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SUMMARY  

Dye decolorizing peroxidases (DyPs) have received extensive attention due to their 

biotechnological importance and potential use in the biological treatment of lignocellulosic 

biomass. DyPs are haem-containing peroxidases which utilize hydrogen peroxide (H2O2) 

to catalyse the oxidation  of a wide range of substrates. Similar to naturally occurring 

peroxidases, DyPs are not optimized for industrial utilization owing to their inactivation 

induced by excess amounts of H2O2. Furthermore, DyPs are active only under acidic 

conditions and typically lose activity at neutral or alkaline pH. A dye decolorizing 

peroxidase from the Pleurotus ostreatus (Pleos-DyP4) was identified recently as a first 

fungal DyP oxidizing Mn2+ to Mn3+ similar to other fungal peroxidases. However, despite 

its unique pH and thermal stability, similar to other DyPs, it is not suited for industrial 

applications.  

Protein engineering methods are widely used to enhance the stability and catalytic 

efficiency of biocatalysts to render them suitable for industrial purposes. Different directed 

evolution approaches (namely, error-prone PCR and saturation mutagenesis) were used to 

construct mutant libraries of DyP4. For protein expression studies, the mutant enzymes 

were co-expressed with OsmY protein (a novel secretion-enhancing protein) in order to 

secrete intracellular protein into the media and hence facilitate the screening of mutants. 

ABTS assay was used to screen for mutants with improved activities in 96-well microtiter 

plates. Four rounds of error-prone PCR (epPCR) and saturation mutagenesis led to the 

identification of a mutant with an approximately 10-fold improvement in total activity and 

resistance to H2O2 inactivation in comparison with the wild type (WT). This study 

showcases the usefulness of the OsmY-based secretion mechanism of protein in E. coli as 

a tool in facilitating the screening of DyP4 mutants, and potentially of other heterologous 

protein variants in E. coli – the preferred host for expression and directed evolution studies.  
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Figure 3-14:  Analysis of the enzymatic activity of encapsulated DyP4 into ReEncapsulin. 

Activity of DyP4 peroxidase using ABTS assay. The reaction was started by the addition 

of hydrogen peroxide and activity was measured as the change in absorbance at 405 nm. 

Two negative controls (red line with a buffer, brown line with encapsulin) were used; the 

green line indicates the packaged DyP4 (fraction 24) ....................................................... 80 

Figure 4-1: 3D model structure of Pleos DyP4 using the relative template. (A) The three 

methionine residues are shown in sticks and purple colour. This model was visualized with 

Pymol using (PDB: 1avf) as a template model. (B) Identified Met restudies for mutagenesis 

in Pleos-DyP4, M253, M43, and M77 with 17 Å, 27.3 Å, and 30.2 Å from the heme iron 
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Figure 4-2:  DNA gel for PCR in site-directed mutagenesis using the OneClick program. 

(A) Amplified products (6.8 kb) for mutants M43L, M253L, and M253F using Q5 DNA 

polymerase. (B) Successfully amplified product (6.8 kb) for M77L using (PfuUltra high-

fidelity DNA polymerase. .................................................................................................. 91 

Figure 4-3:  Wavelength scan measurement for DyP4 variants taken for wavelengths 700 

nm to 300 nm. Equilibration buffer contained the elution buffer of the variants (1 ml), 1 ml 

of the eluted fractions of the variants after the second step of chromatography was used to 

estimate the concentration of the protein. .......................................................................... 92 

Figure 4-4:  Hydrogen peroxide tolerance of DyP4 WT and Met-replaced mutants M43L, 

M77L, M253L, and M253F. Reaction mixtures (a total of 200 L) contained 10 mM (185 

L) ABTS, 5 L of diluted enzyme, and 10 L of H2O2 (4 mM, 8 mM, 12 mM, 16 mM, 
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Figure 5-1: Purification of DyP4 using three steps of chromatography. (A) Q5 column  (1st 

step) (A) lane 1; molecular ladder, lanes 2–5; crude extract of DyP4-tag, crude extract of 

DyP4, flow-through, and wash, respectively, lanes 6–8; whole soluble fractions of DyP4. 

SP column (2nd step) (B) lane 1; molecular ladder, lanes 2–4; crude extract, flow-through, 

and wash, respectively, lanes 5–8; whole soluble fractions of DyP4. Superdex 75 column 

(3rd step) (C), lane 1; molecular ladder, lane 2; crude extract, lanes 3–6; whole soluble 

fractions of DyP4. (D), (E), and (F) shows the chromatogram of the eluted fractions in the 

first, second, and third step of DyP4 purification respectively. ....................................... 106 

Figure 5-2:  Increase in absorbance at 310 nm due to the oxidation of VA by DyP4. A total 

of 1 ml reaction mixture contained 2.0 mM of VA and 25 µl or 50 µl of diluted purified 

enzyme (DyP4), and 4 mM of H2O2 (50 µL). Different volumes of DyP4 (50 µL, blue line 

and 25 µL, green line. Negative control, red line. Each reaction was carried out in at least 

three replicates and the average is presented. .................................................................. 108 

Figure 5-3:  Decrease in absorbance at 595 nm due to the decolourization of RB19 by 
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Figure 5-4:  pH activity profile of DyP4 with acetosyringone. ...................................... 110 

Figure 5-5: Oxidation spectra of acetosyringone. (A) Oxidation of acetosyringone by DyP4 

caused changes in the UV-vis spectra. (B) Increase in the absorbance at wavelength 520 
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Figure 5-6: Oxidation spectra of syringaldehyde. (A) Oxidation of syringaldehyde by 

DyP4 caused changes in the UV-vis spectra. (B) Increase in the absorbance at wavelength 

520 nm over 60 min time. ................................................................................................ 113 

Figure 5-7: Oxidation spectra of sinapic cid. (A) Oxidation of sinapic acid by DyP4 caused 

changes in the UV-vis spectra. (B) Increase in the absorbance at wavelength 500 nm over 
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Figure 5-8: Oxidation spectra of violuric acid. (A) Oxidation of violuric acid by DyP4 

caused changes in the UV-vis spectra. (B) Increase in the absorbance at wavelength 521 
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Figure 6-1:  Host expression systems used routinely in directed evolution studies. This 

figure was adapted from (Pourmir and Johannes, 2012). ................................................ 121 

Figure 6-2:  Plasmid map of pET24a-OsmY-DyP4 (created with SnapGene). .............. 124 

Figure 6-3:  (A) Scheme of the HTS protocol for WT of DyP4 with ABTS assay, and (B) 

validated HTS with 11.5 % coefficient of variation (CV) based on the oxidation of ABTS 

by WT-DyP4. The activities of DyP4 from different replicates of the same clone are plotted 

in descending order (Black dots), and the average is plotted (Red dots). ........................ 142 

Figure 6-4:  Restrictive digestion for pET24a-OsmY-Dyp4 with BamH1 and EcoR1 

restriction enzymes. The restrictive digestion mixture prepared in a total of 100 µL 

containing 1× of CutSmart buffer, 3000 ng of pET24a-OsmY-Dyp4, 1 U of BamH1 and 1 

U of EcoR1 enzymes, and 59 µL deionized water, mixed and incubated overnight at 37ºC. 

20 µL of 6X DNA Loading Dye added and the 120 µL was loaded onto 1% agarose and 

5.9 kb band were gel extracted and purified. The cut vector (5.9 kb)  , and the cut insert 
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Figure 6-5:  Analysis of PCR products on a 1% (w/v) DNA agarose gel showing products 

of different mutagenic reactions of epPCR; A)  three different conditions; B)  

medium and high mutagenic conditions. Side products . Low mutagenic condition 

contained 1.5 mM of MgCl2, 0.01 mM of MnCl2, 0.3 mM of dNTP mix, 4.5 pmol of forward 

and reverse primers, 3.5 ng/µL of DNA template, and 1.25 U of Taq DNA polymerase. 

Medium mutagenic condition contained 7 mM of MgCl2, 0.2 mM of dATP, 0.2 mM of 

dGTP, 1 mM of dTTP, 1 mM of dCTP, 20 pmol of forward and reverse primers, 50 ng/µL 

of DNA template, and 1.25 U of Taq DNA polymerase. High mutagenic condition 

contained 7 mM of MgCl2, 0.05 mM of MnCl2, 0.2 mM of dATP, 0.2 mM of dGTP, 0.2 

mM of dTTP, 0.2 mM of dCTP, 20 pmol of forward and reverse primers, 50 ng/µL of DNA 

template, and 1.25 U of Taq DNA polymerase. .............................................................. 144 

Figure 6-6:  Analysis of PCR products on a 1% (w/v) DNA agarose gel showing the 

products of saturation mutagenesis using the 4-primer method for position V56. (A) 

Amplification of two fragments (fragment 1: 168 bp and fragment 2: 1347 bp). (B) Full-

length PCR for the two fragments (product at 1.5 kbp) ................................................... 145 

Figure 6-7:  Analysis of PCR products on a 1% (w/v) DNA agarose gel showing the PCR 

product of the saturation mutagenesis for position N312 using the NEBase Changer method 
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Figure 6-8:  Analysis of PCR products on a 1% (w/v) DNA agarose gel showing the 

products of saturation mutagenesis using the 4-primer method for positions (A306: F1 918 
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1.1 Introduction  

Today, there is an increasing demand for a sustainable source of energy as the global 

economy is largely dependent on fossil energy sources such as, natural gas, coal and oil. 

These sources are used in the production of electricity, fuels, chemicals, and other goods. 

As the continued utilization of these resources is not considered to be sustainable, 

alternative sources must be found and used (Uihlein and Schebek, 2009). Another reason 

to search for alternative sources of energy is the increased levels of pollution and the 

associated consequences such as global warming. Renewable sources of energy such as 

water, wind, geothermal, solar, and biomass can serve as an excellent alternative for the 

energy industry. However, biomass also represent a potential alternative source of energy 

for the chemical industry and for the production of fuel (Sarkar et al., 2012). Bioethanol 

is produced from biomass-derived sugars by microbial fermentation. The use of 

bioethanol as an alternative to fossil fuel is less harmful to the environment as it does not 

contribute to greenhouse gas emission and has other health and environmental benefits. 

In the first-generation feedstock, bioethanol was produced from sugar crops such as sugar 

beet and sugar cane, and from agriculture cereal such as maize, wheat, and barley. The 

major disadvantages of the first-generation feedstock is the impact on food security and 

the use of lands that should be designated to the cultivation of crops for human and animal 

consumption (Walker, 2011). Furthermore, energy-yielding crops require large areas of 

land for increased production, which, in contrast, will reduce and limit the availability of 

land for the cultivation of crop foods. However, this can be solved by the application of 

second-generation feedstock, that is, the production of bioethanol from lignocellulose. 

This is considered to be the most promising option to replace fossil fuel and to overcome 

the limitations of the first-generation feedstock (Moreno et al., 2015, Walker, 2011).  
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1.2 Lignocellulose as a source of energy  

Over the past 20 years, the production of ethanol from lignocellulose has received 

extensive attention due to its notable advantages. Lignocellulose is an abundant, 

renewable, and cheap feedstock for bioethanol production. This approach is also 

environmentally friendly, as waste materials such as wheat straw, corn straw, rice straw, 

and sugarcane bagasse are used for the production of bioethanol and other useful products 

(Sarkar et al., 2012). By 2022, the use of biofuels in the United States is expected to reach 

36 billion gallons, of which at least 21 billion gallons will be obtained from 

lignocellulosic materials (Schnepf and Yacobucci, 2010). 

1.2.1 Lignocellulose composition  

Lignocellulosic biomass mainly comprises cellulose, hemicellulose, and lignin, with a 

small amount of pectin. The percentage of these components vary from plant to plant 

(Table 1-1). Bioethanol production requires the conversion of cellulose and hemicellulose 

into smaller units (glucose), followed by fermentation to convert these units into 

bioethanol (Balat, 2011).  
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Table 1-1:  Lignocellulosic biomass composition of common plants 

Feedstock Cellulose 

(%) 

Hemicellulose 

(%) 

Lignin 

(%) 

Reference 

Alfalfa 21.8 12.4 9.7 (Dijkerman et al., 1997) 

Bamboo 49-50 18-20 23 (Menon and Rao, 2012b) 

Banana waste  13.2 14.8 14 (Shahzadi et al., 2014) 

Barley hull 34 36 19 (Kim et al., 2008) 

Barley straw 36-43 24-33 6.3-9.8 (Menon and Rao, 2012a) 

Blue agave 31-55 8-17 7-12 (Sorek et al., 2014) 

Bagasse  38 27 20 (Walker, 2011) 

Coconut fibre  17.7 2.2 34 (Dijkerman et al., 1997) 

Coffee pulp 24 8.9 19.4 (Dijkerman et al., 1997) 

Corn stover 42 28 26 (Biswas et al., 2015) 

Eucalyptus  50 13 28 (Walker, 2011) 

Grasses  25-40 25-50 10-30 (Shahzadi et al., 2014) 

Hardwood  40-55 24-40 18-25 (Shahzadi et al., 2014) 

Softwood  45-50 25-35 25-35 (Shahzadi et al., 2014) 

Maple 44.9 17.3 20.7 (Zhao et al., 2012) 

Miscanthus 52 26 13 (Brosse et al., 2012) 

Douglas fir  44 19.2 30 (Xu and Huang, 2014) 

Olive tree  25 15.8 16.6 (Cara et al., 2008) 

Pine 43.3 20.5 28.3 (Xu and Huang, 2014) 

Poplar  44.7 18.5 26.4 (Sorek et al., 2014, Xu 

and Huang, 2014) 

Perennial grass 37-45 19-25 17-21 (Haffner et al., 2013) 

Red oak 43.4 18.9 25.8 (Zhao et al., 2012) 

Reed 39.5 29.8 24 (Li et al., 2009) 

Rice husk  24 27 13 (Walker, 2011) 

Switch grass 31-45 20-30 12-18 (Walker, 2011) 

Salix 43 22 26 (Walker, 2011) 

Wheat straw 44.1 23.8 20.5 (Xu and Huang, 2014) 

White oak 43.6 18 23.2 (Zhao et al., 2012) 

Willow 49.3 14.1 20 (Bridgeman et al., 2008) 
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Cellulose  

Cellulose is a major component of lignocellulosic biomass, and is regarded as the most 

abundant organic polymer on earth, comprising approximately 35%–40% of the dry 

weight of wood. Being a polymer, Cellulose is made up of D-glucose subunits linked by 

1,4-glycosidic bonds forming disaccharide cellobiose. Cellobiose in turn forms the long-

chain elemental fibril (Figure 1-2). The glucose subunits are linked tightly with extensive 

intramolecular and intermolecular hydrogen bonds, making breakdown of the polymer 

more difficult (Balat, 2011, Isikgor and Becer, 2015). The conversion of cellulose using 

cellulases into glucose is of significant importance, taking into account that cellulose 

likely represents about half of the organic carbon in the biosphere (Zhou et al., 2012).  

 

 

Hemicellulose 

Hemicellulose is another major constitute of lignocellulose, comprising around 25%–

30% of the total dry weight of wood. In contrast to cellulose, the structure of 

hemicellulose is amorphous and features lateral or branched chains, which are composed 

of heteropolymers such as galactomannan, xylan, arabinoxylan, xyloglucan, 

glucuronoxylan, and glucomannan. These heteropolymers are composed of various types 

of 5- and 6-carbon monosaccharide units such as hexoses (D-glucose, D-galactose, D-

mannose), pentoses (D-arabinose, D-xylose), and sugar acids (Figure 1-2). Hemicellulose 

Figure 1-1:  Major components of lignocellulose  
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strengthens the plant cell wall by tethering cellulose microfibrils. The composition of 

hemicellulose differs among plant species. Softwood hemicelluloses, for instance, are 

composed mainly of glucommanna, whereas hardwood hemicelluloses are composed 

mostly of glucuronoxylan (Scheller and Ulvskov, 2010, Isikgor and Becer, 2015, Kumar 

et al., 2008).  

Lignin 

Lignin is the third most prevalent constituent of lignocellulose and, just after cellulose, 

regarded as the second most abundant organic polymer on earth. Around 25% of the total 

dry weight of lignocellulose is made up of lignin. The structure of lignin is formed by the 

oxidative coupling of three different phenylpropane building blocks: the monolignols 

coniferyl alcohol, sinapyl alcohol, and p-coumaryl alcohol (Figure 1-2). These three 

building blocks of lignin vary between softwood and hardwood lignins, and these units 

are connected by linkages such as aryl-glycerol b-arylether, C-C, and arylether. Lignin 

acts to strengthens the cell walls of plants and to provides protection against microbial 

attack and diseases. Unlike cellulose and hemicellulose, lignin does not contain 

fermentable sugars. The presence of lignin in the cell wall prevents the enzymatic 

hydrolysis of cellulose and hemicellulose and prevents the access to these fermentable 

sugars. The breakdown of lignin is therefore a critical step in accessing fermentable 

sugars, covered and protected by lignin polymer for fermentation to produce useful 

products. Furthermore, the breakdown of lignin is beneficial for the synthesis of complex 

chemicals and other useful fine chemicals (Isikgor and Becer, 2015, Agbor et al., 2011, 

Zeng et al., 2014, Sanchez, 2009, Pérez et al., 2002). 
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Figure 1-2:  Tree, to a plant cell, to a cell wall giving a detailed chemical structure of 

the main components of lignocellulose. ( , Cellulose), subunits of D-glucose 

linked by 1,4-glycosidic bonds forming disaccharide cellobiose. Cellobiose forms the 

long-chain elemental fibril, ( , Hemicellulose) consist of 5- and 6-carbon 

monosaccharide units such as hexoses (D-glucose, D-galactose, D-mannose), pentoses 

(D-arabinose, D-xylose), and sugar acids, ( ; Lignin), formed by the oxidative 

coupling of three different phenylpropane building blocks: monolignols coniferyl 

alcohol, sinapyl alcohol, and p-coumaryl alcohol. This figure was generated using 

ChemDraw software. 
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1.2.2 Pretreatment of lignocellulose 

The process of producing bioethanol from lignocellulose feedstock includes the following 

steps: (i) breakdown of lignin to enable access to fermentable sugars, (ii) enzymatic 

hydrolysis of cellulose and hemicellulose, (iii) fermentation of sugars, and (iv) 

purification and recovery of ethanol (Figure 1-3) (Achinas and Euverink, 2016).  

 

 

 

 

 

  

Figure 1-3:  Outline of the process of bioethanol production from lignocellulose. 

This figure was adapted from (Achinas and Euverink, 2016).  
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The pretreatment of lignocellulose is a critical step for the production of cellulosic ethanol 

and has a direct effect on the overall process. The cost of this step is around 30% of the 

overall cost of the bioconversion process. The ultimate objective in this step is to enhance 

enzymatic access to cellulose during the hydrolysis step by (i) disrupting the crystalline 

structure of cellulose, and (ii) breaking down the structure of lignin, which acts as a 

physical barrier of cellulose (Figure 1-4). Pretreatment approaches are generally 

classified into four main categories: physical treatment, chemical treatment, combined 

physio-chemical treatment, and biological treatment (Mosier et al., 2005, Asgher et al., 

2014, Sarkar et al., 2012).  

 

 

 

 

 

 

 

Figure 1-4:  Scheme to illustrate lignocellulose structure and the goal of 

lignocellulose pretreatment. This figure was adapted from (Kumar et al., 2009).  
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1.2.2.1 Physical treatment 

Physical pretreatment involves the comminution of the lignocellulose biomass. In this 

process, chipping, grinding, milling, and shredding can be used to decrease the degree of 

polymerization and to increase the surface area for enzymatic activity. Appropriate 

milling methods can be used to produce ethanol and methane, as no inhibitor is formed 

during this process. However, milling may not be economically feasible, owing to its high 

energy requirements. Extrusion is another method used in the physical treatment of 

lignocellulose, and although it is similar to milling, it requires high energy and may not 

be appropriate for large-scale applications. Gamma rays may also be used in this type of 

treatment to increase the surface area and to lower crystallinity; however, this method is 

not without its drawbacks, including its high cost, especially for large quantities of 

lignocellulose, and its potential environmental effects and safety risks (Agbor et al., 2011, 

Kumar and Sharma, 2017).  

1.2.2.2 Chemical treatment 

Organic solvents, alkali, acids, and ionic liquids are used to alter the native structure of 

lignocellulose and thus facilitate its subsequent degradation.  

Alkali treatment 

Pretreatment with alkaline solutions such as potassium hydroxide, sodium hydroxide, 

hydrazine, and anhydrous ammonia exposes the internal surface of the lignocellulose to 

reduce cellulose crystallinity and the degree of polymerization. It also causes disruption 

of the structure of lignin and breaks the bonds between lignin and other carbohydrates, 

increasing enzyme accessibility to fermentable sugars. Alkaline treatment is more 

efficient for lignocellulosic material with low lignin content than for lignin-rich material 

(Agbor et al., 2011). 
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Acid pretreatment  

Acid pretreatment is mainly used to solubilize the hemicellulose fraction and thus 

increase the accessibility of enzymes to cellulose. Diluted acid is preferable to 

concentrated acid, which can form inhibitors and cause the degradation of cellulose 

(Agbor et al., 2011). However, pretreatment with concentrated acid yields higher amounts 

of degradation product compared with diluted acid (Alvira et al., 2010).  

Organic solvent  

In this pretreatment method, organic solvent or aqueous solution mixtures are used to 

remove lignin and facilitate the enzymatic hydrolysis of cellulose. Some types of organic 

solvents used in this pretreatment include methanol, ethanol, ethylene glycol, acetone, 

and tetrahydrofurfuryl alcohol. Despite the fact that this method of pretreatment results 

in the production of lignin as a pure by-product, it might not be economically feasible due 

to the high price of organic solvent (Alvira et al., 2010).     

1.2.2.3 Combined physical and chemical treatment  

Steam explosion, liquid hot water (LHW), and ammonia fibre explosion (AFEX) are 

some common methods that are being used in a combined physical and chemical 

treatment approach. Steam explosion treatment involves the exposure of the biomass to 

high-pressure saturated steam at high temperatures (160260°C). This treatment causes 

the separation of individual fibres and the disruption of the structure of the cell wall. It 

also causes hemicellulose solubilization and alters the lignin structure to allow enzyme to 

access to cellulose. The formation of inhibitors and a low efficiency for biomass from 

softwood compared with agricultural biomass are some of the drawbacks of this method 

(Kumar and Sharma, 2017, Xu and Huang, 2014). In LHW pretreatment, water in the 

form of liquid is used at a high temperature (160240°C). The main advantages of this 

method are (i) reduced formation of inhibitors, (ii) high recovery rate of sugars, and (iii) 

cost effectiveness, with no requirement for the addition of chemicals and inhibitors. Its 
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main disadvantage is that it is not economically feasible for industrial use due to its high 

energy and water requirements compared with the previous method (Xu and Huang, 

2014). In ammonia fibre explosion, which is similar to steam explosion, the lignocellulose 

biomass is treated with high-pressure liquid ammonia at high temperatures (60–100°C) 

for 30–60 min. This causes the swelling and breakdown of the lignocellulose structure. 

Although this method has advantages such as (i) the use of ammonia, which can be 

recycled; (ii) a high recovery rate of sugars; and (iii) an absence of inhibitor formation, it 

is more efficient for non-woody biomass than woody biomass (Kim, 2018).  

1.2.2.4 Biological treatment 

Biological treatment methods involve the use of whole microorganisms such as fungi or 

the enzymes produced by these microorganisms. Brown-rot fungi, white, and soft-rot 

fungi produce enzymes that are involved in the degradation of cellulose and hemicellulose 

and can alter only lignin, while other fungi produce enzymes that can efficiently degrade 

lignin, hemicellulose, and, to some extent, cellulose (Wan and Li, 2012). The approach 

of utilizing fungal treatment for the production of cellulosic ethanol has received 

significant attention due to its economic and environmental advantages. These advantages 

include (i) lower energy requirements compared with other methods, (ii) lower production 

of fermentation inhibitors, (iii) lower cost, and (iv) operability under mild environmental 

conditions (Wan and Li, 2012). Despite its remarkable advantages, biological treatment 

continues to suffer from certain limitations, mainly its insufficient hydrolysis rate for 

industrial utilization in comparison with other methods (Agbor et al., 2011, Wan and Li, 

2012).  

The following sections focus on biological treatment and its current state, as well as its 

advantages and limitations, and how to overcome these limitations.  
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1.2.3 White-rot and brown-rot fungi  

Wood-rotting fungi are classified into white- and brown-rot fungi according to the effect 

caused to wood during decay (Rytioja et al., 2014). White-rot fungi are the only known 

organisms that can efficiently decompose lignin and polysaccharides (cellulose and 

hemicellulose) in the plant biomass. As a result of degradation by white-rot fungi, the 

residual wood becomes white in colour (Hatakka and Hammel, 2010). White-rot fungi 

represent around 90% of all identified wood-rotting basidiomycetes and are primarily 

found naturally occurring on angiosperm wood species (Rytioja et al., 2014). Normally, 

the (S) type lignin units are degraded to a greater extent than the other lignin type (G), as 

the latter is more resistant to degradation (Hatakka and Hammel, 2010). In contrast to 

white-rot fungi, brown-rot fungi occur mainly on gymnosperm wood species and 

represent around 7% of all identified species of wood decay basidiomycetes. Brown-rot 

fungi can efficiently degrade cellulose and hemicellulose, but can only alter the structure 

of lignin. Thus, the residual product after the decomposition of wood has a brownish 

colour (Hatakka and Hammel, 2010, Rytioja et al., 2014).  

1.3 Lignocellulose-degrading enzymes  

The best-known lignin-degrading enzymes are manganese peroxidase (MnP), lignin 

peroxidase (LiP), versatile peroxidase (VP), laccase, and dye decolorizing peroxidase 

(DyP) (Chen and Wan, 2017). Ligninolytic peroxidase enzymes such as MnP, LiP, and 

VP, along with DyP enzymes, utilize hydrogen peroxide to catalyse the oxidation of 

aromatic units, whereas laccase enzymes utilize oxygen to catalyse the oxidation of 

aromatic units. Over the past several years, there has been growing interest in the 

development of fungal biocatalysts for the large-scale degradation of lignin. However, 

due to the challenges of expressing proteins from fungi, this interest has shifted to the 

identification of bacterial biocatalysts to degrade lignin (Bugg and Rahmanpour, 2015).  
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1.3.1 Laccases  

Laccases are copper-containing oxidases that utilize the oxygen molecule from air to 

catalyse the oxidation of a wide range of phenolic and aromatic compounds (Kunamneni 

et al., 2008). For substrates that are not oxidized by laccases, another mechanism can used 

by these enzymes, which involves the oxidation of redox mediators to form radicals that 

are able to oxidize substrates not naturally oxidized by the enzyme. Laccases are produced 

by the majority of white-rot fungi, and are also produced in other fungi, bacteria, and in 

higher plants. The best-characterized laccases are those of fungal origin. Given their 

potential application in lignin degradation, laccases have been studied extensively since 

they were first discovered in 1883 (Kunamneni et al., 2008). Main applications of laccases 

are dye decolorization, biopulping, bioremediation, synthetic chemistry, cosmetics, food 

processing, and biosensors. Laccases have several physiological functions, including their 

involvement in (i) the biosynthesis or degradation of lignin, (ii) the production of spore 

pigments in fungi, and (iii) the metabolism of iron, as well as their role as virulence 

(Christopher et al., 2014, Couto and Herrera, 2006, Kunamneni et al., 2008). 

factorsLaccases of bacterial origin have been successfully expressed in E. coli, whereas 

laccases from fungal origin have been expressed in Saccharomyces cerevisiae, 

Aspergillus oryzae, Aspergillus niger, Aspergillus sojae, Trichoderma reesei, Pichia 

pastoris, Pichia methalonica, Yarrowia lipolytica, Kluyveromyces lactis, tobacco, and 

maize (Kunamneni et al., 2008, Christopher et al., 2014). 

1.3.2 Peroxidases 

Peroxidases are hydrogen peroxide utilizing enzymes that catalyse the oxidation of 

different organic and inorganic compounds. Peroxidases are found in different organisms 

such as plants, bacteria, and fungi. Most peroxidases contain haem as a prosthetic group 

(Conesa et al., 2002). Based on structural similarity, peroxidases are classified into two 

main superfamilies: the cyclooxygenase superfamily, which includes peroxidases from 
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vertebrates, and the peroxidases of plant, bacterial, and fungal origin (Battistuzzi et al., 

2010). The vast majority of already-identified peroxidases are haem-containing 

peroxidases (Zamocky and Obinger, 2010), and are grouped into three main superfamilies 

and two families: (1) the CDE superfamily, (2) the peroxidase-cyclooxygenase 

superfamily, and (3) the peroxidase-catalase superfamily (Zamocky et al., 2014). A fourth 

superfamily of peroxidase-peroxygenases has been described in a recent review 

(Zamocky et al., 2015).  

Haem-containing peroxidases have several potential applications in waste water 

treatment, bioremediation, synthesis of aromatic chemicals, biological diagnostics, 

medical biosensors, lignin degradation, and dye decolorizing (Bansal and Kanwar, 2013).   

Classification  

The CDE superfamily is also known as the peroxidase-chlorite dismutase superfamily. 

Two families are known to exist within this superfamily, the chlorite dismutases (Clds) 

and dye-decolorizing peroxidases (DyPs) (Zamocky et al., 2015). Members of the 

peroxidase-cyclooxygenase superfamily have previously been known as animal 

peroxidases, which can be misleading as it continues to be used in public databases. 

Members of this superfamily exist in all domains of life, and have the Pfam accession 

number PF03098. The peroxide-catalyse superfamily is also known as the plant, fungal, 

and bacterial peroxidases. This superfamily is the most abundant superfamily in the 

protein databases, and has an accession number of PF00141 in the Pfam database. 

Members of this superfamily have been found to exist in the Archaea and Bacteria 

domains; the Plantae, Fungi, and Metazoan kingdoms; and among many species of 

Chromista and Protozoa (Zamocky et al., 2015). The peroxide-peroxygenase superfamily 

is the smallest of the known peroxidase superfamilies due to the fact that its full 

phylogenomic extent has not yet been established. Unlike other superfamilies, this 

superfamily shows peroxidase as well as peroxygenase activity, and differs also in that 
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cysteine is proximal haem ligand rather than histidine. Chloroperoxidases (CPOs) and 

armonatic peroxygenases (APOs) are the best-characterized members within this 

superfamily. Other members remain to be analysed and assigned to this superfamily in 

the Pfam database under accession number PF01328 (Zamocky et al., 2015). 

 

 

 

 

 

 

Figure 1-5:  Schematic representation of the classification of haem peroxidases. A 

detailed classification of Pleos DyP4 (the enzyme investigated in this project) is 

given, along with other lignin-degrading peroxidases such as MnPs, LiPs, and VPs.   
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Table 1-2:  Host organisms commonly used for recombinant expression of lignin 

degrading enzymes that are hydrogen peroxide-dependant 

Enzyme E. coli S. cerevisiae  A. niger  P. pastoris A. oryzae  

Aromatic 

peroxygenases 

(APOs) 

 +  +  

Laccases  + + +  

Dye decolorizing 

peroxidases (DyPs) +    + 

Manganese 

peroxidases (MnPs) 
   + + 

Lignin peroxidases 

(LiPs) 
+  +   

Versatile 

peroxidases (VPs) 
 + +   

 

1.3.2.1  Peroxidases active site structure and general reaction mechanism 

Peroxidases have some common features, including similar overall protein folding and a 

similar haem pocket architecture.  The catalytic cycle of peroxidases is also similar in that 

they oxidize several substrates to radicals by using H2O2 as a final electron acceptor.  This 

results in the formation of compound I and compound II intermediates (Ogola et al., 

2015). 

The active site of heme containing peroxidases contains, in its resting state, contains a 

ferriprotorphyrin IX prosthetic group (Figure 1-6 ) (van Rantwijk and Sheldon, 2000). In 

the majority of heme containing peroxidases, a histidine is the fifth (proximal) ligand of 

the iron atom and in some other peroxidases it is a cysteine (Hollmann and Arends, 2012).  
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Water is the sixth ligand and during the raction meachnsim of peoxidases, this legand is 

replaced by hydrogen peroxide leading to formation of a peroxo complex (intermediate 

2). Compound I is formed - following the O-O bond cleavage - which contains an 

oxyferryl (Fe(IV) = O) centre and a cation radical located on the heme, which undergoes 

a one-electron reduction, and the first substrate molecule is oxidized and Compound II is 

formed. Compound II returns to the resting ground state after oxidation of a second 

reducing substrate and the release of a second water molecule (figure 1-7) (Hollmann and 

Arends, 2012, Battistuzzi et al., 2010).  

