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1. Abstract 

 

This project built upon previous work with amino acid derivatives in the Clarke group. Originally, L-

valine nitrile 4 and L-proline nitrile 5 were investigated for the first time as catalysts for the aldol 

reaction of 4-nitrobenzaldehyde 1 and cyclohexanone 2 in an array of organic solvents. 

Interestingly, a new proline derivative 6 was synthesised and also investigated for the first time 

(Scheme 1). 

 

 

 

 

Scheme 1. Investigation of organocatalysed aldol reaction. 

 

Aminonitrile 4 afforded the aldol adducts with an interesting major syn diastereomer but the results 

in terms of conversion and enantioselectivity were discouraging. Aminonitrile 5 showed a better 

catalytic efficiency than 4 in terms of conversion, however, the enantioselectivity was moderate. 

Proline imidate 6 was investigated as an organocatalyst for the first time and promising results were 

gained. L-Proline imidate 6 was trialled in an array of organic solvents and different aldehydes and 

6 afforded the anti (major) aldol diastereomer in a good enantiomeric excess with up to 94% ee.  
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8. INTRODUCTION 

 

8.1 Organocatalysis 

 

Catalysis is an extremely useful area of organic chemistry and in particular, organic synthesis. The 

principle of catalysis is to increase the rate of a chemical reaction by the addition of a small quantity 

of a reagent - the catalyst – without being consumed itself. The catalyst works by forming a key 

intermediate between itself and one or more reactants, giving a lower activation barrier for 

reaction than the uncatalysed reaction, and consequently provides the reaction products faster. 

 

Organocatalysis is a significant and a highly dynamic area of organic chemistry. Impressively though, 

despite the importance and the recent research in the area, until recently the concept was not 

recognised.1,2 The term refers to a form of catalysis, whereby a chemical reaction is accelerated by 

the addition of an organic compound which is called the organocatalyst. However, increasing the 

rate of a chemical reaction is not the only desired outcome. When a total synthesis of a natural 

product or a synthetic route towards the synthesis of a potent pharmaceutical agent is attempted, 

there is an imperative need for selectivity and this is one of the most important factors that 

chemists need to control.3 The selectivity includes the diastereoselectivity, regioselectivity, 

chemoselectivity and most importantly enantioselectivity. Enantioselective synthesis or 

asymmetric synthesis is, as defined by the IUPAC, “the type of chemical reaction in which one or 

more stereogenic centres are being formed in a substrate molecule and which produces the 

enantiomeric or diastereoisomeric products in unequal amounts”.4 In the majority of the total 

synthesis of natural products projects, the asymmetric synthesis is the key and most challenging 

stage of the synthetic route, as it is the step which will provide the enantiopure product.  It was not 

until the late 1990s, that organocatalysis started to be acknowledged as an individual area, as many 

different groups demonstrated the ability of enantiomerically pure organic molecules to catalyse 

enantioselective reactions.5–10 It is now widely accepted that organocatalysis is one of the main 

branches of asymmetric synthesis, along with enzymatic catalysis and organometallic catalysis.11  

 

Organocatalysis offers fundamental advantages compared to organometallic catalysis, namely in 

the cost and ease of carrying out a reaction in the laboratory.11 First, a variety of organic 

compounds, such as amino acids, are naturally available from biological sources in enantiopure 

form. Therefore simple organocatalysts are easy to synthesise and can be accessed easily. Second, 

organic molecules are generally not air sensitive and in most cases no inert atmospheres or dry 
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solvents are required.  Third, small organic molecules are typically non-toxic and environmentally 

friendly, compared to transition metal catalysts.11 When an organocatalyst is chiral, an avenue is 

opened towards asymmetric synthesis. This is an exciting and promising field in organic synthesis. 

There is a need for new and effective chiral catalysts; catalysts that can undergo direct asymmetric 

reactions and control the formation of multiple stereogenic centres. Thus, the synthesis of 

enantiopure products or synthesis of complicated motifs is enabled and leads to the formation of 

synthetically and pharmacologically useful compounds. 

 

8.2 History of Organocatalysis 

 

The first use of an amine as an organocatalyst can be traced back to 1898 when Einhorn and co-

workers reported the use of pyridine 7 in acylation reactions.12 Einhorn reported that the acylation 

of alcohols can be catalysed by pyridine in acetic anhydride, a reaction that is known as the Einhorn 

acylation or Einhorn reaction.13 However, due to lack of evidence the underlying mechanism behind 

this reaction could not be established. It was not until the 1950’s that kinetic studies were made on 

this reaction which tried to explain the precise role of pyridine 7 in this reaction.14 Detailed research 

in this particular example over the following 10-20 years was finally able to provide a definitive 

answer for the role of the pyridine in the reaction (Scheme 2).15,16 The key acylpyridinium 

intermediate 8 was detected spectroscopically and this encouraged more people into researching 

amines as organocatalysts. 

 

 

 

 

Scheme 2. Proposed mechanism for the acylation of alcohols catalysed by pyridine. 

 

 

It actually needed more than 50 years to prove, through mechanistic studies and spectroscopic 

data, the exact mechanism and how amines catalyse the reaction. Regardless though, it did not 
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stop pioneers to attempt and use organocatalysts for asymmetric reactions. Vavon and Peignier in 

192917 were able to demonstrate the ability of the natural occurring amine, brucine 9 to introduce 

a chiral environment in the kinetic resolution of secondary alcohols (Scheme 3).  

 

 

 

Scheme 3. Brucine 9 as an organocatalyst in the kinetic resolution of secondary alcohols. 

 

Simultaneously, Wegler in 193018 used another natural occurring plant alkaloid, strychnine to 

induce enantioenrichement in the esterification of meso-dicarboxylic acids. These reactions were 

ground-breaking as it was the first demonstration of an asymmetric organocatalytic reaction. 

Moreover, they were a further indication that amines can in fact catalyse asymmetric reactions and 

they opened a new route for chemists. 

 

A note should be made for Wolfgang Langenbeck who in 1928 reported that amino acids or 

oligopeptides could catalyse organic reactions.19 His contribution to the field is considerable as he 

used amino acids or small peptides to promote reactions that emulate the catalytic action of 

enzymes. Langenbeck also coined the term “Organic Catalysts”.20 While at the time, there was no 

suggested evidence that these reactions occur via an enamine mechanism, it can be deduced that 

this work directed future synthetic chemists in the investigation of other amino acids or amino acid 

derivatives.  

 

Despite the interesting and promising results, organocatalysis did not really advance for another 40 

years. The next crucial breakthrough happened in 1971 when the groups of Eder, Sauer and 

Weichert and Hajos and Parrish independently reported that proline 10 could catalyse the direct 

asymmetric aldol reaction of the triketone 11 to form the ketol 12 and the enone 13 (Scheme 4).21,22 

This reaction is now known as the Hajos–Parrish–Eder–Sauer–Wiechert reaction, an 

enantioselective intramolecular aldol reaction. 



15 
 

 

 

 

Scheme 4. The Hajos-Parrish-Eder-Sauer-Weichert reaction. 

 

In this example, the utility of the naturally occurring amino acid, L-proline 10 was demonstrated to 

promote the intramolecular aldol reaction to afford the ketol 12 in an excellent 100% yield and an 

excellent 93% enantiomeric excess. Dehydration of 12 provided the enone 13 in a 99% yield and an 

88% optical purity. Moreover, this was the first reported example of proline being used in 

asymmetric synthesis, at ambient temperature and in catalytic quantities (3 mol%). At the time the 

underlying mechanism for this reaction was not yet established so Hajos and Parrish tried to provide 

a rational explanation on the mechanism. Initially, it was thought that the reaction was proceeding 

through an enamine intermediate, which would be expected based on previous suggested evidence 

(Scheme 5).23 

 

 

 

Scheme 5. Proposed enamine based mechanism for the Hajos-Parrish-Eder-Sauer-Weichert 
reaction. 
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It was postulated that the nucleophilic L-proline 10 attacks the carbonyl on the side chain in the 

triketone 11 to form the active enamine intermediate 14. Considering this possible reaction 

pathway, supporting data was sought to justify this theory using labelled 18O water and mass 

spectroscopic analyses. This mechanism was discounted as it was not possible to detect the 18O 

labelled installed in the optically active product 13, which was a pre-requisite of this mechanism 

due to the hydrolysis of the oxazolidinone ring 15. Being unsatisfied by this explanation, an 

alternative possible mechanism was proposed, in which proline attacks, in its zwitterionic form, one 

of the two carbonyls in the cyclopentanedione ring (Figure 1).  

 

 

 

 

 

Figure 1. Second proposed intermediate for the Hajos-Parrish-Eder-Sauer-Weichert reaction. 

 

It was illustrated that the second mechanism provides a satisfactory explanation for the excellent 

enantiomeric excess. In the proposed intermediate in the second reaction, the chiral centre of the 

catalyst is 3 bonds away from the methyl group and only 2 bonds away from the new stereocentre 

that is being formed in the product. Whereas, in the enamine intermediate these bond distances 

are 5 and 4 respectively. Furthermore, the oxygen in the side chain of the triketone 11 and the 

proton of the proline 10 provide the necessary hydrogen bonding in the intermediate to favour the 

correct conformation. Thus, the observed stereochemistry of the product is being justified. 

 

In doing this research and reporting this example Hajos and Parrish managed to provide a better 

understanding of the underlying chemistry in this relatively new area. Many different chiral 

auxiliaries were examined in the aldol reaction and the conclusion was that secondary amines or 

compounds with another functional group provide better results. The ability of compounds to 

facilitate the aldol reaction was attributed to the protons in their structure. It was understood that 

by involving a proton in the structure, the catalyst enables hydrogen bonding between itself and 

the substrate thus directing the addition selectively. 
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In spite of these intriguing results and the clear advantages of using small organic molecules as 

catalysts, the field of organocatalysis did not have a significant breakthrough until 2000. This saw 

two truly elegant and innovative publications that paved the way for the exponential growth of this 

field. The two papers were published almost simultaneously, one by Barbas III, Lerner and  List in 

the field of enamine catalysis,24,25 and the other one from MacMillan’s group, in iminium catalysis.26 

Barbas, Lerner and List are considered to be true pioneers in organocatalysis as their work was 

crucial in the enlightenment of the enamine mechanism for organocatalytic aldol reactions. The 

research highlights the reaction of acetone 16 with 4-nitrobenzaldehyde 1 using 30 mol% of L-

proline 10 in DMSO with a good 66% yield and a good 76% enantiomeric excess for the anti product. 

The reaction was proposed to proceed through the enamine intermediate 15 (Scheme 6). 

 

 

 

Scheme 6. Enamine mechanism for the direct asymmetric aldol reaction catalysed by L-proline. 

 

In this example, the dual functionality of proline is exemplified. It was presumed that the 

carboxylate group initiates each individual step of the mechanism. Initially, the nucleophilic 

nitrogen of the proline 10 attacks the ketone 16 to form the intermediate 17 and then the 

carboxylate group dehydrates the intermediate 17 to form the imine 18, a step which is followed 
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by enamine tautomerisation 19. The next step is the critical part of the mechanism as it is the step 

which directs the addition and provides the enantioselectivity. The nucleophilic enamine bond 

attacks the aldehyde 1, which is hydrogen bonded to the carboxylate group of 19 and leads to the 

carbon-carbon bond formation step 20. The enantioselectivity is being achieved by the tricyclic 

hydrogen bonded framework in the intermediate 20. Finally, the carboxylate group hydrolyses the 

iminium intermediate 21, to provide the aldol adduct 22 and the free catalyst 10 which can undergo 

the same catalytic cycle again.  

 

 

Table 1. Representative examples of the aldehydes used in the aldol reaction catalysed by 10. 

 

 

 

Aldehyde Yield  Product ee 

4-nitrobenzaldehyde 68% 76% 

benzaldehyde 62% 60% 

2-chlorobenzaldehyde 94% 69% 

 

Reaction conditions: Proline (0.03-0.04 mmol) was stirred in 1 mL of DMSO/ acetone (4:1) for 15 

minutes. The aldehyde (0.1 mmol) was added and the mixture was stirred for 4-24 hours. 

 

The similar results obtained demonstrated the utility of the proline catalyst in the direct asymmetric 

aldol reaction.  The importance of this paper is that it was the first example of a small organic 

molecule being used as a general catalyst. Proline is inexpensive and readily available in either 

enantiomeric form; therefore, it can be easily employed by synthetic chemists. The reaction 

required mild conditions: run at room temperature, without an inert atmosphere, and proline is 

non-toxic. Moreover, proline is water soluble and therefore can be easily removed with aqueous 

extractions. The authors envisaged that this enantioselective asymmetric aldol reaction using 

proline as organocatalyst was a novel reaction and could be further investigated by possibly 

employing new, modified organocatalysts. 

 

Contemporaneously, MacMillan was the first to report an enantioselective Diels-Alder reaction 

using chiral organocatalysts. It was thought that the reaction was more likely to be occurring via an 

iminium ion intermediate (Scheme 7).  
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Scheme 7. Diels-Alder cycloaddition catalysed by chiral secondary amines. 

 

It was hypothesised that the nucleophilic nitrogen of the enantiopure amine 23 would react with 

the carbonyl of the aldehyde (dienophile substrate) 24 and form the iminium 25. Iminium 25 would 

then be able to participate in a Diels-Alder cycloaddition with the appropriate diene 26 and form 

the cycloadduct iminium ion 27. Finally, upon hydrolysis, the enantiopure Diels-Alder product 28 

would be liberated and accordingly the catalyst 23 would engage again in the cycle. 

 

To test the hypothesis, MacMillan and co-workers tested various secondary amines as catalysts, 

primarily in the reaction of cyclopentadiene 26 with (E)-cinnamaldehyde 29 (Table 2). Using 

enantiopure S-proline ester (Table 2, Entry 1) endo 30 and exo 30 were obtained in a good 81% 

yield, with a 2.7:1 exo:endo diastereoselectivity and a moderate 48% enantiomeric excess for the 

exo product. S-abrine-methyl ester (Table 2, Entry 2), provided the Diels-Alder adducts in an 80% 

yield, with a 2.3:1 exo:endo diastereoselectivity and a moderate 59% enantiomeric excess for the 

exo product.  
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Table 2. Organocatalysed Diels-Alder reaction between (E)-cinnamaldehyde and cyclopentadiene. 

 

 

 

Entry Catalyst Time (h) Yield exo/endo exo eea 

1 S-proline ester 27 81% 2.7:1 48% 

2 S-abrine-methyl-ester 10 80% 2.3:1 59% 

3 26 8 99%  1.3:1 93% 

a) Product ratios determined by GLC analysis 

 

Importantly, it was observed that when the catalyst was modified with the introduction of steric 

constraints (Table 2, Entry 3), the results exceeded expectations. Specifically, catalyst 31 (Figure 2) 

afforded the Diels-Alder cycloadduct in an excellent 99% yield and a medium 1.3:1 exo:endo 

diastereoselectivity. Crucially, it flourished the product in an excellent 93% ee for the exo isomer. 

 

 

 

 

Figure 2. The chiral imidazolidinone catalyst 31 that provided the highest enantioenrichement. 

 

 

Building upon this result, the catalytic ability of the MacMillan’s catalyst 31 with other substrates 

was examined. The variation of the dienophile with more sterically demanding substituents or 

aromatic rings did not affect the enantioselectivity of the reaction (Table 3). Furthermore, the 

reaction was scaled to 50 mmol of starting material and afforded 12 g of the enantiopure product.   
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Table 3. Diels-Alder reaction between cyclopentadiene and representative dienophiles. 

 

  

 

Entry R Time (h) Yield exo/endo exo eea endo ee 

1 Me 16 75% 1:1 86% 90% 

2 i-Pr 14 92% 1:1 86% 90% 

3 Ph 21 99% 1.3:1 93% 93% 

a) Product ratios determined by GLC analysis 

 

Following the successful screening of various dienophiles, it was decided to test how different 

dienes would affect the reaction. It was shown that the reaction was tolerant of the dienes used 

(Table 4).  

 

Table 4. Diels-Alder reaction between acrolein and representative dienes. 

 

 

Entry Diene Product Yield exo/endo exo eea 

 

1 

 

 

 

 

 

 

82% 

 

1:14 

 

94% 

 

2 

 

 

 

 

 

84% 

 

- 

 

89% 

 

3 

 

 

 

 

 

90% 

 

- 

 

83% 

a) Product ratios determined by GLC analysis 
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It is important to note that in this case, similarly to the report of proline as an organocatalyst, the 

reactions were carried out without an inert atmosphere and using wet solvents. This highlighted 

one of the main advantages of organocatalysts.  

It is not a hyperbole to say that the two publications revolutionised the discipline of organic 

synthesis and practically established the field of organocatalysis. In 1995 there were no reports of 

an organocatalyst and before 2000, there were just a few publications using organocatalysts. This 

number increased exponentially since the publication of the examples of proline and MacMillan’s 

catalyst 26. In 2011 there were more than 1200 publications of organocatalysis, and in parallel, the 

number of citations increased to 40,000.27  

 

Compelled by those fascinating results, in 2002 MacMillan and co-workers reported the first 

enantioselective cross-aldol reaction of aldehydes using L-proline 10 as the promoter.28 This was a 

pivotal report as for the first time; ketones were not used as an aldol donor. In doing so, MacMillan 

and co-workers demonstrated that two aldehydes with different substituents could participate in 

the cross-aldol reaction in the presence of proline by effectively avoiding homodimerisation. 

