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Abstract

Reinforcement learning (RL) is an artificial intelligence technique
for finding optimal solutions for sequential decision-making problems
modelled as Markov decision processes (MDPs). Objectives are rep-
resented as numerical rewards in the model where positive values
represent achievements and negative values represent failures. An
autonomous agent explores the model to locate rewards with the goal
to learn behaviour which will cumulate the largest reward possible.

Despite RL successes in applications ranging from robotics and
planning systems to sensing, it has so far had little appeal in mission-
and safety-critical systems where unpredictable agent actions could
lead to mission failure, risks to humans, itself or other systems, or
violations of legal requirements. This is due to the difficulty of en-
coding non-trivial requirements of agent behaviour through rewards
alone.

This thesis introduces assured reinforcement learning (ARL), a
safe RL approach that restricts agent actions, during and after learn-
ing. This restriction is based on formally verified policies synthesised
for a high-level, abstract MDP that models the safety-relevant aspects
of the RL problem. The resulting actions form overall solutions whose
properties satisfy strict safety and optimality requirements. Next,
ARL with knowledge revision is introduced, allowing ARL to still be
used if the initial knowledge for generating action constraints proves
to be incorrect. Additionally, two case studies are introduced to test
the efficacy of ARL: the first is an adaptation of the benchmark flag
collection navigation task and the second is an assisted-living plan-
ning system. Finally, an architecture for runtime ARL is proposed to
allow ARL to be utilised in real-time systems.

ARL is empirically evaluated and is shown to successfully sat-
isfy strict safety and optimality requirements and, furthermore, with
knowledge revision and action reuse, it can be successfully applied
in environments where initial information may prove incomplete or
incorrect.
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Chapter 1

Introduction

Computers are ubiquitous in the modern world and are present in most areas of
society, ranging from home appliances and transport to healthcare and business.
In recent years there has been particular interest in artificial intelligence (AI),
which is generally defined as a computer-based system that can learn how to
behave rationally, i.e. given an input the system will produce the ‘best’ possible
output from the knowledge it has acquired [9].

The defining characteristic of AI techniques is their capability of learning
sensible outputs, eliminating the need for a system designer to define outputs
and to devise functions for every possible input which may be impractical to do
for large and complex systems [10]. Furthermore, learning identifies an optimal
output for each input, which may not even be known to the designer. This
ability of AI has profound and far-reaching benefits that has seen its utilisation
in an ever-increasing number of applications, including in areas such as robotics
and vehicles [11, 12, 13], business and finance [14, 15], medicine and healthcare
[16, 17], speech recognition [18, 19] and gaming [20, 21].

A significant challenge for AI is to learn behaviour that can be trusted as
safe in situations where certain behaviour could risk catastrophic consequences
[22]. This problem arises when it is difficult to express safety requirements as
optimisation objectives which are neither too vague to ensure safety nor too
restrictive to allow any useful behaviour at all [23]. Therefore, this thesis explores
how strict safety requirements can be incorporated into an AI solution whilst still
being useful.

1.1 Safe Reinforcement Learning

The field of AI research encompasses a wide variety of techniques. This thesis
focusses on the subfield of reinforcement learning (RL), a popular approach which
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CHAPTER 1. INTRODUCTION

simulates the learning mechanisms observed in living beings [2, 24, 25].
RL identifies an optimal set of outputs (henceforth referred to as actions or

behaviours) for a system by using an artificial decision-maker, termed agent, to
interact with the system environment [2]. In its interaction with the environment,
the agent continuously receives feedback for its action choices: beneficial actions
yield a reward and detrimental actions return a punishment. The agent retains
knowledge of these rewards and punishments and by doing so learns about the
quality of its action choices. Over time, the agent improves its behaviour to the
extent that it will produce the largest expected cumulative reward possible from
the system or, alternatively, incur the least expected amount of punishment.

There is a large body of research spanning many years with the goal to im-
proving the efficiency and scalability of RL for its use with increasingly large
and complex problems [26, 27, 28, 29, 30, 31, 32, 33]. These advancements and
many more have shown RL to be a practical technique for solving a multitude of
real-world problems, such as for control systems [34, 35, 36], gaming [37, 38] and
robotics [39, 40, 41, 42], amongst others [43, 44, 45, 46, 47].

However, despite its continuing successes RL still has the major limitation that
it lacks any guarantees that the behaviour learned by the agent can confidently be
considered ‘safe’ where it is essential that it will not risk injury to humans, damage
itself or other systems, cause financial loss or violate other regulatory or legal
requirements. Furthermore, even though the agent may be acting within safety
requirements, unpredictable or ‘quirky’ behaviour can make the system difficult
to trust. This limitation prevents RL from being a viable choice in the class of
safety-critical applications which mandate software certification [48, 49, 50, 51].

There has been growing interest to overcome this limitation and a variety
of techniques have been proposed towards resolving it [52]. However, existing
approaches are still largely theoretical, suffer from scalability issues and have
difficulty when expressing non-trivial safety requirements. Furthermore, these
approaches are still unable to provide firm guarantees that the RL solutions will
satisfy strict safety requirements without unnecessarily and severely reducing the
optimality of the solution. They may mitigate the problem, but do not resolve it.

The hypothesis of this thesis is that this limitation can be resolved through
the use of formal verification techniques. Specifically, the use of quantitative veri-
fication (QV) [53] can provide assurances that an RL agent’s behaviour will not
violate strict safety requirements whilst maintaining levels of solution optimality.
To this end, QV can be used to identify when a high-level action would cause
the agent to violate its safety requirements and therefore disallow it, forcing the
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1.2. CONTRIBUTIONS

agent to optimise over the remaining, safe actions.

1.2 Contributions

This thesis introduces assured reinforcement learning (ARL), a two-stage method
for producing safe RL solutions which satisfy strict safety requirements and op-
timisation objectives. A high-level description of the ARL method and its indi-
vidual elements is shown in Figure 1.1.

(1
) pro

vid
e High-level problem

model (abstract Markov
decision process)

(2) drive

Quantitative
verification

Selected safe abstract
policy (abstract MDP

policy)

(3) generates

(4) informs

(5) select

Reinforcement
learning

(6) constrains

Safe reinforcement
learning policy

(7) produces

Stage 1: Abstract policy generation

Stage 2: Safe reinforcement learning

AI engineer,
domain expert

Pareto front of safe
abstract policies

Constraints & optimisation
objectives (safety, cost,
reliability, rewards, etc.)

(8) updates

Figure 1.1: The two-stage method for assured reinforcement learning.

In Stage 1, the goal is to generate a set of high-level solutions, termed abstract
policies, which have been formally verified as satisfying the safety and optimisa-
tion requirements. These safe abstract policies specify which high-level actions
should, or should not, be done in each high-level state of the problem environ-
ment in order to satisfy the requirements. These abstract policies are used in
Stage 2 to constrain the RL agent’s optimisation of low-level actions in low-level
states.

Accordingly, teams comprising both an AI engineer and a domain expert
provide (1) the set of safety constraints and optimisation requirements and also an
abstracted model of the RL environment. These are used to drive (2) the search
for safe abstract policies using QV, a variant of model checking for the analysis
and verification of stochastic models [53]. By exploring different areas of the
abstract policy space, QV generates (3) a Pareto-optimal set of abstract policies
which have been verified as satisfying all the safety constraints and optimisation
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CHAPTER 1. INTRODUCTION

objectives. This Pareto front captures the safe abstract policies that are Pareto-
optimal with respect to the optimisation criteria and can therefore be used to
inform (4) the user’s selection (5) of a suitable safe abstract policy.

In Stage 2 of ARL, termed safe reinforcement learning, the selected safe ab-
stract policy is translated into a set of safety rules. These rules constrain (6) the
RL agent’s optimisation to low-level states and actions that map to the high-level
states and actions of the abstract model, used in Stage 1, that are known to be
safe at a high-level. As a result, the RL agent produces (7) a safe RL policy
that when followed will have equal safety levels to those verified for the abstract
policy, thus satisfying the safety requirements. If the RL policy does not satisfy
the safety requirements then the abstract model used to generate the constraints
must contain incomplete or inaccurate knowledge. Therefore, information collec-
ted about rewards and transitions of the RL environment is used to update (8)
the abstract model, after which the process repeats until the RL policy is safe.

However, it is not guaranteed that a safe RL policy can always be found for
every problem and set of safety/optimisation requirements. If it is not possible
to satisfy all the requirements then no safe abstract policy can be generated and
consequently no safety constraints for the RL process can be enforced.

The main contributions of this thesis are summarised below:

1. The ARL technique with specification of how an abstract model can be
constructed for a problem and how abstract safe policies can be generated
and verified. Additionally, guidance for how abstract policies can be used
as action constraints for the RL agent.

2. An extension of ARL to incorporate knowledge revision into the safe RL
process so that if the model used to create the initial safe abstract policies is
not accurate it can be revised until it correctly reflects the RL environment.

3. A new algorithm for reusing previously optimised actions if they are unaf-
fected by knowledge revision. This is to improve the efficiency of subsequent
learning iterations during the knowledge revision process.

4. Two new case studies from two of the main classes of problems tackled by
RL to be used for evaluating safe RL techniques. The first case study is a
navigation problem based on the benchmark RL ‘flag collection’ problem [3],
modified to incorporate a risk of the agent being captured. The second case
study is a planning problem, adapted from an assisted-living system [54],
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1.3. THESIS STRUCTURE

where the agent must learn the preferences of its user when guiding them
to perform an everyday task.

5. An extensive evaluation of ARL, demonstrating its ability to successfully
satisfy strict safety and optimisation requirements in each of the case stud-
ies.

6. A runtime architecture is proposed, showing how ARL can be used in real-
time systems by continuously monitoring the problem environment and
safety requirements. If new information or requirements are acquired the
system will default to a known safe behaviour, albeit potentially subop-
timal, until the RL agent has learned an updated safe solution.

1.3 Thesis Structure

The remainder of this thesis is structured as follows.
Chapter 2 introduces the concepts, techniques and tools that are used to

formulate the ARL approach. Specifically, Markov decision processes (MDPs)
which form the framework of RL, the classical RL paradigm and algorithms, QV
and automated model checking tools, and abstract MDPs (AMDPs) which are a
high-level representation of the RL problem’s MDP and are used for generating
the safety constraints.

Chapter 3 gives an exposition on the state-of-the-art for safety in RL. This
includes an analysis of the various approaches so far and their strengths and
shortcomings, as well as a comparison of their abilities relative to ARL.

Chapter 4 introduces ARL. First, a detailed specification of the approach
is given, showing how an AMDP is constructed, how safe abstract policies are
synthesised and how these safe policies are applied. Next, ARL is evaluated
in two qualitatively different case studies to assess how effective the approach
is. Following this is a comparison of ARL against the alternative safe RL tech-
niques discussed in Chapter 3. Finally, there is a discussion on the abilities and
limitations of ARL.

Chapter 5 details ARL with knowledge revision (ARL-KR), an extension of
ARL which allows an AMDP to be updated with new information should the
initial model prove to be incorrect. Additionally, a new algorithm for action
reuse is presented so that actions which have previously been optimised by the
agent can be reused if they are still useful after knowledge revision of the AMDP
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CHAPTER 1. INTRODUCTION

has occurred. Once again, the approach is validated through the two case studies
and its capabilities and limitations are discussed.

Lastly, Chapter 6 summarises the contributions of this thesis, the limitations
of the introduced techniques and potential areas for future work. This chapter
also describes, under areas of future work, a promising preliminary exploration
into the runtime use of ARL, carried out by the author of this thesis at the
industrial sponsor of the project. Should an RL solution become unsafe during
runtime, the technique uses an automatic function known to be safe as a substi-
tute for the autonomous RL function whilst a new, safe RL solution is learned in
the background.
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Chapter 2

Background

This chapter specifies the main components which form the basis of ARL. Sec-
tion 2.1 introduces Markov decision processes, which are used as the foundation
for the reinforcement learning paradigm and whose properties can be formally
verified using quantitative verification. Section 2.2 details the core elements of
the classical reinforcement learning framework. Section 2.3 outlines quantitat-
ive verification, including its capabilities and how it can be utilised. Section 2.4
discusses abstract Markov decision processes which are key to making quantitat-
ive verification a feasible technique for assuring safety in reinforcement learning.
Lastly, Section 2.5 summarises the key points from this chapter.

2.1 Markov Decision Processes

Markov decision processes (MDPs) [55] are a mathematical framework for model-
ling sequential decision-making processes whose behaviour exhibits stochasticity.
MDPs comprise states which represent a unique status of the process, actions
which produce transitions between states, transition probabilities for entering a
new state after performing an action and rewards which denote the cost or gain
for transitioning into a new state.

A state is a vector s = (x0, x1, . . . , xn) where xi, known as a state feature,
represents some characteristic of the process. Possible examples of a process
feature are temperature, units of energy, time, location and progress. Each state
contains a unique set of values for these features and there is one state for every
possible configuration of the process.

Rewards are used to steer the decision-maker towards objectives within an
MDP, the magnitude of which reflects the importance of the objective. Rewards
can be referred to as a cost if entering the new state is necessary but consumes
some kind of limited resource (e.g. energy). Equally, the term punishment is
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CHAPTER 2. BACKGROUND

used for a reward if entering the state is detrimental. Typically, in both cases
the reward is negative.

As an example, Figure 2.1 illustrates an MDP for a simple communication
protocol. In this diagram, s0 is the initialising state where the only action is
to start, this causes transitioning to state s1 with a probability of 1. In s1 the
decision-maker can either wait, costing −1 and with probability 1 remain in state
s1, or they can attempt to send a message. Sending a message has a probability of
0.01 for entering into the fail state s2, where the only action is to restart, costing
−10, so to transition back to state s0 with a probability of 1. Alternatively, with
a probability of 0.99, the message is delivered successfully, i.e. transitioning to
state s3. In this state the process stops with a probability of 1.

s0

{init}
s1

{try}

s2

{fail}

s3

{succ}

−10

−1

start
1

0.01

0.99

restart
1

wait
1

1 stop

send

Figure 2.1: Directed graph representation of an MDP for a simple communication
protocol, adapted from [1].

A solution for an MDP, known as a policy, defines the behaviour of the
decision-maker such that for every state the policy will specify which action
should be taken. The objective when solving an MDP is to identify a policy
that when followed will cumulate the greatest gains/least costs possible from the
process.

2.1.1 Definition

MDPs belong to the Markovian family of models which are defined by having the
Markov property. This means that the next state of the process depends only on
the current state and none of the preceding states [55].

Definition 2.1.1. (Markov Property): A Markov process is a stochastic process
{X(t), 0 ≤ t} where at every time step 0 ≤ t0 < t1 < · · · < tn < tn+1 and for the
states s0, s1, . . . , sn, sn+1, it holds that:

P [X(tn+1) = sn+1 | X(tn) = sn, . . . , X(t0) = s0] = P [X(tn+1) = sn+1 | X(tn) = sn].
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2.1. MARKOV DECISION PROCESSES

Formally, an MDP can be defined as follows [55]:

Definition 2.1.2. (Markov Decision Process): A Markov decision process M
is a tuple 〈S,A, T,R〉 where:

• S is a finite set of states,

• A is a finite set of actions,

• T : S × A × S → [0, 1] is a state transition function such that for any
s, s′ ∈ S and any action a ∈ A allowed in state s, T (s, a, s′) gives the
probability of transitioning to state s′ when performing action a in state s,

• R : S × A × S → R is a reward function such that R(s, a, s′) = r is the
reward returned when action a performed in state s leads to state s′.

An MDP policy, denoted π, can take one of two forms. The first form is
deterministic (which the remainder of this thesis will assume) meaning it will
always return the same action a for a state s, according to some action selection
policy, and is defined as π : S → A. The second form is stochastic which maps
each state s and action a to the probability that action a is taken in state s,
where π(s, a) = 0 if action a is not possible in state s. A stochastic policy must
satisfy ∑a∈A π(s, a) = 1 for any s ∈ S.

A policy is called optimal, denoted, π∗ if when followed will return the max-
imum expected cumulative reward from the process. This means that for every
state, the action given by the policy is the one most beneficial with respect to
achieving the overarching objectives.

2.1.2 Value Functions

The basis of algorithms for solving MDPs is the concept that states have a value
which reflects the quality of transitioning to them. This brings rise to the notion
of value functions [56]. Whilst the reward function returns the intrinsic value of
entering a state, a value function returns the worth of a state when also consid-
ering the rewards of the future states reachable from that state when following a
policy.

A state value function V π : S → R returns the expected cumulative reward
when starting in a state s and following a policy π thereafter. This is defined as

V π(s) =
∞∑
i=0

rt+i|st = s (2.1)
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where rt+i is the reward for each individual state and i is an incremental time step.
For models which have extremely large state spaces, in some cases infinite (known
as infinite horizon models), a discount factor γ is incorporated into the function,
where γ ∈ [0, 1). This discount factor asymptotically diminishes the influence of
rewards along a state path since, generally, the further into the future a reward
is the less immediately important it will be in a solution. Larger values of γ
add more weight to the rewards that are encountered in later states. Oppositely,
smaller values will place importance on more immediate rewards. A discount
factor of 1 reduces the function to Equation (2.1). Including the discount factor
gives the discounted state value function

V π(s) =
∞∑
i=0

γirt+i|st = s (2.2)

There are also state-action value functions Qπ : S × A → R, known as Q-
functions, which are similar, but differ as they return the expected reward for
performing action a in state s under policy π, known as a Q-value. Q-functions
are used for model-free algorithms, such as those discussed in Section 2.2. The
Q-function is defined as

Qπ(s, a) =
∞∑
i=0

rt+i|st = s, at = a (2.3)

and the discounted version as

Qπ(s, a) =
∞∑
i=0

γirt+i|st = s, at = a (2.4)

When all the dynamics of an MDP are known then an optimal policy can be
identified using dynamic programming algorithms, such as value iteration [56] or
policy iteration [57]. Instead, if the transition and/or reward functions are not
known, then the reinforcement learning class of algorithms can be used.

2.2 Reinforcement Learning

The field of RL has been extensively researched for several decades, producing
a wide variety of learning algorithms, agent exploration strategies, convergence
optimisations, frameworks and model types. Therefore, this section will focus
only on the classical RL approach. A detailed exposition of the numerous RL
techniques can be found in [2, 25].
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2.2. REINFORCEMENT LEARNING

RL utilises an autonomous agent, an artificial decision-maker, to learn about
the dynamics of an MDP. The agent can perceive the state it is currently in and
accordingly choose an action to perform in it. The result of performing an action
is the agent entering into a next state with some probability, although this may
not necessarily be a different state, and also receives a reward, which may be
zero. It is in this manner that the agent explores the MDP.

Agent

Environment

Action
at

Reward
rt

State
st

rt+1

st+1

Figure 2.2: The interaction of an RL agent with an MDP environment [2].

The agent chooses an action to perform according to an action selection policy,
such as the ε-greedy policy where the agent will select an action at random with
probability ε and with probability 1 − ε ‘greedily’ select the action associated
with the highest Q-value for the state the agent is currently in, as shown in
Equation (2.5).

at = arg max
a∈A

Q(st, a) (2.5)

The agent has no knowledge of the MDP as it begins its exploration. Therefore,
its initial action choices will be arbitrary since it has not yet learned which
actions are better than any others. Over time, through repeated interaction with
the environment the agent will encounter rewards. Values for these rewards are
stored as Q-values in a lookup table called a Q-table. At the start of learning Q-
values are typically initialised arbitrarily, they are then iteratively updated using
an update rule (detailed below) each time a state-action is sampled. With each
application of the update rule the Q-values converge to those which will accurately
reflect the quality of each action in a state. In this way, the agent exploits
knowledge it gains by make increasingly better action choices when applying its
action selection policy.

In episodic RL the overarching learning period is called a learning run. A run
comprises a number of episodes, where an episode starts when the agent begins
to explore and ends when it eventually enters into an absorbing state which it
cannot transition out of (e.g. a ‘success’ or ‘failure’ state), or until a maximum
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time period has elapsed. An episode itself is a series of individual steps, where
at each step the agent can perform one action.

The number of steps and episodes required for learning to complete depends
on the size of the environment, with larger environments typically requiring more
learning steps and episodes than smaller ones. A recurring problem of MDPs
experienced in RL is the state explosion problem, where the size of the model’s
state space increases exponentially as the number of states features increases,
directly impacting the time taken to learn an optimal solution. Therefore, it is
common practice in RL to terminate the learning run once the policy has become
sufficiently optimal, and not necessarily completely optimal, since further learning
episodes have diminishing returns [24].

Temporal-difference (TD) update algorithms are amongst the most common
in RL and work by iteratively updating Q-values each time an action is performed
in a state, thereby propagating knowledge of rewards across the state-actions
which lead towards the reward. Two prominent TD algorithms are Q-Learning
[58] and SARSA [59].

Q-learning

Q-learning finds an optimal policy through temporal differences by repeatedly
sampling actions in each state in the system and updating their Q-values with
the difference between the maximum expected return from future state and the
Q-value of the current state-action pair. Q-learning is theoretically proven to
converge to an optimal solution assuming that each state is visited an infinite
number of times and the learning rate decays towards zero. The Q-learning
update rule is defined as

Q(st, at)← Q(st, at) + α
[
rt+1 + γmax

a
Q(st+1, a)−Q(st, at)

]
, (2.6)

where α ∈ (0, 1] is the learning rate which defines how significant a Q-value
update is, rt+1 is the immediate reward received at time step t+1 after performing
action at in state st and transitioning to st+1. If α is too large then learning may
oscillate around an optima but not converge to it exactly. If it is too small then
convergence will be inefficient. The Q-learning algorithm is shown below.

For Q-learning, the max operator is used to find the state-action pair which
has the greatest expected return, this makes Q-learning an off-policy algorithm
as it does not adhere to the current policy the agent is following, which may well
be suboptimal.
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Algorithm 1 Q-learning
1: Initialise Q-values
2: for each episode do
3: Initialise state s
4: while s is not terminal do
5: Select action a for state s using action selection policy
6: Perform a and observe reward r and new state st+1
7: Q(st, at)← Q(st, at) + α [rt+1 + γmaxaQ(st+1, a)−Q(st, at)]
8: s← st+1
9: end while
10: end for

SARSA

The SARSA algorithm is another method for learning Q-values and is based
on the Q-learning algorithm. The name stands for State-Action-Reward-State-
Action, where s is the initial state, a is the selected action according to policy π,
r is the reward for performing a in s, s′ is the new state after performing action
a and a′ is the action to perform in s′ according to policy π. The SARSA update
formula is defined as

Q(st, at)← Q(st, at) + α [rt+1 + γQ(st+1, at+1)−Q(st, at)] , (2.7)

and the full algorithm is given below.

Algorithm 2 SARSA
1: Initialise Q-values
2: for each episode do
3: Initialise state s
4: Select action a for state s using action selection policy
5: while s is not terminal do
6: Perform a and observe reward r and new state st+1
7: Select action at+1 for state st+1 using action selection policy
8: Q(st, at)← Q(st, at) + α [rt+1 + γQ(st+1, at+1)−Q(st, at)]
9: s← st+1; a← at+1
10: end while
11: end for

SARSA is an on-policy algorithm since action values chosen during the update
are those from the policy the agent is following. Herein lies the difference to Q-
learning, which instead uses the max operator.

29



CHAPTER 2. BACKGROUND

2.3 Quantitative Verification

This section details model checking which is a significant component of the ARL
solution developed by this project. Discussion is limited to stochastic model
checking, known as quantitative verification (QV) or, alternatively, probabilistic
model checking [53], since the model to be verified (i.e. an RL MDP) is stochastic
in nature.

