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Abstract

The topic of this thesis is the class of weakly U-abundant semigroups. This

class is very wide, containing inverse, orthodox, regular, ample, adequate, quasi-

adequate, concordant, abundant, restriction, Ehresmann and weakly abundant

semigroups. A semigroup S with subset of idempotents U is weakly U -abundant

if every R̃U -class and every L̃U -class contains an idempotent of U , where R̃U

and L̃U are relations extending the well known Green’s relations R and L. We

assume throughout that our semigroups satisfy a condition known as the Con-

gruence Condition (C).

We take several approaches to weakly U -abundant semigroups. Our first re-

sults describe those that are analogous to completely simple semigroups. Together

with an existing result of Ren this determines the structure of those weakly U -

abundant semigroups that are analogues of completely regular semigroups, that

is, they are superabundant. Our description is in terms of a semilattice of rectan-

gular bands of monoids.

The second strand is to aim for an extension of the Hall-Yamada theorem for

orthodox semigroups as spined products of inverse semigroups and fundamental

orthodox semigroups. To this end we consider weakly B-orthodox semigroups,

where B is a band. We note that if B is a semilattice then a weakly B-orthodox

semigroup is exactly an Ehresmann semigroup. We provide a description of a

weakly B-orthodox semigroup S as a spined product of a fundamental weakly B-

orthodox semigroup SB (depending only on B) and S/γB, where B is isomorphic

to B and γB is the analogue of the least inverse congruence on an orthodox

semigroup. This result is an analogue of the Hall-Yamada theorem for orthodox

semigroups. In the case thatB is a normal band, or S is weakly B-superabundant,

we find a closed form δB for γB, which simplifies our result to a straightforward

form.
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For the above to work smoothly in the case S is weakly B-superabundant,

we need to find a canonical fundamental weakly B-superabundant subsemigroup

of SB. This we do, and give the corresponding answers in the case of the Hall

semigroup WB and a number of intervening semigroups.

We then change our direction. A celebrated result of Nambooripad shows

that regular semigroups are determined by ordered groupoids built over a reg-

ular biordered set. Our aim, achieved at the end of the thesis, is to extend

Nambooripad’s work to weakly U-regular semigroups, that is, weakly U -abundant

semigroups with (C) and U generating a regular subsemigroup whose set of idem-

potents is U .

As an intervening step we consider weakly B-orthodox semigroups in this

light. We take two approaches. The first is via a new construction of an induc-

tive generalised category over a band. In doing so we produce a new approach

to characterising orthodox semigroups, by using inductive generalised groupoids.

We show that the category of weakly B-orthodox semigroups is isomorphic to

the category of inductive generalised categories over bands. Our approach is in-

fluenced by that of Nambooripad, however, there are significant differences in

strategy, the first being the introduction of generalised categories and the second

being that it is more convenient to consider (generalised) categories equipped

with pre-orders, rather than with partial orders. Our work may be regarded as

extending a result of Lawson for Ehresmann semigroups. We also examine the

trace of a weakly B-orthodox semigroup, which is a primitive weakly B-orthodox

semigroup.

We then take a more ‘traditional’ approach to weakly B-orthodox semigroups

via band categories and weakly orthodox categories over a band, equipped with

two pre-orders. We show that the category of weakly B-orthodox semigroups is

equivalent to the category of weakly orthodox categories over bands. To do so

we must substantially adjust Armstrong’s method for concordant semigroups.

Finally, we consider the most general case of weakly U -regular semigroups.

Following Nambooripad’s theorem, which establishes a correspondence between

algebraic structures (inverse semigroups) and ordered structures (inductive group-

oids), we build a correspondence between the category of weakly U -regular semi-

groups and the category of weakly regular categories over regular biordered sets,

equipped with two pre-orders.
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Preface

The aim of this thesis is to investigate weakly U -abundant semigroups, using both

techniques developed for regular and abundant semigroups, and new ones. The

relevant definitions concerning the classes of semigroups in question are given in

Chapter 2.

Fundamental semigroups, that is, regular semigroups having no non-trivial

idempotent separating congruences, have played an important role in the struc-

ture theory of regular semigroups, especially, in the study of inverse semigroups.

As an extension of Munn’s approach to inverse semigroups, Hall constructed the

fundamental semigroup WB depending only on B, which is a subsemigroup of

OP(B/L) × OP∗(B/R), where for any partially ordered set X, OP(X) is the

monoid of its order preserving selfmaps, with dual OP∗. Also, he showed that

if S is an orthodox semigroup with band of idempotents B, then there exists a

morphism φ : S → WB whose kernel is µ, the maximum idempotent separating

congruence on S. Consequently, an orthodox semigroup S with band of idem-

potents B is fundamental if and only if it is isomorphic to a full subsemigroup

of WB. Besides, Hall-Yamada showed that a regular semigroup S with band of

idempotents B is an orthodox semigroup if and only if it is isomorphic to the

spined product of the Hall semigroup WB and S/γ, where γ is the least inverse

congruence on S.

In 1981, El-Qallali and Fountain [7] generalised this result to abundant semi-

groups with band of idempotents, and satisfying the idempotent connected condi-

tion (IC) [8]. They described such a semigroup S having a band of idempotents B

as a spined product of WB and S/δB, where δB is the analogue of the least inverse

congruence (δB is in fact the least type A, or ample, congruence on S). In [46]

Ren, Shum and the author similarly extended this approach to describe weakly

B-orthodox semigroups with a stronger version (PIC) of (IC). We note that an
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abundant semigroup has (PIC) if and only if it has (IC). Condition (PIC) is de-

signed so that WB can be used in the spined product construction; but for weakly

B-abundant semigroups it is stronger than (IC). The next step was made by El-

Qallali, Fountain and Gould in [6]. They built an analogous theory for weakly

B-orthodox semigroups with (IC), or the yet weaker (WIC) [14], this time using

semigroups UB and VB in place of WB. Here UB and VB are the largest funda-

mental semigroups containing a band of idempotents B in the given classes. To

do this they make heavy use of the congruence δB. Most recently, Gomes and

Gould [17,18] removed the idempotent connected condition (WIC) (or (IC)) from

the results of [6] [7], making use of a completely fresh technology to construct a

B-fundamental weakly B-orthodox subsemigroup SB of OP(B/L)×OP∗(B/R).

The missing step is the spined product result in the case no idempotent connected

condition holds. The aim of Chapter 5 is to provide such a result.

From Chapter 6, we change our angle to investigate the connection between

algebraic structures and ordered structures. Ehresmann-Schein-Nambooripad

(ESN) built a correspondence between inverse semigroups and inductive1 groupoi-

ds. Here an inductive1 groupoid is a groupoid equipped with a partial order

possessing restrictions and co-restrictions, and the set of idempotents forming

a semilattice under the partial order. The subscript is used to distinguish this

meaning of the word ‘inductive’ from others that will appear later in this thesis.

Inverse semigroups are precisely regular semigroups in which the idempotents

form a semilattice. Consequently, we can regard the set of idempotents of a regu-

lar semigroup as a generalisation of a semilattice. This idea is precisely described

in the definition of a regular biordered set, introduced by Nambooripad [38].

In that article, Nambooripad set up a connection between regular semigroups

and inductive2 groupoids. Such a groupoid is a (functorially) ordered groupoid

equipped with the structure of a regular biordered set on its identities, which is

compatible with the ordered groupoid structure. In 1988, Nambooripad’s work

for regular semigroups was extended by Armstrong [1] from regular to concor-

dant semigroups, replacing ordered groupoids by ordered cancellative categories.

A concordant semigroup is an abundant semigroup with a regular biordered set

of idempotents and satisfying the extra condition of being idempotent connected

(IC), which is a condition of a standard type that gives some control over the posi-

tion of idempotents in products of elements of a semigroup. In 1991, Lawson [32]
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generalised the ESN theorem in a different direction to Ehresmann semigroups.

In his work, he used two partial orders on an Ehresmann semigroup to overcome

the lack of the idempotent connected condition, and established a correspondence

between Ehresmann semigroups and Ehresmann categories. In Chapters 7 and

9 we concentrate on the connection between weakly B-orthodox semigroups and

ordered structures, and in Chapter 10 we move away to the general case of weakly

U -regular semigroups. These are weakly U -abundant semigroups with (C) and

U generating a regular subsemigroup whose set of idempotents is U .

The structure of the thesis is as follows.

Chapter 1 presents some basic definitions and results related to regular

semigroups, biordered sets and categories.

Chapter 2 gives the basic definitions and fundamental notions concerning

abundant semigroups and weakly U -abundant semigroups, where U is a subset

of idempotents of a semigroup.

Chapter 3 establishes the structure of completely J̃U -simple semigroups

which are weakly U -superabundant semigroups with a single J̃U -class and satis-

fying the Congruence Condition (C). Here Condition (C) means the relations R̃U

and L̃U are left and right congruences, respectively. We show that a completely

J̃U -simple semigroup is isomorphic to a rectangular band of monoids Miλ (i ∈ I,

λ ∈ λ) and satisfying Conditions called (R) and (L). Such conditions give some

control over the position of idempotents in the D̃U -class. Finally, we build on an

existing result of Ren to show that a weakly U -superabundant semigroup with

(C) is a semilattice of rectangular bands of monoids satisfying Conditions (R)

and (L).

For the purpose of Chapter 5, we study in Chapter 4 fundamental weakly B-

superabundant semigroups. We find the largest full completely regular subsemi-

group of the Hall semigroup WB, and correspondingly, weakly B-superabundant

subsemigroups with (C) of VB (resp. UB, SB).

In Chapter 5, we obtain a general structure theorem for weakly B-orthodox

semigroups as a spined product, which may be thought of as an analogue of the

Hall-Yamada theorem. Our result is rather detailed, but simplifies drastically in

the case γB, the analogue of the least inverse congruence, has the closed form δB,

and so in particular, if the band B is normal or S is weakly B-superabundant.

In Chapter 6 we briefly recall some of the historical achievements such as the
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Ehresmann-Schein-Nambooripad (ESN) Theorem, and its many extensions due

to Armstrong [1,2], Lawson [32], Meakin [35,36] and Nambooripad [38–40]. These

results set up a connection between algebraic structures and ordered structures.

In Chapter 7 we introduce a new approach. We define inductive gener-

alised categories over bands and pseudo-functors. We show that the category of

weakly B-orthodox semigroups is isomorphic to the category of inductive gen-

eralised categories. We then turn our attention to some special cases including

orthodox semigroups, and in particular recover Lawson’s work for Ehresmann

semigroups. Our reasoning is briefly as follows. From a regular (concordant)

semigroup one can produce a certain ordered category and then endow the cat-

egory with a so-called pseudo-product. Unfortunately this need not produce the

original semigroup: to do so requires factoring by a congruence. Our use of in-

ductive generalised categories circumvents this latter inconvenience. A further

point is that we could use partial orders on a semigroup as standard in this area,

but to do so would be rather clumsy. It turns out that pre-orders provide an

effective method.

In Chapter 8, we change our angle a little to discuss the trace of weakly

B-orthodox semigroups. We show that the trace of a weakly B-orthodox semi-

group is a primitive weakly B-orthodox semigroup and we investigate primitive

weakly B-orthodox semigroups via blocked Rees matrix semigroups, which are

introduced in [10].

The purpose of Chapter 9 is to revisit weakly B-orthodox semigroups and

provide a correspondence with a class of categories (posscessing two orders) that

is more akin to the original approach of Nambooripad and Armstrong. That is,

we use triples such as in [1]. A significant point is that we continue to use two pre-

orders instead of a partial order in our work and further new tricks to overcome

the lack of an idempotent connected condition. It turns out that without the (IC)

condition and without the idempotents forming a semilattice, pre-orders provide

the most elegant approach. At the end of this chapter, we discuss some special

cases including orthodox semigroups, and recover Lawson’s work for Ehresmann

semigroups.

Chapter 10 focuses on weakly U -regular semigroups. We investigate the

correspondence between weakly U -regular semigroups and certain categories, by

extending the techniques introduced in Chapter 9.
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In Chapter 11 we are concerned with some special kinds of weakly U -

regular semigroups. We recover Armstrong’s work for concordant semigroups

and Nambooripad’s work for regular semigroups.

We tried to keep some homogeneity in notation. Most of the time, we use

Greek letters for functions, lower case letters for elements, capital letters for sets

and bold face letters for categories. We write functions and functors on the right.

We use the term morphism for homomorphism. Semigroups are usually de-

noted by S and monoids by M , but this notation is not frozen: we may also use

S for monoids and M for semigroups if needed. In general, we use B and E (or

U) to denote a band and a set of idempotents, respectively.

The reader wishing to negotiate a pathway through this thesis can use the

following diagram.

1 2

4 6 8 3

5 7 9 10

11

Figure 1: The structure of this thesis

The main result of Chapter 9 is in fact a special case of that of Chapter 10.

However, Chapter 9 introduces many of the new techniques required, but in

the more concrete content of a band, rather than a regular biordered set. The

reader wishes to avoid the full technicalities of Chapter 10 may wish to focus on

Chapter 9.
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Chapter 1

Basic Theory I

In this chapter, we mainly present certain basic definitions and results mostly

taken from [26], [38] and [34]. For further details of semigroup theory, we refer

the reader to [26], for biordered sets to [38] and for category theory to [34].

1.1 Relations

Let X be a non-empty set. A subset ρ of X × X is called a (binary)relation on

X. It is worth specifically mentioning three special relations on X: the empty

subset φ of X ×X, the universal relation X ×X and the identity relation

1X = {(x, x) : x ∈ X}.

Let B(X) denote the set of all binary relations on X. We define a binary

operation ◦ on B(X) by the rule that for any ρ, σ ∈ B(X),

ρ ◦ σ = {(x, y) ∈ X ×X : (∃z ∈ X)(x, z) ∈ ρ and (z, y) ∈ σ}.

Lemma 1.1. [26] The set B(X) forms a semigroup under ◦.

Let ρ be a relation on X. We define the domain dom(ρ) of ρ by

dom (ρ) = {x ∈ X : (∃y ∈ X)(x, y) ∈ ρ}

1
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and the co-domain ran(ρ) of ρ by

ran(ρ) = {y ∈ X : (∃x ∈ X)(x, y) ∈ ρ}.

For any x ∈ X, we define

xρ = {y ∈ X : (x, y) ∈ ρ}.

The inverse of a relation ρ on X is the relation ρ−1 on X defined by

ρ−1 = {(y, x) ∈ X ×X : (x, y) ∈ ρ}.

We pause to remark that for all ρ, ρ1, . . . , ρn in B(X),

(ρ−1)−1 = ρ,

(ρ1 ◦ ρ2 ◦ . . . ◦ ρn)−1 = ρ−1
n ◦ . . . ◦ ρ−1

2 ◦ ρ−1
1

and

dom(ρ−1) = ran(ρ), ran(ρ−1) = dom(ρ).

If ρ is a relation on X, we shall usually write ‘x ρ y’ for ‘(x, y) ∈ ρ’.

We say that a relation ρ on X is reflexive if x ρ y for all x in X, symmetric

if x ρ y implies y ρ x for all x, y in X, anti-symmetric if x ρ y and y ρ x together

imply x = y, and transitive if x ρ y and y ρ z together imply that x ρ z for all

x, y, z ∈ X.

A relation ρ on X is said to be a pre-order if it is reflexive and transitive. A

pre-order is also sometimes called a quasi-order. In this thesis, we prefer to call

it a pre-order.

A relation ρ on X is called a partial order if it is reflexive, anti-symmetric

and transitive.

A relation ρ is an equivalence relation on X if it is reflexive, symmetric and

transitive. If ρ is an equivalence relation, then the sets xρ are called ρ-classes

or equivalence classes containing x, where x ∈ X. The set of all ρ-classes of X

is said to be the quotient set of X by ρ and is denoted by X/ρ. Clearly, the
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mapping ρ♮ : X → X/ρ defined by

xρ♮ = xρ
(
x ∈ X

)

is well-defined. We shall call it the natural mapping associated to ρ.

If {ρi : i ∈ I} is a non-empty family of equivalences on a set X, then it is easy

to see that the intersection
⋂

{ρi : i ∈ I} is again an equivalence. If ρ is a relation

on X, then the family of equivalence relations containing ρ is non-empty, since

X ×X is one such equivalence, and so the intersection of all the equivalences on

X containing ρ is an equivalence, that is, the unique minimum equivalence on X

containing ρ. We shall call it the equivalence on X generated by ρ and denote it

by ρe. It is routine to show that

ρe = [ρ ∪ ρ−1 ∪ 1X ]t,

where Rt =
⋃∞

n=1 R
n is the transitive closure of an arbitrary relation R. If ρ and

σ are equivalences on X, then the family of equivalence relations containing ρ

and σ is non-empty, as X ×X is one such equivalence. By definition, (ρ ∪ σ)e is

the least equivalence containing ρ and σ. We will denote it by ρ ∨ σ.

An extremely useful result is that:

Lemma 1.2. [26] If ρ and σ are equivalences on a set X such that ρ◦σ = σ ◦ρ,

then ρ ∨ σ = ρ ◦ σ.

Note that if ρ is a pre-order on X, then the relation ≡ρ on X given by

x ≡ρ y if and only if x ρ y and y ρ x
(
x, y ∈ X

)
,

is an equivalence relation. Since ρ is a pre-order, that is, ρ is reflexive and

transitive, it immediately leads to ≡ρ being an equivalence relation. For any

x ∈ X, we will use [x] to denote the ≡ρ-class of X containing x.

In addition, the relation �ρ on X/ ≡ρ defined by

[x] �ρ [y] if and only if x ρ y

is a well-defined partial order. Since if x ≡ρ x′, y ≡ρ y′ and x ρ y, then

x′ ρ x ρ y ρ y′, and so x′ ρ y′, so that the choice of x and y does not mat-
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ter. Hence �ρ is well-defined.

It is easy to see that �ρ is reflexive and transitive as ρ is reflexive and

transitive. To show that �ρ is anti-symmetric, we suppose that [x] �ρ [y] and

[y] �ρ [x]. Then x ρ y and y ρ x, so that x ≡ρ y, that is, [x] = [y].

1.2 Ordered sets

A partially ordered set (X,≤) is a non-empty set X together with a partial order

≤. Let X be a partially ordered set with respect to ≤ and let Y be a non-empty

subset of X. An element a of Y is called maximal if there is no element of Y

strictly greater than a, that is, if for any y ∈ Y we have a ≤ y, then y = a. An

element b of Y is called maximum if y ≤ b for all y ∈ Y . Obviously, a maximum

element is maximal, but the converse is not necessarily true. We say that an

element x in X is a lower bound for Y if c ≤ y for every y ∈ Y . If the set of lower

bounds of Y is non-empty and has a maximum element d, we refer to d as the

greatest lower bound, or meet of Y . The element d is unique if it exists, and we

write

d =
∧

{y : y ∈ Y }.

In particular, if Y = {a, b}, we denote d = a ∧ b. If X is a partially ordered

set with respect to ≤ and such that a ∧ b exists for every a, b ∈ X, we say that

(X,≤) is a lower semilattice. In a lower semilattice (X,≤) we have that, for all

a, b ∈ X,

a ≤ b if and only if a ∧ b = a.

Analogously, we define the least upper bound or join

∨
{y : y ∈ Y }

of a non-empty subset Y of X and an upper semilattice.
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1.3 Semigroups and Green’s relations

1.3.1 Basic definitions

Let S be a non-empty set. A binary operation on S is a mapping µ from S × S

into S. The pair (S, µ) is said to be a semigroup if µ is associative, that is, for

all x, y, z ∈ S, ((x, y)µ, z)µ = (x, (y, z)µ)µ. To avoid the notation being rather

cumbersome, we shall follow the usual practice in algebra to write (x, y)µ as xy

and usually call xy the product of x and y. In this case, the semigroup operation

is called multiplication and the associative formula may be simply expressed as

(xy)z = x(yz).

A semigroup (S, µ) is a pair, but we shall usually say ‘S is a semigroup’ and

assume the binary operation is known.

An element e of S is called an idempotent if e2 = e. The set of idempotents

of S is denoted by E(S).

An element e of S is said to be a left (resp. right) identity if, for all x ∈ S,

ex = x (xe = x). An element is an identity element or identity if it is a left and a

right identity. It is easy to see that there exists at most one identity, which will

be called the identity and denoted by 1.

An element e of S is called a left (resp. right) zero if, for all x ∈ S, ex = e

(xe = e). An element of S is called a zero element or zero if it is a left and a right

zero. There can be at most one zero, which is then called the zero and denoted

by 0.

Observe that a left (resp. right) identity is necessary idempotent, and so is

a left (resp. right) zero.

A monoid is a semigroup with an identity. If S is a semigroup, S1 denotes

the monoid equal to S if S is a monoid and to S ∪ {1} if S is not a monoid. In

the latter case, the operation of S1 is completed by the rules

1x = x1 = x,

for all x ∈ S1. We say that S1 is S with an identity adjoined if necessary.

If S is a semigroup with or without a zero element, we usually use S0 to

denote the semigroup with underlying set S ∪ {0} and multiplication extending
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that of S, with

0x = x0 = 0
(
x ∈ S

)

and 00 = 0. We say that S0 is S with a zero adjoined.

A monoid M is a group if each of its elements has a group inverse, that

is, for all x ∈ M , there exists x′ ∈ M such that xx′ = x′x = 1. Here, x′

is a group inverse of x. Note that if x′′ is another group inverse of x, then

x′′ = x′′1 = x′′xx′ = 1x′ = x′, and so the group inverse of x is unique, so that we

shall say x′ is the group inverse of x.

A subsemigroup G of a semigroup S is said to be a subgroup if G is a group.

A 0-group is a group G with a zero adjoined.

A semigroup (resp. monoid, group) S is said to be commutative if, for all

x, y ∈ S, xy = yx.

A band is a semigroup B in which every element is an idempotent, that is,

x2 = x for all x ∈ B.

In the following, we mention some special bands.

A band B is a left zero band if, for all x, y ∈ B, xy = x. Symmetrically, a

right zero band is defined.

A normal band is a band satisfying xyzx = xzyx for all x, y, z ∈ B.

Let E be a commutative semigroup of idempotents. We define a relation ≤

on E by

x ≤ y if and only if xy = x
(
x, y ∈ E

)
.

It is easy to see that ≤ is a partial order on E. Indeed if x ∈ E, then x2 = x,

and so x ≤ x so that ≤ is reflexive. Suppose that x, y ∈ E with x ≤ y and

y ≤ x, then x = xy = yx = y, so ≤ is anti-symmetric. Furthermore, if x ≤ y

and y ≤ z in E, then x = xy and yz = y, so that xz = (xy)z = x(yz) = xy = x,

whence x ≤ z. Hence, ≤ is transitive and so ≤ is a partial order on E. We note

that for any x, y ∈ E, xy is the greatest lower bound of x and y. Consequently,

(E,≤) becomes a lower semilattice, that is, a partially ordered set in which every

pair of elements has a greatest lower bound.

Conversely, if (E,≤) is a lower semilattice, then E, together with the binary

operation ∧, forms a commutative semigroup of idempotents. If a, b, c ∈ E, then

(a ∧ b) ∧ c ≤ a ∧ b ≤ a, (a ∧ b) ∧ c ≤ a ∧ b ≤ b,
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and

(a ∧ b) ∧ c ≤ c.

Thus (a ∧ b) ∧ c is a lower bound of {a, b, c}. If d is a lower bound of {a, b, c},

then d ≤ a, d ≤ b and d ≤ c. Hence, d ≤ a ∧ b, and so d ≤ (a ∧ b) ∧ c.

Thus (a ∧ b) ∧ c is the unique greatest lower bound of {a, b, c}. Similarly, we

may show that a ∧ (b ∧ c) is the unique greatest lower bound of {a, b, c}. Hence,

a∧ (b∧ c) = (a∧ b) ∧ c, so that (E,∧) is a semigroup. Obviously, a∧a = a for all

a ∈ E and a∧ b = b∧ a for all a, b ∈ E. Thus (E,∧) is a commutative semigroup

of idempotents. Moreover, a ∧ b = a if and only if a ≤ b.

To sum up, we have:

Proposition 1.3. [26] Let (E,≤) be a lower semilattice. Then (E,∧) is a

commutative semigroup of idempotents and

(∀a, b ∈ E) a ≤ b if and only if a ∧ b = a.

Let (E, ·) be a commutative semigroup of idempotents. Then the relation ≤

on E defined by

a ≤ b if and only if ab = a

is a partial order on E with respect to which E is a lower semilattice. In (E,≤),

the meet of a and b is their product ab.

As a consequence of Proposition 1.3, the notions of ‘lower semilattice’ and

‘commutative semigroup of idempotents’ are equivalent and interchangeable. We

shall use the term semilattice to mean either concept, making free and frequent

transfers between algebraic structure and ordered structure.

We close this section with the notion of a rectangular band. A band B is said

to be rectangular if, for all x, y, z ∈ B, xyz = xz. For example, given arbitrary

non-empty sets I and J , one can define a semigroup operation on I×J by putting

(i, j) · (k, ℓ) = (i, ℓ).

The resulting semigroup I × J is a rectangular band as for any (i, j) ∈ I × J ,

(i, j) · (i, j) = (i, j),
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and for any (i, j), (λ, µ), (k, w) ∈ I × J , we have that

(i, j) · (λ, µ) · (k, w) = (i, w).

Notice that any rectangular band is isomorphic to one so constructed.

We omit the proof of the next lemma as it will be shown in Section 1.3.6.

Lemma 1.4. [26] Every band is a semilattice of rectangular bands.

1.3.2 Green’s relations

Let S be a semigroup. A relation ρ on S is called left compatible if

(∀s, t, a ∈ S) (s, t) ∈ ρ ⇒ (as, at) ∈ ρ;

the notion of right compatible is defined dually. It is called compatible if

(∀s, t, s′, t′ ∈ S) (s, s′) ∈ ρ and (t, t′) ∈ ρ ⇒ (st, s′t′) ∈ ρ.

A left (resp. right) compatible equivalence relation is called a left (resp. right)

congruence. A compatible equivalence relation is called a congruence. It is easy

to see that a relation ρ on a semigroup S is a congruence if and only if it is both

a left and a right congruence.

It is necessary to mention the theorem below as it will be used in the later

chapters.

Theorem 1.5. [26] If ρ is a congruence on a semigroup S, then S/ρ is a

semigroup with respect to the operation defined by the rule that

(xρ)(yρ) = (xy)ρ
(
∀x, y ∈ S

)

and the mapping ρ♮ : S → S/ρ defined by

xρ♮ = xρ
(
x ∈ S

)

is a morphism.

We pause here to make a short comment on Theorem 1.5. It is easy to see

that the operation (xρ)(yρ) = (xy)ρ is well-defined. Since for all x, x′, y, y′ ∈ S,
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if x ρ x′ and y ρ y′, then (x, x′) ∈ ρ and (y, y′) ∈ ρ, so that (xy, x′y′) ∈ ρ, that is,

xy ρ x′y′.

Let S be a semigroup and ρ be a congruence on S. Then we shall call ρ a

K-congruence if S/ρ is a K-semigroup. For example, if S/ρ is a semilattice, then

ρ is called a semilattice congruence.

If A and B are subsets of a semigroup S, we write AB for {ab : a ∈ A, b ∈ B}.

It is easy to see that

(∀A,B,C ∈ S) (AB)C = A(BC).

Hence notation such as ABC, A1A2 · · ·An are meaningful. To deal with singleton

sets, we shall use the notational simplifications that are customary in algebra.

For example, we will write Ab for A{b}.

A non-empty set A of a semigroup S is called a left ideal if SA ⊆ A, a right

ideal if AS ⊆ A, and a (two-sided) ideal if it is both a left and a right ideal. Note

that every (left, right) ideal is a subsemigroup; but not every subsemigroup is an

ideal. Any semigroup is an ideal of itself.

Let S be a semigroup without identity. For any a ∈ S, Sa will not in general

contain a. However,

S1a = Sa ∪ {a},

aS1 = aS ∪ {a}

and

S1aS1 = SaS ∪ Sa ∪ aS ∪ {a}.

Notice that S1a, aS1 and S1aS1 do not contain 1, so they are all subsets of S.

Precisely, they are the smallest left, right and two-sided ideals of S containing

a, respectively. Commonly, S1a is called the principal left ideal generated by a.

Dually, aS1 is the principal right ideal generated by a and S1aS1 is the principal

ideal generated by a.

Built on these ideals mentioned above, we define relations ≤L, ≤R and ≤J

on a semigroup S as follows: for any a, b ∈ S,

a ≤L b if and only if S1a ⊆ S1b,

a ≤R b if and only if aS1 ⊆ bS1,
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a ≤J b if and only if S1aS1 ⊆ S1bS1.

It is easy to see that ≤L,≤R and ≤J are pre-orders on S, respectively. Also, we

note that ≤R is left compatible. Since if a, b, c ∈ S are such that a ≤R b, then

aS1 ⊆ bS1, and so caS1 ⊆ cbS1, that is, ca ≤R cb. Dually, ≤L is right compatible.

The following lemma is immediate.

Lemma 1.6. Let S be a semigroup with set of idempotents E(S). For any e, f ∈

E(S),

(i) e ≤R f if and only if fe = e;

(ii) e ≤L f if and only if ef = e.

We denote the associated equivalences by L, R and J , respectively. So for

any a, b ∈ S,

a L b if and only if S1a = S1b,

a R b if and only if aS1 = bS1,

a J b if and only if S1aS1 = S1bS1.

In addition, we use H and D to denote the intersection and join of L and R,

respectively, that is,

H = L ∩ R and D = L ∨ R.

As usual, these equivalence relations L, R, H, D and J are called Green’s

relations [21].

The next proposition gives an alternative characterisation of Green’s rela-

tions.

Proposition 1.7. [25] Let S be a semigroup and a, b ∈ S. Then

(i) aL b if and only if there exist x, y ∈ S1 such that xa = b, yb = a;

(ii) aR b if and only if there exist u, v ∈ S1 such that au = b, bv = a;

(iii) aJ b if and only if there exist x, y, u, v ∈ S1 such that xay = b, ubv = a.

The following two lemmas give important properties of L and R.

Lemma 1.8. [26] The relation L is a right congruence and R is a left congru-

ence.

Lemma 1.9. [26] The relations L and R commute.
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In view of Lemma 1.2 and Lemma 1.9, we have

D = L ◦ R = R ◦ L.

We remark that in a group G, we have that

H = L = R = D = J = G×G

and in a commutative semigroup, we have that

H = L = R = D = J .

Before closing this section, we introduce partial orders amongst Green’s

equivalence classes. First, it is worth making a statement to simplify the no-

tation of equivalence classes. We will denote the L-class (resp. R-class, H-class,

D-class, J -class) containing the element a by La (resp. Ra, Ha, Da, Ja). Since L,

R and J are defined in terms of ideals, a partial order amongst the equivalence

classes is induced by the inclusion order amongst these ideals.

Let S be a semigroup and a, b ∈ S. Then

La ≤ Lb if and only if S1a ⊆ S1b,

Ra ≤ Rb if and only if aS1 ⊆ bS1,

Ja ≤ Jb if and only if S1aS1 ⊆ S1bS1.

Hence, S/L, S/R and S/J may be regarded as partially ordered sets.

If T is a subsemigroup of S and K is a relation on S, then K(T ) is the relation

on T and K(S) is the relation on S.

1.3.3 Regular semigroups

The notion of regularity in a semigroup is derived from von Neumann’s definition

of a regular ring [42].

An element a of a semigroup S is said to be regular if there exists x in S

such that axa = a. A semigroup S is called regular if all its elements are regular.

Groups are of course regular semigroups, but the class of regular semigroups is

vastly more extensive than the class of groups. As an analogue of the group

inverse, we have the notion of a semigroup inverse of an element. If a is an
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element of a semigroup S, we say that a′ is an inverse of a if

aa′a = a, a′aa′ = a′.

Notice that an element with an inverse is necessarily regular. Conversely, every

regular element has an inverse. Since if axa = a then we put a′ = xax and it is

routine to verify that a′ is an inverse of a.

We remark that an element a may have more than one inverse, say, in rect-

angular bands every element is an inverse of every other element. We will use

V (a) to denote the set of all inverses of a.

Let S be a regular semigroup and a ∈ S. Then there exists x ∈ S such that

a = axa, from which it follows that a ∈ Sa (resp. aS, SaS). In that case, Green’s

relations can be restated for regular semigroups as follows: for any a, b ∈ S,

a L b if and only if Sa = Sb,

a R b if and only if aS = bS,

a J b if and only if SaS = SbS.

The following theorem is very useful. Here, a D-class is regular if all its

elements are regular, or equivalently, it contains at least one regular element [26].

Theorem 1.10. [26] Let a be an element of a regular D-class D in a semigroup

S.

(i) If a′ is an inverse of a then a′ ∈ D and the two H-classes Ra ∩ La′ ,

La ∩Ra′ contain respectively the idempotents aa′ and a′a.

(ii) If b ∈ D is such that Ra ∩Lb, La ∩Rb contains idempotents e, f , respec-

tively, then Hb contains an inverse a∗ of a such that aa∗ = e, a∗a = f .

(iii) No H-class contains more than one inverse of a.

The next proposition is an immediate consequence of Theorem 1.10, which

will be of considerable use in Chapter 7.

Proposition 1.11. [26] Let e, f be idempotents in a semigroup S. Then e D f

if and only if there exists an element a in S and an inverse a′ of a such that

aa′ = e and a′a = f .

If S is a semigroup with set of idempotents E(S) we shall say that a congru-

ence ρ on S is idempotent separating if it has the property that

ρ ∩ (E(S) × E(S)) = 1E(S),
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that is, no ρ-class contains more than one idempotent. In fact, it is of interest to

recall the result, as Lallement [31] showed: on a regular semigroup a congruence

is idempotent separating if and only if it is contained in H.

A semigroup is fundamental if the largest idempotent separating congruence

is trivial.

1.3.4 Inverse semigroups

The aim of this section is to cover the basic ideas and facts about inverse semi-

groups, which may be regarded as the class of semigroups closest to groups.

A semigroup S is said to be inverse if every a in S has a unique inverse. We

will denote the unique inverse of a in S by a−1. Such a semigroup is certainly

regular, but the converse need not be true.

There are some equivalent formulation for inverse semigroups.

Theorem 1.12. [26] Let S be a semigroup with set of idempotents E(S). Then

the following statements are equivalent:

(i) S is an inverse semigroup;

(ii) S is regular and E(S) is a semilattice;

(iii) every L-class and every R-class contains exactly one idempotent.

It is convenient to recall from [26] the following elementary properties of

inverse semigroups.

Proposition 1.13. [26] Let S be an inverse semigroup with semilattice of idem-

potents E(S). Then

(i) (a−1)−1 = a for all a ∈ S;

(ii) e−1 = e for all e ∈ E(S);

(iii) (ab)−1 = b−1a−1 for all a, b ∈ S;

(iv) aea−1 ∈ E(S), a−1ea ∈ E(S) for all a ∈ S and e ∈ E(S).

A significant feature of inverse semigroups is the natural partial order rela-

tion. Let S be an inverse semigroup with semilattice of idempotents E(S). Given

a, b ∈ S, we define

a ≤ b if and only if (∃e ∈ E(S))a = eb.

It is routine to verify that this relation ≤ is a partial order.
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The following list gives several alternative characterisations of ≤.

Proposition 1.14. [26] Let S be an inverse semigroup with semilattice of idem-

potents E(S) and a, b ∈ S. Then the following statements are equivalent:

(i) a ≤ b; (ii) (∃ e ∈ E(S)) a = be;

(iii) aa−1 = ba−1; (iv) aa−1 = ab−1;

(v) a−1a = b−1a; (vi) a−1a = a−1b;

(vii) a = ab−1a; (viii) a = aa−1b.

We note that the restriction of ≤ to the semilattice E(S) of idempotents of

an inverse semigroup S is the natural semilattice order on E(S):

e ≤ f if and only if ef = e
(
e, f ∈ E(S)

)
.

Another crucial property of ≤ is that the order relation on any inverse semi-

group S is compatible with the operations of multiplication and inverse. Since if

a, b ∈ S with a ≤ b, then there exists e ∈ E(S), the semilattice of idempotents

of S, such that a = eb, and so ac = ebc, so that ac ≤ bc. The left compatibility

follows dually from Proposition 1.14(ii).

Usually, we call ≤ the natural partial order on an inverse semigroup. In

particular, the partial order ≤ is the identity relation on a group.

Another important notion for inverse semigroups is that of an idempotent

separating congruence. Howie [27] gave an alternative description of this congru-

ence:

Theorem 1.15. [27] If S is an inverse semigroup with semilattice of idempotents

E(S), then the relation

µ = {(a, b) ∈ S × S : (∀e ∈ E(S)) a−1ea = b−1eb}

is the greatest idempotent separating congruence on S.

As any inverse semigroup is regular, it follows from Lallement’s result in

Section 1.3.3 that µ is the largest congruence contained in H.

1.3.5 Orthodox semigroups

An orthodox semigroup is a regular semigroup in which the set of idempotents

forms a band.
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Due to Reilly and Scheiblich [43], we have:

Proposition 1.16. [43] If S is a regular semigroup, then the following state-

ments are equivalent:

(i) S is orthodox;

(ii) for any a, b in S, if a′ is an inverse of a and b′ is an inverse of b, then

b′a′ is an inverse of ab;

(iii) if e is idempotent then every inverse of e is idempotent;

(iv) for all a, b ∈ S, if V (a) ∩ V (b) 6= ∅, then V (a) = V (b).

Built on Proposition 1.16 (iv), Yamada [52] considered the equivalence rela-

tion

γ = {(x, y) ∈ S × S : V (x) = V (y)}

on an orthodox semigroup S in which the band B of idempotents is normal, in the

sense, xyzt = xzyt for all x, y, z, t ∈ B. A further study in the general orthodox

case by Hall [23] showed that:

Lemma 1.17. If S is an orthodox semigroup with band of idempotents B, then

the relation γ defined above is a congruence on S such that γ ∩ (B×B) = J (B).

Moreover, it is the least inverse semigroup congruence on S.

1.3.6 Completely regular semigroups

A semigroup S is said to be completely regular if there exists a unary operation

a 7→ a−1 such that

(a−1)−1 = a, aa−1a = a, aa−1 = a−1a.

The following result presents two alternative descriptions of completely reg-

ular semigroups.

Lemma 1.18. [26] Let S be a semigroup. Then the following statements are

equivalent:

(i) S is completely regular;

(ii) every element of S lies in a subgroup of S;

(iii) every H-class in S is a group.
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In view of Lemma 1.18 (iii), a completely regular semigroup is often referred

to as a union of groups.

A crucial observation about completely regular semigroups is that:

Lemma 1.19. [26] Let S be a completely regular semigroup. Then D = J and

J is a semilattice congruence on S.

Let S be a completely regular semigroup. We denote the semilattice S/J

by Y , and for each α ∈ Y we denote α(J ♮)−1 by Sα. Each Sα is a J -class of

S and a completely simple semigroup, in the sense that, it has no proper ideals

and contains a primitive idempotent (by which we mean an idempotent which is

minimal within the set of idempotents, here, for any e, f ∈ E(S), e ≤ f if and

only if ef = fe = e).

To sum up, we have:

Theorem 1.20. [26] Every completely regular semigroup is a semilattice of

completely simple semigroups.

Here, we need to mention a special subclass of the class of completely regular

semigroups, that is, the class of Clifford semigroups. A semigroup is a Clifford

semigroup if it is a semilattice of groups. These are precisely inverse semigroups

S with central idempotents, that is, in which ea = ae for all a ∈ S and e ∈ E(S).

Notice that any band B is a completely regular semigroup so that J is a

semilattice congruence on B. As each J -class of B is a rectangular band, we

obtain that every band is semilattice of rectangular bands, that is, B =
⋃

α∈Y Bα,

where Y is the index set of the J -classes of B and each Bα is a J -class.

For convenience, we will sometimes denote the Bα containing e by E(e).

Then E(e) is a rectangular band and hence E(e) ⊆ V (e). By Theorem 1.10,

V (e) ⊆ E(e), and so V (e) = E(e).

In what follows the reader should bear in mind that for a band B, two

elements are D-related if and only if they are mutually inverse.

To close this section, we present some results from [26], which will be useful

subsequently.

Lemma 1.21. [26] Let e, f be elements of a band B such that eD f . Then the

maps

θf : x 7→ fxf, θe : y 7→ eye
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are mutually inverse isomorphisms from 〈e〉 onto 〈f〉 and from 〈f〉 onto 〈e〉,

respectively.

It is worth remarking that for a band B and element e of B, 〈e〉 = {x ∈

B : xe = ex = e}. If eD f , then for any x ∈ 〈e〉 and any y ∈ 〈f〉, we have that

xD fxf and yD eye. To make the domain of the map θf clear, we shall use the

symbol θf |〈e〉 instead of simply θf . Notice that the inverse of θf |〈e〉 is θe|〈f〉.

Lemma 1.22. [26] If x, e, f are elements of a band B such that e D f , then

Lexf = Lxf and Rexf = Rex.

1.4 Biordered sets

Let E be a partial algebra, that is, a set E together with a partial binary operation

· on E. Usually, we omit the symbol ‘·’, say, if e, f ∈ E and e ·f exists in E, then

we write ef for e · f . We will express the term ‘e · f exists in E’ as ‘∃ ef ’. Set

DE = {(e, f) ∈ E ×E : ∃ ef},

that is, DE is the domain of the partial binary operation. On E we define

ωr = {(e, f) : fe = e}, ωl = {(e, f) : ef = e},

R = ωr ∩ (ωr)−1, L = ωl ∩ (ωl)−1 and ω = ωr ∩ ωl.

In addition, for any e ∈ E, we define

ωr(e) = {f ∈ E : f ωr e}

and similarly for ωl(e) and ω(e).

Definition 1.23. Let E be a partial algebra as above. Then E is a biordered

set if it satisfies axioms (B1), (B21), (B22), (B31), (B32), (B4) and their duals,

where e, f, g, h denote arbitrary elements of E.

(B1) ωr and ωl are pre-orders on E and DE = (ωr ∪ ωl) ∪ (ωr ∪ ωl)−1;

(B21) f ∈ ωr(e) ⇒ f R fe ω e;

(B22) g ωl f and f, g ∈ ωr(e) ⇒ ge ωl fe;
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(B31) g ωr f ωr e ⇒ gf = (ge)f ;

(B32) g ωl f and f, g ∈ ωr(e) ⇒ (fg)e = (fe)(ge).

Let M(e, f) denote the set ωl(e)∩ωr(f) for all e, f ∈ E. We define a relation

≺ on M(e, f) by the rule that for any g, h ∈ M(e, f),

g ≺ h if and only if eg ωr eh, gf ωl hf.

It is easy to see that ≺ is a pre-order on M(e, f). Since for any g ∈ M(e, f), we

have that g ≺ g and so it is reflexive. To show that ≺ is transitive, suppose

that g, h, k ∈ M(e, f) with g ≺ h, h ≺ k. Then

eg ωr eh, gf ωl hf,

eh ωr ek and hf ωl kf.

As ωr and ωl are pre-orders on E, we obtain that

eg ωr ek and gf ωl kf,

that is, g ≺ k. Hence, ≺ is transitive, so that ≺ is a pre-order.

We shall denote the set M(e, f), together with the pre-order ≺, by M(e, f).

Then the set S(e, f) = {h ∈ M(e, f) : g ≺ h, ∀g ∈ M(e, f)} is called the

sandwich set of e and f .

In particular, for any e ∈ E, S(e, e) = {e}. Since if h ∈ S(e, e), then h ωl e

and h ωr e so that h ω e. As e ∈ M(e, e), we have that e ≺ h, that is, e ωr eh = h

and e ωl he = h, and so e ω h. Consequently, e = h.

(B4) f, g ∈ ωr(e) ⇒ S(f, g)e = S(fe, ge).

The biordered set E is regular if it also satisfies

(R) S(e, f) 6= ∅, ∀e, f ∈ E.

We pause to make some comments on the above axioms. By Axiom (B1),

DE is symmetric. As the axioms for a biordered set are self-dual, the dual of any

true proposition is also true. If f ωr e, then by (B1), (f, e) ∈ DE , and so ∃ fe.

In (B31), if g ωr f ωr e, then by (B1), ∃ ge and by (B21), ge R g, and so ge ωr f ,
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so that by (B1), ∃ (ge)f . In (B32), if g ωl f and f ∈ ωr(e), then by the dual of

(B21), ∃ fg and fg ω f , so that fg ωr e, which implies that ∃ (fg)e by (B1).

As g ωl f and f, g ∈ ωr(e), by (B22), ge ωl fe, and so ∃ (fe)(ge) by (B1). In

(B4), if h ∈ S(f, g), then h ωr g. As g ωr e and ωr is a pre-order, we obtain that

h ωr e, and so ∃ he, so that S(f, g)e is well-defined.

A biordered subset E ′ of a biordered set E is a biordered set which is a

partial subalgebra in the usual sense. It is easy to see that for any e ∈ E, ω(e)

is a biordered subset of E. In addition, if E is regular, then for any e ∈ E, ω(e)

is regular. Since if g, k ∈ ω(e) and h ∈ S(g, k), then h ωl g and h ωr k, and so

h ∈ ω(e) so that S(g, k) ⊆ ω(e).

Lemma 1.24. Let S be a semigroup with non-empty set of idempotents E(S).

Then E(S) is a biordered set with respect to the pair of pre-orders ≤R and ≤L

on S.

Proof. For (B1), let DE(S) = (≤R ∪ ≤L) ∪ (≤R ∪ ≤L)−1. Now we show that

E(S) forms a partial algebra with respect to DE(S). Suppose that e, f ∈ E(S).

If e ≤R f , then by Lemma 1.6(i), we have fe = e ∈ E(S) and (ef)2 = efef =

e(fe)f = ef ∈ E(S). Dually, if e ≤L f , then ef = e ∈ E(S) and fe ∈ E(S).

Hence, E(S) forms a partial algebra.

From the associativity of multiplication in S and the idempotent property

of E(S), axioms (B21), (B22),(B31) and (B32) hold.

Finally, we show that (B4) holds. Suppose that e, f, g ∈ E(S) are such that

f, g ≤R e. We first verify that S(f, g)e ⊆ S(fe, ge). Assume that h ∈ S(f, g).

Then h ≤L f and h ≤R g ≤R e, and so he ∈ E(S) by Lemma 1.6. Put h′ = he.

As

h′fe = (he)fe = h(ef)e = hfe = he = h′

and

geh′ = ge(he) = g(eh)e = ghe = he = h′,
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we have that h′ ∈ M(fe, ge). Further, if k′ ∈ M(fe, ge) and k = k′f , then

k2 = k′fk′f

= k′f(ek′)f
(
k′ ≤R ge ≤ e

)

= k′(fe)k′f

= k′f
(
k′ ≤L fe

)

= k

and gk = gk′f = g(ge)k′f = (ge)k′f = k′f = k. Hence k ∈ M(f, g), so that

k ≺ h. Also,

h′f = hef

= hf
(
f ≤R e

)

= h
(
h ≤L f

)

and ke = k′fe = k′ since k′ ≤L fe. Therefore,

((fe)h′)((fe)k′) = fe(h′f)ek′

= fehek′
(
h′f = h

)

= f(eh)ek′

= fhek′
(
h ≤R g ≤R e

)

= fheke
(
k′ = ke

)

= fhe(gk)e
(
gk = k

)

= fh(eg)ke

= fhgke
(
g ≤R e

)

= fhke
(
k = gk

)

= f(hf)ke
(
h ≤L f

)

= (fh)(fk)e

= fke
(
k ≺ h

)

= fk′ = (fe)k′
(
k′ ≤R ge ≤ e

)
,

and so (fe)k′ ≤R (fe)h′. Also, we have k′(ge) ≤L h′(ge) as
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k′(ge)h′(ge) = k′g(eh′)ge

= k′gh′ge
(
h′ = he R h ≤R e

)

= k′ghege
(
h′ = he

)

= k′ghge
(
g ≤R e

)

= keghge
(
k′ = ke

)

= kghge
(
g ≤R e

)

= kge
(
k ≺ h

)

= kege
(
g ≤R e

)

= k′(ge)
(
k′ = ke

)
.

So k′ ≺ h′ in M(fe, ge). Hence, h′ ∈ S(fe, ge), and so S(f, g)e ⊆ S(fe, ge).

To see the converse, suppose that u′ ∈ S(fe, ge). Then u′ ≤R ge ≤ e and

u′ ≤L fe ≤ e, and so u′ ≤ e. Put u = u′f . Notice that

u2 = u′fu′f

= u′feu′f
(
u′ ≤ e

)

= u′f
(
u′ ≤L fe, u′2 = u′

)

= u.

Also,

gu = gu′f

= geu′f
(
u′ ≤ e

)

= u′f
(
u′ ≤R ge

)

= u.

Together with u ≤Lf , we obtain that u ∈ M(f, g). If v′ ∈ M(f, g) and v = v′e,

then
v2 = v′ev′e

= v′e
(
v′ ≤R g ≤R e

)

= v.
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In addition,

vfe = v′efe

= v′fe
(
f ≤R e

)

= v′e
(
v′ ≤L f

)

= v

and
gev = gev′e

= v′e
(
v′ ≤R g ≤R e

)

= v.

Thus, v ∈ M(fe, ge), and so v ≺ u′. Since vf = v′ef = v′, we have that

(fu)(fv′) = (fu′f)fv′

= fu′fv′

= fu′fvf

= (feu′)(fev)f
(
u′, v ≤R ge ≤ e

)

= (fev)f
(
v′ ≺ u

)

= fv′f
(
v ≤R g ≤ e

)

= fv′,

so that fv′ ≤R fu. In addition, we have v′g ≤L ug as

(v′g)(ug) = v′(gu)g

= v′ug
(
gu = u

)

= vfug
(
v′ = vf

)

= vfeug
(
u ≤R g ≤R e

)

= vug
(
vfe = v

)

= vgeug
(
u ≤R g ≤R e

)

= vgeu′fg
(
u = u′f

)

= vgeu′feg
(
g ≤R e

)

= vgeu′g
(
u′ ωl fe

)
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= vgeu′geg
(
g ≤R e

)

= vgeg
(
v ≺ u′ in M(fe, ge)

)

= vg
(
g ≤R e

)

= vfeg
(
v = vfe

)

= v′g
(
v′ = vf and g ≤R e

)
.

Hence v′ ≺ u. Thus, u ∈ S(f, g). Observe that ue = u′fe = u′ as u′ ≤L fe, so

that S(fe, ge) ⊆ S(f, g)e.

To the converse of Lemma 1.24, it is shown in [3] that every biordered set E

is the set of idempotents of some semigroup. In particular, the set of idempotents

of any regular semigroup is a regular biordered set [38]; conversely, every regular

biordered set is the set of idempotents of some regular semigroup. For further

details the reader is referred to [38].

Definition 1.25. Let E and E ′ be biordered sets, and θ : E → E ′ a mapping.

Then θ is a morphism if it satisfies

(M) (e, f) ∈ DE ⇒ (eθ, fθ) ∈ DE′ and (ef)θ = (eθ)(fθ).

θ is a regular morphism if it also satisfies

(RM1) S(e, f)θ ⊆ S ′(eθ, fθ);

(RM2) S(e, f) 6= ∅ ⇔ S ′(eθ, fθ) 6= ∅, ∀e, f ∈ E,

where S ′(eθ, fθ) denotes the sandwich set of eθ and fθ in E ′.

It is easy to see that if e ωr f then eθ ωr fθ and dually for ωl.

We remark that if E is a regular biordered set, then a morphism θ : E → E ′

is regular provided only that it satisfies (RM1), since in this case (RM2) follows

automatically.

Here, we state that if θ1 : E1 → E2 and θ2 : E2 → E3 are two morphisms,

then it is clear that θ1θ2 : E1 → E3 is also a morphism and if θ1 and θ2 are

regular, so is θ1θ2.

A (regular) morphism is said to be a (regular) isomorphism if it is bijective

and so is the inverse.
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Lemma 1.26. (c.f. Corollary 2.15 [38]) A bijective morphism is an isomorphism

if and only if it is regular.

In the following, we list some necessary properties of (regular) biordered sets

which will be used in Chapter 10.

Lemma 1.27. (c.f. Proposition 2.3 [38]) Let E be a biordered set and e, f ∈ E

be such that f ωr e, then for any g ωr f ,

(gf)e = g(fe) = (ge)(fe).

Lemma 1.28. (c.f. Proposition 2.5 [38]) Let E be a biordered set and e, e′, f, f ′ ∈

E with eL e′ and f R f ′. Then M(e, f) = M(e′, f ′). In particular, S(e, f) =

S(e′, f ′).

Lemma 1.29. (c.f. Proposition 2.2 [38]) Let E be a biordered set and (e, f) ∈

DE, then ef ∈ S(f, e).

Lemma 1.30. (c.f. Proposition 2.12 [38]) Let E be a biordered set and let

e, f, g, h ∈ E be such that g ∈ S(e, f) and h ωr f . Then S(g, h) ⊆ S(e, h);

further, S(g, h) 6= ∅ if and only if S(e, h) 6= ∅. Dually, if g ∈ S(f, e) and h ωl f ,

then S(h, g) ⊆ S(h, e), further, S(h, g) 6= ∅ if and only if S(h, e) 6= ∅.

Lemma 1.31. (c.f. Proposition 2.13 [38]) Let E be a biordered set and let e, g ∈

E with α : ω(f) → ω(f ′) being an isomorphism. If h1 ∈ S(e, f), h2 ∈ S(f ′, g),

h′
1 = (h1f)α and h′

2 = (f ′h2)α−1, then (S(h1, h
′
2)f)α = f ′S(h′

1, h2).

Lemma 1.32. (c.f. Corollary 2.8 [38]) Let E be a biordered set and e, f ∈ E be

such that either eR f or eL f . Then the map τ(e, f) : ω(e) → ω(f), defined by

the rule that for all g ∈ ω(e),

gτ(e, f) =




gf if eR f

fg if eL f,

is an isomorphism such that if either eR f R g or eL f L g, then

τ(e, f)τ(f, g) = τ(e, g)
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and

τ(e, f) = (τ(f, e))−1.

Further, if g, g′ ∈ ωr(e) and gL g′, then

τ(g, g′)τ(g′, ge) = τ(g, ge)τ(ge, g′e).

At the end of this section, we should recall a notion which is related to

biordered sets. In [38], an E-square is a 2×2 matrix


 e f

g h


, where e, f, g, h ∈

E, a biordered set, with eR f , gRh, eL g and f L h. An E−square is said to be

singular if it has one of the following two forms:

(i)


 g h

eg eh


 where g, h ∈ ωl(e) and gRh - row-singular;

(ii)


 g ge

h he


 where g, h ∈ ωr(e) and gLh - column-singular.

An E-square


 e f

g h


 is τ -commutative if the following diagram commutes:

ω(e)

ω(g) ω(h).

ω(f)
τ(e, f)

τ(e, g) τ(f, h)

τ(g, h)

Figure 1.1: The τ -commutative condition

We note that every singular E-square is τ -commutative.

Lemma 1.33. (c.f. Proposition 2.9 [38]) Let g, h ∈ ωr(e) and geLhe. Then

there exists a unique E-square G =


 g u

v h


 satisfying the following conditions:

(i) ge = ue and ve = he;

(ii) G is τ -commutative, and so h(ku) = (vk)h for all k ∈ ω(g).

Dually, we have:
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Lemma 1.34. Let g, h ∈ ωl(e) and egR eh. Then there exists a unique E-square

G =


 g u

v h


 satisfying the following conditions:

(i) eg = ev and eu = eh;

(ii) G is τ -commutative, and so h(ku) = (vk)h for all k ∈ ω(g).

Lemma 1.35. Let g, h ∈ S(e, f). Then there exists a unique E-square G =
 g u

v h


, where u, v ∈ S(e, f).

Proof. Suppose that g, h ∈ S(e, f). Then g, h ∈ ωl(e) ∩ ωr(f), egR eh and

gf Lhf . Since g, h ∈ ωr(f) and gf Lhf , it follows from Lemma 1.33 that there

exists a unique E-square G =


 g u

v h


 such that gf = uf , vf = hf and G is

τ -commutative.

As g, h ∈ ωl(e) and egR eh, therefore by Lemma 1.34, there exists a unique

E-square K =


 g i

j h


 such that eg = ej, ei = eh and K is τ -commutative.

Now, we claim that G = K. Since uLh, we have that euL eh. As euR egR eh,

we obtain that eu = eh, and so evR eh = euR eg. Since gL v, we have that

eg = ev. Hence, G satisfies the conditions in Lemma 1.34, so that G = K.

Finally, we show that u, v ∈ S(e, f). As G =


 g u

v h


 is an E-square and

g, h ∈ ωl(e) ∩ ωr(f), we obtain that u, v ∈ ωl(e) ∩ ωr(f). Notice that eu = eh,

uf L hf , then h ≺ u. As h ∈ S(e, f), we have that for any t ∈ M(e, f), t ≺ h.

Since ≺ is a pre-order, we succeed in obtaining that t ≺ u. Thus, u ∈ S(e, f).

Similarly, we have that v ∈ S(e, f).

We make a short comment on Lemma 1.35 that if S(e, f) 6= ∅ for all e, f ∈ E,

then for any g, h ∈ S(e, f), there exists k ∈ S(e, f) such that gR kLh.

1.5 Categories

Category theory was first introduced by Eilenberg and Maclane in 1945 [5]. The

key idea of category theory is to provide a fundamental and abstract way to

describe mathematical entities and their relationships via ‘objects’ that are linked

by ‘arrows’ (or ‘morphisms’). Here, we recall some basic definitions and properties

of a category [28] and [48].
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Definition 1.36. A category P consists of

(C1) a class Ob(P ) of objects;

(C2) a class Mor(P ) of morphisms (or arrows) between the objects. Each

morphism f has a unique domain d(f) ∈ Ob(P ) and codomain r(f) ∈ Ob(P ).

Denote the Mor-class of all morphisms from A ∈ Ob(P ) to B ∈ Ob(P ) by

Mor(A,B);

(C3) if A,B,C,D ∈ Ob(P ), then there is a binary operation

Mor(A,B) × Mor(B,C) → Mor(A,C), (f, g) 7→ f ◦ g,

called composition of morphisms such that if f ∈ Mor(A,B), g ∈ Mor(B,C) and

h ∈ Mor(C,D), then (f ◦ g) ◦ h = f ◦ (g ◦ h);

(C4) for each A ∈ Ob(P ), there exists a morphism 1A ∈ Mor(A,A) such

that if B ∈ Ob(P ), and f ∈ Mor(A,B), then 1A ◦ f = f and f ◦ 1B = f .

A simple but very accessible example of a category is the category Set of sets,

whose objects are sets and whose morphisms are functions from one set to another.

Here, we should mention that the objects of a category need not be sets nor the

morphisms functions. Particularly, a category is said to be ‘concrete’ if all objects

are (structured) sets, morphisms from A to B are (structure preserving) mappings

from A to B, composition of morphisms is composition of mappings, and the

identities are the identity mappings. In addition, a category P is called small

if both Ob(P ) and Mor(P ) are actually sets (small classes) and large otherwise.

The category Set is a large category. In this thesis, the large categories will all be

concrete, say, the category Semigp, consisting of all semigroups and semigroup

morphisms, is a large category since the collection of all semigroups is not a set.

Also, Semigp is a concrete category.

We now introduce the notion of a functor that is a special mapping between

categories.

Definition 1.37. Let P1 and P2 be categories. A functor F from P1 to P2 is

a pair of maps, both denoted F , from Ob(P1) to Ob(P2) and from Mor(P1) to

Mor(P2), such that the following conditions hold:

(F1) for any f ∈ P1, d(f)F = d(fF ) and r(f)F = r(fF );

(F2) if ∃ g ◦ f in P1, then (g ◦ f)F = gF ◦ fF ;

(F3) for A ∈ Ob(P1), 1AF = 1AF .
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We note that in (F2), if ∃ g ◦ f in P1, then r(g) = d(f). By (F1), we have

that r(gF ) = r(g)F = d(f)F = d(fF ), and so ∃ gF ◦ fF in P2.

For any category P , we will use IP to denote the identity functor, which

assigns each object and morphism to itself.

We view small categories as a generalisation of monoids. Clearly, a small

category with one object is a monoid. In a small category C, we often identity

e ∈ Ob(C) with 1e.

Let G be a group with identity 1G and I be a non-empty set. We construct

a small category B(G, I) as follows:

Ob(B(G, I)) = I

and for any e, f ∈ I,

Mor(e, f) = {(e, g, f) : g ∈ G}.

We define a partial binary operation on B(G, I) by

(e, g, f)(f, h, v) = (e, gh, v).

Clearly, the operation is well-defined and associative when it is defined.

For any e ∈ Ob(B(G, I)), there exists a unique identity (e, 1G, e) associated

to e.

To sum up, B(G, I) forms a category.

A semigroup S with zero is categorical at zero or is C-semigroup if for all

a, b, c ∈ S, if ab 6= 0 and bc 6= 0 then abc 6= 0.

To construct a C-semigroup from B(G, I), we adjoin a zero element 0 to

B(G, I). Then we define

0x = x0 = 0

and for any x, y ∈ B(G, I), if x · y does not exist in B(G, I), then x · y = 0,

otherwise, x · y = xy, where xy is the product in B(G, I). It is routine to verify

that B(G, I) ∪ {0} becomes a C-semigroup, denoted by B0(G, I).

A cancellative category is a small category in which we have both right and

left cancellation for morphisms. Note that any subcategory of a cancellative

category is cancellative.
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A groupoid G is a small category whose morphisms are all invertible, that

is, for any e, f ∈ Ob(G) and x ∈ Mor(e, f), there exists x−1 ∈ Mor(f, e) such

that x · x−1 = 1e and x · x−1 = 1f . Any groupoid G is cancellative. Since for

any x, y, z ∈ G, if ∃x · y, ∃x · z and x · y = x · z, then r(x) = d(y) = d(z) and

x−1 · x · y = x−1 · x · z, that is, 1r(x) · y = 1r(x) · z, and so, y = z. Thus, G is left

cancellative. Dually, G is right cancellative. One of the simplest examples of a

groupoid is a group or B(G, I).

For the reader’s convenience, we will simplify the notation from Mor(P ) to

P . In addition, for the term ‘x · y exists’ we may use the expression ‘∃x · y’ or

‘x · y is defined’.

It is a good position to mention the notion of ordered category. There exist

two ways to define an ordered category. We list both in the following. In order

to avoid ambiguity, we use subscripts.

Definition 1.38. A category P with a partial order ≤ is ordered1 if it satisfies

the following conditions:

(OC1) if x, y ∈ P with x ≤ y, then r(x) ≤ r(y) and d(x) ≤ d(y);

(OC2) if r(x) = r(y), d(x) = d(y) and x ≤ y, then x = y;

(OC3) if x′ ≤ x, y′ ≤ y and both x′ · y′ and x · y exist, then x′ · y′ ≤ x · y.

An alternative description of ordered category is that:

Definition 1.39. A category P with a partial order ≤ is ordered2 if it satisfies

Conditions (OC1), (OC3) and (OC4):

(OC4) (i) for any x ∈ P and e ∈ P with e ≤ d(x), there exists a unique

element e|x such that e|x ≤ x and d(e|x) = e;

(ii) for any x ∈ P and f ∈ P with f ≤ r(x), there exists a unique element

x|f such that x|f ≤ x and r(x|f) = f .

We pause to make a short comment on ordered1 and ordered2 categories. It

is easy to see that (OC4) implies (OC2). Since if P is an ordered2 category and

x, y ∈ P with r(x) = r(y), d(x) = d(y) and x ≤ y, then by (OC4), x = d(x)|y =

d(y)|y = y. So an ordered2 category is an ordered1 category. In (OC4), the unique

element e|x is called the restriction of x to e and dually, the unique element x|f

is called the co-restriction of x to f .

A parallel definition of an ordered2 groupoid is that:
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Definition 1.40. An ordered groupoid G is a small ordered2 category in which

Condition (G) holds:

(G) if x, y ∈ G and x ≤ y, then x−1 ≤ y−1.

If in addition,

(IG) E is a semilattice.

Then G = (G, ·,≤) is called an inductive1 groupoid.

The subscript is used to distinguish this meaning of the word ‘inductive’ from

both Ehresmann’s use and a generalised definition which will occur in Chapter 6.

Let G1 and G2 be two inductive1 groupoids. An inductive1 functor F is a

functor F : G1 → G2 preserving the order, restrictions and co-restrictions.

Next, we present a useful property of ordered2 categories, which follows from

the uniqueness of restrictions and co-restrictions.

Proposition 1.41. [1] Let P be an ordered2 category. Then for x ∈ P , e ≤

d(x) and f ≤ r(x), we have that f = r(e|x) if and only if e = d(x|f); moreover,

e|x = x|f .

Further:

Lemma 1.42. [1] Let P be an ordered2 cancellative category. Then if x, y ∈ P

are such that r(x) = d(y) and e ≤ d(x), then e|(x · y) = (e|x) · (r(e|x)|y).

Now, we introduce the notion of two categories being isomorphic.

Let C and D be two categories. We say that C is isomorphic to D if there

exist functors: F : C → D and G : D → C such that GF = ID and FG = IC ,

where ID and IC are the identity functors associated to D and C, respectively.

Observe that two isomorphic categories are identical and differ only in the

notation of their objects and morphisms. Sometimes this property is too strong,

and so we need to introduce a weaker notion of equivalence.

Definition 1.43. Let C and D be categories and let F and G be functors from

C to D. Then a natural transformation η from F to G consists of morphisms

ηX : XF → XG for all X ∈ C, such that for every morphism f : X → Y in C

we have fF ◦ ηY = ηX ◦ fG.

For ease of understand fF ◦ηY = ηX ◦fG, we use the following commutative

diagram: If, for all X ∈ Ob(C), the morphism ηX is an isomorphism in D, then
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X Y
f

XF

XG YG .

Y F
fF

ηX ηY

fG

Figure 1.2: The natural transformation property

η is said to be a natural isomorphism.

Let C and D be two categories. We say that C and D are equivalent if there

exists a functor F : C → D, a functor G : D → C, and two natural isomorphisms

ε : GF → ID and η : FG → IC .

Clearly, for an equivalence of categories, it is not necessary to require XGF =

X, but only XGF is isomorphic to X in the category D, and the same for Y FG

and Y in the category C.

To close this section, we cite from [53] an example of categories below, which

are equivalent but not isomorphic.

Let C be a category consisting of a single object a and a single morphism

1a. Let D be a category with Ob(D) = {b, c} and Mor(D) = {1b, 1c, α, β}, where

α : b → c and β : c → b are isomorphisms. Now, we define a map

F : C → D by a 7→ b and 1a 7→ 1b.

In addition, we define a map G : D → C by XG = a and fG = 1a for all

X ∈ Ob(D) and f ∈ Mor(D). It is routine to verify that F and G are functors.

Furthermore, C and D are equivalent but not isomorphic.



Chapter 2

Basic Theory II

This chapter briefly recalls basic definitions and properties of abundant semi-

groups and weakly U -abundant semigroups that generalise the definitions and

properties of regular semigroups we have introduced in Chapter 1.

2.1 Abundant semigroups

2.1.1 Relations L∗, R∗

Let S be a semigroup. We define relations ≤L∗ and ≤R∗ on S by the rule that

for any a, b ∈ S,

a ≤L∗ b if and only if a ≤L b in some over semigroup of S

and

a ≤R∗ b if and only if a ≤R b in some over semigroup of S,

where ≤L and ≤R are defined in Section 1.3.2. As ≤L and ≤R are pre-orders, we

have ≤L∗ and ≤R∗ are pre-orders, respectively. Since ≤L is right compatible and

≤R is left compatible, we have ≤L∗ is right compatible and ≤R∗ is left compatible.

Now, we denote the associated equivalences by L∗ and R∗, respectively.

So, for any a, b ∈ S, a L∗ b if and only if a L b in some oversemigroup of S.

The relation R∗ is defined dually. As usual, the intersection of the equivalence

relations L∗ and R∗ is denoted by H∗ and their join by D∗.

