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Abstract

A prerequisite for the assurance of any mission-critical system is a comprehensive

understanding of a system’s properties and behaviours. This is a challenging proposition

for many AI-based Systems (AISs). Their functionality is often dictated by factors that

are often outside the scope of the assurance concerns typical of conventional software

systems. These distinctions have implications for all phases of the design, development,

deployment and operation of AISs. They pose serious problems for existing software

assurance standards, guidelines and techniques: the application of existing practices to

an AIS will fail to expose or mitigate numerous system aspects that can contribute to

hazardous system behaviours.

This thesis introduces a number of techniques that aim to support the resolution of

these problems for Bayesian Network-based Systems (BNSs). This class of system has

been deployed in many applications, ranging from medical diagnostic systems to naviga-

tional controls aboard autonomous systems. To date, there is no published literature on

the deployment of these systems in directly safety-critical roles. This thesis introduces ap-

proaches aimed at addressing three particular challenges. Firstly, it proposes a framework

for conceptualising and communicating the distinctions between BNSs and conventional

software systems and uses this framework to generate and refine a set of BNS verification

and validation objectives. Secondly, it introduces an assurance-focussed BNS analysis

technique that can provide targeted information on mission-critical aspects of a BNS.

Finally, it outlines an approach for describing how BNS-specific safety evidence relates

to BNS aspects, and how the evidence can be used to derive sufficient confidence in a

mission-critical BNS.

These contributions are then evaluated in the context of a case study that indicates the

utility of the proposed techniques, and how these can be used to comprehensively structure

and target the unconventional assurance concerns associated with the development of a

mission-critical BNS.

iii





Contents

Abstract iii

List of figures x

List of tables xii

Acknowledgements xv

Declaration xvii

1 Introduction 1

1.1 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Literature Review 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Uncertainty and Probabilistic Artificial Intelligence . . . . . . . . . . 10

2.2.2 Probabilistic Graphical Models . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 The Bayesian Network Framework . . . . . . . . . . . . . . . . . . . 13

2.2.3.1 Representation . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.3.2 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.3.3 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.4 Development Lifecycle . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Safety Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.1 Safety Analysis Techniques . . . . . . . . . . . . . . . . . . . . . . . 39

v



Contents

2.3.1.1 Failure Modes and Effects Analysis . . . . . . . . . . . . . 40

2.3.1.2 Fault Tree Analysis . . . . . . . . . . . . . . . . . . . . . . 42

2.3.2 Analysing Bayesian Network-based Systems . . . . . . . . . . . . . . 44

2.4 Safety-Critical Uses of Artificial Intelligence . . . . . . . . . . . . . . . . . . 45

2.4.1 Phases of Safety-Critical Artificial Intelligence Research . . . . . . . 45

2.4.1.1 Phase I - Expert Systems . . . . . . . . . . . . . . . . . . . 46

2.4.1.2 Phase II - The Second ‘AI Winter’ . . . . . . . . . . . . . . 48

2.4.1.3 Phase III - Deep Learning . . . . . . . . . . . . . . . . . . . 51

2.4.2 Emergent Themes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.5 Summary of Research Problems . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3 Establishing Verification and Validation Objectives 59

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 System Error Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2.1 Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.1.1 Local Representation . . . . . . . . . . . . . . . . . . . . . 63

3.2.1.2 Global Representation . . . . . . . . . . . . . . . . . . . . . 65

3.2.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2.2.1 Optimisation Algorithms . . . . . . . . . . . . . . . . . . . 69

3.2.2.2 Reasoning Algorithms . . . . . . . . . . . . . . . . . . . . . 71

3.2.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.2.4 Existing Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3 Viewpoints on Bayesian Network-based Systems . . . . . . . . . . . . . . . 74

3.3.1 Data Viewpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3.2 Model Viewpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.3.3 Other Viewpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.3.4 Justification of RM-BNS Viewpoints . . . . . . . . . . . . . . . . . . 88

3.3.5 Relationship to Existing Safety Standards . . . . . . . . . . . . . . . 90

3.4 Reference Model for Bayesian Network-based Systems (RM-BNS) . . . . . . 93

3.4.1 Definition of Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.4.2 Capturing Interactions in BN-based Systems . . . . . . . . . . . . . 94

3.4.3 Role of RM-BNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.5 Generic Verification and Validation Objectives . . . . . . . . . . . . . . . . 97

vi



Contents

3.5.1 Deriving Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.5.2 Data Viewpoint Objectives . . . . . . . . . . . . . . . . . . . . . . . 98

3.5.3 Model Viewpoint Objectives . . . . . . . . . . . . . . . . . . . . . . 100

3.5.4 Other Viewpoint Objectives . . . . . . . . . . . . . . . . . . . . . . . 103

3.6 Justification of the Completeness of the RM-BNS Objectives . . . . . . . . 106

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4 Model Criticality Analysis 111

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.2.1 Traceability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.2.2 Influence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.2.3 Proportionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.3 Model Criticality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.3.1 Justification for Proposed Structures . . . . . . . . . . . . . . . . . . 116

4.3.2 Authority Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.3.3 Justification for Model Authority Categories . . . . . . . . . . . . . 121

4.3.4 Model Criticality Index . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.3.5 Application of MACs and MCIs . . . . . . . . . . . . . . . . . . . . . 123

4.4 Variable Criticality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.4.1 Modified Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . 126

4.4.2 Justification for Utilising Sensitivity Analysis . . . . . . . . . . . . . 130

4.4.3 Variable Authority Categories . . . . . . . . . . . . . . . . . . . . . . 131

4.4.4 Justification for Variable Authority Categories . . . . . . . . . . . . 132

4.4.5 Variable Criticality Index . . . . . . . . . . . . . . . . . . . . . . . . 133

4.4.6 Justification for the Utilisation of Criticality Matrices . . . . . . . . 135

4.4.7 Application of VACs and VCIs . . . . . . . . . . . . . . . . . . . . . 137

4.5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5 From Objectives to Evidence 141

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.2 Assurance Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.3 An Evidence Framework for BNSs . . . . . . . . . . . . . . . . . . . . . . . 145

vii



Contents

5.3.1 Evidence Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.3.2 Evidence Classifications . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.3.3 Evidence-Generating Processes . . . . . . . . . . . . . . . . . . . . . 152

5.3.3.1 Statistical Processes . . . . . . . . . . . . . . . . . . . . . . 152

5.3.3.2 Deterministic Processes . . . . . . . . . . . . . . . . . . . . 155

5.3.3.3 Qualitative Processes . . . . . . . . . . . . . . . . . . . . . 156

5.3.3.4 Mapping Evidence Classifications to Techniques . . . . . . 157

5.4 Relationship of RM-BNS Objectives to Evidence . . . . . . . . . . . . . . . 159

5.4.1 Refining Objectives and Evidence . . . . . . . . . . . . . . . . . . . . 164

5.4.2 Integrating Criticality Metrics . . . . . . . . . . . . . . . . . . . . . . 165

5.5 Establishing the Sufficiency of BNS Assurance Efforts . . . . . . . . . . . . 169

5.5.1 Variability of RM-BNS Objectives . . . . . . . . . . . . . . . . . . . 170

5.5.2 Reducing Objective Variability . . . . . . . . . . . . . . . . . . . . . 171

5.5.3 Varying Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.5.4 Varying Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

