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Abstract

The topic of this thesis is the class of weakly U-abundant semigroups. This
class is very wide, containing inverse, orthodox, regular, ample, adequate, quasi-
adequate, concordant, abundant, restriction, Ehresmann and weakly abundant
semigroups. A semigroup S with subset of idempotents U is weakly U-abundant
if every Ry-class and every Ly-class contains an idempotent of U, where Ru
and Ly are relations extending the well known Green’s relations R and £. We
assume throughout that our semigroups satisfy a condition known as the Con-
gruence Condition (C).

We take several approaches to weakly U-abundant semigroups. Our first re-
sults describe those that are analogous to completely simple semigroups. Together
with an existing result of Ren this determines the structure of those weakly U-
abundant semigroups that are analogues of completely regular semigroups, that
is, they are superabundant. Our description is in terms of a semilattice of rectan-
gular bands of monoids.

The second strand is to aim for an extension of the Hall-Yamada theorem for
orthodox semigroups as spined products of inverse semigroups and fundamental
orthodox semigroups. To this end we consider weakly B-orthodox semigroups,
where B is a band. We note that if B is a semilattice then a weakly B-orthodox
semigroup is exactly an Ehresmann semigroup. We provide a description of a
weakly B-orthodox semigroup S as a spined product of a fundamental weakly B-
orthodox semigroup Sp (depending only on B) and S/~p, where B is isomorphic
to B and vp is the analogue of the least inverse congruence on an orthodox
semigroup. This result is an analogue of the Hall-Yamada theorem for orthodox
semigroups. In the case that B is a normal band, or S is weakly B-superabundant,
we find a closed form dp for vp, which simplifies our result to a straightforward

form.



For the above to work smoothly in the case S is weakly B-superabundant,
we need to find a canonical fundamental weakly B-superabundant subsemigroup
of Sp. This we do, and give the corresponding answers in the case of the Hall
semigroup Wp and a number of intervening semigroups.

We then change our direction. A celebrated result of Nambooripad shows
that regular semigroups are determined by ordered groupoids built over a reg-
ular biordered set. Our aim, achieved at the end of the thesis, is to extend
Nambooripad’s work to weakly U -reqular semigroups, that is, weakly U-abundant
semigroups with (C) and U generating a regular subsemigroup whose set of idem-
potents is U.

As an intervening step we consider weakly B-orthodox semigroups in this
light. We take two approaches. The first is via a new construction of an induc-
tive generalised category over a band. In doing so we produce a new approach
to characterising orthodox semigroups, by using inductive generalised groupoids.
We show that the category of weakly B-orthodox semigroups is isomorphic to
the category of inductive generalised categories over bands. Our approach is in-
fluenced by that of Nambooripad, however, there are significant differences in
strategy, the first being the introduction of generalised categories and the second
being that it is more convenient to consider (generalised) categories equipped
with pre-orders, rather than with partial orders. Our work may be regarded as
extending a result of Lawson for Ehresmann semigroups. We also examine the
trace of a weakly B-orthodox semigroup, which is a primitive weakly B-orthodox
semigroup.

We then take a more ‘traditional” approach to weakly B-orthodox semigroups
via band categories and weakly orthodox categories over a band, equipped with
two pre-orders. We show that the category of weakly B-orthodox semigroups is
equivalent to the category of weakly orthodox categories over bands. To do so
we must substantially adjust Armstrong’s method for concordant semigroups.

Finally, we consider the most general case of weakly U-regular semigroups.
Following Nambooripad’s theorem, which establishes a correspondence between
algebraic structures (inverse semigroups) and ordered structures (inductive group-
oids), we build a correspondence between the category of weakly U-regular semi-
groups and the category of weakly regular categories over regular biordered sets,

equipped with two pre-orders.
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Preface

The aim of this thesis is to investigate weakly U-abundant semigroups, using both
techniques developed for regular and abundant semigroups, and new ones. The
relevant definitions concerning the classes of semigroups in question are given in
Chapter 2.

Fundamental semigroups, that is, regular semigroups having no non-trivial
idempotent separating congruences, have played an important role in the struc-
ture theory of regular semigroups, especially, in the study of inverse semigroups.
As an extension of Munn’s approach to inverse semigroups, Hall constructed the
fundamental semigroup Wpg depending only on B, which is a subsemigroup of
OP(B/L) x OP*(B/R), where for any partially ordered set X, OP(X) is the
monoid of its order preserving selfmaps, with dual OP*. Also, he showed that
if S is an orthodox semigroup with band of idempotents B, then there exists a
morphism ¢ : S — Wp whose kernel is p, the maximum idempotent separating
congruence on S. Consequently, an orthodox semigroup S with band of idem-
potents B is fundamental if and only if it is isomorphic to a full subsemigroup
of Wx. Besides, Hall-Yamada showed that a regular semigroup S with band of
idempotents B is an orthodox semigroup if and only if it is isomorphic to the
spined product of the Hall semigroup Wp and S/~, where 7 is the least inverse
congruence on S.

In 1981, El-Qallali and Fountain [7] generalised this result to abundant semi-
groups with band of idempotents, and satisfying the idempotent connected condi-
tion (IC) [8]. They described such a semigroup S having a band of idempotents B
as a spined product of Wg and S/dp, where dp is the analogue of the least inverse
congruence (dp is in fact the least type A, or ample, congruence on S). In [46]
Ren, Shum and the author similarly extended this approach to describe weakly

B-orthodox semigroups with a stronger version (PIC) of (IC). We note that an
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abundant semigroup has (PIC) if and only if it has (IC). Condition (PIC) is de-
signed so that W can be used in the spined product construction; but for weakly
B-abundant semigroups it is stronger than (IC). The next step was made by El-
Qallali, Fountain and Gould in [6]. They built an analogous theory for weakly
B-orthodox semigroups with (IC), or the yet weaker (WIC) [14], this time using
semigroups U and Vg in place of Wg. Here Up and Vg are the largest funda-
mental semigroups containing a band of idempotents B in the given classes. To
do this they make heavy use of the congruence dg. Most recently, Gomes and
Gould [17,18] removed the idempotent connected condition (WIC) (or (IC)) from
the results of [6] [7], making use of a completely fresh technology to construct a
B-fundamental weakly B-orthodox subsemigroup Sg of OP(B/L) x OP*(B/R).
The missing step is the spined product result in the case no idempotent connected
condition holds. The aim of Chapter 5 is to provide such a result.

From Chapter 6, we change our angle to investigate the connection between
algebraic structures and ordered structures. Ehresmann-Schein-Nambooripad
(ESN) built a correspondence between inverse semigroups and inductive; groupoi-
ds. Here an inductive; groupoid is a groupoid equipped with a partial order
possessing restrictions and co-restrictions, and the set of idempotents forming
a semilattice under the partial order. The subscript is used to distinguish this
meaning of the word ‘inductive’ from others that will appear later in this thesis.
Inverse semigroups are precisely regular semigroups in which the idempotents
form a semilattice. Consequently, we can regard the set of idempotents of a regu-
lar semigroup as a generalisation of a semilattice. This idea is precisely described
in the definition of a regular biordered set, introduced by Nambooripad [38].
In that article, Nambooripad set up a connection between regular semigroups
and inductivey groupoids. Such a groupoid is a (functorially) ordered groupoid
equipped with the structure of a regular biordered set on its identities, which is
compatible with the ordered groupoid structure. In 1988, Nambooripad’s work
for regular semigroups was extended by Armstrong [1] from regular to concor-
dant semigroups, replacing ordered groupoids by ordered cancellative categories.
A concordant semigroup is an abundant semigroup with a regular biordered set
of idempotents and satisfying the extra condition of being idempotent connected
(IC), which is a condition of a standard type that gives some control over the posi-

tion of idempotents in products of elements of a semigroup. In 1991, Lawson [32]
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generalised the ESN theorem in a different direction to Ehresmann semigroups.
In his work, he used two partial orders on an Ehresmann semigroup to overcome
the lack of the idempotent connected condition, and established a correspondence
between Ehresmann semigroups and Ehresmann categories. In Chapters 7 and
9 we concentrate on the connection between weakly B-orthodox semigroups and
ordered structures, and in Chapter 10 we move away to the general case of weakly
U-regular semigroups. These are weakly U-abundant semigroups with (C) and
U generating a regular subsemigroup whose set of idempotents is U.

The structure of the thesis is as follows.

Chapter 1 presents some basic definitions and results related to regular
semigroups, biordered sets and categories.

Chapter 2 gives the basic definitions and fundamental notions concerning
abundant semigroups and weakly U-abundant semigroups, where U is a subset
of idempotents of a semigroup.

Chapter 3 establishes the structure of completely Z]—simple semigroups
which are weakly U-superabundant semigroups with a single Ju-class and satis-
fying the Congruence Condition (C). Here Condition (C) means the relations Ry
and Ly are left and right congruences, respectively. We show that a completely
Ju-simple semigroup is isomorphic to a rectangular band of monoids M;, (1€l
A € \) and satisfying Conditions called (R) and (L). Such conditions give some
control over the position of idempotents in the Dy-class. Finally, we build on an
existing result of Ren to show that a weakly U-superabundant semigroup with
(C) is a semilattice of rectangular bands of monoids satisfying Conditions (R)
and (L).

For the purpose of Chapter 5, we study in Chapter 4 fundamental weakly B-
superabundant semigroups. We find the largest full completely regular subsemi-
group of the Hall semigroup Wp, and correspondingly, weakly B-superabundant
subsemigroups with (C) of Vg (resp. Ug, Sg).

In Chapter 5, we obtain a general structure theorem for weakly B-orthodox
semigroups as a spined product, which may be thought of as an analogue of the
Hall-Yamada theorem. Our result is rather detailed, but simplifies drastically in
the case vp, the analogue of the least inverse congruence, has the closed form dp,
and so in particular, if the band B is normal or S is weakly B-superabundant.

In Chapter 6 we briefly recall some of the historical achievements such as the



Ehresmann-Schein-Nambooripad (ESN) Theorem, and its many extensions due
to Armstrong [1,2], Lawson [32], Meakin [35,36] and Nambooripad [38-40]. These
results set up a connection between algebraic structures and ordered structures.

In Chapter 7 we introduce a new approach. We define inductive gener-
alised categories over bands and pseudo-functors. We show that the category of
weakly B-orthodox semigroups is isomorphic to the category of inductive gen-
eralised categories. We then turn our attention to some special cases including
orthodox semigroups, and in particular recover Lawson’s work for Ehresmann
semigroups. Our reasoning is briefly as follows. From a regular (concordant)
semigroup one can produce a certain ordered category and then endow the cat-
egory with a so-called pseudo-product. Unfortunately this need not produce the
original semigroup: to do so requires factoring by a congruence. Our use of in-
ductive generalised categories circumvents this latter inconvenience. A further
point is that we could use partial orders on a semigroup as standard in this area,
but to do so would be rather clumsy. It turns out that pre-orders provide an
effective method.

In Chapter 8, we change our angle a little to discuss the trace of weakly
B-orthodox semigroups. We show that the trace of a weakly B-orthodox semi-
group is a primitive weakly B-orthodox semigroup and we investigate primitive
weakly B-orthodox semigroups via blocked Rees matrix semigroups, which are
introduced in [10].

The purpose of Chapter 9 is to revisit weakly B-orthodox semigroups and
provide a correspondence with a class of categories (posscessing two orders) that
is more akin to the original approach of Nambooripad and Armstrong. That is,
we use triples such as in [1]. A significant point is that we continue to use two pre-
orders instead of a partial order in our work and further new tricks to overcome
the lack of an idempotent connected condition. It turns out that without the (IC)
condition and without the idempotents forming a semilattice, pre-orders provide
the most elegant approach. At the end of this chapter, we discuss some special
cases including orthodox semigroups, and recover Lawson’s work for Ehresmann
semigroups.

Chapter 10 focuses on weakly U-regular semigroups. We investigate the
correspondence between weakly U-regular semigroups and certain categories, by

extending the techniques introduced in Chapter 9.
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In Chapter 11 we are concerned with some special kinds of weakly U-
regular semigroups. We recover Armstrong’s work for concordant semigroups
and Nambooripad’s work for regular semigroups.

We tried to keep some homogeneity in notation. Most of the time, we use
Greek letters for functions, lower case letters for elements, capital letters for sets
and bold face letters for categories. We write functions and functors on the right.

We use the term morphism for homomorphism. Semigroups are usually de-
noted by S and monoids by M, but this notation is not frozen: we may also use
S for monoids and M for semigroups if needed. In general, we use B and E (or
U) to denote a band and a set of idempotents, respectively.

The reader wishing to negotiate a pathway through this thesis can use the

following diagram.

1 2
4 6 8 3
) 7 9 10

11

Figure 1: The structure of this thesis

The main result of Chapter 9 is in fact a special case of that of Chapter 10.
However, Chapter 9 introduces many of the new techniques required, but in
the more concrete content of a band, rather than a regular biordered set. The

reader wishes to avoid the full technicalities of Chapter 10 may wish to focus on
Chapter 9.
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Chapter 1
Basic Theory I

In this chapter, we mainly present certain basic definitions and results mostly
taken from [26], [38] and [34]. For further details of semigroup theory, we refer
the reader to [26], for biordered sets to [38] and for category theory to [34].

1.1 Relations

Let X be a non-empty set. A subset p of X x X is called a (binary)relation on
X. It is worth specifically mentioning three special relations on X: the empty

subset ¢ of X x X, the universal relation X x X and the identity relation
Ix ={(z,z) :z € X}.

Let B(X) denote the set of all binary relations on X. We define a binary
operation o on B(X) by the rule that for any p,o € B(X),

poo={(r,y) € X x X :(3z € X)(x,2) € pand (z,y) € 0}.

Lemma 1.1. [26] The set B(X) forms a semigroup under o.

Let p be a relation on X. We define the domain dom(p) of p by

dom (p) = {z € X : (y € X)(z,y) € p}



and the co-domain ran(p) of p by
ran(p) = {y € X : (B2 € X)(z,y) € p}.
For any x € X, we define

zp={y € X :(z,y) € p}.

The inverse of a relation p on X is the relation p=! on X defined by

pt={(y,x) € X x X : (z,y) € p}.

We pause to remark that for all p, pq, ..., p, in B(X),

() =0,

(propro...op)=p,lo.oplop!

and

dom(p™') = ran(p), ran(p~') = dom(p).

If p is a relation on X, we shall usually write ‘z p y’ for ‘(x,y) € p.

We say that a relation p on X is reflexive if x p y for all z in X, symmetric
if x py implies y p x for all x,y in X, anti-symmetric if x p y and y p x together
imply x = y, and transitive if x p y and y p z together imply that = p z for all
x,y,z € X.

A relation p on X is said to be a pre-order if it is reflexive and transitive. A
pre-order is also sometimes called a quasi-order. In this thesis, we prefer to call
it a pre-order.

A relation p on X is called a partial order if it is reflexive, anti-symmetric
and transitive.

A relation p is an equivalence relation on X if it is reflexive, symmetric and
transitive. If p is an equivalence relation, then the sets xp are called p-classes
or equivalence classes containing x, where x € X. The set of all p-classes of X
is said to be the quotient set of X by p and is denoted by X/p. Clearly, the



mapping p* : X — X/p defined by
zpt = xp (1’ € X)

is well-defined. We shall call it the natural mapping associated to p.

If {p; : i € I} is a non-empty family of equivalences on a set X, then it is easy
to see that the intersection N{p; : ¢ € I} is again an equivalence. If p is a relation
on X, then the family of equivalence relations containing p is non-empty, since
X x X is one such equivalence, and so the intersection of all the equivalences on
X containing p is an equivalence, that is, the unique minimum equivalence on X
containing p. We shall call it the equivalence on X generated by p and denote it

by p°. It is routine to show that
pf=lpUp UL,

where R' = (J22; R™ is the transitive closure of an arbitrary relation R. If p and
o are equivalences on X, then the family of equivalence relations containing p
and o is non-empty, as X x X is one such equivalence. By definition, (p U o)¢ is
the least equivalence containing p and o. We will denote it by p V 0.

An extremely useful result is that:

Lemma 1.2. [26] If p and o are equivalences on a set X such that poo = o op,

then pV o =poo.
Note that if p is a pre-order on X, then the relation =, on X given by
x =, yitandonlyifz pyandypx (:z,yEX),

is an equivalence relation. Since p is a pre-order, that is, p is reflexive and
transitive, it immediately leads to =, being an equivalence relation. For any
z € X, we will use [z] to denote the =,-class of X containing z.

In addition, the relation <, on X / =, defined by

[z] =<, [y]ifand only if x py

is a well-defined partial order. Since if v =, 2/, y =, ¥’ and = p y, then

¥ pxpypy,and sox’ py, so that the choice of x and y does not mat-



ter. Hence =<, is well-defined.
It is easy to see that =<, is reflexive and transitive as p is reflexive and
transitive. To show that <, is anti-symmetric, we suppose that [x] <, [y] and

[y] <, [z]. Then = p y and y p x, so that © =, y, that is, [z] = [y].

1.2 Ordered sets

A partially ordered set (X, <) is a non-empty set X together with a partial order
<. Let X be a partially ordered set with respect to < and let Y be a non-empty
subset of X. An element a of Y is called maximal if there is no element of Y
strictly greater than a, that is, if for any y € Y we have a < y, then y = a. An
element b of Y is called mazximum if y < b for all y € Y. Obviously, a maximum
element is maximal, but the converse is not necessarily true. We say that an
element z in X is a lower bound for Y if ¢ <y for every y € Y. If the set of lower
bounds of Y is non-empty and has a maximum element d, we refer to d as the
greatest lower bound, or meet of Y. The element d is unique if it exists, and we

write
d=Ny:yeY}.

In particular, if Y = {a,b}, we denote d = a Ab. If X is a partially ordered
set with respect to < and such that a A b exists for every a,b € X, we say that
(X, <) is a lower semilattice. In a lower semilattice (X, <) we have that, for all
a,be X,

a < bif and only if a A b = a.

Analogously, we define the least upper bound or join

V{y:yeY}

of a non-empty subset Y of X and an upper semilattice.



1.3 Semigroups and Green’s relations

1.3.1 Basic definitions

Let S be a non-empty set. A binary operation on S is a mapping p from S x S
into S. The pair (S, u) is said to be a semigroup if u is associative, that is, for
all z,y,z € S, (z,y)p, 2)p = (x, (y, 2)u) . To avoid the notation being rather
cumbersome, we shall follow the usual practice in algebra to write (x,y)u as zy
and usually call zy the product of x and y. In this case, the semigroup operation
is called multiplication and the associative formula may be simply expressed as
(zy)z = x(y=).

A semigroup (.5, ) is a pair, but we shall usually say ‘S is a semigroup’ and
assume the binary operation is known.

An element e of S is called an idempotent if €2 = e. The set of idempotents
of S is denoted by E(S5).

An element e of S is said to be a left (resp. right) identity if, for all x € S,
er = x (xe = z). An element is an identity element or identity if it is a left and a
right identity. It is easy to see that there exists at most one identity, which will
be called the identity and denoted by 1.

An element e of S is called a left (resp. 1ight) zero if, for all z € S, ex =€
(xe =e). An element of S is called a zero element or zero if it is a left and a right
zero. There can be at most one zero, which is then called the zero and denoted
by 0.

Observe that a left (resp. right) identity is necessary idempotent, and so is
a left (resp. right) zero.

A monoid is a semigroup with an identity. If S is a semigroup, S denotes
the monoid equal to S if S is a monoid and to S U {1} if S is not a monoid. In

the latter case, the operation of S! is completed by the rules
lr =21 ==z,

for all z € S'. We say that S* is S with an identity adjoined if necessary.
If S is a semigroup with or without a zero element, we usually use S° to

denote the semigroup with underlying set S U {0} and multiplication extending



that of S, with
Oz =20=0 (1’ € S)

and 00 = 0. We say that S° is S with a zero adjoined.

A monoid M is a group if each of its elements has a group inverse, that
is, for all x € M, there exists ' € M such that zz’ = 2’z = 1. Here, 2’
is a group inverse of x. Note that if 2" is another group inverse of x, then
2 =21 = 2"xx’ = 12/ = 2/, and so the group inverse of x is unique, so that we
shall say 2’ is the group inverse of x.

A subsemigroup G of a semigroup S is said to be a subgroup if G is a group.

A 0-group is a group G with a zero adjoined.

A semigroup (resp. monoid, group) S is said to be commutative if, for all
T,y €S, xy = yx.

A band is a semigroup B in which every element is an idempotent, that is,
2?2 =z for all v € B.

In the following, we mention some special bands.

A band B is a left zero band if, for all z,y € B, ry = x. Symmetrically, a
right zero band is defined.

A normal band is a band satisfying zyzx = xzyx for all z,y, z € B.

Let E be a commutative semigroup of idempotents. We define a relation <
on E by

r < yifand only if xy =« (:z,yEE).

It is easy to see that < is a partial order on E. Indeed if x € E, then 2% = z,
and so x < x so that < is reflexive. Suppose that z,y € F with x < y and
y < z, then xr = zy = yxr = y, so < is anti-symmetric. Furthermore, if z < y
and y < zin F, then © = zy and yz = y, so that zz = (zy)z = z(yz) = 2y = =,
whence z < 2. Hence, < is transitive and so < is a partial order on E. We note
that for any x,y € F, zy is the greatest lower bound of x and y. Consequently,
(E, <) becomes a lower semilattice, that is, a partially ordered set in which every
pair of elements has a greatest lower bound.

Conversely, if (F, <) is a lower semilattice, then F, together with the binary

operation A, forms a commutative semigroup of idempotents. If a,b,c € E, then

(anND)ANe < anb < a, (aAb)Aec < aAb < b,



and
(anb)Ne < e

Thus (a A b) A ¢ is a lower bound of {a,b,c}. If d is a lower bound of {a, b, c},
thend < a,d < bandd < c¢. Hence,d < aAb,andsod < (aAb)Ac.
Thus (a A b) A ¢ is the unique greatest lower bound of {a,b,c}. Similarly, we
may show that a A (b A ¢) is the unique greatest lower bound of {a, b, c}. Hence,
aN(bAc) = (aNb)Ac, so that (E, A) is a semigroup. Obviously, a Aa = a for all
a€ EandaAb=>bAaforall a,b € E. Thus (E, A) is a commutative semigroup
of idempotents. Moreover, a A b = a if and only if a < b.

To sum up, we have:

Proposition 1.3. [26] Let (E,<) be a lower semilattice. Then (E,N\) is a

commutative semigroup of idempotents and
(Va,b € E)a < bifand only if a ANb = a.

Let (E,-) be a commutative semigroup of idempotents. Then the relation <

on E defined by
a < bifand only if ab=a

is a partial order on E with respect to which E is a lower semilattice. In (E, <),

the meet of a and b is their product ab.

As a consequence of Proposition 1.3, the notions of ‘lower semilattice’ and
‘commutative semigroup of idempotents’ are equivalent and interchangeable. We
shall use the term semilattice to mean either concept, making free and frequent
transfers between algebraic structure and ordered structure.

We close this section with the notion of a rectangular band. A band B is said
to be rectangular if, for all x,y, 2 € B, xyz = xz. For example, given arbitrary

non-empty sets [ and J, one can define a semigroup operation on I x J by putting

(i,7) - (k, €) = (i, ).

The resulting semigroup I x J is a rectangular band as for any (i,7) € I x J,



and for any (4,7), (A, 1), (k,w) € I x J, we have that

(Z>]) : ()\?:u) ) (k’w) = (iaw)'

Notice that any rectangular band is isomorphic to one so constructed.

We omit the proof of the next lemma as it will be shown in Section 1.3.6.

Lemma 1.4. [26] Every band is a semilattice of rectangular bands.

1.3.2 Green’s relations

Let S be a semigroup. A relation p on S is called left compatible if
(Vs,t,a € 5) (s,t) € p= (as,at) € p;
the notion of right compatible is defined dually. It is called compatible if
(Vs,t,s',t' € 9) (s,s") € pand (t,t') € p= (st,s't') € p.

A left (resp. right) compatible equivalence relation is called a left (resp. right)
congruence. A compatible equivalence relation is called a congruence. It is easy
to see that a relation p on a semigroup S is a congruence if and only if it is both
a left and a right congruence.

It is necessary to mention the theorem below as it will be used in the later

chapters.

Theorem 1.5. [26] If p is a congruence on a semigroup S, then S/p is a
semigroup with respect to the operation defined by the rule that

(@p)(yp) = (zy)p (Va,y € S)
and the mapping p* : S — S/p defined by
zph = xp (x € S)

is a morphism.

We pause here to make a short comment on Theorem 1.5. It is easy to see

that the operation (zp)(yp) = (xy)p is well-defined. Since for all z,2’,y,y’ € S,



if x pa’and y p 3/, then (z,2') € p and (y,y’) € p, so that (zy,2'y’) € p, that is,
xy p x'y.

Let S be a semigroup and p be a congruence on S. Then we shall call p a
KC-congruence if S/p is a K-semigroup. For example, if S/p is a semilattice, then
p is called a semilattice congruence.

If A and B are subsets of a semigroup S, we write AB for {ab:a € A,b € B}.

It is easy to see that
(VA,B,C € S) (AB)C = A(BC).

Hence notation such as ABC, A1 A, - -+ A,, are meaningful. To deal with singleton
sets, we shall use the notational simplifications that are customary in algebra.
For example, we will write Ab for A{b}.

A non-empty set A of a semigroup S is called a left ideal if SA C A, a right
ideal if AS C A, and a (two-sided) ideal if it is both a left and a right ideal. Note
that every (left, right) ideal is a subsemigroup; but not every subsemigroup is an
ideal. Any semigroup is an ideal of itself.

Let S be a semigroup without identity. For any a € S, Sa will not in general

contain a. However,

S'a = Sa U {a},
aS' = aS U {a}

and
StaS' = SaSU SauUaSU{a}.

Notice that S'a, aS* and S'aS' do not contain 1, so they are all subsets of S.
Precisely, they are the smallest left, right and two-sided ideals of S containing
a, respectively. Commonly, S'a is called the principal left ideal generated by a.
Dually, aS! is the principal right ideal generated by a and S'aS! is the principal
ideal generated by a.

Built on these ideals mentioned above, we define relations <,, <z and <

on a semigroup S as follows: for any a,b € 9,
a <g b if and only if Sla C Slb,

a <z b if and only if aS' C bS*,
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a <7 b if and only if StaSt C S'bSt.

It is easy to see that <., <z and < are pre-orders on S, respectively. Also, we
note that <z is left compatible. Since if a,b,c € S are such that a <z b, then
aSt C bS*, and so caS! C ¢bS?, that is, ca <g cb. Dually, <, is right compatible.

The following lemma is immediate.

Lemma 1.6. Let S be a semigroup with set of idempotents E(S). For anye, f €
E(S),

(1) e <g f if and only if fe =e;

(i) e <, f if and only if ef = e.

We denote the associated equivalences by £, R and J, respectively. So for
any a,b € S,
a L bif and only if Sta = S'b,
a R b if and only if aS' = bS*,
a J b if and only if StaS! = S1bS!.
In addition, we use H and D to denote the intersection and join of £ and R,

respectively, that is,
H=LNRand D=LV R.

As usual, these equivalence relations £, R, H, D and J are called Green’s
relations [21].
The next proposition gives an alternative characterisation of Green’s rela-

tions.

Proposition 1.7. [25] Let S be a semigroup and a,b € S. Then
(i) aLb if and only if there exist x,y € S* such that xa = b, yb = a;
(i1) aRb if and only if there exist u,v € S* such that au = b, bv = a;
(ii1) a J b if and only if there exist x,y,u,v € S* such that zay = b, ubv = a.

The following two lemmas give important properties of £ and R.

Lemma 1.8. [26] The relation L is a right congruence and R is a left congru-

ence.

Lemma 1.9. [26] The relations £ and R commute.
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In view of Lemma 1.2 and Lemma 1.9, we have
D=LoR=RoL.
We remark that in a group G, we have that
H=L=R=D=J=GxG
and in a commutative semigroup, we have that
H=L=R=D=J.

Before closing this section, we introduce partial orders amongst Green’s
equivalence classes. First, it is worth making a statement to simplify the no-
tation of equivalence classes. We will denote the L-class (resp. R-class, H-class,
D-class, J-class) containing the element a by L, (resp. R,, Hy, Dg, J,). Since L,
R and J are defined in terms of ideals, a partial order amongst the equivalence
classes is induced by the inclusion order amongst these ideals.

Let S be a semigroup and a,b € S. Then

L, < L, if and only if Sta C S'b,
R, < Ry if and only if aS* C bS?,
J. < Jp if and only if StaS! C S'bS!.

Hence, S/L, S/R and S/J may be regarded as partially ordered sets.

If T'is a subsemigroup of S and K is a relation on S, then IC(T") is the relation
on T and K(9) is the relation on S.

1.3.3 Regular semigroups

The notion of regularity in a semigroup is derived from von Neumann’s definition
of a regular ring [42].

An element a of a semigroup S is said to be regular if there exists x in S
such that axa = a. A semigroup S is called regular if all its elements are regular.
Groups are of course regular semigroups, but the class of regular semigroups is
vastly more extensive than the class of groups. As an analogue of the group

inverse, we have the notion of a semigroup inverse of an element. If a is an
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element of a semigroup S, we say that a’ is an inverse of a if
ad'a =a, dad =d.

Notice that an element with an inverse is necessarily regular. Conversely, every
regular element has an inverse. Since if axa = a then we put ¢’ = razx and it is
routine to verify that o’ is an inverse of a.

We remark that an element a may have more than one inverse, say, in rect-
angular bands every element is an inverse of every other element. We will use
V(a) to denote the set of all inverses of a.

Let S be a regular semigroup and a € S. Then there exists z € S such that
a = axa, from which it follows that a € Sa (resp. aS, SaS). In that case, Green’s
relations can be restated for regular semigroups as follows: for any a,b € S,

a L b if and only if Sa = Sb,
a R b if and only if a5 = bS,
a J b if and only if SaS = SbS.
The following theorem is very useful. Here, a D-class is regular if all its

elements are regular, or equivalently, it contains at least one regular element [26].

Theorem 1.10. [26] Let a be an element of a reqular D-class D in a semigroup
S.

(1) If a' is an inverse of a then o' € D and the two H-classes R, N Ly,
Lo N Ry contain respectively the idempotents aa’ and d'a.

(13) If b € D is such that R, N Ly, L, N Ry, contains idempotents e, f, respec-
tively, then Hy contains an inverse a* of a such that aa* = e, a*a = f.

(7i1) No H-class contains more than one inverse of a.

The next proposition is an immediate consequence of Theorem 1.10, which

will be of considerable use in Chapter 7.

Proposition 1.11. [26] Let e, f be idempotents in a semigroup S. Then e D f
if and only if there exists an element a in S and an inverse a' of a such that

ad' =e and d'a = f.

If S is a semigroup with set of idempotents E(S) we shall say that a congru-
ence p on S is idempotent separating if it has the property that

p N (E(S) x E(S5)) = 1gs),
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that is, no p-class contains more than one idempotent. In fact, it is of interest to
recall the result, as Lallement [31] showed: on a regular semigroup a congruence
is idempotent separating if and only if it is contained in H.

A semigroup is fundamental if the largest idempotent separating congruence

is trivial.

1.3.4 Inverse semigroups

The aim of this section is to cover the basic ideas and facts about inverse semi-
groups, which may be regarded as the class of semigroups closest to groups.
A semigroup S is said to be inverse if every a in S has a unique inverse. We

will denote the unique inverse of a in S by a .

Such a semigroup is certainly
regular, but the converse need not be true.

There are some equivalent formulation for inverse semigroups.

Theorem 1.12. [26] Let S be a semigroup with set of idempotents E(S). Then
the following statements are equivalent:

(i) S is an inverse semigroup;

(ii) S is reqular and E(S) is a semilattice;

(1ii) every L-class and every R-class contains exactly one idempotent.

It is convenient to recall from [26] the following elementary properties of

inverse semigroups.

Proposition 1.13. [26] Let S be an inverse semigroup with semilattice of idem-
potents E(S). Then

(i) (e =a foralla € S;

(it) et =e for all e € E(S);

(i17) (ab)™t =b"ta™! for alla,b e S;

(iv) aea™ € E(S), a~'ea € E(S) for alla € S and e € E(S).

A significant feature of inverse semigroups is the natural partial order rela-
tion. Let S be an inverse semigroup with semilattice of idempotents E(S). Given
a,b € S, we define

a < bif and only if (Je € E(S))a = eb.

It is routine to verify that this relation < is a partial order.
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The following list gives several alternative characterisations of <.

Proposition 1.14. [26] Let S be an inverse semigroup with semilattice of idem-

potents E(S) and a,b € S. Then the following statements are equivalent:

(1) a < b; (17) (Fee€ E(Y)) a=be;
(i17) aa™t = ba~l; (iv) aa™' =ab™;

(v) a™ta =b"'a; (vi) a™la = a'b;

(vit) a = ab 'a; (viii) a = aa™'b.

We note that the restriction of < to the semilattice £(S) of idempotents of

an inverse semigroup S is the natural semilattice order on E(S):
e < fifandonlyifef =e (e,feE(S)).

Another crucial property of < is that the order relation on any inverse semi-
group S is compatible with the operations of multiplication and inverse. Since if
a,b € S with a < b, then there exists e € E(S), the semilattice of idempotents
of S, such that a = eb, and so ac = ebc, so that ac < be. The left compatibility
follows dually from Proposition 1.14(ii).

Usually, we call < the natural partial order on an inverse semigroup. In
particular, the partial order < is the identity relation on a group.

Another important notion for inverse semigroups is that of an idempotent
separating congruence. Howie [27] gave an alternative description of this congru-

ence:

Theorem 1.15. [27] If S is an inverse semigroup with semilattice of idempotents
E(S), then the relation

p=1{(a,b) € SxS:(Vee€ E(S))aea =0b"eb}

is the greatest idempotent separating congruence on S.

As any inverse semigroup is regular, it follows from Lallement’s result in

Section 1.3.3 that p is the largest congruence contained in H.

1.3.5 Orthodox semigroups

An orthodox semigroup is a regular semigroup in which the set of idempotents

forms a band.



15

Due to Reilly and Scheiblich [43], we have:

Proposition 1.16. [43] If S is a regular semigroup, then the following state-
ments are equivalent:

(1) S is orthodoz;

(ii) for any a,b in S, if a’ is an inverse of a and b’ is an inverse of b, then
b'a' is an inverse of ab;

(7i1) if e is idempotent then every inverse of e is idempotent;

(iv) for alla,b € S, if V(a) NV (b) # 0, then V(a) = V(b).

Built on Proposition 1.16 (iv), Yamada [52] considered the equivalence rela-
tion

v=Alz,y) € §x5:V(x) =V(y)}

on an orthodox semigroup S in which the band B of idempotents is normal, in the
sense, xyzt = xzyt for all z,y, z,t € B. A further study in the general orthodox
case by Hall [23] showed that:

Lemma 1.17. If S is an orthodox semigroup with band of idempotents B, then
the relation v defined above is a congruence on S such that yN (B x B) = J(B).

Moreover, it is the least inverse semigroup congruence on S.

1.3.6 Completely regular semigroups

A semigroup S is said to be completely reqular if there exists a unary operation
a + a~! such that

The following result presents two alternative descriptions of completely reg-

ular semigroups.

Lemma 1.18. [26] Let S be a semigroup. Then the following statements are
equivalent:

(1) S is completely regular;

(13) every element of S lies in a subgroup of S;

(1ii) every H-class in S is a group.
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In view of Lemma 1.18 (iii), a completely regular semigroup is often referred
to as a union of groups.

A crucial observation about completely regular semigroups is that:

Lemma 1.19. [26] Let S be a completely reqular semigroup. Then D = J and

J is a semilattice congruence on S.

Let S be a completely regular semigroup. We denote the semilattice S/ J
by Y, and for each o € Y we denote a(J")~" by S,. Each S, is a J-class of
S and a completely simple semigroup, in the sense that, it has no proper ideals
and contains a primitive idempotent (by which we mean an idempotent which is
minimal within the set of idempotents, here, for any e, f € E(S), e < f if and
only if ef = fe =e).

To sum up, we have:

Theorem 1.20. [26] Every completely reqular semigroup is a semilattice of

completely simple semigroups.

Here, we need to mention a special subclass of the class of completely regular
semigroups, that is, the class of Clifford semigroups. A semigroup is a Clifford
semigroup if it is a semilattice of groups. These are precisely inverse semigroups
S with central idempotents, that is, in which ea = ae for all a € S and e € E(5).

Notice that any band B is a completely regular semigroup so that J is a
semilattice congruence on B. As each [J-class of B is a rectangular band, we
obtain that every band is semilattice of rectangular bands, that is, B = U,cy Bas
where Y is the index set of the J-classes of B and each B, is a J-class.

For convenience, we will sometimes denote the B, containing e by FE(e).
Then E(e) is a rectangular band and hence E(e) C V(e). By Theorem 1.10,
V(e) C E(e), and so V(e) = E(e).

In what follows the reader should bear in mind that for a band B, two
elements are D-related if and only if they are mutually inverse.

To close this section, we present some results from [26], which will be useful

subsequently.

Lemma 1.21. [26] Let e, f be elements of a band B such that eD f. Then the
maps

O :x— faf, 0.y — eye
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are mutually inverse isomorphisms from (e) onto (f) and from (f) onto (e),
respectively.

It is worth remarking that for a band B and element e of B, (e) = {x €
B :ze =cex =e}. If eD f, then for any = € (e) and any y € (f), we have that
2D fxf and y Deye. To make the domain of the map 6 clear, we shall use the
symbol 6y instead of simply ;. Notice that the inverse of 0|y is 0|y

Lemma 1.22. [26] If x, e, f are elements of a band B such that e D f, then
Lemf = me and Regcf = Rem.

1.4 Biordered sets

Let E be a partial algebra, that is, a set E together with a partial binary operation
-on F. Usually, we omit the symbol ‘-’ say, if e, f € F and e- f exists in F/, then

we write ef for e - f. We will express the term ‘e - f exists in E’ as ‘Jef’. Set
Di={(e.f) € Ex E:3ef},

that is, Dg is the domain of the partial binary operation. On E we define

w={(e.f): fe=e}, W' ={(e.f):ef =e},

R=w (W)l L=wn(W)?tandw=w Nuw.

In addition, for any e € E, we define

wie)={feE: fuwe}

and similarly for w!(e) and w(e).

Definition 1.23. Let E be a partial algebra as above. Then E is a biordered
set if it satisfies axioms (B1), (B21), (B22), (B31), (B32), (B4) and their duals,

where e, f, g, h denote arbitrary elements of F.
(B1) w" and w' are pre-orders on E and Dp = (w" Uw") U (w" Uw!)™
(B21) few'(e)= fR fewe;

(B22) g ' fand f,g € w(e) = gew' fe;



18

(B31) gw" fw"e=gf = (ge)f;
(B32) gw' fand f,g € w'(e) = (fg)e = (fe)(ge).

Let M (e, f) denote the set w'(e)Nw"(f) for all e, f € E. We define a relation
< on M(e, f) by the rule that for any g, h € M(e, f),

g < h if and only if eg w" eh, gf W' hf.

It is easy to see that < is a pre-order on M (e, f). Since for any g € M (e, f), we
have that ¢ < ¢ and so it is reflexive. To show that < is transitive, suppose
that g,h,k € M(e, f) with g < h, h < k. Then

eqg w" eh, qgf W' hf,

eh w" ek and hf W' kf.

As w” and w! are pre-orders on E, we obtain that
eg w" ek and gf W' kf,

that is, g < k. Hence, < is transitive, so that < is a pre-order.

We shall denote the set M (e, f), together with the pre-order <, by M(e, f).

Then the set S(e, f) = {h € M(e, f): g < h, Vg € M(e, f)} is called the
sandwich set of e and f.

In particular, for any e € E, S(e,e) = {e}. Since if h € S(e,e), then h W' e
and h w" e so that hw e. Ase € M(e,e), we have that e < h, that is, ew” eh = h

and e w! he = h, and so e w h. Consequently, e = h.

(B4) f,g ew'(e) = S(f g)e = S(fe, ge).
The biordered set E is regular if it also satisfies
(R) S(e, f) #0,Ve, f € E.

We pause to make some comments on the above axioms. By Axiom (B1),
Dp is symmetric. As the axioms for a biordered set are self-dual, the dual of any
true proposition is also true. If f w” e, then by (B1), (f,e) € Dg, and so 3 fe.
In (B31), if g w" f w" e, then by (B1), 3 ge and by (B21), ge R g, and so ge w" f,
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so that by (B1), 3 (ge)f. In (B32), if g w' f and f € w"(e), then by the dual of
(B21), 3 fg and fg w f, so that fg w” e, which implies that 3 (fg)e by (B1).
As g ' fand f,g € w(e), by (B22), ge ' fe, and so 3 (fe)(ge) by (B1). In
(B4),if h € S(f,g), then h w" g. As g w" e and w" is a pre-order, we obtain that
h w" e, and so 3 he, so that S(f, g)e is well-defined.

A biordered subset E' of a biordered set FE is a biordered set which is a
partial subalgebra in the usual sense. It is easy to see that for any e € E, w(e)
is a biordered subset of E. In addition, if E' is regular, then for any e € E, w(e)
is regular. Since if g,k € w(e) and h € S(g, k), then h w! g and h w" k, and so
h € w(e) so that S(g,k) C w(e).

Lemma 1.24. Let S be a semigroup with non-empty set of idempotents E(S).
Then E(S) is a biordered set with respect to the pair of pre-orders <g and <,
on S.

Proof. For (B1), let Dpsy = (Spr U <) U (<r U <)~ Now we show that
E(S) forms a partial algebra with respect to Dp(s). Suppose that e, f € E(95).
If e <g f, then by Lemma 1.6(7), we have fe = e € E(S) and (ef)? = efef =
e(fe)f =ef € E(S). Dually, if e <, f, then ef = e € E(S) and fe € E(S).
Hence, E(S) forms a partial algebra.

From the associativity of multiplication in S and the idempotent property
of E(S), axioms (B21), (B22),(B31) and (B32) hold.

Finally, we show that (B4) holds. Suppose that e, f,g € E(S) are such that
frg <z e. We first verify that S(f,g)e C S(fe,ge). Assume that h € S(f,g).
Then h <, f and h <z g <g e, and so he € E(S) by Lemma 1.6. Put i’ = he.
As

h'fe = (he)fe =h(ef)e = hfe=he=1"1

and
geh' = ge(he) = g(eh)e = ghe = he = I/,
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we have that ' € M(fe, ge). Further, if &' € M(fe,ge) and k = k' f, then

K=K fKf
— K f(ek)f (K <z ge < ¢)
=k (fe)k'f
— K f (K <c fe)
=k

and gk = gk'f = g(ge)k'f = (ge)k'f = K'f = k. Hence k € M(f,g), so that
k < h. Also,

I f=hef
=hf (f <re)
—h (h<c f)

and ke = k' fe = k' since k' <, fe. Therefore,

((fe))((fe)k) = fe(h ek’

= fehek! (n'f=nh)
= f(eh)ek’

= fhek’ (h<rg<re)
= fheke (K = ke)
= fhe(gk)e (gk = k)
= fh(eg)ke

= fhgke (9 <r€)
— fhke (k= gk)
= f(hf)ke (h<c 1)
= (fh)(fk)e

= fke (k < h)

= fK = (fo) (K < ge < ),

and so (fe)k’ <g (fe)h’. Also, we have k'(ge) <, h'(ge) as
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K'(ge)h'(ge) = K g(eh')ge

= K gh'ge (W =heR h <g )
= K ghege (h' = he)

=Kghge (9 <rc)

= keghge (K = ke)

= kghge (9 <rc)

= kge (k < h)

= kege (9 <r 6)

= k'(ge) (k;’ = ke).

So k' < B/ in M(fe, ge). Hence, b’ € S(fe, ge), and so S(f,g)e C S(fe,ge).
To see the converse, suppose that u’ € S(fe, ge). Then v/ < ge < e and
u' <, fe <e,and sou < e. Putu=1uf. Notice that

u? =o' fu'f

=u'feu'f (u’ < e)

=u'f (u' <c fe, u? = u’)

= u.

Also,
gu=gu'f

= geu'f (u' <€)
» (v < )
= u.

Together with u <, f, we obtain that u € M(f,g). If v € M(f,g) and v = Ve,

then
v =v'eve

=e (v' <r 9 <r 6’)

= .



In addition,

vfe=1'efe
= fe (f <r 6’)
='e (v’ <r f)
=
and
gev = gev'e
=7e (v’ <r 9 <R 6)
=.

Thus, v € M(fe, ge), and so v < /. Since vf =v'ef = ', we have that

(fu)(fo') = (fu'f) fo'

= fu'fo'

= fu'fof

= (fed)(fev)f (w'v <z ge < e
= (fev)f (v < u)

= fu'f (v<rg < ¢

= fv,

so that fv’ <z fu. In addition, we have v'g <, ug as

(v'g)(ug) = v'(gu)g

= v'ug (gu = u)

= vfug (v' = vf)

— vfeug (u<r g <re)
= vug (vfe = v)

— vgeug (u<rg<re)
= vgeu' fg (u = )

= vgeu' feg (g <z e)

= vgeu'g (u/ w! fe)

22
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= vgeu'geg (g <z e)

= vgeg v < u in M(fe,ge))

=vg (9 <R 6)

=uvfeg (v = vfe)

=g (v':vfandggyg e).
Hence v < w. Thus, u € S(f,g). Observe that ue = u'fe = v as u’ <, fe, so
that S(fe,ge) C S(f,g)e. O

To the converse of Lemma 1.24, it is shown in [3] that every biordered set £
is the set of idempotents of some semigroup. In particular, the set of idempotents
of any regular semigroup is a regular biordered set [38]; conversely, every regular
biordered set is the set of idempotents of some regular semigroup. For further
details the reader is referred to [38].

Definition 1.25. Let E and E’ be biordered sets, and 6§ : E — E’ a mapping.

Then 6 is a morphism if it satisfies
(M) (e, f) € Dg = (€0, f0) € Dgr and (ef)0 = (e0)(f0).
0 is a regular morphism if it also satisfies
(RM1) S(e, f)0 < 5'(ed, f0);
(RM2) S(e, f) £ 0 < S'(eb, f6) # 0,Ve, f € E,
where S’(ef), f0) denotes the sandwich set of ef and f6 in E'.

It is easy to see that if e w” f then ef w” f6 and dually for w'.

We remark that if £ is a regular biordered set, then a morphism 0 : £ — E’
is regular provided only that it satisfies (RM1), since in this case (RM2) follows
automatically.

Here, we state that if ¢, : 4y — FE5 and 0y : F5 — FE3 are two morphisms,
then it is clear that 6,0, : F; — FEj3 is also a morphism and if 6; and 6y are
regular, so is #,65.

A (regular) morphism is said to be a (regular) isomorphism if it is bijective

and so is the inverse.
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Lemma 1.26. (c.f. Corollary 2.15 [38]) A bijective morphism is an isomorphism

if and only if it is reqular.

In the following, we list some necessary properties of (regular) biordered sets
which will be used in Chapter 10.

Lemma 1.27. (c.f. Proposition 2.3 [38]) Let E be a biordered set and e, f € E
be such that f W" e, then for any g W" f,

(gf)e =g(fe) = (ge)(fe).

Lemma 1.28. (c.f. Proposition 2.5 [38]) Let E be a biordered set and e, €, f, f €
E with eLe and fR f'. Then M(e, f) = M(€, f'). In particular, S(e, f) =
S, f).

Lemma 1.29. (c.f. Proposition 2.2 [38]) Let E be a biordered set and (e, f) €
Dg, then ef € S(f,e).

Lemma 1.30. (c.f. Proposition 2.12 [38]) Let E be a biordered set and let
e, f,g,h € E be such that g € S(e, f) and h w" f. Then S(g,h) C S(e, h);
further, S(g,h) # 0 if and only if S(e,h) # 0. Dually, if g € S(f,e) and h ' f,
then S(h,g) C S(h,e), further, S(h,q) # 0 if and only if S(h,e) # 0.

Lemma 1.31. (c.f. Proposition 2.13 [38]) Let E be a biordered set and let e, g €
E with = w(f) — w(f') being an isomorphism. If hy € S(e, f), ha € S(f',9),
By = (hif)a and by = (f'ho)a™t, then (S(hy, hy) f)a = f'S(hY, hy).

Lemma 1.32. (c.f. Corollary 2.8 [38]) Let E be a biordered set and e, f € E be
such that either e R f or e L f. Then the map 7(e, f) : w(e) — w(f), defined by
the rule that for all g € w(e),

gr(e f) =

gf if eRf
fg if eL],

is an isomorphism such that if either e R f Rqg oreL f Lg, then

(e, f)T(f,9) = 7(e, 9)
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and

Further, if g, g’ € w"(e) and g L ¢, then

7(9,9")7(g', ge) = 7(g, ge)7(ge, g'e).

At the end of this section, we should recall a notion which is related to

biordered sets. In [38], an E-square is a 2 X 2 matrix ‘ . where e, f, g, h €
g
E, a biordered set, with e R f, gR h, e Lg and f L h. An E—square is said to be

singular if it has one of the following two forms:

h
(1) ( g ) where g, h € w!(e) and gRhA - row-singular;
eg eh

(ZZ)( ‘Z Ze ) where g, h € w"(e) and gLh - column-singular.
e

e
An FE-square ( 5 is T-commutative if the following diagram commutes:

9

7(g, h)

w(g) w(h).

Figure 1.1: The 7-commutative condition

We note that every singular E-square is 7-commutative.

Lemma 1.33. (c.f. Proposition 2.9 [38]) Let g,h € w"(e) and ge Lhe. Then

9
v

there exists a unique E-square G = satisfying the following conditions:

(1) ge = ue and ve = he;
(i) G is T-commutative, and so h(ku) = (vk)h for all k € w(g).

Dually, we have:
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Lemma 1.34. Let g, h € w'(e) and eg R eh. Then there exists a unique E-square

u
G = ( g 5 satisfying the following conditions:
v

(1) eg = ev and eu = eh;
(i) G is T-commutative, and so h(ku) = (vk)h for all k € w(g).

Lemma 1.35. Let g,h € S(e, f). Then there ezists a unique E-square G =
( g Z ), where u,v € S(e, f).

v
Proof. Suppose that g,h € S(e, f). Then g,h € w!(e) Nw"(f), eg Reh and
gf Lhf. Since g,h € W"(f) and gf Lhf, it follows from Lemma 1.33 that there

9
v

exists a unique E-square G = such that gf = uf, vf = hf and G is

T-commutative.
As g,h € W'(e) and eg R eh, therefore by Lemma 1.34, there exists a unique
g i
J
Now, we claim that G = K. Since u L h, we have that eu Leh. As eu Reg R eh,

we obtain that eu = eh, and so ev Reh = euReg. Since g Lv, we have that

E-square K = such that eqg = ej, ei = eh and K is T-commutative.

eg = ev. Hence, G satisfies the conditions in Lemma 1.34, so that G = K.

g
v

g,h € We) Nwr(f), we obtain that u,v € w'(e) Nw"(f). Notice that eu = eh,
uf Lhf, then h < u. As h € S(e, f), we have that for any t € M(e, f), t < h.
Since < is a pre-order, we succeed in obtaining that ¢ < u. Thus, u € S(e, f).
Similarly, we have that v € S(e, f). O

Finally, we show that u,v € S(e, f). As G = is an F-square and

We make a short comment on Lemma 1.35 that if S(e, f) # () for alle, f € E,
then for any g, h € S(e, f), there exists k € S(e, f) such that g Rk L h.

1.5 Categories

Category theory was first introduced by Eilenberg and Maclane in 1945 [5]. The
key idea of category theory is to provide a fundamental and abstract way to
describe mathematical entities and their relationships via ‘objects’ that are linked
by ‘arrows’ (or ‘morphisms’). Here, we recall some basic definitions and properties
of a category [28] and [48].
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Definition 1.36. A category P consists of

(C1) a class Ob(P) of objects;

(C2) a class Mor(P) of morphisms (or arrows) between the objects. Each
morphism f has a unique domain d(f) € Ob(P) and codomain r(f) € Ob(P).
Denote the Mor-class of all morphisms from A € Ob(P) to B € Ob(P) by
Mor (A, B);

(C3) if A, B,C, D € Ob(P), then there is a binary operation

Mor(A, B) x Mor(B,C) — Mor(A,C), (f,g) — fog,

called composition of morphisms such that if f € Mor(A, B), g € Mor(B, C) and
h € Mor(C, D), then (fog)oh = fo(goh);

(C4) for each A € Ob(P), there exists a morphism 14 € Mor(A, A) such
that if B € Ob(P), and f € Mor(A, B), then 140 f = f and folg = f.

A simple but very accessible example of a category is the category Set of sets,
whose objects are sets and whose morphisms are functions from one set to another.
Here, we should mention that the objects of a category need not be sets nor the
morphisms functions. Particularly, a category is said to be ‘concrete’ if all objects
are (structured) sets, morphisms from A to B are (structure preserving) mappings
from A to B, composition of morphisms is composition of mappings, and the
identities are the identity mappings. In addition, a category P is called small
if both Ob(P) and Mor(P) are actually sets (small classes) and large otherwise.
The category Set is a large category. In this thesis, the large categories will all be
concrete, say, the category Semigp, consisting of all semigroups and semigroup
morphisms, is a large category since the collection of all semigroups is not a set.
Also, Semigp is a concrete category.

We now introduce the notion of a functor that is a special mapping between

categories.

Definition 1.37. Let P, and P, be categories. A functor F from P; to Ps is
a pair of maps, both denoted F', from Ob(P;) to Ob(P,) and from Mor(P;) to
Mor(P,), such that the following conditions hold:

(F1) for any f € P, d(f)F =d(fF) and v(f)F =r(fF);

(F2) if 3go fin P, then (go f)F = gF o fF,

(F3) for A€ Ob(Py), 14F = 14F.
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We note that in (F2), if 3 go f in Py, then r(g) = d(f). By (F1), we have
that r(gF) =r(9)F =d(f)F =d(fF), and so 3 gF o fF in P,.

For any category P, we will use Ip to denote the identity functor, which
assigns each object and morphism to itself.

We view small categories as a generalisation of monoids. Clearly, a small
category with one object is a monoid. In a small category C', we often identity
e € Ob(C) with 1..

Let G be a group with identity 1 and I be a non-empty set. We construct
a small category B(G, I) as follows:

Ob(B(G,I)) =1
and for any e, f € I,

Mor(e, ) = {(e, 9, f) - g € G}.

We define a partial binary operation on B(G, I) by

(€9, N)(f, h,v) = (e, gh,v).

Clearly, the operation is well-defined and associative when it is defined.

For any e € Ob(B(G, I)), there exists a unique identity (e, 1, e) associated
to e.

To sum up, B(G, I) forms a category.

A semigroup S with zero is categorical at zero or is C-semigroup if for all
a,b,c e S, if ab # 0 and bc # 0 then abc # 0.

To construct a C-semigroup from B(G,I), we adjoin a zero element 0 to
B(G,I). Then we define

0r=20=0

and for any x,y € B(G,I), if x -y does not exist in B(G, ), then = -y = 0,
otherwise, = - y = xy, where zy is the product in B(G, I). It is routine to verify
that B(G,T)U {0} becomes a C-semigroup, denoted by B°(G, I).

A cancellative category is a small category in which we have both right and
left cancellation for morphisms. Note that any subcategory of a cancellative

category is cancellative.
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A groupoid G is a small category whose morphisms are all invertible, that
is, for any e, f € Ob(G) and z € Mor(e, f), there exists x=* € Mor(f, e) such

1

that - 27! = 1, and z - 2! = 1;. Any groupoid G is cancellative. Since for

any x,y,z € G, if dr -y, Jr -z and x -y = = - z, then r(z) = d(y) = d(z) and
ehxy=a"' 2z that is, 1yz) -y = lew) - 2, and so, y = z. Thus, G is left
cancellative. Dually, GG is right cancellative. One of the simplest examples of a
groupoid is a group or B(G, I).

For the reader’s convenience, we will simplify the notation from Mor(P) to
P. In addition, for the term ‘z - y exists’ we may use the expression ‘dx -y’ or
‘r -y is defined’.

It is a good position to mention the notion of ordered category. There exist
two ways to define an ordered category. We list both in the following. In order

to avoid ambiguity, we use subscripts.

Definition 1.38. A category P with a partial order < is ordered; if it satisfies
the following conditions:

(OC1) if z,y € P with x <y, then r(z) < r(y) and d(z) < d(y);

(0C2) if r(z) =r(y), d(z) =d(y) and z < y, then = = y;

(0C3) if 2/ <z, ¥y <y and both 2’ -y and = - y exist, then 2/ -y < x - y.

An alternative description of ordered category is that:

Definition 1.39. A category P with a partial order < is ordered, if it satisfies
Conditions (OC1), (OC3) and (OC4):

(OC4) (i) for any x € P and e € P with e < d(x), there exists a unique
element .|z such that .|r < x and d(.|z) = €;

(17) for any x € P and f € P with f < r(x), there exists a unique element
x|y such that z|; <z and r(z|f) = f.

We pause to make a short comment on ordered; and ordered; categories. It
is easy to see that (OC4) implies (OC2). Since if P is an ordered, category and
z,y € P with r(z) = r(y), d(z) = d(y) and = <y, then by (OC4), x = qu)|ly =
dy)|y = y. So an ordered, category is an ordered; category. In (OC4), the unique
element .|z is called the restriction of x to e and dually, the unique element z|;
is called the co-restriction of x to f.

A parallel definition of an ordered, groupoid is that:
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Definition 1.40. An ordered groupoid G is a small ordered, category in which
Condition (G) holds:
(G) ifz,y € Gand x <y, then 27! < y= L.
If in addition,
(IG) E is a semilattice.
Then G = (G, -, <) is called an inductive; groupoid.

The subscript is used to distinguish this meaning of the word ‘inductive’ from
both Ehresmann’s use and a generalised definition which will occur in Chapter 6.

Let G; and G5 be two inductive; groupoids. An inductive; functor F is a
functor F': G; — G5 preserving the order, restrictions and co-restrictions.

Next, we present a useful property of ordered, categories, which follows from

the uniqueness of restrictions and co-restrictions.