For ease of description, the L∗-class containing the element a of a semigroup

32
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S will be denoted by L∗
a. Then corresponding notation will be used for the classes

of the other relations.

The following basic lemma is from [10].

Lemma 2.1. [10] Let S be a semigroup and let a, b ∈ S. Then the following

statements are equivalent:

(i) (a, b) ∈ L∗;

(ii) for all x, y ∈ S1, ax = ay if and only if bx = by.

Clearly, an idempotent e of S acts as a right identity within its L∗-class. In

that case, we have:

Lemma 2.2. If e is an idempotent of a semigroup S, then the following state-

ments are equivalent for a ∈ S:

(i) (e, a) ∈ L∗;

(ii) ae = a and for all x, y ∈ S1, ax = ay implies ex = ey.

In view of its definition, L∗ is a right congruence, and dually, R∗ is a left

congruence.

We pause to mention that L ⊆ L∗ on any semigroup S. For any regular

elements a, b ∈ S, (a, b) ∈ L∗ if and only if (a, b) ∈ L. In particular, if S is a

regular semigroup, then L∗ = L.

Another way to define relations L∗ and R∗ is using certain ideals. We now

define a left (resp. right) ideal I of a semigroup S to be a left (resp. right) *-ideal

of S if L∗
a ⊆ I (resp. R∗

a ⊆ I) for all a ∈ I. A subset I of S is a *-ideal of S if it is

both a left *-ideal and a right *-ideal. In particular, if S is a regular semigroup,

then every left (resp. right, two-sided) ideal of S is a left (resp. right, two-sided)

*-ideal. Observe that for any element a of a semigroup S, S is a *-ideal of itself.

Here, there exists a smallest *-ideal containing a, a smallest left *-ideal containing

a and a smallest right *-ideal containing a. We will denote them by J∗(a), L∗(a)

and R∗(a), respectively.

Lemma 2.3. [10] Let S be a semigroup. For any a, b ∈ S,

(i) a L∗ b if and only if L∗(a) = L∗(b);

(ii) a R∗ b if and only if R∗(a) = R∗(b).

Finally, we define J ∗ by analogy with the characterisations of L∗ and R∗

given in Lemma 2.3, by saying that for any a, b ∈ S, a J ∗ b if J∗(a) = J∗(b).
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2.1.2 Abundant semigroups

This section is concerned with a class of non-regular semigroups built using the

relations L∗ and R∗.

We say that a semigroup S is abundant if every L∗-class and every R∗-class

contains at least one idempotent. If S is a such semigroup and a ∈ S, then we

denote idempotents in the L∗
a and R∗

a by a∗ and a†, respectively. Note that a∗

and a† need not be unique.

As an analogue of orthodox semigroups in the class of abundant semigroups,

we have quasi-adequate semigroups [7]. A quasi-adequate semigroup is an abun-

dant semigroup whose set of idempotents forms a subsemigroup. In particular, if

the set of idempotents of a quasi-adequate semigroup becomes a semilattice, then

it is called an adequate semigroup [9]. Note that if S is an adequate semigroup,

then for any a ∈ S, a∗ and a† are unique. Since if a◦ is another idempotent in

the L∗-class of a, then we have aa◦ = a, and so a∗a◦ = a∗ by Lemma 2.1, that

is, a◦a∗ = a∗ as E(S) is a semilattice. According to the comments succeeding

Lemma 2.1, we have a◦ = a∗. Dually, we show that a† is unique. Thus, in an ad-

equate semigroup S, we have unary operations a 7→ a∗ and a 7→ a† for any a ∈ S.

So adequate semigroups provide an abundant analogue of inverse semigroups, but

see below.

An adequate semigroup S with semilattice of idempotents E(S) is said to

be an ample semigroup or a type A semigroup if it satisfies for all a ∈ S and

e ∈ E(S):

(i) ae = (ae)†a;

(ii) ea = a(ea)∗.

In particular, an inverse semigroup is ample, where a† = aa−1 and a∗ = a−1a.

Ample semigroups are usually thought of as the appropriate abundant analogue

of inverse semigroups.

It is easy to see that morphisms between semigroups preserve Green’s rela-

tions. They need not, however, preserve L∗ and R∗. With this in mind we define

the notion of good morphisms.

Let S and T be semigroups and let φ : S → T be a morphism. Then φ is

said to be good if for any a, b ∈ S,

aL∗ b implies aφL∗ bφ,



35

aR∗ b implies aφR∗ bφ.

2.2 Weakly U-abundant semigroups

For ease of reference we gather together in this section some basic definitions and

elementary observations concerning weakly U -abundant semigroups.

2.2.1 Relations L̃U , R̃U

Let S be a semigroup. We denote as usual its set of idempotents by E(S).

Consider a non-empty subset U ⊆ E(S); we will call it the set of distinguished

idempotents. The relation ≤
L̃U

on S is defined by the rule that for all a, b ∈ S,

a ≤
L̃U

b if and only if

{e ∈ U : be = b} ⊆ {e ∈ U : ae = a}.

It is clear that ≤
L̃U

is a pre-order. We denote the associated equivalence relation

by L̃U , so that for a, b ∈ S, a L̃U b if and only if

{e ∈ U : ae = a} = {e ∈ U : be = b}.

It is easy to see that L ⊆ L∗ ⊆ L̃U . In particular, we have:

Lemma 2.4. [46] Let E(S) be the set of all idempotents of S. If a, b are regular,

then a L̃E(S) b if and only if aL b.

It follows that if S is regular and U = E(S), then L = L∗ = L̃U . Although

L and L∗ are always right compatible, the same need not be true for L̃U . The

last fact is shown by a very simple example: the null semigroup of two elements

with an adjoined identity, where the distinguished set U = {0, 1}.

Notice that for e, f ∈ U , e ≤
L̃U

f if and only if e ≤L f , so that e L̃U f if and

only if eL f . Another useful observation is that :

Lemma 2.5. [32] If a ∈ S and e ∈ U , then a L̃U e if and only if ae = a and for

all f ∈ U, af = a implies ef = e.

We observe that for any distinguished idempotent a∗ in the L̃U -class of a,

we have aa∗ = a.
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The relations ≤
R̃U

and R̃U are the left-right duals of ≤
L̃U

and L̃U . Also, if

a ∈ S and a† ∈ U are such that a R̃U a†, then we have a†a = a.

According to Lawson [33], there is another description of L̃U and R̃U . The

L̃U -class and R̃U -class containing a will be denoted by L̃U,a and R̃U,a, respectively,

abbreviated as L̃a and R̃a, where U is clear. A left ideal I of a semigroup S is

said to be a U-admissible left ideal if for every a ∈ I, L̃a ⊆ I. If a is an element

of S, then we define the principal U-admissible left ideal containing a to be the

intersection of all U -admissible left ideals containing a, and we denote it by

L̃(a). In particular, for any e ∈ U , L̃(e) = Se. Dually, we define the principal

U -admissible right ideal containing a and we denote it by R̃(a). Following the

above terminology, in [44], an ideal I of S is called U -admissible if I is both a

U -admissible right ideal and a U -admissible left ideal of S and the principal U -

admissible ideal containing a is defined to be the intersection of all U -admissible

ideals of S containing a, denoted by J̃(a). Clearly, L̃(a) ⊆ J̃(a) and R̃(a) ⊆ J̃(a)

for all a in S. The following lemma concerning L̃U , R̃U and J̃U is extracted

from [44].

Lemma 2.6. [44] Let S be a semigroup and U be a non-empty subset of E(S).

Then for any a, b ∈ S,

(a, b) ∈ L̃U if and only if L̃(a) = L̃(b);

(a, b) ∈ R̃U if and only if R̃(a) = R̃(b).

Consequently, we define the relation J̃U by the rule that

(a, b) ∈ J̃U if and only if J̃(a) = J̃(b).

To close this section, we define H̃U and D̃U as the intersection and the join of

L̃U and R̃U , respectively. Note that we do not always have that D̃U = L̃U ◦ R̃U .

2.2.2 Weakly U-abundant semigroups

In a manner analogous to the definition of an abundant semigroup, S is said to be

weakly U-abundant if every L̃U -class and every R̃U -class contains an idempotent

of U . If S is a such semigroup and a ∈ S, then we follow usual practice and
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denote idempotents in the L̃U -class and R̃U -class of a by a∗ and a†, respectively.

Note that there need not be a unique choice for a∗ and a† unless U is a semilattice.

We make some comments that if the distinguished set of idempotents of

a weakly U -abundant semigroup S is the whole set of idempotents E(S), then

usually, we call it a weakly abundant semigroup. Another point is that if we talk of

a particular weakly U -abundant semigroup, then we are referring to a particular

set of idempotents U ; on the other hand, if we are talking of the class of all

weakly U -abundant semigroups, the U varies over all possible set of idempotents.

We will be interested in semigroups S in which the relation L̃U is a right

congruence and R̃U is a left congruence. In this case, we say that S satisfies

Congruence Condition (C) (with respect to U). Indeed it seem very little theory

can be developed if we do not assume the Congruence Condition. If S is weakly

U -abundant with (C), then

xy L̃U (xy)∗ L̃U (x∗y)∗ L̃U x∗y,

for any x∗, (xy)∗ and (x∗y)∗. Dually, we have

xy R̃U (xy)† R̃U (xy†)† R̃U xy†,

for any y†, (xy)† and (xy†)†.

The next lemma gives an equivalent description of weakly U -abundant semi-

groups.

Lemma 2.7. A semigroup S is weakly U-abundant if and only if for any a ∈ S,

there exist e, f ∈ U such that L̃(a) = Se and R̃(a) = fS.

Proof. For any distinguished idempotent e in U , L̃(e) = Se. In fact, for any

a, b ∈ S, a L̃U b if and only if L̃(a) = L̃(b). Thus, a semigroup is weakly U -

abundant if and only if for any a ∈ S, there exists e ∈ U such that a L̃U e, that

is, L̃(a) = L̃(e), if and only if L̃(a) = Se. Dually, R̃(a) = fS.

For convenience, we give the next lemma.

Lemma 2.8. Let S be a weakly U-abundant semigroup. For any x, y ∈ S we have

(yx)∗ ≤L x
∗ and (xy)† ≤R x†. Further, (xy)†x† R (xy)† and y∗(xy)∗ L (xy)∗
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Proof. Let x, y ∈ S. Certainly, yxx∗ = yx, and so (yx)∗x∗ = (yx)∗ by definition

of (yx)∗ so that (yx)∗ ≤L x∗. Dually, we obtain that (xy)† ≤R x†.

In view of Lemma 1.24, the set E(S) of idempotents of S is a biordered set,

and so by (B21) and its dual in Section 1.4, (xy)†x† R (xy)† and y∗(xy)∗ L (xy)∗

in S.

Observe that morphisms between semigroups need not preserve L∗ and R∗

as mentioned in Section 2.1.2, nor L̃U and R̃U . With this in mind we define the

notion of admissible morphisms.

Let S and T be semigroups with distinguished subsets of idempotents U

and V , respectively, and let φ : S → T be a morphism. Then φ is said to be

(U ,V )-admissible if for any a, b ∈ S,

a L̃U b implies aφ L̃V bφ,

a R̃U b implies aφ R̃V bφ,

and Uφ ⊆ V . Briefly, we will refer to the notion of being (U, V )-admissible as

admissible, where no ambiguity can occur.

Moreover, φ is said to be strongly admissible [17] if for any a, b ∈ S,

a L̃U b if and only if aφ L̃Uφ bφ

and

a R̃U b if and only if aφ R̃Uφ bφ.

Naturally, a congruence ρ on S is said to be admissible if the natural morphism

ρ♮: S → S/ρ is admissible, that is (U,Uρ)-admissible.

For admissible morphisms and congruences, the following lemmas are easy

to see, making use of Lemma 2.5.

Lemma 2.9. [46] Let S, T be semigroups with distinguished subsets of idempo-

tents U , V respectively. Suppose that S is weakly U-abundant, and let φ : S → T

be a morphism. Then φ is admissible if and only if Uφ ⊆ V and for any a ∈ S

there exist idempotents f ∈ L̃a ∩ U and e ∈ R̃a ∩ U such that aφ L̃V fφ and

aφ R̃V eφ.
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Lemma 2.10. [6] Let S be a semigroup with subset of idempotents U and let

φ : S → T be an admissible surjective morphism. If S is weakly U-abundant,

then T is weakly Uφ-abundant.

Lemma 2.11. If S is a weakly U-abundant semigroup with (C) and ρ is an

admissible congruence on S, then S/ρ has (C) with respect to U/ρ.

Proof. To see that S/ρ satisfies the Congruence Condition, we assume that aρ

and bρ are elements of S/ρ such that aρ L̃U/ρ bρ. Since S is a weakly U -abundant

semigroup and ρ is an admissible congruence on S, there exist e ∈ L̃a ∩ U and

f ∈ L̃b ∩ U such that aρ L̃U/ρ eρ and bρ L̃U/ρ fρ, respectively. It follows that

eρ L̃U/ρ fρ, that is, eρL fρ. Clearly, for any cρ ∈ S/ρ, we have eρ cρL fρ cρ

because L is a right congruence. So (ec)ρL (fc)ρ. Observe that a L̃U e and

b L̃U f . It follows that ac L̃U ec and bc L̃U fc since L̃U is a right congruence on S.

Also, (ac)ρ L̃U/ρ (ec)ρ and (bc)ρ L̃U/ρ (fc)ρ since ρ is an admissible congruence.

Thus aρ cρ L̃U/ρ bρ cρ. Hence, L̃U/ρ is a right congruence on S/ρ. Dually, we can

verify that R̃U/ρ is a left congruence on S/ρ. Consequently, S/ρ satisfies the

Congruence Condition (C).

A weakly U -abundant semigroup is U-fundamental if the largest admissible

congruence contained in H̃U is trivial. For convenience we shall sometimes sim-

plify the term ‘U -fundamental weakly U -abundant semigroup’ to ‘fundamental

weakly U -abundant semigroup’.

It is easy to see that if S is a weakly U -abundant semigroup with (C) and T

is a U -full subsemigroup of S, in the sense that U ⊆ T , then T satisfies (C). In

addition, if S is U -fundamental, then T is U -fundamental.

2.2.3 Weakly U-regular semigroups

In this section we list some properties of weakly U -abundant semigroups with

(C), where U is a regular biordered set.

We first recall that if U is a biordered set, then M(e, f) denote the pre-

ordered set (ωl(e) ∩ ωr(f),≺), where

g ≺ h ⇔ eg ωr eh, gf ωl hf.
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The set S(e, f) = {h ∈ M(e, f) : g ≺ h, ∀g ∈ M(e, f)} is called the

sandwich set of e and f . In particular, if U is regular, then S(e, f) 6= ∅ for all

e, f ∈ U .

Lemma 2.12. Let S be a weakly U-abundant semigroup, where U is a regular

biordered set. For e, f ∈ U , we define

S1(e, f) = {h ∈ M(e, f) : ehf = ef},

and

S2(e, f) = {h ∈ M(e, f) : h(ef)h = h and (ef)h(ef) = ef}.

Then S1(e, f) = S2(e, f) ⊆ S(e, f).

Proof. To show that S1(e, f) = S2(e, f), we assume that h ∈ M(e, f). Then

he = h = fh, and so

h(ef)h = (he)(fh) = h and (ef)h(ef) = e(fhe)f = ehf.

Obviously, ehf = ef if and only if (ef)h(ef) = ef . Thus, S1(e, f) = S2(e, f).

We now turn to show that S1(e, f) ⊆ S(e, f). Suppose that h ∈ S1(e, f) and

g ∈ M(e, f). Then

(eh)(eg) = e(he)g = ehg = eh(fg) = (ehf)g = efg = eg,

and so eg ωr eh. Dually, gf ωl hf . Thus g ≺ h so that h ∈ S(e, f).

Let U be a set of idempotents of a semigroup S. We will use 〈U〉 to denote

the semigroup generated by U . A weakly U -abundant semigroup with (C) is said

to be a weakly U-regular semigroup if 〈U〉 is a regular semigroup whose set of

idempotents is U . We remind the reader that this terminology, based on existing

convention, needs to be viewed with care: if we talk of a particular weakly U -

regular semigroup, then we are referring to a particular set of idempotents U ; on

the other hand, if we are talking of the class of all weakly U -regular semigroups,

the U varies over all possible sets of idempotents. It is clear that the collection of

weakly U -regular semigroups and admissible morphisms forms a category, which

we denote by WRS .

Lemma 2.13. Let S be a weakly U-regular semigroup. Then S1(e, f) = S(e, f) 6=

∅ for all e, f ∈ U .
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Proof. Suppose that e, f ∈ U . Then ef is a regular element in 〈U〉. If a is

an inverse of ef in 〈U〉 and h = fae, then h ∈ 〈U〉 and h2 = (fae)(fae) =

f(aefa)e = fae = h. Together with E(〈U〉) = U , we obtain that h ∈ U . Since,

ehf = efaef = ef , it follows that h ∈ S1(e, f), and so S1(e, f) 6= ∅.

By Lemma 2.12, S1(e, f) ⊆ S(e, f). To show the converse, we assume that

g ∈ S(e, f). Let h ∈ S1(e, f). Then by Lemma 2.12, h ∈ S(e, f), and so eg R eh,

gf L hf . Thus, egf = egef = (eg)(ehf) = (eg)(eh)f = ehf = ef so that

g ∈ S1(e, f). Hence S(e, f) = S1(e, f).

2.2.4 Weakly B-orthodox semigroups

We recall that an orthodox semigroup is a regular semigroup S such that E(S)

is a band. Consequently, a weakly B-abundant semigroup is said to be weakly

B-orthodox if it has (C) and B is a band. Whenever we talk of a particular weakly

B-orthodox semigroup, then we are referring to a particular band B; on the other

hand, if we are talking of the class of all weakly B-orthodox semigroups, the B

varies over all possible bands. It is clear that the collection of weakly B-orthodox

semigroups and admissible morphisms forms a category, which we denote by WO.

Lemma 2.14. Let S be a weakly B-orthodox semigroup. For any x ∈ S and

e, f, g, h ∈ B,

(i) if e ≤R (resp. ≤L) g R x†, then ex R̃B e;

(ii) if f ≤L (resp. ≤R) h L x∗, then xf L̃B f .

Proof. To prove (i), suppose that e ≤R g R x†, then ex R̃B ex† R̃B eg R e,

otherwise, e ≤L g, and so ex R̃B eg = e. By a similar argument, we can show

that (ii) holds.

2.2.5 Ehresmann semigroups

Let S be weakly E-abundant with (C). We say that S is an Ehresmann semigroup

(with distinguished semilattice E) if E is a semilattice. It is straightforward to

see that if S is Ehresmann, then, for any a ∈ S, the elements a∗ and a† are the

unique elements of E in the L̃E-class and the R̃E-class of a, respectively. We

regard Ehresmann semigroups as algebras with signature (2, 1, 1); as such, they
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form a variety E . Indeed, E is the variety generated by A, where A is the quasi-

variety of adequate semigroups [29]. The corresponding result is the one-side case

may be found in [16] or [30].

An important property of Ehresmann semigroups is given below.

Lemma 2.15. [32] Let S be an Ehresmann semigroup with semilattice of dis-

tinguished idempotents E. Then

(i) for all x, y ∈ S, (xy)∗ ≤ y∗ and (xy)† ≤ x†;

(ii) for all e ∈ E, e∗ = e and e† = e;

(iii) for all x, y ∈ S, x L̃E y ⇔ x∗ = y∗ and x R̃E y ⇔ x† = y†;

(iv) for all x, y ∈ S, (xy)∗ = (x∗y)∗ and (xy)† = (xy†)†.

We introduce the notion of restriction semigroups as an analogue of ample

semigroups. Consequently, a restriction semigroup has also been called a weakly

E-ample semigroup, where E is the distinguished semilattice of idempotents.

There are four ways to define restriction semigroups: as varieties of algebras,

representation by (partial) mappings, using generalised Green’s relations R̃E and

L̃E , and inductive constellations. Here we define restriction semigroups by using

R̃E and L̃E .

An Ehresmann semigroup S is left restriction with distinguished semilattice

E if it satisfies the left ample condition (AL).

(AL) (∀a ∈ S, e ∈ E) ae = (ae)†a.

Similarly, an Ehresmann semigroup S with distinguished semilattice of idem-

potents E is right restriction if it satisfies the right ample condition (AR).

(AR) (∀a ∈ S, e ∈ E) ea = a(ea)∗.

An Ehresmann semigroup is a restriction semigroup if it is both a left re-

striction and a right restriction semigroup.

2.3 The idempotent connected condition

We focus on the idempotent connected condition in this section. A fuller version

of some of the ideas we present here is contained in [6], [8] and [48]. Essentially, all

of the idempotent connected and ample (formely, type A) conditions extant give

some control over the position of idempotents in products, usually facilitating

results for abundant or weakly abundant semigroups reminiscent of those in the

regular case.
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2.3.1 (WIC), (IC) and (PIC)

Let S be a weakly U -abundant semigroup. For any e ∈ U , we put

〈e〉 = 〈eue : u ∈ 〈U〉 and (eue)2 = eue〉

or equivalently,

〈e〉 = {u1 · · ·un : ui ∈ 〈U〉, u2
i = ui and ui ≤ e}.

Clearly, 〈e〉 is a subsemigroup with identity e.

We say that a weakly U -abundant semigroup S satisfies the weak idempotent

connected condition (WIC) (with respect to U) if for any a ∈ S and some a∗, a†,

if x ∈ 〈a†〉, then there exists y ∈ 〈a∗〉 with xa = ay; and dually, if z ∈ 〈a∗〉 then

there exists t ∈ 〈a†〉 with ta = az.

We pause here to make some comments on Condition (WIC). The phrase

‘for some a†, a∗’ may be replaced by ‘for any a†, a∗’. For suppose that S has

(WIC), a ∈ S, a† is the chosen idempotent of U in the R̃U -class of a, and a+ is

another element of U in the same R̃U -class. If v ∈ 〈a+〉, then

v = u1 · · ·un

(
ui ∈ 〈U〉, ui = u2

i , ui ≤ a+
)
.

So

a†va† = va† = (u1a
†) · · · (una

†).

Certainly, uia
† ∈ 〈U〉, uia

† ≤ a† and (uia
†)2 = uia

†uia
† = uia

†. Thus, va† ∈ 〈a†〉,

and so by (WIC), va = va†a = ak for some k ∈ 〈a∗〉. Then k = w1 · · ·wm for

some wi ∈ 〈U〉, w2
i = wi and wi ≤ a∗. As above, for any a◦ ∈ U lying in the

L̃U -class of a, we have a◦k = (a◦w1) · · · (a◦wm) ∈ 〈a◦〉, and so va = ak = a(a◦k).

Thus in the condition of (WIC) we may choose the y lie in any given 〈a◦〉, and

dually, the t to lie in any given 〈a†〉.

The following lemma provides an equivalent statement of Condition (WIC).

Lemma 2.16. Let S be a weakly U-abundant semigroup. Then S satisfies (WIC)

if and only if for any a ∈ S and some (any) a∗, a†, if u ∈ 〈U〉, u2 = u and u ≤ a†

then there exists y ∈ 〈a∗〉 with ua = ay; and dually, if v ∈ 〈U〉, v2 = v and v ≤ a∗

then there exists t ∈ 〈a†〉 with ta = av.
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Proof. The necessity is clear. We now show the sufficiency. If x ∈ 〈a†〉, then

x = e1 · · · en, where ei ∈ 〈U〉, e2
i = ei and ei ≤ a†. Then we have

eia = ayi

(
yi ∈ 〈a∗〉

)
,

and so

xa = e1 · · · ena = e1 · · · en−1(ena) = e1 · · · en−1ayn = · · · = ay1 · · · yn,

where y1 · · · yn ∈ 〈a∗〉. Dually, we show the second part holds.

We now present two stronger versions of Condition (WIC) which have been

investigated in [6] and [8].

A weakly U -abundant semigroup S satisfies Condition (IC) if for any a ∈ S

and for some a†, a∗, there exists an order isomorphism α : 〈a†〉 → 〈a∗〉 such that

for all x ∈ 〈a†〉,

xa = a(xα).

The order isomorphism given above is said to be a connecting order isomorphism.

Notice that we can replace ‘some’ in (IC) by ‘any’. For suppose that a ∈ S ,

a†, a+ are idempotents of U in the R̃U -class of a, then the map

ρa† : 〈a+〉 → 〈a†〉

given by

xρa† = xa†

for all x ∈ 〈a+〉, is an isomorphism. Since if x ∈ 〈a+〉, then

x = u1 · · ·un

(
ui ∈ 〈U〉, ui = u2

i , ui ≤ a+
)
,

and so

xa† = (u1a
†) · · · (una

†),

where uia
† ∈ 〈U〉, uia

† ≤ a† and (uia
†)2 = uia

†, so that xa† ∈ 〈a†〉. Thus, ρa† is

well-defined.
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Let y be another element in 〈a+〉. Then we have

(xy)ρa† = xya† = xa†ya† = xρa†yρa† ,

and so ρa† is a morphism.

Certainly, ρa+ : 〈a†〉 → 〈a+〉 is a morphism. Further, for any x ∈ 〈a+〉, we

have

xρa†ρa+ = xa†a+ = xa+ = x

and similarly, for any z ∈ 〈a†〉, we have

zρa+ρa† = z.

Hence, ρa+ is an isomorphism.

Dually, if a∗, a◦ are idempotent of U in the L̃U -class of a, then the map

λa◦ : 〈a∗〉 → 〈a◦〉

given by

xλa◦ = a◦x

for any x ∈ 〈a∗〉, is an isomorphism.

Let α be an order isomorphism from 〈a†〉 → 〈a∗〉 such that xa = a(xα) for

all x ∈ 〈a†〉. Then certainly, ρa†αλa◦ is an order isomorphism from 〈a+〉 to 〈a◦〉

and also, for any z ∈ 〈a+〉, we have

za = za†a = a((za†)α) = aa◦((za†)α) = a(zρa†αλa◦).

Consequently, ρa†αλa◦ : 〈a+〉 → 〈a◦〉 is an order isomorphism as required in

Condition (IC).

Yet another version of Condition (WIC) is Condition (PIC). We say that

a weakly U -abundant semigroup S satisfies (PIC) if for all a ∈ S and for some

a†, a∗, there exists an isomorphism α : 〈a†〉 → 〈a∗〉 such that for all x ∈ 〈a†〉,

xa = a(xα).

The isomorphism given above is said to be a connecting isomorphism. As



46

with the definition of (WIC) (resp. (IC)), we can use the same method as that

for Condition (IC) to replace ‘some’ by ‘any’, so we omit it.

The following Lemma is cited from [6].

Lemma 2.17. Let T be a full subsemigroup of a weakly U-abundant semigroup

S. If S satisfies (WIC) (resp. (IC), (PIC)), then so does T .

2.3.2 Special cases

In this section we concentrate on some special kinds of weakly U -abundant semi-

group with (WIC) (resp. (IC), (PIC)).

Let S be a weakly U -regular semigroup. Since E(〈U〉) = U , it follows that

for any e ∈ U ,

〈e〉 = 〈eue : u ∈ 〈U〉 and eue ∈ U〉,

that is,

〈e〉 = 〈v : v ∈ U and v ≤ e〉,

or equivalently,

〈e〉 = {v1 · · · vn : vi ∈ U and vi ≤ e}.

For a band B and element e of B, we have

〈e〉 = 〈eue : u ∈ B〉

so that if x = (eu1e) · · · (eune) ∈ 〈e〉, then x ∈ B and x ≤ e. Conversely, if

y ∈ B and y ≤ e, then y = eye ∈ 〈e〉. Thus 〈e〉 is the principal order ideal

generated by e, that is

〈e〉 = {x ∈ B : x ≤ e} = {x ∈ B : ex = xe = e}.

A weakly B-orthodox semigroup with (WIC) (resp. (IC), (PIC)) has been

mentioned variously in [6], [11], [14], [15], [16], [17] and [19].

We now describe an important connection between Condition (WIC) and

Conditions (AL) and (AR) on an Ehresmann semigroup below.

Lemma 2.18. Let S be an Ehresmann semigroup with distinguished semilattice

of idempotents E. Then S has (WIC) if and only if it satisfies Conditions (AL)

and (AR), that is, S is a restriction semigroup.
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Proof. Clearly, if S satisfies Conditions (AL) and (AR), then it has (WIC).

Conversely, suppose that S is an Ehresmann semigroup with distinguished

semilattice of idempotents E and satisfying (WIC). For any a ∈ S and e ∈ E,

we have ae = aa∗ea∗ = fa for some f ∈ E, from which it follows that fae = ae,

and so f(ae)† = (ae)†. Thus,

(ae)†a = f(ae)†a = (ae)†fa = (ae)†ae = ae.

Dually, ea = a(ea)∗. Hence, S satisfies Conditions (AL) and (AR).

If S is abundant, we replace the distinguished set of idempotents U by the

whole set of idempotents E(S). For an element e of E(S),

〈e〉 = {(eu1e) · · · (eune) : ui ∈ 〈E(S)〉, euie ∈ E(S)}

= {v1 · · · vn : vi ∈ E(S), vi ≤ e}

= 〈f : f ∈ E(S), f ≤ e〉.

Thus, 〈e〉 is generated by all idempotents f satisfying f ≤ e.

In [8], El-Qallali and Fountain introduced the notion of Condition (IC) in

the abundant case, as we describe below.

An abundant semigroup S with set of idempotents E(S) is idempotent con-

nected (IC) if for any a ∈ S, and for some a†, a∗, there exists a bijection

α : 〈a†〉 → 〈a∗〉 such that xa = a(xα) for all x ∈ 〈a†〉.

It is easy to see that the bijection α in Condition (IC) must be an isomor-

phism. Since if x, y ∈ 〈a†〉, then xy ∈ 〈a†〉 and (xy)a = a(xy)α. But also xya =

xa(yα) = a(xα)(yα). So a(xy)α = a(xα)(yα). Since (xy)α, (xα)(yα) ∈ 〈a∗〉 and

aL∗ a∗, we have that a∗(xy)α = a∗(xα)(yα), and so (xy)α = (xα)(yα). Usu-

ally, we call such α a connecting isomorphism. Thus the notion of (IC) from [8]

coincides with the notion of (IC) in Section 2.3.1. A further point is that the con-

necting isomorphism α : 〈a†〉 → 〈a∗〉 is unique. Since if β : 〈a†〉 → 〈a∗〉 is another

connecting isomorphism, then for any x ∈ 〈a†〉, we have xa = a(xα) = a(xβ). As

a L∗ a∗, we have that a∗(xα) = a∗(xβ), and so xα = yβ so that α = β. Finally,

we note that the notion of Condition (IC) defined by El-Qallali and Fountain co-

incides with Condition (PIC); in addition, Condition (WIC) and Condition (IC)

coincide in the abundant case, as the following lemma demonstrates.
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Lemma 2.19. [8] Let S be an abundant semigroup with set of idempotents E(S).

Then the following statements are equivalent:

(i) S satisfies (IC);

(ii) for each a ∈ S, the following two conditions hold:

(a) for each e ≤ a†, there exists f ≤ a∗ (resp. f ∈ S) such that

ea = af ;

(b) for each g ≤ a∗, there exists h ≤ a† (resp. h ∈ S) such that

ha = ag.

We make a short comment on Lemma 2.19. In part (a) of (ii), f is unique.

Since if k ≤ a∗ and ea = ak, then we have ak = af . As a∗ L∗ a, we obtain that

a∗k = a∗f , that is, k = f . Dually, in part (b) of (ii), h is unique.

We say that an abundant semigroup is a concordant semigroup if it satisfies

(IC) and the set of idempotents forms a regular biordered set. An abundant

semigroup is a Type W semigroup if it satisfies (IC) and the set of idempotents

forms a band. In view of Lemma 2.18, it is easy to see that an adequate semigroup

S has (IC) if and only if it is an ample semigroup.

At the end of this section, we turn our attention to the regular case. If S is

a regular semigroup, then for any a ∈ S and any inverse a′ of a, there exists an

isomorphism

α : 〈aa′〉 → 〈a′a〉

defined by

xα = a′xa

for all x ∈ 〈aa′〉. For suppose that if x ∈ 〈aa′〉, then

x = v1 · · · vn

(
vi ∈ E(S), vi ≤ aa′

)
,

and so
a′xa = a′v1 · · · vna

= a′v1aa
′v2 · · ·aa′vna

= w1 · · ·wn

(
wi = a′via

)
.
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Now ,

w2
i = (a′via)(a′via)

= a′(viaa
′vi)a

= a′v2
i a

(
vi ≤ aa′

)

= a′via
(
vi ∈ E(S)

)

= wi

and clearly, wi ≤ a′a, so that xα ∈ 〈a′a〉. Thus, α is well-defined. If also

y ∈ 〈aa′〉, then

(xy)α = a′xya = a′xaa′ya = (xα)(yα),

and so α is a morphism. Similarly, β : 〈a′a〉 → 〈aa′〉 given by

xβ = axa′
(
x ∈ 〈a′a〉

)

is a morphism. Moreover,

αβ = 1〈aa′〉 and βα = 1〈a′a〉

so that α is an isomorphism. In addition, for any x ∈ 〈aa′〉, we have xa = aa′xa =

a(xα) and consequently, S has (IC).



50

Figure 2.1: Classes of semigroups

In the above picture, (WIC) denotes weakly U -regular semigroups with

(WIC).

2.4 An analogue of the least inverse congruence

We denote by γB the analogue for a weakly B-orthodox semigroup S of the

least inverse congruence on an orthodox semigroup, that is, γB is the smallest

admissible congruence on S such that S/γB is Ehresmann with respect to B =

B/γB. Since if {ρi : i ∈ I} is a non-empty family of admissible congruences on

S, then it is easy to see that the intersection
⋂

{ρi : i ∈ I} is again an admissible

congruence. We use γB to denote the admissible congruence generated by

{(e, f) : e D f in B}.

Then S/γB is weakly B/γB-abundant with (C) by Lemma 2.11. If ē, f̄ ∈ B/γB,

then

ē f̄ = ef = fe = f̄ ē
(
as ef D fe

)
,
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and so S/γB is an Ehresmann semigroup with respect to B/γB.

In addition, suppose that ρ is an admissible congruence on S such that S/ρ is

an Ehresmann semigroup with respect to B/ρ. Let e, f ∈ B be such that e D f .

Then
eρ = (efe)ρ = eρfρeρ = eρeρfρ = eρfρ

= eρfρfρ = fρeρfρ = (fef)ρ = fρ,

and so e ρ f so that

{(e, f) : e D f} ⊆ ρ.

Thus, γB ⊆ ρ. Hence, γB is the smallest admissible congruence on S such that

S/γB is an Ehresmann semigroup with respect to B/γB.

We wish to find a closed form for γB. These ideas have been investigated

in [6], [7], [14] and [46].

Let S be a weakly B-orthodox semigroup with (WIC) (resp. (IC), (PIC)).

The relation δB is defined on S as follows:

a δB b if and only if a = ebf, b = gah for some e, f, g, h ∈ B.

Here we remind the reader that given a band B, E(e) denotes the D-class of

B containing e.

Lemma 2.20. [14] (cf. [45], Lemma 3.5) Let S be a weakly B-abundant semi-

group. The following conditions are equivalent:

(i) a δB b;

(ii) a = ebf and b = gah for some e ∈ E(b†), f ∈ E(b∗), g ∈ E(a†) and

h ∈ E(a∗);

(iii) E(a†)aE(a∗) = E(b†)bE(b∗).

Moreover, if a δB b, then

E(a†) = E(b†) and E(a∗) = E(b∗).

Further:

Lemma 2.21. [14] Let S be a weakly B-abundant semigroup. For any e, f ∈ B,

e δB f if and only if eD f.
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Proof. Let e, f ∈ B. If e D f , then e = efe and f = fef , so that e δB f .

Conversely, if e δB f , then by Lemma 2.20, E(e†) = E(f †) and so e D f .

In view of these equivalent descriptions of δB, we now show that if S has

(WIC), then it is a congruence on S, arguing as in [6], [14] and [22]. Here D

refers to the band B.

Lemma 2.22. Let S be a weakly B-orthodox semigroup with (WIC). Then the

relation δB is the least B/D-ample congruence on S.

Proof. In view of Lemma 2.20 (iii), it is easy to see that δB is an equivalence.

Suppose now that a, b, c ∈ S with a δB b, and e, f, g, h ∈ B are such that e, g ∈

E(a†) = E(b†), f, h ∈ E(a∗) = E(b∗) satisfying that a = ebf and b = gah. Notice

that for any b† we have that eb† D b† in B, and as D is a semilattice congruence

on B, c∗eb† D c∗b† for any c∗. Consequently,

ca = cebf

= cc∗cb†bf

= c(c∗eb†)(c∗b†)(c∗eb†)bf

= c(c∗eb†c∗)(b†c∗eb†)be

= (xc)(by)f

= x(cb)yf

for some x, y ∈ B, using (WIC). Similarly, cb = u(ca)v for some u, v ∈ B.

It follows that ca δB cb so that δB is a left congruence. Dually, δB is a right

congruence.

Now, we show that δB is an admissible congruence. Suppose that a ∈ S and

e, f, g ∈ B with g R̃B a L̃B e in S. If aδBfδB = aδB, then a = gafh for some

g ∈ E((af)†) and h ∈ E((af)∗). As fh ∈ B, and so afh = a, so that efh = e as

a L̃B e. From a L̃B e, we obtain that af L̃B ef , and so h ∈ E((ef)∗) = E(ef).

Thus e δB ef , that is, eδBfδB = eδB. Hence aδB L̃B/D eδB. Dually, aδB R̃B/D gδB.

To see that δB is a B/D-ample congruence, we suppose that a ∈ S, e ∈ B

with aδB ∈ S/δB and eδB ∈ B/δB are such that eδB ≤ a†δB. Then eδBaδB =

a†δBeδBaδB = (a†ea)δB = (a†ea†a)δB = (af)δB = aδBfδB as a†ea† ≤ a† and S

satisfies (WIC). As B/D is a semilattice, it follows from Lemma 2.18 that S/δB

is a B/D-ample semigroup.
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Finally, if τ is an arbitrary B/D-ample congruence on S, then τ |B is a semi-

lattice congruence on B. Since D is the least semilattice congruence on B, it

follows that D ⊆ τ |B. For any a, b ∈ S and a δB b, we have b = eaf for some

e ∈ E(a†) and f ∈ E(a∗). As e D a† and f D a∗, we obtain that e τ a† and

f τ a∗, and so a†aa∗ τ eaf , that is, a τ b. Thus, δB ⊆ τ , and hence δB is the

least B/D-ample congruence on S.

2.5 Orders

Our purpose in this section is to describe certain pre-orders and partial orders

on a weakly U -abundant semigroup. The results present here are necessary for

Chapters 7, 9 and 10.

2.5.1 The weakly U-abundant case

The aim of this section is to present two pairs of relations on a weakly U -abundant

semigroup.

Let S be a weakly U -abundant semigroup. We define relations ≤r and ≤l

by the rule that for any x, y ∈ S,

x ≤r y if and only if x = uy for some u ∈ 〈U〉

and

x ≤l y if and only if x = yv for some v ∈ 〈U〉.

The next lemma is immediate.

Lemma 2.23. On a weakly U-abundant semigroup S, the relations ≤r and ≤l

given above are pre-orders.

In view of Lemma 2.8, we have:

Lemma 2.24. Let S be a weakly U-abundant semigroup. Then for any x, y ∈ S,

(i) if x ≤r y, then x∗ ≤L y∗;

(ii) if x ≤l y, then x† ≤R y†.

Further, a weakly U -abundant semigroup S possesses a pair of relations ≤′
r

and ≤′
l as follows: for any x, y ∈ S,
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x ≤′
r y if and only if x = ey for some e ∈ U and e ≤ y†

and

x ≤′
l y if and only if x = yf for some f ∈ U and f ≤ y∗.

We remark that if x ≤′
r y then x† ≤R y†. For suppose that x ≤′

r y, then

there exists e ∈ U and y† such that e ≤ y† and x = ey. Thus,

x† R̃U x = ey R̃U ey† = e ≤ y†,

and so x† ≤R y†. Dually, if x ≤′
l y then x∗ ≤L y∗.

Lemma 2.25. On a weakly U-abundant semigroup S, the relations ≤′
r and ≤′

l

given above are reflexive and anti-symmetric.

Proof. It is easy to see that ≤′
r is reflexive as for any x ∈ S, x = x†x. To show

that ≤′
r is anti-symmetric, we suppose that x ≤′

r y ≤′
r x. Then x = ey and

y = fx, where e, f ∈ U and e ≤ y†, f ≤ x†, and so by Lemma 2.8 or the

comment above, we have

x† ≤R e ≤ y† ≤R f ≤ x†

so that x† R y† R e R f and consequently, x = ey = y.

It is useful to make a short comment on the pair of relations ≤′
r and ≤′

l. On

a weakly U -abundant semigroup, ≤′
r is not transitive. Since if x ≤′

r y and y ≤′
r z,

then there exist e, f ∈ U such that e ≤ y†, f ≤ z†, and x = ey, y = fz. Thus,

x = efz. As y† R̃U y = fz R̃U fz† = f and e ≤ y†, we obtain that e ≤R f ,

and so by (B21) in Section 1.4, ef is an idempotent. But, we can not guarantee

that ef ∈ U , and so ≤′
r is not transitive. Dually, ≤′

l is not transitive. Now, we

use ≤′
r

t and ≤′
l
t to denote the transitive closures of ≤′

r and ≤′
l, respectively.

Lemma 2.26. Let S be a weakly U-abundant semigroup. Then relations ≤′
r

t and

≤′
l
t are partial orders on S.

We call ≤r and ≤l (resp. ≤′
r and ≤′

l, ≤′
r

t and ≤′
l
t) the natural pre-orders

(resp. natural relaions, natural partial orders) of a weakly U -abundant semigroup

S.
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2.5.2 The weakly U-regular case

Here we remind the reader that the natural pre-orders of a weakly U -abundant

semigroup will be pre-orders on a weakly U -regular semigroup. Further the nat-

ural relations of a weakly U -abundant semigroup will become partial orders on a

weakly U -regular semigroup, as we now demonstrate.

Lemma 2.27. On a weakly U-regular semigroup S, the relations ≤′
r and ≤′

l given

in Section 2.5.1 are partial orders.

Proof. In view of Lemma 2.25, it is sufficient to show that ≤′
r is transitive and

dually, ≤′
l is transitive. Suppose that x ≤′

r y and y ≤′
r z. Then there exist

e, f ∈ U such that e ≤ y†, f ≤ z†, and x = ey, y = fz. So x = efz. Referring

to the comment succeeding Lemma 2.25, we have that e ≤R f in U . As U is a

regular biordered set, we obtain that ef ∈ U by (B1), and so x ≤′
r y.

We call ≤′
r and ≤′

l the natural partial orders of a weakly U -regular semigroup.

The next lemma presents an equivalent statement for ≤′
r and ≤′

l on a weakly

U -regular semigroup.

Lemma 2.28. Let S be a weakly U-regular semigroup. For any x, y ∈ S, we

have

(i) x ≤′
r y if and only if there exists e ∈ U such that x = ey and x† ≤R y†;

(ii) x ≤′
l y if and only if there exists f ∈ U such that x = yf and x∗ ≤L y

∗.

Proof. We first show that part (i) holds and dually, part (ii) holds. Suppose that

x, y ∈ S. if x ≤′
r y, then by the comment succeeding the definition of ≤′

r in

Section 2.5.1, we have x = ey for some e ∈ U and x† ≤R y†.

Conversely, if x = ey and x† ≤R y†, then by Lemma 2.8, we have (ey)† ≤R e,

and so x† ≤R e. Note that

(x†ey†)(x†ey†) = x†e(y†x†)ey† = x†ex†ey† = x†x†ey† = x†ey†.

Since S is weakly U -regular, we have that x†ey† ∈ U . Clearly, x†ey† ≤ y†. Also,

we have

x = x†x = x†ey = x†ey†y.

Thus, x ≤′
r y.
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2.5.3 The weakly B-orthodox case

Observe that bands are regular biordered sets, and so a weakly B-orthodox semi-

group is a special kind of weakly U -regular semigroup. Consequently, the natural

pre-orders (resp. natural relations) defined in Section 2.5.1 are the natural pre-

orders (resp. natural partial orders) of a weakly B-orthodox semigroup S. To be

easily referred, we present these results in a lemma below.

Lemma 2.29. Let S be a weakly B-orthodox semigroup. Then ≤r and ≤l are

pre-orders; ≤′
r and ≤′

l are partial orders on S. If in addition S satisfies Condition

(WIC), then ≤′
l = ≤′

r.

Proof. Suppose now that S has (WIC) and x ≤′
r y. Then x = ey for some e ∈ B

and e ≤ y†. By the remark before Lemma 2.25 we have x† ≤R y†, and so

x = y†x = y†ey†y = yf for some f ∈ B, since y†ey† ≤ y†. Clearly as x = ey

we have x∗ ≤L y∗. Hence x ≤′
l y. Dually, ≤′

l ⊆ ≤′
r, so that the two relations

coincide.

2.5.4 The Ehresmann case

We remark that if E is a semilattice, then a weakly E-orthodox semigroup is an

Ehresmann semigroup (with distinguished semilattice E).

Lemma 2.30. Let S be an Ehresmann semigroup with distinguished semilattice

E. Then ≤r = ≤′
r and ≤l = ≤′

l, so that ≤r and ≤l are partial orders.

Proof. In view of Lemma 2.29, ≤′
r and ≤′

l are partial orders. Further, we notice

that if x ≤r y, where x = ey for some e ∈ E, then x = ey†y. As ey† ≤ y†, we

have that x ≤′
r y; dually, ≤l = ≤′

l.

Let S be an Ehresmann semigroup with distinguished semilattice of idem-

potents E. In [32], Lawson introduced a partial order on S as follows, for all

x, y ∈ S,

x ≤e y if and only if x = eyf for some e, f ∈ E.

Further, in an Ehresmann semigroup S,

≤l ◦≤r = ≤e = ≤r◦ ≤l .
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The following lemma describes some properties of partial orders given above.

Lemma 2.31. [32] Let S be an Ehresmann semigroup with semilattice of dis-

tinguished idempotents E.

(i) if x≤r y, then x∗ ≤ y∗ and x† ≤ y†;

(ii) if x ≤l y, then x∗ ≤ y∗ and x† ≤ y†;

(iii) if x ≤e y, then x∗ ≤ y∗ and x† ≤ y†;

(iv) if x≤r y, u≤r v, x∗ = u† and y∗ = v†, then xu≤r yv;

(v) if x ≤l y, u ≤l v, x∗ = u† and y∗ = v†, then xu ≤l yv.

Lemma 2.32. [32] Let S be an Ehresmann semigroup with semilattice of dis-

tinguished idempotents E. Then

(i) if e ≤ x†, then there exists a unique element y ∈ S such that y† = e and

y≤r x;

(ii) if e ≤ x∗, then there exists a unique element y ∈ S such that y∗ = e

and y ≤l x.

We remark that in view of Lemma 2.18, Lemma 2.29 and Lemma 2.30,

relations ≤′
r, ≤′

l, ≤r and ≤l coincide on a restriction semigroup, and so we use ≤

to denote the natural partial order on a restriction semigroup. In particular, on

an inverse semigroup S, for all a, b ∈ S, we have

a ≤ b if and only if a = eb
(
e ∈ E(S)

)
.

2.6 Examples

This section is concerned with two examples We first show how a weakly B-

orthodox semigroup may be naturally obtained from a monoid acting via mor-

phisms on the left and right of a band with identity. This construction is remi-

niscent of that underlying the free ample monoid [13], and we believe will be of

subsequent use.

Let B be a band with 1 and let T be a monoid acting on the left and right

of B by · and ◦ via morphisms such that

(t · g) ◦ t = (1 ◦ t)g and t · (g ◦ t) = g(t · 1),
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for all g ∈ B and t ∈ T .

We note that as T acts by morphisms, if e, f ∈ B with e ≤L f , then for any

t ∈ T , t · e = t · ef = (t · e)(t · f) ≤L t · f , so that · preserves ≤L. Dually, ◦

preserves ≤R.

Let S = B ∗1 T = {(e, t) : e ≤L t · 1} ⊆ B × T with semidirect product

multiplication, i.e.

(e, t)(f, s) = (e(t · f), ts).

Now if e ≤L t·1 and f ≤L s·1, then t·f ≤L t·(s·1) = ts·1, and so e(t·f) ≤L ts·1.

Thus S is closed, and consequently, it is a semigroup.

We pause here to make a short comment on the above construction. We

required the monoid T acting on both sides of the band B, but when we con-

structed the semigroup S we only used the action of T on the left of B. The

action of T on the right of B is helpful to show that each L̃B-class of S contains

an idempotent which appears below. Here B = {(e, 1) : e ∈ B}.

We now obtain a series of lemmas to verify that S constructed above is a

weakly B-orthodox semigroup.

Lemma 2.33. The set B = {(e, 1) : e ∈ B} is isomorphic to B.

Proof. Let e, f ∈ B. Then e ≤L 1B = 1T · 1B and (e, 1)(f, 1) = (e(1 · f), 1) =

(ef, 1), whence it follows that B is a band isomorphic to B.

Lemma 2.34. For any (e, t) ∈ S, (e, t) R̃B (e, 1).

Proof. Let (e, t) ∈ S. Then (e, 1)(e, t) = (e(1 · e), t) = (e, t) and if (f, 1)(e, t) =

(e, t), then (fe, t) = (e, t), so fe = e and (f, 1)(e, 1) = (e, 1). Thus, (e, t) R̃B (e, 1).

Let (e, t), (f, s) ∈ S. By Lemmas 2.33 and 2.34,

(e, t) R̃B (f, s) ⇔ e R f.

Lemma 2.35. For any (e, t) ∈ S, (e, t) L̃B (e ◦ t, 1).

Proof. Let (e, t) ∈ S. Then

(e, t)(e ◦ t, 1) = (e(t · (e ◦ t)), t)

= (e(e(t · 1)), t)

= (e, t)
(
e ≤L t · 1

)
.
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Further, if (e, t)(f, 1) = (e, t), then e(t · f) = e. Now

e ◦ t = (e(t · f)) ◦ t = (e ◦ t)((t · f) ◦ t)

= (e ◦ t)(1 ◦ t)f = ((e1) ◦ t)f

= (e ◦ t)f,

so (e ◦ t, 1)(f, 1) = (e ◦ t, 1). Thus (e, t) L̃B (e ◦ t, 1).

Again by Lemma 2.33, (e, t) L̃B (f, s) if and only if e ◦ t L f ◦ s in B.

Lemma 2.36. The semigroup S is weakly B-orthodox, where B = {(e, 1) : e ∈

B}.

Proof. In view of Lemma 2.33, 2.34 and 2.35, it is sufficient to show that S has

(C). Suppose that (e, t) R̃B (f, s) and (g, u) ∈ S. Then (g, u)(e, t) = (g(u · e), ut)

and (g, u)(f, s) = (g(u · f), us). As e R f we have u · e R u · f and then

g(u · e) R g(u · f), so that R̃B is a left congruence.

Now let (e, t) L̃B (f, s) and (g, u) ∈ S. Then (e, t)(g, u) = (e(t · g), tu) and

(f, s)(g, u) = (f(s · g), su). We have

(e(t · g)) ◦ t = (e ◦ t)((t · g) ◦ t)

= (e ◦ t)(1 ◦ t)g

= (e ◦ t)g

L (f ◦ s)g = (f(s · g) ◦ s),

so that (e(t · g)) ◦ tu L (f(s · g)) ◦ su. Thus L̃B is a right congruence. Hence, S

is weakly B-orthodox.

We now present another example which is that of a weakly U -regular semi-

group, that is not necessarily weakly B-orthodox.

Let M be a monoid and I,Λ be non-empty sets. Let P = (pλi) be a Λ × I

matrix with entries being unit elements in M .

Let S = I ×M × Λ and define a composition on S by

(i, a, λ)(j, b, µ) = (i, apλjb, µ).

Then, we have:
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Lemma 2.37. The set S forms a weakly U-abundant semigroup under the oper-

ation defined above, where U = {(i, p−1
λi , λ) : i ∈ I, λ ∈ Λ}.

Proof. Clearly, S forms a semigroup.

For any (i, p−1
λi , λ) ∈ U , we have

(i, p−1
λi , λ)(i, p−1

λi , λ) = (i, p−1
λi pλip

−1
λi , λ) = (i, p−1

λi , λ),

and so U ⊆ E(S).

To show that S is weakly U -abundant, we first show that for any (i, a, λ) ∈ S

and (j, p−1
µj , µ) ∈ U ,

(i, a, λ) R̃U (j, p−1
µj , µ) if and only if i = j,

and dually,

(i, a, λ) L̃U (j, p−1
µj , µ) if and only if λ = µ.

Suppose that (i, a, λ) R̃U (j, p−1
µj , µ), then we have

(j, p−1
µj , µ)(i, a, λ) = (i, a, λ),

that is,

(j, p−1
µj pµia, λ) = (i, a, λ),

and so i = j.

Conversely, if i = j, then

(i, p−1
µi , µ)(i, a, λ) = (i, p−1

µi pµia, λ) = (i, a, λ).

Suppose that (k, p−1
γk , γ) ∈ U is such that (k, p−1

γk , γ)(i, a, λ) = (i, a, λ). Then we

obtain that (k, p−1
γk pγia, λ) = (i, a, λ), and so we must have k = i so that

(k, p−1
γk , γ)(i, p−1

µi , µ) = (k, p−1
γk pγip

−1
µi , µ)

= (i, p−1
γi pγip

−1
µi , µ)

(
k = i

)

= (i, p−1
µi , µ).

Thus, (i, a, λ) R̃U (i, p−1
µi , µ). Hence, S is a weakly U -abundant semigroup.
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In view of the proof of Lemma 2.37, the next lemma is immediate.

Lemma 2.38. For any (i, a, λ), (j, b, µ) ∈ S, we have

(i) (i, a, λ) R̃U (j, b, µ) if and only if i = j;

(ii) (i, a, λ) L̃U (j, b, µ) if and only if λ = µ.

Lemma 2.39. The semigroup S satisfies (C).

Proof. Suppose that (i, a, λ), (j, b, µ), (k, c, γ) ∈ S are such that (i, a, λ) R̃U (j, b, µ).

Then i = j. Observe that

(k, c, γ)(i, a, λ) = (k, cpγia, λ)

R̃U (k, cpγib, µ)
(
Lemma 2.38

)

= (k, c, γ)(i, b, µ)

= (k, c, γ)(j, b, µ)
(
i = j

)

so that R̃U is a left congruence. Dually, we show that L̃U is a right congruence.

Lemma 2.40. If e, f ∈ U , then e R ef L f in 〈U〉.

Proof. Let e = (i, p−1
λi , λ) and f = (j, p−1

µj , µ) ∈ U . Then

ef = (i, p−1
λi , λ)(j, p−1

µj , µ) = (i, p−1
λi pλjp

−1
µj , µ).

Take a = (j, p−1
λj , λ)(i, p−1

λi , λ) ∈ 〈U〉. Then we have

efa = (i, p−1
λi pλjp

−1
µj , µ)(j, p−1

λj , λ)(i, p−1
λi , λ)

= (i, p−1
λi pλjp

−1
µj pµjp

−1
λj pλip

−1
λi , λ)

= (i, p−1
λi , λ)

= e

and eef = ef so that ef R e in 〈U〉. Dually, we have ef L f in 〈U〉.

Lemma 2.41. The semigroup 〈U〉 generated by U is regular and E(〈U〉) = U .

Proof. Let (i, a, λ) ∈ 〈U〉. Then

(i, a, λ) = e1 · · · en

(
e1, · · · , en ∈ U

)
.
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We now show that (i, a, λ) R e1 in 〈U〉 and dually, we have a L en in 〈U〉. By

Lemma 2.40, if n = 2, then certainly the statement holds. We assume that

e2 · · · en R e2 in 〈U〉. Then

(i, a, λ) = e1(e2 · · · en) R e1e2

R e1

(
Lemma 2.40

)
.

Hence, 〈U〉 is a regular semigroup.

With (i, a, λ) as in the statement of this lemma, we have (i, a, λ) R (i, p−1
µi , µ)

for any µ ∈ Λ, and if (k, p−1
λk , λ) ∈ U , then we have (i, a, λ) L (k, p−1

λk , λ).

Now, we show that E(〈U〉) = U . Clearly U ⊆ E(〈U〉). To show that

E(〈U〉) ⊆ U , we suppose that (i, a, λ) ∈ E(〈U〉). Then (i, a, λ) H (i, p−1
λi , λ).

Since both (i, a, λ) and (i, p−1
λi , λ) are idempotent and each H-class contains at

most one idempotent, we must have that (i, a, λ) = (i, p−1
λi , λ) so that E(〈U〉) ⊆

U .

To sum up, we have :

Theorem 2.42. The semigroup S is a weakly U-regular semigroup, where U =

{(i, p−1
λi , λ) : i ∈ I, λ ∈ Λ}.



Chapter 3

Weakly U-superabundant

semigroups with (C)

A weakly U -superabundant semigroup is a weakly U -abundant semigroup in

which every H̃U -class contains a distinguished idempotent of U . Such semigroups

are analogous to completely regular semigroups. The purpose of this chapter is to

build a complete construction modulo the semilattice decomposition for weakly

U -superabundant semigroups with (C).

We make the convention that B will always denote a band. Green’s relation

D will always refer to B, unless stated otherwise. To avoid ambiguity, if K is a

relation on a semigroup S, then we will use K(S) to denote the relation on S in

some places.

3.1 Weakly U-superabundant semigroups with

(C)

In this section, we are concerned with some properties of weakly U -superabundant

semigroups with (C), which broadly determine their structure.

Lemma 3.1. [33] If S is a weakly U-superabundant semigroup, then

D̃U = L̃U ◦ R̃U = R̃U ◦ L̃U .

Further:
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Lemma 3.2. Let S be a weakly U-superabundant semigroup. If distinguished

idempotents e, f ∈ U are D̃U -related, then there exists h ∈ U such that eL hR f.

Proof. Let e, f ∈ U be such that e D̃U f . By Lemma 3.1, there exists x ∈ S such

that e L̃U x R̃U f . As S is weakly U -superabundant, there exists h ∈ U such that

h H̃U x, and so e L̃U h R̃U f . Thus, eLhR f .

As an analogue of the fact that J = D on a completely regular semigroup,

we have:

Lemma 3.3. [44] If S is a weakly U-superabundant semigroup with (C), then

J̃U = D̃U , and J̃U is a semilattice congruence on S.

From Lemma 3.3, if S is a weakly U -superabundant semigroup with (C),

then each D̃U -class forms a semigroup. We can say more.

Lemma 3.4. If a, b are D̃U -equivalent elements in a weakly U-superabundant

semigroup S with (C), then a R̃U ab L̃U b.

Proof. Suppose that a D̃U b in S and e, f ∈ U with e H̃U a, f H̃U b. Then

e D̃U f . By Lemma 3.2, there exists k ∈ U such that e L k R f , and so

ab R̃U af R̃U ak = a and ab L̃U eb L̃U kb = b.

Hence, a R̃U ab L̃Ub.

It is useful to mention the next lemma.

Lemma 3.5. [33] If a weakly U-abundant semigroup S satisfies (C) and e ∈ U ,

then H̃e is a monoid with respect to e.

Lemma 3.6. Let S be a weakly U-superabundant semigroup with (C) and let

a ∈ S and e, f, h ∈ U be such that h H̃U a and e L̃U a R̃U f . Then the right

translations ρf |
L̃a

, ρh|
L̃f

are mutually inverse R̃U -class preserving bijections from

L̃a onto L̃f and L̃f onto L̃a, respectively.

Proof. It is easy to see that ρf |
L̃a

is a map from L̃a to L̃f since for any x ∈ L̃a,

xρf = xf L̃U hf = f . Similarly, we can show that ρh|
L̃f

is a map from L̃f to L̃a.

And we deduce that for any x ∈ L̃a and y ∈ L̃f ,

xρfρh = xfh = x(fh) = xh = x and yρhρf = yhf = y(hf) = yf = y.
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Thus the right translations ρf |
L̃a

, ρh|
L̃f

are mutually inverse bijections from L̃a

onto L̃f and L̃f onto L̃a, respectively. Since f R̃U h and R̃U is a left congruence

it follows that for any x ∈ L̃a, xf R̃U xh = x, that is, the right translation ρf |
L̃a

preserves the R̃U -class. By a similar argument, we have the right translation

ρh|
L̃f

preserves the R̃U -class.

We have a left-right dual featuring:

Lemma 3.7. Let S be a weakly U-superabundant semigroup with (C) and let

a ∈ S and e, f, h ∈ U be such that h H̃U a and e L̃U a R̃U f . Then the left

translations λe|R̃a
, λh|

R̃e
are mutually inverse L̃U -class preserving bijections from

R̃a onto R̃e and R̃e onto R̃a, respectively.

Lemma 3.8. If a, b are D̃U -equivalent elements in a weakly U-superabundant

semigroup S with (C), then H̃a is isomorphic to H̃b.

Proof. Suppose that a D̃U b in S and e, f ∈ U with e H̃U a, f H̃U b. By Lemma 3.1,

there exists c ∈ S such that a R̃U c L̃U b. Since S is a weakly U -superabundant

semigroup it follows that there is a distinguished idempotent h ∈ U such that

h H̃U c. Due to Lemma 3.6, ρh|
H̃a

and ρe|H̃c
are mutually inverse bijections

from H̃a onto H̃c and from H̃c onto H̃a, respectively. By Lemma 3.7, λf |
H̃c

and

λh|
H̃b

are mutually inverse bijections from H̃c onto H̃b and from H̃b onto H̃c,

respectively. So we have that ρh|
H̃a
λf |

H̃c
and λh|

H̃b
ρe|H̃c

are mutually inverse

bijections from H̃a onto H̃b and H̃b onto H̃a, respectively.

We still need to show that ρh|
H̃a
λf |

H̃c
and λh|

H̃b
ρe|H̃c

are morphisms. To

show that ρh|
H̃a
λf |

H̃c
is a morphism, it is sufficient to prove that both λf |

H̃c
and

ρh|
H̃a

are morphisms. If x, y ∈ H̃a, then x R̃U h R̃U y, and so (xy)ρh = xyh =

x(hy)h = (xh)(yh) = (xρh)(yρh). Thus ρh|
H̃a

is a morphism. Dually, we can

show that λf |
H̃c

is a morphism. Hence ρh|
H̃a
λf |

H̃c
is a morphism as required.

Similarly, we can show that the composition λh|
H̃b
ρe|H̃c

is a morphism. So H̃a is

isomorphic to H̃b as required.

In view of Lemma 3.1, we can use an egg-box picture to depict each D̃U -class

of a weakly U -superabundant semigroup S. Let D denote a typical D̃U -class of

S. We denote the set of R̃U -classes of S in D by I and the set of L̃U -classes of S

in D by Λ. As a matter of notation we shall treat I and Λ as index sets and write

the R̃U -classes as R̃i (i ∈ I) and the L̃U -classes as L̃λ (λ ∈ Λ). The H̃U -class

R̃i ∩ L̃λ is denoted by H̃iλ.
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Lemma 3.9. If S is a weakly U-superabundant semigroup with (C), then each

D̃U-class of S is a rectangular band of its H̃U -classes, which are isomorphic

monoids.

Proof. Let D denote a typical D̃U -class of S. In view of Lemma 3.5, each H̃U -

class is a monoid, and so a H̃U a2, for all a ∈ S. Let i, j ∈ I and µ, λ ∈ Λ. We

assume that a ∈ H̃iλ and b ∈ H̃jµ. By Lemma 3.4, we have a R̃U ab L̃U b, that

is, ab ∈ H̃iµ, or equivalently , H̃iλH̃jµ ⊆ H̃iµ. Thus each D̃U -class is a rectangular

band of monoids, which are isomorphic by Lemma 3.8.

Next, we present an equivalent statement for a weakly B-superabundant

semigroup, where B is a band.

Lemma 3.10. Let S be a weakly B-abundant semigroup. For any e, f ∈ B,

e D̃B f ⇔ eD f

if and only if S is a weakly B-superabundant semigroup.

Proof. In view of Lemma 3.2, it is sufficient to show the necessity. Suppose

that x ∈ S. Certainly, we have that x† R̃B x L̃B x∗ for some x†, x∗ ∈ B. It

follows that x† D̃B x∗. By the hypothesis, we get x† D x∗. So x†x∗ L x∗ L̃B x

and x†x∗ R x† R̃B x. Thus x†x∗ H̃B x. Hence S is a weakly B-superabundant

semigroup.

As an immediate consequence of Lemma 3.10, if S is a weakly B-superabundant

and B is a band, then D(B) = D̃B(B).

Lemma 3.11. A weakly B-orthodox semigroup S is B-superabundant if and only

if S/γ is weakly B/D-superabundant, where γ is any admissible congruence on S

such that γ ∩ (B × B) = D.

Proof. It is easy to see that the necessity holds. It remains to show the converse

is true. Suppose that S is a weakly B-orthodox semigroup and S/γ is weakly

B/D-superabundant. Then for any a ∈ S, there exists an idempotent e ∈ B such

that aγ H̃B/D eγ. Of course, we have a†γ R̃B/D aγ L̃B/D a∗γ for any a† ∈ R̃a ∩B,

a∗ ∈ L̃a∩B. It follows that a†γ R̃B/D eγ L̃B/D a
∗γ, that is, a†γ RB/D eγ LB/D a∗γ,

and so a†γ = eγ = a∗γ since B/γ = B/D is a semilattice. Therefore, a† D e D a∗,
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which implies that a† R a†a∗ L a∗, and so a†a∗ H̃B a. Hence, S is weakly B-

superabundant.

In Chapter 2, given a weakly B-orthodox semigroup S with (WIC) (resp.

(IC)), a relation δB defined by the rule that for any a, b ∈ S, a δB b if and only if

a = ebf , b = gah for some e, f, g, h ∈ B, is an admissible congruence on S with

the property that δB ∩ (B ×B) = D. It follows from Lemma 3.11 that a weakly

B-orthodox semigroup S with (WIC) (resp. (IC)) is weakly B-superabundant if

and only if S/δB is weakly B/D-superabundant.

3.2 Completely J̃U-simple semigroups

A semigroup S is called J̃U-simple if J̃U is the universal relation on S. A

weakly U -abundant semigroup S is called completely J̃U -simple if S is a weakly

U -superabundant semigroup with (C) and is J̃U -simple.

In [44], Ren, Shum and Quo built the analogue for weakly U -superabundant

semigroups with (C) of the structure theorem for superabundant semigroups as

follows.

Theorem 3.12. [44] A semigroup S is a weakly U-superabundant semigroup

with (C) if and only if S is a semilattice Y of completely J̃U -simple semigroups

Sα(α ∈ Y ) such that for all α, β ∈ Y , the following statements hold:

(i) for each a ∈ Sα, L̃a(S) = L̃a(Sα) and R̃a(S) = R̃a(Sα);

(ii) for all a, b ∈ Sα and x ∈ Sβ, (a, b) ∈ L̃U(Sα) implies (ax, bx) ∈ L̃U(Sαβ)

and (a, b) ∈ R̃U(Sα) implies (xa, xb) ∈ R̃U(Sαβ).

In the following, we construct a completely J̃U -simple semigroup from a set

of monoids. Together with Theorem 3.12, we succeed in obtaining a complete

construction for weakly U -superabundant semigroups with (C).

Let I,Λ be non-empty sets. For each (i, λ) ∈ I × Λ, let Miλ be a monoid

with identity eiλ. We denote a rectangular band of monoids Miλ (i ∈ I, λ ∈ Λ)

by T and denote by U the set of {eiλ : i ∈ I, λ ∈ Λ}. In order to consider the

relations R̃U and L̃U on T , we make a convention that for i, j ∈ I and λ, µ ∈ Λ,

(R) if i = j then eiλejµ = ejµ and ejµeiλ = eiλ;

(L) if λ = µ then eiλejµ = eiλ and ejµeiλ = ejµ.

The next lemma follows immediately.