 

The low price and the enantiopure availability of proline combined with the effectiveness it shown 

in the aldol reaction rendered it one of the most attractive molecules to study. In the 2000’s, many 

groups around the world turned their attention to proline and attempted to modify the compound 

in order to search for new potent chiral promoters. Although the use of the naturally occurring 

amino acids in the asymmetric synthesis was easier and preferable, sometimes their use can be 

restricted by factors like the formation of undesired side products or moderate selectivity.29 Such 

side products are covalent intermediates between the amino acid and the ketone substrate. In 2004 

List and co-workers were able to detect and characterise oxazolidinones that were formed in 

reversible equilibrium between simple ketones and S-proline.30 Therefore, to overcome such 

obstacles, synthetic chemists were trying to install simple and efficient modifications to amino acids 

in search for new and improved organocatalysts, based mainly on the principles of the enamine and 

iminium catalysis.11  

 

8.3 Amino Acid Derived Enamine Catalysis 

 

In 2001 Barbas and co-workers published a second report on the investigation of chiral amino acids 

as potent organocatalysts in the direct asymmetric aldol reaction.31 The publication was focused on 

the development of the organocatalysis. It was tried to see whether amino acids with distinctively 

different moieties could show a similar reactivity, by copying the exact same reaction conditions as 

before (Scheme 8). 
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                    catalysts: 

 

 

 

Scheme 8. Investigation of other amino acid derivatives in the asymmetric aldol reaction. 

 

It was discovered that N-methyl-L-valine 32 and L-prolinamide 33 afforded the aldol adducts in low 

yields (< 10% yield). Interpretation of these results brought a new light to the underlying enamine 

mechanism. It was concluded that in proline, the cyclic moiety was crucial to the reaction and the 

acidic proton of the carboxylate in the correct spatial proximity was essential for the reaction.  

 

When Barbas and co-workers explored the catalytic ability of 32 and 33, the standard aldol 

conditions were replicated i.e. 20 mol% of 32 or 33 in 4:1 DMSO/acetone (Table 1). It was shown 

that 32 and 33 could not effectively catalyse the reaction of acetone 16 with 4-nitrobenzaldehyde 

1 in DMSO. 

 

In 2004, Zhuo Tang et al investigated many modified proline derivatives in search for new novel 

organocatalysts.32 The initial thought was to replace the carboxylate group of proline with another 

functional group able to provide the necessary hydrogen bonding framework in the enamine 

intermediate. Understanding the importance of the acidic proton in the carboxylate group in 

proline it was decided to transform L-proline 10 to L-prolinamide 33 (Scheme 8).  

 

Bearing in mind Barbas’s report in 2001, it was decided to replicate the reaction conditions in 

Scheme 8 without a solvent. It was postulated whether the absence of an organic solvent was an 

essential variable for the reaction. Initially the reaction of 4-nitrobenzaldehyde 1 and acetone 16 

using 20 mol% of L-prolinamide 33 in no solvent was investigated (Scheme 9).  
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Scheme 9. Direct aldol reaction of 4-nitrobenzaldehyde with acetone using 20 mol% of L-
prolinamide at RT. 

 

The absence of an organic solvent was proved to be crucial for the reaction.  The anti aldol adduct 

22 was obtained in an 80% yield and a 30% ee. 

 

The prolinamide catalyst 33 works in a similar way to proline (Scheme 10).  

 

 

 

Scheme 10. Direct aldol reaction of 4-nitrobenzaldehyde with acetone catalysed by L-prolinamide 
via an enamine transition state. 

 

The nucleophilic nitrogen of the pyrrolidine structure attacks the electrophilic carbonyl of the 

ketone 16 and forms the active enamine intermediate 34. The transition state 35 explains the 

stereoselectivity as the proton of the amide group is directing the addition of the aldehyde from 

the top face. The formation of the hydrogen bonds between the proton of the amide, the nitrogen 

of the amine and the oxygen in the aldehyde provides the enantioenrichement in the reaction. 
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The enantioenrichement of this reaction was only 30% ee for the anti product; however, it was the 

first illustration of the L-prolinamide 33 as an organocatalyst in the direct aldol reaction. The 

successful outcome of the first aldol reaction prompted the researchers to try more modifications 

and test various secondary amides as catalysts. Initially, it was decided to install bulky substituents 

in the amide to try control the selectivity of the reaction.  Some of the catalysts employed are shown 

below (Figure 3). 

 

 

 

Figure 3. Secondary amides investigated in the aldol reaction of 4-nitrobenzaldehyde with 
acetone. 

 

Catalysts in Figure 3 showed a strong catalytic efficiency. Catalyst 36 afforded the aldol adducts in 

the lowest 55% yield and catalyst 40 provided the product in the highest 88% yield. However, the 

enantioselectivity was consistently moderate. Catalyst 41 afforded the aldol products in a 46% ee 

for the anti product; the highest enantiomeric excess among the catalysts screened. Interestingly, 

catalyst 38 produced the aldol adduct in a poor 18% ee for the anti product. The low 

enantioselectivity of compound 38 was attributed to the absence of a proton in the amide. Due to 

the lack of proton, 38 was not able to form hydrogen bonds in the transition state. Thus the low 

enantiomeric excess obtained was explained and simultaneously, the importance of the proton in 

amides was highlighted.  

 

Crucially, the importance of the acidic proton in the carboxylate group of the proline catalyst was 

further reinforced by this study. The authors attributed the poor enantioselectivity of the reactions 

to the very weak hydrogen bonding that is being formed between the proton of the amides and the 

aldehyde. 
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Based on the results, it was predicted that the installation of a terminal hydroxyl group in the amide 

could achieve a substantial increase in the selectivity of the reaction. The premise was that the 

terminal hydroxyl group could provide an extra source of hydrogen bonding thus improving the 

conversion and the enantioselectivity of the reaction. Representative examples of the catalysts 

employed are shown below in Figure 4. 

 

 

 

 

 

Figure 4. Secondary amides with a terminal hydroxyl group as organocatalysts. 

 

Satisfyingly, this hypothesis was proved correct. The hydroxyl prolinamide catalysts showed an 

increase in selectivity. Specifically, the yields were considerably higher ranging from 63-90% and 

concurrently an improved enantioenrichement was observed. The highest enantioselectivity was 

achieved using catalyst 44 and was 69% ee for the anti product. This promising result drew further 

attention on amide 44. Initially, the reaction was repeated at a lower temperature in an attempt to 

achieve greater enantioselectivity. Gratifyingly, the assumption was correct as when the reaction 

was carried out at -25 °C an excellent 93% ee for the anti product was observed albeit in a lower 

66% yield. Different aldehydes were trialled with the prolinamide catalyst 44 and consistently 

similar results were observed. This elegant work suggested further evidence on the importance of 

the carboxylate group of proline and the level of acidity in the proton of the hydroxyl group in the 

catalyst.  

 

The modification of proline became an interesting and challenging research area after 2000. Many 

groups around the world started introducing different R groups in the carboxylate of proline, always 

having the principle of the acidic proton in mind. In 2004 Torii et al reported an outstanding 

example of tetrazole 45 (Scheme 11), another proline derivative.  

 

Tetrazole 45 was used in catalytic quantities (5 mol%) as an organocatalyst to promote the direct 

aldol reaction of various ketones in a solution of chloral or chloral monohydrate in MeCN (Scheme 

11).33 



27 
 

 

 

 

Scheme 11. Direct aldol reaction of chloral or chloral monohydrate with various ketones in the 
presence of catalyst 45. 

 

Initially, the reaction was performed in the presence of chloral in MeCN and without an inert 

atmosphere. However, preliminary results were considerably poor (less than 1% conversion after 

60 hours of stirring). In contrast, upon the addition of water, the reaction rate was accelerated 

significantly with an 85% yield, an 80% de and an 84% ee after 50 h of stirring. Unexpectedly the 

major product of this reaction was the syn isomer. It was noticed that the increase in the amount 

of water in the reaction led to considerably improved results. When the amount of water was 

increased to 200 mol% and 500 mol% the enantioselectivity of the reaction was increased to 92% 

syn ee and 94% syn ee respectively albeit the diastereoselectivity was decreased to 67% and 52%. 

Similarly, when chloral was replaced with chloral monohydrate the reaction proceeded in the same 

efficiency affording the aldol product in an 83% yield and a 76% de and an 82% syn ee.  

 

In order to understand the mechanism of the reaction kinetic studies were performed. Kinetic 

studies suggested that water was crucial for the initiation and acceleration of the reaction. Initially, 

it was believed that water would affect the reaction by shifting the aldehyde-iminium ion 

equilibrium towards the aldehyde. Surprisingly, no imine peaks were detected in the 1H NMR 

spectrum during the reaction. Therefore, it was concluded that water, and the chloral monohydrate 

were critical for this catalysis.  

 

Further evidence for this hypothesis was that in presence of simple chloral and 45 no reaction took 

place. However, the syn selectivity of the catalyst could not be justified.  Catalyst 45 was later 

studied extensively and showed extraordinary reactivity with similar results in the Mannich and 

Michael reaction, proving the broad scope of the organocatalysts.34  

 

In 2004 Barbas and co-workers reported the first example of an amino alcohol (Scheme 12) being 

used as an organocatalyst in the catalytic  asymmetric aldol reaction.35 The reaction between 4-
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nitrobenzaldehyde 1 and fluoroacetone 46 mediated by prolinol 47 in DMSO was cited in this 

report.  

 

 

 

 

 

Scheme 12. Aldol reaction of 4-nitrobenzaldehyde and fluoroacetone catalysed by L-prolinol. 

 

The reason behind the choice of fluorine substituted ketone was the pharmacological activity of 

fluorine which was at the time being exploited by replacing hydroxy groups with fluorine atoms in 

drug molecules.35 Originally, the reaction was performed using L-proline 10, the amino acid with 

the most promising results based on previous studies. Surprisingly, the reactions were not effective, 

as the yields and enantioselectivities were considerably lower. Due to the unpredictable result of 

proline, attention was turned to other easily accessible molecules. Amino alcohol 47 was the 

catalyst with the best results. After employing the catalyst in a solution of 4-nitrobenzaldehyde 1 

and fluoroacetone 46 in DMSO at RT for two days, the fluoroaldol adduct 48 was obtained in a good 

82% yield. More importantly, the product was obtained in a 7:3 anti/syn diastereoselectivity and 

an excellent 94% regioselectivity. Moreover, the enantioselectivity for the major product (anti) was 

determined to be 84% ee. Gratifyingly, the results were reproduced with different aldehydes. The 

observed enantioselectivity can be justified with the enamine intermediate state which adopts the 

pseudo-chair conformation thus blocking the top face of the aldol addition (Figure 5). 

 

 

 

 

 

Figure 5. Proposed transition state of the L-prolinol catalysed aldol reaction. 
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In the next few years reports of organocatalytic asymmetric synthesis were multiplied. A field that 

was being overlooked for decades was now accepted and embraced collectively by all groups 

around the world. The community of synthetic chemists is unambiguously now recognizing the 

importance of organocatalysis and organocatalysts are now part of every synthetic chemist’s 

toolbox, as the field is currently experiencing its “golden age”.36 Comprehensive research has been 

made since 2000 on the ability of small organic molecules to catalyse other reactions than the aldol 

reaction. This proved to be another vital advantage of organocatalysts. Proline, proline’s derivatives 

or other simple and easily accessed organocatalysts have been reported to catalyse a scope of 

different reactions, including Mannich and  Michael reaction and oxygenations.37  

 

8.4 Aim of the project 

 

The Clarke group has an interest in the investigation of the Origins of Life. It is believed that life 

begun on Earth approximately 3.5 million years ago. This statement argues that the essential 

chemical molecules that define life must have been present and able to react at that time.  The 

group attempts to apply synthetic techniques to form compounds that are known to be the 

essential building blocks of life. In principle, the group is interested in investigating amino acid 

derivatives as organocatalysts, ideally, in the absence of organic solvents, thus reinforcing the 

plausible prebiotic conditions. In 2010 Clarke and co-workers reported that amino esters, 

derivatives of naturally occurring (L)-amino acids can catalyse the formation of erythrose 50 and 

threose 51 from TIPS-glycolaldehyde 49 under aqueous media in an impressive 80% yield and 79% 

ee (Scheme 13).38,39  
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Scheme 13. Enantioselective formation of erythrose and threose. 

 

Since the report of Clarke in 2010, the group has continued to investigate amino esters to utilise 

them as catalysts in the synthesis of more complex carbohydrates. In 2017, Clarke and co-workers 

reported the stereoselective synthesis of 2-deoxy-D-ribose 60 over its diastereoisomer 2-deoxy-D-

threopentose 61 by employing amino esters or aminonitriles as catalysts.40 In this paper, the ability 

of amino esters and aminonitriles to catalyse the reaction of acetaldehyde 58 and D-glyceraldehyde 

59 was highlighted. The product, 2-deoxy-D-ribose, was diastereoselectively formed under the 

reaction conditions (Scheme 14). 
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Scheme 14. Prebiotic formation of 2-deoxy-D-ribose using L-amino esters and L-amino nitriles as 
catalysts. 

 

The reasoning behind the choice of aminonitriles was two-fold. There is still debate about the 

prebiotic nature of amino esters. In order to address this argument, it was postulated to broaden 

the research into including more feasible promoters.  To do so, the attention was turned from 

amino esters to aminonitriles, precursors of amino acids as demonstrated in 2015 by the elegant 

work of Sutherland and co-workers.41 In this report Sutherland described a network, starting from 

HCN and ultimately leading to RNA. Concurrently, it was shown that aminonitriles, along with 

acetaldehyde 58, glycolaldehyde 49 and glyceraldehyde 59, are formed under prebiotic conditions. 

 

It was shown that aminonitriles can promote the enantioselective reaction of formaldehyde 62 and 

glycolaldehyde 49 to afford D-glyceraldehyde 59 with up to 6% ee (Scheme 15) and its subsequent 

conversion to 2-deoxy-D-ribose 60 under potentially prebiotic conditions. 
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Scheme 15. In situ formation of glyceraldehyde with 6% ee using L-valine nitrile as catalyst. 

 

The importance of this report was that aminonitriles are plausible prebiotic promoters and they 

were able to catalyse the aldol reaction to afford the 2-deoxy-D-ribose in a simple two-step 

synthesis. The reactions were performed in water or buffered solution thus mimicking the 

conditions proposed for the early Earth. Most importantly this was the first report in the literature 

of aminonitriles being used as organocatalysts.  However, since the aim of this project was to 

investigate the formation of 2-deoxy-D-ribose under potentially prebiotic conditions, no reactions 

were carried out in an organic solvent. Therefore, the general catalytic ability of aminonitriles was 

still unknown.  

 

The aminonitriles that were examined in this project are two amino acid derivatives. More 

specifically, L-valine nitrile 4 and L-proline nitrile 5 were investigated.  

 

Initially, it was decided to investigate a reaction that was known to proceed under mild conditions 

and was extensively examined in the past. Therefore, it was agreed to investigate the aldol reaction 

of 4-nitrobenzaldehyde 1 and cyclohexanone 2 using 10 mol% of catalyst and screen various organic 

solvents (Scheme 16). 

 

 

 

Scheme 16. Use of aminonitriles in aldol reaction in organic solvents. 
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9. Results and Discussion 

 

9.1 Synthesis of L-valine nitrile 

 

One of the advantages of organocatalysts is their ready availability and easy accessibility from the 

chiral pool. The Clarke group has previously  developed a concise and efficient 3-step synthetic 

route to access the desired aminonitriles from amino acids.40 The first task of the project was to 

synthesise the two potential catalysts for the investigation of their catalytic ability. The Cbz-

protected valine 63 was commercially available in an enantiopure form. The synthesis of the 

catalyst required the transformation of the protected amino acid 63 to the amide 64 (Scheme 17). 

 

 

 

 

Scheme 17. Concise 3-step synthesis of L-valine nitrile. 

 

Cbz-protected valine 63 was treated with Et3N and ethyl chloroformate to form the mixed 

anhydride. To this was added NH3 in MeOH to give the desired protected amide 64 in a good 87% 

yield, which did not require purification. The second step was the dehydration of the Cbz-L-valine 

amide 64 to the protected aminonitrile 65. This was achieved by treatment of the amide with 

trifluoroacetic anhydride (TFAA) which formed the Cbz-protected aminonitrile in a good 90% yield 

after purification by column chromatography. Finally, the aminonitrile was revealed by a 

hydrogenation of the Cbz-protecting group using Pearlman’s catalyst (Pd(OH)2 on carbon) under a 

hydrogen atmosphere. Due to the observed high volatility of the catalyst42 the aminonitrile could 

not be obtained through evaporation of the solvent. Alternatively, a solution of HCl in dioxane (4 

M) was added in order to form the HCl salt of the valine nitrile. The free amine was liberated by 

dissolving the salt in DCM and stirring over sodium bicarbonate before filtering. This generated the 
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target aminonitrile 4 in a high 91% yield. Throughout each step, the optical purities of the 

compounds were regularly measured and compared to the literature values to confirm that 

racemisation had not occurred (Table 5). The preparation of the catalyst was carried out on a gram 

scale.  

 

Table 5. Optical rotation values of compounds 64, 65 and 4, compared to literature values. 

 

Compound [α]D 
20  

(deg cm-3 g-1 dm-1) 

Literature [α]D
25 

(deg cm-3 g-1 dm-1)40  

Concentration  Literature 

Concentration 

64  +24.7 +25 1.0 g cm-3 in 

DMF 

1.0 g cm-3 in 

DMF 

65 -43.07 -37.3 1.0 g cm-3 in 

MeOH 

0.97 g cm-3 in 

MeOH 

4 -6.37 -8.3 1.0 g cm-3 in 

DCM 

0.83 g cm-3 in 

DCM 

 

Having the first catalyst ready, the screening of the first aldol reaction was ready to be attempted. 

 

Prior to the first catalysed aldol reaction, a control reaction was needed to be performed. An 

uncatalysed reaction between 4-nitrobenzaldehyde 1 and cyclohexanone 2, in DCM was carried out 

to ensure that no reaction took place without a catalyst. The control reaction was stirred for 24 

hours at room temperature with 1 equivalent of 4-nitrobenzaldehyde 1 (0.25 mmol), 5 equivalents 

of cyclohexanone 2 (1.25 mmol) in 1 mL of DCM (Scheme 18). Unsurprisingly, no product was 

formed. 