 

 

 

 

 

  

 

 

 

 

 

Figure 1-6: Resting state of heme peroxidases (prosthetic group with low-spin FeIII). L 

constitute a histidine ligand in the majority of heme containing peroxidases and a cysteine 

ligand in some other heme containing peroxidases. This figure was adapted from 

(Hollmann and Arends, 2012). 
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Figure 1-7: Overview of the general reaction cycle of peroxidases. (Reducing substrate, 

In_H) (In., radical specie). This figure was adapted from (Hollmann and Arends, 2012).  
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1.3.2.2 Lignin peroxidases 

Lignin peroxidases (LiPs) are extracellular haem proteins that were firstly described in 

1983 in the basidiomycete Phanerochaete chrysosporium Burdsall. LiP has been found 

to exist in a number of species of white-rot basidiomycetes as well as in actinomycetes 

(Maciel et al., 2010). The catalytic cycle of LiP is similar to that of HRP and of some 

other peroxidases, in that it utilizes hydrogen peroxide to catalyse the oxidation of 

different substrates. However, LiP has unique features, including a high redox potential 

and very low pH optima (Bugg et al., 2011). LiPs are therefore of importance in various 

industrial processes, given their broad substrate range and high redox potential (Maciel 

et al., 2010).   

1.3.2.3 Manganese peroxidases  

Manganese peroxidases (MnPs) are haem-containing glycoproteins, the first of which 

was described in the mid-1980s in Phanerochaete chrysosporium fungus. MnP is 

typically produced in several forms, and in the fungal strain Ceriporiopsis subvermispora, 

around 11 different isoforms have been characterized, all with different isoelectric points 

(Bugg et al., 2011). MnPs are found in all white-rot fungi, in which it is more prevalent 

than LiP (Maciel et al., 2010). The main role of MnP is to oxidize Mn2+ to Mn3+, which 

in turn oxidizes a number of phenolic substrates (Li et al., 1999). MnP shares 43% of 

sequence identity with LiP, has a molecular weight ranging from 38 to 62.5 kDa, and is 

around 350 amino acids residues in length (Plácido and Capareda, 2015). MnP has a 

similar catalytic cycle to LiP and HRP whereby the native ferric enzyme reacts with 

hydrogen peroxide, leading to the formation of Compound I, an oxo-ferryl intermediate, 

followed by the interaction of this compound with Mn2+ to form Compound II and Mn3+ 

(Bugg et al., 2011). MnP has potential applications in bioremediation, dye decolorization, 

pulp bleaching, biochemical pulping, and the production of beneficial chemicals from 

residual lignin in biorefineries and pulp and paper side-streams. However, certain factors 
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limit the applications of MnP, including those concerning the native production of the 

enzyme such as low productivity and slow growth. The lack of an efficient recombinant 

production process is another such factor (Jarvinen et al., 2012). 

1.3.2.4 Versatile peroxidases  

Versatile peroxidases (VPs), the third type of ligninolytic peroxidase, are glycoproteins 

that combine the typical properties of lignin and manganese peroxidases and 

microbial/plant peroxidases. Interestingly, VPs oxidize Mn(II) as well as phenolic and 

nonphenolic aromatic compounds. VP was discovered in 1999 in members of the 

Pleurotus genus, such as P. ostreatus, and P. eryngii. Other VPs were subsequently found 

to exist in basidiomycetes such as B. adusta, Bjekandera sp. strain BOS55, B. fumosa, 

and Bjerkandera sp. B33/3 (Dashtban et al., 2010). VPs from Pleurotus were first 

described as MnP enzymes due to their Mn-oxidizing activity, but later designated as a 

new type of peroxidase. Similar to MnP, VP oxidizes Mn2+, and, similarly to LiP, also 

oxidizes high redox potential aromatic compounds (Maciel et al., 2010).  

Among peroxidases from basidiomycetes, much attention has been paid to VPs because 

of their catalytic versatility and unique properties that distinguish them from other 

peroxidases. The main disadvantage of VPs in commercial applications is similar to that 

for MnP, in that it is not available in large quantities (Dashtban et al., 2010). This issue 

can be resolved, however, by the use of DNA recombinant technology. Attempts to 

produce VPs using heterologous expression systems have also been successful, as have 

the engineering of LiP or MnP to generate novel peroxidases with features similar to those 

of naturally occurring VPs (Dashtban et al., 2010). Over the past few years, VPs have 

been engineered in S. cerevisiae using direct evolution methods, resulting in improved 

functional expression, activity at alkaline pH, and oxidative stability (Gonzalez-Perez and 

Alcalde, 2018).  
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1.3.2.5 Aromatic peroxygenases 

More than a decade ago, novel peroxide-consuming enzymes termed aromatic 

peroxygenases (APOs) were discovered in Agrocybe aegerita. APOs are enzymes that, 

when fuelled by catalytic amounts of hydrogen peroxide, catalyse the oxidation of 

aromatic substrates (Molina-Espeja et al., 2014). The characteristic spectroscopic 

properties of this novel enzyme indicate that it is a haem-thiolate protein (Pecyna et al., 

2009), which has been found to be a true peroxygenases that can effectively transfer 

oxygen from peroxide to a number of different organic substrates such as aromatic 

molecules (Gutierrez et al., 2011). The following equation shows how this enzyme 

catalysis the oxidation of its substrates: 

RH + H2O2 → ROH + H2O  

The biological function of APOs remains unclear; however, it may be involved in the 

detoxification of plant components as well as in the transformation of lignin and humus 

(Molina-Espeja et al., 2015). APO has a similar function to that of classic haem 

peroxidase, acting as catalyst to oxidize ABTS and phenolic substrates. It also has a 

similar function to cytochrome P450 enzymes and chloroperoxidase (CPO), acting as a 

selective monooxygenase for a number of substrates (Poraj-Kobielska et al., 2012). In 

comparison with cytochrome P450s, APOs have a significant advantage over cytochrome 

P450s, including their independence from expensive compounds such as NAD(P)H as an 

electron donor. For APOs to function, only H2O2 is required (Piontek et al., 2010). The 

sequence identity between AaeAPO and CPO is only 30%, but this proportion is larger 

than that of other haem enzymes such as cytochrome P450 and LiP (Piontek et al., 2013). 

The utilization of aromatic peroxygenases on an industrial scale remains limited due to 

a lack of suitable expression hosts (Molina-Espeja et al., 2014). Protein engineering of 

peroxygenases was performed in Saccharomyces cerevisiae and Pichia pastoris, and 
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resulted in increased expression and enhanced characteristics of the enzyme (Molina-

Espeja et al., 2014). 

1.3.2.6 Dye decolorizing peroxidases  

Dye decolorizing peroxidases (DyPs) are newly discovered haem peroxidases first found 

in fungi. DyPs are named after their mechanism of degradation of different dyes.  Later, 

further members were found to exist in other fungi, as well as in bacteria, indicating a 

natural occurrence similar to that of peroxidases. DyPs are mostly found in bacteria, with 

only few DyPs exist in fungi and higher eukaryotes (Colpa et al., 2014). DyPs have 

potential biotechnological applications since they can catalyse the transformation of 

different substrates. DyPs effectively decolorize industrial dyes, and can degrade lignin 

by oxidizing Mn2+ or phenolic and non-phenolic structures. Unlike other classical haem 

peroxidases, DyPs retain their activity over different temperatures and pH ranges. This 

characteristic, alongside their ease of expression in E. coli and other bacteria, may favour 

the utilization of DyPs over other peroxidases (Singh and Eltis, 2015).  

Dye decolorizing peroxidase 4 (DyP4) from Pleurotus ostreatus 

DyP4 is a recently discovered enzyme in Pleurotus ostreatus; the second edible 

mushroom in the world . DyP4 belongs to the DyPs superfamily and shows interesting 

features as a fungal DyP. Among the unique characteristics of DyP4 are its capability to 

oxidize Mn2+ to Mn3+, a characteristic that was assigned to MnP and VP for peroxidases 

from fungi. Moreover, DyP4 is among the most thermostable DyP described to date, and 

it also has high pH stability (Fernandez-Fueyo et al., 2015). 

 Due to its unique characteristics regarding pH and thermal stability, as well as its ability 

to catalyse a number of lignin model substrates, mediators, and some synthetic industrial 

dyes, Pleos DyP4 was selected for investigation in this project. Attempts to engineer 
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DyP4 using protein engineering methods for improved characteristics are described in the 

experimental chapters (Chapter 4 and Chapter 6).  

Encapsulins  

Encaspulins are a type of protein nanocompartment which have been recently discovered 

in bacteria and archaea (Giessen, 2016), and have a potential applications as a novel 

delivery mechanism. Studies on the structure of encapsulin revealed that there are 

multiple openings in its thin shell (Figure 1-7C). These pores might serve to control the 

exchange of small molecules between the encapsulin lumen and cytosol. It has been 

suggested that encapsulins that can encapsulate other cargo proteins might have the same 

openings based on sequence similarity between the encapsulin shell proteins. There are 

three main types of openings in all encapsulins, some containing positively charged 

amino acids while some form a negatively charged channel. The diameter of the holes of 

all encapsulins ranges from 5 to 6 Å and the chemical structure differs between the holes. 

The holes might act to allow small molecules to enter the shell of the encapsulin 

nanocompartment while blocking larger molecules (Nichols et al., 2017, Sutter et al., 

2008). 

 

 

 

 

Figure 1-8:  3D model structure of ReEncapsulin showing (A) the whole carton 

structure of the encapsulin oligomer (60  monomers), (B) the interaction of five 

monomers of encapsulin, and (C) one type of opening that exists in encapsulin 

nanocompartment (5-6 Å).This figure was generated with Pymol and using  (PDB 

3dkt.1) as a template model.   
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Enzyme packaging into the shell of the encapsulin nanocompartment could protect the 

enzyme under extreme conditions such as high temperature or low/high pH values.  

Encapsulated enzymes are still able to function as small molecule substrates and can enter 

through the pores of the encapsulin nanocompartment (Sutter et al., 2008). 

Cargo proteins have been found to have a C-terminal sequence motif that is responsible 

for directing proteins into the encapsulin nonocompartment. Examples of cargo proteins 

that have a conserved C-terminal include DyP, FLP, ruberythrin, and hemerythrin. This 

C-terminal was later named the cargo loading peptide (CLP), and sufficient evidence 

exists to show its involvement in the loading of cargo protein into the encapsulin 

nanocompartment. Tagging the C-terminal of heterologous proteins such as luciferase or 

fluorescent protein was found to lead to encapsulation. In contrast, the deletion of CLP 

from a cargo protein prevents encapsulation (Nichols et al., 2017).   
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1.4 Potential application of peroxidases  

1.4.1 Bioremediation  

The release of pollutants into the environment is a serious global issue. Air, soil, and 

water are being contaminated mainly due to the use of toxic chemicals such as pesticides 

in agriculture or as a result of industrialization (Adenipekun et al., 2012). Due to the 

nature and characteristics of these xenobiotics, degradation by indigenous flora and fauna 

is not easily achieved (Adenipekun et al., 2012). Some of the best-known chemical 

pollutants that have serious toxic effects on human health as well as in the environment 

include polycyclic aromatic hydrocarbons (PAHs), polychlorinated dibenzo-p-dioxin 

(PCDDs), and coplanar polychlorinated biphenyle (PCBs) (Sakaki et al., 2013, 

Adenipekun et al., 2012).  

Polycyclic aromatic hydrocarbons 

PAHs are major pollutants present in soil, air, and sediments. The major concern 

regarding these pollutants is their potential mutagenicity, carcinogenicity, and toxicity. 

Examples of PAHs include pyrene, chrysene, naphthalene, acenaphthalene, 

phenaphthalene, fluoranthene, and anthracene (Mrozik et al., 2003).  

Polychlorinated dibenzodioxins 

PCDDs are recognized as environmental contaminants having extreme toxicity. The 

biodegradation of PCDDs occurs naturally via microorganisms such as bacteria; however, 

the degradation of 2,3,7,8-tetraCDD, the most toxic dioxin, tends to be inadequate for 

practical applications. For bioremediation purposes, the discovery or evolution of toxic 

metabolizing enzymes is a promising approach (Kasai et al., 2010).  

Coplanar polychlorinated biphenyle 

PCBs are xenobiotic chlorinated aromatic compounds used in industrial applications such 

as dielectric fluids, lubricants, and plasticizers. PCBs were widely synthesized in the 
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1920s due to their excellent thermal and electrical properties. In 1979, PCBs became 

restricted in many countries due to their toxicity and persistence in the environment (Aken 

et al., 2010). Currently, the most widely effective practice used for their remediation is 

incineration. Given the high cost of this practice in terms of money or energy 

requirements, however, the development of alternative and cost-effective remediation 

methods is essential (Adenipekun et al., 2012). In comparison to traditional methods used 

to eliminate pollutants, bioremediation is a generally safer, more cost effective, and less 

disruptive treatment (Alcalde et al., 2006). 

Bioremediation can be described as the use of plants or microorganisms such as fungi, 

bacteria, and algae or their degradative enzymes to remove pollutants from the 

environment. In the of process bioremediation, enzymes from these microorganisms are 

used to convert pollutants to innocuous products (Karigar and Rao, 2011). In microbial 

biodegradation, whole microorganisms are used to clean up pollution (Alcalde et al., 

2006). In this approach, fungi, yeast, or bacteria are stimulated to grow in a particular 

polluted area to perform the desired activities and clean up contamination (Singh et al., 

2014). One of the major drawbacks of microbial bioremediation is that microbes must be 

able to grow in severe adverse conditions that differ significantly from those in the 

laboratory. Another drawback is that the introduction of genetically modified organisms 

(GMOs) into a given ecosystem might cause alterations in the ecosystem, and is therefore 

strictly regulated (Alcalde et al., 2006). These factors, among others, limit the use of 

microbial bioremediation. Enzymatic bioremediation has therefore become an alternative 

and interesting approach. In contrast to microbial bioremediation systems, enzymatic 

bioremediation is less complex (Alcalde et al., 2006), and has many advantages from an 

environmental point of view compared with the use of microorganisms or chemicals. For 

example, enzymes can be produced on a high scale with improved activity and stability 

at a lower cost due to the use of recombinant DNA technology. Furthermore, chemical 
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and microbiological processes can generate products with toxic side effects, while 

enzymes are typically digested after treatment by their producers (Alcalde et al., 2006).   

Oxidation of PAHs 

Enzymes of the CYP superfamily that metabolize PAHs include CYP101, CYP102, 

CYP1A1, CYP1A2, and CYP1B1 (Kumar, 2010). Peroxidases such as lignin peroxidase 

and manganese peroxidase can also oxidize PAHs (Bansal and Kanwar, 2013). 

Manganese peroxidase MnP from Bjerkandera sp. have been found to degrade three 

PAHs, namely pyrene, anthracene, and dibenzothiophene (Yadav and Yadav, 2015). 

Aromatic peroxygenases can alter the chemical characteristics of PAHs through 

oxyfunctionalization and thus eliminate their physiological and ecotoxicological effects 

(Piontek et al., 2013). APO of Agrocybe aegerita was found to perform the following 

activities: N-oxidation of pyridine, hydroxylation of the ring and side-chain of toluene, 

and hydroxylation and sulfoxidation of dibenzothiophene and, selectively, epoxidate 

naphthalene (Aranda et al., 2010).   

Oxidation of PCDDs 

The insertion of a single oxygen atom into PCDDs results in the formation of epoxide, 

and is recognized as the initial reaction in the metabolism of PCDDs by CYP. Two CYP 

enzymes, CYP1A1 and CYP1A2, play a significant role in the metabolism of PCDDs 

(Inui et al., 2014). Since several species of white-rot fungi are shown to degrade PCDD, 

it is suggested that LiP and MnP are involved in this degradation process (Bansal and 

Kanwar, 2013). The extracellular lignin peroxidase from P. chrysosporium is capable of 

oxidizing CPDDs (Sakaki and Munetsuna, 2010). 

Oxidation of PCBs 

Peroxidases that degrade PCBs include extracellular LiP and MnP secreted by fungi such 

as Pleurotus ostreatus, Coriolopsis polyzona, Trametes veriscolor, and Phanerochoete 

chrysosporium.  
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Chlorophenols are another highly distributed pollutant having a significant impact on 

human health. Pentachlorophenol (PCP) and tetrachlorophenol (TCP) are commonly used 

as insecticides, herbicides, and fungicides, and in the synthesis of other pesticides. PCP 

can cause DNA adducts and, potentially, carcinogenesis. CPO is the only peroxidase 

found to transform halogenated alinins, and HRP, VP, LiP, along with CPO, have been 

found to transform halogenated phenols (Longoria et al., 2008).  

1.4.2 Odour pollution  

Odour pollution is a major environmental concern arising from the production of large-

scale livestock. Current methods applied to the elimination of odour from livestock 

manure are neither efficient nor cost effective (Yan et al., 2016). Peroxidases have a 

potential application in the deodorization of swine manure. HRP, for example, has been 

shown to effectively deodorize manure (Ye et al., 2009), offering an attractive alternative 

to other expensive approaches such as dietary management and intense aeration (Hamid 

and Khalil-ur-Rehman, 2009). Recently, a study of LiP combined with one of three 

peroxides was conducted to examine its efficiency in manure deodorization. Compared 

with a similar study of HRP, LiP offered a simple, low-cost, and feasible method to 

combat odour pollution, and its electron acceptors are environmentally safe and 

inexpensive (Yan et al., 2016).  

1.4.3 Bioremediation of azo dyes  

Azo dyes represent about 50% of all dyes synthesized for utilization in the cosmetic, 

paper, printing, food, leather, and textile industries. Each year, approximately 50,000 tons 

of textile dyes are released into the environment, causing a direct threat of toxicity and 

mutagenicity to living organisms. The treatment and degradation of azo dyes is preferably 

attributed to fungal systems (Singh et al., 2015). One peroxidase shown to degrade azo 
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dyes is CPO from Caldariomyces fumago (Zhang et al., 2012). Horseradish peroxidase 

(HRP) is also known to degrade  azo dyes (de Souza et al., 2007). 

Anthraquinone dyes are another important textile dye. Anthraquinone and Azo dyes have 

a variety of colours, and typically used in dyeing polyamide fibres, cellulosic fabric, and 

wool. Triphenylmethane dyes are another group of dyes that includes crystal violet, 

malachite green, and pararosaniline. The presence of chromogens is a characteristic of 

these dyes (Ogola et al., 2015). Triphenylmethane dyes are mostly used to dye nylon, 

wool, polyacrylonitrile-modified nylon, cotton, and silk. A major limitation of these dyes 

is their accumulation as recalcitrant compounds, since the majority of them are stable 

against biodegradation, temperature, and light.  DyPs are potential biocatalysts and have 

received significant attention owing to their effective oxidation of AQ dyes, a feature not 

observed among other peroxidases such as HRP (Ogola et al., 2015). 

1.4.4 Limitations of DyP4 for industrial-scale utilization  

Similar to other haem peroxidases and laccases, DyPs are generally not well-suited or 

applicable to large-scale industrial applications. Despite the potential of DyPs to be used 

as biocatalysts in different fields, their applications are limited by a number of factors. 

Among these is their inactivation in the presence of excess amounts of hydrogen peroxide, 

similar to other haem peroxidases. The inactivation of haem peroxidases occurs due to 

the formation of compound III species that causes haem bleaching and irreversible 

inactivation. Moreover, inactivation might be due to the modification of a protein through 

the oxidation of specific residues such as methionine, tryptophan, cysteine, histidine, or 

tyrosine. Using protein engineering approaches, residues which are not stable against 

oxidation by hydrogen peroxide are replaced with those that are more resistant, and this 

approach has been successfully employed to increase the stability of different haem-

peroxidases again hydrogen peroxide (Ogola et al., 2010).  
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DyPs are generally only active at low pH and this has limited their potential applications. 

It is strongly recommended to alter their optima pH using protein engineering methods in 

order to broaden their applicability. This can be achieved by the construction of DyP 

variants with an active site is similar to that of plant peroxidases known to be highly active 

at a neutral pH (Colpa et al., 2014). While this approach did not succeed in a recent study 

using oligonucleotide-directed mutagenesis, another method that used a directed 

evolution method was successful in increasing the pH optima from pH 4.5 to pH 8.5 

(Brissos et al., 2017, Singh et al., 2012).  

Protein engineering methods such as directed evolution and/or rational design have been 

used to effectively tailor haem-containing peroxidases and enhance their properties 

(Table 1-2), including stability, thermostability, pH stability, and catalytic efficiency, 

since naturally occurring enzymes are not optimized for industrial use (Lorenz and Eck, 

2005).  

Table 1-3:  Significant factors to consider for a biocatalyst in industrial applications. 

Information in this table is adapted from (Lorenz and Eck, 2005).   

Activity Efficiency Stability Specificity 

Turnover 

frequency (kcat) 
Space-time yield pH Substrate range 

pH profile Product inhibition Temperature 

 

Substrate 

specificity (Km and 

Kcat/Km) 

Temperature 

profile 
Production yield Solvent Regioselectivity  

Specific activity 
By-product 

inhibition 
By-product Conversion yield 
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1.5 Protein engineering 

Protein engineering can be described as the art of modifying existing proteins or the 

design of novel proteins to obtain enhanced proteins suitable for industrial utilization. 

Due to advancements in recombinant DNA technology and techniques in molecular 

biology, the alteration of protein properties, structure, and sequence is now possible. 

Modification of the amino acid sequence of a protein of interest is done via nucleotide 

insertion, substitution, or deletion in the coding gene (Galzie, 1991). Initially, when 

protein engineering methods were first used to alter proteins, the focus was on a rational 

design approach. This restricted protein engineering to proteins whose structural 

information was well characterized. Later, a second method was developed in which large 

libraries were constructed and screened (Woodley, 2013).  

Two main methods are routinely used in protein engineering studies, rational design and 

directed evolution. In the rational design approach, the availability of data on protein 

structure or function is essential to modify a specific amino acid of a protein of interest. 

In contrast, the directed evolution approach does not require prior knowledge about the 

structure or function of the protein. Here, the gene coding a protein of interest undergoes 

several rounds of mutations followed by screening and selection for enhanced phenotypes 

of the protein (Chen, 2001).  

1.5.1 Directed evolution 

Genetic variation in DNA can occur naturally from several causes such as reactive 

chemicals or ultraviolet light, which can damage DNA. Genetic variation can also occur 

during genome duplication when errors can be introduced. It is possible, however, to 

create random genetic variation in modern laboratories using polymerase chain reaction 

(PCR) methods. Methods of directed evolution include error-prone PCR (epPCR), 
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saturation mutagenesis, and DNA-shuffling. Of all of these methods, epPCR is the most 

widely used in directed evolution studies due to its simplicity (Leemhuis et al., 2009).  

 

 

 

 

 

 

Figure 1-9:  Overview of directed evolution cycles in E. coli. Gene of interest undergoes 

cycles of gene mutation using a suitable mutagenesis method (1), these genes are ligated 

into an expression vector (2), then transformed into a suitable expression host e.g E. coli 

(3), in the next step, mutants are expressed (4), and screened with a suitable colorimetric 

assay (5), and the desired mutants selected to parent the next generation (6), the cycle is 

repeated until the desired property is obtained.    
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Error-prone PCR 

 In epPCR, a DNA polymerase amplifies the target gene in an error-prone manner to allow 

the random incorporation of mutations. The fidelity of DNA amplification can be 

decreased by changing the normal optimal conditions used routinely in PCR 

amplification. Some of the methods used to decrease the fidelity of DNA amplification 

include (i) the use of Taq DNA polymerase, (ii) the use of unequal concentrations of 

dNTPs, and (iii) the addition of chemicals such as MnCl2 (Tee and Wong, 2014). High 

concentrations of MgCl2 ions are also added to the reaction in epPCR to lower the fidelity 

of Taq DNA polymerase during DNA synthesis. The addition of MnCl2 to the reaction 

also causes the incorporation of errors (Mohan et al., 2011). 

Saturation mutagenesis  

Another technique used in directed evolution is saturation mutagenesis. In this method, 

knowledge is required about the important functional part of the protein. Variants 

generated by saturation mutagenesis are superior to those generated by epPCR (Leemhuis 

et al., 2009). One advantage of saturation mutagenesis is the reduction of library size 

compared with epPCR techniques (Nannemann et al., 2011). However, this method 

depends heavily on structural knowledge to determine the specific region in enzymes for 

targeted saturation mutagenesis (Leemhuis et al., 2009).  

Gene shuffling  

 Gene shuffling is a commonly used technique in the directed evolution approach.  In this 

method, which was originally described by Stemmer, a gene is fragmented with DNase 

and the random fragments prime each other in a PCR reaction with no external addition 

of primers. Monticello and colleagues have developed a related method in which they 

used DNase-mediated fragmentation, although the reassembly method is different 

(Packer and Liu, 2015). Stemmer’s seminal process may have inspired many other 

researchers to develop protocols for gene recombination (Nannemann et al., 2011).   
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1.5.2 Rational design 

In contrast to the directed evolution approach, detailed structural data are essential in 

rational design. Analysis of the biochemical data and 3D structure of the protein of 

interest is conducted to identify the target amino acid to mutate. There are a number of 

online programs which can be used to design primers for PCR to introduce a single 

mutation to the target amino acid (Steiner and Schwab, 2012). Rational design is not as 

laborious as directed evolution since only one or a few mutants are screened after the 

rational construction of mutant(s). The design of a high-throughput screening assay is not 

required in the rational design approach, another advantage over directed evolution. The 

main limitation of this approach is the unavailability of detailed structural knowledge for 

most of identified proteins (Steiner and Schwab, 2012).   

 

 

 

Figure 1-10:  An overview of rational design process in E. coli.   
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1.5.3 Screening 

The development of an enzymatic assay is a key step in protein engineering, regardless 

of the approach used. The assay must be cost- and time-effective, technically simple, 

reflect the activity of the enzyme under the desired reaction conditions, and maintain 

accuracy and sensitivity. These assays are usually based on optical detection 

(fluorescence, luminescence, and colour).  

The screening of libraries to identify the desired mutants may be the most important step 

in directed evolution. Enzyme activity is usually determined by measuring optical 

absorbance or fluorescence. For the screening process, colonies are picked and transferred 

individually to microtiter plates to grow cells in a suitable cultivation media and express 

the protein. Cell disruption is required to release protein expressed intracellularly for 

enzymatic activity using an optimized and validated screening assay. Mutants can be 

screened in microtiter plates using a microtiter plate-reader spectrophotometer. Multiple 

experiments are then conducted to develop and validate a reliable screening assay that is 

sensitive enough to detect the improved mutants. The screening method must have low 

variability of the WT or parental strains to eliminate false positives or negatives. High 

variability would affect the capture and identification of desired mutants as it can be 

associated with a high rate of false negatives or positives. It is important to measure the 

Coefficient of variation (CV) for the WT or parental strain, expressed and screened from 

a single colony in a microtiter plate, and to ensure that the CV is as low as possible by 

optimizing the screening conditions (Arnold and Georgiou, 2003).  

ABTS assay for peroxidase screening  

The activity of peroxidases and laccases is screened using an ABTS (2,2’-azinobis (3-

ethylbenzothiazoline-6-sulfonic acid)) assay in the presence of hydrogen peroxide. 

Spectrophotometric observation is used to determine the production of green radical 

cation. The ABTS assay works well as a 96-well plate screening method due to its high 
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extinction coefficient and reproducibility as well as its high solubility. ABTS has other 

advantages such as stability at high temperature and low toxicity, and that the green dye 

produced is relatively stable. It is a highly flexible assay that is suitable for functional 

selection and screening (Reymond, 2006).  

The ABTS assay has been used widely in in protein engineering methods to improve the 

expression or other features of peroxidases. For example, the ABTS assay has been used 

to improve the functional expression of APO in S. cerevisiae (Molina-Espeja et al., 2014) 

and in P. pastoris (Molina-Espeja et al., 2015), and to improve the total activity of 

laccases expressed in S. cerevisiae (Camarero et al., 2012). This assay has also been used 

to improve the catalytic efficiency of PpDyP from Pseudomonas putida MET94 

expressed in E. coli (Brissos et al., 2017).  
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Project objectives and thesis organization  

i. Chapter (2) Detailed description of all materials and methods used in the project. 

ii. Chapter (3) Encapsulation of DyP4 into the encapsulin nanocompartment using 

a due expression system. In this experiment, DyP4 was tagged with a C-terminal 

sequence which acts to direct the encapsulation of DyP4 into the encapsulin 

nanocompartment. 

iii. Chapter (4) Enhancement of DyP4 stability against hydrogen peroxide by 

replacing susceptible residues to oxidation with residues that are more resistant to 

oxidation. In this experiment, all methionine residues were replaced with leucine 

or phenylalanine. 

iv.  Chapter (5) Exploration of the potential of DyP4 to oxidize lignin model 

substrates such as VA or natural mediators such as acytociryngone, sinapic acid, 

syringaldehyde, and violuric acid. Another aim of these experiments was to 

validate a colorimetric HTS assay for the screening of DyP4 mutants created by 

directed evolution methods.    

v.  Chapter (6) Engineering of DyP4 using an OsmY-based secretion mechanism to 

facilitate the directed evolution approach in bacteria. In this experiment, mutants 

were created by epPCR for three generations, and for a fourth generation using 

site saturation mutagenesis.  

vi. Chapter (7) Conclusion and future work.  
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2.1  Materials  

All kits used for PCR purification, gel extraction, and plasmid mini prep were obtained 

from QIAGEN, Omega Bio-Tek, and (NucleoSpin® Gel and PCR Clean-up Kit, 

Germany), respectively. Restriction enzymes such as Dpn1, EcoR1, Nde1, Nco1, Xhol, 

BamH1, and T4 DNA ligase were obtained from New England Biolabs.  Taq DNA 

Polymerase and Q5 High-Fidelity DNA Polymerase were obtained from New England 

Biolabs. Bacteria strains of E. coli BL21 (DE3), C41 (DE3), and DH5 were obtained 

from Novagen. SeaKem LE agarose and ethidium bromide were obtained from Lonza 

and Merck, respectively.  

 

2,2′-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), Remazol Brilliant Blue 

R (RB19), and hydrogen peroxide solution 30% were obtained from Sigma. 

Acetosyringone (3′,5′-dimethoxy-4′-hydroxyacetophenone), syringaldehyde (3,5-

dimethoxy-4-hydroxybenzaldehyde), sinapic acid (3,5-dimethoxy-4-hydroxycinnamic 

acid), violuric acid monohydrate (2,4,5,6(1H,3H)-pyrimidinetetrone 5-oxime), and 

veratryl alcohol (3,4-dimethoxybenzyl alcohol) were obtained from Sigma Aldrich.  

 

Reagents for SDS gel electrophoresis including tetramethylethylenediamine (TEMED) 

and acrylamide bis-acrylaminde 30% were obtained from AppliChem and Severn Biotech 

Ltd., respectively. Tris base, glycine, and SDS were obtained from Fisher, Sigma, and 

VWR, respectively.  
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2.2 Media preparation  

2.2.1 2× TY media  

For routine propagation and cultivation of E. coli strains BL21 (DE3), C41 (DE3) and 

DH5, 2× TY  media was used. The following components were mixed to prepare 2× TY 

media: 16 g of tryptone, 10 g of yeast extract, and 5 g of NaCl, and the final volume was 

adjusted to 1 L with ddH2O and autoclaving was performed to sterilize the media.  

2.2.2  TY AIM media  

TY AIM is used widely to express proteins in lac-derived expression systems in E. coli. 

TY AIM was prepared by dissolving 16 g of tryptone 10 g of yeast extract, 3.3 g of 

(NH4)2SO4, 6.8 g of KH2PO4, 7.1 g of Na2HPO4, 0.5 g of glucose, 2.0 g of α-lactose, and 

0.15 g of MgSO4 in deionized water, adjusted to a volume of 1 L and autoclaved.  

2.2.3    Tryptone yeast extract agar plates  

TYE (TYE) agar plates were prepared by dissolving 10 g of tryptone, 5 g of yeast extract, 

4 g of NaCl, and 15 g of agar in deionized water to 1L and autoclaving. After cooling to 

approximately 50°C, 50 µg/ml of kanamycin was added and the media was poured into 

sterile plates, left at room temperature to solidify, and stored at 4°C until use.  

2.3  Molecular cloning methods  

2.3.1 DNA plasmid isolation  

For the routine propagation and isolation of plasmid constructs, the E. coli strain DH5 

was used. One of two kits was routinely used for this purpose, the QIAprep Spin Miniprep 

Kit (QIAGEN) or the Omega Bio-Tek kit. DH5 containing the plasmid of interest was 

grown overnight in 5 ml of 2× TY media containing kanamycin or another appropriate 

antibiotic. Cells were harvested by centrifugation of 3–5 mL of overnight culture at 

10,000 rpm for 2 min. Media was removed and the cell pellets were suspended in 250 µL 

of solution 1 or P1 buffer. Next, 250 µL of P2 buffer or solution 11 was added to lyse 
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cells by gently inverting the tube, with lysis time lasting for no more than 4 minutes. 

