [1], From our 

measurement, the relation between Vm and Na20  content is: Vm = 4.85 niNa2o + 28.31.

Tellurite glasses have a continuous network structure based on the sharing of TeC>4 

comers of trigonal bipyramids and Te0 3 +i polyhedra having one non-bridging oxygen 

(NBO) atom [2]. With the increase of network modifier, TeC>4 trigonal bipyramids can 

be transferred to TeC>3 trigonal pyramids which have NBO atoms. It results in a less 

closely packed glass structure. Therefore, the Vm of glasses increased and density 

decreased with the addition of Na2 0 .

In ternary (90-x) Te02 -  XR2O - lOZnO (R2O = U 2O, Na20 and K2O) glass 

system, figure 7.2 and 7.3 show respectively the densities and molar volumes change 

with alkali content. The density always decreases linearly with the increasing alkali 

content. At the same content with different alkali ions, the densities change following 

this sequence U 2O > Na20 > K2O. For molar volume in figure 7.3, it is more complex 

with increasing alkali content. The Vm of glasses decreases linearly with increasing 

Li20 , it increases linearly with increasing K2O. With increasing Na20, Vm changes 

marginally, it also decreases slightly in linear relation. For the same content of alkali 

ions, Vra is the largest and density is the smallest in glass containing K20 , Vm is the 

smallest and density is the largest when R2O is Li20. For tellurite glass containing 

Na20, falls in between tellurite compositions containing U 2O and K2O. The reason of 

these variations is that the ion radius of alkali and bond length of cation-oxygen. The 

ion radius is 0.74, 1.02, 1.38 A  for Li+, Na+, and K+. The distance between cation- 

oxygen is respectively 2.10, 2.30 and 2.76 A  for Li-O, Na-0 and K-0 [3]. It is 

obvious that K+ ion has the largest radius and K-0 has the longest bond distance. 

When alkali ions are incorporated in the tellurite glass structure, the glass network is 

broken, and consequently the molar volume of glass Vm should increase. However the 

alkali ions exhibit an additional effect, some of these ions not only find room in the 

empty space of the network, but more over produce a contraction of the network. 

Such a structural contraction leads to a decrease in the glass molar volume. Li+ ion 

contributes the largest contraction of the network because it has the strongest field
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Alkali oxide concentration mol%

Fig. 7.2 Density change with alkali content in tellurite glass

Alkali oxide concentration mol%
Fig. 7.3 Molar volume change with alkali content in tellurite glass
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strength and is the smallest among the alkali ions. The interplay of the bond length 

and the cationic radius therefore contribute to the structural changes manifested by the 

molar volume and densities of alkali-containing glasses.

For the ternary (90-x) TeC>2 -  x ZnO -10 R20  (R2O = Na20 and K2O) glass system, 

the figures 7.4 and 7.5 show respectively the densities and molar volumes change with 

ZnO concentration. With the increase of ZnO, the densities and molar volumes 

decreased linearly. ZnO is a network intermediator, it can connect the broken 

network. The ionic radius of Zn2+ is 0.75 A. For 4-fold coordinated Zn, the O-Zn 

distance is 2.03 A; for a 6 coordinated Zn, the bond length is 2.15 A. The O-Te 

distance varies between 1.88 and 2.12 A for 4 coordination, [Zn0 4 ] and [Te0 4 ] are 

nearly the same size. Because there is 10 mol% Na20 in glass, ZnO acts as a network 

former or stabiliser. This results in the decrease of molar volume. As the unit [Te0 4 ] 

is much heavier than [Zn0 4 ], the density of glass will decrease when ZnO replaces 

Te02. These two figures also show that for the same ZnO containing glasses, the 

addition of Na20  results in a higher density and lower molar volume than when Na20  

is replaced by K20. These results are consistent with the data compared in figures 7.2 

and 7.3.

7.2 Thermal analysis

7.2.1 Tellurite glass transition temperature and thermal stability

To investigate the glass stability, differential scanning calorimetry (DSC) was 

employed to measure the glass transition temperature (Tg) and crystallisation onset 

temperature (Tx). These two characteristic temperatures are very important for glass 

thermal analysis. The glass transition temperature (Tg), which corresponds to a
19 1viscosity of 10 ~10 Pa, was defined as the temperature region in which the 

behaviour of the material changes from solid-like to liquid-like. The crystallisation 

temperature indicates the range in which the glass viscosity is sufficiently low to 

permit rapid crystal growth. It can be defined as the extrapolated onset of the first 

crystallisation exotherm. The quantity of Tx - Tg has been frequently used as a rough 

measure of glass stability. To achieve a large working range during operations such as 

preform preparation and fibre drawing, it is desirable to have (Tx - Tg) as large as
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ZnO concentration mol%

Fig. 7.4 Density change with ZnO content in tellurite glass

ZnO concentration mol%

Fig. 7.5 Molar volume change with ZnO concentration in tellurite glass
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possible. A typical DSC curve for this measurement is illustrated in figure 7.6. Tp is 

the peak crystallisation temperature.

Temperature 

Fig. 7.6 Typical DSC curve in glass

For the ternary Te02 - R2O - ZnO (R20  = Li20 , Na20  and K20) glass system, the 

density and molar volume have already been discussed above. Using DSC, we can 

verify the thermal stability of these glasses and the following figures show the relation 

between the glass compositions and thermal stability.

In ternary (90-x) Te02 -  xR20-10ZnC) (R20  = Li20 , Na20  and K20 ) glass system, 

figure 7-7 and 7-8 show the transition temperature Tg and (Tx - Tg) change with alkali 

content, respectively. With the increase of R20, the transition temperatures of these 

glasses decrease. The trend is the same for Li20 , Na20  and K20 . For an identical 

concentration of R20 , the Tg of glasses containing Li20 have slightly higher values 

than those for Na20. On the other hand, K20  has much more effect on the glass 

transition temperature. At low R20  content, which is less than 10 mol%, glass 

containing K20  has the highest Tg, at whereas the high R20  (more than 15 mol%), it 

has the lowest Tg. The reason for this result is from molar volume change in figure 7.3 

which shows that only K20  increases the molar volume of glass. The molar volume of 

glass increases with the addition of K20 , decreases with the addition of Li20 , 

marginally decreases when Na20  replaces Li20 , and K20  has much more effect on the



90

Alkali oxide concentration mol%

Fig. 7.7 Tg change with alkali oxide content in tellurite glass

Alkali oxide concentration mol%

Fig. 7.8 Tx - Tg change with alkali oxide content in tellurite glass
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glass structure change. Thus, in the same range of alkali oxide content, the Tg of glass 

changes more when glass contains K2O.

It is apparent from figure 7.8 that at 16 mol% R2O, glass containing Na20 has the 

highest thermal stability. K20  containing glasses are comparatively less stable, and 

the compositions with Li20 are relatively the least stable. At around 10-15 mol% 

Na20 or K20 , the glass has the best thermal stability. As Li20 has the shortest bond 

distance and smallest ionic radius of alkali among all the alkali metals, the glass 

structure will be most likely more closed packed than with either Na+ or K+ ion. This 

is clearly manifested by the compositional dependence of molar volumes and densities 

for Li20 glasses. In figure 7.8, the Tx - Tg for Li20 glass increases from 10 to 20 

mol%, the trend for U 2O therefore differs from Na20  and K2O.

In the (90-x) Te02 - 10R20  - xZnO (R20  = Na20  and K20) ternary system, when 

alkali concentration was fixed at 10 mol%, the ZnO content was varied from 4 to 19 

mol%, the relationships between Tg, the thermal stability Tx - Tg and ZnO are shown 

in figures 7.9 and 7.10 respectively. With increasing ZnO content, Tg of glass 

increases slightly from 558K to 563K. The modest rise in Tg due to the presence of 

ZnO is in contrast with the effect R2O of on Tg. This is because ZnO and R20  are two 

different types of oxides which participates in glass formation. R2O oxides are typical 

network modifiers which break the glass network by forming non-bridging oxygen 

sites, ZnO is a network intermediate which can form [Zn0 4 ] to connect the broken 

network. It is the network contribution effect of ZnO which help in increasing the 

transition temperature Tg and thermal stability.

The effect of R2O, e.g. Na20 and K2O on thermal stability of ZnO containing 

glasses are compared in figure 7.10 which is consistent with the data presented in 

figure 7.8. In the ternary compositions, when the ZnO content is 15 mol%, the effect 

of R2O on glass stability is more remarkable when Na20  as an additive is compared 

with K20.
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ZnO concentration mol%

Fig. 7.9 Tg change with ZnO concentration in tellurite glass

ZnO concentration mol%

Fig. 7.10 Tx - Tg change with ZnO concentration in tellurite glass
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7.2.2 Crystallization kinetics of tellurite glasses

In order to study the crystallization kinetics in tellurite glasses, isothermal and 

non-isothermal crystallization methods were used. As crystallisation peak cannot be 

observed in some very stable tellurite glasses, the DTA curve in one example 

(80TeO2:10Na2O:l()ZnO) of tellurite glasses is shown in figure 7.10a, therefore two 

tellurite glass compositions in which there is a crystallisation peak were investigated: 

a binary glass 85Te02:15Na20 (TN), and a ternary glass 85TeO2:5Na2O:10ZnO 

(TNZ).

7.2.2.1 Isothermal crystallisation

Crystallisation isotherms for the two glasses were recorded by the DSC at various 

temperatures r is0 between 673 K and 723 K; typical curves for each glass are shown 

in Figures 7.11 and 7.12. Figures 7.13 and 7.14 plot the volume fraction of glass 

crystallized at time t, x(t), calculated as the normalized integral of the crystallization 

exotherm. The linear Johnson-Mehl-Avrami equation (Equation 4.3) is plotted for 

different temperatures in Figures 7.15 and 7.16. It is seen that all the plots are 

approximately linear, confirming that the crystallization process is well described by 

Equation 4.3. The values of n and k for each glass have been determined from linear 

fits to the plots in figures 7.15 and 7.16. In both glasses the slopes, and therefore the 

exponents n, remain approximately constant at different temperatures, indicating that 

the morphology of crystal growth remains unchanged. The activation energy E and 

the constant v were determined for both glasses using Equations 4.4 and 4.5, as 

shown respectively in figures 7.17 (In k vs 103/7"iSO) and 7.18 (In vs 103/7). The data 

in both figures show good agreement with linear behaviour. The results of the two 

measurements, summarised in table 7.1, agree within experimental error.

The averaged values of n, vand E  (listed in table 7.1) were used to calculate the 

time-temperature-transformation (TTT) curves for the two glasses, shown in figures 

7.19 and 7.20. TTT curves demonstrate clearly that the binary glass TN is more 

resistant to devitrification than the ternary glass TNZ. The replacement of 10 mol% of 

Na20  by ZnO network modifier therefore decreases glass stability.



He
at

 F
low

 
H

ea
t 

F
lo

w

94

Temperature ( °C)

Fig.7.10a DTA curve of 80TeO2-10ZnO-1QNa2O glass

0 2 4 6 8 10 12 14 16 18 20 22 

Time (min)

Fig 7.11 Isothermal DSC traces of TN glass
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Fig. 7.12 Isothermal DSC traces of TNZ glass

Time (min)

Fig. 7.13 Fraction crystallised x as a function of time in TN Glass
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Time (min)

Fig. 7.14 Fraction crystallised x as a function of time in TNZ glass

a: 713K 
b: 703K 
c: 693K 
d: 688K 
e: 683K

- 9 --------- 1--------- 1--------- 1--------- i--------- 1--------- 1--------- 1--------- 1--------- ---------- i______ _______

0 1 2 3 4 5 6
In t (s)

Fig. 7.15 JMA equation plots for isothermal crystallisation in TN glass
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In t (s)

ig. 7.16 JMA equation plots for isothermal crystallisation in TNZ glass

103/T

Fig. 7.17 In k vs 1/T.so forTN and TNZ glasses
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103/T

Fig. 7.18 In t vs 1/T for TN and TNZ glasses

In t (s)

Fig. 7.19 TTT plots for different values of fraction 
crystallised x for TN glass
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In t (s)

Fig. 7.20 TTT plots for different values of fraction 
crystallised x for TNZ glass

7.2.2.2 Non-isothermal crystallization

Non-isothermal crystallization exotherms for the two glasses were recorded by the 

DTA at various scanning rates; typical curves for each glass are shown in figures 7.21 

and 7.22. In figure 7.23 the relationship between the peak temperature Tp and the 

scanning rate a  is plotted (see equation 4.6) in order to calculate the activation energy 

E and the constant v. The data for both glasses show good agreement with linear 

behaviour. The calculated activation energy is reported in table 7.1, and is similar to 

that obtained from isothermal data. However, the constant v differs strongly from that 

observed in isothermal experiments, indicating that it is influenced by the thermal 

history and/or the measurement method.

In figures 7.24 and 7.25, equation 4.7 is plotted for different scanning rates in 

order to determine the exponent n. It is seen that the slopes o f the data sets vary with 

the scanning rate, possibly due to differences in crystal formation. Moreover, the
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average value of n, listed in table 7.1, is significantly different from that obtained in 

isothermal experiments, also implying that crystal growth morphology may be 

affected by temperature scanning.

Table 7.1. Crystal growth parameters (average values) of tellurite glasses obtained by 

isothermal and non-isothermal methods.

Isothermal method Non-iso thermal method
n
± 0 . 0 2

Equation 4.4 Equation 4.5 n
±0.05

In ( v)
s' 1

±4

E
kJ/mol
±5In (v) 

s' 1 

± 2

E
kJ/mol
±4

ln(v)
s"1

± 2

E
kJ/mol
±4

TN 1.84 28 194 28 188 2.59 50 208

TNZ 1.65 31 183 26 175 3.45 50 195

7.2.2.3 Conclusions of crystallisation kinetics

From the analysis of crystallization kinetics in two tellurite glasses using 

isothermal and non-isothermal measurement methods, the devitrification process in 

both glasses was seen to conform to the JMA theory of crystal growth. TTT curves 

were calculated and compared in a binary and a ternary tellurite glasses, and it was 

shown that the binary glass has better stability than the ternary glass.

Temperature °C 

Fig. 7.21 DTA traces a tv a r io u s  hea ting  ra tes in TN g lass
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Temperature

Fig. 7.22 DTA traces at various heating rates in TNZ glass

103/Tp

Fig. 7.23 In Tp2/a vs 1/Tp for non-isothermal crystallisation 
of tellurite glasses
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103/T

ig. 7.24 Plots of Eq.4.7 at various heating rates in TN glass

103/T

Fig. 7.25 Plots of Eq.4.7 at various heating rates in TNZ glass
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7.3 Optical properties

In this part, we continue to study the ternary TeC>2 - R2O- ZnO (R2O = Li2 0 , Na2 0  

and K20 )  glass system. For glass, the intrinsic loss as a function of wavelength X is 

given by the following equation:

a t = Aoexp(AiA-) + B 0 ( l/^ 4) + Coexp(-Ci/A,) 7.1

where Ao, Aj, Bo, Co and Ci are material constants. The first and third terms describe 

the losses due to ultraviolet absorption from the electronic band edge and infrared 

edge losses arising from multiphonon absorption respectively. The second term 

indicates the loss due to light scattering from microscopic density and composition 

fluctuations in the material, which is called Rayleigh scattering. These effects 

decrease rapidly with increasing wavelength. The UV and IR absorption spectra of 

these ternary tellurite glasses were obtained using Perkin-Elmer UV/VIS/NIR Lamda

19 and FTIR Spectrophotometer 1725x, respectively.

7.3.1 Absorption in the UV

As described in chapter 5, the UV edge absorption, which limits transparency at 

shorter wavelengths, is caused by transitions between the electronic states. This 

absorption is a function of the energy band gap of the materials and the incident 

photon energy which was shown in the equation 5.2. Figure 7.26 shows the UV edge 

absorption spectra of (90-x)Te02 -  xNa2 0 - lOZnO (x = 0, 10, 20, 30) glass. These 

absorption spectra can be fitted reasonably well by Equation 5.3. From this figure, the 

UV cut-off shifts to the shorter wavelength with the increase of Na2 0  (x = 0 -» x = 

30) in this glass.

For the ternary (90-x)TeC>2 -  XR2O - lOZnO (R2O = Li20 , Na2 0  and K20 ) and 

(90-x)Te02 -  1 0 Na2 0  - xZnO glass systems, the UV cut off wavelengths were 

calculated in the same way which was explained in chapter 5. Figures 7.27 and 7.28 

illustrate these results when the concentrations o f R20  and ZnO change. From these 

two figures, the UV cut-off wavelength of these glasses decreases as the concentration 

of alkali oxides and ZnO increases. The trend of shifting to the shorter wavelength
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after the addition of R2O and ZnO is due to the presence of lone pair electron (LPE) in 

tellurite glass structure. As the LPE sites in the structure are shared by Li+, Na+, K+
9-1-and Zn , the conductivity o f the glass decreases, the electronic edge then shift to 

shorter wavelengths. For the R2O = Li2 0 , Na2 0  and K2O, the UV cut-off edge is the 

shortest value for Li20 , and K2O has the longest edge, the edge for containing Na2 0  

glasses fall in between Li2 0  and K2O. The reason is that the Li+ ion has the strongest 

field strength and the smallest size among alkali ions. Glass containing LiaO is the 

least ionic, it results in the largest band gap in tellurite glass so that it shifts the UV 

cut-off to the lowest wavelength.

Wavelength nm

Fig. 7 .26 UV edge a bso rp tio n  in (90-x)TeO -1 O ZnO -xN aO  
(x=0, 10, 20 and 30) te llu rite  g la ss
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R O Concentration mol%
2

. 7.27 UV cut-off change with alkali oxide in (90-x)TeO-1C)ZnO-xR2O 
(R20  = l_i20, Na20, and K20 , x = 0, 10, 20 and 30) glass

ZnO concentration mol%

Fig. 7.28 UV cut-off change with ZnO in (89-x)TeO-xZnO- 
10Na20-1Er20 3 ( x = 4, 9, 14, and 19) glass
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7.3.2 Absorption in the IR

As described in chapter 5, the position of the multiphonon edge is related to the 

fundamental absorption. Each material has a number of characteristic lattice vibration 

freqencies, related to particular structural units. For most oxide glasses the 

multiphonon edge (IR cut-off) lies in the range of 2200-1500 cm ' 1 (4500 - 6500 nm). 

Clearly the edge will be determined by the glass composition. To increase the IR cut­

off (longer wavelength), heavier ions and weaker bond are required, because they 

lower the lattice vibration frequencies. In this section, IR edge cut-off wavelength is 

also calculated in the same way which was explained in chapter 5.

Figure 7.29 shows the IR edge absorption spectra of (90-x)TeC>2 -  xNa2 0 - lOZnO 

(x -  0, 10, 20, 30) glass. As x increases, the IR edges shift to higher wavenumber or 

shorter wavelength, this is because the light metal oxide Na2 0  replaced the heavy 

metal oxide TeC>2 .

