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Abstract 

Chikungunya virus (CHIKV) is a re-emerging alphavirus causing fever, joint pain, skin rash, 

arthralgia, and occasionally death. Antiviral therapies and/or effective vaccines are urgently 

required. CHIKV biology is poorly understood, in particular the functions of the non-

structural protein 3 (nsP3). nsP3 consists of three domains, of these the macrodomain is 

reported to have ADP-ribose and RNA-binding activity, the hypervariable region is involved in 

various interaction with host proteins, however, the alphavirus unique domain (AUD), as a 

homologous sequence unique to alphaviruses, is essential for CHIKV replication with 

absolutely unknown functions. 

To investigate the function of AUD, a mutagenic analysis was performed. Informed by the 

structure of the Sindbis virus AUD and an alignment of amino acid sequences of multiple 

alphaviruses, a series of mutations in the AUD were generated in a CHIKV sub-genomic 

replicon. This analysis revealed an essential role for the AUD in CHIKV RNA replication, with 

mutants exhibiting species- and cell-type specific phenotypes. To test if the AUD played a 

role in other stages of the virus lifecycle, the mutant panel was also analysed in the context 

of infectious CHIKV. Results indicated that, in addition to a role in RNA replication, the AUD 

was also required for virus assembly.  

Further analysis revealed that one mutant (P247A/V248A) specifically blocked transcription 

of the subgenomic RNA leading to a dramatic reduction in synthesis of the structural 

proteins and concomitant reduction in virus production. This phenotype could be explained 

by both a reduction in the binding of the P247A/V248A mutant nsP3 to viral genomic RNA in 

vivo, and the reduced affinity of the mutant AUD for the subgenomic promoter RNA in vitro. 

A high-resolution confocal microscopy analysis on the track of nsP3, capsid protein and 

dsRNA confirmed the P247A/V248A replication defect. 

In parallel, this project also set out to investigate a variety of biochemical characters of 

nsP3/AUD, for example, RNAi suppression activity, self-multimerization and interactions with 

cellular proteins by the approach of quantitative proteomic analysis. In conclusion, this study 

reveals that the AUD is a pleiotropic protein domain, with multiple functions during CHIKV 

RNA synthesis. 

	



vi 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

Table of Contents 
Chapter 1: Introduction ............................................................................................................. 1 

1.1 Chikungunya virus ............................................................................................................ 3 

1.1.1 Identification of Chikungunya virus (CHIKV) ............................................................. 3 

1.1.2 Classification of CHIKV .............................................................................................. 3 

1.1.3 Pathology of CHIKV ................................................................................................... 6 

1.1.4 Epidemiology of CHIKV .............................................................................................. 7 

1.1.5 Diagnosis and therapies or vaccines against CHIKV .................................................. 9 

1.2 Molecular virology of CHIKV .......................................................................................... 10 

1.2.1 Molecular structure and genome organisation of CHIKV ....................................... 10 

1.2.2 Non-coding regions of CHIKV genome .................................................................... 11 

1.2.3 Structural proteins .................................................................................................. 14 

1.2.4 Non-structural proteins ........................................................................................... 16 

1.3 nsP3 ................................................................................................................................ 18 

1.3.1 Macrodomain .......................................................................................................... 19 

1.3.2 AUD ......................................................................................................................... 20 

1.3.3 Hypervariable region ............................................................................................... 21 

1.4 CHIKV life cycle ............................................................................................................... 22 

1.4.1 Entry of CHIKV ......................................................................................................... 22 

1.4.2 Intracellular replication of CHIKV ............................................................................ 24 

1.4.3 Assembly, budding and maturation of CHIKV ......................................................... 26 

1.5 Systems for the study of CHIKV ...................................................................................... 29 

1.5.1 Cell culture system .................................................................................................. 29 

1.5.2 Animal models ........................................................................................................ 29 

1.6 Aims and objective ......................................................................................................... 31 

Chapter 2: Materials and Methods .......................................................................................... 33 

2.1 General materials ........................................................................................................... 35 

2.1.1 Bacterial strains ....................................................................................................... 35 



viii 
 

2.1.2 Cell lines ................................................................................................................. 35 

2.1.3 Plasmids and virus constructs ................................................................................ 35 

2.1.4 Oligonucleotide primers ......................................................................................... 35 

2.1.5 Antibodies .............................................................................................................. 36 

2.1.6 Chromatography columns and resins ..................................................................... 36 

2.2 Basic techniques of molecular biology .......................................................................... 36 

2.2.1 Manipulation of nucleic acid .................................................................................. 36 

2.2.2 Basic technology on Protein work .......................................................................... 43 

2.3 Basic techniques of tissue culture ................................................................................. 44 

2.3.1 Passaging of cells .................................................................................................... 44 

2.3.2 Transfection of nucleic acids .................................................................................. 45 

2.3.3 Electroporation of RNAs into mammalian cells ...................................................... 45 

2.3.4 Cell lysates collection ............................................................................................. 45 

2.4 CHIKV-D-Luc-SGR work .................................................................................................. 46 

2.4.1 Dual-luciferase assay .............................................................................................. 46 

2.4.2 Sequencing of the subgenomic replicon RNA post transfection ............................ 46 

2.5 ICRES-CHIKV full-length virus experiments ................................................................... 46 

2.5.1 Infectious virus collection ....................................................................................... 46 

2.5.2 Sequencing of infectious virus genome RNA. ......................................................... 46 

2.5.3 Virus titration by plaque assay ............................................................................... 47 

2.5.4 Infectious centre assay (ICA) .................................................................................. 47 

2.5.5 Quantification of CHIKV genome RNA by qRT-PCR ................................................ 47 

2.5.6 Virus infection ........................................................................................................ 48 

2.5.7 One step virus growth kinetics ............................................................................... 48 

2.5.8 Intracellular virus collection ................................................................................... 48 

2.5.9 Quantification of CHIKV genomic RNA and subgenomic RNA synthesis ................ 48 

2.5.10 Immunoprecipitation ........................................................................................... 49 

2.5.11 Immunofluorescence analysis .............................................................................. 49 



ix 
 

2.5.12 Co-localisation analysis ......................................................................................... 50 

2.6 In vitro protein experiments .......................................................................................... 50 

2.6.1 Expression and purification of AUD ........................................................................ 50 

2.6.2 Protein identification by mass spectrometry .......................................................... 51 

2.6.3 Circular Dichroism spectroscopy ............................................................................. 53 

2.6.4 Fluorescent Polarisation Anisotropy ....................................................................... 53 

2.6.5 RNA filter binding assay .......................................................................................... 53 

2.6.6 GST-pull down assay ............................................................................................... 54 

2.6.7 Tandem Mass Tag (TMT) comparative proteomic analysis ..................................... 55 

2.7 Statistical analysis of data .............................................................................................. 55 

Chapter 3: The role of nsP3 AUD in virus genome replication ................................................. 57 

3.1 Introduction ................................................................................................................... 59 

3.2 Results ............................................................................................................................ 60 

3.2.1 Generation of a panel of AUD alanine mutations in CHIKV-D-Luc-SGR .................. 60 

3.2.2 The role of AUD in CHIKV genome replication ........................................................ 63 

3.2.3 Sequence analysis of the CHIKV-D-Luc-SGR-AUD (R243A/K245A) RNA following 

replication in different cell types ..................................................................................... 70 

3.2.4 Lethal mutations do not interfere the expression and stability of nsP3/AUD ........ 70 

3.3 Discussion ...................................................................................................................... 71 

Chapter 4: nsP3 AUD is required for production of subgenomic RNA and structural proteins 

during CHIKV infection ............................................................................................................. 75 

4.1 Introduction ................................................................................................................... 77 

4.2 Results ............................................................................................................................ 78 

4.2.1 The effect of AUD mutations in infectious CHIKV production ................................ 78 

4.2.2 One-step virus growth kinetics ............................................................................... 81 

4.2.3 Role of AUD in CHIKV assembly and release ........................................................... 82 

4.2.4 The P247A/V247A mutation selectively impairs subgenomic RNA synthesis ......... 84 

4.2.5 nsP3 RNA binding activity to CHIKV genome RNA .................................................. 87 



x 
 

4.2.6 Sub-cellular localisation of nsP3, capsid and dsRNA during CHIKV replication ...... 89 

4.3 Discussion ...................................................................................................................... 92 

Chapter 5: Biochemical analysis of AUD ................................................................................. 97 

5.1 AUD RNA binding activity .............................................................................................. 99 

5.1.1 Introduction ............................................................................................................ 99 

5.1.2 Results .................................................................................................................. 101 

5.1.3 Discussion ............................................................................................................. 117 

5.2 RNAi suppression activity ............................................................................................ 120 

5.2.1 Introduction .......................................................................................................... 120 

5.2.2 Results .................................................................................................................. 121 

5.2.3 Discussion ............................................................................................................. 127 

5.3 nsP3/AUD formation/distribution in cells ................................................................... 128 

5.3.1 Introduction .......................................................................................................... 128 

5.3.2 Results .................................................................................................................. 129 

5.3.3 Discussion ............................................................................................................. 133 

5.4 Proteomic analysis of nsP3 binding partner ................................................................ 134 

5.4.1 Introduction .......................................................................................................... 134 

5.4.2 Results .................................................................................................................. 135 

5.4.3 Discussion ............................................................................................................. 139 

Chapter 6: Conclusion and future perspectives .................................................................... 141 

References ............................................................................................................................. 147 

Appendix ............................................................................................................................... 169 

 

 

 

 

 



xi 
 

Table of Figures 
Figure 1.1 A simplified phylogenetic tree of Alphaviruses assuming their New World origin. .. 4 

Figure 1.2 CHIKV phylogenetic analysis based on 80 CHIKV isolates with different temporal, 

spatial and host coverage. ......................................................................................................... 5 

Figure 1.3 Dissemination of CHIKV in vertebrates. .................................................................... 7 

Figure 1.4 Global transmission of CHIKV. ................................................................................... 9 

Figure 1.5 Structure of CHIKV genome RNA. ........................................................................... 11 

Figure 1.6 A comparison between mRNA capping of cellular and alphavirus mRNAs. ............ 12 

Figure 1.7 Evolutionary history and lineage-specific structures of the CHIKV 3’UTR. ............. 13 

Figure 1.8 Diagram of nsP3. ..................................................................................................... 19 

Figure 1.9 Structure of CHIKV macro domain. ......................................................................... 20 

Figure 1.10 ZBD of nsP3. .......................................................................................................... 21 

Figure 1.11 Model of the Alphavirus life cycle. ........................................................................ 28 

Figure 1.12 Diagram of CHIKV-D-Luc-SGR. ............................................................................... 29 

Figure 2.1 Diagram for AUD point mutants in CHIKV-D-Luc-SGR. ............................................ 39 

Figure 2.2 Diagram for AUD truncations in CHIKV-D-Luc-SGR. ................................................ 41 

Figure 3.1 AUD residues selection for mutagenic strategy. ..................................................... 62 

Figure 3.2 Preliminary data of CHIKV AUD mutants replication in Huh7 and U4.4 cells. ........ 65 

Figure 3.3 CHIKV AUD mutant replication in human cells. ...................................................... 67 

Figure 3.4 CHIKV AUD mutant replication in non-human mammalian cells. ........................... 68 

Figure 3.5 CHIKV AUD mutant replication in Aedes. albopictus mosquito cells. ..................... 69 

Figure 3.6 RT-PCR and sequencing analysis of CHIKV-D-luc-SGR-R243A/K245A. .................... 70 

Figure 3.7 Expression and stability of nsP3. ............................................................................. 71 

Figure 4.1 Phenotype of AUD mutations in the production of infectious virus. ...................... 80 



xii 
 

Figure 4.2 Multi-step growth kinetics of CHIKV. ..................................................................... 82 

Figure 4.3 Phenotype of AUD mutations on virus entry, release and assembly. .................... 84 

Figure 4.4 Effect of AUD mutations on CHIKV protein expression and RNA synthesis. .......... 86 

Figure 4.5 CHIKV genome RNA association with nsP3 during virus replication. ..................... 88 

Figure 4.6 Fluorescence analysis of nsP3, capsid and dsRNA distribution during infection of 

C2C12 cells with wildtype CHIKV. ............................................................................................ 90 

Figure 4.7 Fluorescence analysis of nsP3, capsid and dsRNA distribution during infection of 

C2C12 cells with P247A/V248A CHIKV. ................................................................................... 91 

Figure 5.1 Diagram of pET-28aSUMO-AUD. .......................................................................... 101 

Figure 5.2 Optimization of AUD expression in pET-28aSUMO-AUD. .................................... 102 

Figure 5.3 Purification of AUD. .............................................................................................. 103 

Figure 5.4 Identification of AUD protein. .............................................................................. 104 

Figure 5.5 Expression of wildtype AUD and its mutants. ...................................................... 105 

Figure 5.6 Mass spectrometry analysis of AUD-R243A/K245A. ............................................ 107 

Figure 5.7 Circular Dichroism results of AUDs. ...................................................................... 108 

Figure 5.8 AUD binding activity to short RNAs. ..................................................................... 109 

Figure 5.9 AUD RNA-binding activity to CHIKV 3’UTR RNA. .................................................. 111 

Figure 5.10 AUD RNA-binding activity to HCV 3’UTR RNA. ................................................... 113 

Figure 5.11 RNA-filter binding assay with AUD and FMDV aptamer RNA. ............................ 114 

Figure 5.12 AUD RNA binding activity to CHIKV 5’ UTR(-) and sg-5’ prom(-). ....................... 116 

Figure 5.13 Diagram of pMKO.1-GFP and pMKO.1-GFP-siGFP. ............................................. 122 

Figure 5.14 GFP reversion assay of CHIKV nsP3/AUD in C2C12 cells. ................................... 123 

Figure 5.15 Expression of GST-AUD. ...................................................................................... 124 

Figure 5.16 GST tagged AUD failed to pull down Dicer protein. ........................................... 126 



xiii 
 

Figure 5.17 GFP tagged nsP3 or AUD failed to pull down Dicer protein. ............................... 127 

Figure 5.18 GFP tagged wildtype AUD and mutant distribution in C2C12 cells. .................... 130 

Figure 5.19 Distribution of wildtype nsP3 and its AUD mutants with G3BP in C2C12 cells. .. 132 

Figure 5.20 Purification of Twin-Strep-Tagged nsP3 (TST-nsP3). ........................................... 136 

Figure 5.21 Flow chart of comparative analysis of nsP3-binding proteins involved in nsP3-

P247A/V248A. ........................................................................................................................ 137 

Figure 5.22 nsP3 interacting protein network inhibited by P247A/V248A. ........................... 138 

Appendix Figure 9.1 Alignment of full AUD amino acid sequences among different 

alphaviruses. …………………………………………………………………………………………………………………... 171 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiv 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xv 
 

Table of Tables 
Table 1 AUD mutant replication phenotypes in different cell types. ....................................... 73 

Table 2 RNAs used in the detection of protein-RNA interaction………………………………………...117 

Appendix Table 9.1 List of constructs generated and used throughout this study. .............. 172 

Appendix Table 9.2 List of oligonucleotide primers used in this project. .............................. 174 

Appendix Table 9.3 Host proteins identified by proteomic analysis……………………………………185 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xvi 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xvii 
 

Abbreviations 

A Ala, alanine 
CYC1 Cytochrome c-1 
2'-O me 2'-O-methyl modification 
aa Amino Acid 
ActD actinomycin D 
ADP Adenosine diphosphate 
AGO Argonaute protein 
arbovirus arthropod borne virus 
ATP Adenosine triphosphate 
AUD Alphavirus unique domain 
BCA Bicinchoninic acid 
bp Base Pairs 
BSA Bovine serum albumin 
BSL3 Biosafety laboratory level 3 
C Cys, cysteine 
CD Circular Dichroism 
CD4 Cluster of Differentiation 4 
CDC Centres for Disease Control and Prevention 
cDNA Complementary DNA 
CHIKV Chikungunya virus 
CHIKV-D-Luc-SGR Chikungunya virus dual luciferase subgenomic replicon 
CP Capsid protein 
CPE Cytopathic Effect 
CSE Conserved sequence element 
CV Column Volume 
Cyp Cyclophilin 
Cys Cysteine  
D Asp, aspartate 
Da Dalton 
DAPI 4’, 6’-diamidino-2-phenylindole dihydrochloride  
DENV Dengue Fever Virus 
DEPC Diethyl pyrocarbonate  
DMEM Dulbecco’s modified eagles medium 
DMSO Dimethyl sulfoxide 
DNA Deoxyribonucleic acid 
dNTP Deoxynucleotide 
DRs Direct repeats 
dsRNA double stranded RNA 
E Glu, glutamate 
E.coli Escherichia Coli 
E1 Envelope 1 protein 
E2 Envelope 2 protein 
EDTA Ethylenediamine tetraacetic acid 
eIF eukaryotic initiation factor 



xviii 
 

ELISA Enzyme-linked immunosorbent assays 
EM Electron Microscopy 
ER Endoplasmic Reticulum 
FBS foetal bovine serum 
Fluc Firefly luciferase 
FMDV Foot-and-Mouse Disease Virus 
FXR Fragile-X-related 
g Gravitational force 
G Gly, glycine 
G3BP Ras-GTPase-activating protein-binding protein 
GA Glutathione agarose 
GAPDH Glyceraldehyde-3-phosphate dehydrogenase 
GFP Green fluorescent protein 
GLB Glasgow lysis buffer 
gRNA genomic RNA 
GST Glutathione S-transferases 
h.p.e. hours post electroporation 
h.p.i. hours post infection 
h.p.t. hours post transfection 
HCV Hepatitis C Virus 
Huh7 Human hepatocellular carcinoma cell line-7 
Huh7.5 Human hepatocellular carcinoma cell line-7.5 
I Ile, isoleucine 
ICA Infectious centre assay 
ICRES ECSA strain 
ID Identity 
IF Immunofluorescence  
IFIT1 Interferon Induced Protein with Tetratricopeptide Repeats 1 
IFN Interferon 
IFNα Interferon-α 
Ig Immunoglobulin 
IP Immunoprecipitation 
IPTG isopropyl β-D-1-thiogalactopyranoside  
IRES Internal Ribosome Entry Site 
ISG Interferon-stimulated gene 
ISG15 Interferon-stimulated gene 15 
IU Infectious Unit 
K Lys, lysine 
kb Kilobase 
kDa Kilodalton 
L Leu, leucine  
LarII Luciferase reagent II 
LB Luria Bertani 
LC-MS Liquid chromatography-mass spectrometry 
M Met, methionine 
M.Wt Molecular weight 
m/z mass to charge 



xix 
 

m7G 7-methylguanosine 
MAR Mono-ADP-ribose 
MCS Multiple Cloning Site 
MeOH Methanol 
min Minutes 
miRNA MicroRNA 
MOI Multiplicity of infection 
mRNA message RNA 
MS Mass Spectrometry 
MTCH1 Mitochondrial Carrier 1  
MT-like Methyltransferase-like 
N Asn, asparagine 
NC Nucleocapsid 
NDUFS1 NADH dehydrogenase (ubiquinone) Fe-S protein 1 
NEAA non-essential amino acids 
NMR Nuclear magnetic resonance 
nsP non-structural protein 
nsP1 Non-structural protein 1 
nsP2 Non-structural protein 2 
nsP3 Non-structural protein 3 
nsP4 Non-structural protein 4 
nt Nucleotide 
NTPase Nucleoside triphosphatase 
o/n Overnight 
ORF Open Reading Frame 
P Pro, proline 
PAGE Polyacrylamide gel electrophoresis 
PARP Poly(A)-poly(A) binding protein 
PBS Phosphate buffered saline 
PCR Polymerase chain reaction 
PDB Protein database 
PEG Pegylated 
PFA Paraformaldehyde  
PFU Plaque forming units 
PLB Passive lysis buffer 
prom Promoter 
PVDF Polyvinylidene fluoride 
Q Gln, glutamine 
qRT-PCR Quantative Reverse Transcription Real Time PCR 
R Arg, arginine 
RCF Relative Centrifugal Force 
RdRp RNA-dependent RNA-polymerase 
RISC RNA-induced silencing complex 
Rluc Renilla luciferase 
RNA Ribonucleic acid 
RNAi RNA interference 
rpm Revolutions Per Minute 



xx 
 

RRV Ross River Virus 
RSE Repeat sequence element 
RT Room Temperature 
RTPase RNA triphophatase 
RT-PCR reverse transcriptase-polymerase chain reaction 
S Ser, serine 
SAM S-adenosyl methionine 
SDS Sodium dodecyl sulphate 
SE Standard Error 
SEC Size Exclusion Chromatography 
SEC-MALLS Size Exclusion Chromatography - Multi-Angle Laser Light Scattering 
SEM Standard error of the mean 
SFV Semliki Forest Virus 
sg P subgenomic promoter 
SGR Sub-Genomic Replicon 
sgRNA subgenomic RNA 
SH3 Src homology 
SINV Sindbis virus 
siRNA Small interfering RNA 

SLC25A20 
Solute Carrier Family 25 (carnitine/acylcarnitine translocase), 
member 20  

SLC25A4 
Solute Carrier Family 25 (mitochondrial carrier; adenine nucleotide 
translocatoer), member 4  

SLC25A5 
Solute Carrier Family 25 (mitochondrial carrier; adenine nucleotide 
translocator), member 5  

SOC Standard of care 
ssRNA Single stranded RNA 
SUCLG1 Succinate-CoA Ligase, alpha subunit 
SUMO Small Ubiquitin-like Modifier 
T Thr, threonine 
TAE Tris-Acetate-EDTA buffer 
TBS Tris-buffered saline 
TC Tissue culture 
TEMED Tetramethylrhodamine  
TMT Tamdem Mass Tag 
TST Twin-strep-tag 
U Uracil 
UTR Untranslated Region 
V Val, valine 
v/v Volume by Volume 
VEEV Venezuelan Equine Encephalitis Virus 
W Trp, tryptophan 
w/v weight by volume 
WEEV West Equine Encephalitis Virus 
WHO World Health Organisation 
WT Wildtype 
Y Tyr, tyrosine 



xxi 
 

YBX1 Y-box-binding protein 1 
YFV Yellow Fever Virus 
ZBD Zinc-binding domain 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

	



xxii 
 

	 	



Chapter 1: Introduction 

1 
 

	

	

	
 

 

	

	

Chapter	1:	Introduction	

	

	

	

	

	

	



Chapter 1: Introduction 

2 
 

	 	



Chapter 1: Introduction 

3 
 

1.1 Chikungunya virus 

1.1.1 Identification of Chikungunya virus (CHIKV) 

CHIKV is the pathogen causing Chikungunya fever, an acute febrile illness associated with 

severe arthralgia and rash (Deller and Russell, 1967, McGill, 1995, Adebajo, 1996, Ligon, 2006). 

Chikungunya is a Makonde word (Bantu language) meaning ‘the one that bends up’, referring 

to the stooped appearance of sufferers due to the excruciating pain in the joints (Robinson, 

1955). CHIKV can cause acute, subacute or chronic disease. The disease shares some clinical 

signs with Dengue fever and Zika infection, and can be misdiagnosed in areas where they are 

common. For diagnosis, serological tests such as enzyme-linked immunosorbent assays (ELISA), 

and virological methods such as reverse transcriptase-polymerase chain reaction (RT-PCR) are 

available but are of variable sensitivity.  

CHIKV was first isolated and recognized as a human pathogen in 1952 from the Makonde 

plateaus, along the borders between Tanzania and Mozambique (Lo Presti et al., 2014). During 

the last few decades, numerous re-emergences of CHIKV have been documented in over 60 

countries in Asia, Africa, Europe and the Americas (Wahid et al., 2017, Burt et al., 2017). 

However, there is no specific antiviral drug treatment or safe and effective vaccines against 

CHIKV. The dramatic spread of CHIKV in recent years highlights the urgent need to take 

precautionary measures, as well as to investigate options for control. 

1.1.2 Classification of CHIKV 

CHIKV is a re-emerging mosquito-borne enveloped alphavirus in the Togaviridae family. The 

family Togaviridae consists of two genera: Alphavirus and Rubivirus (composed of a single 

member, Rubella virus). The Alphavirus genus contains a number of important human and 

animal pathogens (Strauss and Strauss, 1994). They are transmitted mainly by mosquito 

vectors where they cause systemic infection but no symptomatic disease. Therefore the 

Alphavirus are also referred to as arthropod borne virus (arbovirus), although it is uncertain 

whether salmonid alphaviruses are transmitted through lice or directly transmitted from fish 

to fish. The genus Alphavirus contains 31 members (Forrester et al., 2012) which can be 

classified antigenically into seven complexes: Barmah Forest (BF), Eastern equine encephalitis 

(EEE), Middelburg (MID), Ndumu (NDU), Semiliki Forest (SF), Venezuelan equine encephalitis 

(VEE), and Western equine encephalitis (WEE) (Solignat et al., 2009). Based on their geographic 

distribution, Alphaviruses can be divided into two categories: Old World and New World virus 

(Figure 1.1), and some transoceanic exchanges have possibly occurred mediated by birds 

(Powers et al., 2001). Old World viruses can be characterised by fever, rash and arthritic 
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symptoms, whereas some New World viruses may cause encephalitis. CHIKV, together with 

Ross River virus, O’nyong-nyong virus, Semliki Forest is part of the SF group of Old World 

viruses.  

 

Figure 1.1 A simplified phylogenetic tree of Alphaviruses assuming their New World origin. 

Picture is copied from (Powers et al., 2001). 
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CHIKV is divided into four geographically associated genotypes, ECSA, West Africa, Asian and 

Indian Ocean Outbreak, by an extensive and genome-scale phylogenetic analysis, using the 

whole open reading frame (ORF) sequences of a total of 80 isolates with broad temporal, 

spatial and host coverage (Figure 1.2).  The divergence of each distinct lineage reflected the 

path of global transmission and occasional outbreaks (Volk et al., 2010).  

 

 

Figure 1.2 CHIKV phylogenetic analysis based on 80 CHIKV isolates with different temporal, 

spatial and host coverage. 

Picture is copied from (Volk et al., 2010). 
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1.1.3 Pathology of CHIKV 

Chikungunya disease does not often result in death, but the symptoms can be severe and 

disabling. In the early stages when the illness appeared, it was diagnosed as ‘dengue-like’ 

disease until CHIKV was confirmed as the pathogen of the illness by laboratory evaluation. It is 

characterized by an abrupt onset of fever frequently accompanied by joint pain, and also 

causes muscle pain, headache, nausea, fatigue and rash. The abrupt fever (usually >38.9 °C) 

always lasts from a few days to 2 weeks and can be biphasic in nature (Deller and Russell, 1968, 

Halstead et al., 1969b). The onset of fever is always followed by severe and debilitating 

polyarthritis. The symmetric joint pains commonly occur in wrists, knees, ankles, elbow and 

fingers, but may also be involved in more-proximal joints (Simon et al., 2007). The joint pain 

usually lasts for a few days or may be prolonged to weeks (Sissoko et al., 2009, Manimunda et 

al., 2010). Rash is also a common symptom after CHIKV infection (Taubitz et al., 2007, 

Queyriaux et al., 2008, De Ranitz et al., 1965). It often appears following fever as 

maculopapular across trunk, extremities as well as palm, soles and even face (Borgherini et al., 

2007, Inamadar et al., 2008). Symptoms caused by CHIKV infection usually begin 3-7 days (in 

range of 2-12 days) after being bitten by an infected mosquito and most patients feel better 

within one week. Not all infected individuals develop symptoms. Serosurveys show that 3-25% 

of the infected people with antibodies to CHIKV have no symptoms (Queyriaux et al., 2008, 

Sissoko et al., 2008). New-borns infected around the time of birth, older adults, and people 

with medical conditions such as high blood pressure, diabetes, or heart disease may at risk for 

more severe diseases (Lo Presti et al., 2014). Rare death is caused by chikungunya infections, 

however, it has been reported to increase during the 2004-2008 epidemics (Mavalankar et al., 

2008, Beesoon et al., 2008, Higgs, 2006, Renault et al., 2007). 

CHIKV replicates in the skin, and disseminates to the liver, muscle, joints, lymphoid tissue 

(lymph nodes and spleen) and brain, presumably through the blood (Figure 1.3) (Talarmin et 

al., 2007, Robin et al., 2010, Schwartz and Albert, 2010, Lo Presti et al., 2014). Therefore, some 

subclinical pathological changes will also occur in tissues post infection, mostly in liver 

(hepatocyte apoptosis) and lymphoid organs (adenopathy); and those in muscles and joints are 

associated with strong pain, with some of the patients presenting arthritis (Robin et al., 2010, 

Dupuis-Maguiraga et al., 2012). 

 

 



Chapter 1: Introduction 

7 
 

Figure 1.3 Dissemination of CHIKV in vertebrates. 

Picture is copied from (Schwartz and Albert, 2010). 
 

1.1.4 Epidemiology of CHIKV 

Alphaviruses are maintained in natural cycles by transmission between susceptible vectors and 

vertebrate hosts (Strauss and Strauss, 1994). Arthropods (typically the mosquitoes) are usually 

the vectors for most alphaviruses, where viruses would cause a persistent, lifelong infection 

with minimal effect on biological functions. CHIKV transmission to humans is mainly through 

Aedes species mosquitoes, including Aedes aegypti, Aedes albopictus and Aedes polynesiensis, 

while Culex has also been reported for transmission in some cases (Schuffenecker et al., 2006, 

Diallo et al., 1999, Vanlandingham et al., 2005). 

CHIKV is becoming a global threat nowadays (Figure 1.4). It was first isolated in 1952 in 

Tanzania. After that, several other epidemics have been reported in Central African Republic, 

Burundi, Uganda, Nigeria, Angola, Democratic Republic of the Congo and some other countries 

(Wahid et al., 2017).  The first severe chikungunya fever outbreak documented in urban area 

was in the early 1960s in Bangkok (Nimmannitya et al., 1969), and from 1963 to 1973 in India 



Chapter 1: Introduction 

8 
 

(Shah et al., 1964). The seroprevalence rate increased abruptly from 70% to 75% (Renault et al., 

2012), followed by spreading to surrounding regions including Mauritius, Comoros, Seychelles, 

and La Reunion Island until April 2005 (Renault et al., 2012). CHIKV was found to infect another 

species of mosquito, i.e. Aedes albopictus due to a single point mutation in the genome during 

the epidemic from 2004 to 2009 (Schuffenecker et al., 2006). A CHIKV variant which presented 

a substitution of the amino acid alanine with valine at position 226 of the E1 protein was 

selected during the epidemic. This variant made A. albopictus, which was largely represented 

compared to Aedes aegypti in the specific affected area, became a predominant transmission 

vector, especially in La Reunion and the Kerala districts in India (Lo Presti et al., 2012). Recently, 

CHIKV infections have also been reported in Indonesia, Malaysia, Singapore, Philippines and 

some European countries such as Italy and France (Maha et al., 2015, Delisle et al., 2015). In 

the Americas, CHIKV first occurred in Saint Martin in 2013. So far, CHIKV transmission has been 

identified in 45 countries in North America, Central America, South America and Caribbean 

(Yactayo et al., 2016).  

CHIKV infection is now increasing its important threat to global health and welfare as the 

epidemiological findings give a hint that global distribution of A. aegypti and A. albopictus, as 

well as travellers, are involved in the ongoing CHIKV transmission in areas which were free of it 

before. The recognition of these infections is still difficult and remains underestimated 

because of its similar symptoms to other arboviruses (Pierro et al., 2014). The dramatic spread 

of CHIKV in recent decades highlights the urgent need to take precautionary measures and 

options for control. Hopefully, timely sharing of accurate information may help to control the 

spread and magnitude of more outbreaks in the future. 
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Figure 1.4 Global transmission of CHIKV. 

(Copied from CDC, May 29th, 2018) * Does not include countries or territories where only 
imported cases have been documented. 
 

1.1.5 Diagnosis and therapies or vaccines against CHIKV 

Diagnosis of CHIKV infections may be confused with Dengue infections as they both lead to 

high temperatures and myalgias, and usually occur in tropical areas. And also, the two viruses 

are both transmitted by the Aedes species mosquitoes and possibly co-circulate and result in 

dual infections and epidemics (Nimmannitya et al., 1969, Myers and Carey, 1967, Halstead et 

al., 1969a, Ratsitorahina et al., 2008). However, the two diseases still have some differences in 

symptoms, CHIKV is more consistent in prominent and prolonged arthritis while dengue virus 

infection is more commonly associated with haemorrhage (Nimmannitya et al., 1969, 

Hochedez et al., 2008). 

CHIKV fever is confirmed by laboratory diagnostic detection of virus, viral RNA or CHIKV-

specific antibodies. RT-PCR or viral culture performed on an acute-phase specimen is a useful 

method for CHIKV diagnosis because of the high levels and long last of viremia caused by 

CHIKV infection (Lanciotti et al., 2007, Laurent et al., 2007). Virus can be isolated from the 

serum collected during the first week of the illness, then viral nucleic acid can be detected by 

real-time RT-PCR (Lanciotti et al., 2007, Panning et al., 2008). In 2008, a real-time PCR 

detection method developed at the Centres for Disease Control and Prevention (CDC) became 

commercially available (Focus Diagnostics), but the validity and sensitivity still need more 

confirmation (Staples et al., 2009). ELISAs is another quick and specific method for CHIKV 

detection. Both anti-CHIKV immunoglobulin (Ig) M and IgG antibodies can be used for test, IgM 
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antibodies develop fast and can persist for a few months (Lanciotti et al., 2007, Panning et al., 

2008). Rapid dipstick is also in development for CHIKV diagnosis in the field (Panning et al., 

2008), whereas the sensitivity and popularization still need more improvement. 

Immunofluorescence assays and plaque assays are also useful for CHIKV diagnosis but are 

limited in laboratories as they have high demand of equipment, training and biosafety level 3 

laboratory containment laboratory environment (Litzba et al., 2008).  

Treatment against CHIKV infection is now directed primarily at relieving the symptoms, 

including the joint pain using anti-pyretic, optimal analgesics and fluids. Although some in vitro 

studies and limited clinical data have suggested that some certain drugs, such as chloroquine, 

acyclovir, interferon-α (IFN-α), ribavirin and corticosteroids might be effective in treatment 

against CHIKV infection, the proof is still not sufficient to confirm the benefits and 

effectiveness of these interventions.  

The exploitation of CHIKV vaccines develops step by step from formalin-inactivated vaccines to 

CHIKV live-attenuated vaccines, and nowadays virus-like particles (VLP) and viral-vectored 

vaccines (Reyes-Sandoval, 2019). So far, there is still no licensed vaccine against CHIKV, but 

various developments have entered phase I and II trials and are now viable options to fight this 

incapacitating disease. The VLP, known as VRC-CHKVLP059-00-VP, has been proved to be safe 

and efficient in an assessment of the VRC 311 phase I clinical trial in a dose-escalation, open 

label trial with 25 adults of 18-50 years of age, and now has entered phase II trials for further 

evaluation in 400 healthy adults between 18-60 years of age (Chang et al., 2014, Reyes-

Sandoval, 2019). In 2013, Samantha Brandler et al. reported the development of a 

recombinant Measles viral-vectored (MVV) vaccine expressing the heterologous structural 

genes of CHIKV (Brandler et al., 2013). This MV-CHIKV vaccine has been assessed in both phase 

I clinical trial and a subsequent double-blind, randomised, placebo-controlled and active-

controlled phase II trial, and showed excellent safety and tolerability (Ramsauer et al., 2015, 

Reisinger et al., 2019). 

In conclusion, there is still no confirmed anti-viral treatment or safe and effective vaccines 

available but research in this area is developing vigorously. 

1.2 Molecular virology of CHIKV 

1.2.1 Molecular structure and genome organisation of CHIKV 

As a member of the Alphavirus genus, CHIKV is a small (60-70 nm-diameter), spherical, 

enveloped virus with a positive-strand RNA genome (Powers et al., 2001, Strauss and Strauss, 
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1994). Alphavirus is one of the simplest enveloped virus, with one copy of genome RNA, 240 

copies of capsid protein, formed as 120 copies of dimers (Perera et al., 2001), arranged in a 

T=4 lattice, and the surface glycoprotein spikes, consisting of E1 and E2, forming a T=4 

structure as 80 trimers of heterodimers (Cheng et al., 1995, Zhang et al., 2002).  