68

Lemma 3.13. If the rectangular band T of monoids Miλ (i ∈ I, λ ∈ Λ) satisfies

Conditions (R) and (L), then for any a, b ∈ T with a ∈ Miλ and b ∈ Mjµ,

a R̃U b ⇔ i = j,

a L̃U b ⇔ λ = µ,

and consequently,

a H̃U b ⇔ i = j and λ = µ.

Proof. We prove R̃U case. Dually, the L̃U case holds, and the H̃U case follows

from the result for R̃U and L̃U . Let a ∈ Miλ and b ∈ Mjµ be such that a R̃U b.

Suppose that f ∈ U with fa = a. Then f = eiν ∈ Miν for some ν ∈ Λ. Since

a R̃U b, it follows that fb = b, which leads to i = j.

Conversely, suppose that i = j. Then by Condition (R), eiλeiµ = eiµ and

eiµeiλ = eiλ, that is, eiλ R eiµ. Next, we shall claim that a R̃U eiλ and b R̃U eiµ.

Certainly, we have eiλa = a. Suppose that ekε ∈ U with ekεa = a. Then k = i

and by Condition (R), we have ekεeiλ = eiλ. So a R̃U eiλ. Similarly, we could

deduce that b R̃U eiµ. Together with eiλ R eiµ, we have a R̃U b.

Furthermore, we can get the next result.

Lemma 3.14. If the rectangular band T of monoids Miλ (i ∈ I, λ ∈ Λ) satisfies

Conditions (R) and (L), then T is a completely J̃U -simple semigroup.

Proof. In view of Lemma 3.13, it is easy to see that T is a weakly U -superabundant

semigroup. We now claim that T satisfies the Congruence Condition. Suppose

that a, b, c ∈ T with a R̃U b and c ∈ Mkν . By Lemma 3.13, a ∈ Miλ and b ∈ Miµ

for some i ∈ I, λ, µ ∈ Λ. Clearly, ca ∈ Mkλ and cb ∈ Mkµ. Again by Lemma 3.13,

ca R̃U cb. Thus, R̃U is a left congruence. Similarly, we have that L̃U is a right

congruence.

We still need to show that D̃U is a universal relation on T . Let a, b ∈ T with

a ∈ Miλ and b ∈ Mjµ. Since there exists an element x ∈ Miµ, it immediately

follows from Lemma 3.13 that a R̃ x L̃U b, that is, a D̃U b. Hence T is a completely

J̃U -simple semigroup.

In a summary, we have the following structure theorem for completely J̃U -

simple semigroups.
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Theorem 3.15. A semigroup S is completely J̃U-simple if and only if it is a

rectangular band of monoids Miλ (i ∈ I, λ ∈ Λ) and satisfies Conditions (R) and

(L), where the monoids Miλ must be isomorphic.

Proof. In view of Lemma 3.14, it is sufficient to show that a completely J̃U -simple

semigroup is a rectangular band of monoids and satisfies Conditions (R) and (L).

Clearly, by Lemma 3.9, a completely J̃U -simple semigroup S is a rectangular band

of monoids Miλ (i ∈ I, λ ∈ Λ) which are isomorphic. Since the set of R̃U -classes

of S is denoted by I and the set of L̃U -classes of S is denoted by Λ it follows that

Conditions (R) and (L) hold.

Finally, we consider a special case. If the set U of identities of each Miλ

forms a band, then the next lemma is immediate.

Lemma 3.16. Let T be the rectangular band of monoids Miλ with identities eiλ

(i ∈ I, λ ∈ Λ). If U = {eiλ : i ∈ I, λ ∈ Λ} forms a band, then T satisfies

Conditions (R) and (L).

So, we have:

Corollary 3.17. A semigroup S is completely J̃B-simple if and only if it is

a rectangular band of monoids Miλ with identities eiλ (i ∈ I, λ ∈ Λ), where

B = {eiλ : i ∈ I, λ ∈ Λ} forms a band and the monoids Miλ must be isomorphic.



Chapter 4

Representations for generalised

orthogroups

In this chapter we begin the study of fundamental semigroups and their analogues

in the class of generalised regular semigroups. Precisely, we mainly describe or-

thogroups in the Hall semigroup WB and weakly B-superabundant subsemigroups

with (C) of VB (resp. UB, SB), which is analogous to WB.

4.1 Fundamental inverse semigroups

The results in this section are basic but important in the study of inverse semi-

groups. To make our discussion in the following sections easy to understand, we

list them here. The details are referred to [26].

We recall that an inverse semigroup S is fundamental if the maximum idem-

potent separating congruence µ is the identity congruence on S. Such inverse

semigroups do exist, since S/µ is fundamental inverse for any inverse semigroup

S whatsoever. Specially, every semilattice and every symmetric inverse semigroup

I(X) is fundamental.

Observe that every element a in an inverse semigroup S determines an iso-

morphism αa from the principal ideal Eaa−1 of E onto the principal ideal Ea−1a.

The isomorphism αa is defined by

eαa = a−1ea (e ∈ Eaa−1).

70
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Built on the above observation, Munn [37] constructed a fundamental inverse

semigroup from any semilattice E, as follows.

Let E be a semilattice and U be the equivalence relation on E given by

U = {(e, f) ∈ E × E : Ee ≃ Ef }.

If (e, f) ∈ U let Te,f be the set of all isomorphisms from Ee onto Ef . Let

TE =
⋃

(e,f)∈U

Te,f .

Then TE is an inverse subsemigroup of IE and is fundamental. We shall call it

the Munn semigroup of the semilattice E.

The crucial fact concerning the Munn semigroup is that:

Theorem 4.1. [26] If S is an inverse semigroup with semilattice of idempotents

E, then there is a morphism φ : S → TE whose kernel is µ, the maximum

idempotent separating congruence on S. The morphism φ is defined by

aφ = αa (a ∈ S),

where αa is given above.

We pause to mention that the Munn semigroup TE is determined by its

semilattice of idempotents. In view of this, it is natural to be concerned with

the influence of the properties of the idempotents of an inverse semigroup on the

structure of the inverse semigroup as a whole. Keeping this in mind, we recall that

an inverse semigroup S is said to be a Clifford semigroup if the idempotents are

central, that is, ex = xe for every idempotent e and every x in S, or equivalently,

a semilattice of groups.

Theorem 4.1 built a concrete morphism φ : S → TE . If S is a Clifford

semigroup, then the morphism φ has kernel µ = H.

Theorem 4.2. If S is a Clifford semigroup with semilattice of idempotents E,

then µ = H and S/µ is a semilattice, which must be embedded in TE.

Proof. For every element a in a Clifford semigroup S, there exists an inverse a−1

of a such that a H a−1, and so a−1a = aa−1 = g, where g is the idempotent in
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Ha. Then αa is a morphism from Eg to Eg. Since S is a Clifford semigroup, the

idempotents are central. Then for any e ∈ Eg,

eαa = a−1ea = a−1ae = ge = e.

So αa is the identity map on Eg, from which it follows that if a H b in S, then

αa = αb, that is, aφ = bφ. Thus, H ⊆ Kerφ. Certainly, Kerφ ⊆ H. Hence,

Kerφ = H. By Theorem 4.1, µ = H.

4.2 A fundamental orthogroup of WB

In Section 4.1 we were able to find a morphism φ from an inverse semigroup

with semilattice of idempotents E to the Munn semigroup TE. Moreover, if S

is a Clifford semigroup, then the image of S in TE is E (hence is particular also

Clifford). If we are to find a generalisation of this to an orthodox semigroup (a

regular semigroup whose set of idempotents forms a band), we need begin by

recalling the appropriate analogue of the Hall semigroup [26].

Let B be a band. We denote by 〈e〉 the principal order ideal generated by e

for all e ∈ B. We define

U = {(e, f) ∈ B × B : 〈e〉 ≃ 〈f〉}

and write We,f for the set of all isomorphisms from 〈e〉 onto 〈f〉. If (e, f) ∈ U

and α ∈ We,f , we may define αl ∈ T (B/L) and αr ∈ T ∗(B/R) by the rule that

Lxαl = Lxα, Rxαr = Rxα (x ∈ 〈e〉).

It is routine to verify that (αl)
−1 = (α−1)l and (αr)

−1 = (α−1)r. In this case, we

may use the notation α−1
l , α−1

r without ambiguity.

Now, we put

WB = {(ρeαl, λfα
−1
r ) : α ∈ We,f , (e, f) ∈ U},

where for any x ∈ B,

Lxρe = Lexe, Rxλf = Rfxf .
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In fact, WB is precisely the analogue of TE and it is a fundamental orthodox

subsemigroup of T (B/L) × T ∗(B/R). We shall call it the Hall semigroup of the

band B.

It is useful and convenient to present the following result.

Lemma 4.3. [26] If e, f, g are elements of a band B with (e, f) ∈ U and g ∈ 〈e〉,

then 〈g〉α = 〈gα〉, where α ∈ We,f .

In the case of an inverse semigroup, the key idea of conjugates of idempo-

tents guarantees that there exists a representation which provides more useful

information about the structure of the semigroup. We note that this idea is still

available in the orthodox case, but it is necessary to take a new technique to deal

with the inverse of every element, since it is not unique.

Observe that if a is an element in an orthodox semigroup S with band of

idempotents B and a∗, a′ are inverses of a, then a∗xaL a′xa and axa∗ R axa′,

where x ∈ B. Built on this observation, we have the following maps.

Let S be an orthodox semigroup with band of idempotents B. For each a in

S, a mapping ρa : B/L → B/L is defined by

Lxρa = La′xa

(
x ∈ B

)
,

where a′ is an arbitrary chosen inverse of a. By dual arguments we can define

λa : B/R → B/R by

Rxλa = Raxa′

(
x ∈ B

)
,

where a′ is an arbitrary chosen inverse of a.

By Proposition 1.16, b′a′ is an inverse of ab, and so ρab = ρaρb, for all a, b in

S. Dually, we have that λab = λbλa. Moreover:

Theorem 4.4. [26] Let S be an orthodox semigroup with band of idempotents

B, and let ψ be the mapping from S into T (B/L) × T ∗(B/R) defined by

aψ = (ρa, λa),

where ρa, λa are given as above. Then ψ is a morphism whose kernel is the

maximum idempotent separating congruence µ on S.

The result we have achieved presents a representation in T (B/L)×T ∗(B/R)

rather than TE . We have seen that WB is an analogue of TE and an orthodox
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subsemigroup of T (B/L) ×T ∗(B/R), having band of idempotents isomorphic to

B. So to obtain an exact analogue of Theorem 4.1, we must rewrite the maps ρa

and λa in the form used to define WB.

Now let S be an orthodox semigroup with band of idempotents B. If a ∈ S

and a′ is an inverse of a, then denoting aa′ by e and a′a by f , we obtain that

(ρa, λa) = (ρeθl, λfθ
−1
r ),

where θ is the mapping in We,f given by

xθ = a′xa
(
x ∈ 〈e〉

)
.

In this case, the range of the mapping ψ : a 7→ (ρa, λa) is thus contained in the

Hall semigroup

WB = {(ρeαl, λfα
−1
r ) : α ∈ We,f , (e, f) ∈ U}.

Before moving on we pause to confine ourselves to a consideration of a special

kind of orthodox semigroups analogous to Clifford semigroups. We have men-

tioned in Chapter 1 that a semigroup is completely regular if each of its elements

is contained in some subgroup of S. An orthodox semigroup is an orthogroup if

it is completely regular. Obviously, every Clifford semigroup is an orthogroup.

At the end of the previous section, we mentioned that there exists a repre-

sentation from a Clifford semigroup S to TE and the image of S is the semilattice

of idempotents of TE. Certainly, every semilattice is a Clifford semigroup. So

there exactly exists a representation from a Clifford semigroup to a Clifford sub-

semigroup of TE . At a certain stage it becomes natural to ask whether there

exists such a representation of an orthogroup to an orthogroup contained in the

Hall semigroup WB.

As a first step what we have to do is to find a subsemigroup of WB which is

an orthogroup. In this case, it is necessary to make use of the statement [49] that

an orthodox semigroup is completely regular if and only if its greatest inverse

semigroup homomorphic image is completely regular, i.e. a Clifford semigroup.

If B is a band, then it is a semilattice Y of rectangular bands Bα (α ∈ Y ).

It is not hard to verify that if e, x ∈ B with x ∈ 〈e〉, then e ∈ Bα and x ∈ Bξ
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for some α, ξ ∈ Y with ξ ≤ α. In addition, if e, f ∈ B with e ∈ Bα, f ∈ Bβ

(α, β ∈ Y ) and ι : 〈e〉 → 〈f〉 is an isomorphism, then there is an isomorphism

ι′ : αY → βY corresponding to ι, defined by the property that

xι ∈ Bξι′ (ξ ∈ αY, x ∈ 〈e〉 ∩Bξ).

As Y is a semilattice, the Munn semigroup TY certainly exists. Then for

every element (ρeθl, λfθ
−1
r ) in WB, θ is an isomorphism from 〈e〉 onto 〈f〉. Due

to the above analysis, there is an isomorphism θ′ : αY → βY corresponding to

θ in TY , where e ∈ Bα and f ∈ Bβ. Hence, there is a map ν from WB to TY

defined by the rule that

(ρeθl, λfθ
−1
r )ν = θ′ ((ρeθl, λfθ

−1
r ) ∈ WB).

Lemma 4.5. The map ν defined above is a morphism from WB to TY .

Proof. We first show that ν is well-defined. Let (ρeθl, λfθ
−1
r ), (ρhσl, λkσ

−1
r ) ∈ WB

be such that (ρeθl, λfθ
−1
r ) = (ρhσl, λkσ

−1
r ). Then for any x ∈ B, we have that

Lxρeθl = Lxρhσl, that is (exe)θ L (hxh)σ. Choose x = e. We obtain that

eθ L (heh)σ, and so f L (heh)σ as eθ = f . Since L is a right congruence and

(heh)σ ≤ k, we succeed in obtaining that fk L (heh)σ. By Lemma 1.22, we

have that kfk L (heh)σ. As σ : 〈h〉 → 〈k〉 is an isomorphism, we have that

(kfk)σ−1 L heh. Also, for any x ∈ B, we have that Rxλfθ
−1
r = Rxλkσ

−1
r , that

is, (fxf)θ−1 R (kxk)σ−1. Take x = f , we obtain that fθ−1 R (kfk)σ−1. As

fθ−1 = e, we get that eR (kfk)σ−1. Together with (kfk)σ−1 Lheh, we have

that e D heh. Similarly, we obtain that hD ehe. Certainly, eheD heh. Thus

eD h. Dually, we have that f D k. Hence,

dom (θ′) = dom (σ′) = αY and im (θ′) = im (σ′) = βY,

where e, h ∈ Bα and f, k ∈ Bβ.

We still need show that for any ξ ≤ α, ξθ′ = ξσ′. To do this, we assume that

x ≤ e and x ∈ Bξ. Then there exists y ∈ B such that x = eye. Since eD h, we

have that x = eyeD hyh ≤ h, and so hyh ∈ Bξ. As xθ = (eye)θL (hyh)σ so that
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xθD (hyh)σ. By the properties of θ′ and σ′, we have that

xθ ∈ Bξθ′ and (hyh)σ ∈ Bξσ′ .

Thus ξθ′ = ξσ′. Consequently, ν is well-defined.

Next, we show that ν is a morphism. Let (ρeηl, λfη
−1
r ), (ρgσl, λhσ

−1
r ) ∈ WB

and let e ∈ Bα, f ∈ Bβ, g ∈ Bγ and h ∈ Bδ. According to [Chapter VI, Theorem

2.17, [26]], we have that

(ρeηl, λfη
−1
r )(ρgσl, λhσ

−1
r ) = (ρiτl, λjτ

−1
r ),

where i = (fgf)η−1, j = (gfg)σ and τ = (η|〈i〉)(θgfg|〈fgf〉)(σ|〈gfg〉). In the follow-

ing, we show that η′ ◦ σ′ = τ ′.

As fgf ∈ Bβγ , we have that (fgf)η−1 ∈ B(βγ)η′−1 , and so domτ ′ = (βγ)η′−1Y .

Similarly, imτ ′ = (βγ)σ′Y . Observe that imη′ = βY and domσ′ = γY . Thus

dom(η′ ◦ σ′) = ( imη′ ∩ domσ′)η′−1

= (βY ∩ γY )η′−1

= (βγ)Y η′−1

= (βγ)η′−1Y
(
Lemma 4.3

)

= domτ ′.

Similarly, im(η′ ◦ σ′) = imτ ′.

Let ξ ∈ dom(η′ ◦ σ′) and x ∈ Bξ ∩ 〈i〉. Then

xτ = x(η|〈i〉)(θgfg|〈fgf〉)(σ|〈gfg〉) ∈ Bµ for some µ ∈ Y,

and so ξτ ′ = µ. Since we have remarked that θgfg|〈fgf〉 fixes D-classes succeeding

Lemma 1.21, it follows that x(η|〈i〉) D x(η|〈i〉)(θgfg|〈fgf〉) so that ξη′ = ω and

ωσ′ = µ, where x(η|〈i〉), x(η|〈i〉)(θgfg|〈fgf〉) ∈ Bω. Hence, ξ(η′ ◦ σ′) = µ, and so

η′ ◦ σ′ = τ ′.

We now pause to mention that if the image θ′ of the element (ρeθl, λfθ
−1
r ) of

WB under ν is an idempotent, then e, f are D-related and θ′ is an identity map

on αY , where e ∈ Bα. Hence, the elements of WB, whose images under ν are

idempotent, induce a partial identity mapping on Y . Moreover, we have:
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Lemma 4.6. [49] The elements of WB whose images under ν are idempotent

form an orthogroup in WB. We denote this orthogroup by OG1.

Proof. We first show thatOG1 is closed. Suppose that (ρeιl, λf ι
−1
r ) and (ρgτl, λhτ

−1
r )

are in OG1. Then ι′, τ ′ ∈ E(TY ). Since E(TY ) is a semilattice, we have that

ι′τ ′ ∈ E(TY ) . As OG1 ⊆ WB, we have that the product (ρeιl, λf ι
−1
r )(ρgτl, λhτ

−1
r )

is in WB. Also,

(
(ρeιl, λf ι

−1
r )(ρgτl, λhτ

−1
r )

)
ν = (ρeιl, λf ι

−1
r )ν(ρgτl, λhτ

−1
r )ν = ι′ ◦ τ ′ ∈ E(TY ).

Thus, (ρeιl, λf ι
−1
r )(ρgτl, λhτ

−1
r ) ∈ OG1, and so OG1 is closed.

Clearly, B = {(ρe, λe) : e ∈ B} is contained in OG1 and so OG1 is an

orthodox semigroup.

Finally, we claim that OG1 is completely regular. Let (ρeιl, λf ι
−1
r ) ∈ OG1,

e ∈ Bα and f ∈ Bβ(α, β ∈ Y ). Then ι′ : αY → βY is idempotent. In that case,

we must have that eD f , and so e R ef L f so that (ρe, λe) R (ρef , λef) L (ρf , λf).

As (ρe, λe) R (ρeιl, λf ι
−1
r ) L (ρf , λf), we obtain that (ρeιl, λf ι

−1
r ) H (ρef , λef).

Thus, OG1 is an orthogroup.

Lemma 4.6 gives us an abstract description of an orthogroup in WB. Next,

we shall find a closed form for such an orthogroup in WB which coincides with

OG1.

For any e ∈ B, we write

Ae = {α ∈ We,e : for all x ∈ 〈e〉, xαD x}

and put

OG2 =
⋃

e∈B

We,

where We = {(ρeαl, λeα
−1
r ) ∈ WB : α ∈ Ae}.

Lemma 4.7. For any e ∈ B, the set Ae forms a group.

Proof. Suppose that α ∈ Ae. We claim that α−1 ∈ Ae. For any x ∈ 〈e〉, certainly,

xα−1 ∈ 〈e〉. Since α ∈ Ae, we have that x = (xα−1)α D xα−1. This implies that

α−1 ∈ Ae. Obviously, the identity map 1〈e〉 is the identity of Ae and Ae is closed.

Hence, Ae forms a group.
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Further:

Lemma 4.8. For any e ∈ B, the set We forms a subgroup of WB with identity

(ρe, λe).

Proof. Clearly, for any e ∈ B, (ρe, λe) ∈ We and it is the identity of We. We

now show that We is closed. Suppose that (ρeαl, λeα
−1
r ) and (ρeβl, λeβ

−1
r ) are in

We. We first consider the product of ρeαl and ρeβl because dually, we obtain the

similar result for the product of λeα
−1
r and λeβ

−1
r . For any x ∈ B, we have that

Lxρeαlρeβl = L(e[(exe)α]e)β = L((exe)α)β = L(exe)αβ = Lxρe(αβ)l.

Similarly, we obtain that Rxλeβ
−1
r λeα

−1
r = Rxλe(αβ)−1

r . As α, β ∈ Ae, the com-

position αβ certainly belongs to Ae by Lemma 4.7. Thus, (ρe(αβ)l, λe(αβ)−1
r ) ∈

We, and so We is closed.

Next, we show that the group inverse of (ρeαl, λeα
−1
r ) exists and lies in We.

To do this, we assume that (ρeαl, λeα
−1
r ) ∈ We. Then α ∈ Ae. By Lemma 4.7,

we have that α−1 ∈ Ae, and so (ρeα
−1
l , λeαr) ∈ We. In addition, it is routine to

check that (ρeαl, λeα
−1
r ) and (ρeα

−1
l , λeαr) are mutually group inverse in We.

Returning now to the set OG2 constructed above, we have:

Lemma 4.9. The set OG2 forms an orthogroup with band of idempotents B =

{(ρe, λe) : e ∈ B}.

Proof. In view of Lemma 4.8, it is sufficient to show that for any e, f ∈ B,

there exists h ∈ B such that WeWf ⊆ Wh. Suppose that (ρeαl, λeα
−1
r ) ∈ We

and (ρfβl, λfβ
−1
r ) ∈ Wf . Then α ∈ Ae, β ∈ Af , and so (efe)α−1 D efe and

(fef)β D fef so that (efe)α−1 D (fef)β as efeD fef . Put

γ =
(
θ(efe)α−1 |〈(efe)α−1(fef)β〉

)(
α|〈(efe)α−1〉

)
·

(
θfef |〈efe〉

)(
β|〈fef〉

)(
θ(efe)α−1(fef)β |〈(fef)β〉

)
.

By Lemma 1.21, γ ∈ W(efe)α−1(fef)β,(efe)α−1(fef)β . Again by the remark succeeding

Lemma 1.21 and α, β fixing D-classes, we have that γ fixes D-classes, and so

γ ∈ A(efe)α−1(fef)β .
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Thus, (ρ(efe)α−1(fef)βγl, λ(efe)α−1(fef)βγ
−1
r ) belongs to W(efe)α−1(fef)β .

We now show that

(ρeαl, λeα
−1
r )(ρfβl, λfβ

−1
r ) = (ρ(efe)α−1(fef)βγl, λ(efe)α−1(fef)βγ

−1
r ).

For any x ∈ B,

Lxρ(efe)α−1(fef)βγl

= L(efe)α−1(fef)β x (efe)α−1(fef)β

((
θ(efe)α−1 |〈(efe)α−1(fef)β〉

)
·

(
α|〈(efe)α−1〉

)(
θfef |〈efe〉

)(
β|〈fef〉

)(
θ(efe)α−1(fef)β |〈(fef)β〉

))
l

= L(
(efe)α−1·(efe)α−1(fef)β x (efe)α−1(fef)β·(efe)α−1

)(
α|〈(efe)α−1〉

)
·

(
θfef |〈efe〉

)(
β|〈fef〉

)(
θ(efe)α−1(fef)β

|〈(fef)β〉

)

= L(
(efe)α−1(fef)β x (efe)α−1

)(
α|〈(efe)α−1〉

)(
θfef |〈efe〉

)(
β|〈fef〉

)(
θ(efe)α−1(fef)β

|〈(fef)β〉

)

(
(efe)α−1 D (fef)β

)

= L(
(efe)α−1(fef)β x (efe)α−1

)
((
α|〈(efe)α−1〉

)(
θfef |〈efe〉

)(
β|〈fef〉

)
·

(
θ(efe)α−1(fef)β |〈(fef)β〉

))
l

= L(
x (efe)α−1

)
((
α|〈(efe)α−1〉

)(
θfef |〈efe〉

)(
β|〈fef〉

)(
θ(efe)α−1(fef)β |〈(fef)β〉

))
l

(
Lemma 1.22

)

= L(
(efe)α−1 x (efe)α−1

)(
α|〈(efe)α−1〉

)(
θfef |〈efe〉

)(
β|〈fef〉

)(
θ(efe)α−1(fef)β

|〈(fef)β〉

)

(
Lemma 1.22

)

= L(
(efe)α−1 exe (efe)α−1

)(
α|〈(efe)α−1〉

)(
θfef |〈efe〉

)(
β|〈fef〉

)(
θ(efe)α−1(fef)β

|〈(fef)β〉

)

(
(exe)α−1 ∈ 〈e〉

)

= L(
(efe)α−1α (exe)α (efe)α−1α

)(
θfef |〈efe〉

)(
β|〈fef〉

)(
θ(efe)α−1(fef)β

|〈(fef)β〉

)

(
(efe)α−1, exe ∈ 〈e〉

)

= L(
(efe)(exe)α(efe)

)(
θfef |〈efe〉

)(
β|〈fef〉

)(
θ(efe)α−1(fef)β

|〈(fef)β〉

)

= L(
(fef)(efe)(exe)α(efe)(fef)

)(
β|〈fef〉

)(
θ(efe)α−1(fef)β

|〈(fef)β〉

)
(
Lemma 1.21

)
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= L(
(fefef)(e·(exe)α·e)(fefef)

)(
β|〈fef〉

)(
θ(efe)α−1(fef)β

|〈(fef)β〉

)

= L(
(fef)(exe)α(fef)

)(
β|〈fef〉

)(
θ(efe)α−1(fef)β

|〈(fef)β〉

)
(
(exe)α ∈ 〈e〉

)

= L(
((fef)(exe)α(fef))β

)(
θ(efe)α−1(fef)β

|〈(fef)β〉

)

= L(
((fef)f((exe)α)f(fef))β

)(
θ(efe)α−1(fef)β

|〈(fef)β〉

)

= L(
(fef)β(f(exe)αf)β(fef)β

)(
θ(efe)α−1(fef)β

|〈(fef)β〉

)
(
fef, f(exe)αf ∈ 〈f〉

)

= L(efe)α−1(fef)β·(fef)β(f(exe)αf)β(fef))β·(efe)α−1 (fef)β

(
Lemma 1.21

)

= L(f(exe)αf)β(fef))β·(efe)α−1(fef)β

(
(fef)β D (efe)α−1, Lemma 1.22

)

= L(f(exe)αf)β(fef))β

(
(fef)β D(efe)α−1

)

= L(f(exe)αf ·fef)β

= L(f(exe)αfef)β

= L(f(exe)α·e·fef)β

(
(exe)α ∈ 〈e〉

)

= L(f(exe)αef)β

= L(f(exe)αf)β

(
(exe)α ∈ 〈e〉

)

= Lxρeαlρfβl.

Thus, ρ(efe)α−1(fef)βγl = ρeαl · ρfαl. Also, we deduce that

Rxλ(efe)α−1(fef)βγ
−1
r

= R(efe)α−1(fef)β x (efe)α−1(fef)β

((
θ(efe)α−1 |〈(efe)α−1(fef)β〉

)
·

(
α|〈(efe)α−1〉

)(
θfef |〈efe〉

)(
β|〈fef〉

)(
θ(efe)α−1(fef)β |〈(fef)β〉

))−1

r

= R(
(efe)α−1(fef)β x (efe)α−1(fef)β

)(
θ(efe)α−1(fef)β

|〈(fef)β〉

)−1(
β|〈fef〉

)−1

·

(
θfef |〈efe〉

)−1(
α|〈(efe)α−1〉

)−1(
θ(efe)α−1 |〈(efe)α−1(fef)β〉

)−1

= R(
(efe)α−1(fef)β x (efe)α−1(fef)β

)(
θ(fef)β |〈(efe)α−1(fef)β〉

)(
β−1|〈(fef)β〉

)
·

(
θefe|〈fef〉

)(
α−1|〈efe〉

)(
θ(efe)α−1(fef)β

|〈(efe)α−1〉

)
(
Lemma 1.21

)
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= R(
(fef)β·(efe)α−1(fef)β x (efe)α−1(fef)β·(fef)β

)(
β−1|〈(fef)β〉

)(
θefe|〈fef〉

)
·

(
α−1|〈efe〉

)(
θ(efe)α−1(fef)β

|〈(efe)α−1〉

)
(
Lemma 1.21

)

= R(
(fef)β x (efe)α−1(fef)β

)(
β−1|〈(fef)β〉

)(
θefe|〈fef〉

)(
α−1|〈efe〉

)(
θ(efe)α−1(fef)β

|〈(efe)α−1〉

)

(
(efe)α−1 D (fef)β

)

= R(
(fef)β x (efe)α−1(fef)β

)
((
β−1|〈(fef)β〉

)(
θefe|〈fef〉

)(
α−1|〈efe〉

)
·

(
θ(efe)α−1(fef)β |〈(efe)α−1〉

))
r

= R(
(fef)β x

)
((
β−1|〈(fef)β〉

)(
θefe|〈fef〉

)(
α−1|〈efe〉

)(
θ(efe)α−1(fef)β |〈(efe)α−1〉

))
r

(
Lemma 1.21

)

= R(
(fef)β x (fef)β

)(
β−1|〈(fef)β〉

)(
θefe|〈fef〉

)(
α−1|〈efe〉

)(
θ(efe)α−1(fef)β

|〈(efe)α−1〉

)

(
Lemma 1.22

)

= R(
(fef)β fxf (fef)β

)(
β−1|〈(fef)β〉

)(
θefe|〈fef〉

)(
α−1|〈efe〉

)(
θ(efe)α−1(fef)β

|〈(efe)α−1〉

)

(
(fef)β ∈ 〈f〉

)

= R(
((fef)β fxf (fef)β)β−1

)(
θefe|〈fef〉

)(
α−1|〈efe〉

)(
θ(efe)α−1(fef)β

|〈(efe)α−1〉

)

= R(
(fef)ββ−1 (fxf)β−1 (fef)ββ−1

)(
θefe|〈fef〉

)(
α−1|〈efe〉

)(
θ(efe)α−1(fef)β

|〈(efe)α−1〉

)

(
(fef)β, fxf ∈ 〈f〉

)

= R(
(fef) (fxf)β−1 (fef)

)(
θefe|〈fef〉

)(
α−1|〈efe〉

)(
θ(efe)α−1(fef)β

|〈(efe)α−1〉

)

= R(
(efe)(fef) (fxf)β−1 (fef)(efe)

)(
α−1|〈efe〉

)(
θ(efe)α−1(fef)β

|〈(efe)α−1〉

)
(
Lemma 1.21

)

= R(
(efefe)(f ·(fxf)β−1 ·f)(efefe)

)(
α−1|〈efe〉

)(
θ(efe)α−1(fef)β

|〈(efe)α−1〉

)

= R(
(efe) (fxf)β−1 (efe)

)(
α−1|〈efe〉

)(
θ(efe)α−1(fef)β

|〈(efe)α−1〉

)

= R(
((efe) (fxf)β−1 (efe))α−1

)(
θ(efe)α−1(fef)β

|〈(efe)α−1〉

)

= R(
((efe) e(fxf)β−1e (efe))α−1

)(
θ(efe)α−1(fef)β

|〈(efe)α−1〉

)

= R(
(efe)α−1 (e(fxf)β−1e)α−1 (efe)α−1

)(
θ(efe)α−1(fef)β

|〈(efe)α−1〉

)

(
efe, e(fxf)β−1e ∈ 〈e〉

)
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= R(efe)α−1(fef)β·(efe)α−1 (e(fxf)β−1e)α−1 (efe)α−1·(efe)α−1(fef)β

(
Lemma 1.21

)

= R(efe)α−1 (e(fxf)β−1e)α−1 (efe)α−1(fef)β

(
(fef)β D (efe)α−1

)

= R(efe)α−1 (e(fxf)β−1e)α−1

(
(fef)β D (efe)α−1 and Lemma 1.22

)

= R(efe·e(fxf)β−1e)α−1

= R(efe·ef(fxf)β−1e)α−1

(
(fxf)β−1 ∈ 〈f〉

)

= R(ef(fxf)β−1e)α−1

= R(e(fxf)β−1e)α−1

(
(fxf)β−1 ∈ 〈f〉

)

= Rxλfβ
−1
r λeα

−1
r .

Thus, λ(efe)α−1(fef)βγ
−1
r = λfβ

−1
r · λeα

−1
r . Hence, OG2 is a subsemigroup of WB.

By Lemma 4.8, B = {(ρe, λe) : e ∈ B} is contained in OG2.

Observe that for any element (ρeθl, λfθ
−1
r ) ∈ OG1, we have that eD f ac-

cording to the comments following Lemma 4.5. Whereas, if (ρeθl, λfθ
−1
r ) ∈ OG2,

then e = f . In that case, we next show that OG1 is equal to OG2 by replacing

(ρeθl, λfθ
−1
r ) with (ρgγl, λgγ

−1
r ) in OG1 for some g ∈ B.

Lemma 4.10. The semigroup OG1 coincides with OG2.

Proof. We first show that OG2 ⊆ OG1. Suppose that (ρeιl, λeι
−1
r ) ∈ OG2. Since

B is a semilattice Y of rectangular bands Bα (α ∈ Y ), we assume that e ∈ Bα.

According to the construction of OG2, we have that bι D b for any b ∈ 〈e〉.

Specifically, if b ∈ 〈e〉 ∩ Bξ, where ξ ∈ αY , then bιD b. As bι ∈ Bξι′ and b ∈ Bξ,

we must have that ξι′ = ξ, which implies that ι′ is the identity map on αY . So,

(ρeιl, λeι
−1
r ) ∈ OG1.

Conversely, suppose that ι ∈ We,f and here ι′ is an identity in TY = TB/D.

Then, eD f , and so θe|〈ef〉 and θef |〈f〉 are well-defined isomorphisms from 〈ef〉

onto 〈e〉 and from 〈f〉 onto 〈ef〉, respectively. As ι ∈ We,f , we have that γ =

(θe|〈ef〉)ι(θef |〈f〉) is an automorphism of 〈ef〉. We now show that (ρeιl, λf ι
−1
r ) =

(ρefγl, λefγ
−1
r ). For any x ∈ B,

Lxρefγl = Lxefγl

= L(efxef)(θe|〈ef〉)ι(θef |〈f〉)

= L(e·efxef ·e)ι(θef |〈f〉)

= L(e·efxef ·e)(ι(θef |〈f〉))l
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= Lexe(ι(θef |〈f〉))l

(
Lemma 1.22

)

= L(exe)ι(θef |〈f〉)

= Lef ·(exe)ι·ef

= L(exe)ι·ef

= L(
(exe)ι

)
f ·ef

((exe)ι ∈ 〈f〉)

= L(
(exe)ι

)
f

(e D f)

= L(exe)ι

= Lxρeιl.

Thus, ρeιl = ρefγl. Dually, λf ι
−1
r = λefγ

−1
r . Hence, (ρeιl, λf ι

−1
r ) = (ρefγr, λefγ

−1
r ).

Next, we show that for any x ∈ 〈ef〉, xγD x. Suppose that e, f ∈ Bα,

where α ∈ Y . According to the construction of OG1, ι
′ is the identity map on

αY , that is, for any ξ ∈ αY and b ∈ 〈e〉 ∩ Bξ, we have that bι ∈ Bξι′ = Bξ.

Thus, bιD b. By Lemma 1.21 and the remark following it, θe|〈ef〉 and θef |〈f〉 are

isomorphisms fixing D-classes. Thus, γ is an automorphism of 〈ef〉 such that for

all x ∈ 〈ef〉, xγD x. So, (ρefγl, λefγ
−1
r ) ∈ OG2. Hence, OG1 ⊆ OG2.

We return to our question of establishing a representation from an orthogroup

to OG2(resp. OG1) as an analogue of Theorem 4.2, built on Theorem 4.4.

Theorem 4.11. If S is an orthogroup with band of idempotents B, then there

exists a representation ψ : S → OG2 whose kernel is µ, the maximal idempotent

separating congruence on S.

Proof. In view of Theorem 4.4, there exists a representation ψ from an orthogroup

S to WB. We now need to show that the image of S under ψ is contained in OG2.

Suppose that a ∈ S and a−1 is the inverse of a in Ha. Then by Theorem 4.4 and

the comments succeeding it, we have that

aψ = (ρa, λa) = (ρeθl, λfθ
−1
r ),

where e = aa−1, f = a−1a and θ is an isomorphism in We,f given by

xθ = a−1xa (x ∈ 〈e〉).
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Since aH a−1 and every H-class of an orthogroup is a group, we have that aa−1 =

a−1a, and so e = f H a. Then, for any x ∈ 〈e〉, x = exeD a−1xa, that is,

xD xθ, and so θ ∈ Ae. Hence, aψ = (ρeθl, λeθ
−1
r ) ∈ OG2 so that Sθ ⊆ OG2, as

required.

4.3 A fundamental weakly B-superabundant sub-

semigroup of VB

The aim in this section is to move away from the regular case and consider a

fundamental weakly B-superabundant semigroup S with (C) and (IC). Here B

is a band. Recall that a weakly B-abundant semigroup is said to be weakly

B-superabundant if every H̃B-class contains a distinguished idempotent in B.

In [6], El-Qallali, Fountain and Gould constructed a fundamental weakly B-

orthodox semigroup with (IC), namely, VB, in a manner analogous to the Hall

semigroup WB. A brief description of the construction is necessary before we

build a weakly B-superabundant subsemigroup of VB, where B is isomorphic to

B.

For any e, f ∈ B we define Ve,f to be the set of all order isomorphisms α

from 〈e〉 to 〈f〉 such that

xαyαL (xy)α and uα−1vα−1 R (uv)α−1,

for all x, y ∈ 〈e〉 and u, v ∈ 〈f〉. For any α ∈ Ve,f we can define partial maps of

B/L and B/R by

Lxαl = Lxα and Ryα
−1
r = Ryα−1 .

Due to [6], we have that if e, f ∈ B and α ∈ Ve,f , then for all x, x′ ∈ 〈e〉 and

y, y′ ∈ 〈f〉,

x≤L x
′ implies that xα≤L x

′α,

y≤R y
′ implies that yα−1 ≤R y

′α−1.

This fact is hard evidence showing that αl and α−1
r are well-defined and order

preserving.
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Now, we put

VB = {(ρeαl, λfα
−1
r ) : e, f ∈ B, α ∈ Ve,f}.

Lemma 4.12. [17] The set VB is a fundamental weakly B-orthodox semigroup

with (IC), where B = {(ρe, λe) : e ∈ B}.

We remark that for any (ρeαl, λfα
−1
r ) ∈ VB, we have that

(ρf , λf) L̃B (ρeαl, λfα
−1
r ) R̃B (ρe, λe).

Considering the fact that VB is an analogue of the Hall semigroup WB, we

can extend the recipe in Section 4.2 from the Hall semigroup WB to VB to find a

fundamental weakly B-superabundant subsemigroup of VB as follows.

Let B be a band. Then it is a semilattice Y of rectangular bands Bα(α ∈ Y ).

For every element (ρeθl, λfθ
−1
r ) in VB, θ is an order isomorphism from 〈e〉 to 〈f〉.

Referring to the statement before Lemma 4.5, if e ∈ Bα and f ∈ Bβ(α, β ∈ Y ),

then there is an order isomorphism θ′ : αY → βY corresponding to θ, defined by

the property that

xθ ∈ Bξθ′ (ξ ∈ αY, x ∈ 〈e〉 ∩ Bξ).

Since an order isomorphism of a semilattice is an isomorphism it follows that

θ′ ∈ TY .

Observe that for any (ρeθl, λfθ
−1
r ) ∈ VB, if θ′ is idempotent, then it induces

a partial identity mapping on Y . We put

K1 = {(ρeθl, λfθ
−1
r ) ∈ VB : θ′2 = θ′}.

The next lemma is an immediate consequence of Lemma 4.15, so we omit its

proof.

Lemma 4.13. The set K1 is a weakly B-superabundant subsemigroup of VB with

(C) and (IC).

In Section 4.2 we gave a closed form for a subsemigroup of the Hall semigroup

WB that is a particular orthogroup. In the following, We focus on a closed form
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for a fundamental weakly B-superabundant subsemigroup of VB as an analogue

of OG2, beginning as follows.

For any e ∈ B, let

OAe = {α ∈ Ve,e : for all x ∈ 〈e〉, x D xα}

and

K2 =
⋃

e∈B

Ve,

where Ve = {(ρeαl, λeα
−1
r ) ∈ VB : e ∈ B, α ∈ OAe}.

The proof of the following lemma is similar to that of Lemma 4.9, and so we

omit it. Here we remark that the steps using α etc. being a morphism can be

replaced by the particular condition for α to lie in Ve,f .

Lemma 4.14. The set K2 is a full subsemigroup of VB. Consequently, K2 is a

fundamental weakly B-superabundant semigroup with (C) and (IC).

The next lemma presents a relationship between K1 and K2.

Lemma 4.15. The semigroup K2 coincides with K1.

Proof. We first show that K2 ⊆ K1. Suppose that (ρeιl, λeι
−1
r ) ∈ K2. Since

B is a semilattice Y of rectangular bands Bα (α ∈ Y ), we assume that e ∈

Bα. According to the construction of K2, we have that bι D b for any b ∈ 〈e〉.

Specifically, if b ∈ 〈e〉 ∩ Bξ, where ξ ∈ αY , then bιD b. As bι ∈ Bξι′ and b ∈ Bξ,

we must have that ξι′ = ξ, which implies that ι′ is the identity map on αY . So,

(ρeιl, λeι
−1
r ) ∈ K1.

Conversely, suppose that ι ∈ Ve,f and here ι′ is an identity in TY = TB/D.

Then, eD f , and so θe|〈ef〉 and θef |〈f〉 are well-defined isomorphisms from 〈ef〉

onto 〈e〉 and from 〈f〉 onto 〈ef〉, respectively. As ι ∈ Ve,f , we have that γ =

(θe|〈ef〉)ι(θef |〈f〉) is an order automorphism of 〈ef〉. We now show that (ρeιl, λf ι
−1
r ) =

(ρefγl, λefγ
−1
r ). For any x ∈ B,

Lxρefγl = Lxefγl

= L(efxef)(θe|〈ef〉)ι(θef |〈f〉)

(
Lemma 1.22

)

= L(e·efxef ·e)ι(θef |〈f〉)

= L(e·efxef ·e)(ι(θef |〈f〉))l
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= Lexe(ι(θef |〈f〉))l

(
Lemma 1.22

)

= L(exe)ι(θef |〈f〉)

= Lef ·(exe)ι·ef

= L(exe)ι·ef

= L(
(exe)ι

)
f ·ef

((exe)ι ∈ 〈f〉)

= L(
(exe)ι

)
f

(e D f)

= L(exe)ι

= Lxρeιl.

Thus, ρeιl = ρefγl. Dually, λf ι
−1
r = λefγ

−1
r . Hence, (ρeιl, λf ι

−1
r ) = (ρefγr, λefγ

−1
r ).

Next, we show that for any x ∈ 〈ef〉, xγD x. Suppose that e, f ∈ Bα, where

α ∈ Y . According to the construction of K1, ι
′ is the identity map on αY , that

is, for any ξ ∈ αY and b ∈ 〈e〉∩Bξ, we have that bι ∈ Bξι′ = Bξ. Thus, bιD b. By

Lemma 1.21 and the remark succeeding it, θe|〈ef〉 and θef |〈f〉 are isomorphisms

preserving D-classes. Thus, γ is an order automorphism of 〈ef〉 such that for

all x ∈ 〈ef〉, xγD x. So, (ρefγr, λefγ
−1
r ) ∈ K2. Hence, K1 ⊆ K2.

We end this section with a representation of a weakly B-superabundant semi-

group with (C) and (IC), which is analogous to Theorem 4.2 and Theorem 4.11.

We first explain how a weakly B-orthodox semigroup with (IC) is represented in

VB.

Let S be a weakly B-orthodox semigroup. For any a ∈ S, we define

αa : B/L → B/L and βa : B/R → B/R

by

Lxαa = L(xa)∗ and Rxβa = R(ax)† .

Clearly, αa and βa are well-defined. We note that for any e ∈ B,

(αe, βe) = (ρe, λe),

where for any x ∈ B,

Lxρe = Lxe and Rxλe = Rex.
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Lemma 4.16. [17] Let S be a weakly B-orthodox semigroup with (IC). The map

φ : S → VB

given by

aφ = (αa, βa),

is a strongly B-admissible morphism with kernel µB. Moreover, putting B =

{(ρe, λe) : e ∈ B}, we have that θ|B : B → B is an isomorphism.

We remark that for any a ∈ S, choose a†, a∗ and let α : 〈a†〉 → 〈a∗〉 be an

order isomorphism such that for all x ∈ 〈a†〉,

xa = a(xα),

then aφ = (αa, βa) = (ρa†αl, λa∗α−1
r ).

The specialisation of Lemma 4.16 to the case of weakly B-superabundant

semigroups S with (C) and (IC) is of special interest here, since the image of S

under φ is contained in the fundamental weakly B-superabundant semigroup K2

with (C) and (IC).

Theorem 4.17. If S is a weakly B-superabundant semigroup with (C) and (IC),

then the image of S under the map φ given in Lemma 4.16, is contained in K2.

Proof. In view of Lemma 4.16, we show that the image of S under φ is contained

in K2. By the remark succeeding Lemma 4.16, we have that for any a ∈ S,

aφ = (ρeαl, λeα
−1
r ),

where e ∈ B, e H̃B a in S and α : 〈e〉 → 〈e〉 is an ordered isomorphism such that

xa = a(xα) for all x ∈ 〈e〉. For any x ∈ 〈e〉, we have that

x = xe R̃B xa = a(xα) L̃B e(xα) = xα.

Thus, x D̃B xα. By Lemma 3.10, we have that xD xα. Hence, α ∈ OAe. Conse-

quently, aφ = (ρeαl, λeα
−1
r ) ∈ K2.
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4.4 A fundamental weakly B-superabundant sub-

semigroup of UB

In Chapter 2 we introduced the weak idempotent connected condition (WIC),

that coincides with (IC), defined by El-Qallali and Fountain, for abundant semi-

groups, but not for weakly B-abundant semigroups. Starting with a band B,

El-Qallali, Fountain and Gould construct a weakly B-orthodox subsemigroup UB

of OP(B/L) × OP∗(B/R) satisfying (WIC). The semigroup UB plays the role

of WB for the class of weakly B-abundant semigroups having a band of idem-

potents B. Our purpose here is to find a fundamental weakly B-superabundant

subsemigroup of UB with (C) and (WIC).

We refer the reader to [17] for more details, but for convenience we sketch

the construction of UB as follows.

Let B be a band. For any e, f ∈ B, we commonly denote a relation from 〈e〉

to 〈f〉, that is, a subset of 〈e〉 × 〈f〉, by Ie,f . We say that Ie,f is connecting if Ie,f

is a subsemigroup of 〈e〉 × 〈f〉 and for every (x, x′), (y, y′) ∈ Ie,f we have that

x 6L y implies that x′
6L y′

and

x′
6R y′ implies that x 6R y.

Let A,B be sets and R ⊆ A × B be a relation. Then R is full if both

projection maps are onto.

Lemma 4.18. [17] Let Ie,f be full connecting. Then for any (x, y), (z, t) ∈ Ie,f ,

x 6D z if and only if y 6D t.

Set

UB = {(ρeI
e,f
l , λfI

e,f
r ) : e, f ∈ B, Ie,f ∈ 〈e〉 × 〈f〉 is full connecting},

where Ie,f
l is defined by

LxI
e,f
l = Ly (x, y) ∈ Ie,f ,
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and Ie,f
r is defined by

RyI
e,f
r = Rx (x, y) ∈ Ie,f .

Note that for any e ∈ B,

ιe, e = {(x, x) : x ≤ e}

is full connecting, and

(ρeι
e, e
l , λeι

e, e
l ) = (ρe, λe),

so that B = {(ρe, λe) : e ∈ B} ⊆ UB.

Lemma 4.19. [17] The set UB is a fundamental weakly B-orthodox semigroup

of OP(B/L) × OP∗(B/R), with (WIC).

We remark that for any (ρeI
e,f
l , λfI

e,f
r ) ∈ UB, we have that

(ρf , λf) L̃B (ρeI
e,f
l , λfI

e,f
r ) R̃B (ρe, λe).

Since Condition (WIC) gives us a very loose control over the position of

idempotents, but does not impose artificially the existence of order isomorphisms,

the idea used in previous sections to construct OG2 and K2 still works here,

however, we need carefully deal with more complicated proofs. We first look at

a concrete construction for a subsemigroup of UB as follows.

For any e ∈ B, we put

Q1 =
⋃

e∈B

Ue,

where, Ue = {(ρeI
e,e
l , λeI

e,e
r ) ∈ UB : for all (x, y) ∈ Ie,e, x D y}.

Lemma 4.20. The set Q1 forms a fundamental weakly B-superabundant sub-

semigroup of UB with (C) and (WIC).

Proof. We first show that Q1 is a semigroup. Let (ρeI
e,e
l , λeI

e,e
r ), (ρfJ

f,f
l , λfJ

f,f
r ) ∈

Q1. Since

efe ≤ e and fef ≤ f,

and Ie,e, Jf,f are full connecting, there exist (z, efe) ∈ Ie,e and (fef, w) ∈ Jf,f .



91

By the construction of Q1, z D efe D fef D w. If follows from Lemma 1.21 that

θz|〈zw〉 : 〈zw〉 → 〈z〉, θfef |〈efe〉 : 〈efe〉 → 〈fef〉 and θzw|〈w〉 : 〈w〉 → 〈zw〉

are D-class preserving isomorphisms. We claim that Kzw,zw is full connecting,

where

Kzw,zw =
(
θz|〈zw〉

)(
Ie,e|〈z〉

)(
θfef |〈efe〉

)(
Jf,f |〈fef〉

)(
θzw|〈w〉

)
.

To show that the projection maps to 〈zw〉 are onto, assume that g ∈ B

with g ≤ zw. Since θz|〈zw〉 is an isomorphism from 〈zw〉 onto 〈z〉, we have

that gθz|〈zw〉 ≤ z. As z ≤ e and Ie,e is full connecting, there exists an element

(gθz|〈zw〉, t) ∈ Ie,e. Now gθz|〈zw〉 = zgz and Ie,e is a semigroup, so that

(gθz|〈zw〉, efetefe) = (z, efe)(gθz|〈zw〉, t)(z, efe) ∈ Ie,e.

Clearly efetefe ∈ 〈efe〉, so that

(efetefe, f(efetefe)f) ∈ θfef |〈efe〉,

that is,

(efetefe, (fef)fetef(fef)) ∈ θfef |〈efe〉.

Now fetef ∈ 〈f〉; as Jf,f is full connecting, there exists an element (fetef, k) ∈

Jf,f . Consequently,

(fef, w)(fetef, k)(fef, w) = ((fef)fetef(fef), wkw) ∈ Jf,f .

Certainly, wkw ∈ 〈w〉, so that

(wkw, zw(wkw)zw) ∈ θzw|〈w〉.

It follows that

(g, zw(wkw)zw) ∈ Kzw,zw.

Dually, the projection of Kzw,zw to the second coordinate is onto.

Since each of θz|〈zw〉, I
e,e, θfef |〈efe〉, J

f,f and θzw|〈w〉 is a subsemigroup of

B × B, it follows that the same is true of the composition, hence of Kzw,zw. As

θz|〈zw〉 and θzw|〈w〉 are isomorphisms so that they preserve the partial order ≤L
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and ≤R. Thus, Kzw,zw is full connecting. Finally, since each of the relations

concerned fixes the same D-class, the same is clearly true of the composition, we

have that (ρzwK
zw,zw
l , λzwK

zw,zw
r ) ∈ Q1.

Let (ρeI
e,e
l , λeI

e,e
r ), (ρfJ

f,f
l , λfJ

f,f
r ) ∈ Q1. We claim that

(ρeI
e,e
l , λeI

e,e
r )(ρfJ

f,f
l , λfJ

f,f
r ) = (ρzwK

zw,zw
l , λzwK

zw,zw
r ).

To see this, let x ∈ B. we have that

LxρeI
e,e
l ρfJ

f,f
l = LexeI

e,e
l ρfJ

f,f
l

= LuρfJ
f,f
l where (exe, u) ∈ Ie,e

= LfufJ
f,f
l

= Lv where (fuf, v) ∈ Jf,f .

On the other hand,

LxρzwK
zw,zw
l

= Lzwxzw

((
θz|〈zw〉

)(
Ie,e|〈z〉

)(
θfef |〈efe〉

)(
Jf,f |〈fef〉

)(
θzw|〈w〉

))
l

= L
(zwxzw)

((
θz |〈zw〉

)(
Ie,e|〈z〉

)(
θfef |〈efe〉

)(
Jf,f |〈fef〉

)(
θzw|〈w〉

))

= L
(z·zwxzw·z)

((
Ie,e|〈z〉

)(
θfef |〈efe〉

)(
Jf,f |〈fef〉

)(
θzw|〈w〉

))

= L
(zwxz)

((
Ie,e|〈z〉

)(
θfef |〈efe〉

)(
Jf,f |〈fef〉

)(
θzw|〈w〉

)) (z D efe D fef D w)

= L
(zxz)

((
Ie,e|〈z〉

)(
θfef |〈efe〉

)(
Jf,f |〈fef〉

)(
θzw|〈w〉

)) (Lemma 1.22)

= L
(zexez)

((
Ie,e|〈z〉

)(
θfef |〈efe〉

)(
Jf,f |〈fef〉

)(
θzw|〈w〉

))
(
z ≤ e

)

= L
(efeuefe)

((
θfef |〈efe〉

)(
Jf,f |〈fef〉

)(
θzw|〈w〉

)) ((z, efe), (exe, u) ∈ Ie,e)

= L
(fef · efeuefe · fef)

((
Jf,f |〈fef〉

)(
θzw|〈w〉

))

= L
(fef · fuf · fef)

((
Jf,f |〈fef〉

)(
θzw|〈w〉

)) (u ∈ 〈e〉)

= L
(wvw)

(
θzw|〈w〉

) ((fef, w), (fuf, v) ∈ Jf,f)

= Lzwwvwzw
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= Lzwvw (z D w)

= Lwvw

(
Lemma 1.22

)
.

Note that (fuf, v), (fef, w) ∈ Jf,f , we obtain that (fefufef, wvw) ∈ Jf,f as Jf,f

is a subsemigroup. As u ∈ 〈e〉, and so fefufef = fefeuefef = feuef = fuf

so that (fuf, wvw) ∈ Jf,f . Since Jf,f is full connecting and (fuf, v) ∈ Jf,f , it

follows that Lv = Lwvw. Thus, ρzwK
zw,zw
l = ρeI

e,e
l ρfJ

f,f
l . Dually, we obtain that

λzwK
zw,zw
r = λfI

f,f
r λeJ

e,e
r , so that

(ρeI
e,e
l , λeI

e,e
r )(ρfJ

f,f
l , λfJ

f,f
r ) = (ρzwK

zw,zw
l , λzwK

zw,zw
r ).

Hence, Q1 forms a semigroup. In view of the remark following Lemma 4.19, we

have that (ρeI
e,e
l , λeI

e,e
r ) H̃B (ρe, λe), and so Q1 is weakly B-superabundant.

As B ⊆ Q1, we have that Q1 is a full subsemigroup of UB, and so Q1

is a fundamental weakly B-superabundant subsemigroup of UB with (C) and

(WIC).

Another alternative characterisation of a fundamental weakly B-superabundant

subsemigroup Q2 of UB, satisfying (C) and (WIC), is available. The following

construction is closely analogous to that of K1 and OG1.

Before describing the construction of Q2, we mention an important fact.

Now, let B be a band. Obviously, it is a semilattice Y of rectangular bands

Bα (α ∈ Y ). In addition, there is the Munn semigroup TY corresponding to Y .

If e, f ∈ B with e ∈ Bα, f ∈ Bβ(α, β ∈ Y ), and Ie,f is a full connecting relation

in 〈e〉 × 〈f〉, then it follows from Lemma 4.18 that there exists a mapping Ie,f

from αY onto βY with the property that

(u, v) ∈ Ie,f implies that (u, v) ∈ Bξ × B
ξIe,f ,

where u ∈ 〈e〉 ∩ Bξ. In fact, Ie,f must be a bijection.

We define a map

χ : UB → TY

by

(ρeI
e,f
l , λfI

e,f
r )χ = Ie,f ,

for any (ρeI
e,f
l , λfI

e,f
r ) ∈ UB
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Lemma 4.21. The mapping χ is a morphism.

Proof. We first claim that χ is well-defined. To do this, let (ρeI
e,f
l , λfI

e,f
r ) ∈ UB.

We first show that Ie,f is an isomorphism from αY onto βY ,where e ∈ Bα and

f ∈ Bβ.

It is easy to see that Ie,f is well-defined since if (x, y), (z, t) ∈ Ie,f with x D z,

then by Lemma 4.18, we have that y D t. Again by Lemma 4.18, we have that Ie,f

is injective. As Ie,f is full, it is certainly true that Ie,f is surjective. In addition,

Ie,f is a morphism because Ie,f is a subsemigroup of 〈e〉 × 〈f〉.

If (ρgJ
g,h
l , λhJ

g,h
r ) ∈ UB and (ρeI

e,f
l , λfI

e,f
r ) = (ρgJ

g,h
l , λhJ

g,h
r ), then we show

that Ie,f = Jg,h. We have remarked that

(ρe, λe) R̃B (ρeI
e,f
l , λfI

e,f
r ) L̃B (ρf , λf).

Similarly, (ρg, λg) R̃B (ρgJ
g,h
l , λhJ

g,h
r ) L̃B (ρh, λh). Thus (ρe, λe) R (ρg, λg). Since

B is isomorphic to B, we have that eR g, and so eD g. Similarly, f D h. Hence,

domIe,f = domJg,h = αY, imIe,f = imJg,h = βY,

where e, g ∈ Bα and f, h ∈ Bβ.

Let ξ ∈ domIe,f and x ∈ Bξ ∩〈e〉. Then there exists y ∈ B such that x = eye.

Since eD g, we have that x = eyeD gyg ≤ g, and so gyg ∈ Bξ. Observe that

LyρeI
e,f
l = LeyeI

e,f
l = Lz

(
(eye, z) ∈ Ie,f

)

and

LyρgJ
g,h
l = LgygJ

g,h
l = Lu

(
(gyg, u) ∈ Jg,h

)
.

As ρeI
e,f = ρgJ

g,h, we have that z Lu. Then ξIe,f = ξJg,h = η, where z, u ∈ Bη.

Thus Ie,f = Je,f , and so χ is well-defined.

In the following, we show that χ is a morphism. According to Lemma 4.3

of [6], we have that

(ρeI
e,f
l , λfI

e,f
r )(ρgJ

g,h
l , λhJ

g,h
r ) = (ρzK

z,w
l , λwK

z,w
r ),
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where (z, fgf) ∈ Ie,f , (gfg, w) ∈ Jg,h and

Kz,w = (Ie,f(θgfg|〈fgf〉)J
g,h) ∩ (〈z〉 × 〈w〉).

Hence, it is sufficient to show that

Ie,f ◦ Jg,h = Kz,w.

We have remarked that domIe,f = αY , imIe,f = βY . Similarly, domJg,h = γY ,

imJe,f = δY , where g ∈ Bγ, h ∈ Bδ. Thus

ξ ∈ domIe,f ◦ Jg,h

⇔ ξ ∈ ( imIe,f ∩ domJg,h)Ie,f
−1

⇔ ξ ∈ (βγ)Y Ie,f
−1

⇔ ∃x ∈ Bξ ∩ 〈e〉, (x, y) ∈ Ie,f , y ∈ Bµ, µ ≤ βγ

⇔ ξ ≤ τ where z ∈ Bξ since (z, fgf) ∈ Ie,f

⇔ ξ ∈ domKz,w.

Returning to the above, let ξ ∈ dom(Ie,f ◦Jg,h) and x ∈ Bξ, so that y ∈ B
ξIe,f =µ

.

Now (gfg)gfyfg(gfg) ∈ Bµ (as µ ≤ βγ) and ((gfg)gfyfg(gfg), whw) ∈ Jg,h, so

µJg,h = ν, where whw ∈ Bγ. Thus ξIe,f ◦ Jg,h = ν = ξKz,w, as (x, whw) ∈ Kz,w.

So

Ie,f ◦ Jg,h = Kz,w.

We omit the proof of the next lemma as it follows from Lemma 4.23.

Lemma 4.22. The set of the elements of UB, whose images under χ are idem-

potent, forms a fundamental weakly B-superabundant subsemigroup of UB with

(C) and (WIC). We denote it by Q2.

Lemma 4.23. The semigroup Q2 coincides with Q1.

Proof. It is easy to see that Q1 ⊆ Q2. We show that Q2 ⊆ Q1. Suppose

that (ρeI
e,f , λfI

e,f
r ) ∈ Q2. Then e D f and Ie,f is the identity map from αY

to αY , where e ∈ Bα. So for any (u, v) ∈ Ie,f , u D v. Now let Jef,ef =
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(θe|〈ef〉)I
e,f(θef |〈f〉). We claim that (ρefJ

ef,ef
l , λefJ

ef,ef
r ) = (ρeI

e,f , λfI
e,f
r ). For

any x ∈ B, we have that

LxρefJ
ef,ef
l = L(efxef)Jef,ef

= L(efxef)(θe|〈ef〉)Ie,f (θef |〈f〉)

= L(e·efxef ·e)Ie,f (θef |〈f〉)

= L(e·efxef ·e)

(
Ie,f(θef |〈f〉)

)
l

= Lexe

(
Ie,f(θef |〈f〉)

)
l

(e D f, Lemma 1.22)

= L(exe)Ie,f (θef |〈f〉)

= Lyθef |〈f〉
((exe, y) ∈ Ie,f)

= Lefyef

= Lyef

= Ly·f ·ef (y ∈ 〈f〉)

= Lyf (f D e)

= Ly

= LexeI
e,f
l

(
(exe, y) ∈ Ie,f

)

= LxρeI
e,f
l .

Thus, ρefJ
ef,ef
l = ρeI

e,f
l . Dually, we obtain that λefJ

ef,ef
r = λfI

e,f
r . Hence

(ρefJ
ef,ef
l , λefJ

ef,ef
r ) = (ρeI

e,f
l , λfI

e,f
r ). In addition, by the proof of Lemma 4.21,

we have Jef,ef = Ie,f . Consequently, Q2 ⊆ Q1.

Lemma 4.24. [17] If S is a weakly B-orthodox semigroup with (WIC), then

the map θ : S → UB given by aθ = (αa, βa) ,where αa and βa are defined as

Section 4.3, is a strongly B-admissible morphism with kernel µB. Moreover,

θ|B : B → B is an isomorphism.

Consequently, we have:

Theorem 4.25. If S is a weakly B-superabundant semigroup with (WIC) and

(C), then the map φ : S → UB in Lemma 4.24 has image contained in Q1.

Proof. Suppose that a ∈ S and e ∈ H̃a ∩ B. In view of [6], we know aφ =

(αa, βa) = (ρa†Ia†,a∗

l , λa∗Ia†,a∗

r ). Specially, we can use e instead of a† and a∗ so
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that we obtain aφ = (ρeI
e,e
l , λeI

e,e
r ). In addition, for any x ∈ 〈e〉, we have that

xa = ay, where (x, y) ∈ Ie,e. As

x = xe R̃B xa = ay L̃B ey = y.

We have that x D̃B y. It follows from Lemma 3.10 that xD y in B. Thus aφ =

(ρeI
e,e
l , λeI

e,e
r ) is contained in Q1.

4.5 A fundamental weakly B-superabundant sub-

semigroup of SB

The aim of this section is to remove the idempotent connected condition from the

results of previous sections. We stress that to do so Gomes and Gould [17] used

a completely fresh technique to construct from a band B a weakly B-orthodox

subsemigroup SB of OP(B1/L) × OP∗(B1/R), with the property that any fun-

damental weakly B-orthodox semigroup is a subsemigroup of SB, where B is

isomorphic to B. As a consequence, the fundamental semigroup UB constructed

in last section, satisfying (C) and (WIC) is embedded into SB.

To define SB, we give some notation. For a set X, an equivalence κ on X

and γ : X/κ → X/κ, the relation γ̄ is defined by

γ̄ = {(x, y) ∈ X ×X : y ∈ [x]γ},

where [x] is the equivalence class containing x.

We put

SB = {(α, β) ∈ O1(B) : for all x ∈ B1, xᾱ ∈ Lxα and xβ̄ ∈ Rxβ,

we have βλx = λxᾱβλx and αρx = ρxβ̄αρx},

where

O1(B) = {(α, β) ∈ OP(B1/L) × OP∗(B1/R) : Im α ⊆ B/L, Im β ⊆ B/R}.

Lemma 4.26. [17] The set SB is weakly B-orthodox and is B-fundamental,

where B = {(ρe, λe) : e ∈ B}.
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We remark that if (α, β) ∈ SB, u ∈ L1α and v ∈ R1β, then

(α, β) L̃B (ρu, λu) and (α, β) R̃B (ρv, λv).

In the following we will construct a weakly B-superabundant subsemigroup

of SB, that is fundamental and satisfies (C). Put

NB = {(α, β) ∈ SB : there exists e ∈ L1α ∩ R1β ∩ B such that for all

x ∈ B1, xᾱ ∈ Lxα and xβ̄ ∈ Rxβ, we have xᾱ D exe D xβ̄}.

Lemma 4.27. The set NB is a subsemigroup of SB containing the band of idem-

potents B = {(ρe, λe) : e ∈ B}.

Proof. To show that NB is a subsemigroup of SB, it is sufficient to show that NB

is closed under the multiplication. We suppose that (α, β), (γ, δ) ∈ NB. Then

there exists e ∈ L1α∩R1β∩B such that for all x ∈ B1, xᾱ ∈ Lxα and xβ̄ ∈ Rxβ,

we have that xᾱ D exe D xβ̄. Also, there exists f ∈ L1γ ∩R1δ ∩B such that for

all x ∈ B1, xγ̄ ∈ Lxγ and xδ̄ ∈ Rxδ, we have that xγ̄ D fxf D xδ̄. We consider

the product of (α, β) and (γ, δ). Observe that

L1αγ = Leγ = Leγ̄ , eγ̄ D fef D eδ̄,

and

R1δβ = Rfβ = Rfβ̄, f β̄ D efe D fᾱ.

Since efe D fef , we have that

L1αγ = L(fβ̄)(eγ̄), R1δβ = R(fβ̄)(eγ̄), and (fβ̄)(eγ̄) D ef.

So, (fβ̄)(eγ̄) ∈ L1αγ ∩R1δβ. Now, we fix the choices of fβ̄ and eγ̄.

For all x ∈ B1, we have that xαγ ∈ Lxαγ and xδβ ∈ Rxδβ. Hence,

xαγ L (xᾱ)γ̄ D f(xᾱ)f D fexef

and

xδβ R (xδ̄)β̄ D e(xδ̄)e D efxef.
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As (fβ̄)(eγ̄) D ef , we obtain that

xαγ D (fβ̄)(eγ̄)x(fβ̄)(eγ̄) D xδβ.

Thus, (αγ, δβ) ∈ NB, and so NB forms a semigroup.

Finally, we should show that NB contains the band of idempotents B. For

any e ∈ B, (ρe, λe) ∈ B. Clearly, e ∈ L1ρe ∩ R1λe ∩ B. For all x ∈ B1,

xρe ∈ Lxρe and xλe ∈ Rxλe, we have that xρe L xe D ex R xλe. It follows that

xρe D exe D xλe. Hence, (ρe, λe) ∈ NB. Consequently, B ⊆ NB.

Further information about SB is obtained from the following result.

