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Abstract

Ultrafast ultrasound imaging using plane waves has advanced a myriad

of novel ultrasound imaging methods such as ultrafast contrast-enhanced

imaging and shear wave elastography. However, due to the lack of trans-

mission focusing and the beam steering operation in plane wave imaging

(PWI), the presence of clutter noise on the B-mode image is unavoidable.

The reduction of clutter noise is expected to increase the image contrast

and spatial resolution, the two main criteria in ultrasound medical B-mode

imaging for better diagnosis. Researchers have looked into this problem in

depth and proposed many solutions. Many of the proposed solutions come

with trade-offs. Attenuating the clutter noise may reduce the frame rate

(FR), broaden the main lobe or increase the overall computational com-

plexity. Thus, an advanced solution is warranted, with which reducing the

clutter noise will not affect the FR and the image quality can be improved

with a low computational complexity.

In this thesis, the clutter noise problem has been tackled with various ap-

proaches, the first implementing a new filtered delay multiply and sum

(FDMAS) beamforming technique, the second being a new compounding

method based on autocorrelation and the final being a new version of un-

sharp masking (UM) filter. In FDMAS, the optimization of the imaging

point step in lateral direction has been investigated. By calculating the re-

ceived echoes with a smaller imaging point in the lateral direction, it helps

to lower the side lobe levels and improve the lateral resolution of B-mode

images. The proposed compounding method that is based on the autocor-

relation process has proved effective to reduce clutter noise even with a very

low number of compounding angles. The modified version of the UM filter



suites ultrasound B-mode imaging and it provides promising results grant-

ing the improved image contrast and resolution without compromising the

FR.

The benefit of reducing clutter noise on the B-mode image was demon-

strated with its application to contour segmentation. Attenuating clutter

noise not only speeded up the segmentation process but also benefited the

measurement accuracy of the intima media thickness, which has the poten-

tial to add diagnostic value for the early detection of stokes, among other

vascular diseases.
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Chapter 1

Introduction

In conventional ultrasound medical imaging, the sequential line-by-line scanning mode

has been used to produce a B-mode image for clinical use since the 1970s Bradley (2008).

With this imaging paradigm, the frame rate (FR) is dependent on the imaging depth,

the number of focusing points and the field of view. The unavoidable disadvantage of

this conventional image formation method is hence the limited FR. For example, a FR

only up to 60 Hz can be achieved for an image with a 5-cm depth and 256 beamformed

lines Bercoff (2011). This low FR is the main obstacle for the emerging applications such

as ultrafast contrast imaging, shear wave elastography and ultrafast Doppler imaging

Montaldo et al. (2009); Tanter & Fink (2014). The minimum FR needed for tracking

the transient mechanical vibrations is 1000 Hz Tanter & Fink (2014). This is beyond the

capability of the conventional line-by-line scanning mode. Another main issue imposed

by the conventional focused beam transmission is the high pressure produced at the

focal point. Although this will be beneficial to increase the SNR but the downside is

that the focused beam can burst the microbubbles in contrast imaging Tanter & Fink

(2014). Contrast agents can be disrupted by acoustic wave at low pressures Tanter &

Fink (2014). Thus, to solve these issues, researchers have turned to ultrafast imaging.

Instead of transmitting focused beams, ultrafast imaging spreads acoustic energy over

multiple pulses by using a lower peak negative pressure (PNP) for each transmission.

Better image quality can be obtained by preserving the survival rates of microbubbles

as PNP is the determinant to microbubble destruction.

In ultrafast imaging, instead of sequential focused beams, a single plane or diverging

wave with a lower PNP is transmitted to insonify the entire region of interest (ROI)

1



Tanter & Fink (2014). With a speed of sound of 1540 m/s, this allows a FR up to

25,000 frames per second at 30 mm depth. In reception, the backscattered echoes

from a single transmission are synthetically focused point-by-point to form a B-mode

image. Plane wave imaging (PWI) is one of the techniques frequently used in ultrafast

imaging. Although ultrafast PWI has been adopted for clinical applications, such for

shear wave elastography (SWE) which has been used to measure the tissue elasticity

but the main issues that still need attentions are the poor contrast ratio (CR) and low

spatial resolution Bercoff (2011). In SWE the resolvable resolution in lateral direction

is only 1 mm. High contrast imaging will be beneficial for identifying small anechoic

cysts inside the breast tissue region Guo et al. (2018). High CR and spatial resolution

obtained with CPWI will also be beneficial for measuring more accurately the intima-

media thickness inside the common carotid artery. This is because the border between

the intima, media and adventitia will be better defined Gaarder & Seierstad (2015).

The poor CR and low spatial resolution in PWI originate from several sources. Clutter

noise is a general terminology given for a set of noise that is present during imaging

and beamforming processes. These include side lobes, grating lobes, axial lobes, edge

waves, off-axis scattering and phase aberration Lediju et al. (2008); Montaldo et al.

(2009); Tranquart et al. (1999). Due to the lack of transmit focusing, clutter noise is

integrated during beamforming, resulting in a low-SNR image in PWI. The two most

prominent ways to deal with this problem are applying coherent compounding and

advanced beamforming techniques Matrone et al. (2016); Zeng et al. (2013).

Spatial coherent compounding is a technique where echoes from multiple steered

plane waves are summed to form a relatively high-resolution B-mode image compared

to that from a single plane wave. By using compounding, speckle noise is smoothened,

clutter noise is reduced, and spatial resolution of the final B-mode image is improved.

However, the improved image quality comes at the cost of reduced FRs. Another

solution proposed to improve the B-mode image quality is by applying advanced beam-

forming techniques instead of conventional delay-and-sum (DAS). This thesis focuses

on the reduction of clutter noise in coherent PWI (CPWI) by using advanced com-

pounding and beamforming techniques, with the aim of improving image contrast and

resolution.
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1.1 Literature Review

Beamforming is known as one of the most important aspects in ultrasound B-mode

imaging. The main objective of beamforming is to spatially focus the reflected signal

from the imaged medium. The computation-effective nature of DAS beamforming

makes it a popular option for ultrasound medical imaging Zhou et al. (2013). However,

DAS by its own fails to eliminate clutter noise Lediju et al. (2008); Moubark et al.

(2016). Clutter noise that is inherent with DAS is one of the main reasons that cause

the poor CR and low spatial resolution which could negatively affect the diagnostic

results. Considerable work has been conducted to overcome the clutter noise issue with

DAS by using transmit and receive apodization, F-number and spatial compounding.

Both apodization and F-number are known to degrade the lateral resolution (LR)

Zhang et al. (2016). A number of new beamforming techniques such as Minimum

Variance(MV) and short-lag spatial coherence also have been introduced to deal with

the clutter noise problem faced by DAS Holfort et al. (2009); Zhao et al. (2017).

MV is an adaptive beamforming technique which has been widely studied in the

ultrasound imaging field. It has been successfully demonstrated that MV outperforms

conventional DAS beamforming by producing higher spatial resolution, less clutter

noise and improved contrast ratio Chen et al. (2013). The working principle of MV is

the same as DAS. However, in DAS a fixed weight scale is applied to the predefined

apodization windows whereas in MV, the weight scale for the apodization windows is

calculated according to received RF signals. The computational complexity (CC) is a

major drawback of MV Sakhaei (2015). This is mainly because the received aperture

needs to be divided into several smaller overlapping subapertures in order to perform

subarray averaging. The high CC is an issue in real-time ultrasound imaging. Many

researchers proposed solutions to reduced the CC in MV. Delami et al. uses the pre-

viously optimized weight vector for one point as the initial weight vector for the new

neighboring point Deylami & Asl (2018). By doing this, it can improve the convergence

speed and decrease the total CC in MV. On the other hand, embedded GPU comput-

ing platforms have been considered by Junying Chen et al. for MV beamforming Chen

et al. (2017).

Jeremy J. Dahl et al. introduced an ultrasonic beamforming technique which is

capable of forming B-mode images based on the spatial coherence of the backscattered
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echoes. The beamforming technique called short-lag spatial coherence (SLSC) is able to

reduce clutter noise in ultrasonic imaging. Although the proposed technique is claimed

to improve the B-mode image CNR, however, there are no detailed studies have been

conducted on the image CR and spatial resolution. The different maximum dynamic

ranges (45 dB and 50 dB) used to display the B-mode image make comparisons difficult

between those given images. The beamforming technique also shows many flaws and

disadvantages. The loss of information in the near field (< 5 mm) is visible whenever the

strong echo is present in the B-mode image. This is due to normalization of the spatial

coherence factor. Further improvements are needed to facilitate this beamforming

technique for ultrasound B-mode imaging Dahl et al. (2011).

Recently, Lim et al. introduced a novel beamforming technique called delay mul-

tiply and sum (DMAS) Lim et al. (2008). This technique has been applied to radar

microwave imaging for detecting breast cancer where the main priority is to find the

tumour with a CR between 2:1 and 10:1 relative to the normal breast tissue Fear et al.

(2002); Klemm et al. (2008, 2009); Lazebnik et al. (2007). Thus, this method is unsuit-

able for ultrasound imaging that comprises several signal levels: hyperechoic, isoechoic,

hypoechoic and anechoic. Matrone et al. modified and improved the algorithm by

introducing new mathematical blocks and named it the filtered DMAS (FDMAS) algo-

rithm Matrone et al. (2015). This new beamforming technique provides the higher CR

and better lateral resolution with less computational complexity compared to adap-

tive beamforming techniques Holfort et al. (2009). Matrone et al. applied FDMAS to

linear array imaging (LAI), synthetic aperture focusing (SAF), multi-line transmission

(MLT) and PWI Matrone et al. (2016, 2017a,b). The application of FDMAS improves

the LR and CR in all cases. The axial resolution is retained but the contrast-to-noise

ratio is degraded compared with that using DAS. Reduction of crosstalk noise is also

demonstrated with MLT.

As an alternative to advanced beamforming techniques, digital image processing

techniques have been applied to beamformed images to reduce clutter noise. One

of the common filtering techniques used in medical imaging such as mammogram to

enhance the image features is Unsharp masking (UM). Conventionally, UM has been

applied to improve the digital image details by enhancing the high frequency parts Dutt

& Greenleaf (1996). Edge enhancement filters will emphasize the visibility of the di-

agnostic information. UM has been widely applied in digital mammograms to improve
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the microcalcification detection by enhancing the image contrast Akbay (2015); Bhateja

et al. (2017); Cruz et al. (2012). The rationale of microcalcification detection is that

the clustered microcalcifications have been associated with the suspicious existence of

breast cancer Wilkinson et al. (2016). However, the breast tissue and fat always overlay

the microcalcification, making it hard to be detected. The UM method has also been

exploited to enhance the retinal blood vessel in order to detect multiple eye deceases

such as diabetic retinopathy Akram et al. (2009). As a result of the disease, the retinal

blood vessels show changes in diameter and length. In common, retinal images are ac-

quired with digital fundus cameras. The image suffers from non-uniform illumination

Joshi & Sivaswamy (2008). This becomes an obstacle to measure the retinal blood

vessel in detail. Enhancing the digital image contrast and details with the UM method

could benefit better measurements of retinal blood vessels. UM is not commonly used

in ultrasound B-mode image since the properties of the ultrasound image is not the

same as that in other medical images. B-mode images are composed of scattering points

that is subject to speckle and clutter noise. However, there is a promising future for

UM in ultrasound B-mode imaging. By modifying the existing UM algorithm, it could

improve the image quality by reducing clutter noise and improve the spatial resolution.

Speckle has been considered as one of the dominant noise sources in ultrasound imaging

Ahmed & Nordin (2011); Michailovich & Tannenbaum (2006). The speckle noise tends

to obscure the diagnosis process by masking the important details of the biological

structures Michailovich & Tannenbaum (2006). Speckle will produce constructive and

destructive regions when at least two scattering sources are close enough to interact

with each other. The main objective of despeckeling is to reduce the speckle noise

variations and enhance the anatomical features. Some of the most common despeck-

ling filters that have been used in ultrasound imaging are Gaussian, Weiner, Median,

Wavelet and Homomorphic filters Lee (1980); Loizou et al. (2005); Westin et al. (2000).

The despeckling filtering techniques are most commonly used as a pre-processing step

for image segmentation Loizou et al. (2005) with the aim of suppressing speckle noise.

Segmentation is a process of partitioning an image where the intended ROI can be

distinguished from the background Jumaat et al. (2014). Segmentation can help sono-

graphers analyse the qualitative and quantitative information of the ultrasound images

Mahmood et al. (2011). It has been used in ultrasound medical imaging for many ap-

plications such as automatic left ventricle boundary tracking to assist the assessment
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of cardiac dysfunction Noble & Boukerroui (2006a). The most common technique used

for segmentation in clinical practice is manual delineation of the borders which is time

consuming and prone to operator experience Kuo et al. (2013).

1.2 Motivation

Despite a significant amount of research has been reported on FDMAS, no in-depth

investigations have been conducted on the effect of varying the lateral beamfoming

step size ∆x, which is one of the important criteria for determining the B-mode image

quality. Probes with a smaller pitch size p (≤ λ/2) has been favoured in ultrasound

imaging since grating lobes can be eliminated during beam steering. But in a study

Jensen et al. (2016b) using CPWI with DAS, the evaluation of LRs and contrast ratios

(CRs) did not exhibit any significant variation, when probes with different pitch sizes

(λ or λ/2) were used. This study also showed that the appearance of grating lobes with

a pitch size of λ can be reduced effectively through compounding. This study provides

a hypothesis that beamforming in the lateral direction plays an important role in de-

termining the final quality of B-mode images. This finding has motivated us to further

explore the effect of varying ∆x with the recently proposed FDMAS beamforming tech-

nique. The FDMAS algorithm is similar to the autocorrelation process that depends

on the time or sample lag among radio-frequency (RF) signals in each channel in the

lateral direction. Thus, the minimum requirement for ∆x in the lateral direction to

determine the B-mode image quality using FDMAS is a subject for investigation.

The conventional compounding technique is performed with coherent arithmetic

averaging on spatially obtained signals. Yet it is not the most effective compounding

method since the arithmetic averaging fails to eliminate clutter noise which is visible

inside the anechoic regions. The side lobe reduction and spatial resolution improvement

are also minimal with the conventional compounding technique. Due to the different

time delays used for each plane wave, side lobes that occur at different spatial locations

are uncorrelated. On the other hand, the main lobe positions do not change much

and are highly correlated. Thus, by applying the technique similar to FDMAS on

compounding, it is expected to produce better results with reduced clutter noise and

side lobes. The technique is based on the correlations between two steering angles and
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it is expected that the computational time to produce final results will be the same as

that using conventional arithmetic compounding.

The simplicity of the UM method comes with some costs. The high pass filter

will enhance not only the image edges but also noise as well Dutt & Greenleaf (1996).

Furthermore, the UM technique works better for regions with a high contrast compared

to those with a low contrast. One of the most common problems in conventional UM

is the overshoot artefact that occurs at the edges Cao et al. (2011). It is also known as

the ring effect where the transition edge has a higher amplitude than the surrounding

regions. This phenomenon is illustrated in Fig. 1.1. In order to overcome the overshoot

problem in UM, Polesel et al. (2000) has described a new image enhancement technique

via adaptive methods. With this method, the digital images were divided into three

regions with low, medium and high contrast values. The weightage λe, used to scale the

high frequency components was assigned according to the different regions. There will

be low or no enhancement (λe = 0) in the smooth region, while a maximum weightage

(λe = 1) is applied to lower contrast regions and regions with medium contrast values

are only moderately enhanced 0≤λe≤1. Another drawback imposed by the conventional

UM method is the absolute operation in the algorithm. Any negative values will be

sign-inverted when this operation takes place. This leads to additional noise which is

not present in the original image, causing false interpretation. In ultrasound B-mode

images, clutter noise that is mostly visible in the anechoic regions needs to be attenuated

or eliminated. However, the conventional UM technique is unable to address this.

This is mainly because the low pass filter (LPF) applied in conventional UM cannot

differentiate clutter noise that is present inside the anechoic region. The problem with

the conventional UM technique is mainly due to the implementation on the unsigned

digital image domain with the single weightage scale. Implementing UM in the RF

domain is expected to improve the B-mode image quality in conjunction with the

arrangement of different weightage scales for positive and negative errors.

Manual B-mode image segmentation is time consuming and the results are subject

to operator errors Khadidos et al. (2014). The problem with manual segmentation

increases when the ROI is in motion such as the heart. Another conventional seg-

mentation technique is based on the edge detection methods such as canny and sobel

Nikolic et al. (2016); Zheng et al. (2015). The biggest challenge with the segmentation

by the edge detection is the false edges detected outside the ROI. This is because the
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Figure 1.1: UM overshoot phenomenon.

edge detection on canny and sobel is based on a single threshold set to the gradient.

Thus, in order to accurately segment the ROI, operators in the medical imaging field

turn to semi-automated or automated segmentation techniques. In semi-automated

segmentation methods such as snake active contour, a small initial contour will be

predefined by the user near to the region that will be segmented. This initial contour

acts as the seeded boundary for the whole segmentation process. For the fully auto-

mated segmentation process, an initial seeding is not selected manually but assigned by

predefined algorithms such as the iterative threshold selection, voting mechanism and

deep learning Kumar et al. (2018); Yaqub et al. (2010). Speckle and clutter noise that

are present in the B-mode image also become a challenge for segmentation where the

contour fails to converge to the intended boundary Khadidos et al. (2014); Slabaugh

et al. (2009); Zhu et al. (2010). Despeckling is thus needed prior to segmentation.

1.3 Objectives of this work and the organization of the

thesis

The main objective of this work is to reduce the clutter noise in ultrafast B-mode

images. This has been achieved with three different techniques:-

1. Determining the optimal beamforming step in the lateral direction for FDMAS.

2. A new compounding technique based on a process similar to autocorrelation.
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3. A new unsharp masking denoising technique which is compatible with ultrasound

B-mode imaging.

More about the thesis organization is discussed in this section. In CPWI, clutter

noise is associated with off-axis scatterering, side lobes, axial lobes, grating lobes, edge

waves, motion artifacts and phase errors Lediju et al. (2008); Montaldo et al. (2009);

Tranquart et al. (1999). Those kinds of noise have been studied and analysed with Field

II simulations later as reported in detail in chapter 2. The concepts of PWI and spatial

compounding have been discussed in the same chapter. Chapter 3 is dedicated to the

selection of excitation signals and pressure measurements that suite for in vivo imaging.

The main three matrices calculated according to the Food and Drug Association (FDA)

are the mechanical index, spatial peak temporal average intensity and spatial peak pulse

average intensity. Chapter 4 is dedicated to the new beamforming technique FDMAS.

A detailed study has been conducted in order to determine the optimal beamforming

step in the lateral direction for FDMAS. An earlier study conducted on FDMAS with

coherent compounding techniques has been published in the following papers

• AM Moubark, Z Alomari, S Harput, DMJ Cowell, S Freear, “Enhancement of

contrast and resolution of B-mode plane wave imaging (PWI) with non-linear

filtered delay multiply and sum (FDMAS) beamforming”, IEEE Int, Ultrasonics

Symposium (IUS), 2016, 1-4

The conventional compounding technique involving coherent summation and arith-

metic averaging could not solve the existing clutter noise problem. This is mainly

because the noise pattern has been only averaged with all tilted plane waves. To

improve noise cancellation, a new compounding technique is proposed in chapter 4 in-

spired by the algorithm used in FDMAS. High contrast and spatial resolution acvieved

as a results of clutter noise reduction with new compounding but with low computa-

tional complexity. The proposed technique takes place between steered plane waves

and not during beamforming as in FDMAS. Thus, the proposed compounding tech-

nique is much faster and produce better results than those with FDMAS. The contrast

ratio and resolution produced with the new compounding technique are better when

compared to those with conventional coherent compounding. This has been achieved

with low compounding angles hence increasing the FR.
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The potential of the conventional UM method has been explored and revived for

ultrasound B-mode imaging. Instead of enhancing the high frequency component, a

few modifications on the algorithm were made to reduce clutter noise and improve the

spatial resolution at the same time. The new UM technique was implemented in the

RF domain with non-coherent signals as a LPF and two different weightage schemes

for positive and negative errors were used. Chapter 5 discussed the new UM technique

in detail when it’s implemented on PWI and CPWI. The outcome of this study has

been published in the following paper:

• AM Moubark, TM Carpenter, DMJ Cowell, S Harput, S Freear, “New improved

unsharp masking methods compatible with ultrasound B-mode imaging”, IEEE

Int, Ultrasonics Symposium (IUS), 2017 , 1-4

The balloon snake active contour and modified Otsu’s segmentation methods were

implemented on the B-mode images to study the effect of clutter and speckle noise

reduction on despeckling and segmentation. Despeckling is one of the important steps

used to reduce clutter and speckle noise variation and improve the contrast-to-noise

ratio (CNR). It will benefit the segmentation process Khadidos et al. (2014). In chap-

ter 6, various despeckling techniques such as Gaussian, Weiner and Adaptive median

filters were with different window sizes after clutter noise reduction with UM. Good

despeckling techniques that can retain all the important features were recommended.

Chapter 7 is dedicated to measurements of the intima media thickness (IMT) on the

common carotid artery wall. The effect of clutter noise reduction in anechoic regions

with UM on the measurements of the IMT was studied. Segmentation process applied

on the despeckled B-mode images before the IMT measured. Reducing the side lobes

and clutter noise inside the anechoic regions will improve the image contrast and the

segmentation process Khadidos et al. (2014). The segmentation process is based on

identifying the edge or the boundary of the intima and media walls. If any noise is

present between those walls, false measurements could occur or more iterations will

be needed to complete segmentation. Clutter noise in the intima-media regions was

reduced with UM and the associated benefits for segmentation were given.

The research on reducing clutter noise in medical ultrasound imaging contributed to

other studies that are not present in this thesis. Four conference papers were published:
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• AM Moubark, S Harput, DMJ Cowell, C Adams, S Freear, “Plane wave imaging

challenge”, IEEE Int. Ultrasonics Symposium (IUS), 2016, pp. 1-4

• AM Moubark, S Harput, DMJ Cowell, S Freear, “Clutter noise reduction in

b-mode image through mapping and clustering signal energy for better cyst clas-

sification”, IEEE Int. Ultrasonics Symposium (IUS), 2016, pp. 1-4

• A Alshaya, S Harput, AM Moubark, DMJ Cowell, J McLaughlan, S Freear, “Spa-

tial resolution and contrast enhancement in photoacoustic imaging with filter de-

lay multiply and sum beamforming technique”, IEEE Int. Ultrasonics Symposium

(IUS), 2016, pp. 1-4

• AM Moubark, Z Alomari, S Harput, S Freear, “Comparison of spatial and tem-

poral averaging on ultrafast imaging in presence of quantization errors”, IEEE

Int. Ultrasonics Symposium (IUS), 2015, pp. 1-4

The manuscript related to the work on FDMAS was submitted for review:

• AM Moubark, Z Alomari, David M. J. Cowell, C Adams, L Nie, S Harput, S

Freear, “Enhanced Filtered-Delay Multiply and Sum Beamforming to improve

Balloon Snake Active Contour Segmentation in Ultrafast Imaging”
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Chapter 2

Ultrasonography: Plane Wave

Imaging

In this chapter, introduction was given to typical types of noise that impair ultrafast

plane wave imaging (PWI) and techniques used to overcome those. Field II simulations

were performed in order to discuss the origin of them.

2.1 Plane Wave Imaging

In PWI, all the transducer elements are excited simultaneously without any transmit

focusing as shown in Fig. 2.1(a). The created planar wave-fronts will insonify the

whole imaging area at once and a whole B-mode image can be created. As opposed

to conventional linear array imaging (LAI) and phase array imaging (PAI), where the

frame rate (FR) depends on the imaging line density, PWI provides a FR equal to the

pulse repetition frequency. Thus, a very high frame rate (FR) up to 20 KHz can be

achieved depending on the imaging depth zf . The travelling time for a plane wave as

shown in Fig. 2.1(b) to point (xf , zf ) is given by

τtx(xf , zf ) =
zf
c
. (2.1)

Where c is the speed of sound. The heterogenic point will produce an echo signal

and the return time to each element, xi as shown in Fig. 2.1(b) is given by

τrx(xf , zf ) =

√
z2f + (xi − xf )2

c
(2.2)
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Figure 2.1: Plane wave (a) emission and (b) backscattered echo from a single point

located at (xf , zf ).

Thus, the complete travelling time of the wave to the target point (xf , zf ) and back

to the transducer element xi is given by

τi(xf , zf ) = τtx(xf , zf ) + τrx(xf , zf )

=
zf
c

+

√
z2f + (xi − xf )2

c

(2.3)

The scatter point mainly produces two kinds of information for imaging. One is

the location of the point that we can find through the total traveling time and the

other is the strength of the signal conveyed by the pressure amplitude. In order to

map the scatter point intensities, the received echo signals on all the elements need

to be beamformed. Beamforming is a process of applying a specific time delay using

equation 2.3 to each echo signal and coherently adding them. The time delay is applied

to the RF signal (si(t)) for each channel, and the aligned RF signal termed vi is then

obtained. vi is formulated by the following equation:

vi(xf , zf ) =si(t− τi(xf , zf )) (2.4)
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To form a single B-mode imaging point, the aligned RF signals for all channels will

be summed according to the following equation:

rDAS(xf , zf ) =

N∑
i=1

vi (2.5)

The above calculation is just for a single point but in practice the process will be

repeated for whole (x, z) points in the ROI. The process of beamforming in PWI during

reception is the same as that in conventional linear array imaging (LAI). But instead

of calculating the time delay only for a single focusing point as in LAI, all points of the

image are beamformed using the same RF signals with different time delays in PWI.

Even though PWI can produce very high FRs but one significant drawback with

this technique is the poor image quality. According to Montaldo et al. (2009), the signal

to noise ratio (SNR) and contrast obtained for an anechoic object is 0 dB and 12 dB,

respectively. The reason behind this downside of PWI is that the transmit focalization

is not applied for the pulse transmission. Thus, to improve the image quality without

highly sacrificing the FR, the compounding technique was introduced by Cooley and

Robinson in 1994 Cooley & Robinson (1994). In Montaldo et al. (2009), the concept of

coherent summation of plane waves was experimentally demonstrated and this is known

as coherent plane wave compounding or compound plane wave imaging (CPWI).