5.5.5 Satisfying RM-BNS Objectives . . . . . . . . . . . . . . . . . . . . . 177

5.5.5.1 Evaluating Statistical Confidence . . . . . . . . . . . . . . . 178

5.5.5.2 Analysing Parameter Bounds . . . . . . . . . . . . . . . . . 181

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6 Evaluation 185

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

6.2 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

6.2.1 System Definition and Methodology . . . . . . . . . . . . . . . . . . 186

6.2.1.1 Source Material . . . . . . . . . . . . . . . . . . . . . . . . 187

6.2.1.2 Assumptions and Scope . . . . . . . . . . . . . . . . . . . . 190

6.2.2 System Description and Modelling . . . . . . . . . . . . . . . . . . . 191

6.2.3 Definition of System-Specific Objectives . . . . . . . . . . . . . . . . 197

6.2.4 Model Criticality Analysis . . . . . . . . . . . . . . . . . . . . . . . . 202

6.2.4.1 Failure Modes and Effects Analysis . . . . . . . . . . . . . 202

6.2.4.2 Assigning Model Authority Categories . . . . . . . . . . . . 207

6.2.4.3 Assigning Variable Criticality Indices . . . . . . . . . . . . 209

6.2.5 Mapping Objectives to Evidence Classifications . . . . . . . . . . . . 214

6.2.6 Mapping Objectives to Criticality Metrics . . . . . . . . . . . . . . . 219

viii



Contents

6.2.7 Proportionality and Sufficiency . . . . . . . . . . . . . . . . . . . . . 220

6.2.7.1 Varying Objectives . . . . . . . . . . . . . . . . . . . . . . . 222

6.2.7.2 Varying Evidence . . . . . . . . . . . . . . . . . . . . . . . 223

6.2.8 Note on Generalisability . . . . . . . . . . . . . . . . . . . . . . . . . 225

6.2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

6.3 Practicability of Application . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

6.3.1 Application of the RM-BNS . . . . . . . . . . . . . . . . . . . . . . . 228

6.3.2 Application of the RM-BNS Objectives . . . . . . . . . . . . . . . . 229

6.3.3 Application of the Model Criticality Analysis Technique . . . . . . . 230

6.3.4 Application of the Evidence Framework . . . . . . . . . . . . . . . . 232

6.3.5 Application of the Proportionality and Sufficiency Concepts . . . . . 233

6.3.6 Scalability of Application . . . . . . . . . . . . . . . . . . . . . . . . 235

6.4 Evaluation Against Thesis Hypothesis . . . . . . . . . . . . . . . . . . . . . 236

6.4.1 Targeted Assurance . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

6.4.2 Analysis and Evaluation of Underlying Probabilistic Models . . . . . 238

6.4.3 Analysis and Evaluation of Underlying Data Artefacts . . . . . . . . 238

6.4.4 Analysis and Evaluation of Underlying Computational Techniques . 240

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

7 Conclusion 241

7.1 Summary of Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . 241

7.1.1 Contribution - A Multi-Viewpoint Approach to BNS Assurance . . . 242

7.1.2 Contribution - Reference Model for Bayesian Network-based Systems 243

7.1.3 Contribution - Assurance-Focussed Model Analysis . . . . . . . . . . 244

7.1.4 Contribution - Evidence Framework and Sufficiency Concepts . . . . 245

7.1.5 Limitations of Thesis Contributions . . . . . . . . . . . . . . . . . . 246

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

7.2.1 Generalisation of Viewpoints and RM-BNS . . . . . . . . . . . . . . 247

7.2.2 Extension of Model Criticality Analysis . . . . . . . . . . . . . . . . 247

7.2.3 Adaptation of BN Evaluation Techniques and Metrics . . . . . . . . 248

7.2.4 Refinement of the RM-BNS and Objectives . . . . . . . . . . . . . . 248

7.2.5 Role of Data in AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

7.2.6 Addressing System Evolution . . . . . . . . . . . . . . . . . . . . . . 249

7.3 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

ix



Contents

Appendix 253

A A Reference Model for Bayesian Network-based Systems 253

A.1 RM-BNS Viewpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

A.2 RM-BNS Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

A.3 RM-BNS Reference Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

B Beinlich ALARM Model 269

B.1 Beinlich Model (HUGIN Format) . . . . . . . . . . . . . . . . . . . . . . . . 269

C Bayesian Network Tool 279

C.1 Implementation Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

Abbreviations 281

References 283

x



List of Figures

2.1 A comparison of a table-structured Conditional Probability Distributions

(CPDs) before and after marginalisation. . . . . . . . . . . . . . . . . . . . 16

2.2 A visualisation of the structure of the ‘Asia Model’. . . . . . . . . . . . . . 18

2.3 The tabular representation of the P (Dyspnoea|Bronchitis, Either) CPD,

where D = Dyspnoea, B = Bronchitis, and E = Either. . . . . . . . . . . 19

2.4 A visualisation of Beinlich’s ‘ICU Alarm’ model [45,46]. . . . . . . . . . . . 20

2.5 A high-level visualisation of the Junction Tree algorithm. . . . . . . . . . . 22

2.6 The Knowledge Engineering for Bayesian Networks (KEBN) development

cycle, as proposed by Pollino et al [59]. . . . . . . . . . . . . . . . . . . . . . 33

2.7 A visualisation of the ‘V lifecycle’ model [82]. . . . . . . . . . . . . . . . . . 36

2.8 A simple Fault Tree for the classic ‘fire alarm’ problem. [108] . . . . . . . . 43

2.9 A visualisation of Boehm’s proposed software development process. [120] . . 47

2.10 A visualisation of Kurd’s proposed safety-critical ANN development lifecycle. 51

3.1 An example of a fragment of a BN model representing the conditional re-

lationships of factors effecting a patient’s heart rate [136]. . . . . . . . . . . 62

3.2 A discretised normal distribution fitted to a patient’s heart rate (HR). . . . 63

3.3 Visualisations of the ‘hidden’ weights of two identical ANN architectures

trained for two distinct tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4 The RM-BNS Reference Model. . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.1 RM-BNS Fragments of Ensemble and Monolithic Architectures. . . . . . . . 119

4.2 The Model Criticality Index (MCI) Matrix . . . . . . . . . . . . . . . . . . 124

4.3 Visualisation of Variable Sensitivity in Asia Model . . . . . . . . . . . . . . 130

4.4 The Variable Criticality Index (VCI) Matrix . . . . . . . . . . . . . . . . . . 134

4.5 A Simple BN Model Fragment. . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.6 Visualisations of VAC and VCI Assignments to the Asia Model. . . . . . . . 136

xi



List of Figures

5.1 A comparison of two Receiver Operating Characteristic (ROC) curves used

to evaluate two diagnostic models. . . . . . . . . . . . . . . . . . . . . . . . 153