Proposition 1.41. [I1] Let P be an orderedy category. Then for v € P, e <
d(z) and f < r(z), we have that f = r(.|z) if and only if e = d(z|s); moreover,

e‘SL’ = LL"f.
Further:

Lemma 1.42. [1] Let P be an orderedy cancellative category. Then if x,y € P
are such that r(xz) = d(y) and e < d(x), then J(x-y) = (c|2) - (v(|2)|Y)-

Now, we introduce the notion of two categories being isomorphic.

Let C' and D be two categories. We say that C' is isomorphic to D if there
exist functors: F': C — D and G : D — C such that GF = Ip and FG = I,
where Ip and I are the identity functors associated to D and C| respectively.

Observe that two isomorphic categories are identical and differ only in the
notation of their objects and morphisms. Sometimes this property is too strong,

and so we need to introduce a weaker notion of equivalence.

Definition 1.43. Let C and D be categories and let ' and GG be functors from
C to D. Then a natural transformation n from F' to G consists of morphisms
nx : XF — XG for all X € C, such that for every morphism f: X — Y in C
we have fFony =nxo fG.

For ease of understand fF ony = nx o fG, we use the following commutative

diagram: If, for all X € Ob(C), the morphism 7y is an isomorphism in D, then
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F
XF / YF
X / Y Nx Ny
G
XG / YG .

Figure 1.2: The natural transformation property

7 is said to be a natural isomorphism.

Let C' and D be two categories. We say that C' and D are equivalent if there
exists a functor F': C' — D, a functor G : D — C', and two natural isomorphisms
e:GF = Ipandn: FG — I¢.

Clearly, for an equivalence of categories, it is not necessary to require XGF =
X, but only XGF is isomorphic to X in the category D, and the same for Y FG
and Y in the category C.

To close this section, we cite from [53] an example of categories below, which
are equivalent but not isomorphic.

Let C be a category consisting of a single object a and a single morphism
1,. Let D be a category with Ob(D) = {b, ¢} and Mor(D) = {1,, 1., o, 5}, where

a:b—cand f:c— b are isomorphisms. Now, we define a map
F:C—D bya—b and 1, +— 1,.

In addition, we define a map G : D — C by XG = a and fG = 1, for all
X € Ob(D) and f € Mor(D). It is routine to verify that /' and G are functors.

Furthermore, C' and D are equivalent but not isomorphic.



Chapter 2

Basic Theory 11

This chapter briefly recalls basic definitions and properties of abundant semi-
groups and weakly U-abundant semigroups that generalise the definitions and

properties of regular semigroups we have introduced in Chapter 1.

2.1 Abundant semigroups

2.1.1 Relations L*, R”

Let S be a semigroup. We define relations <;« and <z« on S by the rule that
for any a,b € S,

a <p» b if and only if a <, b in some over semigroup of S

and

a <r+ bif and only if a < b in some over semigroup of .S,

where <, and <y are defined in Section 1.3.2. As <, and <g are pre-orders, we
have <,« and <g- are pre-orders, respectively. Since <, is right compatible and
<g is left compatible, we have < - is right compatible and <x- is left compatible.

Now, we denote the associated equivalences by L£* and R*, respectively.
So, for any a,b € S, a £* b if and only if a £ b in some oversemigroup of S.
The relation R* is defined dually. As usual, the intersection of the equivalence
relations £* and R* is denoted by H* and their join by D*.

For ease of description, the £*-class containing the element a of a semigroup
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S will be denoted by L. Then corresponding notation will be used for the classes
of the other relations.

The following basic lemma is from [10].

Lemma 2.1. [10] Let S be a semigroup and let a,b € S. Then the following
statements are equivalent:

(1) (a,b) € L*;

(1) for all z,y € S, ax = ay if and only if bx = by.

Clearly, an idempotent e of S acts as a right identity within its £*-class. In

that case, we have:

Lemma 2.2. If e is an idempotent of a semigroup S, then the following state-
ments are equivalent for a € S:
(1) (e,a) € L

(i1) ae = a and for all x,y € S, ax = ay implies ex = ey.

In view of its definition, £* is a right congruence, and dually, R* is a left
congruence.

We pause to mention that £ C L£* on any semigroup S. For any regular
elements a,b € S, (a,b) € L* if and only if (a,b) € L. In particular, if S is a
regular semigroup, then £* = L.

Another way to define relations £* and R* is using certain ideals. We now
define a left (resp. right) ideal I of a semigroup S to be a left (resp. right) *-ideal
of Sif L} C I (resp. R: CI)foralla € I. Asubset I of Sisa *idealof S if it is
both a left *-ideal and a right *-ideal. In particular, if S is a regular semigroup,
then every left (resp. right, two-sided) ideal of S is a left (resp. right, two-sided)
*_ideal. Observe that for any element a of a semigroup S, S is a *-ideal of itself.
Here, there exists a smallest *-ideal containing a, a smallest left *-ideal containing
a and a smallest right *-ideal containing a. We will denote them by J*(a), L*(a)
and R*(a), respectively.

Lemma 2.3. [10] Let S be a semigroup. For any a,b € S,
(1) a L* b if and only if L*(a) = L*(b);
(i) a R* b if and only if R*(a) = R*(b).

Finally, we define J* by analogy with the characterisations of £* and R*
given in Lemma 2.3, by saying that for any a,b € S, a J* b if J*(a) = J*(b).
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2.1.2 Abundant semigroups

This section is concerned with a class of non-regular semigroups built using the
relations £* and R*.

We say that a semigroup S is abundant if every L£*-class and every R*-class
contains at least one idempotent. If S is a such semigroup and a € S, then we
denote idempotents in the L} and R* by a* and a', respectively. Note that a*
and a' need not be unique.

As an analogue of orthodox semigroups in the class of abundant semigroups,
we have quasi-adequate semigroups [7]. A quasi-adequate semigroup is an abun-
dant semigroup whose set of idempotents forms a subsemigroup. In particular, if
the set of idempotents of a quasi-adequate semigroup becomes a semilattice, then
it is called an adequate semigroup [9]. Note that if S is an adequate semigroup,
then for any a € S, a* and a' are unique. Since if a° is another idempotent in
the L£*-class of a, then we have aa® = a, and so a*a® = a* by Lemma 2.1, that
is, a®a* = a* as E(S) is a semilattice. According to the comments succeeding
Lemma 2.1, we have a° = a*. Dually, we show that a' is unique. Thus, in an ad-
equate semigroup S, we have unary operations a — a* and a — a' for any a € S.
So adequate semigroups provide an abundant analogue of inverse semigroups, but
see below.

An adequate semigroup S with semilattice of idempotents F/(S) is said to
be an ample semigroup or a type A semigroup if it satisfies for all a € S and
e € E(S):

(i) ae = (ae)'a;

(i) ea = a(ea)*.

In particular, an inverse semigroup is ample, where a' = aa! and a* = a"'a.
Ample semigroups are usually thought of as the appropriate abundant analogue
of inverse semigroups.

It is easy to see that morphisms between semigroups preserve Green’s rela-
tions. They need not, however, preserve £* and R*. With this in mind we define
the notion of good morphisms.

Let S and T be semigroups and let ¢ : S — T be a morphism. Then ¢ is
said to be good if for any a,b € S,

a L*b implies a¢ L* b,
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aR* b implies a¢p R* bo.

2.2 Weakly U-abundant semigroups

For ease of reference we gather together in this section some basic definitions and

elementary observations concerning weakly U-abundant semigroups.

2.2.1 Relations ZU, ﬁU

Let S be a semigroup. We denote as usual its set of idempotents by FE(S5).
Consider a non-empty subset U C FE(5); we will call it the set of distinguished
tdempotents. The relation < 7, on S is defined by the rule that for all a,b € S,
a < £y b if and only if

{eceU:be=0>b} C{e€U:ae=a}.

It is clear that < oy is a pre-order. We denote the associated equivalence relation
by Ly, so that for a,b € S, a Ly b if and only if

{eeU:ae=a} ={ecU:be=0>b}.

It is easy to see that £L C L* C ZU. In particular, we have:

Lemma 2.4. [}6] Let E(S) be the set of all idempotents of S. If a,b are regular,
then CLZE(S) b if and only if a L.

It follows that if S is regular and U = E(S), then £ = £* = L. Although
£ and £* are always right compatible, the same need not be true for £y;. The
last fact is shown by a very simple example: the null semigroup of two elements
with an adjoined identity, where the distinguished set U = {0, 1}.

Notice that fore, f € U, e <Zy fif and only if e <, f, so that e Ly f if and

only if e £ f. Another useful observation is that :

Lemma 2.5. [32] Ifa € S ande € U, then a Ly e if and only if ae = a and for
all f € U,af = a implies ef = e.

We observe that for any distinguished idempotent a* in the Ly-class of a,

we have aa™ = a.
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The relations gﬁU and ﬁU are the left-right duals of < Y and EU. Also, if
a € S and af € U are such that a Ry af, then we have a'a = a.

According to Lawson [33], there is another description of £y and Ry. The
ZU—class and ﬁU—class containing a will be denoted by EUﬂ and §U7a, respectively,
abbreviated as L, and R,, where U is clear. A left ideal I of a semigroup S is
said to be a U-admissible left ideal if for every a € I, L, C I. If a is an element
of S, then we define the principal U-admissible left ideal containing a to be the
intersection of all U-admissible left ideals containing a, and we denote it by
L(a). In particular, for any e € U, L(e) = Se. Dually, we define the principal
U-admissible right ideal containing a and we denote it by R(a). Following the
above terminology, in [44], an ideal I of S is called U-admissible if I is both a
U-admissible right ideal and a U-admissible left ideal of S and the principal U-
admissible ideal containing a is defined to be the intersection of all U-admissible
ideals of S containing a, denoted by J(a). Clearly, L(a) C J(a) and R(a) C J(a)
for all @ in S. The following lemma concerning EU, 7A€U and Z] is extracted
from [44].

Lemma 2.6. [{4] Let S be a semigroup and U be a non-empty subset of E(S).
Then for any a,b € S,

(a,b) € Ly if and only if L(a) = L(b);

(a,b) € Ry if and only if R(a) = R(b).
Consequently, we define the relation T by the rule that

(a,b) € Ty if and only if J(a) = J(b).

To close this section, we define ’;T-ZU and YSU as the intersection and the join of

Ly and 7A?,/U, respectively. Note that we do not always have that Dy = Lo Ry.

2.2.2 Weakly U-abundant semigroups

In a manner analogous to the definition of an abundant semigroup, S is said to be
weakly U-abundant if every Ly-class and every Ry-class contains an idempotent

of U. If S is a such semigroup and a € S, then we follow usual practice and



37

denote idempotents in the £y-class and /7€U—class of a by a* and af, respectively.
Note that there need not be a unique choice for a* and a' unless U is a semilattice.

We make some comments that if the distinguished set of idempotents of
a weakly U-abundant semigroup S is the whole set of idempotents E(S), then
usually, we call it a weakly abundant semigroup. Another point is that if we talk of
a particular weakly U-abundant semigroup, then we are referring to a particular
set of idempotents U; on the other hand, if we are talking of the class of all
weakly U-abundant semigroups, the U varies over all possible set of idempotents.

We will be interested in semigroups S in which the relation £y is a right
congruence and Ry is a left congruence. In this case, we say that S satisfies
Congruence Condition (C) (with respect to U). Indeed it seem very little theory
can be developed if we do not assume the Congruence Condition. If S is weakly
U-abundant with (C), then

vy Ly (zy)" Lo (¢*y)" Lo @y,
for any z*, (zy)* and (z*y)*. Dually, we have
rYy Ru (zy)! Ru (zy")! Ru ayt,

for any 4T, (zy)" and (zy")T.
The next lemma gives an equivalent description of weakly U-abundant semi-

groups.

Lemma 2.7. A semigroup S is weakly U-abundant if and only if for any a € S,
there exist e, f € U such that L(a) = Se and R(a) = fS.

Proof. For any distinguished idempotent e in U, L(e) = Se. In fact, for any
a,b € S, a Ly bif and only if Z(a) = E(b) Thus, a semigroup is weakly U-
abundant if and only if for any a € S, there exists e € U such that a Ly e, that

is, L(a) = L(e), if and only if L(a) = Se. Dually, R(a) = £5. O
For convenience, we give the next lemma.

Lemma 2.8. Let S be a weakly U-abundant semigroup. For any x,y € S we have
(yx)* < x* and (xy)t <z zt. Further, (zy)'2" R (xy)" and y*(zy)* L (zy)*
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Proof. Let x,y € S. Certainly, yrz* = yz, and so (yz)*z* = (yx)* by definition
of (yz)* so that (yx)* <, z*. Dually, we obtain that (xy)" <z .

In view of Lemma 1.24, the set F(S) of idempotents of S is a biordered set,
and so by (B21) and its dual in Section 1.4, (zy)'2z" R (zy)" and y*(ay)* £ (zy)*
in S. 0

Observe that morphisms between semigroups need not preserve £* and R*
as mentioned in Section 2.1.2, nor £y and Ry. With this in mind we define the
notion of admissible morphisms.

Let S and T be semigroups with distinguished subsets of idempotents U
and V', respectively, and let ¢ : S — T be a morphism. Then ¢ is said to be
(U, V)-admissible if for any a,b € S,

a Ly b implies a¢ Ly be,
aRy b implies a¢ Ry bo,

and U¢p C V. Briefly, we will refer to the notion of being (U, V')-admissible as
admissible, where no ambiguity can occur.

Moreover, ¢ is said to be strongly admissible [17] if for any a,b € S,
a Ly b if and only if a¢ ZU¢ bo
and
aRy b if and only if a¢p §U¢ bo.

Naturally, a congruence p on S is said to be admissible if the natural morphism
p*: S — S/p is admissible, that is (U, Up)-admissible.
For admissible morphisms and congruences, the following lemmas are easy

to see, making use of Lemma 2.5.

Lemma 2.9. [46] Let S, T be semigroups with distinguished subsets of idempo-
tents U, V respectively. Suppose that S is weakly U-abundant, and let ¢ : S — T
be a morphism. Then ¢ is admissible if and only if Up C V and for any a € S
there exist idempotents f € L, N U and e € R, N U such that a¢ Ly f¢ and
ap Ry ed.
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Lemma 2.10. [6] Let S be a semigroup with subset of idempotents U and let
¢ S — T be an admissible surjective morphism. If S is weakly U-abundant,
then T is weakly Up-abundant.

Lemma 2.11. If S is a weakly U-abundant semigroup with (C) and p is an
admissible congruence on S, then S/p has (C) with respect to U/p.

Proof. To see that S/p satisfies the Congruence Condition, we assume that ap
and bp are elements of S/p such that ap ENU/p bp. Since S is a weakly U-abundant
semigroup and p is an admissible congruence on S, there exist e € L,NU and
f e L,NU such that ap ENU/,) ep and bp ZU/,, fp, respectively. It follows that
epENU/p fp, that is, ep L fp. Clearly, for any cp € S/p, we have epcp L fpcp
because £ is a right congruence. So (ec)p L (fc)p. Observe that a Ly e and
bENU f. It follows that ac ZU ec and be ZU fecsince £~U is a right congruence on S.
Also, (ac)p ZU/p (ec)p and (bc)p ZU/p (fc)p since p is an admissible congruence.
Thus apcp ENU/p bp cp. Hence, EU/p is a right congruence on S/p. Dually, we can
verify that ﬁU/p is a left congruence on S/p. Consequently, S/p satisfies the
Congruence Condition (C). O

A weakly U-abundant semigroup is U-fundamental if the largest admissible
congruence contained in Hy is trivial. For convenience we shall sometimes sim-
plify the term ‘U-fundamental weakly U-abundant semigroup’ to ‘fundamental
weakly U-abundant semigroup’.

It is easy to see that if S is a weakly U-abundant semigroup with (C) and T’
is a U-full subsemigroup of S, in the sense that U C T, then T satisfies (C). In
addition, if S is U-fundamental, then T is U-fundamental.

2.2.3 Weakly U-regular semigroups

In this section we list some properties of weakly U-abundant semigroups with
(C), where U is a regular biordered set.

We first recall that if U is a biordered set, then M(e, f) denote the pre-
ordered set (w'(e) Nw"(f), <), where

g<h<egw eh, gf W hf.
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The set S(e, f) = {h € M(e,f) : g < h, Yg € M(e, f)} is called the
sandwich set of e and f. In particular, if U is regular, then S(e, f) # 0 for all
e,fel.

Lemma 2.12. Let S be a weakly U-abundant semigroup, where U is a reqular
biordered set. Fore, f € U, we define

Sl(€7f>:{h€M(evf):ehf:ef}u

and

Sa(e, f) ={h e Ml(e, f): h(ef)h =h and (ef)h(ef) =ef}.
Then Sy(e, f) = Sa(e, f) C S(e, f).

Proof. To show that Si(e, f) = Sa(e, f), we assume that h € M(e, f). Then
he = h = fh, and so

h(ef)h = (he)(fh) = h and (ef)h(ef) = e(fhe)f = ehf.
Obviously, ehf = ef if and only if (ef)h(ef) = ef. Thus, Si(e, f) = Sa(e, f).
cs

We now turn to show that Si(e, f) (e, f). Suppose that h € Si(e, f) and
g € M(e, f). Then

(eh)(eg) = e(he)g = ehg = eh(fg) = (ehf)g = efg = ey,

and so eg w" eh. Dually, gf w' hf. Thus g < h so that h € S(e, f). O

Let U be a set of idempotents of a semigroup S. We will use (U) to denote
the semigroup generated by U. A weakly U-abundant semigroup with (C) is said
to be a weakly U-regular semigroup if (U) is a regular semigroup whose set of
idempotents is U. We remind the reader that this terminology, based on existing
convention, needs to be viewed with care: if we talk of a particular weakly U-
regular semigroup, then we are referring to a particular set of idempotents U; on
the other hand, if we are talking of the class of all weakly U-regular semigroups,
the U varies over all possible sets of idempotents. It is clear that the collection of
weakly U-regular semigroups and admissible morphisms forms a category, which
we denote by WRS.

Lemma 2.13. Let S be a weakly U-regular semigroup. Then Si(e, f) = S(e, f) #
0 foralle, f €U.
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Proof. Suppose that e, f € U. Then ef is a regular element in (U). If a is
an inverse of ef in (U) and h = fae, then h € (U) and h? = (fae)(fae) =
flaefa)e = fae = h. Together with E((U)) = U, we obtain that h € U. Since,
ehf = efaef = ef, it follows that h € Si(e, f), and so Si(e, f) # 0.

By Lemma 2.12, Sy(e, f) C S(e, f). To show the converse, we assume that
g€ S(e, f). Let h € Si(e, f). Then by Lemma 2.12, h € S(e, f), and so eg R eh,
gf L hf. Thus, egf = egef = (eg)(ehf) = (eg)(eh)f = ehf = ef so that
g € Si(e, f). Hence S(e, f) = Si(e, f). O

2.2.4 Weakly B-orthodox semigroups

We recall that an orthodox semigroup is a regular semigroup S such that E(S5)
is a band. Consequently, a weakly B-abundant semigroup is said to be weakly
B-orthodoz if it has (C) and B is a band. Whenever we talk of a particular weakly
B-orthodox semigroup, then we are referring to a particular band B; on the other
hand, if we are talking of the class of all weakly B-orthodox semigroups, the B
varies over all possible bands. It is clear that the collection of weakly B-orthodox

semigroups and admissible morphisms forms a category, which we denote by WO.

Lemma 2.14. Let S be a weakly B-orthodoxr semigroup. For any x € S and
e, f,g,h € B,

(i) ife < (resp. <z) g R ', then ex Ry e;

(i) if f <r (resp. <g) h L x*, then xf Ly f.

Proof. To prove (i), suppose that e <z g R x, then ex Ry ext Ry eg R e,
otherwise, e <, ¢, and so ex Ry eg = e. By a similar argument, we can show
that (47) holds. O

2.2.5 Ehresmann semigroups

Let S be weakly F-abundant with (C). We say that S is an Ehresmann semigroup
(with distinguished semilattice E) if E is a semilattice. It is straightforward to
see that if S is Ehresmann, then, for any a € S, the elements a* and a' are the
unique elements of E in the £g-class and the R p-class of a, respectively. We

regard Ehresmann semigroups as algebras with signature (2,1, 1); as such, they
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form a variety £. Indeed, &£ is the variety generated by A, where A is the quasi-
variety of adequate semigroups [29]. The corresponding result is the one-side case
may be found in [16] or [30].

An important property of Ehresmann semigroups is given below.

Lemma 2.15. [32] Let S be an Ehresmann semigroup with semilattice of dis-
tinguished idempotents E. Then

(i) forallz,y €S, (vy)* < y* and (zy)" < af;

(ii) for alle € E, e* = e and ef = ¢;

(i53) forallz,y e S, o Lgye x* =y* and x Rpy<e =y

(iv) for allz,y € S, (xy)* = (z*y)* and (zy)" = (xy")l.

We introduce the notion of restriction semigroups as an analogue of ample
semigroups. Consequently, a restriction semigroup has also been called a weakly
E-ample semigroup, where E is the distinguished semilattice of idempotents.
There are four ways to define restriction semigroups: as varieties of algebras,
representation by (partial) mappings, using generalised Green’s relations Ry and
L, and inductive constellations. Here we define restriction semigroups by using
/7€E and £ B

An Ehresmann semigroup S is left restriction with distinguished semilattice
E if it satisfies the left ample condition (AL).

(AL) (Va € S, e € E) ae = (ae)ta.

Similarly, an Ehresmann semigroup S with distinguished semilattice of idem-
potents F is right restriction if it satisfies the right ample condition (AR).

(AR) (Va € S, e € E) ea = a(ea)*.

An Ehresmann semigroup is a restriction semigroup if it is both a left re-

striction and a right restriction semigroup.

2.3 The idempotent connected condition

We focus on the idempotent connected condition in this section. A fuller version
of some of the ideas we present here is contained in [6], [8] and [48]. Essentially, all
of the idempotent connected and ample (formely, type A) conditions extant give
some control over the position of idempotents in products, usually facilitating
results for abundant or weakly abundant semigroups reminiscent of those in the

regular case.
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2.3.1 (WIC), (IC) and (PIC)

Let S be a weakly U-abundant semigroup. For any e € U, we put
(e) = (eue : u € (U) and (eue)? = cue)
or equivalently,
ey = {uy--u, :u; € (U),u? =u; and u; < e}.

Clearly, (e) is a subsemigroup with identity e.

We say that a weakly U-abundant semigroup S satisfies the weak idempotent
connected condition (WIC) (with respect to U) if for any a € S and some a*, a',
if z € (a'), then there exists y € (a*) with za = ay; and dually, if z € (a*) then
there exists ¢ € (a) with ta = az.

We pause here to make some comments on Condition (WIC). The phrase

* 9 *

may be replaced by ‘for any af, a*’
(WIC), a € S, a is the chosen idempotent of U in the 7A€U—class of a, and a™ is

another element of U in the same Ry-class. If v € (a*), then

“for some a', a For suppose that S has

V=Upc Uy (uie (UY, u; =u?, u; < a+).

So

alva’ = va' = (ural) - - - (unal).

Certainly, u;a’ € (U), u;a’ < a' and (u;a")? = watuza’ = w;a’. Thus, val € (al),

and so by (WIC), va = va'a = ak for some k € {(a*). Then k = w; - -w,, for
2 _

some w; € (U), wi = w; and w; < a*. As above, for any a° € U lying in the
Ly-class of a, we have a°k = (a®w;) - - - (a®wy,) € (a°), and so va = ak = a(a’k).
Thus in the condition of (WIC) we may choose the y lie in any given (a°), and
dually, the t to lie in any given (a').

The following lemma provides an equivalent statement of Condition (WIC).

Lemma 2.16. Let S be a weakly U-abundant semigroup. Then S satisfies (WIC)

if and only if for any a € S and some (any) a*, a', ifu € (U),u®> =u andu < a
2

*

=vandv < a

then there exists y € (a*) with ua = ay; and dually, ifv € (U),v

then there exists t € (a') with ta = av.
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Proof. The necessity is clear. We now show the sufficiency. If x € (af), then

T =ep- e, where ¢; € (U), €2 = ¢; and ¢; < al. Then we have

€0 = ay; (yz € <a*)),

and so

xa:el...ena:el...en_l(ena):61...6n_1ayn:...:ayl..

where y; - - -y, € (a*). Dually, we show the second part holds.

*UYn,

0

We now present two stronger versions of Condition (WIC) which have been

investigated in [6] and [8].

A weakly U-abundant semigroup S satisfies Condition (IC) if for any a € S

and for some a', a*, there exists an order isomorphism « : (a') — (a*) such that

for all z € {(al),

zra = a(za).

The order isomorphism given above is said to be a connecting order isomorphism.

Notice that we can replace ‘some’ in (IC) by ‘any’. For suppose that a € S,

af, a* are idempotents of U in the ﬁU—class of a, then the map
pat + (a®) = (a¥)

given by

Tpat = xal

for all = € (a™), is an isomorphism. Since if z € (a™), then

T=Up Uy (uiE(U), w=ul, u; < a+),

and so

xal = (ulaT) e (unaf),

where u;a’ € (U), w;a' < a' and (u;a")? = w;a’, so that xa™ € (a). Thus, p, is

well-defined.
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Let y be another element in (a*). Then we have

(2y)par = zya’ = za'yal = zp,iyp,r,

and so p,i is a morphism.
Certainly, p,+ : (a’) = (a™) is a morphism. Further, for any z € (a™), we
have

Tpgtpat = xataT =zat =1z

and similarly, for any z € (a'), we have

ZPat Pat = Z-

Hence, p,+ is an isomorphism.

Dually, if a*, a® are idempotent of U in the Ly-class of a, then the map
Age : (a*) — (a®)

given by

TAgo = a°x

for any « € (a*), is an isomorphism.
Let a be an order isomorphism from (a') — (a*) such that ra = a(za) for
all z € (a'). Then certainly, p,+a)s is an order isomorphism from (a*) to (a°)

and also, for any z € (a™), we have

za = za'a = a((za")a) = aa®((zah)a) = a(zp.tadg).

Consequently, p,iad,e : (aT) — (a°) is an order isomorphism as required in
Condition (IC).

Yet another version of Condition (WIC) is Condition (PIC). We say that
a weakly U-abundant semigroup S satisfies (PIC) if for all @ € S and for some

a',a*, there exists an isomorphism « : (a') — (a*) such that for all z € (a'),
zra = a(za).

The isomorphism given above is said to be a connecting isomorphism. As
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with the definition of (WIC) (resp. (IC)), we can use the same method as that
for Condition (IC) to replace ‘some’ by ‘any’; so we omit it.

The following Lemma is cited from [6].

Lemma 2.17. Let T be a full subsemigroup of a weakly U-abundant semigroup

S. If S satisfies (WIC) (resp. (IC), (PIC)), then so does T

2.3.2 Special cases

In this section we concentrate on some special kinds of weakly U-abundant semi-
group with (WIC) (resp. (IC), (PIC)).
Let S be a weakly U-regular semigroup. Since E((U)) = U, it follows that
for any e € U,
(e) = (eue : u € (U) and eue € U),

that is,
(e) =(v:velUandv < e),

or equivalently,
(e) ={vy v, v, €U and v; < e}.

For a band B and element e of B, we have
(e) = (eue : u € B)

so that if © = (euse)---(eune) € (e), then z € B and x < e. Conversely, if
y€ Bandy < e, then y = eye € (e). Thus (e) is the principal order ideal
generated by e, that is

(e)={reB:zx < e} ={x € B:ex=uxe=e}.

A weakly B-orthodox semigroup with (WIC) (resp. (IC), (PIC)) has been
mentioned variously in [6], [11], [14], [15], [16], [17] and [19].
We now describe an important connection between Condition (WIC) and

Conditions (AL) and (AR) on an Ehresmann semigroup below.

Lemma 2.18. Let S be an Fhresmann semigroup with distinguished semilattice
of idempotents E. Then S has (WIC) if and only if it satisfies Conditions (AL)

and (AR), that is, S is a restriction semigroup.
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Proof. Clearly, if S satisfies Conditions (AL) and (AR), then it has (WIC).

Conversely, suppose that S is an Ehresmann semigroup with distinguished
semilattice of idempotents £ and satisfying (WIC). For any ¢ € S and e € E,
we have ae = aa*ea* = fa for some f € F, from which it follows that fae = ae,
and so f(ae)! = (ae)t. Thus,

(ae)Ta = f(ae)'a = (ae)! fa = (ae)lae = ae.

Dually, ea = a(ea)*. Hence, S satisfies Conditions (AL) and (AR). O

If S is abundant, we replace the distinguished set of idempotents U by the
whole set of idempotents E(S). For an element e of E(S),

(e) = {(eure) - - - (eune) : u; € (E(9)), euze € E(S)}
={v1 v, v € E(9),v; < e}
=(f:f€EWS), [ < e).

Thus, (e) is generated by all idempotents f satisfying f < e.

In [8], El-Qallali and Fountain introduced the notion of Condition (IC) in
the abundant case, as we describe below.

An abundant semigroup S with set of idempotents E(.S) is idempotent con-
nected (IC) if for any a € S, and for some af, a*, there exists a bijection
a: {(a’) — (a*) such that ra = a(za) for all z € (a').

It is easy to see that the bijection « in Condition (IC) must be an isomor-
phism. Since if x,y € (af), then zy € (af) and (2y)a = a(xry)a. But also rya =
zra(ya) = a(za)(ya). So a(zy)a = a(za)(ya). Since (zy)a, (za)(ya) € (a*) and
a L*a*, we have that a*(zy)a = a*(za)(ya), and so (zy)a = (ra)(ya). Usu-
ally, we call such a a connecting isomorphism. Thus the notion of (IC) from [§]
coincides with the notion of (IC) in Section 2.3.1. A further point is that the con-
necting isomorphism « : (a') — (a*) is unique. Since if 3 : {(a') — (a*) is another
connecting isomorphism, then for any = € (a'), we have ra = a(za) = a(zf3). As
a L* a*, we have that a*(za) = a*(xf), and so za = y so that a = (. Finally,
we note that the notion of Condition (IC) defined by El-Qallali and Fountain co-
incides with Condition (PIC); in addition, Condition (WIC) and Condition (IC)

coincide in the abundant case, as the following lemma demonstrates.
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Lemma 2.19. [8] Let S be an abundant semigroup with set of idempotents E(S).
Then the following statements are equivalent:
(1) S satisfies (IC);
(13) for each a € S, the following two conditions hold:
(a) for each e < al, there exists f < a* (resp. f € S) such that
ea =af;
(b) for each g < a*, there exists h < al (resp. h € S) such that
ha = ag.

We make a short comment on Lemma 2.19. In part (a) of (i7), f is unique.
Since if £ < a* and ea = ak, then we have ak = af. As a* L* a, we obtain that
a*k = a*f, that is, k = f. Dually, in part (b) of (i¢), h is unique.

We say that an abundant semigroup is a concordant semigroup if it satisfies
(IC) and the set of idempotents forms a regular biordered set. An abundant
semigroup is a Type W semigroup if it satisfies (IC) and the set of idempotents
forms a band. In view of Lemma 2.18, it is easy to see that an adequate semigroup
S has (IC) if and only if it is an ample semigroup.

At the end of this section, we turn our attention to the regular case. If S is
a regular semigroup, then for any a € S and any inverse a’ of a, there exists an
isomorphism

a: {ad') — {(d'a)

defined by

ra = dzxa

for all x € (ad’). For suppose that if x € (ad’), then
T =01 Uy (vieE(S), v; < aa'),

and so
dxa=dv - -va

= ad'viad’vs - - - ad'v,a

=w; Wy (w,- = a'via).
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Now
w; = (a'v;a)(a'v;a)

s

= d'(v;ad'v;)a

= a'vla (vi < aa')
= d'v;a (vi € E(S))
= w;

and clearly, w; < d'a, so that xa € (a’a). Thus, « is well-defined. If also
y € (ad’), then

(xy)a = d'zya = d'vad'ya = (za)(ya),

and so « is a morphism. Similarly, 5 : (a’a) — (aa’) given by
zf = axd (1’ € (a'a>)

is a morphism. Moreover,
afl = 1y and Ba = 1iyg)

so that « is an isomorphism. In addition, for any x € (ad’), we have xa = ad'xa =

a(za) and consequently, S has (IC).
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weakly U-regular

e

weakly B-orthodox (WIC) weakly U-regular abundant
Ehresmann concordant
restriction type W/ regular
\ o /
ample orthodox

inverse

Figure 2.1: Classes of semigroups

In the above picture, (WIC) denotes weakly U-regular semigroups with
(WIC).

2.4 An analogue of the least inverse congruence

We denote by vp the analogue for a weakly B-orthodox semigroup S of the
least inverse congruence on an orthodox semigroup, that is, vz is the smallest
admissible congruence on S such that S/vp is Ehresmann with respect to B =
B/vg. Since if {p; : ¢ € I} is a non-empty family of admissible congruences on
S, then it is easy to see that the intersection N{p; : i € I'} is again an admissible

congruence. We use vg to denote the admissible congruence generated by

{(e,f):eD fin B}.

Then S/vp is weakly B/vyp-abundant with (C) by Lemma 2.11. If &, f € B/,
then

ef=cf=Te=fe  (asefD fe).



o1

and so S/vp is an Ehresmann semigroup with respect to B/vp.

In addition, suppose that p is an admissible congruence on S such that S/p is
an Ehresmann semigroup with respect to B/p. Let e, f € B be such that e D f.
Then

ep = (efe)p=epfpep=epepfp=epfp
=epfpfp= fpepfp=(fef)p = fp,
and so e p f so that
{(e;f):eD f}Cp.

Thus, v C p. Hence, vp is the smallest admissible congruence on S such that
S/~vp is an Ehresmann semigroup with respect to B/vg.

We wish to find a closed form for vg. These ideas have been investigated
in [6], [7], [14] and [46].

Let S be a weakly B-orthodox semigroup with (WIC) (resp. (IC), (PIC)).

The relation dp is defined on S as follows:
adpb if and only if a = ebf,b = gah for some e, f,g,h € B.

Here we remind the reader that given a band B, E(e) denotes the D-class of

B containing e.

Lemma 2.20. [14] (cf. [45], Lemma 3.5) Let S be a weakly B-abundant semi-
group. The following conditions are equivalent:

(1) adp b;

(ii) a = ebf and b = gah for some e € E(b"), f € E(b*), g € E(a') and
h € E(a*);

(iii) E(a')aE(a*) = E(bNOE(b*).

Moreover, if a dg b, then
E(a') = E(b") and E(a*) = E(b").

Further:

Lemma 2.21. [1/] Let S be a weakly B-abundant semigroup. For anye, f € B,

e g f if and only if eD f.
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Proof. Let e, f € B. If e D f, then e =efe and f = fef, so that e 6 f.
Conversely, if e 65 f, then by Lemma 2.20, E(e') = E(fT) andsoe D f. O

In view of these equivalent descriptions of g, we now show that if S has
(WIC), then it is a congruence on S, arguing as in [6], [14] and [22]. Here D
refers to the band B.

Lemma 2.22. Let S be a weakly B-orthodox semigroup with (WIC). Then the

relation 6p is the least B/D-ample congruence on S.

Proof. In view of Lemma 2.20 (ii7), it is easy to see that dp is an equivalence.
Suppose now that a,b,c € S with a dg b, and e, f,g,h € B are such that e, g €
E(a") = E(b"), f,h € E(a*) = E(b*) satisfying that a = ebf and b = gah. Notice
that for any b' we have that eb! D b' in B, and as D is a semilattice congruence

on B, c*eb! D ¢*b' for any c¢*. Consequently,

ca = cebf
= cc*cb'bf
= c(c*eb") (c*b) (c*ebN)bf
c(c*eble*) (bl c*ebl)be
ze)(by) f
(cb)yf

(

for some z,y € B, using (WIC). Similarly, ¢b = u(ca)v for some u,v € B.
It follows that ca dp cb so that dp is a left congruence. Dually, dp is a right
congruence.

Now, we show that dp is an admissible congruence. Suppose that a € S and
e, f,g € B with g RpalpeinS. If adgfop = adp, then a = gafh for some
g€ E((af)") and h € E((af)*). As fh € B, and so afh = a, so that efh = e as
a Lp e. From a L e, we obtain that af Lz ef, and so h € E((ef)*) = E(ef).
Thus e dp ef, thatis, edgfop = edg. Hence adp ZB/D edp. Dually, adp 7A?,/B/D gopg.

To see that dp is a B/D-ample congruence, we suppose that a € S, e € B
with adp € S/dp and edp € B/dp are such that edp < a'dp. Then edpadp =
a'dpedpadp = (a'ea)dp = (a'ea’a)dp = (af)dp = adpfip as a’ea’ < al and S
satisfies (WIC). As B/D is a semilattice, it follows from Lemma 2.18 that S/dp

is a B/D-ample semigroup.
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Finally, if 7 is an arbitrary B/D-ample congruence on S, then 7|p is a semi-
lattice congruence on B. Since D is the least semilattice congruence on B, it
follows that D C 7|g. For any a,b € S and a g b, we have b = eaf for some
e € E(a') and f € E(a*). As e D a' and f D a*, we obtain that e 7 af and
f 7 a*, and so afaa* T eaf, that is, @ 7 b. Thus, 6z C 7, and hence 65 is the

least B/D-ample congruence on S. O

2.5 Orders

Our purpose in this section is to describe certain pre-orders and partial orders
on a weakly U-abundant semigroup. The results present here are necessary for
Chapters 7, 9 and 10.

2.5.1 The weakly U-abundant case

The aim of this section is to present two pairs of relations on a weakly U-abundant
semigroup.

Let S be a weakly U-abundant semigroup. We define relations <, and <
by the rule that for any x,y € S,

x <,y if and only if x = uy for some u € (U)

and
x <y if and only if x = yv for some v € (U).

The next lemma is immediate.

Lemma 2.23. On a weakly U-abundant semigroup S, the relations <, and <,

given above are pre-orders.
In view of Lemma 2.8, we have:

Lemma 2.24. Let S be a weakly U-abundant semigroup. Then for any x,y € S,
(1) ifz <, y, thena* <, y*;
(ii) ifx <, vy, then ' <g y'.

Further, a weakly U-abundant semigroup S possesses a pair of relations </

and <] as follows: for any z,y € 5,
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r <! yifand only if z = ey for some e € U and e < yt

and
x <) yifand only if z = yf for some f € U and f < y*.

We remark that if x </ y then 27 <z y'. For suppose that # </ ¥, then
there exists e € U and y' such that e < y' and = ey. Thus,

xTﬁUx:eyﬁUeyTze < 4yl

and so z' <p y'. Dually, if z <] y then 2* </ y*.

Lemma 2.25. On a weakly U-abundant semigroup S, the relations <! and <]

given above are reflexive and anti-symmetric.

Proof. Tt is easy to see that </ is reflexive as for any z € S, x = zfx. To show
that <! is anti-symmetric, we suppose that x </ y </ 2. Then z = ey and
y = fx, where e, f € U and e < y', f < =zf, and so by Lemma 2.8 or the

comment above, we have
dh<pe <y <pf <4

so that 2T R y" R e R f and consequently, z = ey = ¥. O

It is useful to make a short comment on the pair of relations </ and <j. On
a weakly U-abundant semigroup, </ is not transitive. Since if z </ y and y </ z,
then there exist e, f € U such that e < y', f < 2, and 2 = ey, y = fz. Thus,
r=efz. Asyf Ry y=fz Ru fzl = fand e < y', we obtain that e < f,
and so by (B21) in Section 1.4, ef is an idempotent. But, we can not guarantee
that ef € U, and so </ is not transitive. Dually, <j is not transitive. Now, we

use <'" and <’ to denote the transitive closures of <’ and <}, respectively.

Lemma 2.26. Let S be a weakly U-abundant semigroup. Then relations <.' and

<!" are partial orders on S.

We call <, and <; (resp. <! and <], S;t and §§t) the natural pre-orders
(resp. natural relaions, natural partial orders) of a weakly U-abundant semigroup

S.



25

2.5.2 The weakly U-regular case

Here we remind the reader that the natural pre-orders of a weakly U-abundant
semigroup will be pre-orders on a weakly U-regular semigroup. Further the nat-
ural relations of a weakly U-abundant semigroup will become partial orders on a

weakly U-regular semigroup, as we now demonstrate.

Lemma 2.27. On a weakly U-regular semigroup S, the relations <! and <] given

in Section 2.5.1 are partial orders.

Proof. In view of Lemma 2.25, it is sufficient to show that <! is transitive and
dually, <] is transitive. Suppose that * </ y and y </ z. Then there exist
e,f €U suchthate < yf, f < 2f, and v =ey, y = fz. So v = efz. Referring
to the comment succeeding Lemma 2.25, we have that e <z fin U. As U is a
regular biordered set, we obtain that ef € U by (B1), and so z </ . O

We call <! and <) the natural partial orders of a weakly U-regular semigroup.
The next lemma presents an equivalent statement for </ and <j on a weakly

U-regular semigroup.

Lemma 2.28. Let S be a weakly U-reqular semigroup. For any x,y € S, we
have
(i) x <! y if and only if there exists e € U such that x = ey and a7 <g y';
(11) x <] y if and only if there exists f € U such that x = yf and z* <, y*.

Proof. We first show that part (i) holds and dually, part (i7) holds. Suppose that
z,y € S. if v <!y, then by the comment succeeding the definition of </ in
Section 2.5.1, we have z = ey for some e € U and 27 <z 9.

Conversely, if v = ey and 27 <z y, then by Lemma 2.8, we have (ey)! <z e,
and so ' <g e. Note that

(zteyN) (zley’) = zle(y'aNey’ = alealey’ = alaley! = aley'.

Since S is weakly U-regular, we have that zfey! € U. Clearly, ey’ < yf. Also,
we have

=212z =aley = 2leyly.

Thus, = <! . O
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2.5.3 The weakly B-orthodox case

Observe that bands are regular biordered sets, and so a weakly B-orthodox semi-
group is a special kind of weakly U-regular semigroup. Consequently, the natural
pre-orders (resp. natural relations) defined in Section 2.5.1 are the natural pre-
orders (resp. natural partial orders) of a weakly B-orthodox semigroup S. To be

easily referred, we present these results in a lemma below.

Lemma 2.29. Let S be a weakly B-orthodox semigroup. Then <, and <; are
pre-orders; <! and <} are partial orders on S. If in addition S satisfies Condition
(WIC), then <;=<_.

Proof. Suppose now that S has (WIC) and x <! y. Then = = ey for some e € B
and e < y'. By the remark before Lemma 2.25 we have 2' <z y', and so
r = ylx = yley'y = yf for some f € B, since yley’ < yf. Clearly as v = ey
we have z* <, y*. Hence x <] y. Dually, </C </  so that the two relations

coincide. O

2.5.4 The Ehresmann case

We remark that if F is a semilattice, then a weakly E-orthodox semigroup is an

Ehresmann semigroup (with distinguished semilattice F).

Lemma 2.30. Let S be an Fhresmann semigroup with distinguished semilattice
E. Then <,=<! and <,=<], so that <, and <, are partial orders.

Proof. In view of Lemma 2.29, </ and <] are partial orders. Further, we notice
that if <, y, where z = ey for some e € E, then v = ey'y. As ey! < yf, we
have that = </ y; dually, <, =<]. O

Let S be an Ehresmann semigroup with distinguished semilattice of idem-
potents E. In [32], Lawson introduced a partial order on S as follows, for all

x,y €9,
x <. yifand only if x = ey f for some e, f € F.

Further, in an Ehresmann semigroup 5,
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The following lemma describes some properties of partial orders given above.

Lemma 2.31. [32] Let S be an Ehresmann semigroup with semilattice of dis-
tinguished idempotents E.

(i) ifx <,y, then * < y* and 27 < y;

(it) if v <, y, then z* < y* and 27 < yf;
(iii) ifx <.y, then z* < y* and 27 < y;
(iv) ife<,y, u<,v, 2* =u' and y* = v', then zu <, yv;
(

v) ifr <y, u < v, 2t =ul and y*t =07, then zu <; yv.

Lemma 2.32. [32] Let S be an Ehresmann semigroup with semilattice of dis-
tinguished idempotents E. Then

(i) if e < af, then there exists a unique element y € S such that y' = e and
Y<rx;

(ii) if e < x*, then there exists a unique element y € S such that y* = e

andy <; x.

We remark that in view of Lemma 2.18, Lemma 2.29 and Lemma 2.30,
relations </, <], <, and <; coincide on a restriction semigroup, and so we use <
to denote the natural partial order on a restriction semigroup. In particular, on

an inverse semigroup S, for all a,b € S, we have

a < bif and only if a = eb (eEE(S)).

2.6 Examples

This section is concerned with two examples We first show how a weakly B-
orthodox semigroup may be naturally obtained from a monoid acting via mor-
phisms on the left and right of a band with identity. This construction is remi-
niscent of that underlying the free ample monoid [13], and we believe will be of
subsequent use.

Let B be a band with 1 and let T" be a monoid acting on the left and right

of B by - and o via morphisms such that

(t-g)ot=(lot)gandt-(got)=g(t-1),



o8

forallge Bandt e T.

We note that as T acts by morphisms, if e, f € B with e <, f, then for any
teT, t-e=t-ef =(t-e)t-f) <y t-f,sothat - preserves <,. Dually, o
preserves <p.

Let S = B« T = {(e;t) : e < t-1} C B x T with semidirect product
multiplication, i.e.

(e,0)(f,5) = (e(t- f),ts).

Nowife < t-land f <, s-1,thent-f < t-(s-1) =ts-1,and so e(t- f) < ts-1.
Thus S is closed, and consequently, it is a semigroup.

We pause here to make a short comment on the above construction. We
required the monoid T acting on both sides of the band B, but when we con-
structed the semigroup S we only used the action of 7" on the left of B. The
action of T on the right of B is helpful to show that each Lz-class of S contains
an idempotent which appears below. Here B = {(e, 1) : e € B}.

We now obtain a series of lemmas to verify that S constructed above is a

weakly B-orthodox semigroup.
Lemma 2.33. The set B = {(e,1) : e € B} is isomorphic to B.

Proof. Let e, f € B. Then e <; 1p = 17 -1 and (e,1)(f,1) = (e(1- f),1) =
(ef,1), whence it follows that B is a band isomorphic to B.

O

Lemma 2.34. For any (e,t) € S, (e,t) Ry (e,1).
Proof. Let (e,t) € S. Then (e,1)(e,t) = (e(1-e),t) = (e,t) and if (f,1)(e,t) =

(e,t), then (fe,t) = (e,t),so fe = eand (f,1)(e,1) = (e,1). Thus, (e, t) 7A2/§ (e,1).
]
Let (e,t),(f,s) € S. By Lemmas 2.33 and 2.34,
(e,t) Rg (f,5) & e R f.

Lemma 2.35. For any (e,t) € S, (e,t) Lg (eot,1).
Proof. Let (e,t) € S. Then

(e,t)(eot,1) = (e(t-(eot)),t)
= (e(e(t-1)),1)
= (e, ) (e <c t-1).
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Further, if (e,t)(f,1) = (e, t), then e(t - f) = e. Now

= (eot)(lot)f = ((el) ot)f
= (eot)f,
so (eot,1)(f,1) = (eot,1). Thus (e,t) Lz (eot,1). O

Again by Lemma 2.33, (e,t) L5 (f,s) if and only if eot £ fos in B.

Lemma 2.36. The semigroup S is weakly B-orthodoz, where B = {(e,1) : e €
B}.
Proof. In view of Lemma 2.33, 2.34 and 2.35, it is sufficient to show that S has
(C). Suppose that (e,t) Ry (f,s) and (g,u) € S. Then (g,u)(e, t) = (g(u-€), ut)
and (g,u)(f,s) = (g(u- f),us). As e R f we have u-e R u - f and then
g(u-e) R g(u- f), so that Ry is a left congruence.

Now let (e,t) L5 (f,s) and (g,u) € S. Then (e, t)(g,u) = (e(t - g),tu) and
(f:8)(g,u) = (f(s - g), su). We have

so that (e(t-g))otu L (f(s-g))osu. Thus L is a right congruence. Hence, S
is weakly B-orthodox. O

We now present another example which is that of a weakly U-regular semi-
group, that is not necessarily weakly B-orthodox.

Let M be a monoid and I, A be non-empty sets. Let P = (py;) be a A x I
matrix with entries being unit elements in M.

Let S =1 x M x A and define a composition on S by

(i7 a, )\)(ju b7 ,LL) = (Z7 CLp)\jb, M)

Then, we have:
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Lemma 2.37. The set S forms a weakly U-abundant semigroup under the oper-
ation defined above, where U = {(i,py;', \) :i € I, A € A}.
Proof. Clearly, S forms a semigroup.

For any (i, py;', A) € U, we have

(ivp)_\ilv A)(va;zlv >\) = (iup;ilp)\ip;ilv >\) = (iup;ilv )7

and so U C E(S).
To show that S is weakly U-abundant, we first show that for any (i,a,\) € S
and (j,p;,}, 1) € U,

(i,a,\) Ry (j,p;jl,,u) if and only if ¢ = j,

and dually,
(1,a, \) Ly (j,p;jl, ) if and only if A = p.

Suppose that (i,a, \) Ry (j,p;jl, ), then we have

(]7p;]1ﬁu)(2’a'? )\) = (Z? a’ )\)?

that is,
(j?p;jlpuia'a )\) = (Za a, )\)a
and so 7 = j.
Conversely, if 1 = 7, then

(ivp;ilv :U’)(iv a, )‘> = (i,p;ilpma, )‘> = (i, a, )‘>

Suppose that (k,p;kl,v) € U is such that (k,p;kl,v)(z',a, A) = (i,a,A). Then we
obtain that (k,p;klpw-a, A) = (i,a, ), and so we must have k = i so that
(k.05 1) (ot 1) = (b Pyt pyipi s 1)
= (iap;ilp’yip;zl? 1) (kf = Z)
= (iap;ila :U“)

Thus, (i,a, \) Ry (1, p;il, w). Hence, S is a weakly U-abundant semigroup. [
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In view of the proof of Lemma 2.37, the next lemma is immediate.

Lemma 2.38. For any (i,a, ), (j,b, 1) € S, we have
(i) (ia.A) Ru (j.b, ) if and only if i = j;
(i) (i,a, ) Ly (4, b, p) if and only if X = p.

Lemma 2.39. The semigroup S satisfies (C).
Proof. Suppose that (i,a, \), (,b, p), (k, ¢,~) € S are such that (i, a, \) Ry (4, b, ).
Then ¢ = j. Observe that
(k,c,v)(3,a,\) = (k, cpyia, N)
Ry (k, cpyib, ) (Lemma 2.38)

= (K, ¢,7)(i,0, 1)
:(kacﬁ)(jal%ﬂ) (Z:]>

so that Ry is a left congruence. Dually, we show that £ is a right congruence.

U
Lemma 2.40. Ife, f € U, thene R ef L [ in (U).
Proof. Let e = (i,py}, \) and f = (j,p;jl,u) € U. Then
T | .1 =1 -1
ef = (6,05 » NG, P> 1) = (4, D PAjPLj » 10)-
Take a = (j,py;, A)(i, Py, A) € (U). Then we have
= (1, Py DA 1) Pag > A (60, A)
(7' p)\z p)\jpu‘] pu]p)\] p)\zp)\z I >\)
= (7’ p)\z ’ )
=e
and eef = ef so that ef R e in (U). Dually, we have ef £ f in (U). O

Lemma 2.41. The semigroup (U) generated by U is regular and E((U)) = U.

Proof. Let (i,a,\) € (U). Then

(t,a,\) =e1---e, (el,-~-,en€U).
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We now show that (i,a,\) R e; in (U) and dually, we have a L e, in (U). By
Lemma 2.40, if n = 2, then certainly the statement holds. We assume that
ey e, R eyin (U). Then

(i,a,\) =ei(ez---e,) R eren
R e; (Lemma 2.40).

Hence, (U) is a regular semigroup.

With (i, a, \) as in the statement of this lemma, we have (i, a, >\) R (i,py s 1)
for any u € A, and if (k,pyi, \) € U, then we have (i,a,\) £ (k,pyi, \).

Now, we show that E((U)) = U. Clearly U C E((U)). To show that
E((U)) C U, we suppose that (i,a,\) € E((U)). Then (i,a,\) H (i,px;', A).
Since both (i,a,\) and (i,py;, \) are idempotent and each H-class contains at
most one idempotent, we must have that (i,a, \) = (i, py;', A) so that E((U)) C
U. O

To sum up, we have :

Theorem 2.42. The semigroup S is a weakly U-reqular semigroup, where U =
{(i>p)_\ila )‘) S [> A E A}



Chapter 3

Weakly U-superabundant
semigroups with (C)

A weakly U-superabundant semigroup is a weakly U-abundant semigroup in
which every Hy-class contains a distinguished idempotent of U. Such semigroups
are analogous to completely regular semigroups. The purpose of this chapter is to
build a complete construction modulo the semilattice decomposition for weakly
U-superabundant semigroups with (C).

We make the convention that B will always denote a band. Green’s relation
D will always refer to B, unless stated otherwise. To avoid ambiguity, if I is a
relation on a semigroup S, then we will use K(.S) to denote the relation on S in

some places.

3.1 Weakly U-superabundant semigroups with

(C)

In this section, we are concerned with some properties of weakly U-superabundant

semigroups with (C), which broadly determine their structure.

Lemma 3.1. [33] If S is a weakly U-superabundant semigroup, then
'ﬁU :ZUoﬁU :ﬁUOZU.

Further:
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Lemma 3.2. Let S be a weakly U-superabundant semigroup. If distinguished
idempotents e, f € U are Dy-related, then there exists h € U such that e LhR f.

Proof. Let e, f € U be such that e Dy f. By Lemma 3.1, there exists = € S such
that e Ly 2 Ry f. As S is weakly U-superabundant, there exists A € U such that
h’;—[va, and so eENUhﬁUf. Thus, e LAR f. O

As an analogue of the fact that J = D on a completely regular semigroup,

we have:

Lemma 3.3. [}4] If S is a weakly U-superabundant semigroup with (C), then

jU = DU, and jU is a semilattice congruence on S.

From Lemma 3.3, if S is a weakly U-superabundant semigroup with (C),

then each Dy-class forms a semigroup. We can say more.

Lemma 3.4. If a,b are Dy-equivalent elements in a weakly U-superabundant
semigroup S with (C), then aRy ab Ly b.

Proof. Suppose that @ Dy b in S and e, f € U with e Hy a, f Hy b. Then
e Dy f. By Lemma 3.2, there exists k € U such that e £ k R f, and so

ab Ry af Ry ak =a and ab Ly eb Ly kb =b.

Hence, a 7A€U ab ENUb. [
It is useful to mention the next lemma.

Lemma 3.5. [33] If a weakly U-abundant semigroup S satisfies (C) and e € U,

then H, is a monoid with respect to e.

Lemma 3.6. Let S be a weakly U-superabundant semigroup with (C) and let
a€ S ande, f,h € U be such that hHya and e Ly aRy f. Then the right
translations ,of|L , ,oh|L are mutually inverse Ry -class preserving bijections from

L, onto Lf and Lf onto La, respectively.

Proof. 1t is easy to see that pf|Za is a map from L, to f;f since for any z € L,
zpf =2af Ly hf = f. Similarly, we can show that ph\zf is a map from f}f to L.
And we deduce that for any z € L, and y € L s

xpson = xfh=a(fh) =zh =2 and ypnp; =yhf =y(hf)=yf=y.
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Thus the right translations pf\za, ph|Ef are mutually inverse bijections from L,
onto Ly and Ly onto L,, respectively. Since f Ry h and Ry is a left congruence
it follows that for any x € Ly, zf Ry zh = x, that is, the right translation pf|Za
preserves the Ry-class. By a similar argument, we have the right translation

ph|Ef preserves the Ry-class. O

We have a left-right dual featuring:

Lemma 3.7. Let S be a weakly U-superabundant semigroup with (C) and let
a € S and e, f,h € U be such that hHy a and eENUaﬁUf Then the left
translations A, |R , )\h|R are mutually inverse Ly-class preserving bijections from

R, onto R. and R, onto R, respectively.

Lemma 3.8. If a,b are Dy -equivalent elements in a weakly U-superabundant

semigroup S with (C), then H, is isomorphic to Hy.

Proof. Suppose that a Dy bin S and e, feUwithe Hy a, f Hy b By Lemma 3.1,
there exists ¢ € S such that a Ry ¢ Ly b. Since S is a weakly U-superabundant
semigroup it follows that there is a distinguished idempotent h € U such that

h Hy c. Due to Lemma 3. 6, prlz 7., and pe|y are mutually inverse bijections

7.
from H, onto H, and from H, onto H,, respectively. By Lemma 3.7, A¢|~ 3
- 77, are mutually inverse bijections from H. onto H, and from H, onto Hc,

respectively. So we have that pn|g Aslz and Anlg i1, Pelf, are mutually inverse

7.
bijections from H, onto H, and H, onto H,, respectively.

We still need to show that pn|z Arlz and An|g pelz are morphisms. To

&,
show that pp|gz Af|f is a morphism, it is sufficient to prove that both A¢|5 and
ph|ﬁa are morphisms. If =,y € ffa, then Ry h Ry y, and so (xy)py = xyh =
z(hy)h = (zh)(yh) = (zpn)(yps). Thus pplg is a morphism. Dually, we can
show that As|7 is a morphism. Hence py|5 Af[5 is a morphism as required.

Similarly, we can show that the composition Ap| 77, Pe is a morphism. So H, is

7.
isomorphic to H, as required. O

In view of Lemma 3.1, we can use an egg-box picture to depict each Dy-class
of a weakly U-superabundant semigroup S. Let D denote a typical Dy-class of
S. We denote the set of ﬁU—classes of S'in D by I and the set of Ly-classes of S
in D by A. As a matter of notation we shall treat I and A as index sets and write
the Ry-classes as R, (1 € I) and the Ly-classes as Ly (A € A). The Hy-class
E’i N Z,\ is denoted by ﬁi)\.
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Lemma 3.9. If S is a weakly U-superabundant semigroup with (C), then each
Dy-class of S is a rectangular band of its ”;T-ZU-classes, which are isomorphic

monoids.