Theorem 4.28. The semigroup NB is a fundamental weakly B-superabundant

subsemigroup of SB with (C).

Proof. For any (α, β) ∈ NB, there exists e ∈ L1α ∩ R1β ∩ B. In view of the

remark following Lemma 4.26, we have that (α, β) H̃B (ρe, λe). Hence, NB is a

weakly B-superabundant subsemigroup of SB.

Indeed NB is B-fundamental with (C) as B ⊆ NB.

We now want to make full use of the approach of OG1 to determine a sub-

semigroup of SB that is fundamental weakly B-superabundant with (C). But in

view of the fact we no longer have any idempotent connected condition, we can

not find a useful mapping from SB to the Munn semigroup TY to get this re-

sult, where B is a semilattice Y of rectangular bands Bα (α ∈ Y ). With this in

mind, we decide to consider a mapping from SB to CY , where CY is a fundamen-

tal Ehresmann semigroup with (C). We refer the reader to [18] to acquire more

details about CY . Here we provide some general facts about CY . We have

CY = {(α, β) ∈ O1(Y
1) × O∗

1(Y 1) : Imα, Imβ ⊆ Y and ∀x ∈ Y 1,

ρxα 6 βρxα and ρxβ 6 αρxβ}

where for any x ∈ Y , ρ : Y 1 → Y is the order preserving map given by ξρx = ξx =

xξ and for γ, δ ∈ OP(Y 1), γ 6 δ means that yγ 6 yδ for all y ∈ Y 1. From [18],

CY is a fundamental Ehresmann semigroup with (C) and is isomorphic to SY ,

where

SY = {(α, β) ∈ O1(Y 1) × O∗
1(Y 1) : Imα, Im β ⊆ Y and ∀x ∈ Y 1,
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βρx = ρxαβρx and αρx = ρxβαρx}

and the set of distinguished idempotents of SY is Y = {(ρξ, λξ) : ξ ∈ Y }.

We define a mapping φ : SB → SY by the rule that for any (α, β) ∈ SB

(α, β)φ = (α′, β ′),

where (α′, β ′) is a pair of mappings from Y 1 to Y having the property that for

any x ∈ B1 with x ∈ B1
ξ , xᾱ ∈ Lxα and xβ̄ ∈ Rxβ, we have that xᾱ ∈ B1

ξα′ and

xβ̄ ∈ B1
ξβ′ .

Lemma 4.29. The mapping φ is a morphism.

Proof. Certainly, for any (α, β) ∈ SB, we have that Im α′, Im β ′ ⊆ Y . To show

that φ is well-defined, suppose that ξ ∈ Y 1 and x ∈ B1
ξ . Then for any xᾱ ∈ Lxα

and xβ̄ ∈ Rxβ, we have that βλx = λxᾱβλx and αρx = ρxβ̄αρx. For any κ ∈ Y 1

and y ∈ B1
κ, we have that

Ryβλx = Ryλxᾱβλx and Lyαρx = Lyρxβ̄αρx,

which means Ryβλx and Ryλxᾱβλx are in the same D-class and the same is true

for Lyαρx and Lyρxβ̄αρx. Thus, κβ ′ρξ = κρξα′β ′ρξ and κα′ρξ = κρξβ′α′ρξ. Hence

(α′, β ′) ∈ SY .

Clearly, φ is a morphism.

Lemma 4.30. The set of the elements of SB whose images under φ are distin-

guished idempotents of SY , forms a fundamental weakly B-superabundant sub-

semigroup of SB with (C). We denote it by N ′
B.

Proof. Since φ is a morphism and the distinguished idempotents of SY form a

semilattice, it follows that N ′
B is closed. Also, it is easy to see that B ⊆ N ′

B,

which implies that N ′
B has (C) and is fundamental.

It remains to show that N ′
B is weakly B-superabundant. We assume that

(α, β) ∈ N ′
B. Then (α′, β ′) ∈ E(SY ). It follows that α′ = β ′. Specially, 1α′ = 1β ′,

and so if 1ᾱ ∈ B1α′ and 1β̄ ∈ B1β′ , then, 1ᾱ D 1β̄. Therefore, there exists an

idempotent e ∈ L1ᾱ ∩ R1β̄ , that is, e ∈ L1α ∩ R1β. By the remark following

Lemma 4.26, we obtain that (α, β) H̃B (ρe, λe). Consequently, N ′
B is weakly

B-superabundant.
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To reveal the relationship between NB and N ′
B, we have:

Lemma 4.31. The semigroup NB coincides with N ′
B.

Proof. We begin by showing that NB ⊆ N ′
B. Suppose that (α, β) ∈ NB. Then

there exists e ∈ L1α∩R1β∩B such that for all x ∈ B1, xᾱ ∈ Lxα and xβ̄ ∈ Rxβ,

we have that xᾱ D exe D xβ̄. It follows that α′ = β ′ and for any ε ∈ Y 1,

εα′ = (1α′)ε, that is, α′ = ρ1α′ . Hence, α′ = (α′)2, and so (α′, β ′) is an idempotent

of SY . Since there exists an idempotent e ∈ L1α ∩ R1β with e ∈ Bξ, it follows

that εα′ = ρξε = ερξ. Therefore, (α′, β ′) = (ρξ, λξ) ∈ Ē(SY ). Consequently,

NB ⊆ N ′
B.

Conversely, suppose that (α, β) ∈ N ′
B. Then there exists an idempotent

(ρτ , λτ ) such that (ρτ , λτ ) = (α′, β ′) which implies that α′ = β ′ and there exists

e ∈ L1α ∩ R1β with e ∈ Bτ . For any x ∈ B1 with x ∈ Bξ, xᾱ ∈ Lxα and xβ̄ ∈

Rxβ , we have that xᾱ, xβ̄ ∈ Bξρτ
. Thus, xᾱ Dex D xβ̄. Hence N ′

B ⊆ NB.

Lemma 4.32. [17] Let S be a weakly B-orthodox semigroup. Then θ : S → SB

given by

aθ = (αa, βa),

where αa and βa are defined in Section 4.3, is a strongly admissible morphism

with kernel µB. Moreover, θ|B : B → B is an isomorphism.

Corollary 4.33. Let S be a weakly B-orthodox semigroup and let K be a sub-

semigroup of SB containing B. Then K is a weakly B-orthodox semigroup. If

K contains the image of S under θ given as in Lemma 4.32, then θ : S → K is

a strongly admissible morphism with kernel µB. Moreover, θ|B : B → B is an

isomorphism.

Lemma 4.32 stated that there exists a strongly B-admissible morphism θ :

S → SB. Consequently, we can improve on this fact to get a similar result for

weakly B-superabundant semigroup with (C) as follows.

Theorem 4.34. If S is a weakly B-superabundant semigroup with (C), then the

map θ : S → SB in Lemma 4.32 has the image contained in NB.

Proof. Suppose that a ∈ S. Firstly, we need to find an idempotent which belongs

to L1αa and R1βa. Of course, we have L1αa = La∗ and R1βa = Ra† . Also, we
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have a∗ L a†a∗ R a† since S is weakly B-superabundant. It follows that

a†a∗ ∈ L1αa ∩R1βa.

According to definitions of αa and βa, Lxαa = L(xa)∗ and Rxβa = R(ax)† for

all x ∈ B1. So xαa L (xa)∗ and xβa R (ax)†. Then

xαa L (xa)∗ L̃B xa R̃B xa
† R̃B xa

†a∗ D a†a∗xa†a∗ D a†a∗x L̃B ax R̃B (ax)† R xβa.

It follows that xαa D̃B a†a∗xa†a∗ D̃B xβa. By Lemma 3.10, we have

xαa D a†a∗xa†a∗ D xβa in B.

Hence aθ = (αa, βa) ∈ NB.



Chapter 5

Structure theorems for weakly

B-orthodox semigroups

The goal of this chapter is to provide structure theorems for weakly B-orthodox

semigroups, where B is a band. We shall focus on providing a description of a

weakly B-orthodox semigroup S as a spined product of a weakly B-orthodox semi-

group SB and S/γB, where SB is the fundamental weakly B-orthodox semigroup

constructed in Chapter 4 and γB is the analogue of the least inverse congruence

on an orthodox semigroup. This result is analogous to the Hall-Yamada theorem

for orthodox semigroups.

Throughout this chapter Green’s relation D always refer to B. Here B

denotes a band. To avoid ambiguity, if K is a relation on a semigroup S, then we

will sometimes use K(S) to denote the relation on S.

5.1 The least admissible Ehresmann congruence

In Chapter 1 we mentioned that there exists the least inverse congruence γ on

any orthodox semigroup. As an analogue of the least inverse congruence, many

articles have discussed the least B/D-ample congruence δB on any weakly B-

orthodox semigroup with certain idempotent connected condition, as mentioned

in Chapter 2. Here, we concentrate on a correspondence congruence γB on weakly

B-orthodox semigroups. Such semigroups do not satisfy any idempotent con-

nected condition.

The aim of this section is to find a closed form for γB, where γB is the least

103
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admissible Ehresmann congruence on a weakly B-orthodox semigroup S. For any

a, b ∈ S, we define

a δB b if and only if a = a†ba∗ and b = b†ab∗,

for some a†, a∗, b†, b∗ ∈ B with a† R̃B a L̃B a
∗, b† R̃B b L̃B b

∗.

Lemma 5.1. If a δB b in a weakly B-orthodox semigroup S, then a† D b†, a∗ D b∗,

for any a†, b†, a∗ and b∗. In particular, for any e, f ∈ B, e δB f if and only if

e D f .

Proof. Suppose that a, b ∈ S are such that a δB b. Then a = a†ba∗, b = b†ab∗, for

some a† ∈ R̃a ∩ B, a∗ ∈ L̃a ∩ B, b† ∈ R̃b ∩ B and b∗ ∈ L̃b ∩ B. From a = a†ba∗,

we can deduce that

a†b†a = a†b†a†ba∗ = a†b†a† · b† · ba∗ = a†b†ba∗ = a†ba∗ = a.

Since a R̃B a
†, we have a†b†a† = a†. By a similar argument, we get b†a†b† = b†.

Thus a† D b†. Dually, we have a∗ D b∗. If a⋄ is another idempotent in R̃a ∩B and

b⋄ is another idempotent in R̃b ∩ B, then a† R a⋄ and b† R b⋄. Together with

a† D b†, we obtain that a⋄ D b⋄. Dually, we have a◦ D b◦ for any a◦ ∈ L̃a ∩ B and

b◦ ∈ L̃b ∩ B.

Lemma 5.2. Let S be a weakly B-orthodox semigroup and let θ : S → T be an

admissible morphism, where T is an Ehresmann semigroup with respect to Bθ.

Then δB ⊆ Ker θ.

Proof. Suppose that a, b ∈ S with a δB b. Then a = a†ba∗ and b = b†ab∗, for some

a†, a∗, b†, b∗ ∈ B with a† R̃B a L̃B a
∗, b† R̃B b L̃B b

∗. According to Lemma 5.1, we

have a∗θ D(Bθ) b∗θ and a†θ D(Bθ) b†θ since θ is an admissible morphism. But,

Bθ is a semilattice, a∗θ = b∗θ and a†θ = b†θ so that aθ = (a†ba∗)θ = a†θbθa∗θ =

b†θbθb∗θ = (b†bb∗)θ = bθ. Thus, (a, b) ∈ Kerθ.

Corollary 5.3. If S is a weakly B-orthodox semigroup, then δB ⊆ γB.

Our aim is to show that, under certain conditions, δB = γB holds on weakly

B-orthodox semigroups.

Lemma 5.4. Let S be a weakly B-orthodox semigroup. Then the relation δB

defined above is an equivalence relation.
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Proof. Clearly, δB is reflexive and symmetric. To show that δB is transitive we

assume that a, b, c ∈ S such that a δB b and b δB c. Then a = a†ba∗, b = b†ab∗,

b = b⋄cb◦ and c = c†bc∗, for some a† ∈ R̃a ∩ B, a∗ ∈ L̃a ∩ B, b†, b⋄ ∈ R̃b ∩ B,

b∗, b◦ ∈ L̃b ∩B, c† ∈ R̃c ∩ B and c∗ ∈ L̃c ∩B. By Lemma 5.1, we obtain that

a† D b† D b⋄ D c† and a∗ D b∗ D b◦D c∗.

Now

a = a†ba∗ = a†b⋄cb◦a∗ (b = b⋄cb◦)

= a†b⋄ · c† · c · c∗ · b◦a∗

= a†c†cc∗a∗ (a† D b⋄ D c†, a∗ D b◦ D c∗)

= a†ca∗.

Similarly, we get c = c†ac∗, and so a δB c. Hence, δB is transitive.

Lemma 5.5. Let S be a weakly B-orthodox semigroup. If the equivalence relation

δB defined above is a congruence on S, then it is an admissible congruence on S.

Proof. Suppose that the relation δB is a congruence. We show that δB is an ad-

missible congruence on S. Assume that a ∈ S, e, f ∈ B are such that e L̃B a R̃B f

and (aδB)(kδB) = aδB for some k ∈ B. We want to show that (eδB)(kδB) = eδB.

From (ak)δB = aδB and Lemma 5.1, we get (ak)∗ D a∗. Since L̃B is a right con-

gruence, a∗k L̃B (ak)∗. Again, due to a L̃B e, we obtain that eD a∗. As D is a

congruence on B, we have that ekD a∗k. Thus eD a∗ D a∗kD ek. It immediately

follows from Lemma 5.1 that e δB ek, that is, (eδB)(kδB) = eδB. Hence aδ L̃Bδ eδ.

An argument that is completely dual gives that aδB R̃Bδ fδB. Consequently,

according to Lemma 2.9, δB is an admissible congruence on S.

Corollary 5.6. If ρ is an admissible congruence on a weakly B-orthodox semi-

group S satisfying that B/ρ is a semilattice, then S/ρ is an Ehresmann semigroup.

The following lemma is an immediate consequence of Lemma 5.5, Corol-

lary 5.6 and Corollary 5.3.

Lemma 5.7. Let S be a weakly B-orthodox semigroup. If the equivalence rela-

tion δB defined above is a congruence on S, then it is an admissible Ehresmann

congruence on S. Moreover, δB = γB.
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Lemma 5.8. If S is a weakly B-orthodox semigroup, then H̃B ∩ δB = ι.

Proof. Suppose that a, b ∈ S and (a, b) ∈ H̃B ∩ δB. Then a = a†ba∗ for some

a† ∈ R̃a ∩B, a∗ ∈ L̃a ∩B. Since a H̃B b, we have a† R̃B a R̃B b and a∗ L̃B a L̃B b.

Thus a = a†ba∗ = b as required.

5.2 A structure theorem for weakly B-orthodox

semigroups

The Hall-Yamada theorem presents a construction for orthodox semigroups, that

is, any orthodox semigroup S with band of idempotents B is isomorphic to the

spined product of S/γ and the Hall semigroup WB, where γ is the least inverse

congruence on S. So far, many articles have extended the Hall-Yamada theorem

to weakly B-orthodox semigroups satisfying certain idempotent connected con-

ditions [6], [46]. In Chapter 4, given a band B, we built a fundamental weakly

B-orthodox semigroup SB, which is an analogue of the Hall semigroup WB, where

B = {(ρe, λe) : e ∈ B}. In view of Lemma 4.32, Gomes and Gould found a rep-

resentation from a weakly B-orthodox semigroup to SB.

We stress that they did not attempt to produce an analogue of the Hall-

Yamada structure theorem for orthodox semigroups. With this in mind we give

the following lemmas for weakly B-orthodox semigroups, from which we shall

obtain a very general structure theorem for weakly B-orthodox semigroups. We

then proceed to show this result can be applied in a number of cases of interest.

We begin by reminding the reader that if we have semigroups S, T , H and

morphisms φ and ψ as follows,

S H

T

ψ
φ

Figure 5.1: The spined product

then the spined product S = S(S, T, φ, ψ) of S and T with respect to H , φ and

ψ is

S = {(s, t) ∈ S × T : sφ = tψ}.
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From now on, S will be a weakly B-orthodox semigroup, γB is the least

admissible Ehresmann congruence on S and γB is the least admissible Ehresmann

congruence on SB. Define a map ψ : S/γB → SB/γB by the rule that sγBψ =

sθγB for any s ∈ S, where θ is defined as in Lemma 4.32.

Lemma 5.9. The mapping ψ : S/γB → SB/γB defined above is an admissible

morphism such that ψ|B/γB
: B/γB → B/γB is an isomorphism, if and only if

for any a, b ∈ S, a γB b implies aθ γB bθ and e γB f if and only if eθ γB fθ for any

e, f ∈ B, where θ is defined as in Lemma 4.32.

Proof. Necessity. Suppose that a, b ∈ S and a γB b. It immediately follows that

aγBψ = bγBψ. By the definition of ψ, we have aθγB = aγBψ = bγBψ = bθγB,

that is, aθ γB bθ. Consequently, e γB f implies eθ γB fθ for any e, f ∈ B.

Conversely, if eθ γB fθ then by the definition of ψ, we have eγBψ = eθγB =

fθγB = fγBψ. Since ψ|B/γB
is an isomorphism it follows that eγB = fγB, that

is, e γB f .

Sufficiency. According to the hypothesis, it is easy to see that the map

ψ : S/γB → SB/γB defined by sγBψ = sθγB for any s ∈ S is well-defined and

maps B/γB to B/γB. Since θ, γ♮
B and γ♮

B
are morphisms it follows that ψ is a

morphism.

Next, we claim that ψ is an admissible morphism. Suppose that a, b ∈ S and

aγB R̃B/γB
bγB. Since γ♮

B is admissible, we have

a†γB R̃B/γB
aγB R̃B/γB

bγB R̃B/γB
b†γB,

for any a† ∈ R̃a ∩ B, b† ∈ R̃b ∩ B. Certainly, a†γB R b†γB. As B/γB is a

semilattice, we get a†γB = b†γB. By the hypothesis, we obtain that a†θ γB b†θ.

Since θ and γ♮

B
are admissible morphisms, we have that

aγBψ = aθγB R̃B/γ
B

(aθγB)† = a†θγB = b†θγB = (bθγB)† R̃B/γ
B
bθγB = bγBψ,

and so ψ preserves R̃B/γB
. Dually, ψ preserves L̃B/γB

. Thus ψ is admissible.

It remains to show that ψ|B/γB
: B/γB → B/γB is bijective. Certainly,

ψ|B/γB
is onto. It is sufficient to check that ψ|B/γB

is injective. Suppose that

eγBψ = fγBψ for any eγB, fγB ∈ B/γB. Then by the definition of ψ we have

that eθγB = fθγB. Again by the hypothesis, we succeed in obtaining e γB f .
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Theorem 5.10. Let S be a weakly B-orthodox semigroup and let SB ∗ S/γB be

the spined product of SB and S/γB with respect to SB/γB, γ♮

B
and ψ, where ψ is

defined above and satisfies the conditions in Lemma 5.9. Then the mapping φ :

a 7→ (aθ, aγB) is a monomorphism from S to SB ∗S/γB if and only if µB ∩γB = ι,

where µB = ker θ, and θ is defined as in Lemma 4.32.

S

S/γB S/γB

SB
θ

γ♮
B γ♮

B

ψ

Figure 5.2: The structure of weakly B-orthodox semigroups

Proof. Clearly, φ is a morphism, since θ and γ♮
B are admissible morphisms. Then

φ is injective if and only if, for any a, b ∈ S we have that aφ = bφ if and only if

a = b. That is, φ is injective if and only if ker θ ∩ ker γ♮
B = µB ∩ γB = ι.

The next result is immediate.

Lemma 5.11. Let SB ∗ S/γB be the spined product of SB and S/γB with respect

to SB/γB, γ♮

B
and ψ, where ψ is defined above and satisfies the conditions in

Lemma 5.9. Then the mapping φ : a 7→ (aθ, aγB) is an epimorphism from a

weakly B-orthodox semigroup S to SB ∗ S/γB if and only if, if x ∈ SB and

(x, sγB) ∈ SB ∗S/γB for some s ∈ S then there exists t ∈ S such that x = tθ and

tγB = sγB, where θ is defined as in Lemma 4.32.

We now present the main result of this section. We will see later that in

some special cases, it can be significantly simplified. We make a statement that

µB = ker θ, where µB is the largest congruence contained in H̃B and θ is defined

as in Lemma 4.32.

Theorem 5.12. Let S be a weakly B-orthodox semigroup. The mapping φ : a 7→

(aθ, aγB) is an isomorphism from S to the spined product SB ∗ S/γB of SB and
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S/γB with respect to SB/γB, γ♮

B
and ψ, where ψ : S/γB → SB/γB defined by

sγBψ = sθγB for any s ∈ S is an admissible morphism and ψ|B/γB
: B/γB →

B/γB is an isomorphism, if and only if :

(i) for any a, b ∈ S, a γB b implies aθ γB bθ and e γB f if and only if eθ γB fθ

for any e, f ∈ B;

(ii) γB ∩ µB = ι;

(iii) if (x, sγB) ∈ SB ∗ S/γB for some x ∈ SB and s ∈ S, then there exists

t ∈ S such that x = tθ and tγB = sγB.

According to Corollary 4.33, if a weakly B-orthodox semigroup S is embed-

ded into a subsemigroup K of SB containing B under θ given in Lemma 4.32,

then the following result is immediate.

Corollary 5.13. Let S be a weakly B-orthodox semigroup and let K be a B-full

subsemigroup of SB such that Imθ ⊆ K. Let γB denote the least Ehresmann

congruence on K. Then the mapping φ : a 7→ (aθ, aγB) is an isomorphism from

S to the spined product K ∗S/γB of K and S/γB with respect to K/γB, γ♮

B
and ψ,

where ψ : S/γB → K/γB defined by sγBψ = sθγB for any s ∈ S is an admissible

morphism and ψ|B/γB
: B/γB → B/γB is an isomorphism, if and only if :

(i) for any a, b ∈ S, a γB b implies aθ γB bθ and e γB f if and only if eθ γB fθ

for any e, f ∈ B;

(ii) γB ∩ µB = ι;

(iii) if (x, sγB) ∈ K ∗ S/γB for some x ∈ K and s ∈ S, then there exists

t ∈ S such that x = tθ and tγB = sγB.

Finally, we shall present an important and useful lemma for the following

work. In Section 5.1, we defined an equivalence relation δB on a weakly B-

orthodox semigroup S and showed that if δB is a congruence then it is the least

admissible Ehresmann congruence on S. In this case, i.e. when δB = γB and

δB = γB, Theorem 5.12 and Corollary 5.13 immediately simplify.

Lemma 5.14. Let S be a weakly B-orthodox semigroup. If δB and δB are con-

gruences, then δB satisfies Conditions (i), (ii) and (iii) in Theorem 5.12 (resp.

Corollary 5.13).

Proof. To prove (i), suppose that a, b ∈ S are such that aδB = bδB . By the

definition of δB we have that a = a†ba∗ and b = b†ab∗ for some a†, a∗, b†, b∗ ∈ B
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with a† R̃B a L̃B a
∗, b† R̃B b L̃B b

∗. It follows that aθ = (a†ba∗)θ = (a†θ)(bθ)(a∗θ)

and bθ = (b†ab∗)θ = (b†θ)(aθ)(b∗θ). Since θ : S → SB is a strongly admissible

morphism, we obtain that a†θ R̃B aθ L̃B a∗θ and b†θ R̃B bθ L̃B b∗θ. Thus

aθ δB bθ.

According to Lemma 5.1 we know that δB|B = D, and since θ|B : B → B is

an isomorphism in Lemma 4.32 it follows that e δB f if and only if eθ δB fθ for

any e, f ∈ B. Hence, Condition (i) holds.

Next, we show that δB satisfies Condition (ii). Suppose that a, b ∈ S are

such that a (δB ∩µB) b. Since µB ⊆ H̃B, it follows that a (δB ∩H̃B) b. By Lemma

5.8, we have that a = b, that is, δB ∩ µB = ι.

Finally, we claim that δB satisfies Condition (iii). Suppose that (x, sδB) ∈

SB ∗ S/δB. Then xδB = sδBψ = sθδB. Thus x = α · sθ · β, sθ = ǫ · x · ε,

where α, β, ǫ, ε ∈ B, α R̃B x L̃B β, ǫ R̃B sθ L̃B ε. Since θ is admissible, we can

take ǫ = s†θ, ε = s∗θ for some s† ∈ B ∩ R̃s, s
∗ ∈ B ∩ L̃s. Let α = gθ, β = hθ

for some g, h ∈ B. Then x = (gsh)θ. By Lemma 5.1, we get gθD(B) s†θ and

hθD(B) s∗θ in B. Since θ|B : B → B is an isomorphism, it follows that gD s†

and hD s∗ in B. Thus g δB s† and h δB s∗ so that s = s†ss∗ δB gsh. Hence,

(gsh)θ = x and (gsh)δB = sδB. Condition (iii) holds.

5.3 Weakly B-orthodox semigroups with (N)

We recall that a band B is called normal if xyzt = xzyt for all x, y, z, t ∈ B. Let

S be a weakly B-orthodox semigroup with (N), that is, B is a normal band. We

show that the least admissible Ehresmann congruence γB has the closed form δB

given in Section 5.1. We can then apply Theorem 5.12 and Lemma 5.14 to give

a structure theorem.

Lemma 5.15. Let S be a weakly B-orthodox semigroup with (N). Then the

relation δB defined in Section 5.1 is a congruence on S.

Proof. In view of Lemma 5.4, it remains to show that the relation δB defined

in Section 5.1 is compatible. It is sufficient to prove that δB is left compatible,

because dually right compatibility will hold. Suppose that a, b, c ∈ S and a δB b.

Then a = a†ba∗ and b = b†ab∗ for some a† ∈ R̃a ∩B, a∗ ∈ L̃a ∩B, b† ∈ R̃b ∩B and

b∗ ∈ L̃b ∩ B. According to Lemma 5.1, we have that a† D b† and a∗ D b∗. Now,
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we can deduce that

ca = (ca)†ca(ca)∗ = (ca)†c(a†ba∗)(ca)∗ (a = a†ba∗)

= (ca)†cc∗(a†b†a†)ba∗(ca)∗ (a† D b†)

= (ca)†c(c∗a†b†a†)ba∗(ca)∗

= (ca)†c(c∗b†a†)ba∗(ca)∗ (by (N), c∗a†b†a† = c∗b†a†)

= (ca)†cb†a†ba∗(ca)∗

= (ca)†cb†a†b†ba∗(ca)∗

= (ca)†cb†ba∗(ca)∗ (a† D b†)

= (ca)†cba∗(ca)∗.

By Lemma 2.8, a∗(ca)∗ L (ca)∗, so we get a∗(ca)∗ ∈ L̃ca ∩B.

Similarly, we have that cb = (cb)†cab∗(cb)∗, where b∗(cb)∗ ∈ L̃cb ∩ B. Thus

ca δB cb, that is, δB is left compatible. Consequently, δB is a congruence on S.

Due to Lemma 5.15 and Lemma 5.7, we immediately obtain the following

result.

Lemma 5.16. Let S be a weakly B-orthodox semigroup with (N). Then the

relation δB defined in Section 5.1 is the least admissible Ehresmann congruence

on S.

Since SB is constructed from a band B and B is isomorphic to B, it follows

that if B is a normal band, so is B. In this case, SB is a weakly B-orthodox

semigroup with (N), so the relation δB given in Section 5.1 is also the least

admissible Ehresmann congruence on SB. We will denote it by δB.

Finally, according to Lemma 5.16, Lemma 5.14 and Theorem 5.12, we obtain

a structure theorem for weakly B-orthodox semigroups with (N).

Theorem 5.17. A weakly B-orthodox semigroup S with (N) is isomorphic to

the spined product SB ∗ S/δB of SB and S/δB with respect to SB/δB, δ♮

B
and ψ,

where ψ : S/δB → SB/δB defined by sδBψ = sθδB for any s ∈ S is an admissible

morphism, and ψ|B/δB
: B/δB → B/δB is an isomorphism.

Theorem 5.17 describes S as a spined product of SB ( an analogue of the

Hall semigroup) and the greatest admissible Ehresmann image of S (an analogue

of the greatest inverse image of an orthodox semigroup).
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5.4 Weakly B-superabundant semigroups with

(C)

We first make full use of Lemma 3.10 to check the equivalence relation δB defined

in Section 5.1 is the least admissible Ehresmann congruence on a weakly B-

superabundant semigroup S with (C).

Lemma 5.18. Let S be a weakly B-superabundant semigroup with (C). Then

the relation δB on S defined in Section 5.1 is the least admissible Ehresmann

congruence on S.

Proof. In view of Lemma 5.4, it remains to show that the relation δB is com-

patible. We first claim that δB is right compatible. Dually, left compatibility

holds. Suppose that a, b, c ∈ S and a δB b. Then a = a†ba∗ and b = b†ab∗ for

some a† ∈ R̃a ∩B, a∗ ∈ L̃a ∩B, b† ∈ R̃b ∩B and b∗ ∈ L̃b ∩B. By Lemma 5.1, we

have that a† D b† and a∗ D b∗. Since S is a weakly B-superabundant semigroup,

it follows from Lemma 3.10 that a† D a∗ and b∗ D b†, so that a† D a∗ D b∗ D b†.

Obviously, we have that

ac = (ac)†ac(ac)∗ = (ac)†(a†ba∗)c(ac)∗ (a = a†ba∗).

By Lemma 2.8, we obtain that (ac)†a† R (ac)†, and so (ac)†a† R̃B ac. Now we

just need to remove a∗ from the right side of ac = (ac)†a†ba∗c(ac)∗. Observe that

ac = (ac)†a†ba∗c(ac)∗ = (ac)†a†ba∗c†c(ac)∗

= (ac)†a†b((ac)†a†b)∗(a∗c†)(c(ac)∗)†c(ac)∗.

Next, we show that ((ac)†a†b)∗ D a∗c† D (c(ac)∗)†. By the Congruence Condition,

we get (ac)† R̃B ac L̃B a∗c R̃B a∗c†, and (ac)† R̃B ac L̃B a∗c L̃B (a∗c)∗, that is,

(ac)† D̃B a∗c† D̃B (a∗c)∗. It follows from Lemma 3.10 that

(ac)† D a∗c† D (a∗c)∗.

As D is a congruence on B, we have that (ac)†a†b† D a∗c†a†b†, and so

((ac)†a†b)∗ L̃B (ac)†a†b R̃B (ac)†a†b† D a∗c†a†b†.

Since a∗ D a† D b†, it follows from Lemma 1.22 that a∗c†a†b† R a∗c†. Thus,

((ac)†a†b)∗ D̃B a
∗c†, that is, ((ac)†a†b)∗ D a∗c† by Lemma 3.10. Since (a∗c)∗ D (a∗c)†,
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we have that

(c(ac)∗)† R̃B c(ac)∗ L̃B c∗(ac)∗ D c∗(a∗c)∗ D c∗(a∗c)† R c∗a∗c†.

By Lemma 1.22, we obtain that c∗a∗c∗ L a∗c∗, so that (c(ac)∗)† D̃B a∗c†, that is,

(c(ac)∗)† D a∗c†. Thus

ac = (ac)†a†b((ac)†a†b)∗(a∗c†)(c(ac)∗)†c(ac)∗

= (ac)†a†b((ac)†a†b)∗(c(ac)∗)†c(ac)∗
(
((ac)†a†b)∗ D a∗c† D (c(ac)∗)†

)

= (ac)†a†bc(ac)∗
(
(ac)†a† R̃B ac

)
.

Similarly, we have that bc = (bc)†ac(bc)∗ for some (bc)† R̃B bc L̃B (bc)∗. Hence

ac δB bc and so δB is a congruence on S. Again by Lemma 5.7, we obtain that

δB is the least admissible Ehresmann congruence on S as required.

At the end of this section we want to build a structure theorem for weakly B-

superabundant semigroups with (C) as a spined product. But we can not use SB

to get this result because we can not ensure that SB is a weakly B-superabundant

semigroup with (C) and therefore that γB = δB on SB. With this in mind, we will

make full use of the weakly B-superabundant subsemigroup NB of SB constructed

in Chapter 4.

According to Lemma 5.18, Lemma 5.14, Theorem 4.34 and Corollary 5.13,

we build a structure theorem for weakly B-superabundant semigroups with (C)

as follows.

Theorem 5.19. A weakly B-superabundant semigroup S with (C) is isomorphic

to the spined product NB ∗ S/δB of NB and S/δB with respect to NB/δB, δ♮

B
and

ψ, where θ is defined in Lemma 4.32, ψ : S/δB → NB/δB, defined by sδψ = sθδB

for any s ∈ S, is an admissible morphism, and ψ|B/δB
: B/δB → B/δB is an

isomorphism.

5.5 Examples

We now present a number of examples, allowing us to show that the weak idem-

potent connected condition (WIC) and the band of distinguished idempotents B

being a normal band are not equivalent in a weakly B-orthodox semigroup S.
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Let S be a weakly B-orthodox semigroup. For any element e of B we denote

by 〈e〉 the principal order ideal generated by e. We recall that S satisfies the

weakly idempotent connected condition (WIC) (with respect to B) if for any

a ∈ S and some a†, a∗, if x ∈ 〈a†〉 then there exists y ∈ B with xa = ay; dually,

if z ∈ 〈a∗〉 then there exists t ∈ B with ta = az.

Example 5.20.

We begin by citing an example [17] of a weakly B-orthodox semigroup with

(WIC). Consider the three element band B = {1, a, b} which is a two-element

right zero band with an identity adjoined. We have UB = {1, a, b, c} and have

table
∗ 1 c a b

1 1 c a b

c c 1 a b

a a b a b

b b a a b.

Also, we can calculate that 1 ∗ a ∗ b ∗ 1 = b and 1 ∗ b ∗ a ∗ 1 = a, so B is not a

normal band. From its very construction, UB is weakly B-orthodox with (WIC).

Example 5.21.

Now, we consider the normal band B = {e, f, 0} which is a two-element right

zero band with a zero adjoined having table

∗ e f 0

e e f 0

f e f 0

0 0 0 0.

We claim that SB does not have (WIC).

Lemma 5.22. [17] Any pair of the form (cL, dR) lies in SB, where cL and

dR are the constant maps in OP(B1/L) and OP(B1/R) with images L and R,

respectively.
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Remark: In [Theorem 6.2, [17]] we obtain that for any (α, β) ∈ SB,

(α, β) R̃B (ρv, λv),

where v ∈ R1β.

Take (cLf
, dRf

) ∈ SB. We have R1dRf
= Rf . So we choose v = f ,

〈(ρv, λv)〉 = (ρv, λv)B(ρv, λv) = (ρf , λf)B(ρf , λf) = {(ρf , λf), (ρ0, λ0)},

since B = {(ρe, λe), (ρf , λf), (ρ0, λ0)} is isomorphic to B under b 7→ (ρb, λb). We

have

(ρ0, λ0)(cLf
, dRf

) = (cLf
, λ0),

and

(cLf
, dRf

)B = {(cLe
, dRf

), (cLf
, dRf

), (ρ0, dRf
)}.

So (ρ0, λ0)(cLf
, dRf

) /∈ (cLf
, dRf

)B. Thus SB does not have (WIC).

The final example explains that not every weakly B-superabundant semi-

group with (C) has (WIC).

Example 5.23.

Let 〈a〉 be a monogenic monoid generated by a and X = {xi : i ∈ N} be

a right zero semigroup. Set S = 〈a〉
⋃
X. We define the operation ∗ as the

following table:

∗ 1 a an xi

1 1 a an xi

a a a2 an+1 xi

am am am+1 am+n xi

xj xj xj+1 xj+n xi.

We can easily check that S is a semigroup. It is easy to see that the L̃B-

classes are 〈a〉 and {xi} for i ∈ N, and the R̃B-classes are 〈a〉 and X, and

so the H̃B-classes are 〈a〉 and {xi} for i ∈ N . It follows that S is a weakly B-

superabundant semigroup with distinguished band {1}
⋃
X. Moreover, S satisfies
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the Congruence Condition. But we yet find that ax1 = x1 6= ka for any k ∈ S,

so S fails to have (WIC).



Chapter 6

Correspondence between

algebraic structures and ordered

structures

Here we survey briefly some of interesting achievements such as the Ehresmann-

Schein-Nambooripad (ESN) Theorem, and its many extensions due to Armstrong

[1, 2], Lawson [32], Meakin [35, 36] and Nambooripad [38–40]. These results set

up a connection between algebraic structures and ordered structures.

6.1 Inverse semigroups and inductive1 groupoids

The correspondence between inverse semigroups and inductive1 groupoids has

been widely investigated. Theorem A below is an amalgamation of Ehresmann [4],

Nambooripad and Veeramony [41] and Schein [47].

As mentioned in Chapter 1, an inductive1 groupoid is briefly described as a

groupoid equipped with a partial order possessing restrictions and co-restrictions,

and the set of idempotents forming a semilattice under the partial order. An

inductive1 functor is a functor between two inductive1 groupoinds that is order

and meet preserving.

Let G be an inductive1 groupoid. We define a product ⊗ on G by the rule

that

a⊗ b = (a|r(a)∧d(b)) · (r(a)∧d(b)|b).

117
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Then, GS = (G,⊗) is an inverse semigroup (having the same partial order

as G). Commonly, the product ⊗ is called pseudo-product.

Conversely, let S be an inverse semigroup with semilattice of idempotents

E. We construct a category SC as follows:

Ob (SC) = E, Mor(SC) = S.

For any x ∈ SC, we put d(x) = xx′ and r(x) = x′x, where x′ is the inverse of

x in S. If x, y ∈ SC and r(x) = d(y), then we define x · y = xy in SC, where

xy is the product of x and y in S. Certainly, the operation · is a partial binary

operation and associative as a partial binary operation, so that SC becomes a

category. In addition, it is easy to see that the inverse morphism of x in SC is

the inverse x′ of x in S so that SC is a groupoid. We note that there exists a

natural partial order in any inverse semigroup S, defined by the rule that for any

a, b ∈ S,

a ≤ b ⇔ a = eb for some e ∈ E.

We make use of the natural partial order ≤ on S to set up SC as an inductive1

groupoid by defining restriction and co-restriction as follows:

e|a = ea, a|f = af,

where e, f ∈ E are such that e ≤ d(a) = aa′ and f ≤ r(a) = a′a. Then SC is

an inductive1 groupoid associated to S.

Further:

Theorem A (ESN Theorem) The category of inverse semigroups and morphisms

is isomorphic to the category of inductive1 groupoids and inductive1 functors.

Inverse semigroups are regular semigroups in which the idempotents form

a semilattice. Consequently, we can regard the set of idempotents of a regular

semigroup as a generalisation of a semilattice. This idea is precisely described in

the definition of a regular biordered set, introduced by Nambooripad [38]. In that

article, Nambooripad defined an inductive2 groupoid, as now we demonstrate.

An ordered2 groupoid (G,≤) with a regular biordered set of objects E is said

to be inductive2 if the following conditions and the duals (IG1)◦, (IG3)◦, (IG4)◦

and (IG5)◦ of (IG1), (IG3), (IG4) and (IG5) hold:
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(IG1) if e, f ∈ E are such that eR f or eL f , then there exists a distinguished

morphism [e, f ] from e to f such that [e, e] = 1e, the identity associated to e;

(IG2) for any e, f ∈ E, e ω f if and only if 1e ≤ 1f ;

(IG3) if e, f, g ∈ E are such that eR f R g, then [e, f ] · [f, g] = [e, g];

(IG4) if g, h, e ∈ E are such that [g, h] exists and e ω g, then [e, heh] exists

and [e, heh] ≤ [g, h];

(IG5) let x ∈ G, and for i = 1, 2, let ei, fi ∈ E be such that ei ≤ d(x) and

fi = r(ei
|x). If e1 ω

r e2, then f1 ω
r f2 and [e1, e1e2] · (e1e2|x) = (e1 |x) · [f1, f1f2];

(IG6) if


 e f

g h


 is a singular E-square, then [e, f ] · [f, h] = [e, g] · [g, h].

This leads to a generalisation of Theorem A from a semilattice to a regular

biordered set.

Theorem B (Nambooripad [38]) The category of regular semigroups and mor-

phisms is equivalent to the category of inductive2 groupoids and inductive2 func-

tors.

The definition of an inductive2 functor is given in the next section in the

more general content of inductive2 cancellative categories.

As we will give more details in the next section for the more general case of

concordant semigroups, we omit the process of building Theorem B.

Note that for a technical reason, ‘isomorphic’ in Theorem A has been re-

placed by ‘equivalent’ in Theorem B. Of course, Theorem B may be specialised

to orthodox semigroups.

6.2 Concordant semigroups and inductive2 can-

cellative categories

Theorem B was extended by Armstrong [1] from regular to concordant semi-

groups, replacing ordered2 groupoids by more general kinds of ordered2 cate-

gories.

Before giving Armstrong’s result, we recall that a concordant semigroup is an

abundant semigroup with a regular biordered set of idempotents and satisfying

the extra condition of being idempotent connected (IC). That is, a concordant

semigroup is a weakly U -regular semigroup for which U = E(S), R∗ = R̃U ,

L∗ = L̃U and (IC) holds.
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An ordered2 cancellative category (C,≤) with a regular biordered set of ob-

jects E is said to be an inductive2 cancellative category if the following conditions

and the duals (IC1)◦, (IC3)◦, (IC4)◦ and (IC5)◦ of (IC1), (IC3), (IC4) and (IC5)

hold:

(IC1) if e, f ∈ E are such that eR f or eL f , then there exists a distinguished

morphism [e, f ] from e to f such that [e, e] = 1e, the identity associated to e;

(IC2) for any e, f ∈ E, e ω f if and only if 1e ≤ 1f ;

(IC3) if e, f, g ∈ E are such that eR f R g, then [e, f ] · [f, g] = [e, g];

(IC4) if g, h, e ∈ E are such that [g, h] exists and e ω g, then [e, heh] exists

and [e, heh] ≤ [g, h];

(IC5) let x ∈ C, and for i = 1, 2, let ei, fi ∈ E be such that ei ≤ d(x) and

fi = r(ei
|x). If e1 ω

r e2, then f1 ω
r f2 and [e1, e1e2] · (e1e2|x) = (e1 |x) · [f1, f1f2];

(IC6) if


 e f

g h


 is a singular E-square, then [e, f ] · [f, h] = [e, g] · [g, h].

We pause to make a short comment that an inductive2 groupoid (G,≤) is an

inductive2 cancellative category; conversely, an inductive2 cancellative category

(C,≤) becomes an inductive2 groupoid if every morphism has an inverse. It

is necessary to claim that Condition (G) holds, that is, if x ≤ y in C, then

x−1 ≤ y−1. Suppose that x ≤ y. Then d(x) ω d(y) and r(x) ω r(y), that is,

r(x) ω d(y−1), and so by (OC4), there exists a unique element r(x)|y
−1 such that

r(x)|y
−1 ≤ y−1 and d(r(x)|y

−1) = r(x). So x · r(x)|y
−1 is defined and by (OC3),

x·r(x)|y
−1 ≤ y·y−1 = 1d(y). As 1d(x) ≤ 1d(y) and d(1d(x)) = d(x) = d(x·r(x)|y

−1),

it follows from (OC4) that x · r(x)|y
−1 = 1d(x), which gives that x−1 = r(x)|y

−1.

Thus. x−1 ≤ y−1.

Let C and C ′ be inductive2 cancellative categories over regular biordered sets

E and E ′, respectively, and φ : C → C ′ be an order-preserving functor. Then φ

is inductive2 if

(IOF1) the map φ : E → E ′ is a regular morphism (in the sense of Defini-

tion 1.25);

(IOF2) if e, f ∈ E and [e, f ] exists, then [e, f ]φ = [eφ, fφ].

Now, we give an outline of the correspondence between concordant semi-

groups and inductive2 cancellative categories. The approach used here is like the

one in regular case.

Let C be an inductive2 cancellative category over regular biordered set E.
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We define a relation ρ on C by the rule that for any x, y ∈ C,

x ρ y ⇔ d(x) R d(y), r(x) L r(y) and x · [r(x), r(y)] = [d(x),d(y)] · y.

It is routine to check that ρ is an equivalence relation on C.

Suppose that x ∈ C, h ωr d(x) and k ωl r(x). We define

h ∗ x = [h, hd(x)] · hd(x)|x and x ⋄ k = x|r(x)k · [r(x)k, k].

We then define a binary operation ⊙ on C/ρ by the rule that for all x, y ∈ C,

h ∈ S(r(x),d(y)),

x̄⊙ ȳ = (x⊗ y)h,

where x̄ denotes the ρ-class of x in C and (x⊗ y)h = (x ⋄ h) · (h ∗ y). It is proved

in [1] that the set CS = (C/ρ,⊙) forms a concordant semigroup.

To see the converse, let S be a concordant semigroup with regular biordered

set of idempotents E. We build a category SC as follows:

Ob (SC) = E, Mor (SC) = {(e, a, f) : e ∈ R∗
a ∩E, f ∈ L∗

a ∩E}.

For any (e, a, f) ∈ Mor (SC), we set

d((e, a, f)) = e (abbreviated to d(e, a, f) = e)

and

r((e, a, f)) = f (abbreviated to r(e, a, f) = f).

In addition, we define a partial binary operation on SC by

(e, a, f) · (g, b, h) =





(e, ab, h) if f = g

undefined otherwise,

where ab is the product of a and b in S. Then SC becomes a category with

regular biordered set of objects E.

Certainly, SC is cancellative. Since if (e, a, f), (g, b, f), (f, c, v) ∈ SC and

(e, a, f) · (f, c, v) = (g, b, f) · (f, c, v), then (e, ac, v) = (g, bc, v) and so e = g and

ac = bc. As f R∗ c, we have that af = bf , that is, a = b as a, b L∗ f . Hence,
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(e, a, f) = (g, b, f), so that SC is right cancellative. Dually, it is left cancellative,

and consequently, SC is cancellative.

Since any concordant semigroup S satisfies (IC), it follows from the state-

ments in Section 2.3.2 that if (e, a, f) ∈ SC, then there is a unique connecting

isomorphism from 〈e〉 to 〈f〉. We remind the reader that if k ∈ E, then 〈k〉 means

the subsemigroup of E generated by the idempotents in k〈E〉k. We can therefore

define a relation on SC by the rule that for all (e, a, f), (g, b, h) ∈ SC,

(e, a, f) ≤ (g, b, h) ⇔ e ω g, a = eb and f = eβ,

where β : 〈e〉 → 〈f〉 is a connecting isomorphism. It is routine to show that ≤ is

a partial order on SC.

If (e, a, f) ∈ SC, u, v ∈ E and u ≤ e and v ≤ f , then we define the

restriction and co-restriction as

u|(e, a, f) = (u, ua, uβ) and (e, a, f)|v = (vβ−1, av, v),

where β : 〈e〉 → 〈f〉 is a connecting isomorphism. Then SC becomes an ordered2

cancellative category under ≤

Suppose that e, f ∈ E are such that eL f or eR f . Then we define [e, f ] =

(e, ef, f). Clearly, [e, f ] is well-defined and it belongs to SC.

Now, we obtain that (SC,≤) together with the restriction and co-restriction

forms an inductive2 cancellative category. Further details of the proof can be

found in [1].

To sum up, we have:

Theorem C (Armstrong [1]) The category of concordant semigroups and good

morphisms is equivalent to the category of inductive2 cancellative categories and

inductive2 functors.

6.3 Ehresmann semigroups and Ehresmann cat-

egories

Theorem A was generalised in a different direction to Ehresmann semigroups by

Lawson [32]. His use of two partial orders on an Ehresmann semigroup is an
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important observation for the idea discussed in Chapter 7.

We recall from [32] that an Ehresmann category C = (C, ·,≤r,≤l) is a cate-

gory (C, ·) with set of identities E, equipped with two relations ≤l and ≤r such

that the following conditions, and the duals (E1)◦ and (E5)◦ of (E1) and (E5)

hold:

(E1) (C, ·,≤r) is an ordered1 category with restriction;

(E2) if e, f ∈ E, then e ≤r f ⇔ e ≤l f ;

(E3) E is a meet semilattice under ≤r (or ≤l);

(E4) ≤r ◦ ≤l = ≤l ◦ ≤r;

(E5) if x ≤r y and f ∈ E, then x|r(x)f ≤r y|r(y)f .

We note that [32] interchanges the symbols r and d and the notion of re-

striction and co-restriction, from the conventions of this thesis.

We now pause to make a short comment on Ehresmann categories C =

(C, ·,≤r,≤l). Condition (E1) implies that if x ≤r y in C then d(x) ≤ d(y) and

r(x) ≤ r(y) by (OC1). Since (C, ·,≤r,≤l) is an ordered1 category with restriction

and co-restriction, then there exists a unique element d(x)|y such that d(x)|y ≤r y

and d(d(x)|y) = d(x). Since x ≤r y, and the uniqueness of restriction gives

x = d(x)|y. To the converse, if x = e|y, then by the definition of restriction, we

certainly obtain that x ≤r y. Hence, we have:

Lemma 6.1. Let C = (C, ·,≤r,≤l) be an Ehresmann category over E. Then for

any x, y ∈ C,

(i) x ≤r y if and only if x = e|y for some e ∈ E;

(ii) x ≤l y if and only if x = y|f for some f ∈ E.

Let C = (C, · ,≤r,≤l) and D = (D, ·,≤r,≤l) be Ehresmann categories with

semilattice EC and ED of identities, respectively. We say that a functor F : C →

D is strongly ordered if it satisfies the following conditions:

(i) if x ≤l y (resp. x ≤r y), then xF ≤l yF (resp. xF ≤r yF );

(ii) if e, f ∈ EC , then (ef)F = eFfF .

Given an Ehresmann semigroup S with distinguished semilattice E, we have

introduced two partial orders ≤r and ≤l on S in Section 2.2.5. Lawson [32] showed

that the category, consisting of the set of objects E and the set of morphisms S,

forms an Ehresmann category together with the partial binary operation · defined
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by the rule that for any x, y ∈ S,

x · y =




xy if x∗ = y†

undefined otherwise,

where x∗, y† ∈ E with x L̃E x
∗ and y R̃E y

†.

Conversely, let C = (C, ·,≤r,≤l) be an Ehresmann category with set of

identities E. For any x, y ∈ C, we define

x⊗y = x|r(x)∧d(y) · r(x)∧d(y)|y.

Then (C,⊗) is an Ehresmann semigroup.

Theorem D (Lawson [32]) The category of Ehresmann semigroups and admissi-

ble morphisms is isomorphic to the category of Ehresmann categories and strongly

ordered functors.

We recall that a restriction semigroup is an Ehresmann semigroup satisfying

(WIC) by Lemma 2.18. On such semigroups the orders ≤r, ≤l and ≤e coincide

and we denote the unique order by ≤.

Notice that if ≤r=≤l on an Ehresmann category (C, ·,≤r,≤l), then (C,≤)

becomes an inductive1 category, that is, an ordered2 category, in which the set

of identities is a semilattice.

Corollary 6.2. [24] The category of restriction semigroups and admissible con-

gruences is isomorphic to the category of inductive1 categories and strongly or-

dered functors.

We now turn to ample semigroups. We replace the distinguished semilattice

of idempotents E by the whole set of idempotents and use relations R∗ and

L∗ instead of R̃E and L̃E in the definition of restriction semigroups. We thus

obtain the class of ample semigroups whose set of idempotents forms a semilattice.

An admissible morphism in this context is more usually referred to as a good

morphism.

Corollary 6.3. [24] The category of ample semigroups and good morphisms

is isomorphic to the category of inductive1 cancellative categories and strongly

ordered functors.
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Corollary 6.3 is a little difference in Armstrong’s paper [2] and [24].

If we use relations R and L to replace R∗ and L∗ in the definition of ample

semigroups, we then obtain the class of inverse semigroups. A good morphism in

this context is a morphism. Consequently, we obtain Theorem A.

Ehresmann semigroups have a semilattice of idempotents, need not be reg-

ular or even abundant, need not satisfy an (IC) condition, and indeed need not

be restriction semigroups. Lawson overcomes the lack of an (IC) condition by

using two partial order relations. Our aim of Chapter 7 is to extend Lawson’s

result to the class of weakly B-orthodox semigroups, which extend the class of

Ehresmann semigroups by replacing semilattices by bands. In Chapter 7 we use

a new technique of generalised categories. We could use triples such as in [1],

and this is the approach we take in Chapter 9 and in the more general weakly

U -regular case, in Chapter 10.



Chapter 7

Beyond orthodox semigroups I:

weakly B-orthodox semigroups

and generalised categories

Our purpose of this chapter is to describe a class of weakly B-orthodox semi-

groups. In doing so we produce a new approach to characterising orthodox semi-

groups via inductive generalised groupoids. Here B denotes a band of idempo-

tents; we note that if B is a semilattice then a weakly B-orthodox semigroup is

exactly an Ehresmann semigroup. We build a correspondence between our work

and a result of Lawson for Ehresmann semigroups [32].

For convenience we make the convention that B will always denote a band.

Green’s relations and their associated pre-orders will always refer to B, unless

stated otherwise. In particular, if S is weakly B-orthodox and e ∈ B, then Re

(Le) denote the R-class (L-class) of e in B.

7.1 Inductive generalised categories

Let I, R, L and D be disjoint sets and let p denote a collection of four (well-

defined) onto maps:

I ։ R, I ։ L, R ։ D and L։ D

i 7→ Ri, i 7→ Li, Ri 7→ Di Li 7→ Di

such that

126
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I

R L

D

Figure 7.1: Maps

commutes. We denote this configuration by (I, R, L,D, p) and refer to it as a

context.

We pause to give our motivating example. Let B be a band and p denote

the natural maps:

B ։ B/R, B ։ B/L, B/R ։ B/D and B/L ։ B/D.

Then (B,B/R, B/L, B/D, p) is a context. Of course, if B is a semilattice, then

all of Green’s relations are trivial and the p-maps are essentially the identity

maps.

Definition 7.1. A generalised category P over a context (I, R, L,D, p) consists

of

(GC1) a class Ob(P ) of objects R ∪̇L;

(GC2) a class Mor(P ) of morphisms between the objects. Each morphism

x has a unique domain d(x) ∈ R and codomain r(x) ∈ L. Denote the Mor-class

of all morphisms from Ri ∈ R to Lj ∈ L by Mor(Ri, Lj);

(GC3) if Ri, Rk ∈ R and Lj , Lh ∈ L with Dj = Dk, then there is a binary

operation

Mor(Ri, Lj) × Mor(Rk, Lh) → Mor(Ri, Lh), (x, y) 7→ x · y

called composition of morphisms such that if x ∈ Mor(Ri, Lj), y ∈ Mor(Rk, Lh),

and z ∈ Mor(Rm, Ln), where Dj = Dk and Dh = Dm, then (x · y) · z = x · (y · z);

(GC4) for each i ∈ I, there exists a distinguished morphism, again denoted

by i, such that i ∈ Mor(Ri, Li) and if d(x) = Ri and r(y) = Li, then i · x = x

and y · i = y.

Let P be a generalised category over a context (I, R, L,D, p). Following

the usual convention when building categories from semigroups, we may iden-
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tify Mor(P ) with P . If B is a band and P is a generalised category over

(B,B/R, B/L, B/D, p), where p denote the natural maps, then we say simply P

is a generalised category over B.

Our notion of a generalised category is motivated by that of the ‘trace prod-

uct’ of a weakly B-orthodox semigroup. We explain this in Chapter 8 but com-

ment briefly here on the special case of a band.

We have seen that if B is a band, then (B,B/R, B/L, B/D, p) is a context.

Define a generalised category P over B by putting Mor(P ) = B and for e ∈ B,

put d(e) = Re and r(e) = Le. Let the partial binary operation be given by

e · f = ef , where e · f exists. Note the latter is true if and only if De = Df . Thus

the effect of our generalised category is to restrict the multiplication in B to that

within its D-classes.

We now focus on generalised categories over a band B, in general more

extensive than the example above, making use of the natural partial order in

B/R and B/L. Note that if e ∈ B then by (GC4) we have that e ∈ Mor(Re, Le),

so that d(e) = Re and r(e) = Le.

We build on Definition 7.1 to define an inductive generalised category over

B, which is an analogue of inductive2 groupoids [38] and inductive2 cancellative

categories [1]. We will see that the elements of our inductive generalised category

may be pre-ordered or partially ordered, in two ways, reflecting the approach

of [32].

Definition 7.2. Let P be a generalised category over a band B. Then P is

an inductive generalised category if the following conditions and the duals (I1)◦,

(I2)◦, and (I3)◦ of (I1), (I2) and (I3) hold:

(I1) if x ∈ P and e, u ∈ B with e ≤L u ∈ d(x), then there exists an element

e|x in P , called the restriction of x to e, such that e ∈ d(e|x) and r(e|x) ≤L r(x);

in particular, if e ∈ d(x), then e|x = x;

(I2) if x ∈ P and e, f, g, u ∈ B with e ≤L g R f ≤L u ∈ d(x), then

ef |x = e|(f |x);

(I3) if x, y ∈ P and e, u ∈ B with x · y defined in P and e ≤L u ∈ d(x), then

e|(x · y) = (e|x) · (f |y), where f ∈ r(e|x);

(I4) if x, y ∈ P and e1, e2, f1, f2 ∈ B with e1, e2 ∈ r(x) and f1, f2 ∈ d(y),

then x|e1f1 ·e1f1 |y = x|e2f2 ·e2f2 |y;

(I5) if x ∈ P and e, f, u, v, g, h ∈ B with g ∈ r(x), h ∈ d(x), u ∈ d(x|gf )
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and v ∈ r(eh|x), then eu|(x|gf) = (eh|x)|vf ;

(I6) if e, g, h, u, v ∈ B are such that u ≤R g L e and v ≤L h R e, then

e|u = eu and v|e = ve.

We make some comments on the above definition. In (I3) let r(x) = Lv and

d(y) = Rw. Since there exists x · y we know that v D w so we have r(x) = Lwv

and d(y) = Rwv. Hence by (I1), f ∈ r(e|x) ≤L Lwv and wv ∈ d(y), so that f |y

exists and d(f |y) = Rf . Hence (e|x) · (f |y) exists. To simplify the term ‘x · y

exists’ may use the expression ‘∃x · y’ or ‘x · y is defined’.

Suppose now that P is a generalised category over a band B. We remarked

above that if e ∈ B, then d(e) = Re and r(e) = Le, so that if also f ∈ B then

∃e · f if and only if eD f . In this case, clearly e ∈ d(e), e ∈ d(e · f) and by (I1),

e|e = e, so that e ∈ r(e|e). Using (I1), (I3), (I6) and (GC4) we have

e · f =e |(e · f) = (e|e) · (e|f) = e · ef = ef.

We pause to introduce a pair of pre-orders on an inductive generalised cate-

gory P over a band B deduced from Definition 7.2. We make use of the restric-

tion and co-restriction of P to define relations ≤r and ≤l by the rule that for any

x, y ∈ P ,

x ≤r y if and only if x = e|y for some e ∈ B,

and

x ≤l y if and only if x = y|f for some f ∈ B.

Lemma 7.3. The relations ≤r and ≤l are pre-orders on P .

Proof. To prove that ≤r is a pre-order on P , we first observe that ≤r is reflexive

by (I1). It is necessary to show that ≤r is transitive. Assume that x, y, z ∈ P

with x ≤r y and y ≤r z. Then there exist e, f ∈ B such that x = e|y and y = f |z.

For e|y and f |z to exist we have e ≤L g ∈ d(y) = Rf and f ≤L h ∈ d(z). From

(I2), x = e|(f |z) = ef |z. Hence x ≤r z.

By the dual argument, we show that ≤l is a pre-order on P .

The reader might notice that previous authors have used partial orders rather

than pre-orders. For our purpose, pre-orders are easier to use, but the partial

orders are still there, as we now show.

We define ≤′
r and ≤′

l on P by the rule that
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x ≤′
r y if and only if x = e|y for some e ≤ u ∈ d(y),

and

x ≤′
l y if and only if x = y|f for some f ≤ v ∈ r(y).

Lemma 7.4. The relations ≤′
r and ≤′

l are partial orders on P .

Proof. As in Lemma 7.3, ≤′
r is reflexive. If x ≤′

r y and y ≤′
r z then with e, f as

in Lemma 7.3, we have e ≤ g and f ≤ h. Certainly, x = ef |z and efh = ef , as

f ≤ h. Also, e ≤ g R f ≤ h, so hef = ef . Hence ef ≤ h ∈ d(z).

Finally, suppose that x ≤′
r y ≤′

r x. Then x = e|y and y = f |x for some

e ≤ u ∈ d(y) and f ≤ v ∈ d(x). We have e ≤ u R f and f ≤ v R e, so that

e R f and d(x) = d(y). Now x = e|y = y, by (I1).

We say that ≤r and ≤l are the natural pre-orders associated with P and ≤′
r

and ≤′
l are the natural partial orders associated with P .

We end this section by showing that the class of inductive generalised cat-

egories over bands forms a category, together with certain maps referred to as

pseudo-functors. They appear in the next definition.

Definition 7.5. Let P1 and P2 be inductive generalised categories over bands B1

and B2, respectively. A pseudo-functor F from P1 to P2 is a pair of maps, both

denoted F , from B1 to B2 and from P1 to P2, such that the following conditions

and the dual (F2)◦ of (F2) hold:

(F1) the map F is a morphism from B1 to B2;

(F2) if e ∈ B1 and e ≤L u ∈ d(x) in P1, then (e|x)F = eF |xF ;

(F3) if ∃x · y in P1 then ∃xF · yF in P2, and (x · y)F = xF · yF .

To see that (F2) makes sense, suppose that u ∈ B1, x ∈ P1 with u ∈ d(x).

Then Ru = d(x) so that ∃u ·x and u ·x = x. By (F3), ∃uF ·xF and uF ·xF = xF .

Hence d(xF ) = d(uF ) = RuF , as uF ∈ B2. Suppose also that e ∈ B1, with e≤L u

in B1. Using (F1), we have eF ≤L uF ∈ d(xF ) in P2, and so ∃eF |xF . Notice that

we can define F on Ob(P1) by putting ReF = ReF and LeF = LeF .

From the comments above, it is easy to check that Lemma 7.6 holds.

Lemma 7.6. Let P1, P2 and P3 be inductive generalised categories over B1, B2

and B3, respectively, and let F1 : P1 → P2 and F2 : P2 → P3 be pseudo-functors.

Then F1F2 : P1 → P3 is a pseudo-functor.
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The next observation follows immediately.

Lemma 7.7. The class of inductive generalised categories over bands, together

with pseudo-functors, forms a category.

We refer to the category in the above lemma as IGC.

7.2 Construction

Our primary interest in this section will be a construction of a weakly B-orthodox

semigroup, built from an inductive generalised category over B.

Let P be an inductive generalised category over a band B. We define a

pseudo-product ⊗ on P by

x⊗ y = (x|ef) · (ef |y),

where e ∈ r(x), f ∈ d(y). It follows from (I4) that the pseudo-product is

independent of the choices of e and f and thus is well-defined. We will denote

the set P , together with the pseudo-product ⊗, by PS.

We pause to present our initial idea which follows Armstrong’s steps, using

the notion of sandwich set, simplifying a little here as our set of idempotents

forms a band. We may define a pseudo-product ⊗′ on P by the rule that for any

x, y ∈ P ,

x⊗′ y = (x|efe) · (fef |y),

where e ∈ r(x) and f ∈ d(x). In that case, Condition (I5) is not enough to

guarantee that ⊗′ is associative in P . To achieve this it is necessary to add a

stronger condition in place of (I5), which effectively says that e ⊗′ (x ⊗′ y) =

(e ⊗′ x) ⊗′ y for any x, y ∈ P and e ∈ B. This appears to us too contrived.

Keeping this in mind we use the pseudo-product ⊗ defined as above.

We now present a series of lemmas related to P , which will help us to show

our main result at the end of this section.

Lemma 7.8. If x, y ∈ P with ∃x · y, then x⊗ y = x · y.

Proof. If ∃x ·y then r(x) = Le and d(y) = Rf say, where e D f . Then r(x) = Lfe

and d(y) = Rfe, so x⊗ y = (x|fefe) · (fefe|y) = (x|fe) · (fe|y) = x · y by (I1).
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Lemma 7.9. If e, f ∈ B then e⊗ f = ef .

Proof. We have

e⊗ f = (e|ef) · (ef |f)

= eef · eff
(
by (I6)

)

= ef · ef = ef
(
by (GC4)

)
.

Consequently, B forms the same band under ⊗ and the original multiplica-

tion.

Lemma 7.10. If x ∈ P and e, f, u ∈ B with u D e ≤L f ∈ d(x) then

u · (e|x) = ue|x.

Proof. Since u D e, we deduce that

u · e|x = u⊗ e|x
(
Lemma 7.8

)

= (u|ue) · (ue|(e|x))

= ue · (ue|x)
(
by (I6), (I2)

)

= ue|x
(
by (GC4)

)
.

Lemma 7.11. The set PS forms a semigroup under the operation ⊗.

Proof. It is sufficient to show that PS is associative. Suppose that x, y, z ∈ P

with x∗ ∈ r(x), y† ∈ d(y), y∗ ∈ r(y) and z† ∈ d(z). Then

x⊗ (y ⊗ z) = x⊗
(
(y|y∗z†) · (y∗z† |z)

)

= (x|x∗u) ·
(

x∗u
|
(
(y|y∗z†) · (y∗z†|z)

)) (
u ∈ d(y|y∗z†)

)

= (x|x∗u) ·
(

x∗u
|(y|y∗z†)

)
·

(
v
|(y∗z†|z)

)

(
v ∈ r(x∗u|(y|y∗z†)), by (I3)

)
.

Notice, by (I1), that v ≤L y
∗z† ∈ r(y|y∗z†) and by (I5), that

x∗u|(y|y∗z†) = (x∗y† |y)|gz†,
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where g ∈ r(x∗y† |y), and so v L gz† and x∗u ∈ d((x∗y† |y)|gz†). Thus

x⊗ (y ⊗ z) = (x|x∗u) ·
(
(x∗y† |y)|gz†

)
·

(
v
|(y∗z†|z)

)

= (x|x∗u) ·
(
(x∗y† |y)|gz†

)
· (vy∗z† |z)

(
v ≤L y

∗z†, by (I2)
)

= (x|x∗u) ·
(
(x∗y† |y)|gz†

)
· (v|z)

(
v ≤L y

∗z†
)

= (x|x∗u) ·
(
(x∗y† |y)|gz†

)
· (vgz† |z)

(
v L gz†

)

= (x|x∗u) ·
(
(x∗y† |y)|gz†

)
· (v · (gz†|z))

(
Lemma 7.10

)

= (x|x∗u) ·
(
(x∗y† |y)|gz† · v

)
· (gz† |z)

= (x|x∗u) ·
(
(x∗y† |y)|gz†

)
· (gz† |z)

(
v L gz†, by (GC4)

)
.

Due to the dual of (I1), u ∈ d(y|y∗z†) ≤R d(y), whence x∗y†x∗u = x∗y†x∗y†u =

x∗y†u = x∗u. So

x⊗ (y ⊗ z) =
(
x|x∗y†x∗u

)
·

(
(x∗y† |y)|gz†

)
· (gz†|z)

=
(
(x|x∗y†)|x∗u

)
·

(
(x∗y† |y)|gz†

)
· (gz† |z)(

by (I2)◦, since x∗u ≤R x∗y†
)

=
(
((x|x∗y†) · (x∗y† |y))|gz†

)
· (gz†|z)(

x∗u ∈ d((x∗y† |y)|gz†)
)

=
(
(x⊗ y)|gz†

)
· (gz†|z)

= (x⊗ y) ⊗ z.

The following lemma shows that PS is a weakly B-abundant semigroup.

Lemma 7.12. Let x ∈ PS, e ∈ r(x) and g ∈ d(x). Then g R̃B x L̃B e in PS.

Proof. By Lemma 7.8, we obtain that x⊗ e = x · e = x. Suppose that k ∈ B and

x⊗ k = x. Then

x⊗ k = (x|ek) · (ek|k)

= (x|ek) · ek
(
by (I6)

)

= x|ek

(
by (GC4)

)
.
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Thus x = x|ek, which implies that ek ∈ r(x), and so e L ek. It follows that

e⊗ k = ek
(
Lemma 7.9

)

= eek

= e
(
e L ek

)
.