Then, 350 µL of N3 or solution 11 was added, the tube was inverted several times, and 

centrifugation at maximum speed was performed for 10 minutes.  

A transfer with caution of the supernatant into the spin column was performed, and 

followed by centrifugation at 10,000 rpm for two min for the DNA to bind to the column. 

The solution of the flow-through was removed, and the bound DNA was washed with 

750 µL of HBC or PE buffer. Two centrifugation steps at 10,000 rpm for 2 min were 

performed, the flow-through was again removed, and the empty tube was centrifuged for 

2 min at 10,000 rpm to remove residual ethanol followed by incubation at 50°C for 3 

minutes. Elution buffer (50 µL) was added to the column in a 1.5 mL centrifuge tube, and 

the tube was incubated at room temperature for 5 minutes for high DNA recovery. DNA 

was finally eluted by centrifugation for 2 minutes at maximum speed, and quantified 

using a NanoDrop 1000 spectrophotometer.   

2.3.2  DNA gel extraction (PCR purification)  

QIAquick Gel Extraction Kit (QIAGEN) or a NucleoSpin® Gel and PCR Clean-up Kit 

(Germany) were used routinely to carry out the DNA gel extraction. The target DNA 

sample was loaded onto a DNA gel and run for 90 minutes at 100 V. The DNA gel was 

visualized under a transilluminator and the desired band was excised and transferred to a 

50 ml Falcon tube. The required volume of TN1 buffer (200 µL of NT1 buffer for each 

100 mg agarose gel) was added to the piece of gel, which was then incubated at 50°C for 

10 minutes and gently vortexed for 2–3 minutes to allow the gel to dissolve completely. 

Next, 700 µL of the dissolved gel was pipetted to a spin column and centrifuged for 30 

seconds at 10,000 g for the DNA to bind to the column. The flow-through was removed, 

and the remaining dissolved gel was transferred to the column. The column was washed 

by the addition of 700 µL of NT3 buffer and centrifugation at 10,000 g for 60 seconds. 

This step was performed twice before discarding the flow-through, and centrifugation for 
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the empty tube was performed at maximum speed for 2 minutes to remove residual 

ethanol. The column was placed in a 1.5-mL centrifuge tube, and incubation at 70°C was 

performed for few minutes to ensure removal of residual ethanol. Elution with 30 µL of 

elution Buffer NE was performed in the following step and the tube was incubated for 5 

minutes at room temperature for high recovery of DNA, and then centrifuged at maximum 

speed for 2 minutes. NanoDrop (Thermo Fisher Scientific) was used to measure the 

concentration of the eluted DNA.  

2.3.3  PCR clean-up  

PCR purification was routinely carried out using either a QIAquick PCR Purification Kit 

(QIAGEN) or a NucleoSpin® Gel and PCR Clean-up Kit (Germany). In the process of 

PCR purification, 200 µL of NT1 buffer was added to each 100 µL of the PCR mixture, 

and the solution was mixed by pipetting and transferred to the column to bind DNA. The 

remainder of the procedure was conducted as for the DNA gel extraction procedure.   

2.3.4  DNA gel electrophoresis  

Agarose gel was prepared routinely for the analysis of DNA using gel electrophoresis by 

the dissolve of 0.5 g of agarose in 50 of 1× TBE buffer to prepare 1% of agarose gel. The 

mixture was heated by microwaving for 1 minute at maximum temperature to dissolve 

the agarose in the buffer. Heating for few seconds was also performed before allowing 

the hot mixture to cool at room temperature. After the mixture was cooled, 2 µL of 

ethidium bromide was added, the agarose was poured into a gel tray with the required 

well comb in place, and the gel was left at room temperature for 30–40 minutes to solidify. 

The required volumes of samples were loaded into the wells, and gel electrophoresis was 

run for 90 minutes. The DNA gel was visualized using a GenoSmart VWR gel 

documentation system.  
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2.4   Bacterial transformation methods  

2.4.1  Calcium chloride method 

 Principle  

Calcium chloride (CaCl2) is a commonly used chemical transformation method to 

incorporate plasmid DNA into bacterial cells. It is based on the use of positively charged 

calcium ions (Ca+2) to render bacterial cells permeable to DNA uptake. Positively charged 

calcium ions bind to negatively charged lipopolysaccharides (LPS) and DNA. Treatment 

with CaCl2 causes the formation of small pores in the cell membrane, allowing DNA to 

pass into bacterial cell after heat shock.   

 Protocol 

Bacteria (DH5, C41 (DE3), or BL21 (DE3) were cultured for 16 hrs in 5 ml 2× TY 

media at 37°C with shaking at 250 rpm. Next, 5 ml of 2× TY media was inoculated with 

100 µL of the overnight culture and grown at 37°C with shaking at 250 rpm for 1 hr and 

15 minutes until the desired optical density at OD600 was reached (0.5–0.6). For each 

single transformation, a total of 1 ml of the grown culture was used. Centrifugation was 

applied for 2 minutes at 2800 rpm, followed by pipetting to remove supernatants. Then, 

suspension of cells in 500 µL of pre-chilled 50 mM CaCl2 was performed and followed 

by centrifugation at maximum speed for two minutes. Supernatants were again removed 

by a pipette and the cells were suspended in 500 µL of the pre-chilled 50 mM CaCl2, 

followed by incubation on ice for 10 minutes for transformation with intact plasmid or 

for 30 minutes for transformation with a ligation mixture.  One µL of isolated plasmid or 

5 µL of ligation mixture was added, followed by incubation on ice for 10 minutes or 30 

minutes, respectively. To heat shock cells, incubation at 42°C for 1 minute was 

performed, followed by incubation on ice for an additional 3 minutes. Next, 800 µL of 

2× TY media (pre-warmed at 37°C) was added and cells were grown for 1 hr at 37°C 

with shaking at 250 rpm. TYE agar plates supplemented with kanamycin were pre-

warmed at 37°C for 1 hr. For transformation with purified plasmids, 100 µL of the 
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outgrowth was plated on an agar plate, while for transformation with ligation mixtures 

and for higher efficiency transformations, 1100 µL was removed by centrifugation at 

2800 rpm for 2 minutes, and the remaining 100–200 µL was suspended and plated on the 

pre-warmed agar plates and incubated for 14–16 hrs at 37°C to allow growth of the 

transformants and formation of bacterial colonies.  

2.4.2  Electroporation method  

 Principle  

Electroporation is another commonly used transformation method in molecular biology 

to incorporate plasmid DNA into bacterial cells. In this method, a specific voltage of 

electrical pulse is applied to a cell suspension for a few microseconds. This leads to the 

formation of pores in the cell membrane and allows the DNA molecules to pass into cells. 

Given its significantly higher efficiency than the CaCl2 method, electroporation is used 

when a very high transformation efficiency is needed, for example when creating mutant 

libraries (Chapter 6).  

 Protocol  

An overnight culture of BL21 (DE3) was prepared in 5 mL 2× TY media and grown at 

37°C with shaking at 250 rpm for 15–16 hrs. Then, 50 mL of 2× TY media in a 250-mL 

flask was inoculated with 500 µL of the overnight culture and allowed to grow at 37°C 

with shaking at 250 rpm for 2 hrs until the desired OD600 was reached (0.5–0.6). Next, 

the cell suspension was transferred to a 50-mL Falcon tube and centrifuged at 5000 rpm 

and 4°C for 10 minutes. Supernatants were removed by pipetting, and cells were re-

suspended in sterile pre-chilled Milli-Q water and centrifuged at 8000 rpm and 4°C for 

15 minutes. For higher efficiency, this step was performed three times. Cells were 

concentrated and re-suspended in the appropriate concentration. For each transformation, 

40 µL of the concentrated cell suspension was used, and 1 µL of ligation mixture was 

added, mixed, and electroporated using the appropriate program (P1; 1700 V and 5 ms). 
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One ml of SOC media was added immediately after electroporation, mixed, and 

transferred to a sterile 1.5-mL microcentrifuge tube, and then placed at 37°C with shaking 

at 250 rpm for 1 hr. TYE agar plates were pre-warmed at 37°C for 60 minutes. 

Centrifugation was performed for the outgrowth for 2 minutes at 2800 rpm, and 800 µL 

of the supernatant was removed. The remaining supernatant was mixed and plated onto 

the agar plates supplemented with kanamycin and placed at 37°C to allow growth of the 

transformants and formation of bacterial colonies.   

2.5 Molecular cloning of DyP4 

2.5.1   Cloning of DyP4-tag into pET24a 

 The GeneScript synthesis service was used for the synthesis of DyP4-tag (DNA 

sequence, Appendix 3). The target signal peptide sequence (FLDDPPDAPTRLV- 

PEATFTAPISDSLGIGSLKRSAQQ) was tagged to the DyP4 C-terminus to direct the 

encapsulation of DyP4 into the ReEncapsulin nanocompartment (Chapter 3). EcoR1 and 

Nde1 restriction sites were used to insert the DyP4-tag into pET24a for recombinant 

protein expression in E. coli. Sequencing was performed by Eurofins to confirm the 

insertion of DyP4 into the pET24a vector.  

2.5.2  Cloning of pET24a-DyP4-without tag  

For experiments other than the encapsulation of DyP4 into encapsulin (Chapter 3), DyP4 

without tag was used (DNA sequence, Appendix 5). To remove the tag from DyP4, two 

primers (Table 2-1) were designed to amplify DyP4 without tag from the plasmid 

(pET24a-DyP4-tag).  

Table 2-1:  Primers used to amplify DyP4 without a tag  

 

 

 

 

Primer Oligonucleotide sequences (5’->3’) 

 1 

Fwd:5' TATACATATGATGACCACCCCGGCGCCGCCGCTG 3' 

Rev:5' ATGCGAATTCTTACGCGCTGATCGGCGCTTGGCTGTGC 3' 

 



47 

 

PCR to amplify DyP4-without tag was performed in a 50 µL reaction mixture containing 

1× Q5 buffer, 0.2 mM of dNTPs, 100 ng of template (pET24a-DyP4-tag), 1 µM of 

forward and reverse primers, and 1 U of Q5 high-fidelity DNA polymerase. Distilled 

water was added to adjust the final volume to 50 µL. PCR with 30 cycles of 98°C for 10 

sec, 72°C for 30 sec, and 72°C for 1 min was performed and followed by final extension 

for 2 min at 72°C before incubation at 8°C until gel electrophoresis. Following PCR and 

DNA gel visualization to confirm the success of PCR amplification, template digestion 

with Dpn1 was performed overnight at 37°C followed by PCR clean up, restrictive 

digestion with EcoR1 and Nde1 restriction enzymes overnight, and ligation into a 

linearized pET24a vector. Restriction analysis was performed to confirm the ligation and 

insertion of DyP4 into the pET24a vector. Analysis using SDS-PAGE and an ABTS assay 

was carried out to confirm the expression of DyP4.  

2.6   Protein expression  

2.6.1  Expression of pET24a-DyP4  

Protein expression of DyP4 was carried out in the E. coli BL21 (DE3) strain. 

Transformation with the CaCl2 method was performed in BL21 (DE3) using pET24a-

DyP4. A single colony from the TYE agar plate was picked in 5 mL 2× TY media with 

50 µM kanamycin and grown overnight at 37°C with shaking at 250 rpm for 15–16 hrs. 

In a 1-L flask, 400 mL of 2× TY media containing 50 µM kanamycin was inoculated with 

2 mL of overnight culture and placed at 37°C with shaking at 250 rpm for 2 hrs until the 

OD600 reached approximately 0.6. Next, induction of IPTG with a final concentration of 

1 mM was performed, and expression was initiated at 25°C for 24 hrs. After expression, 

cells were harvested by centrifugation at 8000 rpm for 10 minutes at 4°C. Cell pellets 

were stored at −20°C until purification or other analysis.  
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2.6.2  Optimization of DyP4 secretion using a pET24a-OsmY-DyP4 vector  

To determine the optimal conditions for the secretion of DyP4 using the OsmY 

mechanism (Chapter 6), two bacterial E. coli strains were used to transform pET24a-

OsmY-DyP4: C41 (DE3) and BL21 (DE3). Expression was carried out in 5 mL 2× TY 

TY AIM with 50 µM kanamycin at two different temperatures, 30ºC and 37ºC, and 

protein samples were screened by ABTS assay after 12, 18, and 24 hrs of expression. 

Analysis by ABTS assay was carried out to determine the optimal conditions for secretion 

(e.g. strain, temperature, time).   

2.7  Analysis of protein expression  

2.7.1  SDS-PAGE  

 Preparation of polyacrylamide gels  

Acrylamide SDS gels (10%) were prepared in two parts, a stacking gel and a resolving 

gel. For the preparation of resolving gels, 4.1 mL DDI H2O, 3.3 mL 30% acrylamide, 2.5 

mL0.5 M Tris-HCl (pH 8.8), and 0.1 mL SDS (10% w/v) were mixed. The addition of 5 

µL TEMED and 50 µL 10% APS was performed prior to pouring the gel. A thick layer 

of DDI H2O was added on the top of the resolving gel, and the gel was allowed to solidify 

for around 40 minutes. The DDI H2O layer was removed, the stacking gel was poured on 

top, and the comb was placed into the assembled gel cassette. The stacking gel was 

prepared using 4.1 mL DDI H2O, 3.3 mL 30% acrylamide, 2.5 mL 0.5 M Tris-HCl (pH 

6.8), and 0.1 mL SDS (10% w/v). Prior to pouring the gel, 10 µL TEMED and 50 µL of 

10% APS were added.  
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2.7.2 Preparation of protein samples  

Soluble protein  

A soluble fraction was prepared by lysis of cell pellets and disruption by mixing with 

lysomix, followed by incubation on ice for 1 hr and centrifugation at a maximum speed 

of 10 minutes. Supernatants were transferred to a new 1.5-mL microcentrifuge tube, and 

cell pellets were retained for the analysis of insoluble protein as described in the following 

section.  An equivalent volume of protein sample (supernatant) was mixed with sample 

buffer (2× SDS reducing buffer supplemented with β-mercaptoethanol), boiled at 94°C 

for 5 min to denature the protein, and centrifuged at maximum speed for 2 min. Volumes 

of 5–10 µL) were used for SDS-PAGE analysis.  

Insoluble protein  

For the determination of insoluble protein, cell pellets were re-suspended in 1× SDS 

reducing buffer supplemented with β-mercaptoethanol, boiled at 94°C for 5 min, and 

centrifuged at maximum speed for 2 min. Volumes of 5–10 µL were subjected to SDS-

PAGE.  

 Electrophoresis  

The electrophoresis chamber was filled with 1× running buffer, and the required amount 

of protein sample was loaded (5, 10, or 20 μL) according to the experiment and type of 

protein sample. The required amount of the molecular weight marker was loaded into the 

first lane, and electrophoresis was performed at 200 V for 35 min or until the blue dye 

reached the bottom of the gel.  
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2.7.3  Activity assays for DyP4  

ABTS assay  

The ABTS assay was used in this project to (i) detect and confirm the expression and 

activity of DyP4, (ii) test the enzymatic activity of encapsulated DyP4 into encapsulin 

(Chapter 3), and (iii) screen mutants created by site-directed mutagenesis or by epPCR 

and saturation mutagenesis for the improvement of stability against higher concentrations 

of hydrogen peroxide (Chapter 4) or to increase total activity (Chapter 6).  

DyP4 activity can be screened colorimetrically with the ABTS assay based on the 

oxidation of ABTS, 2,2’-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) by the enzyme 

in the presence of H2O2 (Figure 2-1). Spectrophotometric observation is conducted for the 

production of green radical cation. ABTS assay is suitable for 96-well plate screening due 

to its high extinction coefficient and reproducibility as well as its high solubility. ABTS 

has other advantages such as its stability at high temperature, low toxicity, and relative 

stability of the green dye produced (Reymond, 2006). It is also applicable for use with 

peroxidases and oxidases as well as laccases.  It is thus a highly adaptable assay that 

works well for functional selection and screening (Reymond, 2006).  

Citric acid- buffer-Na2HPO4 buffer  

ABTS assay was conducted using a in 0.1 M-citric acid-0.2-Na2HPO4 buffer 3.4 pH 

(optimal pH for the activity of DyP4 by ABTS assay is approximately pH 3.5, as reported 

by (Fernandez-Fueyo et al., 2015). The required volume of the buffer was prepared as 

described in the https://www.sigmaaldrich.com/life-science/core-bioreagents/biological-

buffers/learning-center/buffer-reference-center.html. 

 

https://www.sigmaaldrich.com/life-science/core-bioreagents/biological-buffers/learning-center/buffer-reference-center.html
https://www.sigmaaldrich.com/life-science/core-bioreagents/biological-buffers/learning-center/buffer-reference-center.html
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2.8  Purification  

Cell pellets were lysed by sonication (10 seconds on, 20 seconds off for 15 minutes, for 

a total of 5 minutes on; 70% amplitude). Purification of DyP4 was carried out in three 

steps: two ion-exchange chromatography (IEX) steps using a HiTrap Q column 5 mL, 

and HiTrap SP column 5 mL followed by size exclusion chromatography using HiLoad 

26/600 Superdex 75 pg. All purification steps were performed using an ÄKTA Pure 

system (GE Healthcare Life Sciences) Germany.  

2.8.1  Ion-exchange chromatography  

IEX has been used widely to purify and separate molecules based on their charge. IEX 

has been applied successfully to the purification and separation of proteins, and is 

probably the most widely used chromatography technique for this purpose, mainly 

because it is simple, easy to control, and has a high capacity and resolving power (Khan, 

2012). Anion-exchange and cation-exchange chromatography are two approaches of IEX. 

In anion-exchange chromatography, a positively charged matrix allows the binding of 

negatively charged molecules, while in cation-exchange chromatography, a negatively 

charged matrix allows the binding of positively charged molecules. The first step to 

consider in the selection of buffers for purification is pH, as this will determine the charge 

of the protein of interest (Figure 2-3). The isoelectric point (pI) of proteins is initially 

calculated, and is the pH at which the protein carries no net charge. Online tools such as 

Figure 2-1:  Reaction scheme for ABTS assay oxidation by DyP4  
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ExPASy (http://ca.expasy.org/tools/protparam.html) can be used to determine the pI of a 

protein. Components used to prepare the buffer should not bind to the beads in IEX; for 

example, acetate can be used to prepare buffer for cation-exchange chromatography but 

not for anion-exchange chromatography (Duong-Ly and Gabelli, 2014).  

HiTrap Q column (anion-exchange chromatography) 

Purification of DyP4 using a HiTrap Q column was the first step of purification. Pellets   

were lysed by sonication for 5 min using the following program: 10 seconds on, 20 

seconds off, 70% amplitude. The lysis, equilibration, and washing buffers consisted of 50 

mM Tris-HCI (pH 8.5) and 1 mM EDTA. Protease inhibitors, DNase, RNase, and 

lysomix were added to the lysis buffer (Table 2-2). The elution buffer consisted of 50 mM 

Tris-HCI (pH 8.5), 1 mM EDTA, and 1 M NaCl. Crude extracts were centrifuged at 4°C 

for 40 min at 8000 rpm, filtrated using a Whatman® Puradisc (pore size 0.45 μm) filter, 

and loaded onto a Q column connected to the AKTA Pure system. Two fractions of the 

purified protein were combined for the next step of purification. 

Table 2-2: Composition of the buffer used in the first step of chromatography for 

DyP4-tag purification (Ion exchange chromatography- Q column).    

Buffer: (Lysis, equilibration and 

washing) 

 First step  

Component Concentration Column 

Tris-HCl (pH 8.5) 

 

50 mM Q column 

EDTA 1 mM  

Buffer: Elution   

Component Concentration  

Tris-HCl (pH 8.5) 

 

50 mM  

EDTA 1 mM  

NaCl 

 

1 M  

 

 

 

 

 

http://ca.expasy.org/tools/protparam.html
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HiTrap SP column (cation-exchange chromatography) 

Two fractions from the first step (4 mL in total) were combined and mixed in a lysis 

buffer (Table 2-3), containing 25 mM acetate (pH 4.0), centrifuged, filtrated, and loaded 

onto the AKTA Pure system for purification.  The elution buffer contained 25 mM acetate 

(pH 4.0) and 1 M NaCl.  Two fractions of the purified protein were combined for the next 

step of purification.  

Table 2-3: Composition of the buffer used in the second step of chromatography for 

DyP4-tag purification (Ion exchange chromatography - SP column).    

Buffer: (Lysis, equilibration and 

washing) 

 Second step  

Component Concentration Column 

acetate (pH 4.0) 

 

25 mM SP column 

Buffer: Elution   

Component Concentration  

acetate (pH 4.0) 

 

25 mM  

NaCl 

 

1 M  

  

Size-exclusion chromatography (gel filtration)  

The third and final step of the purification of DyP4 was carried out using a size-exclusion 

chromatography method with a HiLoad 26/600 Superdex 75 pg column. An equilibration 

buffer at pH 4 was used for the pre-equilibration of the column with 1.5 column volume, 

and consisted of 50 mM of C6H8O7H2O, 50 mM of Na2HPO4, 100 mM NaCl, and 10% 

glycerol (Table 2-4). Eluted fractions (2 mL) were collected and analysed using SDS-

PAGE and ABTS assay. The desired purified fractions were combined, frozen in liquid 

nitrogen, and stored at −80°C until use. 

Table 2-4: Composition of the buffer used in the third step of chromatography for 

DyP4-tag purification (size exclusion chromatography - Gel filtration).    

          

Buffer: (Lysis, equilibration and 

washing and Elution) Final pH 4.0 

 Third step 

  

 

 

 

Component Concentration Column 

C6H8O7H2O 50 mM Gel filtration   

column              Na2HPO4 50 mM  

              NaCl 100 mM  

                         Glycerol 10%  



CHAPTER 3 Encapsulation of DyP4 into the encapsulin 

nanocompartment using a due expression system. 

 

 

3.1 Introduction  

3.2 Methodology  

3.3 Results  

3.4 Discussion  

3.5 Summary  
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3.1  Introduction  

The recently identified class of protein nanocompartments known as encapsulins are 

found in bacteria and archaea where they encapsulate ‘cargo proteins’ (Giessen, 2016). 

Investigations have shown that DyP-type peroxidases or ferrin-like proteins are naturally 

encapsulated in the encapsulin nanocompartment (Contreras et al., 2014, Giessen and 

Silver, 2017, He et al., 2016, Rahmanpour and Bugg, 2013). Packaging of enzymes in the 

encapsulin nanocompartment occurs naturally and is believed to have a specific 

biological function. Some cargo proteins have a specific C-terminal peptide sequence that 

is thought to direct their encapsulation into the encapsulin nanocompartment, while others 

have alternative mechanisms to regulate their encapsulation. What makes encapsulin a 

highly interesting platform is the possibility of applying this encapsulation mechanism to 

other non-native proteins. This can be achieved by fusion or by tagging the target protein 

with a C-terminal peptide sequence. Moreover, the ability of encapsulin 

nanocompartments to display proteins inside and release them under certain conditions, 

such treatment at low pH, has tremendous potential for nano-biotechnology applications. 

Finally, in the deconstruction of lignocellulose, the targeting of a peroxidase into the 

nanocompartment might also have a specific application (Giessen, 2016, Rahmanpour 

and Bugg, 2013).  

3.1.1  Encapsulin  

Encapsulin is a nanocompartment that exists inside bacterial cells and has potential 

applications in drug discovery and nanobiotechnology (Tamura et al., 2015). The crystal 

structure of encapsulin from the hyperthermophil Thermotoga maritiam has been 

described (Sutter et al., 2008). Compared with bacterial microcompartments (BMCs), 

encapsulin nanocompartments have potential feasibility to be used as a nanomaterial 

since they are significantly smaller and less complex than BMCs. The spherical 

nanocompartment comprises 60 monomers and has a molecular weight of 31 kDa and 
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diameter of 21–24 nm (Tamura et al., 2015).  

Encapsulin from Rhodococcus erythropolis N771 (ReEncapsulin) 

In Rhodococcus erythropolis, the native system of encapsulin is made up of a capsid 

protein and a cargo protein (DyP). This DyP has a C-terminal targeting sequence of 37 

amino acids that is responsible for directing the peroxidase into the encapsulin 

nanocompartment. The C-terminal sequence has been used in a study to package two 

guest proteins into ReEncapsulin. In this study, the C-terminal sequence was genetically 

fused to the C-terminus of firefly luciferase (Luc) and enhanced green fluorescent protein 

(eGFP) proteins. Both proteins were successfully encapsulated and remained active 

(Giessen, 2016).   

3.1.2  DyP4 

Dye-decolorizing peroxidase (DyP4) from Pleurotus ostreatus mushroom was described 

in 2015 as a DyP that can catalyse the oxidation of a number of lignin model substrates 

as well as some other important industrial dyes. DyP4 has been found to be one of the 

most thermostable peroxidases identified to date, and also has high pH stability 

(Fernandez-Fueyo et al., 2015).  

3.1.3  Encapsulation  

Two mechanisms in which a guest protein can be packaged into the encapsulin 

nanocompartment have been reported. The first approach is through the disassembly and 

assembly of encapsulin and a DyP by incubating both proteins at lower pH for 

nanocompartment disassembly, then increasing the pH to assemble the nanocompartment 

and form the specie. The second approach is fusion of the C-terminal of the guest protein 

with the amino acids of signal peptide responsible for directing the encapsulation of the 

target protein into the encapsulin nanocompartment. Herein, to package the DyP4 enzyme 

into the ReEncapsulin nanocompartment, the C-terminus of DyP4 was fused with a C-
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terminal signal peptide of R. erythropolis N771 DypB peroxidase, which has previously 

been reported to direct the encapsulation of two guest proteins into the ReEncapsulin 

nanocompartment. 

 

 

 

 

  

Figure 3-1:  A scheme to illustrate the design of (1) Re-Encapsulin-His-tag and (2) Pleos-

DyP4-tag. (1) ReEncapsulin was tagged with a his-tag at its C-terminal to facilitate the 

purification process, (2) Pleos-DyP4-tag; DyP4 was tagged with a signal peptide 

sequence (37 aa) in its C-terminal that is responsible for directing the enzyme into the 

encapsulin nanocompartment.  
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3.1.4 Aim of the study  

In this study, the expression of ReEncapsulin and DyP4-tag in BL21 (DE3) is described, 

along with mechanism of encapsulating DyP4 into the encapsulin nanocompartment. 

Investigations were also carried out to determine whether (i) fusing DyP4 with a signal 

peptide on its C-terminal – which would act to direct the encapsulation of DyP4 into the 

ReEncapsulin nanocompartment – would affect the expression or activity of DyP4, and 

(ii) the encapsulated DyP4 remains active upon encapsulation, and if so, whether this 

activity is reduced, increased, or similar to that of the purified DyP4.  
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3.2  Methodology  

3.2.1  Molecular cloning of pET24a-Encap 

The GeneScript synthesis service was used for the synthesis of ReEncapsulin (DNA 

sequence, Appendix 4). Basic molecular cloning methods (restrictive digestion and 

ligation) were used to clone the encapsulin gene from its carrier vector into the expression 

vector pET24a-Encapsulin. Briefly, double digestion (for carrier vector of encapsulin) 

with EcoR1 and Nde1 restriction enzymes was performed. Gel extraction of the product 

was performed, followed by ligation with pET24a that had already been double digested 

with the same restriction enzymes, EcoR1 and Nde1. The insertion of Encap into the 

pET24a vector was confirmed by sequencing (Eurofins sequencing services).   

 

 

 

 

 

 

 

 

 

 

Figure 3-2:   Plasmid map of pET24a-ReEncapsulin (created with SnapGene). 

ReEncapsulin was inserted into pET24a vector using restriction sites EcoR1 

and Nde1. 
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3.2.2  Molecular cloning of pET24a-DyP4-tag 

Molecular cloning of DyP4-tag into pET24a is described in Chapter 2 (Materials and 

methods).  

 

 

 

 

 

 

 

3.2.3  Transformation in BL21 (DE3) using the CaCl2 method  

Chemical transformations were carried out using a pET24a plasmid harbouring either the 

DyP4 or encapsulin gene and were performed using the CaCl2 heat shock method. The 

procedure is detailed in Chapter 2.  

3.2.4  Protein expression of pET24a-Encapsulin and pET24a-DyP4-tag 

A singly colony from an agar plate of transformed BL21 (DE3) was grown at 37°C for 

15 hrs, and 50 µL of overnight culture was then added to 50 mL of 2× TY media 

containing kanamycin in 250-mL conical flasks and left to grow for 2 hrs until the desired 

OD was reached (0.5–0.6). Next, 0.1 mM and 1 mM of IPTG was added for pET24a-

Encapsulin and pET24a-DyP4-tag, respectively, and protein expression was allowed to 

proceed at 25°C and 200 rpm for 24 hrs. Two IPTG concentrations were used for both 

proteins, and the optimal concentration of each was used for all subsequent experiments.  

Figure 3-3:  Plasmid map of pET24a-(+)-DyP4 (created with SnapGene). DyP4 

was inserted into pET24a vector using restriction sites EcoR1 and Nde1. 
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3.2.5  Analysis of protein expression  

SDS-PAGE analysis was performed to confirm the expression of DyP4 and encapsulin 

using 10% polyacrylamide gels. Pellets were suspended in lysomix, incubated on ice, and 

centrifuged at maximum speed for 10 minutes. For one part of the supernatant (soluble), 

one part of SDS reducing buffer supplemented with 5% β-mercaptoethanol was added, 

mixed, boiled, and loaded onto SDS-PAGE gels for analysis. For DyP4, an ABTS assay 

was also performed to confirm expression as the formation of an intense green colour 

indicating the oxidation of ABTS by DyP4. Alternatively, expression was detected by 

UV spectrophotometer to monitor the increase in absorbance at a wavelength of 420 nm.  

3.2.6 Large-scale recombinant production of DyP4 and encapsulin  

Using the optimal concentration of IPTG, large-scale expression of DyP4 and encapsulin 

was carried out in BL21 (DE3) cells in 400 mL of 2× TY media with kanamycin (50 

mg/L) in 1 L conical flasks. Cells were harvested by centrifugation at 6000 rpm and 4°C 

for 5 minutes, media was removed, and the cell pellets were stored at −20 °C until use.  

3.2.7  Purification of ReEncapsulin  

The purification of ReEncapsulin required two steps, and after the first step, highly pure 

protein was obtained, as described in the results section. The first step was performed by 

Affinity chromatography using a HisTrap column 5 mL (GE Healthcare Life Sciences). 

In the second step, size-exclusion chromatography using a Hiload 26/600 Superdex 200 

pg gel filtration column (GE Healthcare Life Sciences) was performed. All purification 

steps were performed using an AKTA Pure system (GE Healthcare Life Sciences).  
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 Affinity chromatography  

Principle  

The fusion of a protein of interest with a tag has been used widely to facilitate the 

purification of recombinant proteins. A His-tag constituting of six or more histidine 

residues is the most widely used fusion tag in protein expression and purification. 

Immobilized metal ion affinity chromatography (IMAC) is widely used to purify His-

tagged proteins since histidine residues have affinity to immobilized metal ions such as 

Zn+2, Cu+2, Ni+2, and Co+2. The specificity and affinity to polyhistidine tag vary for these 

metal ions. One step of IMAC purification using the His-tag typically results in fractions 

of the eluted protein of interest with high purity, sufficient for downstream applications. 

This is due to the high affinity and specificity of the His-tag (Block et al., 2009, 

Spriestersbach et al., 2015).  

Procedure  

Pellets recovered from protein expression in 400 mL of expression media, were mixed 

with 50 mL of lysis buffer (Table 3-1) and protease inhibitor was added to inhibit the 

activity of proteolytic and phospholytic enzymes released after cell lysis, which would 

cause protein inactivation or degradation. Lysomix, DNase, and RNase were added to the 

mixture, and pellets were lysed by sonication for 5 min using the following program: 10 

seconds on, 20 seconds off, 70% amplitude.  Lysis, equilibration, and washing buffers 

were prepared using 50 mM Tris-HCL (pH 8.0), 500 mM NaCl, 25 mM MgCl2, and 0.5 

mL of 2-mercaptoethanol. The elution buffer consisted of 50 mM Tris-HCL (pH 8.0), 500 

mM NaCl, 25 mM MgCl2, 0.5 mL of β-mercaptoethanol, and 500 mM imidazole.  Crude 

extracts were centrifuged at 4°C for 40 min at 8000 rpm, filtrated using a 

Whatman® Puradisc (pore size 0.45 μm) filter, and loaded onto a HisTrap HP 5 mL 

column connected to the AKTA Pure system. Encapsulin fractions were eluted in a 0–

500 mM imidazole linear gradient (total volume 60 mL). Seven fractions of the purified 
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protein (14 mL) were concentrated to about 4 mL and subjected to gel filtration in the 

next step of purification.  