5.2 The objective-evidence refinement process. . . . . . . . . . . . . . . . . . . . 165

5.3 The objective-evidence refinement process with integrated criticality metrics.169

5.4 A fragment of System C’s medical diagnosis BN model. . . . . . . . . . . . 178

5.5 An example of the output from Chan’s parameter bound analysis technique. 181

6.1 A visualisation of the Alarm ICU network and its local CPD structures. [136]189

6.2 A high-level representation of (a fragment) of the AMTS architecture rep-

resented in the RM-BNS framework. . . . . . . . . . . . . . . . . . . . . . . 192

6.3 A lower-level RM-BNS fragment capturing system aspects associated only

with the Diagnosis Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

6.4 Visualisation of Variable Criticality Index (VCI) assignments for the Med-

ical Diagnostic model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

A.1 The RM-BNS reference model. . . . . . . . . . . . . . . . . . . . . . . . . . 268

C.1 A screenshot of the Apollo Dashboard app. . . . . . . . . . . . . . . . . . . 279

xii



List of Tables

3.1 A selection of existing work on error modes associated with developing and

using BN-based systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.2 The views and objects associated with the Data Viewpoint. . . . . . . . . . 80

3.3 The views and objects associated with the Model Viewpoint. . . . . . . . . 83

3.4 A subset of views from taken from the Computational, Technology, Opera-

tional and Implementation viewpoints. . . . . . . . . . . . . . . . . . . . . . 86

3.5 A mapping of RM-BNS viewpoints to a selection of corresponding publica-

tions that informed the definition of a given viewpoint. . . . . . . . . . . . . 89

3.6 A subset of generic verification and validation objectives for the Data View-

point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.7 A subset of generic verification and validation objectives for the Model

Viewpoint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.8 A subset of generic verification and validation objectives for the Computa-

tional, Technology, Operational and Implementation Viewpoints. . . . . . . 103

4.1 Model Authority Categories (MACs) . . . . . . . . . . . . . . . . . . . . . . 121

4.2 Variable Authority Categories (VACs) . . . . . . . . . . . . . . . . . . . . . 132

4.3 Example VCI Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.1 Evidence characteristics and example considerations for evidence generating

techniques in BNS development. . . . . . . . . . . . . . . . . . . . . . . . . 149

5.2 Technique-Evidence Mapping for Model Viewpoint . . . . . . . . . . . . . . 158

5.3 Objective-Evidence Mapping for Model Viewpoint (Structure View) . . . . 161

5.4 Refined objective-evidence mapping. . . . . . . . . . . . . . . . . . . . . . . 166

5.5 Refined objective-evidence mapping with integrated criticality metrics. . . . 168

xiii



List of Tables

5.6 A suggested breakdown of how the number of compulsory Model Viewpoint

RM-BNS Objectives may be varied as a function of the criticality of a system

aspect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

5.7 Total number of suggested compulsory Model Viewpoint RM-BNS Objectives.175

5.8 Example mapping of Variable Criticality Indices (VCI) to statistical confi-

dence intervals for System C’s model fragment. . . . . . . . . . . . . . . . . 180

6.1 System-Specific Objectives for the AMTS example. . . . . . . . . . . . . . . 199

6.2 Failure Modes and Effects Analysis (FMEA) excerpts for an example ap-

plied to the RM-BNS architecture. . . . . . . . . . . . . . . . . . . . . . . . 204

6.3 Model Authority Categories (MACs) and Model Criticality Indices (MCIs)

for the AMTS system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

6.4 Severity assignments for variables in the Medical Diagnostic model. . . . . . 209

6.5 Criticality assignments for a selection of variables for the Diagnostic Model. 214

6.6 A mapping of AMTS System-Specific Objectives to Evidence Items and

Evidence Classifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

6.7 An Objective-Criticality Mapping for aspects of the AMTS. . . . . . . . . . 221

6.8 Varying the number of objectives for a BNS system aspect in proportion to

the criticality of the aspect. . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

6.9 Confidence intervals on the ‘History’ RV parameter estimates. . . . . . . . 224

A.1 RM-BNS Viewpoints and Objects. . . . . . . . . . . . . . . . . . . . . . . . 254

A.2 RM-BNS Objectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

xiv



Acknowledgements

I would like to thank Tim Kelly, my supervisor over the course of this research project.

His mentoring and advice have been invaluable, and I have learnt a great deal in my time

working with him. He has been an exceptional supervisor.

I would also like to thank the rest of the HISE team for the warm welcome and

interesting discussions over the course of my time with the Department of Computer

Science. I’d particularly like to thank Katrina Attwood for all the great conversations

(and the proof reading and input on this thesis too!). I’d also like to thank Rob Alexander

and Jane Fenn for their support and input over the course of this research project.

This work has been performed in collaboration with BAE SYSTEMS and EPSRC as

part of an Industrial CASE studentship. I would therefore like to thank all those at BAE

that have provided feedback and discussion over the last few years.

Over my time at York I met a lot of wonderful people, many of whom directly or

indirectly shaped this work, and I’d like to thank them all. However, there have been a

handful who have been there through all the ups and downs of PhD life, particularly Matt

Dale, Joe Branson and Thoryn Haylett, and I’d like to thank them for their friendship

and support. I’d also like to thank Alex Roberts for helping me keep perspective over the

years despite the distance.

Finally, I’d like to thank my family, my parents and grandparents who have supported

and encouraged me throughout my academic life. Without them none of this would have

been possible. Last but far from least, I’d like to thank Becky for her support, care and

encouragement – not to mention patience – over the course of the PhD. This thesis exists

because of her.

xv





Declaration

I declare that the research described in this thesis is original work, which I undertook at

the University of York during 2014 - 2018. Except where stated, all of the work contained

within this thesis represents the original contribution of the author. This work has not

previously been presented for an award at this, or any other, University. All sources are

acknowledged as References.

Some parts of this thesis have been published in conference proceedings; where items

were published jointly with collaborators, the author of this thesis is responsible for the

material presented here. For each published item the primary author is the first listed

author.

• Mark Douthwaite, Tim Kelly, Safety-Critical Software and Safety-Critical Artificial

Intelligence: Integrating New Practices and New Safety Concerns, Safety Critical

Systems Symposium (SSS) ’18, SCSC

• Mark Douthwaite, Tim Kelly, Establishing Verification and Validation Objectives

for Safety-Critical Bayesian Networks, International Symposium on Software Reli-

ability Engineering (ISSRE) ’17 - Special Session on AI (Workshop on Software

Certification), IEEE

Copyright c© 2018 by Mark Douthwaite

The copyright of this thesis rests with the author. Any quotations from it should be

acknowledged appropriately.

xvii





Thus to have a retentive memory, and to proceed ‘by the book,’ are points

commonly regarded as the sum total of good playing. But it is in matters beyond

the limits of mere rule that the skill of the analyst is evinced. He makes, in

silence, a host of observations and inferences. So, perhaps, do his companions;

and the difference in the extent of the information obtained, lies not so much in

the validity of the inference as in the quality of the observation. The necessary

knowledge is of what to observe.