Consequently, x L̃B e.

Similarly, we can show that x R̃B g.

As an application of Lemma 7.12, we give a concrete description of relations

≤
R̃B

and ≤
L̃B

on PS as follows.

Lemma 7.13. For any x, y ∈ PS,

(i) x ≤
R̃B

y if and only if d(x) ≤R d(y);

(ii) x ≤
L̃B

y if and only if r(x) ≤L r(y).

Proof. We prove (i). Let x, y ∈ P and let d(x) = Re and d(y) = Rf . Then

x ≤
R̃B

y in PS ⇔ e ≤
R̃B

f in PS
(
Lemma 7.12

)

⇔ e ≤R f in B

⇔ Re ≤R Rf

⇔ d(x) ≤R d(y).

Now let us sum up results related to PS in the following theorem:

Theorem 7.14. If P is an inductive generalised category over B, then (PS,⊗)

is a weakly B-orthodox semigroup. Further, the natural pre-orders and partial

orders in P and PS coincide.

Proof. We first show that (PS,⊗) has (C). Suppose that x, y, z ∈ PS and x R̃B y.

It follows from Lemma 7.13 that d(x) = d(y). We deduce that z⊗x = (z|ve)·(ve|x)

and z⊗y = (z|ve) ·(ve|y), where v ∈ r(z) and e ∈ d(x) = d(y). Hence, d(z⊗x) =

d(z|ve) = d(z ⊗ y). By Lemma 7.13, z ⊗ x R̃B z ⊗ y. Dually, we can show that

L̃B is a right congruence.
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Let x, y ∈ P and suppose that x ≤r y in P . Then x = e|y for some

e ≤L u ∈ d(y). Hence,

e⊗ y = e|eu · eu|y = eu · eu|y = eu|y = e|y = x,

so that x ≤r y in PS.

If in addition we have e ≤ u, so that x ≤′
r y in P , then from x = e|y we have

d(x) = Re and x† ≤R y†, by Lemma 7.13, so x ≤′
r y in PS.

Conversely, if x ≤r y in PS, then x = f ⊗ y for some f ∈ B. Hence,

x = f ⊗ y = f |fy† · fy† |y = fy† · fy† |y = fy† |y,

so that x ≤r y in P .

Further, if x ≤′
r y in PS, then we have x† ≤R y†, so that d(x) ≤R d(y), that

is, fy† ≤R y†. Clearly then fy† ≤ y†, so that x ≤′
r y in P .

The dual result holds for ≤l and ≤′
l.

We can obtain an admissible morphism between weakly B-orthodox semi-

groups from a pseudo-functor between inductive generalised categories over bands.

This is made more precise in the following lemma.

Lemma 7.15. Let F : P1 → P2 be a pseudo-functor between inductive generalised

categories P1 and P2, where P1 and P2 are over bands B1 and B2, respectively.

Then the map FS : P1S → P2S defined by the rule that xFS = xF , where

x ∈ P1S, is an admissible morphism; moreover, if F1 : P1 → P2 and F2 : P2 → P3

are pseudo-functors, then (F1F2)S = F1SF2S.

Proof. We claim first that FS is a semigroup morphism. Suppose that x, y ∈ P1S.

Then by the definition of FS ,

(x⊗ y)FS = (x⊗ y)F

= ((x|fu) · (fu|y))F
(
f ∈ r(x), u ∈ d(y)

)

= (x|fu)F · (fu|y)F
(
by (F3)

)

= (xF |(fu)F ) · ((fu)F |yF )
(
by (F2), (F2)◦

)

= (xF |fF uF ) · (fF uF |yF )
(
by (F1)

)
.
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Since f ∈ r(x) and u ∈ d(y), it follows from the comments succeeding Defini-

tion 7.5 that fF ∈ r(xF ) and uF ∈ d(yF ). Thus,

(x⊗ y)FS = xF ⊗ yF = xFS ⊗ yFS.

We now show that FS is admissible. Clearly, by (F1), B1FS ⊆ B2. For

any e ∈ r(x), we have e L̃B1 x and eF ∈ r(xF ). Thus, eF L̃B2 xF , that

is, eFS L̃B2 xFS. By a similar argument, we have that for any k ∈ d(x),

kFS R̃B2 xFS. By Lemma 2.9, FS is an admissible morphism between weakly

B-orthodox semigroups P1S and P2S.

The final part of the lemma is clear.

Theorem 7.14 and Lemma 7.15 show that S : IGC → WO is a functor.

7.3 Correspondence

In Section 7.2, we start with an inductive generalised category over B and con-

struct a weakly B-orthodox semigroup. Our present aim is to prove a converse

to this result and thus provide a correspondence between the class of inductive

generalised categories over bands and the class of weakly B-orthodox semigroups,

i.e. between IGC and WO.

Let S be a weakly B-orthodox semigroup. We define SC to be the set S

equipped with the following partial binary operation:

x · y =




xy if x∗ D y†

undefined otherwise,

where xy is the product of x and y in S. This is known as the trace product and

denoted by SC = (S, ·).

It is an immediate result that if e, f ∈ B and x ∈ S are such that e R̃B x L̃B f

then e · x = x = x · f .

We now turn to give a number of basic properties of SC, which will be found

useful in the sequel.

Lemma 7.16. If ∃x · y in SC, then x R̃B xy L̃B y in S.
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Proof. Suppose that x and y are in S such that x · y is defined in SC. Then

x∗ D y†. We assume that x∗ L h R y†, where h ∈ B. Since R̃B is a left

congruence and L̃B is a right congruence, it follows that xy R̃B xy† R̃B xh = x

and dually, xy L̃B x∗y L̃B hy = y. So x R̃B xy L̃B y, as required.

Lemma 7.17. If S is a weakly B-orthodox semigroup, then SC is a generalised

category over B such that d(x) = Rx† and r(x) = Lx∗.

Proof. We have x ∈ Mor(Re, Lf) if and only if x† R e and x∗ L f in B. If in

addition y ∈ Mor(Rg, Lh), then ∃x · y in SC if and only if x∗ D y†, i.e. Df = Dg.

Moreover, if ∃x · y, then x · y ∈ Mor(Re, Lh) by Lemma 7.16. Clearly Condition

(GC3) holds.

For any e ∈ B, we take the distinguished morphism e associated to e to be

itself, whose domain is Re and codomain is Le. Certainly, if e ∈ d(x)
(
resp. e ∈

r(x)
)
, then e is a left (resp. right) identity of x. Hence, (GC4) holds.

We build on the above to show that SC may be equipped with restrictions

and co-restrictions, under which it becomes an inductive generalised category.

For x ∈ S and e, f ∈ B with e ≤L u ∈ d(x) and f ≤R v ∈ r(x),

e|x = ex and x|f = xf.

Lemma 7.18. Let S be a weakly B-orthodox semigroup. With the above def-

inition of restriction and co-restriction, SC becomes an inductive generalised

category over B. Further, the natural pre-orders and partial orders in S and SC

coincide.

Proof. In view of Lemma 7.17, it remains to show that SC with the restriction

and co-restriction defined above satisfies Conditions (I1) to (I6) and the duals

(I1)◦, (I2)◦ and (I3)◦ of (I1), (I2) and (I3).

(I1) If x ∈ S and e, u ∈ B with e ≤L u ∈ d(x), then e|x = ex, and so by

Lemmas 2.8 and 2.14, Condition (I1) is satisfied.

(I2) Since restriction and co-restriction are given by multiplication in S, it

is clear that (I2) and its dual hold.

(I3) Suppose that x, y ∈ S and e, u ∈ B with x · y defined in SC, let e ≤L

u ∈ d(x) and f ∈ r(e|x) = L(ex)∗ . Then e|(x · y) = exy = exfy = (e|x) · (f |y).
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(I4) It is routine to check that Condition (I4) holds, both products being

equal to xy.

(I5) As for (I4) this is again routine, with both sides of the equality we must

verify being equal to exf .

(I6) Clearly, it is satisfied by the definitions of the restriction and co-restriction,

respectively.

Now, let x, y ∈ S. Then

x ≤r y in S ⇔ x = ey some e ∈ B

⇔ x = ey†y some e ∈ B, y† ∈ d(y)

⇔ x = ey† |y some e ∈ B, y† ∈ d(y)

⇔ x = f |y some f ∈ B with f ≤L u ∈ d(y)

⇔ x ≤r y in SC.

In addition, with notation as above, if x ≤′
r y in S we have that x† ≤R y†, so that

x = y†ey†y = y†ey† |y and y†ey† ≤ y†, and so x ≤′
r y in SC. Conversely, if x ≤′

r y

in SC, then x = g|y, where g ≤ y† ∈ d(y). Then x = gy in S, and x† R g ≤R y†,

so that x ≤′
r y in S.

Proposition 7.19. Let S be a weakly B-orthodox semigroup and P be an induc-

tive generalised category over B. Then SCS = S and PSC = P .

Proof. Let S be a weakly B-orthodox semigroup. It follows from Lemma 7.18 that

SC is an inductive generalised category over B with multiplication a restriction

of that in S and d(x) = Rx† , r(x) = Lx∗ , for any x ∈ S, and if e ≤L u ∈ d(x)

and f ≤r v ∈ r(x) then e|x = ex and x|f = xf .

We now construct SCS, which again has underlying set S, by defining the

pseudo-product

x⊗ y = (x|vg) · (vg|y),

where v ∈ r(x) = Lx∗ and g ∈ d(y) = Ry† . Observe that

x⊗ y = (x|vg) · (vg|y) = xvgvgy = xvgy = xy,

so the operations in S and SCS are the same. Moreover, the distinguished bands

of S and SCS are both B. Hence S = SCS.

We now focus on the converse. Let P be an inductive generalised category
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over B with partial binary operation · . We establish the weakly B-orthodox

semigroup PS by defining the pseudo-product ⊗ of Theorem 7.14.

We temporarily use the notation ⊙ for the partial binary operation in PSC.

For any x, y ∈ P we have

∃x⊙ y ⇔ x∗ D y† in PS

⇔ e D f, where r(x) = Le and d(y) = Rf

⇔ ∃x · y in P.

Further, if ∃x⊙ y, then by Lemma 7.8,

x⊙ y = x⊗ y = x · y.

For x ∈ P we have that d(x) = Rx† in PSC, where x R̃B x
† in PS. But, the

latter holds if and only if x† ∈ d(x) in P , i.e. d(x) = Rx† in P . Thus d in P and

PSC coincide, and dually for r.

Clearly, the distinguished morphisms in P and PSC are the same.

Again as a temporary measure, we use || to denote restriction and co-

restriction in PSC.

Let x ∈ P and let e, u ∈ B with e ≤L u ∈ d(x). Then in PSC,

e||x = e⊗ x = e|eu · eu|x = eu|x = e|x

and similarly for co-restrictions.

We now proceed to establish an isomorphism between IGC and WO.

The next lemma demonstrates that an admissible morphism between two

weakly B-orthodox semigroups gives rise to a pseudo-functor.

Lemma 7.20. Let S be a weakly B1-orthodox semigroup and T be a weakly B2-

orthodox semigroup. Suppose that θ is an admissible morphism. Then the map

θC : SC → TC given by the rule that xθC = xθ for x ∈ B1 and x ∈ S is a

pseudo-functor. Further, if θ1 : S → T and θ2 : T → Q are admissible morphisms,

then (θ1θ2)C = θ1Cθ2C.

Proof. (F1) Since θ is an admissible morphism, it follows that θ is a morphism

from B1 to B2.
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(F2) Suppose that x ∈ S and e, f ∈ B1 with e ≤L f ∈ d(x). Then e|x

is defined and e|x = ex. Since θ is admissible, it follows that eθ ≤L fθ and

fθ R̃B2 xθ, that is, fθ ∈ d(xθ), which implies that eθ|xθ is defined. Then

(e|x)θC = (ex)θC = (ex)θ = eθxθ = eθ|xθ = eθC|xθC.

(F3) If ∃x·y in SC, then x∗ D y†. Hence there is an h ∈ B with x L̃B1 h R̃B1 y.

Since θ is admissible, xθ L̃B2 hθ R̃B2 yθ and hθ ∈ B2. Thus ∃xθ · yθ in TC.

Clearly, if x · y exists, (x · y)θ = (xy)θ = xθyθ = xθ · yθ, since θ is a morphism.

It is routine to see that (θ1θ2)C = θ1Cθ2C.

The following result is easy to see, given Lemma 7.15 and 7.20.

Lemma 7.21. Let θ : S → T be an admissible morphism of weakly B-orthodox

semigroups, and F : P1 → P2 be a pseuo-functor of inductive generalised cate-

gories over bands. Then θCS = θ and FSC = F .

Lemmas 7.18 and 7.20 show that C : WO → IGC is a functor and Propo-

sition 7.19 and Lemma 7.21 give that S and C are mutually inverse. Hence we

deduce our main result.

Theorem 7.22. The category WO of weakly B-orthodox semigroups and ad-

missible morphisms is isomorphic to the category IGC of inductive generalised

categories over bands and pseudo-functors.

7.4 Special cases

In this section, we concentrate on some special kinds of weakly B-orthodox semi-

groups. We now present a lemma which will be used in our first two cases.

Lemma 7.23. Let P be an inductive generalised category over B. Suppose that

for all x ∈ E(PS) and e ∈ d(x), f ∈ r(x) we have eR∗ xL∗ f in PS. Then

E(PS) = B.

Proof. Suppose that x ∈ P and x⊗ x = x. Assume that f ∈ r(x) and e ∈ d(x)

with e R∗ x L∗ f , and so f ⊗ x = f , that is, f |fe · fe|x = f , or equivalently,

fe|x = f , which implies that fe R f . Dually, fe L e. Thus, e D f so that

e R ef L f . Since e R∗ x L∗ f , we have x H∗ ef . An H∗ class contains at most

an idempotent so that x = ef .
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An (inductive) generalised category P is an (inductive) generalised groupoid

if for all x ∈ P with d(x) = Re and r(x) = Lf , there exists y ∈ P with d(y) = Rf

and r(y) = Le such that e = x · y and y · x = f .

Corollary 7.24. The category of orthodox semigroups and morphisms is isomor-

phic to the category of inductive generalised groupoids over bands and pseudo-

functors.

Proof. Let S be an orthodox semigroup with B = E(S). Suppose that x ∈ SC

with d(x) = Re and r(x) = Lf . Since R = R̃B and L = L̃B, we have that

eRxL f . It follows from the fact that S is regular that there exists y ∈ S with

e = xy and yx = f . We have that eL yR f and so d(y) = Rf and r(y) = Le and

the products x · y, y · x exist in SC. Moreover, x · y = xy = e and y · x = yx = f .

Conversely, let P be an inductive generalised groupoid over B. Suppose that

x ∈ P and d(x) = Re, r(x) = Lf . Then there exists y ∈ P with d(y) = Rf and

r(y) = Le such that f = y · x and e = x · y. And so x ⊗ y ⊗ x = (x · y) ⊗ x =

e ⊗ x = e · x = x. Thus, PS is regular. In addition, as e = x · y = x ⊗ y and

x = e ⊗ x, we have that eRx in PS. Dually, f Lx in PS. By Lemma 7.23, we

have that E(PS) = B. Hence, PS is an orthodox semigroup.

Now, we focus on the class of abundant semigroups. We replace the distin-

guished set of idempotents B by the whole set of idempotents and use relations R∗

and L∗ instead of R̃B and L̃B in the definition of weakly B-orthodox semigroups.

We thus obtain the class of abundant semigroups whose set of idempotents forms

a band. An admissible morphism in this context is more usually referred to as a

good morphism. We define an inductive generalised category P over a band B to

be abundant if it satisfies the following condition and its dual (I7)◦:

(I7) if e, f, g ∈ B and x, y, z ∈ P are such that e, f ≤L g ∈ d(x), e ∈ r(y),

f ∈ r(z) and y · e|x = z · f |x, then y = z.

Corollary 7.25. The category of abundant semigroups whose set of idempotents

forms a band and good morphisms is isomorphic to the category of abundant

inductive generalised categories over bands and pseudo-functors.

Proof. Let P be an abundant inductive generalised category over a band B.

Suppose that x ∈ P , e ∈ d(x) and f ∈ r(x). We know that e R̃B x in PS,

so that e ⊗ x = x. Assume that y, z ∈ P with y ⊗ x = z ⊗ x, giving that
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(y|y∗e) · (y∗e|x) = (z|z∗e) · (z∗e|x), where y∗ ∈ r(y) and z∗ ∈ r(z). By (I7), we

obtain that y|y∗e = z|z∗e. Thus, y∗eL z∗e in B. We have

y ⊗ e = y|y∗e · y∗e|e

= z|z∗e · y∗e
(
by(I6)

)

= z|z∗e

(
y∗eL z∗e

)

= z|z∗e · z∗e|e

= z ⊗ e.

This is enough to show that e R∗ x. Dually, we have that f L∗ x.

In view of Lemma 7.23, we have that E(PS) = B.

Conversely, let S be an abundant semigroup with E(S) = B. It follows

that R∗ = R̃B and L∗ = L̃B. In view of Lemma 7.18, it is sufficient to claim

that SC satisfies Conditions (I7), and dually, (I7)◦. Assume that e, f, g ∈ B and

x, y, z ∈ P are such that e, f ≤L g ∈ d(x), e ∈ r(y), f ∈ r(z) and y · e|x = z · f |x.

It follows that yex = zfx. Since g ∈ d(x), that is, gR∗ x in S, we have that

yeg = zfg, that is, ye = zf , as e, f ≤L g. Hence, y = z, as required. Dually,

(I7)◦ holds.

We now discuss Ehresmann semigroups. Let S be an Ehresmann semigroup

with distinguished semilattice E. We mentioned in Lemma 2.30 that ≤r = ≤′
r

and ≤l = ≤′
l.

Let P be an inductive generalised category over E. The context

(E,E/R, E/L, E/D, p)

is essentially four copies of E equipped with the identity map. We therefore

identify E with E/R, E/L and E/D and note that P becomes a category in the

usual sense. Notice that as P = PSC, we have that ≤r = ≤′
r, ≤l = ≤′

l and ≤r

and ≤l are partial orders on P .

Lemma 7.26. An inductive generalised category P over a semilattice E with ≤r

forms an ordered1 category with restriction.

Proof. From comments above P is a category (with the appropriate identifica-

tions) and (P,≤r) is a poset.
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(OC1) Suppose that x, y ∈ P with x ≤r y. Then there exists e ∈ E such

that e ≤ d(y) and x = e|y. Thus, d(x) = e ≤ d(y) and r(x) ≤ r(y) by (I1).

(OC2) Suppose that x, y ∈ P with r(x) = r(y), d(x) = d(y) and x ≤r y.

Then there exists e ∈ E such that e ≤ d(y) and x = e|y. Certainly, d(x) = e and

so e = d(y), whence from (I1), x = y.

(OC3) If x′ ≤r x and y′ ≤r y, and both x′ · y′ and x · y exist, then there exist

e, f ∈ E such that e ≤ d(x), f ≤ d(y), x′ = e|x and y′ = f |y. Thus, we have

that r(e|x) = r(x′) = d(y′) = d(f |y) = f , and so x′ · y′ = (e|x) · (f |y) = e|(x · y)

by (I3). Hence, x′ · y′ ≤r x · y.

Finally, we assume that x ∈ P and e ∈ E with e ≤ d(x). Then e|x is defined

and d(e|x) = e. Also, e|x ≤r x by (I1). Further, e|x is unique since if z ≤r x and

e = d(z), then there exists h ∈ E with h ≤ d(x) and z = h|x, which gives that

h = d(z). Thus, e = h. Hence, z = e|x.

As a dual result of Lemma 7.26, we have the following lemma.

Lemma 7.27. An inductive generalised category P over a semilattice E with ≤l

forms an ordered1 category with co-restriction.

Next we show that an inductive generalised category P over a semilattice E

is an Ehresmann category as defined in [32] and explained in Chapter 6.

Lemma 7.28. An inductive generalised category P over a semilattice E with the

pair of natural partial orders (≤r,≤l) forms an Ehresmann category.

Conversely, an Ehresmann category (C, · ,≤r,≤l) with semilattice of identi-

ties E, may be regarded as an inductive generalised category over E with natural

partial orders (≤r,≤l).

Proof. Let P be inductive generalised category over a semilattice E. In view of

the above discussion, we have claimed that P is a category with set of identities

E. By Lemma 7.26 and Lemma 7.27, Conditions (E1) and (E1)◦ are satisfied.

(E2) If e, f ∈ E and e ≤r f , then e = e|f = ef so that we must have e ≤ f .

Then f |e is defined and f |e = fe = e so that e ≤l f . Together with the dual, we

have that for e, f ∈ E,

e ≤r f ⇔ e ≤l f ⇔ e ≤ f,

so that in particular, (E2) holds.

(E3) Clearly, E is a semilattice under ≤r = ≤l = ≤.



144

(E4) To show that ≤r ◦ ≤l ⊆ ≤l ◦ ≤r, we assume that x ≤r ◦ ≤l y. Then

there exists z ∈ P such that x ≤r z ≤l y. And so there exist e, f ∈ E with

d(x) = e ≤ d(z) = u and r(z) = f ≤ r(y) = v, such that x = e|z and z = y|f .

Thus, x = e|(y|f) = eu|(y|vf). By (I4), we get that x = (eh|y)|gf , where h = d(y)

and g = r(eh|y). Set z′ = eh|y. Then x ≤l z
′ and z′ ≤r y. Consequently,

x ≤l ◦ ≤r y. With the dual, we obtain (E4).

(E5) Suppose that x, y ∈ P and f ∈ E with x ≤r y. Then there exists

k ∈ E with k ≤ d(y) and x = k|y. So x|r(x)f = (k|y)|r(x)f = (kd(y)|y)|r(x)f .

Let h = d(y|r(y)f). By (I4), we obtain that (kd(y)|y)|r(x)f = kh|(y|r(y)f), so that

x|r(x)f ≤r y|r(y)f .

Conversely, let C = (C, · ,≤r,≤l) be an Ehresmann category with semilattice

of identities E. Then C = (C, ·) may also be regarded as generalised category

over E.

We let ≤ denote the restriction of ≤r (resp. ≤l) to E. It is clear that the first

part of (I1) holds, moreover, by uniqueness of restriction, e|x = x if e = d(x).

For (I2), if x ∈ C and e, f, g, u ∈ E, with e ≤L g R f ≤L u ∈ d(x),

then this simplifies to e ≤ f ≤ d(x). Now ef |x = e|x ≤r x and d(e|x) = e;

also, e|(f |x) ≤r f |x ≤r x and d(e|(f |x)) = e. By uniqueness of restriction,

ef |x = e|(f |x).

(I3) If x, y ∈ C with ∃x · y, then r(x) = d(y). If e ≤ d(x), then we have

e|(x · y) ≤r x · y and d(e|x · y) = e

and also

(e|x) · (f |y) ≤r x · y and d((e|x) · (f |y)) = e,

where f = r(e|x). Hence, e|(x · y) = (e|x) · (f |y).

(I4) This is clear.

(I5) Let x ∈ C and e, f, u, v, g, h ∈ E with g = r(x), h = d(x), u = d(x|gf )

and v = r(eh|x). Then (e⊗x)⊗f = e⊗(x⊗f), where ⊗ is defined [32] and recalled

in Chapter 6, by x⊗y = (x|k) · (k|y), where k = r(x) d(y). As shown in [32], ⊗ is

associative, hence,
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(e⊗x)⊗f = ((e|eh) · (eh|x))|vf · (vf |f)

= (eh · (eh|x))|vf · vf

= (eh|x)|vf

and similarly, e⊗(x⊗f) = eu|(x|gf), so we obtain that (eh|x)|vf = eu|(x|gf).

(I6) Suppose that e, g, h, u, v ∈ E are such that u ≤R g L e and v ≤L h R e,

which simplify to u ≤ e and v ≤ e. Clearly, e|u = u = eu and v|e = v = ve.

Let C = (C, · ,≤r,≤l) and D = (D, ·,≤r,≤l) be Ehresmann categories with

semilattice EC and ED of identities, respectively. We recall from Chapter 6 that

a strongly ordered functor [32] F : C → D is a functor which preserves ≤r,≤l and

the binary operation of the semilattices. Hence F is a morphism EC → ED. As

shown in [32], F preserves restrictions and co-restrictions. Thus F is a pseudo-

functor in the sense of Definition 7.5.

On the other hand, if G : C → D is a pseudo-functor, then from the com-

ments following Definition 7.5, G is a functor, which by (F1) preserves ∧. Sup-

pose now that x, y ∈ C with x ≤r y. Then x = e|y for some e ∈ E, and so by

(F2), xG = eG|yG so that xG ≤r yG. Dually, G preserves ≤l, so that G is a

strongly ordered functor. Theorem 7.22, Lemma 7.18 and the comments above

now give us Lawson’s result from [32], Theorem D.

Corollary 7.29. [6, Theorem 4.24] The category of Ehresmann semigroups and

admissible morphisms is isomorphic to the category of Ehresmann categories and

strongly ordered functors.

We now turn to weakly B-superabundant semigroups with (C), which are

weakly B-orthodox semigroups such that each H̃B-class contains a distinguished

idempotent in B. We say that a generalised category P over a band B is a

super-generalised category if it is an inductive generalised category and satisfies

the following condition:

(I8) if x ∈ P , e ∈ d(x) and f ∈ r(x), then e D f .

Corollary 7.30. The category of weakly B-superabundant semigroups with (C)

and admissible morphisms is isomorphic to the category of super-generalised cat-

egories over B and pseudo-functors.



146

Proof. Let S be a weakly B-superabundant semigroup with (C). It follows from

Lemma 7.18 that it is only necessary to show that SC satisfies Condition (I8).

Suppose that x ∈ S, e ∈ d(x) and f ∈ r(x). Then e R̃B x L̃B f in S. As S is a

weakly B-superabundant semigroup, it follows that there exists h ∈ B such that

h H̃B x. Thus, e R h L f , which implies that e D f .

Conversely, let P be a super-generalised category over B. It is sufficient to

show that PS is weakly B-superabundant. Suppose that x ∈ P , e ∈ d(x) and

f ∈ r(x). Then by (I8), e D f , that is, e R ef L f . As e R̃B x L̃B f in PS,

we get that x H̃B ef . Hence PS is a weakly B-superabundant semigroup with

(C).

Finally in this chapter, we discuss the class of weakly B-orthodox semigroups

which have Condition (WIC) mentioned in Chapter 2. We define an inductive

generalised category P over a band B to be connected if it satisfies the following

condition and its dual (I9)◦:

(I9) if x ∈ P and e ≤ u ∈ d(x) then there exists f ≤ v ∈ r(x) such that

e|x = x|f .

Corollary 7.31. The category of weakly B-orthodox semigroups with (WIC) and

admissible morphisms is isomorphic to the category of connected inductive gen-

eralised categories over bands and pseudo-functors.

Proof. Let S be a weakly B-orthodox semigroup with (WIC). In view of Lemma

7.18, it remains to show that SC satisfies Conditions (I9) and (I9)◦. We will

show that (I9) holds, dually, (I9)◦ holds. Suppose that x ∈ S and e ≤ u ∈ d(x).

Then e|x = ex. Since S has (WIC), it follows that there exists f ∈ B such that

ex = xf . Then ex = xvfv, where v ∈ r(x). Thus, ex = xvfv = x|vfv.

Conversely, let P be a connected inductive generalised category over a band

B. Suppose that x ∈ P and e ≤ u ∈ d(x). Then it follows from (I9) that there

exists f ≤ v ∈ r(x) such that e|x = x|f . Thus e ⊗ x = e|x = x|f = x ⊗ f .

Together with the dual argument, we have shown that PS has (WIC).



Chapter 8

Trace of weakly B-orthodox

semigroups

A weakly B-orthodox semigroup S with zero is primitive if for any e, f ∈ B,

e ≤ f implies that e = 0 or e = f . Here e ≤ f if and only if ef = fe = e.

The purpose of this chapter is to show that the trace of a weakly B-orthodox

semigroup is a primitive weakly B-orthodox semigroup and investigate primitive

weakly B-orthodox semigroups via blocked Rees matrix semigroups, which are

introduced in [10].

8.1 Preliminaries

In this section our aim is to list some properties of primitive weakly B-orthodox

semigroups. Throughout this section we use S to denote a primitive weakly B-

orthodox semigroup, unless stated otherwise. Green’s relations will always refer

to B. For any subset T of a semigroup S, we will use T ∗ to denote the set of

non-zero elements of T .

Lemma 8.1. Let S be a weakly U-abundant semigroup with zero and x, y be non-

zero elements in S with x R̃U e and y L̃U f , where e, f ∈ U . Then yx = 0 if and

only if fe = 0.

Proof. From x R̃U e, we have yx R̃U ye, and so if yx = 0, then ye = 0. Again,

by y L̃U f , we have ye L̃U fe, and so fe = 0.

Conversely, if fe = 0 then yx = yfex = 0.

147
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Lemma 8.2. If e, f are distinguished idempotents in S and eS ⊆ fS (resp. Se ⊆

Sf), then eS = fS (resp. Se = Sf) or e = 0.

Proof. Suppose that e, f ∈ B and eS ⊆ fS. Then e ∈ fS, and so fe = e, which

implies that eR ef ≤ f . Since S is primitive, we obtain that ef = 0 or ef = f .

In the former case, we have that e = ee = efe = 0, and in the latter case, we

obtain that e R f , that is, eS = fS.

Lemma 8.3. For any e ∈ B∗ and a ∈ S∗, a L̃B e (resp. a R̃B e) if and only

if a ∈ Se (resp. a ∈ eS) and Se (resp. eS) is contained in every distinguished

idempotent-generated left (resp. right) ideal containing a.

Proof. Suppose that a L̃B e. By Lemma 2.6, L̃(a) = L̃(e). As L̃(e) = Se, a ∈ Se.

If a ∈ Sf for some f ∈ B, then af = a, and so ef = e giving Se ⊆ Sf .

Conversely, suppose that a ∈ Se and that for any f ∈ B, a ∈ Sf implies

that Se ⊆ Sf . Then L̃(a) ⊆ Se since Se is a left B- admissible ideal containing

a. As S is weakly B-orthodox, it follows from Lemma 2.7 that L̃(a) = Sf for

some f ∈ B. Hence, by Lemma 8.2, Se = Sf , and so a L̃B e.

The next lemma is an immediate consequence of Lemma 8.2 and Lemma 8.3.

Lemma 8.4. Let a ∈ S and e ∈ B∗. Then a L̃B e (resp. a R̃B e) if and only if

a 6= 0 and a ∈ Se (resp. a ∈ eS).

Lemma 8.5. If x, y are non-zero elements in S such that xy 6= 0, then xy ∈

R̃x ∩ L̃y.

Proof. Suppose that e and f are distinguished idempotents such that e R̃B x and

f L̃B y. Then by Lemma 2.7, x ∈ eS and y ∈ Sf . Thus, xy ∈ eS ∩ Sf . Again

by Lemma 8.4, xy ∈ R̃e ∩ L̃f , that is, xy ∈ R̃x ∩ L̃y.

8.2 Blocked Rees matrix semigroups

As a tool for the following sections we recall some concepts and results from [10]

about blocked Rees matrix semigroups and their structure. Blocked Rees matrix

semigroups [10] are a generalisation of Rees matrix semigroups over a monoid.

We refer the reader to [10] for more details.
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Let I,Λ and Γ be non-empty sets. Suppose that Γ indexes partitions of Λ

and I as follows:

P (Λ) = {Λα : α ∈ Γ}, P (I) = {Iβ : β ∈ Γ}.

For convenience, i, j, k, h will denote members of I; λ, µ, ν, ρ will denote members

of Λ, and α, β, γ, δ will denote members of Γ.

We recall from [12] that a non-empty set M is a partial semigroup if there is

a partial binary operation on M such that for all a, b, c ∈ M , (ab)c is defined if

and only if a(bc) is defined, and if (ab)c is defined, then (ab)c = a(bc).

Let M =
⋃

{Mαβ : α, β ∈ Γ} be a partial semigroup such that for x, y ∈ M ,

xy is defined if and only if x ∈ Mαβ, y ∈ Mβγ for some α, β, γ ∈ Γ and then in

this case, xy ∈ Mαγ . Suppose also that for all α ∈ Γ, Mαα = Tα is a monoid with

identity gα and for all α, β ∈ Γ, Mαβ = ∅ or is a (Tα, Tβ)-bisystem, that is, Tα

acts on Mαβ on the left, Tβ acts on Mαβ on the right and (tm)t′ = t(mt′) for all

t ∈ Tα, m ∈ Mαβ , t′ ∈ Tβ.

We remark that if for any α, β ∈ Γ, Mαβ is regarded as the set of morphisms

from α to β, then M forms a category with set of objects Γ and set of morphisms

M .

Let 0 (zero) be a symbol not in any Mαβ and let P = (pλi) be a Λ × I matrix

over M ∪ {0}, where for λ ∈ Λα, i ∈ Iβ, pλi ∈ Mαβ ∪ {0}.

Let

M0 = M0(M ; I,Λ,Γ;P )

= {(i, a, λ) : a ∈ Mαβ , (i, λ) ∈ Iα × Λβ, (α, β) ∈ Γ × Γ} ∪ {0}.

In order to be able to define a multiplication on M0(M ; I,Λ,Γ;P ), we say that

0x = x0 = 0 for every element x of M0. Now we define a product on non-zero

elements of M0(M ; I,Λ,Γ;P ) by the rule that for any (i, a, λ), (j, b, µ) ∈ M0,

(i, a, λ)(j, b, µ) =





(i, apλjb, µ) if pλj 6= 0

0 if pλj = 0.

It is routine to show that this product is associative and is categorical at zero, and

so we obtain a semigroup called a blocked Rees matrix semigroup. A blocked Rees
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matrix semigroup M0 = M0(M ; I,Λ,Γ;P ) is called a weakly orthodox blocked

Rees matrix semigroup or WO-B Rees matrix semigroup if the following condition

holds:

(B) all non-zero entries of P are in the diagonal blocks, and if (i, λ) ∈ Iα ×Λα

then pλi is the identity gα of Tα.

Proposition 8.6. Let M0 = M0(M ; I,Λ,Γ;P ) be a WO-B Rees matrix semi-

group and B = {(i, gα, λ) : α ∈ Γ, (i, λ) ∈ Iα × Λα} ∪ {0}. Then

(i) for any (i, gα, λ) ∈ B, (i, gα, λ) is an idempotent;

(ii) the set B forms a band;

(iii) for any (i, gα, λ) ∈ B \ {0}, (i, gα, λ) is primitive in B;

(iv) for any non-zero elements (i, a, λ), (j, b, µ) ∈ M0, (i, a, λ) R̃B (j, b, µ)

if and only if i = j;

(v) for any non-zero elements (i, a, λ), (j, b, µ) ∈ M0, (i, a, λ) L̃B (j, b, µ) if

and only if λ = µ.

Proof. (i) If (i, gα, λ) ∈ B, then we have

(i, gα, λ)(i, gα, λ) = (i, gαpλigα, λ)

= (i, gαgαgα, λ)
(
since (i, λ) ∈ Iα × Λα, pλi = gα

)

= (i, gα, λ).

(ii) Suppose that (i, gα, λ), (j, gβ, µ) ∈ B \ {0}. Then

(i, gα, λ)(j, gβ, µ) = (i, gαpλjgβ, µ).

If α = β, then pλj = gα = gβ, and so (i, gα, λ)(i, gβ, µ) = (i, gα, µ) ∈ B. If α 6= β,

then pλj = 0, and so (i, gα, λ)(j, gβ, µ) = 0 ∈ B. Hence, B is closed. Again by

(i), B forms a band.

(iii) Suppose that (i, gα, λ), (j, gβ , µ) ∈ B \ {0} are such that (i, gα, λ) ≤

(j, gβ, µ). Then

(i, gα, λ)(j, gβ, µ) = (i, gα, λ) = (j, gβ, µ)(i, gα, λ),

which implies that i = j and λ = µ, and so α = β so that gα = gβ. Hence

(i, gα, λ) = (j, gβ, µ).
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(iv) Suppose that (i, a, λ) ∈ M0 \ {0}. Then there exist α, β ∈ Γ such

that (i, λ) ∈ Iα × Λβ and a ∈ Mαβ . We now claim that for any ν ∈ Λα and

(i, gα, ν) ∈ B, (i, gα, ν) R̃B (i, a, λ). Clearly,

(i, gα, ν)(i, a, λ) = (i, gαpνia, λ) = (i, gαgαa, λ)
(
(i, ν) ∈ Iα × Λα, pνi = gα

)

= (i, gαa, λ) = (i, a, λ).

Let γ ∈ Γ, (k, ρ) ∈ Iγ × Λγ and (k, gγ, ρ) ∈ B be such that

(k, gγ, ρ)(i, a, λ) = (i, a, λ).

Then k = i, and so α = γ. Thus,

(k, gγ, ρ)(i, gα, ν) = (k, gγpρigα, ν)

= (i, gαgαgα, ν)
(
α = γ, k = i

)

= (i, gα, ν).

Hence (i, gα, ν) R̃B (i, a, λ).

Let η, δ ∈ Γ and (j, µ) ∈ Iη × Λδ. If (j, b, µ) ∈ M0 \ {0}, then

(j, b, µ) R̃B (j, gη, σ),

where σ ∈ Λη and (j, gη, σ) ∈ B. So

(i, a, λ) R̃B (j, b, µ) ⇔ (i, gα, ν) R̃B (j, gη, σ)

⇔ (i, gα, ν) R (j, gη, σ)

⇔ i = j.

(v) It is the dual proof of (iv).

The following lemma is an immediate consequence of Proposition 8.6.

Lemma 8.7. Let M0 = M0(M ; I,Λ,Γ;P ) be a WO-B Rees matrix semigroup

and B = {(gα)iλ : α ∈ Γ, (i, λ) ∈ Iα × Λα} ∪ {0}. Then M0 is a primitive weakly

B-orthodox semigroup.

Proof. In view of (iv) and (v) of Proposition 8.6, it is easy to see that M0 satisfies

the Congruence Condition (C).
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8.3 Primitive weakly B-orthodox semigroups

Throughout this section S denotes a given fixed primitive weakly B-orthodox

semigroup with zero. Our aim, achieved in Theorem 8.13, is to show that S is

isomorphic to a WO-B Rees matrix semigroup.

Lemma 8.8. Let e ∈ B∗ and let

X =
⋃

{L̃f : f ∈ B∗ and f D e},

Y =
⋃

{R̃g : g ∈ B∗ and g D e}

and Z = X ∩ Y . Then

(i) for any a, b ∈ Z, (a, b) ∈ L̃B ◦ R̃B and (a, b) ∈ R̃B ◦ L̃B;

(ii) if a ∈ L̃f ∩ R̃g ⊆ Z, then gf ∈ H̃a ∩ B∗ is such that ρf : H̃g → H̃a,

given by xρf = xf for any x ∈ H̃g, and λg : H̃f → H̃a, given by yλg = gy for

any y ∈ H̃f , are bijective;

(iii) for any a, b ∈ Z, |H̃a| = |H̃b|;

(iv) if g, h ∈ B∗ and H̃g and H̃h contained in Z, then H̃g and H̃h are

isomorphic monoids.

Proof. (i) Suppose that a, b ∈ Z. Then there exist g, f ∈ B∗ such that a L̃B f ,

b R̃B g and g D f D e. Since B is a band, we have f L gf R g, and so

a L̃B gf R̃B b, that is, (a, b) ∈ L̃B ◦ R̃B. Similarly, we have (a, b) ∈ R̃B ◦ L̃B.

(ii) Let a ∈ L̃f ∩ R̃g ⊆ Z. Then f D e D g, and so gf ∈ B∗ and f L gf R g

so that gf H̃B a. We now show that ρf : H̃g → H̃a is a well-defined bijection.

For any x ∈ H̃g, we have

xρf = xf L̃B gf H̃B a

and

xρf = xf = xgf R xg = x R̃B g R̃B a,

and so xρf ∈ H̃a so that ρf is well-defined.

It is easy to see that ρf is injective. Since if x1, x2 ∈ H̃g and x1ρf = x2ρf ,
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then x1f = x2f . We have

x1 = x1g = x1gfg
(
f D g

)

= x1fg = x2fg = x2gfg = x2g = x2.

To show ρf is surjective, we suppose that z ∈ H̃a = L̃f ∩ R̃g. Then we have

zg = zfg R zf = z R̃B g
(
fg R f

)

and

zg L̃B fg L g,

and so zg ∈ H̃g. Also, zgρf = zgf = z as gf R g R̃B z. Thus, ρf is a bijection.

By a similar argument, we show that λg : H̃f → H̃a is a well-defined bijection.

(iii) Suppose that a, b ∈ Z. By (i), there exists c ∈ Z such that a L̃B c R̃B b.

Also, there exists f, g ∈ B∗ such that f D e D g and c ∈ L̃f ∩ R̃g. By (ii), we

have

|H̃a| = |H̃f | = |H̃c| = |H̃g| = |H̃b|.

(iv) Suppose that g, h ∈ B∗ are such that H̃g and H̃h are contained in Z.

Then by (i), there exists a ∈ Z such that g L̃B a R̃B h. By (ii), ρg : H̃h → H̃a

and λh : H̃g → H̃a are bijective. Using the same method as (ii), we can show

that λg : H̃a → H̃g is the inverse of λh. Then ρgλg : H̃h → H̃g is a bijection. By

Lemma 3.5, H̃h and H̃g are monoids. If x1, x2 ∈ H̃h, then

(x1x2)ρgλg = gx1x2g = gx1hx2g
(
h R̃B x2

)

= gx1hgghx2g
(
h D g

)

= gx1ggx2g = (x1ρgλg)(x2ρgλg).

Hence ρgλg is an isomorphism, and so H̃h is isomorphic to H̃g.

We pause to make a short comment on Lemma 8.8. If e, f ∈ B∗ with e D f ,

then by (iv), ρfλf is an isomorphism from H̃e onto H̃f . It is easy to see that Z

is a union of H̃B-classes and due to part (i), Z can be depicted by an egg-box

picture.
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Lemma 8.9. If e, f ∈ B∗ and H̃ = R̃e ∩ L̃f 6= ∅, then H̃ is an (H̃e, H̃f)-bisystem

with respect to the multiplication in S.

Proof. Suppose that x ∈ H̃ = R̃e ∩ L̃f and t ∈ H̃e. Then

tx R̃B te = t R̃B e

and

tx L̃B ex = x L̃B f,

and so tx ∈ H̃ . Dually, we show that for any u ∈ H̃f , xu ∈ H̃ . Since the

multiplication in S is associative, we have t(xu) = (tx)u. Thus, H̃ is an (H̃e, H̃f)-

bisystem.

Lemma 8.10. Suppose that e, f ∈ B∗ are such that e D f . If a ∈ L̃e (resp. R̃e),

then L̃f ∩R̃a 6= ∅ (resp. R̃f ∩L̃a 6= ∅) and there exists a bijection θ : H̃a → L̃f ∩R̃a

(resp. θ : H̃a → R̃f ∩L̃a) such that (xt)θ = (xθ)(tρfλf) (resp. (tx)θ = (tρfλf)xθ),

where x ∈ H̃a, t ∈ H̃e. In addition, if a ∈ R̃g (resp. L̃g) for some g ∈ B∗, then

(rx)θ = r(xθ) (resp. (xr)θ = (xθ)r) for all x ∈ H̃a, r ∈ H̃g.

Proof. If e D f in B∗ and a ∈ L̃e, then f L ef R e, and so af = aef R̃B ae = a

and af = aef L̃B eef = ef L f so that af ∈ L̃f ∩ R̃a. Thus L̃f ∩ R̃a 6= ∅.

We now claim that ρf : H̃a → L̃f ∩ R̃a, given by xρf = xf for all x ∈ H̃a,

is a bijection. Since if x ∈ H̃a, then x ∈ L̃e, and so by the above statement, we

have xρf ∈ L̃f ∩ R̃a.

To see that ρf is injective, we suppose that x1, x2 ∈ H̃a and x1ρf = x2ρf .

Then x1f = x2f , and so

x1 = x1e = x1efe
(
e D f

)

= x1fe
(
x1 ∈ L̃e

)

= x2fe = x2efe = x2e = x2

so that ρf is injective.

For any y ∈ L̃f∩R̃a, we have ye = yfe R̃B yf = y R̃B a and ye L̃B fe L e L̃B a,

and so ye ∈ H̃a. Also, (ye)ρf = yef = yfef = yf = y. Thus, ρf is surjective.
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Let x ∈ H̃a and t ∈ H̃e. By Lemma 8.9, we have xt ∈ H̃a. We also have that

(xt)ρf = xtf = xetf
(
x ∈ L̃e

)

= xefetf
(
e D f

)

= xftf
(
x ∈ L̃e, t ∈ H̃e

)

= (xρf )(tρfλf).

Finally, if g ∈ B∗ and a ∈ R̃g, then H̃a and L̃f ∩ R̃a are both left H̃g-systems and

for x ∈ H̃a, r ∈ H̃g we have (rx)ρf = rxf = r(xρf ).

Let I (resp. Λ) index the non-zero R̃B (resp. L̃B)-classes of S. For i ∈ I

and λ ∈ Λ, we will denote the intersection of R̃i and L̃λ by H̃iλ. Then

S \ {0} =
⋃

{H̃iλ : (i, λ) ∈ I × Λ}.

Let Γ index the D-classes of B. For each α ∈ Γ, we define

Iα = {i ∈ I : Dα ∩ R̃i 6= ∅}

and

Λα = {λ ∈ Λ : Dα ∩ L̃λ 6= ∅}.

We remark that for any i ∈ I, there exists a unique α ∈ Γ such that i ∈ Iα.

Since each R̃B-class of S contains at least one idempotent lying in B and Γ

indexes the D-classes of B. Dually, for any λ ∈ Λ, there exists a unique α ∈ Γ

such that λ ∈ Λα. Thus, if α, β ∈ Γ with α 6= β, then Iα ∩Iβ = ∅ and Λα ∩Λβ = ∅.

Hence, Γ indexes partitions of I and Λ as follows:

P (I) = {Iα : α ∈ Γ} and P (Λ) = {Λα : α ∈ Γ}.

Obviously, if an H̃B-class H̃ contains a distinguished idempotent e, then

there exists α ∈ Γ and (i, λ) ∈ Iα × Λα such that H̃ = R̃i ∩ L̃λ. Conversely,

each R̃B-class and each L̃B-class contains a distinguished idempotent, so for

each α ∈ Γ and e ∈ Dα, we can choose a pair (i(α), λ(α)) ∈ Iα × Λα such that

H̃i(α)λ(α) = R̃i(α) ∩ L̃λ(α) is an H̃B-class containing e. By Lemma 3.5, H̃i(α)λ(α) is

a monoid. We denote it by Mαα or Tα.
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By Lemma 8.8 (ii), if e D f in B∗, then H̃e is isomorphic to H̃f , and so

for any α ∈ Γ, the monoid structure of Tα is independent of the choices for H̃B-

classes containing a distinguished idempotent, indexed by a pair (i, λ) ∈ Iα × Λα.

For convenience, we will use gα to denote the distinguished idempotent contained

in Tα. Certainly, gα is the identity of Tα.

Notice that for any α ∈ Γ and for each pair (i, λ) ∈ Iα × Λα, H̃iλ 6= ∅ by

Lemma 8.8 (i). According to Lemma 8.8 (ii), there exist distinguished idempo-

tents rα
i and qα

λ in H̃iλ(α) and H̃i(α)λ, respectively, such that x 7→ rα
i x is a bijection

from H̃i(α)λ(α) onto H̃iλ(α) and y 7→ yqα
λ is a bijection from H̃iλ(α) onto H̃iλ. Thus

once we have choose {rα
i ∈ B∗ : i ∈ Iα, α ∈ Γ} and {qα

λ ∈ B∗ : λ ∈ Λα, α ∈ Γ}

we have a unique expression rα
i xq

α
λ (x ∈ Tα = H̃i(α)λ(α)) for each element a of

H̃iλ, where (i, λ) ∈ Iα × Λα.

For α, β ∈ Γ with α 6= β, we put Mαβ = H̃i(α)λ(β). Notice that for any

(i, λ) ∈ Iα ×Λβ, H̃iλ 6= ∅ if and only if H̃i(α)λ(β) 6= ∅ by Lemma 8.10. Assume that

Mαβ 6= ∅. Then by Lemma 8.9,Mαβ is a (Tα, Tβ)-bisystem. Also, if (i, λ) ∈ Iα×Λβ

and rα
i , qβ

λ are distinguished idempotents in H̃iλ(α) and H̃i(β)λ, respectively, then

by Lemma 8.10, we have that x 7→ xqβ
λ is a bijection from H̃i(α)λ(β) onto H̃i(α)λ

and that y 7→ rα
i y is a bijection from H̃i(α)λ onto H̃iλ. Hence every element a of

H̃iλ with (i, λ) ∈ Iα × Λβ may be written uniquely as rα
i mq

β
λ , where m ∈ Mαβ.

Further, H̃iλ is a (Tα, Tβ)-system under the actions

tα · (rα
i mq

β
λ) = rα

i tαmq
β
λ and (rα

i mq
β
λ) · tβ = rα

i mtβq
β
λ ,

and so H̃iλ is (Tα, Tβ)-isomorphic toMαβ , that is, there exists a (Tα, Tβ)-isomorphism

from H̃iλ onto Mαβ . In addition, it follows from Lemma 8.8 and Lemma 8.10 that

the bisystem structure of Mαβ is independent of the possible choices for Tα and

Tβ.

We now put

M = {Mαβ : (α, β) ∈ Γ × Γ}.

Lemma 8.11. The set M is a partial semigroup.

Proof. Let a, b, c ∈ M \ {0}. Then there exist α, β, γ, δ, η, ε ∈ Γ such that a ∈

Mαβ, b ∈ Mγδ and c ∈ Mηε. Note that a∗ ∈ Dβ, b† ∈ Dγ, b∗ ∈ Dδ and c† ∈ Dη.

Then ab is defined if and only if ab 6= 0 if and only if a∗b† 6= 0 by Lemma 8.1. As

B is primitive, a∗b† 6= 0 if and only if a∗ D b†, if and only if β = γ. If (ab)c is
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defined, then ab 6= 0 and (ab)c 6= 0, and so β = γ. By Lemma 8.5, ab L̃B b, and

so (ab)∗ L b∗ so that (ab)∗ ∈ Dδ. From (ab)c 6= 0, we obtain that (ab)∗ D c†, and

so δ = η. Thus, bc is defined and by Lemma 8.5, bc R̃B b so that (bc)† R b†, and

so (bc)† ∈ Dγ. As γ = β, we have that a(bc) is defined. Since the multiplication

of S is associative, we have (ab)c = a(bc). Dually, if a(bc) is defined, then we

have (ab)c is defined and (ab)c = a(bc).

We now define P to be the Λ × I matrix (pλi), where for (λ, i) ∈ Iα × Λβ,

pλi = qα
λr

β
i . Now qα

λ ∈ H̃i(α)λ and rβ
i ∈ H̃iλ(β) so that qα

λ ∈ R̃i(α) and rβ
λ ∈ L̃λ(β),

and hence either qα
λr

β
i = 0 or by Lemma 8.5, qα

λr
β
i ∈ R̃i(α) ∩ L̃λ(β) = H̃i(α)λ(β) =

Mαβ. Consequently, any non-zero entry in (α, β)-block of P is a member of Mαβ.

We now have the necessary ingredients to form a blocked Rees matrix semi-

group M0 = M0(M ; I,Λ,Γ;P ).

Lemma 8.12. The blocked Rees matrix semigroup M0 = M0(M ; I,Λ,Γ;P ) con-

structed above satisfies (B) and consequently, M0(M ; I,Λ,Γ;P ) forms a WO-B

blocked Rees matrix semigroup.

Proof. It is sufficient to show Condition (B) holds. Let α, β ∈ Γ and (λ, i) ∈

Λα×Iα. Since qα
λ and rβ

i are distinguished idempotents in B∗ and B forms a band,

it follows that pλi = qα
λr

β
i 6= 0 if and only if α = β, and so all non-zero entries in

P are in the diagonal blocks and each non-zero entry from Tα is the identity gα of

Tα. Furthermore for any α ∈ Γ and (i, λ) ∈ Iα ×Λα, pλi = qα
λr

β
i = gαgα = gα 6= 0,

and so Condition (B) holds.

Finally, we have:

Theorem 8.13. If S is a primitive weakly B-orthodox semigroup, then S is

isomorphic to a WO-B Rees matrix semigroup.

Proof. Observe that S \ {0} =
⋃

{H̃iλ : (i, λ) ∈ I × Λ} and thus the map φ :

M0 → S defined by 0φ = 0 and

(i, a, λ)φ = rα
i aq

β
λ

for (i, λ) ∈ Iα × Λβ and a ∈ Mαβ is a bijection.

It is routine to show that φ is a morphism.
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We now consider the abundant case. An abundant semigroup is called prim-

itive if the non-zero idempotents are primitive under the natural partial order on

the idempotents. As a special case of Theorem 8.13, the following result cited

from [10] can be derived. It is a little different in Fountain’s paper.

Theorem 8.14. [10] A semigroup S is a primitive abundant semigroup with

zero, whose set of idempotents forms a band if and only if it is isomorphic to a

blocked Rees matrix semigroup M0(M ; I,Λ,Γ;P ) satisfying (C), (R) and (IB):

(C) if a, a1, a2 ∈ Mαβ, b, b1, b2 ∈ Mβγ, then ab1 = ab2 implies b1 = b2;

a1b = a2b implies a1 = a2;

(R) if Mαβ, Mβα are both non-empty where α 6= β, then aba 6= a for all

a ∈ Mαβ, b ∈ Mβα;

(IB) all non-zero entries of P are in the diagonal blocks, and if (i, λ) ∈ Iα×Λα

then piλ is the identity gα of Tα.

We remark that in [10], a blocked Rees matrix semigroup M0(M ; I,Λ,Γ;P )

is a PA blocked Rees matrix semigroup if (C), (R) and (U) hold:

(U) for each α ∈ Γ and each λ ∈ Λα(resp. i ∈ Iα) there is a member i of

Iα(resp. λ of Λ) such that pλi is a unit in Tα.

Note that if Condition (IB) holds, then Condition (U) holds.

8.4 Trace of weakly B-orthodox semigroups

First, we define the trace of a weakly B-orthodox semigroup to be SC = (S, ·),

as in Chapter 7. Remark that SC contains BC = (B, ·) as a substructure, where

BC is the band B with multiplication restricted to D-classes.

Now let P be any generalised category over B. Define ⊙ on P 0 = P ∪̇{0} by

the rule that

x⊙ y =




x · y if ∃x · y in P

0 otherwise.

Lemma 8.15. The set (P 0,⊙) is a semigroup containing a band (B0,⊙) as a

subsemigroup, where (B0,⊙) is the 0-direct union of the D-classes of B. Further,

P 0 is primitive weakly B0-orthodox, in the sense that distinguished idempotents

are all primitive in B0.
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Proof. Let x, y, z ∈ P 0. If any of x, y, z is 0, then clearly x⊙(y⊙z) = (x⊙y)⊙z =

0. Suppose that x, y, z ∈ P . Then

x⊙ (y ⊙ z) =




x⊙ (y · z) if ∃y · z

0 otherwise

=




x · (y · z) if ∃y · z and ∃x · (y · z)

0 otherwise

=




x · (y · z) if ∃y · z and ∃x · y

0 otherwise

= (x⊙ y) ⊙ z

for reasons of symmetry. Clearly B0 is a subsemigroup of P 0.

Let x ∈ P 0. If x = 0, then x R̃B0 0. If x ∈ P , then choosing e ∈ d(x) we

have ∃e · x and e · x = x, so that e ⊙ x = x. If f ∈ B0 and f ⊙ x = x, then

clearly f ∈ B and ∃f · x with f · x = x. Hence Rf = d(x) = Re so that e R f

and f ⊙ e = e. Hence x R̃B0 e and it follows that P 0 is weakly B0-abundant.

Notice that x R̃B0 f where f ∈ B if and only if d(x) = Rf . If follows that

x R̃B0 y if and only if d(x) = d(y). Thus for any z ∈ P , z ⊙ x = 0 if and only if

z⊙ y = 0, and if z⊙ x 6= 0, then d(z⊙ x) = d(z) = d(z⊙ y). It is clear that (C)

holds and P 0 is weakly B0-orthodox. It is immediate that P 0 is primitive.

Let S be weakly B-orthodox. From Lemma 7.17, SC = (S, ·) is an inductive

generalised category over B. Then SC0 is a primitive weakly B0-orthodox semi-

group; SC0 is also sometimes called the trace of S. From Lemma 7.18, SC, and

with a little adjustment, SC0, can be endowed with an inductive structure from

which we can recover S.

The natural partial orders in any primitive weakly B-orthodox semigroup

with 0 are trivial, in the following sense:

Lemma 8.16. Let S be a primitive weakly B-orthodox semigroup with 0, where

0 ∈ B. Then B is a 0-disjoint union of D-classes. If x, y ∈ S, then x ≤′
r y if

and only if x = 0 or x = y.

Proof. We know that B is a semilattice Y of D-classes Dα, α ∈ Y . We must

have that Y contains a zero τ and Dτ = {0}. If τ < α < β, let e ∈ Dα and
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f ∈ Dβ. Then fef ∈ Dα and 0 < fef < f , a contradiction. It follows that B is

a 0-disjoint union of its D-classes.

If x 6= 0 and x ≤′
r y, then x = ey for some e ∈ B and x† ≤R y†. Thus

x†y† ≤ y† so that x†y† = y†. Also, x† ≤R e so that similarly, x†e = x†. Now

x = ey = x†ey = x†y = x†y†y = y†y = y.

In view of Theorem 8.13, we have:

Theorem 8.17. If S is a weakly B-orthodox semigroup, then SC0 is isomorphic

to a WO-B Rees matrix semigroup M0(M ; I,Λ,Γ;P ) satisfying (B).



Chapter 9

Beyond orthodox semigroups II:

weakly B-orthodox semigroups

and categories

The aim of this chapter is to construct weakly B-orthodox semigroups via an

adjustment of Armstrong’s method for concordant semigroups as mentioned in

Chapter 6. Our modifications are to allow for the fact that B is a band, and to

compensate for the lack of an idempotent connected condition.

For convenience we make the convention that B will always denote a band.

Green’s relations and their associated pre-orders will always refer to B, unless

stated otherwise.

9.1 Weakly orthodox categories

The purpose in this section is to introduce the notions of a band category and

a weakly orthodox category over a band B, and to present a pair of pre-orders

which are deduced from the definition of band categories.

Let B be a band. A subset K of B is a representative of B if maps φ : K →

B/L given by e 7→ Le and ψ : K → B/R given by e 7→ Re are bijective. So for

any e ∈ B, there exists a unique k ∈ K such that e L k in B and there exists a

unique h ∈ K such that e R h in B. For convenience, we will denote k and h by

e⋆ and e+, respectively.

161



162

Definition 9.1. Let P be a category in which Ob(P ) is the underlying set of

a band B, and let K be a representative of B. Suppose that for e, f ∈ B

with eD f , there exists a distinguished morphism [e, f ] from e to f such that

[e, e] = 1e, the identity associated to the object e. Then P is a band category if

the following conditions and their duals (OB1)◦, (OB2)◦, (OB3)◦ and (OB4)◦ of

(OB1), (OB2), (OB3) and (OB4) hold:

(OB1) if x ∈ P and e ∈ B with e ≤L d(x), then there exists an element e|x

in P , called the restriction of x to e, such that d(e|x) = e and r(e|x) ≤L r(x);

also, if e = d(x), then r(e|x) L r(x) and e|x · [r(e|x), r(x)] = x;

(OB2) if x ∈ P and e, f ∈ B with e ≤L f ≤L d(x), then e|(f |x) = e|x;

moreover, if e L f ≤L d(x), then [e, f ] · f |x = e|x;

(OB3) if x, y ∈ P and e ∈ B with ∃x · y in P and e ≤L d(x), then e|(x · y) =

e|x · f |y, where f = r(e|x);

(OB4) if e, f, h ∈ B with e D f and h ≤L e, then h|[e, f ] = [h, (hf)⋆];

(OB5) if e, f, g ∈ B are such that e D f D g, then [e, f ] · [f, g] = [e, g].

We make some comments on the above definition. In (OB2), since [e, f ]·f |x =

e|x we obtain that r(f |x) = r(e|x). In (OB3) since ∃x·y we know that r(x) = d(y).

By (OB1), f = r(e|x) ≤L r(x) = d(y), so that f |y exists and d(f |y) = f . Hence

e|x · f |y is defined. In (OB4) since e D f we obtain that e R ef . Hence he R hef ,

that is, h R hf as h ≤L e, so that h R hf L (hf)⋆, and consequently, h D (hf)⋆.

Hence [h, (hf)⋆] exists.

We note that a band category P depends on the choice of the band B which

is the set of objects of P . In order to emphasize that the set of objects is a

particular band B, we can express the term ‘band category’ as ‘band category

over B’.

Let P be a band category over B. Using the technique in [1], we define a

relation ρ on P by the rule that for all x, y ∈ P ,

x ρ y ⇔ d(x) R d(y), r(x) L r(y) and x · [r(x), r(y)] = [d(x),d(y)] · y,

that is equal to

x ρ y ⇔ (∃ u, v ∈ B) v R d(y), r(x) L u and x · [r(x), u] = [v,d(y)] · y.
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We note that if x ρ y in P , then we have that

x · [r(x), r(y)] = [d(x),d(y)] · y

⇔ x · [r(x), r(y)] · [r(y), r(x)] = [d(x),d(y)] · y · [r(y), r(x)]

⇔ x · [r(x), r(x)] = [d(x),d(y)] · y · [r(y), r(x)]
(
by (OB5)

)

⇔ x = [d(x),d(y)] · y · [r(y), r(x)]
(
[r(x), r(x)] = 1r(x)

)
.

In particular, if x, y ∈ P are such that d(x) = d(y), then x ρ y if and only

if r(x) L r(y) and

x = y · [r(y), r(x)] or indeed x · [r(x), r(y)] = y.

Dually, if r(x) = r(y), then x ρ y if and only if d(x) R d(y) and

x = [d(x),d(y)] · y or indeed y = [d(y),d(x)] · x.

Built on the above statement, it is easy to see that for any e ∈ B, [e+, e] ρ 1e.

Since

d([e+, e]) = e+ R e = d(1e), r([e+, e]) = e = r(1e)

and

[e, e+] · [e+, e] = [e, e] = 1e,

we have that [e+, e] ρ 1e. Dually, [e, e⋆] ρ 1e.

Lemma 9.2. The relation ρ defined above is an equivalence on P such that if

x, y ∈ Mor(e, f) and x ρ y, then x = y. In particular, no two identities of P are

ρ-equivalent.

Proof. Clearly, ρ is reflexive.

In order to show that ρ is symmetric, we assume that x, y ∈ P with x ρ y.

Then d(x) R d(y), r(x) L r(y) and x · [r(x), r(y)] = [d(x),d(y)] · y. Since R and
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L are symmetric, [r(y), r(x)] and [d(y),d(x)] exist. Thus,

x · [r(x), r(y)] = [d(x),d(y)] · y

⇒ x = [d(x),d(y)] · y · [r(y), r(x)]
(
by the statements above Lemma 9.2

)

⇒ [d(y),d(x)] · x = [d(y),d(x)] · [d(x),d(y)] · y · [r(y), r(x)]

⇒ [d(y),d(x)] · x = [d(y),d(y)] · y · [r(y), r(x)]
(
by (OB5)

)

⇒ [d(y),d(x)] · x = y · [r(y), r(x)]
(
[d(y),d(y)] = 1d(y)

)
.

So, y ρ x.

Finally, if x ρ y and y ρ z, then d(x) R d(z) and r(x) L r(z) as R and L

are transitive. Hence, [d(x),d(z)] and [r(x), r(z)] exist. Then we have that

x · [r(x), r(z)] = x · [r(x), r(y)] · [r(y), r(z)]
(
by (OB5), r(x) L r(y) L r(z)

)

= [d(x),d(y)] · y · [r(y), r(z)]
(
x ρ y

)

= [d(x),d(y)] · [d(y),d(z)] · z
(
y ρ z

)

= [d(x),d(z)] · z
(
by (OB5)

)
.

Thus, x ρ z.

As [e, e] = 1e for all e ∈ B, certainly, if d(x) = d(y), r(x) = r(y) and x ρ y,

then x = y.

We now present a pair of pre-orders on a band category over B built on the

relation ρ given above.

Let P be a band category over B. We make use of the restriction and co-

restriction of P to define relations ≤r and ≤ℓ by the rule that for all x, y ∈ P ,

x ≤r y if and only if x ρ e|y for some e ∈ B,

and

x ≤ℓ y if and only if x ρ y|f for some f ∈ B.

Lemma 9.3. The relations ≤r and ≤ℓ are pre-orders on P .

Proof. We first show that ≤r is a pre-order on P . Notice that for any x ∈ P ,

if e = d(x), then [d(x),d(e|x)] = [e, e] = 1e, and so ≤r is reflexive by (OB1).

It is sufficient to show that ≤r is transitive. Suppose that x, y, z ∈ P with
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x ≤r y and y ≤r z. Then there exist e, f ∈ B such that x ρ e|y and y ρ f |z. Thus,

d(x) R e ≤L d(y) R f ≤L d(z), and so d(x) R e = ed(y) R ef . Set g = ef . Since

g = ef ≤L f ≤L d(z), g|z is well-defined. Now our aim is to show that x ρ g|z.

From y ρ f |z, we have d(y) R f, r(y) L r(f |z) and y·[r(y), r(f |z)] = [d(y), f ]·(f |z).

Hence, y = [d(y), f ] · f |z · [r(f |z), r(y)]. For e|y and f |z to exist, we have that

e ≤L d(y) and f ≤L d(z), so that e|[d(y), f ] exists and e|[d(y), f ] = [e, (ef)⋆] by

(OB4). As (ef)⋆ L ef ≤L f ≤L d(z), we obtain that (ef)⋆ |(f |z) is defined and

(ef)⋆|(f |z) = (ef)⋆ |z by (OB2). Then we have that

e|y = e|([d(y), f ] · f |z · [r(f |z), r(y)])

= e|[d(y), f ] · h|(f |z) · k|[r(f |z), r(y)]
(
by (OB3), h = r(e|[d(y), f ]), k = r(h|(f |z))

)

= [e, (ef)⋆] · (ef)⋆ |(f |z) · [k, (kr(y))⋆]
(
by (OB4)

)

= [e, (ef)⋆] · (ef)⋆ |z · [k, k⋆]
(
by (OB2), k = r(h|(f |z)) ≤L r(f |z) L r(y)

)
.

Hence, r(e|y) = k⋆. From x ρ e|y, we have that r(x) L k⋆, d(x) R e and

x · [r(x), k⋆] = [d(x), e] · e|y

= [d(x), e] · [e, (ef)⋆] · (ef)⋆ |z · [k, k⋆]

= [d(x), (ef)⋆] · (ef)⋆ |z · [k, k⋆]
(
by (OB5)

)
.

Thus,

x · [r(x), k] = x · [r(x), k⋆] · [k⋆, k]
(
by (OB5)

)

= [d(x), (ef)⋆] · (ef)⋆ |z · [k, k⋆] · [k⋆, k]

= [d(x), g] · [g, (ef)⋆] · (ef)⋆ |z · [k, k]
(
d(x) R g L (ef)⋆, by (OB5)

)

= [d(x), g] · [g, (ef)⋆] · (ef)⋆ |z
(
k = r((ef)⋆ |z)

)

= [d(x), g] · g|z
(
by (OB2)

)
.

It follows that k = r(g|z). As r(x) L r(e|y) = k⋆ L k = r(g|z) and d(x) R g =

d(g|z), we have that x ρ g|z. Hence, x ≤r z.