Table 3-1: Composition of the buffer used in the first step of chromatography for 

ReEncapsulin purification (Affinity chromatography).    

Buffer: (Lysis, equilibration and  

 washing) 

 First step  

Component Concentration Column 

Tris-HCl (pH 8) 50 mM HisTrap column 

NaCl 500 mM  

MgCl2 25 mM  

β-Mercaptoethanol 0.5 ml  

Buffer: Elution   

Component Concentration  

Tris-HCl (pH 8) 50 mM  

NaCl 500 mM  

MgCl2 25 mM  

β-Mercaptoethanol 0.25 ml  

imidazole 500 mM  

 

Size exclusion (gel filtration)  

A total of 4 mL of concentrated protein from the first step was injected into the Hiload 

26/600 Superdex 200 pg gel filtration column (GE Healthcare Life Sciences). The 

equilibration buffer contained 50 mM Tris-HCl (pH 7.5), 500 mM NaCl, 25 mM MgCl2, 

1 mM DTT, and 10% glycerol (Table 3-2). Eluted fractions were analysed by SDS-

PAGE, and the pure eluted fractions were combined and stored in 10% glycerol at −80°C 

until use.  

Table 3-2: Composition of the buffer used in the second step of chromatography for 

ReEncapsulin purification (Size exclusion chromatography).  

Buffer: (Lysis, equilibration and  

washing and Elution)  

 Second step  

Component Concentration Column 

Tris-HCl (pH 7.5) 50 mM Size exclusion   

mM MgCl2 25 mM  

NaCl 500 mM  

DTT 1 mM  

          glycerol 10%  
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3.2.8  Purification of DyP4-tag  

The purification of DyP4-tag was carried out in three chromatography steps, similar to 

the purification of DyP4, including two ion-exchange chromatography steps using a Q 

column and SP column. A gel filtration step was the third step of purification, using a 

HiLoad 26/600 Superdex 75 pg column according to the procedure described in Chapter 

2 (section 2.8). 

Enzymatic activity for DyP4-tag  

Two colorimetric assays were used to verify whether tagging DyP4 with a C-terminal 

signal peptide might affect or inhibit activity via the ABTS and RB19 assays. The 

advantage of using these assays is that the reaction occurs fast (either formation of green 

colour in case of ABTS assay, or the disappearance of the blue dye colour in case of RB19 

assay) as a result of oxidation by the enzyme (DyP4-tag).  

3.2.9  Molecular cloning of ReEncapsulin and DyP4-tag in Due expression 

systems  

Molecular cloning of pACYCDuet and pRSFDuet vectors  

Double digestion for both vectors was performed using EcoRI and NcoI restriction sites 

to insert encapsulin, while NdeI and XhoI restriction sites were used to insert the DyP4-

tag. Double-digested vectors were gel extracted, purified, ligated with encapsulin, and 

transformed into DH5α using the CaCl2 method. Next, restriction analysis was performed 

to confirm the insertion of encapsulin into both vectors before the insertion of the DyP4-

tag in a process similar to the insertion of encapsulin but at different restriction sites. 

 Molecular cloning of Re-Encap-DyP4-tag-pACYCDuet and Re-Encap-DyP4-tag-

pRSFDuet 

EcoRI and NcoI restriction sites were used to insert the encapsulin gene into a 

pACYCDuet vector. ReEncapsulin was PCR-amplified from pET24a-encapsulin using 

the primers shown in Table 3-1. Dpn1 was added to digest the parental template, followed 
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by double digestion with EcoRI and NcoI restriction enzymes. Next, PCR purification 

was performed and the purified products were ligated into pACYCDuet. The ligated 

mixtures were used for CaCl2 heat shock transformation in DH5α followed by a mini prep 

step and restriction analysis to verify the insertion of encapsulin into both vectors. 

Following the successful insertion of encapsulin, DyP4-tag was PCR-amplified from 

pET24a-DyP4 using the primers shown in Table 3-3. Dpn1 was added to digest the 

parental template, followed by double digestion with NdeI and XhoI restriction enzymes. 

Purification was performed and followed by ligation in both vectors using T4 DNA ligase. 

Transformation in DH5α was performed and followed by mini prep and restriction 

analysis to confirm the insertion of DyP4-tag in both vectors.  

Table 3-3:  List of primers used to amplify Encap and DyP4 

Primer Oligonucleotide sequences (5’->3’) 

Encapsulin  
Fwd:5' GAGCTCGAATTCATTAGTGGTGGTGGTGG 3' 

Rev:5' GATATACCATGGGCACCAACCTGCACCGTG 3' 

DyP4-tag 

Fwd:5' TATACATATGATGACCACCCCGGCGCCGCCGCTG 3' 

Rev:5' ATGCGAATTCTTACGCGCTGATCGGCGCTTGGCTGTGC 

3' 
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PCR mixture  

Table 3-4:  PCR mixture for Encapsulin amplification  

Component Stock Concentration Volume (µL) 

 Distilled water – 33 

Q5 buffer 5× 10  

dNTPs 10 mM each 1  

pET24a-Encapsulin  100 ng/µL 0.5  

Primer 1 20 µM 2.5  

Primer 2 20 µM 2.5  

Q5 high-fidelity DNA polymerase 2 U/µL 0.5  

Total reaction volume  50  

 

Table 3-5:  PCR mixture for DyP4-tag amplification 

Component Stock Concentration Volume (µL) 

 Distilled water – 33 

Q5 buffer 5× 10 

dNTPs 10 mM each 1 

pET24a-DyP4-tag  100 ng/µL 0.5 

Primer 1 20 µM 2.5 

Primer 2 20 µM 2.5 

Q5 high-fidelity DNA polymerase 2 U/µL 0.5 

Total reaction volume  50 

 

Table 3-6:  PCR program to amplify Encapsulin  

Step  Temperature Time  

1 98°C 30 sec 

2 98°C 10 sec 

3 72°C 30 sec 

4 72°C 1 min  

5 Repeat from step 2, 29 times  

6 72°C 2 min 

7 8°C Hold 
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Table 3-7:  PCR program to amplify DyP4 

Step  Temperature Time  

1 98°C 30 sec 

2 98°C 10 sec 

3 72°C 30 sec 

4 72°C 1 min, 45 sec 

5 Repeat from step 2, 29 times  

6 72°C 2 min 

7 8°C Hold 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-5:  Plasmid map of pACYCDuet-Re-Encapsulin-DyP4-tag vector 

(created with SnapGene). ReEncapsulin was inserted into pET24a vector using 

restriction sites EcoRI and NcoI while DyP4 was inserted using NdeI and XhoI 

restriction sites.  

Figure 3-4:  Plasmid map of pRSFDuet-Re-Encap-DyP4-tag vector (created with 

SnapGene). ReEncapsulin was inserted into pET24a vector using restriction sites 

EcoRI and NcoI while DyP4 was inserted using NdeI and XhoI restriction sites. 
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Transformation and Due expression in BL21 (DE3) and purification  

Chemical transformation using the CaCl2 method was carried out in BL21 (DE3) using 

pACYCDuet-Re-Encapsulin-DyP4-tag and pRSFDuet-Re-Encap-DyP4-tag vectors. The 

detailed procedure of this transformation method is given in Chapter 2 (section 2.4.1).  

Due expression in BL21 (DE3)  

Expression in BL21(DE3) was performed using the optimized conditions described in 

section 3.2.4 for the expression of encapsulin. It should be noted here that large-scale 

expression (400 mL of expression media resulted in a high concentration of expressed 

encapsulin and encapsulated DyP4, and significant aggregation of the protein was thus 

reported. The expression scale was therefore reduced to 100 mL of the expression media 

(2× TY media) induced with 0.1 mM of IPTG.  

Purification of encapsulated DyP4-tag  

The purification of encapsulated DyP4 was performed in a single step using a HisTrap 

HP 5 mL column. To avoid protein aggregation, which occurs when the concentration of 

purified encapsulin is high, protein expression and purification were performed on a 

smaller scale and immediately followed by SDS-PAGE and spectrometric and ABTS 

assay analysis. 

 Analysis of encapsulated DyP4 in ReEncapsulin 

The eluted fractions from the affinity chromatography column were analyzed using SDS-

PAGE and ABTS assay. SDS-PAGE analysis was performed using 10% polyacrylamide 

gels. To one part of protein solution, one part of SDS reducing buffer supplemented with 

β-mercaptoethanol was added, mixed, heated, and loaded onto the gel for electrophoresis. 

Staining with Coomassie Brilliant Blue was performed, followed by destaining and 

visualization of the protein bands.  

Since the spectral measurement of haem-containing proteins gives a peak at a specific 

wavelength, spectral analysis was also performed in 1 mL of the eluted fraction using a 
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UV spectrophotometer.  

ReEncapsulin and DyP4 were cloned into the due expression vectors pRSFDuet and 

pACYCDuet. Purification of the expressed Encap-DyP4 was performed with affinity 

chromatography in the first step of purification. Thus, as the encapsulin protein has a C-

terminal His-tag, it will bind to the affinity column (HisTrap column).  

Enzymatic activity of encapsulated DyP4 into ReEncapsulin 

An ABTS assay was used to compare the activity of encapsulated DyP4 eluted from three 

fractions. The reaction mixture contained 10 mM of ABTS (185 µL) and 5 µL of the 

eluted fraction of encapsulated DyP4, and 4 mM of hydrogen peroxide (10 µL) was added 

to initiate the reaction. For the negative controls, two reactions were performed where 

encapsulin or PBS buffer were added instead of encapsulated DyP4. The reaction 

mixtures were performed in a volume of 200 µL in a 96-well plate, and the measurements 

were recorded at a wavelength of 405 nm for 5 minutes.  
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3.3  Results 

3.3.1  Molecular cloning of pET24a-Encap and pET24a-DyP4-tag 

Sequencing results confirmed the insertion of encapsulin into pET24a and DyP4 into 

pET24a.  To determine whether tagging DyP4 with a C-terminal peptide sequence caused 

any aggregation or loss of activity, ABTS and RB19 assays were used to monitor activity 

at 405 nm and 595 nm, respectively. 

3.3.2  Recombinant protein production in BL21 (DE3) 

The expression of encapsulin and DyP4-tag was carried out successfully in the BL21 

(DE3) E. coli strain as confirmed by SDS-PAGE (Figure 3-6). Expression in the C41 

(DE3) strain was not detected (data not shown). Two concentration of IPTG were 

evaluated for both proteins, and 0.1 mM was found to be optimal for encapsulin while 1 

mM of IPTG was optimal for DyP4.  
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3.3.3 Purification of encapsulin  

Eluted fractions after the first step of purification (Fractions 17-23), (Figure 3-7A) were 

collected and analysed by SDS-PAGE and found to be already highly pure after the first 

step and only a few thin bands (around 35 kDa) were seen which were removed after 

purification by gel filtration (Figure 3-7B). Fractions 17 – 23 were combined, 

concentrated and then loaded in the size exclusion column, and the resulting appropriate 

fractions (fractions 5 and 6 from the first peak, and fracions 10 and 11 from the second 

Ladder  

Figure 3-6:  Comparison between the expression of DyP4-tag and encapsulin 

proteins induced by 0.1 mM or 1 mM of IPTG. Lane 1, molecular weight 

markers; lanes 2 and 3, soluble fraction of DyP4-tag induced with 0.1 mM or 1 

mM of IPTG, respectively; lanes 4 and 5, soluble fractions of encapsulin 

induced with 0.1 mM or 1 mM of IPTG, respectively  
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peak) (Figure 3-7B) were combined and stored at −80°C until use.  

 

 

 

 

 

  

  

Figure 3-7:  Purification of encapsulin by affinity chromatography. (A) Lane 1, 

molecular markers; lanes 2–8, eluted fraction of encapsulin and size exclusion 

chromatography. (B) Lane 1, molecular markers; lanes 2–3, eluted fractions from the 

first peak; lanes 4–5, eluted fractions from the second peak. 
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3.3.4  Purification of DyP4-tag  

Large-scale production (400 mL) of Pleos-DyP4 as the active protein was achieved by 

culturing BL21 (DE3) transformants at 25°C and 200 rpm for 24 hrs. Cells were disrupted 

and lysed, centrifuged, and the supernatant was filtrated and loaded into the appropriate 

column for purification using the AKTA Pure system. Three chromatographic steps were 

performed for the purification of DyP4-tag. The first step was ion-exchange 

chromatography with a Q5 column. SDS-PAGE (Figure 3-8A) showed the thick bands of 

the soluble fraction of DyP4-tag (59 kDa) in lanes 5 and 6; other bands of impurities can 

also be seen. The second step of purification was carried out using an SP column, and, as 

shown in Figure 3-8B, significant amounts of impurities were removed. Most of these 

contaminants were removed after the final step using a HiLoad 26/600 Superdex 75 pg 

column (Figure 3-8A-C), though a small amount of impurities remained.  
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Figure 3-8:  SDS-PAGE for the three purification steps of DyP4-tag. Q5 column (A) 

lane 1; molecular ladder, lanes 2–4; crude extract, flow-through, and wash, 

respectively, lanes 5–6; whole soluble fractions of DyP4. SP column (B) lane 1; 

molecular ladder, lanes 2–4; crude extract, flow-through, and wash, respectively, lanes 

5–7; whole soluble fractions of DyP4. Superdex 75 column (C), lane 1; molecular 

ladder, lanes 2–7; whole soluble fractions of DyP4. 
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3.3.5 Molecular cloning of Re-Encap-DyP4-tag-pACYCDuet and Re-Encap-DyP4-

tag-pRSFDuet 

 

 

 

 

 

 

 

 

 

 

To insert encapsulin and DyP4-tag into the due expression vectors, PCR amplification of 

both genes was carried out (Figure 3-9, A and B). The encapsulin gene was inserted first 

by ligating the double-digested PCR products with EcoR1 and Nco1 with pACYCDuet 

and pRSFDuet vectors, which were previously double digested with the same restriction 

enzymes. 
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Ladder  DyP4-tag 1.6 kb  Ladder ReEncapsulin 0.8 kb 
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B 

Figure 3-9:  PCR amplification of encapsulin and DyP4-tag genes. DNA 

gel electrophoresis 1% was used to visualize the products. The expected 

PCR product was 0.8 kb for encapsulin (A) and 1.6 kb for DyP4-tag (B). 
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Ligated mixtures were used for chemical transformation using the CaCl2 method in 

DH5α, followed by extraction of plasmids, restrictive digestion, and DNA gel analysis. 

The results confirmed the successful insertion of the encapsulin gene into both vectors, 

pACYCDuet and pRSFDuet (Figure 3-10, A and B). 
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Figure 3-10:  Restrictive digestion analysis of pACYCDuet-Encap (A), and 

pRSFDuet-Encap (B) at restriction sites EcoR1 and Nco1. The expected digested 

products are approximately 4 kb for pACYCDuet, 3.8 kb for pRSFDuet, and 0.8 

kb for encapsulin. 
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Double-digested PCR products of the amplified DyP4-tag were ligated with 

pACYCDuet-Encap and pRSFDuet-Encap that were previously double-digested with the 

same restriction enzymes. Ligated mixtures were used for transformation into DH5α, 

followed by the extraction of plasmids from DH5α and restriction analysis. The 

successful insertion of DyP4-tag insert into pACYCDuet-Encap and pRSFDuet-Encap 

was achieved as shown by restriction analysis (Figure 3-11, A and B).  
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Figure 3-11:  Restrictive digestion analysis of pRSFDuet-Encap-DyP4-tag 

(A) and pACYCDuet-Encap-DyP4-tag (B) at restriction sites Nde1 and Xhol. 

The expected digested products are approximately 4.8 kb for pACYCDuet-

Encap, 4.6 kb for pRSFDuet-Encap, and 1.6 kb for DyP4-tag. 
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3.3.5  Purification of encapsulated DyP4 into ReEncapsulin  

ReEncapsulin was coexpressed with DyP4-tag in 100 mL of expression culture in the 

BL21 (DE3) strain. Pellets were lysed and centrifuged, and the supernatants were loaded 

into a HisTrap 5 mL column for affinity chromatography purification. Eluted fractions 

were analysed by SDS-PAGE, and the results showed the presence of fractions of the 

coexpression of ReEncapsulin and DyP4-tag (Figure 3-13; A, lanes 5–7 for expression in 

a pACYCDuet vector; and B, lanes 4–6 for expression in a pRSFDuet vector). The SDS-

PAGE results (figure 3-12) showed the presence of two bands, suggesting formation of 

the Encap-DyP4 protein complex. 

Figure 3-12:  SDS-PAGE of the coexpression of encapsulin and DyP4. (A)  Lane 

1, molecular weight marker; 2, crude extract; 3, flow-through; 4, wash; 5–7, 

purified fractions of ReEncapsulin coexpressed with DyP4-tag in pACYCDuet.  

(B) Lane 1, molecular weight marker; 2, crude extract; 3, flow-through; 4–6, 

purified fractions of ReEncapsulin coexpressed with DyP4-tag in pRSFDuet 

vector.  
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3.3.6  UV-spectral analysis of purified DyP4 and encapsulated-DyP4  
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B 

Figure 3-13:  UV-vis spectrum showing the characteristic absorption 

pattern of the purified fractions of DyP4-tag, encapsulated DyP4, and 

Encapsulin. (A) Wavelength scan measurements between 300 nm and 

800 nm.  (B) Wavelength scan measurements between 350 nm and 500 

nm for eluted fractions of encapsulin only (black), and three eluted 

fractions of the encapsulated DyP4  
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3.3.7 Enzymatic activity of encapsulated DyP4-tag  

Encapsulated DyP4 was assayed with ABTS to determine the activity of the packaged 

enzyme. ABTS is used to test the activity of peroxidases, including Pleos DyP4, and is 

assayed calorimetrically at a wavelength of 420 nm. The results of the ABTS assay 

showed that the encapsulated DyP4 retained its activity, with a possible reduction in 

activity, however, which could be due to the encapsulation reported in previous studies. 

Figure 3-14 shows the increase in absorbance at 405 nm due to oxidation of ABTS 

substrate by the packaged DyP4 from the eluted fraction of the encapsulated DyP4.  

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3-14:  Analysis of the enzymatic activity of encapsulated DyP4 

into ReEncapsulin. Activity of DyP4 peroxidase using ABTS assay. The 

reaction was started by the addition of hydrogen peroxide and activity was 

measured as the change in absorbance at 405 nm. Two negative controls 

(red line with a buffer, brown line with encapsulin) were used; the green 

line indicates the packaged DyP4 (fraction 24) 
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3.4  Discussion  

The interesting family of nanocompartments known as encapsulins have recently been 

discovered in prokaryotes by Sutter et al (Sutter et al., 2008). Encapsulated proteins have 

a C-terminal sequence that is responsible for targeting their encapsulation. The present 

study demonstrated that Pleos-DyP4 can be encapsulated into a ReEncapsulin 

nanocompartment by the fusion a C-terminal sequence that can act as a cargo-leading 

peptide to direct the encapsulation of DyP4. This provides evidence that the encapsulin 

system is also applicable to non-native enzymes. This finding is similar to that reported 

in previous studies where non-native proteins were loaded into encapsulin 

nanocompartments by fusion of the C-terminal sequence to the guest C-terminus 

sequence. There is strong evidence in this work to claim that the encapsulation of DyP4 

has been successful. The eluted fractions from peaks from a nickel column known to bind 

strongly to His-tagged proteins (encapsulin in this study) showed the presence of a band 

representing DyP4, along with another band for encapsulin. The eluted fractions from the 

peaks where the encapsulin band was found, along with DyP4, were used to test 

peroxidase activity in the ABTS assay. The assayed fractions of the encapsulated DyP4 

showed activity in the ABTS assay, although the activity seemed to be reduced. This 

might provide further evidence to support the successful encapsulation of what might be 

attributable to the very small size pores of the nanocompartment, thus affecting the 

permeability. UV-vis scan measurement of the encapsulated DyP4 showed a haem-type 

peak, similar to the purified DyP4 (3-14B) but with a reduced peak value which, again, 

could be due to encapsulation.  
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3.5  Conclusion  

The packaging of Pleos DyP4 was performed in the present work by fusing the C-terminal 

sequence (37 aa) of ReDypB to the C-terminus of DyP4. It seemed that the packaged 

DyP4 remained active when assayed with ABTS, but with possible reduced activity due 

to encapsulation. More studies are needed to investigate this further. The present work 

provides further evidence that non-native enzymes can be encapsulated in encapsulin 

using CLP, as described here. Overall, this mechanism of packaging enzymes into the 

encapsulin nanocompartment is of potential biotechnological value since (i) being a stable 

shell, encapsulin protects the enzyme from degradation by the cell or might protect the 

cell from toxic enzymes, and (ii) encapsulated enzymes can be released at low pH, which 

is suitable for DyP4 with its high activity at low pH (Nichols et al., 2017). Taken together, 

the specific targeting sequence can be used to package non-native proteins into the 

encapsulin nanocompartment, which has tremendous potential for use in nano-

biotechnology applications using this delivery system, and could also be used in the 

destruction of lignocellulose (Rahmanpour and Bugg, 2013).  
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4.1 Introduction  

Peroxidases are a significant group of enzymes that are widely distributed in nature and 

use a peroxide to catalyse the oxidation of a broad range of substrates.  They can be 

classified into haem-containing non-haem-containing proteins (Fawal et al., 2013). Haem 

peroxidases are found in animals, plants, bacteria, and fungi and utilize hydrogen 

peroxide (H2O2) to oxidize a broad range of organic and inorganic substrates. Oxidation 

of substrates by haem peroxidase occurs in three steps, which require the formation of 

Compound I and Compound II. Peroxidases have potential applications in bioremediation 

such as for contaminated waste water; in the paper industry, such as for biopulping and 

biobleaching; and for diagnostic and analytical applications in medicine (Hamid and 

Khalil-ur-Rehman, 2009).  Dye-decolorizing peroxidases (DyPs) are a novel family of 

haem peroxidases which have received significant attention due to their role in the 

decolourization of anthraquinone dyes and the degradation of lignin (Shrestha et al., 

2017) (Singh and Eltis, 2015). Dye-decolorizing peroxidase 4 (DyP4) is a newly 

identified peroxidase from the edible mushroom Pleurotus ostreatus (Pleos-DyP4) which 

has been found to efficiently oxidize low and high redox potential dyes such as Reactive 

Blue 19 and Reactive Black 5.  Interestingly, DyP4 has also been found to oxidize Mn2+ 

to Mn3+.  Moreover, DyP4 has high thermal and pH stability (Fernandez-Fueyo et al., 

2015).  
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4.1.1  Mechanism of inactivation by excess H2O2 

One of the main limitations in utilizing haem peroxidases in industrial applications is their 

inactivation by hydrogen peroxide. The mechanism is complicated, poorly understood, 

and referred to as ‘suicide inactivation’. The formation of Compound III species causes 

the inactivation of haem peroxidases through haem bleaching and irreversible 

inactivation. The oxidation of amino acids that are not stable against oxidation such as 

methionine (Met), tryptophan (Trp), tyrosine (Tyr), cysteine (Cys), and histidine (His) by 

hydrogen peroxide leads to protein modification and, as a result, protein inactivation 

(Ayala et al., 2011, Valderrama et al., 2002). The conventional method of increasing 

hydrogen peroxide stability of enzymes is to rationally substitute the residues that are 

easily oxidized with residues that are more resistant to oxidation by hydrogen peroxide. 

Increasing the hydrogen peroxide stability of haem peroxidases has been reported in 

several studies using different strategies of protein engineering such as site-directed 

mutagenesis (rational design) or random mutagenesis (directed evolution), or a 

combination of both (Brissos et al., 2017, Cherry and Lamsa, 2004, Cherry et al., 1999, 

Gonzalez-Perez et al., 2014, Miyazaki and Takahashi, 2001, Miyazaki-Imamura et al., 

2003, Morawski et al., 2001, Ogola et al., 2010). 

4.1.2 Aim of the study  

This study aimed to investigate the effect of replacing susceptible residues to hydrogen 

peroxide oxidation with residues that are more resistant to oxidation. In the present study, 

three methionine residues were replaced with leucine and/or phenylalanine. A semi-

rational protein engineering method using site-directed mutagenesis was used to replace 

the three methionine residues of the Pleurotus ostreatus DyP4 with residues that are more 

stable against oxidation, namely leucine and phenylalanine. 
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4.2    Material and methods  

4.2.1    Materials 

All materials used in this study were obtained as described in Chapter 2, and cultivation 

media were also prepared as described in Chapter 2. 

4.2.2    Protein modelling  

Homology modelling is used widely in site-directed mutagenesis studies to build a 3D 

structure of a protein of interest using established 3D structures for related proteins. The 

SWISS-MODEL workspace is an online tool used widely for this purpose, and the models 

are generated by identifying a related protein with a known structure and using it as a 

template model to build a 3D model of the protein of interest (Bordoli et al., 2009). In 

this experiment, a protein model was created using the most structurally similar template 

proteins identified in SWISS-MODEL, (PDB: 1avf). The 3D-model structure was 

visualized using Pymol. The crystal structure of Pleos-DyP4 has recently been solved at 

1.56 Å resolution (PDB: 6fsk) but it is still not released into the protein data bank 

(Fernandez-Fueyo et al., 2018).  

4.2.3  Construction of mutants using OneClick program 

The OneClick program (http://tucksengwong.staff.shef.ac.uk/OneClick/) was used to 

design primers to substitute methionine with leucine or phenylalanine Table 4-1 

(Warburton et al., 2015). OneClick is an online program, established to facilitate the 

design of mutagenic primers in site-directed mutagenesis and saturation mutagenesis. 

Design of mutagenic primers using OneClick takes only a few steps, where the user can 

choose the position of the amino acid to mutate and the amino acid to replace. A wide 

range of the commercially available DNA polymerases and plasmids being used in site-

directed mutagenesis or saturation mutagenesis have been incorporated into the OneClick 

program. In addition, OneClick can provide information on the Polymerase Chain 

http://tucksengwong.staff.shef.ac.uk/OneClick/
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Reaction (PCR) mixture, PCR cycling condition, estimated size of the product of PCR, 

and the agar plate to use after the transformation (Warburton et al., 2015).  

Table 4-1:  Designed primers for the construction of mutants 

Mutant Oligonucleotide sequences 

M43L 
F:5'AAAGCGAACCTGGCGCACTTCATCCCGCACATTAAGACCAGCGCGG 3' 

R:5'GAAGTGCGCCAGGTTCGCTTTAAATTGATCAACGTTGGTCACGTCG 3' 

 

 

M77L 
F:5'CTGGTGCCGCTGGCGGCGGTGAACGTTAGCTTTAGCCACCTGGGCC 3' 

R:5'CACCGCCGCCAGCGGCACCAGACCCGGTTTCTTCTGACGTTTGTGT 3' 

M253L 
F:5'CTGTTCCAACTGGTGCCGGAGTTTGACGATTTCCTGGAAAGCAACC 3' 

R:5'CTCCGGCACCAGTTGGAACAGGTAACGGAAGGTCAGAAAGCTACCA 3' 

M253F 
F:5'CTGTTCCAATTTGTGCCGGAGTTTGACGATTTCCTGGAAAGCAACC 3' 

R:5'CTCCGGCACAAATTGGAACAGGTAACGGAAGGTCAGAAAGCTACCA 3' 

 
 

Mutants were constructed using pET24a-DyP4 as a template. PCR reactions mixtures 

were prepared in a total volume of 50 µL containing 1× Q5 Reaction Buffer, 50 ng DNA 

template plasmid (pET24a-DyP4), 200 µM of each of the dNTPs, 20 pM of each primer, 

and 1 U of Q5 high-fidelity DNA polymerase. The PCR reaction cycle was 98ºC for 30 

sec, followed by 9 cycles of 98ºC for 8 sec, 55ºC for 20 sec, and 72ºC for 2 min 51 sec. 

The reaction was then paused, and both tubes were mixed and distributed equally between 

the two tubes, followed by 19 cycles of 98ºC for 8 sec, 55ºC for 20 sec, and 72ºC for 2 

min 51 sec. The final step was 2 min at 72ºC before cooling at 8ºC. Reactions were 

digested with 1 µL of high-fidelity DpnI at 37ºC overnight to digest the parental 

methylated DNA. 

4.2.4  CaCl2 heat shock transformation in DH5α  

The Dpn1 digested mixture (5 µL) was used for chemical transformation using the CaCl2 

heat shock method in DH5α cells. The detailed protocol for this method is given in 

Chapter 2 (section 2.4.1). A single colony from each plate containing the mutants was 
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picked and grown overnight in 2× TY media containing kanamycin for plasmid isolation 

to confirm that the desired mutations were successfully obtained.  

4.2.5 Sequencing  

Extracted plasmids were used to sequence the obtained mutants to determine whether the 

desired mutations were obtained. DNA sequencing was performed by Eurofins using the 

T7 promotor sequence 5’TAATACGACTCACTATAG ’3 for mutants M34L and M77L, 

and 5’CAGCGAAGTGACCCATGTTC’3 for mutants M253L and M253L. 

4.2.6  CaCl2 transformation in BL21 (DE3) 

The resulting mutant plasmids were used for transformation in BL21 (DE3) as described 

in the materials and methods section (2.4.1) of Chapter 2.  

4.2.7  Protein expression of the WT and mutants 

 Expression of the WT and the four mutants was carried out in E. coli BL21 (DE3). Cells 

were grown in 50 mL of 2× TY at 37ºC until an OD600 of approximately 0.6 was reached, 

and then induced with 1 mM isopropyl-β-d-thiogalactopyranoside (IPTG) followed by 

cultivation for 24 hrs at 25ºC and 200 rpm.  

4.2.8  Cell harvesting and protein purification  

Cells were harvested by centrifugation at 4ºC at 6000 rpm for 5 min and pellets were 

stored at −20ºC until required. Purification of the WT and mutants was performed using 

the ÄKTA Pure system with two ion-exchange chromatography steps. In the first step, a 

HiTrap Q column 5 mL was used, and two fractions of the purified protein (total of 4 mL) 

were used for the second step using a HiTrap SP column 5 mL. The procedure for both 

ion-exchange chromatography steps was as described in Chapter 2 (section 2.8).  

4.2.9  Spectra and OD measurement/quantification  

 To overcome the issues occurred during the purification of mutants and WT, it was 
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necessary to use the exact concentration of variants to validate the results of stability of 

DyP4 against hydrogen peroxide. Optical density measurement at A206, A280, and A340 

using a spectrophotometer and wavelength scan measurement was performed in a 1 mL 

volume from each fraction of the purified mutants and the WT to determine the 

concentration of protein.  

4.2.10  Enzymatic activities of the WT and mutants  

To investigate the hydrogen peroxide stability of the WT and mutants, five different 

concentrations of hydrogen peroxide were used in an ABTS assay: 4 mM initially, 

followed by 8, 12, 16, and 20 mM of hydrogen peroxide. The reaction mixture contained 

10 mM of ABTS (185 L) and 5 L of diluted purified enzyme, and the reaction was 

started with hydrogen peroxide (10 L). A multiplate reader was used to monitor the 

increase in absorbance at a wavelength of 405 nm. At least three replicates were 

performed for each reaction.  
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4.3  Results  

4.3.1  Engineering the methionine residues of DyP4 

Methionine residues are the most susceptible residues to oxidation by high concentrations 

of hydrogen peroxide in peroxidase enzymes. There are only three methionine amino 

acids in the DyP4 protein. Using the SWISS-MODEL tool, a 3D structure model was 

built for DyP4 using the most similar template. Figures 4-1A shows the positions of the 

engineered methionine of the structural model of DyP4, constructed using the applicable 

template. None of the three methionine amino acids in the DyP4 protein are close to the 

haem active site, as shown by the 3D model (Figure 4-1B).  

 

 

 

 

Figure 4-1: 3D model structure of Pleos DyP4 using the relative template. (A) The three 

methionine residues are shown in sticks and purple colour. This model was visualized 

with Pymol using (PDB: 1avf) as a template model. (B) Identified Met restudies for 

mutagenesis in Pleos-DyP4, M253, M43, and M77 with 17 Å, 27.3 Å, and 30.2 Å from 

the heme iron respectively. 
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4.3.2 Construction of mutants  

To introduce a site mutation replacing methionine with leucine or phenylalanine, the 

OneClick program was used to design partially overlapping primers using the pET24a-

DyP4 vector.  

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

A 

B 

Figure 4-2:  DNA gel for PCR in site-directed mutagenesis using the 

OneClick program. (A) Amplified products (6.8 kb) for mutants M43L, 

M253L, and M253F using Q5 DNA polymerase. (B) Successfully amplified 

product (6.8 kb) for M77L using (PfuUltra high-fidelity DNA polymerase. 