Edgar Allan Poe, 1841

The actual science of logic is conversant at present only with things either

certain, impossible or entirely doubtful ... Therefore, the true logic of this

world is the calculus of probabilities, which takes account of the magnitude of

the probability which is, or ought to be, in a reasonable man’s mind.

James Clerk Maxwell, 1850

The power to become habituated to his surroundings is a marked characteristic

of mankind ... We assume some of the most peculiar and temporary of our late

advantages as natural, permanent and to be depended on, and we lay our plans

accordingly.

John Maynard Keynes, 1919
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Chapter 1

Introduction

1.1 Bayesian Networks

Bayesian Networks (BNs) have been used in a variety of state-of-the-art Artificial Intelli-

gence (AI) applications over the course of their existence.1 One of the earliest success sto-

ries in the history of AI was the development of so-called Expert Systems (ESs) throughout

the 1980’s. These systems were initially hailed as a major breakthrough in the field, with

significant commercial and research funding focussing on the development of increasingly

advanced ESs that could model the reasoning processes of human experts [1, 2].

However, after a number of early breakthroughs, it quickly became clear that the

development of human-like ESs demanded the introduction of techniques that provided a

more nuanced reflection of the world. For example, a doctor’s diagnosis is rarely the only

possible explanation for a patient’s symptoms: it is, however, generally the most probable

explanation given the available information and the doctor’s expert judgement. If this

doctor were to receive additional information, they may revise their belief in the diagnosis

- either positively or negatively - and take action if required. Such forms of reasoning were

not generally feasible in early ESs [3].

The difficulties of these ‘traditional’ ESs in handling complex, uncertain scenarios

prompted the development of a number of belief modelling approaches. The BN framework

would ultimately emerge from this research. As a modelling approach, BNs provide a

flexible approach that both explicitly captures the uncertainty inherent in many domains,

1Bayesian Networks have been known by many names, including: Bayesian Belief Networks (BBNs),

Belief Networks, Causal Networks, and Probabilistic Belief Networks (PBNs). Commonly used variants

include Naive Bayes Classifiers, Kalman Filters, and Gaussian Mixture Models.
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while also dynamically revising the current belief of the model in the state of the world in

the presence of ever-shifting information and observations.2

As the framework has matured, it has integrated a number of techniques for performing

inference over highly complex BNs, thereby supporting the utilisation of BNs in increas-

ingly complex applications. It has also introduced several new representational concepts,

each supported by an array of tailored structure and parameter learning techniques. The

modern BN modelling framework is part of a larger Probabilistic Graphical Modelling

(PGM) framework. This more general framework has deep connections to many other

widely-used AI and Machine Learning (ML) approaches. This includes Markov Networks

(MNs), Hidden Markov Models (HMMs) and Kalman Filters (KFs), Naive Bayes Networks

and Gaussian Mixture Models (GMMs) to name a few [2].

The ability of BNs to capture highly complex, nuanced domains and to provide robust,

effective reasoning in the presence of significant uncertainty has made them popular in a

number of academic and industrial fields. In particular, the approach has experienced

enduring popularity in the fields of medicine, aerospace, robotics, natural language pro-

cessing and computer vision [4, 5, 6, 7]. However, at the time of writing, BNs have not

been utilised to any significant extent in the core functionality of safety-critical systems -

they have been used almost exclusively as either decision support tools, or in other highly

constrained applications where they demonstrate well-defined technical behaviours [8].

There is therefore no existing guidance on the direct utilisation of a BN-based Sys-

tem (BNS) in mission- and safety-critical contexts. However, the properties of BNS make

them an attractive prospect for the fulfilment of a number of safety-critical roles aboard

autonomous systems. In particular, they offer powerful capabilities of use in various mis-

sion management and system monitoring roles. In such roles, a BNS will likely constitute

a significant proportion of the control logic of the autonomous system: BN-based software

components will directly support mission planning (in autonomous vehicles this may in-

clude aspects of route planning, the system’s behavioural profile, system availability and

endurance etc.), as well as other advanced fault diagnostic and prognostic capabilities. Fur-

2The term ‘domain’, or alternatively ‘target domain’ is used here – and throughout this thesis – to refer

to the knowledge, system or process a BN model may be designed to capture. For example, the domain

of a BN model developed for use in medical applications may be the diagnostic knowledge of medical

practitioners, the dynamics of a hospital ward, or the current state of a patient. In the case of the latter,

the BN may represent a mathematical model of a patient’s vital signs or other key statistics.
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thermore, BNs may be used to provide a coherent framework for the integration of many

other AI modelling approaches, including - but not limited to - Artificial Neural Networks

(ANNs), Random Forests (RFs), and Support Vector Machines (SVMs) [9, 10, 11]. Some

current state-of-the-art AI-based Systems use combinations of AI approaches in precisely

this way [12,13].3

1.2 Motivation

The research conducted for this thesis was motivated by the proposed utilisation of a

Prognostic Health Monitoring (PHM) system in an on-line decision-making role that sup-

ports other mission planning capabilities of an Unmanned Aerial System (UAS). In this

role, the outputs of the BN-based PHM would be used to directly inform the functional

behaviour of the UAS platform. In this context, such a PHM system would constitute a

mission-critical application of a BNS.

This application raises several assurance challenges for which there is no existing safety-

focussed guidance. Current safety-critical software used in the aviation domain is often

developed in compliance with well-established software safety standards and practices

such as ARP4754, ARP4761 and DO-178C. These standards are used across the civil and

military aerospace domains and are generally well regarded by system safety practitioners.

For the purposes of this thesis, the following definitions for the terms ’safety-critical’ and

’mission-critical’ systems are adopted [14]:

Mission-critical - A mission-critical system is one where a hazard can degrade or prevent

the successful completion of an intended operation. Causing property damage certainly

fits this description; exposing or damaging a company’s reputation would align with the

definition as well.

Safety-critical - A safety-critical system is a system that poses a physical hazard to

human life. If a failure occurs and exposes a hazard, it might cause physical harm

to users, patients, practitioners, doctors, nurses, bystanders, and even people in the

proximity of an accident.

Currently, however, there is limited research into the application (and relevance) of

3An AI-based System is defined as any system that relies on any number of AI techniques for the

provision of core system functionality.
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these standards and practices to the development and assurance of modern AISs generally

– and specifically in the case of BNSs. Moreover, there is a general lack of research in

this area for many other widely-used system safety and software safety standards and

guidelines. In particular, there is an absence of clarity on potential weaknesses in existing

guidance for this class of system, and very limited guidance on how to approach and

mitigate these weaknesses. The core motivations for the research presented in this thesis

can therefore be summarised as follows:

• To understand and articulate the general weaknesses of existing assurance practices

in the context of BNSs and, by extension, to identify the assurance challenges asso-

ciated with their development.

• To establish a comprehensive conceptual framework for the description and assur-

ance of mission-critical BNSs that can be used to address the identified assurance

challenges.

• To develop analysis techniques that mitigate the weaknesses of existing assurance

practices and explicitly address the identified assurance concerns associated with

this class of system.