For the ternary (90-x)TeC>2 -  XR2O - lOZnO (R2O = Li2 0 , Na20  and K2O) and 

(90-x)Te02 -  10Na20  - xZnO glass systems, Figures 7.30 and 7.31 illustrate the IR 

cut off wavenumber shift when the concentrations of R2O and ZnO change 

respectively. With the increase of R2O and ZnO, the IR cut-off wavenumber 

increases, it means the IR cut-off wavelength becomes shorter. The reason is the same 

as given above.

For the R20  = Li20 , Na20  and K20 , the IR cut-off edge is the largest value in 

wavenumber for Li2 0 , and K2O has the smallest value, the edge for containing Na2 0  

glasses fall in between Li2 0  and K2O. The reason is that Li+ is the smallest ion and 

L i-0  bond is the strongest among Li+, Na+ and K+, thus, these result in higher IR cut­

off frequency or shorter wavelength from Equation 5.1.

7.3.3 The intrinsic loss in tellurite glass

Losses in tellurite glass fibres were estimated by fitting the loss equation to the 

visible and infrared absorption spectra measured in bulk glass. The V-curve of 

intrinsic loss in glass (a) is generated by adding the contributions of ultraviolet and 

infrared absorption and Rayleigh scattering from Equation 7.1. Figure 7.32a shows
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the measured ultraviolet absorption edge together with a fit to auv. It is seen that the 

fit is very good. Figure 7.32b similarly plots the infrared absorption edge, the fit is fair 

over a narrower range than in Figure 7.32a. Figure 7.32c shows the complete V-curve 

of intrinsic absorption, calculated from the fitting parameters obtained from figure 

7.32a and 32b. The Rayleigh scattering coefficient R was taken from Wang et al [4], 

since a similar glass composition was investigated by those authors. The loss 

parameters are listed in table 7.2. It is seen that the UV absorption coefficient and 

wavelength are somewhat different from those quoted by Wang et al [4] for a 

somewhat different glass composition. It has been observed that in tellurite glasses the 

UV absorption edge is strongly dependent on the glass composition in the previous 

part, which may be responsible for this discrepancy. Nevertheless, the minimum loss 

value and wavelength are only slightly affected by the difference in UV absorption. 

The projected minimum loss is 5x10 dB/km at 2.83 pm. In the context of the Er - 

doped amplifier, losses at 1.5 pm (signal) and 0.98 pm (pump) are respectively 0.06 

dB/km and 0.4 dB/km.

Table 7.2 Intrinsic loss parameters in 80TeC>2 -  1 0 Na2 0  - lOZnO tellurite glass

Parameter

Ultraviolet absorption A0 = (3 .0± 0 .2 )x l0 ' 10 dB/km; Ai = 13.0 ±0.3  pm

Raleigh Scattering Bo =0.29 dB/km [4]

Infrared absorption C0 = (2.3 ± 0 .2)x l0 15 dB/km; C i=  122 ± 4  pm

Minimum loss (5.0 ±0.2) x 10' 3 dB/km

Minimum loss wavelength 2 . 8  ± 0 .1  pm

Loss at 1.5 pm ~ 0.06 dB/km

Loss at 0.8 pm ~ 0.4 dB/km
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Wavenumber cm'1 
Fig. 7-29 IR edge absorption in (90-x)TeO-10ZnO-xNa2O 

(x=0, 10, 20 and 30) tellurite glass

Alkali oxide concentration mol%

Fig. 7.30 IR cut-off change with alkali oxide in (90-x)TeO-10ZnO-xR2O 
(R20  = Li20, NazO, and K20 , x = 0, 10, 20 and 30) glass in tellurite glass
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ZnO concentration mol%

Fig. 7.31 IR cut-off change with ZnO content in (89-x)TeO-xZnO- 
10Na20-E 2r0 3 (x = 4, 9, 14 and 19) tellurite glass

Wavelength nm 

Fig. 7.32a UV edge fiting in TNZ glass
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Wavelength |um 

Fig. 7.32b IR edge fitting of TNZ glass

Wavelength 

Fig 7.32c V-curve of loss in tellurite glass
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7.4 Raman spectra of tellurite glass

7.4.1 Introduction to Raman spectroscopy

As pointed out in chapter 4, Raman spectroscopy uses photons to probe 

vibrational modes of matter. The excitation of vibrational modes is manifested by a 

frequency-shifted spectrum of scattered light from the material. The spectral 

characteristics depend on the types (symmetry) of vibrations and their coupling 

coefficients with the electromagnetic wave. It is sensitive to local structure, and is 

therefore especially useful for detecting, identifying, monitoring and analysing spatial 

variations as well as temporal changes in chemical composition and structure in glass. 

Glass spectra are best understood in the context of vibrational properties of molecules, 

crystals and disordered solids.

Since a crystal is composed of a very large number of atoms, it could, in principle, 

posses a continuum of vibrational modes of variable frequencies and wavelengths. 

However, because the atoms are arranged in a perfectly periodic array, only 

wavelengths corresponding to motions within individual cells of crystal are allowed. 

Actually, the vibrational spectrum consists of several types of modes, 3N-3 to be 

exact, where N is the number of atoms in a unit cell. Each mode spans a range of 

frequencies as a function of continuous wavenumber k.

Since the wavenumber of light is very small, light only couples directly to optical 

phonons near k = 0. This restriction is sometimes expressed as conservation of energy 

and momentum between photons and phonons. In the crystalline case, the vibrational 

frequencies span a continuum of values; however, since light only couples to optical 

modes near k = 0, the spectrum consists o f discrete lines. That is the reason that the 

Raman spectral lines are sharp in crystals.

Glass has a short-range order and an absence of a long-range order. The difference 

between glass and crystalline materials essentially lies in the fact that periodicity 

cannot be used to simplify the dynamics. For a “totally” disordered amorphous 

material, the species of atoms in the material and their locations are totally 

uncorrelated. Such a material would possess a continuum of vibrations, corresponding 

to the virtually unlimited number of arrangements of its atoms, moreover, since the



112

atoms are randomly arranged, there are no universal selection rules governing the 

coupling the light to materials. The Raman spectrum becomes continuous and 

proportional to the density of modes at each frequency for this hypothetical solid.

In reality, amorphous materials like glass are not “totally” disordered, but possess 

some form of short-range order. They often display a mix of properties, some 

representative of short-range order, e.g., isolated structural units or molecules in 

molecular crystals, and others of long-range order, similar to crystalline materials. 

Therefore, vibrational properties in glass are often attributable, at least in part, to the 

existence of individual, localised structural units, containing varying numbers, types 

and arrangements of atoms. Within the units, structural parameters such as bond 

lengths and strengths may vary randomly, although the average macroscopic 

properties are fixed. Therefore, the Raman spectra do not simply mimic the 

vibrational density of states as they would in a perfectly disordered system, rather, the 

spectrum will be dominated by features associated with each type of unit in the 

material. The statistically distributed structural parameters, plus the interactions 

between units, cause broadening of the symmetry-allowed spectral lines, and 

introduce additional spectral features due to previously “forbidden” vibrations. Thus 

the spectrum will consist of distinct spectral features characteristic of the individual 

units.

A related interaction of the spectral characteristics of glass considers how 

crystalline spectra change as the structure derives from the ideal crystal. In this 

picture, the vibrational modes are very nearly those of the crystal; the main difference 

in glass is the breakdown in the k-selection rules, which allows photons to couple 

with vibrations other than k = 0, i.e. The resulting spectrum is therefore a continuum 

rather than narrow line. Thus the Raman spectral lines in glass are much broader than 

those in crystals. However, the actual shape of the spectrum is determined by the 

coupling strength as a function of k, which depends on the details of the structural 

disorder and therefore cannot be predicted in general. Therefore, the structural 

disorder in glass results in the multiplicity of vibrational modes and the broadening of 

the spectrum.
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7.4.2 Raman spectrum results in tellurite glasses.

For Raman spectrum measurements, the glass samples were not doped with rare 

earth ions. Because in rare earth ion doped samples, the luminescence is so strong that 

it obscures the Raman signals.

Figure 7.33 shows the Raman spectrum of a pure TeC^ powder sample, from 

which it is clear that the spectrum consists of sharp peaks due to the crystalline phase. 

There is one strong peak at 645 cm '1, a medium strong peak at 392 cm ' 1 and four 

weak peaks at 338, 589, 718 and 765 cm '1.

300 400 500 600 700 800 900 1000 
R a m a n  fre q u e n c y  c m '1

Fig . 7 .33  R am an  sp e c tru m  o f T e 0 2 c rys ta l p o w d e r
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For tellurite glass structure study, firstly, we measure the effect of concentration 

variation of glass former TeC>2 . In ternary (90-x) TeC>2 - xNa2 0  - lOZnO ( x = 0, 10,

20 and 30) glass system, Figure 7.34 and 7.35 show the Raman spectra from 10 -  200 

cm ' 1 and 300-1000 cm ' 1 respectively. In figure 7.34, the peak around 40 cm ' 1 is called 

“Boson peak”. It is assigned to the low-frequency broad band in the Raman spectrum, 

this will be discussed later. With the increase of Na2 0  and decrease of T e02, the peak 

slightly shifts to a higher frequency from 38 to 42 cm'1. The peak shape is very 

similar, a shoulder however appears around 90 cm ' 1 with the increasing percentage of 

Na2 0  content. In figure 7.35, the intensities of peaks change with the variation of 

Na2 0 . With the increase of Na2 0  and decrease of Te0 2 , the intensities of peaks 

around 450 cm ' 1 and 660 cm ' 1 decrease, around 780 cm ' 1 increase.

Secondly, we determined the structural changes of T e0 2 glass with different oxide 

modifiers.

In ternary 70TeO2-20X-10ZnO (X -  ZnO, Li20 , Na20  and K20 ) glass system, the 

effect of different alkali ions on the zinc tellurite glass structure has been determined. 

Figure 7.36 and 7.37 show the Raman polarised (HH and HV) spectra from 10 -  200 

cm ' 1 and 200-1000 cm ' 1 respectively. Here HH means that the incident and scattered 

electric vectors are parallel, while HV indicates that they are perpendicular.

The depolarisation ratio is defined as p = I h v / I h h , where I h v  and I h h  are the 

intensities of the scattered radiation at co from HV and HH spectra. The depolarisation 

ratio p is related to the symmetry of the vibrations. In figure 7.36 and 7.37, we can see 

there is a slight shift of the Boson peak and other main peaks even though the Raman 

spectra are very similar when glass contains Li20  or Na20 , K2O. p is also changing. 

Table 7.3 shows the Boson peak frequency and depolarisation ratio p at three different 

optical phonon frequencies. The depolarisation ratio p in glass when x is ZnO is the 

highest for all the peaks, p is higher in Na2 0  than that in Li2 0  and K2O. Another trend 

is that the p decreases as the frequency increases. The lower Raman frequency shift is, 

the higher is the depolarisation ratio in the glass.



In
te

ns
ity

115

Raman frequency cm'1 
Fig. 7.34 Raman spectra in 10 - 200 crrf1 range of (90-x)Te02 

-xNa20-10ZnC> (x=0, 10, 20 and 30) glass

Raman frequency cm'1
Fig. 7.35 Raman spectra in 300 - 1000 cm'1 range of

(90-x)Te02-xNa20-10ZnQ (x=0, 10, 20 and 30) glass
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Raman frequency cm'1
Fig. 7.36 Raman spectra in 10 - 200 cm’1 range of 70Te02 

-20X-10ZnC> (X=ZnO, Li20 , Na20  and K20 ) glass

Raman frequency cm'1 
Fig. 7.37 Raman spectra in 200 - 1000 cm"1 range of 70Te02 

-2QX-10ZnO (x=ZnO, LizO, Na20  and K20 ) glass
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Table 7.3 peak frequency and depolarisation ratio p in 70Te02-20X-lOZnO 

(X = Li2 0 , Na2 0 , K20  and ZnO) glass system

ZnO Li20 Na20 K20

Boson peak to ±1 cm ' 1 48 44 40 35

p ±0.02 at Boson peak 0.82 0.56 0.54 0.54

p±0.02 at 455 cm ' 1 0.48 0.23 0.37 0.26

p±0 . 0 2  at 660 cm ' 1 0.43 0.16 0.34 0.19

p±0.02 at 780 cm ' 1 0.35 0 . 1 1 0.28 0.15

For different cations with different valence, they behave as glass modifier, 

intermediater, and glass former in tellurite glass. In order to check the effect of 

different bond valences on the tellurite glass structure, Raman spectra of 80Te02- 

10Na20-10X (X = K20 , BaO, Ga20 3, G e02, Nb20 5 and W 03) glass were measured 

and shown in figure 7.38 and 7.39 for 10 -  200 cm ' 1 and 200-1000 cm ' 1 respectively. 

The cations varied from monovalent K+ to hexavalent W6+. From figure 7.38, the 

Boson peak shifts slightly around 40 cm '1, the shape is very similar to each other. 

From figure 7.39, Raman spectra in middle and high frequency are different because 

different valence cations have different roles in the tellurite glass formation. K2O and 

BaO are typical glass modifier. Ga2 0 3 is a glass network contributor, Ge0 2  is a glass 

former, and Nb20 5 and W 0 3 can also be glass former and network contributor 

respectively. The first four spectra are very similar, the difference is the shoulder 

around 760 cm ' 1 decreases. When the modifier oxides are Nb2 0 s and W 03, there is an 

extra peak between 850 to 950 cm" 1 and another peak around 350 cm ' 1 for W 03.

The third part of the present investigation on glass structure and its dependence on 

the composition is to check the effect of halides on tellurite glass. Binary and ternary 

tellurite glasses were melted and measured. For binary 80Te02-20X (X = Na2 0 , NaCl 

and NaF) glass system, Raman spectra are shown in Figure 7.40 and 7.41 for 10 -  200 

cm ' 1 and 200-1000 cm"1 region, respectively. In figure 7.40, there is a little shift 

around the Boson peak. When X is Na20 , the peak is at 36 cm"1, it is 38 cm"1 for NaCl 

and 40 cm"1 for NaF. In figure 7.41, Raman spectra between 550 cm"1 and 850 cm"1 

are same for NaCl and NaF, but the sample of high frequency peak for Na20  

containing glass changes significantly at higher frequencies.
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For ternary 80Te02-10Na20-10X (X = BaO, BaCl2 and BaF2) glass system, 

polarised Raman spectra are shown in Figure 7.42 and 7.43 for 10 -  200 cm ' 1 and 200- 

1000 cm ' 1 region, respectively. In figure 7.42, we can see the Boson peak shifts to 

slightly higher frequency following BaO, BaCl2 and BaF2 sequence and p is different. 

In figure 7.43, we also find the Raman spectra are nearly the same for BaCl2 and BaF2 

containing T e0 2 glasses. When X is BaO, the high frequency peaks above 660 cm ' 1 

have much higher intensities than when BaCl2 and BaF2 are incorporated in the glass. 

Table 7.4 shows the Boson peak frequency and depolarisation ratio p at the four main 

peaks.

From the table 7.4, the depolarisation ratio is much higher when T e0 2 glass 

contains BaF2. At the main peaks around 660 and 780 cm '1, the depolarisation ratio p 

is 0.15 ~ 0.16 when glasses contain BaO and BaCl2 comparing with p is 0.38 for BaF2 

containing glass. At the Boson peak, BaF2 containing glass p (= 0.78) is also much 

higher than BaO and BaCl2 containing glasses (p is 0.45-0.49). The depolarisation 

ratio at Boson peak is much higher than at the main peaks around 660 and 780 cm '1. It 

is also found that the p decreases as the frequency increases in all these Raman 

spectra.

Table 7.4 Boson peak frequency and depolarisation ratio p of ternary 80Te02- 

10Na20-10X (X = BaO, BaCl2 and BaF2) glass system

BaO BaCl2 BaF2

Boson peak co+1 cm ' 1 38 42 44

p±0.02 at Boson peak 0.45 0.49 0.78

p±0.02 at 455 cm ' 1 0.28 0.34 0.55

p±0 . 0 2  at 660 cm ' 1 0.16 0.15 0.38

p±0.02 at 780 cm ' 1 0.16 0.15 0.38
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Raman frequency cm 1

Fig. 7.38 Raman spectra in 10 - 200 cm"1 range o f 8 0 T e 0 2-10N a20  
-10X (X = K20 , BaO, G a20 3, G e 0 2, Nb20 5 and W 0 3) glass

Raman frequency cm '1

Fig. 7.39 Raman spectra in 200 - 1000 cm '1 range of 8 0T e02  
-10N a20-10X  (X = K 20 , BaO, G a203 , G e0 2 , N b205  and W 0 3 ) g lass
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Raman frequency cm'1

Fig. 7.40 Raman spectra in 10 - 200 cm'1 range of 
80Te02-20X (X = Na20, NaCl and NaF) glass

Raman frequency cm'1 

Fig. 7.41 Raman spectra in 200 - 1000 cm'1 range of
80Te02-20X (X = Na20, NaCl and NaF) glass
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Raman frequency cm'1

Fig.7.42 Raman spectra in 10 - 200 cm'1 range of 80Te02 
-1 QNa20-1 OX (X = BaO, BaCI2 and BaF2) glass

Raman frequency cm'1

Fig. 7.43 Raman spectra in 200 -1000 cm'1 range of
80Te02-1 QNa20-1 OX (X = BaO, BaCI2 and BaF2) glass
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7.4.3 Discussion of Raman Spectra

In Raman spectrum of glass, low frequency (<300 cm '1) scattering is attributed to 

the collective modes of local structures and heavy metal vibrational modes [5, 6 ]. 

Raman scattering in the intermediate region (300-580 cm '1) has generally been 

attributed to the deformation vibrational modes of glass network structure with 

bridged oxygen [7-10]. In the frequency region (>600 cm '1) it has generally been 

attributed to the stretching vibrational modes of glass network former [7-10], These 

spectra in tellurite glass can be divided into two regions. The first range is low 

frequency from 10-200 cm ' 1 in which there is a peak around 40 cm ' 1 regarded as the 

Boson peak. The second range is from 200-1000 cm ' 1 in which peaks reflect the glass 

structure units and vibrational modes.

7.4.3.1 Intermediate and high frequency range (200-1000 cm'1)

The structure of TeC>2 may be described in terms of a three-dimensional network 

built up from TeC>4 units, each oxygen atom being shared by two units, and bonded in 

the equatorial position to one tellurium atom in the axial position to another. The basic 

unit TeC>4 of the structure is built up from four oxygen atoms coordinated to one 

tellurite atom to form a trigonal bipyramid (tbp) with one of the equatorial positions 

unoccupied. Because Te has 6  electrons in the outer shell, there is a lone-pair electron 

(LPE) occupying the equatorial position. In this structure unit, there are 4 bridging 

oxygens (BO). Because an LPE is equivalent to an oxide (O2') ion, the site for an 

oxide ion and an LPE could therefore interchange mutually, it actually affects the 4 

Te-0 bonds. Along the equatorial triangle plane of tbps, the perihelion Te-0 bonds 

are shorter in length (0.185 nm) than that of aphelion Te-0 bonds (the length is 0.195 

nm), the axial Te-0 bond lengths are the largest and vary between 0.205 and 0.215 

nm [ 1 1 , 1 2 ],

Another structure unit in tellurite glass is T e03. It forms a trigonal pyramid (tp). In 

this structure unit, there are two bridging oxygens and one non-bridging oxygen 

(NBO) which is a double bond Te = O. These two structure units are shown in figure 

7.44.