 

 

6.8 kb 

6.8 kb 
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Using one-stage PCR, a clear band was obtained for the required product for positions 

M253L and M253F, and a thin band was observed for position M43L (Figure 4-2, A). 

However, for mutant M77L, no band was obtained with one-stage or two-stage PCR 

performed using Q5 high-fidelity DNA polymerase. Another polymerase (PfuUltra high-

fidelity DNA polymerase AD) was used in the PCR reaction for mutant M77L, and this 

time there was a clear band for the product using one-stage PCR (Figure 4-2, B).  

4.3.3 Sequencing results  

Sequencing confirmed the replacement of Met with Leu (ATG to CTG) and Met to Phe 

(ATG to TTT) for positions 43M, 77M, and 253M.  

4.3.4 Expression and purification of DyP4 variants  

From the AKTA Pure chromatogram for the purification of WT and mutants, it was clear 

that there was a significant variation in the amount of purified protein for each variant of 

DyP4. This was confirmed by the results of the spectra (Figure 4-3) and by optical density 

measurements (Table 4-2).  

  

Figure 4-3:  Wavelength scan measurement for DyP4 variants taken for 

wavelengths 700 nm to 300 nm. Equilibration buffer contained the elution 

buffer of the variants (1 ml), 1 ml of the eluted fractions of the variants after the 

second step of chromatography was used to estimate the concentration of the 

protein.  
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Table 4-2:  Optical density of DyP4 variants 

Variant 

Optical density Concentration 

(mg/mL) A260 A280 A340 

WT 0.435 0.500 0.227 0.448 

M43L 0.261 0.301 0.138 0.259 

M77L 0.268 0.300 0.141 0.270 

M253L 0.186 0.212 0.099 0.187 

M253F 0.360 0.410 0.186 0.380 

 

 

 

 

Figure 4-4:  Hydrogen peroxide tolerance of DyP4 WT and Met-replaced mutants 

M43L, M77L, M253L, and M253F. Reaction mixtures (a total of 200 L) contained 

10 mM (185 L) ABTS, 5 L of diluted enzyme, and 10 L of H2O2 (4 mM, 8 mM, 

12 mM, 16 mM, and 20 mM).  
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Overall, the Met-replaced mutants behaved similarly to the WT of DyP4 in the presence 

of increased concentrations of hydrogen peroxide (Figure 4-4). The relative activity for 

WT and mutants using 4 mM of hydrogen peroxide was set to 100%. The values are 

presented as the average of at least three replicates. When 8 mM of hydrogen peroxide 

was used in the ABTS activity assay, the WT retained around 53% activity while the less 

stable mutants (M253L and M253F) retained around 47% activity. Higher concentrations 

of hydrogen peroxide had an effect on the activity of all variants of DyP4. At 20 mM of 

hydrogen peroxide (the highest concentration used in this experiment), all variants 

retained less than 27% of activity, with no significant variation among them.  
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4.4  Discussion  

Inactivation by hydrogen peroxide is a major limitation of the utilization of haem 

peroxidase for large-scale industrial applications (Martinez et al., 2009). The oxidation 

stability against hydrogen peroxide has been increased for certain peroxidases using site-

directed mutagenesis, namely MnP (Miyazaki and Takahashi, 2001), VP (Bao et al., 

2014), and DyP (Ogola et al., 2010), in which the substitution, deletion, or insertion of 

amino acids more resistant to oxidation is typically performed. Here, all three methionine 

residues were replaced with residues that are more resistant to oxidation by hydrogen 

peroxide to investigate its effect and whether this approach can improve the stability of 

DyP4 towards hydrogen peroxide. However, the results obtained in this experiment 

showed that, the substitution of Met residues with those conferring higher resistant to 

oxidation did not lead to an increase or improvement in hydrogen peroxide stability 

(Figure 4-4). Specifically, the stability of the WT was virtually the same as that of all of 

four mutants in which the methionine residues were replaced.  

It remains unknown whether the location of the three methionine residues is close to the 

haem and active site, since the template model used to build the 3D structure of DyP4 

shares less than 50% of its identity. At the same time, and it can be seen in Figure 4-2, 

the methionine residues displayed on the 3D model might not be located in the haem area, 

particularly M43 and M77, which tend to be located on the surface of the enzyme. In 

some previously reported studies, the replacement of methionine successfully improved 

the stability of the peroxidase against hydrogen peroxide, while in other studies; 

replacement did not lead to an increase in the stability of the peroxidase against increased 

concentrations of hydrogen peroxide. An obvious effect of the location of the substituted 

methionine can be observed, as the closer the methionine residue is to the active site and 

the heme, the higher the probability that the stability of the enzyme will improve after 

replacing susceptible residues using site-directed mutagenesis (Ogola et al., 2010, Bao et 
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al., 2014). 

Using site directed-mutagenesis, other amino acids that are susceptible to oxidation by 

hydrogen peroxide can be replaced with amino acids that are more resistant to oxidation. 

Cys389, Tyr390, and Trp405 are located in the heme area as suggested by the 3D structure 

model and they could be targeted for site-directed mutagenesis. Alternatively, directed 

evolution might be adjusted to engineer DyP4 for higher tolerance against hydrogen 

peroxide (See Chapter 6).



 Conclusion  

Increasing the stability of peroxidases against high concentrations of hydrogen peroxide 

is a major challenge to the practical use of peroxidases in industrial applications. While 

directed evolution of peroxidases has led to improvements in peroxidase stability towards 

hydrogen peroxide in some studies, rational design involving the replacement of residues 

susceptible to oxidation with those that are more resistant has been the method of choice. 

In this work, four mutants were generated in which all three methionine residues of the 

WT-DyP4 were replaced with residues more resistant to oxidation by hydrogen peroxide. 

The results show that there was no significant variation between the WT and the four 

mutants with respect to resistance to oxidation by hydrogen peroxide, and this may be 

because of the location of the methionine residues on the enzyme. This finding was 

similar to those of previously reported studies where no improvement was shown for 

substituted methionine residues that are not close to the haem or the active site.  

These mutants are located on the surface of the enzyme, as suggested by the 3D model 

structure, and this might explain why no improvement in DyP4 stability against hydrogen 

peroxide stability was observed using this approach in the present work. The use of 

directed to evolution to increase the resistant of DyP4 against inactivation by hydrogen 

peroxide is a potential alternative, as well targeting other amino acids that are easily 

oxidised by hydrogen peroxide and replace them with amino acids that are more resistant 

to oxidation.   
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CHAPTER 5 Oxidation of a non-phenolic lignin model 

substrate, three S-type lignin units, and synthetic dye by 

DyP4 

 

 

 

 

 

5.1 Introduction 

5.2 Methodology 

5.3 Results and Discussion 

5.4 Summary 
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5.1 Introduction  

The use of biorefinery systems to produce biofuels and biochemicals from lignocellulose 

has been a focus of extensive research in recent years. Lignocellulose as a source of 

energy does not compete with agricultural food production, and is abundant in nature and 

generally considered a general waste. One critical step in this process is the pretreatment 

of lignocellulose to break down lignin and enable accessibility to fermentable sugars. In 

recent decades, different approaches have been investigated in an attempt to convert 

lignin to allow the significant conversion of lignocellulose-containing sugars. The 

optimal approach needs to be economically feasible to achieve the successful conversion 

of lignocellulose into useful products such as fuels and chemicals at low cost (Agbor et 

al., 2011, FitzPatrick et al., 2010, Min et al., 2015, Min et al., 2013). Lignin is second to 

cellulose, the most prevalent biopolymer and renewable source of carbon on earth. There 

is an urgent need for the complete degradation of lignin, as the majority is wasted because 

no effective method for lignin conversion is available (Shrestha et al., 2017). Naturally 

occurring enzymes found in certain fungi and bacteria depolymerize lignin efficiently. 

Fungal laccases and peroxidases such as lignin peroxidases (LiP), manganese peroxidases 

(MnP), and versatile peroxidases (VP), have been identified as lignin depolymerizers as 

reported in several studies. In addition to these enzymes, the newly discovered family of 

haem peroxidases, the dye-decolorizing peroxidases (DyPs), have been found to oxidize 

lignin model substrates (Janusz et al., 2017, Pollegioni et al., 2015).  
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5.1.1  Veratryl alcohol 

Due to its simplicity, the oxidation of veratryl alcohol (VA) (chemical structure; Table 5-

1) by peroxidase is a widely used assay to determine the potential of biocatalysts to 

degrade lignin. Peroxidases catalyse the oxidation of VA to veratraldehyde, which can be 

detected by UV spectrophotometry at a wavelength of 310 nm. Given its simplicity, the 

VA assay is the method of choice for the screening of lignin degradation (Arora and Gill, 

2001, Min et al., 2015). The enzymatic oxidation of VA has been studied using different 

microbial enzymes, either with direct oxidation by the enzyme or using mediators. For 

instance, the effect of mediators for MnP and laccases was studied using non-phenolic 

compounds which are not naturally oxidized by these enzymes. However, the addition of 

mediators was found to enhance oxidation reactions to non-phenolic substrates such as 

VA (Nousiainen et al., 2012).  The oxidation of VA by fungal LiP, VP, and DyPs, along 

with some peroxidases from plants, occurs under acidic pH conditions; specifically, under 

pH 5 (Liers et al., 2010). VA oxidation testing for different peroxidases has been reported 

in several studies (Yang et al., 2011, van Bloois et al., 2010, Ruiz-Duenas et al., 2009, 

Min et al., 2015). 

5.1.2  Reactive Blue 19 (RB19)  

Along with azo dyes, anthraquinone dyes are used in significant quantities in the textile 

industry. Due to their recalcitrance and resistant to biodegradation, these dyes accumulate 

and are an important environmental concern (Ogola et al., 2015). DyPs are capable of 

decolourizing anthraquinone and azo dyes along with MnP, LiP, VP, and laccases 

(Kornillowicz-Kowalska and Rybczynska, 2014). See Table 5-1 for the chemical 

structure of RB19. 

5.1.3 S-type lignin units  

White-rot fungi decompose lignin via oxidation mechanisms in which the arylether (β-O-

4) linkages are cleaved alongside the degradation of p-hydroxyphenyl (H), guaiacyl lignin 
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units (G), and syringyl (S) lignin units. As a result, some phenolic compounds such as 

acids, aldehydes, and ketones are released, and can act as redox mediators.  Mediators 

can be described as small molecules that, after being oxidized by enzymes, diffuse from 

the oxidation site to other regions where they can oxidize other substrates. The oxidation 

of mediators can have tremendous advantages because (i) compounds that are not 

oxidized by enzymes can be oxidized in this manner by the mediators, and (ii) the 

mediators are small molecules that diffuse to oxidize large substrates that enzymes cannot 

reach (Baiocco et al., 2003).  

Less than three decades ago, extensive work started to find synthetic mediators and justify 

their enzymatic oxidation mechanisms. Violuric acid (chemical structure; Table 5-1), is 

among the most effective synthetic mediators for laccases that, upon oxidation, can 

oxidize non-phenolic lignin structures (Canas and Camarero, 2010). Being a synthetic 

redox mediator of the NOH type, violuric acid has been used widely to enhance the 

activity of laccases (Pogni et al., 2007).  The enzymatic oxidation of violuric acid 

produces iminoxyl radicals that are highly stable, and its purple colour is detectable in the 

visible spectrum (Kim et al., 2003, Pardo et al., 2013). Violuric acid has been used as a 

reporter assay for mutants generated for laccases by directed evolution. Interestingly, 

screening results have shown that improvments in mutants identified by screening with 

natural mediators such as syringaldehyde and acetosyringone could be detected by 

violuric acid assay (Pardo et al., 2013).  
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5.1.4  Aim and objectives  

Spectrophotometric assays were used in this study based on oxidation by a Pleos-DyP4 

peroxide enzyme. These assays can be used for the phenolic compounds of the S-type 

lignin unit, syringaldehyde, acetosyringone, and sinapic acid and can screen mutants of 

DyP4 created by directed evolution methods. Violuric acid substrate was selected to 

represent synthetic mediators and can be used in a similar way to natural mediators of S-

type lignin compounds. Furthermore, Reactive Blue 19 (RB19) and veratryl alcohol (VA) 

substrates were selected to represent AQ dyes and non-phenolic compounds, respectively. 

We sought to develop a simple, rapid, and reliable assay for lignin degradation. All 

chemical structures for substrates used in this chapter are shown in (Table 5-1).  

 

 

 

 

 

 

 

 

 

 

 



103 

 

5.2  Methodology  

5.2.1    DyP4 expression and purification  

DyP4-tag and DyP4 with tag removed were expressed in BL21 (DE3) cells in 400 mL of 

2× TY media induced with 1 mM IPTG. The collection, lysis, and purification of cell 

pellets was as described in Chapter 2 (section 2.8).  

5.2.2  Oxidation assays  

VA oxidation assay  

The oxidation of VA by peroxidases varies in pH requirements, with LiP and some DyPs 

oxidizing VA only in acidic environments of between pH 2 and 5 for LiP and pH 1.2 and 

4.5 for DyPs (Hofrichter et al., 2010). VA was oxidized to veratryl aldehyde to determine 

the potential of lignin breakdown. The reaction mixture was prepared in a 1 mL volume 

containing 2.0 mM of VA and 25 µl of diluted purified enzyme (DyP4), and the reaction 

was started by addition of 4 mM of H2O2 (50 µL). The oxidation product veratryl 

aldehyde (ε310, veratryl aldehyde = 9.3 mM−1cm−1) was detected by UV 

spectrophotometry at 310 nm.   

RB19 oxidation assay  

An RB19 substrate solution was prepared in 0.1 M citric acid-0.2 M Na2HPO4 buffer with 

pH 3.4. The oxidation assay was performed in a 1 mL volume containing 200 µM of 

RB19 and 25 µl of diluted enzyme, and the reaction was initiated by the addition of 4 mM 

of H2O2 (50 µL). Decolourization of RB19 by DyP4 was monitored as a decrease in 

absorbance at 595 nm by UV spectrophotometry over 5 minutes.  
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  Sinapic acid oxidation assay  

To prepare a stock of 10 mM of sinapic acid, 22.4  mg of sinapic acid was dissolved in 

10 mL ethanol. Changes in the UV-visible spectra of sinapic acid oxidation by DyP4 were 

monitored by spectrophotometry in 0.1 M citric acid-0.2 M Na2HPO4 buffer at pH 4.0. 

The reaction mixture was prepared in a cuvette in a total volume of 1 mL, containing 250 

μM of sinapic acid, and 25 µL of diluted DyP4, and 4 mM hydrogen peroxide (50 µL) 

was added to initiate the oxidation reaction. 

 Acetosyringone oxidation assay  

A stock concentration of 80 mM acetosyingone was prepared by dissolving 157 mg of 

acetosyingone in 10 mL of ethanol. Changes in the UV-Vis spectra of acetosyringone 

oxidation by DyP4 in 0.1 M citric acid-0.2 M Na2HPO4 buffer at pH 4.0 were observed 

by the spectrophotometer. In a 1 mL reaction mixture, the oxidation of 2 mM 

acetosyringone by DyP4 (25 µL diluted enzyme) was initiated by the addition of 4 mM 

of hydrogen peroxide.  

Optimization of pH for acetosyringone 

To determine the optimum pH for acetosyringone oxidation by DyP4, different values of 

pH were evaluated for the 0.1 M citric acid-0.2 M Na2HPO4 reaction buffer. Reaction 

buffers with different pH values were prepared as described in the 

https://www.sigmaaldrich.com/life-science/core-bioreagents/biologicalbuffers/learning-

center/buffer-reference-center.html. Oxidation testing to determine the optimum pH was 

performed at a wavelength of 520 nm using 2 mM of substrate.  

  

https://www.sigmaaldrich.com/life-science/core-bioreagents/biologicalbuffers/learning-center/buffer-reference-center.html
https://www.sigmaaldrich.com/life-science/core-bioreagents/biologicalbuffers/learning-center/buffer-reference-center.html
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Syringaldehyde oxidation assay  

A stock concentration of 80 mM syringaldehyde was prepared by dissolving 145.7 mg of 

syringaldehyde in 10 mL of ethanol. Changes in the UV-Vis spectra of acetosyringone 

oxidation by DyP4 in 0.1 M citric acid-0.2 MNa2HPO4 buffer at pH 4.0 were observed 

by the spectrophotometer. The reaction mixture was prepared in a cuvette at a total 

volume of 1 mL, containing 2 mM syringaldehyde and 25 µl diluted DyP4, and 4 mM of 

hydrogen peroxide (50 µL) was added to start the reaction.   

Violuric acid oxidation assay  

A stock solution of 800 mM violuric acid was prepared by dissolving 1.4 g of this 

substrate in 10 mL methanol. The reaction mixture was prepared in 0.1 M citric acid-0.2 

M Na2HPO4 buffer, pH 4.0. The oxidation reaction for violuric acid was conducted in a 

cuvette in a total volume of 1 mL, containing 20 mM of violuric acid and 25 µL of diluted 

enzyme, with 50 µL (4 mM) of hydrogen peroxide. Changes in the UV-Vis spectra were 

monitored by UV spectrophotometry.   

For all four of the assays above, oxidation was carried out in a spectrophotometer for 60 

minutes or more, and absorbance was measured at 0 minutes and at 10-minute intervals 

thereafter.  
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5.3    Results and discussion  

5.3.1  Protein expression and purification of DyP4  

 

Figure 5-1: Purification of DyP4 using three steps of chromatography. (A) Q5 column  

(1st step) (A) lane 1; molecular ladder, lanes 2–5; crude extract of DyP4-tag, crude 

extract of DyP4, flow-through, and wash, respectively, lanes 6–8; whole soluble 

fractions of DyP4. SP column (2nd step) (B) lane 1; molecular ladder, lanes 2–4; crude 

extract, flow-through, and wash, respectively, lanes 5–8; whole soluble fractions of 

DyP4. Superdex 75 column (3rd step) (C), lane 1; molecular ladder, lane 2; crude 

extract, lanes 3–6; whole soluble fractions of DyP4. (D), (E), and (F) shows the 

chromatogram of the eluted fractions in the first, second, and third step of DyP4 

purification respectively.  
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Following the successful removal of the C-terminal peptide tag from DyP4, as confirmed 

by SDS-PAGE and gel electrophoresis (data not shown), pET24a-DyP4 was used for 

small-scale expression in BL21 (DE3) in 50 mL 2× TY media containing kanamycin. An 

ABTS assay was used to screen activity in the crude extract, which showed normal 

enzymatic activity for the DyP4 enzyme. Large-scale production was then performed for 

DyP4; cells were grown for 2 hrs at 25°C until OD600 reached 0.6 in 400 mL of 2× TY 

media, induced with 1 mM IPTG, and cultured for a further 24 hrs. Centrifugation at 6000 

rpm for 5 min at 4°C was performed to harvest the cells. Pellets were lysed by sonication 

in a lysis buffer containing 50 mM Tris-HCI (pH 8.5) and 1 mM EDTA. Sonication was 

performed for 5 min using the following program: 10 sec on, 20 sec off, 70% amplitude. 

Centrifugation for 40 min at 8000 rpm and 4°C was carried out to remove cell debris. 

Supernatants were filtrated using a Whatman® Puradisc filter of pore size 0.45 μm and 

loaded onto a HisTrap Q5 column for purification using an AKTA Pure system. The 

process for purifying DyP4 was carried out in three steps, as described in Chapter 2 

(section 2.7). Following ion-exchange chromatography using a HiTrap Q column, a 

concentrated band of DyP4 at 59 kDa was observed (Figure 5-1), as was the presence of 

impurities. After the second step of purification using a HiTrap SP column, most of 

impurities had been removed, although  small quantity remained. The final step of 

purification used a HiLoad 26/600 Superdex 75 pg gel filtration column, and slight bands 

represented the remaining impurities.  

5.3.2  Enzymatic oxidation of VA by DyP4  

The VA assay is the assay of choice for lignin-degrading enzymes such as LiP (Min et 

al., 2015). DyP4 was found to catalyse the oxidation of the non-phenolic lignin substrate 

(VA), as shown in Figure 5-2. An increase in absorbance at 310 nm was observed after 

initiating the oxidation of VA by the addition of hydrogen peroxide. Different 
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concentrations of purified diluted DyP4 were used and, as the concentration of DyP4 

increased in the reaction, the absorbance increased accordingly. To validate the data and 

prevent false positive results, different reactions were carried out for the negative control; 

for example, a reaction without the addition of DyP4, using PBS buffer instead. 

Furthermore, in another control, DyP4 was added to the reaction but PBS buffer was 

added instead of hydrogen peroxide. For all the negative controls, no increase in 

absorbance was seen at a wavelength of 310 nm. For all reaction mixtures, including the 

negative control, at least three replicates were performed and the average is plotted 

(Figure 5-2).   

 

 

 

 

 

 

 

 

 

Figure 5-2:  Increase in absorbance at 310 nm due to the oxidation of VA by DyP4. A 

total of 1 ml reaction mixture contained 2.0 mM of VA and 25 µl or 50 µl of diluted 

purified enzyme (DyP4), and 4 mM of H2O2 (50 µL). Different volumes of DyP4 (50 

µL, blue line and 25 µL, green line. Negative control, red line. Each reaction was carried 

out in at least three replicates and the average is presented.  
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5.3.3 Decolourization activity of RB19 by DyP4 

Dye decolourization of RB19 by DyP4 was monitored by UV-vis absorption 

spectroscopy. The reaction mixture was started by the addition of hydrogen peroxide to 

the diluted enzyme (DyP4) mixed with the optimal concentration of RB19 as reported 

elsewhere. The degradation of RB19 was monitored by measuring the decrease in 

absorbance at 595 nm for 5 minutes as shown in Figure 5-4. The activity of DyPs is 

generally affected by pH; here, the decolourization reaction was performed at pH 3.4, the 

optimal pH as described by Fernandez et al. (Fernandez-Fueyo et al., 2015) where the 

maximum decrease in absorbance was observed at around pH 3.5. This assay was also 

used to investigate the effect of increased concentrations of hydrogen peroxide on the 

activity of DyP4, along with ABTS and VA assays. The RB19 assay was also used to 

determine whether or not the addition of a C-terminal tag to DyP4 caused a loss of activity 

along with the ABTS assay (Chapter 3).  

 

 

 

 

 

 

  

Figure 5-3:  Decrease in absorbance at 595 nm due to the decolourization of 

RB19 by DyP4. 
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5.3.4  Effect of pH on Pleos-DyP4 activity with acetosyringone 

To examine the effect of pH on the activity of DyP4 with acetosyringone, a range of pH 

values was used to carry out the reactions, namely pH 3.4, 4, 5, 6, and 7. As shown in 

Figure 5-4, the oxidation of acetosyringone was optimal at pH 4, and only 40% residual 

activity remained at pH 3.4 and 30% at pH 5. No activity for DyP4 was seen at pH 6 and 

pH 7 with the acetosyringone substrate.  

 

 

 

 

 

 

 

Figure 5-4:  pH activity profile of DyP4 with acetosyringone. 
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5.3.5  Enzymatic oxidation of S-type lignin models  

Three S-type phenolic lignin compounds, syringaldehyde, acetosyringone, and sinapic 

acid, were used to develop spectrophotometric assays with DyP4 peroxide enzyme. DyP4 

successfully oxidized these S-type compounds, as shown in this study. The results 

obtained for the oxidation of these compounds were similar to those of other reported 

studies in the literature (Pardo et al., 2013). As can be seen in the figures 5-5 – 5-8, the 

oxidation of syringaldehyde, acetosyringone, and sinapic acid resulted in the appearance 

of different peaks of absorbance in the UV-visible spectrum. In the case of 

acetosyringone, for instance, upon oxidation by DyP4, the appearance of a yellow-

coloured product was observed and associated with an increase in absorbance at 390 nm 

after 10 min of initiating the oxidation reaction. This yellow-coloured product began to 

turn red after 20 min and, as can be seen in Figure 5-6, the maximum absorbance shifted 

from 390 nm to 520 nm. The absorbance at 520 nm continued to increase over 70 min, 

and the red colour was maintained for several hours. In contrast to acetosyringone, 

syringaldehyde oxidation caused an increase in absorbance at 390 nm due to the formation 

of the stable yellow product (Figure 5-7). The colour of this yellowish product persisted 

for longer than that in the case of acetosyringone oxidation, and the slightly red-coloured 

product developed after 30 min. The oxidation of sinapic acid by DyP4 caused the 

formation of a pinkish product, and a peak at around 500 nm can be seen in Figure 5-8 

with a maximum absorbance at 505 nm. Phenoxyl radicals of sinapic acid are rich in β–

β′ coupling, and following sinapic acid oxidation by the enzyme, dehydrodisinapic acid 

lactones are formed and are subsequently oxidized by the enzyme (Canas and Camarero, 

2010). Enzymatic oxidation of this dilactone results in the formation of one or more 

products where the absorbance at approximately 500 nm can be observed 

spectrophotometrically (Camarero et al., 2008). The oxidation of violuric acid led to the 

formation of purple-coloured products known as iminoxyl radicals. These radicals are 
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highly stable, and caused the appearance of a peak as shown in figure 5-9, with a 

maximum absorbance at 521 nm.  

The design of enzymatic screening assays using these compounds is of significant 

biotechnological value.  This is mainly because (i) these compounds are natural redox 

mediators which can oxidize substrates that cannot reach the enzymatic oxidation site due 

to their size, (ii) enzymatic oxidation of these redox mediators produces coloured products 

that can be detected in the visible spectrum (Camarero et al., 2012), and (iii) some 

mediators link lignin with carbohydrates in the cell wall of certain plant species. The 

development of enzymes with a higher efficiency of lignocellulose breakdown might 

reveal the means and/or lead to the evolution of enzymes with higher efficiency to 

decompose lignocellulose (Camarero et al., 2008, Camarero et al., 2007, Pardo et al., 

2013).   

  

Figure 5-5: Oxidation spectra of acetosyringone. (A) Oxidation of acetosyringone by 

DyP4 caused changes in the UV-vis spectra. (B) Increase in the absorbance at 

wavelength 520 nm over 60 min time. 



113 

 

 

 

 

 

 

 

 

Figure 5-7: Oxidation spectra of sinapic cid. (A) Oxidation of sinapic acid by DyP4 

caused changes in the UV-vis spectra. (B) Increase in the absorbance at wavelength 500 

nm over 60 min time.   

  

Figure 5-6: Oxidation spectra of syringaldehyde. (A) Oxidation of syringaldehyde by 

DyP4 caused changes in the UV-vis spectra. (B) Increase in the absorbance at wavelength 

520 nm over 60 min time.   
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Figure 5-8: Oxidation spectra of violuric acid. (A) Oxidation of violuric acid by DyP4 

caused changes in the UV-vis spectra. (B) Increase in the absorbance at wavelength 521 

nm over 60 min time.   
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Table 5-1:  Substrates used in this study  

Substrate Type Chemical structure λmax/nm 

VA Non-phenolic 

 

310 nm 

RB19 

Anthraquinone 

dyes 

  

595 nm 

Acetosyringone 

S-type lignin 

units 

 

520 nm 
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Syringaldehyde 

S-type lignin 

units 

 

370 nm 

Violuric acid 

Synthetic 

mediators 

 

521 nm 

Sinapic acid 

S-type lignin 

units 

 

503 nm 
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5.4 Conclusion  

The oxidation of VA by DyP4 is reported in this study, and supports previous findings 

for DyPs in general along with those for LiP and VP, which can directly oxidize VA, 

unlike Lac and MnP, which depend upon mediators for this purpose (Qin et al., 2017).  

These results can be used to extend the substrate spectrum of DyP4 and might help to 

reveal the natural role of DyPs. The oxidation of S-type lignin units generates coloured 

products which can be used to validate HTS assays to evolve DyP4 (Chapter 6), as well 

as to extend the enzymatic activity of DyP4 to reach remote substrates from catalytic 

sites. The enzymatic oxidation of these natural and artificial mediators can be exploited 

to establish and validate HTS assays for the evolution of DyP4 towards the higher 

catalytic conversion of plant biomass.  

 

 

 

 

 

 

 

 

 

 



CHAPTER 6 Engineering of DyP4 using an OsmY-based 

secretion mechanism to facilitate the directed evolution 

approach in bacteria 
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6.1  Introduction 

Extensive studies focused on lignin-degrading enzymes from white-rot and brown-rot 

fungi have been performed since 1980s. Recently, bacterial peroxidases and laccases have 

also been investigated. Heme peroxidases such MnP, LiP, VPs, and DyPs, along with 

laccases, are the best-characterized lignin-degrading enzymes (Lambertz et al., 2016). 

Naturally occurring laccases and peroxidases are not efficient enough for industrial 

utilization, and usually require modification and further improvement of their 

characteristics. Protein engineering approaches are typically used to obtain biocatalysts 

with efficient properties (Martinez et al., 2009).  

6.1.1 Protein engineering  

Directed evolution  

Directed evolution is an efficient tool to modify biocatalysts and improve their 

characteristics to make them efficient enough to meet industrial process requirements. In 

this method, a gene of interest undergoes repeated cycles of (i) construction of a gene 

library randomly, (ii) expressing the mutants in a suitable expression system (e.g. E. coli 

or C. cerevisiae), and (iii) screening of mutants using an efficient assay to identify those 

with properties of interest (Turner, 2009). 

Error-prone PCR  

Error-prone PCR (epPCR) methods are among the most widely used approaches in 

protein engineering studies due to their simplicity. Using this method, it is possible to 

insert a mutation randomly at any position on the gene of interest. Once established, PCR 

can be used to amplify lengths of DNA, however it was modified in the form of epPCR 

to create libraries for a gene of interest. The DNA polymerase used in epPCR has reduced 

fidelity to introduce mutations randomly in the gene of interest during replication. Errors 

in the incorporation of nucleotides are enhanced by changing the normal conditions used 
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in PCR. In epPCR, unequal concentrations of dNTPs are added to the reaction, as well as 

Mn+2, or the addition of increased concentrations of Mg+2 (Porter et al., 2016). See 

Chapter 1, section 1.5.1 for more details about epPCR.  

Site-saturation mutagenesis  

Site saturation mutagenesis (SSM) is another method that is well-established in directed 

evolution studies of enzymes. SSM is used to introduce a substitution at a single position 

in the protein of interest and allows the substitution of that amino acid at the given 

position to all 19 remaining amino acids. Different approaches of SSM have been 

generated and reported, each with its benefits and drawbacks (Li et al., 2018).  

6.1.2 Dye-decolorizing peroxidases (DyPs)  

DyP peroxidases are newly discovered haem-containing peroxidases that share no 

similarity with animal and plant peroxidases. DyPs utilize hydrogen peroxide as an 

electron acceptor to catalyse the oxidation of a wide range of substrates. More 

interestingly, DyPs have been found to play a role in lignin breakdown. DyP4 is an 

interesting enzyme belonging to class D of the DyP superfamily, and is one of the most 

thermostable peroxidases identified to date. It is the first fungal DyP found to catalyse the 

oxidation of Mn2+ to Mn3+ (Fernandez-Fueyo et al., 2015).  

6.1.3 E. coli  

Escherichia coli, as a host for the functional expression of proteins, is the ‘gold standard’ 

from an economical and practical prospective. This is mainly because of the advantages 

of using bacterial systems for recombinant protein production, specifically using E. coli, 

which is fast, easy, and cheap to culture, with well-studied genetic characteristics. On the 

other hand, E. coli is not without its disadvantages as a host to express proteins  from 

yeasts or fungi, including the lack of a mechanism to secrete proteins into the expression 

cultural media (Ribeiro et al., 2018).  
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6.1.4 Secretion of proteins in E. coli  

In a study conducted by Qian et al to develop a system for the extracellular production of 

proteins in E. coli, a fusion partner named OsmY was found to be the most efficient fusion 

partner for excretion .(Qian et al., 2008).  In this study, OsmY was used as a carrier protein 

to secrete other proteins into the expression media. The mechanism of excretion is not 

fully understood; however, the signal peptide is responsible for transporting the protein 

to the periplasm while mature OsmY is required for secretion into the medium. While this 

extracellular excretion of protein might have tremendous advantages, such as 

simplification of the purification process, and it results in the efficient folding of the 

protein, we intended to use the previously reported OsmY-based secretion mechanism of 

protein in E. coli for the excretion of DyP4 in the E. coli strain BL21 (DE3) (Qian et al., 

2008). Our aim in the present study was to apply this novel excretion system to directed 

evolution studies of DyP4. This mechanism could be useful to facilitate the screening 

process by the secretion of DyP4 into the culture media. In this case, no cell lysis step is 

required, as screening can be performed using an aliquot of media containing the secreted 

E. coli
85.19%

S. Cerevisiae 
8.65%

E. coli

S. Cerevisiae

Bacillus sp

Pichia pastoris

Mammalian cells

Thermus sp

Pantoea sp

Insect cells

Lactococcus sp

Figure 6-1:  Host expression systems used routinely in directed evolution 

studies. This figure was adapted from (Pourmir and Johannes, 2012). 
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enzyme.   