The commonly used compounding techniques are spatial compounding (SC) and

frequency compounding (FC) Montaldo et al. (2009); Yoon et al. (2013). The main ad-

vantages of SC are to reduce speckle and clutter noise and improve the lateral resolution

Lin et al. (2002); Ullom et al. (2012). Other improvements from SC can be seen on the

image SNR and contrast Montaldo et al. (2009). Both metrics for the anechoic object

increase gradually when the number of compounding angles increases Montaldo et al.

(2009). Improvement in lateral resolution has also been reported with SC Montaldo

et al. (2009). However, after a certain number of compounding angles, the improvement

of lateral resolution plateaus and drops with more compounding angles. In Toulemonde

et al. (2015) and Alomari et al. (2014), beyond three coherent compounding angles, the

lateral resolution started to degrade. The lateral resolution measured on the main lobe

at −6 dB is influenced by the side lobes. Reducing the side lobe level will improve

the lateral resolution. The cancellation of side lobes is dependent on the number of

compounding and steering angles. The steering angles becomes smaller as the number
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Figure 2.2: Concept of spatial compounding a) beams steered in the same ROI b) shift

in x space reflecting decorrelation of the response from steering.

of compounding increases. Thus, the side lobes are no longer far apart but become

nearer as the step of steering angles θn decreases. The SC technique is also known to

reduce clutter noise inside the anechoic region and improve the edge definition. The

FC method has been used mainly to reduce the speckle noise variations. This enhances

the B-mode image SNR and CNR to improve the visibility of a small anechoic cyst.

In general, both compounding techniques, SC and FC consist of two steps. The

first is used to acquire the signals and the second is used to sum the acquired signals.

2.2 Data Acquisition in Compounding

SC or angular compounding is a method of obtaining images by steering the subset or

the whole transmit beam to different directions as shown in Fig. 2.2. The compounding

operation is effectively a spatial averaging filter that reduces speckle and clutter noise

and increases the image contrast and lateral resolution. The signals acquired from

the steered beams are summed to reconstruct a single frame. The concept of spatial

compounding has been implemented in multi angle compound imaging (MACI) and

CPWI. In MACI, a single frame is formed with PAI, while in CPWI a single image is

formed with a single plane wave transmission. The fully compounded area is at the

center of the field of view where every single frame overlaps.
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One of the main aims of SC is to maximize the echoes from all steering angles in

the ROI. In general, several decorrelated (more than three) frames are compounded

into a single composite B-mode image. In PWI, the received echoes are dependent

on the incident angle of the beam. The strongest echoes are generated at the normal

incident angle of zero degree. Without SC, the top and bottom boundaries produce

the stronger image intensities compared to those on the left and right sides. With

the application of SC, the scanning medium will be present on a B-mode image with

a more equal intensity distribution benefiting from the beams with different incident

angles Jespersen et al. (1998).

As mentioned by Burckhardt (1978), if the same object is scanned with different

pulse lengths, centre frequencies or incident angles, the speckle patterns are different.

In any of these different conditions, the amplitude values at the same point are different

for every new scan.

The concepts of FC have been implemented in phase array imaging (PAI ) and PWI

Magnin et al. (1982). In FC, varying the center frequency on transmission or dividing

the spectrum of the RF signal on reception is used. The main objective in FC is the

same as that in SC, wherein several uncorrelated or partially correlated frames are

obtained for compounding. Although FC is able to reduce speckle noise, but the loss in

spatial axial resolution is unavoidable Sanchez & Oelze (2009); Ullom et al. (2012). This

is because that the signal bandwidth has to be divided into smaller sub-bands as shown

in Fig. 2.3. No changes in spatial resolution occur on the lateral direction. Applying

chirp excitation signals is able to compensate the loss in the axial resolution Sanchez &

Oelze (2009). However, this comes with the physical limitation of the probe bandwidth

and the heating effect introduced to the imaging medium. Due to the limitation and

constraints imposed by FC, SC has been used widely in ultrasound medical imaging.

Thus, in this thesis only SC will be investigated for all simulations and experiments.

One of the reasons why SC and FC techniques can improve the image quality is the

property of the speckle pattern and clutter noise that change according to the angle of

the transmit beam and the bandwidth of the transmitted signal Jespersen et al. (1998);

Toulemonde et al. (2015). Thus, to effectively reduce the speckle and clutter noise each

emitted signals should be uncorrelated or partially correlated. The main disadvantage

of SC is to lower the FR, while for FC it is the reduction in axial resolution.
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Figure 2.3: Concept of frequency compounding a) transmit and receive frequency band-

width b) shift in z space reflecting decorrelation of the response from dividing the

bandwidth.

2.2.1 Summation of Backscattered RF Signals in Compounding

Several steered PWI frames can be summed either coherently or incoherently to form a

single B-mode image. In coherent summation, all the RF signals from each plane wave

transmission are added before envelope detection. Coherent plane wave summation was

proposed in 2004 by Song & Chang (2004) and has been extensively studied by Mon-

taldo et al. (2009). As opposite to coherent summation, in incoherent or non-coherent

summation, the envelope of RF signals for each plane wave is detected before summa-

tion. Both compounding techniques have advantages and disadvantages. Incoherent

summation shows improvement in the transverse motion estimates and the reduction

of speckle noise Tanter & Fink (2014). Coherent summation is able to increase the

image contrast and resolution Tanter & Fink (2014); Tanter et al. (2002). The image

spatial resolution with incoherent summation is lower when compared to the coher-

ent technique. This is because that less noise cancellation takes place in incoherent

techniques.
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2.3 Compound Plane Wave Imaging

2.3 Compound Plane Wave Imaging

To achieve the same image quality as a focused image at a point zf , f mm deep, N

steered plane waves (n) are required Montaldo et al. (2009):

N =
L

λF
=

L2

λzf
(2.6)

n is defined as:

n =

[
−N − 1

2
, ...,

N − 1

2

]
(2.7)

For each steering angle, θn is given by:

θn = arcsin(
nλ

L
) ≈ (

nλ

L
) (2.8)

where L is length of the aperture, λ is the signal wavelength, F is F-Number defined

as F = zf/L.

The time delay τdi associated with each transducer element xi, for the steering angle

θn is given by

τdi =
pxi
c

sin(θn) (2.9)

where p is the inter element pitch size in mm. While for a complete travelling time

to point (xf , zf ) and back to the transducer element xi for the CPWI is given by

Korukonda (2012)

τi(xf , zf ) = τtx(xf , zf ) + τrx(xf , zf )

=
zfcos(θn) + xf sin(θn) + L

2 sin(θn)

c
+

√
z2f + (xi − xf )2

c

(2.10)

The determination of the proper number of compounding angles is one of the im-

portant aspects that will affect the final compound image quality. Detailed studies

about the selection of steering angles for CPWI can be found in Alomari et al. (2014).

In has been mentioned that the steering angles can significantly affect the maximum

intensity received by the transducer. This is because in CPWI, the received echoes

are dependent on the incident angle of the beam. Moreover, when the imaging depth

increases, the steering angle should be small so that the overlapped imaging area is
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2.3 Compound Plane Wave Imaging
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Figure 2.4: Steered plane wave emission.

large. With a fixed angle increment, when the number of steering angles increases, the

beam overlapping area will be smaller.

The area which can be fully covered after compounding is determined by the max-

imum imaging sector angle as given in equations 2.7 and 2.8. Fig. 2.5 shows all four

regions where the extent of compounding takes place. Region b is the place where all

the steered beams are interfacing together to produce the fully compounded region.

While regions a and c are not fully covered areas with compounding. The depth of

zero compound region, d in Fig. 2.5 can be computed according to following equation

Jespersen et al. (1998):

d(L, θn,−θn) =
L

tan(θn)− tan(−θn)
(2.11)

where L is the length of the aperture, θn and −θn represent the maximum steering

angles according to equation 2.7.

The general rule of thumb in selecting the number of compounding angles is to

minimize it, such that the end results are balanced among the temporal, spatial and

19



2.3 Compound Plane Wave Imaging

... 
 

xi xE 

n n

a 

b 

c 

d 

L 

Figure 2.5: Illustration of two steered plane wave emission with maximum and minimum

steering angles, θn=−θn resulting different compound region.

Figure 2.6: Complete compounding region with maximum steering angle.
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2.3 Compound Plane Wave Imaging

Table 2.1: Compounding Parameters

Properties Values

Number of Compounding, N 1 3 5 7 9 13 25

Angle Increment, ∆θn 0 12 6 4 3 2 1

contrast resolutions. The imaging sector angle should kept as small as possible in or-

der to reduce the appearance of grating lobes in the center of ROI and to maximize

the compounding regions. Considering these constraints, the selected number of com-

pounding angles N , and the steering angle increment ∆θn are shown in Table 2.1. The

maximum and minimum steering angles, [θ◦max, θ◦min], for all compounding setups are

set to ±12◦.

Ultrasound B-mode Image

The B-mode stands for the brightness mode where the intensity of the received ultra-

sound signals are represented by the gray color scale. In general, the strength of the

echoes can be illustrated as follows

• Anechoic : The imaging medium produces no echoes thus being black in the

B-mode image

• Hypoechoic : Produces less amount of echoes when compared to the neighbouring

medium thus being varying shades of darker gray in the B-mode image

• Hyperechoic : Strong reflective echo when compared to the neighbouring medium

thus being varying shades of lighter gray in the B-mode image

• Isoechoic : The imaging medium produces the same amount of echo within the

scanning region

• Echogenic : Medium that produces echoes

Log-compression is used to increase the dynamic range of the received signals Ali

et al. (2008). The B-mode images are displayed with a range of 40 to 60 dB in the log

arithmic scale. In recent years, the manufacturers of ultrasound machines have added

a color feature to replace the conventional gray scale. It is known as the Photopic
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2.3 Compound Plane Wave Imaging

Figure 2.7: A cyst with a 4.0 mm diameter at the 30.0 mm depth imaged with a) PWI

and b) CPWI, N = 13. The lateral beam profiles for both images are shown in c).
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2.4 Clutter Noise

(daytime vision) imaging. The new color map increases both the image contrast and

brightness while maintaining overall B-mode image quality. Photopic imaging is a

relatively new innovation in ultrasound imaging that has been used to improve the

B-mode image contrast by taking advantage of the human eye to distinguish bright

colors, as opposed to dark grays Lin et al. (2003); Schwiegerling (2004). Before the

Photopic imaging implementation, in order to increase the brightness of a B-mode image

in deeper tissue regions, sonographers would manipulate the time gain compensation

(TGC) to increase the signal strength. This however would increase the background

noise and side lobe artifacts. On the other hand, the Photopic imaging would be able

to improve the image brightness and contrast without introducing any artifacts.

2.4 Clutter Noise

The term clutter noise has been used as a general term for noise from off-axis scattering,

edge waves, side lobes, grating lobes and phase errors Lediju et al. (2008); Montaldo

et al. (2009); Tranquart et al. (1999). In general, it reduces the detectability or the

CR of the imaging medium. Even though clutter noise is present on the entire B-

mode image, it can be easily seen on anechoic or cyst regions such as cysts and blood

vessels. The source of the off-axis noise is mainly from scatters located outside the

main lobe of the incident beam. In LAI, the off-axis noise is significantly reduced. This

is because of two different reasons. Firstly, only a subaperture is used for transmitting

and receiving the RF signal where any noise from outside of the imaging line can be

reduced. Secondly, the focused-beam mode produces higher SNR. In PWI, all elements

in the imaging probe are used to receive the RF signals from the scanning medium.

When beamforming takes place to form a single imaging line, all signals from on and

off-axis scattering are used. The echo from sub-wavelength scatterers is composed of

signal and noise received by all elements. By applying the F-number, the amount of

echo received by the aperture can be controlled. This will reduce the clutter noise

influence during the beamforming step. When the F-number is fixed, the aperture size

keeps increasing according to the imaging depth. Thus, the off-axis noise reduction

with a fixed F-number takes place more nearer to the aperture and is not manifest in

deep regions. The negative effect of fixing the F-number to reduce the off-axis noise is

it will reduce the lateral resolution.
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2.4 Clutter Noise

Table 2.2: Field II simulation parameters.

Properties Equations Values

Speed of Sound, Water/CISR 1482/1540 m/s

Medium Attenuation,Water/CISR 0.002/0.5 dBcm−1 MHz−1

Number of Elements - 128

Transducer Centre Frequency - 4.79 MHz

Transducer Bandwidth (−6 dB) - 57 %

Transducer Element Pitch, p λ 0.3048 mm

Transducer Element Kerf p/20 15.4 µm

Transducer Element Width Pitch-Kerf 289.4 µm

Transducer Element Height - 6 mm

Transducer Elevation Focus - 20 mm

Sampling Frequency, fs for Tx/Rx - 160/80 MHz

Receive Sampling Time, Ts 1/fs 12.5 ns

Excitation Signal - 2-Cycle Sinusoid

Excitation Signal Window - Hanning

Excitation Signal Centre Frequency, fo - 5 MHz

Imaging Point Step, x λ/3 0.1016 mm

Imaging Point Step, z c ∗ Ts/2 9.625 µm

Spatial Apodization - Tukey Window, α = 0.5

The appearances of off-axis noise, side lobes, grating lobes and edge waves are

dependent on the steering angle. Steering beams at several different angles will locate

clutter noise at different positions while maintaining the mainlobes at the same location.

Thus, SC can practically reduce clutter noise under a certain level. This is because

compounding will enhance the mainlobe intensity while averaging noise Papadacci et al.

(2014). Applying different types of beamforming such as FDMAS and MV can also

eliminate or reduce the off-axis noise. Clutter noise that is present in a B-mode image

becomes a challenge for segmentation Slabaugh et al. (2009). This is mainly because

clutter noise can corrupt the image with missing boundaries.
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2.4 Clutter Noise

2.4.1 Grating Lobes, Side Lobes and Axial Lobes

The maximum steering angle for PWI is limited by the occurrence of the grating lobes

and the imaging depth. Grating lobes are additional beams emitted from an array

transducer and they are stronger than side lobes and can cause artefacts. The positions

of grating lobes are dependent on the physical design of the ultrasound array transducer

and given by the following equation Ponnle et al. (2013):

θg =sin−1(sin(θn)− mλ

p
) (2.12)

where λ is the wavelength, θn is the steering angle and m is the integer order of

grating lobes. Grating lobes exist in transmission and reception if the inter-element

size or pitch is wider than a signal wavelength equal to λ/2 and do not exist when the

pitch size is smaller than λ/2.

According to Karunakaran & Oelze (2013), narrowband signals such as the monochro-

matic sinusoidal excitation signal is also one of the main reasons for grating lobes.

Thus, utilizing broadband signals could significantly reduce the grating lobes. Since

the grating lobes are dependent on the transmission signal wavelength, applying the

chirp signals could steer the grating lobes Karunakaran & Oelze (2013). The chirp ex-

citation will also maintain the intensity at the focusing region. This is vital especially

for the high-intensity focused ultrasound (HIFU) where unintended grating lobes can

deposit heat at other areas than ROIs. The relative intensity level of the grating lobes

can be significantly reduced by combining several beams from multiple transmissions

(spatial compounding) De Jong et al. (1985); Jensen et al. (2015).

The first grating lobe (m = ±1) location for the setup as given in Table 2.2 is given

in Table 2.3 according to equation 2.12. To illustrate the effect of grating lobes, Field

II simulations have been performed according to the setup in Table 2.2. A linear array

probe with a pitch size of λ emits the steered plane wave at 12◦, generating grating

lobes at approximately 52◦. This is shown in Fig. 2.8(a). The grating lobes have

intensity around 35 dB relative to the main lobe wavefront. When the same simulation

was repeated with the pitch size of λ/2 the grating lobes disappeared in the imaging

field of view. This is shown in Fig. 2.8(b). However, in both simulations, edge waves

in circular forms always appear at the edge of the wave front.
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2.4 Clutter Noise

In order to remove the grating lobes, the final B-mode image can be displayed in the

compressed form. Since we know that the grating lobes always appear towards the end

on both sides of the B-mode image, the image width can be reduced. As shown in Fig.

2.17, the grating lobes appear at approximately −16 mm and 16 mm onwards. Thus,

by displaying the B-mode image from −15 mm to 15 mm the grating lobes will not

appear on the final B-mode display. However, this compression display still depends on

the maximum steering angles. Larger steering angles can cause the grating lobes start

to affect the center of the imaging medium. It is always desirable to use small steering

angles (≤ ±12◦) to push away as far as possible the grating lobes from ROI.

Compared to grating and side lobes, axial lobes have not been explored widely

in conventional LAI. This is because axial lobes are more synonym with plane and

diverging waves. They start to occur during beam steering when the signals from

each element do not reach the imaging point simultaneously. The finding about axial

lobes has been reported in Jensen et al. (2015); Rodriguez-Molares et al. (2015). The

wavefronts of each element reach the intended location or point at the same time but

it’s not the case for the wave tails. Thus, the wave tails interact with each other

constructively and destructively. One of the solutions proposed by Rodriguez-Molares

et al. (2016a) is to use angle dependent transmit apodization to reduce the number of

elements that affects axial lobes. The proposed method is able to reduce the axial lobes

by 40 dB. However, no spatial resolution and contrast information are provided. It is

known that llimiting the number of transmitting elements by applying apodization will

reduced the spatial resolution. In another work to reduce the axial lobes, Zhang et al.

(2018) has combined the plane and spherical waves. The signals from a single plane

wave and two spherical waves are both utilized to suppress the side lobes and reduce

the axial artifact for the improvement of image contrast.

Motion Artifacts

The motion artifacts can occur for the moving imaging medium. The CPWI technique is

based on the coherent summation of the RF signals from several PWs. However, human

organs such as the heart and carotid artery are constantly moving at a certain speed.

Thus, there is a high possibility that those moving mediums will create a smearing or

blurring effect on the final B-mode images. In order to analyse the motion artifact, it

is important to know the FR. By assuming the maximum imaging point is located at
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2.4 Clutter Noise

Table 2.3: Grating lobes angles for p = λ

Steering Angles, θn Grating Lobes Angles, θg

0 ±90.0

±5 ±65.9

±10 ±55.7

±15 ±47.8

±20 ±41.1

±25 ±35.2

±30 ±30.0

±35 ±25.2

±45 ±17.0

Figure 2.8: Results from the Field II simulation for the plane wave steered at +12◦ for

a) pitch = λ and b) pitch = λ/2. The grating lobes start to emerge at approximately

−52◦ back of the wavefront for pitch = λ and no grating lobes are visible for pitch = λ/2.

The simulation setup is according to Table 2.2 but without apodization.
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Figure 2.9: Illustration of moving artefact in PWI.

depth of zmax, total number of plane waves N with θn, the required travelling time can

be represented by the following

TPRP =

N∑
n=1

1

cos(θn)

2zmax

c
(2.13)

Correspondingly, the pulse transmission rate or the FR can be represented by the

pulse repetition frequency, PRF = 1/TPRP. For the imaging point at (0, 15) cm, the

required round trip time, TPRP is 0.195 ms or the FR is approximately 5133 Hz for

N = 1. The speed of sound sets a physical limit to the maximum FR achievable.

As illustrated in the Fig. 2.9, the motion of the organs in between the imaging

process will cause, ∆z movement in axial direction. By knowing the organs speed and

the PRF, ∆z can be estimated. The average speed of healthy human heart tissue and

carotid artery wall are approximately 10 cm/s and 5 cm/s respectively (Hoskins et al.

(2010); Kanai et al. (1999)). For the PRF of 5133 Hz, the tissue and wall displacements

∆z between two consecutive transmissions will be 19.5 µm and 9.75 µm away or towards

the transducer surface. The displacement is too small and won’t significantly affect

PWI, since each frame is displayed independently without the influences from other
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2.5 Apodization

Table 2.4: Moving artifacts.

N
1 13 25

50 mm 150 mm 50 mm 150 mm 50 mm 150 mm

FR [Hz] 15400 5133 1184 394 616 205

TPRP [ms] 0.065 0.195 0.84 2.5 1.62 4.88

Heart Tissue, ∆z [µm] 6.25 19.5 84 250 162 488

Carotid Artery, ∆z [µm] 3.13 9.75 42 125 81 244

frames. This is however, not the case for CPWI where several frames are compounded to

form a single frame. Any fast movement can significantly affect the final compounding

result. This can be reduced by minimizing the number of steering angles and by

applying incoherent compounding Øvland (2012). A detailed calculation made for

heart tissue motion at speed of 10 cm/s for different number of compounding angles is

shown in Table 2.4.

With 25 steering angles, the maximum displacement by the heart tissue and carotid

artery wall will be 488 µm and 244 µm. This error needs to be corrected when deter-

mining the exact location of the moving objects.

2.5 Apodization

Apodization or windowing is a technique used to attenuate side lobes and edge waves in

ultrasound B-mode imaging. Apodization can be applied to the excitation signal in time

domain or frequency domain. It can be also applied in the spatial domain, by varying

the amplitude across the aperture. Applying window functions on the excitation and

aperture is a process to reduce the spectral leakage which is one of the main causes for

the side lobes. Although apodization will not influence the spatial resolution in axial

direction, it will affect the lateral resolution. Axial resolution is determined by the

number of cycles and wavelength (λ) in the excitation signal. While lateral resolution

is determined by several factors such as the wavelength (λ) and F-number. Applying

apodization to the aperture will cause the main lobes broadened and reduce the lateral

resolution. The most commonly used windows for apodization are Gaussian, Hanning,

Hamming, Blackman and Tukey.
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2.5 Apodization

Unlike most of other windows, the Tukey window has an advantage. By applying

different weightages between 0 and 1, the amount of side lobes reduction and main lobe

expansion can be controlled. The Tukey window a(t) is given as

a(t) =


1
2

{
1 + cos(2πr

[
t− α/2

]
)
}
, 0 ≤ t < α/2

1, α/2 ≤ t < 1− α/2
1
2

{
1 + cos(2πr

[
t− 1 + α/2

]
)
}
, 1− α/2 ≤ t ≤ 1

(2.14)

where r is the length of the signal and α ∈ (0,1). When α = 0, it is a rectangular

window, and when α = 1, it is a Hanning window. Fig. 2.10 shows three different

weightages, α = 0, 0.5 and 1 applied to the 2-cycle sinusoidal signal. As the weightage α

increases, the spectral leakage starts to decrease and the main lobe bandwidth broadens

around the −6 dB level. However, in the time domain the excitation signal amplitude

which is responsible for the signal energy also starts to decrease. Thus, in order to

balance the amount of energy transmitted into the imaging medium and the spectral

leakage, α = 0.5 has been chosen.

The effect of applying apodization technique on B-mode image was studied by

performing Field II simulations with the setup given in Table 2.1 and 2.2. A Tukey

window with α = 0.5 has been applied to all excitation signals and the aperture. Fig.

2.11 shows the effect of apodization on plane waves steered at +12◦ for pitch = λ and

pitch = λ/2. With apodization, the edge waves produced by the most outer elements

are completely attenuated. However, the appearance of grating lobes still the same as

no apodization applied for pitch = λ. Results from the Field II simulation performed

on point targets are given in Fig. 2.12. The side lobes of point targets from 10 mm

to 50 mm depth with PWI have been significantly reduced with apodization. The

beam profiles along lateral and axial directions for PWI are shown in Fig. 2.13. Along

the lateral direction, the side lobes have been attenuated and the main lobes have been

broadened when apodization applied. While the beam patterns in the axial direction did

not show any significant changes. Results obtained from applying apodization together

with compounding on point targets are shown in Fig. 2.12(c) and (d). Compounding is

able to attenuate side lobes along the lateral direction. Thus the reduction of side lobes

with apodization is minimal with CPWI. The beam profiles along the lateral direction

at 50 mm depth and axial direction along x = 0 mm are shown in Fig. 2.14. Fig. 2.15

shows the point target at 10 mm depth when no apodization applied. The minimal
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2.5 Apodization

Figure 2.10: Excitation signal with different Tukey window weightages a) time domain

and b) frequency domain.

side lobes reduction on each steered plane waves compensated when compounding takes

place. The beam profiles for the point target along lateral and axial directions are given

in Fig. 2.16.

The final B-mode image Fig. 2.17 composed of 13 compounding angles shows

a significant improvement in attenuating the grating lobes and the side lobes. The

lateral and axial beam profiles for the point target are also shown in Fig. 2.18. Almost

more than 15 dB of the grating lobe intensity has been reduced with CPWI. Spatial

compounding is also able to reduce the axial lobe by almost 10 dB. The axial lobes

which tend to appear after the main lobes in the axial direction also have been reduced

from −38 to −53 dB. This can be seen in Fig. 2.18(b) from 9.5 to 12.5 mm. The axial

lobes have been described as an artefact similar to grating lobes which appear when

the pitch size of λ is used for steering Rodriguez-Molares et al. (2016b). Imaging with a
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2.5 Apodization

Figure 2.11: Results from the Field II simulation when Tukey apodization is applied to

the plane wane steered at +12◦ for a) pitch = λ and b) pitch = λ/2. Appearance of the

grating lobes for pitch = λ is still visible, while the edge waves have been attenuated

for both the pitch sizes of λ and λ/2. The simulation setup is given in Table 2.2.
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Figure 2.12: Results from the Field II simulation performed on point targets. a)

PWI with no apodization, b) PWI apodized with a Tukey window (α = 0.5), c)

CPWI, N = 13 with no apodization, d) CPWI, N = 13 apodized with a Tukey window

(α = 0.5). Side lobes attenuation is more visible with PWI (b) when compared to

(d). The setup for all simulations is according to Table 2.2 for the pitch size of λ.
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2.5 Apodization

Figure 2.13: Beam profiles for PWI a) in the lateral direction at the 50 mm depth

and b) in the axial direction along x = 0 mm with and without the Tukey (α = 0.5)

apodization window.
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2.5 Apodization

Figure 2.14: Beam profiles for CPWI, N = 13, a) in the lateral direction at the 50

mm depth and b) in the axial direction along x = 0 mm with and without the Tukey

(α = 0.5) apodization window.
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pitch size of λ/2 can reduce the appearance of the axial lobes as well. The appearance

of the grating and axial lobes can be reduced significantly when the B-mode image

displayed within a 50 dB dynamic range.