Fig. 7.44 Structure units in tellurite glass 
(a) Te04 trigonal bypyramid (tbp)
(b) Te03 trigonal pyramid (tp)

From Raman spectrum of pure TeC>2 crystal powder, figure 7.33, all these peaks 

correspond to the vibrations of structure unit TeC>4 tbp in crystal. Based on the normal 

vibrational analysis of TeC>2 crystal, peaks at 765, 718, 645, 589 and 392 cm ' 1 are 

assigned to vS2Te0 4  (and vS2+asTe0 4), vsi+asTe04, vsiTe04, vasTe0 4  and 8 sjTe0 4  (and 

8 S2Te0 4 ), respectively, and that the former four and the other are assigned to v^Te- 

eqOax-Te and vsTe-eqOax-Te, respectively [13]. It was indicated that, in T e0 2 crystal, 

most of tellurium atoms form TeC>4 tbp’s, which are connected at vertices by forming 

Te-eqOax-Te linkages [13].

The Raman spectrum of glassy TeC>2 have been reported by Sekiya et al [11] and 

Pine and Dresselhus [14]. Three sharp peaks at 395, 592 and 649 cm ' 1 are also 

observed and assigned the vibrations of T e0 4 trigonal bipyramid and movements of 

bridging oxygen atoms in Te-eqOax-Te linkages. Comparing with crystal Te0 2 , Raman 

frequencies in glassy state shift to higher frequencies.
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When a network modifying oxide is incorporated into the T e0 2 to form glass, there 

are two types o f structural changes based on non-bridging oxygen model. The first 

model is similar to that for silicate glass as shown in equation 7.2:

X 0 2'+  Te0 4/2 <-> 2 x 0 3/2Te — O' + (l-2 x )T e0 4/2 . 7.2

The second model is more complex, it considers the structure units transfer 

between tbp and tp. They are expressed in equation 7.3 and 7.4, it shows that the 

transition produces one more non-bridge oxygen between [Te04] and [Te03].

Te04/2 02/2Te=0 7.3

0 3/2Te —  O' <-» 0 i/2Te(=0) —  O' 7.4

Based on these units change, when a network modifying oxide is incorporated into 

the Te0 2  to form glass, the vitrification reaction in model 2  can be represented as 

equation 7.5. Here a, b and c are parameter less than unity and a + b = 1.

X 0 2' + T e0 4/2 <-> 2x{a [0 3/2Te —  O' ] + b [ 0 1/2Te(=0) — O ']}

+ cx [0 2 /2Te=0 ] + ( l- 2 x-cx) Te0 4/2 • 7.5

From Himei’s study [15], structure change of tellurite glass is more likely in model 2 

when network modifying oxide is incorporated into the T e0 2 glass structure. It 

produces [Te04]', [Te03]' and [Te03]. This means there are many different structure 

units in tellurite glass. In these structure units, Te=0 and Te-O' are assigned as non­

bridging in glass.

In order to analyse their shape change, the Raman spectra were deconvoluted into 

Gaussian functions in the wavenumber range from 350 to 1000 cm ' 1 on the basis of 

the method proposed by Mysen et al [16]. Figure 7.35 also indicates the result of peak 

deconvoluted of the spectra of all these samples. Based on the Raman spectrum of 

pure Te0 2 , all the spectra in these ternary glasses were deconvoluted in the same way 

into five peaks about 455, 610, 660, 720 and 780 cm ' 1 [15]. These peaks are named A, 

B, C, D and E, respectively. The peak A observed at about 450 cm ' 1 is assigned to 

symmetric stretching (and bending) vibrations of Te-eqOax-Te linkages which are
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formed by sharing vertices of TeC>4 tbp, Te0 3 +s polyhedra and T e0 3 tp. Peak B 

observed at about 610 cm ' 1 is assigned to a vibration of the continuous network 

composed of TeC>4 tbp. Peak C observed around about 660 cm ' 1 is assigned to 

antisymmetric vibrations of Teiv-eqOax-Teiv, Teiv-eqO -Tem, Teiv-O-Tem+s, Tem+g-O- 

Tem+5 and Tem+s-O-Tem linkages. These linkages are characterized by the connection 

of a long and a short Te-0 bonds. It is the main peak related with T e0 4 tbp. Peak D 

observed at about 720 cm ' 1 is assigned to the stretching vibration between tellurium 

and non-bridging oxygen (NBO) atoms. The NBO atom is formed in Te0 3 + 5  

polyhedra or Te0 3  tp and interacts weakly with adjacent tellurium atoms, where the 

symbol, NBO, represents the oxygen atoms forming Te=0 and Te-O', and their 

resonating bonds. Peak E observed at about 780 cm ' 1 is assigned as a vibration of the 

continuous network composed of T e0 4 tbp and a Te-O' stretching vibration of Te0 3 +g 

polyhedra or Te0 3  tp. The two peaks D and E are related to Te0 3  tp.

The intensity ratios of the Raman peaks I(720)/I (660) ( ID/I c )and I(780)/I (660) 

( I e / I c  ) may represent the ratio of the fractions of Te0 3  tp and Te0 4  tbp: Te0 3 /Te0 4 .

From Raman spectra in figure 7.35 for ternary (90-x) T e0 2 -  xNa20-lOZnO ( x = 

0, 10, 20 and 30) glass system, the intensities of deconvoluted 5 peaks and intensity 

ratios of peaks at 720 and 780 against 660 cm ' 1 are shown in figure 7.45 and 7.46, 

respectively. Normally tellurite glass is a continuous network structure composed of 

Te0 4  tbp’s, T e03+i polyhedra and T e0 3 tp’s sharing vertices. As x increases, the 

increase of Na20  and decrease of T e0 2, intensity of peak A, B and C decrease, these 

indicate a decrease of Te-O-Te linkages. Intensities at peak D and E increase, the 

ratios of Id/I c  and Ig/Ic increases, these indicate an increase of Te0 3  tp units and 

NBO sites. Cleavage of Te-O-Te linkages and formation NBO sites result in the 

conversion of T e0 4 tbp’s to T e03+g polyhedra and Te0 3  tp having NBO sites. Another 

change is at peak A. Not only the intensity decreases, the frequency also shifts to 

higher position. Because peak A is assigned to symmetric stretching (and bending) 

vibrations of Te-O-Te linkages which are formed by sharing vertices of Te0 4  tbp, 

T e0 3+5 polyhedra and T e0 3 tp, this shift indicates the connectivity of structure unit 

becomes less integral. This also proves the conversion of T e0 4 tbp’s to T e03+6 

polyhedra and Te0 3  tp. This process follows the reaction in equation 7.5.
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Te02 Content mol%

Fig. 7.45 Intensities of 5 deconvoluted peaks in 
(90-x)TeO2-xNa2O-10ZnO (x=0, 10, 20 and 30) glass

Te02 Content mol%

Fig.7.46 Intensities of 5 deconvoluted peaks in 
(90-x)TeO2-xNa2O-1QZnO (x=0, 10, 20 and 30) glass
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Field strength F (=Zc/a2) is introduced to represent the interacting forces between 

cation and anion in oxide glass. Zc is the valence of cation, a = rc + ra, rc and ra are the 

radii of cation and anion. The cation with a less field strength must be satisfied with a 

higher coordination number, in this case, compound formation and crystallisation are 

favoured. Therefore field strength of different oxide modifiers will result in the 

change of the Raman intensity and peak intensity ratio.

With different alkali ions in ternary 70TeC>2 - 20X - lOZnO (X = U 2O, Na20 , 

K2O and ZnO) glass system, the intensities of deconvoluted 5 peaks and intensity 

ratios of peaks at 720 and 780 cm ' 1 against 660 cm"1 versus the field strength of 

modifying ions are shown in figure 7.47 and 7.48, respectively. Table 7.5 shows the
94-field strength of alkali ions and Zn in tellurite glass.

Table 7.5 field strength of alkali ions and Zn2+

k 2o Na2 0 Li20 ZnO

Field strength Zc/a2 0.13 0.19 0.23 0.46

When X is ZnO, it becomes 70Te02 -  30ZnO binary glass system, the intensity 

ratio of ID/I c and IE/I c is slightly higher than that when X is alkali ions, peak A has 

much higher intensity and lower frequency, these mean that the structure not only 

produces more Te0 3  tp, but also increases the connectivity of network because it 

produces much less non-bridging oxygen ion than alkali ions. This glass structure has 

been studied by Sekiya et al. [11]. With increasing ZnO, the glass structure becomes 

increasingly Z^TesOs -like (60Te02 -  40ZnO) and consists of a '^[TeaOg] chain like 

structure with Te0 3 +s and Te0 4  groups. Figure 7.49 shows this structure connection. 

Every 3 Te atoms have 2 bridging oxygen ions. As ZnO decreases and Te0 2  

increases, the glass may have more bridging oxygen ions and the structure can be 

modified to three dimensions.

The higher depolarisation ratio of all the peaks suggests that the structure is more 

asymmetric. It means ZnO goes into the network as [Zn04] to increase the asymmetry 

of tellurite glass. It also can stay in the gap of network as [Zn06]. Especially for peak 

A, intensity in depolarisation spectra is very low, because this peak reflects the 

symmetry stretching vibration mode of Te-O-Te. Because ZnO is intermediate oxide,
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Field strength of modifying ions

Fig. 7.47 Intensities of 5 deconvoluted peaks in 
70TeO2-20X-1QZnO (x=k20 , Na20 , Li20  and ZnO) glass

Field strength of modifying ions

Fig. 7.48 Peak intensity ratio in 70TeO2-2C)X-10ZnO 
(X = K20 , Na20 , Li20  and ZnO) glass
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it can link up with the broken Te0 3 -Te0 4  chain network and also break the network to 

produce non-bridging oxygen.

n = 1 V  X ' 0 /

V

n = ”
c / V'S (0/  o y  V  c / X sO/

Short bond(<0.20 nm) --------Long bond (>0.20 nm)
Double bond (>0.22 nm)

Fig. 7.49 Schematic representation of (Te3Og~)n structural units, 

Te3Og" ion(n=1) and (Te3Og*)% chain(n =o>).

The role o f K20 , Na20  and Li20  is very similar in tellurite glass. Peak A slightly 

shifts to lower frequency, intensities of peak A and ratio of TeCVTeC^ slightly 

decrease by following the K20 , Na20  and Li20  sequence. It means that the glass 

structure was distorted more when containing K20  than Li20 , and the connectivity of 

structure is slightly increased by following the K20 , Na20  and Li20  sequence because 

o f the increasing field strength of alkali ion in glass.

For different kinds of cation with increasing bond valence, Raman spectra of 

80Te02-10Na20-10X (X = K20 , BaO, Ga20 3 , G e02, Nb2Os and WO3) glass were 

shown in figure 7-39, the intensities of deconvoluted 5 peaks and intensity ratios 

versus the field strength of modifying ions are shown in figure 7.50 and 7.51,
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respectively. The field strength of modifying ions is shown in table 7.6. As the 

valence of ion increases, the field strength increases.

Table 7.6 Field strength of different valence ions

k 2o BaO Ga2 0 3 Ge0 2 Nb2 0 5 WO3

Field strength Zc/a2 0.13 0.26 0.74 1.06 1 . 2 0 1.53

The intensity at peak C is strongest when the modifier oxide is GeC^. Because it 

is a typical glass former, it exists as [Ge04] in glass to connect the network, it mainly 

increases the intensity of peak C. When the modifier oxide is Ga2C>3 , the intensity at 

peak A is strongest, because it is a typical glass intermediate, it can also connect the 

network as [Ga04] form. K20  and BaO are typical glass modifier, the intensities at 

peak D and E are higher than that in other oxide modifiers. They have the same role 

which has been discussed before. When the modifying oxide is NbaOs, there is an 

extra peak around 880 cm '1, it is caused by octahedron [NbOe] [17]. When the glass 

modified by WO3, there are two extra peaks around 350 and 920 cm '1, they are 

supposed to be caused by [W 04] tetrahedron structural units [17]. Peak around 450 

cm ' 1 shifts to a further lower frequency because of the strong gathering role of high 

valence for the broken network.

From the intensity ratio, I d / I  c  and I e / I  c  decrease with increasing valence, it 

arrives at the lowest point when modified oxide is Ge0 2 , then, it increases again when 

the modifying oxides are Nb20 5 and W 03. This clearly demonstrates that monovalent 

alkali oxide can produce the most T e0 3 units among these various valences. Glass 

former oxide produces the least T e0 3 units. Tri-, penta- and hexa- valence oxides 

have the role between network modifier and network former.

Above we discussed the glass modifiers are oxides. For the same cation with 

different anions, the effect on the glass structure has also been measured. Fluorine, 

chlorine and oxygen are compared. For anions, the electronegativity ( X j ) ,  which is 

respond to the bond ionic character, is important to the glass forming bond structure. 

If we define the ability of anion (Fa) to break glass network as the ability of element 

gets one electron, electronegativity divided by negative charge could represent Fa. 

Table 7.7 shows the electronegativity and Fa of fluorine, chlorine and oxygen.
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Table 7-7 Electronegativity and Fa of fluorine, chlorine and oxygen.

F' c r o 2-

Electronegativity Xj 4.0 3.0 3.5

Fa 4.0 3.0 1.75

From the Raman spectra o f binary 80TeC>2-20X (X = Na2 0 , NaCl and NaF) glass 

system in figure 7.41, the intensities of deconvoluted 5 peaks and intensity ratios of 

peaks at 720 and 780 cm ' 1 against 660 cm ' 1 are shown in figure 7.52 and 7.53, 

respectively. The intensities at peaks A, B and C remain unchanged, intensities at D 

and E are higher in oxide than that in chloride and fluoride. From the intensity ratio in 

figure 7.53, Id/I c  a n d  Ie/I c  a r e  the highest when X is Na2 0 , it is slightly higher in 

chloride than that in fluoride.

From the Raman spectra of ternary 80Te02-10Na20-10X (X = BaO, BaCl2 and 

BaF2) glass system in figure 7.43, the intensities of deconvoluted 5 peaks and 

intensity ratios of peaks at 720 and 780 against 660 cm ' 1 are shown in figure 7.54 and 

7.55 , respectively. The change of intensities and the ratio of peaks are very similar 

with that in binary glass system. It also shows the highest Te0 3 /Te0 4  ratio when X is 

oxide. This suggests that chloride and fluoride do not produce more Te0 3  units than 

oxide modifier. When tellurite glass is modified by oxide, the reaction is following 

equation 7.5 to generate [Te03], [Te03]' and [Te04]~ units. When halide replaces 

oxygen in tellurite glass, the reaction is to follow the model 1 , it can be expressed by 

equation 7.6: H' represents halide anion, halide anions stay in oxygen position to form 

tbp. Therefore, this reaction will strongly break the network to produce more non­

bridging oxygen than oxide modifier, but the glass has less T e0 3 tp units than oxide 

modifier. Another possibility is that F' and Cl" share LPE in Te0 3  tp because of their 

strong electronegativity and transfer T e0 3 tp to TeH 03 structure unit which is similar 

to T e0 4 tbp.

xH' + Te0 4 /2  x0 3 /2T e— H + x0 3 /2T e —  O' + (l-2x) T e04/2 . 7.6

From the depolarisation ratio p, it is the same when X is BaO and BaCl2, p is much 

higher when glass contains BaF2 , the reason is that Te-F is much stronger than Te-0 

and Te-Cl bond. The strength of Te-0 and Te-Cl bond is very close. In the tbp
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structure unit when F is in the O site, the distortion of tbp is much more than that 

when the site is oxygen and chlorine, it increases the asymmetry of the structure unit, 

this results in the increase of depolarisation ratio.

Field strength of modifying ions

Fig. 7.50 Intensities of 5 deconvoluted peaks in 8 0 T e 0 2-10Na20-10X  
(X = K20 , BaO, Ga20 3, GeOz, Nb20 5 and W 0 3) glass

Field strength of modifying ions 

Fig. 7.51 Raman spectra peak intensity ratio in 8 0 T e 0 2-10N a20 -1 0 X  
(X = K20 , BaO, G a20 3, G e 0 2, Nb20 5 and W 0 3) glass
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F in different modifiers
a

Fig. 7.54 Intensities of 5 deconvoluted peaks in 
80Te02-10Na20-10X (X = BaF2, BaCI2 and BaO) glass

F in different modifiersa

Fig. 7.55 Peak intensity ratio in 80Te02-10Na20-10X 
(X = BaF2, BaCI2 and BaO) glass
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7.4.3.2 Low frequency range (< 200 cm '1)

The low-frequency broad band in the Raman spectrum, called the “Boson peak” 

(BP), is another universal characteristic of glasses. It is also present in numerous 

liquids. Though the origin of the Boson peak is still a subject o f debate, it is generally 

accepted that it is characteristic of glassy state. In an amorphous solid, Shuker and 

Gammon [18] showed that the first order Raman scattered Stokes intensity could be 

written as equation 7.7.

I (®,T) = C(co) g(co) [n(co, T )+  l]/co 7.7

where n(co, T) is the Bose-Einstein population factor, g(co) is the density of vibrational
2 ,

states (which in the Debye approximation is assumed to be equal to co ), and C(co) is 

a constant representing the average coupling of the incident light to the vibrational 

modes of frequency co. The reduced Raman intensity can then be written as equation 

7.8 [19]:

IR (co,T) = I (co,T) /co [n(co, T) + 1] = C(co) g(co) / co2 7.8

Thus the Boson peak can be related to a maximum either in the coupling coefficient or 

in the density of vibrational states.

Several models have been proposed to describe the shape of BP [18-27]. Most of 

them [18, 21-26] associate the BP with a structure correlation length, R, by the 

relation: R ~ Vt / comax, where comax is the frequency of the maximum of the BP 

expressed in wavenumber and Vt is the velocity of transverse sound waves. R assumes 

to be an average radius of ordered micro-regions within the glass [19], whether they 

are called blobs, clusters or chains of the size ~ 2R [28], In Martin-Berenig model, R 

can be obtained from the following relation as equation 7.9 [21].

R = Vt /27tCCOmax 7.9

where c is the velocity of light.

In tellurite glass, the band observed in the region around 40 cm ' 1 is assigned to the 

Boson peak. The BP is associated with light scattering due to acoustic-like vibrations
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of a disordered structure. We assume the sound velocity in tellurite glass is constant, 

Vt = 2.084 xlO5 cm/s [29]. Using sound velocity and BP frequency, the calculation of 

2R is shown in table 7.8 to 7.11 for different glasses.