Directed evolution is a highly efficient and rapid method which has been applied 

successfully to improve the stability and catalytic efficiency of heme peroxidases, 

including HRP, LiPs, VPs, and APO or UPO which have been expressed and evolved in 

yeast expression systems (Garcia-Ruiz et al., 2012, Gonzalez-Perez et al., 2014, 

Gonzalez-Perez et al., 2016, Molina-Espeja et al., 2014, Morawski et al., 2001). Recently, 

a bacterial DyP was evolved in a bacterial expression system with improved catalytic 

abilities of lignin-related phenols as well as improvements in stability for increased 

concentrations of hydrogen peroxide (Brissos et al., 2017).    
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6.1.5 Aim  

The following work establishes a protocol for the secretion of DyP4 enzyme in BL21 

(DE3) cells in a 96-well microtiter plate, constructed from libraries of DyP4 using epPCR 

or saturation mutagenesis methods, the production and secretion of mutants in BL21 

(DE3), and the screening of libraries using the most widely used assay for the screening 

of peroxidases, the ABTS assay. An OsmY-based secretion mechanism was used to 

facilitate the screening process of libraries generated by epPCR or site-saturation 

mutagenesis. Using this mechanism, no cell lysis step is required as the enzyme is 

secreted into the media.  
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6.2  Methodology  

6.2.1 Cloning of OsmY and DyP4 in pET24a 

The cloned vector (pET24-a-OsmY-DyP4, Figure 6-2) for the excretion of DyP4 in E. 

coli strain BL21 (DE3) was provided by Dr Wong. Several preliminary experiments were 

conducted to validate and optimize the secretion of DyP4 into the media of the BL21 

(DE3) strain. 

 

 

 

 

 

 

6.2.2 Optimization of DyP4 screening using the OsmY mechanism   

To determine the optimal conditions for the secretion of DyP using the OsmY mechanism, 

two bacterial E. coli strains, C41 (DE3) and BL21 (DE3), were used to transform pET24a-

OsmY-DyP4. Expression was performed in 5 mL 2× TY AIM at 30ºC or 37ºC, and 

protein samples were screened by ABTS assay after 12, 18, and 24 hrs of expression.  

 

 

 

Figure 6-2:  Plasmid map of pET24a-OsmY-DyP4 (created with SnapGene).  



125 

 

6.2.3 Validation and optimization of the ABTS assay as a screening method for 

DyP4 mutants  

After the design and determination of the optimal conditions of expression in directed 

evolution studies, it was essential to validate the assay used to screen mutants and ensure 

that variations among the WT or parental strains were as low as possible. A validation 

experiment was conducted using the ABTS assay as a screening method. In this 

experiment, 100 ng/µL of pET24a-OsmY-DyP4 was transformed in BL21 (DE3) cells 

using the CaCl2 heat shock method. A single colony was picked to prepare a glycerol 

stock and DyP4-OsmY-pET24a was pre-cultured in a 96-well microtiter plate.  Protein 

expression and screening was performed for 24 hrs at 30ºC and 1050 rpm in2× TY AIM.  

Centrifugation was performed at 4000 rpm for 10 min, and 20 µL of media (secreted 

enzyme) was then used to perform activity screening to examine the variation in WT 

using the ABTS assay to validate this assay for directed evolution.  

6.2.4 Screening of the WT plate 

The WT of DyP4 was screened in a 96-well microtiter plate using the optimized 

conditions, with 10 mM of ABTS (150 µL), 20 µL of secreted enzyme, and 4 mM of 

hydrogen peroxide (50 µL). A multichannel pipette was used to transfer 150 µL of ABTS 

solution into the 96-well plate, and 20 µL of media (secreted enzyme) was then 

transferred into the 96-well microtiter plate. Mixing was performed by incubation with 

shaking of the microtiter plate for 2 min at 1050 rpm. Next, 50 µL of hydrogen peroxide 

was added, and the solution was mixed for 2 minutes by incubation with shaking at 1050 

rpm. Absorbance was immediately measured in a plate reader at 405 nm. Following the 

optimization of the screening assay, directed evolution was applied for DyP4.  

 



126 

 

6.2.5 Directed evolution  

First round of evolution  

Digestion of pET24a-OsmY-DyP4 (vector preparation) 

Restriction digestion was achieved in pET24a-OsmY-Dyp4 using BamH1 and EcoR1 

restriction enzymes. A reaction mixture was prepared using 1× of CutSmart buffer, 3000 

ng of pET24a-OsmY-Dyp4, and 1 U of BamH1 and EcoR1 enzymes, and the mixture was 

adjusted to 100 µL using deionized water. The reaction mixture was incubated overnight 

at 37ºC, followed by gel extraction, and an appropriate volume was used for ligation with 

the product of DyP4 from epPCR.   

Construction of mutants using epPCR 

In this study, three different mutagenic conditions were used as shown below.  

Low mutagenic condition (1) 

In this condition, the epPCR mixture contained 1.5 mM of MgCl2, 0.01 mM of MnCl2, 0.3 

mM of dNTP mix, 4.5 pmol of forward and reverse primers, 3.5 ng/µL of DNA template, 

and 1.25 U of Taq DNA polymerase (NEB).  

Medium mutagenic condition (2) 

In this condition, the epPCR mixture contained 7 mM of MgCl2, 0 mM of MnCl2, 0.2 mM 

of dATP, 0.2 mM of dGTP, 1 mM of dTTP, 1 mM of dCTP, 20 pmol of forward and 

reverse primers, 50 ng/µL of DNA template, and 1.25 U of Taq DNA polymerase (NEB).  

High mutagenic condition (3) 

In this condition, the epPCR mixture contained 7 mM of MgCl2, 0.05 mM of MnCl2, 0.2 

mM of dATP, 0.2 mM of dGTP, 0.2 mM of dTTP, 0.2 mM of dCTP, 20 pmol of forward 

and reverse primers, 50 ng/µL of DNA template, and 1.25 U of Taq DNA polymerase 

(NEB).  
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Table 6-1:  Overview of epPCR programs used for library construction 

 

Gel extraction and PCR purification  

DNA gel electrophoresis was performed on the PCR products. For clean PCR products, 

Dpn1 digestion was performed overnight at 37°C, while for PCR products with side 

products, gel extraction was performed. For all PCR products from the three different 

mutagenic conditions, restriction digestion with BamH1 and EcoR1 was performed 

followed by ligation with pET24a-OsmY.  

Ligation  

A ligation mixture was prepared in a total volume of 20 µL containing the components 

shown in Table 6-2.  

Table 6-2:  Reaction mixtures of ligation in the first round of evolution  

Component 
Volume (μL)  

Low Medium High Control 

(no insert) Water 9.7 10.1 9.8 11.5 

T4 DNA ligase reaction 

buffer 10× 

 

2 2 2 2 

 pET24a-OsmY (50 ng) 4.5 4.5 4.5 4.5 

 PCR product (X) 1.8 1.4 1.7 0 

T4 DNA ligase 2 2 2 2 

Total 20 20 20 20 

 

Transformation in BL21 (DE3)  

Transformation by the CaCl2 heat shock method was performed for the WT and by the 

electroporation method for ligation mixtures of libraries. Electroporation was performed 

using 1 µL of each of the non-purified ligation mixtures, as the transformation efficiency 

was more than enough to obtain the required colonies for each mutagenic condition. Thus, 

Step  Temperature  Time  

Initial denaturation  95°C 30 sec 

30 cycles 

95°C 20 sec 
68°C 30 sec 
68°C 1 min and 30 sec  

Final extension  68°C 5 min  

Hold 8°C ∞ 
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no purification of ligation mixtures was performed. Detailed protocols for these 

transformation processes are given in Chapter 2 (section 2.4). 

Expression of libraries  

Colonies were picked individually using sterile toothpicks and cultured in sterile 96-well 

microtiter plates containing 150 µL of 2× TY media containing kanamycin per well. Well 

numbers B2, E6, and H11 were inoculated with the WT or parental strain as a standard. 

Plates were wrapped with silicon tape and incubated at 30ºC at 1050 rpm for 24 hrs.  Pre-

culturing was performed for all libraries using the replicator and grown at 30ºC at 1050 

rpm for 18 hrs, and master plates were prepared by the addition of 100 µL of 50% sterile 

glycerol to each well before plates were stored at −80ºC. Protein expression was initiated 

in 96-well microtiter plates containing 150 µL of 2× TY AIM with kanamycin for 24 hrs 

at 30ºC and 1050 rpm.  Microtiter plates were centrifuged at 4000 rpm for 10 min, and 

20 µL or 10 µL of media (secreted enzyme) was then used in activity screening of mutants 

and the WT or parental strain at wavelength 405 nm using a spectrophotometer.  

Large-scale expression and screening of the improved mutants and the 

WT/parental strain  

After each round of evolution, all possible improved mutants were characterized further 

by expression on a larger scale and the normalization of activity with optical density. For 

these mutants, plasmids were isolated from BL21 (DE3) cells and transformed into 

DH5, and plasmids were isolated and re-transformed in BL21 (DE3) cells using the 

CaCl2 heat shock method. Expression was carried out in 50 mL 2× TY AIM with 

kanamycin in a 250-mL flask at 30ºC with shaking at 200 rpm for 24 hrs. Samples of 

secreted protein (1 mL) were collected after 16, 20, and 24 hrs and the optical density at 

OD600 was measured for all samples in triplicate. Screening of mutants along with the 

WT was performed to identify the most-improved mutant for use in the next round of 

evolution. This mutant was used as the parental strain for the next round of evolution and 
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was also sequenced to determine the mutation that may have caused the improvement in 

total activity.  

Sequencing analysis of mutants  

Mutants generated by epPCR were sequenced by (Eurofins Genomics, Ebersberg 

Germany) to check the mutations. Each mutant was sequenced using four different 

primers (appendix 2), and the sequencing data were analysed using SnapGene, ApE 

plasmid software, and the NCBI alignment tools. The most-improved mutants in the first 

round of evolution were sequenced and used in the second round of evolution as the 

parental strain.  

Four rounds of directed evolution were performed in total, although an improvement in 

the mutants was found only in rounds 1, 2, and 3. In the fourth round, more than 1600 

mutants were screened, but no improved mutant was identified. Thus, an alternative 

strategy was attempted using the most improved mutant to date as the parental strain. 

6.2.6 Site-directed mutagenesis  

Combination of two mutations 

In order to investigate the effect of combining two beneficial mutations acquired after the 

first round of evolution, site-directed mutagenesis was performed to introduce a N312S 

mutation into A306V mutant, and appropriate primers were designed using the OneClick 

program (http://tucksengwong.staff.shef.ac.uk/OneClick/), OneClick program described 

in (chapter 4- section 4.2.3) in more details.  

Second round of evolution  

In this round, the most-improved mutant from the first round was used as a parental strain 

for mutagenesis. A vector was prepared as described in the first round. Libraries were 

prepared using the three mutagenic conditions (Appendix 1), and the expression and 

screening were carried out as described previously (section 6.2.5.1.6). In the second round 

of directed evolution, screening of 558 mutants from different mutagenic conditions was 

http://tucksengwong.staff.shef.ac.uk/OneClick/
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sufficient to identify several significantly improved mutants.  

Third round of evolution  

The most-improved mutant from the second round was used as a parental strain in the 

third round. Preparation of the vector (pET24a-OsmY), construction of mutants, and 

expression and screening were performed as in the previous rounds. A total of 1116 

mutants were screened, leading to the identification of one significantly improved mutant.  

Fourth round of evolution  

The parental strain used in this round was the most-improved mutant from round three. 

The construction of mutants and expression and screening were similar to previous 

rounds. However, due to the increase in activity as a result of the evolution in the three 

previous rounds, the amount of enzyme used in screening was decreased by 50%. Over 

1600 mutants were screened in this round, but no improved mutant was identified. Thus, 

an alternative strategy was attempted.   

6.2.7 Site-saturation mutagenesis  

After three successful rounds of directed evolution, a fourth round was performed but was 

unsuccessful, as described above. Saturation mutagenesis was therefore used, and a total 

of six amino acid positions were chosen for site-saturation mutagenesis based on the 

previously generated mutants showing improvements in total activity in comparison with 

the WT or parental strain.  Single site-directed saturation mutagenesis was performed to 

introduce a mutation of all 20 naturally occurring amino acids at a given position on the 

protein or mutant. The screening of 64 mutants for each library to increase the probability 

of representing all 20 amino acids was performed. Mutagenesis reactions were prepared 

in a total volume of 50 µL. 

Primers  

Using the NEBChanger method, primers were designed for the saturation mutagenesis 

for position 312N. Primers, reaction mixtures, and PCR programs are illustrated in Tables 

6-3 to 6-5. Using the OneClick program, mutagenic primers were designed using 4-
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primers methods to replace positions N56, K109, 56R, 227N, and 374H with all 20 

possible amino acids (Table 6-6).  

 

Non-overlapping primers for position N312 

 

Table 6-3:  Mutagenic primers used for site saturation mutagenesis at position N312 

Position Primers 

312N 

Rev - 5’ AAACTTGTTMNNACGCTGCGC…CGCCAG 3’ 

Fwd - 5’ GCGCAGCGTNNKAACAAGTTT…GGCGAT 3’ 

  

Table 6-4:  PCR mixtures for site saturation mutagenesis at position N312 

Component Stock Concentration Amount per Reaction 

Distilled water – 35 µL 

Q5 buffer  5× 10 µL 

20 μM mutagenic forward primer 20 µM 1.25 µL 

20 μM mutagenic reverse primer 20 µM 1.25 µL 

dNTPs 10 mM each 1 µL 

DNA template  1–25 ng 1 µL 

Q5 high-fidelity DNA polymerase 2 U/µL 0.5 µL 

Total reaction volume   50 µL 
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PCR program 

Table 6-5:  PCR program for site saturation mutagenesis at position N312 

Step Temperature Time 

1 98°C 30 sec 

2 98°C 10 sec 

3 72°C 20 sec 

4 72°C 3 min and 45 sec 

5 Repeat from step 2, 29 times 

6 72°C 2 min 

7 8°C Hold 

 

The gel images of PCR products and the following steps are explained in the saturation 

mutagenesis results.  

One-stage PCR (4 primer method)  

Mutagenic primers were designed using the OneClick program 

(http://tucksengwong.staff.shef.ac.uk/OneClick/), and the 4 primer method (Table 6-6) 

More details about OneClick provided in (chapter 4- section 4.2.3). Using this method, 

10 PCR reactions mixtures (Tables 6-7 to 6-16) were used to amplify two fragments of 

each position, followed by full-length PCR using the two fragments from each position 

(Table 6-18).   

http://tucksengwong.staff.shef.ac.uk/OneClick/
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Table 6-6:  Primers used for five amino acid positions using the 4-primer method 

Position Fragment Primers 

 

V56 

F1 

Rev:5'–TTTAATMNNGCCCGCGCTGGTCTTAATGTG–3'    

Fwd:5'–GATCGGATCCATGACCACCCCGGCGCCGCCGCTGG–3'    

F2 

Fwd:5'–ACCAGCGCGGGCNNKATTAAAGACCGTGAG–3' 

Rev:5'–

ATGCGAATTCTTACGCGCTGATCGGCGCTTGGCTGTGC–3' 

 

A306 

F1 

Rev:5'–ATCCGCMNNCAGTTTCGGATCGTCCTTCAG–3' 

Fwd:5'–GATCGGATCCATGACCACCCCGGCGCCGCCGCTGG–3'    

F2 

Fwd:5'GATCCGAAACTGNNKGCGGATGCGCAGCGT–3' 

Rev:5'–

ATGCGAATTCTTACGCGCTGATCGGCGCTTGGCTGTGC–3' 

 

R109 

F1 

Rev:5'–CGCGTCMNNACGCTGGCCGGTGGTGAACGC–3' 

Fwd:5'–GATCGGATCCATGACCACCCCGGCGCCGCCGCTGG–3'    

F2 

Fwd:5'–ACCGGCCAGCGTNNKGACGCGGAGATTCTG–3' 

Rev:5'–

ATGCGAATTCTTACGCGCTGATCGGCGCTTGGCTGTGC–3' 

 

N227 

F1 

Rev:5'–GTCACCMNNCTCCTTCGCCAGAATGAAACC–3' 

Fwd:5'–GATCGGATCCATGACCACCCCGGCGCCGCCGCTGG–3'    

F2 

Fwd:5'–CTGGCGAAGGAGNNKGGTGACAGCCGTGCG–3' 

Rev:5'–

ATGCGAATTCTTACGCGCTGATCGGCGCTTGGCTGTGC–3' 

 

H374 

F1 

Rev:5'–GTCGTGMNNTTCTTGGCTGGTCACTTCCGG–3' 

Fwd:5'–GATCGGATCCATGACCACCCCGGCGCCGCCGCTGG–3'    

F2 

Fwd:5'–ACCAGCCAAGAANNKCACGACAAGAAAACC–3' 

Rev:5'–

ATGCGAATTCTTACGCGCTGATCGGCGCTTGGCTGTGC–3' 
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PCR program  

Position V56 

Table 6-7:  PCR program to amplify fragment (1) for position V56 

 

Table 6-8:  PCR program to amplify fragment (2) for position V56 

Step Temperature Time 

1 98°C 2 min 

2 98°C 20 sec 

3 55°C 20 sec 

4 72°C 34 sec 

5 Repeat from step 2, 29 times 

6 72°C 3 min 

7 8°C Hold 
 

Position A306 

Table 6-9:  PCR program to amplify fragment (1) for position A306 

 

  

Step Temperature Time 

1 98°C 30 sec 

2 98°C 8 sec 

3 55°C 20 sec 

4 72°C 5 sec 

5 Repeat from step 2, 29 times 

6 72°C 2 min 

7 8°C Hold 

Step Temperature Time 

1 98°C 30 sec 

2 98°C 8 sec 

3 55°C 20 sec 

4 72°C 23 sec 

5 Repeat from step 2, 29 times 

6 72°C 2 min 

7 8°C Hold 
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Table 6-10:  PCR program to amplify fragment (2) for position A306 

Step Temperature Time 

1 98°C 2 min 

2 98°C 20 sec 

3 55°C 20 sec 

4 72°C 15 sec 

5 Repeat from step 2, 29 times 

6 72°C 3 min 

7 8°C Hold 

 

Position R109 

Table 6-11:  PCR program to amplify fragment (1) for position R109 

 

Table 6-12:  PCR program to amplify fragment (2) for position R109 

Step Temperature Time 

1 98°C 2 min 

2 98°C 20 sec 

3 55°C 20 sec 

4 72°C 30 sec 

5 Repeat from step 2, 29 times 

6 72°C 3 min 

7 8°C Hold 

 

  

Step Temperature Time 

1 98°C 30 sec 

2 98°C 8 sec 

3 55°C 20 sec 

4 72°C 23 sec 

5 Repeat from step 2, 29 times 

6 72°C 2 min 

7 8°C Hold 
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Position N227 

Table 6-13:  PCR program to amplify fragment (1) for position N227 

Step Temperature Time 

1 98°C 30 sec 

2 98°C 8 sec 

3 55°C 20 sec 

4 72°C 18 sec 

5 Repeat from step 2, 29 times 

6 72°C 2 min 

7 8°C Hold 

 

Table 6-14:  PCR program to amplify fragment (2) for position N227 

Step Temperature Time 

1 98°C 2 min 

2 98°C 20 sec 

3 55°C 20 sec 

4 72°C 21 sec 

5 Repeat from step 2, 29 times 

6 72°C 3 min 

7 8°C Hold 

 

 

Position H374 

Table 6-15:  PCR program to amplify fragment (1) for position H374 

Step Temperature Time 

1 98°C 30 sec 

2 98°C 8 sec 

3 55°C 20 sec 

4 72°C 29 sec 

5 Repeat from step 2, 29 times 

6 72°C 2 min 

7 8°C Hold 
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Table 6-16:  PCR program to amplify fragment (2) for position H374 

Step Temperature Time 

1 98°C 2 min 

2 98°C 20 sec 

3 55°C 20 sec 

4 72°C 10 sec 

5 Repeat from step 2, 29 times 

6 72°C 3 min 

7 8°C Hold 

 
Amplified fragments were analysed by DNA gel electrophoresis and gel extraction was 

performed in the presence of side product bands, while for amplified fragments with no 

presence of other bands, Dpn1 digestion followed by purification was performed.  

Full-length PCR  

Full length PCR were performed for all positions using the two fragments amplified for 

each position. In the first stage, only fragments added to the reaction (length and 

concentration of fragment (1) and (2) was considered before addition to the reaction 

mixture (Table 6-17)).  In the second stage, 1 µL of each of the following primers was 

added: Rev:5'–ATGCGAATTCTTACGCGCTGATCGGCGCTTGGCTGTGC–3', 

Fwd:5'–GATCGGATCCATGACCACCCCGGCGCCGCCGCTGG–3', the solution was 

mixed, and the reaction resumed (Table 6-18). 
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Table 6-17:  Mixtures for full-length PCR performed for the 5 amino acid positions 

Component Stock Concentration Amount per Reaction 

Distilled water – 38.5 µL 

Q5 buffer 5× 10 µL 

dNTPs   10 mM each 1 µL 

Fragment (1) 12 ng/µL 0.5 µL 

Fragment (2)  100 ng/µL 0.5 µL 

Q5 high-fidelity DNA polymerase 2 U/µL 0.5 µL 

Total reaction volume 
 

50 µL 

 

Table 6-18:  Two-stage full-length PCR program using two fragments for each position 

Step Temperature Time 

1 98°C 30 sec  

2 98°C 8 sec  

3 72°C 20 sec  

4 72°C 1 min, 30 sec  

 Repeat from step 2, 9 times  

5 Hold and pause at 72°C 

Add 1 µL of each primers, mix, and continue  
6 98°C 8 sec  

7 72°C 20 sec  

8 72°C 1 min, 30 sec  

 Repeat from step 6, 19 times  

9 72°C 2 min  

10 8°C Hold 

 

DNA gel electrophoresis was performed for the resulting mixtures to analyse the products 

and determine the purity or the presence of side-band products for the next step. 

According to the purity of products, either gel extraction was performed in the presence 

of side products, or Dpn1 digestion where there were no side bands.  

Ligation and transformation in BL21 (DE3) 

Restrictive digestion of the purified PCR products was performed using BamHI and 

EcoRI restriction enzymes followed by ligation with T4 DNA ligase into pET24-a-OsmY.  

Ligation of these mutants was performed in a total volume of 20 µL using T4 DNA ligase 

and the process was similar to that performed for epPCR in the four rounds of evolution 
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described previously in this chapter. Transformation by electroporation in BL21 (DE3) 

was performed using 1 µL of the ligation mixture as described previously. Briefly, 1 µL 

of purified DNA or ligation mixture was used for the electroporation of 40 µL of 

concentrated BL21 (DE3), 1 ml of SOC media was added, and the mixture was incubated 

for 1 hr with shaking at 37ºC. Transformants were plated onto TYE agar plates 

supplemented with kanamycin (50 mg/mL) and grown at 37ºC for 15 hrs.  

Expression of libraries (high-throughput screening assay for secreted DyP4 (total 

activity)) 

Colonies were picked individually and cultured in sterile 96-well microtiter plates 

containing 150 µL of 2× TY media with kanamycin per well.  Well numbers B2, E6, and 

H11 were inoculated with the WT/parental strain as a standard.  Plates were wrapped with 

silicon tape and incubated at 30ºC and 1050 rpm for 24 hrs.  Pre-culturing was performed 

for all libraries using the replicator with growth at 30ºC and 1050 rpm for 18 hrs, and 

master plates were prepared by the addition of 100 µL of 50% sterile glycerol to each 

well before storage at −80ºC.  Protein expression was started in 150 µL of 2× TY AIM 

with kanamycin for 24 hrs at 30ºC and 1050 rpm.   

Second expression and screening of improved mutants and the WT 

Significantly improved mutants were further investigated by expression on a larger scale 

(50 mL 2× TY AIM media), and the activity was normalized using OD values.  The most-

improved mutant was sequenced to identify the mutation that caused to the activity to 

improve, and was used as a parental strain for the next round of evolution.  
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6.2.8 Large-scale recombinant production, purification and characterisation of 

DyP4 variants  

BL21 (DE3) harbouring pET24a-WT, pET24a-F6, pET24a-D4, pET24a-OsmY-WT, 

pET24a-OsmY-F6, and pET24a-OsmY-D4 were cultured in 200 mL 2× TY AIM media 

containing kanamycin at 30°C for 24 hours for protein expression and secretion (see 

Chapter 2, section 2.6.2). For analysis with SDS-PAGE, the acetone precipitation method 

was used for the treatment of samples from the media, as the secretion seems to be low 

and almost undetectable on SDS-PAGE. 

 Acetone precipitation of the samples was performed in order to concentrate protein 

samples due to the low secretion level obtained when the OsmY-based secretion system 

was used. In brief, the required volume of pure acetone was placed at -80°C for 20 min, 

and then incubated at -20°C for 1 hour. Protein samples were placed in an acetone 

compatible tube, and four times of acetone was added to the protein samples, then mixed 

and incubated at -20°C for overnight. Centrifugation at maximum speed (17,000 × g), -

4°C for 15 minutes was performed, supernatants were disposed of and uncapped tubes 

left open for 30 minutes at room temperature to ensure the evaporation of the remaining 

acetone. 35 µL of 1× SDS reducing buffer supplemented with β-mercaptoethanol) was 

added, boiled at 94°C for 5 min to denature the protein, and centrifuged at maximum 

speed for 2 min. 2 µL were loaded in the SDS-PAGE for analysis. Analysis with SDS-

PAGE performed as explained in (chapter 2 section 2.7). Pellets of DyP4 variants (WT, 

F6, and D4) were used for three step of purification as described in (chapter 2 section 

2.8). 

Enzymatic and H2O2 stability analysis 

To compare the effect of hydrogen peroxide on the WT and the two obtained mutants, 

different concentrations of hydrogen peroxide were used in an ABTS assay as described 

in Chapter 4, section 4.2.10.  
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6.3  Results  

The OsmY-based secretion mechanism is an interesting method for the secretion of 

enzymes in bacteria. It can facilitate the process of directed evolution by eliminating the 

need for a cell lysis step. Based on experiments to determine the optimal conditions for 

the secretion of DyP4 using OsmY, the BL21 (DE3) strain was found to be better than 

C41 (DE3). In fact, no secretion was observed using the latter (data not shown). Two 

temperatures, 30ºC and 37ºC, were used to determine the optimum temperature for 

secretion. Increased secretion was achieved when expression was performed at 30ºC, so 

this temperature was used for the remaining experiments for the secretion of DyP4 WT 

or mutants in BL21 (DE3).  

6.3.1  Validation of ABTS HTS assay  

To validate the ABTS assay for screening, a clone of WT was replicated in a 96-well plate 

and the activity was measured with ABTS. Using the ABTS assay, the CV was less than 

12% and this was sufficient for the reliability and reproducibility of this assay for directed 

evolution (Figure 6-3). It should be noted here that evaporation was observed from the 

side wells, despite the wrapping of microtiter plates with silicon, and this was taken into 

consideration as sometimes these side wells were not included in the data presented, 

especially when the variation was significant.  

 

 

 

  



142 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 

B 

Figure 6-3:  (A) Scheme of the HTS protocol for WT of DyP4 with ABTS assay, 

and (B) validated HTS with 11.5 % coefficient of variation (CV) based on the 

oxidation of ABTS by WT-DyP4. The activities of DyP4 from different 

replicates of the same clone are plotted in descending order (Black dots), and 

the average is plotted (Red dots).  
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6.3.2  Molecular cloning  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To avoid the presence of non-digested parental template (pET24a-OsmY-DyP4), 50 ng 

of double-digested vector was used for ligation and transformation in DH5α. At least two 

colonies were used for plasmid extraction and to check the background for the presence 

of non-digested vector. This process was performed for each freshly prepared vector to 

eliminate the presence of the WT of DyP4 during expression and screening, thus 

5.9 kb 

 Kb 1.5 

Figure 6-4:  Restrictive digestion for pET24a-OsmY-Dyp4 with BamH1 and 

EcoR1 restriction enzymes. The restrictive digestion mixture prepared in a total of 

100 µL containing 1× of CutSmart buffer, 3000 ng of pET24a-OsmY-Dyp4, 1 U 

of BamH1 and 1 U of EcoR1 enzymes, and 59 µL deionized water, mixed and 

incubated overnight at 37ºC. 20 µL of 6X DNA Loading Dye added and the 120 

µL was loaded onto 1% agarose and 5.9 kb band were gel extracted and purified. 

The cut vector (5.9 kb)  , and the cut insert (DyP4) is 1.5 kb .  
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increasing the variation in mutants and the likelihood of identifying a significantly 

improved mutant.   

6.3.3  Error-prone PCR  

 

 

 

 

 

 

 

For low mutagenic conditions (Figure 6-4, lane 4), a clear band was observed, as a result 

overnight Dpn1 digestion was performed. However, as seen in Figure 6-5 A and B, for 

the two remaining mutagenic conditions, side product bands were present. As a result, 

these products were gel-extracted, double digested, ligated into the vector, and 

transformed by electroporation in BL21 (DE3).  

 

Medium  High Low  Medium  High 

Figure 6-5:  Analysis of PCR products on a 1% (w/v) DNA agarose gel showing 

products of different mutagenic reactions of epPCR; A)  three different conditions; 

B)  medium and high mutagenic conditions. Side products . Low mutagenic 

condition contained 1.5 mM of MgCl2, 0.01 mM of MnCl2, 0.3 mM of dNTP mix, 4.5 

pmol of forward and reverse primers, 3.5 ng/µL of DNA template, and 1.25 U of Taq 

DNA polymerase. Medium mutagenic condition contained 7 mM of MgCl2, 0.2 mM of 

dATP, 0.2 mM of dGTP, 1 mM of dTTP, 1 mM of dCTP, 20 pmol of forward and 

reverse primers, 50 ng/µL of DNA template, and 1.25 U of Taq DNA polymerase. 

High mutagenic condition contained 7 mM of MgCl2, 0.05 mM of MnCl2, 0.2 mM of 

dATP, 0.2 mM of dGTP, 0.2 mM of dTTP, 0.2 mM of dCTP, 20 pmol of forward and 

reverse primers, 50 ng/µL of DNA template, and 1.25 U of Taq DNA polymerase.  
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Two-stage PCR amplified two fragments for position V56, fragment (1) 168 bp and 

fragment (2) 1347 bp (Figure 6-6). In the second stage, full-length PCR was performed 

using two fragments amplified in the first stage. PCR product in the second stage was at 

the expected size of DyP4 (1515 bp). Gel extraction was performed for the product, 

followed by double digestion with BamH1 and EcoR1, purification, ligation, and 

transformation by electroporation in BL21 (DE3).  

Ladder  

Figure 6-6:  Analysis of PCR products on a 1% (w/v) DNA agarose gel showing 

the products of saturation mutagenesis using the 4-primer method for position 

V56. (A) Amplification of two fragments (fragment 1: 168 bp and fragment 2: 

1347 bp). (B) Full-length PCR for the two fragments (product at 1.5 kbp) 

 

A B 
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A clean product was obtained using NEBase Changer for position N312 (Figure 6-7). The 

parental template was digested by incubation with 1 µL of Dpn1 enzyme at 37°C 

overnight. Purification was performed and, to an 8 µL volume, 1 µL of 10× NEB T4 

ligase buffer was added, followed by 1 µL of 10 U/µL NEB T4 polynucleotide kinase 

(PNK) enzyme. The sample was mixed and incubated at 37°C for 1 hr, then 1 µL of 

Invitrogen ligase was added and mixed, and incubation at 16°C was performed for 16 hrs. 

Of this ligation mixture, 1 µL was used for transformation by electroporation in BL21 

(DE3) to generate and screen mutants for the 312N position.  

Figure 6-7:  Analysis of PCR products on a 1% (w/v) DNA agarose gel showing 

the PCR product of the saturation mutagenesis for position N312 using the 

NEBase Changer method in the second lane  
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Two-stage PCR amplified two fragments for positions A306, R109, N227, and H374 

were performed similar to position V56 as described in the previous section (Figure 6-8) 

and (6-9).   