1.3 Thesis Hypothesis

With these considerations in mind, the hypothesis of this thesis has been defined as follows:

It is possible to provide targeted assurance for Bayesian Network-based Sys-

tems through the analysis and evaluation of underlying probabilistic models,

data artefacts and computational techniques that have the potential to affect

confidence in the safety of a system.

The following terms are defined for clarity:

Probabilistic Models - At the core of any BNS is one or more BN models. These models

are declarative representations of a target domain. This is a purely abstract mathematical

model that can be considered independent of any given software implementation and of

any algorithms applied to it. Consequently, the properties and behaviours associated

with this model are intrinsic to it [2, 3].
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Data Artefacts - Modern BNSs typically rely on some form of learning to define a

given BN model. A BN model is said to be trained on a data set. This data set may be

composed of one or more data artefacts. These artefacts may range from quantitative,

empirically derived component reliability metrics, to relatively unstructured, qualitative

data in the form of maintenance logs or expert statements.

Computational Techniques - The ability to process large quantities of data and to

extract information from BN models is facilitated through the development and utilisa-

tion of learning and inference algorithms. Learning algorithms enable the construction

of BN models from data, thereby generating a model that to some degree reflects the

properties of that data, and the limitations of the learning algorithm. Inference algo-

rithms support the efficient querying of BN models, enabling BNs to be used to support

complex reasoning and decision making tasks.

This hypothesis is principally concerned with four considerations. First, that assurance

efforts must explicitly target those aspects of a BNS that make this class of system distinct

from conventional software-intensive systems. A prerequisite for targeting these aspects is

a clear and comprehensive enumeration of the ‘unconventional’ properties of BNSs, and a

rigorous understanding of how these properties may affect the safety of such a system. This

implies that common assumptions about the development, implementation and operation

of software-intensive systems may need to be revised in the context of BNSs.

Next, the behaviour of a BNS is heavily influenced by the properties and behaviours

of the BN models that may be utilised in the provision of safety-critical functionality.

As indicated above, the properties and behaviours of a BN model is intrinsic to it. This

is analogous to the manner in which the predictions of Newton’s Laws of Motion are

intrinsic to the mathematical model they define: the conclusions are the same irrespective

of how they are computed (e.g. their software implementation). Similarly, errors in these

predictions are also intrinsic to the law itself. For example, Newton’s Laws begin to break

down when a physical body begins to move very quickly or is in a strong gravitational

field. This occurs due to the omission of a number of crucial terms in Newton’s original

formulation of these Laws. Likewise, a failure to account for (or accurately represent)

certain mathematical behaviours within a BN model will produce errors that are intrinsic

to it. This has important implications for the effectiveness of current assurance techniques

and software analysis approaches in relation to their ability to identify certain forms of

hazardous behaviour.
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Thirdly, the data-driven nature of modern BNSs may introduce several atypical as-

surance considerations. Unlike many conventional software systems, data-driven BNSs

are often more directly exposed to the operational environment they are to be deployed

into - potentially both during development and operation. The data used to train a BNS

inevitably influences what a BNS can ‘know’ about the world around it; the data acts as

the raw material from which a BN model is generated. In this sense, aspects of a BNS’s

control logic may be considered to be ‘open’ to the domain being modelled.

Finally, the hypothesis aims to capture the need to address the role of novel computa-

tional techniques in the development and operation of this class of system, with particular

reference to the implications of the use of learning and inference algorithms upon the be-

haviours of BNSs. In particular, both the use of learning algorithms in the development

of a BN and the utilisation of adaptive learning algorithms in an operational context may

introduce important assurance considerations. These three aspects were identified based

on an initial review of the primary concerns of BN developers and the limited available

guidance on AISs more generally. In essence, large sections of a BNS’s control logic are

likely to be automatically generated according to a confluence of behaviours defined by

each of these three system aspects. Indeed, some within the field of AI have suggested

that these types of systems may constitute a conceptually distinct form of software. As

Karpathy notes in the context of Deep Learning (DL) [15]:

“Software 2.0 is written in [model parameters]. No human is involved in writing

this code ... we specify some constraints on the behavior of a desirable program

... and use the computational resources at our disposal to search the program

space for a program that satisfies the constraints.”

The intention of this hypothesis is therefore to understand the implications of these

system aspects in the context of BNSs and ensure that they are adequately targeted by

assurance practitioners.

1.4 Thesis Structure

The thesis is structured as follows:

Chapter 2 - This chapter introduces the key concepts underpinning the BN framework,

reviews the development lifecycles of BNSs and outlines a number of existing use-cases
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of BN models in both academic and commercial applications. An overview of current

approaches to software and system safety is then provided, followed by a critique of the

applicability of these techniques in the context of BNSs. Finally, a review of existing work

on the assurance of AISs is provided, and a number of recurrent themes are identified

and discussed.

Chapter 3 - The focus of this chapter is on the definition of a general framework for

the comprehensive description and modelling of a BNS, and the use of this framework in

the generation of a set of verification and validation objectives for BNSs. The chapter

aims to provide a conceptual overview of assurance considerations for BNSs, to provide

a mechanism for shared understanding of a BNS between BN developers and assurance

practitioners, and to introduce a flexible set of objectives to support the assurance of a

mission-critical BNS.

Chapter 4 - This chapter introduces a technique for establishing the criticality of all

BN models and BN model components in a BNS. The intention of this technique is

to introduce an approach that supports the safety-focussed analysis of BN models, and

to partially address the challenges of maintaining traceability of the behaviours of a

BNS, at the point in which a BN model becomes the principal determinant of a BNS’s

functionality.

Chapter 5 - The aim of this chapter is to outline an approach to establishing the suffi-

ciency of assurance activities in the context of BNSs. An evidence-classification approach

is provided to support this goal. This approach extends existing assurance techniques to

BNSs and integrates closely with the RM-BNS framework defined in Chapter 3.

Chapter 6 - This chapter provides an evaluation of the concepts, frameworks and tech-

niques introduced in this thesis in the context of the thesis hypothesis. The evaluation

also addresses the practical applicability of this work to ‘real-world’ use cases. This is

addressed partly using a case study to demonstrate the application of the ideas proposed

in this thesis to an example BNS. The contributions of the thesis are discussed and

evaluated in the context of the broader field.

Chapter 7 - Finally, this chapter provides concluding remarks on the contributions of

the thesis. It provides an overview of potential future research directions that could be

taken on the basis of the work presented in the thesis, as well as potential research gaps
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identified during the course of research.

8



Chapter 2

Literature Review

2.1 Introduction

While there is extensive published research on the development of Bayesian Network-based

Systems (BNSs) and on the development and assurance of conventional software systems,

there is a near-complete absence of existing research into the assurance of mission-critical

BNSs. However, there is a small but relatively established body of research into the

development of Artificial Intelligence-based Systems (AISs) for safety-critical applications.

Furthermore, many of these applications utilise Artificial Intelligence (AI) approaches that

overlap conceptually with aspects of BNSs and can therefore be utilised to provide an

insight into potential assurance concerns for BNSs.