 

 

 

 

Scheme 18. Control reaction of 4-nitrobenzaldehyde and cyclohexanone in DCM. 
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9.2 Aldol reaction catalysed by L-valine nitrile 

 

The aldol reaction between 4-nitrobenzaldehyde 1 and cyclohexanone 2 in the presence of L-valine 

nitrile 4 in a range of organic solvents was investigated. The reactions were carried out using 1 

equivalent of 4-nitrobenzaldehyde (0.25 mmol), 5 equivalents of cyclohexanone (1.25 mmol) and 

0.1 equivalent of L-valine nitrile at a 0.25 M concentration, at room temperature (Scheme 19). Prior 

to every reaction, the HCl salt of the L-valine nitrile was cracked and the optical purity of the free 

amine 4 was measured to ensure the enantiopurity of the catalyst. The optical rotation values 

confirmed that no racemisation had occurred as they were consistent with the initial value. 

 

 

 

 

Scheme 19. Aldol reaction of 4-nitrobenzaldehyde with cyclohexanone using 10 mol% of L-valine 
nitrile in 1 mL of solvent in RT. 

 

The free enantiopure amine (10 mol%) was added to a stirring solution of the aldehyde and the 

ketone in the organic solvent. The reaction continued to be stirred at room temperature for 24 

hours. At 24 hours, the reaction was quenched with ammonium chloride and the organic solvent 

was removed in vacuo. The results are presented in Table 6. 
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Table 6. Screening of different solvents in the aldol reaction of 4-nitrobenzaldehyde and 
cyclohexanone using 10 mol% L-valine nitrile 4. 

 

Entry  Solvent Conversiona  dr (syn/anti)b 

1 DCM 11% 4.5:1 

2 DMF 6.5% 2.3:1 

3 Dioxane 8.5% 1.3:1 

4 DMSO N/A N/A 

5 THF 18% 3.8:1 

6 EtOAc 14% 25>1 

7 Toluene 13% 5.3:1 

8 Cyclohexane 5% 3.0:1 

9 Neat 16% 5.3:1 

 

Reaction conditions: 0.25 mmol of 4-nitrobenzaldehyde, 1.25 mmol of cyclohexanone, 0.025 mmol of L-

valine nitrile in 1 mL of solvent at room temperature, for 24 hours, a: The conversion of the reaction was 

determined by analysis of the 1H NMR spectrum of the crude reaction, b: diastereoselectivity was 

determined by analysis of the 1H NMR spectrum of the crude reaction mixture 

 

The conversion after 24 hours was found to be low in all cases. The reaction where DCM was 

screened (Table 6: Entry 1) afforded the aldol adducts in an 11% yield and moderate 

diastereoselectivity: syn/anti 4.5:1. Dioxane (Table 6: Entry 3) provided the aldol product with only 

8.5% conversion and with the least diastereoselectivity: syn/anti 1.3:1. The least favoured solvent 

for this catalyst was proved to be DMSO (Table 6: Entry 4), as after 24 hours of stirring no product 

was detected. Tetrahydrofuran, EtOAc, toluene and no solvent (Table 6: Entries 5, 6, 7 and 9) 

provided comparable yields: 18%, 14%, 13% and 16% respectively and the diastereoselectivity was 

at: syn/anti 3.8:1, 25>1, 5.3:1 and 5.3:1 respectively. It was concluded that since the conversion 

after one day was less than 20% in every case, it was not relevant to see what the enantiomeric 

excess of these reactions were. 

 

Despite the very low conversions, it was encouraging that in all the cases, the catalyst seemed to 

be syn selective. This result is uncommon amongst organocatalysts where anti is usually the major 

product.43–47 However, it was accepted that regardless the diastereoselectivity, the reaction was 

still not valuable as a conversion below 20% after 24 hours of stirring makes the catalyst inefficient 

when compared to other commercially available organocatalysts.  
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The syn selectivity of the catalyst was unexpected and we tried to elucidate why this was the case. 

Originally, it was considered that the reaction provides the anti diastereoisomer as the major 

product, then L-valine nitrile 4 acts as a base and deprotonates the hydroxyl group, initiating a retro 

aldol reaction which promotes the conversion of the major anti product into the syn product over 

time. 

 

To test this hypothesis the syn and anti diastereomers were isolated by flash column 

chromatography. The pure anti product was then submitted to a control reaction with 10 mol% of 

the L-valine nitrile in 1 mL of toluene. The solution was stirred for 24 hours. At 24 hours, a direct 

sample was taken from the reaction and was submitted for 1H NMR spectroscopy. The spectrum 

proved that no epimerisation had occurred after 24 hours of stirring (Scheme 20). Therefore, the 

hypothesis was discounted. 

 

 

 

Scheme 20. Control reaction with pure anti 3 and 10 mol% 4. 

 

This control experiment provided evidence that L-valine nitrile was forming the syn diastereoisomer 

as the major product of the reaction. Unfortunately, a satisfying explanation about the syn 

selectivity cannot be provided. An energy difference between the transition states of the two 

enamines could address the reason of the selectivity. However the diastereoselectivity was low in 

most cases and accordingly the energy difference between the transition states would be minimal. 

In order to provide a definitive answer computational studies need to be performed. 

 

Driven by the syn selectivity, it was decided to search for ways to optimise the results. The primary 

goal was to increase the conversion whilst maintaining the diastereoselectivity. There were two 

possible options to achieve the desired increase of conversion. One was to increase the catalyst 

loading and the other was to increase the temperature of the reaction. As a consequence of time 

constraints, it was not possible to try both options. Therefore, it was decided to try the reaction at 

increased temperatures.  
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Three reactions were run at a higher temperature in toluene. The first reaction was run at 40 °C, 

the second at 80 °C and the last under reflux. These reactions were carried out on an identical scale 

as the previous reactions, with all the variables being the same with the exception of the increased 

temperature. The free enantiopure amine (10 mol%) was added to a stirring solution of 1 equivalent 

of 4-nitrobenzaldehyde and 5 equivalents of cyclohexanone and the reaction was stirred for 24 

hours.  

 

The results of this approach are summarised in Table 7. 

 

Table 7. Aldol reaction of 4-nitrobenzaldehyde and cyclohexanone using 10 mol% of L-valine 
nitrile in 1 mL of toluene. 

 

Entry Temperature Conversiona  dr (syn/anti)b ee  (syn)c ee (anti) 

1 40 °C 25% 2.9:1 31% 13% 

2 80 °C 43% 2.3:1 19% 13% 

3 reflux 93% 1.2:1 racemic racemic 

 

Reaction conditions: 0.25 mmol of 4-nitrobenzaldehyde, 1.25 mmol of cyclohexanone, 0.025 mmol of L-

valine nitrile in 1 mL of toluene, for 24 hours, a: The conversion of the reaction was determined by analysis 

of the 1H NMR spectrum crude reaction, b: diastereoselectivity was determined by analysis of the 1H NMR 

spectrum of the crude reaction mixture, c: enantiomeric excess determined from HPLC using a chiralpak IB 

column 

 

The results showed a clear improvement on the conversion of the reaction. As the temperature 

increased, so did the conversion. However, the selectivity significantly decreased. The first reaction 

at 40 °C (Table 7: Entry 1), afforded the aldol products in a slightly improved 25% conversion, while 

the diastereoselectivity was sustained: syn/anti 2.9:1. The enantioselectivity was moderate for the 

major diastereoisomer: 31% syn ee. The reaction at 80 °C (Table 7: Entry 2), provided the aldol 

adducts in an improved 43% yield. However, it demonstrated a significant decrease in the selectivity 

of the reaction. The diastereoselectivity was diminished to 2.3:1 syn/anti and the enantiomeric 

excess was decreased to 19% for the syn diastereoisomer. The reaction run under reflux (Table 7: 

Entry 3) progressed to a near full conversion but essentially provided a 1:1 mixture of the two 

diastereoisomers, with no enantioenrichement at all.    

 

Table 7 showed that the main disadvantage of the increased temperature was the very low 

enantioenrichement. The reaction at 40 °C (Table 7: Entry 1), afforded the aldol product in a 31% 

syn ee, which was the highest achieved enantioselectivity. It was clear that the rise in the reaction 
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temperature did not maintain the enantioselectivity of the catalyst as when the reaction was run 

under reflux (Table 7: Entry 3) it provided a racemic product of the syn and anti diastereosomers. 

The decrease of the enantioselectivity was not unexpected. Enantiomeric excess decreases at 

elevated temperatures as the energy differences between transition states gets lower. 

 

The aldol reaction in Scheme 18 affords syn enantiomeric and anti enantiomeric aldol products. 

Therefore, determination of the enantiomeric excess required the use of chiral HPLC analyses. 

Chiral HPLC is a useful instrument which allows the separation of different stereoisomers and has 

wide application in analytical and synthetic chemistry.  

 

Determination of the enantiomeric excess was achieved with HPLC analyses by following a report 

from Rolando and co-workers in 2011.48 In this report the ability of L-proline 10 to catalyse the aldol 

reaction of 4-nitrobenzaldehyde 1 and cyclohexanone 2 in water in presence of ZnCl2 with up to 

96% ee for the anti product was demonstrated (Scheme 21).  

 

 

Scheme 21. Direct asymmetric aldol reaction of 4-nitrobenzaldehyde and cyclohexanone co-
catalysed by L-proline and ZnCl2. 

 

Rolando and co-workers postulated that the L-proline/ ZnCl2 complex was facilitating the aldol 

reaction via an enamine transition state (Figure 6). Zinc is forming the necessary hydrogen bonding 

in the transition state to provide the anti aldol adduct enantioselectively. 

 

 

 

Figure 6. L-Proline/ ZnCl2 transition state. 
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In the published paper the separation of the 4 stereoisomers, as a mixture of syn and anti, was 

reported using an HPLC with an IB chiral column in Hexane:IPA 97:3 and a 1 mL/min flow rate. The 

absolute configuration for the major syn and anti enantiomers was determined after the HPLC 

analysis of the crude reaction mixture (Figure 7). 

 

 

 

 

 

Figure 7. Absolute configuration for the major syn and anti enantiomers. 

 

The reported retention times by Rolando and co-workers in the literature for the syn and anti 

diastereomers are: syn diastereomers: minor tR= 23.6 min, major tR= 26.7 min; anti diastereomers: 

major tR= 28.8 min, minor tR= 34.8.48  Gratifyingly, following the same HPLC conditions i.e. 3% IPA 

in hexane with a 1 mL/min flow rate and using an IB chiral column, separation of the 4 aldol 

stereoisomers was achieved (Figure 8).  

 

 

 

 syn (minor) syn (major) anti (minor) anti (major) 

Retention times 27.258 min 29.521 min 34.751 min 43.296 

Area % 25.9318 47.8728 10.9580 14.2374 

 

Figure 8. Representative HPLC trace of the aldol reaction catalysed by 10 mol% L-valine nitrile 4. 

 

The conditions provided a clean separation of the 4 aldol stereoisomers. A shift between our 

retention times and the retention times reported in the literature48 was observed, possibly due to 

column properties or the difference in the temperature of the HPLC instrument, however, the 

relative times were consistent. 

syn diastereoisomers anti diastereoisomers 

major syn enantiomer major anti enantiomer 
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After the calculation of the enantiomeric excess (see Table 7) we wanted to determine if L-valine 

nitrile 4 was producing the same major stereoisomers as the literature report by Rolando and co-

workers. 

  

Interstingly, comparison of the retention times reported by Rolando and co-workers with the HPLC 

we obtained (Figure 8) showed that 4 was producing  the same major syn enantiomer and a 

different major anti enantiomer than the L-proline/ZnCl2 complex. 

 

Based on the absolute configuration for the major syn and anti enantiomers produced by 4, a 

reaction mechanism was suggested. The reaction is believed to occur via an enamine transition 

state. Scheme 22 shows the possible transition state for the two syn enantiomers of the reaction. 

 

 

 

 

 

Scheme 22. Possible enamine transition state for the formation of the syn enantiomers. 

 

Initially, L-valine nitrile 4 reacts with the cyclohexanone and forms the enamine intermediate. The 

bond rotation around the enamine leads to the enamine adding to the si-face of the aldehyde. The 

aldehyde approaches the enamine over the smaller group of the catalyst, the proton. In doing so 

enamine transition state 

         si-facial attack  

enamine transition state 

       re-facial attack  

major syn enantiomer  

minor syn enantiomer  

TS+ favoured leading 

 to major enantiomer 

TS+ disfavoured due to steric clash, 

leading to minor enantiomer 
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the steric restrictions are lower as the H-H interaction is minimal. The si-facial attack of the enamine 

provides an explanation for absolute configuration of the major syn enantiomer. The proposed 

enamine transition state also justifies the low enantiomeric excess obtained. The bond rotation 

around the enamine is quick as there are no restrictions to lock one conformation over the other 

and the enamine attacks re-facial the aldehyde to provide the minor syn enantiomer. 

 

The diastereoselectivity was relatively low in most reactions (See Table 6). The proposed enamine 

transition state for the 2 anti enantiomers is given on Scheme 23. 

 

 

 

 

 

 

 

 

Scheme 23. Possible enamine transition state for the formation of the anti enantiomers. 

 

Scheme 23 provides a possible explanation for the absolute configuration of the major anti 

enantiomer produced. The aldehyde primarily approaches the enamine on si-face. In doing so there 

are no steric restrictions as the H-H interactions are minimal. The low enantioselectivity observed 

enamine transition state 

         si-facial attack  

major anti enantiomer  

minor anti enantiomer  enamine transition state 

          re-facial attack  

TS+ favoured leading  

to major enantiomer 

TS+ disfavoured due to steric clash, 

leading to minor enantiomer 
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for the anti diastereomers can be justified by the bond rotation of the enamine. The bond rotation 

of the enamine leads also to a re-facial attack to the aldehyde. The bond of the enamine is rotating 

quickly and accordingly there is not a favoured conformation in the transition state.   

 

Study of the 1H NMR spectra of reactions in Table 6 and Table 7, suggested that a side reaction was 

also taking place (Figure 9).  

 

 

 

Figure 9. Representative 1H NMR of the aldol reaction catalysed by L-valine nitrile 4. 

 

The 1H NMR of the crude reaction mixture showed 7 different doublet peaks in the aromatic region. 

Two doublets were assigned to the remaining limiting reagent of the reaction (4-

nitrobenzaldehyde), two were assigned to the syn diastereoisomers and two to the anti 

diastereoisomers. However, there was one more doublet peak, at 8.58 ppm which was not product 

related. This peak was consistent in all reactions of tables 6 and 7. That prompted the consideration 

that a side reaction was occurring in the reaction. A peak at 8.58 ppm is a strong indication of an 

imine. It was hypothesised that L-valine nitrile was reacting with 4-nitrobenzaldehyde and was 

getting trapped as a catalytically unreactive imine (Scheme 24).  

 

Unknown peak 

syn product anti product 

4-nitrobenzaldehyde 
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Scheme 24. Possible side reaction between L-valine nitrile 4 and 4-nitrobenzaldehyde to provide 
an imine adduct. 

 

Furthermore, the 1H NMR spectra showed a double doublet peak at 4.66 ppm, which was consistent 

in all cases of Tables 6 and 7 (Figure 10). This peak was tentatively assigned as the vinyl proton of 

the cyclohexyl enamine.  

 

 

 

 

Possible doublet peak at 8.58 ppm 
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Figure 10. Expanded 1H NMR of the aldol reaction catalysed by L-valine nitrile 4. 

 

However, neither the imine 66 nor the cyclohexyl enamine were isolated therefore it cannot be 

confirmed that the protons at 8.58 and 4.66 ppm are due to the presence of them. 

 

Believing the formation of the imine 66 was retarding the process of the aldol reaction, it was 

decided to try and reverse the formation of the imine. For this purpose, the next reactions were 

carried with an additive to try and hydrolyse the imine back to the aldehyde. All other variables 

remained the same i.e. 4-nitrobenzaldehyde (0.25 mmol), cyclohexanone (1.25 mmol), L-valine 

nitrile (0.025 mmol) and toluene (1 mL) at room temperature. Three new reactions were 

performed, each one with a different acid as the additive. The results are summarised in Table 8. 

 

 

 

 

anti CH-OH proton 
Unknown peak 

 

syn CH-OH proton 
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Table 8. Aldol reaction of 4-nitrobenzaldehyde with cyclohexanone using 10 mol% of L-valine 
nitrile 4 and 10 mol % of additive in 1 mL of toluene at RT. 

 

 

 

Entry Additive Conversiona  dr (syn/anti)b ee (syn)c ee (anti) 

1 TFA 33% 2.9:1 20% 10% 

2 BZA 13% 1.4:1 23% 50% 

3 p-TsOH 5% 25>1 34% N/A 

 

Reaction conditions: 0.25 mmol of 4-nitrobenzaldehyde, 1.25 mmol of cyclohexanone, 0.025 mmol of L-

valine nitrile, 0.025 mmol of additive in 1 mL of toluene at room temperature for 24 hours, a: The 

conversion of the reaction was determined by analysis of the 1H NMR spectrum of the crude reaction 

mixture, b: diastereoselectivity was determined by analysis of the 1H NMR spectrum of the crude mixture, c: 

enantiomeric excess determined by HPLC analysis with a chiralpak IB column 

 

The addition of acid appeared to have altered the outcome of the aldol reaction. The addition of 

TFA (Table 8: Entry 1) improved the conversion of the reaction to 33% whilst the diastereoselectivity 

syn/anti was sustained to 3:1. Yet, the enantiomeric excess was still low: 20% ee for the syn product 

and 10% ee for the anti product. Benzoic acid (Table 8: Entry 2) afforded the anti product in an 

increased 50% ee. However, it did not provide any improvement in the conversion as it remained 

at the same levels as the non-acidic reactions: 13% and the diastereoselectivity dramatically 

decreased to syn/anti 1.4:1. Finally, when p-TsOH (Table 8: Entry 3) was used, the reaction 

proceeded poorly, with a 5% conversion after one day. However, only the syn product was detected 

by 1H NMR spectroscopy. Moreover, it afforded the syn diastereoisomer in a 34% ee, the best 

enantioselectivity achieved for the major product of the reaction. In addition, there was also the 

absence of the doublet peak at 8.58 ppm in the 1H NMR spectrum. 