 

 

Figure 6-8:  Analysis of PCR products on a 1% (w/v) DNA agarose gel showing the 

products of saturation mutagenesis using the 4-primer method for positions (A306: 

F1 918 bp and F2 597 bp), (R109: F1 327 bp and F2 1188 bp), (N227: F1 681 bp and 

F2 834 bp), (H374: F1 1122bp and F2 393 bp) 
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Figure 6-9:  Combination of two fragments for positions A306, R109, 

N227, and H374 using full-length PCR. Reaction products were 

loaded into 1% agarose gel and the 1.5 kb band was cut and purified 

for each position to be used for ligation and transformation.  
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6.3.4  First round of evolution  

After the construction of mutants with three different mutagenic conditions in the first 

round, a total of 1100 mutants were screened (Figure 6-10) and two mutants with 

potentially improved total activity were identified. These two mutants underwent further 

characterization by expression on a larger scale (50 mL), and their total activities were 

normalized to OD. These two mutants were found to show a significant improvement in 

total activity and were sequenced to detect the mutations which may have caused this 

improvement. Sequencing results showed that one mutant (D2) had a missense mutation 

and two silent mutations, while the second mutant (D7) had only one missense mutation. 

As shown in the 3D model structure (figure 6-12), the missense mutations of these two 

mutants were close to each other, and the two mutations were combined. The purpose of 

this investigation was to determine whether this combination could lead to any further 

improvement. Sequencing results confirmed the successful combination of these two 

mutations into a single mutant. The new combined mutant was characterized along with 

the WT, D2, and D7 mutants. However, screening results showed that the D2 mutant 

remained the most-improved mutant compared with WT, D7, and the combined mutant 

(data not shown). As the most improved mutant from the first round of evolution, the D2 

mutant was then used as a parental strain for the second round of random mutagenesis 

using epPCR.  
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Total activity of mutants generated in the first round of directed evolution  

 

 

 

 

 

 

 

 

 

Two mutants with a significant improvement in total activity were further characterized 

by expression on a larger scale. The total activities were normalized to OD and the two 

mutants were compared with the WT (Figure 6-11), (Table 6-19). The results shows that 

mutants N312S and A306V exhibited more activity than the WT with around 2-fold 

improvement.  

Figure 6-10:  HTS for mutants in the first round of evolution using WT-DYP4 as 

a template for epPCR. (A) Low mutagenic condition, (B) Medium mutagenic 

condition, (C) High mutagenic condition. The activities with ABTS assay plotted 

in descending order against the clones. The reaction mixture contained 150 µL of 

ABTS (10 mM), 20 µL of secreted enzyme, and 4 mM of H2O2 (50 µL). 
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Normalized activity  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-11:  Normalized activity to OD for mutants A306V (Blue line) and 

N312S (Brown line), and the WT (Orange line). (A) Activity measured 2 

minutes after the addition of hydrogen peroxide to initiate the oxidation of 

ABTS; (B) and (C) after 10 minutes and 20 minutes of adding hydrogen 

peroxide, respectively. Protein expression carried out for 24 hours and samples 

taken for activity measurements after 16 hrs, 20 hrs, and 24 hrs of expression.  
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Table 6-19:  List of potentially improved mutants and mutation types in the first round 

of evolution 

  

Mutant 
Type of 

mutation 

Original amino 

acid 

Original 

codon 

New  

amino acid 

New 

codon 
Mutant  Improvement  

D2  Silent 
Aspartic acid 

(D) 241 
GAT 

Aspartic acid 

(D) 241 
GAC 

 

-------- 

 

D2  Missense 
Asparagine (N) 

N312 
AAC 

Serine (S) 

312 
AGC 

 

N312S 

 

217% 

D2 Silent 
Isoleucine (I) 

I444 
ATC 

Isoleucine  (I) 

I444 
ATT 

 

-------- 
 

D7  Missense Alanine (A) GCG Valine (V) GTG A306V 186% 

D7  Silent Arginine (R) CGT Arginine (R) CGC -------- 

 

Mutants D2 (N312S) was used as a parental strain in the second round of evolution  

Figure 6-12: (A) The 3D protein model structure of DyP4 was generated with Pymol 

and using (PDB: 1afv) as a template model shwoing the position of A306V and 

N312S mutations. (B) detailed view of the Heme in DyP4 is given and position of the 

mutations shown in Blue stick.  
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6.3.5  Second round of evolution  

A total of 558 mutants coming from low, medium, and high mutagenic conditions were 

expressed in microliter plates containing 150 µL of 2× TY AIM and kanamycin for 24 

hrs at 30ºC and 1050 rpm. Three parental strain replicates (D2, N312S) coming from the 

same clone were included in each plate in wells (B2, E6, and G11), for comparison with 

the mutants.  

Following centrifugation of the plates after 24 hours expression, 20 µL of media (secreted 

enzyme) was used for activity screening with ABTS assay. The reaction mixture 

contained 150 µL of ABTS (10 mM), 20 µL of secreted enzyme, and the reaction initiated 

by adding 4 mM of H2O2 (50 µL). Activities measurements were carried out using a 

multiplate reader (Multiskan™ FC Microplate Photometer, Thermo Scientific™) at 

wavelength 405 nm after 2 minutes of initiating the reaction with the addition of H2O2. 

Few mutants showed a significant improvement in activity, and the most-improved 

mutant was from the high mutagenic condition (Figure 6-13A-C). Nine possibly 

improved mutants were further characterised by expression on a larger scale (50 ml) along 

with the parental strain (D2, N312S), and the WT.   
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Total activity for microtiter plates  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-13:  Total activity profiles for mutants generated using N312S as the 

parental strain. (A) Low mutagenic condition, (B) medium mutagenic condition, 

(C) high mutagenic condition. The activities with ABTS assay plotted in 

descending order against the clones. The reaction mixture contained 150 µL of 

ABTS (10 mM), 20 µL of secreted enzyme, and 4 mM of H2O2 (50 µL). 
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Normalized activity  

A total of nine significantly improved mutants from the three different mutagenic 

conditions were identified, and further investigation identified three improved mutants, 

of which mutants (A5, I56V) showed more than a two-fold improvement compared with 

the parental D2 (N312S) (Figure 6-14). Mutants (F8, N227D, and C2, H374R) showed 

around 2-fold improvement compared the parental strain (D2, M312S). Sequencing 

results showed the presence of two silent mutations in mutant (A5, I56V) while the other 

mutants did not have any silent mutation (Table 6-20).  

 

 

 

Figure 6-14:  Normalized activity to OD for three significantly improved mutants (I56V, 

Brown line), (H347R, Green line), and (N227D, Red line), in the second round of 

evolution using mutant (N312S, Blue line) as a parental strain. Measurements were taken 

at 405 nm after 2 min (A), 10 min (B), 20 min (C), and 30 min (D) of initiating oxidation 

of ABTS by addition of hydrogen peroxide.  Protein expression carried out for 24 hours 

and samples taken for activity measurements after 16 hrs, 20 hrs, and 24 hrs of 

expression. The reaction mixture (total of 220 µL) contained 10 mM of ABTS (150 µL), 

20 µL of media (secreted enzyme), and 4 mM of hydrogen peroxide (50 µL). 
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Table 6-20 :  List of potentially improved mutants and mutation types in the second 

round of evolution 

Mutant 
Type of 

mutation 

Original 

amino acid 

Original 

codon 

New amino 

acid 

New 

codon 
Mutant Improvement 

A5 Silent 
Leucine     

(L) 245 
CTG 

Leucine     

(L) 245 
CTT --------  

A5 Missense 
Isoleucine 

(I) 56 
ATC 

Valine       

(V) 56 
GTC I56V 302% 

A5 Silent 
Glycine 

(G)73 
GGT 

Glycine 

(G)73 
GGA --------  

C2 Missense 
Histidine 

(H) 374 
CAC 

Arginine   

(R) 374 
CGC H374R 150% 

F8 Missense 
Asparagine 

(N) 227 
AAC 

Aspartic acid 

(D) 227 
GAC N227D 186% 

Mutants A5 (I56V) was used for as the parental strain for the third round of evolution  
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6.3.6 Third round of evolution  

Around 1100 mutants were generated using low, medium, and high mutagenic condition 

and using mutant (A5, I56V) as a template for epPCR. The expressing of mutants was 

similar to previous rounds and three parental strain replicates (A5, I56V) coming from 

the same clone were included in each plate in wells (B2, E6, and G11) for comparison 

with the generated mutants. Several mutants were shown to have a significant 

improvement in activity with ABTS assay compared to the parental strain (A5, I56V) 

(Figure 6-15A-F). 

6.3.6.1 Total activity in microtiter plates screening  
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Figure 6-15:  HTS screening results for mutants screened in the third round of 

evolution using I56V mutant as a parental strain. A and B, low mutagenic condition; C 

and D, medium mutagenic condition; and E and F, high mutagenic condition. The 

activities with ABTS assay plotted in descending order against the clones. The reaction 

mixture contained 150 µL of ABTS (10 mM), 20 µL of secreted enzyme, and 4 mM of 

H2O2 (50 µL). 
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Normalized activity  

After the 1100 mutants were screened in the third round of evolution using I56V mutants 

as a parental strain, mutants (R109K) exhibited around two-fold improvement as 

confirmed by the normalised activity (Figure 6-16), (Table 6-21).  

 

 

 

 

 

 

 

 

 

 

 

Figure 6-16:  Normalized activity to OD for the most-improved mutant (F6, 

R109K, Brown line) with the parental strain (A5, I56V, Blue line) and the 

WT (Orange line). Measurements taken at wavelength 405 nm after 2 min 

(A), 10 min (B), 20 min (C), and 30 min (D) of initiating oxidation of ABTS 

by addition of hydrogen peroxide. Protein expression carried out for 24 hours 

and samples taken for activity measurements after 16 hrs, 20 hrs, and 24 hrs 

of expression. The reaction mixture (total of 220 µL) contained 10 mM of 

ABTS (150 µL), 20 µL of media (secreted enzyme), and 4 mM of hydrogen 

peroxide (50 µL). 

 

 



160 

 

Table 6-21:  List of potentially improved mutants and mutation types that caused the 

improvement in the third round of evolution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mutant Type of 

mutation 

Original 

amino acid 

Original 

codon 

New amino 

acid 

New 

codon 

Mutant Improvement 

F6 Missense 
Lysine    

(K) 109 
AAG 

Arginine   

(R) 109 
AGG K109R 160% 

Mutants F6 (K109R was used as a parental strain for the fourth round of evolution 

and for site saturation mutagenesis  
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6.3.7  Fourth round of evolution  

Rescreening at a different wavelength  

Over 1600 mutants were screened in the fourth round of evolution using the F6 mutant as 

parental strain. However, no significantly improved mutant was obtained. Another 

consideration was the increase in variation among the three triplicates of the parental 

strain. This could have been caused by the increase in total activity, with the variation 

increased as a result. Screening at a different wavelength was performed for the next 

screening of mutants to overcome this issue. Wavelength scan measurement was 

conducted to determine an alternative wavelength for screening (Figure 6-17). The 

suggested wavelength based on the result of the UV-vis spectra for the ABTS assay was 

450 nm, and the 405 nm wavelength was subsequently used only for comparison with the 

450 nm wavelength and to validate the results obtained. The λmax for measuring ABTS 

oxidation by DyP4 is 421 nm, which, however, was not used because the multiplate reader 

can measure two alternative wavelengths 405 nm or 450 nm. At the first few rounds of 

evolution, 405 nm was used, and after the third round, 450 nm was used as the activity 

became higher and as a result, the variation increased.  

 

 

 

 

 

 

Figure 6-17:  UV spectra for ABTS oxidation by DyP4 to determine the optimal 

wavelength. Reaction mixture was prepared in a 1 ml cuvette containing 925 µL of ABTS 

(10 mM) pH 3.4, 25 µL of purified diluted DyP4, and 50 µL of H2O2 (4mM). Wavelength 

scan measurements recorded 15 seconds after addition of H2O2 to initiate the activity.  
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6.3.8  Saturation mutagenesis  

Two strategies of saturation mutagenesis  

Two approaches were attempted in site-directed mutagenesis: NEBase changer used for 

position 312N, and the 4-primer method using the OneClick program 

(http://tucksengwong.staff.shef.ac.uk/OneClick/) for the remaining five positions (V56, 

A306, R109, N227 and H374). The latter is more laborious but more efficient for 

saturation mutagenesis. The results of screening for libraries of site saturation 

mutagenesis for six positions (N312, A56, 306A, R109, N227 and H374; Figure 6-18, A-

F) show that there were few mutants where a significant improvement in activity might 

be acquired. The most significant improvement achieved using saturation mutagenesis 

seems to be for position 227N (Figure 6-18,D) where the obtained improvement is 

approximately two-fold. Further investigation by the expression and re-screening of these 

potential mutants along with the parental strain confirmed the observed improvement 

(Figure 6-18).  

 

Position N312 Position V56 

Position A306 Position N227 

http://tucksengwong.staff.shef.ac.uk/OneClick/
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Figure 6-18:  Total activity profiles for mutants generated by site saturation 

mutagenesis for positions N312 (A), V56 (B), A306 (C), R109 (D), N227 (E), and 

H374 (F) using F6 mutant as a parental strain. The activities with ABTS assay 

plotted in descending order against the clones. The reaction mixture contained 10 

mM of ABTS (150 µL), 10 µL of secreted enzyme, and 4 mM of H2O2 (50 µL). 

 

 

Position R109 Position H374 



164 

 

Normalized activity  

 

Over 90 mutants generated for each position using saturation mutagenesis were screened 

and the results showed several possible improved mutants, of which amino acid at 

position Asn227 exhibited the most improved mutants. The characterisation results 

confirmed this observation (Figure 6-19) with mutant N227S showing around 2-fold 

improvement in comparison to the parental strain.  

 

 

 

 

Figure 6-19: Normalized activity to OD for the most-improved mutant (D4,N227S)) 

with (P.S, F6,R109K)) and the WT. Measurements taken at wavelength 405 nm after 

2 min (A), 10 min (B), 20 min (C), and 30 min (D) of initiating oxidation of ABTS 

by addition of hydrogen peroxide. Protein expression carried out for 24 hours and 

samples taken for activity measurements after 16 hrs, 20 hrs, and 24 hrs of 

expression. The reaction mixture (total of 210 µL) contained 10 mM of ABTS (150 

µL), 10 µL of media (secreted enzyme), and 4 mM of hydrogen peroxide (50 µL). 
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Table 6-22: List of potentially improved mutants and mutation types that caused the 

improvement in the fourth round of evolution using saturation mutagenesis 

Mutant Type of 

mutation 

Original 

amino acid 

Original 

codon 

New amino 

acid 

New 

codon 

Mutant Improvement 

D4 Missense 
Asparagine 

(N) 227 
AAC 

Serine       

(S) 227 
TCC N227S 167% 

Mutants (D4, N227S) is most improved mutant achieved after four rounds of directed 

evolution  
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Characterisation of mutants and the WT      

  

Following a successful fourth round of directed evolution using epPCR and saturation 

mutagenesis, two mutants (F6 and D4) were characterised along with the WT. F6 mutant 

had three accumulative missense mutations N312S, I56V, and R109K, while the D4 

mutant acquired the four missense mutations N312S, I56V, and R109K, and N227S 

(Figure 6-20).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-20:  Four rounds of directed evolution of DyP4 using an OsmY-based 

secretion mechanism. (Dark Red colour, new mutation; Blue colour, accumulative 

mutation). 

WT 

First generation   

epPCR 

epPCR 

Second generation   

Third generation  

epPCR 

SSM 

Fourth generation 

A306V 

N312S 

I56V 

H374
R

R109K 

N227
D 

N227S 
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OsmY as a Fusion Partner for Extracellular Secretion of DyP4 variants  

 A study was conducted to test whether the secreted proteins can be detected in SDS-

PAGE. Samples from the media taken after 24 hours of expression pET24a-WT, pET24a-

F6, pET24a-D4, pET24a-OsmY-WT, pET24a-OsmY-F6, and pET24a-OsmY-D4 in 200 

mL 2× TY AIM media containing kanamycin at 30°C for 24 hours. Samples from the 

media were analysed and compared with other samples from the media, treated with 

acetone precipitation.  

The OsmY based secretion system in BL21 (DE3) seemed to be responsible for the 

secretion of DyP4 into the media as confirmed by the SDS-PAGE results when DyP4 

coexpressed with OsmY. This also can be seen in Figure 6-21, where a band at around 55 kDa 

represent the expression of DyP4 variants without OsmY, while there were bands corresponding 

to the fusion proteins at around 77 kDa, as suggested by the results of the SDS-PAGE with and 

without acetone precipitation treatment. 
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6.3.9 Protein expression and purification of DyP4 variants 

Following the successful cloning of the two mutants in pET24a, protein expression of the 

WT and the two mutants (F6 and D4) was performed by culturing in BL21 (DE3) in 200 

mL 2× TY AIM media containing kanamycin at 30°C for 24 hours. Centrifugation at 

6000 rpm for 5 min at 4°C was performed to harvest the cells. Three steps of protein 

purification were carried out as described in Chapter 2, (sections 2-8). Purification results 

showed a significant increase of protein and heme content as shown by the SDS-PAGE 

results in Figure 6- 22A and as can be seen from the chromatograms of the eluted fractions 

during size exclusion chromatography of the variants (Figure 6-22B,C, and D) as well as 

Figure 6-21: 10% SDS-PAGE results of the expression and secretion of DyP4-WT and 

the two mutants (F6 and D4) with and without OsmY. Protein samples (secreted protein 

in the media) (A) lane 1; molecular ladder, lanes 2–4; crude extract of WT, F6 , and D4 

respectively,  lane 5; previously purified DyP4 used here as a positive control,  lanes 6–

7; whole soluble fractions of WT, F6 and D4 respectively after the third step of 

purification using Superdex 75 column. Protein samples (secreted protein in the media) 

treated with acetone precipitation (B). lane 1; molecular ladder, lanes 2–4; crude extract 

of WT, F6 , and D4 respectively,  lane 5; previously purified DyP4 used here as a 

positive control,  lanes 6–7; whole soluble fractions of WT, F6 and D4 respectively after 

the third step of purification using Superdex 75 column.  
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from the colour of the collected cell pellets after protein expression (Figure 6-22E). The 

cell pellets of F6 and D4 mutants are darker than those of the WT, indicating a higher 

expression level (Figure 6-20E).  

Enzymatic activities of the WT, and F6 and D4 mutants    

  

 The main improvement obtained after the characterisation up to now is the increased 

tolerance of the mutants against inactivation by hydrogen peroxide (data not shown). 

Taken together, these two mutants exhibited higher yield and more resistance to oxidation 

by hydrogen peroxide, while no significant increase in the catalytic efficiency was 

obtained using ABTS assay. This is might be due to the use of a high concentration of 

hydrogen peroxide during the evolution of mutants, and this contributes to the 

identification of mutants showing more resistance to oxidation by hydrogen peroxide.  
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Figure 6-22: Purification of DyP4 variants using three steps of chromatography; (A) 

SDS-PAGE of the purification of DyP4 variants, lane 1; molecular ladder, lanes 2–4; 

crude extract of WT, F6, and D4 respectively,  lanes 5–7; whole soluble fraction of WT, 

F6, and D4 respectively after the gel filtration step of the purification. Chromatograms of 

the eluted fractions after gel filtration step of the purification of WT, F6, and D4 

respectively (B), (C) and (D). Cell pellets of WT, F6, and D4 harvested from 200 ml of 

expression media (E).  
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6.4    Discussion  

OsmY-based secretion mechanism was used in the present work to facilitate the screening 

of more than 4700 clones of DyP4 constructed in four rounds of evolution using either 

epPCR or site saturation mutagenesis. A colorimetric assay based on the oxidation of 

ABTS by DyP4 was described in this work. The described HTS assay proved to be 

reliable, reproducible (with a CV of less than 12%), and sensitive enough to reflect and 

detect the improved variants obtained through three rounds of epPCR and a fourth round 

using saturation mutagenesis. It should be noted, however, that some of the natural 

mediators described in the previous chapter, such as acetosyringone, syringaldehyde, 

sinapic acid, and violuric acid, were assayed with the secreted DyP4. Unlike for the ABTS 

assay however, no catalytic oxidation was seen for these assays with the secreted DyP4 

using the OsmY secretion mechanism in BL21 (DE3). After the third round, the F6 

mutant was used to test these assays again, but no activity was observed. Thus, the ABTS 

assay was the only assay used so far for the screening of DyP4 variants in this study. After 

screening 1100 clones in the first round, two significantly improved mutants were 

detected, showing approximately a two-fold improvement in ABTS activity compared 

with the WT. These two mutants, D2 and D7, harbouring mutations N312S and A306V, 

were obtained using the lower and medium mutagenic conditions, respectively.  The 

N312S mutant showed the highest activity with ABTS, and was used to parent the second 

round of evolution. In the second round, over 550 clones were screened and several 

mutants with higher activity compared with the parental strain (N321S) were identified. 

Among these mutants, the A5 mutant harbouring I56V had the highest activity by ABTS 

assay, with a more than two-fold improvement, and was chosen for parenting the next 

generation of evolution. In the third round of evolution, more than 1100 clones of DyP4 

using the parental strain I56V were screened by ABTS assay. This led to the detection of 

a mutant with around a two-fold improvement in comparison with the parental strain. 
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This mutant (F6), harbouring the mutation K109R, was selected to parent the next 

generation of evolution. In the fourth round, the most clones screened in a single round 

was more than 2000. However, this was not enough to identify an improved mutant, 

unlike in the previous rounds. The use of a new strategy became essential to proceed 

further with the evolution of the enzyme. Based on the positions of the amino acids where 

improvements were acquired in the first three rounds of evolution (figure 6-20), single 

site saturation mutagenesis was performed using the most improved mutant so far, the 

K109R (F6) mutant, as a parental strain. In the first round of evolution, two mutants were 

identified to have improved in comparison with the WT, mutants N312S and A306V. 

These two mutants had a single missense mutation and no or more than one silent 

mutation. Thus, these two positions (Asn and Ala306) were used for the saturation 

mutagenesis. In the second round, three mutants were identified that showed an 

improvement in comparison with the parental strain (N312S). These mutants were I56V, 

H374R, and N227D, and each mutant had a single missense mutation; these positions 

(Ala56, His374, and Asn227) were therefore used for site saturation mutagenesis. In the 

third round, mutant R109K was identified as the most improved mutant compared with 

the parental strain (I56V), and sequencing results revealed that there was only one 

missense mutation. This amino acid position Lys109 was also used for site saturation 

mutagenesis.  Libraries were created and at least 93 mutants were screened for each 

position. This was to increase the chance of representing all 20 amino acids at the given 

position. Saturation mutagenesis for position Asn227 seemed to yield the most improved 

mutant of all the positions. Three mutants can be seen in Figure 6-21E, where the 

improvement achieved reached about two-fold in comparison with the parental strain.  
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Detailed characterisation performed after purification of mutants along the WT showed 

no significant improvement in the specific activity of mutants with ABTS assay. This 

might be because, the concentration of hydrogen peroxide used in the evolution was high, 

and consequently F6 and D4 mutants exhibited significantly improved resistant to 

oxidation by hydrogen peroxide. F6 and D4 mutants showed 10.6-fold and 14.1-fold 

improvement against inactivation by hydrogen peroxide compared to the WT. Taken 

together, these results suggest the potential use of Osmy-based secretion mechanism to 

facilitate the screening of mutants in directed evolution in E. coli not only to improve 

total activity, but also can be adjusted to increase the tolerance against hydrogen peroxide 

as shown in this study. It should also be investigated to improve other characteristics (e.g. 

pH and thermal stability, catalytic efficiency for lignin model substrates, natural 

mediators, and other industrial dyes).  
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6.5  Conclusion  

DyPs, a newly discovered class of peroxidases, are of great biotechnological significance 

due to the oxidative reactions they catalyse and, more importantly, their role in the 

decomposition of lignin. This is an essential step towards the complete utilization of 

lignocellulose derived products: biofuel production and the synthesis of fine chemicals. 

The present work describes a colorimetric HTS assay to screen variants of DyP4 created 

by epPCR and saturation mutagenesis, produced and secreted in the E. coli strain BL21 

(DE3) using a novel secretory mechanism.  

Four cycles of directed evolution using epPCR and saturation mutagenesis led to the 

identification of two mutants (F6 and D4) with a significant improvement in resistant to 

oxidation by hydrogen peroxide compared the DyP4-WT. As seen from the results 

obtained in this study, this method facilitated the engineering of DyP4 towards better 

characterisation for industrial utilization. Importantly, this method might also facilitate 

the screening process in directed evolution studies for enzymes produced in bacteria; the 

most studied and characterized system for protein production and directed evolution 

studies.  
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CHAPTER 7 Summary and future work 

7.1 Summary  

In Chapter 3, the successful packaging of DyP4 into an encapsulin nanocompartment 

from Rhodococcus erythropolis was described. Encapsulation was achieved in this study 

by fusing the C-terminal sequence (37 aa) of ReDypB to the C-terminus of DyP4. Our 

results showed that the packaged enzyme remained active and, due to low permeability, 

this activity was reduced in comparison to the activity of the purified enzyme. This is 

similar to previously reported studies of packaged peroxidases into ReEncapsulin when 

a decrease in activity is seen (Tamura et al., 2015). The presence of small pores in the 

nanocompartment prevents the permeability of large molecules, however small sized 

molecules still go through. The present study provides another evidence of packaging 

non-native proteins into ReEncapsulin nanocompartment.  

It was suggested that encapsulin packages a single copy of DyP (Snijder et al., 2016). The 

specific targeting sequence can be used to encapsulate a protein of interest in the 

encapsulin nanocompartment with tremendous potential applications since the packaged 

proteins are protected from outside environment.  In addition, the possibility of loading 

or release of that protein under certain conditions could have certain applications in 

nanobiotechnology (Rahmanpour and Bugg, 2013). 

In Chapter 4, the use of site-directed mutagenesis to replace and substitute the three Met 

residues of DyP4 was reported. It was envisaged that this strategy would lead to an 

increase in the enzyme’s oxidative stability, a major limitation of haem-containing 

peroxidases for industrial applications. Substitution of Met residues in haem containing 

peroxidases with residues that are more stable against oxidation by hydrogen peroxide 

using site directed mutagenesis approach have been reported in the literature and found 

to enhance oxidative stability of the peroxidase. In the present work, the results showed, 
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however, that there was no improvement in DyP4 stability for hydrogen peroxide. The 

activity of the WT and variants were similar at 8 mM of hydrogen peroxide as WT and 

M253F retained 53% and 47% of their activities, respectively. However, at the highest 

concentration of hydrogen peroxide used in this study (20 mM), WT and mutants retained 

approximately 26% of their activity.  

It remains unknown whether any of these substitutes Met residues are located near the 

active site of the enzyme as the 3D model structure shares less than 50% of similarity 

with the relative template used. A possible explanation of why the substitution of Met 

residues, in this study, did not improve the hydrogen peroxide stability of Dy4 is that the 

Met residues are located on the surface, as suggested by the 3D model structure. While 

the stability against hydrogen peroxide has been reported in several studies in literature, 

the position of substituted residues was a critical factor and affected the results of site-

directed mutagenesis, and led to an increase in the stability of the peroxidase (Ogola et 

al., 2010, Bao et al., 2014).  

In Chapter 5, a number of assays were described for DyP4, including VA, the most widely 

used assay for lignin degradation. This result is in accordance with the ability of DyPs to 

directly catalyse the oxidation of non-phenolic substrates, unlike laccases and MnP, 

which require mediators. In addition, a number of colorimetric assays based on the 

oxidation of naturally occurring mediators were reported. Our results may facilitate the 

design of HTS assays to engineer DyP4 towards enhanced characteristics for more 

efficient conversion of plant biomass.  

In Chapter 6, a detailed protocol for mutant construction, secretion, and screening in E. 

coli BL21 (DE3) was provided. The most commonly used method in directed evolution 

studies, epPCR, was used here to construct the libraries. For the first time, the screening 

process was carried out in E. coli with help of an OsmY-based protein secretion 
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mechanism. To date, four generations of directed evolution led to a mutant with around a 

10-fold improvement in total activity and a significant improvement of tolerance against 

hydrogen peroxidase inactivation, the later is a major limiting step of using peroxidases 

on industrial scale. More structural investigations needed to predict the effect of these 

mutations on the improvement of tolerance against hydrogen peroxide. If OsmY-based 

secretion system validated, it would largely simplify and facilitate the screening process 

in E. coli, however, more studies needed to confirm that this mechanism can be used 

widely in directed evolution studies in E. coli. The present study highlights the 

powerfulness of directed evolution in improving the tolerance of Pleos-DyP4 against 

inactivation by hydrogen peroxide and maybe other properties if the screening condition 

of mutants adjusted specifically to target certain priority. For instance, method might be 

adjusted to specifically improve a targeted property for example, catalytic efficiencies for 

lignin degradation similar to previously reported studies (Brissos et al., 2017). Upon the 

validation of this method in directed evolution studies in E. coli, the prospective are 

opened to use this method to improve properties of other enzymes of the DyP-type 

peroxidase family.  
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7.2 Prospective  

It would be interesting to investigate whether packaged DyP4 will be released upon 

treatment of the specie at low pH. In addition, assembly and disassembly should be 

investigated by treatment at low and high pH where the enzyme is encapsulated and 

released. Also, dynamic light scattering can be performed to visualize the 

nanocompartment in the His-tagged form and the nanocompartment with DyP4 packaged 

inside.  

A packaged DyP was found to show enhanced catalytic conversion compared to the 

purified protein and this might lead to an application of encapsulation in the 

deconstruction of lignocellulose (Rahmanpour and Bugg, 2013). This calls for 

investigation to see if packaged DyP4 would have increased catalytic conversion for 

lignin model substrates.  

In order to prove the findings obtained in (Chapter 4) where no improvement against 

hydrogen peroxide was acquired, two different tests can be carried out. In the first test, 

the variants of DyP4 are incubated at different concentrations of H2O2 (0-20 mM) H2O2 

at 37°C for 20 min to inactivate all variants. After 20 min, the inactivation is stopped by 

immediate dilution to lower concentration of hydrogen peroxide with incubation on ice. 

Residuals activity using the treated solutions is conducted with ABTS assay using the 

average of at least three replicates. In the second test, WT-Pleos-DyP4 and mutant 

variants can be incubated with 4 or 8 mM of hydrogen peroxide at room temperature and 

spectral measurements are conducted to determine the haem stability of the WT and 

mutants.  

To further extend substrate spectrum of DyP4 and more importantly lignin related 

substrates, two lignin model compounds namely 1,3,5-trimethoxybenzene and 

guaiacylglycerol-beta-guaiacyl ether can be used similar to VA oxidation test. The 



179 

 

detection of the oxidation product however requires different mode of action for these 

two substrates, unlike VA. For 1,3,5-trimethoxybenzene and guaiacylglycerol-beta-

guaiacyl ether, high-performance liquid chromatography (HPLC) will be used to analyse 

the oxidation reaction and detect the products.  

Several further rounds of directed evolution might lead to the identification of a 

significantly improved mutant than that identified so far which has ~10-fold improvement 

in total activity. After three successful rounds of directed evolution, using epPCR and a 

fourth round using saturation mutagenesis, a fifth round using epPCR might lead to 

further improvement of total activity for DyP4.  