The genome structure of CHIKV is as follows: 5’cap-nsP1-nsP2-nsP3-nsP4-(junction)-C-E3-E2-

6k-E1-poly(A)-3’ (Figure 1.5). Similar to eukaryotic mRNAs, it possesses 5’cap structure and 

3’poly(A) tail. It contains two open reading frames (ORF) encoding non-structural proteins 

(7425 nt) and structural proteins (3747 nt), respectively. The second ORF is expressed through 

a subgenomic RNA produced from an internal promoter in the negative strand RNA replication 

intermediate (Strauss et al., 1984). 

Figure 1.5 Structure of CHIKV genome RNA. 

1.2.2 Non-coding regions of CHIKV genome 

1.2.2.1 5’-untranslated region (UTR) of CHIKV 

The 5’UTR of CHIKV is highly conserved and composed of 76-77 nucleotides (Hyde et al., 2015). 

The 5’ termini modification by the addition of a 7-methylguanosine (m7G) cap structure helps 

to promotes RNA stability and translation of viral transcripts. The m7G capping for 

alphaviruses is performed in a distinct way from host mRNA capping (Ahola and Kaariainen, 

1995) (Figure 1.6). As m7G cap is important for translation of alphavirus RNAs, 5’UTR regulates 

it by both its sequence and structure. Host translation initiation factors eIF4E and eIF4F 

recognise specific 5’UTR, forming distinct secondary structures to initiate viral protein 

translation (Hyde et al., 2015). However, it was shown recently that Sindbis virus produced 

non-capped viral genomic RNAs, especially in significant numbers during the early phase of 

infection (Sokoloski et al., 2015). The precise importance of these non-capped viral RNAs 

during infection was not clear, but these uncapped viral RNA containing 5’-triphophate (5’-ppp) 

are the target of RIG-I/MDA5 mediated IFN innate immune response (Chiu et al., 2009, Barral 

et al., 2009, Akhrymuk et al., 2016). 5’UTR and its complementing sequence in the 3’ end of 

the negative strand are also critical for alphavirus genome replication (both positive- and 

negative-strand RNA synthesis) based on its sequence and stable secondary structure 

(Kulasegaran-Shylini et al., 2009, Nickens and Hardy, 2008). Some previous studies have found 

that compensatory mutations within viral replicase proteins (nsPs) appeared to alter the host 
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factors that bind the UTR when mutations were introduced into 5’UTR. This indicates that the 

motifs within 5’UTR must be significant for the coordinated recruitment of viral and host 

factors required for replication, although the actual role of 5’UTR sequence and structure in 

RNA synthesis is not yet absolutely understood (Berben-Bloemheuvel et al., 1992, Pardigon 

and Strauss, 1992, Pardigon et al., 1993, Shirako et al., 2003, Castello et al., 2006). Alphavirus 

5’UTR is also involved in immune restriction and viral pathogenesis. A single mutation 

introduced into a VEEV attenuated strain compromised virulence in immunocompetent mice 

(White et al., 2001). Sequence deletions and point mutations within Sindbis or Semliki Forest 

Virus (SFV) 5’UTR also affect their pathogenicity and neurovirulence in rodents (Klimstra et al., 

1999, Kobiler et al., 1999, Kuhn et al., 1992, Logue et al., 2008). In conclusion, the 5’UTRs of 

alphaviruses are multifunctional regions important in promoter function, initiation of 

translation, translational shutoff and cellular innate immune escape of the viruses.  

 

 

Figure 1.6 A comparison between mRNA capping of cellular and alphavirus mRNAs. 

The methyl donor S-adenosyl methionine (SAM) is indicated in green. In alphavirus capping, 
the nsP1 protein methylates GMP prior to covalently attaching the modified GMP to the 
diphosphate at the 5’end of the pre-mRNA generated by triphosphatase activity associated 
with nsP2. Cellular mRNAs generally contain a 2’-O-methyl modification (2’-O me) of the first 
nucleotide downstream of the N-7meGppp cap that is not seen in alphavirus transcripts. Picture 
is copied from (Hyde et al., 2015). 
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1.2.2.2 3’UTR of CHIKV 

The 3’UTR of CHIKV genome varies from 498 to 723 nt. As shown in Figure 1.7, it contains a 

number of direct repeats (DRs), which possibly result from historical duplication events, 

occurring in lineage-specific patterns (Chen et al., 2013). The 3’UTR plays an important role in 

virus genome replication. A 19-nt highly conserved sequence element (CSE) at the end of 

3’UTR, followed by poly(A) tail, is the promoter for negative-strand intermediate RNA synthesis 

(Kuhn et al., 1990, Pfeffer et al., 1998). The poly(A) tail functions in both negative-strand RNA 

synthesis and efficient translation. It is predicted that the poly(A)-poly(A) binding protein 

(PABP) complex and 5’UTR-translation initiation factors complex could interact to form a 

mRNA circularization and initiate translation (Lemay et al., 2010, Hardy and Rice, 2005). There 

are also some repeat sequence elements (RSEs) within 3’UTR which may contribute to virus 

replication in mosquito cells by producing microRNA (miRNA) or interaction with host proteins 

(Trobaugh et al., 2014).  It also serves as a target for host miRNAs to block virus replication 

(Trobaugh et al., 2014). The 3’UTR is also reported to interact with host factors such as HuR 

proteins to stabilize viral RNA in the cytoplasm in host cells by inhibiting deadenylation and 

viral RNA decay (Garneau et al., 2008, Sokoloski et al., 2010, Dickson et al., 2012). 

 

Figure 1.7 Evolutionary history and lineage-specific structures of the CHIKV 3’UTR. 

On the left is the Maximum Clade Credibility tree based on the complete ORF sequences. The 
sequence alignment-based 3’UTR structures are shown next to each lineage. Direct repeats are 
illustrated by different coloured blocks, and each of the four colours represents a different 
homologous sequence region. White blocks indicate sequence gaps during alignment. Picture is 
copied from (Chen et al., 2013). 
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1.2.2.3 Subgenomic RNA promoter of CHIKV 

Subgenomic RNA promoter, another sequence element, locates at the junction between the 

two ORFs. The core sequence starts from the last 19th nt of nsP4 to the 5th nt within junction 

area between non-structural proteins and structural proteins coding region. Additional 

enhancer elements and contextual effect were identified by studies using dual-promoter 

viruses (Raju and Huang, 1991, Wielgosz et al., 2001). The full, optimal promoter was mapped 

to -98 to +14 and the specific requirements within this region were identified (Wielgosz et al., 

2001). The subgenomic RNA promoter capping modification and its interaction with host 

proteins are important for viral genome replication and structural protein production (Castello 

et al., 2006). 

1.2.3 Structural proteins 

CHIKV has 5 structural proteins: capsid protein (CP), E1, E2, E3 and 6k, that translated from a 

4269 nt subgenomic RNAs. The five structural proteins are expressed as a polyprotein at first 

and then processed co-translationally and post-translationally into structural proteins CP, PE2 

(precursor to the E3 and E2 proteins prior to furin cleavage), E1 and a small peptide 6k. The CP 

is firstly translated and released from the polyprotein with its own protease activity, exposing 

a translocation signal at the new N-terminal to transfer pE2 sequence across the ER membrane, 

resulting in pE2, 6k and E1 cleavage, and post-translational modifications such as addition of 

high-mannose chains, carbohydrate chains (Garoff et al., 1990, Hsieh and Robbins, 1984, 

Knight et al., 2009). During transport of the pE2-E1 complex, after the heterodimer reaches the 

trans-Golgi network but before it arrives at plasma membrane, pE2 is cleaved to form E3 and 

E2 before generation of infectious virus (Gaedigk-Nitschko and Schlesinger, 1990, Heidner et 

al., 1994, Salminen et al., 1992). 

1.2.3.1 Capsid protein 

The capsid protein consists of 261 amino acids (aa), with a poorly conserved N-terminus which 

may be important for nucleocapsid (NC) core assembly and a highly conserved C-terminal 

autoprotease domain. The first 100 aa of alphavirus CP are presumed to bind to the genomic 

RNA (Coombs and Brown, 1989); and the later domain helps to release itself from the nascent 

structural polyprotein with serine protease activity acting in cis (Solignat et al., 2009). 240 

copies of CP, shown as 120 copies of dimer, complexed with one single copy of RNA will form 

one NC. 
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1.2.3.2 E1 

The E1 protein is 440 aa long. It covers most of the lipid membrane by forming a continuous 

icosahedral protein shell on the virion. For SFV, the E1 ectodomain is composed of 3 β-barrel 

domains. Domain I lies between domain II and III, and contains the two amino terminus. The C-

terminus locates within domain III and the fusion part is at the distal end of domain II. The E1 

monomers lie at the bottom of the surface spikes in the formation of lattice on virus surface 

(Mukhopadhyay et al., 2006). The alphavirus E1 protein functions to convert the viral surface 

proteins into plasma membrane through the ion-permeable pores, and is responsible to fuse 

viral envelope with the host endosomal membrane during virus entry (Wengler et al., 2003).  

1.2.3.3 E2 

E2 is a long, thin molecule of a leaf-like structure, highly exposed at the top of the spike 

followed by a narrower stem twisting around E1 molecule (Zhang et al., 2002). E2 include 

three domains: the ectodomain consisting of the first 260 aa, the stem region consisting of 

about 100 aa, and a transmembrane helix of 30 aa. E2 is the link between envelope proteins 

and the NC. The 33 aa E2 C-terminal domain is responsible for interaction with NC core, and 

the leaf-like structure interacts with E1 domain II distal end while the stalk portion has contact 

with E1 domain I and III (Mukhopadhyay et al., 2006, Pletnev et al., 2001). E2 is also involved in 

receptor binding and subsequent receptor-mediated endocytosis (Jose et al., 2009). 

1.2.3.4 E3 

E3 protein is a small peptide cleaved from pE2 by fusion in the Golgi. On the surface of virus 

particles, E3 is predominantly located between the petals of the spike and forms a dual-lobed 

petal (Wu et al., 2008). E3 has a central role in pE2/E1 complex formation and viral structural 

components transportation to the site of budding. Also, it is required for efficient virus 

assembly with an enzymatic or functional role that not yet proved (Parrott et al., 2009), 

mediating both spike folding and spike activation for viral entry (Jose et al., 2009).  

1.2.3.5 6k 

6k is a small, 6 kDa polypeptide that serves as a very small part of virions. Although only a 

small amount (7-30 copies) of 6k are needed in each virus particle, it is expressed in a same 

molecular amount as other structural proteins (Gaedigk-Nitschko and Schlesinger, 1990, Lusa 

et al., 1991). Although 6k is not detected in any identified cryo-EM virion structures so far, it is 

believed to be an essential component of infectious virus particles. Some mutations or 
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deletion of the 6k coding sequences lead to severely reduced infectious virus production in 

some specific host cell species (Loewy et al., 1995). In 2008, a frameshifting event was 

discovered by a bioinformatics team at a conserved UUUUUUA motif within the sequence 

encoding 6k, resulting in the synthesis of an additional protein, termed TF (TransFrame 

protein), and the presence of TF was confirmed by mass spectrometry in the Semliki Forest 

virion (Firth et al., 2008). Following studies demonstrated that 6k was likely involved in virus 

release by its role inside the cell, including interactions with glycoprotein spikes; and TF 

protein was present in virions with unknown functions in virus spread in an animal host 

(Ramsey and Mukhopadhyay, 2017). 

1.2.4 Non-structural proteins 

The non-structural proteins (nsPs) are translated from the first 7425-nt ORF of the viral 

genome. They are firstly expressed as a polyprotein and then cleaved into four different 

proteins, nsP1, nsP2, nsP3 and nsP4, necessary for virus genome replication and viral protein 

expression. Translation of viral genomic RNA produced two kinds of non-structural protein 

precursors, nsP123 and nsP1234. nsP1234 is expressed when an opal termination codon at the 

end of nsP3 is read-through (Firth et al., 2011). The precursor polyprotein is then cleaved by 

nsP2 carboxy-terminal protease (de Groot et al., 1990). nsP4 is firstly cleaved from the 

polyprotein either in cis or trans followed by nsP1 cleavage in cis (Vasiljeva et al., 2003). Both 

nsP123+nsP4 and nsP1+nsP23+nsP4 are used to form early replication complex with host 

proteins to synthesize negative-strand viral RNA intermediate. After that, cleavage between 

nsP2/3 occurs to produce 4 mature nsPs and switch RNA synthesis from negative-strand RNA 

to positive-strand genomic and subgenomic RNA with poorly understood mechanism. 

1.2.4.1 nsP1 

The 60 kDa nsP1 mainly functions in two aspects during virus replication. The first one is the 

capping activity to add 5’cap to alphavirus genomic and subgenomic RNA, with the Rossman-

like methyltransferase (MTase) motifs in the N-terminal domain of it (Martin and McMillan, 

2002, Schluckebier et al., 1995, Rozanov et al., 1992). The other revealed function of nsP1 is its 

association to host membranes. An amphipathic helix and palmitoylation are the key factors to 

anchor nsP1 or nsP1-containing non-structural polyprotein to the host membrane (Ahola et al., 

2000, Lampio et al., 2000, Spuul et al., 2007). nsP1 is also predicted to be involved in 

membrane and cytoskeletal rearrangement, cell filopodia formation and alphavirus cell-to-cell 

transmission (Karo-Astover et al., 2010, Martinez et al., 2014). Although the specific molecular 
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understanding is still unknown, nsP1 is believed to be important for negative-strand RNA 

synthesis (Hahn et al., 1989, Wang et al., 1991). 

1.2.4.2 nsP2 

nsP2 is about 90 kDa and is a multifunctional protein during virus infection. It was initially 

thought to contain 2 domains, an N-terminal helicase domain which also performs nucleoside 

triphosphatase (NTPase) activity, and a C-terminal protease domain. Then crystallographic 

analysis revealed that the C-terminal domain contains a third domain with an MTase-like fold 

which likely had no enzymatic activity due to a lack of active-site residues (Russo et al., 2006). 

During virus replication, nsP2 serves three different important functions as a helicase, a 

triphosphatase and a protease. Besides these, nsP2 is also involved in the shutoff of host 

macromolecular synthesis leading to the virus cytotoxicity. As a helicase, nsP2 functions to 

unwind RNA secondary structures during virus genome replication. This helicase activity is 

dependent on the NTPase activity of the N-terminal domain (Rikkonen et al., 1994). nsP2 

exhibits also a RNA triphosphatase (RTPase) activity within its N-terminal domain and this 

activity is required to enable nascent virus genomic RNA as a substrate for nsP1-mediated 

capping reaction (Vasiljeva et al., 2000). As a protease, nsP2 is responsible for the processing 

of the non-structural polyproteins into 4 individual mature non-structural proteins. The 

protease domain is essential for protease activity but the entire protease activity must also be 

modulated by other domains of nsP2 and nsP2-containing polyprotein (Vasiljeva et al., 2003). 

nsP2 has also been predicted to be involved in virus subgenomic RNA synthesis by binding to 

subgenomic promoter but evidence for this function is as yet lacking (Suopanki et al., 1998). 

1.2.4.3 nsP3 

nsP3 consists of 530 aa and is divided into 3 domains: the macrodomain, the alphavirus unique 

domain (AUD) and the hypervariable region.  The importance of nsP3 in alphavirus replication 

is in no doubt as mutations have been shown to disrupt virus negative-strand or subgenomic 

RNA synthesis (LaStarza et al., 1994b, Wang et al., 1994, Rupp et al., 2011). nsP3 is also proved 

to specifically suppress different host antiviral pathways in alphavirus (Fros and Pijlman, 2016). 

However, the precise roles of nsP3 during virus replication is still unknown. More information 

about nsP3 will be described in 1.3. 

1.2.4.4 nsP4 

The   ̴70 kDa nsP4 is the most highly conserved protein in alphavirus, solely responsible for the 

RNA synthesis properties of the viral replicase complex. The expression on nsP4 is restricted 
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because of a leaky opal stop codon in the end of nsP3 coding sequence. The core RNA-

dependent RNA polymerase (RdRp) domain is located at the C-terminal of nsP4. The RdRp 

plays a role in producing genomic RNA via the negative-strand intermediate and transcribing 

subgenomic RNA. The model of RdRp domain exhibits a classical structure of RdRp with well-

defined finger, palm containing the GDD active site and thumb domains (O'Reilly and Kao, 

1998, Tomar et al., 2006, Rubach et al., 2009). The N-terminal sequences of nsP4 are unique to 

alphavirus RdRp, and are targeted for degradation (de Groot et al., 1990). 

1.3 nsP3 

Alphavirus nsP3 is always involved in complexes together with other viral proteins or host 

factors. It was initially thought stable until a degradation signal was discovered at the C-

terminal region of SFV and SINV nsP3 (Varjak et al., 2010). The rapid degradation of nsP3 only 

occurs when individually expressed in the early stage of virus replication, but not in the 

context of the polyprotein nsP123. However, the significance of the degradation signal is not 

yet characterised. The function of CHIKV nsP3 has not been clearly revealed but a lot of studies 

of nsP3 have been performed on other alphaviruses. 

During alphavirus replication, nsP3 could be observed in different parts of the infected cells. 

Some of nsP3 are located on the cytoplasmic surface of virus replication complex that exists on 

the plasma membrane in the early stage of virus replication. Then for some alphaviruses 

replication in some specific cell lines, nsP3 could be found in the spherules anchored on CPVs 

in the perinuclear area (Froshauer et al., 1988, Cristea et al., 2006, Kujala et al., 2001). Besides 

the ones occupied in the replication complexes, there are also some replication complex 

separated nsP3 aggregates existing in cytoplasm, suggesting that nsP3 has other functions 

independent of virus genome replication. 

nsP3 is predicted as a vector specificity determinant. Replacement of CHIKV nsP3 with ONNV 

nsP3 made chimeric CHIKV infectious to Anopheles gambiae mosquitoes which are naturally 

refractory to CHIKV WT infection (Saxton-Shaw et al., 2013), presumably by specific viral-host 

proteins interactions (Lastarza et al., 1994a). A study of RNAi suppressor activity also suggests 

that the function of nsP3 varies between mosquito and mammalian cells (Mathur et al., 2016). 

Moreover, nsP3 has been demonstrated to be the major determinant of neurovirulence for 

Old World alphaviruses but not New World alphaviruses (Tuittila et al., 2000, Tuittila and 

Hinkkanen, 2003, Suthar et al., 2005, Atkins and Sheahan, 2016). 
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As described above, nsP3 is essential for alphavirus infection with multiple functions. It is 

divided into three domains (Figure 1.8) and each domain has different roles during virus 

infection.  

 

Figure 1.8 Diagram of nsP3. 

1.3.1 Macrodomain 

The N-terminal macrodomain of nsP3 is conserved among alphaviruses and its homologous 

domains can be found in the proteins of many other species such as other positive-strand RNA 

viruses, bacteria and eucaryotes (Koonin et al., 1992, Rack et al., 2016). Structural studies 

revealed that the macrodomain consists of a central twisted six-stranded β sheet surrounded 

by three helices on one side and one on the other (Figure 1.9), indicating its biochemical and 

structural basis of ADP-ribose binding and RNA binding (Lykouras et al., 2018, Malet et al., 

2009). Studies have demonstrated the ADP-ribose binding activity of macrodomain, as well as 

its dephosphorylation function of ADP-ribose-1’’-phosphate and de-ADP-ribosylating activity 

(Fehr et al., 2018). The activity of ADP-ribose-protein hydrolase for mono-ADP-ribose (MAR) 

chain removal (de-MARylation activity) is also demonstrated recently in different alphaviruses 

(Eckei et al., 2017). These enzymatic activities of macrodomain are significant for both virus 

replication and virulence. Besides these, macrodomain is also considered to have other 

functions. For example, it is shown to serve as a recognition site of nsP2 for cleavage of nsP2/3; 

and the ssRNA binding activity of macrodomain was predicted to affect nsP3 phosphorylation 

and virus negative-strand RNA synthesis (Lulla et al., 2012, De et al., 2003).  
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Figure 1.9 Structure of CHIKV macro domain. 

Representation of CHIKV macrodomain in a purple-to-red gradient (from N terminus to C 
terminus). Secondary structure elements are labelled on the structure. Picture is copied from 
(Malet et al., 2009).  
 
1.3.2 AUD 

The AUD is located in the middle of nsP3 with essential but unknown functions for alphavirus 

replication. It exhibits a high degree of homology across all alphaviruses with an unique 

structure. Mutation in AUD have been shown to disrupt early events during virus genome 

replication with defect in formation of early replication complex for negative-strand RNA 

synthesis (LaStarza et al., 1994b, Wang et al., 1994). In a study revealing the structure of an 

uncleaved SINV nsP2/3 precursor including the protease and methyltransferase-like (MT-like) 

domains of nsP2, as well as the macro domain and AUD of nsP3, the structure of AUD was 

analysed and a zinc-binding domain (ZBD) was found in it (Figure 1.10). Four absolutely 

conserved cysteine residues coordinate a zinc ion. Mutations of each cysteine residues could 

absolutely block CHIKV replication, indicating the four cysteine residues were individually 

essential for virus replication. In addition, a series of aa located around the ZBD were predicted 

to have RNA-binding activity. Besides, according to the revealed structure of nsP2/3, the 

nsP2/3 cleavage site was a narrow cleft between MT-like domain of nsP2 and nsP3 

macrodomain. Macrodomain and AUD form a ring-like structure which shows an extensive 

N 

C 
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charged interface with nsP2 and encircles its MT-like domain. This interface between nsP2 and 

nsP3 were proved to be important for both virus cytopathic effect and virus RNA infectivity by 

mutations of the residues among this interface (Shin et al., 2012). The requirement of AUD for 

alphavirus replication is certain but the precise roles of this domain is not clear. A recent study 

also revealed that AUD might be involved in RNA interference (RNAi) suppression activity 

(Mathur et al., 2016). 

 

Figure 1.10 ZBD of nsP3. 

(A and B) Ribbon diagrams of the middle region of nsP3, showing the linker and ZBD. The 
polypeptide chain is rainbow colored from the amino terminus (blue) to carboxyl terminus 
(red). The coordinated, zinc atom is represented by a gray sphere surrounded by the four 
coordinating cysteine residues in stick format. The view in B is rotated 90° along the vertical 
axis from A. (C) Topology model of the nsP3 linker and ZBD, highlighting the location of the 
cysteine-coordinating residues. The colouring follows the ribbons diagram in A and B. Picture is 
copied from (Shin et al., 2012). 
 

1.3.3 Hypervariable region  

Different from macrodomain and AUD, the C-terminal hypervariable region varies in both 

sequence and length among alphaviruses. Although it is not a conserved domain, it shares a lot 

of features existing in many members of the family, indicating it is involved in multiple virus-

host protein interactions. For example, a hyperphosphorylated region and a proline rich region, 

as well as some repeated elements were found in this domain (Strauss et al., 1988, Vihinen et 

al., 2001, Lastarza et al., 1994a, Vihinen and Saarinen, 2000, Oberste et al., 1996, Meissner et 

al., 1999). The hypervariable region is essential for alphavirus replication but studies have 

shown that this domain is partially tolerant to some deletions or insertions (Lastarza et al., 

1994a, Davis et al., 1989, Galbraith et al., 2006). Based on this, a series of signal proteins were 

fused into nsP3 to follow the subcellular distribution of nsP3 and explore novel interaction 
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factors with nsP3 during virus replication by immunofluorescence or immunoprecipitation 

(Remenyi et al., 2018, Spuul et al., 2010, Cristea et al., 2006, Remenyi et al., 2017). However, 

there are still some critical residues in hypervariable domain essential for virus replication 

efficiency (Panas et al., 2015, Schulte et al., 2016). Some host proteins have been identified to 

be recruited to the replication complex by interaction with the hypervariable domain, 

including PAR polymerase-1 (PARP-1), DEAD-box RNA helicase, Src homology 3 (SH3)-domain 

containing proteins, Ras-GTPase-activating protein (SH3-domain)-binding protein (G3BP) (Park 

and Griffin, 2009, Amaya et al., 2016, Neuvonen et al., 2011, Panas et al., 2015, Meshram et al., 

2018). G3BP is essential for CHIKV replication as knockout of both G3BP1 and G3BP2 

absolutely terminated CHIKV replication (Kim et al., 2016). The various interactions of the 

unstructured hypervariable region with host proteins implies its involvement in the adaptation 

to different hosts. 

1.4 CHIKV life cycle 

1.4.1 Entry of CHIKV 

The process of entering a susceptible cell starts with the engagement of virus and a host 

receptor. Host receptors vary for different alphaviruses, and are thought to be proteins 

although non-protein factors may also in requirement during virus attachment and entry 

(Smith and Tignor, 1980). Alphaviruses envelope glycoproteins are responsible for the 

attachment of viruses to cells. The trimeric spikes on virus particles surface consist of E1 and 

E2 glycoproteins heterodimers. The crystal structures of the precursor p62-E1 heterodimer 

and of the mature E3-E2-E1 glycoprotein complexes have been reported in 2010, revealing the 

first step of CHIKV fusogenic transition was removal of the domain B cap covering the fusion 

loop without dissociation of the E2-E1 heterodimer, and the organization of the individual 

immunoglobulin-like domains of E2 which are responsible for receptor interactions, carrying 

important determinants of virulence and mosquito vector range (Voss et al., 2010). CHIKV is 

reported to persistently and productively infect a broad range of cell lines of its mammalian 

hosts, including human hepatocellular carcinoma cells (Huh7, HepG2), mouse muscle myoblast 

cells (C2C12), human brain astroglia cells (SVG-A), dermal fibroblast cells, human muscle 

rhabdomyosarcoma cells (RD), hamster kidney fibroblast cells (BHK-21), human lung epithelial 

carcinoma (A549), human cervical epithelial carcinoma cells (Hela) and African green monkey 

kidney epithelial cells (Vero E6) (Roberts et al., 2017). Together with some other research 

(Sourisseau et al., 2007), CHIKV was shown to be limited in its binding and activity to some 

specific cell lines and cellular subpopulations, indicating that similar to other enveloped viruses, 
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CHIKV has a tropism for some cells which may specifically express unknown receptors for 

CHIKV infection. The receptors of CHIKV in different cells have not been clearly demonstrated 

but Mxra8 has been proved to be a receptor for multiple arthritogenic alphaviruses including 

CHIKV in mammals, birds, and amphibians (Zhang et al., 2018), prohibitin was identified as a 

CHIKV receptor protein in microglial cells (Wintachai et al., 2012), and the heat shock cognate 

70 protein was shown to facilitate its entry into mosquito cell line C6/36 (Ghosh et al., 2017). 

As CHIKV, as well as other alphaviruses, is able to infect various vertebrate and invertebrate 

hosts, there are two hypotheses to explain the mechanism of virus entry into different cells. 

One is as mentioned above, that the virus makes use of a conserved receptor expressed on the 

surface of cells of different host types. For example, the eukaryotic protein laminin is predicted 

to be a receptor for alphavirus entry as it exists on both mammalian and mosquito cells 

(Ludwig et al., 1996, Wang et al., 1992). The other hypothesis is that the viruses interact with 

different cellular receptors for entry into cells (Jose et al., 2009). This is supported by the facts 

that even a single change in E1 or E2 amino acid sequences can alter the receptors used for 

virus entry (Lustig et al., 1988, Tucker and Griffin, 1991). 

Some alphaviruses, such as SFV and VEEV, have been shown to enter cells in a clathrin-

dependent endocytosis manner (Helenius et al., 1980, Marsh et al., 1983, Kolokoltsov et al., 

2006), and the experimentally introduced anti-clathrin antibodies inhibited SFV endocytosis 

into cells (Doxsey et al., 1987). Clathrin-coated pits are then uncoated to form endosomes. 

When the virus-containing endosome matures, the pH in the vesicle becomes mildly acidic, 

leading to the destabilization of E1-E2 heterodimer, and therefore exposing a fusion loop at 

the end of E1 protein (Lescar et al., 2001, Gibbons et al., 2003, Ahn et al., 1999, Hammar et al., 

2003). The fusion loop inserts into the membrane of late endosomes and then trimerizes 

(Wahlberg et al., 1992, Gibbons et al., 2000). As a result of the fusion loop insertion, virus 

envelope and endosomal membranes fused and form a fusion pore for NC to be released into 

the host cell cytoplasm. CHIKV entry into mammalian cells has also been studied recently. It 

was found that a mutant of Eps15 protein which impeded clathrin-coated pits assembly but 

did not affect the clathrin-independent endocytic pathway dramatically reduced CHIKV 

infection (Solignat et al., 2009), indicating that CHIKV also utilizes the clathrin-dependent 

endocytic pathway for virus entry into cells. Interestingly, at the same time, they found that 

CHIKV infection of HEK293T mammalian cells was clathrin heavy chain-independent. The 

prevention of endosome acidification prior to virus infection also significantly reduced CHIKV 

infection (Bernard et al., 2010).  
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1.4.2 Intracellular replication of CHIKV 

So far, the intracellular replication cycle of CHIKV has not been clearly demonstrated (Solignat 

et al., 2009). Therefore, to get a general understanding of CHIKV intracellular replication, 

deductions from the data obtained with other alphaviruses are made and strengthened by 

sequence comparison to make sure that the functional amino acids exist in the corresponding 

CHIKV proteins.  

For alphaviruses, once delivered into cytoplasm, the NC disassembles in some way to expose 

the viral genome for viral protein translation. It has been shown by thin-section micrographs 

that the NC is originally intact once enters the cytoplasm and then disassembles within five 

minutes (Helenius, 1984). It is predicted that alphavirus NC disassembles through interaction 

between capsid protein and ribosomes (Singh and Helenius, 1992). The exposure of virions to 

low pH environment is also suggested to prime the NC disassembly in cytoplasm (Jose et al., 

2009).  

Replication of viral RNA occurs in cytoplasmic vacuoles derived from endosomal and lysosomal 

membranes (Froshauer et al., 1988). Alphavirus replication proceeds in several steps. At first, 

non-structural proteins are translated from virus genomic RNA as a polyprotein precursor. 

Nearly 90% of the translation products are nsP123 polyprotein, while 10% are nsP1234 

polyprotein produced after the read-through of the opal strop codon located at the junction of 

nsP3 and nsP4 (Li and Rice, 1993, Strauss et al., 1983). After translation, nsP4 is promptly 

cleaved by nsP2 of its C-terminus protease activity (de Groot et al., 1990). The cleavage of nsP4 

from the non-structural polyprotein is obligatory as nsP1234 polyprotein is not involved in any 

stages of virus genome replication (Kallio et al., 2016, Shirako and Strauss, 1994). After 

synthesis and maturation, nsP123 which presents only in high concentrations in early stage of 

infection, together with nsP4 as well as some cellular proteins, acts as early polymerase 

complex for negative-strand RNA synthesis using genomic RNA as a template (Strauss et al., 

1992, Shirako and Strauss, 1994, Shirako and Strauss, 1990). The early polymerase complex is 

also capable but inefficiently to synthesize positive-strand RNA (Kallio et al., 2016, Lemm and 

Rice, 1993).  Then nsP1 is cleaved from nsP123 and form the complex of nsP1, nsP23 and nsP4 

which is able to synthesize both negative- and both positive-strand RNAs (Jose et al., 2009, van 

der Heijden and Bol, 2002). An in trans cleavage between nsP2 and nsP3 follows to fully 

process the four non-structural proteins into nsP1, nsP2, nsP3 and nsP4, and form the late 

replication complex. The late replication complex can only synthesize positive-strand RNA and 

subgenomic RNA using negative-strand RNA as template, and subgenomic RNA is produced in 
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higher quantities than genomic RNA (Keranen and Kaariainen, 1979). Subgenomic RNA is the 

template for structural proteins translation. The structural proteins are firstly translated as a 

polyprotein of CP-pE2-6k-E1 (Raju and Huang, 1991). During maturation, CP is the first to be 

released from the polyprotein through autoproteolysis. By the release of the CP, a 

translocation signal exposes in the new N-terminus of the polyprotein, translocating the pE2 

and E1 proteins across the ER membrane (Garoff et al., 1990). The pE2 and E1 proteins 

translocated into the ER membrane are then processed by post translational modifications 

(Garoff et al., 1990, Sefton, 1977, Hsieh and Robbins, 1984, Knight et al., 2009). During the 

transport of the pE2-E1 complex from trans-Golgi network to plasma membrane, E3 and E2 is 

produced by cleavage of pE2 with furin (Gaedigk-Nitschko and Schlesinger, 1990).  

The precise interactions between non-structural proteins and other non-structural proteins 

and/or cellular proteins to form early or late replication complex are poorly understood so far 

due to the lack of protein structural data. The N-terminal amino acid of nsP4 is critical for its 

function. Changing of the nsP4 N-terminal amino acid to a nonaromatic residue was lethal but 

an aromatic amino acid or histidine residue did not significantly affect virus replication (Shirako 

and Strauss, 1998). One suppressor mutation in nsP1 and two suppressor mutations in nsP4 

allowed the nonaromatic amino acid N-terminal nsP4 to be functional (Shirako et al., 2000). 

This indicated that the N-terminus of nsP4 interacted with nsP1 and other parts of nsP4 to 

form a proper protein structure participated in interaction with other viral or host proteins to 

allow the virus replication. And the N-terminus of nsP4, due to its flexible nature, forms 

different contacts with other proteins at different stages of virus replication to allow the 

synthesis of various virus RNA species (Rupp et al., 2011, Fata et al., 2002, Pietila et al., 2017). 

For negative-strand RNA synthesis, it is still not clear how it is initiated but the poly(A)-binding 

protein (PABP) is believed to be involved to perform a genome-circularization mechanism, 

which is a protein primer-dependent initiation on the 3’ poly(A) tail, like what happens in 

poliovirus replication (Frolov et al., 2001, Rupp et al., 2011, Pietila et al., 2017). It is 

hypothesized that replication complex binds the 5’ end of virus genome RNA together with 

other cellular proteins to form a translational machinery, and the translation factors interact 

with PARP which binds the poly(A) at the 3’ end of genome RNA, finally brings 5’ end and 3’ 

end of virus genome RNA together. This hypothesis is supported by a competition assay which 

showed that the 5’ competitor RNA significantly inhibited negative-strand RNA synthesis, 

indicating that the negative-strand RNA synthesis required the interaction between 5’ end and 

viral or cellular proteins (Frolov et al., 2001). 
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The initiation site of the positive-stand RNA synthesis is highly conserved for alphavirus 

genomes. The genomic RNA promoter is located at the 3’ end of the negative-strand RNA 

which is within the corresponding 5’ UTR stem loop sequence of positive-strand RNA, and the 

complementary stem-loop structure is also predicted for the negative-strand RNA. Regulation 

of positive-strand RNAs synthesis, including both genomic RNA and subgenomic RNA, is 

dependent on nsP4 itself as the different fragments of nsP4 bind to distinct promoters (Li and 

Stollar, 2004, Li and Stollar, 2007). The template for positive-strand RNAs synthesis is the 

negative-strand RNA; however, there is evidence that the template remains double-stranded 

(Kaariainen and Ahola, 2002), from which three forms of RNAs were released after RNase 

treatment, the full-length genome, the non-structural protein ORF and the subgenomic RNA 

(Simmons and Strauss, 1972a, Simmons and Strauss, 1972b). But the non-structural protein 

ORF RNA is not functional once come out of the intermediate therefore is likely a semi-finished 

product of virus replication and may be reactivated and finished synthesis at some frequency 

(Wielgosz et al., 2001).  