 

It was assumed that the addition of water could shift the equilibrium between the imine and the 

amine thereby enabling the L-valine nitrile to act catalytically in the reaction. Therefore, water was 
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added to the reaction where p-TsOH was used as an additive and the reaction was run at 40 °C. The 

results of this approach are shown in Table 9. 

 

Table 9. Aldol reaction of 4-nitrobenzaldehyde with cyclohexanone using 10 mol% of L-valine 
nitrile 4 in 1 mL of toluene. 

 

Entry H2O Conversiona  dr (syn/anti)b Temperature Additivec 

1 0.25 mmol 6.5% 25>1 40 °C - 

2 1.25 mmol 4% 25>1 40 °C - 

3 0.25 mmol 4% 25>1 RT TsOH 

4 1.25 mmol 10% 25>1 RT TsOH 

 

Reaction conditions: 0.25 mmol of 4-nitrobenzaldehyde, 1.25 mmol of cyclohexanone, 0.025 mmol of L-

valine nitrile, in 1 mL of toluene at room temperature for 24 hours a: The conversion of the reaction was 

determined by analysis of the 1H NMR spectrum of the crude reaction mixture, b: diastereoselectivity was 

determined by analysis of the 1H NMR spectrum of the reaction mixture, c: 0.025 mmol of TsOH was used 

 

 

It was disappointing to see that the addition of water did not increase the conversion of the 

reactions. However, the syn selectivity of the L-valine nitrile was intriguing. Thus, it was decided to 

try and modify the aminonitrile in an attempt to synthesise a more effective catalyst. 

 

9.3 Synthesis and investigation of N-methyl-L-valine nitrile 

 

The initial idea was to replace one of the amine’s protons with another R group. The simplest R 

group that could be induced into the molecule was a methyl group. It was envisaged that by 

transforming 4 into a secondary amine the formation of the imine would be less favoured. 

 

Laurence Burroughs, a previous PhD student in the Clarke group, worked with amino esters and 

had achieved the N-methylation of N-Boc-L-leucine ethyl ester 67 using KHMDS at -78 °C and 

iodomethane in a 72% yield (Scheme 25).49 
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Scheme 25. Methylation of N-Boc-L-leucine ethyl ester. 

 

 

The synthesis of the new compound, N-methyl-L-valine nitrile 70 was achieved following Laurence 

Burroughs’s conditions (Scheme 26). 

 

 

 

Scheme 26. Synthesis of N-methyl-L-valine nitrile 70. 

 

Cbz-protected aminonitrile 65 was alkylated with iodomethane to give Cbz-N-methyl-L-valine nitrile 

69, which was isolated in a moderate 53% yield after flash column chromatography. The free amine 

could be obtained through a similar procedure to the Cbz deprotection of the L-valine nitrile 4. 

Pearlman’s catalyst was employed in EtOAc under a H2 atmosphere to remove the Cbz-protecting 

group from 69. After the successful removal of the Cbz-group, as judged by TLC, HCl in dioxane (4 

M) was added to form the salt of the amine. The HCl salt of the amine 70 was obtained in an 

excellent 99% yield. The free amine 70 was liberated by dissolving the HCl salt in DCM and stirring 

over sodium bicarbonate before filtering and concentrating in vacuo in an excellent 99% yield.  

 

Having installed the methyl group and having successfully removed the Cbz-protection group the 

catalytic efficiency of the aminonitrile catalyst 70 could be probed. The catalyst’s activity was 
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examined under the standard aldol conditions and in an array of solvents that were trialled with 

the previous catalyst. The free amine 70 (10 mol%), was dissolved in an organic solvent and was 

added to a stirring solution of 4-nitrobenzaldehyde (0.25 mmol) and cyclohexanone (1.25 mmol). 

The solution was continued to be stirred for a further 24 hours at room temperature. Contrary to 

expectations, no product was detected in any of the reactions trialled.  

 

Due to time constraints, the in-depth investigation of the compound’s inability to catalyse the aldol 

reaction was not possible.  

 

9.4 Synthesis of L-proline nitrile 

 

With our disappointing results with L-valine nitrile, we decided to investigate L-proline nitrile. The 

initial strategy for the synthesis of the L-proline nitrile 5 was to replicate the synthetic route 

described for the L-valine nitrile 4 (Scheme 27).  

 

 

 

 

 

Scheme 27. First attempt to synthesise L-proline nitrile 5. 

 

Cbz-protected proline 71 was commercially available in an enantiopure form and the synthesis 

began by converting the protected amino acid 71 to the amide 72. The transformation was achieved 

by addition of Et3N and ethyl chloroformate to form the mixed anhydride which was treated with 

NH3 in MeOH. The Cbz-protected amide 72 was obtained in a moderate 56% yield without 

purification. The next step was the dehydration of the Cbz-amide 72 to the Cbz-aminonitrile 73 

which was achieved by addition of TFAA and provided the Cbz-aminonitrile 73 in a 65% yield after 

purification with flash column chromatography. The final deprotection of the Cbz-group was 
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challenging. Originally, the hydrogenation was attempted by reproducing the conditions for the 

deprotection of the L-valine nitrile 4. The Pearlman’s catalyst in EtOAc was not able to remove the 

Cbz-group as after two days of stirring the Cbz group was still intact. Next, hydrogenation of the 

protected aminonitrile 73 was tried in a variety of different solvents (MeOH, acetone, AcOH, EtOH) 

but either the deprotection did not occur or the Cbz-group was removed but the product 

decomposed. The hydrogenation catalyst was then changed to palladium on carbon in EtOAc, but 

this still did not provide the free amine, as the Cbz-group was not removed. Palladium on carbon 

was used with all the previous solvents but once again the deprotected aminonitrile was not 

formed. 

 

Alternative methods for Cbz-removal were then investigated. Catalytic transfer hydrogenolysis was 

attempted using formic acid and palladium on carbon, a procedure previously reported to remove 

the Cbz-protection group from various amino acids and peptides.50 The reaction was monitored by 

TLC and was deemed complete after 4 hours. However, in the crude 1H NMR spectrum, only starting 

material could be detected with no removal of the Cbz-protection group.  

 

Due to the inability to remove the Cbz-group, an alternative route was investigated. It was decided 

to proceed through the commercially available Boc-L-proline 74 (Scheme 28) 

 

 

 

 

Scheme 28. Synthetic route for the access of L-proline nitrile 5.  
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The synthetic route was reminiscent to the strategy followed for the synthesis of the valine catalyst. 

Enantiopure Boc-L-proline 74 was subjected to the amidation reaction using Et3N and ethyl 

chloroformate to form the mixed anhydride, followed by addition of NH3 in MeOH. Boc-L-

Prolinamide 75 was obtained in a high 85% yield and without further purification. The conversion 

of the Boc-protected amide 75 to the protected aminonitrile 76 was possible using TFAA, which 

afforded the Boc-L-proline nitrile 76 in a high 89% yield after purification by column 

chromatography. It should be noted that dry ampules of TFAA were required to achieve high yields 

of reaction. Older bottles of TFAA contain TFA, which arises from TFAA decomposition, and 

consequently lowers the reaction yield. The valine catalyst was less sensitive to the condition of the 

TFAA as this problem did not occur in the synthesis of L-valine nitrile 4. The final deprotection of 

the Boc-L-proline nitrile 76 was again challenging.  

 

Initially, 25 equivalents of TFA at 0 °C were added to a solution of the Boc-L-proline nitrile 76 in dry 

DCM, a common deprotection method for the Boc group.51 Unexpectedly though, the reaction was 

not clean as the 1H NMR of the crude material showed extra peaks and the mass spectrometry 

analysis found another compound with a different mono isotopic mass. 

 

Seeing this unexpected outcome, the reaction was carefully monitored by TLC. Upon consumption 

of the starting material, TFA was concentrated in vacuo. This provided the catalyst as the pure TFA 

salt of the aminonitrile 5 in an excellent 93% yield after further purification with trituration using 

Et2O. The TFA salt was washed with aqueous saturated sodium bicarbonate and was extracted with 

DCM in an effort to gain the free aminonitrile. However, no product was obtained following this 

technique, probably due to the compound’s solubility in water. Ultimately, aminonitrile 5 was 

obtained by dissolving in DCM and stirring over sodium bicarbonate, before filtering and 

concentrating in vacuo in a 63% yield. As with the valine catalyst, the optical rotation values of the 

compounds were repeatedly measured upon obtaining and before using in the next step (Table 10).  

 

 

 

 

 

 

Table 10. Optical rotation values of compounds 75, 76 and 5 compared to literature values. 
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Compound [α]D 
20  

(deg cm-3 g-1 dm-1) 

Literature [α]D
25 

(deg cm-3 g-1 dm-1)  

Concentration  Literature 

Concentration 

75 -44.7 -42.452 1.0 g cm-3 in 

MeOH 

1.0 g cm-3 in 

MeOH 

76 -91.15 -95.552 1.3 g cm-3 in 

MeOH 

1.3 g cm-3 in 

MeOH 

5 -11.6 -16.740 1.0 g cm-3 in 

MeOH 

0.83 g cm-3 in 

MeOH 

 

 

9.5 Aldol reaction catalysed by L-proline nitrile 

 

With L-proline nitrile 5 in hand, the catalytic ability was then probed in the aldol reaction. The TFA 

salt of the L-proline nitrile was cracked and DCM was evaporated to gain the free amine. However, 

due to compound’s high volatility, a substantial amount of the catalyst was lost upon concertation 

in vacuo. To avoid this, it was considered employing the catalyst as the TFA salt of the amine 5 and 

cracking it in situ with solid sodium bicarbonate.  

 

Prior to performing the aldol reaction catalysed by the TFA salt of L-proline nitrile 5, a control 

reaction with 4-nitrobenzaldehyde and cyclohexanone in an organic solvent and in the presence of 

solid sodium bicarbonate needed to be run (Scheme 29). 

 

 

 

Scheme 29. Control reaction of 4-nitrobenzaldehyde and cyclohexanone in presence of solid 
sodium bicarbonate. 

 

The control reaction proved that no reaction takes place in absence of the catalyst. Having showed 

that sodium bicarbonate does not affect the reaction progress, the catalytic ability of 5 was ready 

to be investigated. The scale of the reaction was maintained the same; 0.025 mmol of L-proline 

nitrile TFA salt dissolved in 1 mL of organic solvent were added to 1.25 mmol of cyclohexanone, 
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0.25 mmol of 4-nitrobenzaldehyde and 0.025 mmol of solid sodium bicarbonate were added to the 

solution and it was stirred for 24 hours at room temperature. The results are shown in Table 11. 

 

Table 11. Aldol reaction of 4-nitrobenzaldehyde with cyclohexanone using 10 mol% of L-proline 
nitrile TFA salt 5 and 0.025 mmol of solid sodium bicarbonate in 1 mL of solvent at RT. 

 

 

 

Entry Solvent Conversiona  dr (anti/syn)b ee (anti)c ee (syn) 

1 DCM 43% 4.0:1 13% 11% 

2 DMF 6.5% 2.5:1 20% 18% 

3 Dioxane 55% 4.8:1 11% 11% 

4 MeCN 11% 2.9:1 20% 20% 

5 DMSO 3% 1.7:1 N/A N/A 

6 THF 39% 3.9:1 40% 12% 

7 EtOAc 51% 3.9:1 23% 15% 

8 Toluene 75% 4.8:1 20% 6% 

9 Cyclohexane 75% 4.0:1 13% racemic 

 

Reaction conditions: 0.25 mmol of 4-nitrobenzaldehyde, 1.25 mmol of cyclohexanone, 0.025 mmol of L-

proline nitrile, 0.025 mmol of solid sodium bicarbonate in 1 mL of solvent, at room temperature for 24 

hours, a: The conversion of the reaction was determined by analysis of the 1H NMR of the crude reaction 

mixture, b: diastereoselectivity was determined by analysis of the 1H NMR at the crude, c: enantiomeric 

excess determined by HPLC using chiralpak IB column 

 

Table 11 shows that in general, L-proline nitrile 5 is a more effective catalyst than L-valine nitrile 4 

in the aldol reaction. The yields were significantly higher with the highest reported with toluene 

and cyclohexane (Table 11: Entry 8 and Entry 9), 75% respectively. Dichloromethane, dioxane, THF 

and EtOAc (Table 11: Entry 1, Entry 3, Entry 6 and Entry 7) afforded the aldol adduct in similar yields 

ranging from 39-55% while DMF, MeCN and DMSO (Table 11: Entry 2, Entry 3 and Entry 5) provided 

less than 11% conversion. The diastereoselectivity was consistently moderate amongst the solvents 

that favoured the reaction i.e. DCM: anti/syn 4.0:1, dioxane: anti/syn 4.8:1, THF: anti/syn 3.9:1, 
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EtOAc: anti/syn 3.9:1, toluene: anti/syn 4.8:1 and cyclohexane: anti/syn 4.0:1. In contrast to the 

valine catalyst, this time anti was consistently the major product. 

 

The enantiomeric excess was determined by HPLC using a chiralpak IB column. The eluent was 3% 

IPA in hexane with a 1 mL/min flow rate. The enantioselectivity of the reactions however was still 

low averaging at 20% ee for the anti product (DMF, MeCN, EtOAc and toluene). The highest ee for 

the anti product was obtained when THF was screened (40% ee).  

 

A representative HPLC trace is shown in Figure 11. 

 

 

 

 syn (minor) syn (major) anti (major) anti (minor) 

Retention Times 27.715 min 29.994 min 34.642 min 42.970 min 

Area % 7.5680  8.4527 50.4377 33.5417 

 

Figure 11. Representative HPLC analysis of the aldol reaction catalysed by L-proline TFA salt 5. 

 

Comparison of Figures 8 and 11 showed that that L-proline nitrile 5 TFA salt produced the same 

major syn enantiomer but a different anti major enantiomer in comparison to L-valine nitrile 4 

(Figure 12). 

 

 

 

 

syn diastereoisomers 
anti diastereoisomers 

major syn and anti enantiomer obtained with L-valine nitrile 4 

major syn and anti enantiomer obtained with L-proline nitrile 5 ● TFA salt 
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Figure 12. Major enantiomers in the aldol reaction catalysed by 4 and 5. 

 

 

At this moment, a satisfying explanation for this observation cannot be rationalised. This is an 

interesting outcome and further investigation needs to be executed to determine the reason for 

this selectivity. 

 

Based on the absolute configuration of the major syn and anti enantiomer, the following enamine 

transition state was proposed as the most feasible reaction mechanism (Scheme 30). The absolute 

configuration for the major anti enantiomer in Scheme 30 was determined by the HPLC trace in 

Figure 11. The aldehyde approaches the enamine over the smallest substituent of the catalyst, the 

proton, as the H-H steric restrictions are minimal. The enamine attacks the aldehyde re-facial 

leading to the major anti enantiomer. The bond rotation around the enamine leads to low 

enantioselectivity. The enamine still attacks the aldehyde si-facial to provide the minor anti 

enantiomer. The conformation of the enamine transition state is tighter than the L-valine nitrile 

enamine (Scheme 22 and 23) and so an increase in the ee is observed. 

 

 

 

enamine transition state 

          si-facial attack 

minor anti enantiomer 

enamine transition state 

       re-facial attack 

major anti enantiomer 

TS+ favoured leading 

 to major enantiomer 

TS+ disfavoured due to steric clash, 

leading to minor enantiomer 
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Scheme 30. Proposed enamine transition state for the formation of the anti diastereomers 

catalysed by L-proline nitrile 5. 

 

The major syn enantiomer was consistently the same as when the reaction was catalysed by L-valine 

nitrile 4. The enamine transition state for this selectivity is presumably the same as the L-valine 

nitrile transition state (see Scheme 22). Scheme 31 provides a possible transition state for the L-

proline nitrile 5 enamine transition state. The aldehyde again approaches the enamine over the 

smallest substituent of the catalyst. In doing so the H-H interaction is minimal, leading to a si-facial 

attack of the enamine and the absolute configuration for the major syn enantiomer is explained. 

 

 

 

 

 

Scheme 31. Proposed enamine transition state for the formation of the syn diastereomers 
catalysed by L-proline nitrile 5. 

 

 

enamine transition state  

          si-facial attack 

enamine transition state 

         re-facial attack 

major syn enatiomer 

minor syn enantiomer  

TS+ disfavoured due to steric clash, 

leading to minor enantiomer 

TS+ favoured leading 

 to major enantiomer 
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Interestingly, when it was attempted to synthesise fresh catalyst for further investigation, the 

removal of the Boc-protecting group could not be repeated. The reaction was attempted following 

the same procedure as before. Boc-L-Proline nitrile 76 was dissolved under a nitrogen atmosphere 

in dry DCM. To the solution, 25 equivalents of TFA were added. Upon consumption of the starting 

material, as monitored by TLC, TFA was removed and the product was submitted for 1H NMR 

analysis. However, the crude 1H NMR spectrum was showing peaks unrelated to the proline nitrile. 

The removal of the Boc-protecting group was capricious and a side product was formed to varying 

degrees. The following Figure 13 is a representative 1H NMR of this reaction. 

 

 

 

Figure 13. A representative 1H NMR of the deprotection of Boc-L-proline nitrile using TFA in DCM 
at 0 °C. 

 

The triplet peak at 4.66 ppm is the proton of carbon-2 of L-proline nitrile. However there is an extra 

double doublet peak at 4.11 ppm which integrates as 0.65 and is not a signal that can be assigned 

to the L-proline nitrile. Furthermore, there is a singlet peak at 1.36 ppm that integrates as 5.72.  The 

singlet at 1.35 ppm was originally theorised to be t-BuOH as this is the reported chemical shift for 

this in the literature.53 Despite prolonged periods on the rotatory evaporator the peak at 1.36 did 

not decrease. To understand these two peaks, further data was acquired. The mass spectroscopy 

spectrum of the reaction is shown below (Figure 14). 

 

H-2 

Unknown peak 

Unknown peak 
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Figure 14. Mass spectrometry analysis of the deprotection of Boc-L-proline nitrile using TFA in 
DCM at 0 °C. 