Proof. Let D denote a typical Dy-class of S. In view of Lemma 3.5, each Hy-
class is a monoid, and so a ’;-[VU a’ foralla € S. Let i,j € I and u, A € A. We
assume that a € H;y and b € ﬁju- By Lemma 3.4, we have a 7A€/U ab Ly b, that
is, ab € H;

band of monoids, which are isomorphic by Lemma 3.8. O

u» O equivalently , HyH in C ffw. Thus each Dy-class is a rectangular

Next, we present an equivalent statement for a weakly B-superabundant

semigroup, where B is a band.

Lemma 3.10. Let S be a weakly B-abundant semigroup. For any e, f € B,
eDpf<eDf

if and only if S is a weakly B-superabundant semigroup.

Proof. In view of Lemma 3.2, it is sufficient to show the necessity. Suppose
that z € S. Certainly, we have that zf Ry x Lp x* for some 2l z* € B. It
follows that 2 Dy 2*. By the hypothesis, we get «f D z*. So «fa* £ 2* L z
and z'z* R 27 Rpz. Thus 2fz* Hp z. Hence S is a weakly B-superabundant

semigroup. ]

As an immediate consequence of Lemma 3.10, if S is a weakly B-superabundant
and B is a band, then D(B) = Dg(B).

Lemma 3.11. A weakly B-orthodox semigroup S is B-superabundant if and only
if S/ is weakly B/D-superabundant, where v is any admissible congruence on S
such that v N (B x B) =D.

Proof. 1t is easy to see that the necessity holds. It remains to show the converse
is true. Suppose that S is a weakly B-orthodox semigroup and S/v is weakly
B/D-superabundant. Then for any a € S, there exists an idempotent e € B such
that a~y ’;-[VB/D ery. Of course, we have a'y ﬁB/D ay EB/D a*y for any af € R,N B,
a* e INLaﬂB. It follows that a'~y 733/1) ey ENB/D a*y, that is, a~y Rp/p ey Lp/p a™y,
and so a'y = ey = a*y since B/y = B/D is a semilattice. Therefore, a' D e D a*,
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which implies that o' R afa* £ a*, and so a'a* Hy a. Hence, S is weakly B-

superabundant. O

In Chapter 2, given a weakly B-orthodox semigroup S with (WIC) (resp.
(IC)), a relation dp defined by the rule that for any a,b € S, a dp b if and only if
a =ebf, b = gah for some e, f, g, h € B, is an admissible congruence on S with
the property that d5 N (B x B) = D. It follows from Lemma 3.11 that a weakly
B-orthodox semigroup S with (WIC) (resp. (IC)) is weakly B-superabundant if
and only if S/dp is weakly B/D-superabundant.

3.2 Completely J-simple semigroups

A semigroup S is called %-sz’mple if Jy is the universal relation on S. A
weakly U-abundant semigroup S is called completely %-simple if S is a weakly
U-superabundant semigroup with (C) and is Ju-simple.

In [44], Ren, Shum and Quo built the analogue for weakly U-superabundant
semigroups with (C) of the structure theorem for superabundant semigroups as

follows.

Theorem 3.12. [/4] A semigroup S is a weakly U-superabundant semigroup
with (C) if and only if S is a semilattice Y of completely Jy-simple semigroups
So(a € Y) such that for all a, B € Y, the following statements hold:

(i) for each a € Sa, Lo(S) = La(Sa) and Ry(S) = Ra(Sa);

(it) foralla,b € S, andx € Ss, (a,b) € Ly(S,) implies (ax,bx) € Ly(Sas)
and (a,b) € Ry(Sy) implies (za,2b) € Ry(Saps).

In the following, we construct a completely %—simple semigroup from a set
of monoids. Together with Theorem 3.12, we succeed in obtaining a complete
construction for weakly U-superabundant semigroups with (C).

Let I, A be non-empty sets. For each (i, \) € I x A, let M;, be a monoid
with identity e;y. We denote a rectangular band of monoids M;y (i € I, € A)
by T" and denote by U the set of {e;, : i € I, A € A}. In order to consider the
relations Ry and Ly on T, we make a convention that for ¢, € I and A\, u € A,

(R) if i = j then e;ne;, = €, and e; e\ = €;x;

(L) if X = p then e;jnej, = e\ and e; e\ = e,

The next lemma follows immediately.
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Lemma 3.13. If the rectangular band T of monoids M;y (i € I,\ € A) satisfies
Conditions (R) and (L), then for any a,b € T with a € M;\ and b € M;,,

aRybe i=j,

alybe \=yp,

and consequently,

aHybe 1=j and X\ = p.

Proof. We prove ﬁU case. Dually, the Ly case holds, and the ﬁU case follows
from the result for ﬁU and ZU. Let a € M;y and b € M, be such that a ﬁU b.
Suppose that f € U with fa = a. Then f = e¢;, € M,;, for some v € A. Since
a Ry b, it follows that fb =0, which leads to i = j.

Conversely, suppose that ¢ = j. Then by Condition (R), e;xe;, = €, and
€ipCin = €y, that is, e;x R e;,. Next, we shall claim that a /7€U e;» and b 7A?,/U Cip-
Certainly, we have e;ya = a. Suppose that e,. € U with eg.a = a. Then k =1
and by Condition (R), we have ep.e;x = e;n. So a ﬁU e;x. Similarly, we could
deduce that b 7A€U e;,. Together with e;y R e;,, we have a ﬁU b. O

Furthermore, we can get the next result.

Lemma 3.14. If the rectangular band T of monoids M;y (i € I,\ € A) satisfies
Conditions (R) and (L), then T is a completely Jy-simple semigroup.

Proof. In view of Lemma 3.13, it is easy to see that T"is a weakly U-superabundant
semigroup. We now claim that T satisfies the Congruence Condition. Suppose
that a,b,c € T with a ﬁU b and ¢ € My,. By Lemma 3.13, a € M;, and b € M;,
for somei € I, A\, n € A. Clearly, ca € My and cb € My,. Again by Lemma 3.13,
ca Ry cb. Thus, Ry is a left congruence. Similarly, we have that £y is a right
congruence.

We still need to show that Dy is a universal relation on 7. Let a,b € T with

a € M;y and b € M;j,. Since there exists an element x € M;,, it immediately

)
follows from Lemma 3.13 that a R Ly b, that is, a Dy b. Hence T is a completely

Ju-simple semigroup. ]

In a summary, we have the following structure theorem for completely Jo-

simple semigroups.
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Theorem 3.15. A semigroup S is completely T -simple if and only if it is a
rectangular band of monoids M;y (i € I, X\ € A) and satisfies Conditions (R) and

(L), where the monoids M;yx must be isomorphic.

Proof. In view of Lemma 3.14, it is sufficient to show that a completely %-simple
semigroup is a rectangular band of monoids and satisfies Conditions (R) and (L).
Clearly, by Lemma 3.9, a completely :7VU—simple semigroup S is a rectangular band
of monoids M;y (i € I, A € A) which are isomorphic. Since the set of Ry-classes
of S is denoted by I and the set of Ly-classes of S is denoted by A it follows that
Conditions (R) and (L) hold. O

Finally, we consider a special case. If the set U of identities of each M;)

forms a band, then the next lemma is immediate.

Lemma 3.16. Let T' be the rectangular band of monoids M;, with identities e;
(eI, xeN). IfU ={en:i € I\ € A} forms a band, then T satisfies
Conditions (R) and (L).

So, we have:

Corollary 3.17. A semigroup S is completely Jp-simple if and only if it is
a rectangular band of monoids M;y with identities e;y (i € I, A € A), where

B={ep:i€l,\€ A} forms a band and the monoids M;, must be isomorphic.



Chapter 4

Representations for generalised

orthogroups

In this chapter we begin the study of fundamental semigroups and their analogues
in the class of generalised regular semigroups. Precisely, we mainly describe or-
thogroups in the Hall semigroup Wz and weakly B-superabundant subsemigroups
with (C) of Vp (resp. Ug, Sp), which is analogous to Wp.

4.1 Fundamental inverse semigroups

The results in this section are basic but important in the study of inverse semi-
groups. To make our discussion in the following sections easy to understand, we
list them here. The details are referred to [26].

We recall that an inverse semigroup S is fundamental if the maximum idem-
potent separating congruence p is the identity congruence on S. Such inverse
semigroups do exist, since S/pu is fundamental inverse for any inverse semigroup
S whatsoever. Specially, every semilattice and every symmetric inverse semigroup
Z(X) is fundamental.

Observe that every element a in an inverse semigroup S determines an iso-
morphism «, from the principal ideal E,,-1 of E onto the principal ideal E,-1,.

The isomorphism «, is defined by

ea, = a 'ea (6 € Egq—1).
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Built on the above observation, Munn [37] constructed a fundamental inverse
semigroup from any semilattice F/, as follows.

Let E be a semilattice and U be the equivalence relation on E given by
U={(e,f)e EXE: E, ~E}.
If (e, f) € U let T, ; be the set of all isomorphisms from E, onto E;. Let

To= | T
(e, f)eU

Then Ty is an inverse subsemigroup of Zp and is fundamental. We shall call it
the Munn semigroup of the semilattice F.

The crucial fact concerning the Munn semigroup is that:

Theorem 4.1. [26] If S is an inverse semigroup with semilattice of idempotents
E, then there is a morphism ¢ : S — Tg whose kernel is p, the mazximum

idempotent separating congruence on S. The morphism ¢ is defined by
ap = a, (a€d),

where oy s given above.

We pause to mention that the Munn semigroup Tg is determined by its
semilattice of idempotents. In view of this, it is natural to be concerned with
the influence of the properties of the idempotents of an inverse semigroup on the
structure of the inverse semigroup as a whole. Keeping this in mind, we recall that
an inverse semigroup S is said to be a Clifford semigroup if the idempotents are
central, that is, ex = xe for every idempotent e and every x in S, or equivalently,
a semilattice of groups.

Theorem 4.1 built a concrete morphism ¢ : S — Tg. If S is a Clifford
semigroup, then the morphism ¢ has kernel y = H.

Theorem 4.2. If S is a Clifford semigroup with semilattice of idempotents E,
then = H and S/p is a semilattice, which must be embedded in Tg.

Proof. For every element a in a Clifford semigroup S, there exists an inverse a~*

of a such that a H @', and so a~'a = aa™! = g, where g is the idempotent in
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H,. Then ¢, is a morphism from E, to E,. Since S is a Clifford semigroup, the

idempotents are central. Then for any e € Eg,
_ 1 _ 1 _ _
eq, =a ea =a ae=ge=e.

S0 ay is the identity map on Ej, from which it follows that if @ H b in S, then
Qg = p, that is, ap = bp. Thus, H C Ker¢. Certainly, Ker¢p C H. Hence,
Ker¢ = H. By Theorem 4.1, u = H. O

4.2 A fundamental orthogroup of Wy

In Section 4.1 we were able to find a morphism ¢ from an inverse semigroup
with semilattice of idempotents F to the Munn semigroup Tg. Moreover, if S
is a Clifford semigroup, then the image of S in Ty is E (hence is particular also
Clifford). If we are to find a generalisation of this to an orthodox semigroup (a
regular semigroup whose set of idempotents forms a band), we need begin by
recalling the appropriate analogue of the Hall semigroup [26].

Let B be a band. We denote by (e) the principal order ideal generated by e
for all e € B. We define

U={(e,f) € Bx B:(e) ~(f)}

and write W, ; for the set of all isomorphisms from (e) onto (f). If (e, f) € U
and a € W, , we may define o € T(B/L) and o, € T*(B/R) by the rule that

L,oy = L., R,o, = R, (x € (e)).

It is routine to verify that (a;)™! = (a™1); and (a,)' = (a™!),. In this case, we
may use the notation a; ', ;7! without ambiguity.

Now, we put
Wp = {(pecu, \pa,; ') 1 € Wy, (e, f) € U},
where for any = € B,

pre = Lemeu Rx)\f = Rfmf
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In fact, Wp is precisely the analogue of T and it is a fundamental orthodox
subsemigroup of T(B/L) x T*(B/R). We shall call it the Hall semigroup of the
band B.

It is useful and convenient to present the following result.

Lemma 4.3. [26] Ife, f,g are elements of a band B with (e, f) € U and g € (e),
then (g)a = (ga), where o € W ¢.

In the case of an inverse semigroup, the key idea of conjugates of idempo-
tents guarantees that there exists a representation which provides more useful
information about the structure of the semigroup. We note that this idea is still
available in the orthodox case, but it is necessary to take a new technique to deal
with the inverse of every element, since it is not unique.

Observe that if a is an element in an orthodox semigroup S with band of
idempotents B and a*, a’ are inverses of a, then a*ra L a'xa and axra* R axd,
where z € B. Built on this observation, we have the following maps.

Let S be an orthodox semigroup with band of idempotents B. For each a in
S, a mapping p, : B/L — B/L is defined by

L:cpa = La/za (l’ € B)>

where o’ is an arbitrary chosen inverse of a. By dual arguments we can define
Ao : B/R — B/R by

Rx)\a = Ra:ca’ (ZIZ’ € B)a
where a' is an arbitrary chosen inverse of a.

By Proposition 1.16, 'a’ is an inverse of ab, and so pu, = paps, for all a, b in

S. Dually, we have that \,, = A\pA,. Moreover:

Theorem 4.4. [26] Let S be an orthodox semigroup with band of idempotents
B, and let ¢ be the mapping from S into T (B/L) x T*(B/R) defined by

CMﬂ = (paa )‘a)u

where pg, \q are given as above. Then 1 is a morphism whose kernel is the

maximum idempotent separating congruence p on S.

The result we have achieved presents a representation in 7 (B/L)xT*(B/R)

rather than Tx. We have seen that Wp is an analogue of Tr and an orthodox
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subsemigroup of 7 (B/L) x T*(B/R), having band of idempotents isomorphic to
B. So to obtain an exact analogue of Theorem 4.1, we must rewrite the maps p,
and )\, in the form used to define Wp.

Now let S be an orthodox semigroup with band of idempotents B. If a € §

and d’ is an inverse of a, then denoting aa’ by e and a’a by f, we obtain that

(Pas Aa) = (pebi, A 67,

where 6 is the mapping in W, ; given by
20 = d'za (x € (e>).

In this case, the range of the mapping ¥ : a — (p4, Ay) is thus contained in the

Hall semigroup
Wg = {(pecu, \ya,; ') 1 € Wy, (e, f) €U}

Before moving on we pause to confine ourselves to a consideration of a special
kind of orthodox semigroups analogous to Clifford semigroups. We have men-
tioned in Chapter 1 that a semigroup is completely regular if each of its elements
is contained in some subgroup of S. An orthodox semigroup is an orthogroup if
it is completely regular. Obviously, every Clifford semigroup is an orthogroup.

At the end of the previous section, we mentioned that there exists a repre-
sentation from a Clifford semigroup S to T and the image of S is the semilattice
of idempotents of Tg. Certainly, every semilattice is a Clifford semigroup. So
there exactly exists a representation from a Clifford semigroup to a Clifford sub-
semigroup of Tg. At a certain stage it becomes natural to ask whether there
exists such a representation of an orthogroup to an orthogroup contained in the
Hall semigroup Wg.

As a first step what we have to do is to find a subsemigroup of W which is
an orthogroup. In this case, it is necessary to make use of the statement [49] that
an orthodox semigroup is completely regular if and only if its greatest inverse
semigroup homomorphic image is completely regular, i.e. a Clifford semigroup.

If B is a band, then it is a semilattice Y of rectangular bands B, (« € Y).
It is not hard to verify that if e,z € B with « € (e), then e € B, and = € B;
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for some o, & € Y with £ < a. In addition, if e, f € B with e € B,, f € Bj
(a, s € Y)and ¢ : () — (f) is an isomorphism, then there is an isomorphism

/' aY — BY corresponding to ¢, defined by the property that
xL € By (€ eaY, xe(e)n Be).

As Y is a semilattice, the Munn semigroup Ty certainly exists. Then for
every element (p.0;, \;0;7!) in Wy, 0 is an isomorphism from (e) onto (f). Due
to the above analysis, there is an isomorphism ¢’ : aY — BY corresponding to
0 in Ty, where e € B, and f € Bg. Hence, there is a map v from Wp to Ty
defined by the rule that

(0 MO =6 (0.6 Af6; ) € W),

Lemma 4.5. The map v defined above is a morphism from Wg to Ty .

Proof. We first show that v is well-defined. Let (p.0;, \t0,71), (proi, Ao t) € Wi
be such that (p.0;, A0, ) = (proi, Ao, t). Then for any € B, we have that
L.pe0 = L.ppoy, that is (exe)d L (haxh)o. Choose © = e. We obtain that
e L (heh)o, and so f L (heh)o as ef = f. Since L is a right congruence and
(heh)o < k, we succeed in obtaining that fk L (heh)o. By Lemma 1.22, we
have that kfk L (heh)o. As o : (h) — (k) is an isomorphism, we have that
(kfk)o=' L heh. Also, for any = € B, we have that R,\;0,' = R, \;o, 7!, that
is, (fzf)0~' R (kxk)o~!. Take x = f, we obtain that f0~'R (kfk)o~!. As
f07! = e, we get that e R (kfk)o~!. Together with (kfk)o~' L heh, we have
that e D heh. Similarly, we obtain that hD ehe. Certainly, eheD heh. Thus
e D h. Dually, we have that f D k. Hence,

dom (¢') = dom (¢’) = aY and im (¢') = im (¢’) = BY,

where e, h € B, and f,k € Bg.
We still need show that for any & < «a, 0" = £o’. To do this, we assume that

x < e and € Be. Then there exists y € B such that x = eye. Since eD h, we
have that © = eye D hyh < h, and so hyh € Be. As 20 = (eye) L (hyh)o so that
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20 D (hyh)o. By the properties of #” and o/, we have that
xh € ng/ and (hyh)a S Bé'o-l.

Thus €6’ = £o’. Consequently, v is well-defined.

Next, we show that v is a morphism. Let (pemi, A\pnt), (pgo1, Anoyt) € Wp
and let e € B,, f € Bg, g € B, and h € Bs. According to [Chapter VI, Theorem
2.17, [26]], we have that

(e, Ay ) (pgoi, Anoy ') = (pim, Ay ),

where i = (fgf)n™", j = (9f9)o and 7 = (0|4y) Ogslirer)) (Tl grg)). In the follow-
ing, we show that n’ oo’ = 7.

As fgf € Bg,, we have that (fgf)n™' € B(gy)y-1, and so domr’ = (5v)n'~'Y.
Similarly, im7’ = (8v)o’Y. Observe that imn’ = Y and domo’ = ~Y. Thus

dom(n' o ¢’) = (imn’ N domo’ )77 -1
= (BY NyY)n'"~
= By
= (By)nY (Lemma 4.3)

= domr’.

Similarly, im(n’ o o’) = im7’.
Let £ € dom(n' o o’) and z € B¢ N (i). Then

o1 = x(1l6)) Ogsal i) (ligsa)) € Bu for some 1 €'Y,

and so {7’ = p. Since we have remarked that 04|45 fixes D-classes succeeding
Lemma 1.21, it follows that z(n|u) D x(n|u))(Ogrgliser)) so that &n' = w and
wo' = p, where x(n|u)), (0 6)) Ogselirer)) € Bu. Hence, £(1 o 0’) = p, and so
noo =1 O

We now pause to mention that if the image 6 of the element (p.0;, A\;0, ") of
Wp under v is an idempotent, then e, f are D-related and ' is an identity map
on aY, where e € B,. Hence, the elements of Wg, whose images under v are

idempotent, induce a partial identity mapping on Y. Moreover, we have:
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Lemma 4.6. [49] The elements of W whose images under v are idempotent

form an orthogroup in Wg. We denote this orthogroup by OG1.

Proof. We first show that OG; is closed. Suppose that (pet, Ape, ') and (p,71, A7 t)
are in OGy. Then /7" € E(Ty). Since E(Ty) is a semilattice, we have that
U7 € E(Ty) . As OG, C Wpg, we have that the product (peti, Are, ) (pg7i, AnTb)
is in Wp. Also,

((etts Mgt ) (pgmis M) )V = (petas Mgty W pgm, My v = 1 o 7' € B(Ty).

Thus, (peti, Apey ) (pgm, An7t) € OG, and so OG; is closed.

Clearly, B = {(pe,Ae) : e € B} is contained in OG; and so OG; is an
orthodox semigroup.

Finally, we claim that OG; is completely regular. Let (peti, Apet) € OGh,
e€ B, and f € Bg(a, €Y). Then ' : aY — [Y is idempotent. In that case,
we must have that e D f, andsoe R ef L f so that (pe, A\e) R (pef, Aef) £ (pfs Af)-
As (pe; Ae) R (petis Ape ) L (pg, Ap), we obtain that (pety, Apert) H (pefs Aef)-
Thus, OG; is an orthogroup. O

Lemma 4.6 gives us an abstract description of an orthogroup in Wg. Next,
we shall find a closed form for such an orthogroup in Wp which coincides with
0OG;.

For any e € B, we write
A, ={aeW,,.: forall z € (e),zaDx}

and put
0G, = U W.,

eeB

where W, = {(peay, N, ') € Wp:a € A}
Lemma 4.7. For any e € B, the set A, forms a group.

Proof. Suppose that a € A.. We claim that o=t € A.. For any z € (), certainly,
ra~t € {e). Since a € A,, we have that x = (za~!)a D xa~!. This implies that
a~! € A.. Obviously, the identity map 1 is the identity of A, and A, is closed.

Hence, A, forms a group. O
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Further:

Lemma 4.8. For any e € B, the set W, forms a subgroup of Wy with identity
(Pes Ae)-

Proof. Clearly, for any e € B, (pe, A\e) € W, and it is the identity of W,. We
now show that W, is closed. Suppose that (p.a;, Aea; t) and (pe31, A1) are in
W.. We first consider the product of p.cy and p.f3; because dually, we obtain the

similar result for the product of M.t and A\.51. For any 2 € B, we have that

prealpeﬁl = L(e[(eme)a}e)ﬂ = L((ewe)a)ﬂ = L(ewe)aﬁ = pre(a5>l-

Similarly, we obtain that R A3 ' A\ea; !t = R A(aB)t. As a, 8 € A., the com-
position a3 certainly belongs to A, by Lemma 4.7. Thus, (p.(af);, Ae(aB) 1) €
W, and so W, is closed.

Next, we show that the group inverse of (p.aq, e, !) exists and lies in W,.
To do this, we assume that (p.ay, Aeci!) € W,. Then a € A.. By Lemma 4.7,
we have that a=! € A,, and so (peal_l, Aetrr) € We. In addition, it is routine to

check that (peas, Aeat) and (po; ', Aey,) are mutually group inverse in W,. O
Returning now to the set OG5 constructed above, we have:

Lemma 4.9. The set OG5 forms an orthogroup with band of idempotents B =
{(pe, Ae) : € € B}.

Proof. In view of Lemma 4.8, it is sufficient to show that for any e, f € B,
there exists h € B such that W,W; C Wj,. Suppose that (p.cu, A, ') € W,
and (pg03;, \s5, 1) € Wy. Then a € A,, 8 € Ay, and so (efe)a™ D efe and
(fef)B D fef so that (efe)a D (fef)B as efeD fef. Put

T= (e(efeﬁf1 |<(6f6)oc*1(fef)6>) (O‘|<(efe)a*1>)'
(Oreslerer) (Blesen) (Beesarn—rsenslisens )

By Lemma 1.21, v € Wicte)a—1(fef),(cfe)a—1(fef)s- Again by the remark succeeding

Lemma 1.21 and «, § fixing D-classes, we have that ~ fixes D-classes, and so

Y € Alefe)a—i(fef)s-
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Thus, (p(efeya (fef)pV Mefe)ai(fer)sr ) Delongs to Wierea—1(fef)s-
We now show that

(pect, Aty ) (B ABr) = (Plesera=1(fe )8 Aefe)a—(fef)s Ve )-

For any x € B,

Lapefeya—rifer)sn
= Liefoya—(feryps efera-(rens( (Oerorn ierorn(sers )
(@lieseray) (Oreslieser) (Blisen) (Beserarsenslisens ),

= ((esret-(eserat(senz erepat(sensesero) (ol popaty )

((’fef\<efe>) (5|<fef>) (9(efe)a—1(fef)@|<(fef>5>)

- L((Efe)a’l(fEf)BI(efe)a’l) (a|<(efe)a*1>) (9fef\<efe>) <5|<fef>> <e(efe)a71(fef)5I((fef),B))
((efe)a™" D (fef)B)

- L((efe)a’l(fef)ﬁw(efe)orl) ((a|<(efe)ail>) (9fef|<efe>) (5|<fef>)'

(Q(efe)afl(fef)ﬁ|((fef)5>>)l
- L(w (esejo ) ((@lesaa—) (Bserliese) (Blisen ) (Beesera—rsenslisens)),

(Lemma 1.22)

B L((efe)‘fl z (efe)‘fl) (a‘((efe)a71>> <9fef|<efe>> (/3‘<fef>) (6(efe)a*1(fef)B‘((fef)f@)
(Lemma 1.22)

B L((@J‘@)Oﬁ1 exe (efE)Oé’1> (Oé\«efe)am) (Gfef\<efe>) (5|<fef>) (6(efe)a*1(fef),8|<(f€f)/5>>
((exe)a‘l € <e))

L((efe)a”a (ewe)ar (efe)(fla) (9f6f|<efe>) (5\<fef>) (%fe)a—l(fefm\«fef)m)
((efe)oz_l, ere € (e>)

- L((efe)(ere)a(efe)) (9f6f|<efe>) (5\<fef>) (9(efe)a—1(fefm\«fef)m)

L

((enrereresaratesersen) (817en) (9 soratrenslisens) (Lemma 1.21)
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(fefef)(e-(eze)ore)(fefef)) (B‘(fef)) (G(Sfe)afl(fef)g‘((fef),@)

((exe)a € (e})

(fef)(ewe)a(fef)) (5\<fef>) (e(efe)afl(fef)5|<(fef)6))

((rensteernr)ptrens) (8ppopamriseslisenn) (fef. flexe)af € (1))

= Licfe)a1(fef)B-(fef)B(f(exe)af)B(fef))-(efe)a~ (fef)B (Lemma 1-21)

= Lf(eve)aps(sen)s-efea=rsens ((fef)B D (efe)a™, Lemma 1.22)
= L(f(ee)a)B(sef))5 ((fef)B D(efe)a™)
= L(j(eae)as sef)s

= L(f(exe)afef)s

= L(s(ee)ace-sens ((exe)a € <e))

= L(f(exe)acs)s

= Lif(exe)ar)s ((exe)a € <e))

= Lypecypysf;.

Thus, peefeya—t(fer)pnt = peu - pray. Also, we deduce that

—1
Rx)\(efe)afl(fef)ﬁ’%’

= Recsera-t(sesz(efern (ens ((Oeserarlieserar(sens) )-
(aliesera ) (Oreslieser) (Blusen ) (Oeserarsenslirens) ) . 1
N R((efe)oz1 (fef)Bz(efe)at (fef)ﬁ) (G(efe)a*1(fef)B‘((fef)m) - (5|<fef>) -~

-1 —1 -1
(afef‘<efe>) (O“<(ef6)a*1>) (G(Efe)cfl|<(6fe)a*1(fef)ﬁ>)

=R
((efe)afl(fef)ﬁm (efe)a’l(fef)ﬁ> (G(fef)ﬁ|<(€fe)a71(fef),6>) (B*1|<(fef)5>>'

(Lemma 1.21)
(eefe|<fef>) (0‘71|<6fe>) (G(Efe)afl(fef),e|<(efe)a*1>)
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((fEf)B.(efe)ail(fef)Bx (efe)o‘fl(fef)ﬁ'(ﬁf)ﬁ) (671‘<(fef),8>> (eefe|<fef>>'
(ail‘“f‘ﬁ)) (9<efe>a*1(fef)ﬁ‘«efe)am) (Lemma 1'21)

B R((fﬁf)ﬁﬂﬁ(ﬁfﬁ)a’l(ﬁf)ﬁ) (,3’1|<(fef)5>) (Gefekfef )( “Mese ))(9( cfeya—1(fen)alierera— >)
((efe D (fef) B)
B rens ) (Ocselren) (0 iere))-

(9(6 feya=1(fensl <(efe>a*1>))r

=R (enss) (87 wrens) (Beselisen) (0 leera) (Beseratrensliesan) ),

(Lemma 1.21)

((fef)ﬁw(efemfl(fef)g) ((

N R((fef)ﬂx (fef)B) (6*1|<<fef>ﬁ>) (Gefe\<fef>> (a’1|<efe>) (e(efe)afl(fef>6‘<<efe>a*1>>
(Lemma 1.22)

((fef)ﬁ faf (fef)B) (6*1\<<fefw>) (eefe|<fef>> (Oé’1|<efe>> (9<efe)a*1<fefw|<<efe)a*1>>
((fef)B e (f)
N R(((fef)ﬁ fxf (fef)ﬁ)ﬁ*l) (9efe\<fef>) (a’lkem) ("(efe)a*l(fefw‘«efe)a*h)

((J”EJ”)Bb”1 (fzf)B=1 (fef)b’ﬁfl) (Gefe|<fef>) (Ofll<efe>) (G(Efe)afl(fef)a|<(efe)a*1>)
((fef)B, f=f € (1))

e 2038 1) (0eselisen ) (o eerer ) (Orporamrirepslieson—ny )
(es)(ref) (12018 (e )es) (0 ieser) (% sorat rensliceraay) (Lerauna 1.21)
(esese)(-(ref)st-nieses)) (o iere) ) (O soratcrenslicerarn—ty)

(ese) (125871 (050)) (0 eesr ) (O rorat remsliesera )

(e 12081 efeNa ) (0epirat(senslierer )

((efe)e(faf)B=te (efe))o"l) ("(efe)a*l(fef)ﬁ‘«efe)a*h)

(efe)at (e(fzf)f~te)a~? (efe)a’l) (9<efe>orl(fef>6‘<<efe>a*1>)
(efe.e(fef)B"e € (e))



82

= Ricfe)a1(fef)p(efe)at (e(faf)pLe)a~t (efe)at-(efe)at(fef)B (Lemma 1.21)
= Refe)a1 (e(faf)p-1e)a (efe)a=1(fef)s ((fef)B D (efe)a™)
= Ricpeya—1 (e(faf)p-1e)a ((fef)ﬁ D (efe)a™! and Lemma 1.22)
= Bicjee(fzpp-tepar

= Ricfeef(faf)pre)at ((f af)B e (f >)
= Rief(sapp-rerar

= Re(fzp)s1e)a—t ((fzf)8~" € (f))

= R A8 et

Thus, Aefeya—t(fepsy b = Bt Aeat. Hence, OG5 is a subsemigroup of Wp.
By Lemma 4.8, B = {(pe, \c) : € € B} is contained in OGj. O

Observe that for any element (p.6;, A\;0,') € OG;, we have that eD f ac-
cording to the comments following Lemma 4.5. Whereas, if (p.0;, A6, ') € OG3,
then e = f. In that case, we next show that OG; is equal to OG5 by replacing
(peb, A p0;71) with (p,vi, Ay, ') in OG; for some g € B.

Lemma 4.10. The semigroup OG1 coincides with OGS.

Proof. We first show that OGy C OG;. Suppose that (pet, et ') € OGy. Since
B is a semilattice Y of rectangular bands B, (« € Y), we assume that e € B,.
According to the construction of OGj, we have that be D b for any b € (e).
Specifically, if b € (e) N B, where £ € oY, then bu Db. As bu € By and b € B,
we must have that &/ = £, which implies that ¢/ is the identity map on aY. So,
(peti; Aet ) € OG;.

Conversely, suppose that ¢ € W, ; and here ¢/ is an identity in Ty = Tp /D-
Then, eD f, and s0 Oc|py and O.f|(s are well-defined isomorphisms from (ef)
onto (e) and from (f) onto (ef), respectively. As ¢ € W, s, we have that v =
(clie))t(Besl(py) is an automorphism of (ef). We now show that (peu, Ape, ) =
(per s Aesyy ). For any @ € B,

Laipesyi = Laer
= L(efacf)(el ey ubeslisy)
= Licefoef-e)besl ()
= Licefoese)(tl0eslir)):
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= Lege(t(Ocr| i) )i (Lemma 1.22)

= Licae)ultes|s)

= Lef~(e:ce)L-ef

= L(eme)L-ef
= exre)L €
((esen) s ((exe)e € (f))
=L eD
((exe)L)f ( f>
= L(eme)L
= L,pel;.

Thus, pet; = pegy- Dually, Ayt = Aepy, ' Hence, (pet, Apty ') = (pegyes Aepr ')-

Next, we show that for any x € (ef), zyDx. Suppose that e, f € B,,
where @ € Y. According to the construction of OGy, ¢/ is the identity map on
aY', that is, for any £ € aY and b € (e) N Be, we have that b € Bey = Be.
Thus, be Db. By Lemma 1.21 and the remark following it, .|y and Oc¢|s are
isomorphisms fixing D-classes. Thus, v is an automorphism of (ef) such that for
all z € (ef), xyDx. So, (pesyi, Aesy, t) € OGa. Hence, OG; C OG,. O

We return to our question of establishing a representation from an orthogroup

to OGy(resp. OG1) as an analogue of Theorem 4.2, built on Theorem 4.4.

Theorem 4.11. If S is an orthogroup with band of idempotents B, then there
exists a representation ¢ : S — OGy whose kernel is u, the mazximal idempotent

separating congruence on S.

Proof. In view of Theorem 4.4, there exists a representation ¢ from an orthogroup
S to Wg. We now need to show that the image of S under 1 is contained in OG5.

1

Suppose that a € S and a" is the inverse of a in H,. Then by Theorem 4.4 and

the comments succeeding it, we have that
ath) = (pa, Aa) = (pebl, )‘fer_l%
where e = aa™!, f =a'a and 6 is an isomorphism in W, ; given by

20 =a'za (v € (e)).
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Since a H a~! and every H-class of an orthogroup is a group, we have that aa=! =
a'a, and so e = fHa. Then, for any v € (e), = = ereDa 'za, that is,
xD x0, and so 0 € A.. Hence, atp = (p.b;, \0:') € OG4 so that SO C OGs, as
required. O

4.3 A fundamental weakly B-superabundant sub-

semigroup of Vj

The aim in this section is to move away from the regular case and consider a
fundamental weakly B-superabundant semigroup S with (C) and (IC). Here B
is a band. Recall that a weakly B-abundant semigroup is said to be weakly
B-superabundant if every Hp-class contains a distinguished idempotent in B.

In [6], El-Qallali, Fountain and Gould constructed a fundamental weakly B-
orthodox semigroup with (IC), namely, Vg, in a manner analogous to the Hall
semigroup Wpg. A brief description of the construction is necessary before we
build a weakly B-superabundant subsemigroup of Vi, where B is isomorphic to
B.

For any e, f € B we define V, ; to be the set of all order isomorphisms «a
from (e) to (f) such that

raya L (zy)a and va tlva™ R (uv)a™?,

for all z,y € (e) and u,v € (f). For any o € V. ; we can define partial maps of
B/L and B/R by
L,o; = L, and Rya;l = Ryq1.

Due to [6], we have that if e, f € B and o € V, 4, then for all z,2’ € (e) and

v,y € (f),
x <, 2’ implies that za <, 7',

y <g vy implies that ya~' <z y/a™'.

This fact is hard evidence showing that o; and ;! are well-defined and order

preserving.
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Now, we put
Vi = {(pecu, A\pa, ') s e, f € By € Vo s}

Lemma 4.12. [17] The set Vi is a fundamental weakly B-orthodox semigroup
with (IC), where B = {(pe, A\¢) : € € B}.

We remark that for any (pecy, A\pa,; ') € Vi, we have that

(07, A1) L5 (pear, Apa, ) Rz (pes Ae)-

Considering the fact that Vp is an analogue of the Hall semigroup Wp, we
can extend the recipe in Section 4.2 from the Hall semigroup Wx to Vg to find a
fundamental weakly B-superabundant subsemigroup of V3 as follows.

Let B be a band. Then it is a semilattice Y of rectangular bands B, (« € Y).
For every element (p.f;, A\¢0, ") in Vj, 6 is an order isomorphism from (e) to (f).
Referring to the statement before Lemma 4.5, if e € B, and f € Bg(a, 5 € Y),
then there is an order isomorphism ¢’ : Y — Y corresponding to 6, defined by
the property that

20 € By (EeaY, xe (e)N B).

Since an order isomorphism of a semilattice is an isomorphism it follows that
0 € Ty.

Observe that for any (p.6;, A0, ) € Vp, if 6 is idempotent, then it induces
a partial identity mapping on Y. We put

K, = {(peel,)\fﬁr_l) e Vg: 0" = 9,}

The next lemma is an immediate consequence of Lemma 4.15, so we omit its

proof.

Lemma 4.13. The set K, is a weakly B-superabundant subsemigroup of Vg with
(C) and (IC).

In Section 4.2 we gave a closed form for a subsemigroup of the Hall semigroup

Wpg that is a particular orthogroup. In the following, We focus on a closed form
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for a fundamental weakly B-superabundant subsemigroup of Vi as an analogue
of OG5, beginning as follows.
For any e € B, let

OA.={aeV,.: forall z € (¢),z D za}

and
K2 == U ‘/67

e€B
where V, = {(pea, \e;}) € Vg ie € B,a € OA.}.
The proof of the following lemma is similar to that of Lemma 4.9, and so we
omit it. Here we remark that the steps using « etc. being a morphism can be

replaced by the particular condition for « to lie in V, ;.

Lemma 4.14. The set Ky is a full subsemigroup of Vg. Consequently, Ky is a
fundamental weakly B-superabundant semigroup with (C) and (IC).

The next lemma presents a relationship between K; and K.
Lemma 4.15. The semigroup Ky coincides with K.

Proof. We first show that K, C K;. Suppose that (pe, Aot ') € Ko. Since
B is a semilattice Y of rectangular bands B, (o € Y), we assume that e €
B,. According to the construction of K, we have that be D b for any b € (e).
Specifically, if b € (e) N B, where £ € oY, then bu Db. As bu € By and b € B,
we must have that &/ = £, which implies that // is the identity map on aY. So,
(peti; Aoty 1) € K.

Conversely, suppose that ¢ € V, ; and here ¢/ is an identity in Ty = Tg/p.
Then, eD f, and so 0|y and O.¢|s are well-defined isomorphisms from (ef)
onto (e) and from (f) onto (ef), respectively. As ¢ € V, s, we have that v =
(clief))t(Oes(py) is an order automorphism of (e f). We now show that (pet, Ape, ') =
(pes s Aesyy ). For any @ € B,

Lyperyi = Laesm
= Liefoes)0lou0usl sy (Lemma 1.22)
= Leefoef-e)u(bess)
= Licesaese)(t(Oeslir)))i
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= Lege(t(Ocr| i) )i (Lemma 1.22)

= Lieze)u(v.1lis)
= Lef-(exe)uef
= L(ewe)bvef

((erer) et

=L eD
((e:ce)L)f ( f)
= L(ewe)L
= preLl.
Thus, pet; = pesyi- Dually, Ape b = Mgyt Hence, (petr, At t) = (pesye Aepr b)-
Next, we show that for any x € (ef), xy D x. Suppose that e, f € B, where
a €Y. According to the construction of K7, ¢/ is the identity map on «Y’, that
is, for any £ € aY and b € (e) N Be, we have that b. € Be, = Be. Thus, bu D b. By
Lemma 1.21 and the remark succeeding it, 6c|.s) and O.¢|s) are isomorphisms

preserving D-classes. Thus, 7 is an order automorphism of (ef) such that for
all z € (ef), xyDx. S0, (PesVr, Aes, t) € Ka. Hence, Ky C K. O

We end this section with a representation of a weakly B-superabundant semi-
group with (C) and (IC), which is analogous to Theorem 4.2 and Theorem 4.11.
We first explain how a weakly B-orthodox semigroup with (IC) is represented in
Vp.

Let S be a weakly B-orthodox semigroup. For any a € S, we define

a,:B/L— B/Land B, : B/R — B/R

by
Lyo, = L(xa)* and Rxﬁa = R(ax)T'

Clearly, a, and [, are well-defined. We note that for any e € B,

(aea /66) = <p67 )\6)7

where for any = € B,
Lype = Lye and R\ = Re;.
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Lemma 4.16. [17] Let S be a weakly B-orthodox semigroup with (IC). The map
¢:8—Vp

given by
CL§Z§ = (aau ﬁa)u

is a strongly B-admissible morphism with kernel pug. Moreover, putting B =
{(pe; \e) : € € B}, we have that 0)p : B — B is an isomorphism.

We remark that for any a € S, choose a',a* and let o : (a') — (a*) be an

order isomorphism such that for all z € (a'),
ra = a(ra),

then ag = (g, Ba) = (Parct; Aax ).

The specialisation of Lemma 4.16 to the case of weakly B-superabundant
semigroups S with (C) and (IC) is of special interest here, since the image of S
under ¢ is contained in the fundamental weakly B-superabundant semigroup Ko
with (C) and (IC).

Theorem 4.17. If S is a weakly B-superabundant semigroup with (C) and (1C),

then the image of S under the map ¢ given in Lemma 4.16, is contained in K.

Proof. In view of Lemma 4.16, we show that the image of S under ¢ is contained

in Ky. By the remark succeeding Lemma 4.16, we have that for any a € S,

a¢ = (peala Aea;1)>

where e € B, eHgain S and a : () — (€) is an ordered isomorphism such that

zra = a(xa) for all x € (e). For any = € (e), we have that
© = ze Rpza = a(za) Lge(za) = za.

Thus, = Dp za. By Lemma 3.10, we have that x D x«a. Hence, a € OA,. Conse-
quently, a¢ = (p.ap, Moo ) € Ko, m
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4.4 A fundamental weakly B-superabundant sub-

semigroup of Up

In Chapter 2 we introduced the weak idempotent connected condition (WIC),
that coincides with (IC), defined by El-Qallali and Fountain, for abundant semi-
groups, but not for weakly B-abundant semigroups. Starting with a band B,
El-Qallali, Fountain and Gould construct a weakly B-orthodox subsemigroup Upg
of OP(B/L) x OP*(B/R) satisfying (WIC). The semigroup Ug plays the role
of Wpg for the class of weakly B-abundant semigroups having a band of idem-
potents B. Our purpose here is to find a fundamental weakly B-superabundant
subsemigroup of Ug with (C) and (WIC).

We refer the reader to [17] for more details, but for convenience we sketch
the construction of Ug as follows.

Let B be a band. For any e, f € B, we commonly denote a relation from (e)
to (f), that is, a subset of (e) x (f), by I¢/. We say that I/ is connecting if 1%/
is a subsemigroup of () x (f) and for every (z,2'), (y,%') € I®/ we have that

x <, y implies that 2/ <, ¢/

and

¥ < v implies that z <z ¥.

Let A, B be sets and R C A x B be a relation. Then R is full if both

projection maps are onto.

Lemma 4.18. [17] Let I be full connecting. Then for any (z,y), (z,t) € I¢7,
x <p z if and only if y <p t.
Set
Up = {(pIf \I9T) e, f € B, 1 € () x (f)is full connecting},
where I/ is defined by

LI =L, (x,y) eIl
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and I/ is defined by
RIS =R, (n,y) €I,

Note that for any e € B,

is full connecting, and
(Pety S At ) = (Pes Ae),

so that B = {(pe, \e) : € € B} C Ug.

Lemma 4.19. [17] The set Ug is a fundamental weakly B-orthodox semigroup
of OP(B/L) x OP*(B/R), with (WIC).

We remark that for any (p I/, A\;1¢7) € Up, we have that

(pf> )‘f) ‘EE (peIle7f> )‘flﬁf) ﬁ? (pe> )\e)'

Since Condition (WIC) gives us a very loose control over the position of
idempotents, but does not impose artificially the existence of order isomorphisms,
the idea used in previous sections to construct OGy and K still works here,
however, we need carefully deal with more complicated proofs. We first look at
a concrete construction for a subsemigroup of Upg as follows.

For any e € B, we put

le U U,

eeB

where, U, = {(p I, \eI&€) € Ug : for all (z,y) € I°°,x D y}.

Lemma 4.20. The set Q, forms a fundamental weakly B-superabundant sub-
semigroup of Ug with (C) and (WIC).

Proof. We first show that @ is a semigroup. Let (p.I;, A I5°), (prlf’f, A\ JIT) €
(2,. Since
efe<eand fef < f,

and %€, J// are full connecting, there exist (z,efe) € I and (fef,w) € J//.
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By the construction of )1, z D efe D fef D w. If follows from Lemma 1.21 that

0:lzwy : (2w) = (2),  Operlierey : (efe) = (fef) and 0.u|w) 1 (w) — (zw)

are D-class preserving isomorphisms. We claim that K**** is full connecting,

where
K#wosw — (92|<zw>) (I e’e|<z>) (Qfef|<efe>) (J P ises >) (szw)'

To show that the projection maps to (zw) are onto, assume that g € B
with g < zw. Since 0.y is an isomorphism from (zw) onto (z), we have
that g@z\<zw> < z. As z < e and [%° is full connecting, there exists an element

(90-| 2wy, t) € I9°. Now g0, .y = 292 and I is a semigroup, so that

(90:| 2wy, efetefe) = (z,efe)(90.| zw), t) (2, efe) € I

Clearly efetefe € (efe), so that

(efetefe, f(efetefe)f) € Oresliere),

that is,
(efetefe, (fef)fetef(fef)) € Operlicse)-

Now fetef € (f); as J/*/ is full connecting, there exists an element (fetef, k) €
J5I. Consequently,

(fef,w)(fetef,k)(fef,w) = ((fef)fetef(fef), wkw) € J/7.
Certainly, wkw € (w), so that
(wkw, zw(wkw)zw) € O, (w).

It follows that
(g, zw(wkw)zw) € K**.

Dually, the projection of K**** to the second coordinate is onto.
Since each of 0.|w), 1% Ofcflicsey, J5I and 0w is a subsemigroup of
B x B, it follows that the same is true of the composition, hence of K*“** As

0.|(zwy and 0.,y are isomorphisms so that they preserve the partial order <
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and <r. Thus, K***" is full connecting. Finally, since each of the relations

concerned fixes the same D-class, the same is clearly true of the composition, we
have that (0., K", N KZ2*") € Q.
Let (pedyC, NI, (ppJi, ApJ0T) € Q1. We claim that

(eI AT (P TIT N T ) = (0w K705, X K20,
To see this, let x € B. we have that

Lopedy ppdi = LegeIP i

= LypsJi7 where (ezxe,u) € 1°°
= Lyug !
=L, where (fuf,v) € J.
On the other hand,
meszlw Y
= Lawss((0:10) (1°Ui0y) Orerliere) (7 igen ) (Bulan)),

- L(zwxzw)((92|<zw>) (IE’E|<Z>) (efef‘<ef€>) (Jf’f‘(feﬂ) (gzw|<w)))
= L (0) () (510 010))

=1L z2DefeD fef Dw
(zwaz) (( )(ef f‘( efe ))(Jff‘(f ef) )( 0wl w))) ( f f f )

=1L Lemma 1.22
(ZSCZ)(( )(ef f‘( efe )) (Jff| (fe f))(ezw‘(w )) ( )

™ e (1) ) (1) o) =)

= L esenes((orestiro) (5#7105en ) (001 (2 efe), (exe, u) € 1)
= Liger-crencse sen ((5410) (52l

=Lt tur sen (591000 (o0l (u € (e))

= L (50l ((fef, w), (fuf,v) € IH)
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= L. wow (z D w)
= Lyvw (Lemma 1.22).

Note that (fuf,v), (fef,w) € J/, we obtain that (fefufef,wvw) € J/ as J//
is a subsemigroup. As u € (e), and so fefufef = fefeuefef = feuef = fuf
so that (fuf,wvw) € J. Since J/ is full connecting and (fuf,v) € J/, it
follows that L, = Lyyy. Thus, p.. K" = pl, f’eprlf /' Dually, we obtain that
Mo K292 = X I\, Jo¢) so that

(el AL (o T NG TT) = (0 KT Ao IT20).

Hence, ); forms a semigroup. In view of the remark following Lemma 4.19, we
have that (poff, A\) Hp (pe, Ae), and so @Q; is weakly B-superabundant.
As B C @i, we have that Q; is a full subsemigroup of Ug, and so Q

is a fundamental weakly B-superabundant subsemigroup of Up with (C) and

(WIC). 0

Another alternative characterisation of a fundamental weakly B-superabundant
subsemigroup )y of Ug, satisfying (C) and (WIC), is available. The following
construction is closely analogous to that of Ky and OGj.

Before describing the construction of ()2, we mention an important fact.

Now, let B be a band. Obviously, it is a semilattice Y of rectangular bands
B, (a € Y). In addition, there is the Munn semigroup 7y corresponding to Y.
Ife,f € Bwith e € B,, f € Bs(a, 3 €Y), and I*/ is a full connecting relation
in (e) x (f), then it follows from Lemma 4.18 that there exists a mapping I¢/
from oY onto BY with the property that

(u,v) € I implies that (u,v) € Be x B,

where u € (e) N Be. In fact, I¢/ must be a bijection.
We define a map
X - Ug — Ty
by
(eI NI x = T,

for any (pI;7, A1) € Up
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Lemma 4.21. The mapping x is a morphism.

Proof. We first claim that x is well-defined. To do this, let (p I, A\; 1)) € Up.
We first show that I¢f is an isomorphism from oY onto Y ,where e € B, and
| € Bg.

It is easy to see that I/ is well-defined since if (,y), (z,t) € I®f with z D z,
then by Lemma 4.18, we have that y D t. Again by Lemma 4.18, we have that ¢/
is injective. As I®/ is full, it is certainly true that I¢/ is surjective. In addition,
147 is a morphism because 1%/ is a subsemigroup of (e) x (f).

If (pgJ2" A Jo) € Ug and (p I, A I9T) = (pg JO", My J9M), then we show
that Ief = J9h. We have remarked that

(Pes M) R (pe I A 19T Lo (py, Aj).

Similarly, (pg, Ag) R (0g T, AnJ9™) Lg (pn, An). Thus (pe, Ae) R (pg, Ag). Since
B is isomorphic to B, we have that e R g, and so e D g. Similarly, f D h. Hence,

domIef = domJ9h = oY, im/ef = imJ9h = BY,

where e, g € B, and f,h € Bg.
Let ¢ € dom/%/ and 2 € B¢N(e). Then there exists y € B such that = = eye.
Since e D g, we have that x = eye D gyg < ¢, and so gyg € Be. Observe that

Lyp I’ = LeyIf? = L. ((eye, 2) € 19)

and
Lynglgﬁ = Lgnglgﬁ = Ly ((gyga u) € Jg’h)-

As pI®f = p,J9" we have that z Lu. Then {167 = £J9h =1, where z,u € B,.
Thus I = Jof, and so y is well-defined.

In the following, we show that y is a morphism. According to Lemma 4.3
of [6], we have that

eIy AFIEN) (pg JP" M T2 = (p K7 N ),
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where (z, fgf) € 1%/, (¢9fg,w) € J" and

K= = (I (Oggg (1)) T*") 0 ((2) % ().

Hence, it is sufficient to show that

]evf (@) ngh/ = KZ,U]‘

We have remarked that domI®f = oY, imIef = BY. Similarly, domJ9" = ~Y,
imJef = §Y, where g € B,, h € Bs. Thus

¢ € domlef o Joh
& e (imlel N domm)ﬁ_1
e (ByYTeT
& v € Ben(e), (z,y) € I%Y,y € B, u < By
& & < 7 where z € B since (2, fgf) € 1%/
& €€ dom K&v,

Returning to the above, let £ € dom(I¢ o J9") and = € Be, so that y € Bgm:u'

Nﬁ(gfg)gfyfg(gfg) € B, (as Sﬁ) aﬂ((gfg)gfyfg(gfg),whw) c J9" so
pJ9" = v, where whw € B,. Thus £1¢/ o J9h = v = EK5Y as (z, whw) € K*v.
So

]evf (@) ngh/ = KZ,U]‘

We omit the proof of the next lemma as it follows from Lemma 4.23.

Lemma 4.22. The set of the elements of Ug, whose images under x are idem-

potent, forms a fundamental weakly B-superabundant subsemigroup of Ug with
(C) and (WIC). We denote it by Q3.

Lemma 4.23. The semigroup Q2 coincides with Q).

Proof. 1t is easy to see that Q1 C Q. We show that Q)2 C ;. Suppose
that (p. I, A\;I¢7) € Qy. Then e D f and I<7 is the identity map from oY
to aY, where e € B,. So for any (u,v) € I*/, u D v. Now let J/¢/ =
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Ocliep) I (Ocslisy). We claim that (posJi7 AepJehel) = (p Io7, A I9T). For
any z € B, we have that

pr@leEﬁEf = L(efmef)Jef’ef

= Liecsaef) el s 0usl(sy)
= L(e-efwef-e)le'f(f)ef|<f>)
= L(e-efgcef-e) (Ie7f(9€f|<f>))l

= Lexe(fe’f(95f|(f>))l (e D f, Lemma 1.22)
= Licwe)1es (0.1 )

= Loy, ((ewe,y) € I°7)

= Lefyes

= Lyes

= Ly fer e ()

= Lyy (fDe)

— 4y

= Loy’ ((exe, y) € Ie’f)

= Lopeli™.

Thus, pesJi7 = p I, Dually, we obtain that \Jo/ = A\;1¢/. Hence
(Peleef’ef, AepJelel) = (pedi? ApI7). In addition, by the proof of Lemma 4.21,
we have Jefef = J&f, Consequently, Qs C Q. O

Lemma 4.24. [17] If S is a weakly B-orthodox semigroup with (WIC), then
the map 0 : S — Up given by af = (a, B.) ,where a, and B, are defined as
Section 4.3, is a strongly B-admissible morphism with kernel pug. Moreover,

0| : B — B is an isomorphism.
Consequently, we have:

Theorem 4.25. If S is a weakly B-superabundant semigroup with (WIC) and
(C), then the map ¢ : S — Ug in Lemma 4.24 has image contained in Q.

Proof. Suppose that a € S and e € H, N B. In view of (6], we know a¢ =

(O, fa) = (paffl“T’“*, Aas 119", Specially, we can use e instead of af and a* so
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that we obtain a¢p = (p. I, \eI¢¢). In addition, for any x € (e), we have that
xra = ay, where (z,y) € 1°°. As

x :xeﬁgxa:ayfgey =vy.

We have that 2 Dgy. It follows from Lemma 3.10 that 2Dy in B. Thus a¢ =
(P, AeI2€) is contained in Q. O

4.5 A fundamental weakly B-superabundant sub-

semigroup of Sp

The aim of this section is to remove the idempotent connected condition from the
results of previous sections. We stress that to do so Gomes and Gould [17] used
a completely fresh technique to construct from a band B a weakly B-orthodox
subsemigroup S of OP(B'/L) x OP*(B'/R), with the property that any fun-
damental weakly B-orthodox semigroup is a subsemigroup of Sp, where B is
isomorphic to B. As a consequence, the fundamental semigroup Upg constructed
in last section, satisfying (C) and (WIC) is embedded into Sg.

To define Sp, we give some notation. For a set X, an equivalence k on X
and v : X/k — X/k, the relation 7 is defined by

Y={(z,y) € X x X :y € [7]7},

where [z] is the equivalence class containing z.
We put

Sp = {(ov, 3) € OXB) : for all z € B', za € Ly and 23 € R, B,

we have A\, = AaBX, and ap, = p,zap.},

where
O'(B) = {(a,8) € OP(B'/L) x OP*(B'/R) : Im o C B/L,Im 3 C B/R}.

Lemma 4.26. [17] The set Sp is weakly B-orthodox and is B-fundamental,
where B = {(pe, \e) : € € B}.
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We remark that if («, 8) € Sp, u € Ly and v € Ry /3, then

(O‘aﬂ) ‘CE (pua )\u) and (O‘aﬂ) kvﬁ (pm )\v)

In the following we will construct a weakly B-superabundant subsemigroup
of Sg, that is fundamental and satisfies (C). Put

Np ={(c,B) € Sp : there exists e € Lya N Ry N B such that for all

z € B', za € Lya and z8 € R, 3, we have za D exe D x5}.

Lemma 4.27. The set Ng is a subsemigroup of S containing the band of idem-
potents B = {(pe, \) : € € B}.

Proof. To show that Ng is a subsemigroup of Sp, it is sufficient to show that Npg
is closed under the multiplication. We suppose that («, ), (v,0) € Np. Then
there exists e € LiaN Ry 3N B such that for all z € B!, z& € Lya and 20 € R0,
we have that za D exe D x3. Also, there exists f € L1y N Ry N B such that for
all z € B', 27 € L,y and 26 € R,0, we have that 27 D faf D x5. We consider
the product of (a, 8) and (7, ). Observe that

LIO‘V = Lefy = Le:/, ey D fef D 657

and

Ri163 = Ry = Ry, fBDefeD fa.

Since efe D fef, we have that

Liay = L(fB)(e-’y)v Ri0p = R(fB)(ea)a and (fB)(€7) Def.

So, (fB)(ey) € Lyay N Ry63. Now, we fix the choices of f3 and e7.
For all z € B!, we have that 2% € L,ay and 2653 € R,3. Hence,

xay L (za)y D f(xa)f D fexef

and

268 R (26)3 D e(xd)e D efref.
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As (fB)(ey) D ef, we obtain that

vy D (f5)(e7)z(f5)(e7) D xdp.

Thus, (ay,08) € Np, and so Ng forms a semigroup.

Finally, we should show that Np contains the band of idempotents B. For
any e € B, (pe,\e) € B. Clearly, e € Lip. N R\, N B. For all x € B!,
2P € Lyp. and z), € Ry )., we have that 2p; £ xe D ex R x).. It follows that
xpe D exe D x),. Hence, (p., \e) € Np. Consequently, B C Np. O

Further information about Sp is obtained from the following result.

Theorem 4.28. The semigroup Np is a fundamental weakly B-superabundant

subsemigroup of Sp with (C).