QV is a formal technique for verifying the correctness, safety, reliability, op-
timality and other non-functional properties of stochastic systems. Examples of
quantitative properties could include the probability of an event occurring, the
cost of performing an action or the time required for a process to complete. QV
has been successfully applied in a range of applications including cloud infra-
structure [60] and service-based systems [61] to unmanned vehicles [62].

QV is achieved using a mathematical model of the system in the form of a
Markov model and a formal specification of the system’s quantitative properties
to be verified in the form of a probabilistic temporal logic. Additionally, a model
checker is used to automate the verification process.

A key feature of QV is that it exhaustively analyses the model’s state space.
This guarantees that the results of verification are accurate. When using QV to
verify properties of MDPs it is necessary to first resolve the non-determinism of
the MDP. This is done by a policy which represents a possible path of execution
for the MDP by selecting one possible action in every state. Probabilities can
only be determined for an individual policy so the combination of all the policies’
probabilities is used to compute the minimum and maximum boundaries of a
property holding.

2.3.1 Probabilistic Computation Tree Logic

Whilst the possible evolution of a system is represented using a Markov model,
its properties are expressed using probabilistic temporal logic, a way of specifying
properties over time. Examples of such properties are:

• The probability that the system will not enter a ‘retry’ state before reaching
a ‘goal’ state must be at least 0.99.

• What is the probability that the process completes within 100 time steps?

• What is the cost of entering into a ‘success’ state?
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Probabilistic computation tree logic (PCTL) [63], an extension of compu-
tation tree logic (CTL) [64], is one such logic. Whereas CTL is suitable for
determining qualitative properties using the universal operator A and existential
operator E, PCTL also allows quantitative properties to be verified since it has
the probabilistic operator P. As with CTL, PCTL also uses the temporal operat-
ors X (next), F (eventually), G (globally) and U (until). Additionally, PCTL can
be extended to include the R operator to calculate reward-based properties [65].

The PCTL syntax comprises state formulae Φ and path formulae φ, which
are formally defined as:

Definition 2.3.1. (PCTL Grammar): State formulae Φ and path formulae φ
are defined using Backus-Naur form as follows:

Φ ::= true | a | ¬Φ | Φ ∧ Φ | Aφ | Eφ | P./p[φ]

φ ::= XΦ | FΦ |GΦ | Φ U Φ | Φ U≤k Φ

where ‘a’ is an atomic proposition (i.e. a statement that is either true or false
in each MDP state), ./ ∈ {<,≤,≥, >}, p ∈ [0, 1] and k ∈ N; and PCTL reward
state formulae [53] are defined by the grammar:

Φ ::= R./r[I=k] | R./r[C≤k] | R./r[FΦ] | R./r[S],

where r∈R≥0, I is an instantaneous reward, C is a cumulative reward and S is a
steady-state reward.

State formulae include the logical operators ∧ and ¬, which allow the formu-
lation of disjunction (∨) and implication (⇒). PCTL also has the following
semantics [63]:

Definition 2.3.2. (PCTL Semantics): For a Markov modelM , if a state formula
Φ holds true for state s thenM, s |= Φ is true. The following satisfaction relations
can be inductively defined as:

M, s |= true for all s ∈ S
M, s |= a iff a ∈ L(s)

M, s |= ¬φ iff M, s 6|= φ

M, s |= φ1 ∧ φ2 iff M, s |= φ1 and M, s |= φ2

M, s |= φ1 ∨ φ2 iff M, s |= φ1 or M, s |= φ2

M, s |= φ1 ⇒ φ2 iff M, s |= φ2 whenever M, s |= φ1
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where L(s) is a labelling function that maps each state to the set of atomic
propositions that hold in the state.

Lastly, the semantics of the PCTL operators are defined by:

Definition 2.3.3. (PCTL Operator Semantics): For a Markov model M , state
s and infinite state path ω ∈ Path(s):

M, s |= Aφ iff ω |= φ for all ω ∈ Path(s)
M, s |= Eφ iff ω |= φ for some ω ∈ Path(s)
M, s |= P./p[φ] iff Prs{ω ∈ Path(s) | ω |= φ} ./ p
M,ω |= XΦ iff ω(1) |= Φ

M,ω |= FΦ iff ∃k ≥ 0 such that ω(k) |= Φ

M,ω |= GΦ iff ∀i ≥ 0 such that ω(i) |= Φ

M,ω |= Φ1UΦ2 iff ∃k ≥ 0 such that ω(k) |= Φ2 and ∀i < k.ω(i) |= Φ1

where Prs is the probability of φ holding true starting from state s, i, k ∈ N, and
ω(i) denotes the i-th state of path ω.

This grammar allows PCTL formulae to be concise yet expressive. The three
example properties listed at the beginning of this section can be formulated as
PCTL respectively:

• P≥0.99 [ ¬retry U goal ]

• P=? [ F≤100 complete ]

• R=? [ F success ]

where retry, goal, complete and success are atomic propositions that hold true
in states where it is necessary to reattempt an action, target areas have been
reached, a process has finished and a process has been successful, respectively.
The probability and reward bounds replaced with ‘=?’ in the second and third
properties indicate that the computation of the actual bound of the PCTL prop-
erty is required. This can be ascertained using a probabilistic model checker
supporting PCTL formulae.

2.3.2 PRISM Model Checker

It is infeasible to manually perform model checking on all but trivial models.
Therefore, there exists a variety of model checking tools which efficiently perform
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the process. Listed below are some of the more popular probabilistic model
checkers with a brief overview of their capabilities:

• MRMC – The Markov Reward Model Checker (MRMC) [66] can verify
discrete-time Markov chains (DTMCs) and continuous-time Markov chains
(CTMCs) using PCTL or continuous stochastic logic (CSL) [67, 68, 69].
MRMC was developed with a focus on efficiency and dependability and
achieves this through sparse transition matrices and graph analysis to re-
duce the number of states to check. MRMC is an explicit-state model
checker and is command-line operated.

• PRISM – The Probabilistic Symbolic Model Checker (PRISM) [70] is
primarily developed at the University of Oxford and the University of Birm-
ingham. PRISM supports checking of DTMCs, MDPs, probabilistic auto-
mata, CTMCs, probabilistic timed automata and priced probabilistic timed
automata. PRISM has several computation engines which allow models to
be checked in a variety of ways (whilst not affecting the results). Supported
temporal logics include PCTL, CSL and linear temporal logic [71]. PRISM
features a user interface in addition to command-line usage.

• Ymer – Ymer [72] verifies the probabilistic transient properties of CTMCs
and generalised semi-Markov processes. It uses statistical approaches and
CSL to verify properties and makes use of PRISM’s hybrid computation
engine to allow numerical techniques to be used. Ymer is command-line
operated.

• VESTA – VESTA [73] uses statistical techniques for the analysis of DTMCs
and CTMCs using PCTL, CSL and quantitative temporal expressions.
VESTA can be operated by both command-line and a user interface.

• Storm – Storm [74] is capable of analysing DTMCs, CTMCs, MDPs and
Markov automata. Supported temporal logics include PCTL and CSL,
extended with rewards. Storm can be run in three ways: command-line, a
C++ API and a Python API.

In a comparative study done before Storm was released [75], PRISM proved to
be one of the best probabilistic model checkers in terms of speed and efficiency and
Ymer demonstrated as being one of the fastest for medium- to large-size models.
However, since Ymer does not support MDPs it is not applicable for use in this
project and, therefore, PRISM is the model checker that is used throughout
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this project. Storm could be used as an alternative to PRISM; however, its
development and introduction came when this project was in its mature stages
so it has not been utilised.

The PRISM modelling language comprises modules and variables where a
model may consist of multiple modules, which can interact with one another,
and variables constitute system states. Modules are composed of commands
with the form

[action] guard -> p1:update1 + . . . + pn:updaten;

where action is optional to include. The inclusion of an action label allows trans-
ition rewards to be defined, as well as enabling multiple modules to synchronise
by forcing transitions to occur simultaneously. guard is a boolean predicate
over the variables, where the command whose guard matches the current state
of the module can be executed. pn represents a probability of a transition and
subsequent variable updaten to occur, where the sum of all probabilities in a
command must equal to 1.

The example MDP for the simple communication protocol shown in Figure
2.1 has four states: the initial init state s0, try s1, fail s2 and success succ s3.
There are five possible actions: start, wait, send, restart and stop. Also, there are
two costs: −1 for waiting and −10 for restarting. This MDP can be expressed
in the PRISM language as:

PRISM Language 1: Simple communication protocol
1 mdp
2

3 module communication_protocol
4 s : [0..3] init 0; // 0 = init; 1 = try; 2 = fail; 3 = succ
5

6 [start] s=0 -> (s'=1);
7 [wait] s=1 -> (s'=1);
8 [send] s=1 -> 0.01:(s'=2) + 0.99:(s'=3);
9 [restart] s=2 -> (s'=0);

10 [stop] s=3 -> (s'=3);
11 endmodule
12

13 rewards "process_costs"
14 [wait] true : 1;
15 [restart] true : 10;
16 endrewards
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Note that it is not necessary to specify an update probability in a command when
the probability is equal to 1 (lines 6, 7, 9 and 10). Also note that reward structures
in the PRISM language cannot contain a negative valued reward. Therefore, it
is necessary to define multiple reward structures when a model contains both
positive and negative rewards. This is done by giving each reward structure a
label (in this example, "process_costs"), although, this label is not necessary
to include if there is only one reward structure. In the reward structure of this
code example, there is a reward (i.e. cost) of 1 whenever the wait transition
occurs, and 10 for the restart transition.

Suppose for this MDP we wish to determine the cost incurred for successfully
sending a message. Given the non-determinism present at state s1, it is necessary
to calculate the minimum and maximum costs; there is not a single, consistent
cost incurred. Therefore, we formulate the following PCTL properties in PRISM
format:

1. R{"process_costs"}min=? [ F s=3 ]

2. R{"process_costs"}max=? [ F s=3 ]

which when verified gives the minimum cost 0.10 (i.e. if the agent never waited
and always attempt to send a message) and the maximum cost ∞ (i.e. if the
agent were to constantly wait).

2.4 Abstract MDPs

Whilst using MDPs for RL problems is standard practice, the state spaces of
most non-trivial problems are often many orders of magnitude in size (i.e. the
state explosion problem). Although QV could be used to verify such an MDP,
the time required to do so would be excessive since QV is a computationally
expensive process due to its exhaustive analysis of the state space [76]. This
renders it impractical to verify the RL MDP directly. Furthermore, due to the
fact that an RL MDP may not be fully known, specifically its reward/transition
functions, in such situations QV could not be used at all.

To overcome these problems this section introduces abstract MDPs (AMDPs)
[77, 78] which can be constructed using limited knowledge of the problem environ-
ment and have a significant reduction in size relative to their MDP counterpart.
This size reduction is achieved through state aggregation [79] which can be done
by various methods, such as grouping states which have the same optimal actions
and those which have similar rewards.
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Furthermore, high-level policies of actions, known as options, can be obtained
by sampling the environment dynamics [80]. Options conflate a series of indi-
vidual actions into a single, all-encompassing one, further reducing the number of
transitions in an MDP. For example, in a two-dimensional grid-like environment,
to get from location A to location B may require several stepwise transitions
(e.g. move North, North, West, West, . . . ), whereas the equivalent option in an
AMDP would be a single transition defined as A moveTo B.

An AMDP functions in the same way as an ordinary MDP and can therefore
be solved using the same techniques. Using Definition 2.1.2 for an MDP, an
AMDP can be formally defined as:

Definition 2.4.1. (Abstract MDP): An AMDP M̄ can be defined as a tuple
〈S̄, Ā, T̄ , R̄〉:

• S̄ = s̄(S),

• Ā = ā(A),

• T̄ (s̄, ā, s̄′) = ∑
s∈s̄ws

∑
s′∈s̄′ T (s, ā, s′),

• R̄(s̄, ā) = ∑
s∈s̄ws|R(s, ā),

where s̄(S) is the abstraction function of the state space S and ws is the weighting
of a state s based on its expected frequency of occurrence in an abstract state [77].

AMDPs have been used in [77] to provide guidance to an RL agent by solving
the AMDP and using the resulting value function for reward shaping [81]. This
technique allows using rewards other than those from the MDP reward function
to help the agent advance towards relevant states and expend less time exploring
the irrelevant ones. In [78], the use of AMDPs for reward shaping was extended
to the multi-agent RL paradigm [25].

2.5 Summary

This chapter has introduced the concepts of Markov decision processes (MDPs),
reinforcement learning (RL), quantitative verification (QV) and abstract MDPs
(AMDPs). These technologies form the basis of the assured RL method that this
project has developed. The key points of each technology are summarised below:

36



2.5. SUMMARY

• MDPs are used to model sequential decision-making processes which are
characterised by stochasticity. An MDP comprises states, actions, trans-
itions and rewards. A solution to an MDP is called a policy, where a policy
defines the actions to perform in each state of the system. An optimal
policy is one which when followed will yield the maximum possible expec-
ted reward from the system.

• RL is a family of techniques used to solve MDPs when the reward and/or
transition functions are unknown. RL uses an autonomous agent to explore
a model to learn about its dynamics. Temporal difference algorithms are
commonly used to propagate knowledge of rewards across all other states of
the system. In this way, the agent learns which actions will lead it towards
rewards in the system.

• QV is a formal technique for verifying the non-functional properties of
stochastic systems. To do this the system is modelled as a Markov model
(e.g. an MDP) and the properties to be verified are specified using a tem-
poral logic (e.g. PCTL). QV exhaustively analyses the state space of the
model to give results that are mathematically guaranteed to be correct.

• AMDPs are a condensed form of an MDP. Similar states are conflated to
reduce the size of the model’s state space and actions are represented as
high-level options in order to reduce the number of transitions in the model.
AMDPs can be vastly smaller than their MDP counterparts so can be solved
and reasoned about proportionally faster.
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Chapter 3

Related Work

This chapter discusses other significant research towards safety in RL, detailing
the capabilities of each approach, how they are achieved and the practicality
of them, as well as their limitations. Following this discussion is a comparison
of each technique to the assured reinforcement learning with knowledge revision
(ARL-KR) technique developed by this project.

Whilst research towards safe RL has been a continuous process over a num-
ber of years, this chapter limits discussion to the more distinct techniques that
have emerged. An all-encompassing taxonomy of safe RL and related research
throughout the years can be found in [52, 82].

3.1 Defining Safety, Risk and Optimality

Safety is a term which is often defined on an ad hoc basis in RL literature, where
an RL technique is considered ‘safe’ with respect to some specific criteria within
a specific problem environment and so may not necessarily be safe when applied
in a different problem domain. Therefore, in the context of this thesis we adopt
the definition of safety from formal verification/model checking of systems, that
being, under certain circumstances an undesirable event will never occur [83].
Broadly speaking, these undesirable events encompass situations such as where
the agent has caused damage to itself or other systems, induced harm to humans,
or violated legal or ethical requirements.

Supplemental to this definition of safety is a definition for risk. The standard
definition of risk is the likelihood of an unintended event occurring (e.g. to behave
unsafely) combined with the consequence of that event taking place [84]. When
discussing risk in this thesis it is implicitly assumed that the consequence of such
an event is always the same, i.e. the safe RL agent has failed its mission since
one of its core objectives is to not produce unsafe behaviour. Therefore, through-
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out this thesis the term ‘risk’ is used to mean the probability, or likelihood, of
safety violations. For example, a high risk solution is one where there is a high
probability of the agent behaving unsafely.

A final definition relevant to discussion in this chapter is that of optimality. In
RL, the term optimality is defined as the difference between the expected reward
returned by a solution and the maximum possible expected reward from the RL
MDP [24]. A solution is termed ‘optimal’ if it can expect to return the maximum
possible reward from the system, otherwise it is termed ‘suboptimal’.

In the context of safe RL, however, a safe solution is not necessarily an optimal
one. Often, allowances must be made for reduced optimality of a solution since
safety is often achieved at the expense of optimality. The most optimal behaviour
with respect to completing a task may not be safe and to increase the solution
optimality would be to increase the risk of being unsafe.

A tangible, real-world example of this could be when aiming to minimise
the materials used in the construction of some kind of safety apparatus, such
as a motorcycle crash helmet, with the goal to minimise costs. Assuming that
the most appropriate material for the job is used to fabricate it, the most cost
efficient solution would be to make the helmet as thin as possible for it to still
retain its shape, i.e. minimising the amount of material used. However, doing so
would also minimise the helmet’s effectiveness at preventing injuries occurring to
the wearer’s head: the optimal solution is not a safe one. It is therefore necessary
to allow the increased cost for extra material, decreasing the optimality of the
solution, so to increase the safety provided by the helmet.

Considering this, in the context of safe RL we expand the standard RL defini-
tion of optimality to be the difference between the expected reward returned by a
safe solution and the maximum possible expected reward that could be achieved
within the threshold of satisfying safety. In other words, an optimal safe solution
will return the maximum expected reward possible within the safety boundaries,
whereas a suboptimal safe solution is one which returns an avoidably diminished
expected reward, albeit whilst also being safe.

3.2 Safety in Reinforcement Learning

The mechanisms that can result in the RL agent entering into undesirable states
(both during and after learning) include the criteria for how the agent optimises
its action choices and how the agent explores its environment during learning.

Since actions are optimised with the goal to maximise the cumulation of
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rewards defining some set of objectives, the agent is unconcerned about side-
effects that may occur as a result of performing an action if they are not a part
of the reward signal. As an example, if a simply defined objective for an agent
driving an ambulance is to transport a critically injured patient to the hospital
as quickly possible then the agent may optimise a solution to take the shortest
route and drive as fast as legally possible. However, such a solution will not
consider factors such as if jerky motions by the ambulance abruptly stopping
and accelerating could aggravate the patient’s state, or if certain roads along
the chosen route are high-risk crash zones which should be traversed cautiously.
Since these aspects do not feature in the reward signal and, in fact, would directly
contradict the main objective, making it difficult or even infeasible to define them
through a reward structure alone, the agent will not learn behaviour that is safe,
despite it being optimal for quickly reaching the hospital.

The agent’s exploration strategy, defined by an action selection policy such
as ε-greedy (detailed in Chapter 2.2), can lead to entering unsafe states during
the learning process. For example, the ε-greedy policy indiscriminately selects a
random action with probability ε and by doing so can unwittingly enter an unsafe
state when it essential that the agent must remain safe at all times (e.g. during
online learning). Relating to the optimisation problem above and the traditional
definition of optimality in RL as described in the previous section, this exploration
strategy can also make the agent discover actions which are optimal with respect
to the reward scheme but are still unsafe and should be prevented, even at the
cost of some optimality of the final policy learned.

Given these two primary causes of safety violations in RL, existing approaches
for safe RL generally fall into one of two categories, as outlined in [52]. One is to
modify how the agent optimises a solution, the other is to modify how the agent
explores the state space.

3.2.1 Safe Optimisation Techniques

An intuitive approach to instil safe behaviour into the agent is to assign a negative
reward to those actions in states which will cause transitioning to unsafe states.
However, this simplistic approach suffers from several problems. First, it requires
knowing a priori exactly which states, or sequences of states, of the RL environ-
ment are unsafe, which may not be easy to identify. Second, assigning a cost of
suitable magnitude to every unsafe state is not always obvious and can require
extensive trial and error to determine them, which becomes impractical when
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dealing with a large numbers of unsafe states [85]. This problem is compounded
by the fact that the safety rewards may directly conflict with the optimisation
objectives, meaning the agent may attempt to minimise the costs relating to
safety in favour of maximising the objective rewards and consequently fail to
achieve any of the required optimisation objectives. Third, it can be difficult to
define complex safety requirements as a system of rewards, especially without
significantly expanding the state space of the model to accommodate state fea-
tures required for the safety properties. Therefore, instead of focussing on how
to define rewards for unsafe behaviour, various approaches have been proposed
that consider the criteria for how the accumulation of rewards is optimised.

Ergodic policies. One approach is to optimise ergodic solutions, i.e. a solution
where every state is reachable from all other states which feature in the solution.
Whilst this concept guarantees that a solution will never lead to the agent be-
having unsafely, since it will not enter a state from which it cannot recover, the
solution is often excessively far from being optimal since real-world problems
rarely allow an ergodic solution to be useful. Despite the fact that significant
rewards could be gained at very low risk of entering a non-recoverable state, as
the risk is non-zero the rewards are not considered during optimisation.

An approach to compromise between safety and optimality is [86] which op-
timises a δ-safe policy, where with user-defined probability δ each state of the
policy is ergodic. However, enforcing the ergodic safety constraints during learn-
ing is NP-hard, preventing the technique from being utilised beyond problem
scenarios with small state spaces, and whilst approximate constraints can be
learned more efficiently, they can result in suboptimal policies (albeit still δ-safe)
[82]. Additionally, as noted in [82], an unrecoverable state does not necessarily
mean that it is unsafe and preventing the agent from entering such a state to
keep a policy ergodic can unnecessarily reduce the policy’s optimality, or even
prevent the agent from succeeding with its mission.

Permissive schedulers. In [87], probabilistic model checking is used directly
on the RL MDP to identify a set of safe policies, termed permissive schedulers,
which satisfy a set of safety requirements specified using temporal logic. These
are used to constrain the RL agent so that it optimises a solution within the
set of states that have been verified as safe. The technique is used to allow an
RL agent to safely explore an MDP to learn its reward function. Therefore,
permissive schedulers contain only conservative optimisation properties from any
partial knowledge of rewards contained in the MDP.
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This use of probabilistic model checking to verify that certain states of the
MDP are safe to visit assumes full knowledge of the MDP’s transition function,
the applicability of the approach is therefore limited since RL is typically used to
learn about an MDP’s reward structure and its transition function. The approach
suffers from the additional problem of scalability, since model checking the entire
MDP state space is a computationally expensive process and becomes infeasible
for MDPs of the size often encountered in RL.

Worst-case criterion. The Q̂-learning algorithm [88] is a modification of Q-
learning [58] and uses the minimax criterion to optimise a solution. The nature
of the algorithm is to assume that whatever can go wrong will go wrong and so
optimises the actions to be the best they can be for a worst-case situation. The
resulting solution has the property that the worst-case outcome from it is at least
as good as/better than all other possible solutions’ worst-case outcomes. To this
end, Q̂-values are updated by the update rule

Q̂(st, at)← max
[
Q̂(st, at), rt+1 + γmin

a
Q̂(st+1, a)

]
, (3.1)

which can be reformulated as [89]

Q̂(st, at)← min
[
Q̂(st, at), rt+1 + γmax

a
Q̂(st+1, a)

]
. (3.2)

This approach guarantees that the learned policy will always achieve some
minimum reward and potentially can expect a greater reward to be returned.
However, in practice, policies learned through Q̂-learning typically yield drastic-
ally reduced expected rewards than could otherwise be achieved [52, 90]. Even
though the likelihood of a worst-case scenario occurring may be very low, this
optimisation strategy can disregard large future rewards. Furthermore, this ap-
proach relies on defining safety properties through a system of rewards, which as
discussed above, is not always a feasible tactic.

Risk-sensitive criterion. Another approach is the risk-sensitive optimisation
criterion [91]. The standard optimisation approach used by RL is to maximise
the expected reward cumulated by the agent from the system. However, this does
not necessarily translate well to the agent learning a solution that can be relied
on to be safe, if safety features are to be defined using rewards. Even though
the learned solution may cumulate the largest expected reward possible from the
system, suggestive that the agent is behaving in the safest way possible, this may
not necessary reflect reality, since the expected reward is on average.
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The reality may be that there is high variance of the expected reward, where
on some occasions the agent may succeed in cumulating a large reward without
incurring failures, but on other occasions it does fail and receives a large punish-
ment instead. Even though on average the agent may return a satisfactorily large
expected reward, the variance of the reward indicates that the solution involves
a high level of risk with respect to the agent behaving unsafely.