Table 7.8 Values of structural correlation length in ternary (90-x) T e0 2 -  xNa20 -  

lOZnO ( x = 0, 10, 20 and 30) glass system

X=0 X=10 X=20 X=30

co ± 1  cm ’ 1 38 40 41 42

2R ±0.01 nm 0.58 0.55 0.54 0.53

Table 7.9 Values of structural correlation length in ternary 70Te02-20X-lOZnO (X - 

Li20 , Na20 , K20  and ZnO) glass system

ZnO Li20 Na20 k 2o

co ± 1  cm ' 1 48 44 40 35

2R ±0.01 nm 0.46 0.50 0.55 0.63

Table 7.10 Values o f structural correlation length in binary 80Te02-20X (X -  Na20 , 

NaCl and NaF) glass system

X = Na20 X = NaCl X = NaF

co ± 1  cm ' 1 36 38 40

2R ±0.01 nm 0.61 0.58 0.55

Table 7.11 Values o f structural correlation length in ternary 80Te02-10Na20-10X  (X 

= BaO, BaCl2 and BaF2) glass system

X = BaO X = BaCl2 X = BaF2

03 ± 1  cm ' 1 38 42 44

2R ±0.01 nm 0.58 0.53 0.50

The results in table 7.8 indicate that the diameter (2R) of the micro-region 

decreases with increasing Na20  content, it also demonstrates the glass network was 

broken. This is in good agreement with correspond to the results discussed before.
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The results in table 7.9 indicate that the 2R is the smallest when x is ZnO, glass has 

the smallest ordered micro-range. When x is alkali oxide, 2R increases following 

Li20 , Na20 , K20  sequence. Because bivalent ion can break the network more than 

monovalent ion, among alkali ions, Li+ has the strongest field strength and smallest 

ion radius, Na+ has the second, K+ has the least field strength and largest radius, thus 

the tendency to break the network in stronger in Li20  than in K20 , this results in the 

ordered micro-range increases following Li20 , Na20 , K20  sequence.

The results in table 7.10 and 7.11 indicate that fluorine is the strongest in breaking 

the chain Te0 4 -Te0 3  network, chlorine is the second. By comparing table 7.9 and 

7.11, bivalent Ba2+ is stronger than Na+ in breaking the chain Te0 4 -Te0 3  network.

From these tables, 2R is in the range 0.46 to 0.63 nm, this is a distance 

corresponding to more than one and less than two polyhedra in the dimensions of 

structure unit, i.e. the cluster size only accommodate very few closely packed tbps and 

tps. Medium range order in the tellurite glass is limited to at the most two structural 

units of tbp and tp, these observations are consistent with the proposal that the 

modifying oxide in T e0 2 matrix disrupts the three dimensional glass network, and 

creates defects, thus reducing the length of Te0 4  chains and hence the radius of 

micro-region.

From the depolarisation ratio in table 7.3 and 7.4, p at Boson peak is much higher 

than that in the phonon vibration range, it is about 3 times. Because Boson peak is 

associated with light scattering from accoustic-like vibrations of disordered structure, 

it surely has higher depolarisation ratio than that of vibration modes from ordered 

structure units. Compared p with each other at Boson peak, it is higher when x is ZnO 

and BaF2 than other modifiers. It shows the acoustic-like vibrations are also deformed 

more with higher valence cation and fluorine anion. This result is also similar to that 

in the phonon vibration range.
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7.5 Conclusions

1. In (90-x)Te02 - 9ZnO - xR20  - lEr20 3 ternary glass system (R20  = Li20 , Na20  

and K20 , x = 5, 10, 15, 20), as x increases, the density and Tg of glass decrease, 

the molar volume decreases when R20  is Li20  and Na20 , in K20  containing glass, 

molar volume increases, UV and IR cut-off shift to shorter wavelength. From 

Raman spectra of these glasses, the glass network is broken more and has more 

tbps transferring to tps when x increases.

2. In 70Te02 - 9ZnO - 20R20  - lEr20 3 ternary glass (R20  = Li20 , Na20  and K20), 

following Li20 , Na20  and K20  sequence, the density and Tg of glass decrease, the 

molar volume increases, and UV and IR cut-off shift to slightly shorter 

wavelength. From Raman spectra of these glasses, they are very similar to each 

other, the glass network connectivity slightly decreases and contains slightly more 

tps in K20  containing glass than in Li20  containing glass.

3. In (89-x)Te02-  xZnO -  10R20  ternary glass (R20  = Na20  and K20 , x = 4, 9, 14, 

19), as x increases, the density and molar volume of glass decrease, Tg slightly 

increases, UV and IR cut-off shift to shorter wavelength. From Raman spectra of 

glass, ZnO increases the glass network connectivity comparing alkali oxides.

4. When tellurite glass is modified by different valence cation oxides, from the 

results of Raman spectra, glass modifiers decrease network connectivity, glass 

former increases network connectivity, high valence cations create extra structure 

units.
2_

5. When tellurite glass is modified by halides, F' and C1‘ are supposed to replace 0  " 

or share LPE of tellurium to form tbp, tp in glass decreases, the connectivity of 

glass also decreases.

6 . Crystallisation kinetics has been analysed in two tellurite glasses using isothermal 

and non-isothermal measurement methods. The devitrification process in both 

binary and ternary glasses was seen to conform to the Johnson-Mehl-Avrami 

theory of crystal growth.

7. Boson peak shifts to different wavelengths when tellurite glass is modified by 

different kinds of oxides and halides. The results from analysing Boson peak are 

consistent with those in middle and high frequency range. The depolarisation in 

Boson peak is much higher than in other peaks.
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Chapter 8

Properties of Er3+ doped tellurite glasses

In this chapter, the main studies are on the changes in glass physical property when 

the glass contains Er2 0 3 , Er3+ ion absorption and fluorescence properties in tellurite 

glasses, the analysis of Judd-Ofelt calculation its interpretations. The Judd-Ofelt 

theory is used to calculate the radiative lifetimes, oscillator strengths and nonradiative 

rates. These properties are compared with different kinds of glass hosts such as the 

silicate, germanate and fluoride glasses.

8.1 Physical properties change with various Er3+ concentration

8.1.1 UV cutoff

Figure 8.1 shows the UV edge absorption in 80TeC)2-10ZnO-10Na20 tellurite glass 

doped with 0.3, 0.7, 1.1 and 2.5 wt% Er2C>3 . The peak at 378 nm is due to the 

absorption of Er3+ ions. With the increase of Er20 3  content, the UV edge shifts to 

longer wavelength. It means the bandgap of tellurite glass becomes smaller. In the 

same ternary glass system of UV edge bandgap studied in figure 7.26, it indicated that 

the bandgap became larger as the Na2 0  content increased in the glass. Therefore, the 

function of Er20 3 on bandgap is totally different from that of Na20  in tellurite glass. 

In order to study the function of Er2 0 3  in tellurite glass, density, molar volume and 

glass transition properties with different Er20 3 concentration are measured and 

discussed in the following parts.

8.1.2 Density and molar volume

Figure 8.2 shows the density and molar volume changes with various Er2C>3 

content in 80Te02-10ZnO-10Na20 tellurite glass. It indicates that with the increase of 

Er20 3 content, the densities of glass increase and molar volumes decrease. The 

scattered points are the measured results, the solid lines are linear fitted results. It 

shows that the density and molar volume change nearly linear. Therefore, with the 

increase of Er2 0 3 content, the glass structure becomes denser and more packed. There
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are two ranges, when the content of Er2 0 3  less than 1.5 wt%, Vm and density change 

very gently, when it is above 1.5 wt%, the changing rate is much faster. It means the 

glass structure could be affected more with high content of Er20 3 dopants. From 

molar volume and density change with various Na20  concentrations shown in figure 

7.1, Vm increases and density decreases with increasing Na20  concentration. 

Therefore, the behaviour of Er20 3 and Na20  on Vm and density in tellurite glass is 

also opposite each other.

8.1.3 Glass transition property

Figure 8.3 shows the glass transition and crystallisation temperature changes with 

various Er20 3 content in 80Te02-10ZnO-10Na20  tellurite glass. Tg is glass transition 

temperature, Tx is onset of crystallisation temperature, and Tp is peak crystallisation 

temperature. Tx-Tg shows the glass thermal stability. With increasing Er20 3 

concentration, all the characteristic temperatures Tg, Tx and Tp increase moderately 

and then level off. The glass stability Tx -Tg also shows the same trend. The increase
*5 i

of these properties is an indication of strong bonding between Er -ion and the host 

glass. From glass transition temperature change with various Na20  concentrations in 

figure 7.7, Tg decreases with increasing Na20  concentration. Compared with the 

thermal properties of Er20 3 and Na20  in tellurite glass, the role of Er20 3 is also 

opposite to that of Na20.

8.1.4 Discussion the role of Er20 3

From the results of UV edge, glass density and molar volume, glass transition 

temperature and thermal stability, these properties change in an opposite direction 

with increasing Er20 3 content compared with increasing Na20  content in T e0 2-Zn0- 

Na20  glass. The behaviour of Er20 3 in the network appears to be that it tries to 

connect the broken network. We can suggest that Er20 3 is an intermediate oxide in 

tellurite glass.

For rare-earth sesquioxide M20 3, there are three types of structure A, B and C. In 

A and B type of M20 3 structures, the metal atoms are the 7-coordinated. Crystal 

structure of Er20 3, it is C type in which the M atoms are 6 -coordinated and O atoms 

are 4 coordinated [1]. From Raman spectrum analysis of T e0 2-Zn0-Na20  glass, the
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structure consists of TeC>4 tbp, Te03+spolyhedra and TeC>3 tp units, the glass network 

was broken by modifier Na20 , it creates non-bridging oxygen site Te-O' or Te=0. As 

Er203 is an intermediate oxide, it can gather those broken structure units by [ErOe] 6- 

coordination. Er3+ ions exist in the gap of these different structure units. Figure 8.4 

shows the pattern of Er3+ ions in TZN tellurite glass. Due to the presence of LPE sites 

in tbp, tp and polyhedron structures, Er3+ ions in 6-fold co-ordination will pair with 

LPE sites, they may also be able to gather these non-bridging oxygen sites to improve 

the integrity of glass network. Therefore, with increasing Er203 content in glass, the 

packing density of the glass structure increases. This results in a higher glass density, 

lower molar volume, higher glass transition temperature and thermal stability.

8.2 Er3+ absorption spectrum in tellurite glass

For Er3+ doped glass, most of the interest pertains to the 4Ij3/2 —> 4Iis/2 transition at

1.5 |am, since this is the most important and most extensively studied one. It is a three 

level lasing system. For a three-level lasing system, not only the stimulated emission 

but also the absorption cross-section plays important roles in determining the 

performance of a device. Figure 3.2 shows the whole absorption spectrum of Er3+ ions 

in tellurite glass. As it is aimed that Er3+ doped Te02 glass will be used as an optical 

amplifier, absorption bands at three pump wavelength 800, 980, 1480 nm and the 

operating wavelength 1.53 |^m are more important than the rest of absorption peaks. 

These bands correspond to the energy transition originating from 4Iis/2 (ground level) 

-»  4Ig/2, 4In/2, 4Ii3/2 respectively. In tellurite glass, we concentrate on the study of Er3+ 

absorption spectrum in T e02-Zn0-R20  (R20  = Li20 , Na20  and K20 )  ternary glass 

system, and also examine the effect of chloride and fluoride modified tellurite glasses 

on the absorption spectrum. We also compared these absorption bands with heavy 

metal germanate, modified silicate and ZBLAN fluoride glasses. From the absorption 

spectra, the absorption cross-sections and peak ratios were calculated to show the 

sensitivity of absorption with the change of compositions.
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8.2.1 Er3+ absorption spectra in T e0 2-Zn0-R20  (R2O = Li20, Na20  and K20 )  

system glass

In Te0 2 -Zn0 -R2 0  (R2O = Li2 0 , Na2 0  and K2O) ternary glass system, the 

compositions change always follow the method of modified oxides replacing TeC>2 

while the glasses have the same concentration of Er2 0 3 .

When Na2<3 replaces Te0 2  in (90-x)TeO2-9ZnO-xNa2O-lEr2O3 (x-5, 10, 15, 20) 

glass, the glasses are designated by N l, N2, N3 and N4 respectively. Figure 8.5 shows 

the Er3+ ion absorption spectrum changes with various Na2 0  concentrations. From 

these absorption spectra, the absorption cross sections of these peaks have changed 

slightly, the shape of these absorption peaks keeps nearly the same. The cross sections 

of these peaks and the ratios of peaks at 800, 980 and 1495 nm against the peak at 

1532 nm were calculated, figure 8 . 6  and 8.7 show these calculated results.

Wavelength nm
Fig. 8.5 Er3+ ion absorption spectra in (90-x)Te02-xNa20-9ZnC)-1 Er20 3 

(x=5, 10,15 and 20) glass
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When Li20  replaces T e02 in (90-x)TeO2-9ZnO-xLi2O -lEr2O3 (x =5, 10, 15, 20) 

glass, the glasses are designated by LI, L2, L3 and L4 respectively. Figure 8.8 and 8.9 

show the absorption cross-sections of these four peaks and the peak ratios changes 

with various concentrations.

K20  was also studied in (90-x)TeO2-9ZnO-xK2O-lEr2O3 (x = 5, 10, 15, 20) glass, 

the glasses are also designated by K0, K l, K2 and K3 respectively. Figure 8.10 and 

8.11 show the absorption cross-sections of these four peaks and the peak ratios 

changes with various concentrations.

From figure 8.6, 8.8, 8.10, they all show the Er3+ absorption cross-sections of these 

four peaks decrease gently with increasing alkali ion concentrations. For these three 

pumping wavelengths, the absorption cross-section at 800 nm is less than half of that 

at 980 nm, and the 980 nm peak is nearly half of that at 1495 nm. From equation 3.11, 

the oscillator strength is very much dependent on the refractive index of glass. When 

Li20 , Na20  and K20  replace T e02, the refractive index of glass decrease, this will 

certainly result in the decrease of the cross-section. It is evident from Raman spectrum 

studies that when the alkali ions substitute T e02, the structure becomes less closed 

packed with more non-bridging oxygen and [Te03] tp units, therefore, the interaction 

between ErJT ions and structure become weaker, this will also result in the decrease of 

absorption cross-section.

From figure 8.7, 8.9, 8.11, the ratios of these peaks change very gently with 

increasing alkali ion concentration, Isoo/Ii532 and I980/I1532 remain virtually unchanged 

although the I14 9 5 /I15 3 2  ratio decreases slightly. These two peaks at 1495 and 1532 nm 

are from the same energy level transition but different sub-levels, the peak ratio 

between these two peaks reflect the distribution of these sub-levels, it decides the 

broadness and flatness of this most important transition. The decrease of the ratio is 

also due to the weaker interaction between Er3+ ions and glass structure units. The 

reason for the absorption cross-sections at 800 and 980 nm being less sensitive to the 

composition than 1495 and 1532 nm is that the energy levels (4Ici/2 and 4In/2) have 

smaller J (total angular momentum), thus the Starks splitting levels are fewer than this 

4Ii3/2 level. Especially for the 4I9/2 level (800 nm), the absorption cross-section and
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peak ratio are nearly the same when the concentration of modifier changes or there are 

different kind of modifiers in tellurite glass.

The effect of alkali group of oxides on absorption spectra of ternary 70TeC>2- 

9ZnO-20 R.2 0 -lE r2C>3 (R2O = U 2O, Na2 0  and K2O) glass is compared in figure 8.12. 

It shows the Er3+ ion absorption spectra change with different kind of alkali ions. The 

absorption cross-sections of these four peaks and the peak ratio changes against the 

field strength of alkali ions are also shown in figure 8.13 and 8.14, respectively. From 

these figures, the absorption shapes are very similar in different alkali ion glasses, the 

cross-sections of these 4 peaks decrease gently following Li2 0 , Na2 0  and K2O 

sequence ( or increase as the field strength of alkali ions increases), the peak ratio of 

I14 9 5 /I15 3 2  also decreases while I980/I1532 and I800/I1532 change much less. The main 

reason is from the refractive index change of glass, with Li20 , the glass has the 

highest density, smallest molar volume, therefore, it has the largest refractive index.

In the ternary glass system, Er3+ absorption properties are also measured with 

different ZnO concentration. When ZnO replaces Te0 2  in (89-x)Te02-xZnO-10Na20- 

lEr2 0 3  (x = 4, 9, 14, 19) glass, the glasses were numbered as Z l, Z2, Z3 and Z4 

respectively. Figure 8.15 and 8.16 show the absorption cross-sections of these four 

peaks and the peak ratio changes with various ZnO concentration, respectively.

The cross-sections and peak ratios change very little, it shows Er3+ absorption 

spectrum does not have the same sensitivity with the change of alkali ions. Because 

ZnO is network intermediate, it breaks the network structure not so strongly as alkali 

oxides, the variation of glass structure changes less and the refractive index changes 

less. Therefore, the interaction between Er3+ ions with the glass has less change.

8.2.2 Er3+ absorption spectra in tellurite glass modified by heavy metal oxides

In chapter 5 and 6 , we discussed Er3+ ion absorption and fluorescent properties in 

germanate and silicate glasses modified by heavy metal oxides (HMO) and fluorides. 

In tellurite glasses, HMO such as PbO, BaO, Bi20 3 and W 0 3 are added in and the 

glass compositions are designed as:
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TEWO: 70Te02-9Bi20 3-20 W 0 3-lE r20 3 

TEB APB: 70Te02- 14BaO-15PbO-1 Er20 3
3+ > ^

The Er ion absorption properties in HMO tellurite glass are used to compare with 

that in sodium zinc tellurite glass,

N4: 70Te02-9ZnO-20Na20 -lE r20 3

Table 8.1 illustrates the absorption cross-sections of these four peaks and the peak 

ratios changes in these three samples. Er absorption cross -sections and peak ratios 

in TEB APB and N4 are very close, in TEWO, the cross-sections at 1495 and 980 nm 

are slightly higher, at the other two peaks, the cross-sections are also very close with 

other samples. Especially for the increasing ratio of Ii495/Ii532, it means the interaction 

of Er3+ ions with glass structure becomes stronger with the addition of Bi20 3 and 

W 03. From the Raman spectra in figure 7.39, W 0 3 comes into the glass network, 

Bi20 3 has the same role with Ga20 3 in glass formation, these two HMO increased the 

integrity of glass, therefore, it increases the interaction between Er3+ ions with glass 

structure and provide more sites for Er3+ ions.