Although the proteolytic processing of the non-structural polyprotein has been revealed, the 

way how the processed non-structural proteins form distinct replication complexes for the 

synthesis of different species of viral RNAs remains poorly understood. Some research have 

been performed to elucidate the arrangement within the replicase complexes. Salonen et al 

attempted to uncover the interactions among the 4 individual non-structural proteins by yeast 

two-hybrid screening but did not obtain conclusive results (Salonen et al., 2003). Interactions 

between nsP1 and nsP3, and between nsP1 and nsP4 have been confirmed by co-

immunoprecipitation but their significance during virus replication was not demonstrated 

(Salonen et al., 2003, Zusinaite et al., 2007, Lulla et al., 2008).  In conclusion, although some 

information have been obtained on the function and structure of each non-structural proteins, 

a model of replicase complexes is in urgent need for the study of virus genome replication 

regulation by alphavirus non-structural proteins.  

1.4.3 Assembly, budding and maturation of CHIKV 

The assembly, budding and maturation steps of CHIKV are almost unknown so far, and very 

little is known for other alphaviruses.  

Alphavirus virion assembly begins with NC assembly in the cytoplasm. The alphavirus NC 

consists of one copy of genome RNA and 240 copies of CP. The assembly of NC occur in 

multiple steps. The nucleic acid binds a dimer of CP at the beginning of the assembly process 

(Tellinghuisen and Kuhn, 2000). The process of alphavirus NC assembly is not yet clearly 
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identified but it was predicted to occur on the cytopathic vacuoles formed post virus infection 

(Froshauer et al., 1988). Most alphaviruses including Sindbis, eastern, western, and 

Venezuelan equine encephalitis have packaging signals (PSs) which can be recognized by the 

capsid proteins of heterologous alphaviruses. However, CHIKV and other SFV clade 

alphaviruses are exception to the general rule. They contains PSs in the nsP2 gene but their 

capsid protein retains the ability to use the nsP1-specific PS of other alphaviruses (Kim et al., 

2011). 

Alphaviruses bud through the cell plasma membrane in both mammalian and mosquito cells 

(Lu and Kielian, 2000, Brown et al., 2018). Virus envelope proteins move to cell surface after 

being transported to trans Golgi, and nascent NC are transported to cell membrane with virus 

envelope proteins to start virion assembly. During budding, NC goes through a maturation 

process by binding with E2 to target cell membrane (Suomalainen et al., 1992). Previous 

research revealed that the 33 amino acids of E2 were involved in capsid-E2 interactions for 

RRV, and a similar sequence was found in CHIKV (Lopez et al., 1994, Solignat et al., 2009). 

Phosphorylation of NC, E1 and E2 glycoproteins are also believed to be important for virus 

assembly and budding (Liu et al., 1996, Waite et al., 1974, Liu and Brown, 1993).  

The whole life cycle of alphavirus is depicted in Figure 1.11. 
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Figure 1.11 Model of the Alphavirus life cycle. 

Alphaviruses enter target cells by endocytosis. A few receptors (for example, dendritic cell-
specific ICAM3-grabbing non-integrin 1 (DC-SIGN; also known as CD209), liver and lymph node-
SIGN (L-SIGN; also known as CLEC4M), heparan sulphate, laminin and integrins) have been 
implicated in this process, but their precise roles have not been firmly established. Following 
endocytosis, the acidic environment of the endosome triggers conformational changes in the 
viral envelope that expose the E1 peptide, which mediates virus-host cell membrane fusion. 
This allows cytoplasmic delivery of the core and release of the viral genome. Two precursors of 
non-structural proteins (nsPs) are translated from the viral mRNA, and cleavage of these 
precursors generates nsP1–nsP4. nsP1 is involved in the synthesis of the negative strand of viral 
RNA and has RNA capping properties, nsP2 displays RNA helicase, RNA triphosphatase and 
proteinase activities and is involved in the shut-off of host cell transcription, nsP3 is part of the 
replicase unit and nsP4 is the viral RNA polymerase. These proteins assemble to form the viral 
replication complex, which synthesizes a full-length negative-strand RNA intermediate. This 
serves as the template for the synthesis of both subgenomic (26S) and genomic (49S) RNAs. 
The subgenomic RNA drives the expression of the C–pE2–6K–E1 polyprotein precursor, which is 
processed by an autoproteolytic serine protease. The capsid (C) is released, and the pE2 and E1 
glycoproteins are generated by further processing. pE2 and E1 associate in the Golgi and are 
exported to the plasma membrane, where pE2 is cleaved into E2 (which is involved in receptor 
binding) and E3 (which mediates proper folding of pE2 and its subsequent association with E1). 
Viral assembly is promoted by binding of the viral nucleocapsid to the viral RNA and the 
recruitment of the membrane-associated envelope glycoproteins. The assembled alphavirus 
particle, with an icosahedral core, buds at the cell membrane. Picture is adapted from 
(Schwartz and Albert, 2010). 
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1.5 Systems for the study of CHIKV 

1.5.1 Cell culture system 

A variety of CHIKV replicon or subgenomic replicon are used to explore the function of AUD in 

this project. There are a number of subgenomic replicon constructs available which were 

constructed by deletion of the structural genes from the cDNA of full length CHIKV (Fros et al., 

2012). As these replicons lack any of the structural protein encoding sequences they are 

unable to produce virus and can be studied under standard BSL2 conditions.  

A dual luciferase reporter system, using a CHIKV subgenomic replicon (CHIKV-D-Luc-SGR) 

(Figure 1.12), was used to study the significance of AUD in CHIKV genome replication in this 

project. CHIKV-D-Luc-SGR was derived from the ECSA strain (ICRES), containing two luciferase 

reporter genes, a renilla luciferase fused in frame in the C-terminus of nsP3 and a firefly 

luciferase replacing the structural protein encoding region of ORF2. Renilla luciferase is 

expressed as an internal fusion with nsP3 and thus is produced following translation of the 

input RNA and the nascent genome RNA; firefly luciferase is expressed from the subgenomic 

promoter and thus is only produced after RNA replication has occurred. Therefore CHIKV-D-

Luc-SGR allows simultaneous assessment of both input translation and genome replication.  

 

 

Figure 1.12 Diagram of CHIKV-D-Luc-SGR. 

Renilla luciferase (Rluc) is inserted into the 5’ end of nsP3 hypervariable region. Firefly 
luciferase (Fluc) is expressed in place of structural proteins, initiated with subgenomic promoter. 
 

1.5.2 Animal models  

CHIKV infection in humans is characterised by debilitating arthralgia which leads to intense 

pain and swelling to peripheral joints, high fever and rash (Dupuis-Maguiraga et al., 2012). 

Acute chikungunya symptoms in humans may resolve within 3-12 days after a bit by an 

infected mosquito (Suhrbier et al., 2012), but joint or muscle pain may remain for weeks to 

years (Schilte et al., 2013, Hoarau et al., 2010, Sissoko et al., 2009). The acute CHIKV infection-

induced chronic joint pain is associated with the increased age of infected patients and the 
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disease severity during the acute stage (Hoarau et al., 2010, Sissoko et al., 2009, Chow et al., 

2011). It is still in debate whether CHIKV is able to replicate and persist in the joints or muscles 

over the whole chronic pathologic stage. Despite the increasing importance of CHIKV all over 

the world, many details of its pathogenesis are not clearly demonstrated, especially the 

mechanisms of chronic CHIKV-induced joint and muscle pain. Therefore, animal models are 

raising increasing significance and interest for the study of CHIKV infection. 

Mice and nonhuman primates are most commonly used as experimental animal models for 

CHIKV infection. Mouse models are advantageous in studying CHIKV pathogenesis and 

evaluation of CHIIKV vaccines and therapeutics because of their low cost, ease of housing, high 

availability of various mouse-specific reagents, different inbred lines, as well as the possibility 

of genetically modification on individual animals (Haese et al., 2016). Mouse models include 

both acute infection models and chronic/persistent models. The acute models are divided into 

three categories: lethal neonatal challenge models, CHIKV arthritis/myositis models and 

immunocompromised models. The neonatal mice are useful as pathogenesis models to study 

severe disease in neonates as they develop lethal encephalitis (Couderc et al., 2008, Werneke 

et al., 2011). In addition, because of their high susceptibility to CHIKV infection, neonatal mice 

are also sensitive models to test the efficacy of CHIKV-specific antibodies or the safety of live 

attenuated vaccines (Levitt et al., 1986). Adult mouse arthritis/myositis models are valuable 

systems for the study of CHIKV-induced arthritis pathogenesis and for evaluation of CHIKV 

vaccines and therapies against CHIKV-induced arthritis and myositis (Muthumani et al., 2008, 

Hallengard et al., 2014). Subcutaneous CHIKV infection in the footpad of C57BL/6 mice leads to 

a biphasic swelling response, as well as severe arthritis, tendonitis and fasciitis in the infected 

foot while the contralateral foot exhibits no swelling symptoms and milder inflammatory 

changes (Morrison et al., 2011, Gardner et al., 2010). With gene-specific knockout mice, IFN-

stimulated genes such as interferon-stimulated gene 15 (ISG15) and interferon induced protein 

with tetratricopeptide repeats 1 (IFIT1), as well as cluster of differentiation (CD4+) T cells, have 

been proved to be associated with CHIKV-induced pathology (Werneke et al., 2011, Mahauad-

Fernandez et al., 2014, Hawman et al., 2013, Poo et al., 2014). The type I interferon (IFN) 

system is essential in the innate immune response against CHIKV infection. Therefore, the IFN 

system-defective mice models are highly susceptible to CHIKV infection (Rudd et al., 2012, 

Schilte et al., 2012, Gardner et al., 2012) and are useful for testing anti-CHIKV antibodies 

efficacy and CHIKV vaccines safety and efficacy (Plante et al., 2011, Pal et al., 2013). 

Chronic/persistent mouse models are used to investigate the persistence of CHIKV infection 

and its association with chronic disease. With the persistent mouse models, studies have 
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proved that the persistence of CHIKV in specific tissues are associated with the chronic 

symptoms (Hawman et al., 2013, Poo et al., 2014). While mouse models are powerful 

resources for study of CHIKV, they also have limitations as CHIKV infection in mouse is not 

absolutely relative to that in humans, for example, in maternal/neonatal transmission or CHIKV 

disease enhancement in elderly people. To cover the disadvantage of mouse models, 

nonhuman primate (NHP) models are developed. NHP CHIKV infection models are usually used 

for study of CHIKV pathogenesis and evaluation of the efficacy of vaccines and 

immunotherapeutic as preclinical models. Nowadays, NHP models for CHIKV infection mainly 

include cynomolgus macaque models, rhesus macaque models and the relative developed 

aged and pregnant populations (Labadie et al., 2010, Chen et al., 2010, Messaoudi et al., 2013). 

1.6 Aims and objective 

Alphaviruses are a group of globally distributed arthropod-borne RNA viruses with a broad 

host range. Although they are most commonly maintained between mosquito vectors and 

avian hosts, outbreaks of human and livestock infections frequently occur, and are thus of 

economic and public health concern. The recent numerous outbreaks of CHIKV epidemic have 

led to the re-emergence of CHIKV with wider epidemic ranges and more serious danger to 

public health. As there are still no antiviral therapies or safe, effective vaccines are available, 

the identification of targets for antiviral intervention and means of rational attenuation for 

vaccine development are in urgent need, which will ask for a deep understanding of the 

mechanisms of virus replication in both the vertebrate host and the vector. Consequently, this 

project aims to explore the function of CHIKV nsP3 in virus replication and contribute to the 

development of effective vaccines. 

The first step was to identify critical residues for virus RNA replication in the AUD by a 

mutagenic strategy based on analysis of sequence alignment and three-dimensional structures, 

and the subsequent Dual-luciferase reporter system. The critical residues were then further 

explored in different virus infection stages in context of infectious virus.  

Secondly, to explore the mechanism of the AUD function. In this stage, different kinds of viral 

RNAs synthesis, as well as non-structural and structural proteins expression were studied. 

Moreover, wild type and the mutant AUDs were expressed in Escherichia coli (E.coli) or cells, 

and then protein-RNA interaction and proteomics analysis were applied to identify the binding 

partners of the AUD.  
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The results obtained in this study shed light on the complex functionality of nsP3, and the AUD 

in particular.  As well as making a major contribution to our understanding of the role of this 

‘enigmatic’ protein, I believe that the data validate the AUD as a novel target for antiviral 

agents and provide opportunities for rational design of an attenuated virus vaccine.  
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2.1 General materials 

2.1.1 Bacterial strains 

Escherichia coli (E. coli) DH5α: Genotype F- Φ80lacZΔM15 Δ (lacZYA-argF) U169 recA1 endA1 

hsdR17 (rk-, mk-) phoA supE44 λ- thi-1 gyrA96 relA1 were used for molecular cloning.  

Rosetta2 (DE3) Competent Cells: Genotype F- ompT hsdSB(rB- mB-) gal dcm (DE3) pRARE2 

(CamR) was used for protein expression. 

2.1.2 Cell lines 

Five mammalian cell lines:  Huh7 (human hepatoma cells), Huh7.5 (human hepatoma cells, a 

HCV cured cell line defective in retinoic acid-inducible gene-I (RIG-I)-induced IFN antiviral 

defense), RD (human muscle rhabdomyosarcoma cells), C2C12 (mouse muscle myoblast cells), 

BHK-21 (baby hamster kidney cells); and two mosquito cells: U4.4 (Ae. albopictus mosquito 

cells) and C6/36 (Ae. albopictus mosquito cells, RNAi defective due to a mutation in Dcr2 gene), 

were used in this study.  

2.1.3 Plasmids and virus constructs 

All the plasmids and CHIKV constructs are listed in Appendix Tables 9.1. DNA constructs of 

either sub-genomic replicon with dual-luciferase reporter (CHIKV-D-Luc-SGR, kind gift from 

Andres Merits, University of Tartu) or full length virus ECSA strain (ICRES-CHIKV, kind gift from 

Andres Merits, University of Tartu) with or without tags in nsP3 were used. pcDNA 3.1 (+) was 

used as the vector to subclone the CHIKV nsP3 fragment for site-directed mutagenesis. pEGFP-

N1 vector was used to express GFP-tagged nsP3 or AUD. Lentivirus vectors were used to make 

GFP and GFP/GFP siRNA stable expressed cell lines.  

pET28a-SUMO plasmid, a kind gift from John Barr, and pGEX6P-2 were used as the vectors for 

the construction of nsP3 AUD expression plasmids. DNA fragments flanked with BamHI and 

HindIII/Xhol restriction sites encompassing AUD wildtype or mutants were amplified by PCR 

using wildtype or mutant ICRES-CHIKV as templates. PCR products were cleaved with 

corresponding restriction enzymes and cloned into either pET28a-SUMO or pGEX6P-2 vectors 

to allow expression of AUD N-terminally fused to either a His-SUMO or GST affinity tag. 

2.1.4 Oligonucleotide primers 

DNA oligonucleotides were ordered from Integrated DNA Technologies and resuspended with 

deionised water to 100 µM and stored at -20°C. All primers used are listed in Appendix Tables 

9.2. 
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2.1.5 Antibodies 

The following primary antibodies were used: rabbit anti-nsP3 (kind gift from Andres Merits, 

University of Tartu), rabbit anti-capsid protein (kind gift from Andres Merits, University of 

Tartu), J2 mouse anti-dsRNA antibody (Scicons), mouse anti-β-Actin antibody (Sigma Aldrich), 

mouse anti-myc antibody (Generon), mouse anti-dicer antibody (Santa Cruz Biotechnology), 

mouse anti-G3BP2 antibody (Source BioScience LifeSciences). 

Secondary antibodies were as listed below: donkey anti-mouse (700nm) (Li-Cor), donkey anti-

rabbit (800nm) (Li-Cor) were used in western blot; Alexa Fluor labelled donkey anti-rabbit (488 

or 594 or 633 or 647nm) and donkey anti-mouse (488nm or 594nm) (life technologies) at 

dilution 1:750. 

DAPI nucleic acid staining (Sigma), Concanavalin A conjugates (Alexa Fluor 647) (Invitrogen). 

2.1.6 Chromatography columns and resins 

HisTrap™ HP 1ml columns were purchased from GE Healthcare, Strep-Tactin® Sepharose® was 

purchased from IBA, and  GFP-Trap® was from ChromoTek. 

2.2 Basic techniques of molecular biology 

2.2.1 Manipulation of nucleic acid 

2.2.1.1 Preparation of plasmid DNA from bacteria 

1 µg Plasmid DNA or 10 µl ligation products were added into 100 µl chemically competent 

bacteria DH5α and kept on ice for 30 min followed by addition of 900 µl Luria broth (LB) into 

the mixture. After one hour of incubation at 37 °C, the transformed bacteria were coated on 

agar plates supplemented with appropriate antibiotics and left for incubation at 37 °C 

overnight (Inoue et al., 1990). After incubation, single colonies were picked from the agar 

plates and added in to 5 ml LB medium with corresponding antibiotics for bacteria growth at 

37 °C in a rotary incubator at 180 rpm overnight. Bacterial cultures were centrifuged at 4000 × 

g (RCF) for 20 min at 4 °C, and pellets were collected for purification of DNA plasmids using 

commercial Miniprep or Midiprep Kit following the manufacturer’s instructions (Qiagen). DNAs 

were kept at -20 °C for storage and long-term storage of DNA was performed as glycerol stocks 

of 70% bacterial cultures and 30% of glycerol and kept in -80 °C.  



Chapter 2: Materials and Methods 

37 
 

2.2.1.2 Polymerase chain reaction (PCR) 

PCR was used to amplify DNA fragments from plasmid DNA or reverse transcribed cDNA for 

PCR cloning and site-directed mutagenesis experiments. Each PCR reaction was performed in a 

50 µl mixture composed of 100 ng template DNA, 10 µM forward primer, 10 µM reverse 

primer, 1 mM dNTP, 5 µl 10 × Thermopol ® reaction buffer and 1 µl vent ® DNA polymerase 

(NEB) and nuclease free water. Reactions were started with a denaturation step of 94 °C for 2 

min followed by 35 cycles of a second denaturation step at 94 °C for 30 sec, annealing step at 

Tm for 60 sec and extension step at 72°C for 1 min/Kb. Final step was an additional extension 

process performed at 72 °C for 5-7 min. 

2.2.1.3 DNA agarose gel electrophoresis 

DNA agarose gels were made of 1% (w/v) agarose and 1 × TAE buffer (40 mM Tris, 20 mM 

Acetate and 1 mM EDTA), then the mixture was microwaved to dissolve agarose followed by 

the addition of SYBR® safe DNA gel Stain (Invitrogen) at 1:10,000. When electrophoresing the 

DNA samples together with molecular weight ladders, gels were electrophoresed in 1 × TAE 

buffer at a constant voltage of 80 V for 40-60 min. DNA samples were visualised by ultraviolet 

illumination with Gene Genius bio-imaging system (Syngene). 

2.2.1.4  Endonuclease digestion with restriction enzymes 

Digestion of DNA products with restriction enzymes were performed in a 50 µl mixture 

composed of 5 µg DNA products, 1 µl of each restriction enzymes, 5 µl 10 × corresponding 

buffer (NEB or Thermo fisher), and nuclease free water, followed by incubation at 37 °C for 3 

hours to overnight.  

2.2.1.5 DNA purification from DNA agarose gel 

DNA bands in agarose gels were visualised in a darkroom with blue-light excitation.  These 

bands were then cut out with minimal agarose and placed into 1.5ml microtubes. DNA 

purification was then performed using the commercial QIAquick Gel Extraction Kit (QIAGEN) 

following manufacturer’s instructions. 

2.2.1.6 Ligation reaction 

After digestion with restriction enzymes, genes of interest and vectors with the same cohesive 

ends were ligated with T4 DNA ligase following the manufacturer’s instructions (NEB). 

Subsequently, the ligation products were used for transformation into competent DH5α. 
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2.2.1.7 DNA sequencing and analysis 

DNA was sent to a commercial company for sequencing using Sanger sequencing techniques 

with primers designed for the relevant sequence. Sequencing results were analysed via DNA 

Dynamo Sequence Analysis Software. 

2.2.1.8 Site-directed mutagenesis 

In order to introduce single amino acid mutations into CHIKV nsP3 protein, a DNA fragment 

encoding nsP3 AUD was firstly amplified as described in section 2.2.1.2, digested with HindIII 

and XbaI restriction enzymes, then ligated with HindIII and XbaI digested pcDNA3.1 (+) vector 

to finally obtain a ‘pcDNA3.1-AUD for mutation’ plasmid used as the template for Quickchange 

site-directed mutagenesis. Primers used for Quickchange site-directed mutagenesis were 

complementary based on the CHIKV nsP3 sequence, 30-45 nucleotides in length with required 

mutations centrally (all the primers used are listed in Appendix Table 9.2). Mutagenesis PCR 

were performed with an initial denaturation at 95 °C for 30 sec, then 15 cycles of denaturation 

at 95 °C for 30 sec, annealing at 53 °C for 1 min and extension at 68 °C for 7 min following the 

manufacturer instruction of pfuTurbo Polymerase (Agilent), followed by an addition of 1 µl 

DpnI and incubation at 37°C for 1h to remove Parental DNA and then transformed into 

component DH5α described in section 2.2.1.1. The schematic diagram for CHIKV-D-Luc-SGR-

AUD point mutants made by Quickchange site-directed mutagenesis is shown in Figure 2.1. 
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Figure 2.1 Diagram for AUD point mutants in CHIKV-D-Luc-SGR. 

Briefly, fragment containing the mutation residues were cloned into pcDNA3.1 for site-directed 
mutagenesis and then the same fragment with AUD mutations were put back into CHIKV-D-
Luc-SGR. 
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2.2.1.9 CHIKV-D-Luc-SGR-AUD truncation mutants construction 

CHIKV-D-Luc-SGR mutants with AUD truncations were constructed in different ways. For Atru-

1 to Atru-6, a DNA fragment of CHIKV-D-Luc-SGR was obtained by digestion of CHIKV-D-Luc-

SGR with BstXI and BstBI. Then the BstXI & BstBI fragment was used as template for PCR with 

specific forward primers (PF) and reverse primers (sPR-1) to amplify the truncated AUD part of 

interest. Subsequently, PCR products of the last step were used as templates for a secondary 

PCR with same PF and new sPR-2. Finally, the secondary PCR products were digested with 

BstXI and BstBI and inserted into CHIKV-D-Luc-SGR vector (digested with BstXI and BstBI) for 

construction of CHIKV-D-Luc-SGR-Atru1-6 (schematic diagram shown in Figure 2.2). 

For CHIKV-D-Luc-SGR-Atru7-12, a same DNA fragment of CHIKV-D-Luc-SGR was obtained by 

digestion of CHIKV-D-Luc-SGR with BstXI and BstBI. Then the fragment was divided into two 

parts by PCR with PF-fusion & PR-fusion or sPF & PR to get PCR-fusion fragment and Atru7-12 

fragment, respectively. For the next step, the PCR-fusion fragment and Atru7-12 fragment 

were merged into one DNA fragment by a fusion PCR reaction as follows. 1st step: Mix 24.5 µl 

nuclease free water, 4 µl of Atru7-12, 2 µl PCR-fusion, 2 µl 25 mM dNTP, 10 µl 5 × Q5 reaction 

buffer and 1 µl Q5 polymerase (NEB) together, denaturation at 94 °C for 2 min followed by 10 

cycles of a second denaturation step at 94 °C for 30 sec, annealing step at 50 for 60 sec and 

extension step at 72°C for 1 min/Kb, then add additional 2 µl PF-fusion, 2 µl PR, 1 µl 25 mM 

dNTP and 0.5 µl Q5 polymerase (NEB) into the product mixture, and repeat the cycle reaction 

described above for another 25 cycles. Finally, the fusion PCR products were digested with 

BstXI and BstBI and inserted into CHIKV-D-Luc-SGR vector (digested with BstXI and BstBI) for 

construction of CHIKV-D-Luc-SGR-Atru7-12 (schematic diagram shown in Figure 2.2). 
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Figure 2.2 Diagram for AUD truncations in CHIKV-D-Luc-SGR. 
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2.2.1.10 Phenol: Chloroform purification of DNA 

Linearized DNA needed to be purified before being used as template for in vitro transcription 

of RNA. For the first step, equal volumes of phenol: chloroform: isoamyl alcohol (25:24:1) were 

added in to linearized DNA mixture, vortexed thoroughly for 1 min and centrifuged at 13,000 

rpm for 5 min. Upper aqueous phase layer was then carefully transferred into a fresh 

Eppendorf tube, followed by an addition of an equal volume of chloroform, thoroughly 

vortexed for 1 min, and centrifuged at 13,000 rpm for 5 min. Then DNA in the second aqueous 

phase of the centrifuged product from last step was transferred into a fresh Eppendorf tube 

and precipitated with 2 volumes of 100% ethanol and 0.1 volume of 3 M ammonium acetate 

(pH=5.2). Then the mixture was incubated in -20 °C for 3 hours, after which DNA was collected 

by centrifuge at 13,000 rpm for 20 min at 4 °C. Then the recovered DNA pellet was washed 

with 70% ethanol, air dried and finally resuspended with 20 µl DEPC-treated water. 

2.2.1.11 Nucleic acid quantification 

Quantification and purity of nucleic acids were detected using Nanodrop spectrophotometer 

(Thermo Scientific) by measurement of the samples’ absorbance at 260 nm and 280 nm. Ratio 

of absorbance at 260 nm to that at 280 nm was used to detect the purity of nucleic acids. 

2.2.1.12 In vitro transcription of RNA 

DNA plasmids used as templates for in vitro transcription were linearized with NotI enzyme 

and purified as described in section 2.2.1.4 and 2.2.1.10. In vitro transcription and the 

following RNA purification experiments were performed with 1 µg linearized specific DNA as 

template using mMESSAGE mMACHINE SP6 Transcription Kit (Thermo Fisher) following the 

manufacturer’s instructions.  

2.2.1.13 RNA agarose gel electrophoresis 

RNA agarose gel was prepared with 1% (w/v) agarose and 30 ml MOPS (3-(N-morpholino) 

propanesulphonic acid) buffer (40 mM MOPS, 10 mM sodium acetate, 1 mM EDTA), 

microwaved till agarose dissolved followed by an addition of 6.5% (v/v) of formaldehyde and 

SYBR® safe DNA gel Stain (Invitrogen) (1:10,000) before leaving it in gel cast for moulding. RNA 

samples were heated at 65 °C for 10 min before loading in the gel and the gel electrophoresis 

was performed at a constant voltage of 80 V for 1 hour. RNAs in the gel were visualised by 

ultraviolet illumination with Gene Genius bio-imaging system (Syngene). 
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2.2.2 Basic technology on Protein work 

2.2.2.1 Quantification of proteins 

E.coli expressed and purified proteins were quantified with Nanodrop spectrophotometer 

(Thermo Scientific) by measurement of absorbance at 280 nm. 

Concentration of proteins samples of cell lysates were measured using Pierce BCA protein 

assay kit (Thermo Scientific), and bovine serum albumin (BSA) gradient dilution were used to 

build a standard curve. To prepare BSA standard samples, 1 mg BSA was firstly dissolved in 1 

ml dH2O, and the 1 mg/ml BSA buffer was then serially diluted by 2-fold to totally get 8 

gradient dilution samples. At the same time, cell lysates protein samples were diluted in dH2O 

(1:10). BSA standard samples, as well as the cell lysates samples, together with 50 µl BCA 

solution buffer (prepared following the manufacturer’s instructions),  were then added into 

transparent 96-well plate and incubated at 37 °C for 30 min before absorbance at 570 nm was 

measured with Infinite F50 plate reader and Magellan for F50 software (Tecan). Protein 

concentrations were then calculated manually using linear regression equation.  

2.2.2.2 SDS-PAGE gel preparation and protein separation 

SDS-PAGE gel consists of two parts: the separation gel and the stacking gel. The separation gel, 

made up of 7.5% - 15% (v/v) (depending on the experiments) acrylamide (30:1), 376 mM Tris-

HCl (pH=8.8), 0.1% (w/v) ammonium persulphate (APS), 0.1% (w/v) SDS and 0.01% (v/v) 

tetramethylethylenediamine (TEMED) and H2O, was firstly made and added to the bottom of 

the gel cast. After solidification of the separation gel, the stacking gel, made up of 6% 

acrylamide, 376 mM Tris-HCl (pH=6.8), 0.1% APS, 0.1% SDS, 0.01% TEMED and H2O, was then 

prepared and added onto separation gel with a gel comb inserted on the top of it. Gels were 

ready to be used after the stacking gel was solidified. Protein samples, mixed with SDS-PAGE 

gel loading buffer (62.5 mM Tris-HCl, pH 6.8, 10% (v/v) Glycerol, 2% (w/v) SDS, 0.01 % (w/v) 

Bromophenol blue, 5% (v/v) ß-mercaptoethanol), were heated at 95 °C for 10 min and 

gradually cooled down before loaded into the gels along with Color Prestained Protein 

Standard, Broad Range (11–245 kDa). Gels were then run in 1x SDS-PAGE running buffer (25 

mM Tris, 192 mM Glycine, 0.01(w/v) SDS) at a constant voltage of 180 V for 1 hour.  

2.2.2.3 Coomassie Brilliant Blue staining of SDS-PAGE gels 

Coomassie Brilliant Blue staining buffer consists of 10% (v/v) acetic acid, 50% (v/v) methanol, 

40% (v/v) H2O and 0.25% (w/v) Coomassie Brilliant Blue R250. SDS-PAGE gels were incubated 
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in the Coomassie Brilliant Blue staining buffer for 1 hour at room temperature (RT) followed by 

a destaining of the gels with destain buffer (10% (v/v) acetic acid, 50% (v/v) methanol, 40% 

(v/v) H2O) for at least 3 hours with renewal of destain buffer until the gel background became 

clear enough. 

2.2.2.4 Silver staining of SDS-PAGE gels 

Silver staining of SDS-PAGE gels was performed using ProteoSilver Silver Stain Kit (Sigma) 

following the manufacturer’s instructions. 

2.2.2.5 Western Blot 

After separation in SDS-PAGE gels, proteins were transferred onto a polyvinylidene fluoride 

(PVDF), Immobilon-FL Transfer Membrane pre-soaked with transfer buffer (25 mM Tris, 192 

mM Glycine, 20% (v/v) methanol) as followsː filter paper, transfer membrane, SDS-PAGE gel 

and filter paper were put in the transfer machine in this order from bottom to top, protein 

transfer was then performed in a constant voltage of 15 V for 1 hour. After protein transfer, 

the PVDF membranes were blocked with 50% (v/v) Odyssey blocking buffer (Li-Cor) diluted in 

TBS (25 mM Tris-HCl, pH7.4, 137 mM NaCl) for 1 hour at RT. Then the membranes were 

incubated with primary antibodies diluted in TBS with 25% (v/v) of Odyssey blocking buffer at 

4 °C overnight. After that, membranes were washed with TBST (TBS supplemented with 0.1% 

(v/v)Tween-20) for 3-5 times of 5 min each wash followed by secondary antibody incubation at 

37 °C for 1 hour and another 3-5 times of wash as described above. After the final wash, 

membranes were dried with clean filter paper before imaging by Li-Cor Odyssey Sa Imager (Li-

Cor). 

2.3 Basic techniques of tissue culture 

2.3.1 Passaging of cells 

Five mammalian cells were used in this study. Huh7 and Huh7.5 cells were cultured in 

Dulbecco’s Modified Eagles Medium (DMEM, Sigma) supplemented with 10 % (v/v) fetal 

bovine serum (FBS), 100 µg/ml streptomycin, 100 IU penicillin/ml, and 1 % non-essential 

amino acids (NEAA) (Lonza) (complete medium) typically in T75 or T175 flasks incubated in a 

humidified incubator at 37 °C with 5 % CO2. Other mammalian cells including RD cells and BHK-

21 cells were cultured in the similar complete medium as described above without NEAA and 

C2C12 cells were cultured with 20 % (v/v) fetal bovine serum (FBS) of complete medium. When 

cells got confluency, medium was removed and cells were washed with phosphate buffered 

saline (PBS). Then cells were trypsinized with trypsin-EDTA solution by incubation at 37 °C for 5 
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min followed by addition of complete medium to inactivate trypsin and resuspend the 

detached cells for next passage or certain experiments.  

Two mosquito cells were used in this study. U4.4 and C6/36 cells were cultured in Leibovitz’s L-

15 supplemented with 10% FBS and 10% tryptose phosphate broth in T75 flasks incubated in a 

humidified incubator at 28 °C. When cells were confluency, medium was removed and cells 

were washed with PBS. Then 5 ml of medium was added into each flask and cells were scraped 

off by cell scraper for next passage or certain experiments. 

2.3.2 Transfection of nucleic acids  

Lipofectamine 2000 (Invitrogen) was used for transfection of nucleic acids into cells according 

to the manufacturer’s instructions. In brief, cells were seeded into specific plate the night 

before transfection. For example, for 6-well plate, 4x105 cells were seeded in each well. After 

12 hours, 2 µg nucleic acids and 4 µl lipofectamine 2000 were separately diluted into each 200 

µl Opti-MEM (Life Technology) for incubation of 5 min. Then nucleic acids and lipofectamine 

were mixed thoroughly and gently and incubated for another 20 min before added onto the 

seeded cells which were washed with PBS and incubated in Opti-MEM during reagent 

incubation. Cells medium was removed and replaced with complete media at 6 hours post 

transfection (h.p.t). 

2.3.3 Electroporation of RNAs into mammalian cells 

Cells were washed twice in cold PBS, counted and resuspended into a density of 3x106 cells/ml 

with cold Opti-MEM. Then 400 µl resuspended cells was mixed with defined amount of RNAs 

in a chilled 4mm electroporation cuvette (Geneflow) for electroporation at 950 µF and 270 V. 

Then cells were resuspended in 10 ml complete medium and seeded into specific plates for 

certain experiments. 

2.3.4 Cell lysates collection 

At defined time points post electroporation or transfection, cells were washed with PBS for 

three times and scraped by cell scraper in PBS followed by centrifugation at 1200 x g for 5 min. 

Cell pellets were resuspended and lysed in Glasgow lysis buffer (GLB, 10 mM PIPES, pH 7.2, 120 

mM KCl, 30 mM NaCl, 5 mM MgCl2, 1% Triton X-100, 10% Glycerol) supplemented with 

protease and phosphatase inhibitors by incubation on ice for 45 min. Cell lysates were then 

centrifuged at 15,000 rpm for 10 min at 4 °C and supernatant was collected for certain 

experiments. 
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2.4 CHIKV-D-Luc-SGR work 

2.4.1 Dual-luciferase assay 

At 4, 12, 24 or 48 h.p.t, cells transfected with CHIKV-D-Luc-SGR RNAs in 24-well plates were 

washed with PBS for 3 times and lysed with 100 µl passive lysis buffer (PLB, Promega) by 

incubation on ice for 30 min. Then 50 µl of each lysates samples were transferred into white 

96-well plate and luciferase activities were measured using BMG plate reader which 

automatically added LARII and Stop & Glo reagents (Promega) into each well and read the 

corresponding luciferase signals at each step. 

2.4.2 Sequencing of the subgenomic replicon RNA post transfection  

After transfection of the CHIKV-D-Luc-SGR RNA into cells, total cell RNAs were TRIzol extracted 

at 24, 48 and 72 h.p.t. cDNA was then made using SuperScript IV (Invitrogen) according to 

manufacturer’s instructions with random primers. Amplification of whole nsP3 nucleotides was 

then performed with nsP3 forward and reverse primers and the last-step obtained cDNAs as 

template. PCR products were run in a DNA agarose gel before sent out for sequencing to 

confirm their identity. Finally, PCR products were sequenced with a short sequence among 

nsP3 macrodomain as sequencing primer (shown in Appendix Table 9.2). 

2.5 ICRES-CHIKV full-length virus experiments 

2.5.1 Infectious virus collection 

400 µl of cell suspension (3x106 cells/ml) mixed with 1 µg ICRES-CHIKV RNA in 4mm 

electroporation cuvette were used for electroporation at 950 µF and 270 V. After suspension 

of cells in 10 ml complete medium, cells were seeded in T75 flasks and incubated in humidified 

incubators at 37 °C with 5 % CO2 for 48 hours. Then cell supernatant was collected and 

centrifuged at 1200 x g for 5 min to discard cells debris, and supernatant was aliquoted and 

stored in -80 °C. 