  

The mass spectrometry analysis suggested that L-proline nitrile had been formed in the reaction, 

however, there was unquestionably another side product formed with a mono isotopic mass of 

170.1494. This number matches the mono isotopic mass of proline imidate 6 (Figure 15). 

 

 

 

 

Figure 15. Proline imidate with a 170.1419 mono isotopic mass. 

 

 

 

 

 

 

 

 

 

 

L-proline nitrile Unknown mono isotopic mass 
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9.6 Synthesis of the L-proline imidate 

 

It was hypothesised that the formation of the L-proline imidate 6 was subject to the condition of 

the TFA solution employed. A potential mechanism for the side formation of L-proline imidate 6 is 

given in Scheme 32.  

 

 

 

 

Scheme 32. Proposed mechanism for the in situ formation of t-butanol and its subsequent 
reaction with L-proline nitrile TFA salt. 

 

 

If TFA was wet, water could initiate a further reaction after the removal of the Boc-protecting group 

and the formation of the TFA salt of proline nitrile.  One of the by-products of the TFA deprotection 

is the t-butyl cation 77. Supposing water is present in the reaction, the oxygen of the water can 

attack the t-butyl cation to form in situ t-BuOH 78. The nucleophilic oxygen of the t-BuOH 78 can 

subsequently attack the carbon of the nitrile and form the C=N bond that ultimately leads to the 

TFA salt of proline imidate 6. 

 



60 
 

It was observed that leaving the reaction for an extended period of time favoured the formation of 

the proline imidate 6 over the aminonitrile 5. Stirring the reaction under the same conditions for 

48 hours provided the proline imidate 6 as the only product of the reaction. The product was 

obtained clean, in a moderate 56% yield as the TFA salt of proline imidate, after trituration with hot 

isopropyl ether. Having formed a new potentially catalytic compound, it was decided to test it as a 

catalyst in the aldol reaction of 4-nitrobenzaldehyde 1 with cyclohexanone 2. The reactions were 

carried out following the same procedure: 0.025 mmol of the TFA salt of proline imidate 6 were 

dissolved in the organic solvent and were added to 1.25 mmol of cyclohexanone. To the solution, 

0.25 mmol 4-nitrobenzaldehyde and 0.025 mmol of solid sodium bicarbonate were added and the 

reaction was stirred for 24 hours at room temperature. Initially, the compound’s catalytic ability 

was tested in toluene and DCM. Table 12 shows these results. 

 

Table 12. Summarised results of aldol reaction using L-proline imidate TFA salt 6. 

 

 

 

Entry Solvent Conversiona dr (anti/syn)b ee (anti)c ee (syn)  

1 Toluene 85% 4.6:1 58% 27% 

2 DCM 61% 5.6:1 69% 45% 

 

Reaction conditions: 0.25 mmol of 4-nitrobenzaldehyde, 1.25 mmol of cyclohexanone, 0.025 mmol of 

proline imidate, 0.025 mmol of solid sodium bicarbonate in 1 mL of solvent, at room temperature, for 24 

hours a: The conversion of the reaction was determined by analysis of the 1H NMR spectrum of the crude 

reaction mixture, b: diastereoselectivity was determined by analysis of the 1H NMR spectrum at the crude, 

c: enantiomeric excess determined by HPLC using chiralpak IB column 

 

Preliminary results with proline imidate 6 exceeded expectations. The diastereoselectivity was 

slightly higher than when L-proline nitrile was used. Toluene (Table 15: Entry 1) afforded the aldol 

adducts effectively with the same diastereoselectivity: anti/syn 4.6:1 and DCM (Table 15: entry 2) 

provided the aldol adducts in the best selectivity: anti/syn 5.7:1. Impressively though, the 

conversions of these two reactions were significantly higher with toluene reaching 85% yield after 
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24 hours of stirring. Similarly, the enantioenrichement was the highest yet achieved and crucially 

for the major product. Toluene provided the anti product in a 58% ee while DCM afforded the anti 

aldol adduct in a 69% ee. 

 

 

Figure 16 is the HPLC trace of entry 2 (Table 12). 

 

 

 

 syn (minor) syn (major) anti (major) anti (minor) 

Retention times 28.131 30.202 34.837 43.161 

Area % 6.9081 18.2689 63.2065 11.6165 

 

Figure 16. Representative HPLC analysis of the aldol reaction catalysed by L-proline imidate TFA 
salt 6. 

 

The HPLC trace in Figure 16 shows that L-proline imidate 6 produces the same major enantiomers 

as L-proline nitrile 5.  

 

The catalyst was presumed to facilitate the reaction via an enamine mechanism (Figure 17). 

 

 

 

Figure 17. Proposed enamine transition state for the aldol reaction catalysed by L-proline imidate. 

 

A plausible mechanism is the adoption of the pseudo-chair transition state similarly to examples of 

proline organocatalysis.24,54 The increased enantioselectivity obtained with proline imidate 6 

syn diastereoisomers 
anti diastereoisomers 
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compared to the aminonitriles can be attributed to the possible hydrogen bonding framework that 

is being formed between the oxygen of the aldehyde and the hydrogen of the proline imidate.  

 

A literature search was carried out to see how proline imidate 6 was synthesised. There was only 

one report of this molecule where it was obtained by treating Boc-L-proline nitrile 76 with neat TFA 

(Scheme 33).55  

 

 

 

 

Scheme 33. Literature report for the synthesis of proline imidate. 

 

 

However, this report exclusively formed the proline imidate for further use in another reaction, 

therefore the molecule was not purified and characterised. Attempts to reproduce the reported 

procedure failed as they provided a mixture of L-proline nitrile 5 and L-proline imidate 6. Thus, it 

was concluded that a novel, robust procedure for the synthesis of proline imidate 6 was required. 

 

 

 A series of control experiment were conducted, and the results are shown in Table 13: 
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Table 13. Control experiments to determine a procedure for the formation of the proline imidate 
6. 

 

Entry Solvent TFA equivalents Time (h) Temperature Product 

(ratio) 

1 DCM 25 24 0 °C to RT 6 

2 DCM 25 1.5 0 °C 5 

3 DCM 40 24 0 °C to RT 5:6 

(1.50:1) 

4 DCM 40 1.5 0 °C 5 

5 Neat 25 24 0 °C to RT 5:6 

(1:3.50) 

6 Neat 25 1.5 0 °C 5 

7 Neat 40 24 0 °C to RT 6 

8 Neat 40 1.5 0 °C 5:6 

(6.80:1) 

 

The amount of TFA was being switched between 25 and 40 equivalents. The premise for this shift 

was that a higher amount of TFA could potentially accelerate the removal of the Boc-group and in 

doing so could favour the formation of the L-proline nitrile over the L-proline imidate in shorter 

reaction periods. Reactions were run for 1.5 hours and 24 hours to determine the difference of time 

in the reaction. The time of 1.5 hours was opted as this was the time 25 equivalents of TFA needed 

to successfully remove the Boc-protecting group from the Boc-L-proline nitrile 76. The literature 

precedent for the formation of the proline imidate reported the reaction in absence of organic 

solvent. Therefore, every reaction was carried out in dry DCM and in neat TFA to determine whether 

the solvent or the concentration of the reaction would favour the formation of one product over 

the other. The reactions that were run for 1.5 hours were carried out at 0 °C. The reactions that 

were left stirring for 24 hours, were initially run at 0 °C and allowed to warm at room temperature 

after 1.5 hours. 

 

Table 13 shows that the formation of the product was not affected by the solvent as entries 1 and 

5, 2 and 6, 4 and 8 afforded essentially the same product. The absence or not of solvent and the 

equivalents of TFA used, did not affect crucially the product of the reaction.  

 

The dominating factor for the outcome of the reaction proved to be the duration of the reaction. 

Reactions that were left for 1.5 hours (entries 2, 4, 6, 8) provided either pure L-proline nitrile 5 or a 
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mixture where L-proline nitrile 5 vastly predominated. Conversely, reactions that were run for 24 

hours (entries 1 and 7) afforded the L-proline imidate 6 as the only product, and entry 5 provided a 

mixture of the two compounds in favour of the L-proline imidate 6. For unspecified reasons, entry 

3 provided a mixture with a ratio of 1.50:1 in favour of the L-proline nitrile 5.  

 

It was thus suggested, that prolonged reaction times favour the formation of the L-proline imidate 

6 over the L-proline nitrile 5. Therefore, it was required to find a procedure which would 

consistently afford the proline imidate 6 and not a mixture of products. Originally, it was considered 

allowing the reaction to stir for 48 hours. However, it was believed that a more direct approach was 

feasible. Considering water was facilitating the in situ formation of t-BuOH, it was hypothesised that 

either addition of water or t-BuOH in the reaction mixture would assist the formation of the proline 

imidate 6. Accordingly, a reaction with the addition of 2 equivalents of t-BuOH was conducted 

(Scheme 34). 

 

 

 

 

Scheme 34. Attempt to synthesise the proline imidate 6 by addition of t-BuOH. 

 

Boc-L-proline nitrile 76 was stirred in TFA (40 equivalents) at 0 °C. Upon consumption of the starting 

material, as monitored by TLC, 2 equivalents of t-BuOH were added, and the reaction was allowed 

to warm at room temperature. The reaction was continued to be stirred over night at room 

temperature. Gratifyingly, this method afforded the pure TFA salt of the proline imidate 6 in a good 

75% yield after trituration of the salt with hot isopropyl ether.  
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9.7 Aldol reaction catalysed by L-proline imidate 

 

Once the procedure for the synthesis of the proline imidate TFA salt was established, it was time to 

examine the new potential catalyst in the aldol reaction. In continuation of the previous work, the 

compound’s ability to catalyse the aldol reaction of 4-nitrobenzaldehyde with cyclohexanone in an 

array of solvents was investigated. The catalyst was used as the TFA salt and the reaction’s 

conditions were maintained i.e. 0.25 mmol of 4-nitrobenzaldehyde, 1.25 mmol of cyclohexanone, 

0.025 mmol of catalyst and 0.025 mmol of solid sodium bicarbonate. The reactions were stirred for 

24 hours at room temperature. 

 

Due to time constraints, it was not possible to examine all the solvents that were screened initially 

with the two aminonitriles. Consequently, cyclohexane and THF were selected as solvents. 

Cyclohexane was opted as it provided the highest yield in the aldol reaction catalysed by L-proline 

nitrile 5 (Table 13: Entry 9) while THF afforded the anti aldol adduct in the highest ee (Table 13: 

entry 6). The optical rotation value of the catalyst was measured prior to every reaction and was 

compared to our initial value. The values were consistently close (i.e. -41.2 to -47.23, C=1.0 g cm-3 

in DCM), proving that no racemisation had occurred. Table 14 summarises the results of the aldol 

reaction catalysed by the L-proline imidate 6. 

 

Table 14. Results of the aldol reaction catalysed by the TFA salt of proline imidate 6. 

 

Entry Solvent  Conversiona dr (anti/syn)b ee (anti)c ee (syn) 

1 Toluene 85% 4.6:1 58% 27% 

2 DCM 61% 5.6:1 69% 45% 

3 Cyclohexane 100% 5.3:1 76% 51% 

4 THF 57% 5.8:1 46% 36% 

 

Reaction conditions: 0.25 mmol of 4-nitrobenzaldehyde, 1.25 mmol of cyclohexanone, 0.025 mmol of 

proline imidate, 0.025 mmol of solid sodium bicarbonate in 1 mL of solvent, at room temperature for 24 

hours, a: The conversion of the reaction was determined by analysis of the 1H NMR spectrum of the crude 

reaction mixture, b: diastereoselectivity was determined by analysis of the 1H NMR spectrum at the crude, 

c: enantiomeric excess determined by HPLC using chiralpak IB column 

 

 

The data acquired from these reactions were very encouraging as when cyclohexane was screened 

as solvent (Table 14: Entry 3) the reaction proceeded to 100% conversion and simultaneously 
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afforded the aldol adducts in a good anti/syn diastereoselectivity: 5.3:1. Crucially, it afforded the 

anti product in a 76% ee, our highest reported enantiomeric excess for the reaction.  

 

The results in Table 14 warranted a further investigation of the new catalyst. It was decided to try 

two reactions using cyclohexane and toluene at 0 °C. In parallel it was decided to start screening 

different substrates and examine what the compound’s scope of catalytic activity is. Considering 

this was a compound never before studied there was no information about the general catalytic 

ability of 6. 

 

The screening of different aldehydes was started. Cyclohexane was opted as the solvent since it 

was the solvent that afforded the aldol adducts in 100% yield after 24 hours of stirring. 

Cyclohexanone was preserved as the ketone of the reaction. The conditions of the reactions 

maintained the same i.e. 0.025 mmol of the L-proline imidate TFA salt were dissolved in 1 mL of 

cyclohexane and were added to a solution of 1.25 mmol of cyclohexanone, 0.025 mmol of solid 

sodium bicarbonate and 0.25 mmol of aldehyde and the reaction was stirred for 24 hours at room 

temperature.  

 

Table 15 shows the results of the aldehydes screening. 
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Table 15. Summarised results of the aldol reaction between cyclohexanone and various aromatic 
aldehydes catalysed by L-proline imidate TFA salt 6. 

 

 

 

Entry Aldehyde Conversiona Product dr (anti/syn)b ee (anti)c 

1 2-nitrobenzaldehyde 100% 79a 4.7:1 75% 

2 3-nitrobenzaldehyde 100% 79b 3.0:1 63% 

3 2-chlorobenzaldehyde 98% 79c 5.0:1 76% 

4 3-chlorobenzaldehyde 96% 79d 3.0:1 67% 

5 4-chlorobenzaldehyde 94% 79e 2.7:1 57% 

6 2-bromobenzaldehyde 100% 79f 7.0:1 69% 

7 3-bromobenzaldehyde 99% 79g 2.5:1 71% 

8  4-bromobenzaldehyde 90% 79h 3.0:1 61% 

9 benzaldehyde 69% 79i 3.5:1 67% 

 

Reaction conditions: 0.25 mmol of aldehyde, 1.25 mmol of cyclohexanone, 0.025 mmol of proline imidate, 

0.025 mmol of solid sodium bicarbonate in 1 mL of cyclohexane, at room temperature for 24 hours, a: The 

conversion of the reaction was determined by analysis of the 1H NMR of the crude reaction mixture, b: 

diastereoselectivity was determined by analysis of the 1H NMR at the crude, c: enantiomeric excess 

determined by HPLC using chiralpak IB and AD-H column. 

 

The results of the substrate screening proved that 6 was an effective catalyst irrespective of the 

aldehyde used. All the entries showed a satisfying conversion above 90% with the exception of 

benzaldehyde (Table 15, Entry 9) where the reaction proceeded to a moderate 69% conversion. 

The anti product consistently predominated over its diastereoisomer. The diastereoselectivity was 

consistently moderate. The lowest anti/syn ratio was reported in entries 5 and 7 when 4-

chlorobenzaldehyde and 3-bromobenzaldehyde were screened 2.7:1 and 2.5:1 respectively and the 

highest anti/syn diastereoselectivity was obtained in entry 6:  7.0:1.  
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Determination of the enantiomeric excess for these reactions was time consuming. The current 

HPLC method i.e. 3% IPA in hexane in a chiral IB column could not be followed. There was no 

literature precedent for the separation of the 4 stereoisomers of the aldol products, as the 

previously followed paper did not screen the aldehydes of Table 15. A literature search revealed 

that the separation of the stereoisomers was achieved using HPLC with either a chiral AD-H or a 

chiral OD-H column.56,57 In house unavailability of AD-H and OD-H columns required the discovery 

of new HPLC conditions for all the reactions run with an IB column. 

 

To achieve that, racemic samples of all the reactions were necessary. Therefore, all entries in Table 

19 were repeated using racemic proline as the catalyst. The procedure followed for the racemic 

samples was replicated from Barbas’s III and co-workers paper in 2000 (Scheme 35).24  

 

 

 

 

Scheme 35. Procedure for the synthesis of the racemic samples. 

 

In doing so, a racemic mixture of all four stereoisomers was formed. With the racemates in hand, a 

general method was needed to separate the stereoisomers in HPLC. It was theorised that the 

method already used for the aldol adducts of the reaction between 4-nitrobenzaldehyde and 

cyclohexanone, could likely provide a clean separation. The premise was proved correct for most 

of the cases.  Separation of the stereoisomers was achieved following the same HPLC conditions. 

For the cases where separation was not possible using the IB chiralpak column, the four 

stereoisomers were separated using an AD-H chiralpak column and following previous literature 

precedent. Representative examples of the HPLC traces (racemic and catalysed) are listed in Figures 

18-21.  

 

 

 

 



69 
 

 

Figure 18. HPLC trace of racemic 79a. 

 

 

 

 

 

 

 

 

 

Figure 19. HPLC trace of enantioenriched 79a. 

 

 

. 

 

 

 

 

 

 

 

 

Hexane:IPA Flow rate anti (min) anti (min) 

97:3 1 mL/min 19.4 21.2 

Hexane:IPA Flow rate anti (major) (min) anti (minor) (min) 

97:3 1 mL/min 19.5 21.6 

anti diastereoisomers 

 

anti diastereoisomers 
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Figure 20. HPLC trace of racemic 79c. 

 

 

 

 

 

 

 

 

Figure 21. HPLC trace of enantioenriched 79c. 

 

 

 

 

 

 

 

The screening of different substrates was successful. It decisively illustrated that the catalytic scope 

of 6 extends to more substrates. Results were consistently moderate. 4-Chlorobenzaldehyde (Table 

15, Entry 5) afforded the anti diastereoisomer in a 57% ee, which was the lowest reported 

enantiomeric excess. For entries 1, 3, 4, 6, 7 and 9 the enantiomeric excess for the major 

diastereoisomer anti was ranging between 67-76%.  