Q I
Table 8.1 Er ion absorption cross-sections and peak ratio in tellurite glass modified

by HMO

glass Absorption cross-section ±0.05*10'21cm2 Peak ratio ±0.01

1532 nm 1495 nm 980 nm 800 nm I14 9 5 /I15 3 2 I980/I1532 I800/I1532

TEWO 7.78 5.73 3.36 1.18 0.74 0.43 0.15

TEBAPB 7.70 5.20 2.96 1.26 0 . 6 8 0.38 0.16

N4 7.50 5.04 2.92 1 .2 1 0.67 0.39 0.16

8.2.3 Er3+ absorption spectra in tellurite glass modified by chloride and fluoride

In Er3+ doped tellurite glass, Er3+ ion absorption properties were measured when 

glass was modified by chloride and fluoride. In 80.5Te02-10Na20-9X-0.5Er203 (X = 

BaO, BaCl2 and BaF2 ) glass, figure 8.17 shows the Er3+ ion absorption spectrum 

changes with modifiers BaO, BaCl2 and BaF2. The absorption cross-sections of these 

four peaks and the peak ratio changes against Fa, which is defined in chapter 7, are 

also shown in figure 8.18 and 8.19. They show that the absorption shapes are very 

similar, the cross-sections of these 4 peaks decrease gently following BaO, BaCl2 and
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Field strength of alkali ions

Fig. 8.14 Er3+ ion absorption peak ratio change in 
70TeO2-9ZnO-2()R2O-1Er2O3 (R20=Li20, Na20  and K20) glass

—■— 1532 nm 
1495 nm 

• - A - -  980 nm 
800 nm

ZnO concentration mol%

Fig. 8.15 Er3+ ion absorption cross-section change
with various ZnO concentration in tellurite glass
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*1495^1532

9̂80̂ 1532
A | /1

980 1532

ZnO concentration mol%
Fig. 8.16 Er3+ ion absorption peak ratio change with 

various ZnO concentration in tellurite glass

Wavelength nm
Fig. 8.17 Er3+ ion absorption spectra in 80.5Te02-10Na20-9X-0.5Er20 3 

(X=BaO, BaCI2 and BaF2) glass
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—b— 1532 nm 
-------1495 nm

a  ■ 980 nm 
— -  800 nm

Fa of different modifiers 

g. 8.18 Er3+ ion absorption cross-section in 80.5Te02 
-10Na.O-9X-0.5Er O, (X=BaO, BaCL and BaF,) glassc. 2 o 2 2

F of different modifiers

^1495 1532

*  9̂80^1532 
A | /1

980 1532

Fig. 8-19 Er3+ ion absorption peak ratio in 80.5Te02-10Na20
-9X-0.5Er20 3 (X=BaO, BaCI2 and BaF2) glass
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BaF2 sequence (as Fa increases), the peak ratios decrease more gently. These mean 

Er3+ ions mainly connect with oxygen by forming [Er06], chloride and fluoride ions 

connect with Te4+ to modify the strength of crystal field. Therefore the ionicity o f the 

glass will increase. From the Raman spectra, fluorine ions can break the network more 

than oxygen and chlorine ions, this resulted in more non-bridging oxygen and looser 

structure to decrease the interaction between Er3+ ions with glass structure. The effect 

o f chlorine ions is between fluorine and oxygen ions. Therefore, the absorption cross- 

sections gently decrease following BaO, BaC^ and BaF2 sequence.

8.2.4 Er3+ absorption spectra in different kinds of glass

The absorption properties of Er3+ ion have been discussed in different kinds of 

tellurite glasses above. In chapter 5 and 6, these properties in HMO germanate and 

modified silicate glasses were also discussed respectively. ZBLAN is a very typical 

fluoride glass. In this part, Er3+ ion absorption properties in these four kinds o f glasses 

will be compared and discussed. Figure 8.20 shows the absorption spectra in these 

four glasses. The absorption cross-sections of these four peaks and the peak ratio 

changes are also shown in table 8.2.

Wavelength nm

Fig. 8.20 Er3+ ion absorption spectra in different kind of glasses
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Table 8.2 Er3+ ion absorption cross-sections and peak ratio in tellurite (N2), HMO 

germanate (GE3), modified silicate (193) and ZBLAN fluoride glasses.

glass
21 2

Absorption cross-section ±0.05* 10' cm Peak ratio ±0.01

1532 nm 1495 nm 980 nm 800 nm I1495/11532 I 9 8 0 / I 1 5 3 2 I 800/ I l 532

T e0 2 (N2) 8.39 5.96 3.46 1.39 0.71 0.41 0.17

HMO G e02 7.40 3.88 2.26 0.97 0.52 0.31 0.13

Modified

S i0 2

7.60 3.70 2.13 0.89 0.49 0.28 0.12

ZBLAN 5.06 4.35 2.30 0.55 0.86 0.46 0.11

From figure 8.20, the main concern is about 1500 nm peak, there are shifts in the 

peak position, the spectra of Er3+ ions in modified silicate and HMO germanate 

glasses are very similar, including the shape and the height. They have the longest 

absorption peak wavelength, the heights are much higher than ZBLAN and lower than 

tellurite glass. Fluoride ZBLAN glass has the shortest absorption peak wavelength, 

and the absorption peak in tellurite follows the ZBLAN. From table 8.2, the cross- 

sections and peak ratios decrease in oxide glasses in the following order: Te0 2 , Ge0 2  

and Si02- In ZBLAN fluoride glass, the cross sections at 1532 and 800 nm are the 

lowest, at the shoulder 1495 and 800 nm, they are higher than that in G e02 and Si02 

and lower than that in Te02. The ratio of I1495/I1532 is the highest in ZBLAN, it means 

the absorption spectrum shape is the flattest in ZBLAN. In order to discuss the 

property change in these four kinds o f glasses, the bond properties of glass network 

former such as bond length, bond strength, bond ionicity and electronegativity of 

elements are listed in table 8.3. The bond ionicity is calculated from the difference of 

electronegativity [2].
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Table 8-3 Bond properties o f glass network former in the 4 kinds o f glasses

Properties Si-0 G e-0 Te-0 Zr-F

Bond length A 1.60 1.66 2.10 1.94

Bond strength 27Ja1 2.6 2.4 1.5 1.7

electronegativity Xa 3.5 3.5 3.5 4.0

electronegativity Xb 1.8 1.8 2.1 1.4

Xa- X b 1.7 1.7 1.4 2.6

Ionic character % 48 48 42 80

Phonon energy cm '1 -1100 -900 650-750 -600

In ZBLAN fluoride glass, it is ionic bond glass, in oxide glasses, they are all 

covalent-ionic bonds, a slightly more covalent. In an ionic bond the electrons are 

highly localised because electrons are donated i.e. F is an electron acceptor. In a 

covalent bond, the electrons are not localised as they are shared. The tendency for 

delocalisation depends upon the nature of cation/anion interaction which is 

determined the by the ionicity and covalence o f bond or the electronegativity o f the 

elements. Because of the delocalised electrons, the rare earth ion electron 4f-shell 

experiences a greater dipole/dipole interaction which affects the strengths of
o I

absorption and emission spectra. From this point, the interaction between Er ion and 

glass is weaker in the ZBLAN fluoride glass than in oxide glasses.

Figure 8.21 shows the electron-dipole interaction pattern between Er3+ ion and
3 +  t

glasses. Because the Stark split is dependent on the interaction between the Er ion 

and the glass former unit, the electron-dipole or multipole of Er3+ ion will determine 

this effect. In ZBLAN fluoride glass, the electron-dipole momentum PI of Er-F' is 

smaller than that o f Er-O2’, this also results in a weaker interaction. The weaker 

interaction in fluoride glass will cause the narrower Stark split which was observed by 

Zemon [3]. The smaller absorption cross-sections o f Er3+ ion in ZBLAN fluoride glass 

are also the results of the weaker interaction than in oxide glasses. The wavelength 

blue shifts in fluoride glass however more strongly dependent on the anionic field 

which in case o f F‘ is maximum.
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Among oxide glasses such as modified silicate (193), HMO germanate (GE3) 

tellurite (N2) glasses, tellurite glass is less ionic due to the presence of LPE than tha 

silicate and germanate glasses from table 8.3, consequently, the electron 

delocalisation will be greater than in silicate and germanate glasses, this results in 

stronger interaction between Er3+ ion and tellurite glass. From the quadripole in figure 

8.21, because o f the bond strength change following Si-0 > G e-0 > Te-O, the 

electron-dipole moment P2 in silicate glass is the highest and in tellurite glass is the 

lowest. The phonon energy derived from Raman spectra provides the evidence. When 

Er3+ ions form multipole in the non-bridge oxygen sites, the electron-dipole moment 

PI will be the highest in tellurite glass. Thus the interaction o f between Er31 ions and 

glass former units will be the strongest in tellurite glass. In germanate glass is the 

second and the third is in silicate glass. Therefore, the Er3+ ion absorption cross- 

sections and peak ratio are the highest in tellurite glass, in germanate glass is a 

slightly higher than in silicate glass.

(A) Dipole (B) Quadripole/multipole

Er F /0  Er Oxygen Si, Ge, Te

Figure 8.21 Er ion forms dipole and Quadriple in different glasses
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8.3 Er3+ fluorescence properties in tellurite glass

The amplifier in the 3rd communication window is the \ y - 2. —> 4Ii5/2 transition at

1.5 jam, consequently our study of Er3+ fluorescence properties in tellurite glass are 

concentrated on the metastable state 4Ii3/2 . The fluorescence properties include the 

lifetime of 4Ii3/2 , emission cross-section, oscillator strength and spectrum of the 4In /2 

—> 4115/2 transition. These properties will be measured in the same glass with various 

Er3+ concentrations and different glass compositions with the constant Er3+ 

concentration.

8.3.1 Er3+ fluorescence properties in a tellurite glass with different Er3+ ion 

concentration

8.3.1.1 Emission spectra

In the ternary 80Te02-10ZnC)-10Na20 tellurite glass, the concentration of 

was varied. Figure 8.22 shows the normalised emission spectra o f Er3+ ions in 

different concentrations. With increasing E^O j concentration from 1,000 ppm to

50.000 ppm, the emission spectra become slightly broader. The spectrum shape is 

very similar, the peak position is the same. The shoulders around 1510 and 1560 nm 

are rising gently.

For a three-level system, McCumber theory has been successful in providing not 

only spectral information but also the absolute cross-sections. For the 4Ii3/2 —> 4Ii5/2 

transition in fluorophosphate glass, the measured stimulated emission cross-section 

with that calculated from the absorption cross-section using the McCumber theory are 

in excellent agreement [4], In the 80Te02-10ZnO-10Na20 tellurite glass doped with

3.000 Er2C>3 ppm, figure 8.23 shows the measured absorption cross-section and 

emission spectrum. The emission cross-section is calculated from the McCumber 

theory. The shapes of the measured and calculated emission spectra are in good 

agreement although the shoulder around 1510 nm is a little lower from the McCumber 

theory. The maximum calculated emission cross-section is slightly higher than 

absorption cross-section.
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Wavelength nm

Fig. 8.22 Er3+ ion emission spectra with various Er20 3 
concentrations in 80Te2O-10Na2O-1QZnO glass

Wavelength nm
Fig. 8.23 Er3+ ion absorption and emission cross-sections measured 

and calculated from McCumber theory in tellurite glass
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In Er3+ ion doped tellurite glass, we find there is very strong re-absorption and re­

emission due to 3-level transitions and a large overlap between absorption and 

emission spectra. Figure 8.24 shows the normalised emission spectra of tellurite glass 

doped with 35,000 Er20 3 ppm when the pumping laser is launched at different places 

o f the sample. When the pumping laser is launched very near the sample surface, the
• • 3 +emission signals are collected near the surface, the spectrum is like the very low Er 

ion concentration emission spectrum shape. When the pumping laser is launched at 

the middle o f the sample, the emission signals are also collected near the surface, the 

emission spectrum is totally deformed. The spectrum shifts to longer wavelengths. 

This is caused by the re-absorption and re-emission of radiation by Er3+ ions. Because 

at 1.5 pm emission and absorption occur at the same energy levels with different sub- 

levels, when the stimulated fluorescent signals travel in the unpumped area, they are 

absorbed by the ions at the ground state \ s a  to excite these ions to the metastable 

state 4Ii3/2 , these ions then re-emit 1.5 pm signals and come to the ground state. From 

the Er3+ ion absorption and emission spectra in figure 8.23, at short wavelength, the 

absorption cross-section is stronger than the emission; at long wavelength, emission 

cross-section is stronger than absorption. Therefore, the re-emission occurs in the long 

wavelength, thus the peak and the shape o f emission spectrum shift to longer 

wavelengths, the shape becomes more flat and broader.

8.3.1.2 Oscillator strengths and radiative rate

From chapter 3, the oscillator strength was described in terms o f the integrated 

absorption cross-section from the ground multiplet to some higher multiplet. The 

oscillator strengths of absorption transitions are calculated using Equation 3.2 from 

the absorption spectrum of Er3+ ion doped tellurite glass. All transitions are assumed 

to be electric dipole in nature, except for the 4115/2 —» 4Ii3/2 transition, which has a 

substantial magnetic dipole component. Using Judd-Ofelt theory, parameters ^ 2, ^ 4  

and Q6 are determined by a best fit of calculated and observed oscillator strengths 

from Equation 3.11. These parameters may then be used to calculate the electric 

dipole contribution to the total spontaneous-emission probabilities. Figure 8.25 shows 

how these parameters change with different Er2 0 3  concentration. Although Q 4 and Q6 

remain virtually unchanged, the values of Q2 decrease very slightly with increasing
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Pump near surface 
pump in the middle

Wavelength nm 
Fig. 8.24 Er3+ ion emission spectra with 3.5 wt% Er20 3 

in tellurite glass with different pump position

Er20 3 Concentration wt%

Fig. 8-25 Jud-Ofelt parameters in tellurite glass with
various Er20 3 concentrations
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Er2C>3 concentration. These three intensity parameters Qt are host dependent and are 

determined for a given combination o f dopant and host. There is no clear physical 

meaning to the intensity parameters other than that Q 2 is related with the degree of 

covalency of materials: ionic materials like fluorides have very small values of Q 2 > 

while covalent materials like silicates have large values. The slight decrease of Q 2 

give an evidence that Er3+ ions improve the integrity o f glass network which is 

consistent with the change of molar volume and thermal property in tellurite glasses.

Table 8.4 illustrates the measured and calculated oscillator strengths for all 

absorption levels, the radiative rate for the 4Ii3/2 -»  4Ii5/2 transition and Judd-Ofelt 

parameters for 4 selected different Er203 concentrations. With increasing Er2C>3 

concentration, the measured oscillator strength for 4Ii5/2 —> 4Ii3/2 transition decreases 

slightly, the magnetic dipole oscillator strength decreases, the electric dipole oscillator 

strength increases, the magnetic dipole accounts for about 25% to 35% of total 

oscillator strength. For the other transitions, the measured and calculated electric 

dipole oscillator strengths are very close. The calculated radiative rate for 4113/2 -»  

4 1 15/2 transition increases slightly but they are very close for different Er2 0 3  

concentration.

8.3.1.3 Er3+ concentration quenching and OH~~ impurity effect

Concentration quenching is the reduction in the quantum efficiency o f an ion with 

increasing concentration o f that ion. It usually manifests itself as a shortening of the 

excited state lifetime. Figure 8.26 shows the lifetime of Er3+ ion at 4113/2 level with 

different concentration in the same tellurite glass with different OH" concentration. 

Er20 3  concentration varied from 500 ppm to 46,000 ppm. The OH" ion concentration 

was changed by melting the glass in different atmospheres from air to dry air. Figure 

8.27 shows the OH" content in these two melting conditions. There is a very broad 

OH" absorption peak near 3.3 p.m in tellurite glass. This peak is much broader and at 

longer wavelength than that in silicate and fluoride glasses, in which the wavelength 

is 2.75 and 2.87 |j.m, respectively [5, 6], The lifetimes were measured by fitting the 

decay rate from 4Ii3/2 lasing level. It was found to be a single exponential function in 

all samples, regardless o f E r>+ ion concentration. One example of the goodness o f a 

single exponential fit is shown in figure 8.28.
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Er20 3 concentration wt%

Fig. 8.26 Lifetimes for 4l13/2 - 4l15/2 transition at 1.5 jam as
a function of the Er2Oa concentration in tellurite glass

Wavelength nm

Fig. 8.27 OH' absorption spectra in tellurite glass 
melted in different atmosphare
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Time ms

Fig. 8.28 Fluorescence decay of Er3+ ion in tellurite 
glass (N2) at 1.5

OH attenuation cm’1

Fig. 8.29 Lifeimes for 4l13/2 - 4l15/2 transition at 1.5 (i m as
a function of the OH concentration in tellurite glass
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Table 8.4 Measured and calculated oscillator strengths of Er3+ ion and calculated 

radiative rate 4In /2 -»  4Ii5/2 in the same host with different concentration. All 

transitions for oscillator strength are from the 4Ii5/2 level to the levels indicated.

level Total Oscillator strength (* 10s)

0.3 wt% Er2 0 3 0.7 wt% Er2 0 3 1.5 wt% Er2 0 3 3.5 wt% Er2 0 3

Meas ±5 Calc Meas

±5

Calc Meas

±5

Calc Meas

±5

Calc

4Il3/2

Magnetic dipole 

Electric dipole

264

85

179

259

77

182

249

68

181

247

59

188

4Il 1/2 89 89 91 93 85 90 84 91

% /2 34 37 35 37 38 39 42 42

^F 9//2 337 266 323 271 313 277 307 294

% /2 56 65 65 69 70 68 77 71

2Hi 1/2 1352 1376 1373 1382 1272 1264 1199 1183

4F7/2 243 259 232 270 227 270 239 284

Radiative rate ± 5 

4Il3/2 - »  4115/2 (s'*)

237 248 247 256

Q2 ±0.1(10'2°cm2) 6.2 6.2 5.6 5.1

Q4 ±0.1 (10'20cm2) 1.3 1.3 1.3 1.4

Q 6 ±0.1 (10"20cm2) 1.1 1.1 1.2 1.2

From figure 8.26, the two lifetime quenching curves have two common characters, 

firstly the lifetimes increased at low Er2 0 3  concentration, secondly they have a 

maximum point which represents the longest lifetime After the peak, the lifetime 

decreases with increasing E^Ch concentration, the quenching rates are very slow. The 

difference between the two OH" concentration data is that the peak has shifted from

11,000 ppm to 5,000 ppm of Er203 with higher OH- concentration, and the lifetimes 

are much longer when glass contains lower concentration o f OH- . For lower OH“ 

concentration, the maximum lifetime o f ~7.6 ms was observed at around 11,000 ppm 

Er2 0 3 . With the increase in OH- ion concentration in host glass, the peak shifts to
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lower concentration around 5,000 ppm having lifetime of -4 .9  ms. This is very 

different from Er3+ in silicate glass. In silicate glass, the lifetime drops continuously as 

the concentration of Er20 3  increases. Normally, the non-radiative rate should increase 

with the increase of Er3+ ion concentration, it is proportional to the square of dopant 

concentration which is shown in equation 8.1. If there is impurity o f OH" in glass, the 

impurity quenching rate is also proportional to the impurity and Er3+ ion 

concentrations which the relation is shown in equation 8.2. From these two equations, 

the measured decay rate can be expressed as equation 8.3.

s/f ~ /'j2 8.1
quench I s  Er

G )  quench ~  C g r  x  C o H  8 2

COucas COm(i  +  A X Q +  B  X X Q q h

• . . .  3+
where CDmeas ' s the measured decay rate, corad is the calculated radiative rate, Cei- is Er 

ion concentration, Coh is OH' ion concentration, A and B are constants.

For this Er3+ doped tellurite glass, Er3+ ion concentration quenching does not 

follow the above equations. The measured radiative rate is even lower than the rate 

calculated from Jud-Ofelt theory. This is probably related to the special structure of 

tellurite glass, and will be discussed later.