Phase Error

Phase error is a terminology used to describe the deviation between the aligned RF echo

in each element. This happens mainly due to two reasons. Firstly, it is because of the

non-ideal physical transducer characteristics and the second reason is the non-uniform

speed of sound in the imaging medium Hemmsen et al. (2010); Karaman et al. (1993).

The characteristics of each transducer are defined by a fixed central frequency, limited

bandwidth, damping and sensitivity. Each transducer is unique and none of them

are same Cowell & Freear (2008a). At the same time, not all elements in a transducer

respond or vibrate equally and there is a deviation in between of them Hansen & Jensen

(2012).

In this thesis, only the phase error caused by the non-ideal physical transducer

characteristics will be discussed. But the proposed solutions, adding a sign-reversed

lag to the RF signals can be applied to correct the phase errors caused by the speed of

sound as well.

In an ideal case, it is expected the calculated time delays added to the received

RF signals will align those RF signals before coherent summation. However, in a

real scenario the aligned RF signals are not always in phase due to the above reasons.

Many techniques have been proposed to estimate the phase error in ultrasound B-mode

imaging. Some of the estimation techniques are the speckle brightness method Nock

et al. (1989); Trahey et al. (1990) and the autocorrelation technique Hansen & Jensen

(2012).

In order to analyse the effect of the phase error on PWI, a study was conducted on

the wire targets located inside the degassed and deionized water. Performing ultrasound

imaging in water is an advantage since the medium attenuation is very low and no other

scattering except that from the wire point targets. The experiments were conducted

with the parameters shown in Table 2.2 except that the speed of sound inside the water

was 1482 m/s at the room temperature of 22◦ C. The wire targets were imaged with

PWI and beamformed with DAS. The B-mode image was log-compressed and displayed

with a dynamic range of 50 dB as shown in Fig. 2.19.
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2.5 Apodization

Figure 2.15: Results from the Field II simulation performed on a point target located

at the 10 mm depth. No apodization was applied to any of the PWs steered at a)

−12◦, b) 0◦, c) +12◦, d) CPWI, N = 13. The grating lobes are no longer visible with

compounding. The simulation setup is given in Table 2.2 for the pitch size of λ.
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Figure 2.16: a) Lateral beam profile and b) axial beam profile for Fig. 2.15.
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Figure 2.17: Results from the Field II simulation performed on a point target located

at the 10 mm depth. Tukey apodization with α = 0.5 was applied to PWs steered at

a) −12◦, b) 0◦, c) +12◦, d) CPWI, N = 13. The grating lobes are no longer visible

with spatial compounding. The simulation setup is given in Table 2.2 for the pitch size

of λ.
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Figure 2.18: a) Lateral beam profile and b) axial beam profile for Fig. 2.17.
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Figure 2.19: The B-mode image of point targets beamformed with DAS obtained with

PWI. The red dashed line marked on the point target at 20 mm depth to show the

imaging line chosen for phase error analysis.

The B-mode image was formed line by line with different sets of time delays assigned

to the same received RF signals according to equation 2.10. The computed time delays

were added to the received RF signal si(t), giving the aligned RF signal vi(t) which

can be represented by the following equation:

vi(t) =si(t− τi(x, z)) (2.15)

The aligned RF signals for the imaging line located at xf = 0.5 mm for the wire

target at the 20 mm depth have been used to analyse the effect of phase error. In

an ideal case, aligning the RF signals for the central imaging line, for a wire target

located at the centre of the imaging medium, is expected to produce a set of RF signals

in a straight line form parallel to the face of the transducer. Thus, any deviation in

the aligned RF signals can be considered as the result of phase error. A portion of

the aligned RF signals obtained for the wire target at the 30 mm depth is shown in

Fig. 2.20(a). It can be seen that the signals were not perfectly straight (aligned) and

still maintained the parabolic shape of the Rx echo signal. Fig. 2.20(b) shows the RF
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Table 2.5: Phase error.

80 MHz 1600 MHz

Time, ns Distance, µm Time, ns Distance, µm

Max. Phase Error 50 37 53.13 39.37

Total Phase Error 3450 2560 3462.5 2565.7

signals from the elements 1, 64 and 128. Qualitatively, it can be seen that all of the

RF signals on those elements were not in-phase with each other.

The phase deviation between the aligned RF signals, vi(t) on all the elements were

calculated by applying cross-correlation techniques relative to the RF signal from ele-

ment 1, v1(t). The lags between the RF signals peaks , determine the phase deviation

in between the RF signals. The RF signals between elements 1 and 64 have a phase

shift of approximately 76◦ and 38◦ between elements 1 and 128. The phase error was

computed with two different sampling frequencies. The first is the UARP II hardware

Rx sampling frequency of 80 MHz and the second is a higher sampling frequency of

1600 MHz produced by up-sampling the time domain signal vi(t) using the linear inter-

polation technique. The results obtained with the higher sampling frequency provided

more details on the phase error compared to that with the lower sampling frequency.

The accurate estimated phase error helps to determine more precisely the number of

samples needed to align the RF signals. The result is shown in Fig. 2.21.

The maximum and total phase errors for a single imaging line calculated for 128

elements with the sampling frequencies of 80 MHz and 1600 MHz are given in Table 2.5.

The higher sampling frequency provides more accurate results than the lower sampling

frequency. The time calculated with a higher frequency shows an increase of 6.26%

from 50 to 53.13 ns, while the distance shows an increase of 6.4% from 37 to 39.37 µm.

This is because the interpolation function is able to increase the accuracy by adding

the missing data Mahmoudzadeh & Kashou (2013).

Once the phase error represented by the lag values was calculated, an sign-reversed

lag value was applied to the aligned RF signals in order to compensate for the aber-

ration. The main lobes in the lateral direction have been improved when the aligned

RF signals are compensated with both lower and higher frequencies. A significant im-

provement in main lobes along the lateral direction can be seen on −10 dB and −20 dB
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2.5 Apodization

Figure 2.20: a) The aligned RF signals for the imaging line at xf = 0.5 mm at the 20

mm depth and b) the individual waveform for the elements 1, 64 and 128.
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2.5 Apodization

Figure 2.21: Phase error measured on the aligned RF signals relative to the first element

for the imaging line of 0.5 mm in the lateral direction as shown in Fig. 2.19.

levels as shown in Fig. 2.23. However, the peak side lobes (PSLs) have increased from

−30 dB to −20 dB after the correction. The small amount of PSL increment (from

−26 dB to −24 dB) can be also seen in the axial direction. In general, increasing the

sampling rate to correct for the phase error does not show any change on the main

lobes in the axial direction. It can be seen in Fig. 2.22(b) as highlighted in region

A, more side lobes and clutter noise are produced on both sides of the wire target.

Correcting the phase aberration with both low and high sampling frequencies is able to

reduce noise in the lateral direction. This has been highlighted in region B in Fig. 2.22.

As a conclusion, the phase corrected signal is able to improve the signal resolution in

the lateral direction and reduce the noise level. On the other hand, the side lobes are

not totally eliminated and are still visible within the imaging region and the PSL has

increased.
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2.5 Apodization

Figure 2.22: B-mode image of the wire target at the 20 mm depth with phase error

(Top), after phase error correction with the sampling rate of 80 MHz (Middle) and after

phase error correction with the sampling rate of 1600 MHz (Bottom). The dashed box

marked with A and B shows the effect of phase correction on noisy regions.

Figure 2.23: Beam profiles of the wire target at the 20 mm depth in the a) axial

direction and b) lateral direction before and after correction of phase error.
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2.6 Conclusion

A general background study was conducted in this chapter about beamforming, PWI

and CPWI. More detailed studies on typical types of noise that impair ultrafast PWI

and techniques used to overcome those noise were conducted in this chapter with Field

II simulations and experiments. Spatial and frequency compounding techniques are

found to be the main method used to obtained images in ultrafast PWI. Those images

summed either coherently or non-coherently to form a single B-mode image. Clutter

noise is a general terminology used to describe noise from off-axis scattering, edge waves,

side lobes, grating lobes and phase errors. Apodization or windowing can be applied

on excitation signals or on the aperture to reduce spectral leakage, side lobes and edge

waves. The phase error that occurs due to the non-ideal transducer characteristic can

be overcome by adding a sign-reversed lag to the aligned RF signals. In general, the

proposed solution used to overcome the clutter noise effect in ultrafast PWI involves

some trade-offs. Either the spatial resolution or the FR will be reduced during the

clutter noise reduction in ultrafast PWI.
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Chapter 3

Selection of Excitation Signals

and Acoustic Pressure

Measurement

In this chapter, the introduction to the ultrasound research platform which was used

in this thesis for all experimental measurements was given. The selection of excitation

signals and pressure measurements are important since they play major roles when

imaging in vivo medium. The advantages and disadvantages of different excitation

signals have been discussed.

3.1 Ultrasound Research Array Platform version II (UARP

II)

The UARP II is a custom ultrasound imaging system developed by the Ultrasonics

and Instrumentation Group at the University of Leeds Cowell & Freear (2008b); Smith

et al. (2012). It contains a 8-field programmable gate array (FPGA) backplane which

connects to a computer running any 64 bit version of the Windows operating system

(OS) via a peripheral component interconnect express (PCIe) link. Each FPGA card

consists of 16 channels and there are total of 128 channels in the current UARP II. How-

ever, the design of this system is highly flexible, and the system can be easily scaled

to have more channels. All excitation signals except the square pulse are designed in

the Matlab software (The MathWorks Inc., Natick, MA, USA) by using a harmonic re-
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3.2 Selection of Excitation Signals

duction pulse width modulation (HRPWM) method Smith et al. (2013). The sampling

rate for Tx is 160 MHz. Those signals are then uploaded to UARP II which excites the

connected probe by using a five level switched mode excitation scheme Cowell & Freear

(2008a). The received radio frequency (RF) data are acquired at a 80 MHz sampling

rate and processed off line using MATLAB. The maximum sampling depth for a single

firing can be more than 32768 samples per channel, which equates to a round trip in

water of approximately 61 cm with the speed of sound of 1482 m/s at 22◦ C.

3.2 Selection of Excitation Signals

Three different excitation signals have been explored in order to find the most suitable

for in vivo imaging. Each of the excitation signals except the square pulse were uploaded

to the UARP II utilizing a five level switching mode with the driving voltages upto

±100, ±50 and 0 Volts. The maximum amplitude for all excitation signals have been

fixed to ±100 volts in order to generate maximum pressure values at the elevation focus.

The first excitation was a broadband square pulse signal es1(t) with a 50 ns duration

and can be expressed in the analytical form as

es1(t) =

{
1, 0 ≤ t ≤ T
0, otherwise

(3.1)

where T is the time duration. The Tukey window was applied to the excitation with

a weightage of 0.5. Fig. 3.1 shows the square pulse in time and frequency domain. The

output of the transducer is known as the result of convolution between the excitation

signal and the transducer impulse response. While the echo is a convolution result

between the acoustic response and the transducer’s impulse response.

Next the 2-cycle sinusoidal signal es2(t) tapered in the time domain using a Tukey

window a(t) with a factor of 0.5 was applied. The signal can be expressed as follows:

es2(t) =

{
a(t)sin(2πfot), 0 ≤ t ≤ 2/fo

0, otherwise
(3.2)

Fig. 3.2 shows the 2-cycle sinusoidal signal in time and frequency domain. Finally,

the linear frequency modulated excitation signal es3(t) with a 10 µs duration, 57%
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Figure 3.1: Square pulse signal properties shown in a) time domain and b) frequency

domain.
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3.2 Selection of Excitation Signals

Figure 3.2: Tukey windowed (α = 0.5) 2-cycle sinusoidal signal shown in a) time domain

and b) frequency domain.
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3.2 Selection of Excitation Signals

Table 3.1: Excitation signals.

Excitation Signals Duration Fractional Bandwidth Windowing

Square Pulse 50 ns 57% None

Sinusoidal 0.4 µs 57% Tukey, α = 0.5

Chirp 10 µs 57% Tukey, α = 0.5

bandwidth and tapered with a Tukey window a(t) (α = 0.50) was employed in the

experiments. The signal can be expressed as follows:

es3(t) =

{
a(t)sin(2πt(fo + kt/2)), 0 ≤ t ≤ T
0, otherwise

(3.3)

where T is the signal duration, fo is the centre frequency and k is the rate of the

frequency change as given by

k =
f2 − f1
T

(3.4)

where f1 is the starting frequency of the sweep and f2 is the frequency at the

end of the time duration T . The chirp signal can be pulse compressed to produce a

short pulse by applying matched or mismathed filtering techniques Chun et al. (2015);

Harput et al. (2013). The output of the matched filter has a narrow main lobe with

side lobes Cowell & Freear (2008a). In the matched filtering technique, the received

signal is cross correlated with the same excitation signal as shown in Fig. 3.3(a). The

frequency domain of the mathched filtering output is shown in Fig. 3.3(c).

The summary of all the excitation signals is given in Table II. It should be noted that

the convolution model used to form B-mode images is only an approximates of the real

excitation signal-tissue interaction Michailovich & Tannenbaum (2006). Real models

can be more complex when considering the hard surface condition which can produce

strong reflections. However, considering the fact that the regions occupied by strong

reflectors are not common in regular ultrasound images, the convolution model is known

to approximate very closely the real image formation process. The approximation

convolution model has been widely used in numerous methods for ultrasound image

reconstructions by Jensen (1991); Taxt (1995).
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Figure 3.3: Tukey windowed (α = 0.5) chirp signal shown in a) time domain b) after

modulated with HRPWM and c) frequency domain.
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3.3 Pressure Measurement

3.3 Pressure Measurement

Before conducting in-vivo experiments, the acoustic pressures need to be measured.

The measured parameters need to be within the limits set by the food and drug admin-

istrations (FDA) Ter Haar (2011). This is to ensure that the acoustic beam intensities

do not cause any thermal damage and cavitation. The most important three parameters

that need to be monitored according to the FDA are the mechanical index MI ≤ 1.9,

the spatial peak pulse average intensity ISPPA ≤ 190W/cm2 and the spatial peak tem-

poral average intensity ISPTA ≤ 720mW/cm2 Fowlkes (2008); Nelson et al. (2009). The

MI is a metric used to avoid cavitation and it is unit-less. It is defined as:

MI =
pm√
fo

≤ 1.9 (3.5)

where pm is the peak negative pressure (PNP). ISPPA is the maximum intensity in

the beam averaged divided by the pulse duration.

ISPPA =
p2m
2ρc

≤ 190W/cm2 (3.6)

where ρ is the density and c is the speed of sound in the propagating medium. As

the measurements were performed inside the degassed and deinonized water, ρ is set

to 1000 kg/m3. The speed of sound c inside the water measured at room temperature

22o C was 1482 m/s Laugier & Häıat (2011). ISPTA is the maximum intensity divided

by the pulse repetition period. It indicates the thermal deposition and is related to the

likelihood of cavitation due to the rise of the tissue temperature.

ISPTA =ISPPA
T

TPRP
≤ 720mW/cm2 (3.7)

The pressure reading of all the three excitation signals with the signal properties as

shown in Table. 3.1 have been recorded at the centre of the transducer along the eleva-

tion direction as shown in Fig. 3.4. The pressure waveform emitted by the transducer

was measured by using a 0.2 mm needle hydrophone (Model 1574, Precision Acoustic,

Dorchester, UK). The needle hydrophone was attached to the submersible preamplifier

(Model PA07093, Precision Acoustic, Dorchester, UK). The submersible preamplifier

was connected to a DC coupler (Model 692, Precision Acoustic, Dorchester, UK) and

the signal output was displayed and recorded with a oscilloscope (Model MSO-S 104A,
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3.3 Pressure Measurement

Agilent Technologies, California, United States) with the sampling rate of 10 GS/s.

The complete setup for the pressure measurements is shown in Fig. 3.5.

The measurement was performed at the 20 mm depth where the maximum PNP

occurs at the elevation focus. The raw data recorded from the hydrophone in voltage

formats were converted into acoustic pressures by using the following equation:

pm =
V

m(f)
(3.8)

where V is the measured voltage in mV, and m(f) is the sensitivity of the hy-

drophone as a function of frequency in mV/MPa. The uncertainty of this 0.2 mm

needle hydrophone was 14%. The water attenuation coefficient value is far smaller

than any other tissue or material which falls in between 0.15 to 20 dB cm−1 MHz−1

Azhari (2010). The in situ pressures were then estimated with a derating factor of

0.3 dB cm−1 MHz−1, corresponding to a linear factor as given by Fowlkes (2008);

Nightingale et al. (2015):

pd =exp(−0.069fczf )pm (3.9)

The MI measured for all the three excitation signals are below the recommendation

value of 1.9 set by the FDA. The highest MI value is 0.55 for the 10 µs chirp signals

while the lowest is 0.22 for the square pulse signal. The ISPTA value for the 10 µs chirp

signal is 3778 mW/cm2, which is far more than the maximum value of 720 mW/cm2.

There are two reasons for this high value. The first reason is the longer pulse duration

of 10 µs within a single PRP and the second reason is the high FR of 37000 Hz (at 20

mm depth, c = 1480 m/s). In order to comply the FDA requirements, either the pulse

duration or the FR shall be reduced if the pressure has been fixed. Other FDA limitsd

are given in Table 3.2.
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3.3 Pressure Measurement

Elevation 

Lateral 

Axial 

Figure 3.4: Maximum pressure points along the elevation, yf direction at the 20 mm

depth has been measured and used as reference points along the elevation direction in

order to measure the PNP for all the excitation signals. The pressure in the elevation

direction measured for with a step of 0.1 mm.
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UARP II 

Oscilloscope 

L3-8 40EP 

0.2 mm Needle Hydrophone 
and Preamplifier 

XYZ Translation Stage 

DC Coupler 

Figure 3.5: Pressure measurement setup.

Table 3.2: FDA Standard for Safety Consideration

Metrics pm, pd, MI, ISPPA, ISPTA,

MPa MPa - W/cm2 mW/cm2

Square Pulse 0.98 0.49 0.22 1.63 3

2-Cycle Sinusoidal 1.55 0.78 0.35 4.13 61.1

10 µs Chirp 2.43 1.22 0.55 10.2 3778

FDA Standard - - 1.9 190 720
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Figure 3.6: Peak negative pressures at 20 mm depth measured at the maximum eleva-

tion focusing point for square pulse, 2-cycle sinusoidal and chirp excitation signals.
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3.4 Discussion and Conclusion

Three different types of excitation signals, square pulse, 2-cycle sinusoidal and chirp

have been investigated in this chapter. Each of the excitation signals has their own

advantages and disadvantages. Square pulse with shortest duration is able to produce

high axial resolution but the pressure is relatively low compared to the sinusoid and

chirp. The sinusoid on the other hand has the higher energy than the square pulse and

is able to penetrate deeper in the scanning medium with a compressed axial resolution

Tole et al. (2005). Chirp excitation signals are well known for its ability to improve the

image SNR and penetration depth whilst retaining the axial resolution Harput et al.

(2015). The biggest challenge in chirp coded imaging is to design its matching filter.

This is because the non-linearity in the imaging medium causes shifts in frequency on

the echoes which will directly affect the design of the matched filter Harput et al. (2015).

Chirps also produce the highest amount of MI, SPPA and SPTA intensities among all

investigated signals. Those values can be lowered by reducing the transmitted voltage,

FR and pulse duration.

It is found that the excitation signal duration can influence the pressure measure-

ments and SPPA. The FR can influence the SPTA. A high PNP can be hazardous

because it can produce cavitation and thermal heating. Thus, by considering advan-

tages and disadvantages of all investigated excitation signals, the 2-cycle sinusoidal

signal has been selected for all simulations and experiments in this thesis.
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Chapter 4

Filter Delay Multiply and Sum

Beamforming

In this chapter, the new filtered delay multiply and sum (FDMAS) beamforming tech-

nique has been discussed in detail. The effect of altering the imaging point step size in

the lateral direction on FDMAS was studied. The performance of FDMAS was eval-

uated in this chapter by fine-tuning the lateral step size to find its optimal value. To

demostrate the effect of altering the lateral steps in the lateral direction on FDMAS,

measurments were performed on point targets, anechoic and human in-vivo. All results

obtained from FDMAS have been compared with those from DAS.

4.1 Introduction

As an alternative to delay-and-sum DAS beamforming, a novel beamforming technique

called FDMAS was introduced recently to improve ultrasound B-mode image quality.

The initial process in FDMAS is the same as that in DAS. However, unlike in DAS,

the aligned RF signals will undergo a process similar to the autocorrelation function,

which can be represented by the following equation Matrone et al. (2015):

rDMAS =

E−1∑
i=1

E∑
m=i+1

sgn{vi(t)vm(t)} ×
√
|vi(t)vm(t)|, (4.1)

where vi(t) is the aligned RF signal on the i-th element, E is the total number of

elements on the imaging probe and m = i + 1 is the aligned RF signal at the m-th

element. The multiplication of two RF signals with the same frequency content will
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4.1 Introduction

eventually produce second harmonics (fo+fo) and direct current components (fo−fo).
Thus, a band-pass filter is applied to rDMAS to extract its second harmonics (2fo), and

finally, rFDMAS is obtained.

4.1.1 Simulation and Experimental Setup

To validate the FDMAS beamforming technique, Field II simulations and laboratory

experiments were performed on points targets, anechoic cysts and human in-vivo. The

setup for both simulations and experiments are the same as given by Table 2.2. Data

were collected from seven different point targets as shown in Fig. 4.1(b). The simulated

cyst phantom had cysts located at 30 mm, 40 mm and 50 mm with diameters of 2 mm,

4 mm, and 6 mm, respectively. 100,000 scatters (20 scatterers/mm3) were distributed

randomly as shown in Fig. 4.7(a). As for experimental work, several measurements

were performed on nylon wire targets with a diameter of 120 µm, a tissue-mimicking

phantom (040GSE, CIRS, Virginia, USA) and in-vivo. The anechoic sections of the

tissue-mimicking phantom (depth: from 10 mm to 50 mm) as shown in Fig. 4.2 and

the wire target (depth: from 10 mm to 50 mm) as shown in Fig. 4.1 were imaged.

In-vivo data were collected from the cross section of the right common carotid artery

of a healthy volunteer as shown in Fig. 4.3. A 128-element linear array transducer

(L3-8/40EP, Prosonics Co. Ltd., South Korea) with a centre frequency of 4.79 MHz

and a 57 % bandwidth at −6 dB was used to collect all the data. A two-cycle sinusoidal

excitation signal with a centre frequency of 5 MHz was digitised with the ultrasound

array research platform II (University of Leeds, UK) Cowell & Freear (2008b); Cowell

et al. (2016); Smith et al. (2012). The received signals were sampled at 80 MHz.

The complete experimental parameters are provided in Table 2.2. No apodization is

applied on the elements along the lateral direction during transmission and reception

for simulations and experiments.

4.1.2 Performance Evaluation

The performance of the final B-mode images produced using the DAS and FDMAS

beamforming techniques can be described by: spatial resolution in axial and lateral

directions, peak side lobe (PSL), contrast-to-noise-ratio (CNR) and contrast ratio (CR).

To determine the image axial resolution (AR), lateral resolution (LR) and PSL, the

main lobes of the point target represented by the nylon wire in degassed and deionized
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  Linear Array 
  Transducer 

Degas 

Deionized 

Water 

Wires 
Phantom 

  (a) Wire Phantom Setup  

(b) Wire Phantom Model

Figure 4.1: a) Experimental setup to scan wires phantom inside the degassed and

deionized water and (b) the model of the wire phantom.

(a) CIRS Phantom Setup 

(b) CIRS ROI 

Linear Array 

Transducer 

ROI 

CIRS 

Phantom 

Figure 4.2: a) Experimental setup to scan the cyst region inside the tissue-mimicking

CIRS phantom and (b) the region of interest (ROI) in close-up.
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Figure 4.3: a) General anatomical structure of the common carotid artery, internal

carotid artery and external carotid artery located on the right side of the neck, b) Two

different ways on positioning the transducer face, transverse and longitudinal direction

for imaging the carotid artery, c) The B-mode image obtained from the transverse

direction Jensen et al. (2016a) while d) obtained from the longitudinal direction Tegeler

et al. (2005).
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water were measured at −6 dB and −20 dB using the function developed in Harput

et al. (2014). The measurement was performed on a wire with a diameter of 120 um

at a depth of 30 mm as shown in Fig. 4.1(b). PSL is defined as first side lobes peaks

in axial and lateral directions. CR is used to express the detectability of the object

contrast between the ROI inside the cyst and its background. The image CR of the

anechoic cyst was computed on the CIRS phantom at a depth of 15 mm by creating

two different regions with the same dimensions as shown in Fig. 4.2(b). The first

region is located inside the cyst, whereas the second region is located outside the cyst

at the same depth. This condition ensures that the attenuation caused by depth does

not affect the measurements. A high CNR value means that the cyst can be visualized

easily and there is less variation on acoustic noise. Both CR and CNR equations are

given by Matrone et al. (2015); Ullom et al. (2012)

CR(dB) = 20log10(
µcyst
µback

), (4.2)

CNR(dB) = 20log10(
|µcyst − µBack|√
(σcyst2 + σBack

2)
) (4.3)

where µcyst and µback are the mean image intensities inside and outside of the cyst,

respectively.

4.1.3 Result and Discussion

In this section, only the FDMAS results from simulations for PWI (N = 1, 0◦) are

presented qualitatively without any numerical values. This is mainly to avoid redun-

dancy or repetition with FDMAS results. The B-mode images for the point target

bemaformed with DAS and FDMAS are presented in Fig. 4.4(a) and (b), respectively.