Therefore, the risk-sensitive optimisation aims to learn a solution which has
a low variance for the expected reward, albeit one that potentially is less on
average than what is possible to achieve from the system. This is achieved in [92]
by using a parameter k ∈ (−1, 1) to specify what amount of variability of the
expected return is permissible. This parameter can be tuned so that a solution
is optimised to either avoid variability or seek it by using the transformation
function χk, defined as

χk : x 7→

(1− k)x if x > 0

(1 + k)x otherwise
, (3.3)

to weight positive and negative temporal differences x appropriately. When seek-
ing risk (k is negative), negative temporal differences are underweighted and
positive differences are overweighted. When avoiding risk (k is positive), the
weighting occurs oppositely.

Through this approach a solution can be found that satisfies the level of risk
that the user is comfortable with. However, as with the worst-case criterion, low
variability can mean excessively limiting the agent from performing profitable
behaviours if there is even a low risk of unsafe behaviour [52]. Furthermore, the
approach may be unable to satisfy all risk levels for multiple safety requirements.

3.2.2 Safe Exploration Strategies

Traditionally, an RL agent starts with no knowledge of the environment and must
initially explore it randomly, potentially leading to the agent finding solutions
which involve transitioning to unsafe states. To ameliorate this problem, the
exploration strategy of the agent can be influenced so that it has some knowledge
of which states to transition into and which to avoid.

Teacher knowledge. This concept involves having a teacher provide useful
knowledge to the RL agent to influence its decision-making as it explores [93].
By this method, the agent can be informed how to act when in unsafe situations
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where it may not be apparent to the agent how to behave safely.
One such example is the Policy Improvement through Safe Reinforcement

Learning (PI-SRL) algorithm [94], a two-stage process. The first stage is to define
a safe baseline behaviour (assumed to be suboptimal) from teacher knowledge and
the second stage is for the RL agent to optimise over it. The approach uses a risk
function to determine how similar the next state the agent will visit is relative to
previous safe states it has visited, such as those featured in the baseline behaviour.
A parameter is used to tune how the level of risk is defined, where if the similarity
index of the next state is below the risk threshold then the state is considered
safe, whereas it is deemed unsafe if it is above the threshold.

However, such a parameter may not accurately reflect safety across all states,
where a next-state may evaluate as being below the risk threshold, and is there-
fore considered safe, but is actually unsafe. Furthermore, if the next state is
significantly different to any previously explored states, its similarly index will
exceed the threshold and is categorised as unsafe, even though the state may very
well be safe.

Cautious simulation. A cautious simulator is used in [95, 96] to guarantee
that the RL agent never explores an unsafe state during online learning for a
physical system. The simulator undertakes simple physics simulations to identify
safe states which correlate to states in the real-world, as well as incorporating a set
of safe trajectories through the state space which are identified by an experienced
human operator. Based on these simulations and safe trajectories the simulator
extrapolates a safety function which classifies states in the real-world state space
as either safe or unsafe. This process is ‘cautious’ since it can incorrectly identify
an otherwise safe state as unsafe (which the human operator can later correct),
however, it will not classify an unsafe state as safe.

A modified RL algorithm is then used to optimise within the safe states
identified by the safety function. However, the authors note that the technique of
enforcing the safety limits can cause RL to perform inefficiently and, furthermore,
cannot guarantee that the final solution is optimal.

Safe demonstrations. The technique in [97] has an RL agent learn its beha-
viour from a set of demonstrations. The technique was developed as a general
means to enable an RL agent to learn complex behaviour and not necessarily to
instil safety. Nevertheless, the technique is well-suited to be applied when learn-
ing safe behaviour and is therefore a valuable addition to the family of safe RL
techniques.
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The approach uses human demonstrations of how to perform a behaviour to
construct a model of the problem environment; the demonstrations are used to
define the dynamics of the model and to derive a suitable reward function. From
this model an RL agent can optimise a solution, thereby mimicking the behaviour
from the human demonstrations.

The drawback of this technique, though, is that the optimality of the RL solu-
tion is limited to how well the human is able to perform the demonstration [82].
Furthermore, if the agent encounters states where no demonstration exists which
the agent can mimic then it may resort to actions which are unsafe [52].

Backup policies. The work presented in [98] introduces the Safety Handling
Exploration with Risk Perception Algorithm (SHERPA) which provides the RL
agent with a backup policy, representing an ‘escape route’ that the agent can
resort to if its exploration strays too close to predefined unsafe states.

At each state the agent enters, the next action chosen by the agent is evaluated
for its risk of entering an unsafe state. This evaluation is achieved by means of
a ‘risk perception’ function which measures the features of a state against some
predefined threshold of safety. For example, if the states of a temperature control
system include ‘heat’ as a feature, should a next state have the system reach the
overheating threshold then the risk function would deem the action leading to
the state as risky and prevent the agent from performing it.

If an action will cause transitioning to unsafe states, then an alternative action
is chosen. If the action does not lead to an unsafe state then a search for a safe
backup for the next state begins. A backup is used to take the agent back to a
nearby safe state if no future states from the next state can be determined as
safe. In the event that there are no safe backups in the next state then the action
is once again discarded and a new action is evaluated. If all actions are assessed
but none have safe backups, the backup for the current state is used, taking the
agent back to a previous state where it can learn a new action for that state
which will lead to a different future state.

In this way, the agent will never perform an action directly leading to an
unsafe state, or enter a state from where it inevitably will enter an unsafe state.
However, this relies on correctly and completely identifying the unsafe states in
the system by means of an effective risk perception function. Furthermore, the
approach may result in suboptimal policies if the agent behaves too cautiously
by avoiding any state for which there is no backup, even though such a state may
not inevitably lead to an unsafe state but could instead lead to a reward. As
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with ergodic policies, an unrecoverable state is not necessarily an unsafe one.

3.3 Comparison to ARL-KR

ARL-KR can be categorised as a safe optimisation technique since the optimisa-
tion of a policy is restricted to the set of states that have been verified as safe at a
high-level. In contrast to safe exploration strategies, the underlying exploration
by the agent is unaffected and can be done using a policy such as ε-greedy.

The following sections discuss several areas of comparison between ARL-KR
and the techniques described in the previous sections.

3.3.1 Requirements for Safety

The core ARL technique (Chapter 4) requires accurate abstractions of all safety-
and optimality-relevant states in the form of an AMDP. Knowledge of the spe-
cific rewards and transition probabilities associated with the states is preferable
as it will minimise the time for a safe solution to be reached, but the knowledge
revision extension to ARL (Chapter 5) allows this information to be acquired
automatically at the cost of extra computation time. In addition to the AMDP,
the safety and optimisation requirements are needed in the form of PCTL for-
mulae.

In contrast, the ergodic algorithm in [86] only requires a user-defined safety
level in the form of a probability. Similarly, the risk-sensitive approach in [92]
requires a user-defined scalar parameter to define the level of risk that a solu-
tion should involve. However, risk-sensitive, as well as with the worst-case cri-
terion [88], requires the incorporation of unsafe (sequences of) states into the
reward function, such that there is a cost for entering into them. In addition to
identifying these states, costs of suitable magnitude must be determined which is
not necessarily feasible. Identifying unsafe states is also the core requirement of
the backup policies strategy [98], although, this technique does not require them
to be included into the reward structure.

Similar to ARL, the use of permissive schedulers [87] requires a set of prop-
erties defined using temporal logic. Differing to ARL, though, an AMDP is not
used. Instead, full knowledge of the MDP’s transition function is required which
is not typically available for RL tasks.

The teacher knowledge approach in [94], the cautious simulator from [95, 96]
and the safety through demonstrations tactic [97] all require skilled and experi-
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enced human involvement to identify safe solutions. In addition to this, [95, 96] re-
quires a physics simulator of the problem environment and [97] requires a method
to translate demonstration data into an MDP for RL.

Compared to some of the other safe optimisation techniques, ARL-KR re-
quires a moderate amount of domain knowledge to be successful; however, it has
the significant advantage over most of these approaches, as well as the backup
policies exploration strategy, that it does not require knowledge of each low-level
unsafe state. Furthermore, ARL-KR does not require modifying the underlying
RL MDP to include unsafe states into the reward structure which, as described
in Section 3.2, is not always feasible. Compared to safe exploration strategies,
with the exception of backup policies, ARL-KR enjoys the major advantage that
it does not require human involvement to identify and provide safe actions to the
agent.

3.3.2 Knowledge Revision Capability

As is discussed in depth in Chapter 5, safety is subject to how accurate the
knowledge of the problem is. Should information about features that can affect
safety be incorrect or incomplete, the safety levels that are intended may not be
met.

This potential problem is significant for ARL, where safety guarantees can
only be provided assuming complete and correct knowledge of the features related
to safety are included in the AMDP. The extension of ARL with knowledge
revision (ARL-KR) resolves this problem to a large extent. Should it be the case
that the AMDP is not accurate to the RL MDP, ARL-KR provides a method to
update the AMDP with accurate observations of transitions and rewards in the
AMDP. Furthermore, subsequent learning runs for newly generated safe abstract
policies can be achieved more efficiently by reusing actions (where possible) that
have previously been optimised. A limitation of ARL-KR is that it is currently
not possible to update the AMDP to incorporate new states that were previously
unknown, since this can require significant restructuring of the AMDP which
would require manual intervention by a domain expert.

Knowledge revision is not a problem that affects [86, 87], since these ap-
proaches generate solutions directly on the RL MDP which itself does not re-
quire modification for the process. Similarly, [97] does not face the problem of
knowledge revision since the MDP is induced from the demonstrations.

The approaches from [88, 92, 98] share the common task of identifying unsafe
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states so that safety can be imparted, this identification is not done automatically
and unsafe states must be manually identified. This is a significant limitation
since if the end RL solution produces behaviour that is less safe than intended,
meaning that there exists some unsafe states that have not been accounted for,
it may prove difficult to identify the states if they are not obvious and hence
were not identified from the beginning. This same problem is seen in [94] since
safety is based around the similarity of states to those identified by the teacher
knowledge: if a state is considered similarly safe to a teacher-defined safe state,
but it is in fact not safe, it may not be easy to identify which aspect of the teacher
knowledge produced a safe state that was similar to an unsafe state.

Whilst [95, 96] also rely on knowledge of the safety of states, the cautious
nature of this approach to identify only safe states, as opposed to unsafe states,
means that in a worst case the agent will behave in an overly conservative man-
ner. In this case, the safety function produced by the simulator allows manual
intervention to correct any states mislabelled as unsafe.

3.3.3 Effectiveness at Achieving Safety

A key feature of ARL-KR is its use of formal verification to produce RL solutions
that are guaranteed to satisfy a strict set of safety requirements. Importantly,
ARL allows a wide range of specific safety and optimisation requirements to be
satisfied by defining them using PCTL, an expressive temporal logic.

By comparison, the approaches in [86, 88, 92, 98] do not guarantee that
specific safety properties will be part of the RL solution. Instead, they aim
to reduce the likelihood of unsafe behaviour so that the agent’s behaviour is
generally safer. Whilst it may be possible in some circumstances to learn a set
of behaviours that are entirely safe, this will typically involve severe restrictions
on the agent by preventing it from entering states which are perfectly safe.

The use of formal verification in [87] to identify safe constraints on the op-
timisation process, and temporal logic to define properties, is equivalent in effect
to that of ARL; although, how the constraints are generated is done quite differ-
ently. Whilst [87] can produce verifiable safe RL solutions for a broad range of
properties, as is discussed in a following section, this capability is limited to small
sized problems due to the computational expense of verifying an MDP directly.

By learning from teacher knowledge [93, 94], demonstrations [97] and a cau-
tious simulator [95, 96] it is possible to instil complex and specific safe behaviour
into the agent’s solution. However, with the exception of [95, 96], these techniques
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do not necessarily guarantee safety; instead, they produce a solution that is only
as safe as the teacher or demonstrations. Furthermore, in unfamiliar situations
where the agent has no safe demonstration to learn from, or teacher knowledge
is incomplete, the agent can still perform unsafely.

With the exception of [87] (which can only handle small RL problems with
known transition functions), approaches for safe RL tend to suffer from one of
two problems: either they lack any guarantee that specific safety levels can be
met and/or do not allow complex safety requirements to be satisfied. The ARL
approach presented in this thesis, however, does not have either of these limita-
tions.

3.3.4 Impact on Optimality

With ARL it is possible to incorporate optimisation requirements in the same
way as safety requirements. Therefore, a set of Pareto-optimal constraints can
be generated allowing a user to choose a solution for their preferred level of com-
promise between optimality and safety. The level of optimality achieved through
ARL can be limited by the abstract policy synthesis stage, where other than
through an exhaustive search (which may not be feasible if the space of abstract
policies is very large) a search heuristic is used to identify an approximate Pareto
front of abstract policies. Therefore, it may be the case that a safe policy exists
which can allow greater levels of optimisation but it was not found during the
search. The underlying learning process by the agent has the standard optimality
guarantee of RL that provided sufficient learning has occurred (i.e. each state-
action has been sampled a sufficient number of times), the agent will learn an
optimal behaviour within the safety constraints.

The techniques in [86, 88, 92] can significantly reduce the optimality of a
solution, in excess of what is necessary in order to achieve safety. Since the
techniques make only crude (or no) discrimination between individual safe/unsafe
states and actions, it is possible for safe actions and states to be restricted. This
can result in a significantly suboptimal policy relative to what could be achieved
for the same, or better, levels of safety. This can mean that although a solution
is safe, its usefulness is significantly limited. Similarly, [98] may cause ignoring
profitable states if they are deemed unsafe, even though they may be safe, creating
the same problem that significant optimality gains can be ignored.

Permissive schedulers [87] can allow specific optimisation objectives to be
defined in the same way as safety objectives. Although, like ARL, the optimality
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of the solution is subject to the search heuristic used to identify safe schedulers,
as well as how complete the knowledge of rewards is prior to learning.

As noted by the authors in [95, 96], to optimise a solution using cautious
simulations is difficult to achieve efficiently. Whilst they suggest that some level
of optimality can be achieved by the agent simply by assigning a reward of −∞
to unsafe states, they do not guarantee that the resulting policy will be optimal.

With [94, 97], the level of optimality that can be achieved is limited to how
optimal the teacher advice/demonstrations are. This means that although the
resulting solution provides satisfactory optimality, solutions with greater optim-
ality may exist that were not known by the teacher/demonstrator.

3.3.5 Generalisability

ARL has no inherent limitations preventing it from being applied to a wide range
of problem types. The potential for ARL to scale is founded on the use of an
AMDP to reduce the problem to only the important features related to safety.
Provided that it is possible to abstract the MDP to a degree sufficient to allow
it to be verified in a timely manner then ARL can be applied effectively. Even
so, this does not necessarily mean that ARL cannot be used successfully in the
event that the AMDP is very large. Instead, it means that it may take a long
time to verify the AMDP when generating safe abstract policies.

Ergodic policies [86], worst-case criterion [88], risk-sensitive criterion [92] and
backup policies [98] have limited use in problems where safety and optimality
directly influence one another. The potential impact on solution optimality (dis-
cussed above) means that their successful application to produce safe and useful
policies is limited to problems where safety and optimality properties do not
significantly overlap.

Whilst permissive schedulers [87] can be applied to a wide range of prob-
lem types, they suffer from scalability issues since the technique applies model
checking directly onto the RL MDP which can become impractical beyond trivial
problems with small MDPs. Furthermore, the requirement of full knowledge of
the RL MDP’s transition function precludes the technique from being used in
the class of problems where this is not known.

Using teacher knowledge [94] and demonstrations [97] can only be done when
a safe behaviour is known in advance. Therefore, these techniques cannot be
used for problems where it is not obvious how to behave safely (for example, in
the two case studies introduced in Chapter 4).
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The cautious simulator [95, 96] is so far limited to use in physical systems,
although, the use of a simulator to automatically identify safe states enables its
application to larger scale systems.

3.4 Summary

Safe RL techniques generally fall into one of two categories: (i) modifying how
a policy is optimised [86, 87, 88, 92]; or (ii) modifying how the agent explores
the environment state space [94, 95, 96, 97, 98]. ARL-KR fits into the modified
optimisation category since the agent must optimise a solution whilst restricted
to a set of safe states, which it can explore using standard exploration strategies.
Table 3.1 summarises the characteristics of the safe RL techniques discussed in
this chapter, including ARL-KR.

Safety in RL commonly experiences several distinct obstacles, such as diffi-
culty in expressing specific safety requirements, the inability to guarantee strict
safety levels, limited applicability to real-world problems and significant reduction
of possible optimality. The approaches discussed in this chapter are no exception
to these problems and whilst some can successfully overcome some obstacles, it
is often to the detriment of achieving others. In contrast, ARL can support a
rich range of safety and optimisation requirements, can provide guarantees that
safety levels will be met, and is not limited to any particular class of problem.

Of the techniques discussed, the permissive schedulers [87] technique is most
similar to ARL since both use probabilistic model checking to formally verify
properties when expressed as temporal logic. However, the use of an AMDP in
ARL can allow probabilistic model checking to be applied to much larger prob-
lems than permissive schedulers could be used for. Furthermore, ARL-KR only
requires partial knowledge of the MDP transition function, whilst the permissive
schedulers approach requires complete knowledge that is not typically available
for many RL problems.
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Table 3.1: Summary of the characteristics of various safe RL techniques.
Approach Assumptions and

requirements
Safety assurance Impact on optimality Generalisability

Safe optimisation techniques
Ergodic policies [86] A (useful) safe

solution exists which
does not include

non-ergodic states.

Provable probability of
solution ergodicity.

Cannot assure specific
safety requirements.

Potentially very high
reductions: non-ergodic
states may be safe and

profitable.
Computationally efficient
constraints can cause
suboptimal agent

exploration.

Not applicable to problems
whose solutions necessarily

cannot be ergodic.
Difficulty of enforcing
constraints limits its
applicability to larger

problems.

Permissive schedulers [87] Full knowledge of RL
MDP transition
function and
conservative

knowledge of its
reward function.

Formally guaranteed
probability of satisfying

a rich set of safety
requirements.

Standard RL optimality
guarantee within the limits

of the constraints.

Not applicable for RL
problems where the MDP

transition function is
unknown or has a large

state space.

Worst-case [88] All unsafe
states/sequences of
states are known
a priori. RL MDP
reward function

modified to punish
unsafe actions.

Solutions optimised
assuming a worst-case
scenario, ensuring at

least a minimum level of
safety is always

achieved.

Potentially very high
reductions: some profitable
states could be entered at
very low probability of
safety violations but are

disregarded.

Does not support strict
probabilistic safety or

optimality requirements.
Suited to problems where
all safety aspects can

feasibly be incorporated
into the reward function.

Risk-sensitive [92] All unsafe
states/sequences of
states are known
a priori. RL MDP
reward function

modified to punish
unsafe actions.

Implied, but not
guaranteed, by the

consistency of returns
from a solution.

Subject to the chosen value
of the risk parameter.

Potentially high reductions
if the parameter is risk
averse: agent can avoid

profitable behaviour even if
unsafe outcomes are rare.

Does not support strict
probabilistic safety or

optimality requirements.
Suited to problems where
all safety aspects can

feasibly be incorporated
into the reward function.

ARL-KR Abstraction of all
relevant RL MDP

states.

Formally guaranteed
probability of satisfying

a rich set of safety
requirements.

Standard RL optimality
guarantee within the limits

of the constraints.
Pareto-optimal choice of

solutions allowing a
safety-optimality trade-off.

No inherent limitations to
being applied to a range of

RL problem types.
Effective at ensuring strict
probabilistic safety and
optimality requirements
from limited knowledge.

Safe exploration strategies
Teacher knowledge [94] A known safe policy

to inform the agent
during its

exploration. A ‘risk’
function to determine
if a future state is too
dissimilar from known

safe states.

Reduced, but not
guaranteed, probability
of entering unsafe states.

Subject to how optimal the
teacher knowledge is and

how strict the risk function
is.

Limited to problems where
a safe solution is already

known.

Cautious simulation [95, 96] A physics simulator.
Optional domain
expert knowledge.

Conservative
classification of states as

safe/unsafe from
simulations. Unsafe
states cannot be

accidentally labelled as
safe.

No guarantee of solution
optimality.

Limited to robotics.

Safe demonstrations [97] A domain expert who
can provide a safe

solution. A means of
inferring the RL

MDP dynamics from
the demonstrations.

As safe as the expert’s
demonstrations. Cannot
provide safe actions for
states not featured in
the demonstrations.

Subject to how optimal the
expert’s demonstrations

are.

Limited to problems where
a safe solution is already

known.

Backup policies [98] All fatal states must
be identified a priori
and a bespoke ‘risk
perception’ function
to detect risky states.

Guaranteed to avoid
unsafe states assuming
the risk perception
function is entirely

accurate.

No guarantee of solution
optimality. Potentially high
reduction if ‘risky’ states
are avoided despite being

profitable.

Does not support strict
probabilistic safety or

optimality requirements.
Limited to problems where
risk perception is feasible.
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Chapter 4

Assured Reinforcement Learning

This chapter formalises the assured reinforcement learning (ARL) approach, in-
cluding how it is implemented and how well it performs.

4.1 Introduction

ARL is a technique to provide assurance that an RL solution will satisfy strict
safety, optimisation and other non-functional requirements. This is in contrast
to traditional RL techniques where the agent will optimise a solution for some
functional objectives without any regard as to how it achieves them.

The root of the problem with traditional RL lies in how problem objectives
are expressed which consequently motivates the agent’s behaviour. Objectives
are defined through numerical rewards which the agent cumulates. The prob-
lem with this mechanism, though, is that it can be infeasible to express complex
or subtle non-functional requirements using rewards alone. Furthermore, it can
necessitate introducing more details into the underlying RL environment, which
will exacerbate the state space explosion problem that affects RL and therefore
will significantly reduce the rate of learning. When objectives conflict with each
other, there is the additional issue of how to define a reward function to sim-
ultaneously reward the agent and punish it. The nature of RL is to maximise
a reward (or minimise a cost), so traditional RL is inherently unable to satisfy
two contradicting objectives. In such a situation it may be possible through trial
and error to eventually identify rewards of a suitable magnitude that the agent
could compromise between the two, but such a process is impractical and may
not succeed at all.

ARL is a different approach to defining agent behaviour. Instead of relying on
a reward scheme to shape behaviour, ARL uses formal verification techniques to
identify which actions in a state will cause violations of requirements and removes
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the action from the agent’s action set for that specific state.
The key aspect of the ARL approach is to model the RL environment as

an AMDP; to reduce the problem to only its important and relevant features,
omitting superfluous details which otherwise have no impact on the safety or
optimisation properties of a solution. Using this high-level model, QV is used
to analyse the model and to identify a set of high-level solutions, called abstract
policies, which when followed will satisfy all the safety and optimisation object-
ives. These abstract policies are then used to restrict the RL agent’s action
choices to those which map to the safe high-level options of the abstract policy.
Once the RL agent has optimised a solution subject to the action constraints
it is guaranteed that the resulting RL solution can be empirically evaluated to
achieve the same safety levels that were verified for the abstract policy.

4.2 Running Example

We motivate the need for assured reinforcement learning using an extension of
the benchmark RL flag collection mission from [3]. In the original flag collection
mission, an agent needs to find and collect flags scattered throughout a building
by learning to navigate through its rooms and hallways to collect the flags. In our
extension, certain doorways between areas are provided with security cameras,
as shown in Figure 4.1. Detection by a camera results in the capture of the agent
and the termination of its flag collection mission.