The data analysis confirms that there is an absence of Er3+-ion clustering even at 

high doping level. For Er3+-doped glass, concentration quenching at 4Ii3/2 level is 

mainly from up-conversion process which was shown in figure 4.5. At concentration 

of Er3+-ions less than 10,000 ppm, the sharp increase in the lifetime o f 4In/2 level 

confirms that neither the OH“ activated quenching nor the ion-ion up-conversion is a 

dominating factor. Over 15,000 ppm, the lifetime drops more gently in low-OH” glass 

than in a high-OH~ glass, indicating that the ion-ion up-conversion process dominates 

only after 15,000ppm. The lower values o f the measured lifetimes in high-OIT glass
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are not unexpected, which is due to the increase in OH ion induced quenching. The 

following part will show the effect of OH" ion concentration on the lifetime.

The lifetimes were measured in tellurite glasses with 1 mol% Er2 0 3  at various 

O IF  concentrations. Figure 8.29 shows the OH" concentration quenching. Because we 

do not know OH" extinction coefficient in tellurite glass, the OH- attenuation was 

used to represent OH- concentration. When OH" concentration increases, the lifetime 

decreases fast at the beginning, then it levels off. Figure 8.30 show the measured 

decay rates change as a function of the OH" concentration, it is linear relation with 

OH" concentration following equation 8.2. If there is not OH” impurity in glass, the
3+ '

lifetime could be about 20 ms in maximum in this tellurite glass without Er ion 

concentration quenching.

The OH" quenching mechanism is a deleterious process which involves energy 

transfer to the OH" complex and acts as a trap. It is extremely effective at quenching 

excited Er3+ ions. At this OH" concentration level, this process can occur through 

direct transfer from the excited ions to OH" group. By the comparing the data in 

figures 8.26 and 8.29, O IF  concentration quenching rate is much faster than Er ion 

quenching rate in the low concentration, which points out to the detrimental effect o f 

the presence o f OH” ions in tellurite glass for designing an Er3+ doped optical fibre 

amplifier.

OH attenuation cm’1

Fig. 8.30 Measured total rate for V „ „  - 4I transition at 1.5 am as
w  13 /2  1 b /2  1

a function of the OH concentration in tellurite glass
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8.3.2 Er3+ fluorescence properties in tellurite glass with different composition 

and the same Er3+ ion concentration

8.3.2.1 Er3+ emission spectra and lifetimes in TeC>2-Zn0-R20 (R2O = U 2O, Na20 

and K2O) system glass

In this Te02-Zn0-R.20 (R2O = U 2O, Na20 and K2O) ternary glass system, the
*7 I t

glass properties such as density, molar volume, IR, UV absorption edge and Er ion 

absorption spectra with different content o f Li20, Na20, K2O and ZnO were studied 

before. Fluorescent properties of Er3+ ion such as emission spectrum and lifetime in 

these kinds of glass have also been measured. The following part is going to describe 

these properties.

As various alkali oxides substitute Te02, the Er3+ ion emission spectrum changes 

in (9 C)-x)Te0 2 -9 Zn0 -xR2 0 -lE r2 0 3  (R2O = Na20, K2O and U 2O; x = 5, 10, 15 and 

20) glasses are shown in figure 8.31, 8.32 and 8.33 respectively.

When ZnO replaces Te02 in (85-x)Te02-xZnO-10Na20-lEr203 (x = 4, 9, 14, 19) 

glass, the glasses are designated as Z l, Z2, Z3 and Z4, respectively. Figure 8.34 

shows the Er3+ ion emission spectrum changes with various ZnO concentrations.

1

In order to compare the effect o f different alkali ions on the Er ion emission 

spectrum, figure 8.35 shows the Er34 ion emission spectrum changes with different 

kind of alkali ions in 70Te02-9ZnO-20R20-lEr203 (R2O = Li20, Na20 and K2O) 

glass.

From figure 8.31 and 8.32, with increasing Na20 and K2O concentrations, the 

changes o f Er3+ ion emission spectrum show the same trend: the spectrum shape is 

similar, the shoulders around 1510 and 1560 nm coming down and the spectrum 

becoming narrower.

From figure 8.33 and 8.34, with increasing Li20 and ZnO concentrations in this
1  1 '

glass system, the Er ion emission spectra are nearly same, there is little change when 

U 2O and ZnO replace Te02, which means the interaction between Er3+ ion with glass 

host has little change.
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Wavelength nm
Fig 8.31 Er3+ ion emission spectra with various Na20  concentration in 

(90-x)TeO2-9ZnO-xNa2O-1Er2O3 (x=5, 10, 15 and 20) glass

Wavelength nm
Fig. 8.32 Er3+ ion emission spectra with various K20  concentration in 

(90-x)TeO2-9ZnO-xK2O-1Er2O3 (x=5, 10, 15 and 20) glass
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Wavelength nm
Fig. 8.33 Er3+ ion emission spectra with various Li20  concentration 

in (90-x)TeO2-9ZnO-xl_i2O-1Er2O3 (x=10, 15 and 20) glass

Wavelength nm
Fig. 8.34 Er3+ ion emission spectra with various ZnO concentration in 

(90-x)TeO2-xZnO-1QNa2O-1 Er20 3 (x=4, 9, 14 and 19) glass
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Wavelength nm
Fig. 8.35 Er3+ ion emission spectra with various alkali oxides in 

70Te02-9ZnO-20R20-1Er20 3 (R20=Li20 , NazO and K20) glass

From figure 8.35, the Er3+ ion emission spectrum become narrower following 

Li20 , Na20  and K2O in this sequence.

For all these samples, the Judd-Ofelt parameters and lifetimes can be calculated 

from Judd-Ofelt theory in equation 3.11 and 3.6, non-radiative rate at 4Ii3/2 level can 

also be calculated from equation 3.19. Table 8.5 shows all these calculated data and 

measured lifetime. From this table, the Judd-Ofelt parameters Q2, ^ 4, ^ 6  are between 

4.4-6.6 , 1.3-2.0, 0.9-1.5x1 O'20 cm2, respectively. For lmol% Er203 doped tellurite 

glass, the calculated lifetimes are between 3.9-5.3 ms, the measured lifetimes are 

between 3.0-3.7 ms, non-radiative decay rates including Er3+ ion up-conversion and 

OH" quenching rate are between 30-90 s '1, these non-radiative rates are about 20 to 

45% of total radiative rate. For different compositions instead of Te02, the lifetime 

change is not as sensitive as that of absorption and emission spectra, they are similar 

to each other. There are two reasons, one is the lifetime of Er3+ ion at 4Ii3/2 level is 

decided by Er3+ ion radiative rate which is dependent on the Er3+ ion, and by impurity 

OH' concentrations. In these glasses, they are melted in the same condition and have 

the same Er203 concentration, therefore the impurity OH' is also nearly the same in all 

of these glasses. The other reason is that Judd-Ofelt theory has about 10-15% error.
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But there is still a trend that the calculated and measured lifetimes increase with 

increasing alkali oxides and ZnO concentration in tellurite glass because the 

absorption and emission cross-sections and refractive index decrease in glass.

Table 8-5 Judd-Ofelt parameters, calculated lifetime, measured lifetime and energy

transfer rate for \ y 2 -»  4115/2 level in Er3+ ion doped tellurite glass.

Sample q 2 +0.1

1 O'20 cm2

Q4 +0.1 

1 O'20 cm2

+0.1

10"20 cm2

"tcalc

±0.3ms

T-meas

±0.05ms

Wx ± 10 

s' 1

N1 5.8 1.9 1.5 4.0 3.12 71

N2 5.8 1.7 1.2 3.9 3.25 53

N3 6.1 1.5 1.1 4.2 3.06 87

N4 5.6 1.4 1.1 4.6 3.37 81

KO 5.8 1.8 1.3 3.9 3.42 40

K1 6.0 1.5 1.1 4.1 3.08 82

K2 5.9 1.4 1.0 4.8 3.38 89

K3 6.5 1.3 0.9 5.2 3.63 85

L2 4.4 1.7 1.3 3.7 3.02 65

L3 5.7 1.5 1.4 3.5 3.13 41

L4 5.5 1.6 1.2 3.8 3.28 46

Z1 5.9 1.4 1.2 3.9 3.27 53

Z2 5.9 1.7 1.2 3.8 3.30 46

Z3 6.0 1.4 1.2 4.1 3.44 46

Z4 6.2 1.4 1.2 3.9 3.50 33

8.3.2.2 Er3+ emission spectra and lifetimes in tellurite glass modified by heavy 

metal oxides

For heavy metal oxides (HMO) modified Er3+ ion doped tellurite glass, the 

absorption spectra have been studied before. The fluorescent properties in these kinds 

o f glass will be discussed in the following part. Figure 8.36 shows the emission 

spectra o f Er3+ ion in HMO tellurite glass TEWO and TEBAPB, Zinc Sodium tellurite
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ternary system glass N4, and another two binary glass system: Sodium tellurite and 

Zinc tellurite glasses.

TEWO: 70Te02 - 9Bi20 3 - 20 W 0 3 - lE r20 3 

TEBAPB: 70Te02- 14BaO - 15PbO - lE r20 3 

N4: 7 0TeO2 - 9ZnO - 20Na20  - 1 Er20 3 

TEZNO: 70Te02 - 29ZnO - lE r20 3 

TENAO: 80Te02- 19Na20  - lE r20 3

Wavelength nm
Fig. 8.36 Er3+ ion emission spectra in different tellurite glasses

From these spectra, N4 and TENAO are nearly the same, it is like 10 mol% ZnO 

instead of T e0 2, we have already seen there is little change of the spectra from Z1 to 

Z4. In binary TEZNO glass which ZnO replaces all Na20 , the left shoulder o f 

spectrum becomes smooth, the right shoulder rises, the spectrum becomes much 

wider. When HMO replaces ZnO and Na20 , the spectra from TEBAPB and TEWO 

glass are wider than N4, by rising both parts o f the peak compared to the emission 

observed in N4. From the emission bandwidth, decreases in the following order: 

TEWO (FWHM = 72 nm), TEZNO (FWHM = 67 nm), TEBAPB (FWHM = 56 nm), 

TENAO (FWHM = 45 nm) and N4 (FWHM = 44 nm).
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The reason for this kind of change is that WO3 , Bi2 0 3 , ZnO and PbO are glass 

former or intermediate oxides, BaO and Na20  are glass modifier oxides, these oxides 

affect the absorption spectra, which shows the ratio o f I 1 4 9 5 / I 1 5 3 2  is higher when glass 

contains o f Bi2 0 3 and W 0 3. With more intermediate oxides in glass, they will provide 

more sites for Er3+ ions, this will broaden the Er3+ emission spectrum. Especially 

when glass contains WO3 , from the Raman spectrum in this glass, it has two extra 

peaks which show WO3 connect with the glass network, it surely creates more sites 

than other HMO and modifying oxides such as BaO and Na20 .

The lifetimes of Er3+ ion for 4In /2 -> 4Ii5/2 transition of these glasses are shown in 

table 8 .6 . The lifetime is slightly higher in HMO modified tellurite glass than that of 

N4 and TENAO glasses.

Table 8.6 Lifetime of Er3+ ion for 4I 13/2 —> 411 5 /2  transition in different tellurite glass 

systems modified by HMO, Er2 0 3  concentration in all case is 1 mol%.

sample Lifetime ±0.02 ms sample Lifetime ±0.02 ms

TEWO 3.85 N4 3.37

TEBAPB 3.77 TENAO 3.65

TEZNO 4.12

8.3.2.3 Er3+ emission spectra and lifetimes in tellurite glass modified by chloride 

and fluoride

In Er3+ doped tellurite glass, Er3+ ion absorption properties were studied before 

when glass was modified by chloride and fluoride. In 8 0 .5 Te0 2 - 1 0 Na2 0 -9 X-0 .5 Er2 0 3
1 1 t

(X = BaO, BaCl2 and BaF2 ) glass, the fluorescent properties of Er ion will be 

discussed in the following part. Figure 8.37 shows the Er3+ ion emission spectrum 

changes with modifiers BaO, BaCl2 and BaF2. Their lifetimes of Er3"1 ion for 4 Ii3/2 -»  

4115/2 transition are shown in table 8.7.

Table 8.7 Lifetime of Er3+ ion for 4Ii3/2 —» 4I 15/2 transition in tellurite glass modified 

by chloride and fluoride

sample X = BaO X = BaCl2 X = BaF2

Lifetime ±0.02 ms 5.70 5.85 6.75
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From figure 8.37, when BaO was replaced by BaCl2 and BaF2, the emission 

spectra become narrower, the right and left shoulders come lower. When glass 

contains BaCl2 and BaF2, the emission spectra of Er3+ ion are very similar and the 

shape is the same, we can suggest Er3+ ion mainly connect with oxygen rather than 

chlorine and fluorine. Chlorine and fluorine ions just modify the crystal field strength 

around the Er-O' dipole. From the Raman spectra of these glasses, the connectivity of 

the glass containing BaO is higher than glass containing halides, this results in the 

stronger interaction between Er3+ ion and glass. From their absorption cross-sections 

and the peak ratio o f Ii495/Ii532 in figure 8.19, glass containing BaO (lowest Fa) also 

has the highest absorption cross-sections and a slightly larger ratio of I 1 4 9 5 / I 1 5 3 2 -  

Therefore, it has a broader emission spectrum than glass modified by halides.

From their lifetimes in table 8.7, the lifetime increases following BaO, BaCl2 and 

BaF2 sequence. It is much longer when glass contains fluorine. This is caused by the 

lower refractive index of the host glass and weaker interaction between Er3+ ion and 

glass because of the addition of Cl' and F \

Wavelength nm

Fig. 8.37 Er3+ ion emission spectra with various anions in 
80.5Te02-10Na20-9X-0.5Er20 3 (X = BaO, BaCI2 and BaF2) glass
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8.3.2.4 Er3+ emission spectra and lifetimes in different kinds of glasses

The fluorescent properties of Er3+ ion in tellurite glass with different composition 

have been studied, these properties are also studied in modified silicate glass and 

HMO germanate glass, in this part, these properties will be compared among different 

kinds o f oxide glasses and ZBLAN fluoride glass. Figure 8.38 shows the Er ion 

emission spectra in these four glasses: tellurite glass (TEWO), modified silicate glass 

(193), HMO germanate glass (GE3) and ZBLAN fluoride glass. There is a common 

feature for these glasses: they all contain heavy metal cations.

Wavelength nm

Fig. 8.38 Er3+ ion emission spectra in different kinds of glasses

From figure 8.38, modified silicate glass has the narrowest emission spectrum, the 

second is HMO germanate glass, the third is ZBLAN, TEWO tellurite glass has the 

widest emission spectrum. A ZBLAN glass modifies the short wavelength part o f the 

emission curve more than any other composition by having the highest left shoulder 

o f the spectrum, the second is tellurite glass, the third is germanate glass, silicate glass 

has the lowest shoulder, it declines with the increasing the bond strength of glass. In 

the right wing o f these spectra, silicate glass has the lowest, the second is ZBLAN and 

germanate glass, they are nearly in the same position, tellurite glass has shifted the
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o I
emission to longer wavelength. From the previous discussion about the Er ion 

absorption spectra o f these four kinds of glasses, the emission spectrum in ZBLAN 

should be the narrowest because o f the weakest interaction between Er3+ ion and 

glass, but the cross-sections are much lower than oxide glasses, the emission spectrum 

will be packed and denser, thus the normalised emission spectrum becomes flatter and 

broader. The emission spectrum peak also has a blue shift. Comparing the three kinds 

of oxide glasses, the strongest interaction to Er3+ ion in tellurite glass causes the 

broadest emission spectrum, the same reason for the narrowest emission in silicate 

glass.

For emission spectrum, FWHM (full-width at half maximum) is used as the 

indication of bandwidth. From the normalised emission spectra, the FWHM of these 

glasses have been calculated and been shown in table 8 .8 , the lifetimes of Er3+ ion at 

4113/2 level and stimulated emission cross-sections for the 4Ii3/2 —>4Ii5/2 transition which 

are calculated from McCumber are also shown in table 8 .8 . This table also includes 

the fluorescent properties of commercial Al/P silica glass for EDFA.

The gain bandwidth o f an amplifier is determined largely by the width o f the 

emission spectrum and the stimulated emission cross-section. We may therefore 

define a figure-of-merit (FOM) for bandwidth as the product a emjssxFW HM . For 

amplifier, figure-of-merit (FOM) for gain is defined as the product Txaemiss- FOM for 

these different glasses are shown in table 8.8.

Table 8 . 8  Er3+ lifetime, FWHM, emission cross section o f 4Ii3/2 —>4 Ii5/2 transition and 

FOM at 1500nm in different kinds o f glasses, pump wavelength is 980 nm.

Glass T

±0 .1  ms

FWHM 

± 1  nm

CSemiss ± 0 .0 2

xlO ' 21 cm2

FOM gain 

TXCemiss —  ̂

1 0 '24cm2s

FOM bandwidth

CTemissXFWHM ±1

1 0 ‘24 cm2 nm

Al/P silica [7] 10.8 43 5.50 59.4 237

193 10.2 35 7.78 79.4 272

Ge5 4.1 50 8 .1 2 33.3 406

TEWO 3.9 71 8.40 32.8 596

ZBLAN 10.1 69 5.10 51.5 352
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From table 8.8, the lifetime in tellurite glass is the shortest, in HMO germanate 

glass, it is slightly longer. Modified silicate, AL/P silica and ZBLAN glasses have 

nearly similar lifetime around 10 ms, they are much longer than that in tellurite and 

HMO germanate glasses. The emission cross-sections are different, tellurite glass has 

the largest cross-section, HMO germanate has the second, silicate glass has the third, 

ZBLAN has the lowest, it is about 40% lower than tellurite glass. As we discussed in 

absorption cross-section in figure 8.20, higher refractive index of glass, stronger 

interaction between Er3+ ion with glass host will result in shorter lifetime and larger 

absorption and emission cross-sections. The refractive index o f ZBLAN is 1.50, 193 

is 1.64, GE5 and TEWO are over 2.0, this is the main reason to cause the difference in 

lifetime and cross-sections.

From FOM gain, modified silicate glass is the best, the second is standard Al/P 

silica, ZBLAN is slightly lower than AL/P silica, tellurite and HMO germanate 

glasses have the smallest value.

For WDM systems, a broadband and flat gain amplifier is required, FOM 

bandwidth represents this requirement. Tellurite glass has the largest value, it is as 

twice as that in modified silicate glass, more than 50% higher than in ZBLAN fluoride 

glass. The standard Al/P silica has the smallest value. Therefore, tellurite glass is the 

best candidate for Er3+ doped glass host.