By the dual argument, we show that ≤ℓ is a pre-order on P .
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We remark that if B is a semilattice, then the relation ρ on P is precisely

the identity relation so that relations ≤r and ≤ℓ may be expressed as follows: for

all x, y ∈ P ,

x ≤r y if and only if x = e|y for some e ∈ B,

and

x ≤ℓ y if and only if x = y|f for some f ∈ B.

In addition, the relations ≤r and ≤ℓ become partial orders. Since if x ≤r y ≤r x,

then x = e|y and y = f |x for some e ≤ d(y) and f ≤ d(x). We have that

d(x) = e ≤ d(y) = f ≤ d(x) so d(x) = d(y). By (OB1), r(d(y)|y) L r(y), and

so r(d(y)|y) = r(y) as B is a semilattice. Thus, x = e|y = d(y)|y. By (OB1),

d(y)|y · [r(d(y)|y), r(y)] = y, so that

x = e|y = d(y)|y = d(y)|y · [r(d(y)|y), r(y)] = y
(
r(d(y)|y) = r(y)

)
.

We pause here to make some further comments on Definition 9.1. In (OB1)

let e = d(x). Then r(e|x)L r(x) and x = e|x · [r(e|x), r(x)]. Hence due to the

definition of ρ, we obtain that x ρ e|x. This fact makes it impossible to define

a partial order ≤r
′ on P by the rule that for all x, y ∈ P , x ≤r

′ y if and only if

x = e|y for some e ≤ d(y) because it is not reflexive; even if x = e|y is replaced

by x ρ e|y, we still cannot guarantee that ≤r
′ is a partial order since ≤r

′ becomes

reflexive but not anti-symmetric.

As an analogue of inductive generalised categories over B in Chapter 7, we

will make use of the relation ρ given above to define weakly orthodox categories

over B, which are built on Definition 9.1.

Definition 9.4. A band category P over B is weakly orthodox if for any x ∈ P

and e, f ∈ B, eu|(x|gf) ρ (eh|x)|vf , where g = r(x), h = d(x), u = d(x|gf) and

v = r(eh|x).

It is worth considering how the class of weakly orthodox categories over bands

forms a category, together with certain functors referred to as orthodox functors.

They are described in the next definition.

Definition 9.5. Let P1 and P2 be weakly orthodox categories over B1 and B2,

respectively. An orthodox functor F from P1 to P2 is a functor consisting of a



167

pair of maps, both denoted F , from B1 to B2 and from P1 to P2, such that the

following conditions and the dual (S3)◦ of (S3) hold:

(S1) the map F is a morphism from B1 to B2;

(S2) if e, f ∈ B1 with e D f , then [e, f ]P1F = [eF, fF ]P2;

(S3) if x ∈ P1 and e ∈ B1 with e ≤L d(x), then (e|x)F ρ eF |xF .

We pause here to make a short comment on Definition 9.5. In (S2), if e, f ∈

B1 with e D f , then by (S1), eF D fF , so that both [e, f ]P1 and [eF, fF ]P2 are

defined. In (S3), if e ≤L d(x), then eF ≤L d(xF ) as F is a functor, so that both

e|x and eF |xF are well-defined. In addition, the fact that (e|x)F ρ eF |xF gives in

particular that r((e|x)F ) L r(eF |xF ). For d, we have the corresponding result as

F is a functor.

The next lemma is useful for Lemma 9.7.

Lemma 9.6. Let P1 and P2 be weakly orthodox categories over B1 and B2, re-

spectively and let F : P1 → P2 be an orthodox functor. If x ρ y in P1, then

xF ρ yF in P2.

Proof. Suppose that x, y ∈ P1 and x ρ y. Then

d(x) R d(y), r(x) L r(y) and x · [r(x), r(y)] = [d(x),d(y)] · y

⇒ d(x)F R d(y)F, r(x)F L r(y)F and

xF · [r(x), r(y)]F = [d(x),d(y)]F · yF

⇒ d(x)F R d(y)F, r(x)F L r(y)F and

xF · [r(x)F, r(y)F ] = [d(x)F,d(y)F ] · yF
(
by (S2)

)

⇒ d(xF ) R d(yF ), r(xF ) L r(yF ) and

xF · [r(xF ), r(yF )] = [d(xF ),d(yF )] · yF
(
by F being a functor

)
.

Hence, xF ρ yF .

Lemma 9.7. Let P1 and P2 be weakly orthodox categories over B1 and B2, re-

spectively, and let F1 : P1 → P2 and F2 : P2 → P3 be orthodox functors. Then

F1F2 : P1 → P3 is an orthodox functor.

Proof. (S1) Certainly, F1F2 is a functor from P1 to P3 and a morphism from B1

to B3.
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(S2) Suppose that e, f ∈ B1 are such that e D f . Then [e, f ]P1 is defined

and using (S2) for F1 and F2,

[e, f ]P 1F1F2 = ([e, f ]P 1F1)F2 = [eF1, fF1]P2F2 = [eF1F2, fF1F2]P 3.

(S3) Suppose that x ∈ P1 and e ∈ B1 with e ≤L d(x). According to the

comment succeeding Definition 9.5, we have that e|x, eF1|xF1 and eF1F2|xF1F2

are well-defined. By (S3), (e|x)F1 ρ eF1|xF1 and (eF1|xF1)F2 ρ eF1F2 |xF1F2. From

(e|x)F1 ρ eF1|xF1, we obtain that (e|x)F1F2 ρ (eF1|xF1)F2 by Lemma 9.6. Hence,

(e|x)F1F2 ρ eF1F2|xF1F2.

An immediate observation from Lemma 9.7 is that the class of weakly or-

thodox categories over bands and orthodox functors forms a category. We refer

to it as WOC.

9.2 Construction

Our aim in this section is to build a weakly B-orthodox semigroup from a weakly

orthodox category over B. This result is analogous to Armstrong’s work [1]

building a concordant semigroup from an inductive2 cancellative category. Let P

be a weakly orthodox category over B. For any x, y ∈ P , we define

x⊗ y = x|r(x)d(y) · r(x)d(y)|y.

Before we give a list of lemmas which are necessary to prove our main the-

orem, we make a comment that since our set of idempotents forms a band it is

an advantage to use the product ⊗ given above to avoid the notion of sandwich

set, which is needed in [1].

Lemma 9.8. If P is a weakly orthodox category over B and x ρ x′, y ρ y′ in P ,

then x⊗ y ρ x′ ⊗ y′.

Proof. Suppose that x ρ x′ and y ρ y′ in P . Then

d(x)R d(x′), r(x) L r(x′) and x · [r(x), r(x′)] = [d(x),d(x′)] · x′,
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whence x = [d(x),d(x′)]·x′ · [r(x′), r(x)]. The same happens to y and y′ as follows

d(y)R d(y′), r(y) L r(y′) and y · [r(y), r(y′)] = [d(y),d(y′)] · y′,

whence y = [d(y),d(y′)] · y′ · [r(y′), r(y)]. So

r(x)d(y) R r(x)d(y′) L r(x′)d(y′) R r(x′)d(y).

As r(x)d(y) ≤R r(x), x|r(x)d(y) is defined and we have that

x|r(x)d(y)

= ([d(x),d(x′)] · x′ · [r(x′), r(x)])|r(x)d(y)

= [d(x),d(x′)]|k · (x′|(r(x′)r(x)d(y))+) · [(r(x′)r(x)d(y))+, r(x)d(y)]
(
by (OB4)◦, (OB3)◦, k = d(x′|(r(x′)r(x)d(y))+)

)

= [(d(x)k)+, k] · (x′|(r(x′)d(y))+) · [(r(x′)d(y))+, r(x)d(y)]
(
by (OB4)◦, r(x) L r(x′)

)

= [k+, k] · (x′|(r(x′)d(y))+) · [(r(x′)d(y))+, r(x)d(y)]
(
by (OB1)◦, k ≤R d(x′) R d(x)

)
.

Similarly, we have that

r(x)d(y)|y = [r(x)d(y), (r(x)d(y′))⋆] · ((r(x)d(y′))⋆ |y′) · [g, g⋆],
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where g = r((r(x)d(y′))⋆ |y′). So

x⊗ y = x|r(x)d(y) · r(x)d(y)|y

= [k+, k] · (x′|(r(x′)d(y))+) · [(r(x′)d(y))+, r(x)d(y)]·

[r(x)d(y), (r(x)d(y′))⋆] · ((r(x)d(y′))⋆ |y′) · [g, g⋆]

= [k+, k] · (x′|(r(x′)d(y))+) · [(r(x′)d(y))+, (r(x)d(y′))⋆]·

((r(x)d(y′))⋆ |y′) · [g, g⋆]
(
by (OB5)

)

= [k+, k] · (x′|(r(x′)d(y))+) · [(r(x′)d(y))+, r(x′)d(y′)]·

[r(x′)d(y′), (r(x)d(y′))⋆] · ((r(x)d(y′))⋆ |y′) · [g, g⋆]
(
by (OB5)

)

= [k+, k] · (x′|r(x′)d(y′)) · (r(x′)d(y′)|y
′) · [g, g⋆]

(
by (OB2), (OB2)◦

)

= [k+, k] · (x′ ⊗ y′) · [g, g⋆].

Obviously, d(x⊗ y) = k+ R k = d(x′ ⊗ y′) and r(x⊗ y) = g⋆ L g = r(x′ ⊗ y′). It

follows from the observation succeeding the definition of ρ that x⊗y ρ x′ ⊗y′.

Lemma 9.9. If x, y ∈ P with ∃x · y in P , then x⊗ y ρ x · y.

Proof. If ∃x · y in P , then r(x) = d(y). So

x⊗ y = x|r(x)d(y) · r(x)d(y)|y = x|r(x) · d(y)|y.

By (OB1) and (OB1)◦, we have that [d(x), k] · (x|r(x)) = x, where d(x) R k =

d(x|r(x)) = d(x ⊗ y) and (d(y)|y) · [g, r(y)] = y, where r(y) L g = r(d(y)|y) =

r(x⊗ y). Thus,

x|r(x) = [k,d(x)] · x and d(y)|y = y · [r(y), g].

So, x⊗ y = [k,d(x)] · (x · y) · [r(y), g], that is, (x⊗ y) · [g, r(y)] = [k,d(x)] · (x · y).

Hence, x⊗ y ρ x · y.

The next lemma is an immediate consequence of Lemma 9.8 and Lemma 9.9.

Lemma 9.10. Let x, x′, y, y′ ∈ P be such that x ρ x′ and y ρ y′. If x · y and x′ · y′

exist in P , then x · y ρ x′ · y′.

Let P be a weakly orthodox category over B and let ρ be the equivalence
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given in Section 9.1. We define

PS = P/ρ,

and

x̄ ◦ ȳ = x⊗ y,

where x, y ∈ P and x̄ denotes the ρ-class of P containing x.

We remark that by Lemma 9.8, the product ◦ defined above is well-defined.

Our next task is to show that PS is a weakly B-orthodox semigroup, where

B = {1e : e ∈ B}.

Lemma 9.11. If e, f ∈ B, then 1e ◦ 1f = 1ef . Further, the map ϕ : B → B,

given by eϕ = 1e for any e ∈ B, is an isomorphism, where B = {1e : e ∈ B}.

Proof. If e, f ∈ B, then 1e ◦ 1f = 1e ⊗ 1f . Notice that

1e ⊗ 1f = (1e|ef) · (ef |1f)

= ([e, e]|ef) · (ef |[f, f ])

= [(ef)+, ef ] · [ef, (ef)⋆]
(
by (OB4), (OB4)◦

)

= [(ef)+, (ef)⋆]
(
by (OB5)

)
.

Since (ef)+ R ef L (ef)⋆ and [(ef)+, ef ] · [ef, ef ] = [(ef)+, (ef)⋆] · [(ef)⋆, ef ], we

obtain that [(ef)+, (ef)⋆] ρ [ef, ef ], that is, 1e ⊗ 1f ρ 1ef . Hence, 1e ◦ 1f = 1ef ,

and so ϕ is a morphism.

It follows from Lemma 9.2 that if e, f ∈ B and 1e = 1f , then e = f so that

ϕ is injective. Clearly, ϕ is surjective. Consequently, ϕ is an isomorphism.

Lemma 9.12. If P is a weakly orthodox category over B, then PS is a semigroup.

Proof. Suppose that x, y, z ∈ P . Then

x̄ ◦ (ȳ ◦ z̄) = x̄ ◦ y ⊗ z

= x̄ ◦ y|r(y)d(z) · r(y)d(z)|z
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= x⊗ (y|r(y)d(z) · r(y)d(z)|z)

= x|r(x)u · r(x)u|(y|r(y)d(z) · r(y)d(z)|z)
(
u = d(y|r(y)d(z))

)

= x|r(x)u · r(x)u|(y|r(y)d(z)) · v|((r(y)d(z)|z)
(
v = r(r(x)u|(y|r(y)d(z))), by (OB3)

)
.

Since P is weakly orthodox, it follows that r(x)u|(y|r(y)d(z)) ρ (r(x)d(y)|y)|gd(z), where

g = r(r(x)d(y)|y). Hence, if we put k = d((r(x)d(y)|y)|gd(z)), then r(x)u R k,

v L gd(z) and

r(x)u|(y|r(y)d(z)) · [v, gd(z)] = [r(x)u, k] · (r(x)d(y)|y)|gd(z),

whence

r(x)u|(y|r(y)d(z)) = [r(x)u, k] · (r(x)d(y)|y)|gd(z) · [gd(z), v].

So, we go back to the beginning of this proof,

x̄ ◦ (ȳ ◦ z̄)

= x|r(x)u · ([r(x)u, k] · (r(x)d(y)|y)|gd(z) · [gd(z), v]) · v|(r(y)d(z)|z)

= x|r(x)u · ([r(x)u, k] · (r(x)d(y)|y)|gd(z) · [gd(z), v]) · v|z
(
v = r(r(x)u|(y|r(y)d(z))) ≤L r(y)d(z) ≤L d(z), by (OB2)

)

= (x|r(x)u · [r(x)u, k]) · (r(x)d(y)|y)|gd(z) · [gd(z), v] · v|z

= x|k · (r(x)d(y)|y)|gd(z) · ([gd(z), v] · v|z)
(
kR r(x)u≤R r(x), by (OB2)◦

)

= x|k · (r(x)d(y)|y)|gd(z) · gd(z)|z
(
gd(z) L v ≤L d(z), by (OB2)

)

= (x|r(x)d(y))|k · (r(x)d(y)|y)|gd(z) · gd(z)|z
(
by (OB1)◦, k = d((r(x)d(y)|y)|gd(z)) ≤R r(x)d(y) ≤R r(x), by (OB2)◦

)

= (x|r(x)d(y) · r(x)d(y)|y)|gd(z) · gd(z)|z(
gd(z) ≤R g = r(r(x)d(y)|y), k = d((r(x)d(y)|y)|gd(z)), by (OB3)◦

)

= (x⊗ y)|gd(z) · gd(z)|z

= (x⊗ y) ⊗ z

= (x⊗ y) ◦ z̄

= (x̄ ◦ ȳ) ◦ z̄.

Lemma 9.13. If P is a weakly orthodox category over B and x ∈ P , then
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1d(x) R̃B x̄ L̃B 1r(x).

Proof. Let x ∈ P . By Lemma 9.9, we have that

1d(x) ◦ x̄ = 1d(x) ⊗ x = 1d(x) · x = x̄.

Suppose that k ∈ B is such that 1k ◦ x̄ = x̄. Then

1k ◦ x̄ = 1k ⊗ x = 1k|kd(x) · kd(x)|x

= [k, k]|kd(x) · kd(x)|x

= [(kd(x))+, kd(x)] · kd(x)|x
(
by (OB4)◦

)
.

So d(x) R (kd(x))+ R kd(x), which implies that kd(x) = d(x). Thus

1k ◦ 1d(x) = 1kd(x)

(
Lemma 9.11

)

= 1d(x)

(
kd(x) = d(x)

)
.

Hence, x̄ R̃B 1d(x).

By the dual argument, we show that x̄ L̃B 1r(x).

Now, using Lemma 9.11 and Lemma 9.13, we obtain a criterion for R̃B and

L̃B on PS.

Lemma 9.14. Let P be a weakly orthodox category over B and x, y ∈ P . Then

(i) x̄ R̃B ȳ in PS if and only if d(x) R d(y) in B;

(ii) x̄ L̃B ȳ in PS if and only if r(x) L r(y) in B.

Lemma 9.15. If x ∈ P and u, v ∈ B are such that u R v, then d(x|r(x)u) =

d(x|r(x)v).

Proof. Suppose that x ∈ P and u, v ∈ B are such that uR v. Then r(x)uR r(x)v.

So,

x|r(x)u = x|r(x)u · [r(x)u, r(x)u]
(
[r(x)u, r(x)u] = 1r(x)u

)

= x|r(x)u · [r(x)u, r(x)v] · [r(x)v, r(x)u]
(
by (OB5)

)

= x|r(x)v · [r(x)v, r(x)u]
(
r(x)u R r(x)v, by (OB2)◦

)
.

Hence, d(x|r(x)u) = d(x|r(x)v).
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It is a convenient position from which to build our main theorem.

Theorem 9.16. If P is a weakly orthodox category over B, then (PS, ◦) is a

weakly B-orthodox semigroup, where B = {1e : e ∈ B}.

Proof. In view of Lemma 9.12 and Lemma 9.13, it is only necessary to show

that PS has (C). Suppose that x̄ R̃B ȳ and z̄ ∈ PS. We have that z̄ ◦ x̄ =

z ⊗ x = z|r(z)d(x) · r(z)d(x)|x. Similarly, z̄ ◦ ȳ = z ⊗ y = z|r(z)d(y) · r(z)d(y)|y. As

x̄ R̃B ȳ, we obtain that d(x) R d(y) from Lemma 9.14, and so by Lemma 9.15,

d(z|r(z)d(x)) = d(z|r(z)d(y)). It follows from Lemma 9.14 that z̄ ◦ ȳ R̃B z̄ ◦ x̄, and

consequently, R̃B is a left congruence. Dually, L̃B is a right congruence.

We end this section by producing an admissible morphism between weakly

B-orthodox semigroups from an orthodox functor. This appears in the next

lemma.

Lemma 9.17. Let P1 and P2 be weakly orthodox categories over B1 and B2,

respectively, and let F : P1 → P2 be an orthodox functor. Then the map FS :

P1S → P2S defined by the rule that x̄FS = xF , where x̄ ∈ P1S and x ∈ P1, is an

admissible morphism. Further, if F1 : P1 → P2 and F2 : P2 → P3 are orthodox

functors, then (F1F2)S = F1SF2S.

Proof. In view of Lemma 9.6, if x̄ = ȳ in P1S, that is, x ρ y in P1, then xF ρ yF

in P2. Hence, FS is well-defined.

We now show that FS is a semigroup morphism. Suppose that x, y ∈ P1.

Then

(x̄ ◦ ȳ)FS = (x|r(x)d(y) · r(x)d(y)|y)FS

= (x|r(x)d(y) · r(x)d(y)|y)F

= (x|r(x)d(y))F · (r(x)d(y)|y)F

= xF |(r(x)d(y))F · (r(x)d(y))F |yF
(
by (S3) and Lemma 9.10

)

= xF |r(x)F d(y)F · r(x)F d(y)F |yF
(
by (S1)

)

= xF |r(xF )d(yF ) · r(xF )d(yF )|yF

= xF ⊗ yF

= xF ◦ yF

= x̄FS ◦ ȳFS.
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Next, we show that FS is admissible. For any x ∈ P1, we have that

1d(x) R̃B1
x̄ L̃B1

1r(x). Then

1d(x)FS = 1d(x)F = [d(x),d(x)]F

= [d(x)F,d(x)F ]
(
by (S2)

)

= [d(xF ),d(xF )]

= 1d(xF ) R̃B2
xF = x̄FS.

Dually, we have that 1r(x)FS L̃B2
x̄FS.

Finally, 1eFS = 1eF = 1eF as F is a functor, so that B1FS ⊆ B2. Since

F : B1 → B2 is a morphism, by Lemma 9.11, we have that FS is a morphism

from B1 to B2.

To sum up, we have that FS is an admissible morphism from P1S to P2S.

Consequently, S : WOC → WO is a functor by Theorem 9.16 and Lemma 9.17.

9.3 Correspondence

In this section, our purpose is, starting with a weakly B-orthodox semigroup, to

build a converse to Theorem 9.16. These results present a correspondence between

weakly orthodox categories over bands and weakly B-orthodox semigroups.

Let S be a weakly B-orthodox semigroup and let K be a representative of

B. For any e ∈ B, we will use e⋆ and e+ to denote the elements of K which are

L-related to e in B and R-related to e in B, respectively. Set

SC = {(e, x, f) : e R̃B x L̃B f, e, f ∈ B} ⊆ B × S ×B.

We put

d((e, x, f)) = e (abbreviated to d(e, x, f) = e)

and

r((e, x, f)) = f (abbreviated to r(e, x, f) = f)

for all (e, x, f) ∈ SC, and define a partial binary operation · on SC by the rule

that

(e, x, f) · (f, y, v) = (e, xy, v),
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where (e, x, f), (f, y, v) ∈ SC and xy is the product of x and y in S. If e, f ∈ B

with e D f , then we define [e, f ] = (e, ef, f). Obviously, [e, f ] ∈ SC. For any

(e, x, f) ∈ SC and u, v ∈ B with u ≤L e and v ≤R f , we define

u|(e, x, f) = (u, ux, (ux)⋆) and (e, x, f)|v = ((xv)+, xv, v).

Lemma 9.18. The set SC is a weakly orthodox category over B with restriction

and co-restriction defined above.

Proof. It is easy to see that SC forms a category with set of objects B and

morphisms the triples as given. For any e ∈ B, [e, e] = (e, e, e) is the identity

map associated to e.

(OB1) Suppose that (e, x, f) ∈ SC and u ≤L e in B. Then u|(e, x, f) =

(u, ux, (ux)⋆) and so by Lemma 2.8, (ux)⋆ ≤L f . In particular, if u = e, then

e|(e, x, f) = (e, x, x⋆) and r(e|(e, x, f)) = x⋆ L̃B x R̃B f , so that

e|(e, x, f) · [x⋆, f ] = (e, x, x⋆) · (x⋆, x⋆, f) = (e, x, f),

as required.

(OB2) If (e, x, f) ∈ SC and g, h ∈ B with g ≤L h ≤L e, then

g|(h|(e, x, f)) = g|(h, hx, (hx)⋆) = (g, ghx, (ghx)⋆) = (g, gx, (gx)⋆) = g|(e, x, f).

In addition, if g L h ≤L e, then [g, h] is defined and [g, h] = (g, g, h). Thus

[g, h] · h|(e, x, f) = (g, g, h) · (h, hx, (hx)⋆)

= (g, ghx, (hx)⋆)

= (g, gx, (hx)⋆)

= (g, gx, (gx)⋆)
(
g L h

)

= g|(e, x, f).

(OB3) If (e, x, f), (f, y, v) ∈ SC and u ∈ B with u ≤L e, then

u|((e, x, f) · (f, y, v)) = u|(e, xy, v) = (u, uxy, (uxy)⋆),

u|(e, x, f) = (u, ux, (ux)⋆)
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and by Lemma 2.8, (ux)⋆ ≤L f , we have that

(ux)⋆|(f, y, v) = ((ux)⋆, (ux)⋆y, ((ux)⋆y)⋆).

So

u|(e, x, f) · (ux)⋆ |(f, y, v) = (u, ux, (ux)⋆) · ((ux)⋆, (ux)⋆y, ((ux)⋆y)⋆)

= (u, uxy, ((ux)⋆y)⋆).

Since ux L̃B (ux)⋆, we have that uxy L̃B (ux)⋆y. Thus (uxy)⋆ = ((ux)⋆y)⋆, and

so u|((e, x, f) · (f, y, v)) = u|(e, x, f) · (ux)⋆ |(f, y, v).

(OB4) If e, f, h ∈ B with eD f and h≤L e, then h|[e, f ] exists and

h|[e, f ] = h|(e, ef, f) = (h, hef, (hef)⋆) = (h, hf, (hf)⋆).

As h≤L eD f , we have that h = heD hf L (hf)⋆, and so [h, (hf)⋆] exists. In

addition, [h, (hf)⋆] = (h, h(hf)⋆, (hf)⋆). We note that

hf = hf(hf)⋆
(
hf L (hf)⋆

)

= hhf(hf)⋆
(
h2 = h

)

= hehf(hf)⋆
(
h≤L e

)

= he(hf)⋆
(
heD hf D (hf)⋆

)

= h(hf)⋆
(
h≤L e

)
,

whence, (h, hf, (hf)⋆) = (h, h(hf)⋆, (hf)⋆), that is, h|[e, f ] = [h, (hf)⋆].

(OB5) If e, f, g ∈ B are such that eD f D g, then [e, f ], [f, g] and [e, g] are

defined. Further, we have that

[e, f ] · [f, g] = (e, ef, f) · (f, fg, g) = (e, effg, g) = (e, eg, g) = [e, g].

Hence, (OB5) holds.

Finally, we show that SC is weakly orthodox. Assume that (e, x, f) ∈ SC

and g, h ∈ B. Then

(e, x, f)|fh = ((xfh)+, xfh, fh) = ((xh)+, xh, fh),
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g(xh)+ |((e, x, f)|fh) = g(xh)+ |((xh)+, xh, fh)

= (g(xh)+, g(xh)+xh, (g(xh)+xh)⋆)

= (g(xh)+, gxh, (gxh)⋆)
(
(xh)+ R̃B xh

)
,

ge|(e, x, f) = (ge, gex, (gex)⋆) = (ge, gx, (gx)⋆)

and
(ge|(e, x, f))|(gx)⋆h = (ge, gx, (gx)⋆)|(gx)⋆h

= ((gx(gx)⋆h)+, gx(gx)⋆h, (gx)⋆h)

= ((gxh)+, gxh, (gx)⋆h)
(
(gx)⋆ L̃B gx

)
.

Notice that

d(g(xh)+ |((e, x, f)|fh)) = g(xh)+ R̃B gxh R̃B (gxh)+ = d((ge|(e, x, f))|(gx)⋆h)

and

r(g(xh)+ |((e, x, f)|fh)) = (gxh)⋆ L̃B gxh L̃B (gx)⋆h = r((ge|(e, x, f))|(gx)⋆h).

Further,

[g(xh)+, (gxh)+] · (ge|(e, x, f))|(gx)⋆h

= (g(xh)+, (gxh)+, (gxh)+) · ((gxh)+, gxh, (gx)⋆h)

= (g(xh)+, gxh, (gx)⋆h)

= (g(xh)+, gxh, (gxh)⋆) · ((gxh)⋆, (gxh)⋆, (gx)⋆h)

= g(xh)+ |((e, x, f)|fh) · [(gxh)⋆, (gx)⋆h].

Thus, g(xh)+ |((e, x, f)|fh) ρ (ge|(e, x, f))|(gx)⋆h.

In Section 9.2, orthodox functors between weakly orthodox categories over

bands give rise to admissible morphisms. In the following, we produce a converse

to this result and so provide a functor C : WO → WOC.

Lemma 9.19. Let S be a weakly B1-orthodox semigroup and T be a weakly B2-

orthodox semigroup. Suppose that θ : S → T is an admissible morphism. Then

the map θC : SC → TC given by the rule that eθC = eθ and (e, x, f)θC =

(eθ, xθ, fθ) is an orthodox functor. Further, if θ1 : S → T and θ2 : T → Q are

admissible morphisms, then (θ1θ2)C = θ1Cθ2C.
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Proof. Clearly, θC is a morphism from B1 to B2 and it is a functor as it preserves

products, identities and the domain and co-domain of any morphism in SC.

(S2) Suppose that e, f ∈ B1 are such that e D f . Then [e, f ] = (e, ef, f),

and so
[e, f ]θC = (e, ef, f)θC = (eθ, (ef)θ, fθ)

= (eθ, eθfθ, fθ)

= [eθ, fθ]

= [eθC, fθC].

(S3) If (e, x, f) ∈ SC and u ∈ B1 with u≤L e, then u|(e, x, f) = (u, ux, (ux)⋆),

and so (u|(e, x, f))θC = (uθ, (ux)θ, (ux)⋆θ). In addition,

uθC|(e, x, f)θC = uθ|(eθ, xθ, fθ)

= (uθ, uθxθ, (uθxθ)⋆)

= (uθ, (ux)θ, ((ux)θ)⋆).

Since θ is admissible, ((ux)θ)⋆ L (ux)⋆θ and

(uθ, (ux)θ, (ux)⋆θ) = (uθ, (ux)θ, ((ux)θ)⋆) · (((ux)θ)⋆, (ux)⋆θ, (ux)⋆θ)

= (uθ, (ux)θ, ((ux)θ)⋆) · [((ux)θ)⋆, (ux)⋆θ].

Hence, (u|(e, x, f))θC ρ uθC|(e, x, f)θC.

It is routine to see that (θ1θ2)C = θ1Cθ2C.

We close this section by establishing a correspondence between the category

of weakly B-orthodox semigroups and the category of weakly orthodox categories

over bands.

Lemma 9.20. If S is a weakly B-orthodox semigroup, then there exists an iso-

morphism ηS from S to SCS.

Proof. Let x ∈ S and e, f ∈ B with e R̃B x L̃B f . Then (e, x, f) ∈ SC. We

define a mapping ηS : S → SCS by x 7→ (e, x, f). If u R̃B x L̃B v, then u R e,

v L f and [u, e] · (e, x, f) = (u, e, e) · (e, x, f) = (u, x, f) = (u, x, v) · [v, f ]. Thus,

(e, x, f) ρ (u, x, v). Hence, ηS is well-defined.

Clearly, ηS is surjective. To show that ηS is injective, we suppose that x, y ∈

S with xηS = yηS. Then (e, x, f) = (g, y, h), where e R̃B x L̃B f and g R̃B y L̃B h.
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So e R g, f L h and [e, g] · (g, y, h) = (e, x, f) · [f, h], that is, (e, y, h) = (e, x, h).

Obviously, x = y.

We now show that ηS is a morphism. Assume that x, y ∈ S are such that

e R̃B x L̃B f and g R̃B y L̃B h. Then xg R̃B xy, and so (xg)+ = (xy)+. Dually,

(fy)⋆ = (xy)⋆. Thus,

xηSyηS = (e, x, f) ◦ (g, y, h) = (e, x, f) ⊗ (g, y, h)

= (e, x, f)|fg · fg|(g, y, h)

= ((xg)+, xg, fg) · (fg, fy, (fy)⋆)

= ((xg)+, xgfy, (fy)⋆)
(
xgfy = xfgfgy = xfgy = xy

)

= ((xg)+, xy, (fy)⋆)

= ((xy)+, xy, (xy)⋆)
(
(xg)+ = (xy)+, (fy)⋆ = (xy)⋆

)

= (xy)ηS.

Finally, we note that ηS preserves the distinguished band as

eηS = (e, e, e) = 1e

for all e ∈ B.

Conversely, we have:

Lemma 9.21. Let P be a weakly orthodox category over B. Then there exists

an isomorphism τP from P to PSC, where an isomorphism between two weakly

orthodox categories means a bijective orthodox functor.

Proof. We define a map τP : P → PSC by the rule that eτP = 1e and xτP =

(1d(x), x̄, 1r(x)) for all e ∈ B = Ob(P ) and x ∈ P = Mor(P ). Clearly, τP maps P

into PSC.

Notice that the distinguished band of PS is B, which is the set of objects of

PSC. By Lemma 9.11, τP : B → B : e 7→ 1e is an isomorphism.

Now, we show that τP preserves d and r. Suppose that x ∈ P . Then by the

definition of τP ,

d(x)τP = 1d(x), r(x)τP = 1r(x)

and

xτP = (1d(x), x̄, 1r(x)),
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so that d(xτP ) = 1d(x) = d(x)τP and dually for r. Thus, τP preserves d and r.

If x, y ∈ P with x · y defined in P , then r(x) = d(y) and so xτP yτP is defined

in PSC and

xτP yτP = (1d(x), x̄, 1r(x)) · (1d(y), ȳ, 1r(y))

= (1d(x), x̄ ◦ ȳ, 1r(y))

= (1d(x), x⊗ y, 1r(y)

= (1d(x), x · y, 1r(y))
(
r(x) = d(y), Lemma 9.9

)

= (1d(x·y), x · y, 1r(x·y))

= (x · y)τP

which implies that τP preserves products. Also, τP preserves identities since

1eτP = (1e, 1e, 1e) = 11e
= 1eτP

. Thus, τP is a functor.

Let e, f ∈ B be such that e D f . Then [e, f ]τP = (1e, [e, f ], 1f). As

e R ef L f and [e, ef ] · 1ef = [e, ef ] = [e, f ] · [f, ef ], we have that [e, f ] = 1ef .

Thus,

[e, f ]τP = (1e, 1ef , 1f)

= (1e, 1e ◦ 1f , 1f)
(
Lemma 9.11

)

= [1e, 1f ]

= [eτP , fτP ].

Hence, τP satisfies Condition (S2).

To show that (S3) holds, we assume that x ∈ P and e ∈ B with e ≤L d(x).

Then eτP ≤L d(x)τP = d(xτP ) as τP is an isomorphism from B to B shown above.

Hence, e|x and eτP
|xτP are defined. Observe that (e|x)τP = (1e, e|x, 1r(e|x)) and

eτP
|xτP = 1e

|(1d(x), x̄, 1r(x))

= (1e, 1e ◦ x̄, (1e ◦ x̄)⋆)

= (1e, 1e ⊗ x, (1e ⊗ x)⋆)

= (1e, [e, e]|ed(x) · ed(x)|x, ([e, e]|ed(x) · ed(x)|x)⋆)

= (1e, [e, e]|e · e|x, ([e, e]|e · e|x)⋆)
(
e≤L d(x)

)

= (1e, [e+, e] · e|x, ([e+, e] · e|x)⋆)
(
by (OB4)◦

)

= (1e, [e, e] · e|x, ([e, e] · e|x)⋆)
(
[e+, e] ρ 1e = [e, e], Lemma 9.10

)
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= (1e, e|x, (e|x)⋆)
(
[e, e] = 1e

)
.

Clearly,

d((e|x)τP ) = 1e = d(eτP
|xτP ),

r((e|x)τP ) = 1r(e|x) L̃B e|x L̃B (e|x)⋆ = r(eτP
|xτP )

and
(e|x)τP · [r((e|x)τP ), r(eτP

|xτP )]

= (1e, e|x, 1r(e|x)) · [1r(e|x), (e|x)⋆]

= (1e, e|x, 1r(e|x)) · (1r(e|x), 1r(e|x) ◦ (e|x)⋆, (e|x)⋆)

= (1e, e|x, 1r(e|x)) · (1r(e|x), 1r(e|x), (e|x)⋆)
(
1r(e|x) L (e|x)⋆

)

= (1e, e|x ◦ 1r(e|x), (e|x)⋆)

= (1e, e|x, (e|x)⋆)
(
1r(e|x) L̃B e|x

)

= eτP
|xτP ,

so that (e|x)τP ρ eτP
|xτP and (S3) holds.

Next, suppose that x, y ∈ P with xτP = yτP . Then (1d(x), x̄, 1r(x)) =

(1d(y), ȳ, 1r(y)), which implies that x̄ = ȳ, and also d(x) = d(y), r(x) = r(y)

by Lemma 9.11. Further, by Lemma 9.2, x = y.

We now show that τP is surjective. Let (1e, x̄, 1f) be in PSC. Then

1e R̃B x̄ R̃B 1d(x) and 1f L̃B x̄ L̃B 1r(x), that is, 1e R 1d(x) and 1f L 1r(x) so that

by Lemma 9.11, eR d(x) and f L r(x). Put x′ = [e,d(x)] ·x · [r(x), f ]. Certainly,

x′ ρ x, that is, x′ = x̄. Thus, x′τP = (1e, x′, 1f) = (1e, x̄, 1f), and consequently,

τP is surjective.

Lemma 9.22. For any S ∈ Ob(WO), we define Sη = ηS, where ηS is defined in

Lemma 9.20. Then η is a natural equivalence of the functors IWO and CS.

Proof. Let θ : S1 → S2 in WO, where S1 and S2 are over B1 and B2, respectively.

Then for any x ∈ S1, we have by the definition of ηS in Lemma 9.20 that

(xηS1)θCS = (e, x, f)θCS
(
e R̃B1 x L̃B1 f

)

= (e, x, f)θC

= (eθ, xθ, fθ)

= (xθ)ηS2

(
eθ R̃B2 xθ L̃B2 fθ

)
.

Thus the diagram below commutes, and so η = (ηS) is a natural morphism of
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IWO and CS.

S1

S1CS S2CS

S2
θ

ηS1 ηS2

θCS

Figure 9.1: A natural transformation of IWO and CS

Similarly, we have:

Lemma 9.23. For any P ∈ Ob(WOC), we define Pτ = τP , where τP is defined

in Lemma 9.21. Then τ is a natural equivalence of the functors IWOC and SC.

Proof. Let F : P1 → P2 in WOC, where P1 and P2 are over B1 and B2, respec-

tively. Then for any x ∈ P1, we have by the definition of τP in Lemma 9.21

that
(xτP1)FSC = (1d(x), x̄, 1r(x))FSC

= (1d(x)FS, x̄FS, 1r(x)FS)

= (1d(x)F , xF , 1r(x)F )

= (1d(xF ), xF , 1d(xF ))

= (xF )τP2

and
(eτP1)FSC = 1eFSC

= 1eFS

= 1eF

= 1eF

= (eF )τP2 .

Thus the diagram below commutes, and so τ = (τP ) is a natural morphism of

IWOC and SC.
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P1

P1SC P2SC

P2
F

τP1 τP2

FSC

Figure 9.2: A natural transformation of IWOC and SC

To sum up, we have:

Theorem 9.24. The category WO of weakly B-orthodox semigroups and admis-

sible morphisms is equivalent to the category WOC of weakly orthodox categories

over bands and orthodox functors.

9.4 Special cases

Our purpose in this section is to investigate a certain kinds of weakly B-orthodox

semigroups.

Lemma 9.25. Let P be a weakly orthodox category over B. Suppose that for all

x̄ ∈ E(PS) we have that 1d(x) R∗ x̄L∗ 1r(x) in PS. Then E(PS) = B.

Proof. Suppose that x ∈ P and x̄ ◦ x̄ = x̄. As x̄L∗ 1r(x), we have that 1r(x) ◦ x̄ =

1r(x). Thus

1r(x) ⊗ x = 1r(x)

⇒ 1r(x)|r(x)d(x) · r(x)d(x)|x = 1r(x)

⇒ [(r(x)d(x))+, r(x)d(x)] · r(x)d(x)|x = [r(x), r(x)]

⇒ (r(x)d(x))+ R r(x)

⇒ r(x)d(x) R r(x).

Dually, r(x)d(x) L d(x). Hence, r(x) D d(x), and so d(x) R d(x)r(x) L r(x).

By Lemma 9.11, 1d(x) R 1d(x)r(x) L 1r(x). Again by 1d(x) R∗ x̄ L∗ 1r(x), we have
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that x̄ H∗ 1d(x)r(x). Since H∗-class contains at most one idempotent, we have

that x̄ = 1d(x)r(x).

A weakly orthodox category P over B is an orthodox groupoid over B if for

all x ∈ P , there exists y ∈ P with d(y) = r(x) and r(y) = d(x) such that

1d(x) = x · y and y · x = 1r(x).

Corollary 9.26. The category of orthodox semigroups and morphisms is equiv-

alent to the category of orthodox groupoids over bands and orthodox functors.

Proof. Let S be an orthodox semigroup with B = E(S). Suppose that (e, x, f) ∈

SC. Since R = R̃B and L = L̃B, we have that eRxL f . It follows from the

fact that S is regular that there exists y ∈ S with eL yR f , e = xy and yx = f .

Then (f, y, e) ∈ SC and the products (e, x, f) · (f, y, e), (f, y, e) · (e, x, f) exist in

SC. Moreover, (e, x, f) · (f, y, e) = (e, xy, e) = (e, e, e) = [e, e] = 1e and similarly,

(f, y, e) · (e, x, f) = 1f .

Conversely, let P be an orthodox groupoid over B. Suppose that x ∈ P .

Then there exists y ∈ P with d(y) = r(x) and r(y) = d(x) such that 1r(x) = y · x

and 1d(x) = x · y. So 1d(x) = x · y = x⊗ y = x̄ ◦ ȳ. Hence, x̄ ◦ ȳ ◦ x = (x̄ ◦ ȳ) ◦ x̄ =

1d(x) ◦ x̄ = x̄ so that PS is regular. In addition, as 1d(x) = x̄ ◦ ȳ and x̄ = 1d(x) ◦ x̄,

we have that 1d(x) R x̄ in PS. Dually, 1r(x) L x̄ in PS. By Lemma 9.25, we have

that E(PS) = B. Hence, PS is an orthodox semigroup.

We now concentrate on the class of abundant semigroups. We replace the

distinguished set of idempotents B by the whole set of idempotents and use

relations R∗ and L∗ instead of R̃B and L̃B. In addition, an admissible morphism

in this context is more usually referred to as a good morphism. We define a

weakly orthodox category P over B to be *-orthodox if it satisfies Condition

(OB6) and its dual (OB6)◦:

(OB6) if y ⊗ x ρ z ⊗ x, then y|r(y)d(x) ρ z|r(z)d(x).

Corollary 9.27. The category of abundant semigroups whose set of idempotents

forms a band and good morphisms is equivalent to the category of *-orthodox

categories over bands and orthodox functors.

Proof. Let P be a *-orthodox category over a band B. Suppose that x̄ ∈ PS and

x ∈ P . We know that 1d(x) R̃B x̄, so that 1d(x)⊗x̄ = x̄. Assume that y, z ∈ P with
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ȳ ◦ x̄ = z̄ ◦ x̄. Then y⊗ x ρ z⊗ x. By (OB6), we obtain that y|r(y)d(x) ρ z|r(z)d(x),

and so r(y)d(x) L r(z)d(x), d(y|r(y)d(x)) R d(z|r(z)d(x)), and we have

(y|r(y)d(x)) · [r(y)d(x), r(z)d(x)] = [d(y|r(y)d(x)),d(z|r(z)d(x))] · (z|r(z)d(x))

⇒ (y|r(y)d(x)) · [r(y)d(x), r(z)d(x)] · (r(z)d(x)|1d(x))

= [d(y|r(y)d(x)),d(z|r(z)d(x))] · (z|r(z)d(x)) · (r(z)d(x)|1d(x))

⇒ (y|r(y)d(x)) · (r(y)d(x)|1d(x)) = [d(y|r(y)d(x)),d(z|r(z)d(x))] · (z ⊗ 1d(x))(
r(y)d(x) L r(z)d(x), by(OB2)

)

⇒ y ⊗ 1d(x) = [d(y|r(y)d(x)),d(z|r(z)d(x))] · (z ⊗ 1d(x)).

Hence, y ⊗ 1d(x) ρ z ⊗ 1d(x), that is, ȳ ◦ 1d(x) = z̄ ◦ 1d(x).

Now, let x ∈ P . Then 1d(x) R∗ x̄L∗ 1r(x), and so by Lemma 9.25, we have

that E(PS) = B. Hence, PS is an abundant semigroup whose set of idempotents

forms a band.

Conversely, in view of Lemma 9.18, it is necessary to show that SC satisfies

Condition (OB6) and its dual. Assume that (e, x, f), (u, y, v), (g, z, h) ∈ SC such

that (u, y, v) ⊗ (e, x, f) ρ (g, z, h) ⊗ (e, x, f). Then

(u, y, v)|ve · ve(e, x, f) ρ (g, z, h)|he · he|(e, x, f),

that is,

((ye)+, ye, ve) · (ve, vx, (vx)⋆) ρ ((ze)+, ze, he) · (he, hx, (hx)⋆)

or equivalently,

((ye)+, yx, (vx)⋆) ρ ((ze)+, zx, (hx)⋆),

as yevx = yvevex = yvex = yx and similarly, zehx = zx.

Thus, (ye)+ R (ze)+ and (vx)⋆ L (hx)⋆, that is, (ye)+ = (ze)+ and (vx)⋆ =

(hx)⋆ since they are unique. By Lemma 9.2, we have that ((ye)+, yx, (vx)⋆) =

((ze)+, zx, (hx)⋆), and so yx = zx. As e R∗ x in S, we have that ye = ze, and so
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ve L∗ ye = ze L∗ he. Thus,

(u, y, v)|ve = ((ye)+, ye, ve)

= ((ye)+, ze, ve)
(
ye = ze

)

= [(ye)+, (ze)+] · ((ze)+, ze, ve)

= [(ye)+, (ze)+] · ((ze)+, ze, he) · [he, ve]
(
veLhe

)

= [(ye)+, (ze)+] · (g, z, h)|he · [he, ve].

So (u, y, v)|ve ρ (g, z, h)|he. Hence, (OB6) holds.

Next, we discuss Ehresmann semigroups.

Let P be a weakly orthodox category over a semilattice E. According to the

remark succeeding Lemma 9.3, the relation ρ is the identity on P and ≤r and ≤ℓ

are partial orders on P . Then PS = P , and so we will identify x̄ with x for all

x ∈ P . In that case, for any x, y ∈ P ,

x ◦ y = x⊗ y = x|r(x)d(y) · r(x)d(y)|y.

Lemma 9.28. A weakly orthodox category P over a semilattice E with ≤r forms

an ordered1 category with restriction.

Proof. Certainly, in view of the comments in Section 9.1, a weakly orthodox

category P over a semilattice E forms a poset under ≤r.

(OC1) Suppose that x, y ∈ P with x ≤r y. Then there exists e ∈ E such

that e ≤ d(y) and x = e|y. Thus, d(x) = e ≤ d(y) and r(x) ≤ r(y) by (OB1).

(OC2) Suppose that x, y ∈ P with r(x) = r(y), d(x) = d(y) and x ≤r y.

Then there exists e ∈ E such that e ≤ d(y) and x = e|y. Certainly, d(x) = e,

and so e = d(y), whence from (OB1),

y = e|y · [r(e|y), r(y)]

= e|y · [r(e|y), r(e|y)]
(
r(y) = r(x) = r(e|y)

)

= e|y = x.

(OC3) If x′ ≤r x, y′ ≤r y, and both x′ · y′ and x · y exist, then there exist

e, f ∈ E such that e ≤ d(x), f ≤ d(y), x′ = e|x and y′ = f |y. Thus, we have that
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r(e|x) = r(x′) = d(y′) = d(f |y) = f , and so x′ · y′ = e|x · f |y = e|(x · y) by (OB3).

Hence, x′ · y′ ≤r x · y.

Finally, we assume that x ∈ P and e ∈ E with e ≤ d(x). Then e|x is defined

and d(e|x) = e. Also, e|x ≤r x. Further, e|x is unique since if z ≤r x and

e = d(z), then there exists h ∈ E with h ≤ d(x) and z = h|x, which gives that

h = d(z). Thus, e = h, and so z = e|x.

As a dual result to Lemma 9.28, we have the following lemma.

Lemma 9.29. A weakly orthodox category P over a semilattice E with ≤ℓ forms

an ordered1 category with co-restriction.

Next we show that a weakly orthodox category P over a semilattice E is an

Ehresmann category as mentioned in Chapter 6.

Lemma 9.30. A weakly orthodox category P over a semilattice E with the pair

of natural partial orders (≤r,≤ℓ) defined in Section 9.1 forms an Ehresmann

category (P, ·,≤r,≤ℓ).

Conversely, an Ehresmann category (C, ·,≤r,≤l) with semilattice of identi-

ties E, may be regarded as a weakly orthodox category over E with natural partial

orders (≤r,≤l).

Proof. Let P be a weakly orthodox category over a semilattice. In view of

Lemma 9.28 and Lemma 9.29, Conditions (E1) and (E1)◦ are satisfied. Now,

we identify e with 1e for all e ∈ E.

(E2) If e, f ∈ E and e≤r f , then e = e|f so that we must have e ≤ f . Then

f |e is defined and f |e = [f, f ]|e = [(fe)+, e] = [e, e] = e so that e≤ℓ f . Together

with the dual, (E2) holds.

(E3) Clearly, E is a semilattice under ≤r = ≤ℓ = ≤.

(E4) To show that ≤r ◦ ≤ℓ ⊆ ≤ℓ ◦ ≤r, we assume that x≤r ◦ ≤ℓ y. Then

there exists z ∈ P such that x≤r z≤ℓ y. So there exist e, f ∈ E with d(x) =

e ≤ d(z) = u and r(z) = f ≤ r(y) = v, such that x = e|z and z = y|f . Thus,

x = e|(y|f) = eu|(y|vf). Since P is weakly orthodox, we obtain that x ρ (eh|y)|gf ,

where h = d(y) and g = r(eh|y). As ρ is the identity by the remark following

Lemma 9.3, we have that x = (eh|y)|gf . Set z′ = eh|y. Then x≤ℓ z
′ and z′ ≤r y.

Consequently, x≤ℓ ◦ ≤r y.



189

(E5) Suppose that x, y ∈ P and f ∈ E with x≤r y. Then there exists

k ∈ E with k ≤ d(y) and x = k|y. So x|r(x)∧f = (k|y)|r(x)∧f . As P is weakly

orthodox and ρ is the identity, we obtain that (k|y)|r(x)∧f = nk|(y|r(y)∧f), where

n = d(y|r(y)∧f), that is, x|r(x)∧f = nk|(y|r(y)∧f). Thus, x|r(x)∧f ≤r y|r(y)∧f .

Conversely, let C = (C, ·,≤r,≤l) be an Ehresmann category with semilattice

of identities E. If e D f in E, then e = f and we put [e, e] = e (E is identified

with the set of identities at E).

From (E2) and (E3), ≤r and ≤l coincide on E, making E a semilattice: we

let ≤ denote the restriction of ≤r (resp. ≤l) to E. It is clear that the first part

of (OB1) holds, moreover, by uniqueness of restriction, e|x = x if e = d(x), so

that the second part of (OB1) holds.

For (OB2), if x ∈ C and e, f ∈ E, with e≤L f ≤L d(x), then e ≤ f ≤ d(x).

Now ef |x = e|x≤r x and d(e|x) = e; also, e|(f |x) ≤r f |x≤r x and d(e|(f |x)) = e.

By uniqueness of restriction, ef |x = e|(f |x), that is, e|x =e |(f |x). In particular,

if e L f , then e = f and obviously, [e, f ] · f |x = [f, f ] · f |x = f |x = e|x.

(OB3) If x, y ∈ C with ∃x · y, then r(x) = d(y). If e ≤ d(x), r(e|x) ≤

r(x) = d(y) and we have that

e|(x · y) ≤r x · y and d(e|x · y) = e

and also

e|x · f |y≤r x · y and d(e|x · f |y) = e,

where f = r(e|x). Hence, e|(x · y) = e|x · f |y, by uniqueness of restriction.

It is easy to see that (OB4) and (OB5) hold.

Finally, we show that C is weakly orthodox. Let x ∈ C and e, f, u, v, g, h ∈ E

with g = r(x), h = d(x), u = d(x|gf ) and v = r(eh|x). Then (e⊗x)⊗f =

e⊗(x⊗f), where ⊗ is defined [32], by x⊗y = x|k · k|y, where k = r(x) ∧ d(x). As

shown in [32], ⊗ is associative. We have

(e⊗x)⊗f = (e|eh · eh|x)|vf · vf |f

= (eh · (eh|x))|vf · vf

= (eh|x)|vf

and similarly, e⊗(x⊗f) = eu|(x|gf), so by associativity we obtain that (eh|x)|vf =
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eu|(x|gf).

In view of Lemma 6.1, the partial order ≤r and ≤ℓ defined in a weakly ortho-

dox category over a semilattice coincide with ≤r and ≤l defined in an Ehresmann

category, respectively.

Let C = (C, ·,≤r,≤l) and D = (D, ·,≤r,≤l) be Ehresmann categories with

semilattice EC and ED of identities, respectively. A strongly ordered functor [32]

F : C → D is a functor which preserves ≤r,≤l and ∧. Since F preserves ∧,

F is a morphism EC → ED. As shown in [32], F preserves restrictions and

co-restrictions. Thus F is an orthodox functor in the sense of Definition 9.5.

On the other hand, if G : C → D is an orthodox functor, then by (S1), it

preserves ∧. Suppose now that x, y ∈ C with x ≤r y. Then x = e|y for some

e ∈ E, so that by (S3), xG = eG|yG so that xG ≤r yG. Dually, G preserves ≤l,

so that G is a strongly ordered functor. Theorem 9.24 and the comments above

now give us

Corollary 9.31. The category of Ehresmann categories and strongly ordered

functors is isomorphic to the category of weakly orthodox categories over semilat-

tices and orthodox functors.

Let S be an Ehresmann semigroup with distinguished semilattice of idem-

potents E. Indeed for any x ∈ S, there exists a unique e ∈ E such that e R̃E x

and a unique f ∈ E such that x L̃E f . Thus the map C : S → SC given by

x 7→ (e, x, f) is bijective. In that case, we identify SC with (S, ·) and so the

partial binary operation · on SC is slightly modified to

x · y = xy,

where x, y ∈ S satisfying x∗ = y† and xy is the product of x and y in S. Then

Lemma 9.32. If S is an Ehresmann semigroup with distinguished semilattice of

idempotents E and P is a weakly orthodox category over E. Then SCS = S and

PSC = P .

Proof. Let S be an Ehresmann semigroup over E. It follows from Lemma 9.18

that S is a weakly orthodox category over E with a restriction of that in S and

d(x) = x†, r(x) = x∗, for any x ∈ S, and if e ≤ x† and f ≤ x∗ then e|x = ex

and x|f = xf .
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We now construct SCS, which again has underlying set S as the relation

ρ on a weakly orthodox category over a semilattice E is trivial, by defining a

product

x ◦ y = x⊗ y = x|x∗y† · x∗y† |y.

Observe that
x ◦ y = x|x∗y† · x∗y† |y

= xx∗y† · x∗y†y

= xx∗y†y

= xy,

so the operation in S and SCS are the same. Moreover, the distinguished semi-

lattices of S and SCS are both E. Hence S = SCS.

Conversely, let P be a weakly orthodox category over a semilattice E with

partial binary operation ·. We build the Ehresmann semigroup PS by modifying

the product ◦ in Theorem 9.16 as

x ◦ y = x|x∗y† · x∗y† |y.

We temporarily use the notation ⊙ for the partial binary operation in PSC.

For any x, y ∈ P , we have

∃x⊙ y ⇔ x∗ = y† in PS

⇔ ∃x · y in P.

Further, if ∃x⊙ y, then by Lemma 9.9,

x⊙ y = x⊗ y = x · y.

For any x ∈ P we have that d(x) = x† in PSC, where x R̃B x† in PS. But

the latter holds if and only if x† = d(x) in P . Thus d in P and PSC coincide,

and dually for r.

Clearly, the distinguished morphisms in P and PSC are the same.

Again as a temporary measure, we use || to denote restriction and co-

restriction in PSC.
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Let x ∈ P and e ∈ B with e ≤ d(x). Then in PSC,

e||x = e ◦ x = e|ed(x) · ed(x)|x = e|x

and similarly for co-restriction.

The following result is easy to see, given Lemma 9.17 and Lemma 9.19.

Lemma 9.33. Let θ : S → T be an admissible morphism of Ehresmann semi-

groups, and F : P1 → P2 be an orthodox functor of weakly orthodox categories

over semilattices. Then θCS = θ and FSC = F .

As a immediate consequence of Lemma 9.32 and Lemma 9.33, we have that

SC = IWOC and CS = IWO, so that S and C are mutually inverse. Hence we

have:

Corollary 9.34. The category of Ehresmann semigroups and admissible mor-

phisms is isomorphic to the category of weakly orthodox categories over semilat-

tices and orthodox functors.

In view of Corollary 9.31 and Corollary 9.34, we succeed in obtaining Law-

son’s result [32].

Corollary 9.35. [Theorem 4.24, [32]] The category of Ehresmann semigroups

and admissible morphisms is isomorphic to the category of Ehresmann categories

and strongly ordered functors.

We now look at weakly B-superabundant semigroups with (C), which are

weakly B-orthodox semigroups such that each H̃B-class contains a distinguished

idempotent in B. We say that a weakly orthodox category over B is super-

orthodox if it satisfies the following condition:

(OB7) if x ∈ P , then d(x) D r(x).

Corollary 9.36. The category of weakly B-superabundant semigroups with(C)

and admissible morphisms is equivalent to the category of weakly super-orthodox

categories over B and orthodox functors.
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Proof. Let S be a weakly B-superorthodox semigroup. It follows from Lemma 9.18

that it is sufficient to show that SC satisfies Condition (OB7). Suppose that

α = (e, x, f) ∈ SC. Then e R̃B x L̃B f . As S is a weakly B-superabundant

semigroup, there exists h ∈ B such that h H̃B x. Thus, e R h L f , which implies

that e D f , that is, d(α) D r(α).

Conversely, let P be a weakly super-orthodox category over B. It is necessary

to show that each H̃B-class of PS has a distinguished idempotent belonging to

B. Suppose that x ∈ P . By (OB7), d(x) D r(x). Then, d(x) R d(x)r(x) L r(x).

By Lemma 9.11, we have that 1d(x) R 1d(x)r(x) L 1r(x). As 1d(x) R̃B x̄ L̃B 1r(x), we

obtain that x̄ H̃B 1d(x)r(x). Hence, PS is a weakly B-superabundant semigroup

with (C).

We now turn to the class of weakly B-orthodox semigroups, which have

(WIC) mentioned in Chapter 2. We define a weakly orthodox category over B

to be weakly connected if it satisfies the following condition and its dual (OB8)◦:

(OB8) if x ∈ P and e ≤ d(x), then there exists f ≤ r(x) such that e|x ρ x|f .

Corollary 9.37. The category of weakly B-orthodox semigroups with (WIC) and

admissible morphisms is equivalent to the category of weakly connected categories

over B and orthodox functors.

Proof. Starting with a weakly B-orthodox semigroup S with (WIC), we show

that SC satisfies Condition (OB8) and its dual. We show that (OB8) holds.

Suppose that (e, x, f) ∈ SC and u ≤ e. Then u|(e, x, f) = (u, ux, (ux)⋆). Since

S has (WIC) it follows that there exists v ∈ B such that ux = xv and we can

choose v ≤ f . Then (ux)⋆ L̃B xv L̃B fv = v and u = ue R̃B ux R̃B (xv)+. In

addition,

u|(e, x, f) · [(ux)⋆, v] = (u, ux, (ux)⋆) · ((ux)⋆, (ux)⋆, v)

= (u, ux, v)

= [u, (xv)+] · ((xv)+, xv, v)

= [u, (xv)+] · (e, x, f)|v.

Thus, u|(e, x, f) ρ (e, x, f)|v.

Conversely, let P be a weakly connected category over B. Suppose that

x̄ ∈ PS and 1e ≤ 1d(x). Then x̄ R̃B 1d(x). By (OB8), there exists f ≤ r(x) such
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that e|x ρ x|f . Thus,

1e ◦ x̄ = 1e ⊗ x = 1e · e|x = e|x = x|f = x|f · 1f = x̄ ◦ 1f .

Together with the dual argument, we obtain that PS has (WIC).



Chapter 10

Weakly U-regular semigroups

A weakly U -regular semigroup is a weakly U -abundant semigroup with (C) and

U generating a regular subsemigroup whose set of idempotents is U . The purpose

of this chapter is to investigate a correspondence between weakly U -regular semi-

groups and certain categories, by using the techniques introduced in Chapter 9.

10.1 Weakly regular categories

The goal of this section is to develop the idea of weakly orthodox categories over

a band constructed in Chapter 9 to introduce a category with set of objects a

regular biordered set U .

Let U be a regular biordered set. A subset K of U is a representative of U

if maps φ : K → U/L given by e 7→ Le and ψ : K → U/R given by e 7→ Re are

bijective. So for any e ∈ U , there exists a unique k ∈ K such that e L k in U

and there exists a unique h ∈ K such that e R h in U . For convenience, we will

denote k and h by e⋆ and e+, respectively.

Definition 10.1. Let P be a category in which Ob(P ) is the underlying set of

a regular biordered set U , and let K be a representative of U . Suppose that for

e, f ∈ U satisfying e R f or e L f , there exists a distinguished morphism [e, f ]

from e to f , such that [e, e] = 1e, the identity associated to e. Then P is an RBS

category if the following conditions and the duals (P2)◦, (P3)◦, (P4)◦, and (P5)◦

of (P2), (P3), (P4) and (P5) hold:

(P1) if eR f R g or eL f L g, then [e, f ] · [f, g] = [e, g];

195
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(P2) if x ∈ P , h ∈ U and h ωl d(x), then there exists an element h|x in P ,

called the restriction of x to h, such that d(h|x) = h and r(h|x) ωl r(x); also, if

h = d(x), then r(h|x) L r(x) and h|x · [r(h|x), r(x)] = x;

(P3) if g ω e and eR f or eL f , then g|[e, f ] = [g, gf ] · [gf, (gf)⋆]; and if

g ωl e and eL f , then g|[e, f ] = [g, g⋆];

(P4) if x ∈ P and e, f ∈ U with e ωl f ωl d(x), then e|(f |x) = e|x; also, if

eL f ωl d(x), then [e, f ] · f |x = e|x;

(P5) if x, y ∈ P and h ∈ U with h ωl d(x) and ∃x · y in P , then h|(x · y) =

h|x · g|y, where g = r(h|x);

(P6) if


 e f

g h


 is a singular U -square, then [e, f ] · [f, h] = [e, g] · [g, h].

Let us pause to make some simple but necessary comments on Definition 10.1.

In (P3) since g ω e, we know that if eR f (resp. eL f), then g ωr f (resp. g ωl f),

and so by (B21) gR gf (resp. g = gf). Thus [g, gf ] exists. In (P5) since ∃x · y

we know that r(x) = d(y). By (P2), g = r(h|x)ωl r(x) = d(y), so that g|y is

defined and d(g|y) = g. Hence, h|x · g|y is defined. Condition (P6) implies that

[g, e] · [e, f ] · [f, h] · [h, f ] = [g, e] · [e, g] · [g, h] · [h, f ],

that is,

[g, e] · [e, f ] · [f, f ] = [g, g] · [g, h] · [h, f ]

by (P1). Thus,

[g, e] · [e, f ] = [g, h] · [h, f ].

Comparing with Definition 9.1, we note that Conditions (P1) and (P6) cor-

respond to Condition (OB5); Conditions (P2), (P4) and (P5) are similar to Con-

ditions (OB1), (OB2) and (OB3), respectively; Condition (P3) is a generalisation

of Condition (OB4).

Notice that an RBS category P depends on the choice of the regular biordered

set U which is the set of objects of P . In order to avoid the ambiguity, we will

express the term ‘RBS category’ as ‘RBS category over U ’.

Let P be an RBS category over a regular biordered set U . We define a

relation ρ on P by the rule that for any x, y ∈ P ,

x ρ y if and only if
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d(x) R d(y), r(x) L r(y) and x · [r(x), r(y)] = [d(x),d(y)] · y.

It is worth making the point that

x · [r(x, r(y)] = [d(x),d(y)] · y

⇔ [d(y),d(x)] · x · [r(x), r(y)] = y

⇔ [d(y),d(x)] · x = y · [r(y), r(x)]

⇔ x = [d(x),d(y)] · y · [r(y), r(x)],

so that if d(x) = d(y), then x ρ y if and only if r(x) L r(y) and

x = y · [r(y), r(x)] or indeed x · [r(x), r(y)] = y.

Dually, if r(x) = r(y), then x ρ y if and only if d(x) R d(y) and

x = [d(x),d(y)] · y or indeed y = [d(y),d(x)] · x.

Further, we have:

Lemma 10.2. Let e, f, g ∈ U be such that e R f L g. Then [e, f ] ρ 1f ρ [f, g].

Proof. As e R f , we have that

d([e, f ]) = e R f = d(1f),

r([e, f ]) = f = r(1f)

and

[e, f ] · 1f = [e, f ]

so that [e, f ] ρ 1f . Dually, [f, g] ρ 1f .

The proof of the next lemma is the same as that of Lemma 9.2 so we omit

it.

Lemma 10.3. The relation ρ defined above is an equivalence on P such that if

x, y ∈ Mor(e, f) and x ρ y, then x = y. In particular, no two identities of P are

ρ-equivalent.
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We now present a pair of pre-orders on an RBS category over U built on the

relation ρ given above.

Let P be an RBS category over U . We make use of the restriction and co-

restriction of P to define relations ≤r
′ and ≤ℓ

′ by the rule that for all x, y ∈ P ,

x ≤r
′ y if and only if x ρ e|y for some e ∈ U and e ω d(y)

and

x ≤ℓ
′ y if and only if x ρ y|f for some f ∈ U and f ω r(y).

Lemma 10.4. The relations ≤r
′ and ≤ℓ

′ are pre-orders on P .

Proof. We first show that ≤r
′ is a pre-order on P . Notice that for any x ∈ P , if

e = d(x), then [d(x),d(e|x)] = [e, e] = 1e, and so ≤r
′ is reflexive by (P2). It is

sufficient to show that ≤r
′ is transitive. Suppose that x, y, z ∈ P with x ≤r

′ y

and y ≤r
′ z. Then there exist e, f ∈ U such that e ω d(y), f ω d(z), and x ρ e|y

and y ρ f |z. Thus, d(y) R f, r(y) L r(f |z) and y · [r(y), r(f |z)] = [d(y), f ] · (f |z).

Hence, y = [d(y), f ]·f |z · [r(f |z), r(y)]. As e ω d(y) R f , we have that e R ef ω f .

In addition, e|[d(y), f ] exists and e|[d(y), f ] = [e, ef ] · [ef, (ef)⋆] by (P3). Since

(ef)⋆ L ef ω f ω d(z), we obtain that (ef)⋆ |(f |z) is defined and (ef)⋆ |(f |z) = (ef)⋆ |z

by (P4). Then we have that

e|y = e|([d(y), f ] · f |z · [r(f |z), r(y)])

= e|[d(y), f ] · h|(f |z) · k|[r(f |z), r(y)]
(
by (P5), h = r(e|[d(y), f ]), k = r(h|(f |z))

)

= [e, ef ] · [ef, (ef)⋆] · (ef)⋆ |(f |z) · [k, k⋆]
(
as k = r(h|(f |z)) ωl r(f |z) L r(y), by (P3)

)

= [e, ef ] · [ef, (ef)⋆] · (ef)⋆ |z · [k, k⋆]
(
by (P4), (ef)⋆ L ef ω f ω d(z)

)
.

Hence, r(e|y) = k⋆. From x ρ e|y, we have that r(x) L k⋆, d(x) R e and

x · [r(x), k⋆] = [d(x), e] · e|y

= [d(x), e] · [e, ef ] · [ef, (ef)⋆] · (ef)⋆ |z · [k, k⋆]

= [d(x), ef ] · [ef, (ef)⋆] · (ef)⋆ |z · [k, k⋆]
(
d(x) R e ef, by (P1)

)

= [d(x), ef ] · ef |z · [k, k⋆]
(
by (P4), ef L (ef)⋆ ωl d(z)

)
.
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Thus,

x · [r(x), k] = x · [r(x), k⋆] · [k⋆, k]
(
by (P1)

)

= [d(x), ef ] · ef |z · [k, k⋆] · [k⋆, k]

= [d(x), ef ] · ef |z · [k, k]
(
k L k⋆

)

= [d(x), ef ] · ef |z
(
k = r(ef |z)

)
.

It follows that k = r(ef |z). As r(x) L r(e|y) = k⋆ L k = r(ef |z) and d(x) R ef =

d(ef |z), we have that x ρ ef |z. Together with ef ω f ω d(z), we obtain that

x ≤r
′ z.

By the dual argument, we show that ≤ℓ
′ is a pre-order on P .

In addition, there exists another way to define a pair of pre-orders on an

RBS category P over U .

Let P be an RBS category over U . For any x, y ∈ P , we define

x ≤r y if and only if x ρ e|y for some e ∈ U

and

x ≤l y if and only if x ρ y|f for some f ∈ U.