Unknown to the agent, the detection effectiveness of the cameras decreases to-
wards the boundary of their field of view, so that the camera-monitored doorways
comprise three areas with decreasing probabilities of detection: direct view by
the camera, partial view and hidden. We assume that the detection probabilities
for the camera-monitored doorways from Figure 4.1 and the camera-view areas
have the values from Table 4.1.

Table 4.1: Agent detection probabilities.

Camera view
Camera Direct Partial Hidden

HallA ↔ RoomA
HallB ↔ RoomB
HallB ↔ RoomC

RoomC ↔ RoomE

0.18 0.12 0.06
0.15 0.1 0.05
0.15 0.1 0.05
0.21 0.14 0.07
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Figure 4.1: Flag collection mission from [3] extended with security cameras. The
diagram shows the flag positions A–F, the start and goal positions for the agent,
and the cameras and their field of view.

Consider now a real-world application where the agent is an expensive autono-
mous robot pursuing a surveillance mission or a search-and-rescue operation. In
this scenario, its owners are interested in the safe return of the robot, but do not
want it to behave ‘too safely’ or it will not collect enough flags. Therefore, they
specify the following constraints for the agent:

C1 The agent must reach the ‘goal’ area with probability at least 0.75.
C2 The agent must expect to cumulate a reward greater than 2 before the

mission terminates.

Subject to these constraints being satisfied, they are interested to maximise:

O1 The probability that the agent reaches the ‘goal’ area.
O2 The reward accumulated by the agent.

As a result, the agent owners additionally want to know the range of possible
trade-offs between these two conflicting optimisation objectives. In this way, the
right level of trade-off can be selected for each instance of the mission. Note that
formulating the constraints C1 and C2 into a reward function and using standard
RL to solve the problem cannot guarantee success because an RL agent aims to
maximise its reward rather than to maintain it within a specified range.
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4.3 Approach

The ARL approach takes as input the following information about the problem
to solve:

1. Partial knowledge about the problem;

2. A set of constraints C = {C1, C2, . . . , Cn} that must be satisfied by the
policy learnt by the RL agent;

3. A set of objectives O = {O1, O2, . . . , Om} that the RL policy should op-
timise (i.e. minimise or maximise) subject to all constraints being satisfied.

The optimisation objectives O can be associated with problem properties that
appear in the constraints C (like in our running example), or also with additional
problem properties (as in the assisted-living system planning problem from Sec-
tion 4.4.2). The partial knowledge must contain sufficient information for the
assembly of an AMDP supporting the formalisation in PCTL and the probab-
ilistic model checking of the n > 0 safety constraints and m ≥ 0 optimisation
objectives.

Note that the partial knowledge about the environment assumed by ARL is
necessary: no constraints could be ensured during RL exploration in the absence
of any information about the environment. Additionally, it is assumed that the
partial knowledge contains all necessary information for abstract safe policies
to fully apply to the low-level RL model and that this information is accurate.
Should these assumptions not be satisfied then an abstract policy may not ne-
cessarily provide the levels of safety in the RL solutions that it was verified to
give. Furthermore, ARL has the usual RL assumption that sufficient learning is
undertaken by the RL agent to find an optimal policy for safety requirements to
be assured; suboptimal RL policies may not satisfy the safety requirements.

Under these assumptions, the ARL approach: (i) generates a Pareto-optimal
set of safe abstract policies that satisfy the constraints C and are Pareto non-
dominated with respect to the optimisation objectives O; and (ii) learns a (con-
crete) policy that satisfies the constraints C and meets trade-offs between object-
ives O given by a Pareto-optimal abstract policy selected by the user.

A preliminary step for ARL is the construction of the AMDP. This step devises
a parameterised AMDP model of the RL problem that supports the probabilistic
model checking of PCTL-formalised versions of the constraints C and of the
optimisation objectives O. Following from this step, ARL comprises two stages:
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1. Abstract policy synthesis – This stage generates the Pareto-optimal set
of safe abstract policies.

2. Safe learning – This stage uses a user-selected abstract policy from the
Pareto-optimal set to enforce state-action constraints for the exploration of
the environment by the RL agent. Subsequently, the agent learns an op-
timal policy that complies with the problem constraints and meets the op-
timisation objective trade-offs associated with the selected abstract policy.

AMDP Construction. In this preliminary step, all features that are relevant
for the problem constraints and optimisation objectives must be extracted from
the available partial knowledge about the RL environment. This could include
locations, events, rewards, actions or progress levels. The objective is to abstract
out the features that have no impact on the solution attributes that the con-
straints C and objectives O refer to, whilst retaining the key features that these
attributes depend on. This ensures that the AMDP is sufficiently small to be
analysed using probabilistic model checking, whilst also containing the necessary
details to enable the analysis of all constraints and optimisation objectives.

In our running example, the AMDP is constructed as follows: the key features
are the locations and connections of rooms and halls, the detection probabilities
of the cameras and the progress of the flags collected. Instead of having each
Cartesian coordinate within a room or hall as a separate state, the room or hall
as a whole is considered a single state in the AMDP. Also, we only consider the
hidden-view detection probability per camera since these are the probabilities
that the RL agent will learn for the optimal points to traverse the doorways.
These abstractions yield a 448-state AMDP for our flag collection problem, com-
pared to 14,976 states for the RL MDP (which is unknown to the agent). Note
that the number of AMDP states is larger than the number of locations (rooms
and halls) because some locations, i.e. those with more than one doorway, require
different AMDP states for each possible combination of flags collected so far.

The actions of the full RL MDP are similarly abstracted. For example, in-
stead of having the cardinal movements at each location of the building from
our running example, abstract actions (i.e. options) are specified as simply the
movement between locations. Thus, instead of the four possible actions for each
of the 14,976 MDP states, the 448 AMDP states have only between one and
four possible options each. The N options that are available for an AMDP state
correspond to the N ≥ 1 passageways that link the location associated with that
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state with other locations, and can be encoded using a state parameter that takes
one of the discrete values 1, 2, . . . , N . The parameters for AMDP states with a
single passageway (corresponding to rooms A, B and E from Figure 4.1) can only
take the value 1 and are therefore discarded. This leaves a set of 256 parameters
that correspond to approximately 4× 1099 possible abstract policies.

Finally, this preliminary step is also responsible for labelling the AMDP with
atomic propositions, enabling its probabilistic model checking and for the PCTL
formalisation of the constraints C and optimisation objectives O in terms of these
atomic propositions. For our running example, this involves associating an atomic
proposition ‘goal’ with the AMDP states corresponding to the agent reaching the
‘goal’ area (with any number of collected flags), and formalising the constraints
and optimisation objectives as follows:

C1: P≥0.75 [ F goal ] O1: maximise P=? [ F goal ]
C2: R>2 [ F goal ] O2: maximise R=? [ F goal ]

Stage 1: Abstract Policy Synthesis. In this ARL stage, the generic heur-
istic from Algorithm 3 is used to find constraint-compliant abstract policies for
the RL problem. Given an AMDP M̄ , a set of constraints C and a set of optim-
isation objectives O (all obtained in the preliminary step of ARL), the function
GenAbstractPolicies from Algorithm 3 synthesises an approximate Pareto-
optimal set of abstract policies that satisfy the constraints C and are Pareto non-
dominated with respect to the optimisation objectives O. The abstract policy set
PS returned by this function in line 22 starts empty (line 2), and is assembled it-
eratively by the while loop in lines 3–21 until a termination criterion ¬Done(PS)
is satisfied. This criterion (not shown in Algorithm 3) may involve ending the
while loop after a fixed number of iterations, or after several consecutive itera-
tions during which PS is left unchanged. Each iteration of the while loop first
identifies a set P of ‘candidate’ abstract policies in line 4, and then updates the
Pareto-optimal policy set in the for loop from lines 5–20. Our algorithm is not
prescriptive about the method used to get new candidate policies. As such, the
function GetCandidatePolicies from line 4 can be implemented using a me-
taheuristic such as the genetic algorithm used to synthesise Markovian models
in [99], a simple heuristic like hill climbing, or just random search.

To decide how to update PS , the for loop in lines 5–20 examines each can-
didate abstract policy π̄ as follows. First, the boolean function PMC1 (which
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Algorithm 3 Abstract policy synthesis heuristic
1: function GenAbstractPolicies(M̄, C,O)
2: PS ← {}
3: while ¬Done(PS) do
4: P ← GetCandidatePolicies(PS , M̄)
5: for π̄ ∈ P do
6: if ∧c∈C PMC1(M̄, π̄, c) then
7: dominated = false
8: for π̄′ ∈ PS do
9: if Dom(π̄, π̄′, M̄ ,O) then
10: PS ← PS \ {π̄′}
11: else if Dom(π̄′, π̄, M̄ ,O) then
12: dominated = true
13: break
14: end if
15: end for
16: if ¬dominated then
17: PS ← PS ∪ {π̄}
18: end if
19: end if
20: end for
21: end while
22: return PS
23: end function

24: function Dom(π̄1, π̄2, M̄ ,O)
25: return

∀o∈O ·PMC2(M̄,π̄1,o)≥PMC2(M̄,π̄2,o)∧
∃o∈O ·PMC2(M̄,π̄1,o)>PMC2(M̄,π̄2,o)

26: end function

invokes a probabilistic model checking tool) is used to establish if using policy π̄
for the AMDP M̄ satisfies every constraint c ∈ C (line 6). If it does, π̄ is deemed
safe and the inner for loop in lines 8–15 compares it to each of the abstract policies
already in PS by using the Pareto-dominance comparison function Dom defined
in lines 24–26, where the probabilistic model checking function PMC2(M̄, π̄, o)
computes the value of the optimisation objective o ∈ O for the policy π̄ of M̄ .1

Every policy π̄′ ∈ PS that is Pareto dominated by π̄ is removed from PS (lines
9–10). If π̄ is itself Pareto-dominated (line 11), the flag dominated (initially false,

1A policy π̄1 is said to Pareto-dominate another policy π̄2 with respect to a set of objectives
O iff π̄1 gives superior results to π̄2 for at least one objective from O, and for all other objectives
π̄1 it is at least as good as π̄2 [100]. Without loss of generality, the definition of Dom from
Algorithm 3 assumes that all objectives from O are maximising objectives.
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cf. line 7) is set to true in line 12 and the inner for loop is terminated early in
line 13. Finally, the new abstract policy is added to the Pareto-optimal policy
set if it is not dominated by any known policy (lines 16–18).

Stage 2: Safe learning. The second stage of ARL exploits the previously
obtained approximate Pareto-optimal set of abstract policies. A policy is selected
from this set by taking into account the trade-offs that different policies achieve
for the optimisation objectives used to assemble the set. This selection is a manual
step. The high-level options from the abstract policy are used as rules for which
of the corresponding low-level MDP actions the RL agent should, or should not,
perform in order to achieve the required constraints. For instance, assume that
the selected abstract policy for our running example requires the agent to never
enter RoomA. In this case, should the agent be at Cartesian coordinates (5,9)
(i.e. the position immediately to the North of the Start position), the action to
move North and thus enter RoomA is removed from the agent’s action set, for
this specific state.

ARL identifies that a low-level action a when in low-level state s will lead to
a violation of safety requirements if undertaking the action can lead to state s′,
where s̄(s) 6= s̄(s′) and T̄

(
s̄(s), π̄Ā

(
s̄(s)

)
, s̄(s′)

)
= 0 according to the safe abstract

policy being used to constrain the RL agent’s actions. Disallowing actions in a
state that are not associated with the safe options of the abstract policy results
in the RL agent learning low-level behaviours that are guaranteed to satisfy the
safety constraints.

This restriction of actions necessarily reduces the RL agent’s autonomy but it
does not remove it entirely. Specifically, to ensure that the agent behaves accord-
ing to the safety requirements, exploration of actions that can result in safety
violations, i.e. those actions which contradict the abstract policy, are restricted.
Otherwise, the agent is free to explore its environment as it normally would. For
instance, in the running example, the agent’s exploration is restricted only by
which rooms it can enter. The agent must still explore the environment to learn
the flag locations within the rooms as well as the doorway areas safest to cross,
information which is unknown a priori and therefore not contained within the
abstract policies.

Although abstract policy constraints may yield suboptimal RL policies with
respect to the RL model in its entirety, this key feature assures safety.

62



4.4. EVALUATION

4.4 Evaluation

To evaluate the efficacy and generality of ARL we applied it to two case studies
from different domains. The first case study is based on the navigation task
described in Section 4.2. The second case study is a planning problem adapted
from [54], where a system has been designed to assist a dementia sufferer perform
the task of washing their hands.

For each case study we conducted a set of four experiments. An initial ex-
periment was first done which was a traditional RL implementation of the case
study problem. This experiment serves as a baseline which we contrast with the
ARL experiments in order to determine the effects of ARL. Following the baseline
experiment a further three experiments were undertaken where RL in Stage 2 of
ARL was applied using a different abstract policy from the Pareto-optimal set
of abstract policies constructed in Stage 1, using an implementation based on
random search for function GetCandidatePolicies from Algorithm 3.

For our RL implementations we used the YOrk Reinforcement Learning Lib-
rary (YORLL) [101]. The experiments were carried out using an Intel Core
i5-6200U 2.3 GHz CPU with 8 GB of RAM. For all experiments we use a dis-
count factor γ = 0.99 and a learning rate α = 0.1 which decays to 0 over the
learning run. Experiment-specific parameters are shown where relevant in the re-
mainder of this section. All parameters have been chosen empirically in line with
standard RL practice. As is convention when evaluating stochastic processes, we
repeated each experiment multiple times (i.e. five times) and we evaluated the
final policy for each experiment many times (i.e. 10,000 times) in order to ensure
that the results are suitably significant [102].

4.4.1 Guarded Flag Collection

This case study is based on the running example described in Section 4.2 and
referred to throughout Section 4.3. In the interest of brevity, the details presented
in these two previous sections will not be repeated here.

In our RL implementation, the reward structure was defined as follows: the
agent receives a reward of 1 for each flag it collects and an additional reward
of 1 for reaching the ‘goal’ area of the building. If the agent is captured it
receives a reward of −1. We used the AMDP constructed during the first ARL
stage as described in Section 4.3. Specifically, the knowledge of the problem was
formulated as the AMDP shown by the code extracts in PRISM Language 2
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(below). The more complete code can be found in Appendix A.

At line 1 the model type is defined to be a discrete time Markov chain
(DTMC), not an MDP (more specifically, AMDP). This is because ARL uses
a parameterised AMDP which means that each action in a state of the AMDP
is fixed by a parameter, resolving the non-determinism and inducing a DTMC.
Examples of these parameters are shown in lines 3, 4 and 6 as variables w1, w2
and w64. As explained further below, there are 64 parameters for each of the
64 possible states at each location requiring an action choice. These parameters
currently hold no value since the process of finding a suitable abstract policy
(comprising parameters) involves searching for these values. Parameters take in-
teger values, starting from 1, where the range of possible values depends on how
many actions are possible in the location the parameter is used in.

At line 8, the example variable p1 represents a transition probability. In
particular, this transition probability is for the hidden view camera probability
between HallA and RoomA.

Line 11 starts the definition of the model structure and lines 12–19 define the
model variables, these combine to form individual states within the model. First,
the variable position defines each location in the environment (i.e. 0 = HallA,
1 = RoomA, 2 = RoomB etc.) with the initial position being 0. Next, the
booleans flagA–flagF define whether the respective flag has been collected or
not. Initially, these are set to false. Last, the variable captured, also initialised
as false, defines whether the agent has been captured or not.

The example commands starting on lines 21, 24, 28 and 31 show how these
variables form states of the environment, they also show the potential updates
to variables that can occur when transitioning out of states. The guards of the
commands at lines 21 and 31 (and others not shown) represent the start of the
system, i.e. its initial state where the variables specify that the the agent has not
been captured, that it is in position 0 (HallA, the starting location) and Flags
A–F have not been collected. Since this model is of a parameterised AMDP,
equivalent to a DTMC, the actions for a state are included in a command’s guard.
For example, the command starting at line 21 shows the update to perform when
action parameter w1=1 and at line 31 the updates when parameter w1=2. In the
former case, the action specifies transitioning to new position'=1, i.e. RoomA,
which will result in collecting FlagA (flagA'=true) with probability 1-p1.
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PRISM Language 2: Guarded flag collection AMDP extracts
1 dtmc
2

3 const int w1;
4 const int w2;
5 ...
6 const int w64;
7 ...
8 const double p1 = 0.06;
9 ...

10

11 module guarded_flag_collection
12 position: [0..8] init 0;
13 flagA: bool init false;
14 flagB: bool init false;
15 flagC: bool init false;
16 flagD: bool init false;
17 flagE: bool init false;
18 flagF: bool init false;
19 captured: bool init false;
20

21 [] !captured & position=0 & w1=1 & !flagA & !flagB & !flagC
22 & !flagD & !flagE & !flagF -> (1-p1):(position'=1)
23 & (flagA'=true) + p1:(captured'=true);
24 [] !captured & position=0 & w2=1 & !flagA & !flagB & !flagC
25 & !flagD & !flagE & flagF -> (1-p1):(position'=1)
26 & (flagA'=true) + p1:(captured'=true);
27 ...
28 [] !captured & position=0 & w64=1 & flagA & flagB & flagC
29 & flagD & flagE & flagF -> (1-p1):(position'=1)
30 & (flagA'=true) + p1:(captured'=true);
31 [] !captured & position=0 & w1=2 & !flagA & !flagB & !flagC
32 & !flagD & !flagE & !flagF -> (position'=4)&(flagD'=true);
33 ...
34

35 [end] captured | position=6 -> (position'=8);
36 [] position=8 -> (position'=8);
37 endmodule
38

39 rewards "all_flags"
40 [end] true : (flagA ? 1 : 0) + (flagB ? 1 : 0) + (flagC ? 1 : 0)
41 + (flagD ? 1 : 0) + (flagE ? 1 : 0) + (flagF ? 1 : 0)
42 + (position=6 ? 1 : 0);
43 endrewards
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However, with probability p1 the transition will instead result in the agent be-
ing captured (captured'=true). In the latter case, the new position will be 4
(corresponding to RoomD) resulting in FlagD being collected.

As there are 6 flags in total, this means there are up to 26 = 64 possible
combinations of flags that the agent may have collected at any time. Since the
agent may hold any one of these flag combinations when in a position, there needs
to be 64 parameters specifying which action must be taken for each of these flag
combinations for each position. For example, the commands starting at lines
21 and 31 use the action w1 when no flags are collected and in HallA and the
command from line 24 uses w2 when in HallA and only FlagF has been collected.
Lastly, the command starting at line 28, for when all flags have been collected
and in HallA, uses w64. The parameters w3–w63 (not shown) specify the action
to take for each of commands (also not shown) representing the remaining flag
combinations when in position 0.

Parameters are only required in those locations from which there are 1<
possible doorways to choose. When a location only has a single doorway there is
only one possible route to take from that area. For example, the command for
when the agent is in RoomA can simply be expressed as:

!captured & position=1 -> (1-p1):(position'=0) + p1:(captured'=true);

With this command, the guard simply requires that the agent has not been
captured and that it is in position 1 (RoomA), it does not matter which flags
have/haven’t been collected since the agent will always leave this room for any flag
combination. Hence, the update is simply the transition back into position'=0
(HallA) with probability 1-p1 and with probability p1 be captured. There is
an equivalent command for when in RoomB and RoomE. When in RoomD the
agent still has to choose between returning to HallA or proceeding to the goal,
requiring a parameter to specify which action to choose.

The command on line 35 represents the state where the agent has either
been captured or has entered into position 6 (i.e. the goal area). In either case,
the agent’s mission has ended and so the command updates the position to 8, an
absorbing state (line 36). Lastly, when the action [end] occurs after transitioning
from line 35, the rewards are given, shown in the reward structure "all_flags"
from line 39 to line 43. Specifically, the transition reward starting at line 40
returns the sum for how many flags are collected and whether the agent has
reached the goal or not.

In the first ARL stage, we generated 10,000 abstract policies with parameter
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values (i.e. state to action mappings) drawn randomly from a uniform distribu-
tion. The average time required to generate and verify a policy was 272 milli-
seconds and the entire search was completed after 45.3 minutes. Out of these
abstract policies, probabilistic model checking using the tool PRISM identified
14 policies with different quantitative properties that satisfied the two required
constraints. The first safe policy found was the 47th to be verified, after 12.8
seconds. The last of these 14 policies was the 1762nd to be verified, after 8
minutes. Although subsequent searching identified other safe policies, their safety
and optimisation properties were equal to one of the previously found 14 and so
were discarded. Figure 4.2 shows the QV results obtained for these 14 abstract
policies, i.e. their associated probability of reaching the ‘goal’ area and expected
number of flags collected. The approximate Pareto front depicted in this figure
was obtained using the two optimisation objectives, i.e. maximising the expected
number of flags collected and the probability of reaching the ‘goal’ area of the
building. Generating the Pareto front was achieved in just 2 milliseconds.
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Figure 4.2: Pareto front of abstract policies that satisfy the constraints from
Table 4.2. Those policies that were selected for ARL are labelled A, B and C.

Three abstract policies were selected to use in each of the ARL experiments
during the safe learning stage, as explained in Chapter 4.3. The properties of
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Table 4.2: Selected abstract policies to use for ARL in the guarded flag collection.

Abstract
policy

Probability of
reaching ‘goal’

Expected
reward

A 0.9 2.85
B 0.81 3.62
C 0.78 4.5

these three abstract policies are shown in Table 4.2. These abstract policies are
translated into action constraints on the agent by blocking agent actions which
do not correspond with the high-level options.

The baseline experiment, which was a standard RL implementation of the case
study, used an ε = 0.8 and performed 2×107 learning episodes, each with 10,000
steps. This did not, however, reach a global optimum. Even after extensive
learning, in excess of 109 learning episodes, conventional RL did not attain a
superior solution.

Since the capture probabilities for direct, partial and hidden view by the
cameras at guarded doorways differ by only small amounts, the agent needs to
experience being captured in each view a significant number of times before it
converges on the safest area of the doorway (i.e. with the lowest capture prob-
ability). However, because the capture probabilities are relatively small at any
part of the doorway, the agent is captured infrequently and so the agent must
traverse the doorways a significant number of times before it is captured enough
times to determine the safe areas of it. Furthermore, the agent needs to succeed
with this process at all four different doorways where it can be captured and the
agent needs to learn the safe doorway areas for each possible order that the flags
are collected (i.e. the agent needs to learn the same doorway areas multiple times
since each time a flag is collected the agent enters a new set of states and previous
knowledge of safe areas is not carried over to them). Lastly, since the agent’s
probability of capture cumulatively increases with more guarded doorways that
it traverses, those towards the end of a learning episode (e.g. after collecting all
the flags and the agent is heading towards the goal) are encountered even less
frequently as the agent is often captured before encountering them. Therefore,
the agent experiences less opportunity to learn the safe areas of them than the
early doorways it will encounter. Thus, the process of finding the optimal area
for every doorway in every situation, and ultimately find an optimal solution, re-
quires a vast number of learning episodes. Figure 4.3 shows the learning progress
for this experiment.
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Figure 4.3: Learning progress for the guarded flag collection with no ARL applied.

Next, we present the three ARL experiments, one for each of the abstract
policies from Table 4.2. Since the abstract policy had the effect of guiding the
agent with regard to the locations to enter next, less exploration by the agent was
required and fewer learning episodes were necessary. Therefore, we used ε = 0.6
which decayed to zero over the learning run and 105 episodes were needed for
the learning to converge. Figure 4.4 shows the RL learning progress for each of
the abstract policies used for ARL and Figure 4.5 shows the routes through the
environment learned by the agent for each of the safe abstract policies.