Proof. For any («,3) € Np, there exists e € Ly N Ry N B. In view of the
remark following Lemma 4.26, we have that («, 3) ﬁg (pe, Ae). Hence, Np is a

weakly B-superabundant subsemigroup of Sp.
Indeed Np is B-fundamental with (C) as B C Np. O

We now want to make full use of the approach of OG; to determine a sub-
semigroup of Sp that is fundamental weakly B-superabundant with (C). But in
view of the fact we no longer have any idempotent connected condition, we can
not find a useful mapping from Sy to the Munn semigroup 7y to get this re-
sult, where B is a semilattice Y of rectangular bands B, (« € Y'). With this in
mind, we decide to consider a mapping from Sg to Cy, where Cy is a fundamen-
tal Ehresmann semigroup with (C). We refer the reader to [18] to acquire more

details about Cy. Here we provide some general facts about Cy. We have
Cy ={(a,) € O1(Y") x O;(Y") :Ima,ImB CY and Vo € Y,

Pra < Bpea and p.p < ap.B}

where for any z € Y, p: Y! — Y is the order preserving map given by £p, = {x =
x€ and for 7,5 € OP(Y1!),v < 6 means that yy < yd for all y € Y. From [18],
Cy is a fundamental Ehresmann semigroup with (C) and is isomorphic to Sy,

where

Sy = {(a,8) € O1(Y') x Oi(Y') : Ima,ImB CY and Vo € Y,
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Bpz = praBp. and ap, = pmﬁapm}

and the set of distinguished idempotents of Sy is Y = {(p¢, \¢) : £ € Y}
We define a mapping ¢: S — Sy by the rule that for any («, ) € Sp

(o, B)p = (o, 3),

where (o, 3') is a pair of mappings from Y! to Y having the property that for
any x € B' with x € B, za € Lya and zf € R,[3, we have that za € B{,, and
zf € Big.

Lemma 4.29. The mapping ¢ is a morphism.

Proof. Certainly, for any (a, ) € Sg, we have that Im o/, Im 5/ C Y. To show
that ¢ is well-defined, suppose that £ € V' and = € B{. Then for any za € Ly«
and z8 € R,[3, we have that S\, = \,a08\; and ap, = PPz For any k € y!
and y € B}, we have that

R, BN\ = Ryd\zafBA, and  Lyop, = Lyp,50ps,

which means R,8\, and R, A5\, are in the same D-class and the same is true
for Lyap, and Lyp, zap,. Thus, £3'pe = Kpea B pe and £’ pe = Kkpepr pe. Hence
(o, ) € Sy.

Clearly, ¢ is a morphism. O

Lemma 4.30. The set of the elements of Sg whose images under ¢ are distin-
guished idempotents of Sy, forms a fundamental weakly B-superabundant sub-
semigroup of Sp with (C). We denote it by Nj.

Proof. Since ¢ is a morphism and the distinguished idempotents of Sy form a
semilattice, it follows that NJ is closed. Also, it is easy to see that B C N,
which implies that Nj has (C) and is fundamental.

It remains to show that N} is weakly B-superabundant. We assume that
(a, B) € Nj. Then (o, 8') € E(Sy). It follows that o/ = 3. Specially, 1o/ = 1/,
and so if 1& € Byy and 15 € Bg, then, 1laa D 15. Therefore, there exists an
idempotent e € L1z N Ry5, that is, e € Lya N Ry3. By the remark following
Lemma 4.26, we obtain that (a, 3) Hp (pe, Xe). Consequently, Nj is weakly
B-superabundant. O
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To reveal the relationship between Ny and Nj, we have:
Lemma 4.31. The semigroup Np coincides with N.

Proof. We begin by showing that Ny C Nj. Suppose that (a, ) € Ng. Then
there exists e € Lya N Ry BN B such that for all z € B!, z& € Ly and 26 € R,f3,
we have that za D exe D zf. It follows that o/ = ' and for any ¢ € Y,
ea’ = (1a')e, that is, o/ = p1o. Hence, o/ = (/)?, and so (o, ') is an idempotent
of Sy. Since there exists an idempotent e € Lyae N Ry 8 with e € B, it follows
that ea’ = pee = epe. Therefore, (o, ') = (pe, \e) € E(Sy). Consequently,
Ny C N,

Conversely, suppose that (a,5) € Np. Then there exists an idempotent
(pr, Ar) such that (p,, A;) = (/, ") which implies that o/ = ' and there exists
e € Lia N Ry B with e € B,. For any z € B! with v € B, va € Lya and 23 €
R, , we have that za, zf € Be,.. Thus, xa Dex D z3. Hence N C Np. O

Lemma 4.32. [17] Let S be a weakly B-orthodox semigroup. Then 6 : S — Sg
given by
ab) = (Oéa, Ba)v

where a, and B, are defined in Section 4.3, is a strongly admissible morphism

with kernel pg. Moreover, 0|p : B — B is an isomorphism.

Corollary 4.33. Let S be a weakly B-orthodox semigroup and let K be a sub-
semigroup of Sg containing B. Then K is a weakly B-orthodox semigroup. If
K contains the image of S under 6 given as in Lemma 4.32, then 0 : S — K is
a strongly admissible morphism with kernel ug. Moreover, 0|p : B — B is an

isomorphism.

Lemma 4.32 stated that there exists a strongly B-admissible morphism 6 :
S — Sp. Consequently, we can improve on this fact to get a similar result for

weakly B-superabundant semigroup with (C) as follows.

Theorem 4.34. If S is a weakly B-superabundant semigroup with (C), then the
map 0 : S — Sp in Lemma 4.32 has the image contained in Np.

Proof. Suppose that a € S. Firstly, we need to find an idempotent which belongs
to Lia, and Ry3,. Of course, we have Lia, = L, and R 3, = R,i. Also, we
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have a* £ a'a* R a' since S is weakly B-superabundant. It follows that
a'a* € Lia, N Ry f,.

According to definitions of a, and B4, Lyatq = Lzay- and Ryfq = R(gq)t for
all z € B'. So 2, L (ra)* and 23, R (az)'. Then

xag L (za)* LpraRpra R xa'a* Dala*zata* Dala*r Lpax Ry (az)" R 23,.
It follows that xag, YBB ata*zra'a* 153 23,. By Lemma 3.10, we have
za, D a'a*za'a* D 25, in B.

Hence af = (aq, f,) € Np. O



Chapter 5

Structure theorems for weakly

B-orthodox semigroups

The goal of this chapter is to provide structure theorems for weakly B-orthodox
semigroups, where B is a band. We shall focus on providing a description of a
weakly B-orthodox semigroup S as a spined product of a weakly B-orthodox semi-
group Sp and S/vp, where Sp is the fundamental weakly B-orthodox semigroup
constructed in Chapter 4 and ~vp is the analogue of the least inverse congruence
on an orthodox semigroup. This result is analogous to the Hall-Yamada theorem
for orthodox semigroups.

Throughout this chapter Green’s relation D always refer to B. Here B
denotes a band. To avoid ambiguity, if IC is a relation on a semigroup S, then we

will sometimes use K(S) to denote the relation on S.

5.1 The least admissible Ehresmann congruence

In Chapter 1 we mentioned that there exists the least inverse congruence v on
any orthodox semigroup. As an analogue of the least inverse congruence, many
articles have discussed the least B/D-ample congruence dp on any weakly B-
orthodox semigroup with certain idempotent connected condition, as mentioned
in Chapter 2. Here, we concentrate on a correspondence congruence yg on weakly
B-orthodox semigroups. Such semigroups do not satisfy any idempotent con-
nected condition.

The aim of this section is to find a closed form for vg, where vg is the least

103



104

admissible Ehresmann congruence on a weakly B-orthodox semigroup .S. For any
a,b e S, we define

adpb if and only if @ = a'ba* and b = blab*,
for some a', a*, b', b* € B with af Rpalp a*, bf RpbLpb*.

Lemma 5.1. Ifadpb in a weakly B-orthodox semigroup S, then a' D b', a* D b*,
for any at, bf, a* and b*. In particular, for any e, f € B, edp f if and only if
eD f.

Proof. Suppose that a,b € S are such that adgb. Then a = afba*, b = bfab*, for
some a' eéaﬂB, a* GEQHB, b GébﬂBaHd b* € ZbﬂB. From a = aba*,

we can deduce that
a'bfa = a'bfatba* = a'vfat - bt - ba* = a'bTba* = atba* = a.

Since a Rz al, we have alblal = af. By a similar argument, we get b'afb’ = bT.
Thus ' Db'. Dually, we have a* D b*. If a°® is another idempotent in R,N B and
b° is another idempotent in R,NB , then a' R a® and b' R b°. Together with
af DT, we obtain that a® D°. Dually, we have a®° Db° for any a® € L, N B and
b € L,N B. O

Lemma 5.2. Let S be a weakly B-orthodox semigroup and let 0 : S — T be an
admissible morphism, where T is an Ehresmann semigroup with respect to B6.
Then 65 C Ker 0.

Proof. Suppose that a,b € S with a6z b. Then a = a'ba* and b = bfab*, for some
at,a*, b, b* € B with af Rpalp a*, bt RebLpb. According to Lemma 5.1, we
have a*0 D(B0) b*0 and a'0 D(BH) b6 since § is an admissible morphism. But,
B0 is a semilattice, a*f = b*0 and a'0 = b0 so that af = (a'ba*)f = a'0bha*6 =
bTObOL* 0 = (bThb*)0 = bh. Thus, (a,b) € Kerf. O

Corollary 5.3. If S is a weakly B-orthodox semigroup, then dg C vp.

Our aim is to show that, under certain conditions, dg = v holds on weakly

B-orthodox semigroups.

Lemma 5.4. Let S be a weakly B-orthodoxr semigroup. Then the relation dp

defined above is an equivalence relation.
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Proof. Clearly, dp is reflexive and symmetric. To show that dp is transitive we
assume that a,b,c € S such that adgb and bégc. Then a = a'ba*, b = biab*,
b = b°cl® and ¢ = cfbe*, for some af € R, N B, a* € L, N B, bl,1° € R, N B,
b °e Ly,N B, ¢ e R.NBand ¢ € L.NB. By Lemma 5.1, we obtain that

a" DYDY D and a* D DD .

Now
a = a'ba* = a'b°ch’a* (b=10%cb°)
=a't’ -l e - ba
=a'clecta” ("D D', a* DV DY)
=a'ca*.
Similarly, we get ¢ = cfac*, and so adz c. Hence, dp is transitive. O

Lemma 5.5. Let S be a weakly B-orthodox semigroup. If the equivalence relation

0p defined above is a congruence on S, then it is an admissible congruence on S.

Proof. Suppose that the relation dp is a congruence. We show that dp is an ad-
missible congruence on S. Assume that a € S, e, f € B are such that e L aRp f
and (adp)(kdp) = adp for some k € B. We want to show that (edp)(kdp) = edp.
From (ak)dp = adp and Lemma 5.1, we get (ak)* Da*. Since Lp is a right con-
gruence, a*k Lz (ak)*. Again, due to a Lge, we obtain that eDa*. As D is a
congruence on B, we have that ek D a*k. Thus eD a* D a*k D ek. It immediately
follows from Lemma 5.1 that e 0 ek, that is, (edp)(kdp) = edp. Hence ad Lps ed.

An argument that is completely dual gives that adg Rps f65. Consequently,

according to Lemma 2.9, dp is an admissible congruence on S. O

Corollary 5.6. If p is an admissible congruence on a weakly B-orthodox semi-

group S satisfying that B/ p is a semilattice, then S/p is an Ehresmann semigroup.

The following lemma is an immediate consequence of Lemma 5.5, Corol-
lary 5.6 and Corollary 5.3.

Lemma 5.7. Let S be a weakly B-orthodox semigroup. If the equivalence rela-
tion dp defined above is a congruence on S, then it is an admissible Ehresmann

congruence on S. Moreover, dg = vp.
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Lemma 5.8. If S is a weakly B-orthodox semigroup, then HpNép =t

Proof. Suppose that a,b € S and (a,b) € Hp N 5. Then a = alba* for some
at € ﬁa NB,a* e f;a N B. Since a?—[vB b, we have a' ﬁBaﬁB band a* Lg a EB b.
Thus a = a'ba* = b as required. O

5.2 A structure theorem for weakly B-orthodox

semigroups

The Hall-Yamada theorem presents a construction for orthodox semigroups, that
is, any orthodox semigroup S with band of idempotents B is isomorphic to the
spined product of S/ and the Hall semigroup Wp, where «y is the least inverse
congruence on S. So far, many articles have extended the Hall-Yamada theorem
to weakly B-orthodox semigroups satisfying certain idempotent connected con-
ditions [6], [46]. In Chapter 4, given a band B, we built a fundamental weakly
B-orthodox semigroup S, which is an analogue of the Hall semigroup Wg, where
B = {(pe, \e) : € € B}. In view of Lemma 4.32, Gomes and Gould found a rep-
resentation from a weakly B-orthodox semigroup to Sp.

We stress that they did not attempt to produce an analogue of the Hall-
Yamada structure theorem for orthodox semigroups. With this in mind we give
the following lemmas for weakly B-orthodox semigroups, from which we shall
obtain a very general structure theorem for weakly B-orthodox semigroups. We
then proceed to show this result can be applied in a number of cases of interest.

We begin by reminding the reader that if we have semigroups S, T, H and

morphisms ¢ and v as follows,
T

)
g 9

Figure 5.1: The spined product

then the spined product S = S(S,T, ¢,¢) of S and T with respect to H, ¢ and
Y is
S={(s,t) € SXT:s¢p=ty}.
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From now on, S will be a weakly B-orthodox semigroup, vp is the least
admissible Ehresmann congruence on .S and v is the least admissible Ehresmann
congruence on Sg. Define a map ¢ : S/yg — Sp/7g by the rule that sypy =
s0vyg for any s € S, where 0 is defined as in Lemma 4.32.

Lemma 5.9. The mapping ¢ : S/vg — Sp/vg defined above is an admissible
morphism such that ¥|g,, : B/vs — B/vg is an isomorphism, if and only if
for any a,b € S, aypb implies ad y5 b0 and eyp f if and only if ed vz f0 for any
e, f € B, where 0 is defined as in Lemma 4.32.

Proof. Necessity. Suppose that a,b € S and a~vygb. It immediately follows that
aypy = bypy. By the definition of 9, we have alyg = aypy = bypy = bovg,
that is, af vz b0. Consequently, e vp f implies ef 5 f0 for any e, f € B.
Conversely, if el v f0 then by the definition of i, we have eypy = elyg =
fO0yg = fyp¥. Since v¥|p/,, is an isomorphism it follows that ey = f~p, that
is, evg f.

Sufficiency. According to the hypothesis, it is easy to see that the map
Y S/yp — Sp/vg defined by sypy = sbvyg for any s € S is well-defined and
maps B/vp to B/y5. Since 0, fyjug and fy% are morphisms it follows that v is a
morphism.

Next, we claim that v is an admissible morphism. Suppose that a,b € S and

ayp ﬁB /vg byB. Since 7?3 is admissible, we have
CLTVB ﬁB/“{B aB ﬁB/’YB bvp ﬁB/“/B bT”YBv

for any af € R, N B, bt ¢ Ry N B. Certainly, a'yp R blyp. As B/vyp is a
semilattice, we get a'yp = b'y5. By the hypothesis, we obtain that a'0 45 b'6.

Since 0 and 7% are admissible morphisms, we have that
avpv = abvg Ry, (a875)' = a0y = bVoyg = (W15)" Ry, brg = bysy,

and so 1 preserves ﬁB /v5- Dually, 9 preserves Lg /vg- Thus 1) is admissible.

It remains to show that ¢|g/,, : B/ys — B/yg is bijective. Certainly,
V|B /vy is onto. It is sufficient to check that ¢|g/,, is injective. Suppose that
eypy = fypy for any eyp, fyp € B/vp. Then by the definition of ¢ we have
that efyg = fOv5. Again by the hypothesis, we succeed in obtaining e v f. O
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Theorem 5.10. Let S be a weakly B-orthodox semigroup and let Sp * S/vp be
the spined product of Sp and S/vp with respect to Sg/vg, 7% and v, where 1 is
defined above and satisfies the conditions in Lemma 5.9. Then the mapping ¢ :
a — (ab,avyg) is a monomorphism from S to SpxS/vp if and only if ppNyp =,
where ug = ker®, and 0 is defined as in Lemma 4.52.

S Sp

g
B B

S/’VB S/VE

Figure 5.2: The structure of weakly B-orthodox semigroups

Proof. Clearly, ¢ is a morphism, since 6 and 7?3 are admissible morphisms. Then
¢ is injective if and only if, for any a,b € S we have that a¢ = b¢ if and only if
a = b. That is, ¢ is injective if and only if ker 6 N ker 7?3 = up Ny =L O

The next result is immediate.

Lemma 5.11. Let Sg*S/vp be the spined product of Sp and S/vyp with respect
to Sg/vg, 7% and 1, where Y is defined above and satisfies the conditions in
Lemma 5.9. Then the mapping ¢ : a — (ab,ayg) is an epimorphism from a
weakly B-orthodox semigroup S to Sp x S/vp if and only if, if x € Sp and
(z,syg) € Sp*S/vp for some s € S then there exists t € S such that x = t0 and
tvg = svg, where 0 is defined as in Lemma 4.32.

We now present the main result of this section. We will see later that in
some special cases, it can be significantly simplified. We make a statement that
1p = ker 6, where pp is the largest congruence contained in Hp and 6 is defined

as in Lemma 4.32.

Theorem 5.12. Let S be a weakly B-orthodox semigroup. The mapping ¢ : a >
(al,ayp) is an isomorphism from S to the spined product Sg * S/vp of Sp and



109

S/vp with respect to Sp/vg, 7% and v, where ¢ : S/yg — Sp/vg defined by
sypY = sbyg for any s € S is an admissible morphism and |/, : B/vp —
B/~vg is an isomorphism, if and only if :

(¢) for any a,b € S, aypb implies ad y5 bl and eyp f if and only if ef yg f6
for any e, f € By

(i) vB N pp = t;

(13i) if (x,syp) € Sp * S/vp for some x € Sp and s € S, then there exists
t € S such that x = t0 and tyg = svp.

According to Corollary 4.33, if a weakly B-orthodox semigroup S is embed-
ded into a subsemigroup K of Sp containing B under # given in Lemma 4.32,

then the following result is immediate.

Corollary 5.13. Let S be a weakly B-orthodox semigroup and let K be a B-full
subsemigroup of Sp such that Im C K. Let v denote the least Ehresmann
congruence on K. Then the mapping ¢ : a — (a,avyp) is an isomorphism from
S to the spined product K «S/vp of K and S/vp with respect to K /g, fy% and 1,
where ¢ : S/vp — K/vg defined by sypy = sOyg for any s € S is an admissible
morphism and ¥|g /., : B/vg — B/vg is an isomorphism, if and only if :

(¢) for any a,b € S, aypb implies ad y5 bl and eyp f if and only if ef yg f6
foranye, f € B;

(i) vB N pp = t;

(13i) if (z,svp) € K % S/yp for some x € K and s € S, then there exists
t € S such that x = t0 and tyg = syp.

Finally, we shall present an important and useful lemma for the following
work. In Section 5.1, we defined an equivalence relation dg on a weakly B-
orthodox semigroup S and showed that if 0z is a congruence then it is the least
admissible Ehresmann congruence on S. In this case, i.e. when dp = v and

05 = g, Theorem 5.12 and Corollary 5.13 immediately simplify.

Lemma 5.14. Let S be a weakly B-orthodox semigroup. If ép and 65 are con-
gruences, then g satisfies Conditions (i), (1i) and (i1i) in Theorem 5.12 (resp.
Corollary 5.13).

Proof. To prove (i), suppose that a,b € S are such that adp = bdg. By the

definition of d5 we have that a = a'ba* and b = bfab* for some af, a*, bt b* € B
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with af Rga Lpa*, b RbLyb*. Tt follows that ad = (a'ba*)0 = (a'0)(b0)(a*0)
and b = (blab*)0 = (b'0)(ab)(b*#). Since 6 : S — Sp is a strongly admissible
morphism, we obtain that a'@ Ry af Ly a*0 and b6 Ry b0 Lz b*6. Thus
abl o5 bo.

According to Lemma 5.1 we know that dz|p = D, and since 0|p : B — B is
an isomorphism in Lemma 4.32 it follows that edp f if and only if ef é5 f0 for
any e, f € B. Hence, Condition () holds.

Next, we show that dp satisfies Condition (i7). Suppose that a,b € S are
such that a (6pNup) b. Since pup C ’gB, it follows that a (dp ﬂﬁB) b. By Lemma
5.8, we have that a = b, that is, dg N ug = ¢.

Finally, we claim that dp satisfies Condition (4i7). Suppose that (x, sdg) €
Sp * S/0p. Then xég = sépy) = sbog. Thus © = a-s0 -5, s = €-x - ¢,
where o, 3,6, € B, aﬁnggﬂ, 675§89 ng. Since 6 is admissible, we can
take ¢ = sT0, e = s*0 for some st € BN R,, s* € BN L,. Let a = g, 5 = ho
for some g,h € B. Then x = (gsh)d. By Lemma 5.1, we get gd D(B) s'0 and
h@ D(B) s*0 in B. Since 0| : B — B is an isomorphism, it follows that ¢ D s
and hDs* in B. Thus ¢g 65 s' and h dp s* so that s = sfss* dp gsh. Hence,
(gsh)f = x and (gsh)dp = sdp. Condition (iii) holds. O

5.3 Weakly B-orthodox semigroups with (N)

We recall that a band B is called normal if xyzt = zzyt for all z,y, z,t € B. Let
S be a weakly B-orthodox semigroup with (N), that is, B is a normal band. We
show that the least admissible Ehresmann congruence 5 has the closed form dp
given in Section 5.1. We can then apply Theorem 5.12 and Lemma 5.14 to give

a structure theorem.

Lemma 5.15. Let S be a weakly B-orthodoz semigroup with (N). Then the

relation 6 defined in Section 5.1 is a congruence on S.

Proof. In view of Lemma 5.4, it remains to show that the relation dp defined
in Section 5.1 is compatible. It is sufficient to prove that g is left compatible,
because dually right compatibility will hold. Suppose that a,b,c € S and adpb.
Then a = a'ba* and b = bfab* for some af € Ra NB,a* € Za NB,bt € ébﬂB and
b* € L,N B. According to Lemma 5.1, we have that o Db’ and a* Db*. Now,
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we can deduce that

* = (ca)Te(a’ba*)(ca)* (a = a'ba*)
= (ca)tec*(a'bTa)ba* (ca)* (a" DY)
= (ca)te(c*a’b a)ba* (ca)*
= (ca)Te(c*b a)ba* (ca)* (by (N), c*a'b'a’ = c*blal)

ca = (ca)ca(ca)

= (ca)'eb'a’ba* (ca)*

= (ca)'eb'a’b ba* (ca)*

= (ca)Tcb'ba*(ca)* (a" DY)
= (ca)'cba’(ca)".

By Lemma 2.8, a*(ca)* £ (ca)*, so we get a*(ca)* € Lo, N B.
Similarly, we have that ¢b = (cb)fcab*(cb)*, where b*(cb)* € Ly, N B. Thus

ca dp cb, that is, dp is left compatible. Consequently, dp is a congruence on S. [

Due to Lemma 5.15 and Lemma 5.7, we immediately obtain the following

result.

Lemma 5.16. Let S be a weakly B-orthodox semigroup with (N). Then the
relation ép defined in Section 5.1 is the least admissible Fhresmann congruence

on S.

Since Sp is constructed from a band B and B is isomorphic to B, it follows
that if B is a normal band, so is B. In this case, S is a weakly B-orthodox
semigroup with (N), so the relation dp given in Section 5.1 is also the least
admissible Ehresmann congruence on Sg. We will denote it by d3.

Finally, according to Lemma 5.16, Lemma 5.14 and Theorem 5.12, we obtain

a structure theorem for weakly B-orthodox semigroups with (N).

Theorem 5.17. A weakly B-orthodox semigroup S with (N) is isomorphic to
the spined product Sg * S/0p of Sp and S/dp with respect to Sp/og, 5% and 1),
where 1 : S/0p — Sp /o5 defined by sopp = s8ég for any s € S is an admissible
morphism, and |ps, : B/dp — B/b5 is an isomorphism.

Theorem 5.17 describes S as a spined product of S ( an analogue of the
Hall semigroup) and the greatest admissible Ehresmann image of S (an analogue

of the greatest inverse image of an orthodox semigroup).
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5.4 Weakly B-superabundant semigroups with

(C)

We first make full use of Lemma 3.10 to check the equivalence relation ég defined
in Section 5.1 is the least admissible Ehresmann congruence on a weakly B-

superabundant semigroup S with (C).

Lemma 5.18. Let S be a weakly B-superabundant semigroup with (C). Then
the relation dg on S defined in Section 5.1 is the least admissible Ehresmann

congruence on S.

Proof. In view of Lemma 5.4, it remains to show that the relation dp is com-
patible. We first claim that 0p is right compatible. Dually, left compatibility
holds. Suppose that a,b,c € S and adgb. Then a = a'ba* and b = blab* for
some al € Ra NB,a* € Ea NB,b € éb N B and b* € Ebﬂ B. By Lemma 5.1, we
have that a! Db and a* D b*. Since S is a weakly B-superabundant semigroup,
it follows from Lemma 3.10 that a" D a* and b* D b', so that a! D a* D b* D b'.
Obviously, we have that

ac = (ac)tac(ac)* = (ac)'(aTba*)c(ac)* (a = a'ba*).
By Lemma 2.8, we obtain that (ac)ia’ R (ac)t, and so (ac)fal Rp ac. Now we
just need to remove a* from the right side of ac = (ac)'a'ba*c(ac)*. Observe that
ac = (ac)'a'ba*c(ac)* = (ac)la'ba*cie(ac)*
= (ac)ta'v((ac)'a'd)* (a*c" (c(ac)*) e(ac)*.
Next, we show that ((ac)a’d)* D a*c' D (c(ac)*)!. By the Congruence Condition,
we get (ac)! Rp ac L a*c Ry a*ct, and (ac)t Ry ac L a*c L (a*c)*, that is,

(ac)t Dg a*ct Dy (a*c)*. It follows from Lemma 3.10 that
(ac)! D a*c" D (a*c)*.
As D is a congruence on B, we have that (ac)'a’™d' Da*cla’d, and so
((ac)ta’b)* Lp (ac)fa’d Rp (ac)ta’d! D a*calb.

Since a* D a! D bf, it follows from Lemma 1.22 that a*cfa’d" R a*c'. Thus,
((ac)ta’b)* Dp a*c!, that is, ((ac)ta'db)* D a*cf by Lemma 3.10. Since (a*c)* D (a*c)?



113

we have that
(c(ac))t Rp clac)* L ¢*(ac)* D ¢*(a*e)* D ¢*(a*c) R ¢*a*cl.

By Lemma 1.22, we obtain that c*a*c* £ a*c*, so that (c(ac)*)! Dp a*c, that is,
(c(ac)*)T D a*cl. Thus

ac = (ac)Ta’d((ac)Ta™)* (a*ct)(clac)*) e(ac)*
= (ac)'a’b((ac)ta'b)*(c(ac)*) e(ac)* (((aC)TaTb)* Da*c' D (c(ac)*)f)
= (ac)ta'be(ac)* ((otc)*aT Ry ac).

Similarly, we have that be = (be)fac(be)* for some (be)! Rp be L (be)*. Hence
ac 6p bc and so dp is a congruence on S. Again by Lemma 5.7, we obtain that

0p is the least admissible Ehresmann congruence on S as required. O

At the end of this section we want to build a structure theorem for weakly B-
superabundant semigroups with (C) as a spined product. But we can not use Sp
to get this result because we can not ensure that Sp is a weakly B-superabundant
semigroup with (C) and therefore that v = d5 on Sp. With this in mind, we will
make full use of the weakly B-superabundant subsemigroup N of Sp constructed
in Chapter 4.

According to Lemma 5.18, Lemma 5.14, Theorem 4.34 and Corollary 5.13,
we build a structure theorem for weakly B-superabundant semigroups with (C)

as follows.

Theorem 5.19. A weakly B-superabundant semigroup S with (C) is isomorphic
to the spined product Ng * S/ép of Ng and S/dp with respect to Ng/og, 5% and
Y, where 6 is defined in Lemma 4.32, 1 : S/dp — Np/o5, defined by sévp = s0ip
for any s € S, is an admissible morphism, and |ps, : B/ép — B/dg is an

isomorphism.

5.5 Examples

We now present a number of examples, allowing us to show that the weak idem-
potent connected condition (WIC) and the band of distinguished idempotents B

being a normal band are not equivalent in a weakly B-orthodox semigroup S.



114

Let S be a weakly B-orthodox semigroup. For any element e of B we denote
by (e) the principal order ideal generated by e. We recall that S satisfies the
weakly idempotent connected condition (WIC) (with respect to B) if for any
a € S and some af, a*, if x € (a') then there exists y € B with za = ay; dually,
if z € (a*) then there exists t € B with ta = az.

Example 5.20.

We begin by citing an example [17] of a weakly B-orthodox semigroup with
(WIC). Consider the three element band B = {1,a,b} which is a two-element
right zero band with an identity adjoined. We have Ug = {1,a,b,c} and have
table

x| 1 ¢ a b
11 ¢ a b
cle 1 a b
ala b a b
blb a a b.

Also, we can calculate that 1xaxbx1=band 1 *xbxax*x1=a, so B is not a

normal band. From its very construction, Ug is weakly B-orthodox with (WIC).

Example 5.21.

Now, we consider the normal band B = {e, f,0} which is a two-element right

zero band with a zero adjoined having table

*

o | o
O = |
© o oo

e
f
0

S @

We claim that Sp does not have (WIC).

Lemma 5.22. [17] Any pair of the form (cr,dgr) lies in Sg, where cp and
dg are the constant maps in OP(B'/L) and OP(B'/R) with images L and R,

respectively.
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Remark: In [Theorem 6.2, [17]] we obtain that for any («, 5) € S,

(, B) R (pos M),

where v € R [5.
Take (cr,,dr,) € Sp. We have Ridg, = R;. So we choose v = f,

((Pos Ao)) = (Pus M) Bpus M) = (g M) Blpgs Ar) = {(prs Af)s (pos M)}

since B = {(pe, A\e), (P, Af), (o, Xo)} is isomorphic to B under b +— (pp, \). We
have
(PO; AO)(CLJM de) = (CLf7 )‘0)7

and

(CLf7de>B = {(CLe7de)7 (Cqude)7 (vade)}'

So (po, Mo)(cL,,dr,) & (cL,,dr,)B. Thus Sp does not have (WIC).
The final example explains that not every weakly B-superabundant semi-
group with (C) has (WIC).

Example 5.23.

Let (a) be a monogenic monoid generated by a and X = {xz; : i € N} be
a right zero semigroup. Set S = (a) U X. We define the operation * as the
following table:

* 1 a a® oz
1 1 a a oz
a | a @ a"t o
a™ | g™ am—l—l am—l—n x;
Tj | Tj Tj+1 Tj4n  Ti-

We can easily check that S is a semigroup. It is easy to see that the L
classes are (a) and {z;} for i € N, and the Rp-classes are (a) and X, and
so the H p-classes are (a) and {z;} for i € N. It follows that S is a weakly B-
superabundant semigroup with distinguished band {1} J X. Moreover, S satisfies
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the Congruence Condition. But we yet find that axy = x; # ka for any k € S,
so S fails to have (WIC).



Chapter 6

Correspondence between
algebraic structures and ordered

structures

Here we survey briefly some of interesting achievements such as the Ehresmann-
Schein-Nambooripad (ESN) Theorem, and its many extensions due to Armstrong
[1,2], Lawson [32], Meakin [35,36] and Nambooripad [38-40]. These results set

up a connection between algebraic structures and ordered structures.

6.1 Inverse semigroups and inductive; groupoids

The correspondence between inverse semigroups and inductive; groupoids has
been widely investigated. Theorem A below is an amalgamation of Ehresmann [4],
Nambooripad and Veeramony [41] and Schein [47].

As mentioned in Chapter 1, an inductive; groupoid is briefly described as a
groupoid equipped with a partial order possessing restrictions and co-restrictions,
and the set of idempotents forming a semilattice under the partial order. An
inductive; functor is a functor between two inductive; groupoinds that is order
and meet preserving.

Let G be an inductive; groupoid. We define a product ® on G by the rule
that

a®b=(alr@naw) - (r@raw|b)-

117
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Then, GS = (G, ®) is an inverse semigroup (having the same partial order
as G). Commonly, the product ® is called pseudo-product.
Conversely, let S be an inverse semigroup with semilattice of idempotents

E. We construct a category SC as follows:
Ob (SC) = E, Mor(SC)=2-5.

For any x € SC, we put d(z) = zz’ and r(z) = 2’x, where 2’ is the inverse of
zin S. If z,y € SC and r(z) = d(y), then we define z -y = xy in SC, where
xy is the product of x and y in S. Certainly, the operation - is a partial binary
operation and associative as a partial binary operation, so that SC becomes a
category. In addition, it is easy to see that the inverse morphism of z in SC is
the inverse 2’ of z in S so that SC is a groupoid. We note that there exists a
natural partial order in any inverse semigroup S, defined by the rule that for any
a,bes,
a<b < a=eb forsomeeckFE.

We make use of the natural partial order < on S to set up SC as an inductive;

groupoid by defining restriction and co-restriction as follows:
cla=-ea, alf =af,

where e, f € E are such that e < d(a) = ad’ and f < r(a) = d’a. Then SC is
an inductive; groupoid associated to S.
Further:

Theorem A (ESN Theorem) The category of inverse semigroups and morphisms

is isomorphic to the category of inductive; groupoids and inductive; functors.

Inverse semigroups are regular semigroups in which the idempotents form
a semilattice. Consequently, we can regard the set of idempotents of a regular
semigroup as a generalisation of a semilattice. This idea is precisely described in
the definition of a regular biordered set, introduced by Nambooripad [38]. In that
article, Nambooripad defined an inductive, groupoid, as now we demonstrate.

An ordered; groupoid (G, <) with a regular biordered set of objects F is said
to be inductivey if the following conditions and the duals (IG1)°, (IG3)°, (IG4)°
and (IG5)° of (IG1), (IG3), (IG4) and (IG5) hold:
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(IG1) ife, f € E aresuch that e R f ore L f, then there exists a distinguished
morphism [e, f] from e to f such that [e, e] = 1., the identity associated to e;

(IG2) forany e, f € E, ew fifand only if 1. < 1y

(IG3) if e, f,g € E are such that e R f R g, then [e, f] - [f,g] = le, g];

(IG4) if g, h,e € E are such that [g, h] exists and e w g, then [e, heh] exists
and [e, heh] < [g,hl;

(IG5H) let z € G, and for i = 1,2, let e;, f; € E be such that ¢; < d(x) and
fi= T(e\@ If e; w" ey, then f1 W" fo and [61,6162] ) (6162|I) = (e1|I) : [f17f1f2];

(IG6) if ‘ }Jz is a singular F-square, then [e, f] - [f, h] = [e, 9] - [g, h].
g
This leads to a generalisation of Theorem A from a semilattice to a regular

biordered set.

Theorem B (Nambooripad [38]) The category of regular semigroups and mor-
phisms is equivalent to the category of inductives groupoids and inductivey func-
tors.

The definition of an inductives functor is given in the next section in the
more general content of inductive, cancellative categories.

As we will give more details in the next section for the more general case of

concordant semigroups, we omit the process of building Theorem B.

Note that for a technical reason, ‘isomorphic’ in Theorem A has been re-
placed by ‘equivalent’ in Theorem B. Of course, Theorem B may be specialised

to orthodox semigroups.

6.2 Concordant semigroups and inductive, can-

cellative categories

Theorem B was extended by Armstrong [1] from regular to concordant semi-
groups, replacing ordered, groupoids by more general kinds of ordered, cate-
gories.

Before giving Armstrong’s result, we recall that a concordant semigroup is an
abundant semigroup with a regular biordered set of idempotents and satisfying
the extra condition of being idempotent connected (IC). That is, a concordant
semigroup is a weakly U-regular semigroup for which U = E(S), R* = Ry,
L£* = Ly and (IC) holds.
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An ordered, cancellative category (C, <) with a regular biordered set of ob-
jects E is said to be an inductivey cancellative category if the following conditions
and the duals (IC1)°, (IC3)°, (IC4)° and (IC5)° of (IC1), (IC3), (IC4) and (IC5)
hold:

(IC1) ife, f € Earesuch that e R f or e L f, then there exists a distinguished
morphism [e, f] from e to f such that [e, e] = 1., the identity associated to e;

(IC2) for any e,fe€ L, ew fifand onlyif 1, < 1y;

(IC3) if e, f,g € E are such that e R f R g, then [e, f] - [f, g] = [e, g];

(IC4) if g, h,e € E are such that [g, h] exists and e w g, then [e, heh] exists
and [e, heh] < [g,hl;

(IC5) let x € C, and for i = 1,2, let ¢;, f; € E be such that ¢; < d(x) and
fi=1(e]). If 1 W eg, then f1 W™ fy and [e1, e16] - (e1ey]T) = (e ]7) - [f1, f1f2);

(IC6) if ‘ £ is a singular E-square, then e, f|- [f, h] = [e, g] - [g, h].
9
We pause to make a short comment that an inductives groupoid (G, <) is an

inductivey cancellative category; conversely, an inductive, cancellative category
(C, <) becomes an inductivey groupoid if every morphism has an inverse. It
is necessary to claim that Condition (G) holds, that is, if x+ < y in C, then
x~' < y~'. Suppose that z < y. Then d(z) w d(y) and r(z) w r(y), that is,
r(z) wd(y™'), and so by (OC4), there exists a unique element ,(,)|y ! such that
vyt <yt and d(yw|y™t) = r(x). So - y(y|y~t is defined and by (OC3),
@y < Yyt =law)- Aslaw) < lag) andd(law) = d(z) = ( @)y ),
it follows from (OC4) that T @)y~ = lag), which gives that 27! = )|y
Thus. 271 < y= L

Let C' and C’ be inductive, cancellative categories over regular biordered sets
E and FE’, respectively, and ¢ : C' — C’ be an order-preserving functor. Then ¢
is inductivey if

(IOF1) the map ¢ : E — E' is a regular morphism (in the sense of Defini-
tion 1.25);

(IOF2) if e, f € E and [e, f] exists, then [e, flp = [ed, f¢].

Now, we give an outline of the correspondence between concordant semi-
groups and inductive, cancellative categories. The approach used here is like the
one in regular case.

Let C' be an inductive, cancellative category over regular biordered set F.
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We define a relation p on C by the rule that for any z,y € C,

zpy < d(z)Rd(y),r(z) Lx(y) and z - [r(z),r(y)] = [d(x),d(y)] - y.

It is routine to check that p is an equivalence relation on C.
Suppose that x € C, h w" d(x) and k ' r(x). We define

h*x = [h, hd(2)] - pa@)|r and z 0 k = 2|y - [r(2)k, K]

We then define a binary operation ® on C'/p by the rule that for all z,y € C,
h € S(r(x),d(y)),

TOY= (T QY

where Z denotes the p-class of z in C' and (z®y), = (zoh) - (h*y). It is proved
in [1] that the set C'S = (C/p, ®) forms a concordant semigroup.
To see the converse, let S be a concordant semigroup with regular biordered

set of idempotents E. We build a category SC as follows:
Ob (SC) = E, Mor (SC) ={(e,a,f):e€ R:NE,fe€ L:NE}.
For any (e, a, f) € Mor (SC), we set
d((e,a, f)) = e (abbreviated to d(e, a, f) = e)

and
r((e,a, f)) = f (abbreviated to r(e,a, f) = f).

In addition, we define a partial binary operation on SC by

(e.a,f)- (9,0, h) = { (e,ab.h) if f=g

undefined otherwise,

where ab is the product of a and b in S. Then SC becomes a category with
regular biordered set of objects E.

Certainly, SC is cancellative. Since if (e, a, f), (9,0, f), (f,c,v) € SC and
(e,a, ) (f,c,v) = (g,b, ) (f,c,v), then (e, ac,v) = (g,bc,v) and so e = g and
ac = be. As fR*c, we have that af = bf, that is, a = b as a,b L* f. Hence,
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(e,a, f) = (g,b, f), so that SC is right cancellative. Dually, it is left cancellative,
and consequently, SC is cancellative.

Since any concordant semigroup S satisfies (IC), it follows from the state-
ments in Section 2.3.2 that if (e, a, f) € SC, then there is a unique connecting
isomorphism from (e) to (f). We remind the reader that if k € E, then (k) means
the subsemigroup of F generated by the idempotents in k(E)k. We can therefore
define a relation on SC by the rule that for all (e, a, f), (g,b, h) € SC,

(e,a,f) <(g,b,h) & ewg,a=eband f =ef,

where 3 : () — (f) is a connecting isomorphism. It is routine to show that < is
a partial order on SC.
If (e;a,f) € SC, u,v € F and u < e and v < f, then we define the

restriction and co-restriction as

Je,a, f) = (u,ua,uB) and (e, a, f)|, = (v3~, av,v),

where 3 : (e) — (f) is a connecting isomorphism. Then SC becomes an ordereds
cancellative category under <

Suppose that e, f € E are such that e £ f or e R f. Then we define [e, f] =
(e,ef, f). Clearly, [e, f] is well-defined and it belongs to SC.

Now, we obtain that (SC, <) together with the restriction and co-restriction
forms an inductive, cancellative category. Further details of the proof can be
found in [1].

To sum up, we have:

Theorem C (Armstrong [1]) The category of concordant semigroups and good
morphisms is equivalent to the category of inductives cancellative categories and

inductivey functors.

6.3 Ehresmann semigroups and Ehresmann cat-
egories

Theorem A was generalised in a different direction to Ehresmann semigroups by

Lawson [32]. His use of two partial orders on an Ehresmann semigroup is an
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important observation for the idea discussed in Chapter 7.

We recall from [32] that an Ehresmann category C = (C, -, <,, <;) is a cate-
gory (C,-) with set of identities £, equipped with two relations <; and <, such
that the following conditions, and the duals (E1)° and (E5)° of (E1) and (E5)
hold:

El) (C,-, <,) is an ordered; category with restriction;
2) ife,f€ E, thene <, f e < f;
3) E is a meet semilattice under <, (or <;);

)

)

el el es

1) <oy =<0,
E5
We note that [32] interchanges the symbols r and d and the notion of re-

(
(
(
(
( if v <, yand f € E, then z|y@)r <p Ylrw)s-

striction and co-restriction, from the conventions of this thesis.

We now pause to make a short comment on Ehresmann categories C' =
(C,-, <, <;). Condition (E1) implies that if # <, y in C then d(z) < d(y) and
r(z) <r(y) by (OC1). Since (C,-, <,, <;) is an ordered; category with restriction
and co-restriction, then there exists a unique element q(,|y such that q|y <, ¥
and d(q)|ly) = d(z). Since <, y, and the uniqueness of restriction gives
T = q(@)|y. To the converse, if x = .|y, then by the definition of restriction, we

certainly obtain that x <, y. Hence, we have:

Lemma 6.1. Let C = (C, -, <,, <;) be an Ehresmann category over E. Then for
any x,y € C,

(1) x <, y if and only if x = .|y for some e € E;

(11) = <; y if and only if x = y|; for some f € E.

Let C=(C,-,<,, <) and D = (D, -, <., <;) be Ehresmann categories with
semilattice Ec and Fp of identities, respectively. We say that a functor F': C —
D is strongly ordered if it satisfies the following conditions:

(1) if x <y y (resp. x <, y), then zF <; yF (resp. F <, yF);

(17) if e, f € Ec, then (ef)F =eF fF.

Given an Ehresmann semigroup S with distinguished semilattice E, we have
introduced two partial orders <, and <; on S in Section 2.2.5. Lawson [32] showed
that the category, consisting of the set of objects E and the set of morphisms S,

forms an Ehresmann category together with the partial binary operation - defined
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by the rule that for any x,y € S,

xy if %=yt

undefined otherwise,

where z*,y" € F with « £ 2* and yﬁE yt.
Conversely, let C' = (C,-, <,,<;) be an Ehresmann category with set of
identities E. For any x,y € C', we define

T®Y = Tlr(m)rd(y) " r@)ndm) Y-

Then (C,®) is an Ehresmann semigroup.

Theorem D (Lawson [32]) The category of Ehresmann semigroups and admissi-
ble morphisms is isomorphic to the category of Ehresmann categories and strongly
ordered functors.

We recall that a restriction semigroup is an Ehresmann semigroup satisfying
(WIC) by Lemma 2.18. On such semigroups the orders <,, <; and <, coincide
and we denote the unique order by <.

Notice that if <,=<; on an Ehresmann category (C, -, <,, <;), then (C, <)
becomes an inductive; category, that is, an ordereds category, in which the set

of identities is a semilattice.

Corollary 6.2. [24] The category of restriction semigroups and admissible con-
gruences is isomorphic to the category of inductive; categories and strongly or-

dered functors.

We now turn to ample semigroups. We replace the distinguished semilattice
of idempotents E by the whole set of idempotents and use relations R* and
L* instead of Rp and Lp in the definition of restriction semigroups. We thus
obtain the class of ample semigroups whose set of idempotents forms a semilattice.
An admissible morphism in this context is more usually referred to as a good

morphism.

Corollary 6.3. [24] The category of ample semigroups and good morphisms
is isomorphic to the category of inductive; cancellative categories and strongly

ordered functors.
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Corollary 6.3 is a little difference in Armstrong’s paper [2] and [24].
If we use relations R and L to replace R* and L£* in the definition of ample
semigroups, we then obtain the class of inverse semigroups. A good morphism in

this context is a morphism. Consequently, we obtain Theorem A.

Ehresmann semigroups have a semilattice of idempotents, need not be reg-
ular or even abundant, need not satisfy an (IC) condition, and indeed need not
be restriction semigroups. Lawson overcomes the lack of an (IC) condition by
using two partial order relations. Our aim of Chapter 7 is to extend Lawson’s
result to the class of weakly B-orthodox semigroups, which extend the class of
Ehresmann semigroups by replacing semilattices by bands. In Chapter 7 we use
a new technique of generalised categories. We could use triples such as in [1],
and this is the approach we take in Chapter 9 and in the more general weakly

U-regular case, in Chapter 10.



Chapter 7

Beyond orthodox semigroups I:
weakly B-orthodox semigroups

and generalised categories

Our purpose of this chapter is to describe a class of weakly B-orthodox semi-
groups. In doing so we produce a new approach to characterising orthodox semi-
groups via inductive generalised groupoids. Here B denotes a band of idempo-
tents; we note that if B is a semilattice then a weakly B-orthodox semigroup is
exactly an Ehresmann semigroup. We build a correspondence between our work
and a result of Lawson for Ehresmann semigroups [32].

For convenience we make the convention that B will always denote a band.
Green’s relations and their associated pre-orders will always refer to B, unless
stated otherwise. In particular, if S is weakly B-orthodox and e € B, then R,
(L.) denote the R-class (L-class) of e in B.

7.1 Inductive generalised categories

Let I, R,L and D be disjoint sets and let p denote a collection of four (well-

defined) onto maps:

[—-R I—L R—D and L—D

such that

126



127
I
RN
R L
NS
D
Figure 7.1: Maps

commutes. We denote this configuration by (I, R, L, D,p) and refer to it as a
context.
We pause to give our motivating example. Let B be a band and p denote

the natural maps:
B— B/R, B—B/L, B/R — B/Dand B/L — B/D.
Then (B, B/R,B/L,B/D,p) is a context. Of course, if B is a semilattice, then

all of Green’s relations are trivial and the p-maps are essentially the identity

maps.

Definition 7.1. A generalised category P over a context (I, R, L, D, p) consists
of

(GC1) a class Ob(P) of objects RU L;

(GC2) a class Mor(P) of morphisms between the objects. Each morphism
x has a unique domain d(z) € R and codomain r(z) € L. Denote the Mor-class
of all morphisms from R; € R to L; € L by Mor(R;, L,);

(GC3) if R;, Ry, € R and L;, Ly, € L with D; = Dy, then there is a binary

operation
Mor(R;, L;) x Mor(Ry, L) = Mor(R;, Ly), (z,y) = x-y

called composition of morphisms such that if © € Mor(R;, L;), y € Mor(Ry, L),
and z € Mor(R,,, L,,), where D; = Dy, and Dy = D,,, then (z-y)-z =2 (y- 2);

(GC4) for each i € I, there exists a distinguished morphism, again denoted
by i, such that i € Mor(R;, L;) and if d(z) = R; and r(y) = L;, then i -z = x
and y -1 =y.

Let P be a generalised category over a context (I, R,L,D,p). Following

the usual convention when building categories from semigroups, we may iden-
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tify Mor(P) with P. If B is a band and P is a generalised category over
(B,B/R,B/L,B/D,p), where p denote the natural maps, then we say simply P
is a generalised category over B.

Our notion of a generalised category is motivated by that of the ‘trace prod-
uct’ of a weakly B-orthodox semigroup. We explain this in Chapter 8 but com-
ment briefly here on the special case of a band.

We have seen that if B is a band, then (B, B/R, B/L, B/D, p) is a context.
Define a generalised category P over B by putting Mor(P) = B and for e € B,
put d(e) = R, and r(e) = L.. Let the partial binary operation be given by
e-f =ef, where e- f exists. Note the latter is true if and only if D, = Dy. Thus
the effect of our generalised category is to restrict the multiplication in B to that
within its D-classes.

We now focus on generalised categories over a band B, in general more
extensive than the example above, making use of the natural partial order in
B/R and B/L. Note that if e € B then by (GC4) we have that e € Mor(R,, L),
so that d(e) = R, and r(e) = L.

We build on Definition 7.1 to define an inductive generalised category over
B, which is an analogue of inductive, groupoids [38] and inductive, cancellative
categories [1]. We will see that the elements of our inductive generalised category
may be pre-ordered or partially ordered, in two ways, reflecting the approach
of [32].

Definition 7.2. Let P be a generalised category over a band B. Then P is
an inductive generalised category if the following conditions and the duals (11)°,
(I12)°, and (I3)° of (I1), (I2) and (I3) hold:

(I1) if z € P and e,u € B with e <; u € d(x), then there exists an element
|z in P called the restriction of x to e, such that e € d(.|z) and r(.|z) <, r(z);
in particular, if e € d(z), then .|z = z;

(I12) f r € Pand e, f,g,u € Bwithe <;gR f <, ué€d(x), then
eflT = el (¢]);

(I3) if z,y € P and e,u € B with z -y defined in P and e <, u € d(x), then
el(@-y) = (c|lz) - (s|y), where f € r(c|z);

(I4) if z,y € P and ey, es, f1, fo € B with e1,e5 € r(z) and f1, fo € d(y),

then @le, s, ey [V = Tleass eafo U5
(I5) if z € P and e, f,u,v,9,h € B with g € r(z), h € d(z), v € d(x|,y)
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and v € r(ep|2), then cuf(2lgr) = (enl®)loy;
(I6) if e, g, h,u,v € B are such that u <z g L e and v <, h R e, then

el, = eu and ,|e = ve.

We make some comments on the above definition. In (I3) let r(z) = L, and
d(y) = R,. Since there exists = - y we know that v D w so we have r(z) = Ly,
and d(y) = Ruy,. Hence by (I1), f € r(.|z) <, Ly, and wv € d(y), so that f|y
exists and d(s|ly) = Ry. Hence (c|z) - (f|y) exists. To simplify the term ‘z -y
exists’ may use the expression ‘Jx -y’ or ‘x - y is defined’.

Suppose now that P is a generalised category over a band B. We remarked
above that if e € B, then d(e) = R, and r(e) = L., so that if also f € B then
Jde - f if and only if eD f. In this case, clearly e € d(e),e € d(e - f) and by (I1),
cle = e, so that e € r(.|e). Using (I1), (I3), (I6) and (GC4) we have

e-f=clle-f)=1(le)-([f) =e-ef =ef.

We pause to introduce a pair of pre-orders on an inductive generalised cate-
gory P over a band B deduced from Definition 7.2. We make use of the restric-
tion and co-restriction of P to define relations <, and <; by the rule that for any

x,y € P,

x <, y if and only if x = .|y for some e € B,
and

x <,y if and only if x = y|; for some f € B.
Lemma 7.3. The relations <, and <; are pre-orders on P.

Proof. To prove that <, is a pre-order on P, we first observe that <, is reflexive
by (I1). It is necessary to show that <, is transitive. Assume that z,y,z € P
with <, y and y <, z. Then there exist e, f € B such that z = .|y and y = f|2.
For .|y and f|z to exist we have e <; g € d(y) = Ry and f <, h € d(z). From
(12), z = |(¢]2) = ef|2. Hence x <, 2.

By the dual argument, we show that <; is a pre-order on P. O

The reader might notice that previous authors have used partial orders rather
than pre-orders. For our purpose, pre-orders are easier to use, but the partial
orders are still there, as we now show.

We define </ and <j on P by the rule that
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z <; y if and only if z = [y for some e < wu € d(y),
and

x <jy if and only if z = y|; for some f < wv € r(y).
Lemma 7.4. The relations <! and <} are partial orders on P.

Proof. As in Lemma 7.3, </ is reflexive. If z </ y and y <! z then with e, f as
in Lemma 7.3, we have e < g and f < h. Certainly, x = .f|z and efh = ef, as
f<h Also,e<gR f<h,sohef=ef. Henceef <hed(z).

Finally, suppose that </ y </ x. Then = = .|y and y = f|z for some
e<u€ed(y)and f <v ed(x). Wehave e <u R fand f < v R e, so that
e R fand d(z) =d(y). Now z = .|y =y, by (I1). O

We say that <, and <; are the natural pre-orders associated with P and </
and <] are the natural partial orders associated with P.

We end this section by showing that the class of inductive generalised cat-
egories over bands forms a category, together with certain maps referred to as

pseudo-functors. They appear in the next definition.

Definition 7.5. Let P; and P, be inductive generalised categories over bands B
and B,, respectively. A pseudo-functor F' from P; to P, is a pair of maps, both
denoted F, from B; to By and from P; to P,, such that the following conditions
and the dual (F2)° of (F2) hold:

(F1) the map F' is a morphism from B; to By;

(F2) ife € By and e <, u € d(z) in P, then (.|x)F = .p|xF;

(F3) if 3z -y in P, then 3xF - yF in Py, and (x - y)F = oF - yF.

To see that (F2) makes sense, suppose that v € By,x € P, with v € d(z).
Then R, = d(z) so that Ju-x and w-x = x. By (F3), JuF-xF and uF -z F = xF.
Hence d(zF') = d(uF') = R,p, asuF € By. Suppose also that e € By, withe <, u
in By. Using (F1), we have e’ <, uF € d(zF") in P,, and so J.r|zF. Notice that
we can define F' on Ob(P;) by putting R.F' = Rer and L. F = Lp.

From the comments above, it is easy to check that Lemma 7.6 holds.

Lemma 7.6. Let P, P, and P3 be inductive generalised categories over By, Bs
and Bs, respectively, and let Fy : P, — P, and Fy : P, — P53 be pseudo-functors.
Then Fi1Fy : P, — P3 is a pseudo-functor.
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The next observation follows immediately.

Lemma 7.7. The class of inductive generalised categories over bands, together

with pseudo-functors, forms a category.

We refer to the category in the above lemma as ZGC.

7.2 Construction

Our primary interest in this section will be a construction of a weakly B-orthodox
semigroup, built from an inductive generalised category over B.
Let P be an inductive generalised category over a band B. We define a

pseudo-product ® on P by

T @Y = (vlef) - (efly),

where e € r(z), f € d(y). It follows from (I4) that the pseudo-product is
independent of the choices of e and f and thus is well-defined. We will denote
the set P, together with the pseudo-product ®, by PS.

We pause to present our initial idea which follows Armstrong’s steps, using
the notion of sandwich set, simplifying a little here as our set of idempotents
forms a band. We may define a pseudo-product ®’ on P by the rule that for any
x,y € P,

x® y = (@lese)  (rerly),

where e € r(z) and f € d(x). In that case, Condition (I5) is not enough to
guarantee that ®’ is associative in P. To achieve this it is necessary to add a
stronger condition in place of (I5), which effectively says that e @ (z ®' y) =
(e @ z) ® y for any z,y € P and e € B. This appears to us too contrived.
Keeping this in mind we use the pseudo-product ® defined as above.

We now present a series of lemmas related to P, which will help us to show

our main result at the end of this section.
Lemma 7.8. If x,y € P with 3x -y, thenx @y =z - y.

Proof. If 3z -y then r(x) = L. and d(y) = Ry say, where e D f. Then r(z) = Ly
and d(y) = Ry, 80 £ @y = (z[sese) - (esely) = (x[se) - (rely) =z -y by (I1). O
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Lemma 7.9. Ife,f € B thene® f =ef.
Proof. We have
e® f= (e‘ef) ) (ef‘f)

= cef -eff (by (16))
—ef -ef =ef (by (GC4)).

O

Consequently, B forms the same band under ® and the original multiplica-

tion.

Lemma 7.10. Ifx € P and e, f,u € B withu D e <, f € d(z) then

u- (o) = uelz.

Proof. Since u D e, we deduce that

U et =u® |z (Lemma 7.8)
= (tlue) - (uel(c]))
= ue - (uel) (by (16), (12))
— el (by (GC4)).

Lemma 7.11. The set PS forms a semigroup under the operation &®.

Proof. 1t is sufficient to show that PS is associative. Suppose that z,y,z € P
with z* € r(z), y' € d(y), y* € r(y) and 2 € d(z). Then

1@ (Y®2) =18 ((Ylyat) - (r1]2))
) (N (@lyeat) - (12))) (v € dyly-r))
x*u) : (w*u y*zT)) : (U|(y*zT|Z))

(U € r(pl(y

:(x

= (z (y

y=t)), by (13)).

Notice, by (I1), that v <, y*z" € r(y

s+~t) and by (I5), that

r*u

(y‘y*zT) = (w*yT |y) |ng7
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where g € r(,,i|y), and so v £ gz and z*u € d((-41|y)],zt). Thus

2@ (y®2) = (@ea) - (Gogt19lget) - ( [G2112))
(@lou) * (Gomgt [9)]g21) * ogest]2) (v <cyaf, by (12)
= (@) * (Gt [9)]g1) - (ul2) (v <yt
= (@loa) (oot [9)get ) + (ugat]2) (v £ g2")
(@) + (gt [9)]gat ) - (@ (get]2) (Lemma 7.10)
(@laa) * (Corgt [9)get - ) - (gat2)
(@)« (Caogt [9)]gst) =

“(g2t2) (v L gz, by (GC4)).