2.5.2 Sequencing of infectious virus genome RNA. 

Viral RNAs were TRIzol extracted from the collected virus stock. cDNA was then made using 

SuperScript IV (Invitrogen) according to manufacturer’s instructions with random primers. 

Amplification of whole nsP3-encoding region was then performed with nsP3 forward and 

reverse primers and the last-step obtained cDNAs as template. PCR products were run in a 

DNA agarose gel before sent out for sequencing to confirm the right size of them. Finally, PCR 

products were sequenced with a short sequence among nsP3 macrodomain as sequencing 

primer (shown in Appendix Table 9.2). 
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2.5.3 Virus titration by plaque assay 

The collected viruses were 10-fold serially diluted in complete medium from 100 to 10-8. 200 µl 

diluted viruses were added onto BHK-21 cells seeded in 6-well plate night before. After one 

hour incubation in humidified incubators at 37 °C with 5 % CO2, viruses were removed and 

cells were washed with  PBS for 3 times followed by addition of 2 ml 0.8% MC (1:1 in complete 

medium) and incubated for another 72 hours. After 72-hour incubation, MC was removed and 

cells were fixed by 4% paraformaldehyde (PFA) for 30 min before staining with crystal violet 

dye (0.25% (w/v) crystal violet, 10% ethanol, 35 mM Tris, 0.5% (w/v) CaCl2 and 90% dH2O) for 

15 min. Finally, plaques were counted and virus titre was calculated by PFU ml-1=number of 

plaques observed x (dilution factor (10-x) x volumes of virus added (ml))-1. Plaques were 

visualised by photography with a Canon EOS 80D. 

2.5.4 Infectious centre assay (ICA) 

Electroporated cells (as described in section 2.3.3) were 10-fold serially diluted from 10-1 to 10-

6. Diluted cells were added onto BHK-21 cells which were seeded in 6-well plate night before 

and incubated in humidified incubators at 37 °C with 5 % CO2 for 2 hours. Then the 

electroporated cells were removed by wash with PBS for 3 times and 2 ml 0.8% MC (1:1 in 

complete medium) were added for incubation for another 72 hours. After that, MC was 

removed and cells were fixed by 4% paraformaldehyde (PFA) for 30 min before staining with 

crystal violet dye for 15 min. Finally, plaques were counted and virus titre was calculated by 

PFU ml-1=number of plaques observed x (dilution factor (10-x) x volumes of virus added (ml))-1. 

2.5.5 Quantification of CHIKV genome RNA by qRT-PCR 

Virus or total RNA was extracted using TRIzol following the manufacturer’s instructions 

(Invitrogen). qRT-PCR reactions were performed with One step MESA GREEN qRT-PCR 

MasterMix Plus for SYBR assay No Rox kit (EUROGENTEC). Briefly, each 25 µl reaction was 

composed of 12.5 µl 2 x reaction buffer, 2 µl forward primer, 2 µl reverse primer, 0.25 µl 

EuroScript RT & RNase Inhibitor, 2 µl RNA template and 6.25 µl RNase free water. Program 

used for the reaction was as follows: 48 °C for 30 min as reverse transcription step; 95 °C for 5 

min as meteor Taq activation and EuroScript inactivation step, 40 cycles of 95 °C for 15s and 

56 °C for 1 min, and the last step was a meltcurve analysis. 8 dilutions of 10-fold diluted 

pcDNA3.1-AUD plasmid were used as standard samples to create standard curve and actin was 

quantified for normalization as reference. All primers used were shown in Appendix Table 9.2. 
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2.5.6 Virus infection 

Cells used for virus infection were seeded in specific plate night before. On the day of infection, 

cell medium was firstly removed and cells were washed with PBS once before addition of 1/5 

of normally used amount of cell medium into each well. Then a defined amount of virus was 

added into cell medium for incubation in humidified incubators at 37 °C with 5 % CO2 for 1 

hour. Then cell medium with virus was removed and cells were wash with PBS for 3 times 

followed by addition of complete medium and incubation of the infected cells as requested by 

each experiments. 

2.5.7 Multi-step virus growth kinetics 

1x105 C2C12 cells were seeded in 12-well plate for 12 hours. Then C2C12 cells were infected 

with wildtype or mutant CHIKV at an MOI of 0.1 for 1 hour. Then virus was removed and cells 

were washed with PBS for 3 times followed by addition of 1 ml complete medium and 

incubation for 48 hours. Cell supernatant was aliquot collected from each independent parallel 

samples at different times post infection and the collected samples were used for virus 

titration by plaque assay (as described in section 2.4.2) or CHIKV genome quantification by 

qRT-PCR (as described in section 2.4.4) after TRIzol extraction of viral RNA. 

2.5.8 Intracellular virus collection 

Cells were washed with PBS for 3 times at defined times post virus infection followed by an 

addition of 1 ml complete medium into each well. Then cells were frozen at -80 °C for 1 hour 

before taken out in RT until thawed. This freeze/thaw process was repeated for at least 3 times 

and finally the thawed samples were centrifuged at 12,000 x g for 10 min to discard cell debris 

and supernatant were collected and stored at -80 °C. 

2.5.9 Quantification of CHIKV genomic RNA and subgenomic RNA synthesis 

C2C12 cells were electroporated with ICRES RNAs and seeded in 6-well plate for incubation of 

10 hours. Actinomycin D (1 μg/ml) was added and the cells were incubated for 2 hours. [3H]-

uridine (20 μCi/ml) was then added and the cells were incubated for 3 hours, at which time the 

monolayers were washed 3 times with ice-cold PBS, lysed and RNA extracted with TRIzol 

reagent.  

For measurement of viral RNA synthesis, the harvested RNAs were separated on a MOPS-

Formaldehyde gel. The gel was fixed (15% methanol, 10% acetic acid and 75% dH2O) for 30 min 

followed by fluorography (Fluorographic reagent amplify, GE HEALTHCARE) for another 30 min. 

Gels were dried for 2 hours before exposure to autoradiographic film at -80 °C for 4 days. 
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For gradient analysis, equal volumes of harvested RNAs were loaded onto 14 ml 5-25% sucrose 

gradients in 100mM sodium acetate and 0.1% SDS followed by centrifugation at 150,000 × g 

for 5 hours at room temperature. Gradients were fractionated into 350 µl fractions, and 

radioactivity of each fractions was determined by liquid scintillation counting. 

2.5.10 Immunoprecipitation 

For precipitation of nsP3 and viral RNA, co-precipitation experiments were performed in C2C12 

cells electroporated with ICRES Twin-Strep-tag (TST) RNAs using Streptactin-agarose (Thermo 

Fisher Scientific), following the manufacturer’s protocol. Precipitated proteins were subjected 

to immunoblotting and co-precipitated RNAs were extracted by TRIzol and quantified by qRT-

PCR. 

For nsP3 and cellular proteins co-precipitation, GFP-trap was performed using GFP-Trap kit 

(ChromoTek) following the manufacturer’s instructions. pEGFP-N1-nsP3/AUD and were co-

transfected into cells seeded in 10 cm plate using lipofectamine 2000 as described in 

section2.3.2 for 48 hours. Then cell lysates were collected with 500 µl GLB and used for GFP-

Trap assay, both cell lysates and GFP-Trap samples were used for WB to detect the existence 

of nsP3, AUD and dicer. 

2.5.11 Immunofluorescence analysis 

DNA transfected, virus RNA electroporated or virus infected cells were seeded onto 19 mm 

glass coverslips in 12-well plate. Cells were fixed at defined time points with 4% PFA for 30 min 

and cell membranes were permeabilised with ice-cold methanol for 10 min at -20 °C. 

Permeabilised cells were washed with PBS for 3 times and blocked with 2% BSA in DEPC-PBS 

for 1 hour at RT. Then primary antibody was applied in 2% BSA in PBS at a requested dilution 

and incubated at 4 °C overnight. To remove any unbound primary antibodies, cells were 

washed in DEPC-PBS for 4 times of 5 min each wash. Alexa Fluor-488, 594 or 647 conjugated 

secondary antibodies diluted in 2% BSA DEPC-PBS (1: 1000) were then applied to the cells for 2 

hours at RT in dark. Unbound secondary antibodies were washed off the same as described 

above. The endoplasmic reticulum (ER) were stained using Alexa Fluor 647 conjugated 

concanavalin A (1:50 dilution in 2% BSA of DEPC-PBS) for 30 min at RT in dark. Nucleus was 

stained by 4’, 6’-diamidino-2-phenylindole dihydrochloride (DAPI) diluted 1:10 000 in 2% BSA 

DEPC-PBS for 5 min at RT in dark. Coverslips were washed for 4 times as described above 

before mounted on a glass microscope slide in Prolong Gold antifade reagent (Invitrogen, 

Molecular Probes) and sealed with nail varnish. Slides were stored in dark for at least 24 hours 

before examined in confocal microscope. Confocal microscopy images were acquired with a 
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Zeiss LSM880 microscope, post-acquisition analysis of the images was performed on Zen 

software (Zen version 2015 black edition 2.3, Zeiss) or Fiji (v1.49) software. 

2.5.12 Co-localisation analysis 

For co-localisation analysis, Manders' overlap coefficient was calculated using Fuji ImageJ 

software with Just Another Co-localisation Plugin (JACoP) (National Institutes of Health). 

Coefficient M1 indicated here reports the fraction of the nsP3 signal that overlaps either the 

anti-dsRNA or anti-capsid signal. Coefficient values range from 0 to 1, corresponding to non-

overlapping images and 100% co-localization images, respectively. Co-localisation calculations 

were performed on >5 cells from at least two independent experiments. 

2.6 In vitro protein experiments 

2.6.1 Expression and purification of AUD  

For expression of His-SUMO tagged AUD, whole AUD DNA fragments flanked with BamHI and 

HindIII were amplified by PCR using wildtype or mutant CHIKV-D-Luc-SGR DNA as templates 

(primers sequences are shown in Appendix Table 9.2). PCR products were digested with BamHI 

and HindIII restriction enzymes before inserted into pET28a-His-SUMO vector to allow the 

expression of AUD fused to a His-SUMO affinity tag. Escherichia coli Rosetta 2 pLysS were 

transformed with pET28a-His-SUMO-AUD plasmids, which were grown to OD600=0.6-0.8 at 

37 °C before induction with 500 μM isopropyl β-D-1-thiogalactopyranoside (IPTG) at 18°C for 5 

hrs. Cells were pelleted by centrifugation at 4000 x g for 20 min and each 1 L original cell 

cultures were resuspended in 20 ml His-SUMO-AUD lysis buffer (binding buffer (100 mM Tris 

pH7; 200 mM NaCl, 20 mM Imidazole) supplemented with 40 μl DNase, 40 μl RNaseA, 2 mg/ml 

Lysozyme and protease inhibitors (Roche)) and incubated on ice for 30 min before sonication 

on ice at amplitude of 10 microns for 20 pulses of 10 seconds separated by 10 seconds. The 

extracts were clarified by centrifugation at 15,000 rpm for 1 hour at 4 °C and the supernatant 

was then filtered through a 0.22 µm syringe filter. Filtered protein samples were applied to 

wash buffer equilibrated HisTrap columns (GE Healthcare). Then columns were washed 3 times 

with 5 column volumes of binding buffer each time and the combined proteins were eluted 

with 5 column volumes of elution buffer (50 mM Tris pH7, 300 mM NaCl, 500 mM Imidazol). 

Elution fractions of His-SUMO-AUD proteins were then dialyzed into dialysis buffer (50 mM Tris 

pH7, 300 mM NaCl) prior to addition of SUMO protease. After SUMO protease cleavage, the 

His-SUMO tag and SUMO protease were removed from the cleaved samples by going through 

the HisTrap column for a second time, after what the flowthrough samples were collected as 

purified AUD proteins and stored in -80 °C in different aliquots.  
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For expression and purification of GST tagged AUD, DNA fragments flanked with BamHI and 

XhoI restriction sites were cloned into pGEX6P-2 vector to express GST fused AUD. pGEX6P-2-

AUD plasmids were transformed into into cultures of Escherichia coli Rosetta 2 pLysS, which 

were grown to OD600=0.6-0.8 at 37 °C before induction with 100 μM IPTG at 18°C for 5 hrs. 

Cells were pelleted by centrifugation at 4000 x g for 20 min and each 1 L original cell cultures 

were resuspended in 20 ml GST-AUD lysis buffer (binding buffer (PBS, 1% (v/v) Triton X-100) 

supplemented with 40 μl DNase, 40 μl RNaseA, 2 mg/ml Lysozyme and protease inhibitors 

(Roche)) and incubated on ice for 30 min before sonication on ice at amplitude of 10 microns 

for 20 pulses of 10 seconds separated by 10 seconds. The extracts were clarified by 

centrifugation at 15,000 rpm for 1 hour at 4 °C and the supernatant was then filtered through 

a 0.22 µm syringe filter. The clarified lysate was added to freshly made glutathione agarose 

(GA) beads (70 mg of GA powder (Sigma) added into 15 ml of PBS and rotating for 1 hour at RT. 

The slurry was centrifuged at 2000 x g for 2 min and the excess PBS removed. The beads were 

washed three times with PBS and finally 20% slurry was produced by adding 4 ml of PBS plus 1% 

(v/v) Triton X-100 to the beads) and allowed to bind at 4 °C for 3 hours with rotation. The GA 

beads and supernatant were centrifuged at 1500 x g for 2 min and the supernatant removed. 

The beads were washed twice in GST-AUD binding buffer and twice in 50 mM Tris-HCl pH=7. 

GST-AUD proteins were eluted from GA beads with 50 mM Tris-HCl pH=7 containing 20 mM 

reduced glutathione (Sigma). Fractions containing purified proteins were determined by 

Coomassie stained SDS-PAGE and dialysed overnight against 50 mM Tris-HCl pH=8.0 using 

dialysis tubing with a 10,000 MW cut off (Pierce) before stored in -80 °C. 

2.6.2 Protein identification by mass spectrometry 

2.6.2.1 Gel processing and tryptic digestion 

Gel bands were excised and chopped into small pieces (about 1 mm3), covered with 30 % 

ethanol in a 1.5 ml Eppendorf tube and heated at 70 °C for 30 min with shaking. Then 

supernatant was removed and replaced with fresh ethanol solution and repeat the heating 

step with shaking. The heating step was repeated until all the Coomassie stain was removed 

from the gel. The gel slices were then covered with 25 mM ammonium bicarbonate/50% 

acetonitrile and incubated for 10 min with shaking.  After that, 100% acetonitrile was added to 

cover and incubate the gel slices for five minutes before the being replaced with a fresh 

aliquot of acetonitrile. The sample was incubated at 57 °C for 1 hr with shaking 100 µL with an 

addition of 20 mM DTT solution, followed by the discard of the supernatant. Once the gel 

pieces were cooled down to room temperature, 100 µL 55 mM iodoacetic acid was added into 
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the samples for incubation for 30 min at room temperature with shaking in dark. After discard 

of the supernatant, the gel slices were covered with 100% acetonitrile and incubated for 5 min. 

The acetonitrile was then removed and the gel pieces were dried in a laminar flow hood for 1 

hour.  Once dried, the gel slices were cooled on ice before being covered with ice-cold trypsin 

solution (20 ng µL-1 in 25 mM ammonium bicarbonate) for 10 min incubation on ice for 

rehydration. Then trypsin solution was removed and a minimal amount of 25 mM ammonium 

bicarbonate was added to the gel slices for incubation at 37 °C for 18 hrs with shaking after 

briefly vortexing and spinning. The mixture from last step was vortexed and centrifuged and 

supernatant was collected into an Eppendorf tube containing 5 µL acetonitrile/ water/ formic 

acid (60/35/5; v/v) while the gel slices were vortexed with 50 µL acetonitrile/ water/ formic 

acid (60/35/5; v/v) for an additional 10 min. Then the supernatant was collected and pooled 

with the previous wash. Wash of the gel slices was performed once more and the pool of the 

three washes was dried through vacuum centrifugation. Finally the peptides were 

reconstituted with 20 µL 0.1% aqueous trifluoroacetic acid. 

2.6.2.2 Protein molecular mass analysis 

Purified AUD proteins were sent to the mass spectrometry analysis office in University of Leeds. 

LC-MS was used for molecular mass analysis.  

LC separation of the peptide mixtures was performed on an ACQUITY M-Class UPLC (Waters 

UK, Manchester).  1 µL of each sample was loaded onto a Symmetry C18 trap column (180 µM 

i.d. * 20 mm) and washed with 1% acetonitrile/0.1% formic acid for 5 min at 5 µL /min.  After 

valve switching, the peptides were then separated on a HSS T3 C18, 75 µm i.d. x 150 mm 

analytical column (Waters UK, Manchester) by gradient elution of 1-60% solvent B in A over 30 

min at 0.3 µL /min. Solvent A was 0.1% formic acid in water, solvent B was 0.1% formic acid in 

acetonitrile. 

The column eluant was directly interfaced to a quadrupole-ion mobility-orthogonal time of 

flight mass spectrometer (Synapt G2Si, Waters UK, Manchester) via a Z-spray nanoflow 

electrospray source.  The MS was operated in positive TOF mode using a capillary voltage of 

3.0 kV, cone voltage of 40 V, source offset of 80 V, backing pressure of 3.58 mbar and a trap 

bias of 2 V. The source temperature was 80°C.  Argon was used as the buffer gas at a pressure 

of 8.6 × 10-3mbar in the trap and transfer regions. Mass calibration was performed using Glu-

fibrinopeptide (GFP) at a concentration of 250 fmol /µL.  GFP was also used as a lock mass 

calibrant with a one second lock spray scan taken every 30 s during acquisition. Ten scans were 
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averaged to determine the lock mass correction factor.  Data acquisition was using data 

dependent analysis with a 0.2 sec scan MS over m/z 350-2000 being followed by five 0.5 sec 

MS/MS taken of the five most intense ions in the MS spectrum.  CE applied was dependent 

upon charge state and mass of the ion selected.  Dynamic exclusion of 60 sec was used. Data 

processing was performed using the MassLynx v4.1 suite of software supplied with the mass 

spectrometer. Peptide MS/MS data were processed with PEAKS Studio (Bioinformatic 

Solutions Inc, Waterloo, Ontario, Canada) and compared with NS5A domain I sequence. 

Carbamiodomethylation was selected as a fixed modification, variable modifications were set 

for oxidation of methionine and deamidation of glutamine and asparagine. MS mass tolerance 

was 20 ppm, and fragment ion mass tolerance was 0.05 Da. The false discovery rate was set to 

1%. 

2.6.3 Circular Dichroism spectroscopy 

Far-UV CD spectroscopy was performed on an APP Chirascan CD spectropolarimeter to obtain 

the secondary structure of AUDs. Spectra (190-260) were recorded using 200 µl protein 

solution (at a concentration of 0.2 mg/ml) in a 1 mm path-length cuvette. Proteins applied for 

CD spectroscopy were dialysed in dialysis buffer (10 mM Tris-HCl pH=7, 100 mM NaCl) for 

reduction of NaCl and removal of chloride. Protein CD spectra deconvolution was analysed by 

DichroWeb. 

2.6.4 Fluorescent Polarisation Anisotropy 

15 µl RNA binding buffer (50 mM Tris pH=7, 300 mM NaCl) was added into each well of the 

384-well black optiplate (Perkin Elmer). 30 µl protein solution was added into the first well of 

the row followed by dilution of the proteins along the row, taking 40 µl from the previous well 

to the next one. 20 µl of 20 mM RNA was then added into each well, mixed and incubated for 

30 min at RT. Polarisation was measured using an EnVision multilabel Plate Reader (Perkin 

Elmer) that contains an excitation filter at 480 nm and S and P channel emission filters at 530 

nm. 

2.6.5 RNA filter binding assay 

2.6.5.1 In vitro transcription and labelling of RNA probe 

CHIKV 3’UTR (11314-11835) and its truncations (1-261, 262-522), 5’RNA (1-200, reverse 

complementary sequence), subgenomic promoter (7420-7566, reverse complementary 

sequence), HCV 3’UTR (genotype 2a, 9443-9678) and foot-and-mouse disease virus (FMDV) 

aptamer RNA (5’-
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GGGAAAGGAUCCACAUCUACGAAUUCGGCUCAAAAAUAGUCCGCACCAUACAUUCACUGCAGACU

UGACGAAGCUU-3’) were cloned into pcDNA3.1 vector. The resulting plasmids were then 

linearized with BglII and the linearized DNAs were used as templates for RNA in vitro 

transcription. 

Each In vitro transcription reaction consisted of 500 µM each of  ATP, CTP, and GTP; 20 µM 

UTP; 50 µCi (α-32P) UTP; 1 µg linearized DNA template; 2 µl 10 x T7 transcription buffer (Roche); 

40 U of T7 RNA polymerase (Roche) and 40 U of RNaseOUT (Invitrogen). Reactions were 

performed by incubation at 37°C for 2 hours before addition of 1U of RQ1 DNase (Promega) to 

remove template DNA. RNA transcripts were then purified using PureLink RNA Mini Kit 

(Thermo Fisher Scientific). Purified RNA transcripts were determined in 1 % RNA MOPS gels. 

Concentrations of the 32P-labelled RNAs were measured by absorbance at 260 nm. 

2.6.5.2 RNA-filter binding assay 

Radiolabelled RNA transcripts and AUD proteins were diluted in binding buffer (40 mM Tris-HCl 

[pH 7.5], 5 mM MgCl2, 10 mM DTT, 50 µg/ml bovine serum albumin, 10 µg/ml yeast tRNA 

[Ambion]) and pre-incubated separately for 10 min at 4 °C. The binding reaction was initiated 

by mixing 1 nM radio-labelled RNA and AUD proteins (0 to 500 nM) in a 200 µl final volume at 

4ºC for 30 min. Membranes were pre-soaked in binding buffer supplemented with 5% (v/v) 

glycerol and assembled from bottom to top as follows in a slot-blot apparatus (Bio-Rad): filter 

paper, Hybond-N nylon (Amersham Biosciences) to bind free RNA molecules, and 

nitrocellulose (Schleicher & Schuell) to trap soluble protein-RNA complexes. After assembly, 

200 µl of each binding reaction mixture was applied to each slot and filtered through the 

membranes. Each slot was washed with 0.5 ml of binding buffer and air dried, and 

quantification of radioactivity was performed using an image plate, BAS 1000 Bioimager (Fuji), 

and Aida Image Analyser v4.22 software. Fitting was performed using GraphPad Prism 5 

software (GraphPad Software). In each case, the data were fitted to the hyperbolic equation 

R=Rmax x R/(Kd + [P]), where R is the percentage of bound RNA, Rmax is the maximal 

percentage of RNA competent for binding, [P] is the concentration of AUD, and Kd is the 

apparent dissociation constant. 

2.6.6 GST-pull down assay 

20 µg of GA beads per assay were equilibrated in 50 mM Tris-HCl pH=8.0. 40 µg of GST or GST-

AUD domain protein was added and incubated overnight at 4 °C with rotation. The GA beads 

were centrifuged at 2000 x g for 2 min and the supernatant aspirated using a 19 gauge needle 
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with syrine. The beads were washed with 50 mM Tris-HCl pH=7 and then twice with GLB. 50 µg 

of total cell lysates (in GLB) containing Dicer protein was applied to the beads and mixed at 

4 °C, rotating for 5 hours. The beads were washed twice with GLB containing 0.5 M KCl and 

three times in GLB only. Bound proteins were eluted from the GA beads by competition with 

20 µl of reduced 20 mM glutathione (Sigma) in GLB. The samples were analysed by silver 

stained SDS-PAGE and western blot. 

2.6.7 Tandem Mass Tag (TMT) comparative proteomic analysis 

TMT mass spectrometry was carried out by Kate Heesom (University of Bristol Proteomics 

Facility) and analysed against both positive and negative control samples. 

In brief, for multiplexed comparative proteomics 100 µg of each cell lysate was digested with 

trypsin and labelled with TMT reagents according to the manufacturer’s protocol (Thermo 

Fisher Scientific, Waltham, Massachusetts, USA). The labelled samples were then pooled, 

evaporated to dryness and resuspended prior to fractionation by high pH reversed-phase 

chromatography using an Ultimate 3000 liquid chromatography system (Thermo Fisher 

Scientific). After high pH reversed-phase chromatography, fractions were further subjected to 

the Nano-LC Mass Spectrometry. The raw data files were processed and quantified using 

Proteome Discoverer software v1.4 (Thermo Scientific) and searched against the Uniporter 

Human database (134169 sequences) plus HCV protein sequences using the SEQUEST 

algorithm.  All peptide data was filtered to satisfy false discovery rate (FDR) of 5%.     

2.7 Statistical analysis of data 

Statistical analysis of data was carried out using a Students t-test assuming a two-tailed 

distribution with an unequal variance. Error bars presented on all graphs illustrate the 

Standard Error (SE) of the Mean. 
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3.1 Introduction 

AUD is the central domain of nsP3, unique to alphaviruses. It is reported to be essential for 

alphavirus replication, however, the role of it during virus replication is absolutely unknown. 

The high identity of AUD sequence among different alphaviruses suggests that it plays a 

fundamental role through virus replication. Therefore, in order to explore the function of it 

during CHIKV replication, a mutagenic strategy was initially applied. Using as a guide the 

structure of the SINV AUD (Shin et al., 2012) and an alignment of the AUD amino acid 

sequences of different alphaviruses, conserved solvent-accessible residues were identified and 

mutated in the context of CHIKV-D-Luc-SGR (as described in session 1.5). The effect of AUD 

mutations on both input translation and genome RNA replication of the replicon were 

reflected by dual-luciferase reporter assay. Firefly luciferase is a 61 kDa monomeric protein 

that does not require post-translational processing for enzymatic activity (Wood et al., 1984, 

de Wet et al., 1985). Thus, it functions as a genetic reporter immediately upon translation. 

With ATP, Mg2+ and O2 in the reaction, photon emission of the firefly luciferase is achieved 

through oxidation of beetle luciferin. Renilla luciferase is a 36 kDa monomeric protein purified 

from Renilla reniformis. Similar to firefly luciferase, post-translational modification is not 

required for its activity, and the enzyme functions as a genetic reporter immediately following 

translation. The luminescent reaction is catalysed by Renilla luciferase using O2 and 

coelenterate-luciferin. Firefly and Renilla luciferase, because of their distinct evolutionary 

origins, have dissimilar structures and substrate requirements, making it possible to selectively 

discriminate between their respective bioluminescent reactions. Therefore, in this project, the 

dual luciferase assay was able to reflect the effect of the AUD mutations within CHIKV-D-Luc-

SGR to both input translation and genome replication level, respectively. 

CHIKV is able to infect both mammalian and mosquito cells but pathogenic to only mammals 

while using mosquitoes as transmission vectors. CHIKV infection leads to apparent cytopathic 

effect (CPE) to a wide range of vertebrate cells and cell lines (Solignat et al., 2009, Her et al., 

2010), but just light CPE in mosquito cells (Li et al., 2013), indicating different virus-host 

interactions for mammalian cells or mosquitoes. Therefore, in this chapter the effect of AUD 

mutations on CHIKV replication was detected in both mammalian cells and mosquito cells. Five 

mammalian cells were chosen for dual-luciferase assay, including Huh7, Huh7.5, RD, C2C12 

and BHK-21 cells, to test AUD function in human and non-human cells, and cells isolated from 

different tissues. Huh7.5 cells are defective in host RIG-I-induced IFN antiviral response, 

therefore was used to detect if AUD was associated with host IFN antiviral response. Two cells 

derived from Aedes albopictus (U4.4 and C6/36 cells) were used to detect AUD function in 
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mosquito cells. As C6/36 cell is defective in Dcr2-induced RNAi response because of a mutation 

in its Dcr2 gene, the replication of CHIKV subgenomic replicons with AUD mutations in it 

reflected AUD association with Dcr2-induced RNAi antiviral response. 

As a result of the high error rate of RNA-dependent RNA polymerase, RNA virus is known of its 

inherent instability (Holland et al., 1982). In general, the mutation rates of RNA viruses range 

from 10-3 to 10-5 substitutions per nucleotide copied (Domingo and Holland, 1997, Drake and 

Holland, 1999, Drake, 1993). This allows rapid adaptation and evolution when RNA viruses are 

subjected to selective pressures. Therefore, when studying CHIKV, a single positive strand RNA 

virus, with mutagenic strategy, virus genome sequencing to confirm the existence of mutations 

post virus replication is necessary.  

During virus replication, nsP3 was considered to be a stable protein as it was usually found in 

complex with other nsPs or host factors. However, Varjak et al found that nsP3 degraded 

rapidly when individually expressed due to a degradation signal at the C-terminal region of SFV 

and SINV nsP3, while significantly stable in the form of polyprotein nsP123. And this rapid 

degradation only occurred at the early stage of virus replication, probably when nsP3 is 

released from nonstructural polyproteins. Moreover, the degradation of nsP3 was shown to 

contribute in the regulation of nsP4 expression in SFV 41. As the mechanisms of how the 

degradation signal worked is not clear, therefore, in this chapter, the stability of nsP3 was also 

detected to determine if AUD, especially the mutations chosen in this study, was associated 

with nsP3 degradation. 

3.2 Results 

3.2.1 Generation of a panel of AUD alanine mutations in CHIKV-D-Luc-SGR 

CHIKV nsP3 consists of three domains, macrodomain, AUD and hypervariable domain (Figure 

3.1). AUD is a homologous sequence across alphaviruses, sharing an identity of over 80% with 

other alphaviruses. To identify residues within the AUD that are conserved across the 

Alphavirus genus we first aligned the AUD amino acid sequences of a range of both Old World 

and New World alphaviruses (Figure 3.1C). As the AUD sequences between SINV and CHIKV are 

highly conserved (118 of 243 residues are identical – (Figure 3.1C), the nsP2/nsP3 protein 

structure of SINV (Shin et al., 2012) was referenced to identify the putative location of each of 

the conserved residues. Following from the above analysis, 12 residues were chosen for 

further study as they were located on the surface of the protein and were either absolutely 

conserved throughout the alphaviruses, or in other cases were substituted by residues with 
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similar physical characteristics (specifically the corresponding residue for both Met219 and 

Val260 in CHIKV is leucine in SINV) (Figure 3.1 B, C and Appendix Table 9.3). M219, P247, V248 

and D249 are located closely in a limited surface area of AUD and are presumed to perform 

related functions. R243 and K245 are the only positive-charged residues among where they are 

located and are speculated to be involved in RNA-binding activity. Y324 was chosen because it 

is located at the junction between AUD and macro domain. C262 and C264 are chosen as 

negative controls because they are important components of the zinc coordination site within 

AUD which are essential for alphavirus replication (Shin et al., 2012); and two other residues 

located next to C262 and C264 (V260 and P261) were chosen for further study of the zinc 

coordination site. 
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Figure 3.1 AUD residues selection for mutagenic strategy. 

A. Three domain structure of the alphavirus nsP3 protein. B. Surface representation of the 
Sindbis virus nsP3 AUD structure (PDB ID code 4GUA) [14] (residues 161-324), including the 40 
amino acid flexible linker between the macrodomain and the AUD. The locations of the 
mutated residues in nsP3 are indicated. The two images show opposite faces of the structure, 
rotated 180o along the vertical axis. C. Alignment of a fragment of AUD amino acid sequences 
(nsP3 residues 210-276) of multiple alphaviruses indicating key residues mutated in this study. 

C 
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As shown in Figure 2.1, a fragment of the CHIKV cDNA containing the AUD coding sequence 

and those residues targeted for mutagenesis was amplified from the CHIKV-D-Luc-SGR and 

inserted into pcDNA3.1 vector. Then the resulting plasmid (pcDNA3.1-AUDforMutation) was 

used as template for Quick-change site-directed mutagenesis to produce mutant AUDs in 

pcDNA3.1, followed by subcloning the mutant AUD fragment back into CHIKV-D-Luc-SGR.  In 

this way, AUD mutants M219A, E225A, R243A, K245A, R243A/K245A, P247A, V248A, 

P247A/V248A, D249A, V260A/P261A, C262A/C264A and Y324A were introduced into CHIKV-D-

Luc-SGR. 

As AUD is highly conserved among alphaviruses and the 12 residues chosen for mutation were 

just a small fraction of the conserved residues, in order to determine which part of AUD was 

critical for CHIKV replication, an alternative strategy was performed to construct 12 

truncations of AUD into CHIKV-D-Luc-SGR (Figure 2.2). 

3.2.2 The role of AUD in CHIKV genome replication 

CHIKV subgenomic replicon replication was measured by dual-luciferase assay. The nsP3-fused 

renilla showed an input translation and replication level of the replicon, while the firefly signal 

which was expressed in place of virus structural proteins showed only replication level. 

Preliminary experiments were firstly performed with the 12 AUD point mutants and 12 AUD 

truncations of CHIKV-D-Luc-SGR in Huh7 cells, which is a well characterised human hepatoma 

cell line and have been previously shown to efficiently support CHIKV replication (Roberts et al., 

2017), and U4.4 cells which are derived from the Ae. albopictus mosquito. In Huh7 cells, 

wildtype CHIKV-D-Luc-SGR exhibited robust replication with Fluc levels increasing from 6 × 103 

to 5 × 104 between 4 h and 24 h post-transfection. Of the mutants, E225A replicated as 

wildtype, R243A and K245A exhibited a slight reduction in replication, while the other point 

mutants, as well as the AUD truncations, failed to replicate. Rluc levels of wildtype and all the 

mutants were at a similar level at 4 h post transfection, indicating that all replicon RNAs were 

well translated in Huh7 cells.  

A different picture emerged for U4.4 cells although all the AUD truncations still showed no 

replication. Firstly, M219A failed to replicate in U4.4 cells although it showed impaired 

replication in Huh7 cells; Secondly, all the other point mutants except V260A/P261A and 

C262A/C264A showed replication in U4.4 cells although P247A/V248A replicated at a lower 

level than wildtype. In conclusion, based on the preliminary experiments, 6 point mutants 

were chosen for further study, including M219A, E225A, R243A/K245A, P247A/V248A, 
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V260A/P261A and C262A/C264A; and the nsP4 mutant GAA which withdrew nsP4 RNA 

polymerase activity was used as negative control. 
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Figure 3.2 Preliminary data of CHIKV AUD mutants replication in Huh7 and U4.4 cells.  

The indicated cells were seeded in 24-well plates 12 hours before transfection. Cells were then 
transfected with 0.5 μg CHIKV-D-luc-SGR wildtype and mutant RNAs and harvested at 4, 12, 24 
and 48 h.p.t. for firefly luciferase assays. AB. Wildtype CHIKV and its mutants replication 
capability in Huh7 cells. CD. Wildtype CHIKV and its mutants replication capability in U4.4 cells. 
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To analyse the effects of the AUD mutations on CHIKV genome replication, the panel of 

mutant CHIKV-D-Luc-SGR RNAs chosen for further study were transfected into a range of cell 

lines. As both liver and muscle are target organs for CHIKV infection three human cell lines 

were used. Besides Huh7 cells, to test any potential role of the AUD in protecting CHIKV from 

innate immune sensing we also used the Huh7 derivative cell line Huh7.5, which have a defect 

in innate immunity due to a mutation in one allele of the retinoic acid-inducible gene I (RIG-I) 

(Sumpter et al., 2005). To investigate the role of the AUD in infection of muscle cells a human 

rhabdomyosarcoma cell line, RD, was applied. Additionally, two other mammalian (non-human) 

cell lines were used: C2C12 (a murine myoblast cell line) and BHK-21 (baby hamster kidney 

cells) based on their ability to support high levels of CHIKV replication (Roberts et al., 2017). 

Lastly, we used two mosquito (Ae. albopictus) derived cell lines: U4.4 and C6/36. Of note C6/36 

have a defect in RNA interference (RNAi) due to a frameshift mutation in the Dcr2 gene, 

leading to production of a truncated and inactive Dcr2 protein (Morazzani et al., 2012). Again, 

use of these cells was intended to allow us to assess any role of the AUD in counteracting 

mosquito innate immunity. 