In contrast to the baseline RL experiment, a superior policy was learned much
faster by ARL, further demonstrating the advantages of our approach. This is
due to the fact that the abstract policy: (i) limits how many doorways the agent
needs to learn (since it prevents the agent from ever encountering some); and
(ii) restricts the order that doorways are traversed to only one possible route
and so the agent doesn’t have to keep relearning the same doorway for a range
of possible routes. Therefore, the ARL agent has to learn significantly fewer
safe areas where cameras exist and thus requires far fewer learning episodes to
converge on an optimal solution when compared to standard RL.
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Figure 4.4: Learning progress for the guarded flag collection with ARL applied
using the selected abstract policies A, B and C.

The learned policies for each of the experiments were empirically evaluated
and the results summarised in Table 4.3. The experiments where an abstract
policy was applied resulted in an RL policy that: (i) satisfied the problem con-
straints and optimisation objectives; and (ii) matched the probabilities of reaching
the ‘goal’ area and the expected rewards of the abstract policies from Table 4.2.
The baseline experiment gave results that do not satisfy our constraints; how-
ever, as discussed above it is possible that given a hugely excessive number of
learning episodes the agent may optimise a solution sufficiently that it can satisfy
the constraints. Even so, there are two major problems with relying on stand-
ard RL to achieve this. First, the number of learning episodes required to fully
converge to an optimal solution is unknown, other than that it will be in excess
of 109 which makes it impractical to find a solution in any reasonable amount
of time. Second, any success of RL in finding a safe solution would coincidental:
standard RL does not allow a range of solutions to be produced to satisfy specific
requirements. The optimal solution, whatever it may be, will only ever have one
unchanging set of properties. Should the safety requirements not coincide with
this solution’s properties, without changing the underlying reward structure of
the RL MDP (which, as discussed in Chapter 3, may not be feasible), standard
RL would be unable to produce a safe solution.
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Figure 4.5: The routes optimised by the agent under abstract polices A, B and C.
The areas shaded grey are those that the policy prevents the agent from entering.
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Table 4.3: Results of the baseline and ARL experiments for the guarded flag
collection case study.

Abstract
policy

Probability of
reaching ‘goal’

Standard
error

Expected
reward

Standard
error

None 0.72 0.0073 4.01 0.031
A 0.9 0.0012 2.85 0.0029
B 0.81 0.0019 3.62 0.0037
C 0.78 0.0012 4.5 0.0041

4.4.2 Assisted-Living System

Dementia is a common chronic illness with significantly debilitating consequences.
As the illness progresses, it becomes increasingly difficult for the sufferer to per-
form even simple tasks, making it necessary for a caregiver to provide assistance
with such tasks [103].

To alleviate the duties of the caregiver and the cost to healthcare, the pro-
ject described in [54] has developed an automated system that helps a dementia
patient perform the task of washing their hands. For our second case study we
used a simulated version of this assisted-living system. For the purpose of our
system, the hand-washing task can be decomposed into the subtasks listed in
Table 4.4. This table also shows the atomic propositions (i.e. boolean labels,
discussed in Chapter 2) that we will use in this section to indicate whether each
of the subtasks has been completed.

Table 4.4: Hand-washing subtasks.

Subtask Atomic proposition
Turn tap on on
Apply soap soaped

Wet hands under tap wet
Rinse washed hands rinsed

Dry hands dried

It is possible for the dementia sufferer to regress in this task by repeating
subtasks they have already performed, or by performing the wrong subtask for
the stage of the hand-washing process they have reached. Figure 4.6 depicts the
workflow carried out by a healthy person while progressing with the task (black,
continuous-line nodes and arrows) and the possible regressions that a dementia
sufferer could make (red, dashed-line nodes and arrows). For ease of reference,
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each state of the workflow is labelled with a state ID (s1 to s12) and with the
atomic propositions that hold in that state.

s0
s5

wet
on

on
s1

wet
s11

s3
wet
on

done
s10

s8
dried
on

dried
s9

s2 s4
soaped
on

soaped

soaped

wet

s12
soaped

s6
rinsed

on
wet

wet

s7
rinsed

Figure 4.6: Workflow of washing hands, showing the subtasks at each stage of
progress with the progression of a healthy person in black, continuous lines and
the possible regressions of a dementia sufferer in red, dashed lines.

The probabilities of the dementia sufferer progressing and regressing (not
shown in Figure 4.6) vary at each stage of the task and between sufferers. For
the purpose of our evaluation, we decided these probabilities based on the subtask
complexity, as indicated in [54].

The system is designed so that if the user fails to perform one of the next
correct subtasks then it may provide a voice prompt instructing the user what
subtask to do next. The system learns what style of voice is most appealing to the
user based on how conducive different styles of prompt are at the user succeeding
with the overall task. Voice styles vary in gender, sternness of the instructions
(mild, moderate or strict) and volume (soft, medium or loud). The appeal of the
voice style will induce an increase in the probability that the dementia sufferer
progresses compared to no prompt being given, with the least appealing voice
yielding the smallest increase and the most appealing yielding the largest increase.

For our system we wish to determine when to give a prompt to the user
and when it becomes necessary to call the caregiver (i.e. the user is not making
progress, despite repeated prompts). Overloading the user with prompts can
become stressful and therefore each prompt has a negative reward of −1. Whilst
calling the caregiver will be of relief to the user, as well as ensuring the completion
of the task, doing it too frequently will become stressful to the caregiver or, in
a care home, will overstretch the personnel resources available. Therefore, the
caregiver should assist only when necessary, but most of the time not, and so the
action to call the caregiver has a cost of −300. Completing the task results in a
reward of 500. Note that the rewards for calling the caregiver and for completing
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the task are only necessary in the RL simulation for learning to appropriately
progress and are not necessary in the AMDP.

Finally, we desire that the caregiver be present at least once every one-to-
four days, to ensure that the sufferer receives the caregiver’s attention regu-
larly. Assuming that a person washes their hands approximately five times a
day, the probability that the caregiver should assist the dementia sufferer dur-
ing any one hand-washing should be between 1/20 and 1/5, i.e. between 0.05 and
0.2. This constraint, and an additional, manually-specified optimisation object-
ive for the abstract policy synthesis stage of ARL can be formalised in PCTL
as shown in Table 4.5, where m is the number of mistakes made at any given
time, MAX_MISTAKES is the threshold for the maximum number of mistakes
that result in calling the caregiver, distress is the reward structure for stress to
the dementia sufferer, and done is the atomic proposition associated with the
completion of the hand-washing task by the user (see Figure 4.6).

Table 4.5: Constraints and optimisation objectives for the assisted-living system.

ID Constraint (C) or optimisation
objective (O)

PCTL

C1 The probability that the caregiver
provides assistance should be at
least 0.05

P≥0.05[Fm = MAX_MISTAKES ]

C2 The probability that the caregiver
provide assistance should be at most
0.2

P≤0.2[Fm = MAX_MISTAKES ]

O1 The level of dementia sufferer dis-
tress due to multiple voice prompts
should be minimised

minimise Rdistress
=? [ F done ∨m =

MAX_MISTAKES ]

O2 The probability of calling the care-
giver should be minimised (subject
to C1 and C2 being satisfied)

minimise P=? [ Fm =
MAX_MISTAKES ]

We constructed the AMDP for this system based on the workflow shown in
Figure 4.6, where each workflow stage represents a different AMDP state. To
abstract the RL MDP we only used the transition probabilities for the best style
of prompt which the RL agent aims to learn. Shown below in PRISM Language 3
is how the knowledge of the problem was expressed as the AMDP in PRISM. A
more complete version can be found in Appendix B.
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We encoded an abstract policy for this AMDP using 13 parameters, one for
each stage of the task from Figure 4.6 other than stage 10 (where the task is
complete), and a final one representing the threshold for the maximum number
of mistakes before calling the caregiver. Lines 3 and 4 are the first two parameters
for the prompts and line 6 is the parameter for the mistakes threshold. As with
the guarded flag collection AMDP (PRISM Language 2), these parameters do not
initially have values since the task of searching for an abstract policy involves
finding the ideal values for these parameters. The parameters associated with
each workflow stage, denoted by the numerical suffix of each prompt parameter
name, represents the minimum number of total user mistakes that warrant giving
a prompt at that stage. Each parameter can take values between zero (always
give a voice prompt) and the maximum number of mistakes allowed before calling
the caregiver (never give a voice prompt).

The variables at lines 8–14 hold the probabilities for transitioning between
states. The name designations take the format pXY where X is the source state
and Y is the destination state. Between lines 16–22 are the probabilities when
the agent gives the best prompts (which it will converge on). Giving prompts in-
creases the probability of progressing and decreases the probability of regressing,
hence the need for this additional set of variables.

The module variable s on line 25 represents each stage of the workflow from
Figure 4.6, which takes the initial value 0. The variable m on line 26 is a counter
for the number of mistakes made by the user during the task, initialised as 0.

The example commands on lines 28 and 30 represent when the user is in
stages 0 and 1, respectively, and does not require a prompt. As explained for
the guarded flag collection PRISM AMDP, the action parameters feature in the
guard of the commands. For the aforementioned commands, when the necessary
number of mistakes before giving a prompt at each stage (action parameters
prompt0 and prompt1) is greater than the current number of mistakes made, m,
then no prompt is given. Conversely, the commands on lines 33 and 35 specify
that if the prompt threshold for each stage is less than the number of mistakes
made so far then the system should give a prompt.
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PRISM Language 3: Assisted-living system AMDP extracts
1 dtmc
2

3 const int prompt0;
4 const int prompt1;
5 ...
6 const int MAX_MISTAKES;
7

8 const double p00=0.36;
9 const double p01=0.36;

10 const double p02=0.28;
11 const double p10=0.24;
12 const double p11=0.16;
13 const double p13=0.48;
14 const double p14=0.12;
15 ...
16 const double pp00=0.0864;
17 const double pp01=0.5407;
18 const double pp02=0.3729;
19 const double pp10=0.0439;
20 const double pp11=0.0585;
21 const double pp13=0.7239;
22 const double pp14=0.1737;
23 ...
24 module patientWorkflow
25 s : [0..12] init 0;
26 m : [0..MAX_MISTAKES] init 0;
27

28 [] s=0 & m<prompt0 & m<MAX_MISTAKES -> p00:(s'=0)&(m'=m+1)
29 + p01:(s'=1) + p02:(s'=2);
30 [] s=1 & m<prompt1 & m<MAX_MISTAKES -> p10:(s'=0)&(m'=m+1)
31 + p11:(s'=1)&(m'=m+1) + p13:(s'=3) + p14:(s'=4);
32 ...
33 [] s=0 & m>=prompt0 & m<MAX_MISTAKES -> pp00:(s'=0)&(m'=m+1)
34 + pp01:(s'=1) + pp02:(s'=2);
35 [] s=1 & m>=prompt1 & m<MAX_MISTAKES -> pp10:(s'=0)&(m'=m+1)
36 + pp11:(s'=1)&(m'=m+1) + pp13:(s'=3) + pp14:(s'=4);
37 ...
38 [] s=10 | m=MAX_MISTAKES -> (s'=10);
39 endmodule
40 rewards "distress"
41 s=0 : m >= prompt0 ? 1 : 0;
42 ...
43 endrewards
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Those commands where a prompt is not given use the first set of transition
probabilities (such as on lines 8–14). For example, the command at line 28
updates the next state to s'=0 and increases the mistake counter m'=m+1, i.e.
the user had made a mistake and remains at the starting step, with probability
p00. Alternatively, if the user does not make a mistake, with probability p01 the
user will advance to s1 and with probability p02 advance to s2. This update
mechanism is shared exactly by the command on line 33, when a prompt is
required, except using the respective probabilities from lines 16–22.

The absorbing state is on line 38, where either the user has successfully
reached the end of the task (s=10) or they have made too many mistakes and
the caregiver will be called for (m=MAX_MISTAKES).

The reward structure, starting at line 40, uses state rewards: when in a state,
if the number of mistakes so far is equal to or greater than the prompt threshold,
meaning a prompt will be given, then a cost of 1 is returned and 0 otherwise.

We generated 10,000 abstract policies using random search taking 114 seconds
to complete, averaging at 11.4 milliseconds per policy. We used the probabilistic
model checker PRISM which identified 786 abstract policies from the 10,000
generated that had unique quantitative properties and satisfied constraints C1

and C2 from Table 4.5. The first safe policy was found on the 4th try, after
searching for 45.6 milliseconds. The last unique safe policy was found on the
9,977th try. Two optimisation objectives were used to assemble the approximate
Pareto front and the set of Pareto-optimal abstract policies in the abstract policy
synthesis stage of ARL. The first objective was O1 from Table 4.5. The second
objective, O2 from Table 4.5, was derived from constraint C2, i.e. we aimed to
minimise the probability of calling the caregiver. The time required to generate
the Pareto front was 132 milliseconds. Figure 4.7 shows the entire set of safe
abstract policies, as well as the Pareto front. For the last stage of ARL (safe
learning), we carried out experiments starting from three abstract policies from
different areas of the Pareto front shown in Figure 4.7. Table 4.6 lists these three
abstract policies with their associated attributes (i.e. the probability of calling
the caregiver and the level of distress to the dementia sufferer). These policies
(labelled A, B and C) are also shown in Figure 4.7.

We chose a value of ε = 0.5 for all experiments in this case study. Figure 4.8
shows the average progress of all five learning runs for the baseline experiment
(without ARL), with error bars used to show the standard error of the mean.
For this experiment 106 episodes were necessary to reach an optimal policy and
each episode had a maximum of 1,000 steps.

77



CHAPTER 4. ASSURED REINFORCEMENT LEARNING

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
D
ist

re
ss

to
de
m
en
tia

su
ffe

re
r

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Probability of calling the caregiver

A

B
C

Abstract policy
Pareto front

Figure 4.7: Abstract policies and Pareto front for the assisted-living system.
Those policies that were selected for ARL are labelled A, B and C.

Table 4.6: Selected abstract policies used during the safe learning stage of ARL
for the assisted-living system.

Abstract
policy

Probability of calling
the caregiver

Distress to
dementia sufferer

A 0.08 2.17
B 0.13 1.70
C 0.17 1.38

Following the baseline experiment, we carried out a series of experiments
for each of the three selected abstract policies from Table 4.6. The learning
progress of these experiments is shown in Figure 4.9. More learning episodes were
necessary for the ARL experiments since for many states the abstract policies
prevented a prompt being given, delaying the agent’s ability to explore and learn
about different prompt styles.

Table 4.7 shows examples of how a user may progress through the stages of
the hand-washing task and when the assisted-living system, utilising the safe RL
policies learned within the constraints from abstract policies A, B and C, decides
to provide a prompt and/or call for caregiver assistance. A prompt is given at
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Figure 4.8: Learning progress for the assisted-living system with no ARL applied.
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Figure 4.9: Learning progress for the assisted-living system with ARL applied
using the selected abstract policies A, B and C.
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a stage if the number of mistakes made by that time exceeds the threshold of
safety defined by each parameter of the abstract policy. This threshold may vary
for each stage of the process. Note that not every instance of policy A and B
being applied will not involve calling the caregiver, nor does policy C necessarily
call the caregiver every time. Instead, similar to when prompts are given, the
caregiver is called only when a maximum number of mistakes has occurred, as
specified by each policy.

Contrasting the results from the baseline experiment and the ARL experi-
ments, it is clear that the action constraints are having the expected effect on the
learned policy. In particular, comparing the probabilities of calling the caregiver
and the level of distress to the dementia sufferer against those that were veri-
fied for the abstract policies, the action constraints are having the desired effect,
with all the results being close to or matching the values shown in Table 4.6.
The slight difference from abstract policy C’s probability of calling the caregiver
can be attributed to the learned policy not being entirely optimal and further
learning should reduce the variance to zero.

These results can be explained when considering the reward structure used
for this system, how the learning algorithms optimise a solution from it and, in
the case of ARL, how the safety constraints shape the behaviour by the agent.

There is a large negative value associated with calling the caregiver (since
the chief purpose of the system is to be a surrogate caregiver), a small negative
cost for giving a prompt (since, despite being beneficial, they will increase user
distress levels) and lastly there is a large positive reward, greater in magnitude
than for calling the caregiver, for completing the task. Except for very rare
occurrences when the user is making an excessive number of mistakes, requiring
excessive prompts to rectify, the total cost of the prompts needed by the user
to succeed will ordinarily be far less than the cost of calling the caregiver. Even
though calling the caregiver still returns a net positive reward (as it still results
in the task ending successfully), it is expected that a greater net reward will be
returned by always giving prompts instead. Therefore, the baseline RL algorithm
optimises a solution to always give prompts and never call the caregiver, hence
the high distress level to the patient and minuscule probability of calling the
caregiver. We can expect that with additional learning episodes the probability
of baseline RL calling the caregiver will converge to zero.

The ARL constraints, however, require that the agent sometimes calls the
caregiver and so for some states (i.e. where a certain number of mistakes has
occurred) removes all other actions from the agent, forcing it to call the caregiver.
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Table 4.7: Examples of user progression through the subtasks of the hand-washing
process. ‘Stage’ represents the progress level the user is in, defined in Figure
4.6. ‘Prompt’ and ‘Caregiver’ indicate whether a prompt is given or the care-
giver is summoned, respectively, by the agent according to the safety constraints.
‘Mistakes’ and ‘Prompts’ are the number of mistakes made and prompts given,
respectively, when reaching each stage.

(a) Safe abstract policy A.

Stage Prompt Mistakes Prompts Caregiver
s0 No n/a n/a No
s2 No 0 0 No
s4 No 0 0 No
s2 No 1 0 No
s2 No 2 0 No
s2 No 3 0 No
s2 No 4 0 No
s2 Yes 5 0 No
s4 No 5 1 No
s5 No 5 1 No
s12 No 6 1 No
s12 No 7 1 No
s5 Yes 7 1 No
s6 Yes 7 2 No
s7 Yes 7 3 No
s9 Yes 7 4 No
s10 n/a 7 5 n/a

(b) Safe abstract policy B.

Stage Prompt Mistakes Prompts Caregiver
s0 No n/a n/a No
s0 No 1 0 No
s0 No 2 0 No
s2 No 2 0 No
s2 No 3 0 No
s4 No 3 0 No
s5 No 3 0 No
s6 No 3 0 No
s6 No 4 0 No
s5 No 5 0 No
s5 No 6 0 No
s12 Yes 7 0 No
s5 Yes 7 1 No
s6 Yes 7 2 No
s7 Yes 7 3 No
s9 Yes 7 4 No
s10 n/a 7 5 n/a

(c) Safe abstract policy C.

Stage Prompt Mistakes Prompts Caregiver
s0 No n/a n/a No
s0 No 1 0 No
s2 No 1 0 No
s2 No 2 0 No
s2 No 3 0 No
s2 No 4 0 No
s4 No 4 0 No
s5 No 4 0 No
s6 No 4 0 No
s7 No 4 0 No
s9 No 4 0 No
s2 Yes 5 0 No
s4 No 5 1 No
s5 No 5 1 No
s5 No 6 1 No
s5 No 7 1 No
s5 No 8 1 No
s5 No 9 1 Yes
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Equally, the constraints will only allow the agent to give prompts in certain
states (e.g. where there is a high probability the user will make a mistake),
thereby preventing the agent from optimising a solution to only give prompts.
As intended, this is the reason that the ARL-based solutions have a greater
probability of calling the caregiver and significantly lower distress levels to the
patient.

Table 4.8: Results of the baseline and ARL experiments for the assisted-living
system.

Abstract
policy

Probability of calling
the caregiver

Standard
error

Distress to
patient

Standard
error

None 4.02× 10−4 4.28× 10−4 8.31 4.03× 10−3

A 0.08 4.95× 10−4 2.17 3.25× 10−3

B 0.13 5.17× 10−4 1.70 2.22× 10−3

C 0.18 4.27× 10−4 1.38 1.84× 10−3

4.5 Comparison to Existing Approaches

This section will compare ARL to the alternative safe RL techniques introduced
in Chapter 3. Of the eight alternative techniques, though, only two can be ap-
plied to our case studies, those being the worst-case and risk-sensitive techniques
(evaluated in Sections 4.5.1 and 4.5.2, respectively). The other techniques, as ex-
plained below, have assumptions or requirements (see Table 3.1) that makes them
incompatible with our case studies or incapable of producing a usable solution.

Ergodic Policies. This technique assumes that the problem being solved al-
lows an ergodic solution. More specifically, that a useful ergodic solution exists
where all states featured in it have a probability greater than zero of allowing an
agent to (re)visit any other state in the solution. For this reason, ergodic policies
are not suited to the two case studies in this chapter, since a necessary part of
these problem’s solutions is to enter into absorbing ‘goal’ states—distinct from
the initial states—from which the probability of returning to any other state is
zero. An ergodic solution in either case study necessarily would not include the
goal states, preventing the agent from ever finishing the tasks.

Permissive Schedulers. This technique requires the full transition function
of the problem MDP so that it can be verified using model checking techniques.
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However, in neither case study is this function known in full (hence the use of an
AMDP in ARL) and so it cannot be applied.

Teacher Knowledge and Safe Demonstrations. Both of these techniques
require knowing a safe solution in advance, the former to be used to guide the
agent and the latter to form a baseline behaviour from which the agent can
optimise over. These techniques are not intended to identify safe behaviour but
are instead designed to impart it, since the behaviour may too complex or subtle
for the agent to learn through a reward scheme alone. Since neither of the case
studies in this chapter start with a known safe solution, these techniques cannot
be applied.

Cautious Simulation. In contrast to other techniques, cautious simulation is
designed specifically for robotics systems and uses a physics simulator to detect
and avoid collisions/crashes etc. It is, therefore, incompatible with our case
studies.

Backup Policies. This technique requires constructing a bespoke ‘risk percep-
tion’ function to analyse possible next-states to see if their features qualify them
as ‘risky’. In neither of our case studies could such a risk function be devised
since individual states are not ‘risky’ or even unsafe. Instead, it is sequences of
states (which are unknown in advance) which cumulatively determine the level
of risk caused by a set of actions.

4.5.1 Worst-Case Criterion

As outlined in Chapter 3, the worst-case technique uses a modified form of
Watkins’ Q-learning algorithm [58] to optimise a solution assuming the worst
possible outcome of a system will always occur. This technique can be applied to
our case studies as its requirements and assumptions are modest. Namely, that
safety aspects are encoded into the reward structure of the MDP. Whilst such
rewards are sparse in our case studies (since ARL does not rely on these rewards
to assure safety) they do still exist in a limited sense and so the algorithm can
potentially produce a useful solution.

To enable the worst-case learning algorithm to converge correctly, the Q-table
must be initialised optimistically, i.e. the initial Q-values must be set to a positive
value instead of being arbitrary. This is necessary as the learning algorithm can
only decrease Q-values, never increase them, so Q-values which are initialised
arbitrarily with values much lower than they are truly worth cannot be adjusted
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[89, 90]. Otherwise, all other experimental parameters and settings were set to
be the same as for the baseline RL experiments for each case study.

The results of each case study can be expressed concisely. For the guarded flag
collection case study, in all five experiments, without variation, the agent learned
to immediately head to the goal area, collecting zero flags along the way. The
probability of reaching the goal was 1 and the expected reward was 1 (i.e. for
successfully reaching the goal). For the assisted-living system case study, in
all five experiments, again without variation, the agent learned to immediately
call for the caregiver and did not attempt any prompts or allow the user any
opportunity to attempt the task unassisted. Although the distress to the patient
was 0, the probability of calling the caregiver was 1. In both case studies the
solutions failed to satisfy the requirements, as outlined in Section 4.2 for the
guarded flag collection mission and Table 4.5 for the assisted-living task.