With these considerations in mind, this chapter first reviews published work on the

use of the BN representational framework within the field of AI, and then outlines key BN

concepts upon which much of this thesis will be based. This review is then extended to

explore BNS-specific development practices. Following this, a review of existing practices

in the development of safety-critical systems is provided. This focusses on existing assur-

ance techniques and concepts, typical assurance lifecycles and the application of existing

safety standards to conventional software systems. Finally, a survey of relevant research

into the development of safety-critical AISs is introduced. This focusses on those AISs

that share conceptual or contextual similarities with BNSs or with the motivating example

introduced in Chapter 1. Where appropriate, observations and experiences in this research

that are relevant to BNSs will be discussed and criticised.
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2.2 Bayesian Networks

The term ‘Bayesian Networks’ and the modern formalism of the BN framework was intro-

duced by Pearl in the late 1980s [16,17]. This work was motivated by the need to develop

a computational model that reflected the ability of humans to integrate data taken from

multiple sources and to reason effectively over this information. Pearl recognised the need

to accommodate the subjective, uncertain and incomplete state of knowledge of the world

that frequently characterises human decision making [17,18]. This early research identified

the failure of many then-current AI techniques in accurately replicating and capturing the

uncertainties and reasoning processes of human experts as an inherent limitation of the

approaches then available to AI developers [3]. The work of Pearl and others ultimately

contributed to the formation of a field within AI research often referred to as ‘Probabilistic

AI’. This sub-field develops approaches to AI that utilise the laws of probability and the

tools of statistics and mathematics to support the development of ‘artificially intelligent’

systems. The BN framework forms one part of this expansive and highly active area of

research.

2.2.1 Uncertainty and Probabilistic Artificial Intelligence

Uncertainty is near-ubiquitous in the real-world: many aspects of the world appear to

exhibit non-deterministic properties and the ability of observers to measure these proper-

ties is often constrained by the noise inherent in their measurements, or of the limitations

of tools available to them. This form of uncertainty is often referred to as statistical

uncertainty, and can be defined as:

Statistical Uncertainty – The uncertainty that arises from limitations in the precision

of measurement devices, or in statistical fluctuations arising from random background

processes. For example, uncertainty of this kind may arise when measuring the tempera-

ture of angular resolution of a star in the night sky: each independent measurement may

vary due to random fluctuations as light passes through the Earth’s atmosphere. Impor-

tantly, this uncertainty can – in principle – be mitigated through the use of alternative

equipment or more measurements [19,20].1

This form of uncertainty characterises many aspects of a range of scientific and en-

1Statistical uncertainty is also referred to as aleatoric or ontological uncertainty.

10



2.2 Bayesian Networks

gineering disciplines. However, there are other forms of uncertainty. A second form,

commonly defined alongside statistical uncertainty, is the uncertainty arising as a conse-

quence of the restrictions on the observability of the world: only a subset of aspects of the

world are observed at any given point. This form of uncertainty is frequently referred to

as systemic uncertainty, and can be defined as:

Systemic Uncertainty – The uncertainty arising from limitations in the ability of

observers to access or capture information about the world. For example, this may

occur as a consequence of neglecting certain variables within a mathematical model (such

as in the case of the Schiaparelli lander, where an aerodynamic model utilised during

development did not account for some atmospheric effects arising from its supersonic

entry into Mars’ atmosphere), or because of unknown biases in data [20]. 2

These forms of uncertainty play an important role in the decision making of human

experts. For example, medical practitioners frequently work with partially complete data

– they can observe only a subset of a patient’s physical attributes at any one time, and do

not have access to a truly exhaustive history of their patient’s health. Furthermore, there

are very few disease-symptom mappings that are entirely deterministic: not all patients

with a disease will manifest an identical set of symptoms, nor may the causes of a disease

be the same in all patients. In this case, both forms of uncertainty are therefore present.

In practice, medical practitioners focus instead on reducing the state-space of a problem

and on establishing what is most probable as opposed to what is certain.

Attempting to model many aspects of the world using approaches that do not – or

cannot – capture this uncertainty can produce systems that are severely limited in their

capacity to reason about the world around them. Such systems may utilise models that

mask the uncertainty and complexity of the environment they operate in. This can lead

directly to an inferior quality of reasoning and decision making by a given system and may

ultimately restrict the utility of these systems [21].

Indeed, it was experience of precisely these limitations in early rule-based AI ap-

proaches that prompted the development of many of the modern approaches to AI [3,22].

These experiences motivated the development of a number of schools of thought within

the AI domain, each proposing various philosophical, theoretical or practical concepts

2This form of uncertainty is also referred to as epistemic or systematic uncertainty.
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and approaches for the development and deployment of AISs that provide mechanisms for

overcoming the challenges inherent in earlier approaches.

The sub-field of ‘Probabilistic AI’ utilises approaches that are built upon probability

theory and utilise probabilistic methods for representation, learning and reasoning. Prob-

abilistic methods naturally support the representation of a domain in terms of states that

are probable or improbable as opposed to those that are certain or impossible: they are

designed to enable the integration of multiple observations alongside additional uncertain

items of information in order to provide an assessment of the system’s belief in the state

of the world [2, 22].

The development and adoption of probabilistic approaches has met with broad success

in a number of domains. Many state-of-the-art AI applications are either based directly

upon principles developed within the probabilistic AI domain, or can be interpreted within

a probabilistic framework [23]. These approaches can avoid the (often intractable) problem

of enumerating all possible states within a domain, and the associated developmental and

computational challenges that may accompany the development of such large state-spaces.

Within the field of statistics and artificial intelligence, the state-space of a model is defined

as:

State-space – The set of all possible states of a system; each state of the system cor-

responds to a unique point in the state-space. The state or the measurement can be

either continuous or discrete. In this context, the term originates in the field of control

engineering [24].

A probabilistic framework can be used to capture and reason over the most probable

states in a given model. This can produce models that maintain a degree of interpretabil-

ity. Consequently, probabilistic approaches can sometimes provide more faithful (or more

nuanced) representations of the state of a given domain – and thereby facilitate the de-

velopment of a more effective AIS [2, 23,25].

2.2.2 Probabilistic Graphical Models

There are many approaches to utilising probabilistic approaches in AISs. One of the most

common approaches is to represent (and reason over) domains using Probabilistic Graph-

ical Models (PGMs). In general, the complexity and nature of many domains is such that

‘traditional’ probabilistic or statistical methods become impractical or intractable for com-
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plex problems [1]. In particular, the state-space that must be modelled may be extremely

large and may prohibit the effective use of alternative methods [3, 26]. PGMs build upon

concepts from discrete mathematics and graph theory in order to provide a representa-

tional approach that can support the development of systems that can manage this com-

plexity: they facilitate a compact graphical representation of high-dimensional probability

distributions that could not be practically captured using traditional approaches [2, 3].

Models developed within the PGM framework can be categorised as belonging to one

of three distinct groups of models: undirected models, mixed models and directed models.

The first group, undirected models, are commonly referred to as Markov Networks (MNs).