3.2.2.1 The role of AUD during CHIKV replication in human cells 

Besides Huh7 cells (Figure 3.2), the replication of wildtype CHIKV and its mutants were also 

analysed in another 2 human cell lines, Huh7.5 and RD cells. Replication of the mutants 

screened in Huh7.5 cells showed a similar picture to that in Huh7 cells (Figure 3.3A). 

Replication of wildtype, M219A and E225A was higher in Huh7.5 cells compared to Huh7, 

probably because of its defect in cytosolic RNA sensing, however, this did not allow replication 

of the inactive mutants. For RD human rhabdomyosarcoma cells, a slightly different picture 

emerged (Figure 3.3B): firstly both M219A and E225A replicated to a similar level as wildtype. 

Secondly, the P247A/V248A mutant, which was unable to replicate in Huh7 or Huh7.5 cells, 

was able to replicate to a low level in RD cells. The other 3 mutants and nsP4 GAA again failed 

to replicate.   
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Figure 3.3 CHIKV AUD mutant replication in human cells.  

The indicated cells were transfected with CHIKV-D-luc-SGR wildtype and mutant RNAs and 
harvested for both renilla and firefly luciferase assays at the indicated time points.  Luciferase 
values of wildtype and each mutant were normalized to 4 h values. (GAA: inactive mutant of 
nsP4 polymerase).  Significant differences denoted by * (P<0.05), and ** (P<0.01), compared to 
wildtype. 
 

3.2.2.2 The role of AUD during CHIKV replication in non-human mammalian cells 

We then evaluated the mutant panel in another two mammalian cell lines: C2C12 murine 

myoblasts (Figure 3.4A) and BHK-21 cells (Figure 3.4B). Wildtype CHIKV-D-Luc-SGR replicated 

to very high levels in both cell lines, with FLuc levels increasing ~1000-fold between 4-24 h. In 

general the phenotypes of the panel of mutants were similar to those observed in RD, 

however two noticeable differences were detected. Firstly, R243A/K245A and V260/P261 

replicated in a low level in C2C12 and BHK cells. Secondly, P247A/V248A was capable of 

replication to a high level in both (albeit nearly 10-fold lower than wildtype). Interestingly, 
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although FLuc levels for P247A/V248A were reduced, the concomitant RLuc levels were higher 

than wildtype, suggesting that although this mutant was competent in virus genome 

replication there might be a defect in transcription or translation of ORF2. These data 

suggested that P247 and V248 were required for CHIKV genome replication in liver-derived 

cells, whilst enhancing but not essential for replication in cells derived from muscle or kidney, 

implying some cell type specific interactions of nsP3. The zinc-coordinating cysteine mutant 

C262A/C264A were unable to replicate in either cell line, being indistinguishable from the GAA 

nsP4 control. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. CHIKV AUD mutant replication in non-human mammalian cells.  

The indicated cells were transfected with CHIKV-D-luc-SGR wildtype and mutant RNAs and 
harvested for both renilla and firefly luciferase assay at the indicated time points.  Luciferase 
values of wildtype and each mutant were normalized to 4 h values. (GAA: inactive mutant of 
nsP4 polymerase).  Significant differences denoted by * (P<0.05), and ** (P<0.01), compared to 
wildtype. 
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3.2.2.3 The role of AUD during CHIKV replication in mosquito cells 

As an arbovirus transmitted by mosquitoes, CHIKV must replicate in both mammalian and 

mosquito cells. We therefore proceeded to evaluate the replicative capacity of the panel of 

mutants in cells derived from the Ae. albopictus mosquito. Two cell lines were used: U4.4 and 

C6/36. The major difference between these two cell lines is that C6/36 has a defect in the RNAi 

response due to a frameshift mutation in its Dcr2 gene (Morazzani et al., 2012). Consistent 

with this, although both mosquito cell lines were susceptible for CHIKV replication, C6/36 

supported higher levels than U4.4 (up to 1000-fold increase at 48 h). As described below, 

remarkable differences were observed in the mutant phenotypes in these cells compared to 

the mammalian cells (Figure 3.2 CD and 3.5). The first difference was that M219A failed to 

replicate in U4.4 cells (Figure 3.2 C) but exhibited wildtype level of replication in C6/36 cells 

(Figure 3.5B), suggesting that M219 might be involved in interacting with, and inhibiting, the 

mosquito cell RNAi pathway. Secondly, R243A/K245A, which showed no replication in human 

cell lines and only slight replication in the C2C12 cells, was fully replication competent in both 

mosquito cell lines. Mutant P247A/V248A was partially replication competent in both cell lines, 

V260A/P261A and C262A/C264A showed little replication in C6/36 cells whereas as seen in 

mammalian cell lines neither V260A/P261A nor C262A/C264A replicated in U4.4 cells (Figure 

3.2C).   

 

 

 

 

 

 

 

Figure 3.5. CHIKV AUD mutant replication in Aedes. albopictus mosquito cells.  

The C6/36 cells were transfected with CHIKV-D-luc-SGR wildtype and mutant RNAs and 
harvested for both renilla and firefly luciferase assay at the indicated time points. Luciferase 
values of wildtype and each mutant were normalized to 4 h values. (GAA: inactive mutant of 
nsP4 polymerase). Significant differences denoted by ** (P<0.01), compared to wildtype 
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3.2.3 Sequence analysis of the CHIKV-D-Luc-SGR-AUD (R243A/K245A) RNA following 

replication in different cell types 

The striking phenotypic difference between mammalian and mosquito cell lines for 

R243A/K245A led us to investigate this further. A simple explanation might be that the 

mutations had reverted in mosquito cell lines. To test this cytoplasmic RNA from C2C12, U4.4 

and C6/36 cells was extracted at various time post transfection, and subjected them to RT-PCR 

and sequence analysis. In C2C12 at 48 h.p.t. no sign of reversion was observed (Figure 3.6) – 

the sequence remained the same as the input RNA. However, for both U4.4 at 48 h.p.t., and 

C6/36 samples the sequence traces revealed the presence of a mixed population of mutant 

and wildtype. Notably a sequential accumulation of revertants in the C6/36 samples was 

observed: At 24 h.p.t. a very low proportion of revertants at the first position in the two 

codons was seen, at 48 h.p.t. the proportion increased and at 72 h.p.t. the sequences were 

almost entirely wildtype. These data are consistent with a requirement for R243 and K245 for 

efficient CHIKV genome replication.  

 

Figure 3.6. RT-PCR and sequencing analysis of CHIKV-D-luc-SGR-R243A/K245A.  

RNA was harvested at the indicated times, amplified by RT-PCR and sequenced. The wildtype 
and mutated sequences are shown below the sequence traces for reference. Nucleotide 
ambiguity codes used: R (A/G), S (G/C) and M (A/C). 
 

3.2.4 Lethal mutations do not interfere the expression and stability of nsP3/AUD 

To investigate whether the defect of AUD mutants in RNA replication observed in the dual 

luciferase assay resulted from the loss or disruption of a specific function of nsP3, or from the 

degradation or instability of nsP3 or AUD protein, wildtype, M219A, E225A, R243A/K245A, 
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P247A/V248A, V260A/P261A and C262A/C264A nsP3 or AUD were separately cloned into 

pcDNA3.1 to allow their expression in mammalian cells. The plasmids were then transfected 

into different cells and cell lysates collected for WB to detect the expression of nsP3 or AUD. 

As shown in Figure 3.7, expression and stability of nsP3 or AUD were rarely affected by the 

mutations introduced into AUD. 

 

Figure 3.7. Expression and stability of nsP3.  

Wildtype and mutant nsP3 were cloned into pcDNA3.1 and transfected into C2C12 cells for 48 
hours before cell lysates collected with GLB. Expression and of nsP3 was detected by western 
blot. 
 

3.3 Discussion 

Of the four alphavirus non-structural proteins, nsP3 remains the least well understood (Gotte 

et al., 2018). The protein is composed of three domains, the N-terminal macrodomain has 

been proved to bind to ADP-ribose and possess ADP-ribosylhydrolase activity (Malet et al., 

2009). Recent studies have suggested that this enzymatic activity plays a role in virus 

pathogenesis but the underlying mechanisms of it still remains elusive (McPherson et al., 

2017). The C-terminal hypervariable domain shares low level of amino acid sequence identity 

with other alphaviruses and is intrinsically disordered. It has been demonstrated to interact 

with a range of cellular proteins, including components of stress granules (Kim et al., 2016), 

and is supposed to be involved in the assembly of virus genome replication complexes. 

In contrast, virtually nothing is known about the function of the central AUD domain. AUD is a 

homologous sequence among different alphaviruses, suggesting that it plays a fundamental 

role in the virus lifecycle. The structural information of Sindbis virus AUD was determined in 
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the context of SINV nsP2-nsP3 precursor, including the C-terminal protease and 

methyltransferase-like domains of nsP2 and the macro and AUD domains of nsP3 (Shin et al., 

2012). This analysis revealed that the AUD contained a unique zinc-binding fold with four 

cysteine residues coordinating a zinc molecule, which formed part of a putative RNA binding 

surface. Mutagenesis of two of these cysteines revealed an essential role of the zinc 

coordination site in virus replication. Our data agree with this observation, as the 

C262A/C264A mutant failed to replicate in any cell type tested.  

Mutation of two residues adjacent to the zinc-binding cysteines, V260A/P261A, also 

completely abrogated CHIKV genome replication. Although adjacent in the primary amino acid 

sequence, these two residues are located on the distal surface of the AUD (Figure 3.1B), 

suggesting that they are not involved in the zinc coordination site, but may instead interact 

with key cellular factor(s) or play an alternative structural role.  

In contrast, the other mutants generated in this chapter exhibited a number of distinct cell-

type and species-specific phenotypes (summarised in Table 3.1). Mutation of two surface 

exposed basic residues (R243 and K245) abrogated replication in all mammalian cells but 

showed no effect on CHIKV replication in both mosquito cells. However, sequence analysis 

then revealed that these two mutations quickly reverted to wildtype in mosquito cells but not 

in C2C12 cells (Figure 3.6), explaining the different phenotypes shown by R243A/K245A and 

further implying the importance of R243 and K245 for CHIKV genome replication.  The reason 

why only R243A/K245A, but not the other lethal mutations, was able to revert in mosquito 

cells was not clear. But it is sure that the R243A/V245A mutant is able to replicate in insect 

cells, even though just in a very low level, as this is a precondition for reversion. Therefore the 

reason why R243A/V245A mutant reversion occurred in insect cells but not mammalian cells 

might be that the activity of R243A/K245A is temperature sensitive and the mutant is tolerated 

better at 28 °C However it is noteworthy that the reversion to the wildtype sequence took 72 h 

to become predominant in C6/36 cells, suggesting that perhaps the lack of cytopathology of 

CHIKV replication in mosquito cells could facilitate the replication of a minority species. 

Interestingly, the sequence trace at 24 h in C6/36 showed the presence of a minority species 

that would encode a Thr at 243 and 245, suggesting that the two basic residues were not 

absolutely required.  

M219 was also of particular interest as mutation of this residue had no significant effect on 

genome replication in most cells tested in this chapter apart from U4.4 mosquito cells. As the 

key difference between U4.4 and C6/36 cells is that C6/36 have a defect in the RNAi response 
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because of a Dcr2 mutation (Morazzani et al., 2012), M219A phenotypes between U4.4 and 

C6/36 cells suggested a role of M219 in interaction with a component of the mosquito RNAi 

response to inhibit this key mosquito antiviral pathway. RNAi is believed to be the most 

significant innate antiviral immune response in mosquitoes (Sanders et al., 2005, Sanchez-

Vargas et al., 2009, Campbell et al., 2008b, Myles et al., 2008, Cirimotich et al., 2009, Khoo et 

al., 2010), including three major types of small RNA molecules identifiedː small interfering RNA 

(siRNA), microRNA (miRNA) and PIWI-interacting RNA (piRNA) (Coffey et al., 2014). In Huh7 

and Huh7.5 cells, M219A also showed a slight, and significant in Huh7.5 cells, lower replication 

capability compared to wildtype, which was not observed in muscle cells RD and C2C12. As 

Dicer is expressed at a lower level in skeletal muscle and heart than other tissues (Sago et al., 

2004), it may be supposed that M219 was also associated with mammalian cells RNAi response 

although the significance of it in mammalian cells was not as vital as it was in mosquito cells, 

indicating a difference in Dicer-associated RNAi response between mammalian and mosquito 

cells. Moreover, Kalika et al demonstrated that the CHIKV AUD in nsP3 had RNAi suppressor 

activity although the functional motifs within AUD were not identified (Mathur et al., 2016), 

which to some extent, also supported the role of M219 in RNAi suppression.  

P247A/V248A was also a mutant of interest as in the context of the subgenomic replicon it 

showed a variety of phenotypes from complete lack of replication in Huh7 and Huh7.5 cells 

(Figure 3.2 and 3.3), to a 10-fold reduction in other mammalian and mosquito cells (Fig 3.2 and 

3.5). The defect of P247A/V248A replication capability in all the cells tested indicated a 

fundamental function of P247/V248 during CHIKV replication.  

CHIKV-D-luc-SGR 
Human Rodent Mosquito 

Huh7 Huh7.5 RD C2C12 BHK U4.4 C6/36 

Wildtype        

M219A        

E225A        

R243A/K245A        

P247A/V248A        

V260A/P261A        

C262A/C264A        

 
Key: ■ Wildtype replication, ■ impaired replication, ■ no replication, ■ reversion 
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Table 1 AUD mutant replication phenotypes in different cell types. 

 

On the other hand, the seven different cells used for dual luciferase assay in this study showed 

variable susceptibility to CHIKV genome replication. Huh7 and Huh7.5 cells are both human 

hepatoma cell lines, and the difference between them is Huh7.5 cells have a defect in innate 

immunity due to a mutation in one allele of the retinoic acid-inducible gene I (RIG-I) (Sumpter 

et al., 2005). CHIKV replicated to nearly 10-fold higher level in Huh7.5 cells compared to that in 

Huh7 cells. As Huh7.5 is known to be defective in RIG-I-associated innate immunity, which is 

different from Huh7 cell, this RIG-I associated innate immunity might be involved in the cellular 

antiviral response against CHIKV, although the data presented in this chapter showed that the 

AUD residues selected here were not involved in this interaction. Mammalian muscle cells, 

C2C12 and RD cells, were more susceptible for CHIKV replication than liver cells, which was 

consistent with the fact that muscle cells were the target cells for CHIKV pathogenicity. The 

high level of CHIKV replication in BHK-21 cells was also observed possibly because of its high 

efficiency for transient transfection. The two mosquito cells, U4.4 and C6/36 showed generally 

higher susceptibility than mammalian cells for CHIKV genome replication. Aedes albopictus 

mosquitoes are the vectors for CHIKV during virus transmission (Schuffenecker et al., 2006), 

which were susceptible for CHIKV replication but the infection was generally considered non-

pathogenic (Coffey et al., 2014). Between these two cells, CHIKV replication in C6/36 cells were 

obviously higher than that in U4.4 cells, suggesting a role of RNAi response in mosquito 

antiviral reaction. 
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4.1 Introduction 

Use of the dual-luciferase reporter system demonstrated the effect of AUD on CHIKV genome 

RNA replication. In this chapter, I proceeded to introduce the panel of AUD mutations into 

infectious CHIKV (ICRES-CHIKV, derived from the ECSA strain) for detection of AUD function 

through CHIKV infection. As shown in the D-luci results, most of the CHIKV AUD mutants 

constructed in this study were able to replicate in C2C12 cells, and C2C12 cells are 

physiologically relevant, being muscle derived, further studies on CHIKV infection was 

performed in C2C12 cells.  

A one-step growth curve provides valuable information on virus replication cycle in a specific 

cell system, and is a common experimental procedure for the study of virus replication. It 

describes the production of progeny virus over a period of time following infection under one-

step conditions, where cells are infected simultaneous to prevent secondary cycles of infection. 

Samples of supernatant medium or cell lysates are collected at various times post infection for 

quantification of extracellular or intracellular virus, respectively. When virus titres are plotted 

as a function of time, the growth curve obtained shows different stages following virus 

infection, including adsorption and penetration, eclipse period, maturation and release. 

Therefore, the one-step growth curve detection was used in this chapter to study the effect of 

AUD on different stages of CHIKV infection. 

During alphavirus replication, three kinds of RNAs are produced, including negative-strand 

genomic RNA, positive-strand genomic RNA and subgenomic RNA. The production of these 

three kinds of RNAs are highly regulated in different stages with early or late replication 

complex formed of viral non-structural proteins and host cellular proteins. Negative-strand 

RNA production reached a highest level at early stage of replication, and then rapidly 

decreases to undetectable level (Sawicki et al., 1981a). In contrast, the rate of viral positive-

strand RNA synthesis increases at the early stage of replication, reaches a maximum level and 

stays at this rate until cells begin to deteriorate (Frolov and Schlesinger, 1994, Sawicki et al., 

1981a, Sawicki et al., 1981b). The positive-strand RNA replicase complex regulates the 

synthesis of genomic and subgenomic RNA from the same negative-strand RNA template, and 

the two positive-strand RNAs were synthesized at a constant rate throughout virus replication 

cycle (Solignat et al., 2009). In this chapter, to analyse the synthesis of genomic and 

subgenomic RNA, [3H] was used to label nascent viral RNAs after cellular RNA synthesis was 

blocked by dactinomycin.  
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The three-dimensional structure of nsP2/3 fragment of Sindbis virus revealed a zinc 

coordination site within AUD, indicating a RNA-binding activity and gene regulation function of 

it (Shin et al., 2012, Berg, 1990). As the amino acid sequences consisting the zinc coordination 

site are conserved between Sindbis virus and CHIKV, it is supposed that this structure and its 

function is also applied in CHIKV AUD. To test CHIKV nsP3 binding activity to viral RNA in vivo, 

co-immunoprecipitation assay was performed with twin-strep tagged-nsP3 (TST-nsP3) CHIKV 

infectious virus, where CHIKV genomic RNA was quantified by qRT-PCR with pulled down and 

purified TST-nsP3 protein to detect if TST-nsP3 was able to bind viral RNA during virus 

replication in cells. Distribution of nsP3 in cells during virus replication may reflect its functions. 

Previous confocal immunofluorescence studies have revealed a process of nsP3 distribution 

during virus replication. Early after infection, nsP3 was observed on the plasma membrane as 

part of the virus replication complex on the cytoplasmic surface. Then for some alphaviruses 

such as SFV, nsP3 accumulated at spherules existing on the surface of the perinuclear 

cytopathic vacuoles (CPV) (Froshauer et al., 1988, Cristea et al., 2006, Kujala et al., 2001), 

which were originated from modified endosomes and lysosomes (Froshauer et al., 1988). 

During virus infection, while a part of nsP3 remained in the replication complexes with other 

viral proteins for virus genome replication, there was also a subpopulation of nsP3 existing free 

from the replication complexes, but in a formation of large cytoplasmic aggregates instead 

(Peranen et al., 1988). The proportion of nsP3 remained in the virus replication complexes or 

in the large cytoplasmic aggregates was different for different alphaviruses. In SFV infected 

cells, the majority of nsP3 was found to co-localize with dsRNA, but for CHIKV, much less nsP3 

was shown in the co-localization with dsRNA while most of it remained in the large cytoplasmic 

aggregates. This chapter detected the sub-cellular localisation of nsP3, capsid protein and 

dsRNA to further explore the function of CHIKV nsP3, especially the importance of P247 and 

V248 residues within it.  

4.2 Results 

4.2.1 The effect of AUD mutations in infectious CHIKV production 

In order to determine if the AUD played any role in other stages during virus infection, a subset 

of mutations that showed replication in all, or some of, the mammalian cells shown in D-luci 

reporter assay (M219A, E225A, R243A/K245A and P247A/V248A), were introduced into an 

infectious CHIKV construct (ICRES-CHIKV). The nsP4 GAA mutant was introduced into ICRES-

CHIKV as negative control. In vitro transcribed virus RNAs (5’-capped) were electroporated into 

C2C12 cells, and the produced infectious viruses at different times post electroporation (8, 24 
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and 48 h.p.e.) were quantified by plaque assay of cell supernatants. C2C12 cells were chosen 

for further studies as our previous analysis had revealed that CHIKV showed high level of 

replication in these cells (Roberts et al., 2017), and they are physiologically relevant, being 

muscle derived.  

As expected (Figure 4.1 A), wildtype CHIKV replicated well and produced a high titre of 

infectious virus in C2C12 cells following electroporation, while the negative control nsP4 GAA 

mutant failed to produce any infectious virus. M219A and E225A showed similar replication 

capability as wildtype, while P247A/V248A produced a significantly reduced amount of virus 

(approx. 10-fold reduced).  Moreover, sequence analysis by RT-PCR of the produced infectious 

virus demonstrated that R243A/K245A quickly reverted to wildtype while M219A, E225A and 

P247A/V248A retained their mutations and showed no hint of reversion to wildtype. (Figure 

4.1 B).  

At the same time, during the course of plaque assays, the P247A/V248A mutant uniquely 

exhibited a much smaller plaque size than the wildtype (Figure 4.1 C). 
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Figure 4.1 Phenotype of AUD mutations in the production of infectious virus. 

A. ICRES-RNAs were electroporated into C2C12 cells and supernatants were collected at 48 
h.p.e.  Virus was titrated by plaque assay in BHK-21 cells. B. Sequencing analysis of virus 
passage P0. P0: supernatant virus stock obtained from C2C12 cells at 48 h.p.e. nsP3 coding 
sequence was amplified by RT-PCR and sequenced.  The region spanning the indicated 
mutations is shown.  Note that for E225A the sequence traces shown are from the negative 
strand, hence the colour of the trace does not match the colour code of the sequence below. 
All the mutants had not reverted. C. Plaques for wildtype and P247A/V248A were visualised 
illustrating the small plaque phenotype for this mutant. 
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4.2.2 One-step virus growth kinetics 

The smaller plaques formed by P247A/V248A mutant implicated a defect in either virus 

production or spread, which was consistent with the reduced virus production post 

electroporation in C2C12 cells, although the high level of input RNA might, to some extent, 

recovered this defect. To verify this, a one-step growth assay was performed by infecting 

C2C12 cells at MOI=1 with either wildtype CHIKV or the 3 mutants (M291A, E225A and 

P247A/V248A). Cell supernatants were collected at various times post infection for 

quantification of genomic RNA by qRT-PCR (Figure 4.2A), and infectious virus by plaque assay 

(Figure 4.2B).  Wildtype, M219A and E225A exhibited a rapid increase in both genomic RNA 

and infectious virus between 8-48 h.p.i., reaching very high titres (for wildtype: 3.4x1010 RNA 

copies/ml and 4.7x108 pfu/ml), followed by a sharp decrease of infectious virus due to the 

death of infected cells. However, the genomic RNA did not show a consistent decrease as 

infectious virus, probably because although infectious viruses were inactivated in vitro, their 

genomic RNAs did not get degraded immediately. At the same time, the one-step growth curve 

of P247A/V248A showed a significantly lower but similar trend of replication process. Levels of 

P247A/V248A accumulated very slowly, reaching a maximum of 4.6 x106 RNA copies/ml and 

2.8x105 pfu/ml at 48 h.p.i. After 48 h.p.i., the amount of genomic RNA and infectious viruses 

also decreased. However, different from what was observed for wildtype or the other two 

mutants, cells infected by P247A/V248A remained alive throughout the infection process, 

indicating that the decrease of P247A/V248A virus after 48 h.p.i. was due to a self-defect in 

virus replication. However, following analysis of direct comparison of the genomic RNA 

quantification with the infectivity revealed that the specific infectivity of all four viruses were 

indistinguishable (Figure 4.2C).  Therefore in conclusion, although P247A/V248A exhibited a 

defect in production of virus particles, the virions produced were equally infectious as wildtype. 
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Figure 4.2 Multi-step growth kinetics of CHIKV.  

C2C12 cells were infected with CHIKV (wildtype and mutants) at an MOI of 0.1. Supernatants 
were aliquot collected at the indicated times for genome RNA quantification (qRT-PCR) (A) and 
virus titration by plaque assay (B). The ratios of genome RNA:infectivity were determined from 
A and B at 16, 24 and 48 h.p.i. and presented graphically (C).   
 

4.2.3 Role of AUD in CHIKV assembly and release 

To explore whether the reduced virus production exhibited by P247A/V248A was because of 

its defect in virus assembly or release from infected cells, both the extracellular and 

intracellular samples were analysed of the infectious virus and genomic RNA within them. At 

first, the amount of viral genomic RNA (by qRT-PCR) and infectious virus (by plaque assay) 

were quantified with cells infected with wildtype or the 3 mutants (at an MOI of 1) at 24 h.p.i.  

This result (Figure 4.3A) showed that the levels of intracellular genomic RNA for wildtype, 

M291A and E225A were at similar levels whereas P247A/V248A exhibited a 1000-fold 

reduction, which was consistent with the D-luci replicon. The amount of intracellular infectious 

virus were comparable for wildtype, M219A and E225A, however, uniquely a dramatic 107-fold 

reduction occurred for P247A/V248A compared to wildtype : from 2.4 x 108 pfu/ml  to 9.8 x 

101 pfu/ml. The ratio of genomic RNA:infectivity (Figure 4.3B) clearly demonstrated this 
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difference, suggesting that besides the defect in genome replication, P247A/V248A had a more 

substantial phenotype in the production of infectious virus particles, possibly due to a defect in 

virus assembly. The magnitude difference between these two phenotypes suggests that the 

AUD plays multiple roles during CHIKV replication. In order to explore whether the 

P247A/V248A had a phenotype in virus release, we compared the amount of infectious virus in 

extracellular and intracellular samples by electroporation of C2C12 cells with wildtype or the 3 

mutant virus RNAs (Figure 4.3C and D). This analysis showed that the ratio between extra- and 

intracellular virus titres was significantly higher for P247A/V248A compared to wildtype and 

the other two mutants, indicating that although P247A/V248A produced less infectious virus, 

the produced virus could be released from the infected cells more efficiently than wildtype and 

the other two mutants. 
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Figure 4.3 Phenotype of AUD mutations on virus entry, release and assembly.  

A. C2C12 cells were infected with CHIKV at MOI of 1. At 24 h.p.i, cells were washed three times 
with PBS and resuspended in 1 ml fresh medium. Cell suspensions were freeze/thawed 3 times 
to obtain intracellular viruses. Genome RNA was quantified by qRT-PCR, and virus titrated by 
plaque assay. B. Graphical representation of the ratio of infectivity to genomic RNA.  C. 
Intracellular and extracellular viruses were collected at 36 h.p.e from C2C12 cells 
electroporated with the indicated ICRES RNA, and titrated by plaque assay. D. Graphical 
representation of the ratio of extracellular to intracellular virus titres.  Significant difference 
denoted by * (P<0.05) compared to wildtype. 
 

4.2.4 The P247A/V247A mutation selectively impairs subgenomic RNA synthesis 

Infectious virus replication results in the last section demonstrated that besides an impairment 

in viral genome replication, the reduction of P247A/V248A mutant in infectious virus 

production resulted mainly from its defect in virus assembly, which might be due to a direct 

role of nsP3 in this process, or some defect in the production of the structural proteins. To 

further study it, the expression of both nsP3 and capsid protein was detected by western blot 

with viral RNA electroporated C2C12 cells. As shown in Figure 4.4A, P247A/V248A exhibited a 

modest reduction in nsP3 expression but a much greater reduction in the level of capsid 

expression. Analysis of the ratio between capsid and nsP3 expression determined from the 

western blot results showed that the corresponding capsid protein production of 



Chapter 4: nsP3 AUD is required for production of subgenomic RNA and structural proteins 
during CHIKV infection 

85 
 

P247A/V248A was approximately 10-fold lower than wildtype and the other two mutants 

(Figure 4.4A). During alphavirus replication, two kinds of positive-strand RNAs are produced 

using the same negative-strand RNA as template, the full-length genomic RNA (gRNA) used for 

translation of non-structural proteins (including nsP3), and the subgenomic RNA (sgRNA) for 

translation of structural proteins (capsid and other structural proteins). Therefore, the defect 

of P247A/V248A in nsP3 and capsid protein expression possible resulted from the lack of gRNA 

and sgRNA. Regulation of the synthesis of gRNA or sgRNA is mediated by the viral replication 

complex composed of 4 non-structural proteins and some host cellular proteins, which 

initiates transcription from the 3’ end of the negative-strand RNA or from the sub-genomic 

promoter. To test the synthesis of gRNA and sgRNA, C2C12 cells were electroporated and 

treated with actinomycin D (ActD) to block cellular RNA synthesis, prior to labelling with [3H]-

uridine. Cellular RNA was then extracted and analysed by MOPS-formaldehyde gel 

electrophoresis and autoradiography. As shown in Figure 4.4B, for WT, M219A and E225A, 2 

bands of radiolabelled RNAs corresponding to gRNA and sgRNA were detected. However, for 

P247A/V248A, the radioactive signal of sgRNA was  in a almost undetectable low level, with 

the corresponding ratio of gRNA:sgRNA for P247A/V248A (25.3:1) significantly higher than that 

of WT (1.5:1). As controls, mock electroporated cells treated with ActD contained no [3H]-

labelled RNA species, whereas in the absence of ActD the expected smear of [3H]-labelled 

RNAs with predominant bands corresponding to 18S and 28S ribosomal RNAs were observed 

(Figure 4.4B). To confirm these results, the harvested RNAs were also analysed by sucrose 

gradient centrifugation. Consistent with the electrophoretic analysis, wildtype, M219A and 

E225A showed two peaks corresponding to sgRNA and gRNA, whereas P247A/V248A exhibited 

a dramatically reduced sgRNA peak (Figure 4.4C). 
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Figure 4.4 Effect of AUD mutations on CHIKV protein expression and RNA synthesis.   

A. C2C12 cells were electroporated with ICRES-RNAs and cell lysates were collected at 36 h.p.e.  
Expression of nsP3 and capsid was analysed by western blot.  Multiple western blots were 
quantified using the LiCor Odyssey Sa fluorescence imager and the graph on the right shows 
the ratio of capsid:nsP3 expression.  B. C2C12 cells were electroporated with the indicated 
ICRES RNA, cellular RNA synthesis was inhibited by actinomycin D and nascent viral RNAs were 
labelled with [3H]-uridine.  The graph on the right shows the ratio of gRNA to sgRNA.  C. The 
same RNAs were separated by sucrose gradient and [3H]-labelled RNAs were detected by 
scintillation counting. 
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4.2.5 nsP3 RNA binding activity to CHIKV genome RNA 

As nsP3 is predicted to have RNA binding activity, which is possibly important for CHIKV 

genome RNA replication, we next explored whether nsP3 was able to bind CHIKV genomic RNA 

during virus replication in cells. To do this, we exploited a previously generated derivative of 

the ICRES infectious clone in which a twin-strep tag (TST) was introduced in frame near the C-

terminus of nsP3, allowing efficient affinity purification of nsP3 by streptactin chromatography. 

Similar experimental approach has been previously used in our lab to investigate protein-

protein and protein-RNA interactions of the hepatitis C virus NS5A protein (Goonawardane et 

al., 2017, Ross-Thriepland and Harris, 2014, Yin et al., 2018). Before testing nsP3 RNA binding 

activity to CHIKV genomic RNA with the TST-CHIKV, the effect of the TST on CHIKV replication 

was determined and the results showed that the TST made no significant difference to either 

wildtype or P247A/V248A mutant replication. To test nsP3 RNA binding activity to CHIKV 

genomic RNA, wildtype or P247A/V248A mutant TST-nsP3 CHIKV RNAs were electroporated 

into C2C12 cells, from which nsP3 proteins were purified with streptactin beads and analysed 

by western blot for nsP3 (Figure 4.5A) and qRT-PCR to determine the amount of gRNA co-

immunoprecipitated with nsP3 (Figure 4.5B). As shown in Figure 4.5C, P247A/V248A bound 

approximately 10-fold less gRNA compared to wildtype, indicating that nsP3 was able to bind 

CHIKV genomic RNA during virus replication and the P247A/V248A mutations impaired this 

binding activity. However, as P247A/V248A could not replicate well in C2C12 cells the input 

genomic RNA of P247A/V248A mutant was originally more than 10 times less than that of 

wildtype, which might also contributed to the reduction of the precipitated mutant viral RNA. 
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Figure 4.5 CHIKV genome RNA association with nsP3 during virus replication.  

A. ICRES-WT, ICRES-TST-WT, ICRES-P247A/V248A, ICRES-TST-P247A/V248A RNAs were 
electroporated into C2C12 cells. Supernatant were collected at 48 h.p.e and titrated by plaque 
assay. BCD. C2C12 cells were electroporated with ICRES nsP3-TST or ICRES RNAs. Cell lysates 
were collected at 60 h.p.e., and nsP3-TST was precipitated with Streptactin-sepharose beads. 
Bound proteins were subjected to western blotting (B) and co-precipitated RNAs were 
extracted by TRIzol and quantified by qRT-PCR (C).  The ratio of gRNA to nsP3 is depicted 
graphically (D). 
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4.2.6 Sub-cellular localisation of nsP3, capsid and dsRNA during CHIKV replication 

The effect of P247A/V248A on the nsP3:gRNA interaction suggested that this mutation might 

also disrupt the subcellular localisation of nsP3 in relation to both replication complexes and 

sites of virion assembly. To test this we exploited another derivative of the ICRES infectious 

CHIKV clone in which ZsGreen was inserted into nsP3 at the same position as the TST tag 

(Remenyi et al., 2018, Pohjala et al., 2011). C2C12 cells were electroporated with ICRES-nsP3-

ZsGreen-CHIKV RNAs (wildtype or P247A/V248A), and cells were analysed by confocal laser 

scanning microscopy (CLSM) with Airyscan for the distribution of nsP3, capsid (as a marker for 

virion assembly sites) and dsRNA (as a marker of genome replication) at different times post-

electroporation. For wildtype at 4 h.p.e. (Fig 4.6), small clusters of nsP3, capsid and dsRNA 

appeared in the cytoplasm but there was little co-localisation. By 8 h.p.e., nsP3, capsid and 

dsRNA co-localised in larger clusters, these appeared to accumulate at the plasma membrane 

at 12 and 16 h.p.e., most of nsP3, capsid and dsRNA were co-localised on plasma membrane.  

By 24 h.p.e, it was clear that the infection cycle was complete as there was a reduction in 

levels of nsP3, capsid and dsRNA. Interestingly, capsid and dsRNA were still co-localised at the 

plasma membrane while most nsP3 was perinuclear. In contrast, P247A/V248A exhibited a 

very different distribution pattern of all three markers throughout the infection cycle (Fig 4.7). 

Consistent with the western blot data (Fig 4.5A) levels of capsid and dsRNA were lower than 

wildtype at all timepoints, but in addition the co-localisation of nsP3, capsid and dsRNA was 

markedly reduced and the three markers never accumulated at the plasma membrane as seen 

for wildtype.  Consistent with the delay in virus release shown in Fig 4.2, it was clear that, 

unlike wildtype, the infection cycle was not complete by 24 h.p.e. as levels of nsP3 and capsid 

were highest at this timepoint.   
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Figure 4.6 Fluorescence analysis of nsP3, capsid and dsRNA distribution during infection of 

C2C12 cells with wildtype CHIKV.  

A. C2C12 cells were electroporated with ICRES-nsP3-ZsGreen-CHIKV RNA. Cells were fixed at 
the indicated time points post-infection and stained with antibodies to capsid protein (white) 
and dsRNA (red). Green: nsP3-ZsGreen fusion, blue: nuclear DAPI counterstain. The scale bars 
are 5 µm and 1 µm, respectively. B. Co-localisation of nsP3 with plasma membrane. C. Distance 
of nsP3 from the nucleus.  
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Figure 4.7 Fluorescence analysis of nsP3, capsid and dsRNA distribution during infection of 

C2C12 cells with P247A/V248A CHIKV.  