To understand these results, consider the nature of the worst-case optimisa-
tion algorithm and what exactly is the worst outcome of each case study. The
algorithm assumes that if something can go wrong then it will go wrong (i.e. the
‘worst-case’ scenario) and therefore the solution should be that which maximises
the reward under this expectation.

For the guarded flag collection case study, in terms of rewards the worst case
is to fail to collect any flags and then be captured. Therefore, assuming this
worst case is inevitable, the algorithm optimises a solution to head straight to
the exit, avoiding the areas where it can (and therefore will) be captured, and
ignoring all the flags (since it won’t successfully collect any even if it tried).2

In terms of rewards for the assisted-living system, the worst outcome is to
provide the user with a multitude of prompts only for them to still make repeated
mistakes, potentially continuing for an infinite amount of time (even though the
probability of this occurring approaches zero). Nevertheless, since the probability
of this occurring is not zero, this worst-case is possible and so the agent assumes
that it will occur. Therefore, the best solution assuming this outcome is to
immediately call for the caregiver, bypassing the distress caused to the patient
by the prompts.

2The author of [90] proposes the term ‘Heinzmann’s dead-is-dead conjecture’ to refer to
the unrealistic nature of the algorithm to treat being captured (or ‘dying’) without collecting
any flags as being worse than to be captured after collecting some flags, since in either case
the agent has irredeemably failed. Nevertheless, to the algorithm the former case is worse and
so optimises a solution assuming it, hence it ignores all flags, including FlagD which it could
collect at no risk.
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4.5.2 Risk-Sensitive Criterion

Similar to the worst-case technique, this technique has few requirements or as-
sumptions, primarily that safety features are encoded into the reward function of
the MDP. Therefore, this algorithm can potentially succeed with the case studies.

For all experiments we use the same parameters and settings as the baseline
RL experiments done for each case study. The only additional parameter required
is a value k for the degree of risk seeking/aversion the algorithm will apply. To the
best of this author’s awareness there are no specific guidelines or rules on what
value this parameter should take, with trial and error being the only approach
to find a suitable value. The general principle, though, as outlined in [92], is
that negative values of k encourage risk seeking, with the likely outcome being
higher expected rewards but with a higher risk of failures, and positive values
can expect lower expected rewards but at a decreased risk of failures. Setting k
to 0 reduces the risk-sensitive algorithm to the standard, risk-neutral Q-learning
algorithm.

For the guarded flag collection experiment, the traditional RL experiment,
using risk-neutral Q-learning, produced results which had a probability of capture
too high (i.e. the risk of the solution was too high). Therefore, we can expect that
setting k to a positive value may decrease this risk level and produce a solution
that satisfies the safety requirements. Conversely, negative values may worsen
the solution’s risk levels.

To confirm this expectation, two negative values of the risk parameter were
first tested: an extreme of −0.9 and an intermediate of −0.45. As expected, both
gave higher rewards but at greater risk than the baseline Q-learning experiment
(equivalent to k = 0). Since negative values of k manifestly produce unsafe
solutions, the search for safe parameter was focussed on positive values. Figure
4.10 shows the outcome when increasing k in 0.1 increments starting from k = 0
and Table 4.9 gives the exact results.

From these graphs we can see that the requirements of reaching the goal with
a probability ≥ 0.75 and an expected reward > 2 can be satisfied when using a
risk parameter in the approximate region 0.1 / k / 0.8. This is to be expected,
since, as discussed above, the baseline experiment (equivalent to k = 0) was too
risky, and therefore a risk-averse parameter was likely to produce a satisfactory
solution.

Since a positive k overweights negative temporal differences and underweights
positive differences, as the parameter value increases the agent is increasingly

85



CHAPTER 4. ASSURED REINFORCEMENT LEARNING

0.4

0.6

0.8

1

Pr
ob

ab
ili
ty

of
re
ac
hi
ng

‘g
oa
l’

−1 −0.5 0 0.5 1
k

1

2

3

4

5

Ex
pe

ct
ed

re
wa

rd

−1 −0.5 0 0.5 1
k

Figure 4.10: Effect of varying risk parameter k in the guarded flag collection case
study. Red-shaded regions represent where solutions (black nodes) do not satisfy
the safety/optimisation requirements.

dissuaded from collecting flags since they are worth less and the punishment for
capture is greater. This is shown in the results, where the higher the value of k
becomes, the safer, albeit less profitable, the agent’s solution becomes. Where
different values of k return similar results, the solutions are collecting the same
flag combinations so return the same reward at the same level of risk. Since
flags are discrete rewards we cannot expect a continuous change in the reward
obtained. Equally, since the capture areas are associated to specific flags, the
risk involved with collecting the flags will remain constant when the actions to
collect them are optimised.

Although the risk-sensitive algorithm was able to produce a range of safe
solutions approaching similar quality to those found by ARL, obtaining these
solutions revealed two major drawbacks of the technique. First, as with the
baseline RL experiment for this case study, the number of learning episodes
required to approach an optimal solution was vastly more than was required
by ARL. It is possible that with even more learning episodes the solutions may
converge to be of equal quality to those found by ARL. However, the excessive
number of episodes required to fully converge makes it impractical to do so.
Second, finding an appropriate value of k is trial and error; assuming that the
first choice of k is not satisfactory by coincidence, numerous experiments must
be tried until a value is found that is suitable. The probable need for multiple
experiments worsens the first problem of excessive learning episodes.

With the assisted-living case study, we can expect that negative values of k
will produce a solution that relies on giving prompts and positive values of k will
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Table 4.9: Results of the risk-sensitive learning algorithm when applied to the
guarded flag collection case study.

k
parameter

Probability of
reaching ‘goal’

Standard
error

Expected
reward

Standard
error

-0.9 0.47 0.018 4.37 0.048
-0.45 0.58 0.011 4.1 0.06
0 0.72 7.3× 10−3 4.01 0.031
0.1 0.73 1.8× 10−3 3.93 0.032
0.2 0.8 3× 10−3 3.4 0.012
0.3 0.8 2× 10−3 3.4 4× 10−3

0.4 0.8 3× 10−3 3.4 3× 10−3

0.5 0.8 4.2× 10−3 3.39 3.8× 10−3

0.6 0.88 2× 10−3 2.7 3× 10−3

0.7 0.89 3.1× 10−3 2.7 2.5× 10−3

0.8 1 0 2 0
0.9 1 0 2 0

instead call for the caregiver immediately, or perhaps only give a small number of
prompts initially. This is since calling the caregiver immediately will always re-
turn an exact, unchanging reward: the cost of calling the caregiver plus the reward
for finishing. Instead, giving prompts involves the possibility of the user making
an arbitrary number of mistakes, requiring an arbitrary number of prompts and
returning a varied expected reward. Since positive values of k reduce the variance
of the reward, this would encourage the agent to call the caregiver, returning a
constant reward. Negative values of k encourage a solution with higher reward
variance so will cause the agent to give prompts.

Once again, we test our expectations by starting with negative values for k to
determine whether to pursue risk-seeking or risk-averse parameter values. After
determining which direction to take we use the bisection method to hone in on the
ideal parameter range. Figure 4.11 illustrates the resulting solutions’ properties
and Table 4.10 gives the results.

The graphs in Figure 4.11 show there is an abrupt effect of the parameter when
set to a high, positive value; there is not a gradual change for the probability of
calling the caregiver or for the distress to the patient as the parameter increases.

This abrupt change makes sense when considering the nature of the reward
scheme. As discussed with the baseline RL results from Section 4.4.2, the optimal
solution for standard RL is to always give prompts as, under normal circum-
stances, this will return a greater expected reward than for calling the caregiver.
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Figure 4.11: Effect of varying risk parameter k in the assisted-living system case
study. Red-shaded regions represent where solutions (black nodes) do not satisfy
the safety requirements.

Table 4.10: Results of the risk-sensitive learning algorithm when applied to the
assisted-living system case study.

k
parameter

Probability of calling
the caregiver

Standard
error

Distress to
patient

Standard
error

-0.9 2× 10−4 6.3× 10−5 8.31 1.2× 10−3

-0.45 2.4× 10−4 6.8× 10−5 8.31 3.5× 10−3

0 4.02× 10−4 4.28× 10−4 8.31 4.02× 10−3

0.45 2.2× 10−3 3.2× 10−4 8.13 7.4× 10−3

0.675 7.3× 10−3 4.2× 10−4 8.11 0.026
0.7875 0.026 1.9× 10−3 8.01 0.013
0.84375 0.059 9.2× 10−4 7.83 9.1× 10−3

0.871875 0.12 5.5× 10−3 7.43 0.038
0.87890625 0.18 0.012 7.01 0.1
0.8859375 0.25 5.2× 10−3 6.4 0.038

0.9 1 0 0 0

Instead, if the cost for calling the caregiver were much smaller and the cost for
giving a prompt were much higher, then the agent would learn to always call the
caregiver as this will return a greater expected reward.

A high value of k makes negative rewards significantly more punitive but
also means that positive rewards are significantly diminished. This distortion
of rewards can cause problems since the true long-term quality of actions is
lost [52]. As Q-learning (the basis of the risk-sensitive algorithm) propagates
rewards across states, a high-valued risk parameter will significantly diminish
the reward at every step of the propagation. Therefore, with a high value of k,
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initial actions that may ordinarily expect to yield a large reward in the future will
receive a drastically diminished one when the reward is eventually propagated to
them.

In this way, the net positive reward the agent receives by immediately calling
the caregiver in the beginning, albeit also diminished by the risk parameter, is now
greater than if the agent were to provide prompts since it has only been dimin-
ished once. Instead, the ordinarily larger reward returned from giving prompts is
successively diminished to the point that the actions leading to it are updated to
have less utility than to call for the caregiver immediately. This is the reason for
the abrupt change in solution properties when setting k to a high value: beyond a
certain value of k, always calling the caregiver becomes better than always giving
prompts, it is not a gradual change.

From Table 4.10 we can see that a risk parameter value of approximately
0.844 / k / 0.879 can produce solutions that satisfy the requirement that the
caregiver must be called with a probability between 0.05 and 0.2. However, as
discussed above, there should be a discrete change from a probability of 0 to a
probability of 1, a continuous range is not to be expected. The explanation for
the slight transition range is that the solutions in this region were not perfectly
optimal and contained Q-values that were still in flux when learning ended and
so the solution would arbitrarily call the caregiver/give prompts in some states.
The sole exception to this is for the single value of k which will result in the
reward for calling the caregiver to be identical to the reward for giving prompts,
in which case the agent could either call the caregiver or give a prompt with equal
preference and would not exclusively choose one over the other.

Even though it can be argued that the technique nevertheless did produce
safe solutions satisfying the safety requirements, the distress to the patient for
each solution was significantly higher than when using ARL since the solutions
were still largely optimised to always give prompts and only to call the caregiver
in some arbitrary states. Furthermore, as experienced with the guarded flag
collection case study, numerous experiments had to be conducted to eventually
find suitable safety parameters.

4.6 Summary

This chapter has introduced the assured reinforcement learning (ARL) approach
and shown how it can be used to satisfy strict safety requirements for RL solu-
tions. The ARL approach comprises two stages, with a preliminary step for
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construction of the high-level AMDP.
The preliminary step of creating the AMDP involves extracting all relevant

features of the problem environment which affect the safety and optimisation
properties of a solution. The use of an AMDP makes it feasible to reason about
the problem using QV, since typical RL MDPs can be far too vast in size for
them to be verified in a reasonable amount of time. Furthermore, it may not
always be possible to analyse the RL MDP since its transition and/or reward
functions may not be known. Using the AMDP, the two stages of ARL follow:

1. The first stage involves searching for a set of abstract policies for the AMDP
which have been verified by QV to satisfy the safety constraints and op-
timisation objectives. A Pareto-optimal set of these policies is generated,
allowing a user to select an abstract policy which has the desired level of
compromise between the safety/optimisation properties.

2. The second stage is to use the selected safe abstract policy as a set of safety
constraints on the RL agent’s action choices. When an abstract policy is
applied during safe RL, should the agent attempt an action in a state that
would cause the agent to enter into a state that does not feature in a high-
level state as part of the abstract policy, this action is disallowed, forcing
the agent to optimise over the remaining actions which are safe.

Through two different case studies it is demonstrated that ARL can be success-
fully applied and can produce RL solutions which satisfy its safety and optim-
isation requirements. Furthermore, these solutions will match the safety levels
verified for the safety constraints. These results are in contrast to those for stand-
ard RL and other safe techniques which either failed to meet the required safety
levels, or did so less effectively and with significant drawbacks.

The limitations of the ARL approach are twofold: First, ARL assumes that
the information used to create the AMDP is both accurate and complete (with
respect to the important features of the RL MDP). If this assumption is not
satisfied then ARL cannot be guaranteed to produce an RL policy which satisfies
the safety requirements. This limitation is addressed in Chapter 5. The second
limitation is how abstract policies are synthesised. As noted in Section 4.4.1, an
AMDP can potentially have a vast number of candidate abstract policies and it
may be the case that very few of them, or even none at all, satisfy the safety
requirements. Therefore, the search process may fail to find a safe abstract policy
in a reasonable amount of time, assuming one exists at all, or those that it does
identify may not be as optimal as it is possible to achieve within the safety
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requirements. This limitation can be ameliorated through the efficient design of
the AMDP: by only including states and transitions that are strictly necessary,
the abstract policy space can be kept to a minimum size. Additionally, using an
appropriate search heuristic can maximise the probability of identifying a suitable
safe abstract policy.
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Chapter 5

Knowledge Revision

The previous chapter detailed the ARL approach whereby an RL solution can
be learned that is guaranteed to meet a set of strict safety requirements. A key
feature of the approach is the use of an AMDP to model the RL problem at
a high level, which can be constructed with limited knowledge of the problem
environment since it is unnecessary to know all low-level details. Furthermore,
using an AMDP makes it feasible to apply QV, since the complete RL MDP is
often too large to be verified in a timely manner, or may not be fully known and
therefore cannot be verified at all.

Whilst it is advantageous to use an AMDP for these reasons, its successful
application has two assumptions. The first is that the model contains all per-
tinent information of the problem environment, i.e. all transitions and rewards
that may influence the safety and optimisation properties of an RL solution. The
second is that all the information used to construct the AMDP is accurate.

If either of these assumptions is not satisfied then safety and/or optimisation
requirements cannot be guaranteed since what the RL agent encounters in the
low-level MDP may not correspond with the AMDP used to generate the safety
constraints. This can result in the agent attempting to perform an action specified
by the abstract policy which it cannot do (e.g. attempting to transition to a state
specified by the abstract policy where no such transition exists in the RL MDP) or
performing an action which has different consequences than is expected (e.g. if the
agent enters into a state that is disallowed by the abstract policy). Furthermore,
if the RL transition probabilities or reward magnitudes are different to what the
abstract policy was verified for then the resulting RL solution may not have the
same safety levels as intended.

To address this problem, this chapter introduces ARL with knowledge revision
(ARL-KR), an approach to automatically update the AMDP model with accurate
knowledge of the RL MDP.
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5.1 Introduction

ARL-KR consists of two algorithms: one for updating the AMDP with accurate
information and one for reusing previously optimised actions, when possible.

The update algorithm is a loop that first invokes standard ARL and attempts
to learn a safe RL solution. If the produced RL solution does not satisfy the
safety requirements as intended, meaning the AMDP used to generate the safety
constraints is incomplete or inaccurate, then the AMDP is amended with up-to-
date information about the RL MDP. This could be acquired by the RL agent
when it explores the MDP, or it may be supplied by external sources, or both.
After updating the AMDP the loop restarts, generating a new set of abstract
policies for safe RL, and eventually terminates once the RL policy is safe or a
maximum search time has elapsed.

Examples of where inaccuracies can arise are if the transition probabilities or
rewards used to construct the AMDP were in fact approximations, or were not
known to exist at all. Additionally, if these attributes change from their initial
values once the system has started, so despite the AMDP being accurate at the
start of the learning process, when the RL agent eventually encounters them they
may no longer be the same.

The action reuse algorithm exhaustively analyses previously attempted ab-
stract policies to identify any high-level actions which also exist in the newly
generated safe abstract policy. Where they are found, meaning that these specific
actions were unaffected by the knowledge update, the low-level MDP state-action
pairs that were previously optimised for these specific high-level options can be
reused as they may still accurately reflect which actions for those states are best.
The output of this algorithm is an ‘initialised’ Q-table for use by the RL agent
with the goal to increasing its learning speed.

ARL-KR can utilise existing techniques such as [77, 104, 105, 106] for ob-
serving transition probabilities and reward magnitudes in stochastic environ-
ments. In this way, ARL-KR is capable of updating the AMDP with new trans-
ition probabilities and reward values from the RL environment; however, it is not
currently possible to update the AMDP to incorporate new states which were ini-
tially unknown and therefore were not included in the AMDP. The inclusion of
new states into the AMDP can potentially require significant restructuring of the
model for which no automatic solutions currently exist.
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Figure 5.1: Flowchart for ARL-KR showing the stages for knowledge revision
(‘Amend AMDP’) and Q-value reuse (‘Initialise Q-values’).

5.2 Approach

The ARL-KR approach is outlined in Figure 5.1. The process starts with stand-
ard ARL by generating a set of Pareto-optimal abstract policies using an AMDP
that is assumed to be correct. A chosen policy is supplied to the Q-value initial-
isation function and also to incremental safe RL. Q-value initialisation searches
all previously attempted abstract policies to see if any Q-values learned for them
can be reused. The resulting partial Q-table, containing any Q-values that can
be reused, is provided to the incremental safe RL process which allows the agent
to start with those Q-values for actions which have previously been optimised.
This provides the agent with a head start since its initial exploration is less ar-
bitrary and can, therefore, identify a fully optimal solution faster. After RL has
finished, the solution is verified empirically to assess its safety levels. If it satis-
fies the requirements then the solution can be deployed and the ARL-KR process
terminates. Alternatively, if the solution is not safe, the AMDP is updated with
up-to-date information. Simultaneously, the abstract policy and the Q-table that
was optimised for it are stored in a cache so they can be reused when possible.

The approach comprises a main update loop and Q-value reuse algorithm,
both of which are detailed below:

Update loop. Algorithm 4 details this process. The algorithm takes as its
inputs the initial AMDP M̄ , a set of safety constraints C and optimisation ob-
jectives O.

When using ARL-KR instead of core ARL, the AMDP needs to be con-
structed slightly differently. The AMDP for ARL assumes that all safety- and
optimisation-relevant transitions and rewards are known in advance and, there-
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Algorithm 4 Iterative update loop for ARL-KR
1: function ARL-KR(M̄, C,O)
2: Policies ← {}
3: do
4: PS = GenAbstPolicies(M̄, C,O)
5: π̄ = selectfrom PS
6: Q = InitQValues(Policies, π̄, M̄)
7: Q∗ = IncARL(π̄, Q)
8: isSafe = EvaluateSafety(Q∗, M̄ , C,O, π̄)
9: if ¬isSafe then
10: Policies← Policies ∪ {(π̄, Q∗)}
11: M̄ ← Observe
12: end if
13: while ¬isSafe ∧ ¬maxSearchTime
14: end function

fore, the AMDP can be refined in such a way that impossible transitions between
states and unnecessary state features can be omitted. By doing this, the model
size is minimised, possibly also the number of parameters needed for an abstract
policy. For ARL-KR, however, the AMDP should be constructed to include po-
tentially redundant transitions between all states, as well as redundant rewards
for transitioning to them. This is to allow updates to occur should it transpire
that certain transitions or rewards do exist that were previously unknown. This
is achieved by creating a transition and associated reward between all states, but
setting their values to zero since assuming they don’t exist in the MDP then they
will have no effect in an abstract policy. However, as updated information about
transitions and rewards in the RL MDP is acquired, if it turns out that certain
transitions or rewards do exist then their respective zero-valued variables can be
adjusted appropriately which may then influence an abstract policy.

As noted in the previous section, though, it is not currently possible for ARL-
KR to include new states into the AMDP since it cannot be done by simply
updating a variable value. This could involve potentially major restructuring
of the model which would require a bespoke AMDP generator for each problem
environment.

Before the loop commences, an empty set Policies is initialised (line 2). This
will cache abstract policies and their optimised RL Q-table each time a learn-
ing run has occurred. Caching optimised Q-tables allows the potential to reuse
optimised Q-values if they are applicable to subsequent abstract policies.

The loop begins by first applying the function GenAbstPolicies (line 4)
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which generates a Pareto front of safe abstract policies, as outlined in Chapter 4.3.
From this Pareto front, a safe abstract policy π̄ is selected (line 5), either by the
human user or picked according to some automated policy selection strategy, for
use to constrain the RL agent in standard ARL fashion. Next, an initialised
Q-table is generated by the function InitQValues (line 6). This function in-
spects all previously tried abstract policies to extract any reusable Q-values from
their respective optimised Q-tables to produce the initialised Q-table Q. This
procedure is detailed in Algorithm 5.

Using the resulting Q-table (which will be arbitrary for the initial iteration
since no Q-values have previously been optimised), the function IncARL is un-
dertaken (line 7) to produce the optimised Q-table Q∗. In contrast to standard
ARL, incremental ARL reoptimises a Q-table each run, instead of starting each
learning run with an arbitrary one. The intention of this is that previously optim-
ised actions can be utilised again, thereby increasing the speed that an optimal
policy is learned.

After a learning run has completed, the safety of Q∗ is evaluated by the
function EvaluateSafety (line 8). This function takes the optimal Q-table
Q∗, the AMDP M̄ , the safety constraints C and optimisation requirements O
and also the abstract policy π̄ that was used in the learning run. The function
checks if Q∗ satisfies the requirements, as well as comparing its safety levels to
that of π̄, and returns a boolean value isSafe as the result. It may be the case that
despite not exactly matching the properties of the abstract policy (i.e. there was
incorrect knowledge in the AMDP) it may in fact still satisfy its requirements.
It is therefore down to the decision of the user what the specific criteria is for
being acceptable or not.

If the optimal policy is evaluated as unsafe (line 9), i.e. isSafe is false, then
Policies is updated to include the attempted abstract policy π̄ and its associated
optimised Q-table Q∗ (line 10). Additionally, the AMDP M̄ is updated with
accurate transition probabilities and rewards using the Observe function.

Model updates include transition probabilities between high-level states and
their rewards. The Observe function does not dictate where new information
is obtained from, as such it may be provided by external sources if applicable.
Alternatively, information can be identified by analysing the effects of the learned
RL policy. This can be done based on techniques such as those described in [77,
104, 105, 106]. For example, the algorithm introduced in [77] for automatically
deriving a potential function [81] can be simplified so that it is only used to update
the transition and reward function of the AMDP, without the further step of
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solving it. This algorithm samples high-level actions in the RL environment and
stores a running average of the rewards received and transition probabilities across
the low-level MDP states that are encountered. Provided a suitable number of
samples are taken then the observed transitions and rewards converge to their
correct values. In this way, each high-level action specified by the abstract policy
constraint can be sampled and the AMDP updated accordingly.

Finally, the loop restarts and continues until either the RL policy evaluates
as being safe, or until a maximum search time has elapsed indicating that no safe
policy may exist at all.

Q-value initialisation. It is possible that useful behaviour can be incorporated
into the RL agent through Q-value initialisation [89], instead of the agent starting
with initially arbitrary behaviour. Algorithm 5 details how Q-values which have
been optimised in previous safe RL attempts can be reused in the form of an
initialised Q-table.