8.3.2.5 Emission spectra in Er3+ doped tellurite glass fibre

Based on the study of Er3+ ion doped tellurite glasses, proper compositions were 

selected and preform was made for fibre drawing. Figure 8.39 shows the fibre 

geometrical structure, the scale is 10 p.m, the fibre diameter is in the range from 120 

to 150 jam, the diameter of core changes from 4 to 50 (am, the loss in this fibre is
*7 I

around 10 dB/m. The 3 layer fibre is single mode, Er ion emission spectra in this 

single mode fibre are shown in figure 8.40. It shows that the emission spectral shape 

is deformed and shifted to longer wavelength. This is due to the re-absorption and re­

emission o f Er3+ ion which were discussed in section 8.3.1.1 and the decline o f pump 

power along the fibre.
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Figure 8.39 Photography o f  tellurite glass fibre
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Wavelength nm

Fig. 8.40 Emission spectra of Er3+ ion in various 
tellutite glass fibre length

8.3.3 Discussion

8.3.3.1 Absorption and emission spectra in Er3+ ion doped glasses

From the analysis of absorption and emission spectra of Er3+ ion in all of those 

glasses, tellurite glass has the highest absorption and emission cross-sections and the 

widest emission spectrum among different kinds of glasses. Among tellurite glasses 

with different modifiers, glass with higher TeC>2 concentration or containing heavy 

metal intermediate oxides has slightly higher cross-sections and wider emission 

spectrum.

The following discussion will mainly explain the emission spectrum broadening.

In rare earth doped glass, the line strength and the shape of a transition between 

two states is dependent on the electronic-dipole which is governed by the ion-host 

ligand interaction shown in equation 3.1. The analysis of host glass structural units, 

which determines the dopant ion environment is essential in understanding the



184

emission line broadening. From figure 8.38 emission spectra in different kinds of 

glasses, the Er3+ emission spectrum in tellurite glass is significantly broader than in 

other glasses studied as EDFA hosts. The origin of spectral broadening of Er3+-ion 

emission in tellurite glass can be explained on the basis of the various dopant sites in 

glass, the structural information deduced from Raman, and UY-visible spectroscopy.

Multicomponent fluoride glasses, such as ZBLAN, are known to have multiple 

dopant sites resulting in broad emission spectra [8]. Ligand fields in different dopant 

sites can variously affect the amount o f Stark splitting and /or the strengths of 

transitions between Stark sub-levels, which are thermalised at room temperature. In 

the case o f different Er3+-doped glass hosts, the energies o f Stark sub-levels involved 

in the 1.55 pm emission remain approximately constant and variations in spectra are 

caused primarily by changes in transition intensity [9], Dopant populations in 

different sites will therefore have different emission spectra, and the aggregate 

spectrum will be inhomogeneously broadened. The width and shape of Er3+ emission 

spectrum in tellurite glass is broadly similar to that in a multi-site ZBLAN glass; 

moreover, the width varies considerably among different tellurite compositions. 

Therefore broad Er emission in tellurite glass may be attributed to multiple dopant 

sites with large variations among them. The structure o f tellurite glass also points to 

the existence of multiple sites [10].

From the Raman spectroscopy o f T e02 glasses in chapter 7, the glass has three 

types o f structural units: TeC>4 tbps, TeC>3 tps and a combined to TeC>4 and Te0 3  

polyhedron structure. These structural units have a lone pair electron (LPE) from Te, 

which is equivalent to an 0 2~ anion. Because the LPE and the sites for oxygen interact 

with each other, the axial T e-0  bonds (2.22 A  ) are longer than equatorial T e-0  bonds 

(1.88 A ) in tbp structure units. The difference in the Te-0  bond lengths is the first 

contributory factor for the broadening of the emission spectrum in Er3+-doped tellurite 

glass.

T e0 2 does not form glassy state, but requires network modifiers, such as divalent 

and monovalent oxides, to form stable glass. The modifying cations, as expected, also 

create non-bridging oxygen in the tellurite glass structures, as they do in the silicate, 

borate and germanate glasses. In silica glass, the solubility of rare earth ions is low
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and extensive ion clustering takes place. The clustering o f RE-ions is significantly 

reduced by the addition of Al3+ and P5+ ions, which modify the silica structure and 

disperse RE-ions in the environment of non-bridging oxygen ions. In tellurite glass, 

the network modifiers create a variety o f dopant sites in the glass, associated with 

TeC>4 , TeC>3 and distorted TeC>3+x unites. A range of dopant sites is clearly desirable 

for a broadband EDFA glass host. The combination of LPE and multi-structural units
o I

is the second contributory in producing a wide variety of field strength around Er - 

ions.

• « 4̂- • • •In tellurite glass with different modifiers, the Er ion absorption and emission 

spectra and cross-sections change slightly although these changes are less than those 

in different kinds o f glasses. In (90-x)TeO2-9ZnO-xR2O-lEr2O3 (x = 5, 10, 15, 20) 

ternary system, when x increases, modifier oxides substitute for glass former TeC>2 , 

the UV edge shifts to shorter wavelength, it means the energy band gap increases. The 

shift of band edge energy is also an indication of the change in the cation field around 

the LPE. With higher energy band gap, the polarisability of ions in the glass is less, 

the field strength around Er3+ ions is weaker.

On the other hand, from Raman spectra, in pure Te02, the glass structure units are 

mainly Te0 4  and with very little Te0 3 .With the increasing modifier oxides, the 

tellurite glass structure units are changing from T e04 to Te3On, Te20 7, Te0 3 , Te30 8 

and Te2 0 5 , structure units are becoming smaller. This will also decrease the field 

strength around Er3+ ions, the interaction between Er3+ ion and glass host becomes 

weaker, the energy gap among Stark splitting sub-levels becomes lower, therefore, the 

emission spectra become narrower gradually.

When tellurite glass is modified by different alkali oxides, the emission spectra of 

Er3+ ion become wider following K2O, Na20, and Li20. From the changes of molar 

volume and density of these glasses, glass containing Li2 0  has the lowest molar 

volume and largest density. From their Raman spectra, glass containing Li20  has the 

smallest ratio of Te0 3 /Te0 4 . From the absorption spectra peak ratio in figure 8.13, 

glass containing Li20  has the highest ratio of I 1 4 9 5 / I 1 5 3 2 -  All these changes from glass 

properties and glass structure illustrate that the glass has the stronger interaction
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between Er3+ ion and glass when it contains Li2 0 . These cause the change of emission 

spectra o f Er3+ ion in tellurite glass modified by different alkali oxides.

ZnO is a important oxide in this ternary glass system. From the Raman spectrum 

research, the role of ZnO in tellurite glass is like a intermediate oxide, it can connect 

the glass network as [ZnO^. The changes of molar volume and transition temperature 

Tg with ZnO concentration give a clear evidence. From the emission spectra figure

8.34 and 8.36, when ZnO replaces Te0 2 , the emission spectra of Er3+ ion have little 

change because the integrity of the glass has changed very little, the interaction 

between Er3+ ion and glass thus has changed very little. The emission spectra vary 

little. When ZnO is replaced by 20 mol% Na2 0 , the glass network is broken more, the 

integrity o f the glass has decreased, thus the interaction between Er3+ ion and glass 

has also decreased, this is the reason that the emission spectra become much narrower 

(by comparing TEZNO and N4).

When tellurite glass modified by heavy metal oxides rather than alkali oxides, the 

emission spectra become slightly wider, one reason is there are more sites when glass 

contains WO3 and Bi2 0 3 , another reason is the field strength around Er3+ ion has 

increased.

When tellurite glass modified by chloride and fluoride, the emission spectra of Er3+ 

ion become slightly narrower, absorption and emission cross-section become slightly 

smaller. Because chloride and fluoride can break the glass network stronger than
1  1 '

oxide, it results in the looser structure. Therefore, the interaction between Er ion and 

glass host becomes weaker as oxygen is replaced by chloride and fluoride. This 

affects the Stark splitting to cause narrower emission spectrum.

From figure 8.22, a significant broadening o f emission with increased Er3+ ion 

concentration is clearly observed. The cause may be that as the concentration of Er3+ 

ions increases, more dopant sites become populated. Therefore the aggregate 

spectrum will be inhomogeneously broadened.
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8.3.3.2 O H ' broadening

The multiplicity of LPE sites and non-bridging oxygen are responsible for the 

extensive broadening of OH' peak in tellurite glass. Figure 8.41 shows the OH' 

absorption peak in modified silicate glass (192), HMO germanate glass, and TZN 

tellurite glass (N2). Because we do not know the extinction coefficient and 

concentration of OH' in germanate and tellurite glass, figure 8.41 only shows the 

normalised absorption peak. The absorption peak is much broader in HMO germanate 

and tellurite glass than silicate glass. It is also about 15% broader in tellurite than in 

HMO germanate glass. The peak shifts to longer wavelength from 2.9 pm in silicate 

glass to 3.3 pm in tellurite glass. The broad absorption peak is caused by a wide range 

of structural sites which are not available in silicate glass. As a result OH' ions 

disperse and form hydroxyl bonds over range o f sites. Arnaudov and co-workers [11] 

proposed the sites in barium-tellurite glasses are due to TeO-O...HOTeO units. The 

authors suggested that “the oxygen atom-electrodonors are strongly polarised and 

become non-bridging sites”.

Modified silicate (192) 
HMO germanate (ge3)
TZN tellurite (n2)

Wavelength |im

Fig 8.41 OH' absorption spectra in modified silicate, 
HMO germanate and TZN tellurite glasses
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In the present investigation, from the spectroscopic observations of Er3+ and OH' 

ions, the behaviour of hydroxyl ions appears more complex and is described below. 

The oxide anion in OH' acts an oxygen donor to T e04 structures at the LPE sites at 

low concentrations o f OH' (see effect o f OH' on lifetime in figure 8.29). This means 

that when a LPE site transforms into a non-bridging donated oxygen site (NDOS), by 

accepting the oxide anion from OH" and then forms a bond with the neighbouring Er3+ 

ion, there would be a net negative charge deficiency in the environment o f Er3+ ion. 

The oxygen ion donation will necessitate that the protons (H ion) must move away at 

least into a second coordination cell of Er3+-ion. This would also mean that the new

O ...H  bond due to the release o f a proton, will not be available in the immediate 

vicinity o f Er3+ to induce the quenching of luminescence. The modifying ions in the 

same way donate oxygen to LPE sites to form NDOS and cause a major shift in the 

position of Urbach tail to short wavelengths. It is expected that in the presence o f Er3+ 

ions coupled with NDOS, the excess protons will contribute to more non-bridging 

oxygen sites away from the original LPE sites. These are evident from the increase in 

the intensity of peaks C and D in 80TeO2-10Na2O-lC)ZnO glass Raman spectrum. 

Once all the LPE sites have transformed into NDOSs, the ion-ion energy transfer of 

Er3+ ions becomes dominant. There is an additional complementary information on 

the effect of OH' ions on quenching of Er3+ luminescence. The initial slope o f lifetime 

versus Er2 0 3  concentration has a steeper slope in glasses with higher concentrations 

o f OH' than glass with lower OH'. This difference in the initial slopes between high 

and low OH" glasses suggests that there are much fewer LPE sites, which have not 

transformed to NDSOs in a high-OH' glass than in a low-OH' glass.

8.3.3.3 Lifetime change in glass

Long radiative lifetimes are gernerally desired for transitions to be utilised for 

amplification. This will minimise the required pump power to maintain a reservoir of 

electrons in the desired excited state for the stimulated emission process. Lifetimes 

not only depend on the radiative transition probabilities between these states but also 

on the availability of alternative decay mechanisms. It is determined by the 

multiphonon decay, concentration quenching and impurity ions in glass.

Different kinds o f  glasses:
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Under the same melting condition and Er3+ ion concentration, the fluorescent 

lifetime of Er3+ ion at this \ - u i  level are different in different kinds o f glasses. The 

observed values are much longer in modified silicate and ZBLAN fluoride glasses 

than that in HMO germanate and tellurite glasses. Because the energy gap is about 

6500 cm '1, it is about 5 times as the highest phonon energy of those glass hosts, the 

non-radiative decay from multiphonon relaxation is relatively slow. The main reason 

for the lifetime difference is the refractive index. With higher refractive index in 

HMO germanate and tellurite glasses, the interaction between Er3+ ion and host is 

stronger, this results in shorter lifetime from equation 4.5 and 4.10. In the previous 

section, the absorption spectra o f these 4 kinds of glasses have been discussed, the 

interaction of between Er3+ ions and glass former units in tellurite glass is the 

strongest. In germanate glass has less strong interaction, the third is in silicate glass, 

and ZBLAN fluoride glass is the weakest. Stronger interaction between Er3+ ion and 

glass host will cause shorter lifetime, this is the reason that the lifetimes vary in those 

4 kinds o f glasses.

R2O replace TeC>2:

In tellurite glass with different oxide modifiers, like other properties, the 

fluorescent lifetime of Er3+ ion at this 4Io /2 level are different. In Te02-Zn0-R.20- 

lE r2 0 3  ternary system, when modifier oxides (Li20, Na20 , K20  and ZnO) substitute 

for glass former Te0 2 , there is a trend that the calculated and measured lifetimes 

increase with increasing R2O and ZnO concentration. This arises due to the decrease 

o f refractive index of glasses after this substitution. It has modified the local ligand 

field around Er3+ ion. As we discussed in the change of emission spectra, the 

interaction between Er3+ ion and glass host becomes weaker, the field strength around 

Er3+ ions will decrease. Therefore the lifetime will become longer.

Halide modified:

When tellurite glass modified by chloride and fluoride, the lifetime becomes 

longer. As Sidebottom [12] pointed out in zinc tellurite glass, there is a significant
o 1

increase in the emission lifetime of Nd from 150 to 250 p.s with increasing fluorine 

substitution. In tellurite glass with 10% fluorine substitution, the Er3+ lifetime 

increases from 5.7 to 6.75 ms. As we discussed that the change of absorption and
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emission spectra, it is clear that the halide substitution does significantly modify the 

local electrostatic field o f the rare earth ion, the interaction between Er3+ ion and glass 

host becomes weaker as the replacement of oxygen by halides, and thus result in a 

substantial increase of the intrinsic radiative lifetime.

Various Er20s concentrations:

The emission lifetimes for Er3+ in TZN glass as a function of E^Ch concentration 

is shown in figure 8.26. With increasing E^Cb concentration, the lifetime of Er3+ ion 

at 4In /2 level increases firstly then comes down. This kind o f similar quenching 

process has been reported in Er3+ doped tellurite glass by Wang et al [13]. It behaves 

in a different way in the Na2 0 -Si0 2  glasses, the lifetime decreases straightway from 

19 to 6 ms when Er2C>3 concentration increases from 0.05 mol% to 3.0mol% [14]. 

When sodium silicate glass is melted in different temperature and atmosphere to 

modify the OH' concentration in glass, the lifetime was observed to drop from 20 to 

10 ms [15].

By melting the tellurite glass in different atmosphere, it appears that the Er3+ sites, 

which are quenched in the presence of high OH', are re-activated at lower
3+concentrations. This would suggest that the environment of Er -ions in this glass host 

is not identical. The sites, which are more active in the presence low OH', do not seem 

to contribute to ion-ion upconversion. At low OH', the maximum point shifts to

11.000 ppm Er20 3 with lifetime 7.8 ms. Comparing Er3+ ion quenching process in 

tellurite and silicate glasses, the much reduced effect o f ion-ion upconversion in 

tellurite glass suggests that the average separation distance between Er3+ ions up to

11.000 ppm Er2 0 3  in Te02 oxide glasses is much greater than that o f the same 

concentration in the silicate hosts.

There are two main reasons for a prolonged lifetime of 7.8 ms in 11,000 ppm 

Er203 doped tellutite glass structure. The first one is associated with an increased ion- 

ion seperation distance, which may be at least o f the order 0.390 nm (2 times the 

shortest Te-0  bond), if not more. The second one is due to increased Er3+/OH' ion 

distance. As proposed above that the LPE/NDSO transformation in the tellurite glass 

structure (and hence Er3+/NDSO interaction) causes the H+ protons to move away in 

the second or higher co-ordination shells. As a result, on average the Er3+-OH'
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seperation distance is at least going to increase by a factor of 4. With the increasing 

distance, the probability o f impurity induced quenching is greatly reduced.

8.4 Conclusions

1. In (90-x)TeO2-9ZnO-xR2O-lEr2O3 ternary glass system (R2O = Li20 , Na20  and 

K20 , x = 5, 10, 15, 20), as x increases, the absorption cross sections of Er3+ ions 

slightly decrease, the emission spectra become slightly narrower, the calculated 

and measured decay lifetimes become slightly longer. As x is the same, the 

absorption cross sections and emission spectra respectively become lower and 

narrower following Li20 , Na2 0  and K20  .

2. In (89-x)TeC>2-xZnO-10Na20 -lE r2 0 3  ternary glass system (x = 4, 9, 14, 19), as x 

increases, the absorption cross sections ions and emission spectra o f Er3+ have 

very little change. As ZnO is replaced by Na2 0  in this glass system, the absorption 

cross sections and emission spectra respectively become lower and narrower.

3. When tellurite glass is modified by heavy metal oxides (WO3 , PbO, Bi2 0 3 ), cross- 

sections and peak ratios are slightly higher, the mission spectra become broader.

4. When tellurite glass is modified by halides (BaC^ and BaF2), the cross sections 

and emission spectra Er3+ ions respectively become lower and narrower, the 

lifetimes become longer.

5. In TZN tellurite glass doped with different concentration o f Er2 0 3, the lifetime 

increases at low Er2 0 3  concentration, after a maximum value, it decreases slightly. 

This unique change is related to the tellurite glass structure units and OH' 

concentration.

6 . OH' ion has the broadest absorption peak the longest absorption peak wavelength 

among oxide glasses.

7. Comparing Er3+ ion doped tellurite glass with silicat, germanate and ZBLAN 

fluoride glasses, tellurite glass has the largest cross-sections and widest emission 

spectra, the lifetime is the shortest.
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Chapter 9

Tm -doped tellurite glass for a broadband amplifier at 1.46 (im

M uch of the interest for Tm3+-doped glass stems from its emission that occurs in 

the wavelength regime o f 1400-1500 nm between the bands of Nd3+ and Er3+ doped 

glasses. TmJ"r-doped tellurite glass is investigated as a host for a broadband amplifier
3+ •at 1.46 |am. Tm fluorescence spectrum, lifetime and cross-sections in tellurite glass 

are compared with those in ZBLAN fluoride glasses. The advantages o f a Tm3+- 

doped tellurite amplifier are discussed, especially when employed in combination 

with an Er3+ doped tellurite amplifier at 1.55 jam and Nd3+ doped tellurite amplifier at

1.34 (.im.