Grating lobes at approximate −40 dB level that appears at the 10 mm depth as shown

in Fig. 4.4(a) with DAS are no longer visible in Fig. 4.4(b) when beamformed with

FDMAS. All the side lobes in the lateral direction that appear on the point targets also

have been significantly reduced with FDMAS. This can be seen from lateral beam pro-

files plotted for point targets located at the 40 mm depth presented in Fig. 4.4(c). The
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main lobes along the lateral direction are also narrowed using FDMAS when compared

to DAS. In the axial direction, the beam profiles as shown in Fig. 4.4(d) for FDMAS

shows the same pattern as that using DAS. However, with FDMAS, the signal inten-

sity drops gradually with depth. This can be associated with FDMAS signals obtained

from 2nd harmonic components that have lower amplitude levels when compared to

DC components as shown in Fig. 4.5. Once equation 4.1 was performed on the DAS

signals, the DC component and 2nd harmonic have been produced and a band pass

filter between 8.5 to 11.5 MHz was applied to extract the 2nd harmonic component.

A single point target at the 30 mm depth as shown in Fig. 4.6 has been chosen

to show in detail the effects of FDMAS on B-mode imaging. It can be seen that the

axial side lobes are higher with FDMAS. The PSL starts to appear at approximately

−50 dB and there is no significant change on the main lobes in the axial direction. The

PSL along the lateral direction is attenuated from −19 dB with DAS to −37 dB with

FDMAS.

The B-mode images for the cysts using DAS and FDMAS are presented in Fig. 4.7

(a) and (b). The contrast for all cysts is improved with FDMAS compared to DAS.

This is mainly due to the attenuation of clutter noise inside the cyst anechoic region.

The sidelobes that leak into the anechoic regions along the lateral direction mainly

reduce the contrast using DAS. The border definition for all cysts with FDMAS has

been improved as the edge becomes steeper. This can be seen in Fig. 4.7 (c) and (d).

4.2 Optimal Imaging Point Step Size

Despite the significant amount of research were reported on FDMAS, no in-depth inves-

tigation has been conducted on the effect of varying imaging point step size, ∆x, in the

lateral direction, which is one of the important criteria for determining B-mode image

quality. In a previous study Jensen et al. (2016b) on compound PWI (CPWI) with

spacings or pitch sizes, p (λ or λ/2), of imaging probes were used whilst maintaining

other experimental parameters. The LR measured on the wire targets at full width at

half maximum (−6 dB) from a depth of 10 mm to 60 mm obtained using imaging probes

with pitch sizes of λ and λ/2 are nearly the same. Moreover the CR values measured

using probes with pitch sizes of λ and λ/2 on a cyst with a depth ranging from 20 mm

to 60 mm do not exhibit any significant difference between them. This previous study
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4.2 Optimal Imaging Point Step Size

Figure 4.4: Field II simulated PWI for a point target beamformed with a) DAS and b)

FDMAS. c) Lateral and d) axial beam profiles with DAS and FDMAS.
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Figure 4.5: The normalized amplitude for the frequency spectrum obtained using DAS,

DMAS and FDMAS. The frequency spectrum was performed on a single point target

located at the 30 mm depth as shown in Fig. 4.6. The dashed gray color box represents

a band pass filter between 8.5 to 11.5 MHz to extract the 2nd harmonic component

from DMAS.

Figure 4.6: PWI for a point target located at the 30 mm depth beamformed with a)

DAS and b) FDMAS. c) Lateral and d) axial beam profile with DAS and FDMAS.
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Figure 4.7: Field II simulation with PWI for the cysts located at 30 mm, 40 mm and

50 mm deep using a) DAS and b) FDMAS. c) lateral beam profile for cyst at the 50

mm depth with a 6 mm diameter and b) axial beam profile along x = 0 mm.
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4.2 Optimal Imaging Point Step Size

also showed that the appearance of grating lobes on the imaging medium with a pitch

size of λ whilst steering the probes can be reduced effectively through compounding.

Furthermore, grating lobes mainly appear in the near-field regions (≤ 10 mm). The

final outcome of Jensen et al. (2016b) provides a strong hypothesis that beamforming

∆x in the lateral direction plays an important role in determining the final quality of

B-mode images. This finding has motivated us to further explore the effect of varying

∆x in the lateral direction with the recently proposed FDMAS beamforming techniques

primarily because the FDMAS algorithm is similar to the autocorrelation process that

depends on the lag among radio-frequency (RF) signals in each channel in the lateral

direction. Thus, the minimum requirement for ∆x in the lateral direction for FDMAS is

a subject for discussion. In this study we investigated the effect of varying the imaging

point step size on CPWI with the following point targets, a tissue-mimicking phantom

and a human carotid artery in-vivo. This study is expected to propose the optimised

∆x in the lateral direction for FDMAS to improve the B-mode image quality.

The main objective of this work is to evaluate the effect of varying imaging point

step size, ∆x, in the lateral direction on any number of compounding parameters with

the DAS and FDMAS beamforming techniques and not to find the optimum number

of compounding parameters in CPWI. Many studies, including Alomari et al. (2014);

Jensen et al. (2016b); Montaldo et al. (2009); Toulemonde et al. (2015), have proposed a

unique number of compounding parameters that provide the best image quality accord-

ing to their experimental setup. Thus, a particular compounding parameter that will

provide the best end results for all image quality indices is impossible to propose. The

general rule of thumb in selecting the number of compounding parameters is to min-

imise it, such that the end results are balanced among the optimum temporal, spatial

and contrast resolutions. Several studies, such as Montaldo et al. (2009) and Alomari

et al. (2014), have mentioned that after a certain number of compounding angles, image

resolution will no longer improve but will deteriorate instead due to reduced noise can-

cellation near the main lobe. In consideration of these constraints, the selected number

of compounding, N , and the steering angle increments, ∆θn, are shown in Table 2.1 to

validate the effect of varying imaging point step size, ∆x, on DAS and FDMAS. The

sector angles, [θ◦max, θ◦min], for all compounding are set to ±12◦.
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4.2 Optimal Imaging Point Step Size

4.2.1 Imaging Point Step Size, ∆x

The effect of varying ∆x during beamforming on B-mode image quality was studied

by first calculating the difference in the imaging line angles and then calculating the

correlation coefficient between two adjacent aligned RF signals for the second imaging

line. ∆x is also referred to as the lateral step, λ/g, in this work, where g = 1, 2, 3,

4 and 5. The imaging line angle is denoted by βolg , and the imaging lines are denoted

by l.

The angle formed between a set of aligned RF signals and the surface of the trans-

ducer is known as the imaging line angle (Fig. 4.8(a)). The ∆β between the imaging

lines, l = 1 and 2, for the lateral steps, λ and λ/4, are given by

∆β1 = βo21 − β
o
11 , for λ;

∆β4 = βo24 − β
o
14 , for λ/4;

∆β1 > ∆β4;

(4.4)

where βo11 and βo21 are the imaging line angles for the aligned RF signals according

to equation 2.15 for the first imaging line calculated with x = −15 mm and the second

imaging line calculated with x = −15+λ mm for the lateral step of λ. βo14 and βo24 are

the imaging line angles for the aligned RF signals for the first imaging line calculated

with x = −15 mm and the second imaging line calculated with x = −15+λ/4 mm for

the lateral step of λ/4.

69



4.2 Optimal Imaging Point Step Size
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Figure 4.8: Aligned RF signals with different lateral steps are illustrated to show the

formation of imaging line angle and difference between the imaging line angles. a)

Aligned received RF signals for E = 128 elements according to equation 2.15 for imaging

line 1 for the lateral step of λ/4. The imaging line angles formed between the face of the

imaging probe and the aligned RF signals highlighted. b) The aligned RF signals for

imaging lines 1 and 2 for the lateral steps of λ and aligned RF signals for imaging lines

1, 2, 3 and 4 for the lateral steps of λ/4 are shown together with difference between

the imaging line angles.
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4.2 Optimal Imaging Point Step Size

The aligned RF signals in Fig. 4.8(a) for first imaging line with the lateral step of

λ/4 illustrated as originated from the echo of a single wire target located at x = 0,

z = 40 mm. The z coordinates for all the three imaging lines is located from the start

to the end of the imaging field.

The correlation coefficient, ρ, between two adjacent aligned RF signals is computed

on the second imaging line according to the following equation Ruchkin (1965)

ρ =
v1(t)v2(t)√
v1(t)2v2(t)2

, (4.5)

where v1(t) and v2(t) are the RF signals from the first (i = 1) and second (i = 2)

elements as given by equation 2.15. The correlation between the two RF signals, as

given by equation 4.5, was not calculated on the first imaging line because no change

occurred on the RF signals for the imaging line angles for every lateral step. As shown

in Fig. 4.8, β◦11 and β◦14 are the same for the lateral steps of λ and λ/4 or any other

lateral step as the starting imaging point, in this case, x for all lateral step will always

be −15 mm.

In digital signal processing, the autocorrelation between two signals is calculated

with a lag that is relative to the starting point of one of the signals. Lag refers to the

distance or difference between two points. The multiplication of two RF signals and

then summing them at a specific lag is known as short-time autocorrelation Harrington

& Cassidy (2012). Lag is commonly represented by the sample numbers. In this work,

however lag is assigned to the difference in angles, ∆β, between two imaging line angles.

The lag between adjacent RF signals along the lateral direction depends on ∆x. Instead

of aligning all the RF signals of all the elements at one time with the lateral step of λ, all

the RF signals will now be aligned with twice the lateral step of λ/2. Simultaneously,

instead of assigning a single grey colour intensity on a particular imaging point, two

different grey colour intensities will be assigned with the lateral step of λ/2 on two

different imaging points. The length of an imaging point with the lateral step of λ is

equal to two imaging points with the lateral step of λ/2.
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4.3 Results and Discussion

4.2.2 Spatial Sampling Frequency

The temporal sampling theorem states that a signal must be sampled at a minimum

sampling frequency of fs (of period Ts) to avoid aliasing as given by

fs =
1

Ts
≥ 2fsmax , (4.6)

where fsmax is the maximum incoming signal frequency. Similarly, for the minimum

spatial sampling frequency to avoid aliasing or grating lobes as given by Mccowan

(2018)

fxs =
1

p
≥ 2fxmax , (4.7)

where fxs is the spatial sampling frequency in samples per meter, and fxmax is the

highest spatial frequency that can be represented by

fxmax =
1

λmin
, (4.8)

When equation 4.8 is substituted to equation 4.7, we will get

p ≤ λmin

2
, (4.9)

where λmin is the minimum wavelength of the signal. The occurrence angle of the

grating lobe is given by the following equation Ponnle et al. (2013):

θg =sin−1(sin(θn)− mλ

p
) (4.10)

The disadvantage of using a small pitch size is the increment in computational time

to produce a B-mode image.

4.3 Results and Discussion

4.3.1 Simulation Results

The difference between the first and second imaging line angle ∆β and the correlation

calculated on the second imaging lines between the RF signals in the first (i = 1) and

second (i = 2) elements for the lateral step ∆x from λ to λ/5 for the pitch size of λ

and λ/2 are illustrated in Fig. 4.9. The lag ∆β begins to decrease when reducing the
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4.3 Results and Discussion

lateral step from λ to λ/5. For the pitch size λ and the lateral step λ, the ∆β is 0.8◦.

The lateral step is reduced to λ/5, and thus ∆β becomes 0.21◦. When ∆β starts to

decrease, the correlation coefficient ρ will also decrease Harrington & Cassidy (2012).

This situation shows that the two RF signals on adjacent elements are moving further

apart. In accordance with equation 4.1, this condition will produce the precise grey

colour intensity at particular imaging points. FDMAS uses a nearly similar process

to autocorrelation to compute the beamformed signals from the aligned RF signals.

The reduction of lateral steps will enable FDMAS to beamform the received RF sig-

nals accurately. Thus, instead of assigning approximate grey colour intensity values

on imaging points with less imaging lines, assigning more imaging lines with smaller

imaging points will help define the exact or accurate intensity values.

Figure 4.9: Effect of reducing lateral step was evaluated on probe with pitch sizes of λ

and λ/2 by measuring the angle difference and correlation between adjacent RF signals

according to equations 4.4 and 4.5.

The results of the Field II simulation with the parameters listed in Table 2.2 are

presented in Fig. 4.10. Fig. 4.10 shows the B-mode images for the wire target located

at x = 0, z= 30 mm beamformed with a) DAS, p = λ, E = 128; b) FDMAS, p = λ,

E = 128; c) DAS, p = λ/2, E = 256 and d) FDMAS, p = λ/2, E = 256. The beam
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4.3 Results and Discussion

Table 4.1: Specification of transducers.

Properties Prosonics Verasonics Verasonics

Model L3-8/40EP L3-12-D L11-4v

Centre Frequency, MHz 4.79 6.5 7.55

Bandwidth (−6 dB), % 57 85 90.8

Element Pitch, mm λ λ 1.46λ-1.48λ

profiles of Fig. 4.10 are shown in the lateral direction in Fig. 4.11. Regardless of

the pitch size p, the B-mode images and the beam pattern exhibit the same outcomes

when the beamforming lateral step is set to λ/2. This important finding shows that

the step size of imaging points plays an extremely important role in determining final

image quality. Even with a larger pitch size p of λ, good quality B-mode images can

be produced with less number of elements and shorter computational time compared

with probes with the pitch size of λ/2. Some linear array transducers available in the

market are provided in Table 4.1. They are used for research purposes and have a pitch

size that is equal to or higher than the λ values. The optimisation of beamforming

lateral steps for such probes is expected to improve the B-mode image quality.

4.3.2 Effect of Imaging Point Step Size ∆x on FDMAS

The B-mode images of the wire target and cyst phantom beamformed with DAS and

FDMAS, N = 9, the lateral steps of λ and λ/5 are shown in Fig. 4.12 and Fig. 4.13. All

the images are presented with a dynamic range of 50 dB. The wire targets beamformed

with FDMAS achieve better results than those beamformed with DAS due to reduced

side lobes produced with FDMAS. The cysts located at a depth of 15 mm and 45 mm

obtain higher CRs with FDMAS than that with DAS.

The advantages or gains of reducing the lateral step lies in the transducer with a

larger pitch size starting from λ and above. However, this approach is inapplicable to

a smaller pitch size (λ/2 or lower). In Fig. 4.9 no significant difference is observed if

the RF signals obtained from the transducer with the pitch size of λ/2 are beamformed

with a lower lateral step, such as λ/3, λ/4 or λ/5. This is because the correlation

between adjacent RF lines is already low. The low correlation is an indication that the

aligned RF signals for the second imaging line, become further apart. This is a good
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Figure 4.10: B-mode images from CPWI, N = 9 for a point target located at x = 0,

z = 30 mm with the lateral step of λ/2: a) DAS, p = λ, E = 128; b) FDMAS, p = λ,

E = 128; c) DAS, p = λ/2, E = 256 and d) FDMAS, p = λ/2, E = 256.

indication such that when the process similar to autocorrelation takes place on the RF

signals with a lower correlation value, the noise cancellation will be higher on those

particular imaging lines.

AR results at −6 dB and −20 dB levels for DAS and FDMAS measured on

wire phantom at the 30 mm depth are given in Fig. 4.14(a–d). In general, there is

not any significant change on the AR for DAS at −6 dB and −20 dB levels. Average

ARs are 0.37 mm and 0.68 mm at −6 dB and −20 dB levels, respectively. There is a

variation on AR for FDMAS when compounding takes place. The lateral steps have

been reduced in the lateral direction thus the expectation on the spatial improvement

is on the lateral direction. The PSL in the axial direction for DAS is not significantly

affected by the reduction of lateral steps. The average PSL in the axial direction using

DAS is −25.4 dB. The PSL in the axial direction using FDMAS shows improvement
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4.3 Results and Discussion

Figure 4.11: Lateral beam profile of a wire target at a depth of 30 mm simulated

using Field II using the pitch sizes of λ and λ/2 beamformed with the lateral step of

λ/2. The Field II simulation parameters are the same as that provided in Table 2.2.

Regardless of pitch size, both beamforming techniques produced nearly similar results

when beamformed with the same lateral step. The legend represents the beamforming

techniques-lateral step-pitch size.

at a low number of compounding angles (N = 3 to N = 9) when the lateral steps are

reduced from λ to λ/5. However, the PSL for N = 3 shows much smaller values for all

lateral steps compared to other compounding angles. A low PSL is due to less noise

cancellation. This is because of a low number of compounding angles and the large

steering angle induce grating lobes. At N = 9, the PSL in the axial direction has only

decreased by 1.0 dB from λ to λ/5.

LR results at −6 dB and −20 dB levels for DAS and FDMAS measured on the

wire phantom at the 30 mm depth are given in Fig. 4.15(a–d). The LRs for DAS and

FDMAS keep improving as the lateral step is reduced from λ to λ/5 for all numbers

of compounding angles from N = 1 to N = 25. With N = 9, when the lateral step is

reduced from λ to λ/5, the LR using FDMAS achieves 67.9% and 81.2% improvements

at −6 dB and −20 dB, respectively. With the same lateral step reduction, DAS achieves

54.8% and 67.4% improvements at −6 dB and −20 dB, respectively. However, most of

the changes in LR for DAS only occur from λ to λ/2, whereas those for FDMAS occur
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Figure 4.12: B-Mode images of point targets beamformed with row (i) DAS and row

(ii) FDMAS, N = 9 with the lateral steps of λ and λ/5.
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Figure 4.13: B-mode images of cysts beamformed with row i, DAS and row ii, FDMAS,

N = 9 with the lateral steps of λ and λ/5. Two regions with the same size are selected

to measure image CR and CNR.
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Figure 4.14: AR performance at −6 dB: a) DAS and b) FDMAS, AR at −20 dB; c)

DAS and d) FDMAS, PSL; e) DAS and f) FDMAS for CPWI (N = 1 to N = 25) as

the lateral step is reduced from λ to λ/5.
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from λ to λ/3. Beyond these values, improvements plateau. The concept behind this

approach is clearly illustrated through the beam profile pattern in the lateral direction

shown in Fig. 4.18 for point targets located at 30 mm depth, respectively.

CR and CNR results for DAS and FDMAS measured on the 3.0 mm diameter

cyst located at the 15 mm depth are presented in Fig. 4.16. Improvements in CR

and CNR are shown when the lateral step is reduced from λ to λ/5 for both DAS

and FDMAS. The CRs are improved by 4.18 dB and 10.38 dB for DAS and FDMAS,

respectively. The B-mode images of the point target shown in Fig. 4.17 exhibit a noise

reduction in the lateral direction as the lateral step is reduced from λ to λ/5. The

energy in the side lobes regions is the main factor that affects the image contrast level

Matrone et al. (2015); Misaridis & Jensen (2005). Thus, attenuating side lobes more

frequently through a process similar to autocorrelation with smaller ∆β helps improve

the image CR. Side lobes are known to interfere with LR Lawrence (2007). Thus, the

CR is improved by attenuating the side lobes along the lateral direction. The significant

effect of side lobes reduction along the lateral direction with FDMAS is illustrated in

Fig. 4.17, row ii. This however is not the case for CNR. The side lobes reduction as the

lateral step is reduced from λ to λ/5 is the main reason for the CNR to decrease for

both DAS and FDMAS. The attenuation of clutter noise due to side lobes reduction

makes speckle regions initially covered by clutter noise visible. This condition produces

high variations in speckle regions, leading to low CNRs there.

The leaking of the side lobes into the anechoic region is reduced as the lateral step

is reduced from λ to λ/5. This phenomenon is illustrated in Fig. 4.19. The lateral

profile of the 3.0 mm diameter cysts is also shown in Fig. 4.20 for DAS and FDMAS.

As the lateral step is reduced from λ to λ/3, the cyst edges become steeper due to side

lobes reduction. In general, the definition of the cyst boundary is improved with both

DAS and FDMAS from the lateral step of λ/2.

The low-quality B-mode image produced with the lateral step of λ can be associated

with beamforming that does not occur at the right location where the point target is

located. A pixel length in the x direction is equal to λ, which is comparably longer than

the exact length of the point target diameter of 120 µm. Thus, a single grey colour

intensity will be assigned through the λ length. One of the solutions for this problem

is reducing the lateral step used for beamforming.
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Figure 4.15: LR performance at −6 dB: a) DAS and b) FDMAS, LR at −20 dB; c)

DAS and d) FDMAS, CR; e) DAS and f) FDMAS for CPWI (N = 1 to N = 25) as

the lateral step is reduced from λ to λ/5.
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Figure 4.16: LR performance at −6 dB: a) DAS and b) FDMAS, LR at −20 dB; c)

DAS and d) FDMAS, CR; e) DAS and f) FDMAS for CPWI (N = 1 to N = 25) as

the lateral step is reduced from λ to λ/5.
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Figure 4.17: B-mode images of point targets at the 30 mm depth beamformed with

DAS (row i) and FDMAS (row ii) using different lateral steps ranging from λ to λ/5

and CPWI, N = 9. The colour map for the figure is the same as the one presented in

Fig. 4.12. All the images are shown within a dynamic range of 50 dB.

4.3.3 Clinical Images

The performance of DAS and FDMAS with in-vivo data was evaluated on the right side

of one male carotid artery. The reduction in clutter noise and side lobes as the lateral

step is reduced from λ to λ/5 facilitates enhancement of spatial and contrast resolutions

with the FDMAS beamforming technique, as shown in Fig. 4.21, row ii. The side lobe

leaking into the carotid artery anechoic regions is similar to that observed in the cyst

region shown in Fig. 4.19. However, the medium that surrounds the cyst border

is uniformly composed of hypoechoic regions. Thus, the amount of side lobes signal

leaking from the hypoechoic region to the anechoic region is less observable although

such leaking also exists. However, the carotid artery presents a different case. The

side lobes that are leaking into the carotid anechoic regions are caused by an extremely

strong hyperechoic medium. Thus, such leaking becomes an obstacle to get the contour

formation on the carotid boundary during the segmentation process. The speckle and

clutter noise in B-mode images pose a challenge to the segmentation process which

BSAC fails to converge to the intended boundary Khadidos et al. (2014); Slabaugh

et al. (2009); Zhu et al. (2010). Thus, the reduction of clutter and side lobes in the

carotid regions improves the segmentation process Kumar et al. (2016).

Segmenting the carotid artery wall is the one of the first procedures before any mea-

surement can be performed. This process can either involve measuring the diameter

of the common carotid artery (CCA) or the intima-media thickness. The 3D recon-
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Figure 4.18: Lateral beam profiles of the wire targets located at the 30 mm depth using

a) DAS and b) FDMAS beamforming techniques with the lateral step from λ to λ/5

for CPWI, N = 9.
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Figure 4.19: B-mode images (CPWI, N = 9) of a 3 mm-diameter cyst located at a

depth of 15 mm beamformed with a lateral step from λ to λ/5 using (i) DAS and (ii)

FDMAS. The colour map for the figure is the same as that in Fig. 4.13. All the images

are shown with a dynamic range of 50 dB.

struction of the carotid artery from the 2D transversal imaging also depends on a good

segmentation output Yeom et al. (2014). Thus, applying the segmentation output from

FDMAS with a smaller lateral step is expected to produce a good 3D carotid image.

4.4 Parameter Optimisation

To form a single B-mode image line using DAS, w for the lateral step is equal to λ,

and the total computational complexity (CC) is E, i.e the total number of elements.

However, to form the same single imaging line for FDMAS, l is given as follows

l =
E2 − E

2
, (4.11)

As the lateral step is reduced, the total number of imaging lines increases along

with CC. Table 4.2 shows the CC for FDMAS as the lateral step is reduced. As shown

in the table, CC increases linearly as the lateral step is reduced for FDMAS.

A summary of the performance indices measured for FDMAS with CPWI, N = 9

is shown in Fig. 4.22. The increment is indicated by the CC in linear form but is

not reflected on the overall performance. Beyond the lateral step of λ/3, a slight

jump is observed in the performance improvement. As the lateral step is reduced

from λ/3 to λ/5, the improvement in LR at −6 dB and −20 dB are only 10.5% and

85



4.4 Parameter Optimisation

Figure 4.20: Normalized lateral beam profiles of the 3.0 mm-diameter cyst at a depth

of 15 mm with a) DAS and b) FDMAS from the lateral step from λ to λ/5 for CPWI,

N = 9.

Table 4.2: Computational complexity for FDMAS.

Properties Values

Lateral Step λ λ/2 λ/3 λ/4 λ/5

Total Imaging Lines E 2E 3E 4E 5E

Computational Complexity, CC El 2El 3El 4El 5El
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Figure 4.21: Carotid artery B-mode images obtained with a two-cycle sinusoidal exci-

tation signal and nine compounding angles beamformed with the lateral step from λ

to λ/5 using DAS (row i) and FDMAS (row ii). The arrows shown on the 2nd row

indicate the side lobes reduction in the lateral direction as the lateral step is reduced.

This improves the boundary definition. The colour map in the figure is the same as the

one presented in Fig. 4.13. All the images are shown within a dynamic range of 50 dB.

20.5%, respectively, compared with 64.1% and 76.4% from λ to λ/3. Meanwhile the

improvement for CR as the lateral step is reduced from λ to λ/3 is 11.49 dB. The

CR result for FDMAS from λ/3 to λ/5 does not exhibit any improvement; instead,

it decreases by 1.22 dB. Thus, to balance CC and performance gains, the received

RF signal is suggested to be beamformed with FDMAS using the lateral step of λ/3.

One drawback of FDMAS methods is the longer processing time to produce an image

compared with DAS. Although FDMAS is slower than DAS, it is still relatively faster

than other adaptive beamforming techniques.

Table 4.3 presents the results obtained from a two-cycle sinusoidal excitation signal

with N = 9 and N = 25 for the lateral step of λ/2 and λ/3. Only the values obtained

with the two lateral steps were compared in this study because both values produced

comparably good image quality with low CC. Moreover, only these values were com-

pared to demonstrate that performance can be improved with less compounding angles

when beamformed with a smaller lateral step whilst considering CC. All spatial and

contrast performance indicators produce better results with FDMAS, CPWI, N = 9

and the lateral step of λ/3 instead of with FDMAS, CPWI, N = 25, and the lateral
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Figure 4.22: Summary of performance, LR and CR with CC for FDMAS beamforming

when the lateral step is varied from λ to λ/5 for CPWI, N = 9.
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Table 4.3: LR and CR for DAS and FDMAS.