Algorithm 5 Q-value initialisation using previously optimised Q-tables
1: function InitQValues(Policies, π̄′, M̄)
2: Initialise Q arbitrarily
3: for (π̄, Q∗) ∈ Policies do
4: for all transitions t allowed by π̄ do
5: for all transitions t′ allowed by π̄′ do
6: if t = t′ then
7: identify source abstract state s̄ from t
8: for all low-level states s in s̄ and all actions a in A do
9: Q(s, a) = Q∗(s, a)
10: end for
11: end if
12: end for
13: end for
14: end for
15: return Q
16: end function

The input to the algorithm is the set Policies containing the abstract policies
and their respective Q-tables that were cached in Algorithm 4. In addition, the
newly chosen abstract policy π̄′ is provided as well as the AMDP M̄ . The goal
is to identify any transitions allowed by the newest policy which have also been
allowed in any previous policy.

The algorithm starts by initialising a Q-table Q arbitrarily (line 2). Note
that this, unaltered arbitrary Q-table will be returned in the first iteration of the
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update loop (Algorithm 4, line 6) since by this point Policies is empty so no
Q-values could be initialised with previously optimal values. Following this are a
series of nested loops to identify which transitions are common to any previous
abstract policy and the newest one to be tried.

The outermost loop (line 3) iterates over each previously tried abstract policy
π̄ and its respective optimised Q-table Q∗ contained in Policies. This loop is
necessary since it may be the case that many iterations of Algorithm 4 have
occurred, producing N > 1 number of Q-tables, each potentially containing re-
usable Q-values. A second, inner loop (line 4) then iterates over each transition t
allowed by the abstract policy π̄, where a transition is allowed if T̄

(
s̄, π̄(s̄), s̄′

)
> 0

for any s̄, s̄′ ∈ S̄. Equally, the innermost loop (line 5) iterates over each transition
t′ allowed by the current abstract policy π̄′.

At line 6, transition t is compared to transition t′ to see if they match, i.e.
that the source state s̄, target state s̄′ and option ā are equal, although the exact
transition probabilities are ignored. If the transitions do not match then no Q-
values can be reused. Alternatively, if the transitions are the same, then the
Q-values for the low-level states which map to s̄, the source state of both t and
t′, are intuitively still useful action values for the states in that transition of the
new policy. Shown in lines 8 and 9, the Q-values for every RL MDP state s that
is in s̄ and for all actions a in the MDP action set A are taken from the optimal
Q-table Q∗. These are used to update Q that was initialised in line 2.

Once all Q-tables have been iterated over, and all reusable Q-values found,
the initialised Q-table is returned in line 15.

The Q-values that are reused for this Q-table are not necessarily optimal with
respect to a fully optimised Q-table within the new constraints. However, when
followed by the agent, they increase the likelihood that the agent will choose a
useful action and spend less time exploring actions which are not useful.

5.3 Evaluation

We evaluated ARL-KR using our two case studies from Chapter 4.4: the guarded
flag collection and assisted-living system environments. For brevity, the details
of these problem environments will not be repeated here. The areas we evaluated
were: (i) if Algorithm 4 can successfully be used to automatically arrive at a safe
RL solution from an initially incorrect AMDP; and (ii) if the Q-value initialisation
approach from Algorithm 5 can improve the speed at which an agent will learn
a safe solution in subsequent learning runs.
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For each case study we constructed an AMDP which contained some incor-
rect information relative to its RL MDP counterpart. The incorrect information
included up to four randomly selected state transition probabilities which were
adjusted using a Gaussian distribution curve. We also varied the rewards con-
tained in each environment. However, given the bespoke nature of rewards in
each RL problem, these were adjusted for each specific environment. The details
of these reward adjustments are given in each case study.

For the purposes of our second evaluation criterion, i.e. the effect of the Q-
value initialisation algorithm, the RL stage of the update loop was run twice.
One run had standard RL occur, starting with an arbitrary Q-table, and the
other utilised the initialised Q-table generated from Algorithm 5. The properties
of each learning run were compared once the experiment finished.

All RL experiments started with parameters that are the same as those that
were specified in Chapter 4.4; however, there was additional experimentation to
see how Q-value initialisation can be optimised with different exploration and
learning rates. The details of which are specified where appropriate.

ARL-KR was evaluated using this approach 30 times to ensure statistical sig-
nificance of the results [102], where each experiment was configured with different
knowledge. Since each experiment typically generated a unique abstract policy
after knowledge revision had occurred, the learning curves, i.e. the expected re-
wards attained by the agent, are not necessarily the same between experiments:
one abstract policy in one experiment may yield a greater or smaller reward than
another abstract policy for another experiment. Therefore, so that the results can
be collated, after each experiment the learning progress was normalised between
the maximum and minimum expected rewards across all experiments.

5.3.1 Guarded Flag Collection

For this evaluation we have further modified the environment from that intro-
duced in Chapter 4 so that all adjacent areas have a doorway connecting them,
as well as allowing them all to potentially be guarded by cameras. This is to
allow a greater ranger of changes to be made in the environment. The transition
probabilities between these areas, i.e. the probability that entering into a new
area of the environment would result in being detected, was varied in each ex-
periment. Additionally, for each experiment, the value of up to two, randomly
selected rewards (i.e. flags) were adjusted using a Gaussian distribution.

The modifications to the guarded flag collection AMDP, first constructed in
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Chapter 4, required to accommodate changes in knowledge is shown below in
PRISM Language 4.

The original doorway capture probabilities from the unadjusted AMDP ap-
pear on lines 7 to 10. To accommodate all new possible transitions for the new
doorways, the probabilities on lines 11 and 12 (and more not shown) are intro-
duced. Since these represent the probability of capture, and hence the probabil-
ity of passing a doorway is 1−capture probability, setting their initial values to
1 means the probability of transitioning to the next area is actually 0, i.e. these
doorways are initially assumed to not allow moving to that area. Of course, this
does mean that attempting the transition will result in capture with a probability
of 1, but any policy attempting this transition will be rejected during the safety
verification stage of ARL and so will not interfere when generating safe abstract
policies and creating safe action constraints from them.

Lines 15 to 20 are new to the PRISM model. These represent the values that
each of the flags are worth. Originally, as shown in PRISM Language 2, all flags
were assigned a constant value of 1 in the reward structure. Now, shown starting
from line 37, the transition reward for finishing uses the reward variables for the
reward values.

Contrasting with the original model, the areas which formerly only had one
doorway (i.e. RoomA, RoomB and RoomE) can now all have two or more. This
means that they can no longer use simple commands such as the example shown
in Chapter 4.4.1. Now, they must be restructured in the same style as all the
other commands shown in PRISM Language 2. Examples of these modified
commands are shown starting on lines 25 and 29, where the guards for being in
RoomA now include flag combinations and also the new action parameter t (for
the specific flag combination shown: t1). When the parameter value is set to 1
then the transition will lead to HallA with probability 1-p1 or be captured with
probability p1. When the value is 2 then the transition will lead to RoomB with
probability 1-p5, collecting FlagB in the process, or instead be captured with
probability p5.

The use of variables for reward values and transition probabilities (even if they
are ultimately not used or changed) makes the process of updating the AMDP
with new information a simple task.
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PRISM Language 4: ARL-KR guarded flag collection AMDP extracts
1 dtmc
2

3 const int t1;
4 const int t2;
5 ...
6

7 const double p1 = 0.06; // RoomA <-> HallA
8 const double p2 = 0.05; // HallB <-> RoomB
9 const double p3 = 0.05; // RoomC <-> HallB

10 const double p4 = 0.07; // RoomC <-> RoomE
11 const double p5 = 1; // RoomA <-> RoomB
12 const double p6 = 1; // HallA <-> HallB
13 ...
14

15 const double rewardA = 1;
16 const double rewardB = 1;
17 const double rewardC = 1;
18 const double rewardD = 1;
19 const double rewardE = 1;
20 const double rewardF = 1;
21

22 module guarded_flag_collection_modified
23

24 ...
25 [] !captured & position=1 & t1=1 & !flagA & !flagB & !flagC
26 & !flagD & !flagE & !flagF -> (1-p1):(position'=0)
27 + p1:(captured'=true);
28 ...
29 [] !captured & position=1 & t1=2 & !flagA & !flagB & !flagC
30 & !flagD & !flagE & !flagF ->
31 (1-p5):(position'=2)&(flagB'=true) + p5:(captured'=true);
32 ...
33

34 endmodule
35

36 rewards "all_flags"
37 [end] true : (flagA ? rewardA : 0) + (flagB ? rewardB : 0)
38 + (flagC ? rewardC : 0) + (flagD ? rewardD : 0)
39 + (flagE ? rewardE : 0) + (flagF ? rewardF : 0)
40 + (position=6 ? 1 : 0);
41 endrewards
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Using this modified AMDP, 30 experiments were conducted in which ARL-
KR was able to update the AMDP and identify a new safe abstract policy to
successfully produce a safe RL policy for 26 experiments. For the 4 experiments
where ARL-KR was unable to produce a safe RL policy, after extensive policy
generation and verification of the AMDP using standard ARL no safe policy
could be found. This means that either no safe policy existed at all, or that the
number of safe policies in the entire policy space was very small and one could
not be found within the allowed search time. This is a known limitation of ARL
that is discussed in Chapter 4.6. Of the 26 where ARL-KR was successful, 16
required just one update iteration, 7 required two iterations and 3 required three
iterations.

A point to note is that those experiments requiring multiple update itera-
tions generated increasingly useful Q-tables with each iteration, since there was
a greater number of previously optimised Q-tables from which to extract Q-
values. Therefore, the agent started with increasingly better behaviour after
each iteration.

When comparing Q-value initialisation to RL with an arbitrary Q-table, we
found that the best results were achieved by slightly reducing the exploration
factor and learning rate compared to those experiments with an arbitrary Q-table,
from 0.6 to 0.5 and 0.1 to 0.07, respectively. When using the same parameters
from the standard RL experiments using arbitrary Q-values, the benefits of the
initialised Q-table were reduced since the agent had a tendency to disregard this
knowledge in favour of more exploration. Combined with a higher learning rate,
this increased the likelihood of initialised Q-values being updated with values
that did not accurately reflect the benefit of the actions in the long term. For
example, when an initialised Q-value had the agent go through a doorway which
risked being captured, if the agent were captured, receiving a reward of −1, then
the Q-value could be updated to the extent that it no longer were the optimal
action (at least temporarily) despite being optimal in the long run.

Across all experiments where ARL-KR succeeded in finding a safe RL solution,
the average time required to generate an initialised Q-table was 6.9 seconds. The
average time taken to complete a learning run with Q-value reuse was 180 seconds
and the time without was 204 seconds, saving 24 seconds, i.e. an 11.8% overall
speed increase. This is since in the early episodes the agent is able to reach the
goal area in fewer time steps due to its actions being less arbitrary. Figure 5.2
shows the learning progress of 30 separate experiments.
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Figure 5.2: Learning progress for the guarded flag collection when using in-
cremental ARL with Q-value initialisation and standard ARL with an initially
arbitrary Q-table.

The blue-shaded area between the two plots shows the efficiency increase
for learning that Q-value initialisation produces. In this case study, the initial
expected reward cumulated by the agent when learning with initialised Q-values
is approximately 50% greater that learned from arbitrary Q-values. Throughout
the learning run, initialised Q-values result in a higher expected reward compared
to arbitrary Q-values at the same number of episodes.

This increase diminishes towards the end of the learning run since the benefit
of Q-value initialisation is most prominent at the start, where the agent would
otherwise behave entirely randomly. As the agent converges on an optimal solu-
tion, increasingly fewer actions need optimising and the benefits of the initialised
Q-values diminishes. However, the initial head start is highly advantageous in
time-critical systems where it is important to have a solution as quickly as pos-
sible. If it is not essential that the solution is completely optimal, or if there
is not enough time to learn completely optimal solution, Q-value initialisation
allows a solution to be learned that is more optimal than what would be learned
otherwise in the time allowed.
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5.3.2 Assisted-Living System

For this environment, the potential transition probabilities to vary were those
between progress levels, both for when a prompt was given, or not, to reach
them. In this particular environment there are three rewards, however, two of
them are arbitrary in their magnitude: a large punishment is needed for calling
the caregiver (which the agent will otherwise learn to do immediately) and a large
positive reward for finishing the task is necessary simply to motivate the agent
to provide any prompts (otherwise it will do nothing at all). The magnitudes of
these rewards do not need to be specific and simply need to be large. Therefore,
the adjustment of these rewards has little bearing on the quality of a solution with
respect to how many prompts are given and, as a result, randomly adjusting them
is of no benefit to this case study. The remaining reward, −1 for each prompt
given, was adjusted so that its magnitude varied at each level of progress (e.g.
if the user particularly struggles with one stage of the task, so a prompt is less
unwelcome, or if they are quite adept at another stage, so would be irritated by
a prompt).

For this experiment, only minor modifications of the original PRISM AMDP
from PRISM Language 3 were needed to allow knowledge revision to occur. Since
all the possible state transitions already exist as variables, the model structure
needs no alteration. The only necessary change is to the reward structure: in-
stead of always returning a fixed value of 1, variables for each prompt reward
were created and used in the reward structure. These changes are shown in
PRISM Language 5. As with the modified AMDP for the guarded flag collec-
tion, the reward variables start with a value of one, since initially we can only
assume these values are correct until new information is acquired. If these re-
wards are determined to be inaccurate they can be easily adjusted when updating
the AMDP.

In this case study, ARL-KR was able to produce a safe RL policy in all 30 of
the experiments. This is unsurprising when considering the number of potential
safe policies that were found for this particular environment in the case study
from Chapter 4.4 (Figure 4.7). In this particular case study, though, none of the
experiments required more than one update iteration, where all necessary updates
were achieved in a single iteration. This can be explained since the constraints on
the agent do not prevent it from exploring any of the stages in the environment.
This is in contrast to the guarded flag collection case study, where the constraints
on the agent prevented it from exploring certain areas and therefore it did not
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encounter certain rewards and transitions in the initial run, only discovering them
(and therefore updating the AMDP, if necessary) in additional runs.

PRISM Language 5: ARL-KR assisted-living system AMDP extracts
1 dtmc
2

3 ...
4

5 const double prompt0Reward = 1;
6 const double prompt1Reward = 1;
7 const double prompt2Reward = 1;
8 const double prompt3Reward = 1;
9 const double prompt4Reward = 1;

10 const double prompt5Reward = 1;
11 const double prompt6Reward = 1;
12 const double prompt7Reward = 1;
13 const double prompt8Reward = 1;
14 const double prompt9Reward = 1;
15 const double prompt11Reward = 1;
16 const double prompt12Reward = 1;
17

18 ...
19

20 rewards "distress"
21 s=0 : m >= prompt0 ? prompt0Reward : 0;
22 s=1 : m >= prompt1 ? prompt1Reward : 0;
23 s=2 : m >= prompt2 ? prompt2Reward : 0;
24 s=3 : m >= prompt3 ? prompt3Reward : 0;
25 s=4 : m >= prompt4 ? prompt4Reward : 0;
26 s=5 : m >= prompt5 ? prompt5Reward : 0;
27 s=6 : m >= prompt6 ? prompt6Reward : 0;
28 s=7 : m >= prompt7 ? prompt7Reward : 0;
29 s=8 : m >= prompt8 ? prompt8Reward : 0;
30 s=9 : m >= prompt9 ? prompt9Reward : 0;
31 s=11 : m >= prompt11 ? prompt11Reward : 0;
32 s=12 : m >= prompt12 ? prompt12Reward : 0;
33 endrewards

106



5.3. EVALUATION

Once again, we found that reducing the exploration and learning rates from
0.5 and 0.1, which we used in the standard RL with an arbitrary Q-table, to 0.3
and 0.05, respectively, improved the effect of the Q-value initialisation.

For the 30 experiments it took an average of 441 milliseconds to initialise the
Q-values. The average length of a run with Q-value initialisation was 141 seconds
and the average without was 156 seconds. This is a 15 second decrease in time,
meaning a 9.6% increase in speed to reach an optimal solution. The results of
learning with and without Q-value initialisation are shown in Figure 5.3.

300

320

340

360

380

400

420

440

460

Ex
pe

ct
ed

re
wa

rd

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·106Number of episodes

Q-value initialisation
Arbitrary Q-values

Figure 5.3: Learning progress for the assisted-living system when using incre-
mental ARL with Q-value initialisation and standard ARL with an initially ar-
bitrary Q-table.

As seen in the blue-shaded area, initialising Q-values improves the quality of
the agent behaviour from the start and at all stages of the learning run, most
notably in earlier episodes. Although the improvement diminishes towards the
end of the learning run, the initial gains are significant for a time-critical system.
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5.4 Summary

ARL with knowledge revision (ARL-KR) extends ARL by enabling ARL to auto-
matically update its AMDP should it contain inaccuracies, either included at
design time or having developed over time as the system changes from its ini-
tial state, which can cause an ARL solution to fail to satisfy its requirements.
Furthermore, ARL-KR utilises a novel algorithm for Q-value initialisation to ex-
tract reusable actions from previously optimised Q-tables to improve the speed of
subsequent learning runs through incremental ARL. ARL-KR decreases the need
for manual intervention when model inaccuracies are present and also reduces
the time required to recover from them, increasing the applicability of ARL in
real-time systems.

In two case studies we show how:

1. The ARL-KR approach can be used successfully to automatically recover
from an inaccurate AMDP which can cause an RL solution to violate its
intended safety requirements;

2. Q-value initialisation, by extracting previously optimised Q-values, can
speed the learning process, which for time-critical systems where a solution
is needed as quickly as possible, even if not entirely optimal, is a significant
advantage.

However, as experienced in the guarded flag collection case study, ARL cannot
always identify a safe solution if the existence of one is rare or absent.

For best results when using ARL-KR we found that decreasing the exploration
and learning rates can motivate the agent to rely more on the actions provided to
it in the partial Q-table. However, the magnitude of which should be determined
empirically for each problem domain, since some domains may allow significantly
more or less Q-values to be reused, i.e. if safe abstract policies differ a little or a
lot. In the former case, smaller values for the exploration and learning rates may
prove beneficial, and the opposite in the latter case.

The ARL-KR algorithm has the limitation that updates can only occur when
they are related to states which are known, or assumed, to exist and therefore
feature in the AMDP. To update an AMDP to include new states currently
must be done manually, since it can mean changes to the model as a whole
and at present no automatic techniques to do this exist. Therefore, updates are
limited to changes in rewards and transition probabilities of entering states that
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are at least assumed to exist. A limitation of the Q-value reuse algorithm is
that it is only applicable to learning techniques where Q-values have a tabular
representation (i.e. a Q-table); it is not applicable with function approximation
learning algorithms.
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Conclusion

This thesis has addressed the significant limitation of RL that the AI technique
cannot provide assurances that a solution it produces can be trusted as safe.
Specifically, the behaviour learned by a traditional RL agent can lead to violations
of strict safety, regulatory, legal or ethical requirements. This limitation has
prevented RL from being utilised in the domain of safety- and mission-critical
applications where it is essential that agent behaviour will not risk harm to
humans or damage to itself and other systems.

Whilst several techniques have been proposed to mitigate this limitation (as
discussed in Chapter 3), these techniques are mostly unable to provide guar-
antees that strict safety requirements will be satisfied and instead produce a
solution which is ‘generally safer’. Those techniques which are able to assure
safety typically involve significant and unnecessary reductions to the optimality
of the solution.

The ARL technique developed by this project overcomes these obstacles by
using formal verification techniques to provide RL solutions which will satisfy
a broad range of strict safety requirements, as well as achieve desired levels of
solution optimality in the same manner. Furthermore, the extension ARL-KR
allows new and up-to-date information to be incorporated so that RL safety can
be assured if initial information used to generate the safety constraints proves to
be inaccurate, incomplete or has changed since it was first observed. Finally, the
ARL technique is highly generalisable; its use is not limited to any specific prob-
lem domains since its only requirement is partial knowledge of the environment
so that a high-level model can be constructed.

The following sections outline the contributions by this project, the limitations
of the ARL technique and areas of future work to be done.
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6.1 Contributions

The main contribution of this thesis is the ARL safe reinforcement learning ap-
proach, detailed in Chapter 4. ARL is a technique for providing assurance that
an RL solution will satisfy strict safety requirements.

To this end, ARL builds an abstract representation of the RL environment
in the form of an AMDP. This requires only partial knowledge of the problem
environment. Specifically, this knowledge is the transition probabilities and re-
wards that influence the safety and optimality of a solution. This model is then
formally analysed using QV to identify a Pareto-optimal set of abstract policies
which satisfy a set of safety and optimisation requirements. These requirements
are specified using PCTL temporal logic. A user manually selects an abstract
policy from this set which suitably compromises between optimisation and safety
levels. Safe abstract policies are used to constrain the RL optimisation process
so that the low-level policies learned by the agent will not involve visiting states
identified as unsafe at a high-level. This is achieved by disallowing actions by
the RL agent which will result in transitioning to MDP states that do not map
to high-level safe states from the abstract policy. These constraints are enforced
during learning and become part of the final policy learned by the agent. When
evaluated, the learned policy matches the levels of safety that were verified for
the abstract policy.

The use of QV gives ARL the significant advantage over most other safe RL
techniques that safety is formally assured and therefore results are guaranteed
to be correct. The use of temporal logic to express safety and optimisation
requirements is a further advantage of ARL over other techniques. This feature
allows ARL to support a broad range of complex and specific requirements, in
contrast to other safe RL techniques where safety is loosely defined in terms of
rewards, or where MDP states must be explicitly labelled as ‘safe’ or ‘unsafe’.

The second contribution of this thesis is ARL-KR (Chapter 5), an extension
of the core ARL technique to allow knowledge revision for the AMDP if the
RL solution has unintended safety levels, demonstrating that the AMDP was
constructed using inaccurate or incomplete information. ARL-KR allows the
AMDP to be updated with up-to-date knowledge and subsequently a safe RL
policy can be identified. This important extension allows ARL to be used for
problems where it may not be possible to identify all pertinent information of
the problem environment prior to learning, or for problems whose environment
is subject to change from what it was initially. In this way, ARL-KR allows
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the potential for ARL to be used in systems where it may become necessary to
generate new constraints as the system evolves.

Third, a new algorithm for Q-value initialisation is introduced in Chapter 5
to allow Q-value reuse. Should it be necessary that ARL-KR must be employed
to update the AMDP, this requires that at least one subsequent learning run be
undertaken to optimise an RL solution within the updated safety constraints. In
some situations, the previously tried abstract policy may overlap with the new
safe abstract policy, i.e. there are common transitions allowed by each. When this
is the case, it is inefficient that the RL agent must completely relearn the actions
which correlate with these abstract transitions, if it has previously learned them.
Therefore, the Q-value reuse algorithm iterates over all previously attempted safe
abstract policies and their respective optimised Q-tables to identify any Q-values
for state-actions which are safe according to the newest abstract policy. The
Q-values that are identified to still be usable can be copied into an unoptimised
Q-table to be used to initiate the RL agent. This reuse of previously optimised Q-
values increases the probability that the agent will choose the optimal safe actions
during the subsequent learning process, thereby increasing the speed which it can
arrive at an optimal solution.

Fourth, two new case studies are introduced, each from a different class of
problems commonly used to evaluate ARL. These case studies are designed to
expose the agent to risk so that they can be used when evaluating safe RL tech-
niques. The first case study is a navigation task, based on the RL benchmark
flag collection environment [3], where an agent must navigate a two-dimensional
environment to collect flags contained in certain areas. We have modified the
environment so that entering and exiting certain areas involves a risk of being
detected by an adversary, which results in failure. The goal of the agent is to
collect as many flags as possible whilst minimising the risk of being detected,
goals which oppose one another. The second case study is a planning problem,
based on an assisted-living system [54], where an RL agent must adapt to the
preferences of a person suffering from dementia so that it gives helpful prompts to
guide the person through the everyday task of washing their hands. The system’s
goal is to minimise the need for a human caregiver to assist, in order to alleviate
their duties, but also minimise the number of prompts it provides to guide the
user, which could become stressful to them.