Hexane:IPA Flow rate anti (min) anti (min) 

97:3 1 mL/min 10.2 11.5 

Hexane:IPA Flow rate anti (major) (min) anti (minor) (min) 

97:3 1 mL/min 10.4 11.9 

anti diastereoisomers 

 

anti diastereoisomers 
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Comparison of the enantiomeric excess in entries with the same substituent in a different position 

of the aromatic ring showed that the 3-position was not preferable when the substituent was NO2.  

3-Nitrobenzaldehyde (Table 15, Entry 2) afforded the major aldol product in a 63% anti ee while 2-

nitrobenzaldehyde (Table 15, Entry 1) and 4-nitrobenzaldehyde (Table 15, Entry 3) produced the 

anti stereoisomer in a 75% and a 76% anti ee respectively. On the contrary, entries where the 

substituent was a Br or a Cl the 4 position seemed to be the least favoured for the reaction. 4-

Chlorobenzaldehyde and 4-bromobenzaldehyde (Table 15: Entries 5 and 8) produced the anti 

product in a 57% and 61% ee respectively. The 2-chlorobenzaldehyde and 3-chlorobenzaldehyde 

(Table 15: Entries 4 and 5) afforded the anti stereoisomers in an improved 76% and 67% ee 

respectively. Similarly, when 2-bromobenzaldehyde and 3-bromobenzaldehyde (Table 15: Entry 6 

and 7) were screened the anti adduct was obtained in a 69% and 71% ee. 

 

Simultaneously, it was decided to run two reactions at a lower temperature. It was considered that 

running reactions at 0 °C would most likely decrease the conversion of the reaction. However, it 

could potentially affect the enantioselectivity, providing more enantiopure products. Toluene and 

cyclohexane were opted as solvents as they afforded the aldol adducts in the highest yields (85% 

and 100% respectively). These reactions were run using 4-nitrobenzaldehyde as the aldehyde 

substrate. The purpose of using this aldehyde was that it was easy to collect all the data needed 

since the HPLC conditions were known for this reaction. The scale and conditions of the reaction 

were maintained the same; 0.25 mmol of 4-nitrobenzaldehyde, 1.25 mmol of cyclohexane, 0.025 

mmol of the proline imidate TFA salt 6 and 0.025 mmol of solid sodium bicarbonate in 1 mL of 

solvent. The reactions were stirred for 7 hours at 0 °C and were then quenched with ammonium 

chloride. Table 16 shows the results.  
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Table 16. Aldol reactions at 0 °C catalysed by the L-proline imidate TFA salt 6. 

 

 

 

Entry Solvent  Time 

(h) 

Conversiona dr 

(anti/syn)b 

ee (anti)c ee (syn) 

1 Toluene 7 50% 6.2:1 71% 67% 

2 Cyclohexane 7 40% 5.7:1 94% 40% 

 

Reaction conditions: 0.25 mmol of 4-nitrobenzaldehyde, 1.25 mmol of cyclohexanone, 0.025 mmol of 

proline imidate, 0.025 mmol of solid sodium bicarbonate in 1 mL of cyclohexane, at 0 °C for 7 hours, a: The 

conversion of the reaction was determined by analysis of the 1H NMR spectrum of the crude reaction 

mixture, b: diastereoselectivity was determined by analysis of the 1H NMR spectrum at the crude, c: 

enantiomeric excess determined by HPLC using chiralpak IB column 

 

In conformity with the original hypothesis the lower temperature provided interesting results. The 

conversion in both cases decreased to 50% from 85% in toluene and to 40% from 100% in 

cyclohexane. Decisively though, the selectivity was increased. The anti product was predominant 

in both cases and at increased selectivity. Toluene afforded the aldol products in a good 6.2:1 

anti/syn diastereoselectivity and cyclohexane in a good anti/syn 5.7:1. Furthermore, the 

enantioselectivity was improved. The reaction in toluene afforded the aldol adducts in a 71% anti 

ee and a 67% syn ee. Remarkably, when the reaction was run in cyclohexane the anti product was 

obtained in an excellent 94% ee.   

 

Due to time constraints, it was not possible to screen more solvents or carry out more reactions 

with different substrates at 0 °C. 
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9.8 Conclusions and Future Work 

 

In conclusion, the first study of aminonitriles as organocatalysts was displayed. Two compounds 

with distinctive differences were investigated; L-valine nitrile 4, an aliphatic primary amine and L-

proline nitrile 5, a cyclic secondary amine. When L-valine nitrile was employed the results were 

disappointing in terms of conversion and enantioselectivity, however, the aldol products were 

formed with interesting syn diastereoselectivity. Future work in this area should be focused on 

computational studies to provide a satisfying answer on the syn selectivity of the catalyst and 

simultaneously attempt to optimise the conversion of the reaction. 

 

L-proline nitrile 5 provided significantly better results in the aldol reaction. The conversions of the 

reactions were moderate to good in all cases of Table 13. Unfortunately, the enantioenrichement 

of the reactions was low, and the investigation of other substrates was halted. Screening of an array 

of solvents showed that cyclohexane and toluene were the optimal solvents for the reaction 

conditions. Future work should be focused on trying aldol reactions using L-proline nitrile as 

catalyst, at 0 °C, as recent results with an alternative catalyst demonstrated an increase in 

enantioselectivity. 

 

Gratifyingly, a new organocatalyst was discovered. The L-proline imidate 6 was synthesised and 

fully characterised. Moreover, it was examined for the first time as an organocatalyst. Results in the 

aldol reaction catalysed by L-proline imidate TFA salt 6 were encouraging and consistent. The 

catalyst afforded the aldol adducts in excellent yields. The anti stereoisomer was regularly 

predominant and the enantiomeric excess for the major product was, for the majority of the 

entries, above the region of 70% (Table 18). Importantly, the scope of the catalyst was 

demonstrated. L-proline imidate 6 was an effective catalyst irrespective of the solvent used (Table 

18) or the aromatic aldehyde examined (Table 19). Further research on this catalyst should be 

focused in two directions. Firstly, the scope of the ketones that can undergo the aldol reaction 

catalysed by 6 and secondly, optimizing the results, possibly by repeating the reaction at lower 

temperatures. 

 

The switch in the diastereoselectivity and enantioselectivity between L-valine nitrile 4 and L-proline 

nitrile 5/ L-proline imidate 6 is interesting and worth further investigation. 
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10. Experimental 

 

10.1 Experimental Procedures 

 

Cbz-L-valine-amide (64) 

 

 

 

A flask was flame dried and was allowed to cool at room temperature under a nitrogen atmosphere. 

Cbz-L-valine (2.0 g, 7.96 mmol) was added to the flask. To this flask EtN3 (1.2 mL, 1.1 eq.) and dry 

THF (40 mL) was added. The solution was cooled at 0 °C and was stirred. After 10 minutes, ethyl 

chloroformate (0.8 mL, 1 eq.) was added and the reaction was continued to be stirred at 0 °C. After 

1 h NH3 in MeOH (7 N) was added (1.66 mL, 1.5 eq.) and the reaction was continued to be stirred 

at 0 °C for another 1 h. After 1 h, the reaction was allowed to warm at room temperature and was 

continued to be stirred. After a further 17 hours, the reaction was deemed complete by TLC (90:10 

DCM:MeOH) and the stirring stopped. The solvent was removed in vacuo and the white precipitate 

was filtered and washed with ice cold water to give the pure Cbz-protected amide 64 as a white 

solid in 87% yield (1.73 g, 6.92 mmol). Data identical to that reported in the literature.40 

 

Melting Point: 206-209 ºC, literature 205-208 °C.58 IR (ATR): 3374, 3315 (N-H), 3201, 3030, 2972, 

2958, 2895, 2872 (C-H), 1681, 1654 (C=O), 1243 (C-O) cm-1. [α]D
20 (deg cm-3 g-1 dm-1) +24.7 (c=1.0 g 

cm-3 in DMF), [α]D
25 (deg cm-3 g-1 dm-1) literature +25.0 (c=1.0 g cm-3 in DMF).40 1H NMR (400 MHz, 

DMSO-d6) δ ppm: 7.38 - 7.28 (6 H, m, H-7, H-1), 7.16 (1 H, d, J=8.9 Hz, H-5), 7.03 (1 H, br. s, H-1), 

5.03 (2 H, s, H-6), 3.80 (1 H, dd, J=8.9, 6.6 Hz, H-2), 1.99 - 1.28 (1 H, apparent oct, J=6.6 Hz, H-3), 

0.86 (3 H, d, J=6.6 Hz, H-4), 0.83 (3 H, d, J=6.6 Hz, H-4). 13C NMR (400 MHz, DMSO-d6) δ ppm: 173.2 

(C=O amide), 156.2 (C=O carbamate), 137.2 (Ar), 128.4 (7), 127.8 (7), 127.3 (7), 65.4 (6), 60.1 (2), 

30.2 (3), 19.4 (4), 18.0 (4). HRMS (ESI): [M+Na]+  HRMS found 107.0407, C2D6NaOS required 

107.0408. [M+Na]+ HRMS found 273.1210, C13H18N2O3 required 273.1210.  
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Cbz-L-Valine nitrile (65) 

 

 

 

A flask was flame dried and was allowed to cool at room temperature under a nitrogen atmosphere. 

Cbz-L-valine amide 64 (1.75 g, 7.00 mmol), dissolved in dry THF (30 mL), and was added to the flask. 

The flask was cooled at 0 °C, and EtN3 (2.18 mL, 2.2 eq.) was added and the solution was stirred.  

After 30 minutes, TFAA (1.50 mL, 10.5 eq.) was added and the reaction was continued to be stirred 

at 0 ºC for 1 hour and a further 17 hours at room temperature. The reaction was deemed complete 

by TLC (90:10 DCM:MeOH) and the stirring stopped. The solvent was removed in vacuo and the 

crude oil was re-dissolved in EtOAc.  The crude mixture was washed with 2 M HCl and extracted 

with EtOAc (3 x 10 mL), organic layers combined and washed with saturated NaHCO3 (3 x 10 mL), 

then washed with brine and extracted (1 x 10 mL). The organic extracts were combined, dried over 

magnesium sulfate, filtered and the solution was concentrated in vacuo to give the crude product 

as red translucent oil. The crude product was then, further purified by column chromatography 

(90:10 hexane: EtOAc) and gave the pure Cbz-protected aminonitrile 65 as a red solid in a 90 % yield 

(1.47 g, 6.30 mmol). Data identical to that reported in the literature.40 

 

Melting Point: 49-51 ºC, literature 53 ºC.59 IR (ATR): 3298 (N-H),3064, 3032, 2970, 2930, 2877 (C-H), 

2459 (CN), 1686 (C=O), 1213 (C-N), 1176 (C-O) cm-1, [α]D
20 (deg cm3 g−1 dm−1) -43.07 (c = 1.0 g cm-3 

in MeOH) , [α]D
25 (deg cm3 g−1 dm−1) literature -37.3 (c = 0.97 g cm-3 in MeOH)40 1H NMR (400 MHz 

DMSO d6): δ ppm 8.22 (1H, br. d, J= 8.0 Hz, H-4), 7.39-7.31 (5H, m, H-6), 5.09 (2H, s, H-5), 4.40 (1H, 

apparent t, J= 8.0, H-1), 1.98, (1H, m, H-2), 1.00 (3H, d, J= 6.8 Hz, H-3), 0.94 (3H, d, J= 6.8 Hz, H-3). 

13C NMR (400 MHz, DMSO-d6) δ ppm: 155.5 (C=O carbamate), 135.7 (Ar), 128.8 (6), 128.6 (6), 128.4 

(6), 117.8 (CN), 67.9 (5), 49.1 (1), 31.9 (2), 18.7 (3), 18.0 (3). HRMS (ESI): [M+Na]+ HRMS found 

107.0406, C13D6NaOS required 107.0408 [M+Na]+ HRMS found 255.1105,C13H16N2O2Na required 

255.1104. 
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L-Valine nitrile (4) 

 

 

 

A flask was flame dried and was allowed to cool at room temperature under a nitrogen atmosphere. 

Cbz-L-valine nitrile 65 (200 mg, 0.86 mmol) in EtOAc (7.5 mL) and Pearlman's reagent (20% b.w., 60 

mg, 0.1 eq.) were placed in the flask and the flask was evacuated. Then the flask was placed under 

a hydrogen atmosphere (60 psi) and was stirred.  After 1.5 h of stirring the reaction was deemed 

complete by TLC (95:5 DCM:MeOH) and the stirring stopped. The mixture was filtered through a 

pad of celite and the celite was washed thoroughly with EtOAc (50 mL). 4 M HCl in dioxane (1.0 mL) 

was added and the reaction was stirred for 30 minutes turning the solution cloudy. Upon 

evaporation the salt of the amine was isolated as a white-yellow solid. The free amine 4 was 

liberated by dissolving the salt in DCM and stirring over sodium bicarbonate for 30 mins before 

filtering and concentrating in vacuo, as yellow oil in a 91% yield (76 mg, 0.78 mmol). Data identical 

to that reported in the literature. 40 

 

IR (ATR): 3384 (N-H), 2228 (CN), 1098 (C-N) cm-1, [α]D
20 (deg cm3 g−1 dm−1) -6.37 (c = 1.0 g cm-3 in 

DCM) [α]D
25 (deg cm3 g−1 dm−1) literature -8.3 (c = 0.83 g cm-3 in DCM)40 1H NMR (400 MHz, CDCl3) δ 

ppm: 3.52 (1 H, d, J=5.6 Hz, H-1), 1.93 (1 H, dspt, J=6.8, 5.6 Hz, H-2), 1.64 (2 H, br. s, H-4), 1.07 (3 H, 

d, J=6.8 Hz, H-3), 1.06 (3 H, d, J=6.8 Hz, H-3) 13C NMR (400 MHz, CDCl3): δ 121.1 (CN), 49.7 (1), 32.8 

(2), 18.8 (3), 17.5 (3); HRMS (ESI): [M+H]+ HRMS found 99.0919, C5H11N2 required 99.0917.  
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Cbz-L-Proline Amide (72) 

 

 

 

A flask was flame dried and was allowed to cool at room temperature under a nitrogen atmosphere. 

Cbz-L-proline (3.0 g, 12.0 mmol) was added to the flask. The flask was cooled at 0 °C, Et3N (1.82 mL, 

1.1 eq.) and dry THF (40 mL) were added and the reaction was stirred. After 15 minutes of stirring, 

ethyl chloroformate (1.14 mL, 1 eq.) was added and the reaction was continued to be stirred at 0 

°C. After 1 h NH3 in MeOH (7 N) was added (2.5 mL, 1.5 eq.) and the reaction was continued to be 

stirred at 0 °C, for 1 hour. After that, the reaction was allowed to warm at room temperature and 

was continued to be stirrer. After a further 14 h the reaction was deemed complete by TLC (90:10 

DCM:MeOH) and the stirring stopped.. The solvent was removed in vacuo. The solution was then 

washed with water (10 mL) and extracted with EtOAc (3 x 10 mL). Organic layers combined, washed 

with NaHCO3 and extracted (3 x 10 mL). Organic layers once again combined, dried over magnesium 

sulfate, filtered and the solution was concentrated in vacuo, to give the title product 72 as a white 

solid in a 56% yield (1.72 g, 6.7 mmol). Data identical to that reported in the literature.60 

 

Melting Point: 88-90 ºC, literature 91-93 ºC.60  IR (ATR): 3386 (N-H), 1677 (C=O), 1120 (C-N) cm-1, 

[α]D
25 (deg cm3 g−1 dm−1) -34.4 (c= 1.0 g cm-3 in MeOH), [α]D

20 (deg cm3 g−1 dm−1) literature -36.0 (c= 

1.0 g cm-3, MeOH).61 1H NMR (400 MHz, CDCl3) δ ppm: 7.36 (5 H, br. s. H-7), 6.71 (1H, s. H-1), 5.58 

(1 H, br. s. H-1), 5.18 - 5.13 (2 H, m, H-6), 4.41 - 4.26 (1 H, m, H-2), 3.62-3.45 (2 H, m. H-5), 2.35-1.87 

(4 H, m. H-3, H-4). 13C NMR (400 MHz, CDCl3) δ ppm: 174.4 (C=O amide), 156.2 (C=O carbamate), 

136.4 (Ar), 128.6 (7), 128.3 (7), 128.1 (7), 67.5 (C-O), 47.2 (2), 31.2 (CH2), 28.3 (CH2), 24.7 (CH2) 

HRMS (ESI): [M+H]+  HRMS found 249.1235, C13H17N2O3 required 249.1234. [M+Na]+ HRMS found 

271.1053, C13H16N2NaO3 required 271.1053.  
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Cbz-L-Proline Nitrile (73) 

 

 

 

A flask was flame dried and was allowed to cool at room temperature under a nitrogen atmosphere. 

Cbz-L-proline amide 72 (1.5 g, 6.3 mmol) was dissolved in dry THF (30 mL) and was added to the 

flask and the flask was cooled at 0 °C.  To this flask was added EtN3 (1.9 mL, 2.2 eq.) and the solution 

was stirred. After 30 minutes TFAA was added (2.0 g, 1.5 eq.) dropwise and the reaction was 

continued to be stirred at 0 °C. After 45 minutes, the reaction was allowed to warm at room 

temperature. After a further 16 h, the reaction was deemed complete by TLC (90:10 DCM:MeOH) 

and the stirring stopped. The solvent was removed in vacuo and the red oil was re-dissolved in 

EtOAc. The solution was washed with 2 M HCl and extracted with EtOAc (3 x 10 mL). Organic layers 

were combined and washed with NaHCO3 and extracted (3 x 10 mL). Organic layers were once again 

combined, washed with brine and extracted (3 x 10 mL). Then the combined organic layers dried 

over magnesium sulfate and filtered. The solution was concentrated in vacuo to give the crude 

mixture as red oil. The mixture was further purified by column chromatography (80:20 

hexane:EtOAc) to give the title compound 73 as a colourless oil in 65% yield (950 mg, 4.13 mmol). 