CPWI,

N

LR, −6

dB [mm]

LR, −20

dB [mm]

CR [dB]

λ/2 λ/3 λ/2 λ/3 λ/2 λ/3

9 DAS 0.56 0.49 1.05 0.93 -22.58 -22.69

FDMAS 0.54 0.38 1.21 0.73 -23.70 -26.40

25 DAS 0.56 0.49 1.07 0.94 -25.65 -26.14

FDMAS 0.54 0.39 1.18 0.73 -24.74 -27.96

step of λ/2. All the values that compare the compounding and lateral step are high-

lighted in Table 4.3 in bold typeface. From the results, a conclusion can be drawn that

FDMAS generally has lower compounding angles with a lower lateral step, which can

improve the temporal resolution of B-mode imaging. The reduction of the number of

compounding angles from N = 25 to N = 9 results in a 64% improvement in temporal

resolution.

4.5 Conclusion

In this study, the performance of DAS and FDMAS has been evaluated with CPWI,

various pitch sizes and various imaging point steps in the lateral direction. The re-

sults clearly show that FDMAS produces better image quality than DAS when the

beamforming lateral step is smaller than λ/2. The main observation from reducing the

lateral step is that the performance of FDMAS is improved when the process similar

to autocorrelation occurs with a smaller step. The multiplication and addition of RF

signals with a smaller lateral step further attenuated clutter noise, which can increase

the image CR. Although reducing the lateral step from λ to λ/5 improves the image

quality, the most significant improvement occurs between λ and λ/3. Thus, λ/3 is

selected for FDMAS to optimise beamforming processing time. There is no any signif-

icant change in the axial direction when the lateral step is reduced. The CNR tends to

get lower as the lateral step is reduced. This work found that a high number of frame

rates can be achieved without sacrificing image spatial and contrast resolutions when

the received RF signal is beamformed with FDMAS at a lower lateral step.
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Chapter 5

Filter Multiply and Sum

Inspired by the filter delay multiply and sum (FDMAS) beamforming technique, a new

compounding method has been proposed in this chapter. The proposed technique is

similar to autocorrelation where it can provide better results by finding the correlation

between steered plane waves. In this method, low-correlated side lobes will be attenu-

ated while the main lobe will be preserved. The new proposed compounding is named

as filtered multiply and sum (FMAS) compounding technique. The main advantage

of this new compounding technique is the ability to produce better contrast and spa-

tial resolutions than conventional FDMAS but with higher FR and less computational

complexity.

5.1 Introduction

Compounding techniques have been used in ultrafast ultrasound imaging to improve

the B-mode image quality by reducing the clutter noise and smoothing the speckle

variation Montaldo et al. (2009); Toulemonde et al. (2015). However, the conventional

compounding technique with coherent arithmetic averaging is not the most effective

method since the reduction of clutter noise inside the anechoic regions is minimal. The

side lobes reduction is also ineffective. A high number of steered plane waves are thus

needed to achieve good spatial resolution which in return reduces the FR. The poor

performance of conventional compounding is because that the side lobes that occur

at different spatial locations are loosely correlated. This happens due to the different

time delays used for each plane wave transmission. On the other hand, the main
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Figure 5.1: Field II simulation of a point target located at the 30 mm depth beamformed

from two plane waves steered at +12o and −12o. The yellow color highlights the main

lobes for both plane waves. It can be noticed that the position of axial lobes for both

steering plane waves also appears slightly at different locations.

lobe position does not change and highly correlate between steered plane waves. This

concept is illustrated in Fig. 5.1. The point target at the 30 mm depth was simulated

with Field II with the setup given in Table 2.2. The B-mode images obtained with two

plane waves steered at +12o (green color) and −12o (red color) are given. The received

RF data was beamformed with DAS and the B-mode image is displayed with a 50 dB

dynamic range. It can be seen that the side lobes for both plane waves are at different

locations, while the main lobe highlighted in yellow remains at the same location. This

is the fundamental of the proposed compounding technique.

5.1.1 Methods

The proposed compounding technique takes place after receiving echoes from multi-

ple steered plane waves beamformed with DAS. Unlike the conventional compounding

technique where all the steered plane waves are added and averaged after beamform-

ing, the beamformed RF frames are multiplied to form the multiply-and-sum (MAS)
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frames. The MAS equation is given as follows

ComMAS =
N−1∑
n=1

N∑
k=n+1

sgn{Vn(t)Vk(t)} ×
√
|Vn(t)Vk(t)|, (5.1)

where V (t) represents a set of aligned RF signals vi(t) (i = 1 to 128) for each steered

plane wave. The process is similar to the autocorrelation function. Instead of finding

correlations between all channel RF signals to form an imaging line as in FDMAS, the

proposed technique is faster due to the number of times of multiplication B involved

in autocorrelation for FMAS is equal to number of compounding angles of N as given

by :

B =
N2 −N

2
, . (5.2)

The RF signals obtained from ComMAS need to be band pass filtered to produce

filtered multiply-and-sum, ComFMAS. The reason is the same as that in FDMAS where

two different frequency spectrums (DC and 2nd harmonics) are produced when two RF

signals with the same frequency multiplied. The frequency components are illustrated

in the Fig. 4.5. Once filtered, the RF signals are Hilbert transformed for envelope

detection and then log-compressed to form the B-mode image.

5.2 Simulation and Experimental Setup

The performance of FMAS has been compared to that using DAS and FDMAS with

both simulations and experiments by using the point targets, cyst phantom and in-vivo

data. The setup for experiments is the same as given in Section 4.1.1. The setup for the

simulation environment is given in Table 2.2, and no transmit and receive apodization

were employed.

5.3 Results

5.3.1 Simulation Results

The B-mode images obtained from Field II simulations were obtained on seven point

targets located from the 10 mm to 50 mm depth for DAS, FDMAS and DAS-FMAS,

and they are shown in Fig. 5.2(a), (b) and (c). The beam pattern along the lateral
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direction at z = 40 mm depth and the axial direction at x = 0 mm for DAS, FDMAS

and DAS-FMAS are shown in the Fig. 5.2(d) and (e), respectively. The proposed

new compounding technique, DAS-FMAS is able to eliminate the grating lobes that

appear at the 10 mm depth, on both lateral directions, −10 mm and 10 mm when

beamformed with DAS as shown in Fig. 5.2(a). Side lobes and axial lobes along lateral

and axial directions also have been reduced with the new compounding technique. This

is shown in Fig. 5.2 (d) and (e). Up to 7 dB of PSL along the lateral direction has been

reduced with the new compounding technique when compared to FDMAS. Although

both techniques, FDMAS and DAS-FMAS use the same mathematical theorem, a

process similar to autocorrelation.

The beam pattern produced along the axial direction with DAS-FMAS is almost

the same as that using FDMAS. The signal intensity level with DAS-FMAS is lower

than that with DAS except at the depth of elevation focus. This is because all signals

have been normalized to their maximum value. The explanation for this phenomenon

is the same for what happened with FDMAS. When RF signals with almost the iden-

tical frequency component from two steering angles are multiplied, the DC and second

harmonic components are produced. The second harmonic component as shown in Fig.

4.5 with a lower amplitude level has been used to form all images in DAS-FMAS. Thus,

the signal has a lower intensity level. The low signal intensities at a deeper location

can be amplified by applying TGC.

Axial lobes that occur when plane waves are steered are visible below the point

targets located at the depth of 10 mm and 20 mm, as shown in Fig. 5.2(a). Both

FDMAS and DAS-FMAS are able to reduce these axial lobes. The spatial distribution

of axial lobes for different steering angles are different, thus, when the process similar

to autocorrelation taking place, the decorrelation between the axial lobes is higher.

The axial lobes mainly occur at around the −45 dB level with DAS and are attenuated

below −70 dB with FDMAS and DAS-FMAS as shown in Fig. 5.2(e).

To analyse in detail the effect of the proposed technique on a point target, B-mode

images and beam profiles along the axial and lateral directions are plotted for a point

target at the depth of 30 mm as shown in Fig. 5.3. It can be seen in Fig. 5.3(c)

that the side lobes along the lateral direction have been nearly fully suppressed for a

imaging dynamic range 50 dB. But this is not the case for DAS. The noise cancellation

does not effectively take place with three compounding angles. The axial lobes are still
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Figure 5.2: Plane wave B-mode images for point targets beamformed with a) DAS, b)

FDMAS and c) DAS-FMAS, N = 3 (−12, 0, +12). The lateral beam profile at the

depth of 40 mm and the axial beam profile at x = 0 mm are shown in d) and e) for all

three beamforming techniques (DAS, FDMAS and DAS-FMAS).
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visible at approximately 31 mm depth with DAS as shown in Fig. 5.3(a). Although

FDMAS is able to tackle the noise problem along the axial and lateral directions, the

PSL produced along the lateral direction is higher than that with DAS which can be

seen in Fig. 5.3(d). The PSL along the lateral direction at the depth of 30 mm for

DAS is −32.9 dB, while for FDMAS it is −32.7 dB. For DAS-FMAS, the PSL along

the lateral direction has been reduced to −68 dB.

As can be seen from the axial beam profile, the side lobes with DAS-FMAS is

higher than DAS and FDMAS. However, the side lobes occur below −60 dB and all

the images are displayed with a 50 dB range. Thus, the side lobes will not occur on the

B-mode image even if displayed with a 60 dB dynamic range. The proposed technique

DAS-FMAS produced the narrower main lobes along the axial direction compared to

DAS and FDMAS. This can be seen in Fig. 5.3(e). It is hard to observe the same

improvement along the axial direction in Fig. 5.2(e) although the improvement is

significant. Complete axial resolution measurements on the wire target at the 30 mm

depth for DAS, FDMAS and DAS-FMAS (N = 1 to N = 25) are presented in Fig. 5.9.

Measurements were then performed on three difference cysts with diameters of 2

mm, 4 mm and 6 mm located at the depths of 30 mm, 40 mm and 50 mm as shown

in Fig. 5.4. The number of steering angles was N = 3 (−120, 00 and +120). The CR

for the cyst located at the 30 mm depth is significantly improved with DAS-FMAS.

Although FDMAS is able to improve the CR, yet the clutter noise inside the anechoic

region is still visible and not fully eliminated. The border definition for all cysts is

improved with FDMAS but more improvement is obtained with DAS-FMAS due to

the further reduced clutter noise. This can be seen clearly from the lateral beam profile

for the cyst at the 50 mm depth as shown in Fig. 5.4(d). The attenuation of clutter

noise because of lateral side lobes leaking into the anechoic region makes the edge

steeper and hence improves the border definition.

5.3.2 Experimental Results and Discussion

The experimental results on seven wire targets are presented in Fig. 5.5. Thirteen

steered plane waves as given by Table 2.1 were used. High number of compounding

able to eliminate the grating lobes in DAS which tends to appear at low number of

compounding angle (N = 3 or less). The most significant improvement can be seen
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Figure 5.3: Plane wave B-mode images (N = 3) for the point target at the depth of

40 mm beamformed with a) DAS, b) FDMAS and c) DAS-FMAS with a 50 dB dynamic

range.
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Figure 5.4: Field II simulations performed on cysts located at the depths of 30 mm,

40 mm and 50 mm with diameters of 2 mm, 4 mm and 6 mm with a) DAS, b) FDMAS

and c) DAS-FMAS. The number of steering angles is N = 3 (−12, 0, +12). d) Lateral

beam profiles for the 6-mm cyst at the 50 mm depth and e) axial beam profiles along

x = 0 mm.
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with DAS-FMAS as the side lobes along the lateral and axial directions have been

reduced significantly.

In order to measure the spatial resolution for the proposed compounding technique

DAS-FMAS and compared it to conventional approaches with a wire target at the 30

mm depth, the B-mode images for the wire target with 3 to 25 compounding angles

with DAS, FDMAS and DAS-FMAS are presented in Fig. 5.6. The corresponding

axial and lateral beam profiles for the wire target are given in Fig. 5.7 and Fig. 5.8,

respectively.

Axial resolution (AR) results at the −6 dB level for DAS, FDMAS and

DAS-FMAS are becoming stable as the number of compounding angles increases from

N = 3 to N = 25. The AR improves significantly with DAS-FMAS compared to DAS

and FDMAS. At N = 3, the AR with DAS-FMAS is improved by 43% and 12.5%

compared to DAS and FDMAS, respectively. While with 25 compounding angles, the

AR is improved by 44% and 47% compared to DAS and FDMAS. The ARs for DAS

and FDMAS do not show any significant differences from N = 5 to N = 25 except for N

= 3. With N = 25, the AR at −6 dB are 0.36 mm and 0.37 mm for DAS and FDMAS,

respectively. All results for AR at −6 dB for different numbers of compounding angles

are shown in Fig. 5.9(a). It is unexpected to have any improvement in AR for DAS

and FDMAS through spatial compounding since it is in the lateral direction. This can

be seen from the beam profile along the axial direction as shown in Fig. 5.7 for the

wire target at the 30 mm depth for all investigated techniques.

AR results at −20 dB level for DAS, FDMAS and DAS-FMAS shows almost

the same pattern at −6 dB. At N = 3, the AR with DAS-FMAS improved by 32%

from DAS and 31% from FDMAS. While with 25 number of compounding angles, the

AR improved by 26% from DAS and 28.5% from FDMAS. Complete results for AR at

−20 dB with all compounding angles is shown in Fig. 5.9(b).

The PSL in the axial direction is attenuated by 33 dB and 48 dB more with

DAS-FMAS when compared to DAS and FDMAS for N = 3. With 25 compounding

angles, DAS-FMAS is able to reduce more PSL by 28 dB and 25 dB than DAS and

FDMAS. All results for PSLs in the axial direction for different numbers of angles are

shown in Fig. 5.9(c).

Lateral resolution (LR) results at the −6 dB level for DAS, FDMAS and

DAS-FMAS are given in Fig. 5.10(a). High LR is achieved with a lower number of
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Figure 5.5: B-mode images of wire phantoms for a) DAS, b) FDMAS and c) DAS-

FMAS formed with 13 plane waves. d) Beam profile along the lateral direction at the

45 mm depth.
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Figure 5.6: B-mode images with plane waves (N = 3 to N = 25) for the wire target at

the 30 mm depth with a) DAS, b) FDMAS and c) DAS-FMAS. The side lobes reduction

in the lateral direction starts to improve with DAS-FMAS from N = 3.
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Figure 5.7: Axial beam profile for the wire target at the 30 mm depth with DAS,

FDMAS and DAS-FMAS using a) N = 3, b) N = 5, c) N = 7, d) N = 9, e) N = 13

and f) N = 25. There are no significant changes in axial lobes between DAS and

FDMAS for all numbers of compounding angles, whereas for DAS-FMAS the main

lobes are narrowed and the side lobes are attenuated by average 25 dB.
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Figure 5.8: Lateral beam profile for the wire target at the 30 mm depth with DAS,

FDMAS and DAS-FMAS using a) N = 3, b) N = 5, c) N = 7, d) N = 9, e) N = 13

and f) N = 25. The main lobes are narrower and the side lobes are attenuated more

with DAS-FMAS compared to DAS and FDMAS.
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Figure 5.9: The AR for DAS, FDMAS and DAS-FMAS at a) −6 dB and b) −20 dB

levels measured at the 30 mm depth on the wire target. The PSL along the axial

direction is presented in (c).

103



5.3 Results

compounding angles for all investigated techniques and DAS-FMAS produces the best

results among them. At N = 3, the LR for DAS-FMAS is improved by 36% and

19% compared to DAS and FDMAS. As the number of compounding angles increases

to N = 25, DAS-FMAS shows improvement by 37% and 20% compared to DAS and

FDMAS. The LR for all techniques does not show any changes beyond N = 13.

LR results at −20 dB level for DAS, FDMAS and DAS-FMAS are given in

Fig. 5.10(b). The LR at -20 dB with N = 3 for DAS, FDMAS and DAS-FMAS are

1.4 mm, 0.93 mm and 0.57 mm. The DAS-FMAS shows improvement by 59% and 38%

when compared to DAS and FDMAS. With N = 25, the LR with DAS-FMAS shows

improvement by 38% and 20% compared to DAS and FDMAS. Beyond N = 5, there

is no any changes on the LR at −20 dB for all techniques investigated.

The PSLs in the lateral direction for DAS, FDMAS and DAS-FMAS are given

in Fig. 5.10(c). All investigated techniques show improvement in reducing the PSL

as the number of compounding angles increases from N = 3 to N = 25. DAS-FMAS

gives the best results when compared to DAS and FMAS. At N = 3, the PSL with

DAS-FMAS has been reduced by 14.7 dB and 10.3 dB more than that using DAS and

FDMAS, respectively. For N = 25, the PSL has been reduced by 11.1 dB and 23 dB

more with DAS-FMAS when compared to that using DAS and FDMAS.

The experimental results on cysts with diameters of 1.3 mm and 3.0 mm at the

depths of 15 mm and 45 mm with 13 compounding angles as given in Table 2.1 are

shown in Fig. 5.11(a), (b) and (c). The CRs for all cysts in the circles i, ii, iii and iv,

have been improved with FDMAS and DAS-FMAS compared to DAS. Qualitatively,

it can be seen the reduction of clutter noise levels is more significant with DAS-FMAS

compared to DAS and FDMAS. This can be seen on the B-mode image of the 1.3 mm

diameter cyst (marked as circle iii) which is barely visible with DAS and FDMAS but

the contrast has been improved with DAS-FDMAS. The lateral beam profiles at 15 mm

and 45 mm are shown in Fig. 5.11(d) and (e), respectively.

A cyst with a 3 mm diameter located at the 15 mm depth as marked by circle ii

in Fig. 5.11 is chosen to measure the image CR and CNR. The B-mode images for

the cyst with DAS, FDMAS and DAS-FMAS are shown in Fig. 5.12 (a), (b) and (c),

respectively. All images are displayed with a 50 dB dynamic range. In general, FDMAS

and DAS-FMAS perform better than DAS where more clutter noise has been reduced

inside the anechoic region. The beam profile along the lateral direction at the 15 mm
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Figure 5.10: The LR for DAS, FDMAS and DAS-FMAS at a) −6 dB and b) −20 dB

levels measured at the 30 mm depth on the wire target. The PSL along the lateral

direction is presented in (c).
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Figure 5.11: B-mode images (N = 13) for a) DAS, b) FDMAS and c) DAS-FMAS.

Beam profiles along the lateral direction at the d) 15 mm and e) 45 mm depth. The

CRs for all four cysts are improved with DAS-FMAS.
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depth is given in Fig. 5.13. The clutter noise is keeping reduced as the number of

compounding angles increases from N = 3 to N = 25 for both the 1.3 mm and 3.0 mm

diameter cysts.

The CR for the 3.0 mm diameter cyst at the 15 mm depth is given in Fig.

5.14(a). The CRs for all techniques keep improving as the number of compounding

angles increases. DAS-FMAS provides improvements of 14.1 dB and 7.29 dB in CR

than DAS and FDMAS with N = 3. With N = 25 the CR for DAS-FMAS is −49.8 dB

which is the highest when compared to that using DAS (−26.1 dB) and FDMAS (−27.9

dB). No clutter noise is present inside the anechoic regions with DAS-FMAS, as it has

been attenuated below the -60 dB range as shown in Fig. 5.13(f).

The CNR for the 3.0 mm diameter cyst at the 15 mm depth is given in Fig.

5.14(b). As opposed to all other performance indexes, the CNR for DAS-FMAS is the

lowest compared to that using DAS and FDMAS. The CNR does not show significant

variations for DAS-FMAS from N = 3, 2.9 dB to N = 25, 2.8 dB. The CNRs for

FDMAS keep reducing for the same compounding range from N = 3 to N = 25,

while for DAS the CNRs keep increasing. The reduction of clutter noise outside of

the cyst reduces the CNR value for DAS-FMAS. The destructive speckle regions in

DAS are filled by clutter noise. Once clutter noise is reduced, the destructive region

becomes more visible as the dark spot. This can be seen from the beam profile shown

in Fig. 5.13. Outside of the cyst regions, the speckle variation is higher with FDMAS

and DAS-FMAS. This can be seen when dark spots caused by the speckle destructive

regions start to appear outside the cysts with FDMAS and DAS-FDMAS. One of the

ways to solve the low CNR problem is by using despeckeling which reduces the speckle

fluctuation.

The clutter noise reduction at the 45 mm depth for all techniques is less than that at

the 15 mm depth. This is mainly due to the low SNR at deeper locations. DAS-FMAS

still performs better than the other two techniques even at the deeper location. Clutter

noise inside the 3.0 mm diameter cyst keeps reducing as the number of compounding

angles increases from N = 3 to N = 25.

The B-mode images for in-vivo obtained from DAS, FDMAS and DAS-FMAS are

presented in Fig. 5.15. All the images are shown with a 50 dB dynamic range. Clutter

noise reduction with FDMAS and DAS-FMAS can be seen on the B-mode images

starting from N = 3. As the number of compounding angles increases to N = 25,
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Figure 5.12: B-mode images for the 3.0 mm diameter cyst located at the 15 mm depth

using (a) DAS, (b) FDMAS and (c) DAS-FMAS with 3 to 25 compounding angles.
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Figure 5.13: Lateral beam profile for the 1.3 mm and 3.0 mm diameter cysts at the 15

mm depth from a) N = 3, b) N = 5, c) N = 7, d) N = 9, e) N = 13 and f) N = 25.
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Figure 5.14: The a) CR and (b) CNR using DAS, FDMAS and DAS-FMAS for the 3.0

mm diameter cyst located at the 15 mm depth.
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the common carotid artery and the near field regions are free of clutter noise with

DAS-FMAS. With FDMAS, the side lobes in the lateral direction are still visible in

the common carotid artery. Whereas with DAS clutter noise is still dominating most

of the imaging regions.

It is expected with spatial compounding, the lateral resolution will be improved.

This is due to noise cancellation between side lobes in the lateral direction. With

both DAS and FDMAS, the LR increases with the number of compounding angles but

there are only small changes in axial resolution. This is because the axial resolution

is mainly determined by the bandwidth of the excitation signal regardless the beam-

forming techniques or the number of compounding angles. However, with the proposed

compounding technique, the axial resolution is improved significantly when compared

to that with DAS and FDMAS. The theory behind this is related to the beam direc-

tivity which determines the object appearance and shape in the compound image. The

intensity distributions of steered plane waves are different for different angles. As the

angle increases or decreases, the beam pattern and its intensity distribution are shifted

accordingly. This phenomenon is mainly observable on the side lobes along the lateral

direction and the axial lobes in the axial direction where they appear at different loca-

tions according to the steering angles. In order to analyse this phenomenon in detail,

Field II simulations have been performed to obtain the emitted pressure fields for dif-

ferent steering angles at the 30 mm depth. The setup for the simulation is given in

Table 2.2. The emitted pressure fields simulated for steering angles −12◦, 0◦ and +12◦,

are shown in Fig. 5.16. The normalized pressure fields at x = 0 mm as highlighted

by the dashed line in Fig. 5.16 are shown in Fig. 5.17 for the three steering angles.

The variations between pressure fields steered at ±120 and 00 in the axial direction

are clearly visible. There is a phase shift of 0.02 mm between peak pressure points

in between different steering angles. While the shift is invisible between plane waves

steered at −12◦ and +12◦.

The simulation to measure the phase shift between the pressure points was repeated

on the point target located at the 30 mm depth. The 0.02 mm shift between RF peaks

are also found in the axial direction for the point target between steering angles of

−12◦ and 0◦. This is shown in Fig. 5.18(a). While this shift is 0.06 mm for the

experimental point target between steering angles of 12◦ and 0◦. This is shown in

Fig. 5.18(b) and Fig. 5.19. Even though the variation is too small to be considered
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Figure 5.15: The right side CCA B-mode images (N = 3 to N = 25) formed with (a)

DAS, (b) FDMAS and (c) DAS-FMAS, column (c).
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in conventional compounding techniques which apply averaging between the steered

plane waves, this is not the case when the procedure similar to autocorrelation is used

in the proposed technique. For example, when averaging three points as shown in

Fig. 5.19(a), it will produce an amplitude value of 0.74. While applying the procedure

similar to autocorrelation as given by equation 5.1 for the same three points, it will

produce an amplitude value of 1.39. Even a 0.02 mm variation between the aligned RF

signals will produce a significant difference on the main lobe values in the axial direction

when FMAS compounding is applied. Further implications of phase shift in the RF

signals in the axial direction can be seen from the experimental result. Different with

simulations, due to many other factors such as phase aberration, the variation between

the RF signals further increases up to 0.06 mm. Now as shown in Fig. 5.19(b), the

steering effect causes the RF signals appearing at x = 30.77 mm have the amplitude

values of 1 and -0.4522 for steering angles ±12 and for 0◦.

Figure 5.16: Normalized and log compressed pressure fields from plane waves steered

at a) −12◦, b) 0◦ and c) +12◦. A transmit apodization with a Tukey window (α = 0.5)

was applied to all emitted pressure fields in order to eliminate edge waves.
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Figure 5.17: Normalized pressure fields at the position of the dashed line as shown in

Fig. 5.16 from plane waves steered at a) −12◦, b) 0◦ and c) +12◦.

Figure 5.18: The received RF signals beamformed with DAS (before envelope detection

and log compression) for a wire target with plane waves steered at a) −12◦, b) 0◦ and

c) +12◦.
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Figure 5.19: RF signals for the dashed line as shown in Fig. 5.18(b) from plane waves

steered at −12◦, 0◦ and +12◦ with a) Field II simulations and b) experiments.

The computational time with DAS, FDMAS and DAS-FMAS for the setup in Fig.

4.1 is given in Fig. 5.20. The computer operating system used to calculate the pro-

cessing time is Windows 7 enterprise 64-bit. The computer specification is as follows:

CPU (CORE i5-4460, Intel Corporation Co., Ltd., Santa Clara, CA, USA), 3.20-GHz

clock speed, 4 cores and 16-GB DDR3 RAM. The imaging point step in the lateral

direction for DAS and FDMAS is set to λ/3=0.1 mm and for the axial direction it is

c*Ts/2=9.625 µm. The width and depth of the imaging field are 60 mm and 39 mm.

It can be seen that the computational time for DAS with conventional compound-
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ing is almost the same with that using DAS-FMAS. There is no significant difference

between the processing time using DAS and DAS-FMAS. Whereas for FDMAS the

computational time is 7 times more than that with DAS and DAS-FMAS for N = 25.