In recent years Tm3+-doped fluoride fibre amplifiers (TDFA) atl.46  (jrn have 

attracted considerable attention as a means of extending the transmission bandwidth 

o f  optical fibres beyond the range available from Er3+-doped fibre amplifiers 

(EDFA). Several types o f TDFA have been developed utilising different pumping 

schemes and methods o f relieving the population in the lower laser level. Figure 9.1 

(A) shows the energy level diagram o f Tm 3+. The 1.46 jam amplifying transition is 

H 4 —> F4 . The H4 level can be excited directly by a 790-800 nm pump. However, 

the 1.46 |im band lasing is limited by the fact that the lifetime of the upper level, 3H4, 

is shorter than that of the lower level, 3F4 , which is a so-called “self-terminating” 

system. Therefore, since it is difficult to achieve population inversion between H4 

and F4 , the lower level should be depopulated in order to achieve gain. The amplifier 

design must include means o f quenching the 3F4 level. Several successful schemes 

have been demonstrated in fluoride ZBLAN glass. Upconversion pumping at 1064 

nm can be used both to excite the 3H 4 level and to depopulate the 3F4 level [1-3]. This 

scheme is shown in figure 9.1 (B). The 1064 nm pump promotes Tm3+ ions to the 

intermediate 3H5 level, whence they relax non-radiatively to 3F4 level. The ions in the
*5

F 4 level, both those excited by the pump and those arriving via radiative decay from 

the 3H4 level, then absorb another pump photon which excites them to the 3F3+3F2 

level, from where they relax nonradiatively to the lasing 3H4 level.
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In another scheme which is shown in figure 9.1 (C), the fibre was codoped with 

Tm 3+ +  Ho3+ and pumped at 0.79 jam into the 3HU level o f Tm3+ [4], The 3F4 level was 

quenched by energy transfer to the matching 5l7 level o f Ho3+. Another m ethod o f 

depopulating the is to employ a “cascade” process [5], which also uses a 0.79 p.m 

pump. The 3F4 level is efficiently depopulated by stimulated emission at 1.86 jam.

Despite considerable successes o f these devices, TDFAs have not been accepted 

by the telecom industry, partly due to the difficulties associated w ith fabricating 

fluoride fibres and splicing them to the standard silica fibre. The oxide tellurite glass 

is highly stable and relatively easy to fabricate. In the following part, we propose that 

a Tm 3+-doped tellurite amplifier would provide a much broader gain bandwidth than 

a fluoride TDFA, as well as offering the advantages o f oxide glass fabrication.

1.47 jjm 
amplifier

2,3
3h4

^Hc .
3F, ■

1.06 jjm 1.47 )jm

1.06 jim

Tm3*

(B)

Fig. 9.1 Energy diagram o f Tm3+ ions and amplification in the 1.4 pm region 
(A) Energy diagram, (B) upconversion pumping, (c) the codoping o f  acceptor io

9.1 A bsorption  spectrum  of T m 3+

Figure 9.2 shows the Tm 3+ ion absorption cross-sections in tellurite and ZBLAN 

glasses. The absorption cross-sections in tellurite glass are much higher than in 

ZBLAN. For most o f the absorption peaks, the absorption cross-sections are about 

60% larger in tellurite glass than in ZBLAN due to higher refractive index. The pump 

absorption cross-section at 0.79 |um is disproportionately large in the tellurite glass,
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at nearly 3 times its value in ZBLAN. This is due to the hypersensitive nature o f the 

3H 6 -»  3H4 transition, which results in the line strength being strongly dependent on 

the dopant site configuration. The enhanced pump absorption in tellurite glass will 

benefit amplifier operation.

E
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b
*

0 Q) (/)1(/)</)
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c
o

o
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<

Wavelength nm

Fig. 9.2 Tm3+ absorption cross-section in tellurite 
and ZBLAN glasses

9.2 Fluorescent properties of Tm3+

TZN (Te02-Zn0-N a20 )  tellurite glass was also investigated as host for the Tm 3+-
T I #

doped amplifier. Figure 9.3 shows the normalised emission spectra o f Tm ion at

1.46 pm in tellurite and in ZBLAN. Tm3+ ion fluorescence is seen to be significantly 

broader in tellurite glass, with FW HM of 114 nm, than in ZBLAN where FW HM  is 

76 nm. As in the case o f Er3+, the broadening is due to multiple dopant sites in 

tellurite glass. The Tm3+ peak in tellurite glass is also red-shifted by approximately 6 

nm to 1458 nm, compared with 1452 nm in ZBLAN, the nephelauxetic shift 

observed in tellurite glass is related to its high refractive index (2-2.1 in tellurite, 1.5 

in ZBLAN).



196

i  I
Table 9.1 lists spectroscopic parameters of Tm in tellurite and ZBLAN glasses.

• 3 3 • • •Stimulated emission cross-section for the H4 — > F4 transition and lifetimes for these 

two levels were calculated using the Judd-Ofelt analysis, and are similar to those 

reported by other workers [6-8]. Figure 9.4 shows this stimulated emission cross- 

section in tellurite and ZBLAN glasses. The high refractive index of tellurite glass 

causes the emission cross-section to be larger and the lifetime shorter than in 

ZBLAN.

The decay of the FI4 level is dominated by nonradiative relaxation for silica 

because of the high phonon energy (1150 cm '1) and small energy gap (4150 cm '1) 

between it and the 3H5. The measured lifetime is about 0.02 ms [9]. The 1.46|um 

lifetime of Tm3+ measured in tellurite glass is 0.28 ms, it similar to that reported by 

Wang et al [6]. Figure 9.5 shows the 1.46 |j,m fluorescence decay of Tm3+ in tellurite 

glass, the solid line is a single-exponential fit to the data. By contrast, the lifetime 

observed in our ZBLAN glass is much shorter (50-60%) than that reported by other 

investigators [1, 2, 4-6]. This is due to the high concentration of OH' impurity, 

arising from glass processing conditions. In tellurite glass the OH" impurity is much 

more easily reduced to lower levels, allowing longer lifetime to be observed.

n—1—1—1—|—1—1—1—1—

Tm3+ in tellurite 
Tm3+ in ZBLAN

1350 1400 1450 1500 1550

Wavelength nm
Fig. 9.3 Normalised emission spectra of Tm3+ ion in tellurite 

and ZBLAN glasses
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Wavelength nm

Fig. 9.4 Emission cross-section of Tm3+ ion in tellurite 
and ZBLAN glasses

Time us
Fig. 9.5 Tm3+ at 1470 nm fluorescence decay in tellurite glass
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The multiphonon relaxation lifetimes were calculated from [10]:

t ' 1 =  Wmp =Wo exp(-aAE) 9.1

where Wo and a  are respectively 6.3x10 10 s' 1 and 4.7x1 O' 3 cm for tellurite, and 1.8x 

1010 s" 1 and 5 .8 x l0 ' 3 cm for ZBLAN, and AE is the energy gap, equal to 4400cm '1. 

Although the phonon energy in tellurite glass (660 cm '1) is higher than that in 

ZBLAN (580 cm '1), leading to faster multiphonon decay, in both o f these glasses, the 

multiphonon relaxation lifetime is much longer (by a factor o f 50, see table 9.1) than 

the radiative lifetime. Therefore quantum efficiencies o f nearly 100% should also be 

achievable in tellurite glass.

The nonradiative lifetimes xnr were calculated from the relation Tmeas"' = trad"' + W

and were much shorter than the multiphonon decay lifetimes. An additional large 

contribution to nonradiative decay is impurity quenching, mainly by OH‘ in the glass
i x

as discussed above. It is also possible that the high doping level (0.5 mol%) Tm 

gives rise to concentration quenching effects, as observed by Wang et al [11] in a 

different type o f tellurite glasses.

O O *3

The branching ratio |3 from the H4 state to H 6 , F4 and H 5 is the same between 

tellurite and ZBLAN.

The figure-of-merit (FOM) for gain has been defined in the last chapter as the 

product o f stimulated emission cross-section and lifetime (a sex Tmeas)- Here we have 

used FOM for gain, in order to discount the quenching effects o f impurities. 

Generally, this product tends to decrease in high refractive index hosts because o f the 

short lifetime. As a result, the FOM for gain is 50% lower in tellurite than in 

ZBLAN. However, the figure-of-merit gain bandwidth of an amplifier is determined 

largely by the width o f the emission spectrum and cross-section which was defined as 

the product a sexFWHM. The FOM for bandwidth is then nearly 3 times larger in 

tellurite than in ZBLAN. This definition may be justified by noting, for example, that 

when the emission cross-section is 0.16 pm (0.5 dB level in ZBLAN, 3.5 dB level in 

tellurite) the width o f the spectrum is 40 nm in ZBLAN and 125 nm in tellurite glass. 

Yamada et al [12] describe a Tm3+ doped fluoride (ZBLAN) amplifier operating at
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wavelength 1443-1484 nm with a bandwidth of 37 nm. Assuming that the FOM for 

bandwidth, as described above, is an indication o f the achievable gain band, the 

results presented here suggest that a Tm3+ tellurite amplifier may have an extended 

bandwidth o f over 100 nm.

Table 9.1. Spectroscopic parameters o f Tm3+-doped tellurite and ZBLAN glasses

Tm3+-tellurite glass Tm3+-ZBLAN glass

Host glass composition 75TeO2:10ZnO:15Na2O 52ZrF4:20BaF2:3LaF3:

4AlF3:20NaF

Refractive index at 633 nm 2.05 1.50

Peak emission wavelength 

3H4 —> 3F4, nm

1458 +  1 1452 ± 1

FW HM  o f 3H4 - >  3F4 

emission, nm

114 ± 2 76 ± 2

tmeas measured lifetime of
”2

H4 level, ms

0.31 ±0.01 0.74 ±0 .02  

1.25-1.40 [1 ,2 , 4-6]

Tracj calculated lifetime o f
•3

H4 level, ms

0.35 + 0.03 1.31 ±0.1

Slower calculated lifetime of
*3

F4 level, ms

1.8 ± 0 .2 7.2 ± 0 .7

Non-radiative lifetime

1-nr —(^meas “^rad ) •>

2.7 ± 1.3 1.7 ± 0 .4

Multiphonon relaxation
*3 ”3

lifetime H4 —» F4 xmp, ms

15 ± 3 6 000 ± 1000

Branch ratio (3 at H4 level 

- » 3H6 , 0.8jam 

—» 3F4 , 1.46jj,m 

—> 3H5 , 2.3|am

90%

8 %

2 %

90 %

8 %

2 %

Quantum efficiency:

^meas /"Crad

predicted: Tmeas /x rad

80 ± 10% 

98 ± 10%

55 ± 5%

~ 100% [1 ,2 , 4-6]

Stimulated emission cross- 0.36 ±0 .06 0.18 ±0.03



2 0 0

section CTse, pm 2

Absorption cross-section 0.89 ±0.03 0.33 ±0.01

for pump Gabs, pm 2

Judd-Ofelt parameters

Q 2 , pm 2 3.8 ± 0 .3 2 . 2  ± 0 . 2

Q 4 , pm 2 1 . 8  ± 0 . 2 1 . 6  ± 0 . 2

Q 6, pm 2 1.3 ±0.1 1.3 ±0.1

FOM  gain CseX Trad 0.13 ±0.03 0.24 ± 0.05

FOM  bandwidth 40 ± 5 15 ± 3

<jsexFW HM

9.3 B ro ad b an d  am plifiers

9.3.1 T m 3 - E r3+ am plifier

Currently, there is a strong commercial imperative among designers of 

components for optical system to provide more sources o f optical amplification that 

will cover all o f the available bandwidth, and thereby allow further channels to be 

multiplexed over the same fibre. Therefore, broadband amplifiers are necessary for 

communication systems. A recent development in this direction has been the 

demonstration of tellurite glass EDFA having broadband flat gain bandwidth o f  70 

nm [13-18]. This device takes advantage o f the broad emission and large cross-
*3 4_

section o f Er in tellurite glass host. The gain bandwidth of tellurite EDFA can be 

extended further by combining it with a Tm doped amplifier which offers gain on 

the short wavelength of the EDFA band [1, 3-4]. A combined device comprising a 

Tm 3+-doped fluoride amplifier and a tellurite EDFA has already been demonstrated 

[12]. However, the device exhibited two separated gain bands, at 1443-1484 nm 

(Tm3+-fluoride band) and 1532-1608 nm (Er3+-tellurite band). Clearly, a continuous 

gain band would be preferable. From the comparison of tellurite and fluoride glasses 

above, the gain bandwidth of Tm3+ doped tellurite glass has much more advantages
3_i_

than Tm doped fluoride glass. In order to clarify the issues related to combining
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two devices, figure 9.6 illustrates the TmJ+ and Er3+ emission spectra in the two 

glasses.

--------Tellurite glass
......... ZBLAN

Wavelength nm

Fig 9.6 Tm3+ and Er3+ emission spectra in tellurite 
and ZBLAN glasses

The Tm3+-tellurite and Er3+-tellurite emission spectra intersect at a higher level 

and longer wavelength than do the Tm3+-ZBLAN and Er3+-tellurite spectra. The data 

therefore indicate that a Tm -doped tellurite fibre amplifier will be more suitable for 

providing continuous gain when combined with a tellurite EDFA. This m ay be

achieved, in particular, by pumping the tellurite EDFA at 980 nm, thus allowing gain
i  i

at shorter wavelengths. Since Tm " tellurite amplifier may have an extended 

bandwidth over wavelengths o f 1400-1520 nm, this combined amplifier device 

comprising Tm3+ - and Er3+ -doped tellurite fibres may produce a continuous gain 

band extending from around 1400 nm to around 1600 nm.

9.3.2 Nd3+-Tm3+-Er3+ amplifier

The amplifier bandwidth can be further extended to shorter wavelengths by 

adding a Nd3"-doped tellurite glass module operating around 1340 nm. Over the
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years, a variety o f Nd3T-doped glasses have been investigated as hosts for a 1.3 fim 

fibre amplifier [19-21]. Although the Nd3+ amplifier is highly efficient, the difficulty 

was to obtain gain below 1320 nm. Recently, the gain at 1310-1360 nm was
3 +  t

demonstrated in fluoroaluminate glass [20, 21]. Nd experiences a strong
i  I

nephelauxetic shift [19], as a result, in tellurite glass the Nd emission peak is red- 

shifted to 1340 nm. In a fibre geometry the 1.3 pm amplifying transition o f Nd3+ 

suffers from the competition with amplified spontaneous emission (ASE) at 1.1 pm. 

Several methods o f ASE filtering have been developed [21], and are applicable to
3+

tellurite fibres. Nd doped tellurite glass fibre can therefore fill the gap between the 

Tm3+-doped tellurite amplifier at 1.46 (.im and the Nd3+-doped fluoroaluminate 

amplifier at 1.32 pm. TZN tellurite glass was investigated as host for a N d3+-doped 

amplifier. Figure 9.7 shows the normalised emission spectra in TZN tellutrite glass o f 

NdJ+, Tm3+ and Er3+ ions. The result on N d3+ spectroscopy in TZN tellurite glass 

shows that a Nd3+ amplifier would complement Tm3+ and Er3+ devices in increasing 

further the available bandwidth.

•) I
Figure 9.8 shows the emission spectra o f Nd in tellurite and silicate glasses. 

There is a red shift in tellurite glass, the shoulder o f the long wavelength emission 

spectra becomes lower and broader in silicate glass. Table 9.2 compares 

spectroscopic parameters o f Nd3+ in tellurite and silicate glasses [19]. Silicate glass 

was chosen for comparison because it has the longest emission wavelength o f all 

investigated (non-tellurite) glasses, and the preferred host for commercial devices. As 

was the case when Tm3+ emission was compared in tellurite and ZBLAN (above), the 

high refractive index of tellurite glass causes the emission cross-section o f N d3+ to be 

larger and the lifetime shorter than in silicate. As a result, the FOM for gain is 35% 

lower in tellurite than in silicate. In contrast with Tm3+ and Er3+, the width o f Nd3+ 

emission does not increase in tellurite glass and is similar to that in silicate. The 

FOM for bandwidth nevertheless benefits from the increased cross-section, and is 

50% larger in tellurite than in silicate. However, the advantages o f N d3+-doped 

tellurite glass as compared to silicate are not as great as in the case o f Tm3+ and Er3+, 

primarily because its emission profile does not change significantly and its width 

does not increase.
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Wavelength nm

Fig. 9.7 Nd3+, Tm3+ and Er3+ emission spectra 
in tellurite glass

Wavelength nm

Fig. 9.8 Nd3+ emission spectra in silicate
and tellurite glasses
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Table 9.2 Emission parameters o f Nd-doped TZN and silicate glasses

parameter TZN Silicate [19]

Peak emission wavelength, nm

FWHM of emission, nm

Fluorescence lifetime, ps

Stimulated emission cross-section a se, pm2

FOM gain, a sex t

FOM bandwidth, c sexFWHM

1337 ± 1 

51 ± 1 

200 + 5 

0.98 ± 0.05 

196 ± 10 

50 ± 5

1334+1 

54 ± 1 

436 + 5 

0.62 ±0.05 

270 ± 10 

33 ± 3

From the emission spectrum and comparison with silicate glass, a N d3+ doped 

amplifier operating around 1.34 pm is clearly desirable in TZN tellurite glass. Since it 

would bridge the wavelength gap between the 2nd and 3rd telecom windows, a 

continuous gain band extending from 1310 to 1600 nm may become possible by using 

Nd3+, Tm3+ and Er3+ amplifiers. However, more work is required to determine 

whether TZN tellurite glass is the most advantageous host for such a device, or the 

glass composition can be redesigned to improve its performance.
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9.4 Conclusions

1. In tellurite glass was shown to have several important advantages over ZBLAN as 

a host for a 1.47 jim Tm3+ -doped amplifier. The 1.47 jam fluorescence peak is 

50% broader in tellurite , and the stimulated emission cross-section is twice as 

large. Although the radiative lifetime is much shorter, the quantum efficiency can 

approach 100%, as it does in ZBLAN. The pump absorption cross-section at 0.79 

pm is three times larger, due to the hypersensitivity o f this transition. Tm3+ -doped 

tellurite glass appears to be a highly promising host for a 1.47 jam amplifier 

capable of providing extended short-wavelength gain and a continuous band with 

the tellurite EDFA.

2. A Nd3+-doped amplifier operating around 1.34 pm is clearly desirable in TZN 

tellurite glass. Since it would bridge the wavelength gap between the 2nd and 3rd 

telecom windows, a continuous gain band extending from 1310 to 1600 nm may 

become possible by using Nd3+, Tm3+ and Er3+ amplifiers.
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Chapter 10

Recommendations for further work

In Er3+ doped fluorosilicate and HMO germanate glasses, the emission broadness 

related to F/O ratio and heavy metal oxide could be studied further by Raman 

spectroscopy of these glasses. Making fibre and measuring Er3+ ion fluorescence in 

the fibre from these glasses are also very necessary for EDFA in fluorosilicate and 

HMO germanate glasses.

Site selection spectra for all Er3+ doped oxide glasses (fluorosilicate, HMO 

germanate and tellurite glasses) could be checked. The technique o f fluorescence line 

narrowing (FLN) can be employed to detect the different sites.

Improve the quality of tellurite glass fibre: purifying the chemicals and improving 

the glass melting process including melting temperature, time and atmosphere, stirring 

and refining to achieve the loss in fibre less than 1 dB/m.

For Tm3+ doped tellurite glass, there is a lot composition search which must be 

completed to find an emission band which overlaps with the C-band o f EDFA. After 

all, good quality fibre o f this kind o f tellurite glass is needed to make practical TDFA.
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