A. C2C12 cells were electroporated with ICRES-nsP3-ZsGreen-CHIKV RNA. Cells were fixed at 
the indicated time points post-infection and stained with antibodies to capsid protein (white) 
and dsRNA (red). Green: nsP3-ZsGreen fusion, blue: nuclear DAPI counterstain. The scale bars 
are 5 µm and 1 µm, respectively. B. Co-localisation of nsP3 with plasma membrane. C. Distance 
of nsP3 from the nucleus. 
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4.3 Discussion 

The introduction of AUD mutations into infectious virus confirmed the significance of AUD 

during CHIKV replication. After electroporation of ICRES-CHIKV RNAs, M219A and E225A did 

not show any phenotype on CHIKV replication compared to wildtype, but P247A/V248A 

displayed a defect in infectious CHIKV production which was consistent with replicon result 

performed with CHIKV-D-Luc-SGR. It was interesting to find that the plaques formed by 

P247A/V248A was obviously smaller than those of wildtype and the other two mutants. 

Together with the significantly reduced infectious virus production for P247A/V248A, an 

important role of P247/V248 residues within AUD was suggested for CHIKV replication. One-

step growth kinetics of CHIKV wildtype and the 3 mutants were then analysed to validate the 

defect of P247A/V248A in virus replication. Moreover, the virus production defect of 

P247A/V248A shown by one-step growth kinetics was more severe than that shown by plaque 

assay of the electroporated cells, giving a hint that P247A/V248A might play some additional 

roles during other stages of CHIKV infection besides its effect on the intracellular virus genome 

RNA replication. 

In order to explore if the AUD plays any roles in other stages during CHIKV infection, we first 

detected the specific infectivity of the virions produced by wildtype and each mutants with 

direct comparison of the genomic RNA quantification with the infectivity. The results indicated 

that although P247A/V248A was partially defective in virus particle production, its released 

virions were able to enter the cells and replicate, equally infectious as wildtype. Release of the 

infectious viruses were also detected by quantification and comparison of the extracellular and 

intracellular infectious virus particles. The results showed that although P247A/V248A 

produces less infectious virus, this can be released from the infected cells more efficiently than 

wildtype and the other two mutants, which might be because the P247A/V248A CHIKV 

infected cells were in a better condition for virus release as less virus were produced to cause 

cytotoxicity; or it might be just because for wildtype and other mutants, viruses were 

produced much more efficiently inside the cells than that for P247A/V248A mutant. 

The most interesting result was that P247A/V248A exhibited a major defect in infectious virus 

particle assembly. This defect led to both a delay and a reduction in the release of infectious 

virus, consistent with the small plaque phenotype. A reduced level of both genome RNA copies 

and infectious virus particles were detected from the intracellular samples, moreover, the 

reduction in infectious virus particles was much more severe than that of genome RNA copies. 

This might resulted from two reasons: 1. nsP3 could be involved in virus packaging, and 
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P247A/V248A nsP3 failed to assemble virus particles in a right way therefore the intact 

P247A/V248A virus particles were partially infectious; 2. P247A/V248A virus was competent in 

genome RNA production but lacked structural proteins to form infectious virus particles. As in 

replicon data, it is noteworthy that in C2C12 cells the P247A/V248A replicon exhibited a 10-

fold reduction in Fluc, but Rluc was higher than wildtype. This may be consistent with a defect 

in either transcription of the subgenomic mRNA or translation of ORF2, rather than a reduction 

in genome replication. Therefore it was supposed that the P247A/V248A mutant was possibly 

defective in structural proteins production. 

To validate the hypothesis described above, expression of structural protein capsid protein and 

non-structural protein nsP3 were firstly detected from the virus-infected cells and confirmed 

that P247A/V248A had a partial defect in structural protein expression. Further study then 

revealed that the defect of P247A/V248A began at the stage of transcription of subgenomic 

RNA. Regulation of genomic RNA and subgenomic RNA synthesis is believed to be dependent 

on nsP4 as nsP4 binds to respective promoters with different motifs within it (Li and Stollar, 

2004, Li and Stollar, 2007, Li et al., 2010). However, some mutational experiments suggested 

that nsP1, nsP2 and nsP3 were also involved in this process through interaction with nsP4 

(Rupp et al., 2011, Fata et al., 2002, Pietila et al., 2017). The formation of CHIKV replicase for 

the synthesis of different kinds of viral RNAs has not been revealed yet, the results obtained in 

this chapter suggested a possible role of AUD, especially the P247/V248 residues, in the 

specific CHIKV subgenomic RNA synthetic replicase formation. The mechanism of the 

interaction between nsP3 and CHIKV genome RNA is not clear yet. As P247 and V248 are not 

positive-charged residues, it is predicted to bind genomic RNA with This function might be 

performed through interaction with nsP4 and other viral proteins, or recruitment of viral 

template RNAs or some host proteins for virus replication. 

The immunoprecipitation assay suggested that nsP3 had RNA-binding activity to CHIKV 

genome RNA during virus replication in cells, P247A/V248A showed a significant defect in this 

binding activity, indicating that the RNA-binding activity to CHIKV genome RNA was critical for 

CHIKV genome replication, and AUD, especially P247/V248 residues, played an important role 

in it. However, on the other hand, the reduction of input viral RNA of P247A/V248A due to its 

impaired replication capability may also contribute to the lower level of immunoprecipitated  

mutant viral RNA. Further studies on this could be performed with a CMV promoter regulated 

viral RNA transcription when detecting the interaction between nsP3 and viral genome RNA. 

The mechanisms of how nsP3 binds CHIKV genome RNA is not clear. The interaction between 
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nsP3 and viral RNA can be direct or indirect through an nsP3-containing replication complex.  

Proline residue and aromatic residues can interact favourably with each other, due to both the 

hydrophobic effect and the interaction between the π aromatic face and the polarized C-H 

bonds, called a CH/π interaction, and this aromatic-proline interaction has been observed in 

protein-RNA interaction, which might help to explain the importance of P247 in nsP3-viral RNA 

interaction. On the other hand, G3BP, which is involved in the replication complex of CHIKV, is 

a RNA-binding protein which might recruit viral RNA into the nsP3-containing replication 

complex. Therefore the P247A/V248A nsP3-immunoprecipitated viral RNA was reduced 

because of the obstruction in replication complex formation. However, which part of genome 

RNA was bound to nsP3/AUD and the exact roles of this protein-genome interaction within 

CHIKV replication were not determined and need further exploration. 

Analysis of the distribution of nsP3, capsid and dsRNA during CHIKV replication by confocal 

microscopy revealed further insights into the P247A/V248A phenotype. High level co-

localisation between nsP3 and dsRNA were observed for at all time points up to 24 h.p.e., 

consistent with the role of nsP3 in genome replication. At 12/16 h.p.e. both nsP3 and dsRNA 

also co-localised with capsid and were accumulated at the plasma membrane. In contrast, for 

P247A/V248A, at first the co-localisation between nsP3 and dsRNA was shown in a significantly 

reduced level, moreover a loss of nsP3 accumulation on the plasma membrane was observed 

at later time points post electroporation. These observations suggested a role of nsP3 (and the 

AUD in particular) during the processes of genome replication and virus assembly to facilitate 

production of infectious virus particles at the plasma membrane. This is consistent with the 

early evidence for a juxtaposition of sites of genome replication, viral protein translation and 

nucleocapsid assembly in the case of Sindbis virus (Froshauer, 1988). The mechanisms of the 

reduction of the dsRNA-co-localized nsP3 for P247A/V248A compared to that of wildtype 

observed in the immunofluorescence figures might be that the P247A/V248A nsP3 was less 

efficient in recruitment of the template viral RNAs to form the replicase complexes, which was 

consistent with our RNA-binding data of nsP3 and virus genome RNA shown in Figure 4.5. The 

loss of the accumulation of P247A/V248A mutant nsP3 on plasma membrane might be 

because that the nsP3 has a role in the trafficking of nucleocapsids from these sites (CPVs) to 

the plasma membrane but the P247A/V248A mutations shut off this function as even at later 

stage of CHIKV infection when both nsP3 and capsid protein were expressed in high levels, 

accumulation of co-localized nsP3/capsid proteins could not be detected on plasma membrane 

for P247A/V248A mutant. In this study, nsP3 showed at least four forms of existence, dsRNA-

co-localized nsP3, capsid protein-co-localized nsP3, dsRNA/capsid protein-co-localized nsP3 
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and individual nsP3 clusters. These four forms of nsP3 indicated the different functions of nsP3 

in the development of CHIKV infection. Different from previous studies, which showed that for 

most CHIKV nsP3 existed in the formation of large aggregates (Gotte et al., 2018), although 

different forms of nsP3 were detected, most of it was shown to co-localize with dsRNA. The 

difference may be because of the different cells for research, and nsP3 shows different 

phenotypes in various cells. 
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After functional analysis of nsP3, especially AUD, during virus replication in the context of 

infectious virus, a variety of biochemical characters of AUD were analysed in this chapter, 

including RNA-binding activity (session 5.1), RNAi suppression activity (session 5.2), self-

multimerization character (session 5.3), and nsP3 interactions with host proteins (session 5.4). 

 

5.1 AUD RNA binding activity 

5.1.1 Introduction 

The central AUD of nsP3 is a homologous sequence across alphavirus, with undefined but 

important roles during virus replication. Some mutagenesis research revealed that the AUD 

was involved in the early event during virus replication, probably the formaion of early 

replication complex for negative-strand RNA synthesis (LaStarza et al., 1994b, Wang et al., 

1994). Based on the crystal structure of the nsP2/nsP3 fragment of Sindbis virus, a zinc 

coordination site was found within AUD, and mutations of any of the four cysteine residues 

absolutely blocked virus replication, indicating that the zinc coordination site, as well as each 

individual cysteine residue, was essential for virus replication. Besides this, the amino acids 

located around the zinc coordination site were proposed to have RNA-binding activity (Shin et 

al., 2012). Host or viral proteins RNA-binding activity to genome RNA is believed to be 

important for the replicase complexes formation during CHIKV genome replication. The 3’ UTR 

of CHIKV consists of 498-723 nt of the 3’ end of genome, including a 50-200 nt poly (A) tail. It is 

involved in the initiation of negative-strand RNA synthesis (Rupp et al., 2015). And the 19-20 nt 

3’ CSE located before poly (A) tail within alphavirus 3’ UTR is highly conserved in sequence 

across the genus and has been proved to be critical for RNA synthesis (Kuhn et al., 1990). The 5’ 

end of virus genome, or its complementary sequences in the 3’ end of the negative-strand RNA, 

includes two conserved CSE: one in the 60 nt 5’UTR and the other one is a 51 nt CSE located in 

nsP1 coding region (Kuhn et al., 1990). The 5’ UTR has a conserved stem-loop structure which 

has been proved to be important for RNA synthesis (Nickens and Hardy, 2008), and its 

complement is also predicted to be structured and functions in gemone RNA synthesis 

(Niesters and Strauss, 1990, Frolov et al., 2001). This structure stability and the access of 

polymerase to the promoter within this structure is believed to be significant for the initiation 

and regulation of genome RNA synthesis (Shirako and Strauss, 1998). The 5’ UTR was also 

shown to be essential for negative-strand RNA synthesis initiating at the 3’ end of the genome, 

probably because of a circularization structure formed by templated RNAs (Frolov et al., 2001). 

A third UTR, named subgenomic RNA (sgRNA) promoter, is located in the junction region 



Chapter 5: Biochemical analysis of AUD 

100 
 

between the non-structural and structural proteins ORFs (Rupp et al., 2015). The full and 

optimal promoter was mapped to -98 to +14 from the transcription start site (Wielgosz et al., 

2001), while the essential part was from -19 to +5 (Levis et al., 1990). Our data in the previous 

chapters showed that a panel of AUD mutants (M219A, R243A/K245A, P247A/V248A, 

V260A/P261A, C262A/C264A) were defective in CHIKV genome replication with uncertain 

reasons, and the AUD played an important role in subgenomic RNA synthesis, where nsP3 RNA 

binding activity to viral genomic RNA was probably involved. Therefore, it was of interest to 

detect the RNA-binding activity of AUD, which might give a hint of the mechanisms why 

impaired or abrogated replicaiton capability was caused by these AUD mutants. 

Fluorescent polarisation anisotropy assay was used to test the interaction between AUD and 

short RNAs. Fluorescence polarization is a powerful tool for studying molecular interactions by 

monitoring changes in the apparent size of fluorescently-labeled or inherently fluorescent 

molecules, often referred to as the tracer or ligand (Checovich et al., 1995, Heyduk et al., 1996, 

Jameson and Sawyer, 1995, Nasir and Jolley, 1999). The theory of Fluorescent Polarization, 

firstly described by Perrin in 1926, is based on the observation that when a small fluorescent 

molecule is excited with plane-polarized light, the emitted light is largely depolarized because 

molecules tumble rapidly in solution during its fluorescence lifetime (the time between 

excitation and emission). However, if the tracer is bound by a larger molecule its effective 

molecular volume is increased. The tracer’s rotation is slowed so that the emitted light is in the 

same plane as the excitation energy. The bound and free states of the tracer each have an 

intrinsic polarization value: a high value for the bound state and a slow value for the free state. 

The measured polarization is a weighted average of the two values, thus providing a direct 

measure of the fraction of tracer bound to receptor. An increase in molecular volume due to 

receptor-ligand (Bolger et al., 1998), DNA-protein (Lundblad et al., 1996, Ozers et al., 1997), or 

peptide-protein binding (Wu et al., 1997) or a decrease in molecular volume due to 

dissociation or enzymatic degradation (Bolger and Checovich, 1994, Bolger and Thompson, 

1994) can be followed by Fluorescent Polarization.  

To verify the RNA-binding activity of AUD to CHIKV genome RNA, an in vitro RNA filter binding 

assay was performed. Filter binding assay is one of the oldest and simplest methods to detect 

RNA-protein interactions, measuring affinities between them. The mixture of protein and RNA 

are applied to pass through a nitrocellulose filter, which is negative charged and therefore 

immobilizing the positive charged protein while releasing the free negative charged RNA. But if 

the protein is able to bind the RNA, then the RNA will be retained on the filter as well. The 
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RNAs used in this assay is labelled with [32P] and the amount of RNA stuck to the nitrocellulose 

membrane is quantified by measuring the amount of radioactivity on the filter using a 

scintillation counter. 

5.1.2 Results 

5.1.2.1 Purification of AUD 

5.1.2.1.1 Cloning of AUD into pET-28a-SUMO expression vector 

The whole AUD of nsP3 was amplified from CHIKV-D-Luc-SGR and cloned into pET28aSUMO 

vector. The recombinant construct is referred to as pET-28aSUMO-AUD and results in the 

expression of His-SUMO tagged AUD fusion protein (His-SUMO-AUD).  

 

Figure 5.1 Diagram of pET-28aSUMO-AUD.  

AUD is cloned into pET-28aSUMO vector with BamHI and XhoI restriction sites. 
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5.1.2.1.2 Optimization of expression of AUD 

His-SUMO-AUD was expressed in Rosetta2 cells induced by different concentrations of IPTG 

(0.1 mM, 0.5 mM and 1 mM) at different temperatures (18 °C, 27 °C and 37 °C) for 5 hours to 

overnight. Cells were then harvested by centrifugation and resuspended with lysis buffer. Then 

the resuspended cells were sonicated before being clarified by centrifugation at 15,000 rpm 

for 1 hour at 4 °C. Supernatant and cell lysates pellet were both collected for analysis in SDS-

PAGE gel. As shown in Figure 5.2, the best condition chosen for expression of His-SUMO-AUD 

was 0.5 mM IPTG induction at 18 °C for 5 hours. The predicted molecular mass of His-SUMO-

AUD is 40 kDa.  

 

Figure 5.2 Optimization of AUD expression in pET-28aSUMO-AUD. 

Different concentrations of IPTG (1 mM, 0.5 mM and 0.1 mM) were used for induction of the 
expression of His-SUMO-AUD (40 kDa) at 18 °C, 27 °C or 37 °C for 6 hours. Bacterial cell lysates 
were harvested by centrifugation and lysed in lysis buffer for sonication. Both supernatant 
(soluble proteins) and inclusion body pellet (insoluble proteins) after centrifugation were 
analysed by SDS-PAGE and Coomassie Brilliant Blue staining. 
 
5.1.2.1.3 Purification of AUD 

HisTrap™ HP was used for His-SUMO-AUD purification with the supernatant obtained after 

sonication of the resuspended bacterial cells. HisTrap™ HP is a prepacked, ready-to-use 
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column for the preparative purification of His-tagged recombinant proteins by immobilized 

metal affinity chromatography (IMAC). Pre-equilibration of the column was performed with 

wash buffer before clarified and filtered cell lysates supernatants containing His-SUMO-AUD 

protein were loaded into it. Then the His-SUMO-AUD bound to the Ni+ resin and was collected 

in the columns while at the same time the unbound proteins just went through the column. 

Then the column was washed for 3 times with 5 x column volumes of wash buffer. Finally, the 

Ni+ bound His-SUMO-AUD in the column was eluted using 5 x column volume elution buffer 

(Figure 5.3). The eluted fractions of His-SUMO-AUD were then dialysed at 4 °C overnight, and 

at the same time, His tagged SUMO protease was added into the eluted fractions to cleave the 

His-SUMO tag from the AUD. For the next step, the dialysed mixture of His-SUMO tag, His 

tagged SUMO protease and AUD was loaded into the HisTrap™ HP column for a second round 

when His-SUMO tag and His tagged SUMO protease were bound to the Ni+ on the column 

while AUD passed through the column and was collected for further analysis. The column was 

then washed with wash buffer with 5 x column volume wash buffer and the flowthrough of it 

was also collected as purified AUD protein. Then the bound His-SUMO tag and His tagged 

SUMO protease in the column were eluted with elution buffer and collected for analysis in 

SDS-PAGE gel. As shown in Figure 5.3, an approximately 26 kDa protein (the same molecular 

weight as predicted for AUD) was observed in the Coomassie blue stained SDS-PAGE gel after 

the whole purification process.  

 

Figure 5.3 Purification of AUD.  

1. Ladder. 2. Uninduced sample. 3. Soluble sample post IPTG induction. 4. Insoluble sample 
post IPTG induction. 5. Flowthrough fraction post his-sumo-AUD purification. 6. Wash fraction 
post his-sumo-AUD purification. 7. Eluted his-sumo-AUD. 8. Ladder. 9. Samples post dialysis 
and sumo protease cleavage. 10. Purified AUD (flowthrough fraction). 11. Purified AUD (wash 
fraction. 12. Eluted his-sumo tag and sumo protease (ULP1). 
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5.1.2.1.4 Characterization of AUD by mass spectrometry 

To confirm the identity of the purified protein obtained in the last step, the purified 26 kDa 

protein was sent to the Mass spectrometry office in University of Leeds for protein ID analysis. 

The purified protein was loaded and run in SDS-PAGE gel and after Coomassie blue staining, 

the predicted band was cut out for further analysis. As shown in Figure 5.4., although the 

protein ID analysis failed to cover 100% of the protein peptides, it was enough to show that 

the purified protein corresponded to the amino acid sequence of AUD. Therefore, the purified 

AUD was confirmed as AUD and used for further studies. 

 

Figure 5.4 Identification of AUD protein. 

Protein peptides digested by trypsin were analysed by mass spectrometry and then compared 
with the known expressed protein sequence and protein database. The sequence at the top is 
the AUD amino acid sequence. A series of peptides below in blue are the digested AUD 
fragments for mass spectrometry. 
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5.1.2.2 Purification of E.coli expressed AUD mutants 

The whole fragments of each AUD mutant (M219A, E225A, R243A/K245A, P247A/V248A, 

V260A/V261A, C262A/C264A) flanked with BamHI and XhoI was amplified from the 

corresponding CHIKV-D-Luc-SGR and cloned into pET28a-SUMO vector to generate pET28a-

SUMO-AUD mutants expression plasmids, as described in session 5.2.1.1. Following the same 

expression and purification process as wildtype AUD protein, each AUD mutant protein were 

analysed in SDS-PAGE gel by Coomassie blue staining and shown in Figure 5.5. 

 

 

Figure 5.5 Expression of wildtype AUD and its mutants.  

Purification of AUD with corresponding mutations analysed by SDS-PAGE and Coomassie blue 
staining. Most of the mutants were of the predicted correct size in SDS-PAGE gel while 
R243A/K245A mutant appeared larger than wildtype and other mutants. 
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5.1.2.3 Mass spectrometry analysis of AUD-R243A/K245A mutant. 

As the R243A/K245A mutant AUD protein appeared larger than wildtype and other mutant 

AUDs in SDS-PAGE (Figure 5.5), to confirm that it was the correct protein, mass spectrometry 

analysis was performed to detect both its protein identity and its molecular mass. The purified 

untagged AUD was used for protein ID analysis, and the result showed that although not every 

amino acids of AUD was identified through the assay, it was clearly the AUD protein containing 

the R243A/K245A mutations (Figure 5.6A). As untagged AUD protein was easily degraded 

during protein molecular mass analysis (data not shown), the His-SUMO-AUD-R243A/K245A 

was used for this analysis. The result showed that a peak for a 39.45-kDa protein 

(corresponding to the predicted molecular mass of His-SUMO-AUD-R243A/K245A (39.63 kDa)) 

was detected, further confirming that the purified protein was exactly the expected AUD-

R243A/K245A.  
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Figure 5.6 Mass spectrometry analysis of AUD-R243A/K245A and His-SUMO-AUD-

R243A/K245A.  

A. Protein peptides digested by trypsin were analysed by mass spectrometry and then 
compared with the known expressed protein sequence and protein database. The sequence at 
the top is the AUD amino acid sequence. A series of peptides below in blue are the digested 
AUD fragments for mass spectrometry. B. Protein mass analysis of His-SUMO-AUD-
R243A/K245A. 
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5.1.2.4 Circular Dichroism assay of AUD 

Far-UV CD spectroscopy was performed to detect the secondary structure of AUD and its 

mutants (M219A, E225A, R243A/K245A, P247A/V248A, V260A/P261A, C262A/C264A). The 

results showed that wildtype AUD and the mutants all comprised predominantly a-helix with 

no significant differences in the overall structure as a result of the mutations (Figure 5.7). 

 

Figure 5.7 Circular Dichroism results of AUDs. 

Far-UV CD spectroscopy was performed on an APP Chirascan CD spectropolarimeter to obtain 
the secondary structure of AUDs. Spectra (190-260) were recorded using 200 μl protein 
solution (at a concentration of 0.2 mg/ml) in a 1 mm path-length cuvette. Protein CD spectra 
deconvolution was analysed by DichroWeb. 
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5.1.2.5 Fluorescent polarisation anisotropy assay with AUD and short RNAs 

Like other macromolecules, RNA is dynamic. The process of folding into a structured RNA 

involves dynamic rearrangement of RNA helices. As the movements of individual helices are 

often on the nanosecond timescale, FPA is a natural choice for studying RNA dynamics; FPA 

measures the rate of depolarization of a fluorophore during its lifetime, which is often in the 

low nanosecond regime. To perform the FPA, the RNA used should be specifically probed with 

6-methylisoxanthopterin (6-MI), 1,3-diaza-2-oxophenothiazine (tC) or 1,3-diaza-2-

oxophenoxazine (tCo) as a tracer of the RNA. In this project, purified AUD was used to test the 

interaction between AUD and some specific short RNAs (A13mer, A8, U13, C13, C8 and G8 and 

random RNAs) probed with 6-MI by PFA. As shown in Figure 5.8, no interactions between AUD 

and any of the tested RNAs could be detected, indicating that AUD had no RNA-binding activity 

to these short RNAs. 

 

Figure 5.8 AUD binding activity to short RNAs. 

Fluorescent polarisation anisotropy was performed to detect the RNA binding activity of AUD 
to short RNAs. 15 µl RNA binding buffer (50 mM Tris pH=7, 300 mM NaCl) was added into each 
well of the 384-well black optiplate (Perkin Elmer). 30 µl protein solution was added into the 
first well of the row followed by dilution of the proteins along the row, taking 40 µl from the 
previous well to the next one. 20 µl of 20 mM RNA was then added into each well, mixed and 
incubated for 30 min at RT. Polarisation was measured using an EnVision multilabel Plate 
Reader (Perkin Elmer) that contains an excitation filter at 480 nm and S and P channel emission 
filters at 530 nm. 
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5.1.2.6 RNA-filter binding assay with AUD and viral RNA fragments 

As previous result has shown that nsP3 was capable of binding virus genome RNA during virus 

replication, and the P247A/V248A mutations within AUD, which impaired virus replication 

significantly reduced this RNA binding activity (Figure 4.5), it was speculated that AUD was able 

to bind genome RNA and this binding activity was important for CHIKV replication. As the 

genome 3’ UTR is involved in the initiation of negative-strand RNA, it was interesting to detect 

the RNA-binding activity of wildtype AUD and its mutants to it. To do this, a cDNA 

corresponding to the 3’ UTR of genome RNA was amplified and cloned into pcDNA3.1 vector. 

Then the pcDNA3.1-3’ UTR plasmid was linearized and used as template for in vitro 

transcription of 32P labelled 3’ UTR, which was used in the RNA-filter binding assay to detect 

the RNA binding activity of wildtype AUD and its mutants. The mixture of serially diluted 

proteins were mixed with 32P labelled 3’ UTR transcripts for 30 min before passing through first 

a nitrocellulose membrane then a Hybond-nylon membrane such that  the nitrocellulose 

membrane bound protein-RNA complex and Hybond-Nylon membrane bound free RNA. Then 

the membranes were exposed to a film for quantification of radioactivity and fitting was 

performed using GraphPad Prism 5 software (GraphPad Software). As shown in Figure 5.9, 

wildtype and all AUD mutants, with the exception of R243A/K245A, were able to bind the 

CHIKV 3’UTR RNA.  The radioactive signal weakened with the decrease of AUD protein added 

into each well. Somewhat surprisingly the two mutants of residues that either bind to zinc 

(C262A/C264A), or are adjacent to the zinc-binding site (V260A/P261A), both of which were 

unable to replicate in any cells were of competent RNA-binding activity. It is concluded that 

AUD residues R243 and K245 are involved in the binding of the domain to the CHIKV 3’UTR 

RNA, and that this activity is essential for CHIKV replication. Interestingly, the P247A/V248A 

mutant also showed a significantly lower RNA binding activity, which was consistent with its 

impaired replication capability in the replicon assay. 
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Figure 5.9 AUD RNA-binding activity to CHIKV 3’UTR RNA.  

Nitrocellulose membrane obtained post filter binding analysis of the interaction between AUDs 
and the CHIKV 3’UTR RNA. The indicated proteins were incubated with radiolabelled RNA (1 
nM) before application to a slot blot apparatus, filtering through nitrocellulose (protein-RNA 
complex) and Hybond-N (free RNA) membranes, and visualization by phosphoimaging. From 
top to bottom, the proteins were applied to the slots at concentrations of 2500, 1250, 625, 
312.5, 156.25, 78.125, 39.0625 and 0 nM. B. The percentage of RNA bound to the 
nitrocellulose membrane and the binding affinity were quantified and plotted as a function of 
the AUD concentration. The data was fitted to a hyperbolic equation. C. Endpoint (% of total 
RNA bound) and Kd values derived from the graphs in B. 
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At the same time, Hepatitis C virus (HCV) 3’ UTR and foot and mouth disease virus (FMDV) 

aptamer RNA were used as controls. For HCV 3’ UTR, it was surprised to find that the AUD had 

similar RNA-binding activity to it as to CHIKV 3’ UTR (Figure 5.10), indicating that the RNA-

binding activity of AUD to CHIKV 3’ UTR was not specific. 
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Figure 5.10 AUD RNA-binding activity to HCV 3’UTR RNA.  

A. Nitrocellulose membrane obtained post filter binding analysis of the interaction between 
AUDs and the CHIKV 3’UTR RNA. The indicated proteins were incubated with radiolabelled RNA 
(1 nM) before application to a slot blot apparatus, filtering through nitrocellulose (protein-RNA 
complex) and Hybond-N (free RNA) membranes, and visualization by phosphoimaging. From 
top to bottom, the proteins were applied to the slots at concentrations of 2500, 1250, 625, 
312.5, 156.25, 78.125, 39.0625 and 0 nM. B. The percentage of RNA bound to the 
nitrocellulose membrane and the binding affinity were quantified and plotted as a function of 
the AUD concentration. The data was fitted to a hyperbolic equation. C. Endpoint (% of total 
RNA bound) and Kd values derived from the graphs in B. 
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Then the RNA-filter binding assay was repeated with the AUD and FMDV aptamer RNA, the 

results clearly showed that no signal of AUD-FMDV aptamer RNA complex could be detected 

on the nitrocellulose membrane while on the Hybond nylon membrane, strong radioactive 

signal of free RNA were detected. This result demonstrated that there was no interaction 

between AUD and FMDV aptamer RNA (Figure 5.11).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11. RNA-filter binding assay with AUD and FMDV aptamer RNA. 

A. Nitrocellulose membrane bound with AUD-FMDV aptamer RNA complex post RNA-filter 
binding assay. B. Hybond nylon membrane bound with free FMDV aptamer RNA. 
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As CHIKV 3’ UTR and HCV 3’ UTR are both long specific structured RNAs while FMDV aptamer 

RNA is much shorter, based on all the RNA-filter binding results obtained in this session, it was 

suspected that the AUD was capable of binding the RNAs of longer length or with some specific 

but unknown structures. 

P247A/V248A mutant CHIKV has been shown to be defective in the synthesis of subgenomic 

RNA during virus replication previously in this study. As the negative strand subgenomic RNA 

promoter (sg-5’ prom(-)) is involved in the initiation of subgenomic RNA synthesis, we then 

detected the interaction between wildtype AUD and its P247A/V248A mutant and 32P labelled 

sg-5’ prom(-) RNA (Figure 5.13A). At the same time, the 3’ end of the genomic negative strand 

RNA (5’ RNA(-)) (Figure 5.12A) was also produced to detect its interaction with AUD, as 5’ 

RNA(-) is involved in the initiation of positive strand RNA synthesis. As shown in Figure 5.12, 

both wildtype and P247A/V248A AUD were able to bind 5’ RNA(-) (Fig 5.12B), however 

P247A/V248A exhibited a significant reduction in both Kd values and maximal binding levels 

(endpoints) compared to wildtype. As 3’ UTR and 5’ RNA(-) are involved in the initiation of 

negative and positive strand genome RNA synthesis, respectively; impaired binding of the 

P247A/V248A mutant AUD may explain the observed defect in CHIKV genome replication (Fig 

4.1 and 4.2). For binding to the sg-5’ prom(-) RNA (Fig 5.12C), P247A/V248A AUD showed a 

different phenotype with a higher endpoint but a higher Kd than wildtype. Kd and endpoint 

values are listed in Fig 5.12D. This result suggested that the P247A/V248A defect in 

subgonomic RNA synthesis may be in part explained by a reduction in the ability to specifically 

bind the subgenomic RNA promoter. 
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Figure 5.12 AUD RNA binding activity to CHIKV 5’ RNA(-) and sg-5’ prom(-). 

A. Schematic of the CHIKV genome showing the location of the various RNAs used in 
subsequent filter binding analysis. B and C. Filter binding analysis of the interaction between 
AUD and the indicated RNA species. Purified AUD at the indicated concentrations was 
incubated with radiolabelled RNA (1 nM) before application to a slot blot apparatus, filtering 
through nitrocellulose (protein-RNA complex) and Hybond-N (free RNA) membranes, and 
visualization by phosphoimaging. The percentage of RNA bound to the nitrocellulose 
membrane was quantified and plotted as a function of the AUD concentration. The data was 
fitted to a hyperbolic equation. D. Endpoint (% of total RNA bound) and Kd values derived from 
the graphs in (B and C). 
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5.1.3 Discussion 

The central AUD domain has been shown to be essential for CHIKV replication but its precise 

roles within this process were unknown. Some mutagenesis research revealed that the AUD 

was involved in the early event during virus replication, probably the formation of early 

replication complex for negative-strand RNA synthesis (LaStarza et al., 1994b, Wang et al., 

1994). A zinc coordination site, which is always involved in RNA-binding proteins, was revealed 

in the AUD within a crystal structure of Sindbis virus nsP23 (Shin et al., 2012). Previously in this 

project, mutant P247A/V248A CHIKV was proved to be partially defective in virus replication 

because of its defect in subgenomic RNA/structural proteins production, and the immuno co-

precipitation assay demonstrated that nsP3-P247A/V248A had a reduced RNA-binding activity 

to CHIKV genome RNA compared to wildtype nsP3. Therefore, the RNA-binding activity of AUD 

to short RNAs and different elements of genome RNA was detected in this chapter (Table 2). 

Fluorescent polarisation anisotropy assay showed no interaction between AUD and short RNAs, 

but the RNA-filter binding assay proved a binding activity of AUD to different fragments of 

CHIKV genomic RNA as well as HCV 3’ UTR RNA, suggesting that the interaction between AUD 

to RNA was not unique but still based on some specific RNA structures. 

 

Table 2 RNAs used in the detection of protein-RNA interaction 

 

The first major conclusion from this section is that AUD has binding activity to all the three 

important untranslated elements of the virus genome: 3’ UTR, 5’ UTR(-) and sg-Prom(-). In the 

RNA filter binding assay with AUDs and CHIKV 3’ UTR RNA, wildtype AUD and most of its 

mutants, except for R243A/K245A, showed binding activity to CHIKV 3’ UTR. Previous result in 

this project showed that CHIKV R243A/K245A mutant was defective in virus genome 

replication, while genome 3’ UTR is involved in the initiation of negative-strand RNA synthesis 
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(Rupp et al., 2015), together with the RNA binding result, it was predicted that the RNA binding 

activity of AUD to genome 3’ UTR was necessary for CHIKV replication, probably because of its 

involvement in negative-strand RNA synthesis. P247A/V248A AUD showed a significantly 

reduced binding activity to CHIKV 3’ UTR RNA, consistent with its impaired replication 

capability, also indicating the importance of the interaction between AUD and CHIKV 3’ UTR 

for CHIKV replication. Surpringly, the mutations made in or around the zinc coordination site 

(V260A/P261A and C262A/C264A) did not interfere the binding activity of AUD to 3’ UTR, while 

these two CHIKV mutants failed to replicate in any cells tested in this project, it was believed 

that the zinc coordination site must have some other vital functions but not involved in the 

interaction with 3’ UTR. 

The RNA filter binding assay with AUD and HCV 3’ UTR showed a similar result to that between 

AUD and CHIKV 3’ UTR, indicating that the RNA binding activity of AUD was not specific. 

However, when detecting the interaction between AUD and FMDV aptamer RNA, no binding 

activity of AUD was observed to FMDV aptamer RNA. And the FPA assay also showed no 

interaction between AUD and the short RNAs. As CHIKV 3’ UTR and HCV 3’ UTR were both long 

and highly structured (Chen et al., 2013, Anjum et al., 2013) while FMDV aptamer RNA and the 

small RNAs were much shorter, it was believed that the RNA binding activity of AUD was 

specific to some strucutured RNA, but the precise interaction elements still needs further 

study. 