= x|m*u .

Due to the dual of (I1), u € d(yl,-.1) <z d(y), whence z*y'z*u = z*ylz*ylu =

v*ytu = x*u. So

x®(y®2) = x|m oyt u)'(myT‘y)‘ng) ng| )

( (
( SL’|$ *yt |m u) ' ( x* yT‘y ‘ng) ng|

(by (I2)°, since z*u <g x*yT)
((
(

x|:c yJr . :c yT|y))|ng) . (ng|Z)
(70 € A((oeyt [9)]ger))
TRy |ng) ng‘Z>

The following lemma shows that PS is a weakly B-abundant semigroup.
Lemma 7.12. Let x € PS, e € v(z) and g € d(z). Then g Rg x L e in PS.

Proof. By Lemma 7.8, we obtain that xt ® e = x-e = . Suppose that k£ € B and
r® k =x. Then

@k = (@ler) - (erlF)

= («]ex) - ek (by (16))
= ok (by (GC4)).
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Thus x = x|, which implies that ek € r(z), and so e L ek. It follows that

e®k=ck (Lemma 7.9)

= eek
=e (e L ek).
Consequently, = Lp e.
Similarly, we can show that x Ry qg. O

As an application of Lemma 7.12, we give a concrete description of relations

<Z, and <z, on PS as follows.

Lemma 7.13. For any x,y € PS,
(1) * <z, v if and only if d(z) <z d(y);
(i1) © <z, y if and only if r(z) <, r(y).

Proof. We prove (i). Let z,y € P and let d(z) = R, and d(y) = Ry. Then

z gﬁB yin PS&e gﬁB fin PS (Lemma 7.12)
e <p f in B
& Re <g Ry
& d(z) <z d(y).

Now let us sum up results related to PS in the following theorem:

Theorem 7.14. If P is an inductive generalised category over B, then (PS,®)
is a weakly B-orthodox semigroup. Further, the natural pre-orders and partial

orders in P and PS coincide.

Proof. We first show that (PS, ®) has (C). Suppose that z,y, 2 € PS and x Ry v.
It follows from Lemma 7.13 that d(z) = d(y). We deduce that 2@z = (2|ye)-(ve|®)
and 2@y = (2|ve) - (ve|y), where v € r(z) and e € d(x) = d(y). Hence, d(z®@z) =
d(z|y) = d(z ® y). By Lemma 7.13, 2 ® 2 Rp 2 ®y. Dually, we can show that

Lp is a right congruence.
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Let ,y € P and suppose that « <, y in P. Then z = .|y for some
e </ u € d(y). Hence,

ey = e|eu'eu|y = 6u'eu|y: eu|y: 6|y:$>

so that = <, y in PS.

If in addition we have e < u, so that x </ y in P, then from = = .|y we have
d(z) = R, and z' <z y', by Lemma 7.13, so z <. y in PS.

Conversely, if <, y in PS, then z = f ® y for some f € B. Hence,

r=fRy=flppily=I1y"" sytly = psilvs

so that z <, y in P.

Further, if # </ y in PS, then we have 2" <z y', so that d(z) <z d(y), that
is, fy' <g yf. Clearly then fy' <y, so that z </ y in P.

The dual result holds for <; and <. O

We can obtain an admissible morphism between weakly B-orthodox semi-
groups from a pseudo-functor between inductive generalised categories over bands.

This is made more precise in the following lemma.

Lemma 7.15. Let F' : P, — P, be a pseudo-functor between inductive generalised
categories Py and P, where Py and P, are over bands By, and B, respectively.
Then the map FS : P.S — P,S defined by the rule that xF'S = xF, where
x € PiS, is an admissible morphism; moreover, if F1 : PL — Py and Fy : P, — P3
are pseudo-functors, then (F1F»)S = F1SF,S.

Proof. We claim first that F'S is a semigroup morphism. Suppose that x,y € P;S.
Then by the definition of F'S ,

(x@y)FS=(z@y)F

= ((zla) - (suly)) F (
= (@) - (puly) F (by
= (@F|ur) - (qurlyF)  (by (F2), (F2)°)
= (

2F|rpur) - (srurlyF) (by (F1)).
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Since f € r(z) and u € d(y), it follows from the comments succeeding Defini-
tion 7.5 that fF € r(xF) and uF' € d(yF). Thus,

(z@y)FS=2sF QyF =xFS®yFS.

We now show that F'S is admissible. Clearly, by (F1), B;F'S C B,. For
any e € r(z), we have e Lp, = and eF € r(zF). Thus, eF Lg, =F, that
is, eF'S Lp, *FS. By a similar argument, we have that for any k € d(z),
kE'S 7532 xF'S. By Lemma 2.9, F'S is an admissible morphism between weakly
B-orthodox semigroups P;S and P,S.

The final part of the lemma is clear. O

Theorem 7.14 and Lemma 7.15 show that S : ZGC — WO is a functor.

7.3 Correspondence

In Section 7.2, we start with an inductive generalised category over B and con-
struct a weakly B-orthodox semigroup. Our present aim is to prove a converse
to this result and thus provide a correspondence between the class of inductive
generalised categories over bands and the class of weakly B-orthodox semigroups,
i.e. between ZGC and WO.

Let S be a weakly B-orthodox semigroup. We define SC to be the set S
equipped with the following partial binary operation:

xy if ¢ Dyl

undefined otherwise,

where xy is the product of x and y in S. This is known as the trace product and
denoted by SC = (S, ).

It is an immediate result that if e, f € B and x € S are such that e Rz Llp f
thene-z=z=x- f.

We now turn to give a number of basic properties of SC, which will be found

useful in the sequel.

Lemma 7.16. If 3z -y in SC, then x Rp zy LpyinS.
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Proof. Suppose that z and y are in S such that z -y is defined in SC. Then
2 D yf. We assume that z* £ h R y', where h € B. Since Rp is a left
congruence and L is a right congruence, it follows that zy Ry zy' Ry zh=x

and dually, zy L o*y Lp hy =y. So = Ri zy L v, as required. O

Lemma 7.17. If S is a weakly B-orthodox semigroup, then SC is a generalised
category over B such that d(x) = Ryt and r(x) = Ly~.

Proof. We have x € Mor(R,, L;) if and only if ' R e and * £ f in B. If in
addition y € Mor(R,, Ly,), then 3z -y in SC if and only if 2* Dy, i.e. Dy = D,,.
Moreover, if 3z -y, then x -y € Mor(R,, L;) by Lemma 7.16. Clearly Condition
(GC3) holds.

For any e € B, we take the distinguished morphism e associated to e to be
itself, whose domain is R, and codomain is L.. Certainly, if e € d(x) (resp. e €
r(:)s)), then e is a left (resp. right) identity of z. Hence, (GC4) holds. O

We build on the above to show that SC may be equipped with restrictions
and co-restrictions, under which it becomes an inductive generalised category.
For x € Sande, f € B with e <;u € d(z) and f <z v € r(zx),

el =ex and x| =z f.

Lemma 7.18. Let S be a weakly B-orthodox semigroup. With the above def-
inition of restriction and co-restriction, SC becomes an inductive generalised
category over B. Further, the natural pre-orders and partial orders in S and SC

coitncide.

Proof. In view of Lemma 7.17, it remains to show that SC with the restriction
and co-restriction defined above satisfies Conditions (I1) to (I6) and the duals
(I1)°, (I12)° and (I3)° of (I1), (I12) and (I3).

(I1) If x € S and e,u € B with e <; u € d(z), then .|z = ex, and so by
Lemmas 2.8 and 2.14, Condition (I1) is satisfied.

(I2) Since restriction and co-restriction are given by multiplication in S, it
is clear that (I2) and its dual hold.

(I3) Suppose that z,y € S and e,u € B with z - y defined in SC, let e <,
we d(z) and f € r(o|e) = Ly Then .|(z ) = exy = exfy = (oJ2) - ().
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(I4) It is routine to check that Condition (I4) holds, both products being
equal to xy.

(I5) As for (I4) this is again routine, with both sides of the equality we must
verify being equal to exf.

(I6) Clearly, it is satisfied by the definitions of the restriction and co-restriction,
respectively.

Now, let z,y € S. Then

r<,y in § & z=ey some e € B
& z=-ecyly some e € B, y! € d(y)
& T =ty some e € B, y'ed(y)
& =l some f € B with f <, u € d(y)
& r<,yin SC.

In addition, with notation as above, if x </ y in S we have that 2! <z ', so that
z = yleyly = ,ioytly and yley! < y', and so x </ y in SC. Conversely, if z </ y
in SC, then x = 4|y, where g < y" € d(y). Then z = gy in S, and 2" R g <g T,
so that x </ y in S. O

Proposition 7.19. Let S be a weakly B-orthodox semigroup and P be an induc-
tive generalised category over B. Then SCS =S and PSC = P.

Proof. Let S be a weakly B-orthodox semigroup. It follows from Lemma 7.18 that
SC is an inductive generalised category over B with multiplication a restriction
of that in S and d(z) = R,:, r(x) = L+, for any x € S, and if e <, u € d(x)
and f <, v € r(z) then .|z = ex and z|; = = f.

We now construct SCS, which again has underlying set S, by defining the

pseudo-product

TRY = (x|vg) ) (vg|y>a
where v € r(x) = Ly« and g € d(y) = R,i. Observe that
T @y = (xlog) - (vgly) = Tvg09y = TVGY = 7Y,

so the operations in S and SCS are the same. Moreover, the distinguished bands
of S and SCS are both B. Hence S = SCS.

We now focus on the converse. Let P be an inductive generalised category
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over B with partial binary operation -. We establish the weakly B-orthodox
semigroup PS by defining the pseudo-product ® of Theorem 7.14.

We temporarily use the notation ® for the partial binary operation in PSC.
For any x,y € P we have

Jr®y < 2* Dyl in PS
< e D f, where r(z) = L. and d(y) = Ry

& dr-yin P

Further, if 4z ® y, then by Lemma 7.8,
TOQY=rQy=1"Yy.

For z € P we have that d(z) = R,+ in PSC, where R 2! in PS. But, the
latter holds if and only if z € d(z) in P, i.e. d(x) = R, in P. Thus d in P and
PSC coincide, and dually for r.

Clearly, the distinguished morphisms in P and PSC are the same.

Again as a temporary measure, we use || to denote restriction and co-
restriction in PSC.

Let x € P and let e,u € B with e <, u € d(x). Then in PSC,

e||x =e®xr= e|eu : eu|x = eu|x = e‘x

and similarly for co-restrictions. O

We now proceed to establish an isomorphism between ZGC and WO.
The next lemma demonstrates that an admissible morphism between two

weakly B-orthodox semigroups gives rise to a pseudo-functor.

Lemma 7.20. Let S be a weakly By-orthodox semigroup and T be a weakly Bs-
orthodox semigroup. Suppose that 6 is an admissible morphism. Then the map
0C : SC — TC given by the rule that x0C = z0 for x € By and v € S is a
pseudo-functor. Further, if6, : S — T and Oy : T — Q) are admissible morphisms,
then (6,602)C = 6;C0,C.

Proof. (F1) Since 6 is an admissible morphism, it follows that € is a morphism
from B; to Bs.
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(F2) Suppose that z € S and e, f € By with e < f € d(z). Then .|z
is defined and .| = ex. Since 6 is admissible, it follows that ef <, f@ and
f0 Rp, 20, that is, f0 € d(z6), which implies that .|z6 is defined. Then
(e|2)0C = (ex)0C = (ex) = efxl = 9|20 = oc|20C.

(F3) If 3z-y in SC, then z* D y'. Hence thereisanh € Bwithx L, h Ry, y.
Since 0 is admissible, 20 Lp, ho 7332 yf and hf € By. Thus Jz6 - yf in TC.
Clearly, if x - y exists, (z - y)0 = (xy)0 = 20yl = 20 - yb, since 6 is a morphism.

It is routine to see that (0;0,)C = 6;C6,C. O

The following result is easy to see, given Lemma 7.15 and 7.20.

Lemma 7.21. Let 0 : S — T be an admissible morphism of weakly B-orthodox

semigroups, and F . Py — Py be a pseuo-functor of inductive generalised cate-
gories over bands. Then 6CS =60 and FSC = F.

Lemmas 7.18 and 7.20 show that C : WO — ZGC is a functor and Propo-
sition 7.19 and Lemma 7.21 give that S and C are mutually inverse. Hence we

deduce our main result.

Theorem 7.22. The category WO of weakly B-orthodox semigroups and ad-
missible morphisms is isomorphic to the category ZGC of inductive generalised

categories over bands and pseudo-functors.

7.4 Special cases

In this section, we concentrate on some special kinds of weakly B-orthodox semi-

groups. We now present a lemma which will be used in our first two cases.

Lemma 7.23. Let P be an inductive generalised category over B. Suppose that
for all x € E(PS) and e € d(z), f € r(z) we have eR*x L* f in PS. Then
E(PS) = B.

Proof. Suppose that € P and x ® v = z. Assume that f € r(z) and e € d(z)
with e R* « L* f, and so f ® x = f, that is, f|se - fe|lr = f, or equivalently,
felr = f, which implies that fe R f. Dually, fe £ e. Thus, e D f so that
eRef L f. Since e R* x L* f, we have x H* ef. An H* class contains at most

an idempotent so that x = ef. O
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An (inductive) generalised category P is an (inductive) generalised groupoid
if for all x € P with d(z) = R, and r(x) = Ly, there exists y € P with d(y) = Ry
and r(y) = L. such that e =z -y and y -z = f.

Corollary 7.24. The category of orthodox semigroups and morphisms is isomor-
phic to the category of inductive generalised groupoids over bands and pseudo-

functors.

Proof. Let S be an orthodox semigroup with B = E(S). Suppose that z € SC
with d(z) = R, and r(z) = L;. Since R = Rp and £L = Lp, we have that
eRx L f. It follows from the fact that S is regular that there exists y € S with
e =zy and yr = f. We have that e Ly R f and so d(y) = Ry and r(y) = L. and
the products x -y, y - x exist in SC. Moreover, x -y =2y = e and y-z = yzr = f.

Conversely, let P be an inductive generalised groupoid over B. Suppose that
x € Pand d(z) = R,, r(z) = Ly. Then there exists y € P with d(y) = Ry and
r(y) = Lo such that f =y-zande=2z-y. Andsoz®@yQ@xr = (z-y) @z =
e®x =e-x =x. Thus, PS isregular. In addition, ase =2 -y = r ® y and
xr = e ® x, we have that e Rz in PS. Dually, f Lz in PS. By Lemma 7.23, we
have that E(PS) = B. Hence, PS is an orthodox semigroup. O

Now, we focus on the class of abundant semigroups. We replace the distin-
guished set of idempotents B by the whole set of idempotents and use relations R*
and £* instead of R and L in the definition of weakly B-orthodox semigroups.
We thus obtain the class of abundant semigroups whose set of idempotents forms
a band. An admissible morphism in this context is more usually referred to as a
good morphism. We define an inductive generalised category P over a band B to
be abundant if it satisfies the following condition and its dual (I7)°:

(I7) ife, f,g € B and x,y,z € P are such that e, f <, g € d(z), e € r(y),
fer(z)andy- .|z =z flz, then y = 2.

Corollary 7.25. The category of abundant semigroups whose set of idempotents
forms a band and good morphisms is isomorphic to the category of abundant

inductive generalised categories over bands and pseudo-functors.

Proof. Let P be an abundant inductive generalised category over a band B.
Suppose that z € P, e € d(z) and f € r(z). We know that eRp z in PS,
so that e ® x = x. Assume that y,z € P with y ® v = 2z ® x, giving that
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(Wlye) * (yrel2) = (2lone) - (coclz), where y* € r(y) and 2* € v(2). By (I7), we
obtain that y|,« = 2|.«. Thus, y*e L z*e in B. We have

YR e =1yl yele
= 2| - y'e (by(I6))
= 2| 4%e (y*e[,z*e)
= 2|sve * 2ele

=z e.

This is enough to show that e R* x. Dually, we have that f £* z.

In view of Lemma 7.23, we have that E(PS) = B.

Conversely, let S be an abundant semigroup with E(S) = B. It follows
that R* = ﬁB and L* = ZB. In view of Lemma 7.18, it is sufficient to claim
that SC satisfies Conditions (I7), and dually, (I7)°. Assume that e, f,g € B and
x,y,z € Paresuch that e, f <, ged(x),ecr(y), fer(z)andy- .|z = z- |z
It follows that yex = zfx. Since g € d(z), that is, gR*x in S, we have that
yeg = zfg, that is, ye = zf, as e, f <, g. Hence, y = z, as required. Dually,
(I7)° holds. O

We now discuss Ehresmann semigroups. Let S be an Ehresmann semigroup
with distinguished semilattice £. We mentioned in Lemma 2.30 that <,=</
and <;=<].

Let P be an inductive generalised category over E. The context
(E,E/R,E/L,E|D,p)

is essentially four copies of E equipped with the identity map. We therefore
identify £ with F/R, E/L and E/D and note that P becomes a category in the
usual sense. Notice that as P = PSC, we have that <, =</, <,=<] and <,

and <; are partial orders on P.

Lemma 7.26. An inductive generalised category P over a semilattice E with <,

forms an ordered, category with restriction.

Proof. From comments above P is a category (with the appropriate identifica-

tions) and (P, <,.) is a poset.
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(OC1) Suppose that z,y € P with <, y. Then there exists e € E such
that e < d(y) and x = .|y. Thus, d(z) = e < d(y) and r(z) < r(y) by (I1).

(OC2) Suppose that z,y € P with r(z) = r(y), d(z) = d(y) and = <, y.
Then there exists e € E such that e < d(y) and « = .|y. Certainly, d(x) = e and
so e = d(y), whence from (I1), x = y.

(0C3) If 2/ <, x and ¢ <, y, and both 2’ -y’ and z - y exist, then there exist
e, f € E such that e < d(x), f < d(y), ' = .|z and ¥ = ¢|y. Thus, we have
that r(c|z) = r(z’) = d(y) = d(s|y) = f, and so 2" -y = (c|z) - (s|y) = el(z - y)
by (I3). Hence, 2’ - ¢/ <, z - y.

Finally, we assume that x € P and e € E with e < d(z). Then .|z is defined
and d(.|z) = e. Also, .|z <, x by (I1). Further, .|z is unique since if z <, x and
e = d(z), then there exists h € F with h < d(z) and z = |z, which gives that
h =d(z). Thus, e = h. Hence, z = .|z. O

As a dual result of Lemma 7.26, we have the following lemma.

Lemma 7.27. An inductive generalised category P over a semilattice E with <,

forms an ordered; category with co-restriction.

Next we show that an inductive generalised category P over a semilattice F

is an Ehresmann category as defined in [32] and explained in Chapter 6.

Lemma 7.28. An inductive generalised category P over a semilattice E with the

pair of natural partial orders (<,,<;) forms an Ehresmann category.
Conversely, an Ehresmann category (C, -, <,, <;) with semilattice of identi-

ties E, may be regarded as an inductive generalised category over E with natural

partial orders (<., <;).

Proof. Let P be inductive generalised category over a semilattice E. In view of
the above discussion, we have claimed that P is a category with set of identities
E. By Lemma 7.26 and Lemma 7.27, Conditions (E1) and (E1)° are satisfied.
(E2) Ife, f € E and e <, f, then e = .|f = ef so that we must have e < f.
Then f|. is defined and f|. = fe = e so that e <; f. Together with the dual, we
have that for e, f € F,
e<, feel feellf,

so that in particular, (E2) holds.
(E3) Clearly, E is a semilattice under <, = <;= <.
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(E4) To show that <, o <; C <; o <,., we assume that z <, o <; y. Then
there exists z € P such that z <, z <; y. And so there exist e, f € E with
d(z) =e <d(2) =uand r(z) = f <r(y) = v, such that z = .|z and z = y|;.
Thus, @ = o (4ly) = eul(los). By (14), we get that 2 = (sly)lys, where h = d(y)
and g = r(ep|y). Set 2/ = |y, Then z <; 2/ and 2/ <, y. Consequently,
r <;o <, y. With the dual, we obtain (F4).

(E5) Suppose that z,y € P and f € E with x <, y. Then there exists
k€ B with k < d(y) and x = t[y. So zle@w)r = (lY)lr@ys = (kdw)|¥)|r@);s-
Let b = d(y|v)s)- By (14), we obtain that (raw)|¥)|e@)r = #rl(Ylrw)s), so that
Tle(@)r <r Ylew)s-

Conversely, let C = (C, -, <,, <;) be an Ehresmann category with semilattice
of identities . Then C' = (C,-) may also be regarded as generalised category
over F.

We let < denote the restriction of <, (resp. <;) to E. It is clear that the first
part of (I1) holds, moreover, by uniqueness of restriction, .|z = x if e = d(z).

For (I12), it x € C and e, f,g,u € E, with e <, ¢ R [ <, u € d(z),
then this simplifies to e < f < d(z). Now .flz = |z <, 2 and d(.|z) = e;
also, ¢|(rlz) <, flz <, = and d(.|(f|x)) = e. By uniqueness of restriction,

esl® = e[ (s]2).
(I3) If x,y € C with 3z - y, then r(z) = d(y). If e < d(z), then we have

J(z-y) < 2 yandd(|z-y) =c

and also
(elz) - (4ly) < -y and d((c]z) - (s[y)) =€,

where f = r(,|z). Hence, o|(z-3) = (sl2) - ().

(I4) This is clear.

(I5) Let x € C and e, f,u,v,g,h € E with g =r(z), h = d(z), v = d(x|sy)
and v = r(|r). Then (e®2)®f = e®@(x®f), where ® is defined [32] and recalled
in Chapter 6, by 2®y = (x|x) - (x|y), where k = r(z) d(y). As shown in [32], ® is

associative, hence,
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(e@z)®f = ((elen) - (enl2))lvs - (vr] )
(eh - (enlx))lus - 0 f
= (enl)los
and similarly, e®(z®f) = cu|(x]gr), s0 we obtain that (cp|z)|vr = cul(®]47)-
(I6) Suppose that e, g, h,u,v € E are such that u <z g Leand v <, h R e,

which simplify to u < e and v < e. Clearly, e|, =u =cu and ,Je =v =ve. O

Let C = (C,-,<,,<)) and D = (D, -, <., <;) be Ehresmann categories with
semilattice Ec and Ep of identities, respectively. We recall from Chapter 6 that
a strongly ordered functor [32] F': C — D is a functor which preserves <,., <; and
the binary operation of the semilattices. Hence F' is a morphism Ec — Ep. As
shown in [32], F' preserves restrictions and co-restrictions. Thus F' is a pseudo-
functor in the sense of Definition 7.5.

On the other hand, if G : C — D is a pseudo-functor, then from the com-
ments following Definition 7.5, G is a functor, which by (F1) preserves A. Sup-
pose now that x,y € C with x <, y. Then x = .|y for some e € E, and so by
(F2), 2G = .¢|yG so that G <, yG. Dually, G preserves <, so that G is a
strongly ordered functor. Theorem 7.22, Lemma 7.18 and the comments above

now give us Lawson’s result from [32], Theorem D.

Corollary 7.29. [6, Theorem 4.24] The category of Ehresmann semigroups and
admissible morphisms is isomorphic to the category of Ehresmann categories and

strongly ordered functors.

We now turn to weakly B-superabundant semigroups with (C), which are
weakly B-orthodox semigroups such that each H p-class contains a distinguished
idempotent in B. We say that a generalised category P over a band B is a
super-generalised category if it is an inductive generalised category and satisfies
the following condition:

(I8) if x € P,e e d(x) and f € r(x), then e D f.

Corollary 7.30. The category of weakly B-superabundant semigroups with (C)
and admissible morphisms is isomorphic to the category of super-generalised cat-

egories over B and pseudo-functors.
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Proof. Let S be a weakly B-superabundant semigroup with (C). It follows from
Lemma 7.18 that it is only necessary to show that SC satisfies Condition (I8).
Suppose that z € S, e € d(x) and f € r(z). Then e RexLp finS. As Sis a
weakly B-superabundant semigroup, it follows that there exists h € B such that
hHp . Thus, e R h £ f, which implies that e D f.

Conversely, let P be a super-generalised category over B. It is sufficient to
show that PS is weakly B-superabundant. Suppose that x € P, e € d(z) and
f er(z). Then by (I8), ¢ D f, that is, e R ef L f. Ase Rz L f in PS,
we get that x Hp e f. Hence PS is a weakly B-superabundant semigroup with
(C). O

Finally in this chapter, we discuss the class of weakly B-orthodox semigroups
which have Condition (WIC) mentioned in Chapter 2. We define an inductive
generalised category P over a band B to be connected if it satisfies the following
condition and its dual (19)°:

(I9) if x € P and e < u € d(x) then there exists f < v € r(z) such that

e‘SL’ = LL"f.

Corollary 7.31. The category of weakly B-orthodox semigroups with (WIC) and
admissible morphisms is isomorphic to the category of connected inductive gen-

eralised categories over bands and pseudo-functors.

Proof. Let S be a weakly B-orthodox semigroup with (WIC). In view of Lemma
7.18, it remains to show that SC satisfies Conditions (I19) and (19)°. We will
show that (I9) holds, dually, (19)° holds. Suppose that z € S and e < u € d(z).
Then .|z = ex. Since S has (WIC), it follows that there exists f € B such that
ex = xf. Then ex = zvfv, where v € r(x). Thus, ex = 2vfv = 2|y 0.
Conversely, let P be a connected inductive generalised category over a band
B. Suppose that x € P and e < u € d(z). Then it follows from (I9) that there
exists f < v € r(x) such that Jr = z|;. Thuse® 2z = |z = 2|y = 2 ® f.
Together with the dual argument, we have shown that PS has (WIC). O



Chapter 8

Trace of weakly B-orthodox

semigroups

A weakly B-orthodox semigroup S with zero is primitive if for any e, f € B,
e < fimplies that e =0or e = f. Heree < fif and only if ef = fe = e.
The purpose of this chapter is to show that the trace of a weakly B-orthodox
semigroup is a primitive weakly B-orthodox semigroup and investigate primitive
weakly B-orthodox semigroups via blocked Rees matrix semigroups, which are
introduced in [10].

8.1 Preliminaries

In this section our aim is to list some properties of primitive weakly B-orthodox
semigroups. Throughout this section we use S to denote a primitive weakly B-
orthodox semigroup, unless stated otherwise. Green’s relations will always refer
to B. For any subset T of a semigroup S, we will use 7% to denote the set of

non-zero elements of 7.

Lemma 8.1. Let S be a weakly U-abundant semigroup with zero and x,y be non-
zero elements in S with © Ry e and y Ly f, wheree, f € U. Then yx = 0 if and
only if fe = 0.

Proof. From z Ru e, we have yx Ry ye, and so if yr = 0, then ye = 0. Again,
by y Ly f, we have ye Ly fe, and so fe = 0.
Conversely, if fe = 0 then yxr = yfex = 0. O

147
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Lemma 8.2. Ife, f are distinguished idempotents in S and eS C fS (resp. Se C
Sf), then eS = fS (resp. Se = Sf) ore=0.

Proof. Suppose that e, f € B and ¢S C fS. Then e € f5, and so fe = e, which
implies that e Ref < f. Since S is primitive, we obtain that ef = 0 or ef = f.
In the former case, we have that e = ee = efe = 0, and in the latter case, we
obtain that e R f, that is, eS = fS. O

Lemma 8.3. For any e € B* and a € S*, aLge (resp. aRy e) if and only
if a € Se (resp. a € eS) and Se (resp. eS) is contained in every distinguished

idempotent-generated left (resp. right) ideal containing a.

Proof. Suppose that a L e. By Lemma 2.6, L(a) = L(e). As L(e) = Se, a € Se.
If a € Sf for some f € B, then af = a, and so ef = e giving Se C S'f.
Conversely, suppose that a € Se and that for any f € B, a € Sf implies
that Se C Sf. Then E(a) C Se since Se is a left B- admissible ideal containing
a. As S is weakly B-orthodox, it follows from Lemma 2.7 that L(a) = Sf for
some f € B. Hence, by Lemma 8.2, Se = Sf, and so a Ly e. O

The next lemma is an immediate consequence of Lemma 8.2 and Lemma 8.3.

Lemma 8.4. Let a € S and e € B*. Then a Lg e (resp. a Rp e) if and only if
a#0 and a € Se (resp. a € €S).

Lemma 8.5. If x,y are non-zero elements in S such that xy # 0, then xy €
R.NL,.
Proof. Suppose that e and f are distinguished idempotents such that e Ry x and

f L y. Then by Lemma 2.7, z € eS and y € Sf. Thus, zy € eS N Sf. Again
by Lemma 8.4, xy € R.N Z}f, that is, zy € R, N Zy. O

8.2 Blocked Rees matrix semigroups

As a tool for the following sections we recall some concepts and results from [10]
about blocked Rees matrix semigroups and their structure. Blocked Rees matrix
semigroups [10] are a generalisation of Rees matrix semigroups over a monoid.

We refer the reader to [10] for more details.
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Let I, A and I' be non-empty sets. Suppose that [' indexes partitions of A

and [ as follows:
PA)={A,:ael}, PU)={lz:5€Tl}.

For convenience, 1, j, k, h will denote members of I; A, u, v, p will denote members
of A, and «, 3,7, 6 will denote members of T'.

We recall from [12] that a non-empty set M is a partial semigroup if there is
a partial binary operation on M such that for all a,b,c € M, (ab)c is defined if
and only if a(bc) is defined, and if (ab)c is defined, then (ab)c = a(bc).

Let M = U{M,p : a, 5 € I'} be a partial semigroup such that for z,y € M,
xy is defined if and only if x € M,g, y € Mg, for some «, 3,7 € I' and then in
this case, vy € M,,. Suppose also that for all o« € I', M, = T}, is a monoid with
identity g, and for all a, 5 € I', M,z = 0 or is a (T, Tj)-bisystem, that is, Ty,
acts on M,z on the left, T acts on M,z on the right and (tm)t’ = t(mt’) for all
teTy, me Mg, t €Tgs.

We remark that if for any a, 8 € I', M, is regarded as the set of morphisms
from « to 3, then M forms a category with set of objects I' and set of morphisms
M.

Let 0 (zero) be a symbol not in any M,z and let P = (p);) be a A x I matrix
over M U {0}, where for A € Ay, @ € Ig, pri € Moz U {0}

Let

MO = MO(M;I,A,T; P)
= {(i,a,\) :a € Myg, (i,A) € I, x Ag, (o, ) € I' x I'} U {0}.

In order to be able to define a multiplication on M°(M; I, A,T; P), we say that
0z = 20 = 0 for every element x of M". Now we define a product on non-zero
elements of M%(M; I, A,T; P) by the rule that for any (i,a, \), (j,b, u) € M°,

It is routine to show that this product is associative and is categorical at zero, and

so we obtain a semigroup called a blocked Rees matriz semigroup. A blocked Rees



150

matrix semigroup M° = MO(M; I, A, T; P) is called a weakly orthodoz blocked

Rees matrixz semigroup or WO-B Rees matrix semigroup if the following condition
holds:

(B) all non-zero entries of P are in the diagonal blocks, and if (i, A) € I, x A,
then p,; is the identity g, of T,,.

Proposition 8.6. Let M = M°(M;I,A,T; P) be a WO-B Rees matriz semi-
group and B = {(1,ga, A) :a € ', (i, \) € I, x Ay} U{0}. Then

(1) for any (i,ga, \) € B, (i,ga, A) is an idempotent;

(17) the set B forms a band;

(1ii) for any (i, ga, A) € B\ {0}, (4, ga, ) is primitive in B;

(iv) for any non-zero elements (i,a, ), (j,b, ) € M°, (i,a,\) Rp (4,b, 1)
if and only if i = j;

(v) for any non-zero elements (i,a,\), (j,b, 1) € M°, (i,a,\) Ly (j,b, ) if
and only if A = p.

Proof. (i) If (i, ga,\) € B, then we have
(i> Ja, )\)(7’7 Ga, )‘) = (7’7 GaPriGa; )\)

= (i>gagago¢a )\) (Since (Z, )\) el, x Aa’ Dri = ga)
(i, G A)-

(77) Suppose that (i, ga, A), (4,95, ) € B\ {0}. Then
('éa Go, )‘) (]7 gs, :u) = (Za GaPX;j98, :u)

If @ = 3, then py; = go = gp, and s0 (i, ga, \) (4, 95, 1t) = (1, ga, ) € B. If a # 3,
then py; = 0, and so (7, ga, A)(J, 98, t) = 0 € B. Hence, B is closed. Again by
(1), B forms a band.

(74i) Suppose that (i, ga, A), (J, g, ) € B\ {0} are such that (i, g, A) <
(7,98, p). Then

(4, G, ) (J5 98, 1) = (2, Gas A) = (4, 98, 1) (4, Gas A),

which implies that ¢ = 7 and A = p, and so a =  so that g, = gg. Hence
(4, gas A) = (J, 95, 11)-
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(iv) Suppose that (i,a,\) € M°\ {0}. Then there exist a,3 € T such
that (i,A\) € I, x Ag and a € M,3. We now claim that for any v € A, and
(1, 9o, V) € B, (1, g, V) Rp (7,a,\). Clearly,

(’i, Ga, I/)(i, a, )‘> = (7'7 GaDviQ, )‘> = (7'7 Jda9al, )‘> ((’L, V) € ]a X Aaa Pvi = ga)
= (i, gaa, A) = (i, a, A).

Let v €I, (k,p) € I, x A, and (k, g, p) € B be such that

(ky gy, p)(i,a, X)) = (3,a, ).
Then k£ =1, and so o = ~. Thus,

(k’g’Y’p)(i>ga>V) = (k:>g'yppiga>7/)
= (ivgagagou’/) (05:’}/, k:Z)
= (i, g V)

Hence (i, go,v) R (i,a,\).
Let n,6 € T and (j, ) € I, x As. If (5, b, u) € MO\ {0}, then

(j> bv ,U) ﬁB (j>gnag)>
where o € A, and (4, g,,0) € B. So

(’i,CL, >\) ﬁB (.]7 b7 M) g (i,ga,V) ﬁB (j?gﬁ7a)
< (1,90, v) R (4, 9. 0)
&=
v) It is the dual proof of (iv). U
I he dual f of

The following lemma is an immediate consequence of Proposition 8.6.

Lemma 8.7. Let M = MO(M;I,A,T;P) be a WO-B Rees matriz semigroup
and B = {(ga)ir : @« €T, (i,\) € I, x Ay} U{0}. Then M° is a primitive weakly

B-orthodox semigroup.

Proof. In view of (iv) and (v) of Proposition 8.6, it is easy to see that MO satisfies
the Congruence Condition (C). O



152

8.3 Primitive weakly B-orthodox semigroups

Throughout this section S denotes a given fixed primitive weakly B-orthodox
semigroup with zero. Our aim, achieved in Theorem 8.13, is to show that S is

isomorphic to a WO-B Rees matrix semigroup.

Lemma 8.8. Let e € B* and let
X=J{L;: f€ B and f D e},

Y:U{EQ:QEB* and g D e}

and Z =X NY. Then

(i) for any a,b € Z, (a,b) € LgoRp and (a,b) € Rgo Lp;

(i1) ifa € Ly N R, C Z, then gf € H, N B* is such that Py Hg — H,,
given by xpy = xf for any v € ﬁg, and g : ﬁf — H,, given by yA, = gy for
any y € ﬁf, are bijective;

(iid) for any a,b € Z, |H,| = |H,y);

(iv) if g,h € B* and H, and H, contained in Z, then H, and H), are

isomorphic monoids.

Proof. (i) Suppose that a,b € Z. Then there exist g, f € B* such that a Ls f,
b Ry gand g D f D e. Since B is a band, we have f L gf R ¢, and so
alpqgf Ry b, that is, (a,b) € LpoRg. Similarly, we have (a,b) € RpoLlp.
(17) LetaeifﬁﬁggZ. Then f DeD g,andso gf € B*and f Lgf R g
so that gf Hp a. We now show that pr ﬁg — H, is a well-defined bijection.

For any z € ﬁg, we have
voy = of £y of Hn

and

xpf:xf:ngRxg:xﬁBgﬁBa,

and so zpy € H, so that py is well-defined.

It is easy to see that py is injective. Since if z1, 29 € ﬁg and x1pf = Tapy,
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then z1f = zof. We have

T =119 = 119f9 (f D 9)

=x1f9=122f9 = 129f9 = 129 = 2.

To show py is surjective, we suppose that z € H, = Zf N ég. Then we have

2g=z2fgR2f=2Rpg  (faRf)

and

29 Lp fg L g,

and so zg € ﬁg. Also, zgpy = z9f =zasgf R g Ry . Thus, py is a bijection.
By a similar argument, we show that A, : H F H, is a well-defined bijection.
(iii) Suppose that a,b € Z. By (i), there exists ¢ € Z such that a Lp ¢ Rp b.
Also, there exists f,g € B* such that f D e D g and ¢ € Zf N }N%g. By (i), we
have
|[Ho| = [Hy| = [He| = |Hy| = |H,|.

(tv) Suppose that g, h € B* are such that ﬁg and H, are contained in Z.
Then by (i), there exists a € Z such that g Lp a Rp h. By (ii), py : Hy — H,
and \j, : ﬁg — H, are bijective. Using the same method as (ii), we can show
that \g : H, — ﬁg is the inverse of A,. Then pyA, : Hy, — ﬁg is a bijection. By

Lemma 3.5, ﬁh and ﬁg are monoids. If z1, 2, € ﬁh, then
(X122) pgAg = gT1%29 = gr1hTag (h Ry x2)

= gr1hgghtsg (h D g)

= 92199729 = (T1pgNg)(T2pgNg).

Hence p,A, is an isomorphism, and so Hj, is isomorphic to H,. O

We pause to make a short comment on Lemma 8.8. If e, f € B* with e D f,
then by (iv), prAs is an isomorphism from H, onto H 7. It is easy to see that Z
is a union of Hp-classes and due to part (1), Z can be depicted by an egg-box

picture.



154

Lemma 8.9. Ife, f € B* and H = R.NLs #0, then H is an (H,, ﬁf)—bisystem

with respect to the multiplication in S.

Proof. Suppose that z € H=R.n Ef and t € H,. Then
tx ﬁg te=1 7A€B e

and
t:EZB e:)s:a:ENB f,

and so tz € H. Dually, we show that for any u € ﬁf, zu € H. Since the
multiplication in S is associative, we have t(zu) = (tz)u. Thus, H is an (H,, Hy)-

bisystem. 0

Lemma 8.10. Suppose that e, f € B* are such thate D f. Ifa € L. (resp. ée),
then Zfﬂéa # 0 (resp. Efﬁza # () and there exists a bijection 0 : H, — f/fﬁﬁ’a
(resp. 0 : Hy — RyNL,) such that (xt)8 = (26)(tpsAy) (resp. (tz)0 = (tprAs)zh),
where v € H,, t € H,. In addition, if a € }N%g (resp. Eg) for some g € B*, then
(rz)8 = r(x0) (resp. (zr)0 = (x0)r) for allz € H,, r € ﬁg.

Proof. f e D fin B* and a € L., then f L ef R e, and so af = aef Rpaec=a
and af = aef Ly eef =ef L f so that af € Ly N R,. Thus Ly N R, # 0.

We now claim that py : H, — Zf N R,, given by xpy = af for all z € H,,
is a bijection. Since if x € ﬁa, then = € L., and so by the above statement, we
have zps € Zf N R,.

To see that py is injective, we suppose that z1,zy € ﬁa and z1pf = @2py.
Then x1f = 2o f, and so

r1 =1z = T16fe (eD f)
=z fe (a:l € Ee)
= xofe = xg9efe = xoe = 19
so that py is injective.

For any y € Efﬂéa,wehaveye:yfeﬁg yf:yﬁgaandyefg feLelpa,
and so ye € H,. Also, (ye)pr =yef =yfef =yf =y. Thus, ps is surjective.
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Let x € ﬁa and t € ﬁe. By Lemma 8.9, we have xt € ﬁa. We also have that

(xt)pf = atf = wetf (x € Ee)
= zefetf (e D f)
:;)jftf (IGZ@, teﬁe)
= (zps)(tpsAs)-

Finally, if g € B* and a € ﬁg, then H, and Ef N R, are both left ﬁg—systems and
for z € H,, r € H, we have (rz)p; = rzf = r(zpy). O

Let I (resp. A) index the non-zero Ry (resp. Lp)-classes of S. For i € I
and A € A, we will denote the intersection of R; and Ly by H;. Then

S\A{0} = [ J{Hir: (i, ) € T x A},
Let I' index the D-classes of B. For each o € I', we define
I,={iel:D,NR;+#0}

and
Ao={N€A:D,NLy#0).

We remark that for any ¢ € I, there exists a unique « € I' such that ¢ € I,,.
Since each Rp-class of S contains at least one idempotent lying in B and I’
indexes the D-classes of B. Dually, for any A € A, there exists a unique a € T’
such that A € A,. Thus, if a, § € I with a # 3, then [,NIz = 0 and A,NAz = 0.

Hence, I' indexes partitions of I and A as follows:
P(I)={Il,:a€T}and P(A) ={A,:a €T}

Obviously, if an Hp-class H contains a distinguished idempotent e, then
there exists « € T" and (i,\) € I, x A, such that H = R; N L. Conversely,
each Rp-class and each L£p-class contains a distinguished idempotent, so for
each a € " and e € D,, we can choose a pair (i(a), A(«)) € I, x A, such that

Hioyr@) = Rig) N ZNL,\(OC) is an ’;-LVB—class containing e. By Lemma 3.5, ﬁi(a),\(a) is
a monoid. We denote it by M, or T,.
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By Lemma 8.8 (ii), if e D f in B*, then H, is isomorphic to ﬁf, and so
for any « € I', the monoid structure of T, is independent of the choices for Hp-
classes containing a distinguished idempotent, indexed by a pair (i, A) € I, X A,.
For convenience, we will use g, to denote the distinguished idempotent contained
in T,,. Certainly, g, is the identity of T,.

Notice that for any o € I" and for each pair (i, \) € I, x A, H;\ # 0 by
Lemma 8.8 (7). According to Lemma 8.8 (i7), there exist distinguished idempo-
tents ri* and ¢§ in ﬁi,\(a) and ﬁi(a) A, respectively, such that x — r{*z is a bijection
from ﬁi(a))\(a) onto f[/i,\(a) and y — yqy is a bijection from ﬁi)\(a) onto H;y. Thus
once we have choose {r{ € B*:i€l,, a €'} and {¢f € B*: A€ A,, a €'}
we have a unique expression r&xqy (z € T, = ﬁi(a),\(a)) for each element a of
H;y, where (1,\) € 1, X A,

For o, 8 € I' with o # 3, we put Mys = ﬁi(a))\(g). Notice that for any
(1, A) € I, x Ag, H;y # 0 if and only if ﬁi(a),\(g) # () by Lemma 8.10. Assume that
M,z # (. Then by Lemma 8.9, M, is a (T,, T)-bisystem. Also, if (i, \) € I, xAg
and 7', qf are distinguished idempotents in ﬁi)\(a) and ﬁi(g) A, respectively, then
by Lemma 8.10, we have that x — xqf is a bijection from ﬁi(a))\(ﬁ) onto ﬁi(a))\
and that y — r{'y is a bijection from ffi(a) » onto ?IZ-,\. Hence every element a of
H;y with (i,\) € I, x A may be written uniquely as r®mqy, where m € M,p.
Further, H;y is a (T4, Tp)-system under the actions

to - (r{'mal) = r{'tama and (rfmqy) - ts = rimtsa),

and so H,), is (T4, T)-isomorphic to M,g, that is, there exists a (T, 1j3)-isomorphism
from ﬁl xonto M. In addition, it follows from Lemma 8.8 and Lemma 8.10 that
the bisystem structure of M, is independent of the possible choices for T;, and
Tp.
We now put
M ={M,s: (a,p) e ' x I'}.

Lemma 8.11. The set M is a partial semigroup.

Proof. Let a,b,c € M \ {0}. Then there exist a, 3,7,0,n,& € I such that a €
Mo, b € M,s and ¢ € M,.. Note that a* € Dg, bt € D,, b* € Ds and ct € D,.
Then ab is defined if and only if ab # 0 if and only if a*b' # 0 by Lemma 8.1. As
B is primitive, a*b! # 0 if and only if a* D b', if and only if 3 = . If (ab)c is
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defined, then ab # 0 and (ab)c # 0, and so 8 = . By Lemma 8.5, ab Lz b, and
so (ab)* L b* so that (ab)* € Ds. From (ab)c # 0, we obtain that (ab)* D c', and
s0 6 = 1. Thus, bc is defined and by Lemma 8.5, bc Ry b so that (be)t R bT, and
so (be)t € D,. As v = 3, we have that a(bc) is defined. Since the multiplication

of S is associative, we have (ab)c = a(bc). Dually, if a(bc) is defined, then we
have (ab)c is defined and (ab)c = a(bc). O

We now define P to be the A x I matrix (py;), where for (A7) € I, x Ag,
Dri = qﬁ‘riﬁ. Now ¢f € ﬁi(a),\ and Tf € ﬁi/\(ﬁ) so that ¢f € éi(a) and rf € E,\(B),
and hence either qfrf = 0 or by Lemma 8.5, qirf € ﬁi(a) N Z)\(g) = ﬁi(a))\(g) =
M,s. Consequently, any non-zero entry in («, 5)-block of P is a member of M,z.

We now have the necessary ingredients to form a blocked Rees matrix semi-
group M® = MO(M;I,A,T; P).

Lemma 8.12. The blocked Rees matriz semigroup M° = M°(M; I, A, T; P) con-
structed above satisfies (B) and consequently, M°(M;I,A,T; P) forms a WO-B

blocked Rees matriz semigroup.

Proof. 1t is sufficient to show Condition (B) holds. Let o, € I' and (A7) €
A, x1,. Since ¢§ and 7’2-6 are distinguished idempotents in B* and B forms a band,
it follows that py;, = qﬁ‘r? # 0 if and only if & = 3, and so all non-zero entries in
P are in the diagonal blocks and each non-zero entry from T, is the identity g, of
T,. Furthermore for any a € T and (i, A) € Iy X Au, Pai = @377 = gaga = ga # 0,
and so Condition (B) holds. O

Finally, we have:

Theorem 8.13. If S is a primitive weakly B-orthodox semigroup, then S is

isomorphic to a WO-B Rees matriz semigroup.

Proof. Observe that S\ {0} = U{H; : (i,A) € I x A} and thus the map ¢ :
M? — S defined by 0¢ = 0 and

(i,a, \)p = raq}

for (i,\) € I, x Ag and a € M,z is a bijection.

It is routine to show that ¢ is a morphism. O
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We now consider the abundant case. An abundant semigroup is called prim-
itive if the non-zero idempotents are primitive under the natural partial order on
the idempotents. As a special case of Theorem 8.13, the following result cited

from [10] can be derived. It is a little different in Fountain’s paper.

Theorem 8.14. [10] A semigroup S is a primitive abundant semigroup with
zero, whose set of idempotents forms a band if and only if it is isomorphic to a
blocked Rees matriz semigroup M°(M; I, A, T; P) satisfying (C), (R) and (IB):

(C) if a,a1,a0 € My, b,b1,by € Mg, then aby = aby implies by = by;
a1b = asb implies a1 = ag;

(R) if Mag, Mgo are both non-empty where o # [3, then aba # a for all
a € Mg, b€ Mg,;

(IB) all non-zero entries of P are in the diagonal blocks, and if (i, \) € I, XA,
then p;x s the identity g, of T,.

We remark that in [10], a blocked Rees matrix semigroup M%(M; I, A, T; P)
is a PA blocked Rees matriz semigroup if (C), (R) and (U) hold:
(U) for each aw € T" and each A\ € A,(resp. i € I,) there is a member i of

I, (resp. A of A) such that py; is a unit in T,.
Note that if Condition (IB) holds, then Condition (U) holds.

8.4 'Trace of weakly B-orthodox semigroups

First, we define the trace of a weakly B-orthodox semigroup to be SC = (S, -),
as in Chapter 7. Remark that SC contains BC = (B, ) as a substructure, where
BC is the band B with multiplication restricted to D-classes.

Now let P be any generalised category over B. Define ® on P° = PU{0} by
the rule that

roy— x-y if dr-yin P
0 otherwise.

Lemma 8.15. The set (P°,®) is a semigroup containing a band (B°,®) as a
subsemigroup, where (B, ®) is the 0-direct union of the D-classes of B. Further,
P is primitive weakly B°-orthodox, in the sense that distinguished idempotents

are all primitive in B°.
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Proof. Let x,y,z € P°. If any of x,y, 2 is 0, then clearly x®(y©®2) = (zOy) Oz =
0. Suppose that z,y,z € P. Then

z®(y-z) ifdy-z
rTO(Yyoz2) = (y-2) Y

|
|

=(rOy

otherwise

0
x-( if Jy-zand Jz- (y- 2)
0 otherwise

z-(

0

y-z)
(y-z) ifJy-zand Jz-y
otherwise
) Oz

for reasons of symmetry. Clearly B is a subsemigroup of P°.

Let z € P°. If # = 0, then  Rpo 0. If z € P, then choosing e € d(z) we
have Je-x and e- 2 = x, sothat e ® 2z = x. If f € BY and f ® 2 = x, then
clearly f € B and 3f - x with f -2 = 2. Hence Ry = d(x) = R, so that e R f
and f ©® e = e. Hence & Rpo e and it follows that P is weakly B%-abundant.

Notice that  Rpo f where f € B if and only if d(z) = R;. If follows that
2 Rpo y if and only if d(z) = d(y). Thus for any z € P, z ® z = 0 if and only if
20y =0,andif z0x #0, then d(z ©®x) = d(z) = d(2 ©y). It is clear that (C)
holds and P° is weakly B%-orthodox. It is immediate that P is primitive. [

Let S be weakly B-orthodox. From Lemma 7.17, SC = (S, -) is an inductive
generalised category over B. Then SCV is a primitive weakly B°-orthodox semi-
group; SC is also sometimes called the trace of S. From Lemma 7.18, SC, and
with a little adjustment, SC°, can be endowed with an inductive structure from
which we can recover S.

The natural partial orders in any primitive weakly B-orthodox semigroup

with 0 are trivial, in the following sense:

Lemma 8.16. Let S be a primitive weakly B-orthodox semigroup with 0, where
0 € B. Then B is a 0-disjoint union of D-classes. If x,y € S, then x < y if

and only if t =0 or z = y.

Proof. We know that B is a semilattice Y of D-classes D,, a € Y. We must
have that Y contains a zero 7 and D, = {0}. If 7 < a < 3, let e € D, and
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f € Dg. Then fef € D, and 0 < fef < f, a contradiction. It follows that B is
a 0-disjoint union of its D-classes.

If v # 0 and z </ y, then z = ey for some ¢ € B and 27 <g y!. Thus
iyt < ¢ so that 2Tyt = yf. Also, 27 <z e so that similarly, zfe = zf. Now
r=ecy=2xaley =aly =alyly = yly = . 0

In view of Theorem 8.13, we have:

Theorem 8.17. If S is a weakly B-orthodoz semigroup, then SC° is isomorphic
to a WO-B Rees matriz semigroup M°(M; I, A, T; P) satisfying (B).



Chapter 9

Beyond orthodox semigroups II:
weakly B-orthodox semigroups

and categories

The aim of this chapter is to construct weakly B-orthodox semigroups via an
adjustment of Armstrong’s method for concordant semigroups as mentioned in
Chapter 6. Our modifications are to allow for the fact that B is a band, and to
compensate for the lack of an idempotent connected condition.

For convenience we make the convention that B will always denote a band.
Green’s relations and their associated pre-orders will always refer to B, unless

stated otherwise.

9.1 Weakly orthodox categories

The purpose in this section is to introduce the notions of a band category and
a weakly orthodox category over a band B, and to present a pair of pre-orders
which are deduced from the definition of band categories.

Let B be a band. A subset K of B is a representative of B if maps ¢ : K —
B/L given by e — L. and ¢ : K — B/R given by e — R, are bijective. So for
any e € B, there exists a unique k € K such that e £ k in B and there exists a
unique h € K such that e R h in B. For convenience, we will denote k£ and h by

e* and e™, respectively.

161
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Definition 9.1. Let P be a category in which Ob(P) is the underlying set of
a band B, and let K be a representative of B. Suppose that for e, f € B
with eD f, there exists a distinguished morphism [e, f] from e to f such that
[e, e] = 1., the identity associated to the object e. Then P is a band category if
the following conditions and their duals (OB1)°, (OB2)°, (OB3)° and (OB4)° of
(OB1), (OB2), (OB3) and (OB4) hold:

(OB1) if z € P and e € B with e <, d(z), then there exists an element .|z
in P, called the restriction of x to e, such that d(.|z) = e and r(.|z) <, r(z);
also, if e = d(z), then r(.|z) £ r(x) and .|z - [r(c|z),r(z)] = z;

(OB2) if x € P and e, f € B with e <, f <, d(x), then .|(¢|z) = .|z;
moreover, if e £ f <, d(z), then [e, f] - flz = ¢|z;

(OB3) if z,y € Pand e € B with 3z-y in P and e <, d(x), then .|(z-y) =
o+ fly, where f = r(,|z);

(OB4) ife, f,h € Bwithe D f and h <. e, then ,|[e, f] = [h, (hf)"];

(OBb) if e, f,g € B are such that e D f D g, then [e, f] - [f, 9] = [e, g].

We make some comments on the above definition. In (OB2), since [e, f]-¢|z =
¢|x we obtain that r(¢|z) = r(.|z). In (OB3) since Jz-y we know that r(z) = d(y).
By (OB1), f =r(.|z) <, r(z) = d(y), so that ;|y exists and d(s|y) = f. Hence
el ¢ly is defined. In (OB4) since e D f we obtain that e R ef. Hence he R hef,
that is, h R hf as h </ e, so that h R hf L (hf)*, and consequently, h D (hf)*.
Hence [h, (hf)*] exists.

We note that a band category P depends on the choice of the band B which
is the set of objects of P. In order to emphasize that the set of objects is a
particular band B, we can express the term ‘band category’ as ‘band category
over B’

Let P be a band category over B. Using the technique in [1], we define a
relation p on P by the rule that for all =,y € P,

zpy < d(z) Rd(y), r(z) Lr(y) and z - [r(z), r(y)] = [d(z),d(y)] - v,
that is equal to

zpy < (Fu,veB)vRd(y), r(z) Luand z-[r(x),u] = [v,d(y)] - y.
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We note that if z py in P, then we have that

- [r(x),r(y)] = [d(z),d(y)] -y

2 [r(@),x ()] - [r(y), v(@)] = [d(2), d()] -y - [r(y), v(2)]
v [r(x),r(2)] = [d(z).d(y)] -y [r(w). ()] (by (OB5))
&z =[d(z).dy)] v [r(y),x()] (Ir(@). r(@)] = Legw))-

In particular, if z,y € P are such that d(z) = d(y), then z p y if and only
if r(z) £ r(y) and

x=1y-[r(y),r(z)] or indeed x - [r(z),r(y)] = v.
Dually, if r(z) = r(y), then = p y if and only if d(z) R d(y) and
x = [d(z),d(y)] -y or indeed y = [d(y),d(z)] - z.

Built on the above statement, it is easy to see that for any e € B, [e™, €] p 1.
Since
d([et,e]) =e" Re=d(1.), r([fe,e]) =e=r(l.)

and

le,et]-[et,e] = [e,e] = 1,
we have that [eT, e] p 1.. Dually, [e, e*] p 1..

Lemma 9.2. The relation p defined above is an equivalence on P such that if
x,y € Mor(e, f) and x p y, then x = y. In particular, no two identities of P are

p-equivalent.

Proof. Clearly, p is reflexive.
In order to show that p is symmetric, we assume that x,y € P with x p y.
Then d(z) R d(y), r(z) £ r(y) and z - [r(x),r(y)] = [d(z),d(y)] - y. Since R and
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L are symmetric, [r(y),r(x)] and [d(y),d(z)] exist. Thus,

- [r(2),r(y)] = [d(z),d(y)]

—

Y

=z = [d(z),d(y)] -y - [r(y),r(z)] (by the statements above Lemma 9. 2)

= [d(y),d(@)] - = = [d(y), d(z)] - [d(z),d(y)] - y - [r(y), r(2)]

= [d(y),d(@)] - = = [d(y),d(y)] - y - [r(y), r(2)] (by (0B3))

= [d(y), d(@)]- 7 = y - [e(y),v()] ([d(y), d(w)] = Lagy).
So, y p x.

Finally, if x p y and y p z, then d(z) R d(z) and r(x) £ r(z) as R and L
are transitive. Hence, [d(z),d(z)] and [r(z),r(z)] exist. Then we have that

v [r(@),v(2)] = 2 - [r(2), x(y)] - [e(y),x(2)] (by (OB5), r(z) Lr(y) £ v(z))
— [d(x),dW)] - y - [(y),x(2)] (v 09)
= [d(z),d(y)] - [d(y),d(2)] - 2 (yr2)
— [d(@).d(2)] -2 (by (OB5)).
Thus, x p z.

As [e,e] = 1. for all e € B, certainly, if d(z) = d(y), r(z) = r(y) and x p v,
then x = y. O

We now present a pair of pre-orders on a band category over B built on the
relation p given above.
Let P be a band category over B. We make use of the restriction and co-

restriction of P to define relations <, and <, by the rule that for all z,y € P,
x <,y if and only if x p .|y for some e € B,

and

x <,y if and only if z p y|; for some f € B.
Lemma 9.3. The relations <, and <, are pre-orders on P.

Proof. We first show that <, is a pre-order on P. Notice that for any x € P,
if e = d(z), then [d(z),d(.]z)] = [e,e] = 1., and so <, is reflexive by (OB1).
It is sufficient to show that <, is transitive. Suppose that x,y,z € P with
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r <, yand y <, z. Then there exist e, f € B such that z p .|y and y p f|z. Thus,
dz) Re<,d(y) R f <,d(z),andsod(z) Re=ed(y) Ref. Set g =ef. Since
g=-cef <¢ f < d(z), 4|7 is well-defined. Now our aim is to show that = p 4|z.