Finally, we demonstrate through extensive evaluation using the two case stud-
ies the effectiveness of ARL and ARL-KR. We show that ARL is able to generate
and successfully enforce safety constraints so that a safe RL policy is learned that
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will match the safety levels verified for the constraints. For ARL-KR we demon-
strate how an AMDP can be updated to accurately reflect the RL environment
to produce a safe RL policy and that the use of Q-value initialisation to reuse
previously optimised actions can speed up the learning process by the RL agent.

6.2 Limitations

For ARL to be used successfully, some knowledge of the problem must be known
in advance. If no knowledge of the problem is known at all then it is not pos-
sible for ARL to assure any safety requirements. Furthermore, some effort is
required to construct an AMDP from this partial knowledge. Whilst the use
of ARL-KR can ameliorate the task of ascertaining the necessary knowledge of
the problem, and the introduction of an automatic AMDP generator (discussed
under future work) could minimise the effort required to construct the AMDP,
it is unavoidable that some knowledge and effort will be required for ARL to be
applied successfully.

Depending on how the AMDP is constructed, ARL can be limited by the
number of possible abstract policies since the size of the abstract policy space
increases with the size of the AMDP. For example, an abstract policy for our
guarded flag collection AMDP contains a parameter for each state of the AMDP
and the number of values each parameter can have is equal to the number of
possible transitions out of that state. Therefore, the number of possible policies
(i.e. for all possible combinations of parameter values) increases exponentially as
the number of states and transitions increases. This becomes a problem if only
a small proportion of abstract policies are safe, which can mean that the search
process spends significant time verifying policies which are unsafe. If the number
of possible policies is very large and the number of safe policies is very small,
this can result in the search process reaching a maximum search time without
finding any safe policies. In this situation it is not possible to know whether
there are no safe policies at all, or if one could be found after extensive searching.
Furthermore, even though a safe policy may be found, it may be that there are
other optimal policies which have significantly better levels of optimality than
what was found within the allowed search time. This problem can be mitigated
by using metaheuristics such as genetic algorithms like in EvoChecker [99]; they
have a proven track record of supporting effective search within extremely large
search spaces.

The knowledge that can be revised during ARL-KR is limited to transition
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probabilities and rewards for states that are known, or at least assumed, to
exist. It is not currently possible for ARL-KR to update the AMDP with new
states that may be discovered after the AMDP has been constructed. Since ARL
does not automatically build the AMDP, the inclusion of new states requires
manual intervention. Introducing new states to the model can require significant
restructuring of the AMDP and as a direct consequence the format of the abstract
policies may change. Therefore, this is not something that can be automatically
achieved by ARL-KR at present. As discussed below as a direction of future work,
this problem could be resolved by the use of an automatic AMDP generator.

6.3 Future Work
There are several areas where research into ARL can be extended and continued.

6.3.1 Extending the use of ARL to Runtime
ARL and ARL-KR are used under the assumption that the problem environment
and requirements do not change after a safe RL solution has been produced. How-
ever, in many real-world problems these assumptions are not the case. Therefore,
in the preliminary research carried out by the author of this thesis, in [5] an ar-
chitecture is proposed (Figure 6.1) to enable ARL to be used at runtime to
accommodate environment or requirement changes.

The architecture comprises two main functions: an intelligent autonomous
function, utilising an RL solution, and a (potentially suboptimal) automatic
function as its backup. Each time an autonomous system based on this ar-
chitecture takes an input from the environment, requiring an action output, the
current safety constraints are verified against the requirements and AMDP. This
reverification is necessary since the safety or optimisation requirements of the
system may have been redefined, or the AMDP may have been updated. Should
verification determine that the safety constraints hold safe then the autonomous
function can be allowed to provide an action to perform. Alternatively, if the
constraints are verified as unsafe, the autonomous function is substituted with
the automatic function which provides an action that is known to be safe, albeit
one that is suboptimal.

Whilst the automatic function is being utilised, ARL with Q-value initialisa-
tion can run in the background to learn a new RL policy for the autonomous
function. When a safe RL policy has been learned it can be deployed and the
autonomous function can be reinstated.

An assumption is that the automatic function is capable of producing an

115



CHAPTER 6. CONCLUSION

action in every state which is known to be safe. For example, in the assisted-
living system case study, a safe behaviour in any state would be to call the
caregiver. In the guarded flag collection case study, a safe behaviour may simply
to wait until the autonomous function is usable again, or, if in HallA, HallB or
RoomD, the agent can safely proceed to the exit.

The architecture is based on the monitor-analyse-plan-execute control loop
from [107] which is designed to allow computer systems to automatically manage
themselves. For ARL, this can be applied in the following manner:

1. Monitor – In this stage, information about the environment is continu-
ously received and the AMDP is updated when necessary. Examples of
such changes include transition probabilities (e.g. due to changes in the en-
vironment, impacting the performance of the system) or rewards involved
with certain actions (e.g. if energy reserves are low and certain behaviour
should be limited, incurring a lesser reward than usual, or maybe a pun-
ishment). In addition, safety requirements are monitored in case changes
to them affect the safety levels of the system.

2. Analyse – Using the potentially updated AMDP and PCTL requirements
from the monitoring stage, and the currently employed safety constraints,
the properties of the AMDP are verified using QV to determine if the safety
requirements are still satisfied. If safety violations are detected then the
autonomous function (which operates under the now unsafe safety con-
straints) is disabled and control of the system temporarily transferred to
the automatic function.

3. Plan – When violations of the safety requirements are detected then it is
necessary to identify new safety constraints. This is done in the planning
stage, where new safe abstract policies are synthesised. Depending on the
urgency of utilising up-to-date safety constraints, either a Pareto front of
safe policies can be generated over some period of time, allowing a domain
expert to choose the policy most appropriate, or in a time-critical situation
the first identified safe policy can be automatically chosen.

4. Execute – Once a safe abstract policy has been selected, the system can
then learn a new RL policy for the constraints. After learning has com-
pleted, the automatic function can be disabled and the now-safe RL policy
can be supplied to the autonomous function so its use can be resumed.
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Figure 6.1: Architecture for an autonomous system using ARL at runtime.

The autonomous function and QV (red box) are initialised with safety con-
straints which have been identified before the system is operational. Once oper-
ational, real-world information continuously updates the AMDP, the PCTL re-
quirements (amber boxes) and the safe RL environment (green box)—this forms
the monitor stage of the architecture.

The analyse stage utilises a safety switch to alternate control between the
autonomous and automatic functions. The operation of the switch is based on
the result of verification. If QV verifies that the autonomous function is now
unsafe then it triggers the switch over to the automatic function, simultaneously
invoking the process of searching for new safety constraints for ARL (blue box).

Once a safe policy has been selected it is relayed back to the safety analyser so
that it knows what actions the autonomous function is capable of. Additionally,
it is also executed to constrain the safe RL process. When the new safe policy
has been fully optimised it is used to update the autonomous function. Further-
more, the safety analyser is informed that the autonomous function can now be
reinstated, discontinuing the automatic function.

This work on a preliminary runtime architecture for ARL, carried out to
initiate the adoption of the project results in the autonomous systems domain,
needs further work. First, a means of creating an automatic function is required,
possibly based on an ergodic solution as discussed in Chapter 3.2.1. Second, a
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technique is required for switching agent behaviours whilst it is operating in the
environment. Lastly, an evaluation of the architecture in a case study to see if the
agent can maintain safety when its environment and/or requirements regularly
change.

6.3.2 Other Future Work Directions

Automating AMDP generation. This functionality would be particularly
useful to incorporate into ARL since a significant step of ARL is to construct an
AMDP from limited details of the problem. Currently, this requires a domain
expert who is skilled with the PRISM modelling language (or an equivalent lan-
guage which supports quantitative verification). Depending on how much detail
of the problem is required to ensure that safety constraints are effective, and
how the problem is structured, the resulting AMDP can become cumbersome
(in terms of lines of code) and/or complex if commands use multiple variables
and produce multiple updates. Furthermore, depending on how abstract policy
parameters are defined, the number of commands in the model can significantly
increase the space of possible abstract policies. Therefore, it is beneficial to design
the AMDP with the goal to keep it as small as possible to minimise the number
of possible policies.

To automatically generate this AMDP would significantly simplify this step,
removing the need for an expert to construct the AMDP as well as to ensure
the model is designed efficiently to keep the abstract policy space as small as
possible. Additionally, this would increase the abilities of ARL-KR, since it is
currently limited to updating transitions and rewards for states that are assumed
to exist. ARL-KR cannot currently include new states into the model since this
could require significant restructuring of the AMDP.

Existing research in this direction appears in [108, 109, 110, 111] which in-
troduce techniques for automatically abstracting actions and states from an RL
environment. These techniques could form the basis of an AMDP generator,
although, additional work is necessary to express the abstractions in a PRISM
compatible format.

Requirement synthesis from plain English descriptions. In addition to
building the AMDP, the domain expert is also needed to translate the safety
requirements to PCTL formulae. This necessary process potentially risks the
expert misinterpreting requirements from the user and is also a bottleneck in
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the usability of ARL. Even though the domain expert may not be required to
modify the AMDP once it has been constructed, they are still needed afterwards
should the user wish to experiment with different safety requirements beyond
those defined at the initial use of the ARL system.

A significant step towards automatic formulae synthesis that can be adapted
for this ARL extension appears in [112], which introduces the tool ProProST to
synthesise commonly occurring PCTL formulae from plain-English descriptions.
Research is ongoing towards an all-encompassing catalogue of property patterns
[113] which potentially could be used to automate ARL property specification.

Abstract policy reuse. Depending on the proportion of safe abstract policies
in the entire policy space, searching for them can be a time consuming process.
This is most significant in the ARL-KR algorithm, which may require multiple
searches for safe abstract policies.

If an AMDP update is only minor, it would be beneficial to make accordingly
minor adjustments to an existing abstract policy to accommodate the change,
instead of restarting the potentially expensive process of searching for new safe
abstract policies from scratch.

A possible solution could involve identifying which parameters of a previously
generated abstract policy are affected by updates and which are not. Then, in a
similar fashion to the Q-value reuse algorithm, it could be possible to fix those
parameters which are unaffected and to focus the search process on only those
parameters which will now cause safety violations.

Large scale evaluation. An evaluation of ARL in larger environments with
more complex safety requirements would be beneficial to assess the extent to
which ARL can feasibly be scaled. Although ARL is not limited to any specific
problem domains, if a problem has a large state dimensionality, even if the AMDP
is significantly smaller than the RL MDP, it may still be large enough that it
becomes impractical to verify in a reasonable space of time.

Recent benchmark experiments devised for deep learning, such those discussed
in [114], could be useful for establishing the capabilities of ARL.
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PRISM AMDP for the Guarded Flag
Collection

1 dtmc
2
3 //// Indexes of action to take:
4 // w = action in HallA (1, 2 or 3): 1 = go to RoomA and get FlagA;

2 = go to RoomD and get FlagD; 3 = go to HallB.
5 // x = action in RoomC (1 or 2): 1 = go to HallB; 2 = go to RoomE

and get Flags E and F.
6 // y = action in RoomD (1 or 2): 1 = go to Goal; 2 = go to HallA.
7 // z = action in HallB (1, 2 or 3): 1 = go to HallA; 2 = go to

RoomB and get FlagB; 3 = go to RoomC and get FlagC.
8 const int w1;
9 const int w2;

...
71 const int w64;
72 const int x1;

...
135 const int x64;
136 const int y1;

...
199 const int y64;
200 const int z1;

...
263 const int z64;
264
265 //// Camera probabilities:
266 const double p1 = 0.06; // HallA <-> RoomA
267 const double p2 = 0.05; // HallB <-> RoomB
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268 const double p3 = 0.05; // RoomB <-> HallC
269 const double p4 = 0.07; // RoomC <-> RoomE
270
271 module guarded_flag_collection
272 position: [0..8] init 0; // 0 = HallA (Start); 1 = RoomA;

2 = RoomB; 3 = RoomC; 4 = RoomD; 5 = RoomE; 6 = Goal;
7 = HallB; 8 = Absorbing state.

273 // Flag variables (false = not collected; true = collected)
274 flagA: bool init false;
275 flagB: bool init false;

...
279 flagF: bool init false;
280 captured: bool init false; // agent captured
281
282 // Transitions from HallA
283 [] !captured & position=0 & w1=1 & !flagA & !flagB & !flagC

& !flagD & !flagE & !flagF -> (1-p1):(position'=1)
& (flagA'=true) + p1:(captured'=true);

284 [] !captured & position=0 & w2=1 & !flagA & !flagB & !flagC
& !flagD & !flagE & flagF -> (1-p1):(position'=1)
& (flagA'=true) + p1:(captured'=true);

285 [] !captured & position=0 & w3=1 & !flagA & !flagB & !flagC
& !flagD & flagE & !flagF -> (1-p1):(position'=1)
& (flagA'=true) + p1:(captured'=true);

...
346 [] !captured & position=0 & w64=1 & flagA & flagB & flagC

& flagD & flagE & flagF -> (1-p1):(position'=1)
& (flagA'=true) + p1:(captured'=true);

347 [] !captured & position=0 & w1=2 & !flagA & !flagB & !flagC
& !flagD & !flagE & !flagF -> (1-p5):(position'=4)
& (flagD'=true) + p5:(captured'=true);

...
411 [] !captured & position=0 & w1=3 & !flagA & !flagB & !flagC

& !flagD & !flagE & !flagF -> (1-p6):(position'=7)
+ p6:(captured'=true);

...
475
476 // Transitions from RoomA
477 [] !captured & position=1 -> (1-p1):(position'=0)
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+ p1:(captured'=true);
478
479 // Transitions from RoomB
480 [] !captured & position=2 -> (1-p2):(position'=7)

+ p2:(captured'=true);
481
482 // Transitions from RoomC
483 [] !captured & position=3 & x1=1 & !flagA & !flagB & !flagC

& !flagD & !flagE & !flagF -> (1-p3):(position'=7)
+ p3:(captured'=true);

...
547 [] !captured & position=3 & x1=2 & !flagA & !flagB & !flagC

& !flagD & !flagE & !flagF -> (1-p4):(position'=5)
& (flagE'=true) & (flagF'=true) + p4:(captured'=true);

...
611
612 // Transitions from RoomD
613 [] !captured & position=4 & y1=1 & !flagA & !flagB & !flagC

& !flagD & !flagE & !flagF -> (position'=6);
...

677 [] !captured & position=4 & y1=2 & !flagA & !flagB & !flagC
& !flagD & !flagE & !flagF -> (1-p5):(position'=0)
+ p5:(captured'=true);

...
742
743 // Transitions from RoomE
744 [] !captured & position=5 -> (1-p4):(position'=3)

& (flagC'=true) + p4:(captured'=true);
745
746 // Transitions from HallB
747 [] !captured & position=7 & z1=1 & !flagA & !flagB & !flagC

& !flagD & !flagE & !flagF -> (1-p6):(position'=0) +
p6:(captured'=true);

...
811 [] !captured & position=7 & z1=2 & !flagA & !flagB & !flagC

& !flagD & !flagE & !flagF -> (1-p2):(position'=2)
& (flagB'=true) + p2:(captured'=true);

...
875 [] !captured & position=7 & z1=3 & !flagA & !flagB & !flagC
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& !flagD & !flagE & !flagF -> (1-p3):(position'=3)
& (flagC'=true) + p3:(captured'=true);

...
939
940 // Final states
941 [end] captured | position=6 -> (position'=8);
942 [] position=8 -> (position'=8);
943 endmodule
944
945 rewards "all_flags"
946 [end] true : (flagA ? 1 : 0) + (flagB ? 1 : 0)

+ (flagC ? 1 : 0)+ (flagD ? 1 : 0)
+ (flagE ? 1 : 0) + (flagF ? 1 : 0)
+ (position=6 ? 1 : 0);

947 endrewards
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PRISM AMDP for the Assisted-Living
System

1 dtmc
2
3 //Give prompt in states s=0, s=1... of the dementia workflow

after prompt0, prompt1... number of mistakes. Note that
state=10 of the workflow is the end and does not require
prompts.

4 const int prompt0;
5 const int prompt1;
6 const int prompt2;
7 const int prompt3;
8 const int prompt4;
9 const int prompt5;
10 const int prompt6;
11 const int prompt7;
12 const int prompt8;
13 const int prompt9;
14 const int prompt11;
15 const int prompt12;
16
17 // Maximum number of mistakes in total allowed before the

agent calls the carer.
18 const int MAX_MISTAKES;
19
20 // Transition probabilities without prompt.
21 // Key: pAB, where A = source state and B = destination state.
22 const double p00=0.36;
23 const double p01=0.36;
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24 const double p02=0.28;
25 const double p10=0.24;
26 const double p11=0.16;
27 const double p13=0.48;
28 const double p14=0.12;
29 const double p22=0.432;
30 const double p24=0.568;

...
64
65 // Transition probabilities with prompt.
66 const double pp00=0.0864;
67 const double pp01=0.5407;
68 const double pp02=0.3729;

...
108
109 module patient_workflow
110 s: [0..12] init 0; // Stages of task workflow
111 m: [0..MAX_MISTAKES] init 0; // Cumulative number of mistakes
112
113 // Transitions without prompt
114 [] s=0 & m<prompt0 & m<MAX_MISTAKES -> p00:(s'=0)

& (m'=m+1) + p01:(s'=1) + p02:(s'=2);
115 [] s=1 & m<prompt1 & m<MAX_MISTAKES -> p10:(s'=0)

& (m'=m+1) + p11:(s'=1) & (m'=m+1) + p13:(s'=3)
+ p14:(s'=4);

116 [] s=2 & m<prompt2 & m<MAX_MISTAKES -> p22:(s'=2)
& (m'=m+1) + p24:(s'=4);

117 [] s=3 & m<prompt3 & m<MAX_MISTAKES -> p31:(s'=1)
& (m'=m+1) + p33:(s'=3) & (m'=m+1) + p35:(s'=5)
+ p3_11:(s'=11) & (m'=m+1);

118 [] s=4 & m<prompt4 & m<MAX_MISTAKES -> p42:(s'=2)
& (m'=m+1) + p44:(s'=4) & (m'=m+1) + p45:(s'=5);

119 [] s=5 & m<prompt5 & m<MAX_MISTAKES -> p55:(s'=5)
& (m'=m+1) + p56:(s'=6) + p5_12:(s'=12) & (m'=m+1);

120 [] s=6 & m<prompt6 & m<MAX_MISTAKES -> p65:(s'=5)
& (m'=m+1) + p66:(s'=6) & (m'=m+1) + p67:(s'=7)
+ p68:(s'=8);

121 [] s=7 & m<prompt7 & m<MAX_MISTAKES -> p76:(s'=6)
& (m'=m+1) + p77:(s'=7) & (m'=m+1) + p79:(s'=9)
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+ p7_12:(s'=12)&(m'=m+1);
122 [] s=8 & m<prompt8 & m<MAX_MISTAKES -> p84:(s'=4)

& (m'=m+1) + p86:(s'=6) & (m'=m+1) + p88:(s'=8)
& (m'=m+1) + p89:(s'=9);

123 [] s=9 & m<prompt9 & m<MAX_MISTAKES -> p92:(s'=2)
& (m'=m+1) + p98:(s'=8) & (m'=m+1) + p99:(s'=9)
& (m'=m+1) + p9_10:(s'=10);

124 [] s=11 & m<prompt11 & m<MAX_MISTAKES -> p11_0:(s'=0)
& (m'=m+1) + p11_3:(s'=3) + p11_11:(s'=11)
& (m'=m+1) + p11_12:(s'=12);

125 [] s=12 & m<prompt12 & m<MAX_MISTAKES -> p12_2:(s'=2)
& (m'=m+1) + p12_5:(s'=5) + p12_12:(s'=12) & (m'=m+1);

126
127 // Transitions with prompt
128 [] s=0 & m>=prompt0 & m<MAX_MISTAKES -> pp00:(s'=0)

& (m'=m+1) + pp01:(s'=1) + pp02:(s'=2);
129 [] s=1 & m>=prompt1 & m<MAX_MISTAKES -> pp10:(s'=0)

& (m'=m+1) + pp11:(s'=1) & (m'=m+1) + pp13:(s'=3)
+ pp14:(s'=4);

130 [] s=2 & m>=prompt2 & m<MAX_MISTAKES -> pp22:(s'=2)
& (m'=m+1) + pp24:(s'=4);

131 [] s=3 & m>=prompt3 & m<MAX_MISTAKES -> pp31:(s'=1)
& (m'=m+1) + pp33:(s'=3) & (m'=m+1) + pp35:(s'=5)
+ pp3_11:(s'=11) & (m'=m+1);

132 [] s=4 & m>=prompt4 & m<MAX_MISTAKES -> pp42:(s'=2)
& (m'=m+1) + pp44:(s'=4) & (m'=m+1) + pp45:(s'=5);

133 [] s=5 & m>=prompt5 & m<MAX_MISTAKES -> pp55:(s'=5)
& (m'=m+1) + pp56:(s'=6) + pp5_12:(s'=12) & (m'=m+1);

134 [] s=6 & m>=prompt6 & m<MAX_MISTAKES -> pp65:(s'=5)
& (m'=m+1) + pp66:(s'=6) & (m'=m+1) + pp67:(s'=7)
+ pp68:(s'=8);

135 [] s=7 & m>=prompt7 & m<MAX_MISTAKES -> pp76:(s'=6)
& (m'=m+1) + pp77:(s'=7) & (m'=m+1) + pp79:(s'=9)
+ pp7_12:(s'=12) & (m'=m+1);

136 [] s=8 & m>=prompt8 & m<MAX_MISTAKES -> pp84:(s'=4)
& (m'=m+1) + pp86:(s'=6) & (m'=m+1) + pp88:(s'=8)
& (m'=m+1) + pp89:(s'=9);

137 [] s=9 & m>=prompt9 & m<MAX_MISTAKES -> pp92:(s'=2)
& (m'=m+1) + pp98:(s'=8) & (m'=m+1) + pp99:(s'=9)
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& (m'=m+1) + pp9_10:(s'=10);
138 [] s=11 & m>=prompt11 & m<MAX_MISTAKES -> pp11_0:(s'=0)

& (m'=m+1) + pp11_3:(s'=3) + pp11_11:(s'=11)
& (m'=m+1) + pp11_12:(s'=12);

139 [] s=12 & m>=prompt12 & m<MAX_MISTAKES -> pp12_2:(s'=2)
& (m'=m+1) + pp12_5:(s'=5) + pp12_12:(s'=12) & (m'=m+1);

140
141 // Final states: either with reaching state 10

(carer not called) or with MAX_MISTAKES (carer called)
142 [] s=10 | m=MAX_MISTAKES -> (s'=10);
143 endmodule
144
145 // When in state i, the patient’s level of distress increases

by 1 if number of mistakes m > prompt_i
146 rewards "distress"
147 s=0 : m>=prompt0 ? 1 : 0;
148 s=1 : m>=prompt1 ? 1 : 0;
149 s=2 : m>=prompt2 ? 1 : 0;
150 s=3 : m>=prompt3 ? 1 : 0;
151 s=4 : m>=prompt4 ? 1 : 0;
152 s=5 : m>=prompt5 ? 1 : 0;
153 s=6 : m>=prompt6 ? 1 : 0;
154 s=7 : m>=prompt7 ? 1 : 0;
155 s=8 : m>=prompt8 ? 1 : 0;
156 s=9 : m>=prompt9 ? 1 : 0;
157 s=11 : m>=prompt11 ? 1 : 0;
158 s=12 : m>=prompt12 ? 1 : 0;
159 endrewards
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