As the P247A/V248A CHIKV mutant has been shown to have defect in subgenomic RNA 

synthesis, and the RNA binding activity of AUD was not specific to 3’ UTR sequence, it was 

interesting to detect the RNA binding activity of AUD to sg-Prom (-) and to test if the 

P247A/V248A mutations affected this binding activity. Here, different from the interaction 

between AUD and CHIKV 3’ UTR, P247A/V248A AUD showed reduction in the affinity to 

subgenomic RNA promoter, might be in part explained the P247A/V248A defect in subgenomic 

RNA synthesis. Although sg-Prom functions in a dsRNA molecule during virus replication in cells, 

it is believed that the single-stranded sg-Prom (-) RNA used in this experiment is adequate to 

detect the interaction between AUD and sg-Prom. At the same time, the binding activity of 

wildtype AUD and the P247A/V248A mutant to CHIKV 5’ UTR (-) was detected with 200 nt 

CHIKV 5’ RNA(-) (part of CHIKV 5’ UTR(-)) and the result was similar to that to CHIKV 3’ UTR, 

indicating that P247A/V248A CHIKV might also be partially defective in positive strand RNA 

synthesis, where 5’ UTR (-) was involved (Shirako and Strauss, 1998, Nickens and Hardy, 2008) 

(Niesters and Strauss, 1990, Frolov et al., 2001). 
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One further implication of the independent RNA binding activity of AUD to these three 

important genome RNA elements is the potential function of AUD to mediate genome 

circularization. The CHIKV 5’ UTR was shown to be essential for negative strand RNA synthesis 

initiating at the 3’ end of genome, indicating a circularization structure formed by template 

RNA for RNA replication (Frolov et al., 2001). The defect of CHIKV P247A/V248A mutant in 

virus replication and the different phonotypes of AUD P247A/V248A mutant to the 3’ UTR, 5’ 

RNA(-) and subgenomic RNA promoter compared to wildtype AUD, raise a possibility that the 

binding of AUD to these three CHIKV genome RNA elements may alter genome RNA structure 

and change the interaction pathway between virus genome RNA and RNA polymerase nsP4, 

further drive the necessary switch from the utilization of genome RNA for negative, positive or 

subgenomic RNA synthesis.  

On the other hand, when tracking the distribution of nsP3, capsid protein and dsRNA of 

wildtype CHIKV and P247A/V248A mutant previously in this project, it was observed that for 

wildtype CHIKV, in the later stage of infection, nsP3 and capsid co-localized cluster 

accumulated on plasma membrane, indicating a role of nsP3 to traffic genome RNA or 

nucleocapsid to virus assembly site. However, in P247A/V248A mutant CHIKV infected cells, 

even when nsP3 and capsid protein were expressed to a high level, co-localized nsP3/capsid 

protein were not observed on plasma membrane. Taken the reduced RNA binding activity of 

P247A/V248A AUD together with previous results, it was suggested that the RNA binding 

activity of AUD to CHIKV genome RNA might play a role in the regulation of virus assembly 

through transport of genome RNA to sites of assembly. Similarly to what observed here for 

CHIKV, the HCV NS5A protein was also proved to bind both 5’ UTR and 3’ UTR of HCV genome 

RNA, and this RNA binding activity of NS5A was also believed to function in both genome RNA 

replication and virus assembly (Foster et al., 2010, Huang et al., 2005). 

In conclusion, the binding activity of AUD to viral genome RNA implicates that nsP3 is involved 

in multiple processes during CHIKV life cycle, including both positive strand genome RNA, 

negative strand mediates viral RNA and subgenomic RNA synthesis, and virus assembly. In this 

regard, the interaction between nsP3 and CHIKV genomic RNA could be a valid target for 

antiviral intervention although more detailed molecular mechanism within this process needs 

further study. 



Chapter 5: Biochemical analysis of AUD 

120 
 

5.2 RNAi suppression activity 

5.2.1 Introduction 

RNAi is generally a antiviral mechanism for various organisms such as fungi, plants, nematodes 

and arthropods (Ding, 2010, Voinnet et al., 1999, Billmyre et al., 2013, Blair, 2011). After 

infection of the pathogens, the virus produced double stranded RNA (dsRNA) lead to the 

formation of RNA interference silencing complex (RISC) for recruitment of dsRNA and siRNA 

and finally accomplish the cleavage of virus RNAs (Flynt et al., 2009, Ghildiyal and Zamore, 

2009, van Rij et al., 2006). The RISC consists of several components, of which ribonuclease III 

Dicer and Argonaute protein (AGO) are the most important. Dicer functions to produce small 

RNA from dsRNA, and the produced small RNA are then transferred to AGO for final cleavage. 

However, it has been shown that Dicer was not necessary for some specific RNAi pathways 

where short RNA transcripts were produced by the RNA-dependent RNA polymerase (RdRP) 

and directly sent to AGO for cleavage (Ketting, 2011). A Piwi RNAi pathway has also been 

found to function specifically in mosquito cells (Guzzardo et al., 2013). In response to the RNAi 

response of the hosts, many viruses have developed their own mechanisms to conteract the 

host RNAi pathways with viral proteins or sequence elements (Ding and Voinnet, 2007), for 

example some viral suppressors of RNAi bind long dsRNA to protect them from Dicer (van Rij 

et al., 2006, Merai et al., 2006) or short RNAs (Aliyari et al., 2008), while others act through a 

combination of different mechanisms (Qi et al., 2011, Singh et al., 2009). A recent study 

showed that some viruses could encode host specific RNAi suppressors because of the co-

evolution of virus and its host, indicating that viruses develop different surviving mechanisms 

in different hosts (van Mierlo et al., 2014). As arbovirus, CHIKV is transmitted through Aedes. 

Species mosquitoes, and displays differential replication pattern in the two kinds of hosts. 

CHIKV persists in a low level in mosquitoes, taking it as a maintenance host, however in 

vertebrate hosts, CHIKV replicates in a high efficiency and gets very high titre (Vasilakis et al., 

2009). It was once speculated that arbovirus does not possess RNAi suppressor activity 

(Umbach and Cullen, 2009), but recently flavivirus Dengue virus NS4B protien was shown to 

play an important role in the modulation of host RNAi pathway to favor virus replication 

(Kakumani et al., 2013), and Mathur et al. revealed a RNA interference (RNAi) suprresion 

activity of CHIKV nsP2 and nsP3 in Sf21 RNAi sensor cell line, where for nsP3 macrodomian 

played a predominant rold while AUD was also involved in it (Mathur et al., 2016). In the 

current study, based on the D-luci assay performed within CHIKV-D-Luc-SGR, in general 

wildtype and most mutant CHIKV showed a higher repilcation level in C6/36 cells than in U4.4 

cells, and the AUD mutant M219A showed no replication in U4.4 but a wildtype replication 
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capability in C6/36 cells. U4.4 and C6/36 cells are both Aedes. albopictus derived mosquito 

cells, but C6/36 was deficient in RNAi response because of a mutation in it Dcr2 gene 

(Morazzani et al., 2012). This results indicated that RNAi was associated with CHIKV replication, 

and M219 residue might be involved in and prevent some mosquito specific antiviral RNAi 

response. At the mean time, to compare the D-luci activity of CHIKV between muscle cells and 

other mammalian cells, muscle cells were more susceptible for CHIKV replication. As it has 

been shown that muscle cells, such as C2C12 cells, produce less dicer proteins than other 

tissues (Sago et al., 2004), it is predicted that besides in mosquito cells, CHIKV replication was 

also suppressed by RNAi in mammalian cells.  

5.2.2 Results 

5.2.2.1 nsp3/AUD RNAi suppression activity  

5.2.2.1.1 Co-transfection of nsP3/AUD and GFP/siGFP in cells 

To detect the RNAi suppression activity of nsP3/AUD, a plasmid containing both GFP and a GFP 

siRNA sequence was firstly constructed (Figure 5.13). pMKO.1-GFP plasmid was purchased 

from Addgene (plasmid No. 10676). GFP siRNA sequence 

(AAGCAGATCCTGAAGAACACCTTCAAGAGAGGTGTTCTTCAGGATCTGCTT) were cloned into 

pMKO.1-GFP plasmid and the resulting plasmid was named as pMKO.1-GFP-shGFP. At the 

same time, nsP3 and AUD were also cloned into pcDNA3.1 plasmid to get pcDNA3.1-nsP3 or 

AUD. Then to detect the RNAi suppression activity of nsP3/AUD, pcDNA3.1-nsP3 or AUD was 

co-transfected into C2C12 cells with pMKO.1-GFP or pMKO.1-GFP-shGFP. Cells were collected 

by trypsin and used for flow cytometry analysis to quantify the GFP signal. pcDNA3.1 vector 

was used as negative control and pcDNA3.1-DENV-NS4B was used as positive control 

(Kakumani et al., 2013). As the percentage of GFP reversion shown in Figure 5.14, when co-

transfected CHIKV nsP3, the GFP signal expressed in pMKO.1-GFP-siGFP was significantly 

reverted. AUD also showed a slight but not significant RNAi suppression activity. 
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Figure 5.13 Diagram of pMKO.1-GFP and pMKO.1-GFP-siGFP.  

GFP-siRNA (siGFP) was inserted into the pMKO.1-GFP with AgeI and EcoRI restriction sites. 
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Figure 5.14 GFP reversion assay of CHIKV nsP3/AUD in C2C12 cells. 

Dengue virus NS4B was used as positive controls. The GFP signal of pMKO.1-GFP co-
transfection with pcDNA3.1 was normalized to 100%, and the GFP signal of pMKO.1-GFP-siGFP 
co-transfection with pcDNA3.1 was normalized to 0. The y-axis shows % GFP reversion (Mean ± 
SD). Statistical significance was analysed using student’s t-test using empty vector as control. 
The * symbol indicates a statistically significant difference in terms of the P value (P<0.05), and 
** indicates P<0.01.  
 

5.2.2.1.2 Construction of GFP/siGFP stable expressed cell line 

In order to further study the mechanism of nsP3/AUD RNAi suppression activity, I tried to 

make a cell line stably expressed GFP or GFP-shGFP. To do this, GFP gene or GFP-shGFP 

sequence were cloned into pcDNA3.1 as pcDNA3.1 contains the neomycin gene that could be 

selected by G418. pcDNA3.1-GFP and pcDNA3.1-GFP-shGFP were then transfected into C2C12 

cells, respectively; and G418 was added into cell culture for selection of the successfully 

transfected cells. Then the cells were split every 48 hours at 1:10 with G418 (500 ng/ml). 

However, after one month, a lot of cells survived G418 but only a few of them expressed GFP 

fluorescence in the pcDNA3.1-GFP transfected cells, while in pcDNA3.1-GFP-siGFP transfected 

one, cells survived with almost no GFP expression. Therefore the cells were thought not 
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suitable for further utilisation. Then I tried to use Huh7 cells and HEK293 cells to repeat the 

construction of the stable cell line, but the results were similar to that of C2C12 cells. 

5.2.2.2 Interaction between nsP3/AUD and Dicer protein 

5.2.2.2.1 Purification of E.coli expressed GST-tagged AUD 

Dicer is one of the most important functional proteins in the RNAi pathway (Jaronczyk et al., 

2005). As previous result has shown that AUD has RNAi suppression activity, it was interesting 

to detect if AUD could bind to Dicer protein to suppress the RNAi pathway. GST pull down 

assay was conducted to detect the interaction between AUD and Dicer. To set up the 

experiment, the GST tagged AUD was expressed and purified. The whole AUD fragment 

flanked with BamHI and XhoI was amplified from CHIKV-D-Luc-SGR plasmid and cloned into 

pGEX6P-2 vector after digestion with the corresponding two restriction enzymes to generate 

recombinant pGEX6P-2-AUD to express GST tagged AUD. The GST tagged AUD was produced in 

Rosetta2 stain of E.coli with 1 mM IPTG induction at 18 °C for 5 hours. Then the expressed GST 

tagged AUD was purified with glutathione sepharose 4B resin as described in session 2.6.1. The 

purified protein was analysed in SDS-PAGE gel with Coomassie blue staining (Figure 5.15).  

 

Figure 5.15 Expression of GST-AUD.  

1. Expression of GST protein in pGEX6P-2. 2. Expression of GST-AUD in pGEX6P-2-AUD. 
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5.2.2.2.2 GST pull down assay 

To detect the interaction between AUD and Dicer protein, a GST pull down assay was 

performed. To do this, a Dicer expression plasmid pDESTmycDICER (Dicer 1, ribonuclease type 

III, H. sapiens) purchased from Addgene was used. pDESTmycDICER was transfected into 

HEK293T cells by lipofectamine 2000. Cells were collected at 72 h.p.t. and lysed with GLB on 

ice for 30 min before centrifugation at 15,000 × g for 15 min to collecte the supernatant.  

Purified GST tagged AUD was added into glutathione sepharose 4B resin and left on rotator for 

overnight incubation at 4 °C. Then the resin was washed with 50 mM Tris, pH=7 and GLB buffer 

before mixed with the cell lysates supernatant for 3 hours incubation at 4 °C. Finally the GST 

tagged AUD was eluted from the resin after 3 times wash of the resin and was collected for 

western blot analysis of the pull down results for AUD and Dicer. As the western blot result 

shown in Figure 5.17, Dicer protein was detected in cell lysates, and was not unspecific bound 

to the resin. Both GST and GST tagged AUD protein could be pulled down by the resin, 

however, no Dicer protein was pulled down by GST tagged AUD, indicating that there was no 

direct interaction between AUD and Dicer protein. On the other hand, based on the western 

blot result, it seemed that not much Dicer protein was expressed in the transfected cells, 

therefore even if there was interaction between AUD and Dicer protein, this interaction was 

difficult to be detected with a lack of Dicer protein expression. Moreover, the GST tagged AUD 

used in this experiment was expressed in E.coli, which might result in the loss of some protein 

structures or decorations which could be important for the interaction between AUD and Dicer 

protein.  
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Figure 5.16 GST tagged AUD failed to pull down Dicer protein. 

E.coli expressed GST tagged AUD and cell lysates of Dicer transfected 293T cells were used for 
GST pull down assay. Precipitated proteins were analysed by western blot using anti-Dicer and 
anti-GST antibody. 1. Cell lysates. 2. Cell lysates + resin. 3. GST + resin. 4. GST + cell lysates + 
resin. 5. GST tagged AUD + resin. 6. GST tagged AUD + cell lysates + resin. 
 

5.2.2.2.3 GFP-trap assay 

Results of the GST pull down assay showed that the E.coli expressed GST tagged AUD did not 

show any interaction with Dicer protein, to further confirm it, a GFP-trap assay with both cell 

expressed AUD and Dicer protein was performed. To do this, at first, the whole sequence of 

nsP3 or AUD was amplified from the ICRES-CHIKV plasmid and cloned into pEGFP-N1-GFP 

plasmid to get pEGFP-N1-GFP-nsP3/AUD. pDESTmycDICER and pEGFP-N1-GFP-nsP3/AUD were 

co-transfected into HEK293T cells for 72 hours before the transfected cells were collected and 

lysed with GLB for 30 min on ice. Then the cell lysates were centrifuged at 15,000 × g for 15 

min and the supernatant was collected and added into GFP-trap beads for incubation at 4 °C 

overnight with rotation. After incubation, the GFP-trap beads were washed for washed for 5 

times followed by the elution and collection of the precipitated proteins for western blot 

analysis. In Figure 5.17, in cell lysates, Dicer protein, nsP3 and AUD could all be detected in the 

corresponding transfected cells. In the GFP-trap pull down samples, GFP tagged nsP3 and AUD 

were pulled down by GFP-trap beads, however, no Dicer protein was pulled down by either 

nsP3 or AUD, indicating no interaction between GFP tagged nsP3/AUD and Dicer protein. In 

the cell lysates samples, the western blot result showed that not much Dicer was expressed in 
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the cells, especially when it was co-transfected with GFP tagged nsP3 or AUD. Therefore, the 

same as the result in GST pull down assay, although no interaction between nsP3/AUD and 

Dicer protein was detected by western blot analysis post GFP-trap assay, it might be because 

that the low expression level of Dicer protein obstructed the detection of the possible protein-

protein interactions. 

 

Figure 5.17 GFP tagged nsP3 or AUD failed to pull down Dicer protein. 

GFP tagged nsP3/AUD were co-transfected into HEK293T cells with myc tagged Dicer protein. 
The cell lysates were incubated in GFP-trap beads at 4 °C overnight with rotation for 
precipitation of GFP tagged nsP3/AUD. Precipitated proteins were detected by western blot 
using anti-nsP3 and anti-Dicer antibody. 
 

5.2.3 Discussion 

As an arbovirus, CHIKV is maintained in both mosquito and vertebrate hosts. The infection of 

CHIKV in mosquitoes is persistent and asymptomatic, but in vertebrate hosts, it is both acute 

and self-limiting (Strauss and Strauss, 1994). The infectivity of virus in both mosquito vectors 

and vertebrate hosts depends on not only the replication capability of the virus itself, but also 

its ability to counteract the antiviral defence of the hosts. Mosquitoes utilises a variety of 

pathway to resist virus infection such as TOLL pathway, JAK STAT pathway and RNAi pathway 

(Lemaitre and Hoffmann, 2007). RNAi is a predominant antiviral defence mechanism in 

invertebrates and plants (Ding, 2010, Voinnet et al., 1999, Billmyre et al., 2013, Blair, 2011), 

and viruses have developed different strategies to evade this host immune system antiviral 
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response. For example, some viruses protect themselves from the recognition of RISC through 

adaptive mutations in or near the target sequences of RNAi pathway (Haasnoot et al., 2007); 

others would use their viral proteins as RNAi suppressors to inhibit the function of Dicer or 

other important proteins within RNAi pathway, thus blocking the host RNAi response (van Rij 

et al., 2006, Haasnoot et al., 2007, Li and Ding, 2006). Arboviruses were once speculated to 

have no RNAi suppressors until the NS4B protein of Dengue virus was proved to possess the 

RNAi suppression activity (Kakumani et al., 2013); and then nsP2 and nsP3 proteins of CHIKV 

were also reported to play an RNAi suppression role in both insect sf21 cells and mammalian 

HEK293T cells (Mathur et al., 2016). The GFP reversion experiment in this project 

demonstrated the same, but to some extent, weaker RNAi suppression function of nsP3/AUD 

in C2C12 cells as well. The mechanism that nsP3 suppressed host RNAi antiviral pathway was 

absolutely unknown until now. Both macrodomain and AUD in nsP3 were reported to have 

RNA-binding activity (Malet et al., 2009, Shin et al., 2012), and this project also proved the 

nsP3/AUD RNA binding activity to CHIKV genome RNA, therefore it is speculated that the 

interaction between nsP3 and RNAs might be a way that nsP3 protected genome RNA from 

Dicer-induced RNAi antiviral pathway. On the other hand, nsP3 could also bind Dicer protein or 

other functional proteins within RNAi pathway to interfere Dicer targeting on specific genome 

RNA sequences or the formation of RISC. However, in this study, we performed both a GST pull 

down assay to detect the in vitro interaction between E.coli expressed AUD and cell expressed 

Dicer protein, and a GFP-trap assay to detect the interaction between nsP3/AUD and Dicer 

protein in cells, neither of them showed a possible interaction between these two proteins. I 

also tried to perform immunofluorescence with the Dicer and nsP3/AUD co-transfected cells to 

detected if Dicer and nsP3/AUD was co-localized in this study, however, either because that 

the expression of Dicer in the transfected cells was in a low level or the dicer protein antibody 

was not suitable for IF analysis, no signal of Dicer could be detected (data not shown). For 

further study, it is believed that a dicer knockout cell line should be constructed and used to 

detect the effect of dicer on CHIKV replication and the possible interactions between dicer and 

different viral proteins. 

5.3 nsP3/AUD formation/distribution in cells 

5.3.1 Introduction 

Fros et al. found that nsP3 was expressed in a formation of foci in cells, but when AUD, fused 

with GFP, was individually expressed in the cells, it formed in filaments instead of foci. And as 

no colocalization between AUD and cell cytoskeleton could be detected, it was supposed that 
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the AUD exhibited intrinsic multimerization capacity (Fros et al., 2012). Despite these, the 

significance and functional roles of the multimerization of AUD during virus infection are 

absolutely not known.  In this section, the distribution and formation of each mutant AUDs 

individually expressed in different cells were analysed to detect if the multimerization of AUD 

was associated with CHIKV replication capability. 

5.3.2 Results 

5.3.2.1 Formation and localisation of wildtype AUD and its mutants in C2C12 cells 

The GFP-fused AUD has been shown to exist in the formation of fibres when expressed in vero 

cells (reference AUD fibres). This AUD formed fibre in the cells did not co-localized with 

cytoskeleton protein tubulin, and therefore the fibre formation was believed to result from the 

intrinsic multimerization character of the AUD. However, the significance of this 

multimerization property of AUD for CHIKV replication was unknown, therefore in this project, 

we explored if the panel of mutations introduced into AUD affected its multimerization 

character and if the multimerization character was associated with CHIKV replication capability. 

To start the experiment, the whole sequence of AUD and its mutants (M219A, E225A, 

R243A/K245A, P247A/V248A, V260A/P261A, C262A/C264A) flanked with EcoRI and BamHI 

were amplified from the CHIKV-D-Luc-SGR and its AUD mutants, and then cloned into pEGFP-

N1 vector to get AUD expression plasmid pEGFP-N1-AUD. The resulting plasmids were then 

transfected into C2C12 cells for 48 hours before cells were fixed with 4% PFA. The fixed cells 

were then permeabilized with ice-cold methanol and blocked with 2% BSA before incubated 

with DAPI stain at RT for 5 min and finally analysed by confocal microscope. As shown in Figure 

5.18, wildtype AUD and its M219A and E225A mutants were expressed in the formation of 

fibres; AUD-R243A/K245A showed a different phenotype of the formation of dots; and AUD-

P247A/V248A, V260A/P261A and C262A/C264A expressed in C2C12 cells were dispersed 

distributed in both nucleus and cytoplasm. Interestingly, the previous results in this project 

showed that M219A, E225A CHIKV viruses were competent in virus replication in C2C12 cells, 

the same as wildtype; P247A/V248A was partially defective in virus replication in C2C12 cells, 

and the replication of R243A/K245A, V260A/P261A and C62A/C264A mutants in C2C12 cells 

were absolutely abrogated. Therefore, the formation of wildtype AUD and its mutants in 

C2C12 cells shown here indicated that the multimerization character of AUD was important for 

CHIKV replication, although the role of it during virus replication needs further exploration.  
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Figure 5.18 GFP tagged wildtype AUD and mutant distribution in C2C12 cells. 

pEGFP-N1-AUDs were transfected in C2C12 cells and AUD distribution were detected by 
confocal microscopy at 48 h.p.t. AUD was detected by GFP fluorescence. WT, M219A and 
E225A AUDs showed fibre formation. AUD-R243A/K245A showed formation of dots. 
P247A/V248A, V260A/P261A and C262A/C264A AUDs were dispersed distributed in C2C12 
cells. 
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5.3.2.2 Distribution of wildtype nsP3 and AUD mutants in C2C12 cells 

It was shown from the last section that the mutations introduced into AUD altered its 

multimerization character and distribution in cells, as during CHIKV replication, AUD functions 

within the whole nsP3, we then detected the nsP3 and its AUD mutants distribution in C2C12 

cells. The whole sequence of nsP3 and its AUD mutants flanked with EcoRI and BamHI were 

amplified from wildtype or corresponding mutants ICRES-CHIKV plasmids and cloned into 

pEGFP-N1 vector after digestion with EcoRI and BamHI restriction enzymes. The resulting 

plasmids were transfected into C2C12 cells and cells were collected and fixed with 4% PFA at 

48 h.p.t. As G3BP has been proved to be an important interaction protein with nsP3 and 

involved in CHIKV replication complex (Fros et al., 2012), G3BP was also labelled with primary 

G3BP antibody and Alexa Fluor-594 secondary antibody for confocal microscope analysis. The 

results (Figure 5.19) showed that WT, M219A and E225A nsP3 showed co-localization with 

G3BP in the formation of clusters in C2C12 cells. R243A/K245A and P247A/V248A nsP3 were 

also co-localized with G3BP but the co-localized dots were smaller than those of wildtype nsP3. 

No G3BP was detected in nsP3-V260A/P261A or -C262A/C264A transfected cells, and nsP3-

V260A/P261A expressed in C2C12 formed as small dots while nsP3-C262A/C264A was 

dispersed distributed in C2C12 cells. It was interesting to see no G3BP could be detected in 

V260A/P261A and C262A/C264A nsP3 expressed cells because interaction between G3BP and 

the hypervariable region within nsP3 was revealed in previous studies (Foy et al., 2013, Frolov 

et al., 2017, Panas et al., 2014) and the expression of nsP3 was able to trigger G3BP production 

in cells (Fros et al., 2012). C262 and C264 residues are constituent part of the zinc coordination 

site within AUD, V260 and P261 are located around the zinc coordination part, therefore it was 

predicted that the zinc coordination site played a role in the interaction between nsP3 and 

G3BP. For R243A/K245A and P247A/V248A nsP3 transfected cells, although G3BP could still be 

detected and co-localized with nsP3, the co-localized dots were smaller than those with 

wildtype nsP3, indicating a loss of other proteins or interaction factors within nsP3-containing 

complex.  
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Figure 5.19 Distribution of wildtype nsP3 and its AUD mutants with G3BP in C2C12 cells. 

A panel of pEGFP-N1-nsP3 plasmids were transfected in C2C12 cells and nsP3 distribution were 
detected by GFP fluorescence while G3BP was detected by primary G3BP antibody and 
Fluorescent 594 secondary antibody through confocal microscopy at 48 h.p.t. nsP3: Green; 
G3BP: red. 
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5.3.3 Discussion 

The filaments formation of AUD when individually expressed in cells was first revealed by Jelke 

et al (Fros et al., 2012). As the AUD filaments resembled the cytoskeleton, they detected the 

distribution of both AUD and tubulin but found no co-localization between them. Therefore it 

was suspected that the multimerization was an intrinsic character of the conserved AUD. In 

this project, we explored the effect of a panel of mutations on AUD filament formation, and 

the relationship between AUD multimerization character and CHIKV replication capability. The 

result was of great interest: the AUD mutations which impaired CHIKV replication also 

disrupted the AUD filament formation, while those who did not affect CHIKV replication 

retained the AUD multimerization character, indicating that the filament formation of AUD 

was associated with CHIKV replication capability. At the same time, we found that the 

mutations not only altered AUD formation, but also affected the corresponding nsP3 

formation. R243A/K245A and P247A/V248A nsP3 dots formed in cells were obviously smaller 

than the clusters formed by wildtype nsP3, indicating a loss of some interaction proteins in the 

nsP3-containing complex. Therefore based on the previous supposition, it might be because 

that the loss of AUD multimerization property affected the accumulation of the corresponding 

nsP3 proteins; or there is also a possibility that AUD filament formation is due to its interaciton 

with some unknown host factors, and when then interaction was destroyed, the interacting 

host factors no longer exsited in nsP3-containing complex, thus the nsP3 mutants-containing 

complex became smaller. On the other hand, it was reported that in Rift Valley fever virus-

infected C6/36 cells, the non-structural proteins formed fibres in the cell nucleus, however in 

U4.4 cells, where virus could not replicate well because of cell RNAi response, no fibre 

structure of non-structural proteins could be detected. They believed that the formation of the 

fibres depended on the prodution of the non-structural proteins. However here in our study, 

from IF images, no significant difference of the expression between wildtype AUD or its 

mutants in each cells was observed.  

In conclusion, although the mechanism of the filament formation of AUD was not clear, it was 

believed that this phenotype of AUD formation in cells was associted with CHIKV replication. 

And in the next session of this chapter, proteomics analysis of the possible host interaction 

proteins with nsP3 would be listed and gave more information about this. 



Chapter 5: Biochemical analysis of AUD 

134 
 

5.4 Proteomic analysis of nsP3 binding partner 

5.4.1 Introduction 

It is well accepted that the functions of nsP3 during the alphavirus life cycle are dependent on 

its interactions with other viral proteins and cellular proteins. Previous studies have revealed 

that for alphaviruses, besides other viral proteins and viral genomic RNAs, nsP3 is able to bind 

to many host proteins and factors, most of which are bound to the protein motifs within 

macrodomain and hypervariable region. For example, the macrodomain mediates nsP3 

interaction with both monomeric and poly adenosine diphosphate ribese (ADP ribose) (Karras 

et al., 2005, Malet et al., 2009, Park and Griffin, 2009, Foy et al., 2013); the hypervariable 

region mediated nsP3 interactions with G3BP (Frolova et al., 2006, Gorchakov et al., 2008), 

Fragile-X-related (FXR) proteins (Tamanini et al., 2000, Tamanini et al., 1999, Anderson and 

Kedersha, 2008) and amphiphysins (Foy et al., 2013). Interaction between nsP3 and PARP-1 is 

thought to be important in stabilizing the virus replicase complex or for the recruitment of 

other host factors (Park and Griffin, 2009); involvement of amphiphysins in nsP3-containing 

repliation complex is important for invagination of lysosomal membranes to house the virus 

replication complex (Lark et al., 2017). There are also many proteins interacting with nsP3 with 

not yet clear roles during virus replication, such as Y-box-binding protein 1 (YBX1) (Gorchakov 

et al., 2008), heat shock proteins (Gorchakov et al., 2008), PI3K-Akt-mTOR (Panas et al., 2015), 

DDX1/DDX3 (Amaya et al., 2016) and IKKβ (Amaya et al., 2016). 

In the current chapter, in order to better understand the protein-protein interaction between 

nsP3 and cellular proteins for CHIKV, and to detect if the replication defect of CHIKV 

P247A/V248A mutant is due to its loss of interactions with some cellular proteins, proteomic 

analysis with twin-strep tagged nsP3 CHIKV was performed. 

The introduction of the isotope-coded affinity tag (ICAT) was one of the milestones to isotopic 

chemical labelling for relative quantification of peptides/proteins with mass spectrometry (MS). 

Tandem Mass Tagging (TMT) is a quantitative proteomic approach, which allows the 

comparison of protein levels in up to 10 different samples in a single experiment. With this 

approach, it is possible to identify and quantitate thousands of proteins in a single experiment. 

Samples for TMT analysis are labelled, fractionated and analysed by Nano-LC MS. Protein 

quantitation is based on the median values of multiple peptides identified from the same 

protein, resulting in highly accurate protein quantitation between samples. Measuring protein 

changes between mutants with significantly different phenotypes and wildtype is one of the 

important tasks of proteomics.  
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The molecular mechanism underpinning the phenotype of the AUD mutants can be explained 

by the roles of AUD in regulating interactions between nsP3 and cellular proteins. To address 

this, affinity purification of Twin-Strep-tagged nsP3 was performed followed by TMT 

quantitative proteomics analysis to compare the interactome of wild type AUD and its mutant 

after pull down assays from virus transfected cells by nano-LC mass spectrometry and 

quantitative proteomic analysis. The abundance ratio of the peptide for each samples were 

taken as the parameters for comparing with untagged WT (negative control) and Twin-Strep-

tagged WT (positive control).  

5.4.2 Results 

5.4.2.1 Purification of Twin-strep-tagged (TST) nsP3 from virus transfected cells 

nsP3 is known to be involved in a variety of interactions or pathways with host proteins. The 

previous results in this project have revealed that the P247A/V248A mutations within nsP3 

impaired CHIKV replication due to its defect in subgenomic RNA synthesis, further studies 

proved that the P247A/V248A mutations reduced nsP3 RNA binding activity to CHIKV genomic 

RNA, we then explored in this chapter if the nsP3-P247A/V248A mutant also lost any 

interactions with some certain host proteins compared to wildtype nsP3. To do this, the 

P247A/V248A mutations were firstly introduced into an ICRES-CHIKV-TST-nsP3 virus construct, 

in which the TST was inserted into the nsP3 hypervariable region and had been proved to not 

affect virus replication in our lab, by quickchange site-directed mutagenesis. Wildtype ICRES-

CHIKV-TST-nsP3 and its P247A/V248A mutant, as well as no tagged ICRES-CHIKV were 

transfected into Huh7 cells using lipofectamine 2000. Purification of TST-nsP3 was performed 

using strep tag resins (Strep-Tactin® Sepharose®) with GLB-lysed cell lysates harvested at 72 

h.p.t. After four times washes, protein bound resins were analysed by western blot using anti-

nsP3 antibody and stored at -80 °C for further analysis. As shown in Figure 5.20, after 

transfection with 1 μg wildtype ICRES-CHIKV-TST-nsP3 RNA, the corresponding TST-nsP3 was 

abundantly produced and pulled down by strep tag resins. However, for P247A/V248A mutant, 

transfection of 1 μg RNA could not produce enough nsP3 due to the defect of P247A/V248A 

mutant replication; whereas when transfected with 4 μg RNA, the expression of nsP3 was 

sufficient to be tested and for the pull down assay. As expected, no tagged wildtype control 

showed enough nsP3 expression in cell lysates but could not be pulled down. 
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Figure 5.20 Purification of Twin-Strep-Tagged nsP3 (TST-nsP3).  

TST tagged CHIKV (wildtype and P247A/V248A mutant) and untagged CHIKV (wildtype) RNAs 
were transfected into Huh7 cells. Cells were lysed at 48 h.p.t with GLB and incubated with 
Strep Tag purification resins. After 5 times wash with wash buffer, resins were analysed by 
western blot with nsP3 antibody.  
 

5.4.2.2 Proteomics analysis of nsP3 binding partners 

To identify cellular candidates potentially  involved in the P247A/V248A phenotype, bound 

fractions following purification from cytoplasmic lysates of TST-nsP3-WT and TST-nsP3-

P247A/V248A, together with no tagged nsP3 (3 replicates of each samples), were analysed by 

mass spectrometry. A great number of known nsP3 interacting proteins were identified by this 

approach. These proteins had at least two high confidence peptide matches per protein (p < 

0.05). After comparisions of abundance of interacting partners between wildtype and mutant, 

as well as no tagged negative control (Figure 5.21), interaction networks that nsP3-

P247A/V248A mutant potentially involved in was determined.  
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Figure 5.21 Flow chart of comparative analysis of nsP3-binding proteins involved in nsP3-

P247A/V248A. 

After analysis by STRING, a group of proteins functioning as mitochondrial carriers were 

identified to be correlated with P247A/V248A mutant (Figure 5.23). 
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Figure 5.22 nsP3 interacting protein network inhibited by P247A/V248A.  

A. Network illustration of the interactions analysed via STRING (https://string-db.org/) by input 
the proteins, of which TST-WT: No tag control ≥ 1.2 and TST-WT: TST-P247A/V248A ≥ 1. B. 
Proteins involved in the mitochondrial network. 
 

Quantification analysis revealed 23 different proteins potentially interacting with wildtype 

nsP3 but not with P247A/V248A nsP3 (Figure 5.22A). Among them, 7 proteins were grouped in 

a mitochondrial-associated network (Figure 5.22B), including mitochondrial carrier 1 (MTCH1), 

NADH dehydrogenase (ubiquinone) Fe-S protein 1 (NDUFS1), cytochrome c-1 (CYC1), solute 

carrier family 25 (mitochondrial carrier; adenine nucleotide translocator), member 5 (SLC25A5), 

solute carrier family 25 (carnitine/acylcarnitine translocase), member 20 (SLC25A20), solute 
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carrier family 25 (mitochondrial carrier; adenine nucleotide translocatoer), member 4 

(SLC25A4), succinate-CoA ligase, alpha subunit (SUCLG1). The importance and functions of 

these mitochondria associated proteins for CHIKV replication have never been reported before. 

5.4.3 Discussion 

Previous data in this project showed that the P247A/V248A mutant formed smaller plaques in 

BHK cells during plaque assay, consistant with its impaired replication capability but also 

indicating a defect of it in cytotoxicity. Some mitochondrial carrier proteins are thought to be 

correlated with cell apoptosis, for example, mitochondrial carrier homolog 1 (MTCH1), an 

outer mitochondrial membrane protein, is believed to be an apoptosis gene (Iplik et al., 2018). 

Apoptosis is a mode of programmed cell death necessary for development of multicellular 

organisms as well as for tissue homeostasis in developing and adult animals (Danial and 

Korsmeyer, 2004). Among the cellular pathways leading to apoptosis, the extrinsic one is 

initiated in response to extrinsic signal and mediated by death receptors at the plasma 

membrane , while the intrinsic one initiated within the cell and the mitochondria have a 

primary role in the final decision step (Kroemer and Reed, 2000). Based on the results obtained 

in this session, it was supposed that the attenuated cytotoxicity of P247A/V248A CHIKV 

mutant was potentially due to its defect in interaction with some mitochondrial proteins, 

besides its impaired replication capability.  