Fromy p f|z, we have d(y) R f, x(y) Lx(;|2) and y-[r(y), r(s]2)] = [d(y), f]-(s]2).
Hence, y = [d(y), f] - f|z - [r(¢]|2),x(y)]. For .|y and |z to exist, we have that

e <y d(y) and f <, d(z), so that .|[d(y), f] exists and .|[d(y), f] = [e, (ef)*] by
(OB4). As (ef)* Lef <p f <. d(z), we obtain that (.s)«|(s|2) is defined and
en*|(f12) = ez by (OB2). Then we have that

dy = el (). f1- 1z - [e(12), v()
(), £ nl(s12) - £llx(sl2), 2(w)]
(by (OB3), h=r(.[[d(y), f]), k =r(u|(s]2)))

e

ez (f)] - epye|(512) - [k, (kr(y))*] (by (OB4))
e, (ef )] - epyr|2 - [F 7]

(by (0B2), k =r(l(s]2)) <c r(s]2) £ x(1)).
Hence, r(.|y) = k*. From z p .|y, we have that r(z) Lk*, d(z) R e and

- [r(x), k] = [d(x), e

“ely

= [d(z), €] - [e, (ef)"] - epylz - [k, k7]
= [d(x), (ef)"] - (epylz - [k, k7] (by (OB5)).
Thus
z-[r(x), k] =z - [r(z), k] - [k*, K] (by (OB5))
= [d(x), (ef)"] |2+ [k, k7] - [, K]
=[d(x),g]- g, (ef)] - pplz- [k, k] (d(x) R g £ (ef)*, by (OB5))
= [d(2),9] - (9, (€f)] - (ery|2 (k=r )
= [d(),g] |2 (by OBz)

It follows that k = r(y4]z). Asr(z) L r(|y) =k L k =r(y|2) and d(z)Rg =
d(4|2), we have that = p 4|z. Hence, z <, z.
By the dual argument, we show that <, is a pre-order on P. O
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We remark that if B is a semilattice, then the relation p on P is precisely
the identity relation so that relations <, and <, may be expressed as follows: for
all x,y € P,

x <, yifand only if x = .|y  for some e € B,

and

r <, yifand only if z = y|;  for some f € B.

In addition, the relations <, and <, become partial orders. Since if z <, y <, =,
then x = .|y and y = f|z for some e < d(y) and f < d(z). We have that
d(r) = e <d(y) = f < d(z) so d(z) = d(y). By (OB1), r(ayly) £ r(y), and
so r(aw)|y) = r(y) as B is a semilattice. Thus, z = .|y = q()ly. By (OB1),
aw) |y - [rlawy) r(y)] = y, so that

v=cly=awly=awlv Flawy) 1=y (rawl) =r@©)).

We pause here to make some further comments on Definition 9.1. In (OB1)
let e = d(x). Then r(.|z)L r(z) and z = .|z - [r(c]|z),r(z)]. Hence due to the
definition of p, we obtain that = p .|z. This fact makes it impossible to define
a partial order <,” on P by the rule that for all z,y € P, z <, y if and only if
x = .|y for some e < d(y) because it is not reflexive; even if x = .|y is replaced
by = p .|y, we still cannot guarantee that <, is a partial order since <,’ becomes
reflexive but not anti-symmetric.

As an analogue of inductive generalised categories over B in Chapter 7, we
will make use of the relation p given above to define weakly orthodox categories

over B, which are built on Definition 9.1.

Definition 9.4. A band category P over B is weakly orthodox if for any x € P
and e, f € B, cu|(x|gr) p (en|2)|vr, where g = r(z), h = d(z), v = d(z|yr) and
v =r(enl|T).

It is worth considering how the class of weakly orthodox categories over bands

forms a category, together with certain functors referred to as orthodox functors.

They are described in the next definition.

Definition 9.5. Let P; and P, be weakly orthodox categories over By and B,

respectively. An orthodozx functor F' from P; to P, is a functor consisting of a
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pair of maps, both denoted F, from By to By and from P; to P», such that the
following conditions and the dual (S3)° of (S3) hold:

(S1) the map F' is a morphism from B to Bs;

(S2) if e, f € By with e D f, then [e, flp, F = [eF, fF|py;

(S3) if z € P, and e € By with e <, d(z), then (.|x)F p.r|zF.

We pause here to make a short comment on Definition 9.5. In (S2), if e, f €
By with e D f, then by (S1), eF' D fF, so that both [e, f]p, and [eF, fF]p, are
defined. In (S3), if e <, d(z), then eF’ <, d(zF’) as F'is a functor, so that both
|z and .p|zF are well-defined. In addition, the fact that (.|z)F p.p|zF gives in
particular that r((.|z)F) Lr(.p|xF). For d, we have the corresponding result as
F' is a functor.

The next lemma is useful for Lemma 9.7.

Lemma 9.6. Let P, and P, be weakly orthodox categories over By and By, re-
spectively and let F' : P, — P, be an orthodoz functor. If x p y in Py, then
xF p yF in Ps.

Proof. Suppose that z,y € P, and x p y. Then
d(z)Rd(y), r(x) Lr(y) and z - [r(z), r(y)] = [d(x), d(y)] -y

= d(z)FRd(y)F, r(x)F Lr(y)F and
ek - [r(z), r(y)|F = [d(z),d(y)|F -y F

= d(z)F Rd(y)F, r(z)F Lx(y)F and
oF - [r(x)F,x(y) F] = [d( )F.d(y)F]-yF  (by (52))
= d(zF)Rd(yF

:_/
—
8
B
D

=

@
®
=
o

)
aF - [r(zF), r(yF)] = [d(aF), d(yF)] - yF
(b F being a functor).

Hence, xF p yF'. O

Lemma 9.7. Let P, and P, be weakly orthodox categories over By and Bs, re-
spectively, and let Fy : P — P, and Fy : P, — P53 be orthodox functors. Then
FiF, : P, — P3 is an orthodox functor.

Proof. (S1) Certainly, F} F; is a functor from P; to P; and a morphism from B
to Bg.
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(S2) Suppose that e, f € B; are such that e D f. Then [e, f]p, is defined
and using (S2) for F} and F5,

[6a f]P1F1F2 = ([€> f]PlFl)Fz = [€F1,fF1]P2F2 = [eFleijle]Ps-

(S3) Suppose that x € P, and e € By with e <, d(z). According to the
comment succeeding Definition 9.5, we have that .|z, .p|zF) and g g |TF Fy
are well-defined. By (S3), (¢|2)F1 p er |2 F1 and (e, |2F1) Fy p epym |2 F1 Fy. From
(e|2)Fy p er, |z Fy, we obtain that (.|x)F1Fy p (ep |2 F1)F2 by Lemma 9.6. Hence,
(e|2)F1Fy p ey |0 FL F. O

An immediate observation from Lemma 9.7 is that the class of weakly or-

thodox categories over bands and orthodox functors forms a category. We refer

to it as WQOC.

9.2 Construction

Our aim in this section is to build a weakly B-orthodox semigroup from a weakly
orthodox category over B. This result is analogous to Armstrong’s work [1]
building a concordant semigroup from an inductives cancellative category. Let P

be a weakly orthodox category over B. For any =,y € P, we define

T QY = Zlr@)de) * r@)dw) Y-

Before we give a list of lemmas which are necessary to prove our main the-
orem, we make a comment that since our set of idempotents forms a band it is
an advantage to use the product ® given above to avoid the notion of sandwich

set, which is needed in [1].

Lemma 9.8. If P is a weakly orthodox category over B and x p ', y py' in P,
thenz @y pa' ®y'.

Proof. Suppose that x p 2’ and y p 3y in P. Then

d(z)R d(2),r(z) L r(z") and x - [r(z),r(z')] = [d(x),d(z")] - 2/,
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whence o = [d(z),d(2")]-2’-[t(z'), £(x)]. The same happens to y and ¢ as follows
d(y)R d(y),r(y) L r(y") and y - [r(y),x(y)] = [d(y),d()] - ¥/,
whence y = [d(y),d(y)] - " - [r(y), r(y)]. So
r(z)d(y) R r(z)d(y’) £ r(z")d(y’) R r(z)d(y).

As r(z)d(y) <z r(x), |x(z)a@) is defined and we have that

Zlr@)ae)
= ([d(z),d(z)] - 2" - [r(2"), v (2)]) |r(@)aw)
= [d(z), d(@)]lk - (@'| (@ r@ay+) - [(r(@)r(@)d(y)) ", r(z)d(y)]
(by (OB4)°, (0B3)°, k = d(2/|ix(a ey )
= [(d(@)k) ", k] (2| w@nag+) - [(x(=")d ()™, ()d@ﬂ
(by (OB4)°, r(x) Lx(z"))

= [k7, k] (2| e@rawy+) - [(r(2")d(y)) ", r(x)d(y)]
(by (OB1)°, k <g d(2') R d(x)).

Similarly, we have that

r@d(y) [y = [r(z)d(y), (r(2)d(y)] - (e@aw)-1¥) - 19,97,
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where g = r(w@aw)+|y'). S

T QY = Tlr@)d(y) " r@)dm) |y

(
(
= [k, K] - (' e @hawn+) - [(x(
(e@awn1¥) - 19, 97] (by (OB5))
[(x(
(

= [k" k] -

.CL’/‘ (r(z")d(y))* )

(

[r(2")d(y"), (v(x
= (K7, K] (2"l @nyaw)) * (e@ndw)
= k7, K] - (2 ®y) 9,97

Obviously, d(z®@y) = kT Rk=d(2’®@y) andr(z®@y) =g* Lg=r(a’ ®@y). It
follows from the observation succeeding the definition of p that z®y p 2’ ®y’. O

=

(w@awy1¥) - 1991 (by (OB5))
y)-lg.g")  (by (OB2), (OB2)°)

i ~—
*

Lemma 9.9. Ifx,y € P with 3x -y in P, thenx @y p = - y.

Proof. If 3z -y in P, then r(x) = d(y). So

T QY = Tlr@)d(y) " r@dw)|Y = Tlr@) - dw) Y-

y (OB1) and (OB1)°, we have that [d(z),k] - (¢|r(2)) = x, where d(z) R k =

d(z|r@) = d(z ® y) and (a@|y) - [9,1(y)] = y, where r(y) L g = r(ayly) =
r(z ®y). Thus,

x‘r(w) = [kv d(l’)] -x and d(y)|y =Yy [I'(y),g]

So, z®@y = [k, d(z)]- (z-y)-[r(y), 9], that is, (x@y) - [g,x(y)] = [k, d(2)] - (zy).
Hence, x @y p x - y. O

The next lemma is an immediate consequence of Lemma 9.8 and Lemma 9.9.

Lemma 9.10. Let x,2',y,y’ € P be such that xpx’ andypy'. If x-y and 2" -y
exist in P, then x -ypx’ -y'.

Let P be a weakly orthodox category over B and let p be the equivalence
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given in Section 9.1. We define
PS = P/p,

and

rToy=zQUY,

where x,y € P and x denotes the p-class of P containing z.
We remark that by Lemma 9.8, the product o defined above is well-defined.

Our next task is to show that PS is a weakly B-orthodox semigroup, where
B={1,:e€ B}.

Lemma 9.11. Ife, f € B, then 1,0 1; = 1. Further, the map ¢ : B — B,
given by e = 1, for any e € B, is an isomorphism, where B = {1, : e € B}.

Proof. If e, f € B, then 1.0 1y = 1. ® 1;. Notice that

le @15 = (Leleg) - (efl1y)
= ([e,€ller) - (es £, 1)
= [(ef)" ef] - [ef; (ef)"] (by (OB4), (OB4)°)
|

(ef)*" (ef)] (by (OB5)).

Since (ef)" Ref L (ef)"and [(ef)",ef]-[ef,ef] = [(ef)T, (ef)*]-[(ef)",ef], we
obtain that [(ef)™, (ef)*] p [ef, ef], that is, 1. ® 1 p 1. Hence, 1. 0 1f = Iy,
and so ¢ is a morphism.

It follows from Lemma 9.2 that if e, f € B and 1. = 1y, then e = f so that

@ is injective. Clearly, ¢ is surjective. Consequently, ¢ is an isomorphism. O

Lemma 9.12. If P is a weakly orthodox category over B, then PS is a semigroup.

Proof. Suppose that z,y, z € P. Then

o(yoz)=roy®z

=T 0 Ylr)d(s) * r@w)d(=)|?
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=2 ® (Ylwae) *rwae?)
= Zlr@yu * vyl Ylrwae) © reae)!?) (u = d(y|r(y)d(z)))
= Zlr@)u * r(@)ul Ylrw)de) ol (ewae) 2)
(v = 2ol Wleace)). by (OB3)).

Since P is weakly orthodox, it follows that vgyu|(Y|r@)d(z)) £ (r@)dw)|Y)|ga(z), Where

g = T(r()dw)|y). Hence, if we put k = d((r(x dw)|Y)|gd(z)), then r(z)u R k,
v L gd(z) and

r(@yu| Ylrmae) - [v, 9d(2)] = [v(@)u, k] - (c@yaw) |¥) lgac),

whence
r@)ul Ylrwyae) = [E@)u, k] - (c@aw)¥)lgac) - [9d(2), v].

So, we go back to the beginning of this proof,

To(yoz)
= Zle(zyu - ([F(@)u, k] - (e@)aw)|Y)]ga(z) - [94(2),0]) - ol wyac) |2)
= Zle(zyu - ([1(@)0, k] - (c@)aw)¥)lgac) - [9d(2),0]) - o
)

|
E
(v = el Whwae)) <e r(y)d(z) < d(z), by (0B2))
(e@)dw) [¥)|gacz) - [9d(2),v] - 4|2
:x\m@ |y>|gd (lgd(2), 0] -u[2)  (kRr(z)u<g r(z), by (0B2)°)
= 2l - Goaw W) - gamlz  (9d(2) L v <g d(2), by (OB2))
= (@le(@aw) |k - t@aw|Y)lgde) * gdz)|2

(by (OB1)°, k = d((s@a@)|¥)lgacz) <r r(z)d(y) <g r(z), by (OB2)°)

= (x|r(r)d(y) “r(z)d(y |y)|gd(z * gd(z) |Z
(99(2) < 9 = Te@amy); ¥ = d((@pae|¥)lgac)), by (OB3)°)

0

Lemma 9.13. If P is a weakly orthodox category over B and x € P, then
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1d(x) RE T EE 11.(1,).

Proof. Let x € P. By Lemma 9.9, we have that

1d(:p) oxr = 1d(x) XRKxr = ld(m) ST =T.

Suppose that k& € B is such that 1 oz = z. Then

Irox=1,®@x = 1k|kd(:c) 'kd(x)|$

= [k, kllkd() * ka@)|T
(kd(2))*, kd(2)] * ka(a) | (by (OB4)°).

So d(x) R (kd(x))* R kd(x), which implies that kd(z) = d(z). Thus

Tx o Ta) = Tha) (Lemma 9.11)
— Ta@) (kd(z) = d(z)).

Hence, © ﬁg la(a)-

By the dual argument, we show that x ENE Li(z)- O

Now, using Lemma 9.11 and Lemma 9.13, we obtain a criterion for ﬁg and
ENE on PS.

Lemma 9.14. Let P be a weakly orthodox category over B and x,y € P. Then
(i) TR5¥ in PS if and only if d(z) Rd(y) in B;
(i1) T Lgy in PS if and only if v(z) Lx(y) in B.

Lemma 9.15. If x € P and u,v € B are such that v R v, then d(z|yz)) =
d(l’|r(x)v).

Proof. Suppose that x € P and u,v € B are such that u R v. Then r(z)u R r(x)v.
So,

L@y = Zle(y - (@), v(2)u] ([r(m)u, r(z)u] = 11‘(1‘)1},)
= 2|y - [0(@)u, v()0] - [r(2)o, v(2)u) (by (OB5))
= Zleay - (20, 2(2)U] (r(z)u R x(z)v, by (OB2)°).

Hence, d(z|y(@)) = A(@|r(z)0)- -
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It is a convenient position from which to build our main theorem.

Theorem 9.16. If P is a weakly orthodox category over B, then (PS,0) is a
weakly B-orthodox semigroup, where B = {1, : e € B}.

Proof. In view of Lemma 9.12 and Lemma 9.13, it is only necessary to show
that PS has (C). Suppose that & Rg § and Z € PS. We have that zZ oz =
@ = Zlr(2)d(@) “re)d@)|T. Similarly, Zoy = 2@y = 2|r)dw) * r)dw)|y- As
T Ry y, we obtain that d(z) R d(y) from Lemma 9.14, and so by Lemma 9.15,
d(2]r(z)d@)) = d(2le(2)ay)). It follows from Lemma 9.14 that Z oy ﬁg zox, and

consequently, Rz is a left congruence. Dually, L5 is a right congruence. O

We end this section by producing an admissible morphism between weakly
B-orthodox semigroups from an orthodox functor. This appears in the next

lemma.

Lemma 9.17. Let P, and P, be weakly orthodox categories over By and B,
respectively, and let F' : P, — Py be an orthodox functor. Then the map F'S :
P,S — P,S defined by the rule that F'S = xF, where & € P,S and v € P, is an
admissible morphism. Further, if Fy : P, — P and Fy : P, — P3 are orthodox
functors, then (F1Fy)S = F1SF»S.

Proof. In view of Lemma 9.6, if z = y in P;S, that is, x py in Py, then zF pyF
in P5. Hence, F'S is well-defined.

We now show that F'S is a semigroup morphism. Suppose that z,y € P;.
Then

("Z' © ﬂ)FS = (‘ﬂr(m)d(y) : r(w)d(y)|y)FS

= (Z|r@d() " r@)dw) |[Y)F
= (Tr@)yaw) F (c@aw [v) F

= 2F|x@)dw)F * (e(@)dw)F|yF (by (S3) and Lemma 9.10)
= 2F vy rd@)F * r(z)Fd@y)F|YF (by (51))

= 2F|vzr)d@wr) * r@r)dwr) |y F

=tF®yF

TP oyF

=xFSoyFS.
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Next, we show that F'S is admissible. For any x € P;, we have that

Lag) ﬁgl T Z§1 Lr(a)- Then

Dually, we have that I, F'S [,Ngz TF'S.

Finally, 1.F'S = 1,F = 1.r as F' is a functor, so that B{F'S C B,. Since
F : By — Bs is a morphism, by Lemma 9.11, we have that F'S is a morphism
from B, to Bs.

To sum up, we have that F'S is an admissible morphism from P;S to P,S. [

Consequently, S : WOC — WOQ is a functor by Theorem 9.16 and Lemma 9.17.

9.3 Correspondence

In this section, our purpose is, starting with a weakly B-orthodox semigroup, to
build a converse to Theorem 9.16. These results present a correspondence between
weakly orthodox categories over bands and weakly B-orthodox semigroups.

Let S be a weakly B-orthodox semigroup and let K be a representative of
B. For any ¢ € B, we will use ¢* and e to denote the elements of K which are

L-related to e in B and R-related to e in B, respectively. Set
SC={(e,x,f):eRga Ly f, e,fe BbCBxSxB.
We put
d((e,z, f)) = e (abbreviated to d(e,z, f) = e)

and
r((e,z, f)) = f (abbreviated to r(e,x, f) = f)

for all (e, z, f) € SC, and define a partial binary operation - on SC by the rule
that

(6,113’, .f) ’ (fayav) = (6,1”3},2}),
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where (e, z, f), (f,y,v) € SC and zy is the product of x and y in S. If e, f € B
with e D f, then we define [e, f] = (e, ef, f). Obviously, [e, f] € SC. For any
(e,z,f) € SCand u,v € B with u <, e and v < f, we define

Wz, f) = (u,uz, (uz)*) and (e, z, f)|, = ((2v) T, zv,v).

Lemma 9.18. The set SC is a weakly orthodox category over B with restriction

and co-restriction defined above.

Proof. 1t is easy to see that SC forms a category with set of objects B and
morphisms the triples as given. For any e € B, [e,e] = (e, e, e) is the identity
map associated to e.

(OB1) Suppose that (e,z, f) € SC and v <, e in B. Then ,|(e,z, f) =
(u, ux, (uz)*) and so by Lemma 2.8, (uzx)* <, f. In particular, if u = e, then
o|(e,x, f) = (e,z,2*) and r(|(e,z, f)) = * Lp = Rp f, so that

e|(6,£L’, f) ) [ZL'*,f] = (6,1’,1’*) ) (ZL'*,I’*,f) = (6,1’, f)a

as required.
(OB2) If (e,z, f) € SC and g,h € B with g <, h </ e, then

al(nl(e, 2, 1)) = gl(h, b, (ha)*) = (g, ghx, (ghx)") = (9, 97, (97)") = gl(e, z, [).

In addition, if ¢ £ h <. e, then [g, h] is defined and [g, h] = (g, g, h). Thus

l9.h] - nl(e, . f) = (9, 9. h) - (h, ha, (hx)*)
= (9, ghx, (hx)")
= (9, gz, (hx)")
= (9,97, (97)") (g9 £h)
=gl(e, z, f).

(OB3) If (e,z, f), (f,y,v) € SC and u € B with u </ e, then
u|((€,flf, f) ' (fayvv>> = u|(€,flfy,’0) = (U,USL’y, (uxy)*),

u|(6a Z, f) = (u> uzx, (UZL')*)
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and by Lemma 2.8, (uz)* <, f, we have that

ey | (fs y,0) = ((uz)”, (uz)*y, ((uz)"y)”).
So

ul(e; 2, f) -y | (f,y,0) = (u, w, (we)”) - ((ue)”, (ue)*y, ((ur)"y)")

(
= (u, uzy, ((ur)"y)").

Since ux Lp (uz)*, we have that uzy Lg (uz)*y. Thus (uzy)* = ((uz)*y)*, and

S0 u|((e>$a f) : (f>y>'U)) = u|(6ax> f) ’ (um)*|(fayav)'
(OB4) Ife, f,h € B with eD f and h < e, then ,|[e, f] exists and

h|[€7 f] = h|(€7 efa f) = (h7 hefa (hef)*> = (hv h’fa (hf>*)

As h<peD f, we have that h = heDhf L (hf)*, and so [h, (hf)*] exists. In
addition, [h, (hf)*] = (h,h(hf)*, (hf)*). We note that

hf=nf(hf)" (hf L (hf))
= hhf(hf)* (h? = h)
= hehf(hf)* (h<ce)
= he(hf)* (heDhfD(hf))
= h(hf)* (h<ce),

whence, (b, hf, (hf)*) = (h, h(h[)*, (Rf)*), that is, 4|[e, f] = [h, (Rf)*].
(OB5) If e, f,g € B are such that e D f D g, then [e, f], [f,g] and [e, g] are
defined. Further, we have that

[evf]' [fag] = (evefvf)'(fvfgvg): (eveffgag>: (6,€g,g): [evg]'

Hence, (OB5) holds.
Finally, we show that SC is weakly orthodox. Assume that (e,z, f) € SC
and g, h € B. Then

(e, 2, Al = ((@fh)",afh, fh) = ((zh)", zh, fh),
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genyr 1((es 2, )l n) = geny+ [((xh) ™, 2h, fh)
= (g9(zh)™, g(zh) T xh, (g(xh) zh)*)
= (g(zh)*, gzh, (gzh)*) ((wh)* Rpxh),
selle,z, f) = (ge, gex, (gex)*) = (ge, gz, (g7)*)
and
(gel(es @, )] (gayn = (g€, 9, (92)) | (ga)*n

= ((gz(g2)*h)", gz(g2)*h, (9)*h)
= ((gzh)", gxh, (gz)*h)  ((92)* Ly g).

Notice that

A(gemy+ | (e 2, )] gn)) = 9(wh)* Ry gzh R (gzh)™ = d((el (e, 2, f))]garn)

and

r(yny+ (e, ) ) = (92h)* L geh L (g2)*h = ((gel (e 2, f))l(goyn)-

Further,
lg(xh) ™, (gzh) ™ (gel (e, 2, )l (gay

= (g(zh)*, (gzh)™, (gh)") - ((g2h) ", gzh, (9)*h)
= (g9(zh)", gzh, (gz)*h)
(9(xh)*, gzh, (gzh)*) - ((gzh)*, (gxh)*, (9)*h)
= gny+ (e, 2, [)lgn) - [(gzh)*, (9)"h].
Thus, g@ny+|((e, 2, F)ln) p (gel(€; 2, 1)) ga)en- O

In Section 9.2, orthodox functors between weakly orthodox categories over
bands give rise to admissible morphisms. In the following, we produce a converse
to this result and so provide a functor C : WO — WOC.

Lemma 9.19. Let S be a weakly By-orthodox semigroup and T be a weakly Bs-
orthodox semigroup. Suppose that 6 : S — T is an admissible morphism. Then
the map 0C : SC — TC given by the rule that edC = e and (e, z, f)IC =
(ef,z0, f0) is an orthodox functor. Further, if 61 : S — T and 0y : T — Q are
admissible morphisms, then (0,05)C = 6;C6,C.
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Proof. Clearly, 6C is a morphism from B; to By and it is a functor as it preserves
products, identities and the domain and co-domain of any morphism in SC.
(S2) Suppose that e, f € By are such that e D f. Then [e, f] = (e, ef, f),

and so

le, f10C = (e, ef, f)OC = (eb, (ef)0, f0)
eh,edfo, 0)
ed, 0]
edC, fOC]J.
(S3) If (e, z, f) € SCand u € By withu<, e, then ,|(e, z, f) = (u, uz, (ux)*),
and so (,|(e, z, f))0C = (ub, (uz)0, (uzr)*). In addition,

= (
= (

=
=

ugc‘(e, xZ, f)HC = u€|(€‘97 SL’H, f‘g)
= (ub, ufz0, (uhx0)*)
= (uf, (ux)d, ((ux)f)*).

Since 0 is admissible, ((ux)0)* £ (ux)*6 and

(uf, (ux)f, (ux)*0) = (uld, (ux)b, ((ux)d)*) - (((ux)d)*, (uz)*0, (ux)*0)

Hence, (u|(6a z, f))ec P u00|(6a z, f)ec
It is routine to see that (0;60,)C = 6;C6,C. O

We close this section by establishing a correspondence between the category
of weakly B-orthodox semigroups and the category of weakly orthodox categories

over bands.

Lemma 9.20. If S is a weakly B-orthodox semigroup, then there exists an iso-

morphism ng from S to SCS.

Proof. Let x € S and e, f € B with e Rz # L f. Then (e,z,f) € SC. We
define a mapping ng : S — SCS by z — (e, z, f). If u Ry« Lg v, then u R e,
v L fand [u,e]-(e,z, f) = (u,e,e) - (e,x, f) = (u,z, f) = (u,z,v) - [v, f]. Thus,
(e,z, f) p (u,z,v). Hence, ng is well-defined.

Clearly, ng is surjective. To show that 7g is injective, we suppose that z,y €
S with zng = yns. Then (e, z, f) = (g,y, h), where e Rex Ly fand gRpy Ly h.
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SoeR g, f L hand [e,g]|-(g,y,h) = (e,x, f)-[f, ], that is, (e,y,h) = (e, z, h).
Obviously, z = y.

We now show that ng is a morphism. Assume that z,y € S are such that
¢eRpa Ly fand g Rgy Lp h. Then zg Ry zy, and so (zg)T = (zy)T. Dually,
(fy)* = (zy)*. Thus,

)o(g,y,h) = (e, 2, ) ©(g,y, h)

» Dlsa - 1al(g,9,h)

)t g, f9) - (fg, fy, (fy)*)

v9)*,xgfy. () (vafy=afafey=xfgy = zy)
)
)

TNsyns =

oy, (fy)*)
Fay, (wy))  ((x9)* = (29)*, (fy)" = (xp)")

Finally, we note that ng preserves the distinguished band as

€nNs = (67 676) = 1_6

for all e € B. O
Conversely, we have:

Lemma 9.21. Let P be a weakly orthodox category over B. Then there exists
an isomorphism 1p from P to PSC, where an isomorphism between two weakly

orthodox categories means a bijective orthodox functor.

Proof. We define a map 7p : P — PSC by the rule that erp = 1., and z7p =
(Lag), T, L)) for all e € B = Ob(P) and x € P = Mor(P). Clearly, 7p maps P
into PSC.

Notice that the distinguished band of PS is B, which is the set of objects of
PSC. By Lemma 9.11, 7p : B — B : e — 1, is an isomorphism.

Now, we show that 7p preserves d and r. Suppose that x € P. Then by the

definition of 7p,

and

TTp = (1(1(1‘)7 j? 1[‘(1‘))7
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so that d(z7p) = l4() = d(x)7p and dually for r. Thus, 7p preserves d and r.
If 2,y € P with -y defined in P, then r(z) = d(y) and so x7py7p is defined
in PSC and

= (Ta@), T 7, L) (r(m) =d(y), Lemma 9.9)

which implies that 7p preserves products. Also, 7p preserves identities since
letp = (Ic, 1, Ie) = 11~ = 1¢p,. Thus, 7p is a functor.
Let e, f € B be such that e D f. Then [e, fltp = (I, e, f], 1f). As

eRef L fand [e,ef|- 1.5 = [e,ef] = [e, f] - [f,ef], we have that [e, f] = 1.;.
Thus,
le, flrp = (1e, 1ey, 1y)
= (1., 1. 0 15, 1y) (Lemma 9.11)
= [Le, 1]
= leTp, fp].

Hence, 7p satisfies Condition (S2).
To show that (S3) holds, we assume that € P and e € B with e <, d(z).
Then etp <, d(z)7p = d(z7p) as 7p is an isomorphism from B to B shown above.

Hence, .|z and .., |z7p are defined. Observe that (.|z)7p = (1 6,e|x Iy(,|2)) and

Ile el (fe.elle-cl2)) - (e<cd(@))
etel- o, (et e Jx))  (by (OB4)°)
e lese] ez, ([e, €] - e|z)™) ([e+, e]pl. = [e,e], Lemma 9.10)

o
®
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Clearly,
d((cle)7p) = To = dlerplaTp),
v((c2)7p) = T L el Lg ([2)* = t(er [7p)
and
(el2)7p - [E((c]2)7P), PerplTp)]
= (Te, of2, Tepo) - [Teule <|x>]
= (Te. 2. To) - (Te o Ty © (7). (2)*)
= (., |a:1 ) - (T T (2 (T £ (cJ2)Y)
= (T. ,elwolru ), (])* )
=Tz (o)) (e L3 o)

= eTp‘xTP7

so that (c|2)7p perp|zTp and (S3) holds.

Next, suppose that xz,y € P with 27p = y7p. Then (14w, 7, L)) =
(Lag), ¥» Le(y)), which implies that £ = y, and also d(z) = d(y), r(z) = r(y)
by Lemma 9.11. Further, by Lemma 9.2, x = y.

We now show that 7p is surjective. Let (I.,z,1s) be in PSC. Then
1. R xR 1d(x and 1f£ SL’£ 1 , that is, 1. R 1q(;) and 1f£1 ) so that

by Lemma 9.11, e Rd(x) and f Lr(z ) Put 2’ = [e,d(x )] x-[r(z), f]. Certamly,

z
1.

2’ p x, that is, 2/ = z. Thus, 2'7p = (1., 2/, 1;) = (1,2, 1), and consequently,
Tp is surjective. ]

Lemma 9.22. For any S € Ob(WQO), we define Sy = ng, where ng is defined in

Lemma 9.20. Then n is a natural equivalence of the functors Lo and CS.

Proof. Let 6 : S; — S5 in WO, where S; and Sy are over B; and Bs, respectively.
Then for any = € S, we have by the definition of 75 in Lemma 9.20 that

(415,)0CS = (e, 7, /)0CS (e Rp, = Ly, f)
= (e, z, f)0C

— (ef, 20, f0)

= (20)ns, (e Rp, 20 L, f0).

Thus the diagram below commutes, and so 7 = (ng) is a natural morphism of
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IWO and CS. ]
51 0 SQ
UERN s,
S;CS ASIS S,CS

Figure 9.1: A natural transformation of Iyy» and CS

Similarly, we have:

Lemma 9.23. For any P € Ob(WOC), we define Pt = 7p, where Tp is defined

in Lemma 9.21. Then 7 is a natural equivalence of the functors Iyoc and SC.

Proof. Let F': P, — P, in WOC, where P, and P, are over B; and B,, respec-
tively. Then for any x € P, we have by the definition of 7p in Lemma 9.21
that

= (xF)7p,
and B
(erp,)FSC =1.F'SC
=1.FS
=1.F
Ler
= (eF)7p,.

Thus the diagram below commutes, and so 7 = (7p) is a natural morphism of
IWOC and SC.
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TP, P,

P,SC FSC

PSC

Figure 9.2: A natural transformation of Iyyoc and SC

To sum up, we have:

Theorem 9.24. The category WO of weakly B-orthodox semigroups and admis-
sible morphisms is equivalent to the category WQOC of weakly orthodox categories

over bands and orthodoz functors.

9.4 Special cases

Our purpose in this section is to investigate a certain kinds of weakly B-orthodox

semigroups.

Lemma 9.25. Let P be a weakly orthodox category over B. Suppose that for all
T € E(PS) we have that 1q@) R* @ L* 14z in PS. Then E(PS) = B.

Proof. Suppose that + € P and T ox = x. As T L* 1,(,), we have that 1,,)0% =
lr(x). Thus

1r(m) @x = 1r(w)

= li@)|r@)d@) * r@d@) |c =
= [(r(z)d(z))*, r(z)d(z )] r()d()|T = [r(z), r(z)]
= (r(z)d(x))* R r(z)

= r(z)d(z) R r(z).

Dually, r(z)d(z) £ d(x). Hence, r(x) D d(z), and so d(x) R d(x)r(z) L r(x).
By Lemma 9.11, 1) R la@r) £ Ie@). Again by g R* & L* 1), we have
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that T H* lq@)e@). Since H*-class contains at most one idempotent, we have

that x = La(a)r()- ]

A weakly orthodox category P over B is an orthodox groupoid over B if for
all x € P, there exists y € P with d(y) = r(z) and r(y) = d(z) such that
1d(x) =Ty and Yy -r= 11‘(:(:)-

Corollary 9.26. The category of orthodox semigroups and morphisms is equiv-

alent to the category of orthodox groupoids over bands and orthodox functors.

Proof. Let S be an orthodox semigroup with B = E(.S). Suppose that (e, x, f) €
SC. Since R = ﬁB and £ = EB, we have that e Rx L f. It follows from the
fact that S is regular that there exists y € S with e Ly R f, e = xzy and yz = f.
Then (f,y,e) € SC and the products (e, z, f)- (f,y,e), (f,y,e)- (e, z, f) exist in
SC. Moreover, (e,x, f)-(f,y,e) = (e,xy,e) = (e,e,e) = [e,e] = 1. and similarly,
(Fov0)- (e, f) = 1.

Conversely, let P be an orthodox groupoid over B. Suppose that z € P.
Then there exists y € P with d(y) = r(z) and r(y) = d(z) such that 1,,) =y -2
and lam) =2-y. S0 lgm) =T-y=2®y =zo0y. Hence, toyoxr = (Toy)ox =
Tq(z) 0% = Z so that PS is regular. In addition, as g = Zoy and = Tq(y) 0 7,
we have that Tq) R Z in PS. Dually, I,;) £ in PS. By Lemma 9.25, we have
that F(PS) = B. Hence, PS is an orthodox semigroup. O

We now concentrate on the class of abundant semigroups. We replace the
distinguished set of idempotents B by the whole set of idempotents and use
relations R* and L£* instead of ﬁB and £ . In addition, an admissible morphism
in this context is more usually referred to as a good morphism. We define a
weakly orthodox category P over B to be *-orthodoz if it satisfies Condition
(OB6) and its dual (OB6)°:

(OB6) if y @z p 2z ® x, then ylrya@) £ 2lr)de@)-

Corollary 9.27. The category of abundant semigroups whose set of idempotents
forms a band and good morphisms is equivalent to the category of *-orthodox

categories over bands and orthodox functors.

Proof. Let P be a *-orthodox category over a band B. Suppose that £ € PS and
r € P. We know that 14(,) ﬁg 7, s0 that 14(,)®x = z. Assume that y, z € P with
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yor =7zo0x. Then y®x p z®x. By (OB6), we obtain that y|v(d() £ 2|r(x)d()
and so r(y)d(z) Lr(z)d(x), d(y|r@a@) R d(2|r()a@) ), and we have

(Wlewd@) - [r()d(@), r(2)d(2)] = [AdYlr@)ae): A=lr@aw)] - Zlrede)
= (Ylrwde) - [r()d(@),1(2)d(@)] - (r2)a@) law)
= [d(Ylr)d)), Azlr@)a@)] - (2lreae) - @delde)
= (Ylrw)a@) - Gwd@|law) = [(| wd@)), Azle@aw)] - (2 @ law)
(r(y)d(x) £ r(z)d(x), by(OB2))
= ¥ ® lae) = [AdYlwaw): dzlr@aw)] - (2 © law)-

Hence, y ® laz) p 2 ® law), that is, § o Taw) = 2 0 1.

Now, let # € P. Then Iqu) R*Z L 1,), and so by Lemma 9.25, we have
that E(PS) = B. Hence, PS is an abundant semigroup whose set of idempotents
forms a band.

Conversely, in view of Lemma 9.18, it is necessary to show that SC satisfies
Condition (OB6) and its dual. Assume that (e, z, f), (u,y,v), (g, 2, h) € SC such
that (u,y,v) ® (e, z, f) p (g9,2,h) ® (e, x, f). Then

(9, 0)oe + vele; T, f) p (9,2 B)le - nel(e; 2, f),
that is,
((ye)t,ye,ve) - (ve, vz, (vr)*) p ((ze)*, ze, he) - (he, hx, (hz)*)
or equivalently,

((ye)™, yz, (vx)*) p ((2€)", 2z, (ha)*),

as yevr = yvevexr = yvex = yx and similarly, zehx = zzx.
Thus, (ye)™ R (ze)t and (va)* L (hx)*, that is, (ye)* = (ze)* and (va)* =
(hx)* since they are unique. By Lemma 9.2, we have that ((ye)™,yx, (va)*) =

((ze)t, zz, (hxz)*), and so yx = zz. As e R* x in S, we have that ye = ze, and so
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ve L* ye = ze L* he. Thus,

(u, 4, v)|we = ((ye)™, ye, ve)

((ye)+, ze, ve) (ye = ze)
[(ye)™, (2€)"] - ((z€) ", ze, ve)

= [(ye)", (ze)"] - ((ze)", ze, he) - [he, ve] (veﬁhe)
= [(y6)+a (Z6)+] ’ (ga 2 h)|h€ ’ [hﬁ’, 1)6].
So (u, Y, V) |ve p (g, 2, h)|ne- Hence, (OB6) holds. O

Next, we discuss Ehresmann semigroups.

Let P be a weakly orthodox category over a semilattice E/. According to the
remark succeeding Lemma 9.3, the relation p is the identity on P and <, and <,
are partial orders on P. Then PS = P, and so we will identify z with = for all

x € P. In that case, for any z,y € P,

rToy=rQy = x\r(x)d(y) : r(x)d(y)\y-

Lemma 9.28. A weakly orthodox category P over a semilattice ' with <, forms

an ordered; category with restriction.

Proof. Certainly, in view of the comments in Section 9.1, a weakly orthodox
category P over a semilattice E forms a poset under <,.
(OC1) Suppose that z,y € P with <, y. Then there exists e € E such
that e < d(y) and = = .|y. Thus, d(z) = e < d(y) and r(z) < r(y) by (OB1).
(OC2) Suppose that z,y € P with r(z) = r(y), d(z) = d(y) and =z <, y.
Then there exists e € E such that e < d(y) and x = .|y. Certainly, d(z) = e,
and so e = d(y), whence from (OB1),

[y

(0C3) If 2’/ <, z, ¢ <, y, and both 2’ - ¢y and z - y exist, then there exist
e, f € Esuch that e < d(z), f <d(y), 2’ = .|z and ¥ = ;|y. Thus, we have that
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r(c|r) =r(z') =d(y') =d(sly) = f, and so 2’ -y’ = |z f|ly = |(z - y) by (OB3).
Hence, 2/ -y <, x - .

Finally, we assume that x € P and e € E with e < d(z). Then .|z is defined
and d(.|z) = e. Also, (| <, x. Further, .|z is unique since if z <, x and
= d(z), then there exists h € E with h < d(z) and z = ,|z, which gives that
d(z). Thus, e = h, and so z = .|x. O

e
h
As a dual result to Lemma 9.28, we have the following lemma.

Lemma 9.29. A weakly orthodox category P over a semilattice E with <, forms

an ordered; category with co-restriction.

Next we show that a weakly orthodox category P over a semilattice F is an

Ehresmann category as mentioned in Chapter 6.

Lemma 9.30. A weakly orthodoz category P over a semilattice E with the pair
of natural partial orders (<,.,<;) defined in Section 9.1 forms an Ehresmann
category (P, -, <., <,).

Conversely, an Ehresmann category (C, -, <,, <;) with semilattice of identi-
ties E, may be regarded as a weakly orthodox category over E with natural partial
orders (<,,<).

Proof. Let P be a weakly orthodox category over a semilattice. In view of
Lemma 9.28 and Lemma 9.29, Conditions (E1) and (E1)° are satisfied. Now,
we identify e with 1, for all e € E.

(E2) Ife, f € E and e <, f, then e = .|f so that we must have e < f. Then
fle is defined and f|. = [f, flle = [(fe)T,e] = [e,e] = e so that e <, f. Together
with the dual, (E2) holds.

(E3) Clearly, E' is a semilattice under <, = <, = <.

(E4) To show that <, 0 <, C <,o0<,, we assume that z <, o <,y. Then
there exists z € P such that z <,z <,y. So there exist e, f € E with d(x) =
e <d(z) =wuwandr(z) = f <r(y) = v, such that + = .|z and z = y|;. Thus,
r = |(ylr) = eul(ylos). Since P is weakly orthodox, we obtain that x p (cn|y)|s7,
where h = d(y) and g = r(e]y). As p is the identity by the remark following
Lemma 9.3, we have that © = (.5|y)|sr. Set 2 = cply. Then z <, 2’ and 2/ <, y.
Consequently, x <, 0 <,.y.
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(E5) Suppose that z,y € P and f € E with 2 <,y. Then there exists
k€ E with k < d(y) and = ¢|y. So Z|r@as = k|Y)|r@ns. As P is weakly
orthodox and p is the identity, we obtain that (¢|y)|rz)as = nk|(Ylr@)ar), Where
n=d(ylrnr), that is, Zle@ns = nkl (Yleing)- Thus, Tle@inr <r Ylewas-

Conversely, let C' = (C, -, <,, <;) be an Ehresmann category with semilattice
of identities E. If e D f in E, then e = f and we put [e,e] = e (E is identified
with the set of identities at E).

From (E2) and (E3), <, and <; coincide on E, making F a semilattice: we
let < denote the restriction of <, (resp. <;) to E. It is clear that the first part
of (OB1) holds, moreover, by uniqueness of restriction, .|z = z if e = d(z), so
that the second part of (OB1) holds.

For (OB2),if x € C' and e, f € E, with e <, f <, d(z), then e < f < d(z).
Now cf|z = ¢|Jr <, and d(.|z) = e; also, .|(f|z) <, flz <,z and d(.|(s]|z)) = e.
By uniqueness of restriction, .¢|z = .|(f|z), that is, .|z =, |(f|z). In particular,
if e £ f, then e = f and obviously, [e, f] - ¢lx = [f, f] - ¢l = sl = |z

(OB3) If z,y € C with Jx -y, then r(z) = d(y). If e < d(z), r(.|z) <
r(z) = d(y) and we have that

J(z-y) <,z -yandd(|r-y) =e

and also

6|*T'f|y§rx'yand d(e‘x'fky) =€,

where f =r(.|x). Hence, .|(z -y) = c|x - |y, by uniqueness of restriction.

It is easy to see that (OB4) and (OB5) hold.

Finally, we show that C'is weakly orthodox. Let x € C'and e, f,u,v,g,h € E
with ¢ = r(z), h = d(z), v = d(z|;f) and v = r(cp|z). Then (e®2)Rf =
e®(x®f), where ® is defined [32], by 2®y = x|k - x|y, where k = r(z) Ad(z). As

shown in [32], ® is associative. We have

(e®@2)®f = (elen - enl®)|vf * vflf
= (eh - (en]®))]op v f
= (en|@)vf

and similarly, e®(z®f) = cu|(x|,r), so by associativity we obtain that (op|x)|,f =



190

eu | (x ‘ af ) .
In view of Lemma 6.1, the partial order <, and <, defined in a weakly ortho-

dox category over a semilattice coincide with <, and <; defined in an Ehresmann

category, respectively. O

Let C = (C,+,<,,<;) and D = (D, -, <,, <;) be Ehresmann categories with
semilattice E¢ and Fp of identities, respectively. A strongly ordered functor [32]
F : C — D is a functor which preserves <,,<; and A. Since F preserves A,
F is a morphism Ec — Ep. As shown in [32], F' preserves restrictions and
co-restrictions. Thus F is an orthodox functor in the sense of Definition 9.5.

On the other hand, if G : C — D is an orthodox functor, then by (S1), it
preserves A. Suppose now that x,y € C with z <, y. Then x = .|y for some
e € F, so that by (S3), G = .¢|yG so that G <, yG. Dually, G preserves <,
so that GG is a strongly ordered functor. Theorem 9.24 and the comments above

now give us

Corollary 9.31. The category of Ehresmann categories and strongly ordered
functors is isomorphic to the category of weakly orthodox categories over semilat-

tices and orthodox functors.

Let S be an Ehresmann semigroup with distinguished semilattice of idem-
potents E. Indeed for any x € S, there exists a unique e € E such that e Re
and a unique f € F such that © £z f. Thus the map C : S — SC given by
xz — (e,z, f) is bijective. In that case, we identify SC with (5,-) and so the
partial binary operation - on SC is slightly modified to

r-Yy=2xy,

where z,y € S satisfying z* = y' and zy is the product of z and v in S. Then

Lemma 9.32. If S is an Ehresmann semigroup with distinguished semilattice of
idempotents E and P is a weakly orthodox category over E. Then SCS = S and
PSC = P.

Proof. Let S be an Ehresmann semigroup over E. It follows from Lemma 9.18
that S is a weakly orthodox category over E with a restriction of that in S and
d(z) =2, r(z) = 2*, forany 2 € S, and if e < zf and f < z* then o = ex
and z|f =z f.
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We now construct SCS, which again has underlying set S as the relation
p on a weakly orthodox category over a semilattice E is trivial, by defining a

product

xoy:x®y:xx*yT'x*yT‘y-

Observe that

TOY = |yt -x*yT\y

= zx*yt - 2*yly

= za*yly

=Y,
so the operation in S and SCS are the same. Moreover, the distinguished semi-
lattices of S and SCS are both E. Hence S = SCS.

Conversely, let P be a weakly orthodox category over a semilattice £ with

partial binary operation -. We build the Ehresmann semigroup PS by modifying
the product o in Theorem 9.16 as

TOY = T|peyt * gyt |y

We temporarily use the notation ® for the partial binary operation in PSC.
For any x,y € P, we have

Jr oy e 2* =y in PS

& dr-yin P

Further, if 3z ® y, then by Lemma 9.9,
rTOQY=rQY =Y.

For any x € P we have that d(z) = z' in PSC, where 2 Ry 2! in PS. But
the latter holds if and only if 27 = d(x) in P. Thus d in P and PSC coincide,
and dually for r.

Clearly, the distinguished morphisms in P and PSC are the same.

Again as a temporary measure, we use || to denote restriction and co-

restriction in PSC.
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Let z € P and e € B with e < d(x). Then in PSC,
e||x =€0T = e|ed(m) : ed(w)|x - e|£E

and similarly for co-restriction. O

The following result is easy to see, given Lemma 9.17 and Lemma 9.19.

Lemma 9.33. Let 0 : S — T be an admissible morphism of Ehresmann semi-

groups, and F' : P, — P, be an orthodox functor of weakly orthodox categories
over semilattices. Then OCS =6 and FSC = F.

As a immediate consequence of Lemma 9.32 and Lemma 9.33, we have that
SC = Lyoe and CS = I)yp, so that S and C are mutually inverse. Hence we

have:

Corollary 9.34. The category of Ehresmann semigroups and admissible mor-
phisms is isomorphic to the category of weakly orthodox categories over semilat-

tices and orthodox functors.

In view of Corollary 9.31 and Corollary 9.34, we succeed in obtaining Law-

son’s result [32].

Corollary 9.35. [Theorem 4.24, [32]] The category of Ehresmann semigroups
and admissible morphisms is isomorphic to the category of Ehresmann categories

and strongly ordered functors.

We now look at weakly B-superabundant semigroups with (C), which are
weakly B-orthodox semigroups such that each H p-class contains a distinguished
idempotent in B. We say that a weakly orthodox category over B is super-
orthodoz if it satisfies the following condition:

(OB7) if z € P, then d(z) D r(x).

Corollary 9.36. The category of weakly B-superabundant semigroups with(C)
and admissible morphisms is equivalent to the category of weakly super-orthodox

categories over B and orthodox functors.
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Proof. Let S be a weakly B-superorthodox semigroup. It follows from Lemma 9.18
that it is sufficient to show that SC satisfies Condition (OB7). Suppose that
a = (e,z,f) € SC. Then e Rp x Lp f. As S is a weakly B-superabundant
semigroup, there exists h € B such that h Hp z. Thus, e R h L f, which implies
that e D f, that is, d(a) D r(«).

Conversely, let P be a weakly super-orthodox category over B. It is necessary
to show that each ﬁg—class of PS has a distinguished idempotent belonging to
B. Suppose that x € P. By (OB7), d(x) D r(z). Then, d(z) R d(x)r(x) L r(z).
By Lemma 9.11, we have that Ta) R Ta@rz) £ Ie@)- As lagw) ﬁg T [,Ng Ti(z), we

obtain that x ’;lvg la(z)r(z)- Hence, PS is a weakly B-superabundant semigroup
with (C). O

We now turn to the class of weakly B-orthodox semigroups, which have
(WIC) mentioned in Chapter 2. We define a weakly orthodox category over B
to be weakly connected if it satisfies the following condition and its dual (OBS8)°:

(OB8) if x € P and e < d(x), then there exists f < r(z) such that .|z p z|;.

Corollary 9.37. The category of weakly B-orthodox semigroups with (WIC) and
admissible morphisms is equivalent to the category of weakly connected categories

over B and orthodox functors.

Proof. Starting with a weakly B-orthodox semigroup S with (WIC), we show
that SC satisfies Condition (OBS8) and its dual. We show that (OBS8) holds.
Suppose that (e, z, f) € SC and u < e. Then ,|(e,z, f) = (u, uz, (ux)*). Since
S has (WIC) it follows that there exists v € B such that ux = xv and we can
choose v < f. Then (uz)* Lp v Lp fv=v and u = ue Rp uz Rp (zv)*. In

addition,

ThU_S, u|(6’ Z, .f) p (67I7 f)|v
Conversely, let P be a weakly connected category over B. Suppose that

z € PSandI. < Ig(). Thenz ﬁg La@)- By (OBS8), there exists f < r(z) such
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that .|z p z|;. Thus,

1eof:16®l’:]_e.e|x:e|l’:gj|f:x|f.]_f:j’oﬂ.

Together with the dual argument, we obtain that PS has (WIC). O



Chapter 10
Weakly U-regular semigroups

A weakly U-regular semigroup is a weakly U-abundant semigroup with (C) and
U generating a regular subsemigroup whose set of idempotents is U. The purpose
of this chapter is to investigate a correspondence between weakly U-regular semi-

groups and certain categories, by using the techniques introduced in Chapter 9.

10.1 Weakly regular categories

The goal of this section is to develop the idea of weakly orthodox categories over
a band constructed in Chapter 9 to introduce a category with set of objects a
regular biordered set U.

Let U be a regular biordered set. A subset K of U is a representative of U
if maps ¢ : K — U/L given by e — L, and ¢ : K — U/R given by e — R, are
bijective. So for any e € U, there exists a unique £ € K such that e £ k in U
and there exists a unique h € K such that e R h in U. For convenience, we will

denote k and h by e* and e™, respectively.

Definition 10.1. Let P be a category in which Ob(P) is the underlying set of
a regular biordered set U, and let K be a representative of U. Suppose that for
e, f € U satisfying e R f or e L f, there exists a distinguished morphism [e, f]
from e to f, such that [e, e] = 1., the identity associated to e. Then P is an RBS
category if the following conditions and the duals (P2)°, (P3)°, (P4)°, and (P5)°
of (P2), (P3), (P4) and (P5) hold:

(P1) ifeRf RgoreLl f L g,then e, f]-[f, g] = e, gl;

195
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(P2) if v € P, h € U and h w' d(z), then there exists an element 5|z in P,
called the restriction of z to h, such that d(,|z) = h and r(,|z) W' r(z); also, if
h =d(z), then r(y|z) £ r(z) and p|z - [r(s]|z), r(z)] = z;

(P3) if g w e and eR f or eL f, then ,|le, f] = [g,9f] - [9f, (9f)*]; and if
gw'eand el f, then ,le, f] = [g, 9"];

(P4) if x € P and e, f € U with e w' f w' d(x), then .|(;]x) = .|z; also, if
e L f w' d(z), then [e, f]- flz = .|

(P5) if 2,y € P and h € U with h w! d(z) and 3z -y in P, then ,|(z-y) =
w2 - 4ly, where g = r(|2);

(P6) if ; z ) is a singular U-square, then [e, f] - [f, h] = [e, g] - [g, h].

Let us pause to make some simple but necessary comments on Definition 10.1.
In (P3) since gw e, we know that if e R f (vesp. e £ f), then gw" f (resp. gw' f),
and so by (B21) gR gf (resp. g = gf). Thus [g, ¢f] exists. In (P5) since Jz -y
we know that r(z) = d(y). By (P2), g = r(i|z)w'r(z) = d(y), so that ,|y is
defined and d(y4]y) = ¢. Hence, |z - 4|y is defined. Condition (P6) implies that

g, e]-le, f1-[f, 0] - [h, f] =g, €] - [e, 9] - g, h] - [, £,

that is,
lg. €] - le; f1-1f, 1 =19, 9] - [g, 1] - [, f]

by (P1). Thus,
[gae] ) [6af] = [gah] ' [haf]

Comparing with Definition 9.1, we note that Conditions (P1) and (P6) cor-
respond to Condition (OB5); Conditions (P2), (P4) and (P5) are similar to Con-
ditions (OB1), (OB2) and (OB3), respectively; Condition (P3) is a generalisation
of Condition (OB4).

Notice that an RBS category P depends on the choice of the regular biordered
set U which is the set of objects of P. In order to avoid the ambiguity, we will
express the term ‘RBS category’ as ‘RBS category over U’.

Let P be an RBS category over a regular biordered set U. We define a
relation p on P by the rule that for any x,y € P,

x py if and only if
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d(z) R d(y),r(x) L r(y) and - [r(z),r(y)] = [d(z),d(y)] -y

It is worth making the point that

- [r(z,r(y)] = [d(z),d(y)] -y
& [d(y),d(x)] -2 - [r(x), r(y)]

Y

& [d(y),d(z)] -2 =y - [r(y), r(z)]
& =[d(z),d(y)] -y - [r(y), r(@)],
so that if d(z) = d(y), then = p y if and only if r(z) £ r(y) and

=1y [r(y),r(z)] or indeed x - [r(z),r(y)] = v.
Dually, if r(z) = r(y), then = p y if and only if d(z) R d(y) and
x = [d(z),d(y)] -y or indeed y = [d(y),d(z)] - z.

Further, we have:
Lemma 10.2. Lete, f,g € U be such thate R f L g. Then [e, f] p 17 p [f, 9]

Proof. As e R f, we have that
d(le, f]) =eR f=d(1y),

r(le, f]) = f =r(ly)
and
e, f]- 1y = [e, f]
so that [e, f] p 1. Dually, [f, g] p 1. O
The proof of the next lemma is the same as that of Lemma 9.2 so we omit
it.

Lemma 10.3. The relation p defined above is an equivalence on P such that if
x,y € Mor(e, f) and x py, then x = y. In particular, no two identities of P are

p-equivalent.



198

We now present a pair of pre-orders on an RBS category over U built on the
relation p given above.
Let P be an RBS category over U. We make use of the restriction and co-

restriction of P to define relations <,” and <,/ by the rule that for all z,y € P,
x <,/ yifand only if x p .Jly for some e € U and e w d(y)

and

r </ yifand only if z p y|; for some f € U and f w r(y).
Lemma 10.4. The relations <,” and <, are pre-orders on P.

Proof. We first show that <,’ is a pre-order on P. Notice that for any x € P, if
e = d(z), then [d(z),d(c|z)] = [e,e] = 1., and so <, is reflexive by (P2). It is
sufficient to show that <,’ is transitive. Suppose that x,y,z € P with x <,/ y
and y <,” z. Then there exist e, f € U such that e w d(y), f w d(z), and x p .|y

and y p glz. Thus, d(y) R £, v(y) £ v(s]2) and y- [£(9), v(,12)] = [d(9). f]- (1]2)
Hence, y = [d(y), f]-f|z-[r(¢]2),r(y)]. Asew d(y) R f, we have thate R ef w f.
In addition, .|[d(y), f] exists and .|[d(y), f] = [e,ef] - [ef, (ef)*] by (P3). Since
(ef)* Lef w fwd(z), we obtain that (py|(f|2) is defined and (cp)«[(f|2) = (ep)+]2
by (P4). Then we have that

ey = (W), f1- slz - [x(s]2), v (v)])
= |[d(®), 1+ nl(s12) - ¥l [x(s]2), 7 (w)]
(by (P5), b =r(.|[d(y), f]), k=r(ul(s]2)))
=[e.ef]-[ef, (ef) ] - epel(sl2) - [k, K]
(as k = r(ul(s]2)) &' x(s]2) £ x(y), by (P3))
=le,ef]-lef,(ef)] - ep|2 - [k, k] (by (P4), (ef)* Lefw fuw d(z))

Hence, r(.|y) = k*. From z p .|y, we have that r(z) Lk*, d(z) R e and

Zz - [I‘({E), k*] 6|y
le,ef]-[ef, (ef )] - eprlz - [k, 7]
- [ef, ef) ] @pylz- K] (d(x) Reef, by (P1))

), ef] - oflz - [k, k] (by (P4), ef L (ef)" o' d(2)).