Figure 5.20: Computational time measured for DAS, FDMAS and FMAS with different

number of compounding.

5.4 Conclusion

The proposed compounding technique FMAS is able to improve the B-mode image

spatial resolution and CR compared to DAS and FDMAS. The CC of FDMAS is

significantly higher than DAS and lower than other adaptive beamforming techniques

such as minimum variance. However, keeping lowering the CC in FDMAS will be

beneficial for real time imaging and reducing the processing power. Thus, instead of

applying FDMAS during beamforming, implementing FDMAS during compounding

will not only reduce the CC, but also improve the overall B-mode image quality. There

are several rooms for improvements on the present method. The clutter noise reduction

at deeper locations, beyond 40 mm, tends to produce small dark-spot artifacts as found

in Eigenspace-based beamformer Aliabadi et al. (2016); Zeng et al. (2013). One of the

methods to solve this problem is by displaying the B-mode image with a higher dynamic

range such as more than 70 dB. The downside of increasing the dynamic range is that
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it may make clutter noise visible. Thus, more work is needed to deal with the dark-spot

artifacts that are present with DAS-FMAS.
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Chapter 6

New Unsharp Masking Method

Compatible with Ultrasound

B-mode Imaging

In this chapter, the conventional and new improved unsharp masking (UM) techniques

were discussed and analysed in detail. In the first section, the implementation of

conventional UM on the ultrasound B-mode images were discussed. As for the second

section, the improved version of UM was implemented and its contribution of improving

the ultrasound B-mode image quality was explored in detail. The advantages and

disadvantages of the new proposed UM have been highlighted.

6.1 Conventional Unsharp Masking

The conventional UM technique, ucon[a, b] can be represented by the following equation:

ucon[a, b] =h[a, b] + λe|h[a, b]−G[a, b] ∗ h[a, b]| (6.1)

where a is the distance in the horizontal axis (columns) while b is the distance in the

vertical direction (rows), h[a, b] is the original digital B-mode image, λe is the weightage

or positive scaling factor and G[a, b] is the low pass filter (LPF). Most commonly

employed LPF in UM is the 2-D Gaussian smoothing kernel as given by Cao et al.
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(2011); Ueng et al. (2014):

G[a, b] =
1

2πσ2
e−

a2+b2

2σ2 (6.2)

where σ is the standard deviation of the Gaussian pixel intensity distribution. UM

starts blurring the original digital image with the 2-D Gaussian kernel which will re-

move the high but retain the low frequency components of the original signal. The

blurred image will be subtracted from the original image which contains both high and

low frequency components. As a result from the subtraction process, only the high

frequency signal of the original image will be preserved. This high frequency signal

will be scaled by the weightage λe before it is added back to the original image. The

weithage is between 0.1 and 0.9 Kwok et al. (2013). Implementing a low weightage of

0.1 or less will not produce any significantly change on the final image while a high

weightage of 0.9 or more will introduce overshot phenomena. Now the new image will

have additional amplitudes on its high-frequency component when compared to the

original image. In the ideal case, the visual appearance of the new image sharpness

will be significantly improved since its high-frequency contents or the edges have been

boosted.

6.2 Use of Unsharp Masking on Ultrasound B-Mode Im-

ages

In this section, the effects of UM on ultrasound B-mode images have been investigated.

The conventional UM technique has been excessively employed in many medical imag-

ing modalities to enhance the image contrast and details Akbay (2015); Bhateja et al.

(2017); Cruz et al. (2012). However, in ultrasound B-mode imaging, the expected out-

come is not the same as that for other kinds of medical images. For B-mode images, it

is expected that not only the image contrast and resolution, but also the level of clutter

noise is low. Clutter noise has become an obstacle for the radiographer and physician

to interpret the scanning results accurately.

To evaluate the influences of the conventional UM technique on the B-mode image,

anechoic cysts with a 3.0 mm diameter located at the 15 mm depth were chosen. The

anechoic regions consist of water or fluid produce a very low level of echoes. Thus, the
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region is highlighted in black in B-mode images. Fig. 6.1 shows the B-mode image

used to evaluate the effects of UM.

The steps involved in the implementation of UM on the B-mode image is the same

as that in equation 6.1. From equation 6.1 it is known that either the weightage λe or

the standard deviation σ of the 2-D Gaussian blurring kernel will influence the final

image quality. Thus, in this section only the standard deviation of the 2-D Gaussian

kernel has been varied between 1, 3 and 5 with the fixed λe of 0.6. Fig. 6.1 shows

the B-mode of the 3.0 mm diameter cyst when the UM taking place with different

standard deviations. As expected, increasing the standard deviation by 1, 3 and 5,

magnifies the errors between the original and the blurred images. The changes can be

seen in Fig. 6.1(c) to (f) and (i). The errors become more apparent and stronger as the

standard deviation σ increases. The errors that are added back to the original B-mode

image don’t reduce clutter noise that is present inside the cyst, instead, it has increased

the noise level. This is shown in Fig. 6.1 (j) and Fig. 6.2(c).

The normalized amplitudes in the dB scale have been quantized to their correspond-

ing unsigned 8-bit (0-255) counterparts. The adjacent normalized amplitudes in the

lateral direction have relatively bigger differences. This is because the B-mode image

as shown in Fig. 6.1 has been beamformed with the spatial sampling period of λ/3.

Since the sampling period is determinant to the smoothness level of transition of the

digital image pixel values in the lateral direction, reducing the sampling period will

produce smoother signal transition. This can be seen in Fig. 6.2. This unpleasant

sharp overshoot phenomenon starts to exist with the low standard deviation of σ = 1.

When σ for the Gaussian kernel increases, the sharp overshot also keeps increasing.

The conventional UM technique is performed in the quantized digital domain. Thus,

saving the B-mode image with different dynamic ranges will affect the final UM outcome

Dutt & Greenleaf (1996). A lower dynamic range may produce better output with UM

compared with that using a higher dynamic range. Even though a low dynamic range

qualitatively improves the image contrast ratio, there are no changes on the image

resolution in the axial and lateral directions.
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Figure 6.1: a) B-mode image of the 3.0 mm and 1.3 mm diameter cysts beamformed

with DAS located at the 15 mm depth for N = 13. The B-mode images of the 3.0

mm diameter cyst blurred with different standard deviations (σ = 1, 3 and 5 for b, e

and h). The error images produced between the original and the blurred images prior

to scaling are shown in c, f and i. The final B-mode images produced from UM are

given in d, g and j. The arrows on (j) indicate the increased level of clutter noise. The

B-mode image displayed within dynamic range of 50 dB.
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Figure 6.2: The lateral beam profile of the 3.0 mm diameter cyst when blurred with

different standard deviations (a) σ = 1, b) σ = 3 and c) σ = 5 for b, e and h shown in

Fig. 6.1. The arrows highlight the increased level of clutter noise.
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6.3 Improved Unsharp Masking Method

In this thesis, the UM method is implemented on the ultrasound B-mode image on the

RF signal envelope prior to log-compression, with three iterations and unique weigh-

tages for positive and negative errors that are produced between the original and blurred

signals. We begin with the review of conventional UM implemented on digital images

in order to lay the foundation for our improved UM technique based on coherent and

non-coherent CPWI techniques. In this work, the proposed UM method acts as a de-

noising tool to reduce clutter noise and at the same time enhance the spatial resolution

of the B-mode image.

Instead of applying the conventional UM method to the ultrasound B-mode im-

age, a new application has been found to reduce clutter noise and improve the image

resolution. The conventional UM equation has been modified to adapt the CPWI

B-mode imaging criteria. The new improved UM equation no longer enhances the

high-frequency components but increases the image contrast.

The new proposed UM method taking place on the envelope of the beamformed

RF signal has an iterative scheme that computes the successive new improved envelope

signal as given by:

unewj(x, z) =

{
unewj−1 + λe1(unewj−1 − u∗newj−1), unewj−1 − u∗newj−1 ≥ 0

unewj−1 + λe2(unewj−1 − u∗newj−1), unewj−1 − u∗newj−1 < 0
(6.3)

where j is the number of iterations, unewj(x, z) is the unsharp masked image,

u∗newj(x, z) is the original image, λe1 and λe2 indicate two different weightages for

positive and negative errors. Two different weightage schemes have been used in the

proposed UM method to selectively control the amount of intensity attenuation or am-

plification in ROIs. The UM technique was applied to PWI and CPWI with different

blurring methods, Savitzky-Golay as LPF for PWI and non-coherent CPWI for CPWI.

Since there is no non-coherent portion for PWI, a LPF as used in conventional methods

has been used to blur the original PWI signal u∗newj(x, z). While for CPWI, the non-

coherent CPWI signals have been assigned as the blurring signals. Thus, the evaluation

of the proposed UM method was divided into two sections detailing its implementation

on PWI and CPWI.
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Figure 6.3: Flow chart for the proposed UM technique.
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6.3.1 Implementation of UM on PWI

In PWI, there are no non-coherent signals. The digital filtering technique known as

Savitzky-Golay (S-G) has been used as the smoothing kernel in equation 6.3 Schafer

(2011). It was chosen since this filter performs better than other standard averaging

finite impulse response (FIR) filters which tend to filter high frequency components

along with noise. The filter operation is based on the polynomial order and the frame

length.

The implementation of UM on PWI gives mixed results where the weak clutter

noise was attenuated while the strong clutter noise was amplified. This is because that

filtered PWI acts as the blurring kernel in the UM process. Whenever clutter noise

appears above the filtered PWI signals, it will be amplified and vice versa. As can

be seen in Fig. 6.4, when the PWI signals are smaller than the filtered PWI signals

(from the 3rd to 15th order), that particular portion is amplified in the UM process

as shown in Fig. 6.5. Enhancing clutter noise is undesired. As an alternative to the

conventional filtering technique, the Non-coherent CPWI signals have been used as the

blurring kernel.

All the results for PWI with UM are present together with those for CPWI with

UM.

6.3.2 Implementation of UM on CPWI

The two main objectives for the proposed UM method are to improve the B-mode image

lateral resolution and reduce clutter noise mainly inside the anechoic region (cyst).

This has been done by evaluating the error polarities produced between the coherent

and non-coherent signals. There is a possibility to apply filtered coherent CPWI as

the blurring signals in the proposed UM method. But the tricky part is to identify

the correct filtering order for coherent CPWI. Applying a high filter order on coherent

CPWI signals will produce the almost flat output. Thus, when the over filtered coherent

CPWI signals appear below the original coherent CPWI ones, the errors are always

positive. This is wrong since the blurring signal is supposed to differentiate constructive

speckle regions from destructive ones. Whereas, the counterparts of coherent CPWI

signals, non-coherent CPWI signals, are always above clutter noise. Thus, there is no

need to determine the filtering order manually with the non-coherent CPWI signals
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Figure 6.4: The PWI signals filtered with S-G LPF by different numbers of filtering

orders. The zoomed portion shows that the PWI signals keep appearing below and

above the filtered PWI signal. The beam profile in the lateral direction is shown for

the 3.0 mm diameter cyst beamformed with DAS and N = 9.
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Figure 6.5: The UM technique implemented on PWI. B-mode image and beam profiles

for the 1st (a and b), 2nd (c and d) and 3rd (e and f) iteration are shown.
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acting as the ideal LPF for the proposed UM method. Clutter noise can be easily

identified inside the cyst where the regions are supposed to be anechoic. As opposed

to the filtered coherent CPWI signals, non-coherent CPWI signals don’t have low-level

signals that have a similar amplitude with clutter noise. One of the main reasons is that

the phase of the non-coherent CPWI signal has been removed. With this advantage,

all signals inside the cyst can be treated as clutter noise and attenuated.

The UM process starts with subtracting the coherent CPWI signal with non-

coherent CPWI signal before log compression. The errors are then multiplied with dif-

ferent weightages according to their polarities. The weightages λ1 = 0.77 and λ2 = 0.07

were determined empirically. This arrangement of weightages is to control the atten-

uation level of clutter noise. Applying same weightages for both positive and negative

errors will lead to a higher dynamic range and turn the grey speckle parts to black re-

gions. This can be misidentified as anechoic regions. The value of 0.07 was assigned for

the negative errors because the difference between the non-coherent CPWI and CPWI

signals was huge. This small scale was enough to attenuate the noise level. The scaled

errors were added back to coherent CPWI signals and all the procedures were repeated

for three times. Beyond three iterations, the quality of the B-mode image was worse

with a very low level of CNR.

6.4 Experimental Setup

To validate the performance of the proposed UM method, experiments were performed

on point targets, anechoic cysts and human in vivo. A B-mode imaging sequence was

implemented on the UARP II according to the setup shown in Table 2.2 and 2.1.

The experimental setup for the point targets, tissue-mimicking phantom and common

carotid artery are given in Section 4.1.1. The received RF echoes were sampled at 80

MHz and beamformed with DAS and FDMAS.

6.5 Performance Evaluation

To measure the spatial resolution with the new improved UM technique, a point target

at the 30 mm depth was chosen. The axial and lateral resolutions were measured at

−6 dB and −20 dB levels. The PSLs on both axial and lateral directions were measured
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Figure 6.6: The CPWI signals filtered with S-G by different numbers of filtering orders.

The zoomed in portion is showing that the CPWI signals keep appearing below and

above the filtered CPWI signal, while the Non-coherent CPWI signals are always above

the coherent CPWI signals. The lateral beam profile is shown for the 3.0 mm diameter

cyst beamformed with the DAS and N = 9.
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Figure 6.7: The UM technique implemented on CPWI (N = 9). The beam profiles for

the 1st (a and b), 2nd (c and d) and 3rd (e and f) iteration are shown.
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on the same point target. The CRs and CNRs were measured on the 3.0 mm diameter

cyst located at the 15 mm depth. The formula for both CR and CNR are given in

Section 4.1.2.

6.6 Result and Discussion

The performance of UM on the point target is presented in Fig. 6.8. The UM denoising

method is able to reduce the side lobes levels when used with DAS and FDMAS. The

corresponding lateral and axial beam profiles at z = 40 mm and along x = 0 mm are

shown in Fig. 6.9. The reduction of lateral side lobes is observed for DAS and FDMAS.

However, there is no significant change on the main lobes in the axial direction. This

is somehow expected since the UM process takes place along the lateral direction.

The B-mode images for the wire phantom from N = 1 until N = 25 using DAS,

UM-DAS, FDMAS and UM-FMAS are presented in Fig. 6.10. The corresponding axial

and lateral beam profiles for the wire phantom are given in Fig. 6.11 and Fig. 6.12,

respectively.

Axial resolution (AR) results at the −6 dB and −20 dB level using DAS,

UM-DAS, FDMAS and UM-FDMAS are shown in Fig. 6.13(a) and (b). The variations

on the AR between all techniques are less than 0.1 mm. There is no significant changes

occurring on the axial main lobes at the −6 dB level.

The PSLs in the axial direction with different numbers of compounding angles

are shown in Fig. 6.13(c). The patterns for the PSLs do not exhibit any significant

change when UM takes place on both beamforming techniques with the same setup of

steering angles. From N = 3 to N = 25, there is PSL reduction for DAS and FDMAS.

At N = 3, the PSLs for DAS and UM-DAS are −23.5 dB and −23.4 dB. As the number

of compounding angles increases to N = 25, the PSLs are reduced to −26.2 dB for both

DAS and UM-DAS. As for FDMAS and UM-FDMAS, at N = 3, the PSLs are −9.8

dB and −9.6 dB. For N = 25, the PSLs are reduced to −29.5 dB for both FDMAS and

UM-FDMAS.

The LR results at −6 dB using DAS, UM-DAS, FDMAS and UM-FDMAS are

shown in Fig. 6.14(a). UM is able to enchance the LR resolution for DAS and FDMAS.

The best LRs using DAS and UM-DAS are 0.47 mm and 0.39 mm with N = 3, and 17%

of improvement is achieved with UM. While for FDMAS and UM-FDMAS, they are
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Figure 6.8: B-mode images of wire targets beamformed with a) DAS, b) UM-DAS, c)

FDMAS and d) UM-FDMAS with N = 13.
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Figure 6.9: a) Lateral beam profiles for wire targets and b) axial beam profiles for wire

targets along x = 0 mm for B-mode images shown in Fig. 6.8.
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Figure 6.10: The PSFs (30 mm deep) from N = 1 to N = 25 using a) DAS, b) UM-DAS,

c) FDMAS and d) UM-FDMAS.
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Figure 6.11: The axial beam profiles for the point target located at the 40 mm depth

with a) N = 1, b) N = 3, c) N = 5, d) N = 7, e) N = 9, f) N = 13 and g) N = 25

using DAS, UM-DAS, FDMAS and UM-FDMAS.
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Figure 6.12: The lateral beam profiles for the point target located at the 40 mm depth

with a) N = 1, b) N = 3, c) N = 5, d) N = 7, e) N = 9, f) N = 13 and g) N = 25

using DAS, UM-DAS, FDMAS and UM-FDMAS.
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Figure 6.13: Results for a) AR at −6 dB, b) AR at −20 dB and b) PSL using DAS,

UM-DAS, FDMAS and UM-FDMAS.
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0.35 mm and 0.32 mm with N = 5, and the improvement of 8.6% is achieved with UM.

As the number of compounding angles increases to N = 25, the LRs at −6 dB using all

beamforming techniques are deteriorated. This is because the region of the intersection

of main lobes in the lateral direction keeps increasing as the number of compounding

angles increases, broadening the lateral main lobes. Whereas with a small number of

compounding angles and a larger angle sector, the interaction between those main lobes

in each steering angles is small, producing narrower lateral main lobes.

LR results at −20 dB for DAS, UM-DAS, FDMAS and UM-FDMAS are shown in

Fig. 6.14(b). UM is able to improve the LR at the −20 dB level for DAS and FDMAS.

At N = 5 the LR at −20 dB for DAS and UM-DAS are 0.94 mm and 0.70 mm, while

for FDMAS and UM-FDMAS they are 0.74 mm and 0.57 mm. The improvement with

the proposed UM denoising method on the LR at −20 dB for DAS is 21.3% and for

FDMAS it is 23%. As the number of compounding angles increases from N = 5 to N

= 25, the LR at −20 dB for all investigated techniques does not show any significant

change.

The PSLs in the lateral direction using DAS, UM-DAS, FDMAS and UM-

FDMAS are shown in Fig. 6.14(c). The PSL is attenuated more when UM implemented

with DAS and FDMAS. The PSL using UM combined with DAS and FDMAS are

19.2 dB and 19.3 dB with N = 9. As the number of compounding angles increases

from N = 9 to N = 25, the PSLs for all beamfoming techniques don’t show any

significant change except for FDMAS. The beam profiles along the lateral direction at

the 30 mm depth for all investigated techniques are shown in Fig. 6.12.

The experimental results for the anechoic cysts located at the depths of 15 mm

and 45 mm with DAS and FDMAS (N = 13) and their UM counterparts are shown in

Fig. 6.15. The ROI including all four cysts are highlighted with white dashed circles

that are numbered from i to iv. Clutter noise is attenuated inside anechoic region ii

when UM is combined with DAS and FDMAS as shown in Fig. 6.15(b) and (d). The

lateral beam profiles at the depths of 15 mm and 45 mm for all investigated techniques

are shown in Fig. 6.16.

A cyst with a 3.0 diameter at the 15 mm depth as marked by circle ii in Fig.

6.15(a) was chosen to measure the image CR and CNR. The B-mode images for the

cyst formed using DAS, UM-DAS, FDMAS and UM-FDMAS are shown in Fig. 6.17.

Clutter noise that is in the anechoic regions is attenuated more using UM-DAS and
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Figure 6.14: Results for LRs at a) −6 dB b) −20 dB and c) PSLs using DAS, UM-DAS,

FDMAS and UM-FDMAS at the 30 mm depth.
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UM-FDMAS, and this attenuation is more pronounced with the increasing number of

steering angles. The reduction of clutter noise also improves the cyst edge. UM not

only attenuates clutter noise that is inside the cyst, but also clutter noise outside of

the cyst region. Since FDMAS already reduces clutter noise, black box regions (BBRs)

are present when using UM-FDMAS. BBRs can be misclassified as small cysts. This

will also reduce the image CNR due to the high fluctuation of the signals outside of

the cyst.

The CRs for the 3.0 mm diameter cyst at the depth of 15 mm are given in

Fig. 6.20(a). The CRs for all investigated techniques keep improving as the number of

compounding angles increases. The UM techniques implemented on DAS and FDMAS

are able to provide the improved CRs. For N = 9, UM is able to improve the CR by

7.94 dB and 6.39 dB when combined with DAS and FDMAS. At N = 25, the UM-DAS

performed better than UM-FDMAS in improving the image CR.

The CNRs for the 3.0 mm diameter cyst at the 15 mm depth are given in

Fig. 6.20(b). As opposed to all other performance indexes, the CNR tends to decrease

when the UM is implemented on DAS and FDMAS. For N = 9, the reduction caused

by UM on DAS and FDMAS are 3.88 dB and 3.67 dB. This reduction is due to the

reduction of clutter noise outside of the cyst regions, producing higher signal variations.

As a result, this will produce coarse B-mode images which need to be smoothened by

despeckeing techniques.

140



6.6 Result and Discussion

Figure 6.15: The cyst B-mode images beamformed with a) DAS, b) UM-DAS, c) FD-

MAS and d) UM-FDMAS with N = 13.
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Figure 6.16: The lateral beam profiles for DAS, UM-DAS, FDMAS and UM-FDMAS

at the depths of a) 15 mm and b) 45 mm.
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Figure 6.17: The B-mode images (N = 1 to N = 25) for the 3.0 mm diameter cyst at

the 15.0 mm depth. The results are presented using a) DAS, b) UM-DAS, c) FDMAS

and d) UM-FDMAS.
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Figure 6.18: The lateral beam profiles for the 1.3 mm and 3.0 mm diameter cysts at

the depth of 15 mm with a) N = 1, b) N = 3, c) N = 5, d) N = 7, e) N = 9, f)

N = 13 and g) N = 25 using DAS, UM-DAS, FDMAS and UM-FDMAS.
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Figure 6.19: The lateral beam profiles for the 1.3 mm and 3.0 mm diameter cysts at

the depth of 45 mm with a) N = 1, b) N = 3, c) N = 5, d) N = 7, e) N = 9, f)

N = 13 and g) N = 25 using DAS, UM-DAS, FDMAS and UM-FDMAS.
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Figure 6.20: a) CRs and b) CNRs for DAS, UM-DAS, FDMAS and UM-FDMAS for

the 3.0 mm diameter cyst at the 15 mm depth.

The in-vivo B-mode images obtained from DAS, UM-DAS, FDMAS and UM-

FDMAS are presented in Fig. 6.21. All the images are shown with a 50 dB dynamic

range. Clutter noise reduction can be seen on the B-mode images starting from N = 3

when UM applied to DAS and FDMAS. As the number of compounding angles in-

creases to N = 25, the common carotid artery and the near field regions are free of

clutter noise with UM-FDMAS.

146



6.6 Result and Discussion

Figure 6.21: The B-mode images (N = 1 to N = 25) for the carotid artery. The results

are obtained using a) DAS, b) UM-DAS, c) FDMAS and d) UM-FDMAS displayed

within 50 dB dynamic range.
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6.7 Conclusion

The measured key performance indexes on the B-mode images show that the new

UM technique is able to improve the image contrast and spatial resolution. Both

beamforming techniques, DAS and FDMAS show improvement in the image contrast

and spatial resolution with UM. The ability of the UM technique to reduce clutter

noise helps to define the border and visualize the cyst regions. The limitations in image

spatial and contrast imposed by the beamforming technique DAS has been compensated

by FDMAS. But clutter noise is still present with FDMAS. This shows that each method

has a certain number of limitations. Thus, the UM method has been introduced to

handle the limitation imposed by FDMAS. UM is able to improve the results with

both DAS and FDMAS. While UM also has its own limitation on lowering the B-mode

image CNR. For compensating the UM limitations, despeckeling techniques could be

used to improve the image CNR. By manipulating the two weightage scales, the end

users have the flexibilities to reduce clutter noise and improve the image resolution.

UM is not suitable to be implemented on FDMAS. This is because the FDMAS itself

has efficiently reduced clutter noise that is present inside the B-mode image. Further

application of UM to FMDAS will reduced speckle noise outside the cyst region. This

will lower the CNR value thus introduce the BBR.
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Chapter 7

Despeckling and Segmentation of

CPWI B-mode images

In this chapter, various despeckling and segmentation techniques were implemented on

the compound plane wave imaging (CPWI) B-mode images. This was to evaluate the

effect of despeckling and segmentation after denoising with the proposed UM technique.

Results were presented for the cyst phantom and in-vivo carotid artery. Finally, based

on the qualitative and quantitative analysis, the best despeckling and segmentation

techniques were suggested.

7.1 Introduction

Ultrasound B-mode images are vulnerable to speckle and clutter noise. Despeckling is

one of the easiest methods used to tackle the speckle problem in ultrasound imaging.

The main function of despeckling techniques is to reduce the variation among construc-

tive and destructive regions Loizou et al. (2005). In medical imaging, the selection of

the right despeckling technique is important so that the diagnosis process can be carried

out accurately. Choosing the unsuitable despeckling techniques can cause the edges and

lines on the image over smoothened which will negatively affect the available anatomical

information Jabarulla & Lee (2018). In more severe cases, the important features can

be faded or lost during despeckling Baselice (2017); Roy et al. (2017). This can reduce

the diagnostic value of imaging and lead to the wrong treatment. The size of the kernel

or the window used for the despeckling process can affect the final results. If a large
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window size is used for despeckling, it will over smoothen speckle together with other

regions containing important features. The important property of the despeckling filter

is that it should reduce speckle noise while preserve edges in order to pave the path for

better segmentation.