Examples of this group of graphical models include Markov Chains (a one-dimensional

MN) and Markov Random Fields (a two-dimensional MN). These modelling approaches

have been used extensively in many AI applications, including decision making, process

modelling, computer vision, natural language processing, as well as in some state-of-the-

art reinforcement learning techniques.3 They can provide a flexible, intuitive approach

to representing complex relationships within a domain, and for building up associative

relationships between observed features in a target domain. This latter property has

made them particularly valuable within the computer vision domain as an efficient means

of providing basic computer vision functionality, such as image segmentation and image

synthesis [29,30,31].

The second group of models, mixed models, are those models that contain both directed

and undirected edges; they are generalisations of directed and undirected probabilistic

models [32].4 These models can be used to represent more complex relationships between

aspects of domains and have been used to boost the interpretability of models [33]. This

group of PGM models is generally the least widely used (and discussed) of the three groups.

The final class of PGMs are the family of probabilistic Directed Acyclic Graphs (DAGs).

The most prominent of these is the widely used Bayesian Networks (BNs) framework.

2.2.3 The Bayesian Network Framework

Early research on BNs was motivated by the recognition of the need to develop com-

putational models of human inferential reasoning that could support the integration of

3A discussion of reinforcement learning is beyond the scope of this chapter. A good introduction to the

topic can be found in [27] and here [28].
4These models are also referred to in some literature as Chain Graph Models [33, 34].
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information from multiple sources and of varying types into a single, coherent description

of the world [22]. A primary motivator for this research was the need to develop a system

that supported ‘bi-directional reasoning’: the ability to integrate top-down and bottom-

up reasoning within a model.5 The resulting probabilistic modelling framework became

known as Bayesian Networks.6

The development of the BN framework in the late 1980’s led to the emergence of BNs

as a state-of-the-art solution to many applications previously dominated by rule-based AI

approaches. In current research, BNs continue to provide state-of-the-art performance in

many AI applications, including in their ‘traditional’ role in probabilistic expert systems,

as well as in advanced medical and fault diagnosis, data fusion, drug discovery, robot

navigation and natural language processing applications [35, 36, 37, 38, 39, 40]. The BN

framework represents a generalised version of many other commonly used machine learning

techniques. For example, Hidden Markov Models (HMMs) and Kalman Filters (KFs) fall

into this category [2, 34].7 A further example of a specific version of a BN – and perhaps

the most widely used BN variant – are those used in many document classification and

‘spam’ filters: the so-called Näıve Bayes models [41].

Bayesian Networks derive their name from the mathematical basis upon which the

framework is based: they facilitate the generalised application of Bayes’ Theorem to arbi-

trarily large problems. Equation 2.1 shows this theorem. This theorem provides a formal

basis for revising the probability (belief) of an event in the presence of new evidence (i.e.

the current state of the world). Bayes’ Theorem consists of four components. The first

P (A|B) is a conditional distribution capturing the probability of an event A given an event

B.8 This component represents the posterior distribution: the degree of belief in the occur-

rence of event A given all available information about event B. The component P (A) then

represents the prior marginal distribution: the degree of belief in the occurrence of event

5This refers to the ability to reason based upon knowledge of the world and observations (or perceptions)

respectively.
6Bayesian Networks are referred to using a number of different names. Somewhat archaic names include

Probabilistic Belief Nets and Bayesian Belief Networks [2, 3]. Other names include Causal Networks (in

specific contexts).
7Note that in this context the ‘Markov’ in the term Markov Models refers to the dynamics of the process

being modelled, not the modelling framework itself.
8For example, the probability of a coin coming up heads given the coin is known to be loaded. The

expectation of the outcome of a coin flip would vary based on whether or not it is known that the coin is

loaded: Bayes’ Theorem explicitly captures this problem.
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A in the absence of information on the status of event B. This reflects the background

rate of occurrence of an event independent of any additional information. Similarly, P (B)

represents the marginal probability of event B. Finally, P (B|A) represents the conditional

probability of the occurrence of event B given knowledge of the state of event A. This is

sometimes referred to as the likelihood component of Bayes’ Theorem [2].

P (A|B) =
P (B|A)P (A)

P (B)
(2.1)

Formally, events A and B are described as being Random Variables (RVs).9 In statis-

tics, RVs can be described as being a variable in a model whose value is the product of a

stochastic process. RVs are described as being either continuous or discrete. For example,

a discrete RV may be used to model the probability of a coin toss, or the probability of a

student receiving a particular grade. In these cases, there are a finite number of possible

outcomes. For example, for an RV used to model a coin toss, the RV may be modelled

as using a Bernoulli distribution with two outcomes: heads or tails.10 In contrast, a

continuous RV may be used to represent a velocity of a robot, or the heart rate of a hos-

pital patient. In either case, the RV may be modelled using any appropriate continuous

probability distribution.

A RV also has a more general definition: it describes a mapping that associates each

outcome with the probability of the occurrence of that outcome: RVs within a BN model

may represent any mathematical function that captures a valid probabilistic mapping of

states. In general, a RV can be defined as:

Random Variable – A function that assigns numerical values to the outcomes of a

random phenomenon [42].

A RV is parameterised. In the most basic cases, this parameterisation may correspond

to discrete probabilities: a coin-flip RV may be defined by a single parameter (i.e. 0.5).

9The term ‘Random Variable’ and ‘Variable’ are often used interchangeably in the context of statistics

and PGMs.
10Probability distributions are a central concept to BNSs, and arguably the Bernoulli distribution is the

most important single distribution to understand in this context. However, an in-depth technical review

of the statistical concepts including this distribution is beyond the scope of this chapter. An excellent

introduction to statistical concepts can be found in Barlow’s textbook, and Kendall’s series on advanced

statistics [19].
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These mappings are sometimes referred to as the local structures in a BN model. The

most widely used local structure for RVs is the table representation: these are commonly

referred to as Conditional Probability Tables (CPTs). Local structures are also referred

to as Conditional Probability Distributions (CPDs): this makes no assumptions about the

structure of the RV and is a generalisation of a ‘CPT’.

Coin = Heads Coin = Tails

State = Loaded 0.7 0.3

State = Fair 0.5 0.5

(a) The joint conditional distribution for P (Coin|State).

Coin = Heads Coin = Tails

0.6 0.4

(b) The marginal distribution P (Coin|State = Unknown).

Coin = Heads Coin = Tails

0.5 0.5

(c) The marginal distribution P (Coin|State = Fair).

Figure 2.1: A comparison of a table-structured Conditional Probability Distributions

(CPDs) before and after marginalisation.

Figure 2.1a shows an example table-structured CPD (CPT) for an experiment in which

a coin may – or may not – be biased, and the associated conditional probabilities of the

outcomes (i.e. whether the coin turns up heads or tails) given the state of the coin. As

will be discussed later, the mapping of variables within this table and the parameters that

express relationships between them are commonly learned from data. The parameters

in this example refer to the probability of the occurrence of a given state. Intuitively,

if the coin-flipper knows the coin is biased, then the probability of the coin turning up

heads is known (in this case it would be 0.7). However, a key feature of this approach
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can be seen when there is uncertainty in whether or not the coin is biased. By computing

the marginal distribution for this RV (i.e. the distribution with respect only to whether

the coin is heads or tails) we can express a belief in the coin turning up heads given the

nature of the coin is unknown. The marginal CPT is shown in Figure 2.1b. If the nature

of the coin becomes known, or additional data becomes available, this distribution can be

revised. This is shown in Figure 2.1c. In this case, the marginal distribution is revised to

reflect a fair coin.