].
].

=
/—\/gz—\/—\
~—  ~— ~— ~—
)
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Thus,
z-[r(x), k] =z [r(z), kY] - [k, K] (by (P1))
— [d(z), ef] - oflz - [k, k7] - [K*, K]
= [d(@),ef] - eplz - [k, K] (k £ k)
= [d(l’),6f] 'ef|z (k‘:r(ef|z)).

It follows that k =r(.f|2). Asr(z) Lr(.|y) =k L k=r(y|2) and d(z)Ref =
d(.f|z), we have that = p .f|z. Together with ef w f w d(z), we obtain that
r <, z.

By the dual argument, we show that <,/ is a pre-order on P. O

In addition, there exists another way to define a pair of pre-orders on an
RBS category P over U.
Let P be an RBS category over U. For any z,y € P, we define

x <, yif and only if x p .|y for some e € U

and

r <; yif and only if x p y|; for some f € U.

By (P2) and its dual, relations <, and <; are reflexive, but in general they are
not transitive and symmetric. We recall that the transitive closure of a relation
0 is denoted by 0. We have:

Lemma 10.5. Let P be an RBS category over U. Then relations <! and <! are

pre-orders on P.

As the comments succeeding Lemma 9.3, it is impossible to define a pair of
partial orders on P.

Let P be an RBS category over a regular biordered set U. By (B1), w" and
w! are pre-orders on U, and Dy = (w”" Uw') U (w" Uw")~L. Suppose that z € P
and h w" d(x). We define

hxx = [h,hd(z)] - ha@)|2-

Clearly, d(h * ) = h. In particular, if h w d(z), then h x x = ,|x.
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Observe that if A w” d(x), then by (B1), hd(z) exists in U. Again by (B21),
h R hd(z) w d(zx), so that [h, hd(z)] exists and by (P2), pa(z)| is well-defined.
Dually, if k£ w' r(z), then we define

ok = x| - [r(x)k, K]

Note that r(z ¢ k) = k. In particular, if k w r(z), then x o k = z|.

We stop here to make some comments on the above operations * and ¢. The
initial idea of defining operations * and ¢ is to define a binary operation on an RBS
category or a weakly regular category introduced below, via the sandwich set.
Let P be an RBS category. Suppose that x,y € P and h € S(r(x),d(y)). Then
h w!' r(x) and h w" d(y). Our purpose is to use restrictions and co-restrictions to
define a product. Note that h £ r(z)h w r(z) and h R hd(y) w d(y) so that we

can define a binary operation on P by the rule that

T Y = Tle@pn - [r(@)h, b - [h, hd(y)] - haw)ly-

Certainly, it is well defined. For convenience, we defined % and ¢ above.
To maintain the analogy with weakly orthodox categories, we have weakly

regular categories described as follows:

Definition 10.6. An RBS category P over a regular biordered set U is weakly
reqular if it satisfies the following condition:

(P7) forx € P e, f € U, hy € S(e,d(x)) and hy € S(r(x), f), we put b} =
r(hid()|2) and bl = d(2|r(2)n,). Then there exist h € S(hy, hy) and b’ € S(h}, ho)
such that

((hy xx)oh") - [N h'hy] p [hih, h] - (h* (z o h)).

It is a good place to make some necessary comments on Definition 10.6. For
any e, f € U, S(e, f) denotes the sandwich set of e and f. In (P7), hy € S(e,d(x))
implies that h; w” d(z), and so by (B21) in Section 1.4, hy R hid(z) w d(z) so
that j,,q@)|r is well-defined and hy * = exists. Put A} = r(4,a0)|z). Similarly,
T|e(z)he and x o hy are well-defined. We put hy = d(2|r(z)n,). Since U is regular,
we obtain that S(hy, hb) # 0 and S(h}, hy) # 0. If b’ € S(h), hy), then b/ W' b =
r(hid()|) = r(h1 * ) and b’ wW" hy, so that (hy * ) o A’ is defined and by (B21),
R'hey R B'. Hence [h', h'hy] exists. By a similar argument, h * (z ¢ hs) is defined
and hih £ h so that [hih, h] exists.
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We are now ready to say that the class of weakly regular categories over
regular biordered sets forms a category, together with certain functors, namely

RBS functors, which appear in the next definition.

Definition 10.7. Let P, and P, be weakly regular categories over regular biordered
sets Uy and U,, respectively, and F': P, — P, be a functor. Then F is said to be
RBS if

(PF1) F:U; — U, is a regular morphism;

(PF2) ife R foreL fin U, then [e, flp ' = [eF, fF]p,;

(PF3) if z € P, and h, k € Uy with h w' d(z) and k w" r(z), then
(n|2)F ppp|cF and (z|p)F pzF|ip.

We pause here to make a short comment on Definition 10.7. In (PF3),
if h w! d(z), then hF w! d(zF) as F is a biordered set morphism and is a
functor, so that both ,|z and ,p|xF are well-defined. In addition, the fact that
(n|z)F prr|cF gives in particular that r(,|z)F Lr(,p|zF). For d, as F is a
functor, we have that d((,|z)F) = d(y|z)F = hF = d(pp|zF).

The next lemma is useful for Lemma 10.9.

Lemma 10.8. Let P, and P, be weakly reqular categories over Uy and Us, re-
spectively and let F': Py — Py be an RBS functor. If x p y in Py, then xF p yF
m Pg.

Proof. Suppose that a,y € P, and  p y. Then
d(z) Rd(y), r(z) Lr(y) and - [r(z),r(y)] = [d(z),d(y)] - y.
Thus,
d(z)FRA(y)F, r(z)F Lx(y)F and zF - [r(z),x(y)|F = [d(z), d(y)|F - yF.
This gives
d(z)FRA(y)F, r(z)F Lx(y)F and zF - [v(z)F,x(y)F] = [d(z)F,d(y)F] - yF,
by (PF2), and so

d(zF)RdA(yF), r(zF) Lr(yF) and oF - [r(xF),r(yF)|] = [d(zF),d(yF)] - yF.
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Hence, xF p yF'. O

Lemma 10.9. Let P, and P, be weakly reqular categories over Uy and Us, re-
spectively, and let Fy : P, — P, and Fy : P, — P3 be RBS functors. Then
' Fy . PL — P is an RBS functor.

Proof. (PF1) Certainly, F1F, is a functor from P; to P3 and a regular morphism
from U; to Us.

(PF2) Suppose that e, f € Uy are such that e R f. Then [e, f]p, is defined,
and eF7 R fF; and eF1 Fy R fFiF; by the comment succeeding the definition of
regular morphism in Chapter 1. Using (PF2) for F} and F», we have that

[67 f]P1F1F2 = ([67 f]PlFl)F2 = [€F1,fF1]P2F2 = [€F1F2,fF1F2]P3-

Dually, if e £ f, then e, flp1 F1Fy = [eF1 Fy, fF1F)ps.

(PF3) Assume that z € P, and e € U; with e w' d(z). According to the
comment succeeding Definition 10.7, we have that .|z, g |vF) and .p g, |TF Fy
are well-defined. By (PF3), (c|2)Fy p er|oFy and (ep |2F)Fo p epyp |21 Fo.
From (c|z)F) p er, |xF1, we obtain that (.|z)F1Fy p (em|zF1)F> by Lemma 10.8.
Hence, (¢|2)F1Fy p o my|TFy Fo. O

An immediate observation from Lemma 10.9 is that the class of weakly reg-
ular categories over regular biordered sets and RBS functors forms a category.
We refer to it as WRC.

We close this section with an important property of RBS fuctors.

Lemma 10.10. If P, and Py are weakly reqular categories over reqular biordered
sets Uy and Us, respectively, and F : P, — P is an RBS functor. Then for any
h,k € Uy and x € Py, we have

(1) if h w" d(x), then (h*xx)F p hF % xF;

(ii) if k W' v(x), then (x o k)F p xF o kF.

Proof. To prove (i), suppose that x € P;, h € Uy and hw"d(z). Then
h*x = [h,hd(z)] - (ha()|T)-

Since F' is RBS, it follows that F' : Uy — U, is a regular morphism, and so



203

hF w" d(x)F so that hF xd(z)F exists. In addition, (hd(x))F = hFd(z)F and
[h, hd(2)]F = [hF, (hd(2))F] = [hF,hFd(z)F].
According to the comments following Definition 10.7, we have that
d((ha@)|2)F) = (hd(2))F = hFd(x)F = d(ra@)r|cF).

By (PF3),
(ha@)|T)F p (hd@)F|TF = hra@)r|cF.

Thus, r((ha()|*)F) Lr(hra@r|zF) and

(hd(z)|$)F = hFd(z)F|$F' [F(hFd(z)F|$F),F((hd(x)|I)F)],

so that
(h*z)F
= ([h, hd(@)] - haw)|2) F
= [h, hd(2)]F - (na@)|x)F
= [WF,hFd(2)F] - (hrd@)r|oF) - [t(hra@r|eF), r((ha@)|2) F)]
= [hF hFA(2F)] - (hra@r)|aF) - [P(hraer)|3F), r((ha@)|2) F)]
— (WP % 2F) - [urager o). 2((pa 7))
= (hF xxF) - [r(hF xxF),r((h*x)F)].
Consequently, (h* z)F p hF x zF. Similarly, part (i) holds. O

10.2 Structure theorems

In preparation for the main theorem at the end of this section, we have to list some
necessary lemmas concerning a weakly regular category over a regular biordered
set. Throughout this section, we will use P to denote a weakly regular category

over a regular biordered set U.

Lemma 10.11. Letx € P and g,h € U be such that gw™ hw" d(z) and gd(z)w hd(z).
Then g (h*xx) = g*x.

Proof. By the hypothesis, g x (h * ) and ¢ = x are well-defined. By (B21),
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ghwhRhd(x). So,

g* (h*x)
= [g,9h] - gul(h * z)
= g, 9h] - gl([h, hd(2)] - ha(w) |7)
= 9. gh] - gnl[l, hA(2)] - 1| (naw)|®) (by (P5), k = r(eu|[h, hd(x)]))
= [g.9h] - gul[h, hd(2)] - 4|2 (by (P2), kw'hd(x), now use (P4))
= [g,9h] - [gh, u] - [u,u"] - e |2 (by (P3), u = (gh)(hd(x)), k = u")
= lg, u] - fu, u] - | (9RghRu, by (P1))
=[g,u] - ulz (by (P4))
As
u = (gh)(hd(z))
= g(h(hd(z))) (9w"h R hd(z), Lemma 1.27)
= g(hd(z)) (hd(z) R 1)
= (gd(z))(hd(z)) (by Lemma 1.27)
= gd(x) (9d(x) w hd(x)),
we obtain that g x (h* 2) = [g, gd(x)] - ga)|z = g * 2. O

Dually, we have:

Lemma 10.12. Ifz € P and g, h € U with gw' hw'r(z) and r(x)gwr(x)h, then
(xoh)og=1x0g.

Now, let x,y € P and h € S(r(z),d(y)). We define
(z@y)n = (xoh)- (hxy).

Since h € S(r(z),d(y)), it follows that hw'r(z) and hw"d(y) so that x o h and
h*yexist. Asr(zoh) =handdhxy) =h, (xQy), = (xoh)- (hxy)is
well-defined.

Lemma 10.13. Let z,y,z € P, hy € S(r(z),d(y)) and hy € S(r(y),d(z)).
Set b} = r(hyxy) and hYy = d(yo hy). Then there exist h € S(r(z),hy) and
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h' e S(hi,d(2)) such that (z @ Y)p, @ 2)w = (T @ (Y ® 2)py -

Proof. Since h =r(hy *y) = r(pa|y) @' r(y) and hy € S(r(y),d(2)), it follows
from Lemma 1.30 that S(h}, he) C S(h},d(z)). Similarly, as k) = d(y o hy) =
d(y|eyn,) W d(y) and hy € S(r(z),d(y)), by the same result, we have that
S(ha, hy) C S(x(x), hy).

Since hy € S(r(z),d(y)), he € S(r(y),d(z)), b} = r(hi*y) and h} =
d(y ¢ hs), by (PT7), there exist b’ € S(h!, hy) and h € S(hy, h}) such that

((hy xy) o h') - B, h'hg] p [hah, h] - (B (y © ha)).

Put g =d((hixy)oh') and k = r(h* (yohsy)). We obtain that g R h1h, h'hy L k,

and
[hih, g] - ((hy xy) o ') - [/, W ho] = [hih, h] - (h* (y o hs)) - [k, W hs].
Now, we deduce that

(z@Y)n, @ 2)n
(x @y, o B) - (I +2) (By =r(hi *y), W € S(H;,d(2)))
(o hy)-(hyxy))oh)- (I x2)
(@ © h1) - (ha s y))wyw - (PR, B - (B * 2)
x o h)lg - (hy % ) lpyw - (PR B] - (B 2)
(by (P5)°, g = d((h1 *y) o 1) = d((h1 %) wyw))
=(zohi)|y- (R xy)oh') (b *z)
= (@ ohi)lg- ((hixy)oh)) - [W, K] (W *z)
= (@ohy)ly- ((hyxy)oh)-[W Hhy) - [Why, ] (R *2)
(W R Why, by (P1))
= (zohi)lg-lg,9] ((hi*y)oh) - [W,Kho] - [Who, W] - (I 2)
= (zohi)lg-[g,hah] - [hah, g] - (b1 *y) o B) - [B', W ho] - [W'ho, W] - (B % 2)
(9 R hah, by (P1))
= (woh)|g-[g, hah] - [hh, h] - (h* (yo ho)) - [k, K'ha] - [Wha, 1] - (R % 2)
(as [hah, g] - (o y) o 1) - [W, W'ha] = [hah, B] - (B % (y © ha)) - [k, h'ha))

(
(
(
(
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= (o h)lnn - [hah, B] - (h* (y © ha)) - [k, h'ho] - [P'ha, W] - (B 2)

(9 R hah, by (P4)°)
= ((xoh)oh)  (hx(yohs)) [k hha]-[Why,}]- (K x2) (h ' hy).
From h € S(hy, h}), we have that hw! hy and hw” hh. As hy € S(r(x),d(y)) and
hy = d(y ¢ hy), we have that h;w'r(z) and hyw"d(y). Thus h w' h; ' r(z)
and hw" how"d(y), so that h € M(r(z),d(y)). Since hy € S(r(z),d(y)), it
follows that r(z)h w” r(z)h;. Again by r(z)h Lhw'hy Lr(x)hy, we have that

r(z)h w r(x)h;. By Lemma 10.12, (x ¢ hy) o h = z o h. Hence,

(x@Y)n, ® 2)w = (w0 h) - (h*(yohy)) - [k, Wha] - [A'ho, W] - (B % 2).

Also
(@ (Y @ 2)ny)n
= (zoh) (h*(y®2z)n)
= (zoh): (h*((yohs)- (hyx2))) (h2 € S(r(y),d(2)))
= (o h) - [ hhb] - g (y o ha) - (hy  2))
= (x o h) - [h, hhb] - wag| (y © ha) - k[ (ha * 2))

(by (P5), k = (| (y © h2)) = x(h * (y o ho)))
=(xoh) (h*(yohy))-sl(hax2) (hw By=d(yohy), k=r(hx(yohy)))
= (zoh) (h*(yohs))- [k k|- kl(hs*2)
= (xoh)- (h*(yoh))- [k Who] - [Wha, k] - sl (hax 2) (k£ Why, by (P1))
= (woh)- (hx(yohs))- [k hho] - why|(he  2) (k £ Why, by (P4))
= (@oh)- (h*(yohs))- [k W h]- [Why, ' hy) - wng| (ho * 2)
= (@ oh)- (h*(yohs))- [k Wh- [Why, b [W B ha) - wng| (ho * 2)

(W R Wha, by (P1))
= (@ oh) - (h*(yohy))- [k Why- [Why, B (h % (hy % 2))
(W w" hy = d(hy* 2)).

Since h' w" hy w" d(z), it follows that A'd(z) R b w" hy R hod(2). As

h e M(x(y),d(z)) and hy € S(x(y),d(z)),
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we have that /'d(z) w! hed(z). So h'd(z2) w hed(z). By Lemma 10.11, W/ x(hy*z) =
h' % z. Thus,

(2R (YR 2)n)n = (xoh) - (h*(yohy)): [k Nhy)-[h'he, W] (B *2).

Hence, (2 @ y)n, @ 2)n = (2 ® (Y @ 2)hy )n- L

Lemma 10.14. Ifx,y € P and x py, then hxxzph*xy and x ok py ok, where
hw"d(z) and kw'r(z).

Proof. We first show that z py and hw”d(z) imply h * xph * y. Dually, the
second part holds. Clearly, if x p y, then d(x) Rd(y) and r(z) Lr(y). Write
hy =r(h*x) = r(pa|x). We deduce that

hd(w) * (- [0(z), 2(9)]) = ha)| (@ - [r(z), x(y)]) (hd(z) w d(x))
= a7 |[0(@), ()] (= r(aw|z), by (P5))
= pawlr- [, hi] (b o' r(z) £ x(y), by (P3))
and
hd(z) * ([d(x), d(y)] - )
= | ([d(z),d(y)] - ) (hd(z) w d(x))
= na@|[d(z),d(y)] - 4ly (by (P5), g = r(haew|[d(z), d(»)]))

= [hd(z), (hd(z))d(y)] - [(hd(z))d(y), ((hd(z))d(y))"] - 4|y
(hd(2) w d(z) R d(y), by (P3))

= [hd(z), hd(y)] - [hd(y), (hd(y))"] - |y
(hw" d(z) R d(y), by(B31), so g = (hd(y))")

= [hd(z), hd(y)] - haw)|y (by (P4)).

Since x py, we have that = - [r(z),r(y)] = [d(x),d(y)] - y. Thus,

hd(z) + (z - [r(2),x(y)]) = hd(z) * ([d(x), d(y)] - y)-



208

SO )| - [Py, hT] = [hd(z), hA(y)] - ha(y)|y- Hence,

(h*x)-[h, h]]
= [h, hd(2)] - ha@)|@ - [ha, 1]
= [h, hd(z)] - [nd(z), hd(y)] - nagy) |y
= [h, hd()] - haw)ly (h R hd(z) R hd(y), by (P1))
=hxy,

which implies that hf = r(h * y), so that

(h*z)-[h,h]] = (h*xx) [r(h*x),r(h*y)
=hxy
= [k h] - (h*y)
=[d(hxx),d(hxy)]- (h*xy).

Consequently, hx x ph x y. O
Lemma 10.15. Ifzp2’, ypy and h € S(r(x),d(y)), then (x @ y)np (2’ @y ).

Proof. Since xz px’ and y py’, we have that r(z) Lr(z') and d(y) Rd(y’), which
gives from Lemma 1.28 that S(r(z),d(y)) = S(r(z’),d(y")). Thus, (2’ ® ¢'), is
well-defined.

In view of Lemma 10.14, we have that z ¢ hpx’ o h. So
d((2' @ y)n) = d(a’ o h) Rd(z o h) = d((z @ y)n),

r(z' o h) Lr(x o h)
and
(2 o h) - [r(a’ o h),r(z o h)] = [d(2’ o h),d(z o R)] - (z o h),
that is,
(' o h) - [h,h] = [d(z' o h),d(z o h)] - (z o h),

so, ¥’ o h=[d(z" o h),d(xoh)]- (zoh).
Dually,
r((@ ®@y)n) =r(h*y) Lr(h+y)=d((z @ y))
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and hxy = (h*y)-[r(h*y),r(h*y’)]. Now, we have that
(@' @y ) = (2" oh) - (h*y)
=[d(z"oh),d(zoh)] - (xoh) - (hxy)-[r(h*y) r(hxy)]
=[d(z"oh),d(zoh)] - (x @ y)n - [r(hxy),x(hxy)].
Thus,
[d(zoh),d(@' oh)]- (2" @Y

), d(z" o h)] - [d(z" o h),d(z o h)] - (x @y)n - [r(h*y), r(h*y)]
);d(zoh)] - (z@y)- [r(hxy),x(h*y) (by (P1))

= (x@y)n- [e(hxy),r(h*y)],
together with d(z’ ¢ h) R d(z o h) and r(hxy') L r(h*y), we have that
@@y p (2" DY) O
Lemma 10.16. Ifx,y € P and h,h' € S(r(x),d(y)), then (x @ y)n = (z Qy)p -

Proof. Since h,h' € S(r(x),d(y)), we can set
hi = d(zoh) = d((z @y)n), hy = r(hxy) =r((z @y)n),

i =d(zoh)=d((z@y)n), hy=r(h xy)=r((r Qy)w).

Suppose that A R h’. Then hd(y) R h R K’ R W'd(y). But h,h' € S(r(z),d(y)),
so that h < k' and I/ < h, which imply that hd(y) w! h'd(y) and h'd(y) w' hd(y).
Thus hd(y) £ h'd(y). Hence, hd(y) = h'd(y), and S0 ra()|y = wag)|y, which
implies that hy = h}. In addition,

"xy =[N, h'd(y)] h’d(y )y

|

= [, 1) - b, A(y)] - waly (h R KW R Wd(y), by (P1))
= [, ] - [y hd ()] - naely (Wd(y) = hd(v))

= [I',h] - (h*y).

Since h, b’ € S(r(z),d(y)), we have that h, b/ w'r(z), and so r(x)h L h and
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r(x)h LK. As hR 1, by (B32)°, we have that

(r(x)h)(x(z)h") = r(z)(hh') = r(x)h" and (r(z)h')(r(z)h) = r(x)h,

h '
that is, r(z)h Rr(x)h'. Now, we obtain a row-singular U-square .
r(z)h r(x)
By the comments succeeding Definition 10.1, we have

[r(x)h, h] - [h, B] = [r(2)h, x(2)R] - [r(z)R', W],
and so

(o h) - [h, 1) = ey - [x(2)h, B] - [h, 1]
= Tl - [r(@)h, v(z)R'] - [r(x)h, 1]
= 2|y - ()R 1] (r(z)h R x(x)k, by (P4)°)
=zoh

Thus, d(z ¢ h) = d(z o k'), that is, h| = hy. So

(x@y)w = (xoh) (b xy)
— (zoh)-[h,N]- W h]- (h*y)
— (zoh)-[h,h]- (h*y) (h R I, by (P1))

— (woh)- (hxy)
= (T @ Y)n-

Dually, if o £ k' we can show that (z ® y), = (z ® y)». By the comment
succeeding Lemma 1.35, if h,h' € S(r(z),d(y)), there exists k € S(r(z),d(y))
such that h R k £ k. Thus the lemma holds in all cases. 0

Let PS = P/p. For z,y € P, h € S(r(x),d(y)), we define

TOY= (Y,
where T denotes the p-class of x in P.

Lemma 10.17. The set PS = P/p forms a semigroup under ® defined above.
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Proof. Let x,2',y,y € P with zpa’ and ypy'. If h,h' € S(r(z),d(y)) =
S(r(z),d(y")), then by Lemma 10.15 and Lemma 10.16, we have that

(@Yhp @ @Y )= (2" @y )w.

Thus, (x @ y), = (2’ @ ¥')n, and so the product is well-defined.

In order to show that the operation © is associative, we assume that z,y, 2z €
P, hy € S(r(z),d(y)) and hy € S(r(y),d(z)). By Lemma 10.13, there exist
h e S(r(z),d((y®z2)n,)) and b’ € S(r((x®y)n, ), d(2)) such that ((z@y)n, ®2)n =
(r ® (y ® 2)py)n- Thus

0y oz=(20Yh ©2= (Y @ 2)n
=@RWYR2))rh=TO0 YR 2), =20 (YO 2).

Hence, PS is a semigroup. O

Lemma 10.18. Ife,h € U are such that h w" e, then

h 1@ 1% lhe P (lh ® le)ha

so that 1), © 1, = 1j..

Proof. Suppose that e, h € U with hw"e. Then h'R he and

[he, h] - (hx1.) = [he, h] - (h * [e, €])

= [he, h] - [h, he] - [he, (he)]
= [he, he] - [he, (he)"]

= 1pe

- [he, (he)].

Certainly, r(h * 1.) = (he)* L he. Thus, h* 1. p 1pe.
According to Lemma 1.29, we have that eh = h € S(h,e), and so
(1, ® 1¢)p is well-defined. Then

(1, ® 1), =

h*, hel - [he, (he)*] (Wt RhRhe, by (P1)).
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Further,
(R, he] - 14 = [hT, he] - [he, he]
= [h", he] - [he, (he)*] - [(he)*, he]
= (1, ® 1e)n - [(he)™, hel.
Hence, 1pe p (15 @ 1¢)p. O

Dually, we have:

Lemma 10.19. Ife,h € U are such that h W' e, then

leoh plep p (1 @ 1p)p

so that 1. ©® 1, = 1.,.

Lemma 10.20. If P is a weakly reqular category over U and x,y € P with x -y
defined, then & ® iy = T-y. Moreover, if e € U, then 1, € E(PS).

Proof. Suppose that x,y € P are such that x -y is defined. Then r(z) = d(y),
from which it follows that S(r(z),d(y)) = {r(z)}. Thus,

TOY= (2@ Y@ = (vor(z)) (r(z) *y) = T|r() - r()|y-

Let h = d(y) = r(x). From (P2) and (P2)°, we have d(z|,) Rd(x), r(n|y) Lr(y)
and

nly - [r(uly), r(y)] = v,

zeply - [e(aly),xy)) =2 - y.
But
x = [d(z),d(x[x)] - 2|n,
[d(z), d(z]n)] - @[n - wly - [£(aly), x(y)] = 2 -y,
hence,

[d(z|n), d(@)] - [d(x), d(x]n)] - z]n - nly - [(aly), x(y)] = [d(2]n), d(z)] - (2 - y),
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that is,

[d([n), d(x]n)] - 2ln - nly - [r(aly), v ()] = [d(2]n), d(@)] - (z - y),

or equivalently,

ln - nly - [e(uly), x(y)] = [d(z[n), d(@)] - (z - y),

as h = d(y) = r(z), we obtain that

Hence, Z|v@) - v@)|y p © -y, and so Tt © y = T .
Since e € U and 1, - 1, = 1, it follows that 1. € E(PS). O
Lemma 10.21. Let x € P and e € U be such that e w' d(z). Then Jz =1, 7.

Proof. As e w' d(x), we have that e £ d(z)e w d(z), and so

K|
/N

e L d(x)e, Lemma 10.2)

= le,d(2)e] © (La@)e ® T)d(w)e
(d(x)e w d(x), by Lemma 1.29, d(z)e € S(d(z)e,d(x)))

= [e,d(x)e] © (la@)e © d(x)e) - (d(z)e * x)

= le,d(z)e] © la)e o d(z)e © d(z)e * x (Lemma 10.20)
= le,d(z)]e ©® Tqm. © d(z)e * z (Lemma 10.19)
= le,d(z)e] ©® d(z)e *xx

= [e,d(z)e] © [d(2)e, (d(2)e)d(2)] - @@)e)a()|

= [e,d(2)e] © [d(w)e, d(@)e] - el (d(@)e w d(=))
= le,d(x)e] © ael®

= Te, d(2)e] - agye| (Lemma 10.20)

(e L d(z)e, by (P4)).
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Lemma 10.22. Let z,y € P ande € U. If z =1, © ¥y, then x <, h*y and
hxy <,y in P, where h € S(e,d(y)).

Proof. We note that

=T.oh®h+y (Lemma 10.20)

=T, 0hxy (Lemma 10.19)
= en|(h*y) (eh L h=d(h+y), Lemma 10.21),

and so x p op|(h *y), that is, x <, h *y. Notice that

hoxy = [h, hd(Y)] - haw |y
= [h, hd(y)] © haw)ly (Lemma 10.20)
= [hd(y), hd(y)] © hagly (7 R hd(y), Lemma 10.2)
= hd(y)|y7
and so h x y p pag)|y so that hxy <, y. O

Lemma 10.23. If P is a weakly reqular category over U and x € P, then
Lae) 735 z ENU i), where U={I.:ecU}.

Proof. In view of Lemma 10.20, U is a subset of idempotents of PS. Now,

we claim that z /755 la(z), and dually, we have that Z Zg 1r(z). Clearly, by
Lemma 10.20, 1q,) © T = 7. Assume that g € U and 1,z = z. Then
(1,®x), p x, where h € S(g,d(x)), which gives that (1,0h)- (h*x) p z, that is,

[(gh) ™, gh] - [gh, k] - (h=x) p x,
which implies that gh R (gh)™ R d(z). So

1,014 = (13 ® la@)n (h € Sy, d(l")))
= (19 < h) : (h * ]-d(m))
—T,0h®h*lag (Lemma 10.20)
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1)n © (1h @ La@)n (Lemma 10.18, Lemma 10.19)

=1y © L) (h W g, Lemma 10.19)

(gh R d(z),so by Lemma 1.29, gh € S(gh, d(x)))
= Tigndw) (Lemma 10.18)
= Taw) (9h R d(x)).

Let U ={1.:e € U}. For any 1, 1y € U, we have
I, w" Iy if and only if Ty © 1. = 1.,

and dually,
T, w' T if and only if T, ® T = T..

Lemma 10.24. The map x : U — U : e — 1, is a reqular isomorphism.

Proof. Suppose that (e, f) € Dy = (w" Uw') U (w" Uwh)™L If e w" f, then by
Lemma 10.18, 1, ® Iy = 1.;. Again, by Lemma 1.29, ef € S(f,e). Thus,

T;01
= (1, @ Lo)es
(1roef)-(ef x 1)
F Alyes - TfefrefT-Tef.efe] - epelle ]
F ANy Teloell-Tef.el lleel  (eRefw f)
(ef) e~ [ef el - [ef el - e, e7]
N el -leer]  ((ef)" Ref Reby (P1).

[
[
[
[
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Note that (ef)* R ef R e, e* L e and using the above we have

[(ef)" el - 1o =[(ef)" €] - [e,€]

We have that Ty © 1, = 1. = I..
Dually, if e w' f, then T, ©1; = 1. and T;® 1, = Tj.. Thus x is a morphism.
To show that x is a regular morphism, we assume that h € S(e, f). Then

L.ol;=(1.® 1)
(160h)'(h*1f)

—T.ohOh*1; (Lemma 10.20)

=1cp © Ipy (Lemma 10.18 and Lemma 10.19)
=(T.oly) o (d,01)) (Lemma 10.18 and Lemma 10.19)

=1.01,01;.

Thus, by Lemma 10.23 and Lemma 2.12, we have 1, € Si(1.,1;) C S(1., 1),
and so y is a regular morphism.

Since no two identities of P are p-equivalent by Lemma 10.3, x is injective.
Clearly, x is surjective. Thus, x is a bijective regular morphism, and so by

Lemma 1.26, we succeed in obtaining that x is a regular isomorphism. O
The next lemma is useful for Lemma 10.27.

Lemma 10.25. Lete, f € U and h € S(e, f). Then 1, R 1. 01, L Ti in (U),
where (U) is the semigroup generated by U.

Proof. We first show that I., R 1. ® 1;. Notice that

Lol =0.al), (heSle f))
— (T oh)-(h*1y)
—T.ohOh*1, (Lemma 10.20)

=T, @ Iy (Lemma 10.18 and Lemma 10.19).
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In addition, we have
1,01 0Tf) =1 OTeh O Thy =1 O Ty = 1. © T

and

ToT)el’ =Taol, 0T, 0T,
— [eh, b] - [h, hf] © [hf, h] @ [h, eh]
(eh £ h R hf, Lemma 10.2)
— [eh, B] - [h, hf] - [hf, h] - [h, eh] (by Lemma 10.20)
=

eh, B - [h, h] - [h, eh] (by (P1))
= [eh, eh] (by (P1))
= lep.
Thus, To, R T, ® T; in (U). Dually we have that T, ® T; £ 1, f in (U). O

We pause here to make a short comment on Lemma 10.25. Suppose that
r=1.01; As

.01 = Iny

eh ©
[eh, h] @ [h, hf] (eh £ h R hf, Lemma 10.2)
h,h

[eh, h] - [h, hf] (Lemma 10.20),

we have that d(z) R eh. By Lemma 10.24, we have that Iq) R I.,. Since
I, R 1. ©®1; in (U), we obtain that Igq,) R I ® Iy in (U), that is, Tq) R @ in
(U). By a dual argument, we have that 1r(x Lz in (U).

Lemma 10.26. Let P be a weakly regular category over U. Suppose that for
r € E(PS), we have 1au) R* & L* 1) in PS. Then v € U.

Proof. Suppose that x € P and 2©Z = Z. As & L* 1), we have that T,,) ©& =
Li(z). Let h € S(r(x),d(x)). Then, we have

]-r(x) Or= ]-r(m)
= (1r(x) X l’)h = 1r(w)
= (Ir@) 0 h) - (hx2) = e
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= L)@ - [T(@)h, h] - (b 2) = T
= [(x(z)h)T,r(x)h] - [r(x)h, h] - (h*z) = 1y
r(z)h R (r(z)h)* R r(z).
As h w! r(z), we have that r(z)h w r(z), and so we must have that r(z)h = r(x).

Also, we have hr(z) = h, and so h £ r(z). By Lemma 10.24, we obtain that
1y L Ty(y). Since T L* Ty, we succeed in obtaining that # £* T,. Dually, we

have that £ R* 1, so that £ H* 1. As 7 is an idempotent and each H*-class

contains at most one idempotent, we must have T = 1. O

Lemma 10.27. The set U = {1, : e € U} generates a reqular subsemigroup (U)

of PS and satisfies E((U)) =T.

Proof. To show that E((U)) = U, we first verify that for z € (U), Tqu) R T £ 1)
by induction. Suppose that z = I, ® 1y, where e, f € U. Then by the comment
succeeding Lemma 10.25, we have that Tg¢,) R Z in (U).

Now, we assume that if z =1, © 1., ®---©® 1, then T4, R Z in (U ). Let

—

0 Ol, 001, O

N
I
&

€n41-°

Put
,:1_62@1_63@...@16”“.

Then by the hypothesis, Tq(;y R z in (U), and so there exists ¢ € (U) such that
z®t =14, so that

yot=1,0z0t =1, ©Iax.

If k € S(e1,d(z)), by Lemma 10.25, we have that I, ® Tq) R Ie,x in (U), that
is, y @t R 1,1 in (U). Thus, there exists u € (U) such that

OtoOu=T.,

|

where t © u € (U).
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Observe that

y=1,0
= (1, ®2)x (k € S(er,d(2)))
= (1, 0k)  (k*z)
=1,0k0kxz (Lemma 10.20)
=1 Okxz (Lemma 10.19),

and so I, ®§ = ¥, so that T, R 7 in (U). As e;k £ k, by Lemma 10.2, we

have 1.,x = [e1k, k], and so

U=1lex @ kxz=e1k, k]| ©kxz=[eik, k] - (kx*2z)

so that d(y) R ek, and so Icx R Iqg,). Hence Tqp) R g in (U). Dually, we have
that y £ T, in (U).

For any z € E((U)), we have that 14,y R * £ 1,(), and so by Lemma 10.26,
we have T € U. Together with U C E((U)), we obtain that E((U)) = U. O

Lemma 10.28. If P is a weakly reqular category over U, then for any x,y € PS,
(i) & Ly g if and only if v(x) L r(y);
(i1) T Ry 4 if and only if d(z) R d(y).

Proof. To prove (i), suppose that z,y € PS and x,y € P. Then

z [,NU U 1y [,NU L) (by Lemma 10.23)
& L@y £ Ly
sr(r) Lr(y) (by Lemma 10.24).
Similarly, we show that part (i) holds. O

Lemma 10.29. If P is a weakly reqular category over U, then PS satisfies the
Congruence Condition (C).

Proof. Let z,y,z € PS be such that ENU y. Then by Lemma 10.28, r(z) L r(y).
According to Lemma 1.28, we have that S(r(z),d(z)) = S(r(y),d(z)). Suppose
that h € S(r(z),d(z)). Then

TOzZz=(x®z),=(xoh) - (h*xz)and y©z=(y®z2), = (yoh)-(hx*z).
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Asr((xoh) - (h*z)) =r(hxz) =r((yoh)-(h*z)), it follows from Lemma 10.28
that © 2 ENE Yy ® z, and so ENU is a right congruence on PS. Dually, 7’53 is a left
congruence on PS. O

To sum up, we obtain the following result.

Theorem 10.30. Let P be a weakly reqular category over a reqular biordered
set U. Then PS is a weakly U-reqular semigroup, where U = {1, : e € U}.
Moreover, pre-orders <! and <,/ on P correspond to partial orders <! and <) on

PS, and pre-orders <%. and <! on P correspond to pre-orders <, and <; on PS.

Proof. 1t is sufficient to consider these orders on P and PS. Let x,y € P. We
have that

r < yinP&uxp,.ly forsomeewd(y)
& T =,yin PS for some e w d(y)
&r=1.,0yin PS for some e w d(y) (Lemma 10.21)
&z < gyin PS.
Dually, we have that x <,/ y in P if and only if z <] 7 in PS.

In addition,

T gﬁ yin P

=2=%0< NS - <y, =yin P forsomen > 1

=T p 61|y17 Y1 p 62|y2a"' yYn—1 P en|Un :en|y for some €1,€2, " ,€n € U

:>:Z':el|yl> ylzez|y2a"' >yn—1:e7lyin PS
ST=1, 00, TN =1, 002, ,Un_1= 1., OF (LemmalO.Ql)

=z=1,01,0---01, ©yin PS
=T <, yin PS.

Conversely, if 7 <, § in PS, then there exist 1., I.,, -+, 1., € U such that

1=1,01,0--01, ©1.

Let
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and let h, € S(e,,d(y)), hn—1 € S(en—1,d(yn-1)), -+ ,h1 € S(e1,d(y1)). Then
by Lemma 10.22, we have that

xér hl*yb hl*yl Sryla Tty

Yn—2 Sr hn—l * Yn—1, hn—l * Yn—1 Sr Yn—1,
Yn—1 Sr hn * Y, hn * Yy Sr Y,
that is, z <,! y in P.
Similarly, z <! y in P if and only if # <; yin PS. O

We close this section by constructing an admissible morphism between weakly

U-regular semigroups from an RBS functor.

Lemma 10.31. If P, and P, are weakly reqular categories over reqular biordered
sets Uy and Us, respectively, and F' : P, — P, is an RBS functor, then the
map FS : PIS — P,S defined by the rule that TFS = xF is an admissible
morphism; moreover, if Fy : P — Py and Fy : P, — Py are RBS functors, then
(F1F)S = F1SFS.

Proof. Tt follows from Lemma 10.8 that if x,y € P, and & = y, that is, z p y in
Py, then zF p yF, so that F'S is well-defined.

Now, we claim that F'S is a semigroup morphism. Suppose that z,y € P;S
and h € S(r(z),d(y)). Then hEF' € S(r(zF),d(yF)), and

(2O §)FS = (z® y)rFS (h € S(r(z),d(y)))
h) - (h*y)FS

zoh) - (h*y)F
hE - (hxy)F

=(xoh)F ® (h*xy)F

= 2F o hF O hE xyF (Lemma 10.10)

= (zF ohF)- (hF xyF)

= («F @ yF)ur (hF € S(x(zF),d(yF)))

=zF ©OyF

— 7FS - yFS.

xr o

(z @y
= (
(
= (

xr o
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Next, we present the proof that F'S is admissible. By Lemma 10.23, for any
r € P, we have that 14, 7A€U—1 T ZU—l 1(z). Then

ld(x)FS = 1d(x)F

Dually, we have that T,,)FS Lz 2FS.

Finally, I.F'S = 1.F = 1.r as F is a functor, so that U, F'S C Us,.

To sum up, we have that F'S is an admissible morphism from P;S to P,S.
It is routine to show that (F1F5)S = F1SF,S. O

It is an immediate consequence of Theorem 10.30 and Lemma 10.31 that
S : WRC — WRS is a functor.

10.3 Correspondence

The aim of this section is to present a converse to Theorem 10.30.
Let S be a weakly U-regular semigroup and let K be a representative of U.
For any e € U, we will use ¢* and et to denote the elements of K which are

L-related to e in U and R-related to e in U, respectively. Set
SC={(e,x,f):eRyx Ly f, e, feUCUxSxU.

We put
d((e,z, f)) = e (abbreviated to d(e,z, f) =e)

and
r((e,z, f)) = f (abbreviated to r(e,z, f) = f)

for all (e, z, f) € SC, and define a partial binary operation - on SC by the rule
that

(6,113’, .f) ’ (f>y>'U) = (e,xy,v),

where (e,z, f), (f,y,v) € SC and zy is the product of z and y in S. Since
e Ry x = xf Ru zy and zy Ly fy =y Ly v, we have that e Ru 2y Ly v, and so
(e,zy,v) € SC. Ife, f € U withe R fore L f, then we define [e, f] = (e, ef, f).
Obviously, [e, f] € SC. For any (e,z, f) € SC and u,v € B with u <, e and
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v <gr f, we define
(e, ) = (u,uz, (uz)*) and (e, z, f)|, = ((zv) ", 2v,v).

Notice that u = ue Ry uz Ly (uz)* and (zv)* Ry zv Ly fv = v. So
(uw, uz, (ux)*) and ((zv)*,zv,v) are in SC, that is, ,|(e,z, f) and (e, z, f)], are
well-defined.

Lemma 10.32. The set SC, together with the restriction, co-restriction and the

distinguished morphisms given as above, forms a weakly reqular category over U.

Proof. Clearly, SC forms a category with set of objects U and morphisms the

triples are given as above. For any e € U, [e, e] = (e, e, €) is the identity associated

to e. It is necessary to show that SC satisfies (P1) to (P7) and their duals.
(P1) If e, f,g € U with e R f R g, then

[evf]' [fag] = (67f7f>'(fvgvg): (evgvg): [evg]'

Similarly, if e £ f L g, then [e, f] - [f, 9] = [e, g]-

(P2) Suppose that (e,x, f) € SC, h € U and h <, e. Then (e, z, f) =
(h, hz, (hx)*) and d(4|(e, x, f)) = h. By Lemma 2.14, (hx)* <, f. In particular,
if h = e, then .|(e,z, f) = (e, x,xz*). Certainly, z* L f and

(6,1’,1’*) ’ (l'*,l’*,f) = (€,$l’*,f) = (6,1’, f)>

that iS7 6|(€7 x’ f) : I::'U*7f] = (67 x’ f)'
(P3) If g < eand e R f, then g <g f, and so gf € U and

9|[€7 f] = g‘(ev f7 f) = (gvgfv (gf>*>
=(9.9f,9f) (9f.9f.(9f)")

Ifg < eande L f,then g <, f, and so gf = g. Thus

dlle, fl=glle,e, f) = (9,9,9%) = [9,9"] and [g,9f] - [9f, (9f)] = |9, 9]

so that y|[e, f] = [g,9f] - [9f, (9f)"].



224

Ifggﬁe and € E fv then 9|[€7f] :g‘(eveaf) = (gugvg*) = [gvg*]
(P4) if (9,x,h) € SC and e, f € U with e <, f <, g, then

€|(f|(g>za h)) = e|(f> fx> (f!lf)*) = (6a efx> (6fl')*)
= (e, ex, (ex)*) = .|(g,z, h).

In particular, if e £ f w' g, then

[67 f] ’ (f|(g,flf, h’)) = (€7 €, f) ’ (f7 f‘rv (f‘r)*> = (6,€f$, (f‘r)*> = (6,€$, (fﬁ)*)
and
e|(g,z,h) = (e, ex, (ex)”).

As (fx)* Ly fx Ly ex Ly (ex)*, we have that (ex)* = (fz)*.
(P5) If (e, z, f), (f,y, k) € SC and h <. e, then

wl((e, 2, f) - (f,y, k) = nl(e, xy, k) = (h, hay, (hry)”),

wl(e,, ) = (h, ha, (ha)")

and

wl(e, 2, f) - hay|(f5y, k) = (B, b, (har)") - ((h)”, (ha)™y, ((ha)"y)")
= (h, ha(hx)™y, ((hx)"y)")

= (h, hay, ((hx)"y)").

But, (hzy)* Ly hay Ly ((he)*y)*, and so (hay)* = ((hz)*y)*. Hence,
h|((€,l’, f) ' (fay’k)) = h|(€,l’, f) ' (hm)*|(f>y> k)
(P6) We know that singular U-squares are of the form:

(a) ( g h ) where, g, h € W'(e), (9,h) € R, or
eg eh

h he
Firstly, consider (a). By gw'e and (g, h) € R, we have that

(D) ( g 9¢ ) where, g,h € w"(e),(g,h) € L.

lg, h] - [h,eh] = (g,h,h) - (h,h,eh) = (g, h,eh)
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and

[9.eq] - [eg,eh] = (9,9, eg) - (eg,eh,eh) = (g, geh,eh) = (g, gh,eh) = (g, h,eh).

Thus [g, h] - [h, ] lg,eq] - [eg, eh]. Similarly, we prove (b).
(P7) If (u,z,v) € SC, hy € S(e,u), ha € S(v, f). Then

| (0, 2,0) = (hyu, bz, (hiz)*) and (u, z,0)|wn, = ((Tha) T, 2he, vhy).
Put 1} = (hiz)* and hl, = (zhe)*. Take b’ € S(h), ha) and h € S(hy, hb). Then

(hy * (u, z,v)) o h') - [W, W ho]

([h1, hau] -yl (u, T, 0)) o BY) - [W W Do)
([h1, hyu] - (hyu, haz, b)) o B') - [B', B hy)
(

(

(h1, hau, haw) - (hyu, hyz, 1)) o B') - [, B/ ho] (71 R hyu)
hl, hll’ B, ) < h/) [h,, h/hg]
ha, o, W) [ - [ROR B) - (B BB

(
(
(
(
(
= (

= ((hoah!)*, haxh! L) - (BB BER B - (B W hy, W ho)
(WiH £ R Bhy)
= ((haah!)*, haxh! L) - (RSB By B hy, B hy)
= ((haxh!)*, haxh' B W hy, W hy)
= ((hazh!)*, hywh'ha, ' hy) (' LHin)
= ((hyah')*, haxhy, h'hy)
(hah'hy = hyx(haz)*W'hy = hyzhy as b L Wik = (hyz)l).

Similarly, we have that
[hlh, h] . (h * ((u, x, ’U) < hg)) = (h,lh, hll’hg, (hlth)*).

Obviously, (hizh' )t Ry hizhe Ry hih and Why Ly hizhy Ly (hyxhs)*. Thus,
(hixh/)T R hih and h'hy L (hxhy)*, that is,

A(((hy * (u,2,0)) o B) - [W, W'ha]) R hih
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and
h'hy L v([hy, h] - (h* ((u,z,0) 0 hy))).

In addition, we have that

((hy % (u, z,v)) o W) - [N, W hy] - [Wha, (hizhs)*]
(hazh')*, hazha, Why) - (W hy, (hazhs)*]
(haah')*, hazhy, Why) - (W ha, B hy, (hnzhs)")
((hazh')*, hazhy, (hyzhs)*)

and
[(hll’h,)+, hlh] . [hlh, h] . (h * ((u, Z, U) & hg))

((haxh')*, hahy hah) - (hah, hixhy, (hizhy)*)
((hizh)*, hyzhy, (hizhs)®).
Consequently, ((hy * (u,z,v)) o h') - [h/,Whs] p [h1, k] - (h* ((u,z,v) 0 hg)). O

In Lemma 10.31, we constructed an admissible morphism from an RBS func-

tor. Next, we produce a converse to this result.

Lemma 10.33. Let S be a weakly Uy-reqular semigroup, and let T be a weakly
Us-regular semigroup. If ¢ is an admissible morphism from S to T', then the map
¢C defined by epC = ep and (e, x, f)pC = (ep, xp, fP) is an RBS functor from
SC to TC. Further, if o1 : S = T and ¢ : T — Q are admissible morphisms,
then (¢1¢2)C = $1CphC.

Proof. As ¢ is an admissible morphism, it is clear that ¢ is a regular morphism
from U; to Us,. Since ¢ preserves products and identities, it is a functor.

To show that (PF2) holds, suppose that e, f € U. If e R f, then e¢p R f¢
as ¢ is an admissible morphism. Thus, [e, f|¢C = (eo, fo, fo) = [ed, fP] =
[edC, foC]. Dually, if e £ f, then [e, f|¢C = [ep, f¢] = [edC, foC].

Finally, we show that (PF3) holds. Suppose that (e, z, f) € SC and h € U
with h <, e . Then ,|(e,z, f) = (h, hx, (hz)*), and so

(h|(€7 €, f))¢c = (hv hz, (hx>*>¢c
= (ho, (hz)¢, (hz)*¢).
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Also, we have that h¢ w' e¢ and

nol(ed, w0, f¢) = (ho, hoxo, (hdzd)™)
= (ho, (hz)o, ((hz)¢)").

Thus, ((h))* Lu, (hx)¢ Lu, (hx)*¢, and so ((ha)¢)* L (hx)*¢,

(nl(e, 2, £))9C - [(hz)*¢, ((hx)¢)’]
= (h¢, (hz)¢, (hz)*¢) - ((hz)*¢, (hx)* ¢, ((hx)¢)")
= (ho, (hz)o, ((hz)¢)*)
= necl(e, z, )9C.

Hence, (1|(e,z, ))oC p necl(e, z, f)oC.

Dually, if £ € Uy and k <g f, then ((e, z, f)|x)9C p (e, z, f)¢pClrpc. Conse-
quently, ¢C is an RBS functor from SC to T'C.

It is routine to show that (¢1¢p)C = ¢1Cep-C. O

Now, we have that C : W RS — WRC is a functor.
At the end of this section, we build a correspondence between the category
WRS of weakly U-regular semigroups and the category WRC of weakly regular

categories over regular biordered sets.

Lemma 10.34. Let S be a weakly U-regular semigroup. Then the mapping ns :
S — SCS given by xns = (e, x, f), where e Ry = Ly f, is an isomorphism.

Proof. Let € S, e,g€ R,NU and f,h € L, NU. Then e R ¢, f L h and

(e,x,f)-[f,h]:(e,z,f)-(f,f,h):(e,x,h)

and
[e>g] ’ (g,x, h) = (e,g,g) ’ (g,:)s, h) = (6>Ia h)

Thus (e, z, f) p (9,2, h), and so ng is well-defined.

To show that ng is injective, we assume that xng = yng. Then (e, z, f) =
(u,y,v), where ¢ Ry Ly f and u Ry y Ly v. Thus e R w and f £ v. Further,

[e>u]'(u>yav): (e,x,f)-[f,v],
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that is, (e,y,v) = (e, z,v), which implies that z = y. Hence ng is injective, as
claimed.

Clearly ng is onto. It remains to show that g is a morphism. Suppose that
zyeS, eRyx Ly f,uRyy Ly vand h € S(f,u). Then

ans @ yns = (e, 2, f) © (u,y,)
)@ (w9, 0))n
e,x, f)oh)- (hx(u,y,v))
z, f)lgn - [Fhy b] - [hy hul - p|(u, y, 0)
(xfh)*,xfh, fh) - (fh, fh,h)- (h, hu, hu) - (hu, huy, (huy)*)
(xh)*,xh,h) - (h, hy, (hy)*) (f Ly z and u Ry y)
(xh)*, zhy, (hy)*)
(xh)*, zy, (hy)*)
(h € S(f,u) = 51(f,u), so xhy = xfhuy = xy)

= (zy)ns-

In addition, ng preserves the distinguished set as eng = (e, e, e) = 1, for all
e € U. Thus ng is an isomorphism.
Finally, as ng is an isomorphism, it preserves the pre-orders and partial-

orders. ]
To the converse, we have:

Lemma 10.35. Let P be a weakly reqular category over U. Then the map Tp :
P — PSC defined by the rule that erp = 1. and x7p = (law), Z, Ie(z)) for all
e€ U = 0b(P) and x € P = Mor(P), is an isomorphism from P to PSC.

Proof. Note the distinguished subset of PS is U, which is the set of objects of
PSC. By Lemma 10.24, 7p : U — U : e + 1, is a regular isomorphism.
Now, we show that 7p preserves d and r. Suppose that x € P. Then by the

definition of 7p,

and

27p = (la@), T, Le@))-
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Thus, 7p preserves d and r.
If x,y € P with = - y defined in P, then r(z) =d(y) andso 2Oy =7 7.
Here, we temporarily use o to denote the partial binary operation in PSC.
Thus,

x7p oy = (la@), T, Lr)) © (law), ¥ Lr@y))
= (Ta@), Z O ¥, L))

= (

(

1d(x -7, L)) (Lemma 10.20)

La(ay)s T Us Le(zy)
= (z-y)7p
which implies that 7p preserves products. Also, 7p preserves identities since
letp = (Ie, I, 1) = 1. Thus, 7p is a functor.
Let e, f € U with e R fin U. Then [e, flrp = (I, [e, f], I7). Since e R f, it
is easy to see that [e, f] p [f, f]. Thus,

e, flrp = (Te, 1, 1) = (Te, e © 1y, 1) = [Le, Ip] = [eTp, f7p).

Dually, if e £ f in U, then [e, f]7p = [eTp, fTp]. Hence, 7p satisfies Condition
(PF2).

To show that (PF3) holds, We assume that € P and e € U with ew!d(x).
Then erp w! d(z)7p as 7p is a regular isomorphism from U to U shown above.

Hence, .|z and .., |z7p are well-defined. Observe that

(el2)mp = (Te, o]z, T o)

and
eTp\SCTP
= 1/(La@) T Le(w))
=T, .oz, (.o
= (1., ]z, (Jz)%) (e ' d(x), Lemma 10.21)
Clearly,
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Te, el © To( o), (el2)")
eve‘x (e ‘x> )
- eTp|$TP>

so that (.|z)7p p erp|xTp and (PF3) holds.

and
(elz)7p - [e((el2)7P), X (erp [27P)]
= (Tes ela, L) - Teepors (el2)”]
= (Lo, el Tegeim) - (Teefa)s Loy @ (el2)* (cf)")
= (Tes el Tee) * (Tetelo)s Iecela (\ )")
( (e
(1

Next, suppose that z,y € P with 27p = y7p. Then (lag), 2
(Ta), ¥: Lr@y)), which implies that z = y, and also d(z) = d(y), r(z )
by Lemma 10.24. Further, by Lemma 10.3, x = y.

We now show that 7p is surjective. Let (I.,Z,1f) be in PSC. Then
T. Ry @ Ry la@) and T L T L To(m), that is, T, R T and T; £ Ty, so that
by Lemma 10.24, e R d(z) and f Lr(z). Put 2’ = [e,d(x)]-z-[r(z), f]. Certainly,
z' p x, that is, 2/ = z. Thus, 7p(2') = (1., 2',1;) = (1., Z, 1), and consequently,
Tp is surjective.

As we have shown 7p is an RBS functor, we succeed in obtaining that 7p

preserves the two pairs of pre-orders on P by Lemma 10.8. O

Lemma 10.36. For any S € Ob(WRS), define Sn = ns, where ng is defined in
Lemma 10.34. Then n is a natural equivalence of the functors Lygrs and CS.

Proof. Let 0 : 51 — Sy in WRS, where S; and S5 are over U; and Us, respectively.
Then for any = € S, we have by the definition of g in Lemma 10.34 that

(xn&)ecs €, >HCS (6 §U1 T £~U1 f)

(e.z, f)
= (e,z, [)6C

= (ef, 20, f0)

= (20)ns, (€0 Ry, 20 Ly, f0)

Thus the diagram below commutes, and so n = (1s) is a natural isomorphism

between Iyrs and CS.
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UERN s,

$,CS 6CS

S,CS

Figure 10.1: A natural transformation of I,yzrs and CS

Similarly, we have:

Lemma 10.37. For any P € Ob(WRC), define Pt = 7p, where Tp is defined in

Lemma 10.35. Then T is a natural equivalence of the functors Lygre and SC.

Proof. Let F : P, — P, in WRC, where P; and P, are over U; and U,, respec-
tively. Then for any x € P, we have by the definition of 7p in Lemma 10.35
that

= (zF)7p,
and B
(erp,)FSC =1.F'SC
=1.FS
=1.F
= ler
= (eF)7p,

Thus the diagram below commutes, and so 7 = (7p) is a natural morphism of
[WRC and SC.
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Py Py
TP, P,
P,SC FSC P,SC

Figure 10.2: A natural transformation of lyre and SC

To sum up, we have:

Theorem 10.38. The category WRS of weakly U-regular semigroups and admis-
sible morphisms is equivalent to the category WRC of weakly regular categories

over reqular biordered sets and RBS functors.



Chapter 11

Special kinds of weakly U-regular

semigroups

In this section we focus on some special kinds of weakly U-regular semigroups.
We recover Armstrong’s result for concordant semigroups and Nambooripad’s

result for regular semigroups.

11.1 Weakly U-regular semigroups with (WIC)

As mentioned In Chapter 2, a weakly U-regular semigroup satisfies (WIC) (with
respect to U) if for any a € S and some (any) a*, af, if z € (a'), then there exists
y € (a*) with za = ay; and dually, if 2 € (a*) then there exists ¢t € (al) with
ta = az.

We say that a weakly regular category P over U has (WIC) if the following
condition and its dual (W)° hold:

(W) if z € P and u € U with u w d(z), then there exists vy, -+ ,v, € U
such that v; wr(z) fori=1,--- ,nand JJz =201, ®---O1,,.

Corollary 11.1. The category of weakly U-regular semigroups satisfying (WIC)
and admissible morphisms, is equivalent to the category of weakly reqular cate-
gories with (WIC) and RBS functors.

Proof. Let S be a weakly U-regular semigroup with (WIC). In view of Lemma 10.32,
it is sufficient to show that SC satisfies Condition (W) and its dual.

233
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Suppose that (e,x, f) € SC and u € U with v < e. Then ,|(e,z, f) =
(u, uz, (ux)*). Since S satisfies (WIC), it follows that there exist vy, -+, v, € U
such that v; < ffori=1,--- ,n and uxr = xvy---v,.