Data identical to that reported in the literature.34 

 

IR (ATR): 2239 (CN), 1704 (C=O), 1119 (C-N) cm-1,, [α]D
25 (deg cm3 g−1 dm−1) -88.0 (c= 1.0 g cm-3 in 

CHCl3), [α]D
25 (deg cm3 g−1 dm−1) literature -89.0 (c= 1.0 g cm-3, CHCl3).34 1H NMR (400 MHz, CDCl3) δ 

ppm: 7.44 - 7.30 (5 H, m, H-6), 5.25 - 5.12 (2 H, m, H-5), 4.66 - 4.52 (1 H, m, H-1), 3.65 - 3.51 (2 H, 

m, H-4), 2.32 - 2.03 (4 H, m, H-3, H-2). 13C NMR (400 MHz, CDCl3) δ ppm: 153.7 (C=O), 136.1 (Ar), 

128.7 (6), 128.4 (6), 128.3 (6), 119.1 (CN), 67.9 (5), 47.1 (5), HRMS (ESI): [M+Na]+ HRMS found 

253.0946, C13H14N2NaO3 required 253.0947. 
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Boc-L-Proline Amide (75) 

 

 

 

 

A flask was flame dried and was allowed to cool at room temperature under a nitrogen atmosphere.  

Boc-L-proline (2.0 g, 9.2 mmol) and dry THF (30 mL) were added to the flask. To this flask, EtN3 (1.43 

mL, 1.1 eq.) was added and the solution was stirred, at room temperature. After 15 minutes, ethyl 

chloroformate (0.86 mL, 1 eq.) was added and the reaction was continued to be stirred at room 

temperature. After 1 h, NH3 in MeOH (7 N) (2 mL), was added and the reaction was continued to 

be stirred for a further 14 hours. After that, the reaction was deemed complete by TLC (70:30 

hexane:EtOAc) and the stirring stopped. The solvent was removed in vacuo and the solution was 

washed with water (10 mL) and extracted with DCM (5 x 10 mL). The combined organic layers dried 

over magnesium sulfate and the solution was concentrated in vacuo to give the title compound 75 

as a white solid in an 85% yield (1.67 g, 7.8 mmol). Spectroscopic data are in agreement with the 

literature.40 

 

IR (ATR): 3344 (N-H stretch), 1676 (C=O, stretch), 1164 (C-O stretch) cm-1, [α]D
25 (deg cm3 g−1 dm−1) 

-44.7 (c= 1.0 g cm-3 in MeOH), [α]D
25 (deg cm3 g−1 dm−1) literature -42.4 (c=1.0 g cm-3 in MeOH).52 1H 

NMR (400 MHz, CDCl3) δ ppm: 6.85 (1H, s, H-6), 5.40-6.10 (1H, m, H-6), 4.35-4.15 (1H, m, H-5), 3.55-

3.25 (2H, m, H-2), 2.40-1.80 (4H, m, H-2, H-4), 1.45 (9H, s, H-1), HRMS (ESI):  [M+Na]+ HRMS found 

237.1209, C10H18N2O3Na  required 237.1210.  
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Boc-L-Proline Nitrile (76) 

 

 

 

 

A flask was flame dried and was allowed to cool at room temperature under a nitrogen atmosphere. 

Boc-L-proline amide 75 (625 mg, 2.92 mmol) in dry THF (20 mL) and Et3N (0.9 mL, 2.2 eq.) were 

added to the flask. The flask was cooled at 0 ºC and stirred. After 30 minutes of stirring, TFAA in a 

dry ampule (1.0 g, 1.5 eq.) was added and the reaction was continued to be stirred at 0 °C. After 2 

hours the reaction was warmed at room temperature and was continued to be stirred.  After a 

further 16 hours the reaction was deemed complete by TLC (90:10 DCM:MeOH) and the stirring 

stopped. The solvent was removed in vacuo. The crude yellow oil was re-dissolved in EtOAc and 

was washed with 2 M HCl and extracted with EtOAc (3 x 10 mL). Organic layers were combined, 

washed with saturated NaHCO3 and extracted (3 x 10 mL). Organic layers again, were combined, 

washed with brine and extracted (3 x 10 mL). Organic layers were combined, dried over magnesium 

sulfate and filtered. The solution was concentrated in vacuo to give the crude product as an orange 

oil. The crude oil was further purified by column chromatography (20:80 EtOAc:hexane) to give the 

title compound 76 as a pale yellow oil in a 89% yield (508 mg, 2.60 mmol). Data identical to that 

reported in the literature.40  

 

 IR (ATR): 2976, 2239 (CN), 1797, 1692 (C=O stretch) cm-1; [α]D
20 (deg cm3 g−1 dm−1) -91.15 (c= 1.3 g 

cm-3 in MeOH), [α]D
25 (deg cm3 g−1 dm−1) literature -95.5 (c= 1.3 g cm-3 in MeOH).52 1H NMR (400 

MHz, CDCl3) δ ppm: 4.60 - 4.40 (1 H, m, H-5), 3.58-3.25 (2 H, m, H-2,) 2.30 – 1.95 (4 H, m, H-3, H-4), 

1.50 - 1.45 (9 H, m, H-1), 13C NMR (400 MHz, CDCl3) δ ppm: 153.1 (C=O), 119.3 (CN), 81.6 (t-Bu), 

47.3 (5), 45.8 (CH2), 31.8 (CH2), 28.4 (1), 23.9 (CH2); HRMS (ESI) [M+Na]+ HRMS found 219.1105, 

C10H16N2O2Na  required 219.1104 
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L-proline nitrile salt (5) 

 

 

 

 

 

A flask was flame dried and was allowed to cool at room temperature under a nitrogen atmosphere. 

Boc-L- proline nitrile 78 (364 mg, 1.7 mmol) and TFA (3.6 mL, 25 eq.) in dry DCM (5 mL) were added 

to the flask and the flask was cooled at 0 °C. The solution was stirred until the reaction was deemed 

complete by TLC (90:10 DCM:MeOH). The stirring was stopped and solvent was removed in vacuo. 

Trituration with Et2O provided the pure TFA salt of L-proline nitrile 5 in a 93% yield (318 mg, 1.58 

mmol). Spectroscopic data are in agreement with the literature.40  

 

IR (ATR): 3323 (N-H stretch), 2943, 2831, 2269 (CN), 1665 (C=O); Melting Point 90-92 ºC; literature 

92-94 ºC.62 [α]D
20 (deg cm3 g−1 dm−1) -11.6 (c=1.0 g cm-3 in MeOH), [α]D

25 (deg cm3 g−1 dm−1)  literature 

-16.7 (c= 1.0 g cm-3 in MeOH),40  1H NMR (400 MHz, MeOD d4) δ ppm: 4.60 (1 H, t, J=7.4 Hz, H-1), 

3.62 - 3.43 (2 H, m, H-4), 2.58 - 2.47 (1 H, m, H-2), 2.27 – 1.97 (3 H, m, H-2, H-3), 13C NMR (400 MHz, 

MeOD d4) δ ppm: 161.8 (q, J=34.7 Hz, C-F3), 115.2 (CN), 46.8 (1), 45.8 (4), 29.9 (2) , 23.2 (3). HRMS 

(ESI) [M+H]+ HRMS found 97.0759 C5H9N2 required 97.0760.  

 

The free amine was liberated by dissolving the salt in DCM and stirring over sodium bicarbonate for 

30 mins before filtering and concentrating in vacuo in a 63% yield (90 mg, 1.07 mmol). 

 

1H NMR (400 MHz, MeOD d4) δ ppm: 4.07 (1 H, dd, J = 7.9, 4.7 Hz, H-1), 3.10 – 2.85 (2 H, m, H-4), 

2.15 (1 H, m, H-2), 2.07 – 1.74 (3 H, m, H-3, H-2).  
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Cbz-N-methyl-L-valine nitrile (69) 

 

 

 

A flask was flame dried and was allowed to cool at room temperature under a nitrogen atmosphere. 

Cbz-L-valine nitrile 65 (400 mg, 1.72 mmol) was dissolved in dry THF (10 mL) and was added to the 

flask. Potassium bis (trimethyl silyl) amide 0.5 M in toluene (343.10 mg, 1.72 mmol) was then added 

to this flask at -78° C.  After 0.5 hours, iodomethane (0.11 mL, 1.90 mmol) was added to the solution. 

The reaction mixture was then allowed to warm at room temperature overnight. After a further 18 

h, the solution was washed with saturated aqueous potassium carbonate solution (30 mL), then 

brine (30 mL) followed by 1 mol dm-3 aqueous sodium hydroxide solution (30 mL). The aqueous 

washes were each extracted with EtOAc (3 × 10 mL). The organic fractions were then combined, 

dried with magnesium sulfate, filtered and concentrated in vacuo to give the crude title compound 

as a yellow oil which was then further purified by column chromatography (10:90 EtOAc:hexane) 

to give the pure title compound 69 in 53% yield (1.07 g, 4.13 mmol)  as a colourless oil. Data identical 

to the reported in the literature.63 

 

IR (ATR): 2968, 2253 (CN), 1699 (C=O), 1453, 1397 cm-1, ; [α]D
25 (deg cm3 g−1 dm−1) -52.5 (c= 1.15 g 

cm-3 in CHCl3), [α]D
25 (deg cm3 g−1 dm−1) literature -53.64 (c=2.0 g cm-3  in CHCl3),63 1H NMR (400 

MHz, CDCl3) δ ppm: 7.42 – 7.30 ( 5 H, m, H-6), 5.17 (2 H, d, J = 3.1 Hz, H-5), 4.87 (1 H, d, J = 10.6 Hz, 

H-1), 2.98 (3 H, s, H-4), 2.11 (1 H, dhept, J = 10.6, 7.1 Hz, H-2), 1.16 (3 H, d, J = 7.1 Hz, H-3), 0.92 (3 

H, d, J = 7.1 Hz, H-3), 13C NMR (400 MHz, CDCl3) δ ppm: 156.3 (C=O), 136.1 (Ar), 128.7 (6), 128.4 (6), 

128.1 (6), 117.4 (CN), 68.2 (5), 54.8 (1), 30.3 (4), 30.1 (2), 19.4 (3), 18.3 (3), HRMS (ESI): [M+H]+ 

HRMS found 247.1441, C14H19N2O2 required 247.1441, [M+Na]+ HRMS found 269.1260, 

C14H18N2NaO2 required 269.1260. 
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N-methyl-L-valine nitrile salt (70) 

 

 

 

A flask was flame dried and was allowed to cool at room temperature under a nitrogen atmosphere. 

Cbz-N-methyl-L-valine nitrile 69 (50 mg, 0.20 mmol) dissolved in EtOAc (1.8 mL) and Pearlman's 

reagent (20% b.w., 14 mg, 0.1 eq.) were added to this flask and the flask was evacuated. Then the 

flask was placed under a hydrogen atmosphere (60 psi) and was stirred.  After a further 1.5 h the 

reaction was deemed complete by TLC (95:5 DCM:MeOH) and the stirring stopped. The mixture 

was filtered through a pad of celite and the celite was washed thoroughly with EtOAc (20 mL). 4 M 

HCl in dioxane (1.0 mL) was added and the solution was stirred for 30 minutes became cloudy. Upon 

evaporation the salt of the amine 70 was isolated as a white-yellow gum in a 99% yield (30mg, 

0.20mmol).  

 

IR (ATR): 2925, 2254 (CN) cm-1; 1H NMR (400 MHz, CDCl3) δ ppm: 10.36 ( 2 H, br. s. H-5 ), 4.04 (1 H, 

br. s. H-1), 2.90 (3 H, br. s, H-4), 2.61 (1 H, br. s. H-2), 1.32 (3 H, d, J = 6.0 Hz, H-3), 1.23 (3 H, d, J = 

6.0 Hz, H-3). 13C NMR (400 MHz, CDCl3) δ ppm: 113.1 (CN), 56.8 (1), 32.9 (4), 29.8 (2) 19.7 (3), 18.0 

(3); HRMS (ESI) [M+H]+ HRMS found 113.1071, C6H13N2  required 113.1073  

 

The free amine was isolated by neutralisation with saturated sodium bicarbonate and subsequent 

extraction with DCM, as a yellow oil in a 99% yield (22 mg, 0.20 mmol). 

 

IR (ATR): 2925, 2254 (CN) cm-1; 1H NMR (400 MHz, CDCl3) δ ppm: 3.26 (1 H, d, J= 6.8 Hz, H-1), 2.56 

(3 H, s, H-4), 2.00 (1 H, dq., J=13.3 Hz, 6.8 Hz, H-2), 1.09 - 1.07 (6 H, dd, J = 6.8 Hz, 2.4 Hz, H-3). 13C 

NMR (400 MHz, CDCl3) δ ppm: 119.3 (CN), 59.4 (1), 34.4 (4), 29.9 (2) 19.2 (3), 18.1 (3); HRMS (ESI) 

[M+H]+ HRMS found 113.1071, C6H13N2  required 113.1073 
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L-proline imidate salt (6) 

 

 

 

 

A flask was flame dried and was allowed to cool at room temperature under a nitrogen atmosphere. 

Boc-L- proline nitrile 76 (200 mg, 1.02 mmol) dissolved in TFA (3.55 mL, 45 eq.) were added to this 

flask and the flask was cooled at 0 °C. Upon consumption of the starting material (TLC check) t-

BuOH (0.2 mL, 2 eq.) was added and the reaction was allowed to warm at room temperature. The 

reaction was left stirring overnight. Stirring was stopped and the solvent was removed in vacuo. 

Trituration with hot isopropyl ether provided the TFA salt of the L-proline imidate 6 in a 75% yield 

(217.5 mg, 0.77 mmol).  

 

Melting Point 88-90 ºC, IR (ATR): 3300 (N-H), 2967, 2872, 1658 (C=N) cm-1; [α]D
25 (deg cm3 g−1 dm−1) 

-47.23 (c= 1.0 g cm-3 in DCM), 1H NMR (400 MHz, MeOD) δ ppm: 8.00 (1 H, br. s, N-H), 4.15 (1 H, dd, 

J = 8.4, 6.8 Hz, H-4), 3.44 – 3.32 (2 H, m, H-1), 2.48 – 2.34 (1 H, m, H-3), 2.09 – 1.89 (3 H, m, H-2, H-

3), 1.36 (9-H, s, H-5). 13C NMR (400 MHz, CDCl3) δ ppm: 167.2 (C=N), 59.9 (4), 51.4 (t-Bu), 51.2 (3), 

46.1 (1), 30.1 (2), 29.7 (5), HRMS (ESI) [M+H]+ HRMS found 171.1491, C9H19N2O required 171.1492 

 

The free L-proline imidate was liberated by dissolving the salt in DCM and stirring over sodium 

bicarbonate for 30 mins before filtering and concentrating in vacuo in a 55% yield (31 mg, 0.18 

mmol). 

 

IR (ATR): 3300 (N-H), 2967, 2872, 1658 cm-1; 1H NMR (400 MHz, CDCl3) δ ppm: 7.44 (1 H, br. s, N-

H), 3.69 (1 H, dd, J = 8.8, 5.6 Hz,H-4), 3.10 – 2.86 (3 H, m, H-1, H-3) 2.18 – 2.05 (1 H, ddt, J= 12.6, 

8.8, 7.1 Hz, H-3), 1.92 – 1.81 (1 H, m, H-2), 1.78-1.64 ( 1 H, m, H-2), 1.33 (9 H, s, H-5). 13C NMR (400 

MHz, CDCl3) δ ppm: 173.5 (C=N), 61.1 (4), 50.4 (t-Bu), 47.2 (1), 30.8 (3), 28.8 (5), 26.1 (2), HRMS 

(ESI) [M+H]+ HRMS found 171.1491, C9H19N2O required 171.1492 
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10.2 General Procedure for the Aldol Reaction catalysed by L-valine nitrile   

 

A flask was flame dried and was allowed to cool at room temperature under a nitrogen atmosphere. 

Cyclohexanone (0.13 mL, 1.25 eq.) was added to this flask. Catalyst (0.025 mmol, 0.1 eq.) was 

dissolved in 1 mL of solvent and was added to the flask and the flask was stirred. After 5 minutes, 

4-nitrobenzaldehyde (37.78 mg, 0.25 mmol) was added and the reaction was continued to be 

stirred for a further 24 h. The stirring stopped after 24 h and the reaction was quenched with NH4Cl 

and the solvent was removed in vacuo at room temperature. The crude product was re-dissolved 

in DCM and washed with water (5 mL) and extracted with DCM (3 x 10 mL). Organic layer was dried 

over sodium sulfate and filtered. The solution was then concentrated in vacuo. The conversion of 

the reaction was determined by integrating the 1H NMR of the crude reaction mixture using the 

aldehyde peak as a reference. Syn/anti ratio was determined by integrating the 1H NMR of the crude 

reaction mixture and by comparing the two CH-OH peaks. The enantiomeric excess of the crude 

product was analysed, via HPLC using a chiralpak IB column.  

 

 

2-(hydroxy((4-nitrophenyl)methyl)cyclohexanone (3) 

  

 

 

 

 

The two syn and anti diastereoisomers were isolated after column chromatography (5:95 

EtOAc:hexane). 