7.1.1 Speckle Noise

Speckle noise is a granular pattern in ultrasonic images that reduces the detectability of

a small anechoic structure, degrades the image contrast and its resolution Michailovich

& Tannenbaum (2006); Tay et al. (2010). Speckle is formed by sub-resolution scatters

located close enough to interact with each other. This interaction produces constructive

or destructive interference which is represent in the B-mode image as dark (destructive)

or bright (constructive) regions Wagner et al. (1983). The detectability of lesions in

ultrasound imaging is significantly lower when compared to MRI and X-Ray due to

the presence of speckle Bamber & Daft (1986). A high speckle noise level leads to

misdiagnosis Tay et al. (2010). Not like white Gaussian noise, averaging the speckle

pattern obtained with the same condition will not reduce it Michailovich & Tannenbaum

(2006). The formation of speckle is independent of imaging techniques Jespersen et al.

(1998); Montaldo et al. (2009). In ultrafast imaging, non-coherent CPWI and frequency

compounding techniques have been used to reduce speckle noise but with loss in spatial

resolution Michailovich & Tannenbaum (2006); Toulemonde et al. (2015). To retain

the spatial resolution especially in the lateral direction and reduce speckle noise at the

same time, coherent CPWI has been used widely in ultrasound imaging Alomari et al.

(2014); Jespersen et al. (1998); Montaldo et al. (2009). More detailed descriptions of

the statistics of ultrasound speckle can be found in Wagner et al. (1988).

To illustrate the formation of speckle, a Field II simulation was performed with

four scattering points. The simulation setup is given in Table 2.2. The axial FWHM

was 0.35 mm which was almost the same as the half (0.3 mm) length of the excitation

signal (2 × λ = 0.6 mm). The lateral FWHM was 0.4 mm. Fig. 7.1 shows the ar-

rangement of the four points where (a) axial separation, ∆x = 12 × FWHM, lateral

separation, ∆z = 10 × FWHM, (d) axial separation, ∆x = 4 × FWHM, lateral sepa-

ration, ∆z = 5 × FWHM, (g) axial separation, ∆x = 2 × FWHM, lateral separation,

∆z = 2.5 × FWHM. In the last two images (d) and (g), the complex interference be-

tween all the four points becomes more visible where the constructive and destructive

150



7.1 Introduction

Figure 7.1: Speckle noise occurs when the scattering points are located close to each

other in both the axial and lateral directions. (a) Axial separation, ∆x = 12 × FWHM;

lateral separation, ∆z = 10 × FWHM, (d) Axial separation, ∆x = 4 × FWHM,

lateral separation, ∆z = 5 × FWHM, (g) Axial separation, ∆x = 2 × FWHM, lateral

separation, ∆z = 2.5 × FWHM. The blue and red lines are the beam profiles for the

first two points in the axial and lateral directions, respectively.

regions start to emerge. Whereas the other two images on the side of the B-mode

images in Fig. 7.1 are representing the axial and lateral beam profiles for the first

two points in axial and lateral directions. For CPWI, the most common solution to

reduce speckle noise is by applying the compounding techniques Jespersen et al. (1998);

Montaldo et al. (2009). Less variation of the speckle pattern gives uniform and smooth

B-mode images where the image contrast ratio can be increased.

7.1.2 Despeckling with 2-D Gaussian Filter

The Gaussian filter is the most basic despeckling filter applied to the ultrasound B-mode

images to reduce speckle noise Cao et al. (2011). The selection of the 2-D window size

and the Gaussian filter standard deviation σ will influence the despeckling outcome.
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More details regarding the 2-D Gaussian filter equation and the window size selec-

tion is given in Ueng et al. (2014). The final image produced with the 2-D Gaussian

despeckling is given by:

ug[a, b] =G[a, b] ∗ h[a, b] (7.1)

where a is the distance from the origin in the horizontal axis (columns), and b is the

distance from the origin in the vertical direction (rows). h[a, b] is the original digital

B-mode image before despeckling, and G[a, b] is the 2-D Gaussian filter as given by

Cao et al. (2011); Ueng et al. (2014):

G[a, b] =
1

2πσ2
e−

a2+b2

2σ2 (7.2)

where σ is the standard deviation of the Gaussian pixel intensity distribution. The

Gaussian filter is not the best option for despeckling as it does not take boundaries into

consideration Izquierdo & Ghanbari (1999).

7.1.3 Despekling with 2-D Adaptive Weiner Filter

The adaptive filter has been used as an alternative to Gaussian despeckling in ultra-

sound imaging since its capabilities to update filter coefficients according to the noise

level in particular regions. The conventional Weiner filter with the low pass character-

istic is known to blur the image lines and edges Westin et al. (2000). This is because a

fixed standard deviation has been used throughout the entire image Jin et al. (2003).

Thus, Lee (1980) has derived a new noise-adaptive Weiner filter and the estimated

output image is given by:

uw[a, b] =µ+
σ2

σ2 + v2
(h[a, b]− µ) (7.3)

µ =
1

Ke

∑
a,b∈Ke

h[a, b] (7.4)

σ2 =
1

Ke

∑
a,b∈Ke

h2[a, b]− µ2 (7.5)

where µ and σ2 are the local mean and variance within the kernel, Ke and v2 are

the average values of all the local estimated variances. The smoothing of the adaptive
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Weiner filter is performed only in the area having low intensity variances but not in the

area with high variances (edges). This is to retain the image information as much as

possible. The filter works well when noise is white additive noise, such as the Gaussian

noise Michailovich & Tannenbaum (2006); Westin et al. (2000). However, in ultrasound

B-mode imaging, speckle is multiplicative noise Tay et al. (2010). Unlike the Gaussian

noise which appears randomly in the image, speckle noise is predictable and will keep

appearing in the same spatial domains. Thus, this filter does not suite well ultrasound

B-mode imaging. One of the solutions provided by Jain (1989) is to convert the speckle

multiplicative noise into additive zero mean Gaussian noise by applying logarithmic

transformation before applying the Weiner filter. This however is an oversimplified

approximation and Michailovich & Tannenbaum (2006) proved that considering the

log transformed noise in the B-mode image as additive white Gaussian is wrong.

7.1.4 Despeckling with 2-D Median Filter

The median filter output depends on the ordering of the input values for the kernel. The

median filter is known to effectively smoothen speckle and preserve the edges Huang

et al. (1979); Kushwaha & Singh (2017). Not like the moving average filter which will

average the values within the kernel, the median filter will replace the center of the

pixel value with the median pixel value within the kernel (sliding window) Huang et al.

(1979).

7.2 Segmentation of CPWI B-mode images

Manual image segmentation is subject to operator experience. The need of the high

reproducibility motivates the development of computer-assisted semi-automated and

automated segmentation techniques Bhushan (2009); Noble & Boukerroui (2006b). Seg-

menting ultrasound B-mode images brings new challenges due to the presence of speckle

and clutter noise. In this work, the effect of denoising the CPWI B-mode images with

the improved UM before despeckling and segmentation was investigated. Two differ-

ent types of image segmentation methods were applied on the CPWI B-mode images,

the Otsu thresholding and active contour balloon snake methods. Both segmentation

techniques were implemented on the cyst phantom and in-vivo carotid artery after

denoising with the new UM method.
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7.2.1 Snake Active Contour

The Snake active contours (SAC) is one of the popular segmentation methods which was

introduced by Kass in 1988 Kass et al. (1988); Shariat (2009). The SAC segmentation

technique starts with the user defined boundary known as the contour around an object.

Later the initial contour which is the internal energy of the SAC defined by the end user

will evolve towards or away to locate the actual boundary of the object. The objective

of the SAC is to minimize the combined energy of internal (shape of the contour) and

the external (the image gradient) by continuously moving itself under a certain number

of iterations. The overall snake energy is given as follows:

E(V (s)) =Eint(V (s)) + Eext(V (s)) (7.6)

where V (s) is snake contour, Eint and Eext are the internal and external energy of

the snake.

The external energy attracts the snake to the edges and this can be represented by

the following equation:

Eext(V (s) =− ‖∇[G[a, b] ∗ h[a, b]‖2 (7.7)

where G[a, b] is a Gaussian smoothing filter and h[a, b] is the image. Note that

the expression has a negative sign associated with it. The reason for this is that the

internal energy of the contour needs to coincide with the external energy represented

by the gradient. During each of the iterations, the overall SAC energy is computed so

that it is always the minimum.

In the original SAC segmentation method proposed by Kass et al. (1988), the initial

contour defined by users has to be drawn very near to the real or desired final boundary.

If it fails to do so, the SAC will not settle at the desired structure boundary. Thus,

Cohen (1991); Rebouças Filho et al. (2014) has proposed a solution for this problem

by introducing a new internal pressure force. This pressure pushes the defined contour

toward the edges, making the initialization process of defining the contour much simpler.

The proposed method known as balloon snake active contour (BSAC) and can be

defined as:

Eext(V (s) =k1n(s)− k ∇Ps
‖∇Ps‖

(7.8)
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∇Ps =
δEextV (s)

δs
(7.9)

where n(s) is the normal vector to the curve at point V (s) and k1 is the amplitude

of that force. The normal vector is always perpendicular to the tangent at the point

V (s), which means that the sign of k1 can be set so that all of the k1n(s) vectors are

pointing outwards or inwards. This will make the internal curve expand towards the

desired boundary from the inside or outside of the object. ∇Ps acts as a very strong

stooping point to trap the incoming contour so that it can settle down at the edges.

7.2.2 Otsu’s

The Otsu’s method gains its popularity due to its simplicity. The Otsu’s is an un-

supervised automatic global thresholding algorithm Otsu (1979). The algorithm will

determine the thresholding value (a gray scale intensity level) through minimizing the

inter-class variance, defined as a weighted sum of the variance of two histogram classes.

This is done by assuming the image histogram bimodal. The original gray scale image

later will be converted into binary scale. If the gray image intensity is larger than the

threshold, then it will be set to 1’s. Otherwise, it will be set to 0’s.

Even though the Otsu’s method is able to differentiate the object from the back-

ground, the constructive speckle regions outside of the cyst still resemble the same

intensity as that inside the cyst regions. Thus, with the Otsu’s method, it will still

classify the speckle destructive region as the background (0’s). When segmentation is

applied to the ROI, only the cyst region will be marked or delineated. In this thesis,

few post-processing has been carried out on the conventional Otsu’s method where only

the largest region will be selected according to the total number of pixels. With this

modified version of Otsu’s, only the cyst region is marked with 0’s and other portions

of the ROI will be marks as 1’s.

7.3 Experimental Setup

An experiment was carried out to find the influence of the despekling techniques on

the CPWI B-mode images. The data from the CIRS phantom was collected with

parameters as explained in Section 4.1.1. The received RF signals were beamformed

with the DAS technique with N = 9. Three different despekling techniques used here
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were the 2-D Gaussian, 2-D Adaptive Weiner and 2-D Median filters. For the Gaussian

filler, three different standard deviations, σ = 7, 13 and 19, were chosen. For the

Weiner and Median filters, three different windows sizes, Ke of [7 × 7], [13 × 13] and

[19 × 19], were chosen. The B-mode images were converted to unsigned integer 8-bits,

digital image formats before all the despekling techniques applied. The digital image

terms referring to dB scales file saved as ‘.png’ formats. The results were compared to

the original B-mode image with no despekling. The best among those three despekling

techniques were chosen for implementing the segmentation process.

Two different experiments were carried out to find the influence of the despekling

techniques on the segmentation process. The experimental setup to collect data for the

3.0 mm cyst and the carotid artery were same to those used in Section 4.1.1. The cyst

and carotid artery data were beamformed using DAS, UM-DAS, FDMAS and UM-

FDMAS from N = 1 to N = 25. Later the images were despekled with the 2-D median

filter with different kernel sizes, [7 × 7], [13 × 13] and [19 × 19]. Both segmentation

techniques, Otsu’s and BSAC, were implemented on the same cyst and carotid artery

B-mode images for comparison.

7.4 Results and Discussion

Several important features, the cyst boundary and point target on the B-mode image

are shown in Fig. 7.2. The white and green boxes at the 15 and 45 mm depths were

used to highlight the cysts with the diameter of 1.3 and 3.0 mm, respectively. The blue

box was used to mark the point target located at approximately the depth of 30 mm.

All the results are shown in Fig. 7.2 with the photopic imaging technique. Photopic-

mode uses color-coding to gain contrast on the B-mode image without increasing the

noise level Lin et al. (2003).

The results obtained from the 2-D Gaussian filter are shown in Fig. 7.2, column

i. Even though the filter is able to smoothen the speckle regions, it is far from being

an optimal despekling technique. The use of Gaussian filtering is to over smoothen

the image details. It cannot differentiate any sharp transitions on the image such as

the edges. This can cause problems in interpreting the medical images accurately.

The small cyst with the 1.3 mm diameter located at the 45 mm depth also starts to

disappear as the standard deviation σ increases from 7 to 19. This can be seen in
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Figure 7.2: Despeckling was performed using DAS with N = 9 by the 2-D Gaussian,

2-D Adaptive Weiner and 2-D Median filters as shown in row i, ii and iii. The 2-D

Gaussian filter standard deviations are b) 7, c) 13 and d) 19. The kernel sizes for

the adaptive Weiner and the median filter were set to b) [7 × 7], c) [13 × 13] and d)

[19 × 19]. No despeckling was applied to images in column a.

Fig. 7.2 row i, (b) to (d). The main reason for this is that the same standard deviation

has been applied through the entire despeckling process regardless of the noise level

on that particular kernel. The lateral beam profile of the wire target after despeckling

with the 2-D Gaussian filter is given in Fig. 7.3 row i, (b) to (d). The results show that

as the standard deviation in the 2-D Gaussian filter increases from 7 to 19, the wire
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target beam profile is over smoothened. This leads to the loss of information about the

wire target as shown in Fig. 7.2.

Figure 7.3: The lateral profile of the wire target as shown in Fig. 7.2 after despeckling

using a) Gaussian, b) Adaptive-Weiner and c) Median filters.

The results obtained from the 2-D adaptive Weiner filter are shown in Fig. 7.2,
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column ii. The filter starts to reduce speckle noise gradually as the size of the kernel

increases from [7 × 7] to [19 × 19]. All the important features of the B-mode image

have been retained. However, the main disadvantage of the 2-D Adaptive-Weiner filter

is that it tends to ignore speckle noise in the areas close to the edges and lines Hiremath

et al. (2013). This can be seen in Fig. 7.2, column ii, where both the cysts are not

smoothened. The lateral beam profile of the wire target after despeckling with the 2-D

adaptive Weiner filter is given in Fig. 7.3, row ii. The results show that as the kernel

size increases from [7 × 7] to [19 × 19], the point target maintains its beam pattern. Few

sharp transitions are noticeable on both the beams with the kernel size of [19×19]. This

is the nature of this filter since every kernel does not have the same standard deviation.

Thus, it will produce discontinuity whenever there are very different standard deviation

values between the kernels.

Finally, the results obtained from the 2-D median filter are shown in Fig. 7.2,

column iii. The filter reduces speckle noise as the size of the kernel increases from

[7 × 7] to [19 × 19]. As the speckle noise has been reduced, the border or the cyst

edges also have been smoothened without losing important features. This is one of the

advantages of the median filter.

Based on the results, it was found that despeckling using the 2-D median filter

produced better results in smoothing the speckle regions and retaining edges. Thus,

the filter has been chosen as the despekling tool for both segmentation methods, Otsu’s

and BSAC.

The modification on the Otsu’s thresholding method was performed in this work

in order to segment the ROI. The complete steps involved in modifying the Otsu’s

are illustrated in Fig. 7.6. First, the B-mode image which has been mapped into the

grey scale in the dB scale is converted into unsigned integer formats from 0 to 255

levels by saving it as a ‘.png’ file. This ‘.png’ file format is known as the digital B-mode

image. By applying the Otsu’s thresholding method, a binary image is created from the

unsigned integer image by replacing all values above the threshold into 1’s and others

into 0’s. Later the binary image 1’s and 0’s are inverted. This is to find and label

the pixel group size. The regions are sorted from the smallest to the largest according

to the total number of pixels. The biggest region is extracted and the 1’s and 0’s of

the image are inverted back as it was prior to the sorting process. The perimeter or
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border of the remaining binary image regions are computed and assigned to the original

unsigned integer image as the cyst edge.

In BSAC the three different parameters that can be controlled by the end user are

the number of iterations, the initial contour size and placement location. It is expected

that within 100 iterations the initial contour will deform to the final settlement on

the intended border. However, this is not valid all the time. If the initial contour is

drawn smaller in size and placed further from the intended border, more iterations may

be needed. The speckle and clutter noise also directly affect the number of iterations

in BSAC. If the noise level is high, it can be detected as false edges. Thus, applying

despeckeling and denoising on the B-mode image will be beneficial to reduce the number

of iterations in BSAC and improve the overall segmentation process by increasing the

accuracy on defining the ROI contour. Fig. 7.4 shows the effect of the initial contour

size and iteration in BSAC. In column i, a smaller initial contour is placed at the center

of the 3.0 mm diameter cyst. While in column ii, a bigger-size contour is placed at

the center of the 3.0 mm diameter cyst. The two BSAC segmentation processes are

performed in steps with 50, 100 and 200 iterations. With only 50 iterations, the bigger

initial contour has been almost settled to the intended cyst border, while for the small

initial contour, 200 iterations are needed for the initial contour to settle on the cyst

border.

One of the advantage in BSAC segmentation is its ability to expand or compress the

initial contour to the intended border Khadidos et al. (2014). If the object that is going

to be segmented is solid and surrounded by low-level intensities, placing a bigger initial

contour outside of the object is desired. While for the object that has lower intensities

such as a cyst, placing the initial contour inside the anechoic region and letting it expand

to the final contour is desired. Two different scenarios of placing the initial contour

inside and outside of the cyst is shown in Fig. 7.5. But by placing the initial contour

outside of the cyst, many undesired segmentations are also produced. This is due to

the nature of BSAC that can break into many different smaller segmentation regions to

minimize the overall energy Jumaat et al. (2014). Speckle produces sharp transitions

that can be misclassified as edges. Thus, smoothing or despekling can reduce the false

segmentation.

In this work BSAC segmentation was implemented within 100 iterations and the

initial contour was placed as close as possible to the cyst edge.
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Figure 7.4: Column i and ii show the placement of the initial contour at the centre of

the 3.0 mm diameter cyst and its deformation with different numbers of iterations. The

arrows in i and ii indicate both initial contours expanding towards the cyst border. The

B-mode images are obtained with DAS, N = 9 and despeckled with the 2-D median

filter with the kernel size of [7 × 7].
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Figure 7.5: Column i and ii shows the placement of initial contour inform of rectangular

at the centre of 3.0 mm diameter cyst and its deformation as the number of iterations

increased in steps from 50 to 200. The arrows on i and ii indicates both initial contours

expanding towards the cyst border. The B-mode obtained with DAS, N = 9 and

despeckled with 2-D adaptive median with kernel size, Ke of [7 × 7].
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The results obtained for implementing the Otsu’s and BSAC on the 3.0 mm diameter

cyst with DAS, UM-DAS, FDMAS and UM-FDMAS are presented in Fig. 7.7, 7.8, 7.9

and 7.10. The 2-D adaptive wiener filter with the kernel sizes of [7 × 7], [13 × 13]

and [19 × 19] were used. In column (a) for all the B-mode images in Fig. 7.7, 7.8,

7.9 and 7.10, despeckling was not applied. In common, the ability of both Otsu’s

and BSAC to segment the cyst boundary with DAS, UM-DAS and FDMAS keeps

improving as the number of despeckling kernel size increases from [7 × 7] to [19 × 19]

and the compounding angles increases from N = 1 to N = 25. Both despeckling and

compounding techniques in common reduce the speckle and clutter noise levels in the

B-mode image. Increasing the kernel window size improves the B-mode image CNR.

The results for CNR measured on the 3.0 mm diameter cyst at the 15 mm depth for

DAS, UM-DAS, FDMAS and UM-FDMAS are given in Fig. 7.11.

The modified Otsu’s method is able to segment the cyst boundary better than

BSAC with a low number of compounding angles (from N = 1 to N = 5) with DAS.

This is shown in shown in Fig. 7.7. As the number of compounding angles increases

from N = 7 to N = 25 and the kernel size increases from [7 × 7] to [19 × 19], both

Otsu’s and BSAC produce almost the same contour pattern around the cyst boundary.

The advantage of the modified Otsu’s method is its reliance on identifying the biggest

group. This however is not the case when UM denoising takes place on the B-mode

image. The performance of the modified Otsu’s method decreases compared to BSAC

especially for a lower number of compounding and a smaller kernel size of [7 × 7]. This

happened when UM was applied to DAS and FDMAS. The main reason for this is that

when clutter noise is reduced on DAS and FDMAS with UM, high speckle variations

are created outside of the cyst regions. Applying a larger kernel size of [19 × 19] is able

to solve this problem on UM-DAS but not on UM-FDMAS.

The performance of the BSAC and Otsu’s methods with the in-vivo data was evalu-

ated on the right carotid artery. Both the segmentation processes were implemented on

B-mode images beamformed with DAS and FDMAS. Parameters for despeckling and

segmentation were identical to those for in-vitro measurements. The internal carotid

artery (ICA) and the ROI are shown in Fig. 7.12. The performance of segmentation

keeps improving as the number of compounding angles increases from N = 1 to N = 25

and as the 2-D median filter kernel size increases from [7 × 7] to [19 × 19]. With the

Otsu’s method, the ICA boundary is segmented well with DAS and UM-DAS starting
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from N = 5 and Ke = [13 × 13]. This is shown in Fig. 7.13 for DAS and in Fig. 7.14

for UM-DAS. While BSAC implemented with DAS has been affected by the presence

of clutter noise inside the anechoic ICA region. Clutter noise becomes an obstacle for

the initial contour expansion towards the ICA boundary. Reducing clutter noise inside

the ICA by applying UM is able to improve the BSAC segmentation by increasing the

initial contour expansion towards the ICA boundary.

The Otsu’s segmentation method performed poor compare to BSAC implemented

with FDMAS and UM-FDMAS. This is shown in Fig. 7.15 for FDMAS and in Fig.

7.16 for UM-FDMAS. The Otsu’s failed to recognize the ICA as a single object with

FDMAS and UM-FDMAS. Whereas BSAC is able to segment the ICA boundary with

FDMAS and UM-FDMAS and the results are better than those with DAS and UM-

DAS. This is due to the absence of clutter noise inside the ICA anechoic region makes

the initial contour expand from the center of the ICA with less resistance.
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Figure 7.6: a) The grey scale image of the 3.0 mm diameter cyst at the 15 mm depth

in digital formats, b) the grey scale image is converted into the binary image 0’s and

1’s based on the Otsu’s thresholding technique, c) the binary image is inverted and

mapped according to the pixel group size (from smallest to largest), d) the largest pixel

group regions are extracted and the 0’s and 1s are inverted back, e) the perimeter of the

extracted largest pixel group region, f) the perimeter mapped to the grey scale image as

the cyst edge. The example shows the segmented B-mode image with FDMAS, N = 13

and despekling with the 2-D adaptive Weiner filter ([7 × 7]).
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Figure 7.7: The B-mode images compounded from N = 1 to N = 25 beamformed

with DAS despeckled with the 2-D adaptive median filter with the kernel size, b) Ke

= [7 × 7], c) Ke = [13 × 13] and d) Ke = [19 × 19].
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Figure 7.8: The B-mode images compounded from N = 1 to N = 25 beamformed

with DAS, denoised with UM, despeckled with the 2-D adaptive median filter with the

kernel size, b) Ke = [7 × 7], c) Ke = [13 × 13] and d) Ke = [19 × 19].
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Figure 7.9: The B-mode images compounded from N = 1 to N = 25 beamformed

with FDMAS despeckled with the 2-D adaptive median filter with the kernel size, b)

Ke = [7 × 7], c) Ke = [13 × 13] and d) Ke = [19 ×19].
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Figure 7.10: The B-mode images compounded from N = 1 to N = 25 beamformed

with FDMAS, denoised with UM, despeckled with the 2-D adaptive median filter with

the kernel size, b) Ke = [7 × 7], c) Ke = [13 × 13] and d) Ke = [19 × 19].
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Figure 7.11: The CNR measured on the 3.0 mm diameter cyst with a) DAS and UM-

DAS and b) FDMAS and UM-FDMAS after despeckled with 2-D adaptive median filter

with Ke = [7 × 7], [13 × 13] and [19 × 19].
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Figure 7.12: a) The UM-DAS compound B-mode images with N = 25 have been

despeckled with the 2-D Median filter (ke = [19 × 19]). b) A rectangular mask has

been applied on the CCA as ROI for initializing segmentation process. c) Otsu’s (white

colour line) and BSAC (Green dashed colour line) segmentation have been applied to

the ROI. d) The segmented ROI has been concatenated back to the original image.
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Figure 7.13: The CCA B-mode compound images (N = 1 to N = 25) beamformed

with DAS and despeckled with the 2-D adaptive median filter with the kernel size, b)

Ke = [7 × 7], c) Ke = [13 × 13] and d) Ke = [19 × 19]. Otsu’s (white colour line) and

BSAC (Green dashed colour line) segmentation have been applied to the ROI.
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Figure 7.14: The CCA B-mode compound images (N = 1 to N = 25) beamformed with

DAS, denoised with UM and despeckled with the 2-D adaptive median filter with the

kernel size, b) Ke = [7 × 7], c) Ke = [13 × 13] and d) Ke = [19 × 19]. Otsu’s (white

colour line) and BSAC (Green dashed colour line) segmentation have been applied to

the ROI.
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Figure 7.15: The CCA B-mode compound images (N = 1 to N = 25) beamformed

with FDMAS and despeckled with the 2-D adaptive median filter with the kernel size,

b) Ke = [7 × 7], c) Ke = [13 × 13] and d) Ke = [19 × 19]. Otsu’s (white colour line)

and BSAC (Green dashed colour line) segmentation have been applied to the ROI.
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Figure 7.16: The CCA B-mode compound images (N = 1 to N = 25) beamformed with

FDMAS, denoised with UM and despeckled with the 2-D adaptive median filter with

the kernel size, b) Ke = [7 × 7], c) Ke = [13 × 13] and d) Ke = [19 × 19]. Otsu’s (white

colour line) and BSAC (Green dashed colour line) segmentation have been applied to

the ROI.
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7.5 Conclusion

In this chapter, the performance of two different segmentation methods, Otsu’s and

BSAC were evaluated on compounded DAS and FDMAS B-mode images. UM denois-

ing and despeckling with the 2-D median filter were used. Reducing both speckle and

clutter noise with compounding and despeckling improve the Otsu’s and BSAC seg-

mentation processes in general. However, Otsu’s can only segment the cyst and ICA if

the boundary of the object is intact. This however is not the case for BSAC. The dis-

continuity of the cyst and ICA boundary will not affect the segmentation process. The

main obstacle for BSAC is clutter noise inside the ICA region. Reducing clutter noise

inside the anechoic region with UM improves the BSAC based segmentation. Applying

a higher despeckling kernel size such as [21 × 21], may reduce the existing clutter noise

inside the anechoic regions and eliminate the false segmentation.
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Chapter 8

Measurement of the Intima

Media Thickness

In this chapter, the improved unsharp masking (UM) was evaluated on ultrasound B-

mode medical images by quantitatively measuring the intima-media thickness (IMT)

on the common carotid artery. The B-mode images were segmented with balloon snake

active contour (BSAC) with different iterations after denoising with UM and despeck-

ling with the 2-D adaptive median filter. The time needed for BSAC segmentation

settled on the intima-media layers with and without UM was measured with different

iterations. The IMT thickness obtained from BSAC segmentation was compared with

manual measurements.