By Lemma 10.34, ng : S — SCS, given byx W, is an isomorphism.
Thus, for any z,y € S, we have xns ® yns = (zy)ns, that is,

SO

(6ax>.f)®1_v1®®mz ((x'Ul"'Un)+>Ivl"'Una(xU1""Un)*)‘

As uxr = xvy---v,, we have that u Ry ur = xvy---v, Ry (zv1---v,)" and

(ux)* = (zvy -+ - v,)*. In addition, we have

[w, (zvr - v,) ] (o 00)F, 2vr -+ v, (207 -+ - 00))
= (u, (zvr - va) T, (v v) ) - (@or -+ 0n) T, 201 v, (201 -+ - 0)*)
= (u, 2V - - - O, (01 - 0p)"))

= (u,ux, (ux)*) (ux = avy - - -vn)

so that ,|(e,z, f) = (e,x, f) ©1,, ®--- ®1,,, and so Condtion (W) holds.

Conversely, suppose that P is a weakly regular category over U with (WIC)
and x € P. In view of Theorem 10.38, it is sufficient to show that for all u €
(Laa)), there exists v € (1)) satisfying u®z = £ ©v. Suppose that 1. € (14())-
Then 1, =1, ® - -+ ® 1L, where ¢; w d(x) for i = 1,--- ,n. By (W), for any e;,
there exist fi1, -+, fim;, € w(r(z)) such that

that is,
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where 1y, ©--- 01y, O 01, © - 01y, € (Iyy). Dually, we show that
for any g € (Iy(y)), there exists k € (14(,)) satisfying k©r =20 g. O

11.2 The abundant case

In this section we concentrate on the class of abundant semigroups. We replace
the distinguished set of idempotents U by the whole set of idempotents and
use relations R* and £* instead of ﬁU and ENU in the definition of weakly U-
regular semigroups. We thus obtain the class of abundant semigroups whose
set of idempotents generates a regular semigroup. As mentioned in Chapter 7,
an admissible morphism in this context is more usually referred to as a good
morphism.

A weakly regular category P over U is an abundant category if it satisfies the
following condition and its dual (P8)°:

(P8) if x,y,z € P, h € S(r(z),d(y)) and h' € S(r(x),d(z)) are such that

(@ @y p (x @ 2)w,

then r(z)h R r(x)h'.

Corollary 11.2. The category of abundant semigroups whose set of idempotents
generates a reqular subsemigroup and good morphisms, is equivalent to the cate-

gory of abundant cancellative categories and RBS functors.

Proof. Suppose that S is an abundant semigroup whose set of idempotents gen-
erates a regular subsemigroup of S. In view of Lemma 10.32, it is sufficient
to show that SC satisfies (P8). Dually, (P8)° holds. Let (e, z, f), (u,y,v) and
(9,2,k) € SC , and let h € S(f,u) and h' € S(f, g) be such that

((e,z, f) @ (u,y,0)n p (6,7, f) @ (9,2, k))w-

Notice that
((e,x, f) @ (u, y,v))n

= ((e;z, f) o h) - (hx (u,y,v))
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= (e, f)lsn - [fhy b] - [hy hul - pul (u, y, v)

(xfh)*,xfh, fh) - (fh, fh,h) - (h, hu, hu) - (hu, huy, (huy)*)
(@fh)*,xfh,h) - (h, huy, (huy)*)

(xh)*,zh, h) - (h, hy, (hy)*) (f Lz, uRF y)

(

(

zh)", zhy, (hy)*)
zh)™, zy, (hy)*) (zhy = xfhuy = x fuy = zy),
and so, (zh)™ R* xy L* (hy)*. Similarly, we have

(
(
(
(
(
(

((e,z, [) ® (9,2, k))w = ('), 2z, (W'2)")
and (zh')* R* w2 L7 ('z)*. Since
((e;z, [) @ (u,y,0))n p (6,2, ) @ (9,2, k),
we have that (zh')* R (zh)*, (hy)* £ (h'z)* and
[(@h)™, (ah!)T] - ((ah') ", 2z, (W2)") = ((zh) ", 2y, (hy)*) - [(hy)*, (W'2)"].

From (zh/)* R (xh)", we obtain that (zh’)* = (xh)" by the uniqueness. Simi-
larly, we have (hy)* = (h'z)*. Thus,

((@h)*, w2, (W2)") = ((@h)", zy, (hy)"),

and so xy = xz. Since f L* x, we have that fy = fz. Asu R* y and h w" u, we
obtain that h R hu, and so fh R fhu R* fhy = fhuy = fuy = fy. Similarly,
fh R* fz,and so fh R* fy = fz R* fh' so that fh R fh'. Hence, (P8) holds.

We now show that SC is cancellative. Suppose that (e, z, f), (u,y, f) and
(f,z,v) € SC are such that (e, x, f)(f,z,v) = (u,y, f)(f, z,v). Then (e,zz,v) =
(u,yz,v), and so xz = yz. As f R* z, we have xf = yf and so x = y. Thus, SC
is right cancellative, dually, we show that SC is left cancellative.

Conversely, suppose that P is an abundant cancellative category over U. Due

to Theorem 10.30, it is necessary to show that PS is abundant. For any x € P,

we want to show that 1q) R* ¥ L* 1,(,). First, we show that ¥ L* 1,(,). Clearly,
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@@a)y=(@aby  (heSk)d(), b e S(),db)))
(xoh)-(hxa)=(xoh')- (W *b)

=d(zoh) Rd(zoh), r(h*a) Lr(h *b) and
(xoh)-(hxa)-[c(h*a),r(h*b)]=[dxoh),dxoh)] - (xoh) (N *D).

(10.1)
Also, we have
v o h = ey - [v(x)h, h]
= Tl - [0(@)h, (2(@)h) ] - [(x(@)h)*,x(2)h] - [v(x)h, B] - (by (P1))
mx [(e(@)h)t,x(@)h] - [r(@)h, h] (by (P4)°)
= 2wy - ([r(@),x(x)] o h)

= I| (r(z)h (1r(x) o h)

Similarly, x o b = z|w@mny+ - (le@) © #'). Thus, we can write (10.1) into the

following form:

T @)+ - (Ie@)y o h) - (h*a) - [r(h*a),r(h' *b)]
= [d(x % h,), d(l’ < h/)] . x\(r(x)h/)+ . (1,-(96) < h/) . (h/ * b) (102)

Since (x ® a)p, p (x @ b)p, it follows from (P8) that r(x)h R r(x)h'. Thus
(r(z)h)* = (r(z)h')", which implies that x|+ = &|@@)n)+, and so

d(z o h) = d(z|@@mn+) = d(@]@@mn)+) = d(z o h').
Thus we can write (10.2) into the following form:
e@myt - (L@ ©h) - (hxa) - [e(hx a),e(h"* )] = 2| @@y - (Lr@ o h') - (A% ).
As P is cancellative and x|(z)n)+ = | (2)n)+, We have that

(e o h) - (hxa)-[r(h*a),r(h' *b)] = (1yg) o ') - (R xb).
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Together with d(1y) ¢ h) = (r(z)h)* = (r(x)h/)" = d(1yg) o h') and
r(hxa) L r(h' xb), we obtain that

(Le@y o h) - (hxa) p (Le@y o ') - (W' % D),

® ¢ =IOl Using the
= l,(z). Hence, T L* 1,). Dually,

that is, (1,.(93) ® a)h p (1,.(90) ® b)hr, and so 11.(90) ®a=
t

Suppose that ¢ € P is such that z ©® ¢ = 7, then
c

same method as above, we have that 1,,)®

we can show that 7 R* 14(y)-

For any r € E(PS), we have 1q(,) R* 7 L* 1,(,). By Lemma 10.26, we obtain

that E(PS) =U. O

11.3 The concordant case

The aim of this section is to investigate concordant semigroups. We recall that
such semigroups satisfy (IC), defined by El-Qallali and Fountain, which coincides
with (WIC) in abundant case. Notice that Condition (P7) is a complicated condi-
tion, that we would like to omit. To this end, we first define an IC-RBS category.
The difference between a weakly regular category and an IC-RBS category is that
Condition (P7) is replaced by Conditions (PC1), (PC2) and the duals (PC1)°,
(PC2)° of (PC1) and (PC2), respectively.

An RBS cancellative category P over U is said to be IC-RBS if the following
conditions and the duals (PC1)°, (PC2)° of (PC1) and (PC2) hold:

(PC1) if x € P and h € U with h w d(x), then there exists a unique k € U
such that k£ w r(z) and |z p x|y; in particular, if h = d(x), then |z px;

(PC2) let x € P and for i = 1,2, ¢;, f; € U be such that e; w d(z), f; w r(z)
and ., |zpx|;,. If eg W ey, then fi W™ fo, and e|xpx|f . If €1 W' ey, then
fiwh foand e, T p x| pys,

We pause to make a necessary comment on Condition (PC2). From e; w d(z),
fi wr(z) and .|z p x|;, we obtain that e; and f; are unique by (PC1) and its
dual (PC1)°. If fi1, fowr(x) and fiw" fo, then fifow fo, and so fifowr(z) so
that x|, is well-defined. Dually, if f; W' fo, then x|,y is well-defined.

There exist two approaches to build a correspondence between concordant
semigroups and IC-RBS categories. We could show without mention of semi-
groups that if P is an RBS cancellative category, then P has (W), (W)°, (P7)
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and (P8) if and only if P has (PC1), (PC2) and the duals (PC1)°, (PC2)° of (PC1)
and (PC2), respectively. However, we are going to prove the correspondence be-

tween concordant semigroups and IC-RBS categories using Theorem 10.38.

Lemma 11.3. Let P be an IC-RBS category over U. If x € P and for i =1,2,
e, fi € U are such that e; w d(x), fi w r(x), |z p x|, and e; W™ eq, then

[617 6162] ’ (6162|x) ’ [r(6162‘x>7 f1f2] = (61|x) ’ [r(61|x)7 fl] ’ [flu f1f2]’

Proof. By (PC2), we have that f; w” fy and ¢,¢,|7 p ©|f f,- Then ejes R d(z|f, 1,)-
Certainly, [e1, ereq] and [fi, f1f2] exist. As |z p x|y, we obtain that e; R d(zy,),
fi L x(c,|z) and

er € - [r(e|2), fi] = [ei, Al )] - 2l

Thus,
61|£L' [I‘(61|ZL') fl] [fla f1f2]
[61,d(!)§'|f )] ' Z’|f1 ’ [fl>.flf2]
= [er,d(aln)] - olps, (fi R fufo, by (P4)°)
= len, d(@lp )] - 211 (d(zly,) = d(x]s,1.))
= [e1, exea] - [eren, d(x]p )] - @lpe (e1 R eres R d(a]s, )
= [er,e162] - real - [P(eyeal ), 1 2] (crealzplpugs)-

0

The following lemma is necessary for Lemma 11.5. Here we recall from
Section 1.4 that if F is a regular biordered set, then for any e € F, w(e) is a

regular biordered set.

Lemma 11.4. Let P be an IC-RBS category over U. For any x € P, the map
o, w(d(x)) = w(r(x)), defined by ec, = k, is an isomorphism, where k w r(x)
and .|z p x|k

Proof. Clearly, o, does map into w(r(z)) by (PC1). Now, we define
T, w(r(z)) = w(d(x))

by fr. = g, where g w d(z) and z|; p 4|z. By (PC1)°, 7, is well-defined. If
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e € w(d(x)), then it follows from (PC1) and its dual that eo, 7, = k7, = e, where
kwr(z) and .|z p x|z. Thus, o, = 7, !, and so o, is a bijection.

To show that o, is a morphism, suppose that e;, es € w(d(z)) and e; W es.
Write f; = ejo, and fo = eg0,. Then, by (PC2), f1 w" fo and z|pf, P ere |
Thus, (e1e2)0, = fifs = €10,620,. If e1 w! ey, then by (PC2), fi w' fa, and so
(e162)0, = €10, = f1 = fifo = e10,€20,.

To show that o, is regular, we suppose that e, f € w(d(x)), h € S(e, f) and
k € S(eoy, fo,). Then ho, € M(eo,, fo,) and kt, € M(e, f), and so k1, < h
in M(e, f), that is,

e(kty) w" eh and (k7,)f w' hf.

As o, is a morphism, we obtain that
(e(kTp))op W" (eh)o, and ((k7y)f)ow w' (hf)o,,
that is,
oy (kT,)0, W o ho, and (k7,)o, fo, W' ho, fo,

or equivalently,
co.k W eoyho, and k(fo,) w' ho,fo,

and so ho, € S(eo,, fo,). By Lemma 1.26, 0, is an isomorphism. O

Before we discuss the relationship amongst IC-RBS categories, concordant
semigroups and inductive, cancellative categories (defined in [1] and mentioned
in Chapter 6) we show that:

Lemma 11.5. If P is an IC-RBS category over U, then it is a weakly reqular

category.

Proof. 1t is sufficient to show that Condition (P7) holds. Suppose that z € P,
e,f €U, hy € S(e,d(x)) and hy € S(r(x), f). We put

hy =r(nawlr) and hy = d(@]r@n,)-

As U is regular, there exists h € S(hy, hY). Since hy w” d(z), by (B21), we have
hid(z) w d(z). Since hy w' r(z), by the dual of (B21), we have that r(z)hy w r(z).
By (PC1) and its dual, there exist v w d(z) and v w r(z) such that ,|z p Z|r@)n,
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and |y p pa@)|r. From .|z p 2|y (@), we obtain that u R hfy, r(u|z) £ r(z)hs
and

[, hg] - Tle(zyny = wlT - [r(ul), v(2)ha,

which implies that z|y(z)n, = [hh, u] - |2 - [r(u|7), r(2)hs]. Thus,

T hy = Z|e(oyn, - [1(2)he, hol
= [hy, u] - ulz - [r(u]), v(2)ha] - [£(2)he, ho]
= [y, u] - u|z - [r(u]z), ha) (r(ulz) £ x(@)ha £ ha, by (P1)),

and so

hx (z ¢ hs)
= hox ([hy, u] - ulz - [r(ul2), ho])
= [h, W] - wg | ([, ] - 2 - [1(u] @), ha])
= [h, hh] - iy |[hy; u] - ] (u] @) - wllr(ul2), o]
(by (P5), m = (g |k, ul), 1 = (| (u]2)))
= [h, hh] - [hhy, (R )u] - [(hhg)u, (hh)w) ] - (g (ul2) - ul (£l 2), ha]
(by (P3), since h w" b}, we have hhh w By R u, m = ((hhh)u)*)

= [h, hhy] - [hhg, (Rhy)u] - [(Ahy)u, (Rh)w)"] - (myyuy |7 - nllr(ul ), o]
(((hhy)u)* £ (hhhu w u, by (P4))
= [h, hho] - [hh, hu] - [h, (hu)*] -+ (s 2 - o] [P (ul2), Bo]
(by (B31), since h w" hy R u, we have h w" u R h'2)

= [, hhy) - [hhly, hu) -l - u[e(ul2), ha] - (hu £ (hu)*, by (P4))

= [h, hat] - | - o [2(u] @), o) (h R hhy R hu, by (P1))

= [h, htd] - a2 - [P0 2), (2 (|2)*)] (n = r(ulz) &' r(ulz) £ b, Dby (P3)).
Since hy R u, by Lemma 1.28, we have S(hq, hy) = S(hy,u). From x|, p pa@)|e,
we obtain that v £ r(paw)|) = R}, and so by Lemma 1.28, S(h}, ho) = S(v, ha).
As h € S(hy, h}) and 0, : w(d(x)) — w(r(z)) is an isomorphism, it follows from
Lemma 1.31 that there exists b’ € S(h], he) such that (hd(x))o, = r(z)h'. Since

h w" u w d(z), we have that hd(z) R h w" v w d(z) by (B21), and so (hd(x))u
exists and (hd(z))u w u w d(x). In addition, by (B31), we have hu = (hd(z))u.
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Due to Lemma 11.4, we obtain that

(hd(@)u|T P Z|(ra(@))u)o.

Since h' w" hy and k), hy W' v(z), it follows from (B32)° that

(r(2))(r(x)ha) = r(x)(W'hs).
Observe that h'hy w hy w! r(x). Thus r(z)(h'hy) L h'hy, and so
le) = v(payule)  ((hd())u = hu)

)
L ((hd(z))u)o,
= (hd(x))ouc, = (v(z)h')(r(z)he) = r(x)(h'hy) L h'hs.

Hence, (r(pu|®))* £ r(pu|z) £ W he, that is, r(h* (z ¢ he)) L h'hs.
From ,,q()|2 p x|,, we obtain that
md(@) |7 - [hy, 0] = [md(z), d(z],)] - z[o,
which implies that ,,q()|z = [hd(z), d(z|,)] - 2| - [v, B}]. Thus

hi *x
= [h1, had(2)]  nyaw) |z
= [h1, lnd(x)] - [nd(x), d(a],)] - 2, - [v, Y]
= [h, d(xl)] - 2l - [v, 5] (b Rmd(z) Rd(zl,), by (P1)),

and so
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(hy*z) ol
= ([h1, d(@[.)] - zlo - [o, B ]) | - [BIR, 1]
= [ha, d(@])]e - (@o)]s - (v, W]l - [RORS 1]
(by (P5)°,s = d([v, ki), ¢ = d((],)],))
= [h, d(z]o)]le - (@)l weuypyy - [(0(RIR) T v(RIR)] - [u(RR), By R - [RIK, ]
= [ha, d(z]o)]le - (@[o)lnry+ - [(WA) T, 0B - [0l AR - [ K, 1]
(W W'y Lo, by (B31)°,v(h\h') = k)
= [ha, d(@])]le - (@)l wnrys - [(0R)F 0h] - [0l 1]
(v LHYH L] by (P1))

= U, d(alo)]le - wlwye - [0, 0h] - [0l W] ((0R)" R b’ R oo, by (P4)°)
= [l d(al)lle -l - [vh', a ((0h')* R vl by (P4)°)

= [, d(@l)lac,,.) - Clow - [0, 1] (t=d(zlw))

= [(d(zlon))™, (I|vh’)] Tl - [UR 1]

(d(zlow) @ d(z]u) R by, by (P3)°).

Since v £ h} and I’ W' R, we have that h' w' v w r(z), and so by (B31)°,
vh' = v(r(z)h'). Also, by (B21)°, vh' w v w r(z). Thus, (vh')7, exists, and

(vh') 72 = (v(r(2)h'))70 = (Md(2))(hd(2)) = (hah)d(z)

so that
(d(@low)) ™ R d(2fon)
R (vh')7, (2l P (@ryr, |7)

that is, d((hy * ) o h’) R hyh.

Let g =d((hy*xz)oh’) = (d(z|on))" and k =r(hx (xohs)) = (r(p]z))*. As
g R hih and k L h'hs, it follows that [g, hih] and [h'hs, k] are well-defined. Since
h € S(hy, hY) and hy € S(e,d(z)), we have h w' hy w” d(x) and h w" hY w" d(z),
hd(x)

and so h w" d(x) and h £ hih w hy w" d(z) so that
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column-singular matrix. By the comments succeeding Definition 10.1, we have
[hih, h] - [h, hd(2)] = [h1h, (R1h)d(2)] - [(hih)d(x), hd(z)],
which implies that

[(hih)d(x), hah] - [hah, h] - [h, hd ()]
= [(hih)d(x), h1h] - [hih, (hih)d(z)] - [(hih)d(2), hd(2)],

that is,
[(hih)d(x), hah] - [hah, h] - [h, hd ()]

= [(hh)d(z), (hsh)d(z)] - [(h1h)d(z), hd(z)]
by (P1), that is,

[(hah)d(x), hah] - [hah, h] - [h, hd(z)] = [(h:h)d(z), hd(z)],

from which it follows that

[(hah)d(x), hah] - [hah, h] - [h, hd(z)] - [hd(z), h]
= [(hah)d(z), hd(z)] - [hd(x), k],

that is,
[(hh)d (), hah] - [k, ] - [, ] = [(hah)d(x), hd(x)] - [Rd(), B,
or equivalently,

[(hah)d(x), hah] - [hah, h] = [(h:h)d(x), hd(z)] - [hd(z), h].
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So,

[g, k] - [hah, B] - (B (z 0 ha))
= g, (mh)d(@)] - [(lnh)d(z), hah] - [k, B] - (h* (z © ha))
(9 R hh R (hh)d(z), by (P1))
d(z
d(
|

1
hu

= [g, (mh)d(2)] - [(hh)d(x), hd(x)] - [hd(x), B] - (h* (x © hs))

= [g, (mh)d(2)] - [(hh)d(x), hd(2)] - [hd(x), B] - [B, hu] - pul - [£(pul2), K]
(k= (x(ul2)))

= [g, (mh)d(2)] - [(hh)d(x), hd(z)] - [hd(x), hu] - pu|2 - [£(pul7), K]

(hd(x) R h R hu, by (P1))
[r(hul2), x(2)(W'R2)] - [x(2)(R'ha), K]
(r(hulz) £ x()(W'h2) £ Why £k, by (P1)).

Since h w" v w d(x), we have hd(z) R h R hu and hd(zx), hu € w(d(x)). Also,

we have
(hd(z))o, = r(x)h' w r(z) and (hu)o, = ((hd(z))u)o, = r(z)(h'he) w r(x).
As o, is an isomorphism, we obtain that r(z)h' R r(x)(h'hy). By Lemma 11.3,

[hd(z), hu] - pul2 - [2(hulz), v (2) (R he)]
= nd(@)| - [F(ha@)|2), T(2)A] - [r(2)R' () (h'he)].

Thus,

(g, hih] - [hah, h] - (h* (z © hy))
= [g: (mh)d(@)] - [(hah)d(x), hd(2)] - ha@)|z - [r(ha@)]x), (2)h]
[e(2)B’ e () ('hy)] - [e(x) (R hs), K]
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= [, (h)d(@)] - rma@) @ - [F(ha@ |2), e(@)A] - [e(2)h' w(2) (P'hy))
[r(x)(h'ha), k]
((hah)d(z) £ hd(), by (P4))
= [g, (Mh)d(@)] - rma@) |2 - [F(gimae|2), v(@)h] - [e(@)l, v(z) (7 hy)]-
[r(2)(R'ha), k]
= [g, (mh)A(@)] - mamyac)| - [e(amya)|z), vR] - [ob, e()R])
[r(x)h', v(x)(h'he)] - [r(z)(h'he), k]
(vh' L r((nnyawlz) L r(z
= lg, (hh)d(z)] - [(hh)d(z), d(@[ow)] - @lon - [vh', w(2)R]-
[r(x)h', v(x)(h'ha)] - [r(x)(h'ho), k]
((hlh yd(@) | p |ons )
= lg,d(@low)] - lon - [VF', x(2)] - [r(2 ) r(z)(h'ho)] - [r(x) (R ha), K]
(9 R (mh)d(z) R d(z|ww), by (P1))
= [g,d(@lon)] - low - [V, K] - [W e(2)] - [e(2)l v(2) (R ho)] - [r(2)(B'he), K]
(v £ 1 L@, by (P1)).
Since I/ € S(h}, hy), we have I/ w" hy and W' W' K}, and so b’ R Why w hy. As
b, ho w! r(z), we have b’ h'hy w! r(z), it follows that ( " Wh, ) is
r(z)h' r(x)(h'hy)

a row-singular matrix, and so by (P6),
(W e(x)h] - [e(2)h e(x) (W' hy)] = [B, W ho] - [W he, v(2z)(h'hs)].
Thus,

[9, hah] - [hah, B] - (B (3 0 hs))
= g, d(@low)] - @lons - [V, K] - [W, B'ho] - [W'ho, x(2) (W he)] - [r(2) (R ha), K]
= [g.d(@|on)] - |ops - [VH', B] - [I, W o] - [W Do, K]
(W'ha £ x(x)(Who) L K, by (P1))
[(A(@lon)) s A(@|on)] - @lons - [VR', B] - (I B Do) - [B Do, K]
(9= (d(@lw))")
— ((hyx z) o W) - [W, h'hy] - [P ha, k).
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Together with,
A(((hy %) o 1) - W, W'hy]) = g R hah = d([hyh, ] - (h % (z 0 hy)))
and
r(((hy * ) o b)) - [N, B'ha]) = Why £ k = v([hah, h] - (b * (z o b)),

we have that ((hy * z) o h') - [0/, W h]| p [hih, h] - (h % (z © hg)). O
Now, we turn our attention to concordant semigroups.

Corollary 11.6. The category of concordant semigroups and good morphisms is

equivalent to the category of IC-RBS categories and RBS functors.

Proof. Suppose that S is a concordant semigroup with set of idempotents F(S).
In view of Lemma 10.32, it is sufficient to show that SC satisfies (PC1) and
(PC2).

(PC1) If (e,x, f) € SC and h < e, then e R* x L* f. Since S satisfies
(IC), it follows from the comments succeeding Lemma 2.19 that there exists a
unique k € E(S) such that & < f and he = zk. In addition,

nl(e,x, f) = (h, hz, (hx)*) and (e, z, f)|x = ((xk)", 2k, k).
As hx = zk, we obtain that h R (zk)™ and (hz)* L k. Further, we have
wl(e z, f) - [(ha)™, k] = (h, ha, (h)*) - ((ha)”, (hx)", k)
= (h, hx(hz)*, k) = (h, hx, k)

and
[, (k)] - (e, 2, )l = (hy (2k)", (k) ") - ((2k)", ok, k)
= (h, zk, k)
= (h,ha, k) (zh = ha),

so that »|(e,z, f) p (e, x, )|k
In particular, if h = e, then .|(e, z, f) = (e, z, x*). Certainly, 2* £ f and

(e,x,x*) ’ (SL’*,x*,f) = (e,xx*,f) = (6,$, f)v
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that iS7 6|(€7$7 f) ' [x*7f] = (67']:7 f)7 S0 e|(€7$7 f) p (67'1:7 f)
(PC2) Let (e,z, f) € SC and for i = 1,2, ¢;, f; € U be such that e; < e,

fi < fand ei|(e>Iaf)p(6ax>f)|fi' Then

(e,z, f) = (e;, e;x, (€;z)*) and (e, x, f)

fi = ((l’fi)Jraxfi,fi)-

€

As ¢ |(e,z, f) p (e,x, f)|f,, we have that e; R (zf)", (ez)* L f; and

(e 2, f) - [(exx)", ] = [es, (x:)"] - (e, 2, )

€

fir

that is,

(e, e, (e)*) - ((es)", (€)™, fi) = (es, (2 fi) ™, (@ fi) ") - (@ fi) Fs 2 fis £i),
that is,
(ei, €;T, fz) = (eiaxfiv fi)v
and so e;x = xf;.

If e < es, then

e1r = exe1x = ex(e1r) = esxfr = x fofi.

As eyx = x f1, we get that xfof; = xf;. Since x L* f, we have that ffofi = ff1,
and so foft = f1 as fi,fo < f. Thus, fi <z fo. Note that e; < ey and
fi <z fo, we have that ejes < e < eand fifso < fo < f, so that
cies| (6,2, f) and (e, z, f)| s, exist. Also, we have

crea| (€52, ) = (e1e2, €107, (e1€22)”) and (e, z, f)|f1f2 = (($f1f2)+,93f1f2,f1f2)-

As ejear = e1xfy = xf1fo, we obtain that ejes R (xfifa)", (ereaz)* L f1fo, and

so [ereq, (xf1f2)T] and [f1fe, (e1e92)*] exist. Further, we have

[($f1f2)+a 6162] : e1ez|(6a z, .f) = (($f1f2)+a €162, 6162) ' (61627 €162, (61621’)*)

= ((If1f2>+, €162, (616225‘)*)
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and

(e;x, lpugs - [frfo: (erea)] = (@ fifo) T, fifo, frfz) - (fifo, fufe, (ereax))
((If1f2)+,93f1f2, (ere27))
(($f1f2)+, e1ea, (e1627)") (616255 = 93f1f2)-

S0 creal (€@, f) p (€, f)lfipe

Dually, if e; <, eg, then fi < fo and c,c,[(e, 7, f) p (€, 2, f)|opr-

Conversely, let P be an IC-RBS category over U. In view of Lemma 11.5 and
Lemma 11.2, it is sufficient to show that Condition (P8) holds and PS satisfies
(IC).

(P8) Suppose that z,y,z € P, h € S(r(z),d(y)) and b € S(r(x),d(z))
are such that (z ® y)p p (z ® 2)p. Then d((z ® y)r) R d((z @ 2)u), that is,
d(zoh) R d(xzoh’), or equivalently, d(x|x@yn) R d(x|r@n). As r(x)h,r(z)h/ <
r(x), by (PC1), there exist e;, e, < d(x) such that ¢, | p 2|r@)n and ¢, |2 p 2| @)n -
Thus, e; R d(z|pz)n) R d(z|r@n) R ez. In addition, from |z p &|p@m), and
es|T P Z|e(@)n, We obtain that e;o, = r(z)h and eyo, = r(z)h’ by Lemma 11.4.
As o, is an isomorphism and e; R e, we obtain that r(x)h R r(x)h’. Hence,
Condition (P8) holds.

To show that PS satisfies (IC), we assume that z € P and 1, € U with
I. < Tq@). Then by Lemma 10.24, e < d(x). By (PC1), there exists a unique
k € U such that & < r(z) and .|z p x|, that is, .|z = z[;. By Lemma 10.21
and its dual, we have that I ©Z = & ® 1. Dually, if T; € U with Iy < T,
then there exists 1, € U such that T, < T4z and I, © 2 = 2 ©® 1. Thus, PS
has (IC). O

Now, we aim to define new restrictions and co-restrictions on an IC-RBS
category to recover the original result of Armstrong. We first show that an
IC-RBS category forms an inductive, cancellative category with respect to the
restriction and co-restriction defined below.

Let P be an IC-RBS category over U. If k,h € U, x € P with h w d(z),
k w r(x) and ,|z px|, then we define the restriction and co-restriction by the
rule that

wlle = nle - fr(ule) k], 2lle = [h, d(z]e)] - 2]k
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Notice that if h w d(x), k w r(z) and ,|x p x|k, then by (PC1) and Lemma 11.5,
we have ho, = k. In partucular, if h = d(x), then we must have that & = r(z),

and so
d(x)HfC = d(x)\fc' [r(d(x)‘x>v k] = d(z |$ [r (d(x)|$)71"(35)],

that is, q@)||z = 2 by (P2). Dually, ||rm) = .
We define a relation on P by the rule that for any x,y € P,

x <yifand only if x = .||y  for some e € U.

Clearly, if x < y then there exists e € U such that z = .||y. Then d(z) =
and so = q()||y. For ||y to exist, we have e w d(y), that is, d(z) w d(y). By

€,

the definition of the restriction, we obtain that r(.||y) w r(y), and so r(z) w r(y).
Lemma 11.7. The relation < is a partial order on P.

Proof. Tt is easy to see that < is reflexive by the comments above. Suppose that
r < yandy < 2 Then d(z) = d(y), and so = qu)||ly = awlly = y. To
show that < is transitive, suppose that z <y and y < z. Then d(z) w d(y) and
d(y) wd(z). Thus, d(x) wd(z). Also, we have y = q()||2 = aw)|z-[t(aw)|2), r(y)]-
Then

@y = a@|(aw|z - [rlaw2), 7()])
@llawl?) - ol a2, x@)] (9= r(awlaw]2)), by (P5))
= d(x)|(d(y)|z) 19,97 (9= rlawllaw2) &' rlagl2) £ r(y), by (P3))

= a2 9,9 (d(z) w d(y), by (P4))
= a@ |z - [rlaw]?), (rlaw2))].

From x < vy, we have that

T = d(z Hy = d(z) \y [r (d(x)\y)ar(fc)]
= a@w|? - [taw2), (Flaw|))'] - [(Flaw )2 @)] (rlawly) = (rlaw]2)*)
= a(@)|? " [r(a@)|2), r()] (r(d(:v)|z) L (r(a@)|2))" L r(x), by (Pl))
= d(m)HZ-
[

Lemma 11.8. An IC-RBS category over a reqular biordered set U with the order

defined above forms an orderedy category.
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Proof. Let P be an IC-RBS category over U.
(OC1) If z <y, then by the comments before Lemma 11.7, d(z) w d(y) and

r(z) wr(y).
(OC3) Suppose that 2’ < z, ¢ <y and 2’ -y’ and z - y are defined. Then

' = q@n|lz and ¥ = q)lly. Also,

2y = el awnlly
= a@) |7 - [r(a@n]®), v(@)] - agnly - [tlagnly), v(y')]
= a1 - [Fa@)]2), T(2")] - ey - £ [9), 1 (Y)]
(since x' -y is defined, r(z') = d(y’))

= a2 vgeno ¥ - [ |y), T(y)] (r(awnle) £ x(a'), by (P4))
= a@|(@ ) - [tlaen| (@ - 9), v()] (by (P5))
= a@)| (@ - y).

Thus, 2" -y < x-y.

(OC4) For part (i), if v € P and e € U are such that e w d(x), then by
the definition of the order, .||z is the unique element satisfying that .||z < z and
d(.||z) = e. Dually, part (ii) holds.

Hence, P is an ordereds category. O

Lemma 11.9. An IC-RBS category P over U with respect to the order, restric-

tions and co-restrictions forms an inductives cancellative category.

Proof. In view of Lemma 11.8, it is sufficient to show that P satisfies Conditions
(IC1)-(IC6) mentioned in Chapter 6.

(IC1) Clearly.

(IC2) Suppose that e, f € U are such that ew f. Then .|1; = .|[f, f] = [e, €"]
by (P3). Also, by (P3)°, we have 1¢|, = [eT,e]. By Lemma 10.2, we obtain that

€|1f = [676*] P 16 p[€+,€] = 1f|67
and so by the definition of the restriction, we have that

6||1f = 6‘1f ’ [6*76]7
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that is,

|1y =le,e7]-[e",e] = [e, ] = L,

and so 1. < 1y.
Conversely, if 1. < 1y, by the comments before Lemma 11.7, we obtain that

ew f.

(IC3) It follows from (P1).

(IC4) Suppose that g, h,e € U are such that e w g £ h. Then [g, h] exists
and e L he = heh w h, and so [e, he| exists. By (P3), we have .|[g, h] = e, €*].

Also, we have
(9, lne = [(g(he))*, g(he)] - [g(he), he] by (P3)°)
=[e",¢] - [e, e (ew g £ h, by (B31)°,g(he) = ge =e).
Clearly, ¢ R e*, ¢* £ e and
[e,€"] - [e”, he] = [e, he] = [e, €7] - [e" €] - [e, eh],
that is, ¢[[g, ] p [g, k]|, and so
lllg, h] = cllg, h] - [e*, he] = [e, "] - [¢*, he] = [e, he],

so that [e, he] < [g,h].
Dually, if g R h, then [e, eh] exists and [e,eh] < [g, h].
(IC5) It follows from Lemma 11.3.
(IC6) It follows from (P6).

Thus, P is an inductives cancellative category. O

Conversely, let () be an inductive, cancellative category with regular biordered
set U. For each L-class and R-class, we pick out a special element as its repre-
sentative. If h,k € U with h w' d(z) and k w" r(z), then we define

nlr = [h, d(@)h] - a@pnll|z - [r(a@nll|2), (tla@nll[7))7]

and
2l = (@ |kr@) T A@ N kr@)] - 2/ |kee) - [Fr(2), k],
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where if ewd(z) and fwr(x), then we use |||z and z|||; to mean the restriction
of x to e and the co-restriction of z to f in the sense of inductive, cancellative
categories. So if e = d(z) and f =r(z), then |||z = 2 and z|||; = x.

In particular, if h, k € U with h w d(z) and k w r(z), then we have that

wlz = wlllz - [eal[l2), (ealllz))”]

and
lr = [(d(@/||x) ", d(@][]k)] - 2|[]x.

In addition, if h = d(x), then
wlr = awlllz - [rla@ll2), (f(a@l[€)] = - [r(z), (c(2))"],

and so r(p|z) = (r(z))* and

wlz - [(e(2))" v(2)] = @ - [r(2), (c(2))"] - [(r(2))", v(2)],

that is,
pla - [(x(2)" x(2)] = 2 - [r(z), r(2)],

by (IC3), or equivalently,

wlz - [(e(2))", v(2)] = =

Dually, if k£ = r(x), then [d(z),d(z|x)] - x|x = .

So, we have:

Lemma 11.10. An inductives cancellative category Q@ over U forms an IC-RBS

category with the restriction and co-restriction defined above.

Proof. Clearly, Condition (P1) holds by (IC3).
(P2) It follows from the statement before this lemma.
(P3) If gweand e R fore L f, then by (IC4),

olle, 1= glllle, f1- Ie(glllle, 1), (elolllle, f1)°] = lg, faf)- [faf, (Faf)"].
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If gw! eand e £ f, then g w' f, which implies that fgf = fg £ g, and so

olle /]

9. €9 - eolllle; 11+ [xeglllle, £1), (x(eglllle, £1))]

9. ¢9] - leg, Feg) ] - [F(eg)f, (f(eg) )] (by (1C4))
[9,e9] - [eg, fg] - [fg,(fg)"]
9,
9,

(f9)]  (9Leg L fg L (f9)")
9’ (9 £ fg)-

(P4) If z € Q and e, f € U with e w' f w! d(x), then

fle=1f,d@)f] (a@rlll) - [rla@rlll), (rla@elllz)],
and so

e|(f\36’) = |([f, d(z)f] - (d(:c)fmx) : [r(d(x)f|||$)a (r(d(:c)fH|5C))*])
= le, fe] - relll(1f, (@) F) - aysll] - [r(agrll), (xlarl2))*]) - [, w’]
(= (el ll([f @) f] - agygll] - [eagllle), (2lasl2))1]))

= le, fe] - [fe, K] - wll| (apsll]) - g|||[r<d<xf|||x> (r(agayll2)*] - [, ]

(k= (@d@) N (fe)(d@)f), g =rllll(@wslllz)))
= le, fe] - [fe, K] - klll aisl @) - L9, (x(agyll|2)) 9] - [, u?]
= le, fe] - [fe, K] - wlll (aysll]2) - g

(9 £ (xawylllz)*g = ul w*, by (1C3))

= le, fe] - [fe, k] wlll(aplll) - [9,6"] (9 £u).

U]

Since i||[(a@fll|z) < a@yllle < z and i|||z < 2, we obtain that i|||(aw@)s|||z) =
|||z by (OC4). Thus

el(rlx) = Tle, fel - [fe, k] - klllx - [9,97]
= le, fe] - [fe Kl - wlllw - fr(ell), (e(ell[2))7]-

Notice that e w! f w' d(z), by (B21)°, we have that

feLeLd(x)ewd(z)and few f L d(z)f wd(z).
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Thus,
k= (d(x)f)(fe)(d(x)f) = (d(z)f)(fe) £ fe L e L d(x)e

and also, k w d(z). In addition, by the dual of (IC5), we have that

rage||[2) £ r(kl||)

and

[d(z)e, k(d(z)e)] - ko Iz = awelllz - [r(a@elllz), r(elll2)r(a@ell2)],
that is,
[d(z)e, k] - il = a@elll2 - [r(a@elllx), vkl l[2)],

and so, we have

e (s])
=[e, k] Gelll2) - [eGelllz), (eGelll2)] (e £ fe £k, by (1C3))
= [e,d()e] - [d(x)e, k] - wlllz - [r(ell]2), (x(el]]2))]
(e £ d(z)e £ k, by (IC3))
= [e, d(@)e] - agyell|7 - [(agyel[[2), T (el [|2)] - [£Call2), (x(ell]2))"]
= [e,d(@)e] - aelllz - [rlagelllz), (x(ll2))7]  (by (1C3))
= [e,d(@)e] - agelll - [Fa@elllz), (Flaelll2))] (vlaelllz) £ r(l]2))

Ife £ fw d(x),thend(z)e Le L f L d(x)f and d(x)e,d(x)f w d(z). By
the dual of (IC5), we have that

[d(z)e, (d(z) f)(d(z)e)] - (@@)p@@e [T = awelllz- [rla@ell[7), T (@@ nawe )],

that is,

[d(z)e, d(@)f] - a@sll|z = a@elll2 - [Fla@pelll2), Tla@ll)]
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as d(z)e £ d(x)f. Then, we have

e, f]- (sl)
=le, f1- [£:d@) ] - (aysl|z) - [e(a@ysl2), (Flays]]2))]
= [e,d(2) f] - (a@sll[®) - [r(agrll2); (xla@sll2))]
(e £ f £ d(x)f, by (IC3)
= [e,d(x)¢] - [d()e, d(2) f] - (a@sll|2) - [Tagsll|2), (lagsll12)]
= le,d(@)e] - (agell|7) - [r(awpel[[2), T(a@sl[[2)] - [Flaysl2), (2la@ylllz))]
el - ayelll2 - [M(a@pelllz), (r(a@elllz))*] (by (IC3))

I
=)
(oh
S

(P5) If h W' d(x) and x -y is defined. Then

nl(z - y)
= [h,d@)h] - aeplll@-y) - [v,07] (v =rGlll(- 1))
= [h,d(z)h] - a@plllz - gllly - [v, 7] (9= rla@nlllz))
= [h, d(2)R] - a@nlll® - [9, 9] - (gl |1y - [0, 07]
= [h,d(z)h] - a@plllz - 19,971 - 197, 9] - ollly - [v, v*]
=nlz-[g%, 9] gllly - [v,v7]
=alz-[g" d(y)g™] - [d(y)g", 9] - llly - [v, V"]

(¢ £ gw d(y), and so g* £ d(y)g* w d(y)).
As d(y)g* L g* L g and d(y)g*, g w d(y), by the dual of (IC5), we have that
r(awyg 1Y) £ x(gllly)
and

[d(y)g", 9(d(y)g")] - g@awign |1y = awye* 11y - [x(a@e+ 1Y), T (oll[y)r(ae 19)];

that is,
[d(y)g™, 9] - gllly = a@yg* 1|y - [x(awg+Il1y) x(ll[9)],
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and so

1 ag Iy - [Elagor 1), x(l19)] - [, 0*]
*] ) d(y)g*|||y : [r(d(y)g*|||y)> U*]
(v =rGlll(@ 1)) =r(llly), by (IC3))
= |z g%, dW)g"] - a1y - [Xager [119), (t(ager 19))"]

(v =r(ll1y) £ r(agellly), and so v* = (rlage: 1y))*)
=plz- g*‘y

=il rumly (0" =10)).

(P6) It follows from (IC6).

(PC1) Suppose that z € @, h € U and hwd(z). Then by Proposition 1.41,
r(pll|z) wr(z) and hl||z = |||e,))je)- Thus, d(z|||e, ) = k- In addition, we
have that

wlz = alllz - [eGll]z), (e(all2))"]
and
2l e) = (@[ leuin12)) "> D@ eui2)] - 2/ e( 12
= [B7 h] - @l 10)-
Clearly, we have that

wle - [0 (ll2)) ", e (all]2)]
= llle - [eulll2), (w(ulll2))T - [eulll2)" w(ulll2)]
= alllz

= 2|[lxul12)
= [ (@[l 12)) T - 2l 12)
(leuiier = L@l 1)) B - 2l leguii)-

Hence, |2 pxe(,|||2)-
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Suppose that kwr(x) and p|z pz|p. Then

wle - fr(ule), k] = [h, d(z[p)] - 2]
= (ulllx) - [e(alllz), (eCalll2))] - [(e(alll2))" K]
= [h, (d({le) "] - [(d[][6)) T, d(ll]e)] - ][]
= (lll2) - [r(all|x), k] = (B, d(al[[1)] - [l (by (IC3)),

that is, »|||z pz|||k in Q, where p is defined in Chapter 6. Since hwd(x), we have
that h € S(h,d(x)). Similarly, k € S(r(z), k). Now, we calculate in Q/p

T,0z2=0,oh)- (hxx)
= (@)
= Tullla o, AT T, R ()] - o[
=Tlllh-allle (b wd@)

=1n - nlllz

= nlllz

and dually, we have Z® T, = |[[r. As |||z pz]|||k, we obtain that T, 0% = 2@ T},
Since |||z = @|||x(, |||, We obtain that T, © & = Z ® Iy(,|j»).- Hence, T © Ij =
T O Ty, |jz). Due to & L* 1) and k,1(|||2z) € w(r(x)), we have that T, = T, a)-
Since U is isomorphic to U, it follows that k& = r(,|||z), and consequently, the
uniqueness holds.

We note that aee = a2 - [r(ael), (rlagol0))*] = 2 - [r(a). (@),
Clearly, q(z)|z p2. Thus, (PC1) holds.

(PC2) Suppose that z € Q and for i = 1,2, e;, f; € U are such that e; wd(x),
fiwr(z) and .|z pz|s,. In view of the proof of (PC1), we have that f; = r(.,|||z).
If e; w" ey, by (IC5H), we have that f; w” fo and

lex, exrea] - (erell|7) = (a1 [[|2) - [f1s fufal.

Thus, r(eel||z) = fife- Again in view of the proof of (PC1), we have that

6162‘x px‘f1f2‘
Similarly, the second part holds. O

To sum up, we have:
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Corollary 11.11. An IC-RBS category with respect to the restriction and co-
restriction defined before Lemma 11.7 forms an inductives cancellative category.
Conversely, an inductivey cancellative category with respect to the restriction

and co-restriction defined before Lemma 11.10 forms an IC-RBS category.
Also, we have:

Lemma 11.12. Let P, and P, be IC-RBS categories and F : P, — P, be an
RBS functor. Then F' is an inductivey functor from Py to Ps.

Conversely, let Q1 and Qo be inductivey cancellative categories over Uy and
Us, respectively, and ¢ : Q1 — Q2 be an inductives functor. Then ¢ is an RBS

functor from Q1 to Q)-.

Proof. Suppose that P, and P, are IC-RBS categories and F' : P, — P is an
RBS functor. If x < gy in P;, then there exists e € U such that e w d(y) and
r = .||y, that is, z = .|y - [r(c]y), k], where k € r(y) and .|y p y|r. Certainly,
we have el w d(yF) and kF w r(yF). From .|y p y|x, we have (.|y)F p (y|x)F
by Lemma 10.8, that is, .r|yF p yF|kr by (PF3). Since (.|y)F p r|yF and
d((c|y)F) = eF = d(.p|yF), we have that

(el)F = crlyF - [r(er|yF), x((c]y) F)],
and so we have

aF = (c|y)F - [r(cly), k|F
= erlyF - [r(erly ), x((|y) )] - [e(ly) F kF] (by (PF2))
= cr|yF - [r(er|yF), v((|y) F)] - [e((c|y) F), kF]
= rlyF - [r(erlyF), kF)  (x(erlyF) £ x((c|y)F) £ kF)

= cr||yF

so that zF' < yF. Hence F is order-preserving. Together with (PF1) and (PF2),
F' is an inductivey functor.
Conversely, suppose that ()7 and (); are inductive, cancellative categories

over U; and Us, respectively, and ¢ : ()7 — @2 is an inductive, functor. By
(IOF1) and (IOF2), (PF1) and (PF2) hold. We now show that Condition (PF3)
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holds. If z € Q; and h € U; with h w' d(x), then

wlz = [h, d(2)h] - a@nll - [r(a@nlll2), ((a@nll2)"]

Note that gulllr < 2, and so gqupl|lre¢ < ¢ as ¢ is order-preserving.
Since (d(z)h)¢ w d(x)0, @@nys|l|re is defined and @@nyslllre < x¢d. As
d((a@nll|r)¢) = (d(x)h)¢, we obtain that

(a@nll|2)¢ = @@melllze
by the uniqueness of restrictions. Then

(nla)¢ = [, d(@)h) - (apl[|2)6 - [(a@nl 7). ((agnl[2)) )6
= [ho, (d(2)D)6] - (a@myal[26 - [F(anll|2) @, (2(anll[2))*¢]  (by (I0F2))
= [he, d()$he] - awonoll|ze - [F(awyons||76), (x(anll|z)) ]
= [he, d()$h)] - awonolllze - [Flawyons|[176), (r(awonolllze))]-
[(x(a@yonolllz0))*, (xagnll|z)* @)
= no|T® - [(r(a@)ensl [120))", (rla@nllz)) 8]

= ho|T@ - [t(ng|2), T((n]7)D)]

d
d

so that (n|x)¢ p ne|lr¢ and dually, if £ w” r(z), we have (z|)¢ p xd|kp so that
(PF3) holds. Hence, ¢ is an RBS functor. O

Further, by Corollary 11.6, Corollary 11.11 and Lemma 11.12, we obtain

Theorem C mentioned in Chapter 6 as follows:

Theorem C (Armstrong [1]) The category of concordant semigroups and good
morphisms is equivalent to the category of inductives cancellative categories and

inductivey functors.

11.4 The regular case

We focus on regular semigroups in this section. An RBS category P over U is a
regular groupoid over U if Conditions (RG), (PC1), (PC2) and the duals (PC1)°
and (PC2)° of (PC1) and (PC2) hold:
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(RG) for all x € P, there exists y € P with d(y) = r(z) and r(y) = d(z)
such that 1g) =2 -y and y - x = 1.

Notice that in a regular groupoid P, for any x € P, there exists y € P such
that 1q;) = -y and y - 2 = 1,(;), and so y is the inverse of z so that P is
a groupoid. Consequently, P is cancellative and so it is an IC-RBS category.
Together with the comments succeeding the definition of inductive; cancellative
category in Chapter 6, we have an immediate consequence of Corollary 11.11 as

follows:

Corollary 11.13. A reqular groupoid with respect to the restriction and co-
restriction defined before Lemma 11.7 forms an inductivey groupoid.
Conversely, an inductive; groupoid with respect to the restriction and co-

restriction defined before Lemma 11.10 forms a regular groupoid.

Since a regular groupoid is an IC-RBS category and a regular semigroup is

a special concordant semigroup, it follows from Lemma 11.6 that:

Corollary 11.14. The category of reqular semigroups and morphisms is equiv-
alent to the category of regqular groupoids over reqular biordered sets and RBS

functors.

Proof. Let S be a regular semigroup with U = FE(S). It is sufficient to show
that SC satisfies Condition (RG). Suppose that (e,z, f) € SC. Since R = Ry
and £ = Ly, we have that ¢ R « £ f. It follows from the fact that S is
regular that there exists y € S with e Ly R f, e = zy and yxr = f. Then
(f,y,e) € SC and the products (e, x, f) - (f,y,e), (f,y,e)- (e, z, ) exist in SC.
Moreover, (e,z, f) - (f,y,e) = (e,xy,e) = (e,e,e) = [e,e] = 1. and similarly,
(f,y,e) - (e,x, f) = 15. Hence, Conditon (RG) holds.

Conversely, let P be a regular groupoid over U. We need to show that PS
is regular. Suppose that x € P. Then there exists y € P with d(y) = r(z) and
r(y) = d(z) such that 1,y =y -2 and lgp) =2 -y. So lam) =T-J =T OT.
Hence, 10y 0z = (20 y) © = lqu) © & = Z so that PS is regular. O

In view of Corollary 11.13 and Corollary 11.14, we have:
Theorem B (Nambooripad [38]) The category of regular semigroups and mor-

phisms is equivalent to the category of inductives groupoids and inductives func-

tors.



Bibliography

1]

2]

[10]

S.M. Armstrong, ‘Structure of concordant semigroups’, J. Algebra 118
(1988), 205-260.

S.M. Armstrong, ‘The structure of type A semigroups’, Semigroup Forum
29 (1984), 319-336.

D. Easdown, ‘Biordered sets come from semigroups’, J. Algebra 96 (1985),
581-591.

C. Ehresmann, ‘Oeuvres compléetes et comentées’, Suppl. Chaiers Topologie
Géom. Différentielle (Amiens, 1980-1984).

S. Eilenberg and S. Mac Lane, ‘General theory of natural equivalences’,
Trans. Amer. Math. Soc. 58 (1945), 231-294.

A. El-Qallali, J. Fountain and V.A.R. Gould, ‘Fundamental representations
for classes of semigroups containing a band of idempotents’, Communications
in Algebra 36 (2008), 2991-3031.

A. El-Qallali and J. Fountain, ‘Quasi-adequate semigroups’, Proc. Roy. Soc.
Edinburgh Sec. A 91 (1981), 91-99.

A. El-Qallali and J. Fountain, ‘Idempotent-connected abundant semigroups’,
Proc. Roy. Soc. Edinburgh Sec. A 91 (1981), 79-90.

J. Fountain, ‘Adequate semigroups’, Proc. Edinburgh Math. Soc. 22 (1979),
113-125.

J. Fountain, ‘Abundant semigroups’, Proc. London Math. Soc. 44 (1982),
103-129.

262



263
[11] J. Fountain and G.M.S. Gomes, ‘Finite abundant semigroups in which the
idempotents form a subsemigroup’, J. Algebra 295 (2006), 303-313.

[12] J. Fountain and V.A.R. Gould, ‘Idempotent bounded C-semigroups’,
Monatsh. Math. 117 (1994), 237-254.

[13] J. Fountain, G.M.S. Gomes and V.A.R. Gould, ‘The free ample monoid’,
LJ.A.C. 19 (2009), 527-554.

[14] J. Fountain, G.M.S. Gomes and V.A.R. Gould, ‘Membership of A V B for
classes of finite weakly abundant semigroups’, Periodica Mathematica Hun-
garica 59 (2009), 9-36.

[15] J. Fountain, G.M.S. Gomes and V.A.R. Gould, ‘A Munn type representaion
for a class of E-semiadequate semigroups’, J. Algebra 218 (1999), 693-714.

[16] G.M.S. Gomes and V.A.R. Gould, ‘Left adequate and left Ehresmann
monoids II’; J. Algebra, to appear.

[17] G.M.S. Gomes and V.A.R. Gould, ‘Fundamental semigroups having a band
of idempotents’, Semigroup Forum 77 (2008), 279-299.

[18] G.M.S. Gomes and V.A.R. Gould, ‘Fundamental Ehresmann semigroups’,
Semigroup Forum 63 (2001), 11-33.

[19] V.A.R. Gould, ‘Notes on restriction semigroups and related structures’,

http: / /www-users.york.ac.uk/~vargl /restriction.pdf.
[20] V.A.R. Gould and Y.H. Wang, ‘Beyond orthodox semigroups’, preprint.

[21] J.A. Green, ‘On the structure of semigroups’ Ann. of Math. (2) 54 (1951),
163-172.

[22] X. Guo, ‘F-abundant semigroups‘, Glasgow Math. J. 43 (2001), 153-163.

[23] T.E. Hall, ‘On regular semigroups whose idempotents form a subsemigroup’,
Bull. Australian Math. Soc. 1 (1969), 195-208.

[24] C.D. Hollings, ‘Partial actions of semigroups and monoids’, PhD thesis, the
Unidversity of York (2007).



[25]

[26]

[27]

28]

[29]

[30]

[37]

[38]

264
J.M. Howie, Fundamentals of Semigroup Theory, Clarendon Press, Oxford
(1995).
J.M. Howie, An Introduction to Semigroup Theory, Academic Press (1976).

J.M. Howie, ‘The maximum idempotent-separating congruence on an inverse
semigroup’, Proc. Edinburgh Math. Soc. 14 (1964), 71-79.

M. Kilp, U. Knauer and A.V. Mikhalev, Monoids, Acts and Categories:
with applications to wreath products and graphs, De Gruyter Expositions in
Mathematics vol. 29 (2000).

M. Kambites, ‘Free adequate semigroups’, J. Australian Math. Soc., to ap-

pear.

M. Kambites, ‘Retracts of trees and free left adequate semigroups’, Proc.

Edinburgh Math. Soc., to appear.

G. Lallement, ‘Congruences et équivalences de Green sur un demi-groupe
régulier’, C. R. Acad. Sci. Paris, Sér. A. 262 (1966), 613-616.

M.V. Lawson, ‘Semigroups and ordered categories. I. the reduced case’, J.
Algebra 141 (1991), 422-462.

M.V. Lawson, ‘Rees matrix semigroups’, Proc. Edinburgh Math. Soc. 33
(1990), 23-37.

S. Mac Lane, Categories for the working Mathematician Graduate Texts in
Mathematics 5 (2nd ed.) Springer-Verlag, ISBN 0-387-98403-8 (1998).

J. Meakin, ‘On the structure of inverse semigroups’, Semigroup Forum 12
(1976), 6-4.

J. Meakin, ‘The structure mappings on a regular semigroups’, Proc. Edin-
burgh Math. Soc. 21 (1978), 135-142.

W.D. Munn, ‘Uniform semilattices and bisimple inverse semigroups’, Quart.
J. Math. Ozford (2), 17(1966), 151-159.

K.S.S. Nambooripad, ‘Structure of regular semigroups’, Mem. American
Math. Soc. 22 (1979), No. 224.



265
[39] K.S.S. Nambooripad, ‘Structure of regular semigroups I: fundamental regular
semigroups’, Semigroup Forum 9 (1976), 354-363.

[40] K.S.S. Nambooripad, ‘Structure of regular semigroups II: the general case’,
Semigroup Forum 9 (1975), 364-371.

[41] K.S.S. Nambooripad and R. Veeramony, ‘Subdirect products of regular semi-
groups’, Semigroup Forum 28 (1983), 265-307.

[42] J.von Neuman, ‘On regular rings’, Proc. Nat. Acad. Sci., U. S. A. 22 (1936),
503-554.

[43] N.R. Reilly and H.E. Scheiblich, ‘Congruences on regular semigroups’, Pa-
cific J. Math. 23 (1967), 349-360.

[44] X.M. Ren, K.P. Shum and Y.Q. Guo, ‘A generalized Clifford theorem of
semigroups’, Science in China A 53 (2010), 1097-1101.

[45] X.M. Ren, K.P. Shum and Q.Y. Yin, ¢ Comprehensive congruences on U-
cyber semigroups’, Int. Math. Forum 3 (2008), 685-693.

[46] X.M. Ren, Y.H. Wang and K.P. Shum, ‘On U-orthodox semigroups’, Science
in China A 52 (2009), 329-350.

[47] B.M. Schein, ‘On the theory of inverse semigroups and generalised groups’,
Amer. Math. Soc. Transl. Ser. 2113 (1979), 89-112.

[48] C.P. Simmons, ‘Small category theory applied to semigroups and monoids’,
PhD thesis, the University of York (2001).

[49] M.B. Szendrei, private communication (2010).
[50] Y.H. Wang, ‘Weakly B-orthodox semigroups’, preprint.

[51] Y.H. Wang, ‘Structure theorems for weakly B-abundant semigroups’, Semi-
group Forum 84 (2012), 39-58.

[52] M. Yamada, ‘Regular semigroups whose idempotents satisfy permutation
identities’, Pacific J. Math. 21(1967), 371-392.

[53] http://en.wikipedia.org/wiki/Equivalence-of-categories.