By (P2) and its dual, relations ≤r and ≤l are reflexive, but in general they are

not transitive and symmetric. We recall that the transitive closure of a relation

θ is denoted by θt. We have:

Lemma 10.5. Let P be an RBS category over U . Then relations ≤t
r and ≤t

l are

pre-orders on P .

As the comments succeeding Lemma 9.3, it is impossible to define a pair of

partial orders on P .

Let P be an RBS category over a regular biordered set U . By (B1), ωr and

ωl are pre-orders on U , and DU = (ωr ∪ ωl) ∪ (ωr ∪ ωl)−1. Suppose that x ∈ P

and h ωr d(x). We define

h ∗ x = [h, hd(x)] · hd(x)|x.

Clearly, d(h ∗ x) = h. In particular, if h ω d(x), then h ∗ x = h|x.
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Observe that if h ωr d(x), then by (B1), hd(x) exists in U . Again by (B21),

h R hd(x) ω d(x), so that [h, hd(x)] exists and by (P2), hd(x)|x is well-defined.

Dually, if k ωl r(x), then we define

x ⋄ k = x|r(x)k · [r(x)k, k].

Note that r(x ⋄ k) = k. In particular, if k ω r(x), then x ⋄ k = x|k.

We stop here to make some comments on the above operations ∗ and ⋄. The

initial idea of defining operations ∗ and ⋄ is to define a binary operation on an RBS

category or a weakly regular category introduced below, via the sandwich set.

Let P be an RBS category. Suppose that x, y ∈ P and h ∈ S(r(x),d(y)). Then

h ωl r(x) and h ωr d(y). Our purpose is to use restrictions and co-restrictions to

define a product. Note that h L r(x)h ω r(x) and h R hd(y) ω d(y) so that we

can define a binary operation on P by the rule that

x y = x|r(x)h · [r(x)h, h] · [h, hd(y)] · hd(y)|y.

Certainly, it is well defined. For convenience, we defined ∗ and ⋄ above.

To maintain the analogy with weakly orthodox categories, we have weakly

regular categories described as follows:

Definition 10.6. An RBS category P over a regular biordered set U is weakly

regular if it satisfies the following condition:

(P7) for x ∈ P , e, f ∈ U , h1 ∈ S(e,d(x)) and h2 ∈ S(r(x), f), we put h′
1 =

r(h1d(x)|x) and h′
2 = d(x|r(x)h2). Then there exist h ∈ S(h1, h

′
2) and h′ ∈ S(h′

1, h2)

such that

((h1 ∗ x) ⋄ h′) · [h′, h′h2] ρ [h1h, h] · (h ∗ (x ⋄ h2)).

It is a good place to make some necessary comments on Definition 10.6. For

any e, f ∈ U , S(e, f) denotes the sandwich set of e and f . In (P7), h1 ∈ S(e,d(x))

implies that h1 ω
r d(x), and so by (B21) in Section 1.4, h1 R h1d(x) ω d(x) so

that h1d(x)|x is well-defined and h1 ∗ x exists. Put h′
1 = r(h1d(x)|x). Similarly,

x|r(x)h2 and x ⋄ h2 are well-defined. We put h′
2 = d(x|r(x)h2). Since U is regular,

we obtain that S(h1, h
′
2) 6= ∅ and S(h′

1, h2) 6= ∅. If h′ ∈ S(h′
1, h2), then h′ ωl h′

1 =

r(h1d(x)|x) = r(h1 ∗ x) and h′ ωr h2, so that (h1 ∗ x) ⋄ h′ is defined and by (B21),

h′h2 R h′. Hence [h′, h′h2] exists. By a similar argument, h ∗ (x ⋄ h2) is defined

and h1h L h so that [h1h, h] exists.
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We are now ready to say that the class of weakly regular categories over

regular biordered sets forms a category, together with certain functors, namely

RBS functors, which appear in the next definition.

Definition 10.7. Let P1 and P2 be weakly regular categories over regular biordered

sets U1 and U2, respectively, and F : P1 → P2 be a functor. Then F is said to be

RBS if

(PF1) F : U1 → U2 is a regular morphism;

(PF2) if e R f or e L f in U , then [e, f ]P1F = [eF, fF ]P2;

(PF3) if x ∈ P1 and h, k ∈ U1 with h ωl d(x) and k ωr r(x), then

(h|x)F ρ hF |xF and (x|k)F ρxF |kF .

We pause here to make a short comment on Definition 10.7. In (PF3),

if h ωl d(x), then hF ωl d(xF ) as F is a biordered set morphism and is a

functor, so that both h|x and hF |xF are well-defined. In addition, the fact that

(h|x)F ρ hF |xF gives in particular that r(h|x)F L r(hF |xF ). For d, as F is a

functor, we have that d((h|x)F ) = d(h|x)F = hF = d(hF |xF ).

The next lemma is useful for Lemma 10.9.

Lemma 10.8. Let P1 and P2 be weakly regular categories over U1 and U2, re-

spectively and let F : P1 → P2 be an RBS functor. If x ρ y in P1, then xF ρ yF

in P2.

Proof. Suppose that x, y ∈ P1 and x ρ y. Then

d(x) R d(y), r(x) L r(y) and x · [r(x), r(y)] = [d(x),d(y)] · y.

Thus,

d(x)F R d(y)F, r(x)F L r(y)F and xF · [r(x), r(y)]F = [d(x),d(y)]F · yF.

This gives

d(x)F R d(y)F, r(x)F L r(y)F and xF · [r(x)F, r(y)F ] = [d(x)F,d(y)F ] · yF,

by (PF2), and so

d(xF ) R d(yF ), r(xF ) L r(yF ) and xF · [r(xF ), r(yF )] = [d(xF ),d(yF )] · yF.
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Hence, xF ρ yF .

Lemma 10.9. Let P1 and P2 be weakly regular categories over U1 and U2, re-

spectively, and let F1 : P1 → P2 and F2 : P2 → P3 be RBS functors. Then

F1F2 : P1 → P3 is an RBS functor.

Proof. (PF1) Certainly, F1F2 is a functor from P1 to P3 and a regular morphism

from U1 to U3.

(PF2) Suppose that e, f ∈ U1 are such that e R f . Then [e, f ]P1 is defined,

and eF1 R fF1 and eF1F2 R fF1F2 by the comment succeeding the definition of

regular morphism in Chapter 1. Using (PF2) for F1 and F2, we have that

[e, f ]P 1F1F2 = ([e, f ]P 1F1)F2 = [eF1, fF1]P2F2 = [eF1F2, fF1F2]P 3.

Dually, if e L f , then [e, f ]P 1F1F2 = [eF1F2, fF1F2]P 3.

(PF3) Assume that x ∈ P1 and e ∈ U1 with e ωl d(x). According to the

comment succeeding Definition 10.7, we have that e|x, eF1|xF1 and eF1F2|xF1F2

are well-defined. By (PF3), (e|x)F1 ρ eF1|xF1 and (eF1|xF1)F2 ρ eF1F2|xF1F2.

From (e|x)F1 ρ eF1 |xF1, we obtain that (e|x)F1F2 ρ (eF1|xF1)F2 by Lemma 10.8.

Hence, (e|x)F1F2 ρ eF1F2|xF1F2.

An immediate observation from Lemma 10.9 is that the class of weakly reg-

ular categories over regular biordered sets and RBS functors forms a category.

We refer to it as WRC.

We close this section with an important property of RBS fuctors.

Lemma 10.10. If P1 and P2 are weakly regular categories over regular biordered

sets U1 and U2, respectively, and F : P1 → P2 is an RBS functor. Then for any

h, k ∈ U1 and x ∈ P1, we have

(i) if h ωr d(x), then (h ∗ x)F ρ hF ∗ xF ;

(ii) if k ωl r(x), then (x ⋄ k)F ρ xF ⋄ kF .

Proof. To prove (i), suppose that x ∈ P1, h ∈ U1 and hωr d(x). Then

h ∗ x = [h, hd(x)] · (hd(x)|x).

Since F is RBS, it follows that F : U1 → U2 is a regular morphism, and so
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hF ωr d(x)F so that hF ∗ d(x)F exists. In addition, (hd(x))F = hFd(x)F and

[h, hd(x)]F = [hF, (hd(x))F ] = [hF, hFd(x)F ].

According to the comments following Definition 10.7, we have that

d((hd(x)|x)F ) = (hd(x))F = hFd(x)F = d((hF d(x)F |xF ).

By (PF3),

(hd(x)|x)F ρ (hd(x))F |xF = hF d(x)F |xF .

Thus, r((hd(x)|x)F ) L r(hF d(x)F |xF ) and

(hd(x)|x)F = hF d(x)F |xF · [r(hF d(x)F |xF ), r((hd(x)|x)F )],

so that
(h ∗ x)F

= ([h, hd(x)] · hd(x)|x)F

= [h, hd(x)]F · (hd(x)|x)F

= [hF, hFd(x)F ] · (hF d(x)F |xF ) · [r(hF d(x)F |xF ), r((hd(x)|x)F )]

= [hF, hFd(xF )] · (hF d(xF )|xF ) · [r(hF d(xF )|xF ), r((hd(x)|x)F )]

= (hF ∗ xF ) · [r(hF d(xF )|xF ), r((hd(x)|x)F )]

= (hF ∗ xF ) · [r(hF ∗ xF ), r((h ∗ x)F )].

Consequently, (h ∗ x)F ρ hF ∗ xF . Similarly, part (ii) holds.

10.2 Structure theorems

In preparation for the main theorem at the end of this section, we have to list some

necessary lemmas concerning a weakly regular category over a regular biordered

set. Throughout this section, we will use P to denote a weakly regular category

over a regular biordered set U .

Lemma 10.11. Let x ∈ P and g, h ∈ U be such that g ωr hωr d(x) and gd(x)ω hd(x).

Then g ∗ (h ∗ x) = g ∗ x.

Proof. By the hypothesis, g ∗ (h ∗ x) and g ∗ x are well-defined. By (B21),
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gh ω hRhd(x). So,

g ∗ (h ∗ x)

= [g, gh] · gh|(h ∗ x)

= [g, gh] · gh|([h, hd(x)] · hd(x)|x)

= [g, gh] · gh|[h, hd(x)] · k|(hd(x)|x)
(
by (P5), k = r(gh|[h, hd(x)])

)

= [g, gh] · gh|[h, hd(x)] · k|x
(
by (P2), k ωl hd(x), now use (P4)

)

= [g, gh] · [gh, u] · [u, u⋆] · u⋆|x
(
by (P3), u = (gh)(hd(x)), k = u∗

)

= [g, u] · [u, u⋆] · u⋆|x
(
gR ghRu, by (P1)

)

= [g, u] · u|x
(
by (P4)

)
.

As

u = (gh)(hd(x))

= g(h(hd(x)))
(
g ωr hRhd(x), Lemma 1.27

)

= g(hd(x))
(
hd(x) R h

)

= (gd(x))(hd(x))
(
by Lemma 1.27

)

= gd(x)
(
gd(x) ω hd(x)

)
,

we obtain that g ∗ (h ∗ x) = [g, gd(x)] · gd(x)|x = g ∗ x.

Dually, we have:

Lemma 10.12. If x ∈ P and g, h ∈ U with g ωl hωl r(x) and r(x)g ω r(x)h, then

(x ⋄ h) ⋄ g = x ⋄ g.

Now, let x, y ∈ P and h ∈ S(r(x),d(y)). We define

(x⊗ y)h = (x ⋄ h) · (h ∗ y).

Since h ∈ S(r(x),d(y)), it follows that hωl r(x) and hωr d(y) so that x ⋄ h and

h ∗ y exist. As r(x ⋄ h) = h and d(h ∗ y) = h, (x ⊗ y)h = (x ⋄ h) · (h ∗ y) is

well-defined.

Lemma 10.13. Let x, y, z ∈ P , h1 ∈ S(r(x),d(y)) and h2 ∈ S(r(y),d(z)).

Set h′
1 = r(h1 ∗ y) and h′

2 = d(y ⋄ h2). Then there exist h ∈ S(r(x), h′
2) and
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h′ ∈ S(h′
1,d(z)) such that ((x⊗ y)h1 ⊗ z)h′ = (x⊗ (y ⊗ z)h2)h.

Proof. Since h′
1 = r(h1 ∗ y) = r(h1d(y)|y) ωl r(y) and h2 ∈ S(r(y),d(z)), it follows

from Lemma 1.30 that S(h′
1, h2) ⊆ S(h′

1,d(z)). Similarly, as h′
2 = d(y ⋄ h2) =

d(y|r(y)h2
) ωr d(y) and h1 ∈ S(r(x),d(y)), by the same result, we have that

S(h1, h
′
2) ⊆ S(r(x), h′

2).

Since h1 ∈ S(r(x),d(y)), h2 ∈ S(r(y),d(z)), h′
1 = r(h1 ∗ y) and h′

2 =

d(y ⋄ h2), by (P7), there exist h′ ∈ S(h′
1, h2) and h ∈ S(h1, h

′
2) such that

((h1 ∗ y) ⋄ h′) · [h′, h′h2] ρ [h1h, h] · (h ∗ (y ⋄ h2)).

Put g = d((h1 ∗y) ⋄h′) and k = r(h∗ (y ⋄h2)). We obtain that gRh1h, h′h2 L k,

and

[h1h, g] · ((h1 ∗ y) ⋄ h′) · [h′, h′h2] = [h1h, h] · (h ∗ (y ⋄ h2)) · [k, h′h2].

Now, we deduce that

((x⊗ y)h1 ⊗ z)h′

= ((x⊗ y)h1 ⋄ h′) · (h′ ∗ z)
(
h′

1 = r(h1 ∗ y), h′ ∈ S(h′
1,d(z))

)

= (((x ⋄ h1) · (h1 ∗ y)) ⋄ h′) · (h′ ∗ z)

= ((x ⋄ h1) · (h1 ∗ y))|h′
1h′ · [h′

1h
′, h′] · (h′ ∗ z)

= (x ⋄ h1)|g · (h1 ∗ y)|h′
1h′ · [h′

1h
′, h′] · (h′ ∗ z)

(
by (P5)◦, g = d((h1 ∗ y) ⋄ h′) = d((h1 ∗ y)|h′

1h′)
)

= (x ⋄ h1)|g · ((h1 ∗ y) ⋄ h′) · (h′ ∗ z)

= (x ⋄ h1)|g · ((h1 ∗ y) ⋄ h′) · [h′, h′] · (h′ ∗ z)

= (x ⋄ h1)|g · ((h1 ∗ y) ⋄ h′) · [h′, h′h2] · [h′h2, h
′] · (h′ ∗ z)

(
h′ R h′h2, by (P1)

)

= (x ⋄ h1)|g · [g, g] · ((h1 ∗ y) ⋄ h′) · [h′, h′h2] · [h′h2, h
′] · (h′ ∗ z)

= (x ⋄ h1)|g · [g, h1h] · [h1h, g] · ((h1 ∗ y) ⋄ h′) · [h′, h′h2] · [h′h2, h
′] · (h′ ∗ z)

(
g R h1h, by (P1)

)

= (x ⋄ h1)|g · [g, h1h] · [h1h, h] · (h ∗ (y ⋄ h2)) · [k, h′h2] · [h′h2, h
′] · (h′ ∗ z)

(
as [h1h, g] · ((h1 ∗ y) ⋄ h′) · [h′, h′h2] = [h1h, h] · (h ∗ (y ⋄ h2)) · [k, h′h2]

)
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= (x ⋄ h1)|h1h · [h1h, h] · (h ∗ (y ⋄ h2)) · [k, h′h2] · [h′h2, h
′] · (h′ ∗ z)
(
g R h1h, by (P4)◦

)

= ((x ⋄ h1) ⋄ h) · (h ∗ (y ⋄ h2)) · [k, h′h2] · [h′h2, h
′] · (h′ ∗ z)

(
h ωl h1

)
.

From h ∈ S(h1, h
′
2), we have that hωl h1 and hωr h′

2. As h1 ∈ S(r(x),d(y)) and

h′
2 = d(y ⋄ h2), we have that h1 ω

l r(x) and h′
2 ω

r d(y). Thus h ωl h1 ω
l r(x)

and hωr h2 ω
r d(y), so that h ∈ M(r(x),d(y)). Since h1 ∈ S(r(x),d(y)), it

follows that r(x)h ωr r(x)h1. Again by r(x)hLhωl h1 L r(x)h1, we have that

r(x)h ω r(x)h1. By Lemma 10.12, (x ⋄ h1) ⋄ h = x ⋄ h. Hence,

((x⊗ y)h1 ⊗ z)h′ = (x ⋄ h) · (h ∗ (y ⋄ h2)) · [k, h′h2] · [h′h2, h
′] · (h′ ∗ z).

Also,

(x⊗ (y ⊗ z)h2)h

= (x ⋄ h) · (h ∗ (y ⊗ z)h2)

= (x ⋄ h) · (h ∗ ((y ⋄ h2) · (h2 ∗ z)))
(
h2 ∈ S(r(y),d(z))

)

= (x ⋄ h) · [h, hh′
2] · hh′

2
|
(
(y ⋄ h2) · (h2 ∗ z)

)

= (x ⋄ h) · [h, hh′
2] · hh′

2
|(y ⋄ h2) · k|(h2 ∗ z))

(
by (P5), k = r(hh′

2
|(y ⋄ h2)) = r(h ∗ (y ⋄ h2))

)

= (x ⋄ h) · (h ∗ (y ⋄ h2)) · k|(h2 ∗ z)
(
h ωr h′

2 = d(y ⋄ h2), k = r(h ∗ (y ⋄ h2))
)

= (x ⋄ h) · (h ∗ (y ⋄ h2)) · [k, k] · k|(h2 ∗ z)

= (x ⋄ h) · (h ∗ (y ⋄ h2)) · [k, h′h2] · [h′h2, k] · k|(h2 ∗ z)
(
k L h′h2, by (P1)

)

= (x ⋄ h) · (h ∗ (y ⋄ h2)) · [k, h′h2] · h′h2 |(h2 ∗ z)
(
k L h′h2, by (P4)

)

= (x ⋄ h) · (h ∗ (y ⋄ h2)) · [k, h′h2] · [h′h2, h
′h2] · h′h2|(h2 ∗ z)

= (x ⋄ h) · (h ∗ (y ⋄ h2)) · [k, h′h2] · [h′h2, h
′] · [h′, h′h2] · h′h2|(h2 ∗ z)

(
h′ R h′h2, by (P1)

)

= (x ⋄ h) · (h ∗ (y ⋄ h2)) · [k, h′h2] · [h′h2, h
′] · (h′ ∗ (h2 ∗ z))

(
h′ ωr h2 = d(h2 ∗ z)

)
.

Since h′ ωr h2 ω
r d(z), it follows that h′d(z) R h′ ωr h2 R h2d(z). As

h′ ∈ M(r(y),d(z)) and h2 ∈ S(r(y),d(z)),
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we have that h′d(z) ωl h2d(z). So h′d(z) ω h2d(z). By Lemma 10.11, h′∗(h2∗z) =

h′ ∗ z. Thus,

(x⊗ (y ⊗ z)h2)h = (x ⋄ h) · (h ∗ (y ⋄ h2)) · [k, h′h2] · [h′h2, h
′] · (h′ ∗ z).

Hence, ((x⊗ y)h1 ⊗ z)h′ = (x⊗ (y ⊗ z)h2)h.

Lemma 10.14. If x, y ∈ P and x ρ y, then h ∗ x ρ h ∗ y and x ⋄ k ρ y ⋄ k, where

hωr d(x) and k ωl r(x).

Proof. We first show that x ρ y and hωr d(x) imply h ∗ x ρ h ∗ y. Dually, the

second part holds. Clearly, if x ρ y, then d(x) R d(y) and r(x) L r(y). Write

h1 = r(h ∗ x) = r(hd(x)|x). We deduce that

hd(x) ∗ (x · [r(x), r(y)]) = hd(x)|(x · [r(x), r(y)])
(
hd(x) ω d(x)

)

= hd(x)|x · h1 |[r(x), r(y)]
(
h1 = r(hd(x)|x), by (P5)

)

= hd(x)|x · [h1, h
⋆
1]

(
h1 ω

l r(x) L r(y), by (P3)
)

and

hd(x) ∗ ([d(x),d(y)] · y)

= hd(x)|([d(x),d(y)] · y)
(
hd(x) ω d(x)

)

= hd(x)|[d(x),d(y)] · g|y
(
by (P5), g = r(hd(x)|[d(x),d(y)])

)

= [hd(x), (hd(x))d(y)] · [(hd(x))d(y), ((hd(x))d(y))⋆] · g|y
(
hd(x) ω d(x) R d(y), by (P3)

)

= [hd(x), hd(y)] · [hd(y), (hd(y))⋆] · g|y
(
h ωr d(x) R d(y), by(B31), so g = (hd(y))⋆

)

= [hd(x), hd(y)] · hd(y)|y
(
by (P4)

)
.

Since x ρ y, we have that x · [r(x), r(y)] = [d(x),d(y)] · y. Thus,

hd(x) ∗ (x · [r(x), r(y)]) = hd(x) ∗ ([d(x),d(y)] · y).
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So hd(x)|x · [h1, h
⋆
1] = [hd(x), hd(y)] · hd(y)|y. Hence,

(h ∗ x) · [h1, h
⋆
1]

= [h, hd(x)] · hd(x)|x · [h1, h
⋆
1]

= [h, hd(x)] · [hd(x), hd(y)] · hd(y)|y

= [h, hd(y)] · hd(y)|y
(
h R hd(x) R hd(y), by (P1)

)

= h ∗ y,

which implies that h⋆
1 = r(h ∗ y), so that

(h ∗ x) · [h1, h
⋆
1] = (h ∗ x) · [r(h ∗ x), r(h ∗ y)]

= h ∗ y

= [h, h] · (h ∗ y)

= [d(h ∗ x),d(h ∗ y)] · (h ∗ y).

Consequently, h ∗ x ρ h ∗ y.

Lemma 10.15. If x ρ x′, y ρ y′ and h ∈ S(r(x),d(y)), then (x⊗ y)h ρ (x′ ⊗ y′)h.

Proof. Since x ρ x′ and y ρ y′, we have that r(x) L r(x′) and d(y) R d(y′), which

gives from Lemma 1.28 that S(r(x),d(y)) = S(r(x′),d(y′)). Thus, (x′ ⊗ y′)h is

well-defined.

In view of Lemma 10.14, we have that x ⋄ h ρ x′ ⋄ h. So

d((x′ ⊗ y′)h) = d(x′ ⋄ h) R d(x ⋄ h) = d((x⊗ y)h),

r(x′ ⋄ h) L r(x ⋄ h)

and

(x′ ⋄ h) · [r(x′ ⋄ h), r(x ⋄ h)] = [d(x′ ⋄ h),d(x ⋄ h)] · (x ⋄ h),

that is,

(x′ ⋄ h) · [h, h] = [d(x′ ⋄ h),d(x ⋄ h)] · (x ⋄ h),

so, x′ ⋄ h = [d(x′ ⋄ h),d(x ⋄ h)] · (x ⋄ h).

Dually,

r((x′ ⊗ y′)h) = r(h ∗ y′) L r(h ∗ y) = d((x⊗ y)h)
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and h ∗ y′ = (h ∗ y) · [r(h ∗ y), r(h ∗ y′)]. Now, we have that

(x′ ⊗ y′)h = (x′ ⋄ h) · (h ∗ y′)

= [d(x′ ⋄ h),d(x ⋄ h)] · (x ⋄ h) · (h ∗ y) · [r(h ∗ y), r(h ∗ y′)]

= [d(x′ ⋄ h),d(x ⋄ h)] · (x⊗ y)h · [r(h ∗ y), r(h ∗ y′)].

Thus,

[d(x ⋄ h),d(x′ ⋄ h)] · (x′ ⊗ y′)h

= [d(x ⋄ h),d(x′ ⋄ h)] · [d(x′ ⋄ h),d(x ⋄ h)] · (x⊗ y)h · [r(h ∗ y), r(h ∗ y′)]

= [d(x ⋄ h),d(x ⋄ h)] · (x⊗ y)h · [r(h ∗ y), r(h ∗ y′)]
(
by (P1)

)

= (x⊗ y)h · [r(h ∗ y), r(h ∗ y′)],

together with d(x′ ⋄ h) R d(x ⋄ h) and r(h ∗ y′) L r(h ∗ y), we have that

(x⊗ y)h ρ (x′ ⊗ y′)h.

Lemma 10.16. If x, y ∈ P and h, h′ ∈ S(r(x),d(y)), then (x⊗ y)h = (x⊗ y)h′.

Proof. Since h, h′ ∈ S(r(x),d(y)), we can set

h1 = d(x ⋄ h) = d((x⊗ y)h), h2 = r(h ∗ y) = r((x⊗ y)h),

h′
1 = d(x ⋄ h′) = d((x⊗ y)h′), h′

2 = r(h′ ∗ y) = r((x⊗ y)h′).

Suppose that h R h′. Then hd(y) R h R h′ R h′d(y). But h, h′ ∈ S(r(x),d(y)),

so that h ≺ h′ and h′ ≺ h, which imply that hd(y)ωl h′d(y) and h′d(y)ωl hd(y).

Thus hd(y) L h′d(y). Hence, hd(y) = h′d(y), and so hd(y)|y = h′d(y)|y, which

implies that h2 = h′
2. In addition,

h′ ∗ y = [h′, h′d(y)] · h′d(y)|y

= [h′, h] · [h, h′d(y)] · h′d(y)|y
(
h R h′ R h′d(y), by (P1)

)

= [h′, h] · [h, hd(y)] · hd(y)|y
(
h′d(y) = hd(y)

)

= [h′, h] · (h ∗ y).

Since h, h′ ∈ S(r(x),d(y)), we have that h, h′ ωl r(x), and so r(x)hLh and
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r(x)h′ Lh′. As hRh′, by (B32)◦, we have that

(r(x)h)(r(x)h′) = r(x)(hh′) = r(x)h′ and (r(x)h′)(r(x)h) = r(x)h,

that is, r(x)hR r(x)h′. Now, we obtain a row-singular U -square


 h h′

r(x)h r(x)h′


.

By the comments succeeding Definition 10.1, we have

[r(x)h, h] · [h, h′] = [r(x)h, r(x)h′] · [r(x)h′, h′],

and so

(x ⋄ h) · [h, h′] = x|r(x)h · [r(x)h, h] · [h, h′]

= x|r(x)h · [r(x)h, r(x)h′] · [r(x)h′, h′]

= x|r(x)h′ · [r(x)h′, h′]
(
r(x)h R r(x)h′, by (P4)◦

)

= x ⋄ h′.

Thus, d(x ⋄ h) = d(x ⋄ h′), that is, h′
1 = h1. So

(x⊗ y)h′ = (x ⋄ h′) · (h′ ∗ y)

= (x ⋄ h) · [h, h′] · [h′, h] · (h ∗ y)

= (x ⋄ h) · [h, h] · (h ∗ y)
(
h R h′, by (P1)

)

= (x ⋄ h) · (h ∗ y)

= (x⊗ y)h.

Dually, if h L h′ we can show that (x ⊗ y)h = (x ⊗ y)h′. By the comment

succeeding Lemma 1.35, if h, h′ ∈ S(r(x),d(y)), there exists k ∈ S(r(x),d(y))

such that h R k L h′. Thus the lemma holds in all cases.

Let PS = P/ρ. For x, y ∈ P , h ∈ S(r(x),d(y)), we define

x̄⊙ ȳ = (x⊗ y)h,

where x̄ denotes the ρ-class of x in P .

Lemma 10.17. The set PS = P/ρ forms a semigroup under ⊙ defined above.
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Proof. Let x, x′, y, y′ ∈ P with x ρ x′ and y ρ y′. If h, h′ ∈ S(r(x),d(y)) =

S(r(x′),d(y′)), then by Lemma 10.15 and Lemma 10.16, we have that

(x⊗ y)h ρ (x′ ⊗ y′)h = (x′ ⊗ y′)h′.

Thus, (x⊗ y)h = (x′ ⊗ y′)h′, and so the product is well-defined.

In order to show that the operation ⊙ is associative, we assume that x, y, z ∈

P , h1 ∈ S(r(x),d(y)) and h2 ∈ S(r(y),d(z)). By Lemma 10.13, there exist

h ∈ S(r(x),d((y⊗z)h2)) and h′ ∈ S(r((x⊗y)h1),d(z)) such that ((x⊗y)h1⊗z)h′ =

(x⊗ (y ⊗ z)h2)h. Thus

(x̄⊙ ȳ) ⊙ z̄ = (x⊗ y)h1 ⊙ z̄ = ((x⊗ y)h1 ⊗ z)h′

= (x⊗ (y ⊗ z)h2)h = x̄⊙ (y ⊗ z)h2 = x̄⊙ (ȳ ⊙ z̄).

Hence, PS is a semigroup.

Lemma 10.18. If e, h ∈ U are such that h ωr e, then

h ∗ 1e ρ 1he ρ (1h ⊗ 1e)h,

so that 1h ⊙ 1e = 1he.

Proof. Suppose that e, h ∈ U with hωr e. Then hRhe and

[he, h] · (h ∗ 1e) = [he, h] · (h ∗ [e, e])

= [he, h] · [h, he] · [he, (he)⋆]

= [he, he] · [he, (he)⋆]

= 1he · [he, (he)⋆].

Certainly, r(h ∗ 1e) = (he)⋆ L he. Thus, h ∗ 1e ρ 1he.

According to Lemma 1.29, we have that eh = h ∈ S(h, e), and so

(1h ⊗ 1e)h is well-defined. Then

(1h ⊗ 1e)h = ([h, h] ⊗ [e, e])h

= ([h, h] ⋄ h) · (h ∗ [e, e])

= [h+, h] · [h, he] · [he, (he)⋆]

= [h+, he] · [he, (he)⋆]
(
h+ RhRhe, by (P1)

)
.
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Further,

[h+, he] · 1he = [h+, he] · [he, he]

= [h+, he] · [he, (he)⋆] · [(he)⋆, he]

= (1h ⊗ 1e)h · [(he)⋆, he].

Hence, 1he ρ (1h ⊗ 1e)h.

Dually, we have:

Lemma 10.19. If e, h ∈ U are such that h ωl e, then

1e ⋄ h ρ 1eh ρ (1e ⊗ 1h)h

so that 1e ⊙ 1h = 1eh.

Lemma 10.20. If P is a weakly regular category over U and x, y ∈ P with x · y

defined, then x̄⊙ ȳ = x · y. Moreover, if e ∈ U , then 1e ∈ E(PS).

Proof. Suppose that x, y ∈ P are such that x · y is defined. Then r(x) = d(y),

from which it follows that S(r(x),d(y)) = {r(x)}. Thus,

x̄⊙ ȳ = (x⊗ y)r(x) = (x ⋄ r(x)) · (r(x) ∗ y) = x|r(x) · r(x)|y.

Let h = d(y) = r(x). From (P2) and (P2)◦, we have d(x|h) R d(x), r(h|y) L r(y)

and

h|y · [r(h|y), r(y)] = y,

so

x · h|y · [r(h|y), r(y)] = x · y.

But

x = [d(x),d(x|h)] · x|h,

so

[d(x),d(x|h)] · x|h · h|y · [r(h|y), r(y)] = x · y,

hence,

[d(x|h),d(x)] · [d(x),d(x|h)] · x|h · h|y · [r(h|y), r(y)] = [d(x|h),d(x)] · (x · y),
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that is,

[d(x|h),d(x|h)] · x|h · h|y · [r(h|y), r(y)] = [d(x|h),d(x)] · (x · y),

or equivalently,

x|h · h|y · [r(h|y), r(y)] = [d(x|h),d(x)] · (x · y),

as h = d(y) = r(x), we obtain that

(x|r(x) · r(x)|y) · [r(r(x)|y), r(y)] = [d(x|r(x)),d(x)] · (x · y).

Hence, x|r(x) · r(x)|y ρ x · y, and so x̄⊙ ȳ = x · y.

Since e ∈ U and 1e · 1e = 1e, it follows that 1e ∈ E(PS).

Lemma 10.21. Let x ∈ P and e ∈ U be such that e ωl d(x). Then e|x = 1e ⊙ x̄.

Proof. As e ωl d(x), we have that e L d(x)e ω d(x), and so

1e ⊙ x̄ = [e, e] ⊙ x̄

= [e,d(x)e] ⊙ x̄
(
e L d(x)e, Lemma 10.2

)

= [e,d(x)e] ⊙ 1d(x)e ⊙ x̄

= [e,d(x)e] ⊙ (1d(x)e ⊗ x)d(x)e
(
d(x)e ω d(x), by Lemma 1.29, d(x)e ∈ S(d(x)e,d(x))

)

= [e,d(x)e] ⊙ (1d(x)e ⋄ d(x)e) · (d(x)e ∗ x)

= [e,d(x)e] ⊙ 1d(x)e ⋄ d(x)e⊙ d(x)e ∗ x
(
Lemma 10.20

)

= [e,d(x)]e⊙ 1d(x)e ⊙ d(x)e ∗ x
(
Lemma 10.19

)

= [e,d(x)e] ⊙ d(x)e ∗ x

= [e,d(x)e] ⊙ [d(x)e, (d(x)e)d(x)] · (d(x)e)d(x)|x

= [e,d(x)e] ⊙ [d(x)e,d(x)e] · d(x)e|x
(
d(x)e ω d(x)

)

= [e,d(x)e] ⊙ d(x)e|x

= [e,d(x)e] · d(x)e|x
(
Lemma 10.20

)

= e|x
(
e L d(x)e, by (P4)

)
.
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Lemma 10.22. Let x, y ∈ P and e ∈ U . If x̄ = 1e ⊙ ȳ, then x ≤r h ∗ y and

h ∗ y ≤r y in P , where h ∈ S(e,d(y)).

Proof. We note that

x̄ = 1e ⊙ ȳ

= (1e ⊗ y)h

(
h ∈ S(e,d(y))

)

= (1e ⋄ h) · (h ∗ y)

= 1e ⋄ h⊙ h ∗ y
(
Lemma 10.20

)

= 1eh ⊙ h ∗ y
(
Lemma 10.19

)

= eh|(h ∗ y)
(
eh L h = d(h ∗ y), Lemma 10.21

)
,

and so x ρ eh|(h ∗ y), that is, x ≤r h ∗ y. Notice that

h ∗ y = [h, hd(y)] · hd(y)|y

= [h, hd(y)] ⊙ hd(y)|y
(
Lemma 10.20

)

= [hd(y), hd(y)] ⊙ hd(y)|y
(
h R hd(y),Lemma 10.2

)

= hd(y)|y,

and so h ∗ y ρ hd(y)|y so that h ∗ y ≤r y.

Lemma 10.23. If P is a weakly regular category over U and x ∈ P , then

1d(x) R̃U x̄ L̃U 1r(x), where U = {1e : e ∈ U}.

Proof. In view of Lemma 10.20, U is a subset of idempotents of PS. Now,

we claim that x̄ R̃U 1d(x), and dually, we have that x̄ L̃U 1r(x). Clearly, by

Lemma 10.20, 1d(x) ⊙ x̄ = x̄. Assume that g ∈ U and 1g ⊙ x̄ = x̄. Then

(1g ⊗x)h ρ x, where h ∈ S(g,d(x)), which gives that (1g ⋄h) · (h ∗x) ρ x, that is,

[(gh)+, gh] · [gh, h] · (h ∗ x) ρ x,

which implies that gh R (gh)+ R d(x). So

1g ⊙ 1d(x) = (1g ⊗ 1d(x))h

(
h ∈ S(g,d(x))

)

= (1g ⋄ h) · (h ∗ 1d(x))

= 1g ⋄ h⊙ h ∗ 1d(x)

(
Lemma 10.20

)
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= (1g ⊗ 1h)h ⊙ (1h ⊗ 1d(x))h

(
Lemma 10.18, Lemma 10.19

)

= (1g ⊙ 1h) ⊙ (1h ⊙ 1d(x))

= 1g ⊙ 1h ⊙ 1d(x)

= (1g ⊙ 1h) ⊙ 1d(x)

= (1g ⊗ 1h)h ⊙ 1d(x)

= 1gh ⊙ 1d(x)

(
h ωl g, Lemma 10.19

)

= (1gh ⊗ 1d(x))gh
(
gh R d(x), so by Lemma 1.29, gh ∈ S(gh,d(x))

)

= 1(gh)d(x)

(
Lemma 10.18

)

= 1d(x)

(
gh R d(x)

)
.

Let U = {1e : e ∈ U}. For any 1e, 1f ∈ U , we have

1e ω
r 1f if and only if 1f ⊙ 1e = 1e,

and dually,

1e ω
l 1f if and only if 1e ⊙ 1f = 1e.

Lemma 10.24. The map χ : U → U : e 7→ 1e is a regular isomorphism.

Proof. Suppose that (e, f) ∈ DU = (ωr ∪ ωl) ∪ (ωr ∪ ωl)−1. If e ωr f , then by

Lemma 10.18, 1e ⊙ 1f = 1ef . Again, by Lemma 1.29, ef ∈ S(f, e). Thus,

1f ⊙ 1e

= (1f ⊗ 1e)ef

= (1f ⋄ ef) · (ef ∗ 1e)

= [f, f ]|fef · [fef, ef ] · [ef, efe] · efe|[e, e]

= [f, f ]|ef · [ef, ef ] · [ef, e] · e|[e, e]
(
e R ef ω f

)

= [(ef)+, ef ] · [ef, ef ] · [ef, e] · [e, e⋆]

= [(ef)+, e] · [e, e⋆]
(
(ef)+ R ef R e, by (P1)

)
.
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Note that (ef)+ R ef R e, e⋆ L e and using the above we have

[(ef)+, e] · 1e = [(ef)+, e] · [e, e]

= [(ef)+, e] · [e, e⋆] · [e⋆, e]

= (1f ⊗ 1e)ef · [e⋆, e].

We have that 1f ⊙ 1e = 1e = 1fe.

Dually, if e ωl f , then 1e ⊙1f = 1ef and 1f ⊙1e = 1fe. Thus χ is a morphism.

To show that χ is a regular morphism, we assume that h ∈ S(e, f). Then

1e ⊙ 1f = (1e ⊗ 1f)h

= (1e ⋄ h) · (h ∗ 1f)

= 1e ⋄ h⊙ h ∗ 1f

(
Lemma 10.20

)

= 1eh ⊙ 1hf

(
Lemma 10.18 and Lemma 10.19

)

= (1e ⊙ 1h) ⊙ (1h ⊙ 1f)
(
Lemma 10.18 and Lemma 10.19

)

= 1e ⊙ 1h ⊙ 1f .

Thus, by Lemma 10.23 and Lemma 2.12, we have 1h ∈ S1(1e, 1f) ⊆ S(1e, 1f),

and so χ is a regular morphism.

Since no two identities of P are ρ-equivalent by Lemma 10.3, χ is injective.

Clearly, χ is surjective. Thus, χ is a bijective regular morphism, and so by

Lemma 1.26, we succeed in obtaining that χ is a regular isomorphism.

The next lemma is useful for Lemma 10.27.

Lemma 10.25. Let e, f ∈ U and h ∈ S(e, f). Then 1eh R 1e ⊙ 1f L 1hf in 〈U〉,

where 〈U〉 is the semigroup generated by U .

Proof. We first show that 1eh R 1e ⊙ 1f . Notice that

1e ⊙ 1f = (1e ⊗ 1f)h

(
h ∈ S(e, f)

)

= (1e ⋄ h) · (h ∗ 1f)

= 1e ⋄ h⊙ h ∗ 1f

(
Lemma 10.20

)

= 1eh ⊙ 1hf

(
Lemma 10.18 and Lemma 10.19

)
.
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In addition, we have

1eh ⊙ (1e ⊙ 1f) = 1eh ⊙ 1eh ⊙ 1hf = 1eh ⊙ 1hf = 1e ⊙ 1f

and

(1e ⊙ 1f) ⊙ 1h
2

= 1eh ⊙ 1hf ⊙ 1h ⊙ 1h

= [eh, h] · [h, hf ] ⊙ [hf, h] ⊙ [h, eh]
(
eh L h R hf, Lemma 10.2

)

= [eh, h] · [h, hf ] · [hf, h] · [h, eh]
(
by Lemma 10.20

)

= [eh, h] · [h, h] · [h, eh]
(
by (P1)

)

= [eh, eh]
(
by (P1)

)

= 1eh.

Thus, 1eh R 1e ⊙ 1f in 〈U〉. Dually we have that 1e ⊙ 1f L 1hf in 〈U〉.

We pause here to make a short comment on Lemma 10.25. Suppose that

x̄ = 1e ⊙ 1f . As

1e ⊙ 1f = 1eh ⊙ 1hf

= [eh, h] ⊙ [h, hf ]
(
eh L h R hf,Lemma 10.2

)

= [eh, h] · [h, hf ]
(
Lemma 10.20

)
,

we have that d(x) R eh. By Lemma 10.24, we have that 1d(x) R 1eh. Since

1eh R 1e ⊙ 1f in 〈U〉, we obtain that 1d(x) R 1e ⊙ 1f in 〈U〉, that is, 1d(x) R x̄ in

〈U〉. By a dual argument, we have that 1r(x) L x̄ in 〈U〉.

Lemma 10.26. Let P be a weakly regular category over U . Suppose that for

x ∈ E(PS), we have 1d(x) R∗ x̄ L∗ 1r(x) in PS. Then x ∈ U .

Proof. Suppose that x ∈ P and x̄⊙ x̄ = x̄. As x̄ L∗ 1r(x), we have that 1r(x) ⊙ x̄ =

1r(x). Let h ∈ S(r(x),d(x)). Then, we have

1r(x) ⊙ x̄ = 1r(x)

⇒ (1r(x) ⊗ x)h = 1r(x)

⇒ (1r(x) ⋄ h) · (h ∗ x) = 1r(x)
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⇒ 1r(x)|r(x)h · [r(x)h, h] · (h ∗ x) = 1r(x)

⇒ [(r(x)h)+, r(x)h] · [r(x)h, h] · (h ∗ x) = 1r(x)

⇒ r(x)h R (r(x)h)+ R r(x).

As h ωl r(x), we have that r(x)h ω r(x), and so we must have that r(x)h = r(x).

Also, we have hr(x) = h, and so h L r(x). By Lemma 10.24, we obtain that

1h L 1r(x). Since x̄ L∗ 1r(x), we succeed in obtaining that x̄ L∗ 1h. Dually, we

have that x̄ R∗ 1h so that x̄ H∗ 1h. As x̄ is an idempotent and each H∗-class

contains at most one idempotent, we must have x̄ = 1h.

Lemma 10.27. The set U = {1e : e ∈ U} generates a regular subsemigroup 〈U〉

of PS and satisfies E(〈U〉) = U .

Proof. To show that E(〈U〉) = U , we first verify that for x̄ ∈ 〈U〉, 1d(x) R x̄ L 1r(x)

by induction. Suppose that x̄ = 1e ⊙ 1f , where e, f ∈ U . Then by the comment

succeeding Lemma 10.25, we have that 1d(x) R x̄ in 〈U〉.

Now, we assume that if x̄ = 1e1 ⊙ 1e2 ⊙ · · · ⊙ 1en
, then 1d(x) R x̄ in 〈U 〉. Let

ȳ = 1e1 ⊙ 1e2 ⊙ · · · ⊙ 1en
⊙ 1en+1.

Put

z̄ = 1e2 ⊙ 1e3 ⊙ · · · ⊙ 1en+1.

Then by the hypothesis, 1d(z) R z̄ in 〈U〉, and so there exists t̄ ∈ 〈U〉 such that

z̄ ⊙ t̄ = 1d(z), so that

ȳ ⊙ t̄ = 1e1 ⊙ z̄ ⊙ t̄ = 1e1 ⊙ 1d(z).

If k ∈ S(e1,d(z)), by Lemma 10.25, we have that 1e1 ⊙ 1d(z) R 1e1k in 〈U〉, that

is, ȳ ⊙ t̄ R 1e1k in 〈U〉. Thus, there exists ū ∈ 〈U〉 such that

ȳ ⊙ t̄⊙ ū = 1e1k,

where t̄⊙ ū ∈ 〈U〉.
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Observe that

ȳ = 1e1 ⊙ z̄

= (1e1 ⊗ z)k

(
k ∈ S(e1,d(z))

)

= (1e1 ⋄ k) · (k ∗ z)

= 1e1 ⋄ k ⊙ k ∗ z
(
Lemma 10.20

)

= 1e1k ⊙ k ∗ z
(
Lemma 10.19

)
,

and so 1e1k ⊙ ȳ = ȳ, so that 1e1k R ȳ in 〈U〉. As e1k L k, by Lemma 10.2, we

have 1e1k = [e1k, k], and so

ȳ = 1e1k ⊙ k ∗ z = [e1k, k] ⊙ k ∗ z = [e1k, k] · (k ∗ z)

so that d(y) R e1k, and so 1e1k R 1d(y). Hence 1d(y) R ȳ in 〈U〉. Dually, we have

that ȳ L 1r(y) in 〈U〉.

For any x̄ ∈ E(〈U〉), we have that 1d(x) R x̄ L 1r(x), and so by Lemma 10.26,

we have x̄ ∈ U . Together with U ⊆ E(〈U〉), we obtain that E(〈U〉) = U .

Lemma 10.28. If P is a weakly regular category over U , then for any x̄, ȳ ∈ PS,

(i) x̄ L̃U ȳ if and only if r(x) L r(y);

(ii) x̄ R̃U ȳ if and only if d(x) R d(y).

Proof. To prove (i), suppose that x̄, ȳ ∈ PS and x, y ∈ P . Then

x̄ L̃U ȳ ⇔ 1r(x) L̃U 1r(y)

(
by Lemma 10.23

)

⇔ 1r(x) L 1r(y)

⇔ r(x) L r(y)
(
by Lemma 10.24

)
.

Similarly, we show that part (ii) holds.

Lemma 10.29. If P is a weakly regular category over U , then PS satisfies the

Congruence Condition (C).

Proof. Let x̄, ȳ, z̄ ∈ PS be such that x̄ L̃U ȳ. Then by Lemma 10.28, r(x) L r(y).

According to Lemma 1.28, we have that S(r(x),d(z)) = S(r(y),d(z)). Suppose

that h ∈ S(r(x),d(z)). Then

x̄⊙ z̄ = (x⊗ z)h = (x ⋄ h) · (h ∗ z) and ȳ ⊙ z̄ = (y ⊗ z)h = (y ⋄ h) · (h ∗ z).
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As r((x ⋄ h) · (h ∗ z)) = r(h ∗ z) = r((y ⋄ h) · (h ∗ z)), it follows from Lemma 10.28

that x̄⊙ z̄ L̃E ȳ⊙ z̄, and so L̃U is a right congruence on PS. Dually, R̃U is a left

congruence on PS.

To sum up, we obtain the following result.

Theorem 10.30. Let P be a weakly regular category over a regular biordered

set U . Then PS is a weakly U -regular semigroup, where U = {1e : e ∈ U}.

Moreover, pre-orders ≤′
r and ≤ℓ

′ on P correspond to partial orders ≤′
r and ≤′

l on

PS, and pre-orders ≤t
r and ≤t

l on P correspond to pre-orders ≤r and ≤l on PS.

Proof. It is sufficient to consider these orders on P and PS. Let x, y ∈ P . We

have that

x ≤′
r y in P ⇔ x ρ e|y for some e ω d(y)

⇔ x̄ = e|y in PS for some e ω d(y)

⇔ x̄ = 1e ⊙ ȳ in PS for some e ω d(y)
(
Lemma 10.21

)

⇔ x̄ ≤′
r ȳ in PS.

Dually, we have that x ≤ℓ
′ y in P if and only if x̄ ≤′

l ȳ in PS.

In addition,

x ≤t
r y in P

⇒ x = y0 ≤r y1 ≤r y2 ≤r · · · ≤r yn = y in P for some n ≥ 1

⇒ x ρ e1 |y1, y1 ρ e2 |y2, · · · , yn−1 ρ en
|yn = en

|y for some e1, e2, · · · , en ∈ U

⇒ x̄ = e1 |y1, y1 = e2|y2, · · · , yn−1 = en
|y in PS

⇒ x̄ = 1e1 ⊙ y1, y1 = 1e2 ⊙ y2, · · · , yn−1 = 1en
⊙ ȳ

(
Lemma 10.21

)

⇒ x̄ = 1e1 ⊙ 1e2 ⊙ · · · ⊙ 1en
⊙ ȳ in PS

⇒ x̄ ≤r ȳ in PS.

Conversely, if x̄ ≤r ȳ in PS, then there exist 1e1, 1e2, · · · , 1en
∈ U such that

x̄ = 1e1 ⊙ 1e2 ⊙ · · · ⊙ 1en
⊙ ȳ.

Let

yn−1 = 1en
⊙ ȳ, yn−2 = 1en−1 ⊙ yn−1, · · · , x = 1e1 ⊙ y1,
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and let hn ∈ S(en,d(y)), hn−1 ∈ S(en−1,d(yn−1)), · · · , h1 ∈ S(e1,d(y1)). Then

by Lemma 10.22, we have that

x ≤r h1 ∗ y1, h1 ∗ y1 ≤r y1, · · · ,

yn−2 ≤r hn−1 ∗ yn−1, hn−1 ∗ yn−1 ≤r yn−1,

yn−1 ≤r hn ∗ y, hn ∗ y ≤r y,

that is, x ≤r
t y in P .

Similarly, x ≤t
l y in P if and only if x̄ ≤l ȳ in PS.

We close this section by constructing an admissible morphism between weakly

U -regular semigroups from an RBS functor.

Lemma 10.31. If P1 and P2 are weakly regular categories over regular biordered

sets U1 and U2, respectively, and F : P1 → P2 is an RBS functor, then the

map FS : P1S → P2S defined by the rule that x̄FS = xF is an admissible

morphism; moreover, if F1 : P1 → P2 and F2 : P2 → P3 are RBS functors, then

(F1F2)S = F1SF2S.

Proof. It follows from Lemma 10.8 that if x, y ∈ P1 and x̄ = ȳ, that is, x ρ y in

P1, then xF ρ yF , so that FS is well-defined.

Now, we claim that FS is a semigroup morphism. Suppose that x̄, ȳ ∈ P1S

and h ∈ S(r(x),d(y)). Then hF ∈ S(r(xF ),d(yF )), and

(x̄⊙ ȳ)FS = (x⊗ y)hFS
(
h ∈ S(r(x),d(y))

)

= (x ⋄ h) · (h ∗ y)FS

= ((x ⋄ h) · (h ∗ y))F

= (x ⋄ h)F · (h ∗ y)F

= (x ⋄ h)F ⊙ (h ∗ y)F

= xF ⋄ hF ⊙ hF ∗ yF
(
Lemma 10.10

)

= (xF ⋄ hF ) · (hF ∗ yF )

= (xF ⊗ yF )hF

(
hF ∈ S(r(xF ),d(yF ))

)

= xF ⊙ yF

= x̄FS · ȳFS.
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Next, we present the proof that FS is admissible. By Lemma 10.23, for any

x ∈ P1, we have that 1d(x) R̃U1
x̄ L̃U1

1r(x). Then

1d(x)FS = 1d(x)F

= 1d(xF ) R̃U2
xF = x̄FS.

Dually, we have that 1r(x)FS L̃U2
x̄FS.

Finally, 1eFS = 1eF = 1eF as F is a functor, so that U1FS ⊆ U2.

To sum up, we have that FS is an admissible morphism from P1S to P2S.

It is routine to show that (F1F2)S = F1SF2S.

It is an immediate consequence of Theorem 10.30 and Lemma 10.31 that

S : WRC → WRS is a functor.

10.3 Correspondence

The aim of this section is to present a converse to Theorem 10.30.

Let S be a weakly U -regular semigroup and let K be a representative of U .

For any e ∈ U , we will use e⋆ and e+ to denote the elements of K which are

L-related to e in U and R-related to e in U , respectively. Set

SC = {(e, x, f) : e R̃U x L̃U f, e, f ∈ U} ⊆ U × S × U.

We put

d((e, x, f)) = e (abbreviated to d(e, x, f) = e)

and

r((e, x, f)) = f (abbreviated to r(e, x, f) = f)

for all (e, x, f) ∈ SC, and define a partial binary operation · on SC by the rule

that

(e, x, f) · (f, y, v) = (e, xy, v),

where (e, x, f), (f, y, v) ∈ SC and xy is the product of x and y in S. Since

e R̃U x = xf R̃U xy and xy L̃U fy = y L̃U v, we have that e R̃U xy L̃U v, and so

(e, xy, v) ∈ SC. If e, f ∈ U with e R f or e L f , then we define [e, f ] = (e, ef, f).

Obviously, [e, f ] ∈ SC. For any (e, x, f) ∈ SC and u, v ∈ B with u ≤L e and
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v ≤R f , we define

u|(e, x, f) = (u, ux, (ux)⋆) and (e, x, f)|v = ((xv)+, xv, v).

Notice that u = ue R̃U ux L̃U (ux)⋆ and (xv)+ R̃U xv L̃U fv = v. So

(u, ux, (ux)⋆) and ((xv)+, xv, v) are in SC, that is, u|(e, x, f) and (e, x, f)|v are

well-defined.

Lemma 10.32. The set SC, together with the restriction, co-restriction and the

distinguished morphisms given as above, forms a weakly regular category over U .

Proof. Clearly, SC forms a category with set of objects U and morphisms the

triples are given as above. For any e ∈ U , [e, e] = (e, e, e) is the identity associated

to e. It is necessary to show that SC satisfies (P1) to (P7) and their duals.

(P1) If e, f, g ∈ U with e R f R g, then

[e, f ] · [f, g] = (e, f, f) · (f, g, g) = (e, g, g) = [e, g].

Similarly, if eL f L g, then [e, f ] · [f, g] = [e, g].

(P2) Suppose that (e, x, f) ∈ SC, h ∈ U and h ≤L e. Then h|(e, x, f) =

(h, hx, (hx)⋆) and d(h|(e, x, f)) = h. By Lemma 2.14, (hx)⋆ ≤L f . In particular,

if h = e, then e|(e, x, f) = (e, x, x⋆). Certainly, x⋆ L f and

(e, x, x⋆) · (x⋆, x⋆, f) = (e, xx⋆, f) = (e, x, f),

that is, e|(e, x, f) · [x⋆, f ] = (e, x, f).

(P3) If g ≤ e and e R f , then g ≤R f , and so gf ∈ U and

g|[e, f ] = g|(e, f, f) = (g, gf, (gf)⋆)

= (g, gf, gf) · (gf, gf, (gf)⋆)

= [g, gf ] · [gf, (gf)⋆].

If g ≤ e and e L f , then g ≤L f , and so gf = g. Thus

g|[e, f ] = g|(e, e, f) = (g, g, g⋆) = [g, g⋆] and [g, gf ] · [gf, (gf)⋆] = [g, g⋆]

so that g|[e, f ] = [g, gf ] · [gf, (gf)⋆].
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If g≤L e and e L f , then g|[e, f ] = g|(e, e, f) = (g, g, g⋆) = [g, g⋆].

(P4) if (g, x, h) ∈ SC and e, f ∈ U with e≤L f ≤L g, then

e|(f |(g, x, h)) = e|(f, fx, (fx)⋆) = (e, efx, (efx)⋆)

= (e, ex, (ex)⋆) = e|(g, x, h).

In particular, if e L f ωl g, then

[e, f ] · (f |(g, x, h)) = (e, e, f) · (f, fx, (fx)⋆) = (e, efx, (fx)⋆) = (e, ex, (fx)⋆)

and

e|(g, x, h) = (e, ex, (ex)⋆).

As (fx)⋆ L̃U fx L̃U ex L̃U (ex)⋆, we have that (ex)⋆ = (fx)⋆.

(P5) If (e, x, f), (f, y, k) ∈ SC and h ≤L e, then

h|((e, x, f) · (f, y, k)) = h|(e, xy, k) = (h, hxy, (hxy)⋆),

h|(e, x, f) = (h, hx, (hx)⋆)

and

h|(e, x, f) · (hx)⋆|(f, y, k) = (h, hx, (hx)⋆) · ((hx)⋆, (hx)⋆y, ((hx)⋆y)⋆)

= (h, hx(hx)⋆y, ((hx)⋆y)⋆)

= (h, hxy, ((hx)⋆y)⋆).

But, (hxy)⋆ L̃U hxy L̃U ((hx)⋆y)⋆, and so (hxy)⋆ = ((hx)⋆y)⋆. Hence,

h|((e, x, f) · (f, y, k)) = h|(e, x, f) · (hx)⋆|(f, y, k).

(P6) We know that singular U -squares are of the form:

(a)


 g h

eg eh


 where, g, h ∈ ωl(e), (g, h) ∈ R, or

(b)


 g ge

h he


 where, g, h ∈ ωr(e), (g, h) ∈ L.

Firstly, consider (a). By g ωl e and (g, h) ∈ R, we have that

[g, h] · [h, eh] = (g, h, h) · (h, h, eh) = (g, h, eh)
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and

[g, eg] · [eg, eh] = (g, g, eg) · (eg, eh, eh) = (g, geh, eh) = (g, gh, eh) = (g, h, eh).

Thus [g, h] · [h, eh] = [g, eg] · [eg, eh]. Similarly, we prove (b).

(P7) If (u, x, v) ∈ SC, h1 ∈ S(e, u), h2 ∈ S(v, f). Then

h1u|(u, x, v) = (h1u, h1x, (h1x)⋆) and (u, x, v)|vh2 = ((xh2)+, xh2, vh2).

Put h′
1 = (h1x)⋆ and h′

2 = (xh2)+. Take h′ ∈ S(h′
1, h2) and h ∈ S(h1, h

′
2). Then

((h1 ∗ (u, x, v)) ⋄ h′) · [h′, h′h2]

= (([h1, h1u] · h1u|(u, x, v)) ⋄ h′) · [h′, h′h2]

= (([h1, h1u] · (h1u, h1x, h
′
1)) ⋄ h′) · [h′, h′h2]

= (((h1, h1u, h1u) · (h1u, h1x, h
′
1)) ⋄ h′) · [h′, h′h2]

(
h1 R h1u

)

= ((h1, h1x, h
′
1) ⋄ h′) · [h′, h′h2]

= (h1, h1x, h
′
1)|h′

1h′ · [h′
1h

′, h′] · [h′, h′h2]

= ((h1xh
′)+, h1xh

′, h′
1h

′) · (h′
1h

′, h′
1h

′, h′) · (h′, h′h2, h
′h2)

(
h′

1h
′ L h′ R h′h2

)

= ((h1xh
′)+, h1xh

′, h′
1h

′) · (h′
1h

′, h′
1h

′h2, h
′h2)

= ((h1xh
′)+, h1xh

′h′
1h

′h2, h
′h2)

= ((h1xh
′)+, h1xh

′h2, h
′h2)

(
h′ L h′

1h
′
)

= ((h1xh
′)+, h1xh2, h

′h2)
(
h1xh

′h2 = h1x(h1x)⋆h′h2 = h1xh2 as h′ L h′
1h

′ = (h1x)⋆h′
)
.

Similarly, we have that

[h1h, h] · (h ∗ ((u, x, v) ⋄ h2)) = (h1h, h1xh2, (h1xh2)⋆).

Obviously, (h1xh
′)+ R̃U h1xh2 R̃U h1h and h′h2 L̃U h1xh2 L̃U (h1xh2)⋆. Thus,

(h1xh
′)+ R h1h and h′h2 L (hxh2)⋆, that is,

d(((h1 ∗ (u, x, v)) ⋄ h′) · [h′, h′h2]) R h1h
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and

h′h2 L r([h1, h] · (h ∗ ((u, x, v) ⋄ h2))).

In addition, we have that

((h1 ∗ (u, x, v)) ⋄ h′) · [h′, h′h2] · [h′h2, (h1xh2)⋆]

= ((h1xh
′)+, h1xh2, h

′h2) · [h′h2, (h1xh2)⋆]

= ((h1xh
′)+, h1xh2, h

′h2) · (h′h2, h
′h2, (h1xh2)⋆)

= ((h1xh
′)+, h1xh2, (h1xh2)⋆)

and
[(h1xh

′)+, h1h] · [h1h, h] · (h ∗ ((u, x, v) ⋄ h2))

= ((h1xh
′)+, h1h, h1h) · (h1h, h1xh2, (h1xh2)⋆)

= ((h1xh
′)+, h1xh2, (h1xh2)⋆).

Consequently, ((h1 ∗ (u, x, v)) ⋄ h′) · [h′, h′h2] ρ [h1, h] · (h ∗ ((u, x, v) ⋄ h2)).

In Lemma 10.31, we constructed an admissible morphism from an RBS func-

tor. Next, we produce a converse to this result.

Lemma 10.33. Let S be a weakly U1-regular semigroup, and let T be a weakly

U2-regular semigroup. If φ is an admissible morphism from S to T , then the map

φC defined by eφC = eφ and (e, x, f)φC = (eφ, xφ, fφ) is an RBS functor from

SC to TC. Further, if φ1 : S → T and φ2 : T → Q are admissible morphisms,

then (φ1φ2)C = φ1Cφ2C.

Proof. As φ is an admissible morphism, it is clear that φ is a regular morphism

from U1 to U2. Since φ preserves products and identities, it is a functor.

To show that (PF2) holds, suppose that e, f ∈ U . If e R f , then eφ R fφ

as φ is an admissible morphism. Thus, [e, f ]φC = (eφ, fφ, fφ) = [eφ, fφ] =

[eφC, fφC]. Dually, if e L f , then [e, f ]φC = [eφ, fφ] = [eφC, fφC].

Finally, we show that (PF3) holds. Suppose that (e, x, f) ∈ SC and h ∈ U1

with h ≤L e . Then h|(e, x, f) = (h, hx, (hx)⋆), and so

(h|(e, x, f))φC = (h, hx, (hx)⋆)φC

= (hφ, (hx)φ, (hx)⋆φ).



227

Also, we have that hφ ωl eφ and

hφ|(eφ, xφ, fφ) = (hφ, hφxφ, (hφxφ)⋆)

= (hφ, (hx)φ, ((hx)φ)⋆).

Thus, ((hx)φ)⋆ L̃U2 (hx)φ L̃U2 (hx)⋆φ, and so ((hx)φ)⋆ L (hx)⋆φ,

(h|(e, x, f))φC · [(hx)⋆φ, ((hx)φ)⋆]

= (hφ, (hx)φ, (hx)⋆φ) · ((hx)⋆φ, (hx)⋆φ, ((hx)φ)⋆)

= (hφ, (hx)φ, ((hx)φ)⋆)

= hφC|(e, x, f)φC.

Hence, (h|(e, x, f))φC ρ hφC|(e, x, f)φC.

Dually, if k ∈ U1 and k ≤R f , then ((e, x, f)|k)φC ρ (e, x, f)φC|kφC. Conse-

quently, φC is an RBS functor from SC to TC.

It is routine to show that (φ1φ2)C = φ1Cφ2C.

Now, we have that C : WRS → WRC is a functor.

At the end of this section, we build a correspondence between the category

WRS of weakly U -regular semigroups and the category WRC of weakly regular

categories over regular biordered sets.

Lemma 10.34. Let S be a weakly U-regular semigroup. Then the mapping ηS :

S → SCS given by xηS = (e, x, f), where e R̃U x L̃U f , is an isomorphism.

Proof. Let x ∈ S, e, g ∈ R̃x ∩ U and f, h ∈ L̃x ∩ U . Then e R g, f L h and

(e, x, f) · [f, h] = (e, x, f) · (f, f, h) = (e, x, h)

and

[e, g] · (g, x, h) = (e, g, g) · (g, x, h) = (e, x, h).

Thus (e, x, f) ρ (g, x, h), and so ηS is well-defined.

To show that ηS is injective, we assume that xηS = yηS. Then (e, x, f) =

(u, y, v), where e R̃U xL̃U f and u R̃U y L̃U v. Thus e R u and f L v. Further,

[e, u] · (u, y, v) = (e, x, f) · [f, v],
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that is, (e, y, v) = (e, x, v), which implies that x = y. Hence ηS is injective, as

claimed.

Clearly ηS is onto. It remains to show that ηS is a morphism. Suppose that

x, y ∈ S, e R̃U x L̃U f , u R̃U y L̃U v and h ∈ S(f, u). Then

xηS ⊙ yηS = (e, x, f) ⊙ (u, y, v)

= ((e, x, f) ⊗ (u, y, v))h

= ((e, x, f) ⋄ h) · (h ∗ (u, y, v))

= (e, x, f)|fh · [fh, h] · [h, hu] · hu|(u, y, v)

= ((xfh)+, xfh, fh) · (fh, fh, h) · (h, hu, hu) · (hu, huy, (huy)⋆)

= ((xh)+, xh, h) · (h, hy, (hy)⋆)
(
f L̃U x and u R̃U y

)

= ((xh)+, xhy, (hy)⋆)

= ((xh)+, xy, (hy)⋆)
(
h ∈ S(f, u) = S1(f, u), so xhy = xfhuy = xy

)

= (xy)ηS.

In addition, ηS preserves the distinguished set as eηS = (e, e, e) = 1e for all

e ∈ U . Thus ηS is an isomorphism.

Finally, as ηS is an isomorphism, it preserves the pre-orders and partial-

orders.

To the converse, we have:

Lemma 10.35. Let P be a weakly regular category over U . Then the map τP :

P → PSC defined by the rule that eτP = 1e and xτP = (1d(x), x̄, 1r(x)) for all

e ∈ U = Ob(P ) and x ∈ P = Mor(P ), is an isomorphism from P to PSC.

Proof. Note the distinguished subset of PS is U , which is the set of objects of

PSC. By Lemma 10.24, τP : U → U : e 7→ 1e is a regular isomorphism.

Now, we show that τP preserves d and r. Suppose that x ∈ P . Then by the

definition of τP ,

d(x)τP = 1d(x), r(x)τP = 1r(x)

and

xτP = (1d(x), x̄, 1r(x)).
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Thus, τP preserves d and r.

If x, y ∈ P with x · y defined in P , then r(x) = d(y) and so x̄⊙ ȳ = x · y.

Here, we temporarily use ◦ to denote the partial binary operation in PSC.

Thus,

xτP ◦ yτP = (1d(x), x̄, 1r(x)) ◦ (1d(y), ȳ, 1r(y))

= (1d(x), x̄⊙ ȳ, 1r(y))

= (1d(x), x · y, 1r(y))
(
Lemma 10.20

)

= (1d(x·y), x · y, 1r(x·y))

= (x · y)τP

which implies that τP preserves products. Also, τP preserves identities since

1eτP = (1e, 1e, 1e) = 11e
. Thus, τP is a functor.

Let e, f ∈ U with e R f in U . Then [e, f ]τP = (1e, [e, f ], 1f). Since e R f , it

is easy to see that [e, f ] ρ [f, f ]. Thus,

[e, f ]τP = (1e, 1f , 1f) = (1e, 1e ⊙ 1f , 1f) = [1e, 1f ] = [eτP , fτP ].

Dually, if e L f in U , then [e, f ]τP = [eτP , fτP ]. Hence, τP satisfies Condition

(PF2).

To show that (PF3) holds, We assume that x ∈ P and e ∈ U with e ωl d(x).

Then eτP ωl d(x)τP as τP is a regular isomorphism from U to U shown above.

Hence, e|x and eτP
|xτP are well-defined. Observe that

(e|x)τP = (1e, e|x, 1r(e|x))

and

eτP
|xτP

= 1e
|(1d(x), x̄, 1r(x))

= (1e, 1e ⊙ x̄, (1e ⊙ x̄)⋆)

= (1e, e|x, (e|x)⋆)
(
e ωl d(x), Lemma 10.21

)
.

Clearly,

d((e|x)τP ) = d(e|x)τP = 1e = d(eτP
|xτP ),

r((e|x)τP ) = r(e|x)τP = 1r(e|x) L̃B e|x L̃B (e|x)⋆ = r(eτP
|xτP )
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and
(e|x)τP · [r((e|x)τP ), r(eτP

|xτP )]

= (1e, e|x, 1r(e|x)) · [1r(e|x), (e|x)⋆]

= (1e, e|x, 1r(e|x)) · (1r(e|x), 1r(e|x) ⊙ (e|x)⋆, (e|x)⋆)

= (1e, e|x, 1r(e|x)) · (1r(e|x), 1r(e|x), (e|x)⋆)

= (1e, e|x⊙ 1r(e|x), (e|x)⋆)

= (1e, e|x, (e|x)⋆)

= eτP
|xτP ,

so that (e|x)τP ρ eτP
|xτP and (PF3) holds.