The use of alternative assays to the ABTS assay to screen for improved mutants of DyP4 

will facilitate the identification of mutants more suited for industrial utilization and 

specifically with improved catalytic conversion of plant biomass. For example, using the 

D4 mutant or the improved mutant from the fifth round of evolution using epPCR, the 

acetosyringon or sinapic acid assays could be leveraged. This is informed by the fact that 

that these assays have already optimized for the 1-ml cuvette oxidation measurements 

using purified WT (Chapter 5). Upon the identification of a mutant where oxidation is 

detected in 96-well microtitre plates, optimization of HTS assays using these substrates 

can be performed. Other lignin model substrates such as DMP can also be optimized for 

the screening of mutants in HTS form. Fernandez-Fueyo et al. have assayed DMP using 

DyP4 and monitoring oxidation by the preformation of dimeric coerulignone at 469 nm 

(Fernandez-Fueyo et al., 2015). On this note, this substrate can be used for oxidation test 

in 96-well microtitre plate using the D4 mutant. Detection of activity with this mutant 

will inform further evolution of DyP4.  
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OsmY based secretion mechanism should benefit the secretion of proteins in E. coli and 

facilitate the screening process in directed evolution studies by reducing the number of 

steps required. Using the WT-Osmy, the secretion in the 96-well microtiter plates was 

only possible with ABTS assay. No activity was detected when other assays such as 

acetsyringon and sinapic acid were used. This could be due to insufficient amount of 

secreted enzyme required to catalyse the oxidation of these substrates in the 96-well 

microtiter plates. One of the possible solutions to overcome this issue is to evolve the 

OsmY protein to enhance its secretion potential and hence achieve several fold 

improvement of secretion of DyP4 in E. coli.  
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Appendix          

  
Appendix (1):  Analysis of PCR products on a 1% (w/v) DNA agarose gel showing 

products of different mutagenic reactions of epPCR in the second round of evolution suing 

N312S mutant as a template for epPCR.  Main bands for Low, Medium and High 

mutagenic conditions (1.5 kb); Side products . Low mutagenic condition contained 1.5 

mM of MgCl2, 0.01 mM of MnCl2, 0.3 mM of dNTP mix, 4.5 pmol of forward and reverse 

primers, 3.5 ng/µL of DNA template, and 1.25 U of Taq DNA polymerase. Medium 

mutagenic condition contained 7 mM of MgCl2, 0.2 mM of dATP, 0.2 mM of dGTP, 1 

mM of dTTP, 1 mM of dCTP, 20 pmol of forward and reverse primers, 50 ng/µL of DNA 

template, and 1.25 U of Taq DNA polymerase. High mutagenic condition contained 7 mM 

of MgCl2, 0.05 mM of MnCl2, 0.2 mM of dATP, 0.2 mM of dGTP, 0.2 mM of dTTP, 0.2 

mM of dCTP, 20 pmol of forward and reverse primers, 50 ng/µL of DNA template, and 

1.25 U of Taq DNA polymerase. 

 

 

 

 

 

 

 

 

 

 

 

Appendix (2) List of the sequencing sequences used to sequence mutants of Pleos-DyP4  

Sequence Oligonucleotide sequences 

Seq (1) 
5'ACAAACTGCACGTTCGTG 3' 

 

 

 

Seq (2) 5'AAAACGCTGATGCGTTTA 3' 

 Seq (3) 5'AATGGTGCCGGAGTTTGA 3' 

 Seq (4) 5'GGTCTGCTGTTCGTTTGCTA 3' 

 
  



192 

 

    Appendix (3)  DNA and protein sequences for Pleos-DyP4-tag  

            10        20        30        40        50 
               -         -         -         -         - 
    1 
ATGACCACCCCGGCGCCGCCGCTGGACCTGAACAACATCCAGGGTGATAT  
      M  T  T  P  A  P  P  L  D  L  N  N  I  Q  G  D  I  
 
              60        70        80        90        100 
               -         -         -         -         - 
   51 
TCTGGGTGGCCTGCCGAAGCGTACCGAGACCTACTTCTTTTTCGACGTGA  
       L  G  G  L  P  K  R  T  E  T  Y  F  F  F  D  V  T 
 
              110       120       130       140       150 
               -         -         -         -         - 
  101 
CCAACGTTGATCAATTTAAAGCGAACATGGCGCACTTCATCCCGCACATT  
        N  V  D  Q  F  K  A  N  M  A  H  F  I  P  H  I   
 
              160       170       180       190       200 
               -         -         -         -         - 
  151 
AAGACCAGCGCGGGCATCATTAAAGACCGTGAGGCGATCAAGGAACACAA  
      K  T  S  A  G  I  I  K  D  R  E  A  I  K  E  H  K  
 
              210       220       230       240       250 
               -         -         -         -         - 
  201 
ACGTCAGAAGAAACCGGGTCTGGTGCCGATGGCGGCGGTGAACGTTAGCT  
       R  Q  K  K  P  G  L  V  P  M  A  A  V  N  V  S  F 
 
              260       270       280       290       300 
               -         -         -         -         - 
  251 
TTAGCCACCTGGGCCTGCAGAAGCTGGGTATCACCGACGATCTGAGCGAT  
        S  H  L  G  L  Q  K  L  G  I  T  D  D  L  S  D   
 
              310       320       330       340       350 
               -         -         -         -         - 
  301 
AACGCGTTCACCACCGGCCAGCGTAAGGACGCGGAGATTCTGGGCGATCC  
      N  A  F  T  T  G  Q  R  K  D  A  E  I  L  G  D  P  
 
              360       370       380       390       400 
               -         -         -         -         - 
  351 
GGGTAGCAAAAACGGTGATGCGTTTACCCCGGCGTGGGAAGCGCCGTTCC  
       G  S  K  N  G  D  A  F  T  P  A  W  E  A  P  F  L 
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              410       420       430       440       450 
               -         -         -         -         - 
  401 
TGAAGGACATCCACGGTGTGATTTTTGTTGCGGGCGATTGCCACGGTAGC  
        K  D  I  H  G  V  I  F  V  A  G  D  C  H  G  S   
 
              460       470       480       490       500 
               -         -         -         -         - 
  451 
GTGAACAAGAAACTGGACGAGATCAAACACATTTTCGGCGTTGGTACCAG  
      V  N  K  K  L  D  E  I  K  H  I  F  G  V  G  T  S  
 
              510       520       530       540       550 
               -         -         -         -         - 
  501 
CCACGCGAGCATCAGCGAAGTGACCCATGTTCGTGGCGACGTGCGTCCGG  
       H  A  S  I  S  E  V  T  H  V  R  G  D  V  R  P  G 
 
              560       570       580       590       600 
               -         -         -         -         - 
  551 
GTGATGTTCACGCGCACGAGCACTTTGGCTTCCTGGATGGTATTAGCAAC  
        D  V  H  A  H  E  H  F  G  F  L  D  G  I  S  N   
 
              610       620       630       640       650 
               -         -         -         -         - 
  601 
CCGGCGGTTGAACAGTTTGATCAGAACCCGCTGCCGGGTCAGGACCCGAT  
      P  A  V  E  Q  F  D  Q  N  P  L  P  G  Q  D  P  I  
 
              660       670       680       690       700 
               -         -         -         -         - 
  651 
CCGTCCGGGTTTCATTCTGGCGAAGGAGAACGGTGACAGCCGTGCGGCGG  
       R  P  G  F  I  L  A  K  E  N  G  D  S  R  A  A  A 
 
              710       720       730       740       750 
               -         -         -         -         - 
  701 
CGCGTCCGGACTGGGCGAAAGATGGTAGCTTTCTGACCTTCCGTTACCTG  
        R  P  D  W  A  K  D  G  S  F  L  T  F  R  Y  L   
 
              760       770       780       790       800 
               -         -         -         -         - 
  751 
TTCCAAATGGTGCCGGAGTTTGACGATTTCCTGGAAAGCAACCCGATCGT  
      F  Q  M  V  P  E  F  D  D  F  L  E  S  N  P  I  V  
 
              810       820       830       840       850 
               -         -         -         -         - 
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  801 
TCTGCCGGGCCTGAGCCGTAAAGAGGGTAGCGAACTGCTGGGTGCGCGTA  
       L  P  G  L  S  R  K  E  G  S  E  L  L  G  A  R  I 
 
              860       870       880       890       900 
               -         -         -         -         - 
  851 
TTGTGGGCCGTTGGAAAAGCGGTGCGCCGATCGAGATTACCCCGCTGAAG  
        V  G  R  W  K  S  G  A  P  I  E  I  T  P  L  K   
 
              910       920       930       940       950 
               -         -         -         -         - 
  901 
GACGATCCGAAACTGGCGGCGGATGCGCAGCGTAACAACAAGTTTGACTT  
      D  D  P  K  L  A  A  D  A  Q  R  N  N  K  F  D  F  
 
              960       970       980       990      1000 
               -         -         -         -         - 
  951 
CGGCGATAGCCTGGTTCGTGGTGACCAAACCAAGTGCCCGTTCGCGGCGC  
       G  D  S  L  V  R  G  D  Q  T  K  C  P  F  A  A  H 
 
             1010      1020      1030      1040      1050 
               -         -         -         -         - 
 1001 
ACATCCGTAAAACCTACCCGCGTAACGATCTGGAAGGTCCGCCGCTGAAA  
        I  R  K  T  Y  P  R  N  D  L  E  G  P  P  L  K   
 
             1060      1070      1080      1090      1100 
               -         -         -         -         - 
 1051 
GCGGACATCGATAACCGTCGTATCATTCGTCGTGGCATTCAGTTTGGTCC  
      A  D  I  D  N  R  R  I  I  R  R  G  I  Q  F  G  P  
 
             1110      1120      1130      1140      1150 
               -         -         -         -         - 
 1101 
GGAAGTGACCAGCCAAGAACACCACGACAAGAAAACCCACCACGGCCGTG  
       E  V  T  S  Q  E  H  H  D  K  K  T  H  H  G  R  G 
 
             1160      1170      1180      1190      1200 
               -         -         -         -         - 
 1151 
GTCTGCTGTTCGTTTGCTATAGCAGCAGCATCGACGATGGCTTTCACTTC  
        L  L  F  V  C  Y  S  S  S  I  D  D  G  F  H  F   
 
             1210      1220      1230      1240      1250 
               -         -         -         -         - 
 1201 
ATTCAGGAAAGCTGGGCGAACGCGCCGAACTTTCCGGTGAACGCGGTTAC  
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      I  Q  E  S  W  A  N  A  P  N  F  P  V  N  A  V  T  
 
             1260      1270      1280      1290      1300 
               -         -         -         -         - 
 1251 
CAGCGCGGGTCCGATCCCGCCGCTGGATGGTGTGGTTCCGGGTTTCGATG  
       S  A  G  P  I  P  P  L  D  G  V  V  P  G  F  D  A 
 
             1310      1320      1330      1340      1350 
               -         -         -         -         - 
 1301 
CGATCATTGGCCAGAAAGTGGGTGGCGGTATCCGTCAAATTAGCGGTACC  
        I  I  G  Q  K  V  G  G  G  I  R  Q  I  S  G  T   
 
             1360      1370      1380      1390      1400 
               -         -         -         -         - 
 1351 
AACCCGAACGACCCGACCACCAACATTACCCTGCCGGACCAGGATTTTGT  
      N  P  N  D  P  T  T  N  I  T  L  P  D  Q  D  F  V  
 
             1410      1420      1430      1440      1450 
               -         -         -         -         - 
 1401 
GGTTCCGCGTGGCGGTGAGTACTTTTTCAGCCCGAGCATCACCGCGCTGA  
       V  P  R  G  G  E  Y  F  F  S  P  S  I  T  A  L  K 
 
             1460      1470      1480      1490      1500 
               -         -         -         -         - 
 1451 
AGACCAAATTCGCGATTGGCGTTGCGAGCCCGGCGCCGCACAGCCAAGCG  
        T  K  F  A  I  G  V  A  S  P  A  P  H  S  Q  A   
 
             1510      1520      1530      1540      1550 
               -         -         -         -         - 
 1501 
CCGATCAGCGCGTTTCTGGATGATCCGCCGGATGCGCCGACCCGTCTGGT  
      P  I  S  A  F  L  D  D  P  P  D  A  P  T  R  L  V  
 
             1560      1570      1580      1590      1600 
               -         -         -         -         - 
 1551 
TCCGGAAGCGACCTTTACCGCGCCGATCAGCGATGGTAGCCTGGGCATTG  
       P  E  A  T  F  T  A  P  I  S  D  G  S  L  G  I  G 
 
             1610      1620 
               -         -       
 1601 GTAGCCTGAAACGTAGCGCGCAGCAA  
        S  L  K  R  S  A  Q  Q 
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Signal peptide sequence  

 

Appendix (4)  DNA and protein sequences for ReEncapsulin  

              10        20        30        40        50 
               -         -         -         -         - 
    1 
ATGACCAACCTGCACCGTGATCTGGCGCCGATCAGCGCGGCGGCGTGGGC  
      M  T  N  L  H  R  D  L  A  P  I  S  A  A  A  W  A  
 
              60        70        80        90        100 
               -         -         -         -         - 
   51 
GGAAATTGAGGAAGAGGCGAGCCGTACCTTCAAGCGTCACGTGGCGGGTC  
       E  I  E  E  E  A  S  R  T  F  K  R  H  V  A  G  R 
 
              110       120       130       140       150 
               -         -         -         -         - 
  101 
GTCGTGTGGTTGACGTTGAAGGTCCGAGCGGTGATGATCTGGCGGCGATC  
        R  V  V  D  V  E  G  P  S  G  D  D  L  A  A  I   
 
              160       170       180       190       200 
               -         -         -         -         - 
  151 
CCGCTGGGTCACCAGGTGCCGATTAACCCGCTGGCGGATGGTGTTATTGC  
      P  L  G  H  Q  V  P  I  N  P  L  A  D  G  V  I  A  
 
              210       220       230       240       250 
               -         -         -         -         - 
  201 
GCACGCGCGTCAGAGCCAACCGATCATTGAACTGCGTGTGCCGTTTACCG  
       H  A  R  Q  S  Q  P  I  I  E  L  R  V  P  F  T  V 
 
              260       270       280       290       300 
               -         -         -         -         - 
  251 
TTAGCCGTCAAGCGATTGACGATGTGGAGCGTGGTGCGAAAGACAGCGAT  
        S  R  Q  A  I  D  D  V  E  R  G  A  K  D  S  D   
 
              310       320       330       340       350 
               -         -         -         -         - 
  301 
TGGCAGCCGGTTAAGGACGCGGCGAAACAAATTGCGTTCGCGGAAGATCG  
      W  Q  P  V  K  D  A  A  K  Q  I  A  F  A  E  D  R  
 
              360       370       380       390       400 
               -         -         -         -         - 
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  351 
TGCGATCTTTGAGGGCTATCCGGCGGCGAGCATCACCGGTGTGCGTGCGA  
       A  I  F  E  G  Y  P  A  A  S  I  T  G  V  R  A  S 
 
              410       420       430       440       450 
               -         -         -         -         - 
  401 
GCGGCAGCAACCCGGAACTGAAGCTGCCGGTTGACGCGAAAGATTACCCG  
        G  S  N  P  E  L  K  L  P  V  D  A  K  D  Y  P   
 
              460       470       480       490       500 
               -         -         -         -         - 
  451 
GAGGCGATCAGCCAGGCGATTACCAGCCTGCGTCTGGCGGGTGTGAACGG  
      E  A  I  S  Q  A  I  T  S  L  R  L  A  G  V  N  G  
 
              510       520       530       540       550 
               -         -         -         -         - 
  501 
TCCGTATAGCCTGCTGCTGAACGCGGACGCGTTCACCGCGATTAACGAAA  
       P  Y  S  L  L  L  N  A  D  A  F  T  A  I  N  E  T 
 
              560       570       580       590       600 
               -         -         -         -         - 
  551 
CCAGCGATCACGGCTACCCGATCCGTGAACACCTGCGTCGTGTTCTGGAC  
        S  D  H  G  Y  P  I  R  E  H  L  R  R  V  L  D   
 
              610       620       630       640       650 
               -         -         -         -         - 
  601 
GGCGAGATCATTTGGGCGCCGGCGATTGATGGCGCGTTTCTGCTGAGCAC  
      G  E  I  I  W  A  P  A  I  D  G  A  F  L  L  S  T  
 
              660       670       680       690       700 
               -         -         -         -         - 
  651 
CCGTGGTGGCGACTACGAGCTGCACCTGGGTCAGGATCTGAGCATCGGCT  
       R  G  G  D  Y  E  L  H  L  G  Q  D  L  S  I  G  Y 
 
              710       720       730       740       750 
               -         -         -         -         - 
  701 
ATCTGAGCCACGATGCGAACAGCGTGGAACTGTACTTCCAAGAGAGCATG  
        L  S  H  D  A  N  S  V  E  L  Y  F  Q  E  S  M   
 
              760       770       780       790       800 
               -         -         -         -         - 
  751 
ACCTTTCTGATGTATACCAGCGAAGCGGTGGTTAGCCTGGCGGAGCACCA  
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      T  F  L  M  Y  T  S  E  A  V  V  S  L  A  E  H  H  
 
              810 
               -    
  801 CCACCACCACCAC  
       H  H  H  H 
 
 
 
His-tag sequence  
 
 

Appendix (5) : DNA and protein sequences for DyP4-WT sequence  

              10        20        30        40        50 
               -         -         -         -         - 
    1 
ATGACCACCCCGGCGCCGCCGCTGGACCTGAACAACATCCAGGGTGATAT  
      M  T  T  P  A  P  P  L  D  L  N  N  I  Q  G  D  I  
 
              60        70        80        90        100 
               -         -         -         -         - 
   51 
TCTGGGTGGCCTGCCGAAGCGTACCGAGACCTACTTCTTTTTCGACGTGA  
       L  G  G  L  P  K  R  T  E  T  Y  F  F  F  D  V  T 
 
              110       120       130       140       150 
               -         -         -         -         - 
  101 
CCAACGTTGATCAATTTAAAGCGAACATGGCGCACTTCATCCCGCACATT  
        N  V  D  Q  F  K  A  N  M  A  H  F  I  P  H  I   
 
              160       170       180       190       200 
               -         -         -         -         - 
  151 
AAGACCAGCGCGGGCATCATTAAAGACCGTGAGGCGATCAAGGAACACAA  
      K  T  S  A  G  I  I  K  D  R  E  A  I  K  E  H  K  
 
              210       220       230       240       250 
               -         -         -         -         - 
  201 
ACGTCAGAAGAAACCGGGTCTGGTGCCGATGGCGGCGGTGAACGTTAGCT  
       R  Q  K  K  P  G  L  V  P  M  A  A  V  N  V  S  F 
 
              260       270       280       290       300 
               -         -         -         -         - 
  251 
TTAGCCACCTGGGCCTGCAGAAGCTGGGTATCACCGACGATCTGAGCGAT  
        S  H  L  G  L  Q  K  L  G  I  T  D  D  L  S  D   
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              310       320       330       340       350 
               -         -         -         -         - 
  301 
AACGCGTTCACCACCGGCCAGCGTAAGGACGCGGAGATTCTGGGCGATCC  
      N  A  F  T  T  G  Q  R  K  D  A  E  I  L  G  D  P  
 
              360       370       380       390       400 
               -         -         -         -         - 
  351 
GGGTAGCAAAAACGGTGATGCGTTTACCCCGGCGTGGGAAGCGCCGTTCC  
       G  S  K  N  G  D  A  F  T  P  A  W  E  A  P  F  L 
 
              410       420       430       440       450 
               -         -         -         -         - 
  401 
TGAAGGACATCCACGGTGTGATTTTTGTTGCGGGCGATTGCCACGGTAGC  
        K  D  I  H  G  V  I  F  V  A  G  D  C  H  G  S   
 
              460       470       480       490       500 
               -         -         -         -         - 
  451 
GTGAACAAGAAACTGGACGAGATCAAACACATTTTCGGCGTTGGTACCAG  
      V  N  K  K  L  D  E  I  K  H  I  F  G  V  G  T  S  
 
              510       520       530       540       550 
               -         -         -         -         - 
  501 
CCACGCGAGCATCAGCGAAGTGACCCATGTTCGTGGCGACGTGCGTCCGG  
       H  A  S  I  S  E  V  T  H  V  R  G  D  V  R  P  G 
 
              560       570       580       590       600 
               -         -         -         -         - 
  551 
GTGATGTTCACGCGCACGAGCACTTTGGCTTCCTGGATGGTATTAGCAAC  
        D  V  H  A  H  E  H  F  G  F  L  D  G  I  S  N   
 
              610       620       630       640       650 
               -         -         -         -         - 
  601 
CCGGCGGTTGAACAGTTTGATCAGAACCCGCTGCCGGGTCAGGACCCGAT  
      P  A  V  E  Q  F  D  Q  N  P  L  P  G  Q  D  P  I  
 
              660       670       680       690       700 
               -         -         -         -         - 
  651 
CCGTCCGGGTTTCATTCTGGCGAAGGAGAACGGTGACAGCCGTGCGGCGG  
       R  P  G  F  I  L  A  K  E  N  G  D  S  R  A  A  A 
 
              710       720       730       740       750 
               -         -         -         -         - 
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  701 
CGCGTCCGGACTGGGCGAAAGATGGTAGCTTTCTGACCTTCCGTTACCTG  
        R  P  D  W  A  K  D  G  S  F  L  T  F  R  Y  L   
 
              760       770       780       790       800 
               -         -         -         -         - 
  751 
TTCCAAATGGTGCCGGAGTTTGACGATTTCCTGGAAAGCAACCCGATCGT  
      F  Q  M  V  P  E  F  D  D  F  L  E  S  N  P  I  V  
 
              810       820       830       840       850 
               -         -         -         -         - 
  801 
TCTGCCGGGCCTGAGCCGTAAAGAGGGTAGCGAACTGCTGGGTGCGCGTA  
       L  P  G  L  S  R  K  E  G  S  E  L  L  G  A  R  I 
 
              860       870       880       890       900 
               -         -         -         -         - 
  851 
TTGTGGGCCGTTGGAAAAGCGGTGCGCCGATCGAGATTACCCCGCTGAAG  
        V  G  R  W  K  S  G  A  P  I  E  I  T  P  L  K   
 
              910       920       930       940       950 
               -         -         -         -         - 
  901 
GACGATCCGAAACTGGCGGCGGATGCGCAGCGTAACAACAAGTTTGACTT  
      D  D  P  K  L  A  A  D  A  Q  R  N  N  K  F  D  F  
 
              960       970       980       990      1000 
               -         -         -         -         - 
  951 
CGGCGATAGCCTGGTTCGTGGTGACCAAACCAAGTGCCCGTTCGCGGCGC  
       G  D  S  L  V  R  G  D  Q  T  K  C  P  F  A  A  H 
 
             1010      1020      1030      1040      1050 
               -         -         -         -         - 
 1001 
ACATCCGTAAAACCTACCCGCGTAACGATCTGGAAGGTCCGCCGCTGAAA  
        I  R  K  T  Y  P  R  N  D  L  E  G  P  P  L  K   
 
             1060      1070      1080      1090      1100 
               -         -         -         -         - 
 1051 
GCGGACATCGATAACCGTCGTATCATTCGTCGTGGCATTCAGTTTGGTCC  
      A  D  I  D  N  R  R  I  I  R  R  G  I  Q  F  G  P  
 
             1110      1120      1130      1140      1150 
               -         -         -         -         - 
 1101 
GGAAGTGACCAGCCAAGAACACCACGACAAGAAAACCCACCACGGCCGTG  
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       E  V  T  S  Q  E  H  H  D  K  K  T  H  H  G  R  G 
 
             1160      1170      1180      1190      1200 
               -         -         -         -         - 
 1151 
GTCTGCTGTTCGTTTGCTATAGCAGCAGCATCGACGATGGCTTTCACTTC  
        L  L  F  V  C  Y  S  S  S  I  D  D  G  F  H  F   
 
             1210      1220      1230      1240      1250 
               -         -         -         -         - 
 1201 
ATTCAGGAAAGCTGGGCGAACGCGCCGAACTTTCCGGTGAACGCGGTTAC  
      I  Q  E  S  W  A  N  A  P  N  F  P  V  N  A  V  T  
 
             1260      1270      1280      1290      1300 
               -         -         -         -         - 
 1251 
CAGCGCGGGTCCGATCCCGCCGCTGGATGGTGTGGTTCCGGGTTTCGATG  
       S  A  G  P  I  P  P  L  D  G  V  V  P  G  F  D  A 
 
             1310      1320      1330      1340      1350 
               -         -         -         -         - 
 1301 
CGATCATTGGCCAGAAAGTGGGTGGCGGTATCCGTCAAATTAGCGGTACC  
        I  I  G  Q  K  V  G  G  G  I  R  Q  I  S  G  T   
 
             1360      1370      1380      1390      1400 
               -         -         -         -         - 
 1351 
AACCCGAACGACCCGACCACCAACATTACCCTGCCGGACCAGGATTTTGT  
      N  P  N  D  P  T  T  N  I  T  L  P  D  Q  D  F  V  
 
             1410      1420      1430      1440      1450 
               -         -         -         -         - 
 1401 
GGTTCCGCGTGGCGGTGAGTACTTTTTCAGCCCGAGCATCACCGCGCTGA  
       V  P  R  G  G  E  Y  F  F  S  P  S  I  T  A  L  K 
 
             1460      1470      1480      1490      1500 
               -         -         -         -         - 
 1451 
AGACCAAATTCGCGATTGGCGTTGCGAGCCCGGCGCCGCACAGCCAAGCG  
        T  K  F  A  I  G  V  A  S  P  A  P  H  S  Q  A   
 
 
 
 
             1510 
               -   
 1501 CCGATCAGCGCG  
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      P  I  S  A 
 
 
Appendix (6): DNA and protein sequence for DyP4 mutant (F6) N312S 

              10        20        30        40        50 
               -         -         -         -         - 
    1 
ATGACCACCCCGGCGCCGCCGCTGGACCTGAACAACATCCAGGGTGATAT  
      M  T  T  P  A  P  P  L  D  L  N  N  I  Q  G  D  I  
 
              60        70        80        90        100 
               -         -         -         -         - 
   51 
TCTGGGTGGCCTGCCGAAGCGTACCGAGACCTACTTCTTTTTCGACGTGA  
       L  G  G  L  P  K  R  T  E  T  Y  F  F  F  D  V  T 
 
              110       120       130       140       150 
               -         -         -         -         - 
  101 
CCAACGTTGATCAATTTAAAGCGAACATGGCGCACTTCATCCCGCACATT  
        N  V  D  Q  F  K  A  N  M  A  H  F  I  P  H  I   
 
              160       170       180       190       200 
               -         -         -         -         - 
  151 
AAGACCAGCGCGGGCGTCATTAAAGACCGTGAGGCGATCAAGGAACACAA  
      K  T  S  A  G  V  I  K  D  R  E  A  I  K  E  H  K  
 
              210       220       230       240       250 
               -         -         -         -         - 
  201 
ACGTCAGAAGAAACCGGGACTGGTGCCGATGGCGGCGGTGAACGTTAGCT  
       R  Q  K  K  P  G  L  V  P  M  A  A  V  N  V  S  F 
 
              260       270       280       290       300 
               -         -         -         -         - 
  251 
TTAGCCACCTGGGCCTGCAGAAGCTGGGTATCACCGACGATCTGAGCGAT  
        S  H  L  G  L  Q  K  L  G  I  T  D  D  L  S  D   
 
              310       320       330       340       350 
               -         -         -         -         - 
  301 
AACGCGTTCACCACCGGCCAGCGTAGGGACGCGGAGATTCTGGGCGATCC  
      N  A  F  T  T  G  Q  R  R  D  A  E  I  L  G  D  P  
 
              360       370       380       390       400 
               -         -         -         -         - 
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  351 
GGGTAGCAAAAACGGTGATGCGTTTACCCCGGCGTGGGAAGCGCCGTTCC  
       G  S  K  N  G  D  A  F  T  P  A  W  E  A  P  F  L 
 
              410       420       430       440       450 
               -         -         -         -         - 
  401 
TGAAGGACATCCACGGTGTGATTTTTGTTGCGGGCGATTGCCACGGTAGC  
        K  D  I  H  G  V  I  F  V  A  G  D  C  H  G  S   
 
              460       470       480       490       500 
               -         -         -         -         - 
  451 
GTGAACAAGAAACTGGACGAGATCAAACACATTTTCGGCGTTGGTACCAG  
      V  N  K  K  L  D  E  I  K  H  I  F  G  V  G  T  S  
 
              510       520       530       540       550 
               -         -         -         -         - 
  501 
CCACGCGAGCATCAGCGAAGTGACCCATGTTCGTGGCGACGTGCGTCCGG  
       H  A  S  I  S  E  V  T  H  V  R  G  D  V  R  P  G 
 
              560       570       580       590       600 
               -         -         -         -         - 
  551 
GTGATGTTCACGCGCACGAGCACTTTGGCTTCCTGGATGGTATTAGCAAC  
        D  V  H  A  H  E  H  F  G  F  L  D  G  I  S  N   
 
              610       620       630       640       650 
               -         -         -         -         - 
  601 
CCGGCGGTTGAACAGTTTGATCAGAACCCGCTGCCGGGTCAGGACCCGAT  
      P  A  V  E  Q  F  D  Q  N  P  L  P  G  Q  D  P  I  
 
              660       670       680       690       700 
               -         -         -         -         - 
  651 CCGTCCGGGTTTCATTCTGGCGAAGGAGAACGGTGACAGCCGTGCGGCGG  

       R  P  G  F  I  L  A  K  E  N  G  D  S  R  A  A  A 
 
              710       720       730       740       750 
               -         -         -         -         - 
  701 CGCGTCCGGACTGGGCGAAAGACGGTAGCTTTCTTACCTTCCGTTACCTG  

        R  P  D  W  A  K  D  G  S  F  L  T  F  R  Y  L   
 
              760       770       780       790       800 
               -         -         -         -         - 
  751 
TTCCAAATGGTGCCGGAGTTTGACGATTTCCTGGAAAGCAACCCGATCGT  
      F  Q  M  V  P  E  F  D  D  F  L  E  S  N  P  I  V  
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              810       820       830       840       850 
               -         -         -         -         - 
  801 
TCTGCCGGGCCTGAGCCGTAAAGAGGGTAGCGAACTGCTGGGTGCGCGTA  
       L  P  G  L  S  R  K  E  G  S  E  L  L  G  A  R  I 
 
              860       870       880       890       900 
               -         -         -         -         - 
  851 
TTGTGGGCCGTTGGAAAAGCGGTGCGCCGATCGAGATTACCCCGCTGAAG  
        V  G  R  W  K  S  G  A  P  I  E  I  T  P  L  K   
 
              910       920       930       940       950 
               -         -         -         -         - 
  901 
GACGATCCGAAACTGGCGGCGGATGCGCAGCGTAGCAACAAGTTTGACTT  
      D  D  P  K  L  A  A  D  A  Q  R  S  N  K  F  D  F  
 
              960       970       980       990      1000 
               -         -         -         -         - 
  951 
CGGCGATAGCCTGGTTCGTGGTGACCAAACCAAGTGCCCGTTCGCGGCGC  
       G  D  S  L  V  R  G  D  Q  T  K  C  P  F  A  A  H 
 
             1010      1020      1030      1040      1050 
               -         -         -         -         - 
 1001 
ACATCCGTAAAACCTACCCGCGTAACGATCTGGAAGGTCCGCCGCTGAAA  
        I  R  K  T  Y  P  R  N  D  L  E  G  P  P  L  K   
 
             1060      1070      1080      1090      1100 
               -         -         -         -         - 
 1051 
GCGGACATCGATAACCGTCGTATCATTCGTCGTGGCATTCAGTTTGGTCC  
      A  D  I  D  N  R  R  I  I  R  R  G  I  Q  F  G  P  
 
             1110      1120      1130      1140      1150 
               -         -         -         -         - 
 1101 
GGAAGTGACCAGCCAAGAACACCACGACAAGAAAACCCACCACGGCCGTG  
       E  V  T  S  Q  E  H  H  D  K  K  T  H  H  G  R  G 
 
             1160      1170      1180      1190      1200 
               -         -         -         -         - 
 1151 
GTCTGCTGTTCGTTTGCTATAGCAGCAGCATCGACGATGGCTTTCACTTC  
        L  L  F  V  C  Y  S  S  S  I  D  D  G  F  H  F   
 
             1210      1220      1230      1240      1250 
               -         -         -         -         - 
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 1201 
ATTCAGGAAAGCTGGGCGAACGCGCCGAACTTTCCGGTGAACGCGGTTAC  
      I  Q  E  S  W  A  N  A  P  N  F  P  V  N  A  V  T  
 
             1260      1270      1280      1290      1300 
               -         -         -         -         - 
 1251 
CAGCGCGGGTCCGATCCCGCCGCTGGATGGTGTGGTTCCGGGTTTCGATG  
       S  A  G  P  I  P  P  L  D  G  V  V  P  G  F  D  A 
 
             1310      1320      1330      1340      1350 
               -         -         -         -         - 
 1301 
CGATCATTGGCCAGAAAGTGGGTGGCGGTATTCGTCAAATTAGCGGTACC  
        I  I  G  Q  K  V  G  G  G  I  R  Q  I  S  G  T   
 
             1360      1370      1380      1390      1400 
               -         -         -         -         - 
 1351 
AACCCGAACGACCCGACCACCAACATTACCCTGCCGGACCAGGATTTTGT  
      N  P  N  D  P  T  T  N  I  T  L  P  D  Q  D  F  V  
 
             1410      1420      1430      1440      1450 
               -         -         -         -         - 
 1401 
GGTTCCGCGTGGCGGTGAGTACTTTTTCAGCCCGAGCATCACCGCGCTGA  
       V  P  R  G  G  E  Y  F  F  S  P  S  I  T  A  L  K 
 
             1460      1470      1480      1490      1500 
               -         -         -         -         - 
 1451 
AGACCAAATTCGCGATTGGCGTTGCGAGCCCGGCGCCGCACAGCCAAGCG  
        T  K  F  A  I  G  V  A  S  P  A  P  H  S  Q  A   
 
             1510 
               -      
 1501 CCGATCAGCGCGTAA  
      P  I  S  A  * 
 
Silent mutation, Missense mutation  
 

 

 