 

 

 

 

 

 

 

 

 

 



Chapter 5: Biochemical analysis of AUD 

140 
 

 

  



Chapter 6: Conclusion and future perspectives 

141 
 

 

 

 

 

 

 

 

 

 

 

Chapter	 6:	 Conclusion	 and	 future	

perspectives	
 

 

 

 

 

 

 

 

 

 



Chapter 6: Conclusion and future perspectives 

142 
 

  



Chapter 6: Conclusion and future perspectives 

143 
 

As a member of the alphavirus genus, the genome of CHIKV is a single positive-stranded RNA 

including two ORFs, the first of which encodes four non-structural proteins (nsP1-4), and the 

second one encodes five structural proteins (capsid protein, E1, E2, E3 and 6k). The four non-

structural proteins are important for the regulation of CHIKV replication. Among them, the 

function of nsP3 is the least understood. It consists of three domains, the macrodomain, the 

AUD and the hypervariable region. The macrodomain has been shown to possess ADP-ribose 

and RNA binding activity, and the hypervariable region is involved in multiple virus-host 

protein interactions. However, the AUD, as a homologous sequence among alphaviruses, is 

essential for CHIKV replication with absolutely unknown functions. In this project, a mutagenic 

strategy was initially performed in the context of CHIKV-D-Luc-SGR. Using as a guide the 

structure of the SINV AUD and an alignment of the AUD amino acid sequences of different 

alphaviruses, conserved solvent-accessible residues were identified and mutated. By dual-

luciferase reporter assay, the effect of the AUD mutations on both input translation and 

genome RNA replication of the replicon were revealed. The mutants showed a series of 

species- and cell type-specific phonotypes. Mutations of the two cysteines involved in, or two 

residues adjacent to the zinc coordination site completely abrogated CHIKV replication in any 

cell type tested, indicating an essential role of the zinc coordination site during virus 

replication. Zinc coordination site is always associated with RNA-binding activity, however, as 

demonstrated in this project, this zinc coordination site within AUD was not involved in the 

AUD binding activity to CHIKV genome 3’UTR. At the same time, mutations of R243A/K245A 

abrupted AUD RNA-binding activity to CHIKV genome RNA, and this CHIKV mutant showed no 

replication in all the mammalian cells and quick reversion in mosquito cells, indicating that the 

AUD RNA-binding activity to CHIKV genome RNA played an important role during virus 

replication. M219A showed an interesting phenotype as in the two mosquito cells tested, 

M219A showed a wildtype level replication in C6/36 cells but no replication in U4.4 cells. C6/36 

and U4.4 are both Aedes. Albopictus derived mosquito cells, and the main difference between 

them is that the C6/36 cells are RNAi defective due to a shift mutation in its Dcr2 gene. 

Therefore, the residue M219 is possibly associated with, and inhibited a mosquito-specific 

RNAi response to CHIKV infection. P247A/V248A showed a consistent impaired replication 

level in all the cells tested, indicating a fundamental function of P247/V248 residues during 

virus replication. Then the mutants showing replication in all / most cells (M219A, E225A, 

R243A/K245A, P247A/V248A) were further analysed in the context of infectious virus. The 

R243A/K245A mutant showed quick reversion after virus electroporation and therefore could 

not be further analysed. In infectious virus, the replication defect of P247A/V248A was 
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consistent with the subgenomic replicon data. Exploration in other processes during virus 

infection demonstrated that the P247A/V248A mutations led to a defect in subgenomic RNA 

synthesis during virus replication, resulting in the lack of structural proteins, which was shown 

as a defect in virus assembly. Then RNA-binding activity analysis revealed that nsP3 binding 

activity to CHIKV genome RNA was important for CHIKV replication and P247A/V248A nsP3 

showed reduced affinity to CHIKV subgenomic promoter which was possibly associated with its 

defect in subgenomic RNA synthesis. In conclusion, the nsP3 P247/V248 residues played 

significant roles in subgenomic RNA synthesis via binding CHIKV subgenomic promoter. It will 

be interesting to further explore the role of P247/V248 residues in the interaction with CHIKV 

genome RNA and the direct consequence of this interaction in order to study the precise 

process of CHIKV genome replication. The revealed significance of P247/V248A also gives a 

new oppotunity for drug development against CHIKV replication. 

Other biochemical characteristics of nsP3 were also analysed in this project. RNAi suppression 

activity was revealed in nsP3, whereas AUD showed a slight but not significant effect. Co-

immunoprecipitation assay showed no interaction between nsP3/AUD and Dicer protein, 

therefore the RNAi suppression activity of nsP3 was not because of a direct inhibition of dicer 

protein function but associated with other steps through RNAi response. At the same time, 

CHIKV-D-Luc-SGR M219A mutant showed a phenotype that it could not replicate in U4.4 cells 

but showed a wildtype replication in C6/36 cells. U4.4 and C6/36 are both Aedes albopictus 

derived mosquito cell lines, the difference between them was that the C6/36 cells were 

defective in Dcr2-induced RNAi because of a deletion in its Dcr 2 gene leading to the 

expresison of a non-functional Dcr2 protein (Morazzani et al., 2012). This result indicated a 

role of nsP3 M219 residue in resistence against mosquito cells RNAi antiviral response to virus 

infection. At the same time, the M219A mutant did not show any significant defect in the 

mammalian cells detected,therefore it was believed that the involvement of M219 in RNAi was 

specific to some mosquito-uinique RNAi pathway. Three major RNAi pathways have been 

revealed in mosquitoes: small interfering RNA (siRNA), micro RNA (miRNA) and Piwi-

interacting RNA (piRNA) pathways (Blair and Olson, 2014). As the piRNA pathway exsiting in 

C6/36 cells did not affect CHIKV M219A mutant genome replication, and the exogenous-siRNA 

(exo-siRNA) pathway performs the predominant antiviral innate immune response to virus 

infection in mosquitoes (Blair, 2011), it was more likely that the nsP3 M219 residue was 

involved in the exo-siRNA antiviral pathway of mosquito cells. During the exo-siRNA response 

in mosquitoes, dsRNA is firstly recognized by Dcr2 protein to initiate the process (Blair, 2011, 

Campbell et al., 2008a). Dcr2 protein in mosquitoes is different from the corresponding Dicer 
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protein in mammalian cells. It is a big protein with a N-terminal DExD/H helicase domain, in 

the middile there is a second helicase domain, a dsRNA-binding domain and a PAZ domain 

responsible for recognition of dsRNA ends, and in the C-terminus are two RNase III domains 

(Campbell et al., 2008a). Dcr2  protein cleaves dsRNA, which derived from both viral genome 

and negative strand RNA in arbovirus infected cells, into 19-22 bp siRNA duplexes, and then 

with the help of dsRNA-binding protein R2D2, the Dcr2-siRNA complex is loaded into the Ago2-

containing RISC for degradation of the “passenger” strand RNA. Then the “guide” strand RNA 

binds to its complementary sequence on viral mRNA to form a  perfectly base-paired duplex, 

which is the acting site for Ago2 to cleave target viral RNA (Matranga et al., 2005). The 

mammalian cells also possess a Dicer-initiated siRNA pathway, but as the Dicer protein in 

mammalian cells and mosquito cells were not the same, interactions between Dicer protein 

and viral proteins in mosquito and mammalian cells could be different. Therefore, even though 

no interaction between mammalian Dicer and CHIKV nsP3/AUD was observed in this project, 

there is still a possibility that nsP3/AUD binds to mosquito Dcr2 protein to interfere mosquito 

siRNA antiviral pathway. Further studies on this part is now in progress in our lab. 

Distribution and formation of individually expressed nsP3 or AUD was also analyzed in this 

project. It is interesting to find that the formation of each mutant nsP3/AUD was, to some 

extent, consistent with their phenotypes. The fibre formation of wildtype AUD was believed to 

result from a self-multimerization character. The mutations which led to no or impaired virus 

replication (R243A/K245A, P247A/V248A, V260A/P261A and C262A/C264A) also disrupted of 

the fibre formation, indicating that this multimerization character was important for a 

functional nsP3. For the formation of nsP3, C262A/C264A mutant showed an absolutely 

different phenotype compared to the dots formed by wildtype, while R243A/K245A, 

P247A/V248A and V260A/P261A mutants showed a formation of smaller dots, indicating that 

those mutations introduced into nsP3 interrupted the interactions between nsP3 and some 

cellular proteins. However, proteomic analysis to explore possible interaction partners of nsP3 

did not give a clear insight. More data are needed here to study the role nsP3/AUD during 

CHIKV replication. 

In conclusion of this project, the AUD within nsP3 is a multi-functional domain, playing 

essential roles for CHIKV replication. This project, for the first time, revealed the function of 

AUD and more importantly, the data here validate the AUD as a novel target for antiviral 

agents and provide opportunities for rational design of an attenuated virus vaccine. 
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Appendix Figure 9.1 Alignment of full AUD amino acid sequences among different 

alphaviruses. 
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Appendix Table 9.1 List of constructs generated and used throughout this study. 
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Mutants  Site-directed mutagenesis (Quickchange or Q5) 

M219A 
Forward  GAGATACATACTGCATGGCCAAAGCAA 
Reverse  TTGCTTTGGCCATGCAGTATGTATCTC 

E225A 
Forward  CCAAAGCAAACAGCAGCCAATGAGCAA 
Reverse  TTGCTCATTGGCTGCTGTTTGCTTTGG 

R243A 
Forward  ATTGAATCGATCGCACAGAAATGCCCG 
Reverse  CGGGCATTTCTGTGCGATCGATTCAAT 

K245A 
Forward  AGTATTGAATCGATCAGGCAGGCATGC 
Reverse  GCATGCCTGCCTGATCGATTCAATACT 

R243A/K245A 
Forward  GAATCGATCGCGCAGGCATGCCCGGTG 
Reverse  CACCGGGCATGCCTGCGCGATCGATTC 

P247A 
Forward  AGGCAGAAATGCGCCGTGGATGATGCA 
Reverse  TGCATCATCCACGGCGCATTTCTGCCT 

V248A 
Forward  CAGAAATGCCCGGCGGATGATGCAGAC 
Reverse  GTCTGCATCATCCGCCGGGCATTTCTG 

P247A/V248A 
Forward  CAGAAATGCGCGGCGGATGATGCAGAC 
Reverse  GTCTGCATCATCCGCCGCGCATTTCTG 

D249A 
Forward  CAGAAATGCCCGGTGGCTGATGCAGAC 
Reverse  GTCTGCATCAGCCACCGGGCATTTCTG 

V260A/P261A 
Forward  CCCAAAACTGCCGCGTGCCTTTGCCGT 
Reverse  ACGGCAAAGGCACGCGGCAGTTTTGGG 

C262A/C264A 
Forward  ACTGTCCCGGCCCTTGCACGTTACGCT 
Reverse  AGCGTAACGTGCAAGGGCCGGGACAGT 

Y324A 
Forward  CGCGTAAGTCCAAGGGAAGCTAGATCT 
Reverse  AGATCTAGCTTCCCTTGGACTTACGCG 

GAA 
Forward  TTCATCGGCGCCGCCAACATAATACATGGA 
Reverse  GGCCGCGCACGCGGATTTTGTC 

  PCR primers 

Atrun-1 

Forward  GCAATCCACGCTGTTGGACCAAACT 
Reverse  CGCTTGACTATGCGTCAGTGACG 

Reverse-2 TTATTCGAAGTCATGCCACCACTAGTTGTGGATGGCAGCGTGTGTGTCGCTTGACTATGCGTCAGTGA
CG 

Atrun-2 

Forward  GCAATCCACGCTGTTGGACCAAACT 
Reverse  CGCTAGCATTACCTTAGAGCATT 

Reverse-2 TTATTCGAAGTCATGCCACCACTAGTTGTGGATGGCAGCGTGTGTGTCGCTAGCATTACCTTAGAGCA
TT 

Atrun-3 

Forward  GCAATCCACGCTGTTGGACCAAACT 
Reverse  CGCAAGCCGGGTGACGCGTTCTG 

Reverse-2 TTATTCGAAGTCATGCCACCACTAGTTGTGGATGGCAGCGTGTGTGTCGCAAGCCGGGTGACGCGTTC
TG 

Atrun-4 

Forward  GCAATCCACGCTGTTGGACCAAACT 
Reverse  CGCGATCGATTCAATACTTTCCC 

Reverse-2 TTATTCGAAGTCATGCCACCACTAGTTGTGGATGGCAGCGTGTGTGTCGCGATCGATTCAATACTTTCC
C 

Atrun-5 

Forward  GCAATCCACGCTGTTGGACCAAACT 
Reverse  CGCCTGATGAAAACGGGTCCCTT 

Reverse-2 TTATTCGAAGTCATGCCACCACTAGTTGTGGATGGCAGCGTGTGTGTCGCCTGATGAAAACGGGTCCC
TT 

Atrun-6 

Forward  GCAATCCACGCTGTTGGACCAAACT 
Reverse  CGCATCGCAGTCTATGGAGATGT 

Reverse-2 TTATTCGAAGTCATGCCACCACTAGTTGTGGATGGCAGCGTGTGTGTCGCATCGCAGTCTATGGAGAT
GT 

Atrun-7 
Forward CGACGGATGCAGACGTGGTCTTCGACCTAAGCGTTGATGG 
Reverse  GTCTTCGAAGTCATGCCACCACTAG 

Atrun-8 
Forward  CGACGGATGCAGACGTGGTCTTTGACCACAACGTGCCATC 
Reverse  GTCTTCGAAGTCATGCCACCACTAG 

Atrun-9 
Forward  CGACGGATGCAGACGTGGTCCGCATGAACCACGTCACAAG 
Reverse  GTCTTCGAAGTCATGCCACCACTAG 

Atrun-10 
Forward  CGACGGATGCAGACGTGGTCAGGCAGAAATGCCCGGTGGA 
Reverse  GTCTTCGAAGTCATGCCACCACTAG 

Atrun-11 
Forward  CGACGGATGCAGACGTGGTCACGGCTGTGGATATGGCGGA 
Reverse  GTCTTCGAAGTCATGCCACCACTAG 

Atrun-12 
Forward GTCATTGTTCGCGTGCACCCTGA 

Forward-2 CGACGGATGCAGACGTGGTCATTGTTCGCGTGCACCCTGA 
Reverse  GTCTTCGAAGTCATGCCACCACTAG 
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AUD fragment 
in pcDNA3.1 for 

quickchange 
mutagenesis 

Forward  GCAAAGCTTGGGACCCGTTTTCATCAGAC 

Reverse  GCATCTAGATTCGAAGTCATGCCACCACT 

Sequencing for 
AUD reversion Forward AATTGGCAGCTGCCTATCGA 

Sequencing for 
CHIKV whole 

genome 

CF1 AAT TGG CAG CTG CCT ATC GA 
CF3 GCAGACGGATTCCTGATGTG 
CF5 TACACCATATTGCGATGCAC 
CF7 CAACTATTAAGGAGTGGGAG 
CF9 GCAGCCTTCGTAGGACAGGT 

CF11 TGCTATTTGACCACAACGTG 
CF13 ACGTCCGATTGTCCAATCCC 
CF15 AAACATCACCATCGCCAGCC 
CS1 ATCGATAACGCGGACCTGGC 
CS3 ACCGCAGCACGGTAAAGAGC 
CS5 TAATGAGCGTCGGTGCCCAC 
CS7 GCAAGAAAGGCAAGTGTGCG 

CHR2 GCCCACTTACTGAAGGCTTG 
CHR4 TGCCAGATCCCGGTACTCCG 
CHR6 GCCCGCTGTCTAGATCCACC 
CHR8 TCCCGGTCCCCTTCAGACTC 

CHR10 CAGGTACGGTGCTCATTACC 
CHR12 GCTGCTGCCAGTACATTCTG 
CHR14 TTAGCGGGTCTGCCACTCTG 
CSR1 GCTCCTCCTAAGACTATGGC 
CSR3 GTGACCGCGGCATGACATTG 
CSR5 CGGTGAAGACCTTACAGCTG 
CSR7 CCTCCCGTGATCTTCTGCAC 
CSR8 CATCTCCTACGTCCCTGTGG 

qRT-PCR-nsP3 
Forward  GCGCGTAAGTCCAAGGGAAT 
Reverse  AGCATCCAGGTCTGACGGG 

qRT-PCR-actin 
Forward  GGCATGGGTCAGAAGGAT T 
Reverse  GGGGTGTTGAAGGTCTCAAA 

pcDNA3.1-nsP3 
Forward  CAAGGATCCATGGCACCGTCGTACCGGGTAAA 
Reverse  CGAGAATTCTTACCCACCTGCCCTGTCTAGTC 

pcDNA3.1-AUD 
Forward  CAAGGATCCATGATCTACTGCCGCGACAAAGA 
Reverse  CGAGAATTCTTACCCGTCGTCTAGTGCTGGTT 

pEGFP-N1-nsP3 
Forward  CAAGAATTCACCATGGCACCGTCGTACCGGGTAAA 
Reverse  CAAGGATCCATCCCACCTGCCCTGTCTAGTC 

pEGFP-N1-AUD 
Forward  CAAGAATTCACCATGATCTACTGCCGCGACAAAGA 
Reverse  CAAGGATCCATCCCGTCGTCTAGTGCTGGTT 

pET-28a-SUMO-
AUD 

Forward  GCAGGATCCATGATCTACTGCCGCGACAAAGA   
Reverse  TAGCTCGAGTTACCCGTCGTCTAGTGCTGGTT 

pGEX6P-2-AUD 
Forward  GCAGGATCCATGATCTACTGCCGCGACAAAGA   
Reverse  TAGCTCGAGTTACCCGTCGTCTAGTGCTGGTT 

CHIKV-3’UTR 
Forward  GAAGGATCCCTTGACAATTAAGTATGAAG 
Reverse  GCCGATATCTTTTTTTTTTTTTTTTTTTT 

CHIKV-5’UTR- 
Forward  CATGAATTCATGGCTGCGTGAGACACACG 
Reverse  GCCGGTACCCTCTAGCATTAGCATGGTCA 

CIHKV-sg Prom- 
Forward  GTAGAATTCCATGGCCACCTTTGCAAGCT 
Reverse  GGCGGATCCTGTAGCTGATTAGTGTTTAG 

   

DENV NS4B 
Forward  TAAGGATCCATGGCAGCAGCGGGCATCATGAA 
Reverse  GCCGAATTCTTACCTTCTCGTGTTTGTGT 

 

Appendix Table 9.2 List of oligonucleotide primers used in this project. 

‘Forward’ and ‘Reverse’ indicate forward primer and reverse primer, respectively. 
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Accession Description 

Abundance 

Ratio: 

(TST-WT) / 

WT 

Abundance 

Ratio: 

(TST-PV) / WT 

Abundance 

Ratio: 

(TST-WT) / 

(TST-PV) 

Q9H307 Pinin  100 100 0.064 

Q53G35 
Phosphoglycerate mutase 

(Fragment)  
100 100 0.042 

Q3ZBS7 Uncharacterized protein  100 100 0.089 

M0QYS1 
60S ribosomal protein L13a 

(Fragment)  
100 100 0.089 

Q68DE3 
Basic helix-loop-helix domain-

containing protein USF3  
100 100 0.018 

A0A024RDE5 

Ras-GTPase activating protein 

SH3 domain-binding protein 2, 

isoform CRA_a  

10.171 14.304 0.711 

Q59EK7 
CS0DF038YO05 variant 

(Fragment)  
3.444 34.751 0.099 

P35527 Keratin, type I cytoskeletal 9  3.331 1.639 2.033 

V9HWE9 
Epididymis secretory protein Li 

22  
3.286 100 0.032 

A0A024R0E2 
Cold shock domain containing 

E1, RNA-binding, isoform CRA_a  
3.028 18.168 0.167 

Q6IT96 Histone deacetylase  2.379 13.479 0.177 

B1AHD1 NHP2-like protein 1  2.119 5.84 0.363 

P39023 60S ribosomal protein L3  2.106 20.682 0.102 

Q15181 Inorganic pyrophosphatase  2.006 25.278 0.079 
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A0A087WUZ3 Spectrin beta chain  1.969 14.245 0.138 

Q9BRJ6 Uncharacterized protein C7orf50  1.93 15.179 0.127 

O60264 

SWI/SNF-related matrix-

associated actin-dependent 

regulator of chromatin subfamily 

A member 5  

1.869 17.39 0.107 

Q9Y5B9 FACT complex subunit SPT16 1.828 6.932 0.264 

P46063 ATP-dependent DNA helicase Q1  1.789 3.578 0.5 

B2R6J3 cDNA, FLJ92974 1.76 8.063 0.218 

Q8N1N0 
C-type lectin domain family 4 

member F  
1.752 1.98 0.885 

Q9NR30 Nucleolar RNA helicase 2  1.741 33.353 0.052 

P07737 Profilin-1  1.732 77.868 0.022 

B3KMC9 

cDNA FLJ10711 fis, clone 

NT2RP3000917, highly similar to 

5'-3' exoribonuclease 2 (EC 

3.1.11.-)  

1.728 12.888 0.134 

F8WAR4 MICOS complex subunit  1.65 5.136 0.321 

P42766 60S ribosomal protein L35  1.648 14.056 0.117 

E5KSX8 
Mitochondrial transcription 

factor A  
1.646 9.934 0.166 

A0A1B0GVD3 Protein lin-28 homolog B 1.63 17.777 0.092 

A0A0S2Z4Z9 

Non-POU domain containing 

octamer-binding isoform 1 

(Fragment)  

1.622 20.696 0.078 

A0A024QZK8 

Heterogeneous nuclear 

ribonucleoprotein H3 (2H9), 

isoform CRA_a  

1.62 6.715 0.241 
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P05387 60S acidic ribosomal protein P2  1.619 13.634 0.119 

B4DJ38 

cDNA FLJ56092, highly similar to 

Pentatricopeptide repeat protein 

1  

1.594 1.549 1.029 

Q9UBS4 
DnaJ homolog subfamily B 

member 11  
1.582 2.397 0.66 

P50402 Emerin  1.579 2.162 0.731 

Q6NTF9 
Rhomboid domain-containing 

protein 2  
1.579 1.464 1.079 

P02533 Keratin, type I cytoskeletal 14  1.577 0.767 2.055 

Q12906 
Interleukin enhancer-binding 

factor 3  
1.558 41.368 0.038 

P49756 RNA-binding protein 25  1.554 17.294 0.09 

Q59GX2 

Solute carrier family 2 

(Facilitated glucose transporter), 

member 1 variant (Fragment)  

1.549 1.458 1.063 

A0A024R8W0 
DEAD (Asp-Glu-Ala-Asp) box 

polypeptide 48, isoform CRA_a  
1.533 1.599 0.959 

P46459 Vesicle-fusing ATPase  1.529 2.657 0.575 

P10620 
Microsomal glutathione S-

transferase 1  
1.527 2.953 0.517 

J3KQ32 Obg-like ATPase 1  1.527 28.359 0.054 

Q59EL4 PRPF4 protein variant (Fragment)  1.52 7.544 0.201 

A0A024RBF6 HCG26523, isoform CRA_a  1.505 18.888 0.08 

M0R0R2 40S ribosomal protein S5  1.504 4.624 0.325 

A0A0A0MRM9 
Nucleolar and coiled-body 

phosphoprotein 1 (Fragment)  
1.504 7.511 0.2 
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Q9Y2W1 
Thyroid hormone receptor-

associated protein 3  
1.497 2.883 0.519 

Q15436 Protein transport protein Sec23A  1.493 2.94 0.508 

A0A126LB20 Rep  1.47 0.989 1.487 

J3KPF3 
4F2 cell-surface antigen heavy 

chain 
1.469 1.251 1.174 

V9HWC7 
Epididymis secretory sperm 

binding protein Li 128m  
1.452 12.968 0.112 

E9PNW5 Uncharacterized protein C4orf50  1.45 0.915 1.584 

O43776 
Asparagine--tRNA ligase, 

cytoplasmic  
1.447 17.8 0.081 

A0A024R5Z7 Annexin  1.439 1.813 0.794 

Q8TCJ2 

Dolichyl-

diphosphooligosaccharide--

protein glycosyltransferase 

subunit STT3B  

1.436 3.003 0.478 

Q04828 
Aldo-keto reductase family 1 

member C1  
1.433 18.161 0.079 

Q96CS3 FAS-associated factor 2  1.432 2.602 0.55 

Q5VV89 
Microsomal glutathione S-

transferase 3  
1.432 1.502 0.954 

Q5QJE6 
Deoxynucleotidyltransferase 

terminal-interacting protein 2  
1.431 7.266 0.197 

P00387 
NADH-cytochrome b5 reductase 

3  
1.429 9.387 0.152 

A0A1W2PP11 Uncharacterized protein  1.421 1.069 1.33 

P35908 
Keratin, type II cytoskeletal 2 

epidermal  
1.414 0.704 2.008 
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P27824 Calnexin  1.413 6.865 0.206 

P09110 
3-ketoacyl-CoA thiolase, 

peroxisomal  
1.407 6.063 0.232 

P14625 Endoplasmin  1.406 6.269 0.224 

Q4LE48 
STAG1 variant protein 

(Fragment)  
1.405 4.466 0.315 

A6NCS6 Uncharacterized protein C2orf72  1.395 2.011 0.694 

Q9Y277 
Voltage-dependent anion-

selective channel protein 3 
1.384 1.827 0.757 

B4DPD5 Ubiquitin thioesterase  1.382 14.03 0.098 

Q9Y3U8 60S ribosomal protein L36  1.381 20.436 0.068 

P49458 
Signal recognition particle 9 kDa 

protein  
1.373 5.949 0.231 

Q5T4U5 

Acyl-Coenzyme A 

dehydrogenase, C-4 to C-12 

straight chain, isoform CRA_a  

1.37 2.765 0.496 

H0Y4R2 
NADPH--cytochrome P450 

reductase (Fragment)  
1.369 7.747 0.177 

O00425 
Insulin-like growth factor 2 

mRNA-binding protein 3  
1.367 1.841 0.743 

Q8IW90 MTCH1 protein (Fragment) 1.366 1.187 1.151 

P61513 60S ribosomal protein L37a  1.36 5.469 0.249 

A0A024R8D2 

Solute carrier family 27 (Fatty 

acid transporter), member 4, 

isoform CRA_a  

1.351 1.22 1.107 

A8K1K8 
Chromosome 18 open reading 

frame 55, isoform CRA_b  
1.351 1.74 0.777 

Q9Y3I0 tRNA-splicing ligase RtcB 1.349 11.186 0.121 
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homolog  

P35659 Protein DEK 1.344 4.187 0.321 

Q549C5 HCG2010808, isoform CRA_a  1.343 1.245 1.079 

H0Y368 

Dolichol-phosphate 

mannosyltransferase subunit 1 

(Fragment)  

1.338 1.395 0.959 

P83731 60S ribosomal protein L24  1.336 12.162 0.11 

D3DP46 

SPCS3-Signal peptidase complex 

subunit 3 homolog (S. 

cerevisiae), isoform CRA_a  

1.334 1.055 1.264 

B4DR52 Histone H2B  1.333 63.708 0.021 

Q16777 Histone H2A type 2-C  1.33 36.97 0.036 

Q5BKZ1 DBIRD complex subunit ZNF326  1.329 5.385 0.247 

A0A024RBH2 
Cytoskeleton-associated protein 

4, isoform CRA_c  
1.327 8.398 0.158 

O95831 
Apoptosis-inducing factor 1, 

mitochondrial  
1.326 1.98 0.67 

O95373 Importin-7  1.315 1.042 1.262 

V9HW31 ATP synthase subunit beta  1.307 2.744 0.476 

Q9Y5M8 
Signal recognition particle 

receptor subunit beta  
1.306 2.686 0.486 

B7Z7X3 

cDNA FLJ51770, highly similar to 

Microsomal triglyceride transfer 

protein large subunit  

1.305 6.273 0.208 

A0A024R8Z9 
Aspartyl-tRNA synthetase 2 

(Mitochondrial), isoform CRA_b  
1.305 4.083 0.32 

Q9BPU6 
Dihydropyrimidinase-related 

protein 5  
1.303 16.015 0.081 
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H0Y2W2 
ATPase family AAA domain-

containing protein 3A (Fragment)  
1.3 2.237 0.581 

P23468 
Receptor-type tyrosine-protein 

phosphatase delta  
1.3 0.906 1.436 

J3QQ67 
60S ribosomal protein L18 

(Fragment)  
1.299 19.19 0.068 

P15907 
Beta-galactoside alpha-2,6-

sialyltransferase 1  
1.288 2.963 0.435 

P04843 

Dolichyl-

diphosphooligosaccharide--

protein glycosyltransferase 

subunit 1  

1.287 2.468 0.522 

O00159 Unconventional myosin-Ic  1.287 1.929 0.667 

A0A0S2Z492 DNA helicase  1.282 6.762 0.19 

P53597 

SUCLG1-Succinate--CoA ligase 

[ADP/GDP-forming] subunit 

alpha, mitochondrial  

1.279 1.03 1.241 

A0A024RBE7 Thymopoietin, isoform CRA_c  1.277 4.611 0.277 

A0A0S2Z471 
Creatine kinase brain isoform 2 

(Fragment)  
1.277 2.567 0.497 

B7Z6Z4 Myosin light polypeptide 6  1.276 3.74 0.341 

P49411 
Elongation factor Tu, 

mitochondrial  
1.274 1.897 0.672 

A0A024R415 
Paroxysmal nonkinesiogenic 

dyskinesia, isoform CRA_a  
1.269 1.218 1.042 

P46060 Ran GTPase-activating protein 1 1.269 2.188 0.58 

A0A087WZN1 
Isocitrate dehydrogenase [NAD] 

subunit, mitochondrial  
1.268 1.721 0.737 
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B4E0L0 

cDNA FLJ54030, highly similar to 

Polymerase delta-interacting 

protein 3  

1.267 3.093 0.41 

O94905 Erlin-2  1.263 2.669 0.473 

Q08J23 
tRNA (cytosine(34)-C(5))-

methyltransferase  
1.263 1.317 0.959 

Q96PK6 RNA-binding protein 14  1.262 2.615 0.483 

A0A024QZN9 
Voltage-dependent anion 

channel 2, isoform CRA_a  
1.261 2.788 0.452 

A0A140VKA6 
Testis secretory sperm-binding 

protein Li 233m 
1.261 44.718 0.028 

Q8NBS9 
Thioredoxin domain-containing 

protein 5  
1.259 2.464 0.511 

Q9NP08 Homeobox protein HMX1  1.258 0.896 1.404 

Q8NBQ5 
HSD17B11-Estradiol 17-beta-

dehydrogenase 11  
1.257 1.185 1.061 

Q9Y508 
RNF114-E3 ubiquitin-protein 

ligase  
1.257 0.744 1.689 

Q16891 MICOS complex subunit MIC60  1.255 3.148 0.399 

A0A0S2Z4J1 

Hydroxysteroid (17-beta) 

dehydrogenase 4, isoform CRA_b 

(Fragment)  

1.255 19.328 0.065 

Q15424 Scaffold attachment factor B1  1.255 25.453 0.049 

Q02978 

Mitochondrial 2-

oxoglutarate/malate carrier 

protein  

1.254 0.836 1.5 

Q6NVC0 SLC25A5 protein (Fragment) 1.251 0.924 1.353 

B7Z8Z6 DNA helicase  1.251 58.568 0.021 
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A0A024RD03 
Mitochondrial ribosomal protein 

S10, isoform CRA_a 
1.25 2.818 0.444 

A8MXP9 Matrin-3  1.248 4.386 0.285 

P15559 
NAD(P)H dehydrogenase 

[quinone] 1  
1.248 15.715 0.079 

B4DP48 cDNA FLJ61147  1.248 1.24 1.007 

Q92736 RYR2-Ryanodine receptor 2  1.247 1.053 1.184 

B2RCH7 

cDNA, FLJ96082, highly similar to 

Homo sapiens cervical cancer 1 

protooncogene (HCCR1), mRNA  

1.246 1.195 1.042 

V9HWB8 Pyruvate kinase  1.241 4.952 0.25 

O43772 

SLC25A20-Mitochondrial 

carnitine/acylcarnitine carrier 

protein  

1.241 0.93 1.334 

Q8WVK7 
SKA2-Spindle and kinetochore-

associated protein 2  
1.24 0.741 1.674 

P38646 Stress-70 protein, mitochondrial  1.238 1.74 0.711 

B2RBD5 Tubulin beta chain  1.236 1.147 1.078 

P08574 
CYC1-Cytochrome c1, heme 

protein, mitochondrial  
1.236 1.034 1.196 

A0A0G2JK44 
BRD2-Bromodomain-containing 

protein 2  
1.236 0.69 1.792 

A0A0D9SF53 
ATP-dependent RNA helicase 

DDX3X  
1.234 5.238 0.236 

P09874 Poly [ADP-ribose] polymerase 1  1.232 13.51 0.091 

J3QK89 
Calcium homeostasis 

endoplasmic reticulum protein  
1.232 4.547 0.271 

P51648 Fatty aldehyde dehydrogenase  1.231 3.798 0.324 
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B4DL07 

cDNA FLJ53353, highly similar to 

ATP-binding cassette sub-family 

D member 3  

1.229 1.306 0.941 

Q6IQ30 Polyadenylate-binding protein  1.229 5.583 0.22 

Q9UEY8 Gamma-adducin  1.229 6.687 0.184 

A0A1B0W1E4 
Cytochrome c oxidase subunit 2 

(Fragment)  
1.228 1.298 0.946 

Q59EI9 
ADP,ATP carrier protein, liver 

isoform T2 variant (Fragment)  
1.226 0.949 1.293 

O60701 UDP-glucose 6-dehydrogenase  1.222 5.463 0.224 

Q59FF0 
EBNA-2 co-activator variant 

(Fragment)  
1.218 7.34 0.166 

Q8WWC4 
m-AAA protease-interacting 

protein 1, mitochondrial  
1.216 1.213 1.003 

A0A140TA86 MICOS complex subunit MIC13  1.214 1.465 0.829 

A0A0S2Z3H3 
SLC25A4-Solute carrier family 25 

member 4 isoform 1 (Fragment)  
1.213 0.84 1.443 

O00116 
Alkyldihydroxyacetonephosphate 

synthase, peroxisomal 
1.212 3.998 0.303 

B2RMV2 CYTSA protein 1.211 0.822 1.474 

P28331 

NDUFS1-NADH-ubiquinone 

oxidoreductase 75 kDa subunit, 

mitochondrial  

1.21 1.066 1.135 

O75964 
ATP synthase subunit g, 

mitochondrial  
1.208 1.216 0.994 

A0A024RBB7 
Nucleosome assembly protein 1-

like 1, isoform CRA_a  
1.205 3.921 0.307 

Q6IAN0 Dehydrogenase/reductase SDR 1.204 1.314 0.917 
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family member 7B  

B3KM97 

cDNA FLJ10554 fis, clone 

NT2RP2002385, highly similar to 

Synaptic glycoprotein SC2  

1.204 1.103 1.092 

B2R8R5 

cDNA, FLJ94025, highly similar to 

Homo sapiens tripartite motif-

containing 28 (TRIM28), mRNA O 

1.202 6.125 0.196 

A0A024R608 
Ribosomal protein, large, P1, 

isoform CRA_a  
1.202 9.786 0.123 

Q13427 
Peptidyl-prolyl cis-trans 

isomerase G  
1.2 17.847 0.067 

 

Appendix Table 9.3 Host proteins identified by proteomic analysis. 

Host proteins listed here are Twin-Strep-tagged nsP3 samples from wildtype and P247A/V248A 
with more than 1.2-fold enrichment compared with untagged wildtype resins. Abundance ratio 
(TST-WT / WT) is the ratio protein abundance for the wildtype TST-nsP3 pull down to the 
untagged wildtype negative control. Abundance ratio (TST-PV / WT) is the ratio protein 
abundance for the P247A/V248A TST-nsP3 pull down to the wildtype nsP3 positive control. 
Abundance ratio (TST-WT / TST-PV) is the ratio protein abundance for the wildtype TST-nsP3 to 
P247A/V248A TST-nsP3. 3 replicates of each TST-WT, TST-PV and WT samples are analysed and 
the averaged values are shown. Proteins involved in the nsP3 interacting protein network 
inhibited by P247A/V248 (as shown in Figure 5.22B) are labelled in red. 