Next, suppose that x, y ∈ P with xτP = yτP . Then (1d(x), x̄, 1r(x)) =

(1d(y), ȳ, 1r(y)), which implies that x̄ = ȳ, and also d(x) = d(y), r(x) = r(y)

by Lemma 10.24. Further, by Lemma 10.3, x = y.

We now show that τP is surjective. Let (1e, x̄, 1f) be in PSC. Then

1e R̃U x̄ R̃U 1d(x) and 1f L̃U x̄ L̃U 1r(x), that is, 1e R 1d(x) and 1f L 1r(x) so that

by Lemma 10.24, eR d(x) and f L r(x). Put x′ = [e,d(x)] ·x · [r(x), f ]. Certainly,

x′ ρ x, that is, x′ = x̄. Thus, τP (x′) = (1e, x′, 1f) = (1e, x̄, 1f), and consequently,

τP is surjective.

As we have shown τP is an RBS functor, we succeed in obtaining that τP

preserves the two pairs of pre-orders on P by Lemma 10.8.

Lemma 10.36. For any S ∈ Ob(WRS), define Sη = ηS, where ηS is defined in

Lemma 10.34. Then η is a natural equivalence of the functors IWRS and CS.

Proof. Let θ : S1 → S2 in WRS , where S1 and S2 are over U1 and U2, respectively.

Then for any x ∈ S1, we have by the definition of ηS in Lemma 10.34 that

(xηS1)θCS = (e, x, f)θCS
(
e R̃U1 x L̃U1 f

)

= (e, x, f)θC

= (eθ, xθ, fθ)

= (xθ)ηS2

(
eθ R̃U2 xθ L̃U2 fθ

)

Thus the diagram below commutes, and so η = (ηS) is a natural isomorphism

between IWRS and CS.
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S1

S1CS S2CS

S2
θ

ηS1 ηS2

θCS

Figure 10.1: A natural transformation of IWRS and CS

Similarly, we have:

Lemma 10.37. For any P ∈ Ob(WRC), define Pτ = τP , where τP is defined in

Lemma 10.35. Then τ is a natural equivalence of the functors IWRC and SC.

Proof. Let F : P1 → P2 in WRC, where P1 and P2 are over U1 and U2, respec-

tively. Then for any x ∈ P1, we have by the definition of τP in Lemma 10.35

that
(xτP1)FSC = (1d(x), x̄, 1r(x))FSC

= ((1d(x))FS, (x̄)FS, (1r(x))FS)

= (1d(x)F , xF , 1r(x)F )

= (1d(xF ), xF , 1r(xF ))

= (xF )τP2

and
(eτP1)FSC = 1eFSC

= 1eFS

= 1eF

= 1eF

= (eF )τP2 .

Thus the diagram below commutes, and so τ = (τP ) is a natural morphism of

IWRC and SC.
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P1

P1SC P2SC

P2
F

τP1 τP2

FSC

Figure 10.2: A natural transformation of IWRC and SC

To sum up, we have:

Theorem 10.38. The category WRS of weakly U-regular semigroups and admis-

sible morphisms is equivalent to the category WRC of weakly regular categories

over regular biordered sets and RBS functors.



Chapter 11

Special kinds of weakly U-regular

semigroups

In this section we focus on some special kinds of weakly U -regular semigroups.

We recover Armstrong’s result for concordant semigroups and Nambooripad’s

result for regular semigroups.

11.1 Weakly U-regular semigroups with (WIC)

As mentioned In Chapter 2, a weakly U -regular semigroup satisfies (WIC) (with

respect to U) if for any a ∈ S and some (any) a∗, a†, if x ∈ 〈a†〉, then there exists

y ∈ 〈a∗〉 with xa = ay; and dually, if z ∈ 〈a∗〉 then there exists t ∈ 〈a†〉 with

ta = az.

We say that a weakly regular category P over U has (WIC) if the following

condition and its dual (W)◦ hold:

(W) if x ∈ P and u ∈ U with u ω d(x), then there exists v1, · · · , vn ∈ U

such that vi ω r(x) for i = 1, · · · , n and u|x = x̄⊙ 1v1 ⊙ · · · ⊙ 1vn
.

Corollary 11.1. The category of weakly U-regular semigroups satisfying (WIC)

and admissible morphisms, is equivalent to the category of weakly regular cate-

gories with (WIC) and RBS functors.

Proof. Let S be a weakly U -regular semigroup with (WIC). In view of Lemma 10.32,

it is sufficient to show that SC satisfies Condition (W) and its dual.

233



234

Suppose that (e, x, f) ∈ SC and u ∈ U with u ≤ e. Then u|(e, x, f) =

(u, ux, (ux)⋆). Since S satisfies (WIC), it follows that there exist v1, · · · , vn ∈ U

such that vi ≤ f for i = 1, · · · , n and ux = xv1 · · · vn.

By Lemma 10.34, ηS : S → SCS, given byx 7→ (x†, x, x∗), is an isomorphism.

Thus, for any x, y ∈ S, we have xηS ⊙ yηS = (xy)ηS, that is,

(x†, x, x∗) ⊙ (y†, y, y∗) = (xy)†, xy, (xy)∗,

so

(e, x, f) ⊙ 1v1 ⊙ · · · ⊙ 1vn
= ((xv1 · · · vn)+, xv1 · · · vn, (xv1 · · · vn)⋆).

As ux = xv1 · · · vn, we have that u R̃U ux = xv1 · · · vn R̃U (xv1 · · · vn)+ and

(ux)⋆ = (xv1 · · · vn)⋆. In addition, we have

[u, (xv1 · · · vn)+] · ((xv1 · · · vn)+, xv1 · · · vn, (xv1 · · · vn)⋆)

= (u, (xv1 · · · vn)+, (xv1 · · · vn)+) · ((xv1 · · · vn)+, xv1 · · · vn, (xv1 · · · vn)⋆)

= (u, xv1 · · · vn, (xv1 · · · vn)⋆))

= (u, ux, (ux)⋆)
(
ux = xv1 · · · vn

)

so that u|(e, x, f) = (e, x, f) ⊙ 1v1 ⊙ · · · ⊙ 1vn
, and so Condtion (W) holds.

Conversely, suppose that P is a weakly regular category over U with (WIC)

and x ∈ P . In view of Theorem 10.38, it is sufficient to show that for all u ∈

〈1d(x)〉, there exists v ∈ 〈1r(x)〉 satisfying u⊙ x̄ = x̄⊙v. Suppose that 1e ∈ 〈1d(x)〉.

Then 1e = 1e1 ⊙ · · · ⊙ 1en
, where ei ω d(x) for i = 1, · · · , n. By (W), for any ei,

there exist fi1, · · · , fimi
∈ ω(r(x)) such that

ei
|x = x̄⊙ 1fi1

⊙ · · · ⊙ 1fimi
,

that is,

1ei
⊙ x̄ = x̄⊙ 1fi1

⊙ · · · ⊙ 1fimi

by Lemma 10.21, and so

1e ⊙ x̄ = 1e1 ⊙ · · · ⊙ 1en
⊙ x̄

= 1e1 ⊙ · · · ⊙ 1en−1 ⊙ x̄⊙ 1fn1 ⊙ · · · ⊙ 1fnmn

= x̄⊙ 1f11 ⊙ · · · ⊙ 1f1m1
⊙ · · · ⊙ 1fn1 ⊙ · · · ⊙ 1fnmn

,
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where 1f11 ⊙ · · · ⊙ 1f1m1
⊙ · · · ⊙ 1fn1 ⊙ · · · ⊙ 1fnmn

∈ 〈1r(x)〉. Dually, we show that

for any g ∈ 〈1r(x)〉, there exists k ∈ 〈1d(x)〉 satisfying k ⊙ x̄ = x̄⊙ g.

11.2 The abundant case

In this section we concentrate on the class of abundant semigroups. We replace

the distinguished set of idempotents U by the whole set of idempotents and

use relations R∗ and L∗ instead of R̃U and L̃U in the definition of weakly U -

regular semigroups. We thus obtain the class of abundant semigroups whose

set of idempotents generates a regular semigroup. As mentioned in Chapter 7,

an admissible morphism in this context is more usually referred to as a good

morphism.

A weakly regular category P over U is an abundant category if it satisfies the

following condition and its dual (P8)◦:

(P8) if x, y, z ∈ P , h ∈ S(r(x),d(y)) and h′ ∈ S(r(x),d(z)) are such that

(x⊗ y)h ρ (x⊗ z)h′ ,

then r(x)h R r(x)h′.

Corollary 11.2. The category of abundant semigroups whose set of idempotents

generates a regular subsemigroup and good morphisms, is equivalent to the cate-

gory of abundant cancellative categories and RBS functors.

Proof. Suppose that S is an abundant semigroup whose set of idempotents gen-

erates a regular subsemigroup of S. In view of Lemma 10.32, it is sufficient

to show that SC satisfies (P8). Dually, (P8)◦ holds. Let (e, x, f), (u, y, v) and

(g, z, k) ∈ SC , and let h ∈ S(f, u) and h′ ∈ S(f, g) be such that

((e, x, f) ⊗ (u, y, v))h ρ ((e, x, f) ⊗ (g, z, k))h′.

Notice that
((e, x, f) ⊗ (u, y, v))h

= ((e, x, f) ⋄ h) · (h ∗ (u, y, v))
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= (e, x, f)|fh · [fh, h] · [h, hu] · hu|(u, y, v)

= ((xfh)+, xfh, fh) · (fh, fh, h) · (h, hu, hu) · (hu, huy, (huy)⋆)

= ((xfh)+, xfh, h) · (h, huy, (huy)⋆)

= ((xh)+, xh, h) · (h, hy, (hy)⋆)
(
f L∗ x, u R∗ y

)

= ((xh)+, xhy, (hy)⋆)

= ((xh)+, xy, (hy)⋆)
(
xhy = xfhuy = xfuy = xy

)
,

and so, (xh)+ R⋆ xy L∗ (hy)⋆. Similarly, we have

((e, x, f) ⊗ (g, z, k))h′ = ((xh′)+, xz, (h′z)⋆)

and (xh′)+ R⋆ xz L∗ (h′z)⋆. Since

((e, x, f) ⊗ (u, y, v))h ρ ((e, x, f) ⊗ (g, z, k))h′,

we have that (xh′)+ R (xh)+, (hy)⋆ L (h′z)⋆ and

[(xh)+, (xh′)+] · ((xh′)+, xz, (h′z)⋆) = ((xh)+, xy, (hy)⋆) · [(hy)⋆, (h′z)⋆].

From (xh′)+ R (xh)+, we obtain that (xh′)+ = (xh)+ by the uniqueness. Simi-

larly, we have (hy)⋆ = (h′z)⋆. Thus,

((xh′)+, xz, (h′z)⋆) = ((xh)+, xy, (hy)⋆),

and so xy = xz. Since f L∗ x, we have that fy = fz. As u R∗ y and h ωr u, we

obtain that h R hu, and so fh R fhu R∗ fhy = fhuy = fuy = fy. Similarly,

fh′ R∗ fz, and so fh R∗ fy = fz R∗ fh′ so that fh R fh′. Hence, (P8) holds.

We now show that SC is cancellative. Suppose that (e, x, f), (u, y, f) and

(f, z, v) ∈ SC are such that (e, x, f)(f, z, v) = (u, y, f)(f, z, v). Then (e, xz, v) =

(u, yz, v), and so xz = yz. As f R∗ z, we have xf = yf and so x = y. Thus, SC

is right cancellative, dually, we show that SC is left cancellative.

Conversely, suppose that P is an abundant cancellative category over U . Due

to Theorem 10.30, it is necessary to show that PS is abundant. For any x ∈ P ,

we want to show that 1d(x) R∗ x̄ L∗ 1r(x). First, we show that x̄ L∗ 1r(x). Clearly,
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x̄⊙ 1r(x) = x̄. Suppose that a, b ∈ P and x̄⊙ ā = x̄⊙ b̄. Notice that

x̄⊙ ā = x̄⊙ b̄

⇒ (x⊗ a)h = (x⊗ b)h′

(
h ∈ S(r(x),d(a)), h′ ∈ S(r(x),d(b))

)

⇒ (x ⋄ h) · (h ∗ a) = (x ⋄ h′) · (h′ ∗ b)

⇒ d(x ⋄ h) R d(x ⋄ h′), r(h ∗ a) L r(h′ ∗ b) and

(x ⋄ h) · (h ∗ a) · [r(h ∗ a), r(h′ ∗ b)] = [d(x ⋄ h),d(x ⋄ h′)] · (x ⋄ h′) · (h′ ∗ b).

(10.1)

Also, we have

x ⋄ h = x|r(x)h · [r(x)h, h]

= x|r(x)h · [r(x)h, (r(x)h)+] · [(r(x)h)+, r(x)h] · [r(x)h, h]
(
by (P1)

)

= x|(r(x)h)+ · [(r(x)h)+, r(x)h] · [r(x)h, h]
(
by (P4)◦

)

= x|(r(x)h)+ · ([r(x), r(x)] ⋄ h)

= x|(r(x)h)+ · (1r(x) ⋄ h).

Similarly, x ⋄ h′ = x|(r(x)h′)+ · (1r(x) ⋄ h′). Thus, we can write (10.1) into the

following form:

x|(r(x)h)+ · (1r(x) ⋄ h) · (h ∗ a) · [r(h ∗ a), r(h′ ∗ b)]

= [d(x ⋄ h),d(x ⋄ h′)] · x|(r(x)h′)+ · (1r(x) ⋄ h′) · (h′ ∗ b). (10.2)

Since (x ⊗ a)h ρ (x ⊗ b)h′, it follows from (P8) that r(x)h R r(x)h′. Thus

(r(x)h)+ = (r(x)h′)+, which implies that x|(r(x)h)+ = x|(r(x)h′)+ , and so

d(x ⋄ h) = d(x|(r(x)h)+) = d(x|(r(x)h′)+) = d(x ⋄ h′).

Thus we can write (10.2) into the following form:

x|(r(x)h)+ · (1r(x) ⋄ h) · (h ∗ a) · [r(h ∗ a), r(h′ ∗ b)] = x|(r(x)h′)+ · (1r(x) ⋄ h′) · (h′ ∗ b).

As P is cancellative and x|(r(x)h)+ = x|(r(x)h′)+ , we have that

(1r(x) ⋄ h) · (h ∗ a) · [r(h ∗ a), r(h′ ∗ b)] = (1r(x) ⋄ h′) · (h′ ∗ b).
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Together with d(1r(x) ⋄ h) = (r(x)h)+ = (r(x)h′)+ = d(1r(x) ⋄ h′) and

r(h ∗ a) L r(h′ ∗ b), we obtain that

(1r(x) ⋄ h) · (h ∗ a) ρ (1r(x) ⋄ h′) · (h′ ∗ b),

that is, (1r(x) ⊗ a)h ρ (1r(x) ⊗ b)h′ , and so 1r(x) ⊙ ā = 1r(x) ⊙ b̄.

Suppose that c ∈ P is such that x̄⊙ c̄ = x̄, then x̄⊙ c̄ = x̄⊙ 1r(x). Using the

same method as above, we have that 1r(x) ⊙ c̄ = 1r(x). Hence, x̄ L∗ 1r(x). Dually,

we can show that x̄ R∗ 1d(x).

For any x̄ ∈ E(PS), we have 1d(x) R∗ x̄ L∗ 1r(x). By Lemma 10.26, we obtain

that E(PS) = U .

11.3 The concordant case

The aim of this section is to investigate concordant semigroups. We recall that

such semigroups satisfy (IC), defined by El-Qallali and Fountain, which coincides

with (WIC) in abundant case. Notice that Condition (P7) is a complicated condi-

tion, that we would like to omit. To this end, we first define an IC-RBS category.

The difference between a weakly regular category and an IC-RBS category is that

Condition (P7) is replaced by Conditions (PC1), (PC2) and the duals (PC1)◦,

(PC2)◦ of (PC1) and (PC2), respectively.

An RBS cancellative category P over U is said to be IC-RBS if the following

conditions and the duals (PC1)◦, (PC2)◦ of (PC1) and (PC2) hold:

(PC1) if x ∈ P and h ∈ U with h ω d(x), then there exists a unique k ∈ U

such that k ω r(x) and h|x ρ x|k; in particular, if h = d(x), then h|x ρ x;

(PC2) let x ∈ P and for i = 1, 2, ei, fi ∈ U be such that ei ω d(x), fi ω r(x)

and ei
|x ρ x|fi

. If e1 ω
r e2, then f1 ω

r f2, and e1e2 |xρ x|f1f2 . If e1 ω
l e2, then

f1 ω
l f2 and e2e1 |x ρ x|f2f1 .

We pause to make a necessary comment on Condition (PC2). From e1 ω d(x),

fi ω r(x) and ei
|x ρ x|fi

, we obtain that ei and fi are unique by (PC1) and its

dual (PC1)◦. If f1, f2 ω r(x) and f1 ω
r f2, then f1f2 ω f2, and so f1f2 ω r(x) so

that x|f1f2 is well-defined. Dually, if f1 ω
l f2, then x|f2f1 is well-defined.

There exist two approaches to build a correspondence between concordant

semigroups and IC-RBS categories. We could show without mention of semi-

groups that if P is an RBS cancellative category, then P has (W), (W)◦, (P7)
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and (P8) if and only if P has (PC1), (PC2) and the duals (PC1)◦, (PC2)◦ of (PC1)

and (PC2), respectively. However, we are going to prove the correspondence be-

tween concordant semigroups and IC-RBS categories using Theorem 10.38.

Lemma 11.3. Let P be an IC-RBS category over U . If x ∈ P and for i = 1, 2,

ei, fi ∈ U are such that ei ω d(x), fi ω r(x), ei
|x ρ x|fi

and e1 ωr e2, then

[e1, e1e2] · (e1e2 |x) · [r(e1e2 |x), f1f2] = (e1|x) · [r(e1|x), f1] · [f1, f1f2].

Proof. By (PC2), we have that f1 ω
r f2 and e1e2 |x ρ x|f1f2. Then e1e2 R d(x|f1f2).

Certainly, [e1, e1e2] and [f1, f1f2] exist. As ei
|x ρ x|fi

, we obtain that ei R d(x|fi
),

fi L r(ei
|x) and

ei
|x · [r(ei

|x), fi] = [ei,d(x|fi
)] · x|fi

.

Thus,

e1 |x · [r(e1 |x), f1] · [f1, f1f2]

= [e1,d(x|f1)] · x|f1 · [f1, f1f2]

= [e1,d(x|f1)] · x|f1f2

(
f1 R f1f2, by (P4)◦

)

= [e1,d(x|f1f2)] · x|f1f2

(
d(x|f1) = d(x|f1f2)

)

= [e1, e1e2] · [e1e2,d(x|f1f2)] · x|f1f2

(
e1 R e1e2 R d(x|f1f2)

)

= [e1, e1e2] · e1e2 |x · [r(e1e2|x), f1f2]
(

e1e2|x ρ x|f1f2

)
.

The following lemma is necessary for Lemma 11.5. Here we recall from

Section 1.4 that if E is a regular biordered set, then for any e ∈ E, ω(e) is a

regular biordered set.

Lemma 11.4. Let P be an IC-RBS category over U . For any x ∈ P , the map

σx : ω(d(x)) → ω(r(x)), defined by eσx = k, is an isomorphism, where k ω r(x)

and e|x ρ x|k.

Proof. Clearly, σx does map into ω(r(x)) by (PC1). Now, we define

τx : ω(r(x)) → ω(d(x))

by fτx = g, where g ω d(x) and x|f ρ g|x. By (PC1)◦, τx is well-defined. If
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e ∈ ω(d(x)), then it follows from (PC1) and its dual that eσxτx = kτx = e, where

k ω r(x) and e|x ρ x|k. Thus, σx = τ−1
x , and so σx is a bijection.

To show that σx is a morphism, suppose that e1, e2 ∈ ω(d(x)) and e1 ω
r e2.

Write f1 = e1σx and f2 = e2σx. Then, by (PC2), f1 ω
r f2 and x|f1f2 ρ e1e2|x.

Thus, (e1e2)σx = f1f2 = e1σxe2σx. If e1 ω
l e2, then by (PC2), f1 ω

l f2, and so

(e1e2)σx = e1σx = f1 = f1f2 = e1σxe2σx.

To show that σx is regular, we suppose that e, f ∈ ω(d(x)), h ∈ S(e, f) and

k ∈ S(eσx, fσx). Then hσx ∈ M(eσx, fσx) and kτx ∈ M(e, f), and so kτx ≺ h

in M(e, f), that is,

e(kτx) ωr eh and (kτx)f ωl hf.

As σx is a morphism, we obtain that

(e(kτx))σx ω
r (eh)σx and ((kτx)f)σx ω

l (hf)σx,

that is,

eσx(kτx)σx ω
r eσxhσx and (kτx)σxfσx ω

l hσxfσx,

or equivalently,

eσxk ω
r eσxhσx and k(fσx) ωl hσxfσx,

and so hσx ∈ S(eσx, fσx). By Lemma 1.26, σx is an isomorphism.

Before we discuss the relationship amongst IC-RBS categories, concordant

semigroups and inductive2 cancellative categories (defined in [1] and mentioned

in Chapter 6) we show that:

Lemma 11.5. If P is an IC-RBS category over U , then it is a weakly regular

category.

Proof. It is sufficient to show that Condition (P7) holds. Suppose that x ∈ P ,

e, f ∈ U , h1 ∈ S(e,d(x)) and h2 ∈ S(r(x), f). We put

h′
1 = r(h1d(x)|x) and h′

2 = d(x|r(x)h2
).

As U is regular, there exists h ∈ S(h1, h
′
2). Since h1 ω

r d(x), by (B21), we have

h1d(x) ω d(x). Since h2 ω
l r(x), by the dual of (B21), we have that r(x)h2 ω r(x).

By (PC1) and its dual, there exist u ω d(x) and v ω r(x) such that u|x ρ x|r(x)h2
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and x|v ρ h1d(x)|x. From u|x ρ x|r(x)h2
, we obtain that u R h′

2, r(u|x) L r(x)h2

and

[u, h′
2] · x|r(x)h2 = u|x · [r(u|x), r(x)h2],

which implies that x|r(x)h2
= [h′

2, u] · u|x · [r(u|x), r(x)h2]. Thus,

x ⋄ h2 = x|r(x)h2 · [r(x)h2, h2]

= [h′
2, u] · u|x · [r(u|x), r(x)h2] · [r(x)h2, h2]

= [h′
2, u] · u|x · [r(u|x), h2]

(
r(u|x) L r(x)h2 L h2, by (P1)

)
,

and so

h ∗ (x ⋄ h2)

= h ∗ ([h′
2, u] · u|x · [r(u|x), h2])

= [h, hh′
2] · hh′

2
|([h′

2, u] · u|x · [r(u|x), h2])

= [h, hh′
2] · hh′

2
|[h′

2, u] · m|(u|x) · n|[r(u|x), h2]
(
by (P5), m = r(hh′

2
|[h′

2, u]), n = r(m|(u|x))
)

= [h, hh′
2] · [hh′

2, (hh
′
2)u] · [(hh′

2)u, ((hh
′
2)u)⋆] · ((hh′

2)u)⋆|(u|x) · n|[r(u|x), h2]
(
by (P3), since h ωr h′

2, we have hh′
2 ω h′

2 R u, m = ((hh′
2)u)⋆

)

= [h, hh′
2] · [hh′

2, (hh
′
2)u] · [(hh′

2)u, ((hh
′
2)u)⋆] · ((hh′

2)u)⋆ |x · n|[r(u|x), h2]
(
((hh′

2)u)⋆ L (hh′
2)u ω u, by (P4)

)

= [h, hh′
2] · [hh′

2, hu] · [hu, (hu)⋆] · (hu)⋆|x · n|[r(u|x), h2]
(
by (B31), since h ωr h′

2 R u, we have h ωr u R h′
2

)

= [h, hh′
2] · [hh′

2, hu] · hu|x · n|[r(u|x), h2]
(
hu L (hu)⋆, by (P4)

)

= [h, hu] · hu|x · n|[r(u|x), h2]
(
h R hh′

2 R hu, by (P1)
)

= [h, hu] · hu|x · [r(hu|x), (r(hu|x)⋆)]
(
n = r(hu|x) ωl r(u|x) L h2, by (P3)

)
.

Since h′
2 R u, by Lemma 1.28, we have S(h1, h

′
2) = S(h1, u). From x|v ρ h1d(x)|x,

we obtain that v L r(hd(x)|x) = h′
1, and so by Lemma 1.28, S(h′

1, h2) = S(v, h2).

As h ∈ S(h1, h
′
2) and σx : ω(d(x)) → ω(r(x)) is an isomorphism, it follows from

Lemma 1.31 that there exists h′ ∈ S(h′
1, h2) such that (hd(x))σx = r(x)h′. Since

h ωr u ω d(x), we have that hd(x) R h ωr u ω d(x) by (B21), and so (hd(x))u

exists and (hd(x))u ω u ω d(x). In addition, by (B31), we have hu = (hd(x))u.
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Due to Lemma 11.4, we obtain that

(hd(x))u|x ρ x|((hd(x))u)σx

Since h′ ωr h2 and h′
1, h2 ω

l r(x), it follows from (B32)◦ that

(r(x)h′)(r(x)h2) = r(x)(h′h2).

Observe that h′h2 ω h2 ω
l r(x). Thus r(x)(h′h2) L h′h2, and so

r(hu|x) = r((hd(x))u|x)
(
(hd(x))u = hu

)

L ((hd(x))u)σx

= (hd(x))σxuσx = (r(x)h′)(r(x)h2) = r(x)(h′h2) L h′h2.

Hence, (r(hu|x))⋆ L r(hu|x) L h′h2, that is, r(h ∗ (x ⋄ h2)) L h′h2.

From h1d(x)|x ρ x|v, we obtain that

h1d(x)|x · [h′
1, v] = [h1d(x),d(x|v)] · x|v,

which implies that h1d(x)|x = [h1d(x),d(x|v)] · x|v · [v, h′
1]. Thus

h1 ∗ x

= [h1, h1d(x)] · h1d(x)|x

= [h1, h1d(x)] · [h1d(x),d(x|v)] · x|v · [v, h′
1]

= [h1,d(x|v)] · x|v · [v, h′
1]

(
h1 Rh1d(x) R d(x|v), by (P1)

)
,

and so
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(h1 ∗ x) ⋄ h′

= ([h1,d(x|v)] · x|v · [v, h′
1])|h′

1h′ · [h′
1h

′, h′]

= [h1,d(x|v)]|t · (x|v)|s · [v, h′
1]|h′

1h′ · [h′
1h

′, h′]
(
by (P5)◦, s = d([v, h′

1]|h′
1h′), t = d((x|v)|s)

)

= [h1,d(x|v)]|t · (x|v)|(v(h′
1h′))+ · [(v(h′

1h
′))+, v(h′

1h
′)] · [v(h′

1h
′), h′

1h
′] · [h′

1h
′, h′]

= [h1,d(x|v)]|t · (x|v)|(vh′)+ · [(vh′)+, vh′] · [vh′, h′
1h

′] · [h′
1h

′, h′]
(
h′ ωl h′

1 L v, by (B31)◦, v(h′
1h

′) = vh′
)

= [h1,d(x|v)]|t · (x|v)|(vh′)+ · [(vh′)+, vh′] · [vh′, h′]
(
vh′ Lh′

1h
′ Lh′ by (P1)

)

= [h1,d(x|v)]|t · x|(vh′)+ · [(vh′)+, vh′] · [vh′, h′]
(
(vh′)+ R vh′ R v, by (P4)◦

)

= [h1,d(x|v)]|t · x|vh′ · [vh′, h′]
(
(vh′)+ R vh′, by (P4)◦

)

= [h1,d(x|v)]|d(x|vh′ ) · x|vh′ · [vh′, h′]
(
t = d(x|vh′)

)

= [(d(x|vh′))+,d(x|vh′)] · x|vh′ · [vh′, h′]
(
d(x|vh′) ωr d(x|v) R h1, by (P3)◦

)
.

Since v L h′
1 and h′ ωl h′

1, we have that h′ ωl v ω r(x), and so by (B31)◦,

vh′ = v(r(x)h′). Also, by (B21)◦, vh′ ω v ω r(x). Thus, (vh′)τx exists, and

(vh′)τx = (v(r(x)h′))τx = (h1d(x))(hd(x)) = (h1h)d(x)

so that
(d(x|vh′))+ R d(x|vh′)

R (vh′)τx

(
x|vh′ ρ (vh′)τx

|x
)

= (h1h)d(x) R h1h,

that is, d((h1 ∗ x) ⋄ h′) R h1h.

Let g = d((h1 ∗x) ⋄h′) = (d(x|vh′))+ and k = r(h∗ (x⋄h2)) = (r(hu|x))⋆. As

g R h1h and k L h′h2, it follows that [g, h1h] and [h′h2, k] are well-defined. Since

h ∈ S(h1, h
′
2) and h1 ∈ S(e,d(x)), we have h ωl h1 ω

r d(x) and h ωr h′
2 ω

r d(x),

and so h ωr d(x) and h L h1h ω h1 ω
r d(x) so that


 h hd(x)

h1h (h1h)d(x)


 is a
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column-singular matrix. By the comments succeeding Definition 10.1, we have

[h1h, h] · [h, hd(x)] = [h1h, (h1h)d(x)] · [(h1h)d(x), hd(x)],

which implies that

[(h1h)d(x), h1h] · [h1h, h] · [h, hd(x)]

= [(h1h)d(x), h1h] · [h1h, (h1h)d(x)] · [(h1h)d(x), hd(x)],

that is,

[(h1h)d(x), h1h] · [h1h, h] · [h, hd(x)]

= [(h1h)d(x), (h1h)d(x)] · [(h1h)d(x), hd(x)]

by (P1), that is,

[(h1h)d(x), h1h] · [h1h, h] · [h, hd(x)] = [(h1h)d(x), hd(x)],

from which it follows that

[(h1h)d(x), h1h] · [h1h, h] · [h, hd(x)] · [hd(x), h]

= [(h1h)d(x), hd(x)] · [hd(x), h],

that is,

[(h1h)d(x), h1h] · [h1h, h] · [h, h] = [(h1h)d(x), hd(x)] · [hd(x), h],

or equivalently,

[(h1h)d(x), h1h] · [h1h, h] = [(h1h)d(x), hd(x)] · [hd(x), h].
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So,

[g, h1h] · [h1h, h] · (h ∗ (x ⋄ h2))

= [g, (h1h)d(x)] · [(h1h)d(x), h1h] · [h1h, h] · (h ∗ (x ⋄ h2))
(
g R h1h R (h1h)d(x), by (P1)

)

= [g, (h1h)d(x)] · [(h1h)d(x), hd(x)] · [hd(x), h] · (h ∗ (x ⋄ h2))

= [g, (h1h)d(x)] · [(h1h)d(x), hd(x)] · [hd(x), h] · [h, hu] · hu|x · [r(hu|x), k]
(
k = (r(hu|x)⋆)

)

= [g, (h1h)d(x)] · [(h1h)d(x), hd(x)] · [hd(x), hu] · hu|x · [r(hu|x), k]
(
hd(x) R h R hu, by (P1)

)

= [g, (h1h)d(x)] · [(h1h)d(x), hd(x)] · [hd(x), hu] · hu|x·

[r(hu|x), r(x)(h′h2)] · [r(x)(h′h2), k]
(
r(hu|x) L r(x)(h′h2) L h′h2 L k, by (P1)

)
.

Since h ωr u ω d(x), we have hd(x) R h R hu and hd(x), hu ∈ ω(d(x)). Also,

we have

(hd(x))σx = r(x)h′ ω r(x) and (hu)σx = ((hd(x))u)σx = r(x)(h′h2) ω r(x).

As σx is an isomorphism, we obtain that r(x)h′ R r(x)(h′h2). By Lemma 11.3,

[hd(x), hu] · hu|x · [r(hu|x), r(x)(h′h2)]

= hd(x)|x · [r(hd(x)|x), r(x)h′] · [r(x)h′, r(x)(h′h2)].

Thus,

[g, h1h] · [h1h, h] · (h ∗ (x ⋄ h2))

= [g, (h1h)d(x)] · [(h1h)d(x), hd(x)] · hd(x)|x · [r(hd(x)|x), r(x)h′]·

[r(x)h′, r(x)(h′h2)] · [r(x)(h′h2), k]
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= [g, (h1h)d(x)] · (h1h)d(x)|x · [r(hd(x)|x), r(x)h′] · [r(x)h′, r(x)(h′h2)]·

[r(x)(h′h2), k]
(
(h1h)d(x) L hd(x), by (P4)

)

= [g, (h1h)d(x)] · (h1h)d(x)|x · [r((h1h)d(x)|x), r(x)h′] · [r(x)h′, r(x)(h′h2)]·

[r(x)(h′h2), k]

= [g, (h1h)d(x)] · (h1h)d(x)|x · [r((h1h)d(x)|x), vh′] · [vh′, r(x)h′]·

[r(x)h′, r(x)(h′h2)] · [r(x)(h′h2), k]
(
vh′ L r((h1h)d(x)|x) L r(x)h′

)

= [g, (h1h)d(x)] · [(h1h)d(x),d(x|vh′)] · x|vh′ · [vh′, r(x)h′]·

[r(x)h′, r(x)(h′h2)] · [r(x)(h′h2), k]
(

(h1h)d(x)|x ρ x|vh′

)

= [g,d(x|vh′)] · x|vh′ · [vh′, r(x)h′] · [r(x)h′, r(x)(h′h2)] · [r(x)(h′h2), k]
(
g R (h1h)d(x) R d(x|vh′), by (P1)

)

= [g,d(x|vh′)] · x|vh′ · [vh′, h′] · [h′, r(x)h′] · [r(x)h′, r(x)(h′h2)] · [r(x)(h′h2), k]
(
vh′ L h′ L r(x)h′, by (P1)

)
.

Since h′ ∈ S(h′
1, h2), we have h′ ωr h2 and h′ ωl h′

1, and so h′ R h′h2 ω h2. As

h′
1, h2 ω

l r(x), we have h′, h′h2 ω
l r(x), it follows that


 h′ h′h2

r(x)h′ r(x)(h′h2)


 is

a row-singular matrix, and so by (P6),

[h′, r(x)h′] · [r(x)h′, r(x)(h′h2)] = [h′, h′h2] · [h′h2, r(x)(h′h2)].

Thus,

[g, h1h] · [h1h, h] · (h ∗ (x ⋄ h2))

= [g,d(x|vh′)] · x|vh′ · [vh′, h′] · [h′, h′h2] · [h′h2, r(x)(h′h2)] · [r(x)(h′h2), k]

= [g,d(x|vh′)] · x|vh′ · [vh′, h′] · [h′, h′h2] · [h′h2, k]
(
h′h2 L r(x)(h′h2) L k, by (P1)

)

= [(d(x|vh′))+,d(x|vh′)] · x|vh′ · [vh′, h′] · [h′, h′h2] · [h′h2, k]
(
g = (d(x|vh′))+

)

= ((h1 ∗ x) ⋄ h′) · [h′, h′h2] · [h′h2, k].



247

Together with,

d(((h1 ∗ x) ⋄ h′) · [h′, h′h2]) = g R h1h = d([h1h, h] · (h ∗ (x ⋄ h2)))

and

r(((h1 ∗ x) ⋄ h′) · [h′, h′h2]) = h′h2 L k = r([h1h, h] · (h ∗ (x ⋄ h2))),

we have that ((h1 ∗ x) ⋄ h′) · [h′, h′h2] ρ [h1h, h] · (h ∗ (x ⋄ h2)).

Now, we turn our attention to concordant semigroups.

Corollary 11.6. The category of concordant semigroups and good morphisms is

equivalent to the category of IC-RBS categories and RBS functors.

Proof. Suppose that S is a concordant semigroup with set of idempotents E(S).

In view of Lemma 10.32, it is sufficient to show that SC satisfies (PC1) and

(PC2).

(PC1) If (e, x, f) ∈ SC and h ≤ e, then e R∗ x L∗ f . Since S satisfies

(IC), it follows from the comments succeeding Lemma 2.19 that there exists a

unique k ∈ E(S) such that k ≤ f and hx = xk. In addition,

h|(e, x, f) = (h, hx, (hx)⋆) and (e, x, f)|k = ((xk)+, xk, k).

As hx = xk, we obtain that h R (xk)+ and (hx)⋆ L k. Further, we have

h|(e, x, f) · [(hx)⋆, k] = (h, hx, (hx)⋆) · ((hx)⋆, (hx)⋆, k)

= (h, hx(hx)⋆, k) = (h, hx, k)

and
[h, (xk)+] · (e, x, f)|k = (h, (xk)+, (xk)+) · ((xk)+, xk, k)

= (h, xk, k)

= (h, hx, k)
(
xk = hx

)
,

so that h|(e, x, f) ρ (e, x, f)|k.

In particular, if h = e, then e|(e, x, f) = (e, x, x⋆). Certainly, x⋆ L f and

(e, x, x⋆) · (x⋆, x⋆, f) = (e, xx⋆, f) = (e, x, f),
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that is, e|(e, x, f) · [x⋆, f ] = (e, x, f), so e|(e, x, f) ρ (e, x, f).

(PC2) Let (e, x, f) ∈ SC and for i = 1, 2, ei, fi ∈ U be such that ei ≤ e,

fi ≤ f and ei
|(e, x, f) ρ (e, x, f)|fi

. Then

ei
|(e, x, f) = (ei, eix, (eix)⋆) and (e, x, f)|fi

= ((xfi)
+, xfi, fi).

As ei
|(e, x, f) ρ (e, x, f)|fi

, we have that ei R (xfi)
+, (eix)⋆ L fi and

ei
|(e, x, f) · [(eix)⋆, f ] = [ei, (xfi)

+] · (e, x, f)|fi
,

that is,

(ei, eix, (eix)⋆) · ((eix)⋆, (eix)⋆, fi) = (ei, (xfi)
+, (xfi)

+) · ((xfi)
+, xfi, fi),

that is,

(ei, eix, fi) = (ei, xfi, fi),

and so eix = xfi.

If e1 ≤R e2, then

e1x = e2e1x = e2(e1x) = e2xf1 = xf2f1.

As e1x = xf1, we get that xf2f1 = xf1. Since x L∗ f , we have that ff2f1 = ff1,

and so f2f1 = f1 as f1, f2 ≤ f . Thus, f1 ≤R f2. Note that e1 ≤R e2 and

f1 ≤R f2, we have that e1e2 ≤ e2 ≤ e and f1f2 ≤ f2 ≤ f , so that

e1e2|(e, x, f) and (e, x, f)|f1f2 exist. Also, we have

e1e2|(e, x, f) = (e1e2, e1e2x, (e1e2x)⋆) and (e, x, f)|f1f2 = ((xf1f2)+, xf1f2, f1f2).

As e1e2x = e1xf2 = xf1f2, we obtain that e1e2 R (xf1f2)+, (e1e2x)⋆ L f1f2, and

so [e1e2, (xf1f2)
+] and [f1f2, (e1e2x)⋆] exist. Further, we have

[(xf1f2)
+, e1e2] · e1e2|(e, x, f) = ((xf1f2)+, e1e2, e1e2) · (e1e2, e1e2x, (e1e2x)⋆)

= ((xf1f2)+, e1e2x, (e1e2x)⋆)



249

and

(e, x, f)|f1f2 · [f1f2, (e1e2x)⋆] = ((xf1f2)
+, xf1f2, f1f2) · (f1f2, f1f2, (e1e2x)⋆)

= ((xf1f2)
+, xf1f2, (e1e2x)⋆)

= ((xf1f2)
+, e1e2x, (e1e2x)⋆)

(
e1e2x = xf1f2

)
.

So e1e2 |(e, x, f) ρ (e, x, f)|f1f2 .

Dually, if e1 ≤L e2, then f1 ≤L f2 and e2e1|(e, x, f) ρ (e, x, f)|f2f1.

Conversely, let P be an IC-RBS category over U . In view of Lemma 11.5 and

Lemma 11.2, it is sufficient to show that Condition (P8) holds and PS satisfies

(IC).

(P8) Suppose that x, y, z ∈ P , h ∈ S(r(x),d(y)) and h′ ∈ S(r(x),d(z))

are such that (x ⊗ y)h ρ (x ⊗ z)h′ . Then d((x ⊗ y)h) R d((x ⊗ z)h′), that is,

d(x ⋄ h) R d(x ⋄ h′), or equivalently, d(x|r(x)h) R d(x|r(x)h′). As r(x)h, r(x)h′ ≤

r(x), by (PC1), there exist e1, e2 ≤ d(x) such that e1|x ρ x|r(x)h and e2|x ρ x|r(x)h′.

Thus, e1 R d(x|r(x)h) R d(x|r(x)h′) R e2. In addition, from e1 |x ρ x|r(x)h and

e2|x ρ x|r(x)h′, we obtain that e1σx = r(x)h and e2σx = r(x)h′ by Lemma 11.4.

As σx is an isomorphism and e1 R e2, we obtain that r(x)h R r(x)h′. Hence,

Condition (P8) holds.

To show that PS satisfies (IC), we assume that x̄ ∈ P and 1e ∈ U with

1e ≤ 1d(x). Then by Lemma 10.24, e ≤ d(x). By (PC1), there exists a unique

k ∈ U such that k ≤ r(x) and e|x ρ x|k, that is, e|x = x|k. By Lemma 10.21

and its dual, we have that 1e ⊙ x̄ = x̄ ⊙ 1k. Dually, if 1f ∈ U with 1f ≤ 1r(x),

then there exists 1g ∈ U such that 1g ≤ 1d(x) and 1g ⊙ x̄ = x̄ ⊙ 1f . Thus, PS

has (IC).

Now, we aim to define new restrictions and co-restrictions on an IC-RBS

category to recover the original result of Armstrong. We first show that an

IC-RBS category forms an inductive2 cancellative category with respect to the

restriction and co-restriction defined below.

Let P be an IC-RBS category over U . If k, h ∈ U , x ∈ P with h ω d(x),

k ω r(x) and h|x ρ x|k, then we define the restriction and co-restriction by the

rule that

h||x = h|x · [r(h|x), k], x||k = [h,d(x|k)] · x|k.
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Notice that if h ω d(x), k ω r(x) and h|x ρ x|k, then by (PC1) and Lemma 11.5,

we have hσx = k. In partucular, if h = d(x), then we must have that k = r(x),

and so

d(x)||x = d(x)|x · [r(d(x)|x), k] = d(x)|x · [r(d(x)|x), r(x)],

that is, d(x)||x = x by (P2). Dually, x||r(x) = x.

We define a relation on P by the rule that for any x, y ∈ P ,

x ≤ y if and only if x = e||y for some e ∈ U .

Clearly, if x ≤ y then there exists e ∈ U such that x = e||y. Then d(x) = e,

and so x = d(x)||y. For e||y to exist, we have e ω d(y), that is, d(x) ω d(y). By

the definition of the restriction, we obtain that r(e||y) ω r(y), and so r(x) ω r(y).

Lemma 11.7. The relation ≤ is a partial order on P .

Proof. It is easy to see that ≤ is reflexive by the comments above. Suppose that

x ≤ y and y ≤ x. Then d(x) = d(y), and so x = d(x)||y = d(y)||y = y. To

show that ≤ is transitive, suppose that x ≤ y and y ≤ z. Then d(x) ω d(y) and

d(y) ω d(z). Thus, d(x) ω d(z). Also, we have y = d(y)||z = d(y)|z·[r(d(y)|z), r(y)].

Then

d(x)|y = d(x)|(d(y)|z · [r(d(y)|z), r(y)])

= d(x)|(d(y)|z) · g|[r(d(y)|z), r(y)]
(
g = r(d(x)|(d(y)|z)), by (P5)

)

= d(x)|(d(y)|z) · [g, g⋆]
(
g = r(d(x)|(d(y)|z)) ω

l r(d(y)|z) L r(y), by (P3)
)

= d(x)|z · [g, g⋆]
(
d(x) ω d(y), by (P4)

)

= d(x)|z · [r(d(x)|z), (r(d(x)|z))
⋆].

From x ≤ y, we have that

x = d(x)||y = d(x)|y · [r(d(x)|y), r(x)]

= d(x)|z · [r(d(x)|z), (r(d(x)|z))
⋆] · [(r(d(x)|z)

⋆, r(x)]
(
r(d(x)|y) = (r(d(x)|z))

⋆
)

= d(x)|z · [r(d(x)|z), r(x)]
(
r(d(x)|z) L (r(d(x)|z))

⋆ L r(x), by (P1)
)

= d(x)||z.

Lemma 11.8. An IC-RBS category over a regular biordered set U with the order

defined above forms an ordered2 category.
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Proof. Let P be an IC-RBS category over U .

(OC1) If x ≤ y, then by the comments before Lemma 11.7, d(x) ω d(y) and

r(x) ω r(y).

(OC3) Suppose that x′ ≤ x, y′ ≤ y and x′ · y′ and x · y are defined. Then

x′ = d(x′)||x and y′ = d(y′)||y. Also ,

x′ · y′ = d(x′)||x · d(y′)||y

= d(x′)|x · [r(d(x′)|x), r(x′)] · d(y′)|y · [r(d(y′)|y), r(y′)]

= d(x′)|x · [r(d(x′)|x), r(x′)] · r(x′)|y · [r(r(x′)|y), r(y′)]
(
since x′ · y′ is defined, r(x′) = d(y′)

)

= d(x′)|x · r(
d(x′)|x)|y · [r(r(x′)|y), r(y′)]

(
r(d(x′)|x) L r(x′), by (P4)

)

= d(x′)|(x · y) · [r(d(x′)|(x · y)), r(y′)]
(
by (P5)

)

= d(x′)||(x · y).

Thus, x′ · y′ ≤ x · y.

(OC4) For part (i), if x ∈ P and e ∈ U are such that e ω d(x), then by

the definition of the order, e||x is the unique element satisfying that e||x ≤ x and

d(e||x) = e. Dually, part (ii) holds.

Hence, P is an ordered2 category.

Lemma 11.9. An IC-RBS category P over U with respect to the order, restric-

tions and co-restrictions forms an inductive2 cancellative category.

Proof. In view of Lemma 11.8, it is sufficient to show that P satisfies Conditions

(IC1)-(IC6) mentioned in Chapter 6.

(IC1) Clearly.

(IC2) Suppose that e, f ∈ U are such that e ω f . Then e|1f = e|[f, f ] = [e, e⋆]

by (P3). Also, by (P3)◦, we have 1f |e = [e+, e]. By Lemma 10.2, we obtain that

e|1f = [e, e⋆] ρ 1e ρ[e
+, e] = 1f |e,

and so by the definition of the restriction, we have that

e||1f = e|1f · [e⋆, e],
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that is,

e||1f = [e, e⋆] · [e⋆, e] = [e, e] = 1e,

and so 1e ≤ 1f .

Conversely, if 1e ≤ 1f , by the comments before Lemma 11.7, we obtain that

e ω f .

(IC3) It follows from (P1).

(IC4) Suppose that g, h, e ∈ U are such that e ω g L h. Then [g, h] exists

and e L he = heh ω h, and so [e, he] exists. By (P3), we have e|[g, h] = [e, e⋆].

Also, we have

[g, h]|he = [(g(he))+, g(he)] · [g(he), he]
(
by (P3)◦

)

= [e+, e] · [e, he]
(
e ω g L h, by (B31)◦, g(he) = ge = e

)
.

Clearly, e R e+, e⋆ L e and

[e, e⋆] · [e⋆, he] = [e, he] = [e, e+] · [e+, e] · [e, eh],

that is, e|[g, h] ρ [g, h]|he, and so

e||[g, h] = e|[g, h] · [e⋆, he] = [e, e⋆] · [e⋆, he] = [e, he],

so that [e, he] ≤ [g, h].

Dually, if gRh, then [e, eh] exists and [e, eh] ≤ [g, h].

(IC5) It follows from Lemma 11.3.

(IC6) It follows from (P6).

Thus, P is an inductive2 cancellative category.

Conversely, letQ be an inductive2 cancellative category with regular biordered

set U . For each L-class and R-class, we pick out a special element as its repre-

sentative. If h, k ∈ U with h ωl d(x) and k ωr r(x), then we define

h|x = [h,d(x)h] · d(x)h|||x · [r(d(x)h|||x), (r(d(x)h|||x))⋆]

and

x|k = [(d(x|||kr(x)))
+,d(x|||kr(x))] · x|||kr(x) · [kr(x), k],
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where if e ω d(x) and f ω r(x), then we use e|||x and x|||f to mean the restriction

of x to e and the co-restriction of x to f in the sense of inductive2 cancellative

categories. So if e = d(x) and f = r(x), then e|||x = x and x|||f = x.

In particular, if h, k ∈ U with h ω d(x) and k ω r(x), then we have that

h|x = h|||x · [r(h|||x), (r(h|||x))⋆]

and

x|k = [(d(x|||k))+,d(x|||k)] · x|||k.

In addition, if h = d(x), then

h|x = d(x)|||x · [r(d(x)|||x), (r(d(x)|||x))⋆] = x · [r(x), (r(x))⋆],

and so r(h|x) = (r(x))⋆ and

h|x · [(r(x))⋆, r(x)] = x · [r(x), (r(x))⋆] · [(r(x))⋆, r(x)],

that is,

h|x · [(r(x))⋆, r(x)] = x · [r(x), r(x)],

by (IC3), or equivalently,

h|x · [(r(x))⋆, r(x)] = x.

Dually, if k = r(x), then [d(x),d(x|k)] · x|k = x.

So, we have:

Lemma 11.10. An inductive2 cancellative category Q over U forms an IC-RBS

category with the restriction and co-restriction defined above.

Proof. Clearly, Condition (P1) holds by (IC3).

(P2) It follows from the statement before this lemma.

(P3) If g ω e and e R f or e L f , then by (IC4),

g|[e, f ] = g|||[e, f ] · [r(g|||[e, f ]), (r(g|||[e, f ]))⋆] = [g, fgf ] · [fgf, (fgf)⋆].
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If g ωl e and e L f , then g ωl f , which implies that fgf = fg L g, and so

g|[e, f ] = [g, eg] · eg|||[e, f ] · [r(eg|||[e, f ]), (r(eg|||[e, f ]))⋆]

= [g, eg] · [eg, f(eg)f ] · [f(eg)f, (f(eg)f)⋆]
(
by (IC4)

)

= [g, eg] · [eg, fg] · [fg, (fg)⋆]

= [g, (fg)⋆]
(
g L eg L fg L (fg)⋆

)

= [g, g⋆]
(
g L fg

)
.

(P4) If x ∈ Q and e, f ∈ U with e ωl f ωl d(x), then

f |x = [f,d(x)f ] · (d(x)f |||x) · [r(d(x)f |||x), (r(d(x)f |||x))⋆],

and so

e|(f |x) = e|([f,d(x)f ] · (d(x)f |||x) · [r(d(x)f |||x), (r(d(x)f |||x))⋆])

= [e, fe] · fe|||([f,d(x)f ] · d(x)f |||x · [r(d(x)f |||x), (r(d(x)f |||x))⋆]) · [u, u⋆]
(
u = r(fe|||([f,d(x)f ] · d(x)f |||x · [r(d(x)f |||x), (r(d(x)f |||x))⋆]))

)

= [e, fe] · [fe, k] · k|||(d(x)f |||x) · g|||[r(d(x)f |||x), (r(d(x)f |||x))⋆] · [u, u⋆]
(
k = (d(x)f)(fe)(d(x)f), g = r(k|||((d(x)f |||x))

)

= [e, fe] · [fe, k] · k|||(d(x)f |||x) · [g, (r(d(x)f |||x))⋆g] · [u, u⋆]

= [e, fe] · [fe, k] · k|||(d(x)f |||x) · [g, u⋆]
(
g L (r(d(x)f |||x))⋆g = uL u⋆, by (IC3)

)

= [e, fe] · [fe, k] · k|||(d(x)f |||x) · [g, g⋆]
(
g L u

)
.

Since k|||(d(x)f |||x) ≤ d(x)f |||x ≤ x and k|||x ≤ x, we obtain that k|||(d(x)f |||x) =

k|||x by (OC4). Thus

e|(f |x) = [e, fe] · [fe, k] · k|||x · [g, g⋆]

= [e, fe] · [fe, k] · k|||x · [r(k|||x), (r(k|||x))⋆].

Notice that e ωl f ωl d(x), by (B21)◦, we have that

fe L e L d(x)e ω d(x) and fe ω f L d(x)f ω d(x).
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Thus,

k = (d(x)f)(fe)(d(x)f) = (d(x)f)(fe) L fe L e L d(x)e

and also, k ω d(x). In addition, by the dual of (IC5), we have that

r(d(x)e|||x) L r(k|||x)

and

[d(x)e, k(d(x)e)] · k(d(x)e)|||x = d(x)e|||x · [r(d(x)e|||x), r(k|||x)r(d(x)e|||x)],

that is,

[d(x)e, k] · k|||x = d(x)e|||x · [r(d(x)e|||x), r(k|||x)],

and so, we have

e|(f |x)

= [e, k] · (k|||x) · [r(k|||x), (r(k|||x))⋆]
(
e L fe L k, by (IC3)

)

= [e,d(x)e] · [d(x)e, k] · k|||x · [r(k|||x), (r(k|||x))⋆]
(
e L d(x)e L k, by (IC3)

)

= [e,d(x)e] · d(x)e|||x · [r(d(x)e|||x), r(k|||x)] · [r(k|||x), (r(k|||x))⋆]

= [e,d(x)e] · d(x)e|||x · [r(d(x)e|||x), (r(k|||x))⋆]
(
by (IC3)

)

= [e,d(x)e] · d(x)e|||x · [r(d(x)e|||x), (r(d(x)e|||x))⋆]
(
r(d(x)e|||x) L r(k|||x)

)

= e|x.

If e L f ωl d(x), then d(x)e L e L f L d(x)f and d(x)e,d(x)f ω d(x). By

the dual of (IC5), we have that

[d(x)e, (d(x)f)(d(x)e)] · (d(x)f)(d(x)e)|||x = d(x)e|||x · [r(d(x)e|||x), r((d(x)f)(d(x)e)|||x)],

that is,

[d(x)e,d(x)f ] · d(x)f |||x = d(x)e|||x · [r(d(x)e|||x), r(d(x)f |||x)]
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as d(x)e L d(x)f . Then, we have

[e, f ] · (f |x)

= [e, f ] · [f,d(x)f ] · (d(x)f |||x) · [r(d(x)f |||x), (r(d(x)f |||x))⋆]

= [e,d(x)f ] · (d(x)f |||x) · [r(d(x)f |||x), (r(d(x)f |||x))⋆]
(
e L f L d(x)f, by (IC3)

)

= [e,d(x)e] · [d(x)e,d(x)f ] · (d(x)f |||x) · [r(d(x)f |||x), (r(d(x)f |||x))⋆]

= [e,d(x)e] · (d(x)e|||x) · [r(d(x)e|||x), r(d(x)f |||x)] · [r(d(x)f |||x), (r(d(x)f |||x))⋆]

= [e,d(x)e] · d(x)e|||x · [r(d(x)e|||x), (r(d(x)e|||x))⋆]
(
by (IC3)

)

= e|x.

(P5) If h ωl d(x) and x · y is defined. Then

h|(x · y)

= [h,d(x)h] · d(x)h|||(x · y) · [v, v⋆]
(
v = r(h|||(x · y))

)

= [h,d(x)h] · d(x)h|||x · g|||y · [v, v⋆]
(
g = r(d(x)h|||x)

)

= [h,d(x)h] · d(x)h|||x · [g, g] · r(
d(x)h

|||x)|||y · [v, v⋆]

= [h,d(x)h] · d(x)h|||x · [g, g⋆] · [g⋆, g] · g|||y · [v, v⋆]

= h|x · [g⋆, g] · g|||y · [v, v⋆]

= h|x · [g⋆,d(y)g⋆] · [d(y)g⋆, g] · g|||y · [v, v⋆]
(
g⋆ L g ω d(y), and so g⋆ L d(y)g⋆ ω d(y)

)
.

As d(y)g⋆ L g⋆ L g and d(y)g⋆, g ω d(y), by the dual of (IC5), we have that

r(d(y)g⋆ |||y) L r(g|||y)

and

[d(y)g⋆, g(d(y)g⋆)] · g(d(y)g⋆)|||y = d(y)g⋆ |||y · [r(d(y)g⋆ |||y), r(g|||y)r(d(y)g⋆ |||y)],

that is,

[d(y)g⋆, g] · g|||y = d(y)g⋆ |||y · [r(d(y)g⋆ |||y), r(g|||y)],
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and so

h|x · [g⋆,d(y)g⋆] · [d(y)g⋆, g] · g|||y · [v, v⋆]

= h|x · [g⋆,d(y)g⋆] · d(y)g⋆ |||y · [r(d(y)g⋆ |||y), r(g|||y)] · [v, v⋆]

= h|x · [g⋆,d(y)g⋆] · d(y)g⋆ |||y · [r(d(y)g⋆ |||y), v⋆]
(
v = r(h|||(x · y)) = r(g|||y), by (IC3)

)

= h|x · [g⋆,d(y)g⋆] · d(y)g⋆ |||y · [r(d(y)g⋆ |||y), (r(d(y)g⋆ |||y))⋆]
(
v = r(g|||y) L r(d(y)g⋆ |||y), and so v⋆ = (r(d(y)g⋆ |||y))⋆

)

= h|x · g⋆|y

= h|x · r(h|x)|y
(
g⋆ = r(h|x)

)
.

(P6) It follows from (IC6).

(PC1) Suppose that x ∈ Q, h ∈ U and hω d(x). Then by Proposition 1.41,

r(h|||x)ω r(x) and h|||x = x|||r(h|||x). Thus, d(x|||r(h|||x)) = h. In addition, we

have that

h|x = h|||x · [r(h|||x), (r(h|||x))⋆]

and
x|r(h|||x) = [(d(x|||r(h|||x)))

+,d(x|||r(h|||x))] · x|||r(h|||x)

= [h+, h] · x|||r(h|||x).

Clearly, we have that

h|x · [(r(h|||x))⋆, r(h|||x)]

= h|||x · [r(h|||x), (r(h|||x))⋆] · [(r(h|||x))⋆, r(h|||x)]

= h|||x

= x|||r(h|||x)

= [h, (d(x|||r(h|||x)))
+] · x|r(h|||x)(

x|r(h|||x) = [(d(x|||r(h|||x)))
+, h] · x|||r(h|||x)

)
.

Hence, h|x ρ x|r(h|||x).
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Suppose that k ω r(x) and h|x ρ x|k. Then

h|x · [r(h|x), k] = [h,d(x|k)] · x|k

⇒ (h|||x) · [r(h|||x), (r(h|||x))⋆] · [(r(h|||x))⋆, k]

= [h, (d(x|||k))+] · [(d(x|||k))+,d(x|||k)] · x|||k

⇒ (h|||x) · [r(h|||x), k] = [h,d(x|||k)] · x|||k
(
by (IC3)

)
,

that is, h|||xρ x|||k in Q, where ρ is defined in Chapter 6. Since hω d(x), we have

that h ∈ S(h,d(x)). Similarly, k ∈ S(r(x), k). Now, we calculate in Q/ρ

1h ⊙ x̄ = (1h ⋄ h) · (h ∗ x)

= (1h ⊗ x)h

= 1h|||h · [h, h] · [h, hd(x)] · hd(x)|||x

= 1h|||h · h|||x
(
h ω d(x)

)

= 1h · h|||x

= h|||x

and dually, we have x̄⊙1k = x|||k. As h|||xρ x|||k, we obtain that 1h ⊙ x̄ = x̄⊙1k.

Since h|||x = x|||r(h|||x), we obtain that 1h ⊙ x̄ = x̄ ⊙ 1r(h|||x). Hence, x̄ ⊙ 1k =

x̄⊙ 1r(h|||x). Due to x̄L∗ 1r(x) and k, r(h|||x) ∈ ω(r(x)), we have that 1k = 1r(h|||x).

Since U is isomorphic to U , it follows that k = r(h|||x), and consequently, the

uniqueness holds.

We note that d(x)|x = d(x)|||x · [r(d(x)|||x), (r(d(x)|||x))⋆] = x · [r(x), (r(x))⋆].

Clearly, d(x)|x ρ x. Thus, (PC1) holds.

(PC2) Suppose that x ∈ Q and for i = 1, 2, ei, fi ∈ U are such that ei ω d(x),

fi ω r(x) and ei
|x ρ x|fi

. In view of the proof of (PC1), we have that fi = r(ei
|||x).

If e1 ω
r e2, by (IC5), we have that f1 ω

r f2 and

[e1, e1e2] · (e1e2|||x) = (e1|||x) · [f1, f1f2].

Thus, r(e1e2 |||x) = f1f2. Again in view of the proof of (PC1), we have that

e1e2|x ρ x|f1f2.

Similarly, the second part holds.

To sum up, we have:
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Corollary 11.11. An IC-RBS category with respect to the restriction and co-

restriction defined before Lemma 11.7 forms an inductive2 cancellative category.

Conversely, an inductive2 cancellative category with respect to the restriction

and co-restriction defined before Lemma 11.10 forms an IC-RBS category.

Also, we have:

Lemma 11.12. Let P1 and P2 be IC-RBS categories and F : P1 → P2 be an

RBS functor. Then F is an inductive2 functor from P1 to P2.

Conversely, let Q1 and Q2 be inductive2 cancellative categories over U1 and

U2, respectively, and φ : Q1 → Q2 be an inductive2 functor. Then φ is an RBS

functor from Q1 to Q2.

Proof. Suppose that P1 and P2 are IC-RBS categories and F : P1 → P2 is an

RBS functor. If x ≤ y in P1, then there exists e ∈ U such that e ω d(y) and

x = e||y, that is, x = e|y · [r(e|y), k], where k ∈ r(y) and e|y ρ y|k. Certainly,

we have eF ω d(yF ) and kF ω r(yF ). From e|y ρ y|k, we have (e|y)F ρ (y|k)F

by Lemma 10.8, that is, eF |yF ρ yF |kF by (PF3). Since (e|y)F ρ eF |yF and

d((e|y)F ) = eF = d(eF |yF ), we have that

(e|y)F = eF |yF · [r(eF |yF ), r((e|y)F )],

and so we have

xF = (e|y)F · [r(e|y), k]F

= eF |yF · [r(eF |yF ), r((e|y)F )] · [r(e|y)F, kF ]
(
by (PF2)

)

= eF |yF · [r(eF |yF ), r((e|y)F )] · [r((e|y)F ), kF ]

= eF |yF · [r(eF |yF ), kF ]
(
r(eF |yF ) L r((e|y)F ) L kF

)

= eF ||yF

so that xF ≤ yF . Hence F is order-preserving. Together with (PF1) and (PF2),

F is an inductive2 functor.

Conversely, suppose that Q1 and Q2 are inductive2 cancellative categories

over U1 and U2, respectively, and φ : Q1 → Q2 is an inductive2 functor. By

(IOF1) and (IOF2), (PF1) and (PF2) hold. We now show that Condition (PF3)
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holds. If x ∈ Q1 and h ∈ U1 with h ωl d(x), then

h|x = [h,d(x)h] · d(x)h|||x · [r(d(x)h|||x), (r(d(x)h|||x))⋆].

Note that d(x)h|||x ≤ x, and so d(x)h|||xφ ≤ xφ as φ is order-preserving.

Since (d(x)h)φ ω d(x)φ, (d(x)h)φ|||xφ is defined and (d(x)h)φ|||xφ ≤ xφ. As

d((d(x)h|||x)φ) = (d(x)h)φ, we obtain that

(d(x)h|||x)φ = (d(x)h)φ|||xφ

by the uniqueness of restrictions. Then

(h|x)φ = [h,d(x)h]φ · (d(x)h|||x)φ · [r(d(x)h|||x), (r(d(x)h|||x))⋆]φ

= [hφ, (d(x)h)φ] · (d(x)h)φ|||xφ · [r(d(x)h|||x)φ, (r(d(x)h|||x))⋆φ]
(
by (IOF2)

)

= [hφ,d(x)φhφ] · d(x)φhφ|||xφ · [r(d(x)φhφ|||xφ), (r(d(x)h|||x))⋆φ]

= [hφ,d(x)φhφ] · d(x)φhφ|||xφ · [r(d(x)φhφ|||xφ), (r(d(x)φhφ|||xφ))⋆]·

[(r(d(x)φhφ|||xφ))⋆, (r(d(x)h|||x))⋆φ]

= hφ|xφ · [(r(d(x)φhφ|||xφ))⋆, (r(d(x)h|||x))⋆φ]

= hφ|xφ · [r(hφ|xφ), r((h|x)φ)]

so that (h|x)φ ρ hφ|xφ and dually, if k ωr r(x), we have (x|k)φ ρ xφ|kφ so that

(PF3) holds. Hence, φ is an RBS functor.

Further, by Corollary 11.6, Corollary 11.11 and Lemma 11.12, we obtain

Theorem C mentioned in Chapter 6 as follows:

Theorem C (Armstrong [1]) The category of concordant semigroups and good

morphisms is equivalent to the category of inductive2 cancellative categories and

inductive2 functors.

11.4 The regular case

We focus on regular semigroups in this section. An RBS category P over U is a

regular groupoid over U if Conditions (RG), (PC1), (PC2) and the duals (PC1)◦

and (PC2)◦ of (PC1) and (PC2) hold:
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(RG) for all x ∈ P , there exists y ∈ P with d(y) = r(x) and r(y) = d(x)

such that 1d(x) = x · y and y · x = 1r(x).

Notice that in a regular groupoid P , for any x ∈ P , there exists y ∈ P such

that 1d(x) = x · y and y · x = 1r(x), and so y is the inverse of x so that P is

a groupoid. Consequently, P is cancellative and so it is an IC-RBS category.

Together with the comments succeeding the definition of inductive2 cancellative

category in Chapter 6, we have an immediate consequence of Corollary 11.11 as

follows:

Corollary 11.13. A regular groupoid with respect to the restriction and co-

restriction defined before Lemma 11.7 forms an inductive2 groupoid.

Conversely, an inductive2 groupoid with respect to the restriction and co-

restriction defined before Lemma 11.10 forms a regular groupoid.

Since a regular groupoid is an IC-RBS category and a regular semigroup is

a special concordant semigroup, it follows from Lemma 11.6 that:

Corollary 11.14. The category of regular semigroups and morphisms is equiv-

alent to the category of regular groupoids over regular biordered sets and RBS

functors.

Proof. Let S be a regular semigroup with U = E(S). It is sufficient to show

that SC satisfies Condition (RG). Suppose that (e, x, f) ∈ SC. Since R = R̃U

and L = L̃U , we have that e R x L f . It follows from the fact that S is

regular that there exists y ∈ S with e L y R f , e = xy and yx = f . Then

(f, y, e) ∈ SC and the products (e, x, f) · (f, y, e) , (f, y, e) · (e, x, f) exist in SC.

Moreover, (e, x, f) · (f, y, e) = (e, xy, e) = (e, e, e) = [e, e] = 1e and similarly,

(f, y, e) · (e, x, f) = 1f . Hence, Conditon (RG) holds.

Conversely, let P be a regular groupoid over U . We need to show that PS

is regular. Suppose that x ∈ P . Then there exists y ∈ P with d(y) = r(x) and

r(y) = d(x) such that 1r(x) = y · x and 1d(x) = x · y. So 1d(x) = x · y = x ⊙ y.

Hence, x̄⊙ ȳ ⊙ x̄ = (x̄⊙ ȳ) ⊙ x̄ = 1d(x) ⊙ x̄ = x̄ so that PS is regular.

In view of Corollary 11.13 and Corollary 11.14, we have:

Theorem B (Nambooripad [38]) The category of regular semigroups and mor-

phisms is equivalent to the category of inductive2 groupoids and inductive2 func-

tors.
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