8.1 Introduction

The measurement of IMT on common carotid artery is a common clinical practice

which has been used to determine the extent of plaque buildup on the walls of the ar-

teries Hobbs et al. (2016); Hurst et al. (2007). This clinical procedure has been used by

the physicians to assess risk factors or as an earlier indicator of cardiovascular diseases

(CVDs) such as heart attack and stroke. This is because there is a strong link between

the IMT and cardiovascular events. Thus, continuously monitoring the characteristic

changes of the artery wall is crucial. According to the European Guidelines on car-

diovascular disease presentation in clinical practice 2016, an IMT superior to 0.9 mm

was considered to be abnormal and needs further medical attention immediately Hobbs
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8.1 Introduction

et al. (2016). The probability of having CVDs is more than 94% if the IMT is greater

than 1.15 mm Hurst et al. (2007). Ultrasound B-mode imaging has been used widely

to estimate the IMT due to its simplicity and non-invasive nature Xu & Cao (2013).

The most common techniques used to measure the IMT on the B-mode image is

segmenting the intima-media borders manually, semi automated or automated bor-

der segmentation Loizou (2014); Loizou et al. (2005). The thickness between the two

boundaries is computed at all points (pixels) along the arterial far wall to obtain the

IMT values. The intima-media layers located on the far wall is shown in Fig. 8.1. The

measurement of the IMT takes place at the far wall due to strong acoustic shadowing at

the near wall. The most popular techniques used for segmentation process are manual

delineation of the borders or semi-automated methods such as edge detection, snake

active contours (SAC), level sets and Hough transform Loizou (2014); Loizou et al.

(2005). The manual process of determining the borders is known to vulnerable and

prone to human errors. Large variability on the IMT reading with manual techniques

is subject to different experts and different equipment. The main advantage of semi-

automated segmentation techniques is its accuracy in defining the seeding boundary

compared to the manual and complete automated segmentation methods.

The patient will be recommended for more medical attention if the IMT is thicker

by 0.1 mm Xu & Cao (2013). Thus, the precise IMT measurement is crucial especially

for follow-up patients with high risks. Increasing the B-mode image contrast and spatial

resolution could be beneficial for measuring the anatomical structure more accurately.

By applying the proposed UM method on CPWI, it is expected the B-mode image

contrast and spatial resolution will be improved for better IMT measurements. In the

proposed UM technique discussed in detail in the previous chapter, the improvement

in the spatial resolution only takes place in the lateral direction. However, reducing

clutter noise in the lateral direction will also influence the results in the axial direction.

The measurement of the IMT takes place in the axial direction. Thus, when clutter

noise is reduced, better image segmentation with more precise and fast measurements

could be available.

Reducing the side lobes and clutter noise inside the anechoic regions will improve

the B-mode image contrast ratio and improve the semi-automated BSAC segmentation

process. In order to measure the IMT, intima-media regions need to be segmented

first. The segmentation process is based on identifying the edge or the boundary of the
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8.1 Introduction

Figure 8.1: a) The anatomical structure of the CCA. b) Detailed regions showing the

lumen, intima, media and adventitia layers in the far wall of the CCA. The two red

points highlight the intima-media layers. c) The axial beam profile corresponding to

the white dashed line in b). The IMT measured between the intima-media layers is

also shown on the beam profile.

intima-media walls. If any noise is present between those walls, more iterations may be

needed for the initial contour to reach the intended boundary in the BSAC segmentation

process. At the same time, there is also a chance for false border detections. The semi-

automated method relies on the quick and simple interactive initialization of BSAC

aiming to increase the overall robustness to reduce errors that may be introduced by

complete automatic techniques Zahnd et al. (2014). For the semi-automated BSAC,

the contour is initialized by the user near to those walls. This is to reduce errors where

the snake (referring to the initial contour) fails to converge or diverge to the intended

borders Loizou et al. (2015). Common lengths of the intima-media layers in the lateral

direction are between 3 mm to 10 mm Zahnd et al. (2014).

Thus in this chapter, the improved UM technique was implemented to reduce clutter

noise on the B-mode image before the IMT measurement. It is expected that the

reduction of clutter noise in the B-mode image will fasten the segmentation process

with a lower number of iterations. The accuracy of measurements is also expected to

improve since the boundaries of intima-media can be easily detected with less clutter

noise.

179



8.2 Experimental Setup

8.2 Experimental Setup

The in-vivo data were collected from the cross section of the right CCA of a healthy

volunteer as shown in Fig. 4.3. The protocol used in this study to measure the artery

IMT was according to the clinical practice Casella et al. (2008); Garovic et al. (2017).

The IMT measurements were obtained with the volunteer lying in the supine posi-

tion. Three CCA samples were collected in sequence at the same posture classified

as sample 1, 2 and 3. A 128-element linear array transducer (L11-4, Verasonics, Inc.

United Stated of America) with a centre frequency of 7.55 MHz and a −6 dB band-

width of 90.8% was used to collect all the data. A two-cycle sinusoidal excitation signal

with a centre frequency of 7.55 MHz was digitised with the ultrasound array research

platform II (University of Leeds, UK) Cowell & Freear (2008b); Cowell et al. (2016);

Smith et al. (2012). A pulse sequence consisting of 13 angles was used with an incre-

ment of 2◦ within a ±12◦ sector. The maximum imaging depth was set to 30 mm.

The FR is 2 KHz. The received signals were sampled at 80 MHz before beamformed

with DAS and FDMAS. The experimental parameters are provided in Table 8.1. To

maximize the image resolution, no apodization was applied to the elements along the

lateral direction during transmission and reception.

8.3 Methods

The received RF echoes were beamformed with DAS and FDMAS before denoised

with UM. The beamformed and denoised B-mode images were despeckled with the 2-D

adaptive median filter with the kernel size of [19 × 19] to smoothen speckle and reduce

clutter noise that is present in the B-mode image. A ROI with a size of 2 mm × 5

mm (width × length) was selected from the far wall of the common carotid artery

to start segmentation before the IMT measurement. Two separate initial contours

with the rectangular shape have been set on top and bottom of the intima later as

the initial contour A and contour B as shown in Fig. 8.2. This is to speed up the

BSAC segmentation process in identifying the intima-media layers. The initial contour

A will expand to locate the intima layer, while the initial contour B will shrink to

locate the adventitia layer. Both the initial contours were drawn in a square shape

as near as possible to the intended borders to reduce the number of iterations. The

IMT thickness is computed between the two boundaries, intima-media, at all points
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8.3 Methods

Table 8.1: Experiment parameters.

Properties Equations Values

Transducer Verasonics L11-4

Speed of Sound 1540 m/s

Number of Elements - 128

Transducer Centre Frequency - 7.55 MHz

Transducer Bandwidth (−6 dB) - 90.8%

Transducer Element Pitch, p 1.5*λ 0.30 mm

Transducer Element Kerf p/20 15.0 µm

Transducer Element Width Pitch-Kerf 285.0 µm

Transducer Element Height - 6 mm

Transducer Elevation Focus - 20 mm

Sampling Frequency for Tx/Rx - 160/80 MHz

Rx Sampling Time, Ts 1/fs 12.5 ns

Excitation Signal - 2-Cycle Sinusoid

Excitation Signal Window - Tukey (α = 0.5)

Excitation Signal Centre Frequency, fo - 7.55 MHz

Imaging Point Step, x λ/3 0.1016 mm

Imaging Point Step, z c ∗ Ts/2 9.625 µm

Spatial Apodization - -
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8.4 Results and Discussion

Figure 8.2: Two different BSAC segmentations are initiated simultaneously in order

to locate the initma and adventitia layers. The first and second BSAC initial contour,

A and B are drawn above and below the intima layer. The fist initial contour A will

expand to locate at the intima layer while the second initial contour will shrink to

locate at the adventitia layer.

along the far arterial wall in the lateral direction segmented by BSAC. As for manual

dilation, a Matlab function was used to trace the intima-media boundaries on the ROI

with the help of a computer mouse. The difference between the upper (intima) and

lower (media) pixel values was converted into values in mm.

8.4 Results and Discussion

The results for IMT measurements and the iterations with BSAC using different iter-

ations in three ROIs are presented in Fig. 8.4. In CCA sample 1, the IMTmean value

for DAS increases from 0.4002 mm to 0.6315 mm when the iterations change from 50

to 200. There is a 57.8% increment in IMTmean. This shows that the BSAC internal

contour keeps deforming and has not reached the final minimum energy yet. The rea-

son for this is clutter noise that tends to stop the internal contour from deforming by

providing false edges. Denoising clutter noise with UM and applying despeckeling will

make the initial contour to expand faster to the global edge. As shown in Fig. 8.3(d),

with 50 iterations, the BSAC initial contour approaches the adventitia border much

closer by combining UM and DAS. Whereas with DAS alone, as shown in Fig. 8.3(c),
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8.4 Results and Discussion

Table 8.2: Differences of IMTmean with different BSAC iterations for sample 1.

50-100 100-200 50-200

mm % mm % mm %

DAS 0.1164 29.1 0.1149 22.2 0.2313 57.8

UM-DAS 0.0968 18.5 0.0016 0.25 0.0984 18.8

FDMAS 0.0983 18.5 0.0006 0.09 0.0989 18.6

UM-FDMAS 0.076 13.5 0.0009 0.14 0.078 13.7

the BSAC initial contour stops at the region of clutter noise rather than on the ad-

ventitia border. Although when combining UM and DAS the contour reaches closer to

adventitia border, the final border is not reached due to a low number of iterations of

50. This can be seen in Fig. 8.3(d) as highlighted by the arrow. The difference for

the IMTmean from the 50 to 200 iterations using UM-DAS is only 18.8%. This is much

lower when compared to the difference of 57.8% in IMTmean using DAS. FDMAS and

UM-FDMAS show 18.6% and 13.7% differences in IMTmean measurements with 50 to

200 iterations. The same pattern of differences in IMTmean with 50 to 200 iterations

can be seen for samples 2 and 3. DAS shows higher differences while other investigated

techniques show smaller differences in for the same change of iterations. With only 100

iterations, the segmentation process with all techniques except DAS have reached the

final border (minimum energy), and when the iteration is increased to 200, the changes

of the IMTmean between 100 and 200 iteration are small. In sample 1, the IMTmean

measured with UM-DAS shows the difference of 0.0016 mm or 0.25%, while DAS shows

0.1149 mm or 22.2% difference between 100 and 200 iterations. Results for IMTmean

differences between 50-100, 100-200 and 50-200 for all samples are shown in Table 8.2,

8.3 and 8.4. In Table 8.3 it can be seen that from 100-200 iterations, the IMTmean val-

ues decrease for UM-DAS and UM-FDMAS. This indicates that the BSAC has reached

the minimum energy level within 100 iterations, and from 100 to 200 iterations the

initial contour keeps oscillating between initial and final intended borders. The BSAC

will not reach the final intended border if the initial contour defined by the user is far

from the final border with a low number of iterations Gadermayr et al. (2013). On the

other hand, if a very large initial contour is drawn with a large number of iterations,

the initial contour will keep oscillating between the initial contour and the intended

final border as happened in sample 2 for UM-DAS and UM-FDMAS.
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8.4 Results and Discussion

Figure 8.3: The CCA beamformed with a) DAS and denoised with b) UM-DAS. The

BSAC contour (green line) implemented within the ROI (white box, A (DAS) and B

(UM-DAS)) after 50 iterations (c and d), 100 iterations (e and f) and 200 iterations

(g and h). The SAC contour settles on the media border within 100 iterations for

UM-DAS while it needs 200 iterations for DAS.

184



8.4 Results and Discussion

Figure 8.4: The IMTmean with standard deviations and time needed for sample 1 (a

and b), sample 2 (c and d) and sample 3 (e and f) with 50, 100 and 200 iterations are

provided when using DAS, UM-DAS, FDMAS and UM-FDMAS.
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Table 8.3: Differences of IMTmean with different BSAC iterations for sample 2.

50-100 100-200 50-200

mm % mm % mm %

DAS 0.1825 58.8 0.1228 24.9 0.3053 98.4

UM-DAS 0.0568 9.88 −0.01 −1.6 0.0468 8.1

FDMAS 0.0702 12.7 0.0156 2.5 0.0858 15.5

UM-FDMAS 0.086 15 −0.012 −1.8 0.074 12.9

Table 8.4: Differences of IMTmean with different BSAC iterations for sample 3.

50-100 100-200 50-200

mm % mm % mm %

DAS 0.1027 25 0.1086 21.2 0.2113 51.5

UM-DAS 0.0965 18 0.0012 0.19 0.0977 18.3

FDMAS 0.089 16.4 0.0056 0.9 0.0946 17.5

UM-FDMAS 0.1086 20 0.003 0.45 0.1115 21

The processing time for SAC segmentation is not affected by the techniques in-

vestigated but dependent on the total number of iterations. The average processing

time for 50, 100 and 200 iterations are 2.3 s, 3.2 s and 4.2 s for all samples and all

techniques. The computer operating system used to calculate the processing time is

Windows 7 enterprise 64-bit. The computer specification is as follows: CPU (CORE

i5-4460, Intel Corporation Co., Ltd., Santa Clara, CA, USA), 3.20-GHz clock speed, 4

cores and 16-GB DDR3 RAM. The number of iterations is set according to the initial

contour size Yu et al. (2013). The definition of the initial contour is dependent on the

object shape and in general drawn as near as possible to the intended border to reduce

the number of iterations. The typical time needed to measure the IMT with SAC was

between 15 to 45 seconds Ceccarelli et al. (2007).

The IMTmean values which were measured manually are compared with BSAC (200

iterations) for all three samples and all techniques as shown in Fig. 8.5. The B-mode

images for sample 1 are shown in Fig. 8.6. The main objective of applying semi-

automated segmentation process (BSAC) on measuring the IMT is to obtain the same

or better results from manual delineation which is prone to human error and time

consuming. A study in Polak et al. (2011) where 26 IMTs were measured manually by
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8.4 Results and Discussion

5 different experts shows significant differences in the final evaluation between them.

This is known as inter-observer differences. As a final outcome, the author concluded

that the inter-observer differences can affect the correct evaluation of the cardiovascular

risk. The differences in IMTmean measured manually and with BSAC segmentation for

samples 1, 2 and 3 were calculated according to equation 8.1 Loizou et al. (2015):

Err =
1

P
|
P∑
e=1

Manuale − BSACe| (8.1)

where P is the total number of B-mode images, Manuale and BSACe are IMTmean

measured manually and with BSAC segmentation. Table 8.6 presents the errors be-

tween the two measurements.

The best or optimal imaging results for IMT measurement can be achieved when the

carotid artery was perpendicular to the face of the transducer Cronenwett & Johnston

(2014). This is because the echogenity of the intima-media complex is comparable

low to the carotid wall. Thus, only the maximum amount of energy transferred to

the IMT is able to produce a high echo for IMT measurement. In the segmentation

technique proposed by Ilea et al. (2013), a low contrast value on the B-mode image has

been mentioned as one of the main obstacles in measurements of IMT. Thus, reducing

clutter noise and increasing the image CR will assist with the segmentation process and

measurement of IMT. According to a study conducted by Loizou et al. (2015), there

is no significant deference on the measurement of IMT on the right or left side carotid

artery wall. Thus, experiments were conducted only for the right CCA in this work.

A clinical study conducted by Gaarder & Seierstad (2015) on 313 participants shows

that the dynamic range (DR) may influence the IMT measurements. It was found that

the relative changes in IMT were largest between 40 and 55 dB (6.7%) and smallest

between 70 and 85 dB (2.6%). The main outcomes from the study were suggestions

to set the same DR for the same patient during the follow-up measurements. The

standard deviation of the IMT measurements can predict the plaque formation on the

intima layers. The uneven shape of plaque formation on the intima layers gives high

IMT standard deviation values indicating the plaque composition at certain parts of

the measured intima-media layer.
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Figure 8.5: The measurements of IMT measured manually have been compared with

BSAC (200 iterations) for all three samples.
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8.4 Results and Discussion

Figure 8.6: The IMT layers on the ROI obtained from sample 1 without any seg-

mentation shown in column a), segmented by hand tracing shown in column (b) and

segmented with BASC shown in column (c). The images obtained using i) DAS, ii)

UM-DAS, iii) FDMAS and iv) UM-FDMAS.

Table 8.5: Processing Time for Manual and BSAC (200 iterations)

Sample 1 Sample 2 Sample 3

Manual BSAC Manual BSAC Manual BSAC

DAS 4.2 20.2 4.4 19.8 4.36 19.7

UM-DAS 4.3 18 4.49 20.1 4.39 19.8

FDMAS 4.32 19.5 4.45 18.8 4.45 19.3

UM-FDMAS 4.39 18.8 4.44 19 4.43 19.7
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8.5 Conclusion

Table 8.6: Differences Between Manual Measurement and BSAC (200 iterations) in

IMTmean

Techniques mm %

DAS 0.011 1.72

UM-DAS 0.017 2.6

FDMAS 0.009 1.45

UM-FDMAS 0.02 3.1

8.5 Conclusion

The proposed UM as a denoising tool for DAS is able to reduce clutter noise in between

the intima-media layers and improve the IMT measurement. The number of iterations

needed for BSAC to settle on the final border is less with UM (100 iterations) compared

to that without the denoising technique. The implementation of UM with FDMAS does

not affect the IMT measurement significantly. This is because the CR with FDMAS

is already good when compared to that using DAS. The implementation of UM with

FDMAS may cause the intima layers to diminish and nonvisible in the worst case.

Although all the three CCA samples used for IMT measurements show the intima

layers, but it is always a challenge to find the best B-mode images for IMT with UM-

FDMAS. Thus, it is not recommended to use UM-FDMAS for IMT measurements.

Both UM-DAS and FDMAS techniques are able to provide better results with less

time in measuring the IMT compared to that using DAS. One of the challenges during

the IMT measurement on the B-mode image with BSAC is the placement of the initial

contours. The manual placement of the initial contour should be as near as possible to

the intima and adventitia borders in the ROI.
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Chapter 9

Summary

Ultrasound B-mode imaging is one of the most important modalities in medical imag-

ing. It can provide real-time diagnosis results, and the nonionizing and noninvasive

properties make it safer to be used compared to x-ray and MRI. Recently, ultrafast

imaging gained its popularity due to its capabilities to provide thousands of frames in

a second. This has opened many avenues for new applications such as measuring the

transient mechanical wave speed for elastography and higher contrast-enhanced imag-

ing without bursting the microbubbles. Plane wave imaging (PWI) is commonly used

to achieve high FRs as it uses the single unfocused plane wave for a single transmit.

This causes low contrast and poor resolution due to the lack of focusing. Although

spatial compounding has been used to overcome the low signal-to-noise ratio problem

in PWI but it comes at the cost of reducing FRs. The commonly used DAS beam-

forming technique to form the B-mode image is unable to further improve the PWI

performance. Thus in this thesis, we have proposed and investigated several methods

to reduce clutter noise which is with PWI. In general, reducing clutter noise in PWI is

able to improve the B-mode image quality by increasing its contrast ratio and spatial

resolution.

Filtered delay multiply and sum (FDMAS) is a new beamforming technique which

has been adopted from radar microwave imaging and it is able to increase the B-mode

image contrast by reducing the side lobes and improve the resolution by narrowing the

main lobes in the lateral direction. In this thesis, a detailed study on the effect of

varying the imaging point steps in the lateral direction was evaluated. This is because

the fundamental of FDMAS algorithm is based on a process similar to autocorrelation.
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Thus, varying the lateral steps generally affect the final FDMAS results. An opti-

mized lateral step of λ/3 has been suggested for FDMAS after considering the trade-off

between the computational complexity (CC) and improvements in CR and spatial res-

olution. It is also found that by reducing the lateral step to λ/3, a low number of

steering angles N = 9 can be used to produce better image quality compared to that

with a high number of compounding angles N = 25 using a larger lateral step of λ/2.

A new compounding method was proposed in this thesis, inspired by the FDMAS

beamforming technique. Although FDMAS is able to improve the B-mode image qual-

ity compared to DAS but the CC is higher than that using DAS. The new compounding

technique is based on the process similar to autocorrelation to reduce the CC without

sacrificing the B-mode image quality. The new technique named as filtered multiply

and sum (FMAS) was implemented with DAS and it provide better image quality

with the processing time as required using DAS. DAS-FMAS provides improvements

of 14.1 dB and 7.29 dB in contrast ratio (CR) than DAS and FDMAS with N = 3.

The peak side lobe (PSL) in the axial direction is attenuated by 33 dB and 48 dB

more with DAS-FMAS when compared to DAS and FDMAS for N = 3. The lateral

resolution (LR) for DAS-FMAS is improved by 36% and 19% compared to DAS and

FDMAS with N = 3. The simulations and experiments performed on point targets,

cysts and in-vivo carotid artery showed promising results. The most advantage gained

by FMAS is its ability to improve the image spatial resolution in the axial direction.

Conventionally, spatial compounding can only improve the lateral resolution since the

steering operation takes place in that direction. However, in this work it is found that

there is a small phase shift among the steered beams in the axial direction. The ex-

istence of this phase shift between the steered beams was proven with experimental

and simulation work. The simulated pressure fields at different steering angles also

showed this phase shift. Although the phase shift is small but when the process similar

to autocorrelation takes place with the RF signals from the steered angles, the final

outcome significantly affects the formation of the axial beam profiles. At N = 3, the

axial resolution (AR) with DAS-FMAS is improved by 43% and 12.5% compared to

DAS and FDMAS, respectively.

Unsharp masking (UM) is an image sharpening tool which has been used exces-

sively in conventional digital image processing in order to improve the image quality

by enhancing the image edges. The UM technique has been adopted in a few medical

192



imaging modalities such as x-ray and mammogram. The conventional UM is not a

famous tool for increasing the B-mode image contrast and spatial resolution. This is

because the flaws that are present in the equation which is dependent on the single

weightage scheme and the design of the low pass filter (LPF). Thus, in this work, a

new UM denoising method dedicated to compound plane wave imaging (CPWI) was

proposed. The proposed UM has an iterative process with two different weightage

schemes and non-coherent compound plane wave imaging is used as its LPF. The new

UM method can improve the B-mode image contrast and enhance the lateral resolu-

tion for DAS and FDMAS. The best LRs using DAS and UM-DAS are 0.47 mm and

0.39 mm with N = 3, and a 17% of improvement is achieved with UM. UM is able to

improve the CR by 7.94 dB and 6.39 dB when combined with DAS and FDMAS for

N = 9. The PSL is attenuated more when UM implemented with DAS and FDMAS.

The PSLs using UM combined with DAS and FDMAS are 19.2 dB and 19.3 dB with

N = 9. The potential of the proposed UM method needs further exploration. This

is because the manipulation of the weightage scheme gives opportunities to the end

user to change the final results as wanted. Using specific parameters in the weightage

scheme gives the flexibility to improve the spatial resolution and the image contrast.

Although the proposed UM method shows improvement in B-mode imaging using delay

and sum (DAS) but it is not the case for FDMAS. Since in FDMAS the CR is higher

than DAS, applying the proposed UM method for denoising with FDMAS attenuates

more signal and produces anechoic spots or black box regions which are undesirable for

B-mode imaging.

Conventionally, the despeckling techniques are applied to the ultrasound B-mode

images without considering the presence of clutter noise. Although the main priority of

despeckling is to smooth the speckle region in the B-mode image, the presence of clutter

noise especially in the cyst regions impacts the final result. Despeckling redistributes

clutter noise to larger regions. Thus, denoising the B-mode image with the new UM

method before despeckling showed improvement in segmentation. The balloon snake

active contour (BSAC) performed better in delineating the intended cyst region when

combining the new UM technique with DAS. Only 100 instead of 200 iterations are

needed for segmenting the cyst region when UM applied to reduce the clutter noise in

DAS.
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The intima-media thickness (IMT) is one of the most important indicators for de-

tecting cardiovascular deceases. This manual delineation process somehow is not the

best option since it is time consuming and dependent on individual experience. Semi-

automated IMT measurement methods gain the popularity for more reproducible mea-

surements. The BSAC segmentation method is one of the popular techniques used to

measure the IMT. Since clutter noise that is present in between intima-media layers

imposes restrictions for segmentation, reducing clutter noise first with the new UM

method before segmentation could fasten and improve the IMT measurement accuracy.

The time taken for the snake contour formation around the intima-media layer with

different iterations was less when the proposed UM denosing method was used. Both

UM-DAS and FDMAS techniques are able to provide better results with less time in

measuring the IMT compared to that using DAS. The differences in IMT measured be-

tween 100 to 200 iterations for DAS and UM-DAS were 21.2% and 0.19%, respectively.

The semi-automated BSAC also showed very similar results for IMT measurements

with manual delineation. The preliminary results show that improving the CR will

be beneficial for the segmentation process with BSAC. This can be the step stone

for further studies in detail with the proposed UM method to reduce clutter noise in

more medical applications using ultrasound imaging. The new proposed compounding

technique, FMAS is expected to produce narrower intima layers since its ability to

improve the axial resolution.
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