 

Retention times for the syn and anti stereoisomers catalyzed by L-valine nitrile 4: syn diastereomer: 

minor enantiomer tR = 27.9 min, major enantiomer tR = 29.5 min; anti diastereomer: minor 

enantiomer tR = 34.7 min, major enantiomer tR = 43.3 min.  
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Spectroscopic data of 3 catalysed by L-valine nitrile 4: 

 

syn diastereomer: IR (ATR): 3517, 2940, 1700, 1516, 1346 cm-1, 1H NMR (400 MHz, CDCl3) δ ppm: 

8.21 (2 H, m, H-1), 7.49 (2 H, m, H-2), 5.49 (1 H, br. s, H-3), 3.18 (1 H, br. s, OH), 2.66-2.59 (1 H, m, 

H-4), 2.52-2.46 (1 H, m, H-8), 2.45 - 2.35 (1 H, m, H-8), 2.15-2.08 (1 H, m, H-7), 1.89-1.82 ( 1H, m, H-

6), 1.76-1.65 (2 H, m, H-5, H-7), 1.63-1.47 (2 H, m, H-5, H-6),  13C NMR (400 MHz, CDCl3) δ ppm: 

214.0 (C=O), 149.1 (Ar), 147.1 (C-N), 126.7 (2), 123.8 (1), 70.2 (3), 56.9 (4), 42.7 (8), 28.0 (7), 26.0 

(5), 25.0 (6), HRMS (ESI) HRMS found 272.0875, C13H15NNaO4  required 272.0893 

 

anti diastereoisomer: IR (ATR): 3510, 2939, 1693, 1520, 1346 cm-1, 1H NMR (400 MHz, CDCl3) δ ppm: 

8.21 (2 H, m, H-1), 7.51 (2 H, m, H-2), 4.89 (1H, dd, J=3.2 Hz, 8.35 Hz, H-3), 4.08 (1 H, d, J=3.2 Hz, 

OH), 2.64-2.54 (1 H, m, H-4), 2.53-2.46 (1 H, m, H-8), 2.42 - 2.31 (1 H, m, H-8), 2.15-2.08 (1 H, m, H-

7), 1.89-1.79( 1 H, m, H-6), 1.74-1.64 (1 H, m, H-5,), 1.63-1.47 (2 H, m, H-5, H-6), 1.45-1.34 (1 H, m, 

H-7), HRMS (ESI) HRMS found 272.0879, C13H15NNaO4  required 272.0893. Spectroscopic data are 

in agreement with the literature.56 
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10.3 General Procedure for the Aldol Reaction catalysed by L-proline nitrile 

and L-proline imidate   

 

A flask was flame dried and was allowed to cool at room temperature under a nitrogen atmosphere. 

Cyclohexanone (0.13 mL, 1.25 eq.) was added to this flask. The TFA salt of the catalyst (0.025 mmol, 

0.1 eq.) was dissolved in 1 mL of solvent and was added to the flask. Solid sodium bicarbonate 

(0.025 eq.) was then added to the flask and the flask was stirred. After 5 minutes, 4-

nitrobenzaldehyde (37.78 mg, 0.25 mmol) was added and the reaction was continued to be stirred 

for a further 24 h. The stirring stopped after 24 h and the reaction was quenched with NH4Cl and 

the solvent was removed in vacuo at room temperature. The crude product was re-dissolved in 

DCM and washed with water (5 mL) and extracted with DCM (3 x 10 mL). Organic layer was dried 

over sodium sulfate and filtered. The solution was then concentrated in vacuo. The conversion of 

the reaction was determined by integrating the 1H NMR of the crude reaction mixture using the 

aldehyde peak as a reference. Syn/anti ratio was determined by integrating the 1H NMR of the crude 

reaction mixture and by comparing the two CH-OH peaks. The enantiomeric excess of the crude 

product was analysed, via HPLC using a chiralpak IB/AD-H column.  

 

 

2-(hydroxy((4-nitrophenyl)methyl)cyclohexanone (3) 

 

 

 

Retention times for the syn and anti stereoisomers catalyzed by L-proline nitrile 5: syn 

diastereomer: minor enantiomer tR = 27.7 min, major enantiomer tR = 30.0 min; anti diastereomer: 

major enantiomer tR = 34.6 min, minor enantiomer tR = 43.0 min.  

 

Spectroscopic data for 3 catalysed by L-proline nitrile 5 were identical as when the reaction was 

catalysed by L-valine nitrile 4. 
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2-(hydroxy((4-nitrophenyl)methyl)cyclohexanone (3) 

 

 

 

Retention times for the syn and anti stereoisomers catalyzed by L-proline imidate 6: syn 

diastereomer: minor enantiomer tR = 28.1 min, major enantiomer tR = 30.2 min; anti diastereomer: 

major enantiomer tR = 34.8 min, minor enantiomer tR = 43.1 min.  

 

Spectroscopic data for 3 catalysed by L-proline imidate 6 were identical as when the reaction was 

catalysed by L-valine nitrile 4. 

 

 

2-(hydroxy((2-nitrophenyl)methyl)cyclohexanone (79a) 

 

 

 

Diastereomeric ratio anti/syn=4.7/1.0, 75% anti ee; 1H NMR (400 MHz, CDCl3) δ(ppm) (as a mixture 

of anti/syn diastereomers): 8.03-7.98 (1 H, m, syn H-1), 7.88-7.81 (2 H, m, 1 syn H-1, 1 anti H-1), 

7.79-7.75 (1 H, m, anti H-1), 7.67-7.60 (2 H, m, 1 syn H-1, 1 anti H-1), 7.46-7.40 (2 H, m, 1 syn H-1, 

1 anti H-1), 5.96 (1 H, d, J=2.2 Hz, syn H-2), 5.45 (1 H, d, J=5.1 Hz, anti H-2), 4.18 (1 H, br. s., anti CH-

OH), 2.93-2.85 (1 H, m, syn H-3), 2.80-2.71 (1 H, m, anti H-3), 2.50-2.28 (4 H, m, 2 syn H-4, 2 anti H-

4), 2.15-2.04 (2 H, m, 1 syn H-4, 1 anti H-4), 1.90-1.45 (10 H, m, 5 syn H-4, 5 anti H-4). Spectroscopic 

data are in agreement with the literature.64   
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2-(hydroxy((3-nitrophenyl)methyl)cyclohexanone (79b) 

 

 

 

Diastereomeric ratio anti/syn=3.0/1.0, 63% anti ee; 1H NMR (400 MHz, CDCl3) δ(ppm) (as a mixture 

of anti/syn diastereomers): 8.22-8.09 (4 H, m, 2 syn H-1, 2 anti H-1), 7.70-7.63 (2 H, m, 1 syn H-1, 1 

anti H-1),  7.56-7.48 (2 H, m, 1 syn H-1, 1 anti H-1), 5.48 (1 H, d, J=2.6 Hz, syn H-2), 4.89 (1 H, d, J=8.4 

Hz, anti H-2), 4.12 (1 H, br. s., anti CH-OH), 3.18 (1 H, br. s., syn CH-OH), 2.69-2.57 (2 H, m, syn H-3, 

anti H-3) 2.54-2.45 (2 H, m, 1 syn H-4, 1 anti H-4),  2.16-2.06 (2 H, m, 1 syn H-4, 1 anti H-4), 1.91-

1.50 (12 H, 6 syn H-4, 6 anti H-4). Spectroscopic data are in agreement with the literature.64  

 

 

2-(hydroxy((2-chlorophenyl)methyl)cyclohexanone (79c) 

 

 

 

Diastereomeric ratio anti/syn=5.0/1.0, 76% anti ee; 1H NMR (400 MHz, CDCl3) δ(ppm) (as a mixture 

of anti/syn diastereomers): 7.58-7.51 (2 H, m, 1 syn H-1,  1 anti H-1), 7.35-7.28 (4 H, m, 2 syn H-1, 

2 anti H-1), 7.24-7.18 (2 H, m, 1 syn H-1, 1 anti H-1), 5.71 (1 H, br. s., syn H-2), 5.35 (1 H, d, J=8.1 Hz, 

anti H-2), 4.02 (1 H, br. s., anti CH-OH), 3.14 (1 H, br. s., syn CH-OH), 2.86-2.77 (1 H, m, syn H-3), 

2.74-2.60 (1 H, m, anti H-3), 2.40-2.28 (4 H, m, 2 syn H-4, 2 anti H-4), 2.16-2.02 (2 H, 1 syn H-4, 1 

anti H-4), 1.80-1.49 (10 H, 5 syn H-4, 5 anti H-4). Spectroscopic data are in agreement with the 

literature. 64 
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2-(hydroxy((3-chlorophenyl)methyl)cyclohexanone (79d) 

 

 

 

Diastereomeric ratio anti/syn= 3.0/1.0, 67% anti ee; 1H NMR (400 MHz, CDCl3) δ(ppm) (as a mixture 

of anti/syn diastereomers): 7.35-7.29 (2 H, m, 1 syn H-1, 1 anti H-1), 7.26-7.23 (2 H, m, 1 syn H-1, 1 

anti H-1), 7.22-7.13 (4 H, 2 syn H-1, 2 anti H-1), 5.35 (1 H, br. s., syn H-2), 4.74 (1 H, d, J=8.6 Hz, anti 

H-2), 4.01 (1 H, br. s., anti CH-OH), 3.08 (1 H, br. s., syn CH-OH), 2.62-2.53 (2 H, m, syn H-3, anti H-

3), 2.50-2.37 (4 H, m, 2 syn H-4, 2 anti H-4), 2.13-2.05 (2 H, m, 1 syn H-4 and 1 anti H-4), 1.81-1.76 

(2 H, m, 1 syn H-4 and 1 anti H-4), 1.67-1.48 (8 H, m, 4 syn H-4, 4 anti H-4). Spectroscopic data are 

in agreement with the literature.65 

 

 

 

2-(hydroxy((4-chlorophenyl)methyl)cyclohexanone (79e) 

 

 
 

Diastereomeric ratio anti/syn= 2.7/1.0, 57% anti ee; 1H NMR (400 MHz, CDCl3) δ(ppm) (as a mixture 

of anti/syn diastereomers): 7.34-7.28 (4 H, m, 2 syn H-1, 2 anti H-1), 7.25-7.20 (4 H, m, 2 syn H-1, 2 

anti H-1), 5.36 (1 H, d, J=2.5 Hz, syn H-2), 4.76 (1 H, d, J=8.7 Hz, anti H-2), 2.60-2.30 (6 H, m, syn H-

3, anti H-3, 2 syn H-4, 2 anti H-4), 2.15-2.03 (2 H, m, 1 syn H-4, 1 anti H-4), 1.91-1.48 (10 H, m, 5 syn 

H-4, 5 anti H-4). Spectroscopic data are in agreement with the literature. 66 
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2-(hydroxy((2-bromophenyl)methyl)cyclohexanone (79f) 

 

 
 

Diastereomeric ratio anti/syn= 7.0/1.0, 69% anti ee; 1H NMR (400 MHz, CDCl3) δ(ppm) (anti): 7.56-

7.48 (2 H, m, H-1), 7.39-7.30 (1 H, m, H-1), 7.17-7.09 (1 H, m, H-1), 5.33 (1 H, dd, J=8.5 Hz, 4.0 Hz, 

H-2), 4.05 (1 H, br. s., CH-OH), 2.73-2.63 (1 H, m, H-3), 2.50-2.44 (1 H, m, H-4), 2.39-2.35 (1 H, m, H-

4), 2.14-2.06 (1 H, m, H-4), 1.81-1.75 (1 H, m, H-4), 1.69-1.50 (4 H, m, H-4). Spectroscopic data are 

in agreement with the literature.67  

 

 

 

2-(hydroxy((3-bromophenyl)methyl)cyclohexanone (79g) 

 

 

 

Diastereomeric ratio anti/syn= 2.5/1.0, 71% anti ee; 1H NMR (400 MHz, CDCl3) δ(ppm) (as a mixture 

of anti/syn diastereomers): 7.55-7.32 (4 H, m, 2 syn H-1, 2 anti H-1), 7.24-7.16 (4 H, m, 2 syn H-1, 2 

anti H-1), 5.36 (1 H, d, J=2.3 Hz, syn H-2), 4.74 (1 H, d, J=8.7 Hz, anti H-2), 4.01 (1 H, br. s., anti CH-

OH), 2.62-2.38 (6 H, m, syn H-3, anti H-3, 2 syn H-4, 2 anti H-4), 2.15-2.04 (2 H, m, 1 syn H-4, 1 anti 

H-4), 1.90-1.50 (10 H, m, 5 syn H-4, 5 anti H-4). Spectroscopic data are in agreement with the 

literature.68  
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2-(hydroxy((4-bromophenyl)methyl)cyclohexanone (79h) 

 

 
 

Diastereomeric ratio anti/syn= 3.0/1.0, 61% anti ee; 1H NMR (400 MHz, CDCl3) δ(ppm) (as a mixture 

of anti/syn diastereomers): 7.50-7.41 (4 H, m, 2 syn H-1, 2 anti H-1), 7.23-7.14 (4 H, m, 2 syn H-1, 2 

anti H-1), 5.34 (1 H, d, J=2.5 Hz, syn H-2), 4.75 (1 H, d, J=8.7 Hz, anti H-2), 2.61-2.27 (6 H, m, syn H-

3, anti H-3, 2 syn H-4, 2 anti H-4), 2.15-2.01 (2 H, m, 1 syn H-4, 1 anti H-4), 1.92-1.40 (10 H, m, 5 syn 

H-4, 5 anti H-4). Spectroscopic data are in agreement with the literature.66  

 

 

 

 

2-hydroxy((phenyl)methyl)cyclohexanone (79i) 

 

 

 

 

 Diastereomeric ratio anti/syn: 3.5/1.0, 67% anti ee; 1H NMR (400 MHz, CDCl3) δ(ppm) (as a mixture 

of anti/syn diastereomers): 7.38-7.28 (10 H, m, 5 syn H-1, 5 anti H-1), 5.39 (1 H, d, J=2.4 Hz, syn H-

2), 4.79 (1 H, d, J=8.9 Hz, anti H-2), 2.67-2.56 (2 H, m, syn H-3, anti H-3), 2.52-2.38 (4 H, m, 2 syn H-

4, 2 anti H-4), 2.14-2.03 (2 H, m, 1 syn H-4, 1 anti H-4), 1.81-1.45 (10 H, m, 5 syn H-4, 5 anti H-4). 

Spectroscopic data are in agreement with the literature.66  
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10.4 Appendix 

 

 

Figure 22. 1H NMR spectrum of L-proline imidate 6. 
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Figure 23. 13C NMR spectrum of L-proline imidate 6. 
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Figure 24. Representative HPLC trace of the aldol reaction between 4-nitrobenzaldehyde 1 and 
cyclohexanone 2 catalysed by L-proline imidate 6. 

 

 

 

Peak Retention time (min) Area % 

1 28.6 6.370 

2 30.8 14.979 

3 35.5 76.126 

4 44.3 2.525 

Retention times are in agreement with the literature.48 
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Peak Retention time (min) Area % 

1 19.4 49.557 

2 21.3 50.443 

 

Figure 25. HPLC trace of racemic 79a. 

 

 

 

 

Peak Retention time (min) Area % 

1 19.5 87.413 

2 21.6 12.587 

 

Figure 26. HPLC trace of enantioenriched 79a. 
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Peak Retention time (min) Area % 

1 28.5 51.000 

2 35.5 49.000 

 

Figure 27. HPLC trace of racemic 79b. 

 

 

 

 

Peak Retention time (min) Area % 

1 28.7 81.164 

2 35.9 18.836 

 

Figure 28. HPLC trace of enantioenriched 79b. 
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Peak Retention time (min) Area % 

1 10.4 87.865 

2 11.9 12.135 

 

Figure 30. HPLC trace of enantioenriched 79c. 

Peak Retention time (min) Area % 

1 10.2 49.3933 

2 11.6 50.6067 

 

 

 

 

Figure 29. HPLC trace of racemic 79c 
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Peak Retention time (min) Area % 

1 13.2 48.8651 

2 16.0 51.1349 

 

Figure 31. HPLC trace of racemic 79d. 

 

 

 

 

Peak Retention time (min) Area % 

1 13.1 83.395 

2 15.8 16.605 

 

Figure 32. HPLC trace of enantioenriched 79d. 
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Peak Retention time (min) Area % 

1 14.6 51.933 

2 18.4 48.067 

 

Figure 33. HPLC trace of racemic 79e. 

 

 

 

 

Peak Retention time (min) Area % 

1 14.7 78.280 

2 18.7 21.720 

 

Figure 34. HPLC trace of enantioenriched 79e. 
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Peak Retention time (min) Area % 

1 14.7 51.489 

2 18.7 48.551 

 

Figure 35. HPLC trace of racemic 79f. 

 

 

 

 

 

Peak Retention time (min) Area % 

1 14.4 84.382 

2 18.3 15.618 

 

Figure 36. HPLC trace of enantioenriched 79f. 
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Peak Retention time (min) Area % 

1 23.4 85.179 

2 24.7 14.821 

 

Figure 37. HPLC trace of enantioenriched 79g. 

Retention times are in agreement with the literature.56 

 

 

 

 

 

Peak Retention time (min) Area % 

1 15.6 49.755 

2 19.0 50.245 

 

Figure 38. HPLC trace of racemic 79h. 
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Peak Retention time (min) Area % 

1 15.7 80.117 

2 19.1 19.883 

 

Figure 39. HPLC trace of enantioenriched 79h. 

 

 

 

 

 

 

Peak Retention time (min) Area % 

1 13.9 51.245 

2 17.9 48.755 

 

Figure 40. HPLC trace of racemic 79i. 
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Peak Retention time (min) Area % 

1 13.9 83.350 

2 17.8 16.650 

 

 
Figure 41. HPLC trace of enantioenriched 79i. 
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11. Abbreviations 

 

Ac                    acetyl 

Ar                    aryl 

BZA                 benzoic acid 

Bn                    benzyl 

Boc                  tert-butoxycarbonyl 

Cbz                  carboxybenzyl 

cat.                  catalyst    

de                    diastereomeric excess 

dr                     diastereomeric ration 

DCM                dichloromethane 

DMF                dimethyl formamide 

DMSO             dimethyl sulfoxide 

ESI                   electrospray ionisation 

ee                    enantiomeric excess 

eq.                   equivalent(s) 

Et                     ethyl 

HPLC              High Performance Liquid Chromatography 

HRMS            High Resolution Mass Spectrometry 

IUPAC            International Union of Pure and Applied Chemistry 

IPA                 isopropanol 

KHMDS          Potassium bis(trimethylsilyl)amide 

Me                  methyl 

NMR              Nuclear Molecular Resonance 

p-TsOH          para-toluensulfonic acid 

Ph                   phenyl 

RT                   room temperature 

t                      tert       

tR                     retention time 

t-BuOH          tert-butanol 

THF                 tetrahydrofuran 

TLC                 Thin Layer Chromatography 

Ts                   transition state 

TFA                trifluoroacetic acid 

TFAA              trifluoroacetic anhydride  
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