Table-structured CPDs are the most common local structure in BN models. However,

they are not the only local structures that are used in BNs. As the RV definition suggests, a

number of alternative local structures can be used. These include several Artificial Neural

Network (ANN), Random Forest (RF) and Support Vector Machine (SVM) variants, as

well as other BN models.11 This enables the development of hierarchical and object-based

BN (OOBN) models for high-complexity domains [4, 43]. It is possible to ‘embed’ some

ANNs, SVMs or indeed any other approach that meets the RV definition within a single

BN model [9, 10,11,44].

Taken together, these properties make the BN framework an ideal mathematical tool

for integrating information from many distinct AI approaches into a single coherent model.

This model is a representation of a domain that can be used to effectively reason over all

available information – and may be revised when new information becomes available.

Bayesian Networks therefore offer a representational framework that directly model the

world, as Pearl notes [18]:

Perhaps the most important aspect of Bayesian Networks is that they are direct

representations of the world, not the reasoning process.

As will be discussed later, the implications of this fact strongly influence the interpre-

tation of individual BN models and the development process for complex BNSs.

2.2.3.1 Representation

As a framework for capturing uncertainty in the ‘real world’, BN models share many

conceptual similarities with mathematical models developed in the natural sciences – par-

ticularly in the domain of physics. A fundamental aim of a BN model is to provide a

11The local structure of a variable within a BN may itself be a complete BN model in its own right.

See [2] for a review of this form of BN model.
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compact representation of complex problems in a computationally (and developmentally)

tractable mathematical construct. Formally, they are used to represent high-dimensional

Joint Probability Distributions (JPDs) in a factorised format. Practically, this means that

the BN framework allows developers to mathematically decompose highly complex proba-

bilistic models into (theoretically) less complex mathematical components, and to use this

factorised representation to perform efficient computations over the model. Without this

factorised representation, the state-space of complex probabilistic models can become too

large for computations utilising the model to remain tractable.

Figure 2.2: A visualisation of the structure of the ‘Asia Model’.

For example, consider the model shown in Figure 2.2. This figure shows a simple (fic-

titious) medical diagnostic model for diagnosing respiratory diseases in patients returning

from a trip to Asia. This model was introduced by Lauritzen and Spiegelhalter in their

early work on BNs and remains a common example within the field of Probabilistic AI

and is typically referred to as the ‘Asia Model’. In this case, the model’s JPD encodes the

joint distribution over the eight discrete RVs within the model. Each of these variables is

represented with a standard table-structured CPD, and each is defined as having only two

states (i.e. as a binary discrete RV). Each node within the BN represents the CPD for

that variable conditioned on its parents (i.e. ancestor nodes). For example, the Dyspnoea

variable is entirely defined by the CPD shown in Figure 2.3 – only the conditional depen-

dencies of the Dyspnoea variable and its parent variables (Either Disease and Bronchitis)
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are encoded in the local structure. The Asia Model represents one of the simplest possible

BN architectures.

D = Y D = N

B = Y, E = Y 0.9 0.1

B = N, E = Y 0.7 0.3

B = Y, E = N 0.8 0.2

B = N, E = N 0.1 0.9

Figure 2.3: The tabular representation of the P (Dyspnoea|Bronchitis, Either) CPD,

where D = Dyspnoea, B = Bronchitis, and E = Either.

Despite this simplicity, the Asia Model highlights an important property of the BN

framework. The full JPD of this model contains 256 individual parameters. By defining

the model according to only local structures and therefore parameterising the CPDs indi-

vidually, the decomposed representation facilitated by the BN framework can be captured

using less than 36 individual parameters. This reduces the modelling challenge associated

with developing a probabilistic model of this diagnostic problem. From a practical per-

spective, this compartmentalises the development of the model: each variable within the

BN can – in principle – be modelled with consideration only of its parent variables. In

contrast, specifying the full JPD using alternative methods may require the consideration

of each variable in the context of each other variable within the model – thereby creating

a combinatorial explosion in the complexity of the model’s state-space.12

12From a software perspective, the exponential growth in the size of a model’s state-space given the

introduction of each new variables can quickly produce models in which an explicit (i.e. unfactorized) rep-

resentation of the model’s JPD may exhaust all computational resources that could possibly be dedicated

to it.
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Figure 2.4: A visualisation of Beinlich’s ‘ICU Alarm’ model [45,46].
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An example of this problem can be seen in the model shown in Figure 2.4. This

model is also commonly used within the BN domain and is often referred to as Beinlich’s

Alarm ICU model. It was originally developed to reduce false positive alarms to medical

practitioners on hospital Intensive Care Unit (ICU) wards. It represents the diagnostic

knowledge of medical practitioners and has been integrated with the health statistics of

many patients and the results of a number of medical studies. It provides a small-to-

moderately sized BN model that is commonly used to benchmark analysis and inference

techniques and will be returned to later in the thesis. Technically, it remains relatively

simple.

However, it highlights the problem of combinatorial explosion in BN models: an explicit

representation of this model’s JPD would be composed of more than 1 × 10500 unique

states. This is a large number. For scale, there are estimated to be only 1 × 1080 atoms

in the universe. The BN framework reduces the number of parameters that must be

specified to less than 2 × 104 independent parameters.13 This makes the development

of larger BN models technically challenging but generally practicable, especially when

automated learning algorithms are utilised. Clearly, however, an exhaustive exploration

of such models will be infeasible.

The Alarm model also reinforces Pearl’s assertion about the nature of BN models as

direct, declarative representations of the world: any conclusions derived from a BN model

are intrinsic to the model and (in principle) reflect some state of the world according to

the model. By extension, errors in this representation are intrinsic to the model too. In

the case of the models shown in Figures 2.4 and 2.2, they represent expert knowledge

of disease diagnosis and the health of patients. In other cases, they may represent the

relationships between sensor readings and vehicle positions, the type of a document given

the occurrence of a sequence of words, or the probability that a component in an aircraft

may fail given its current operational context. Consequently, the properties (and errors)

of these models are independent of any other underlying implementation details – whether

these implementation details be related to hardware or software [1, 2].

This property has resulted in the majority of BN literature broadly neglecting any

specific implementations or tools in favour of treating BN models as abstract mathematical

constructs; research focusses on understanding what has been built (or learned) and the

13This can be further reduced by exploiting independence properties within the network. However, the

number of independent parameters that must be specified (or learned) remains in the hundreds.
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dynamics of these models. This is consistent with the concerns of BN developers: a single

software implementation may support many models. In many cases, the models will be

the most valuable artefacts in a given system.

2.2.3.2 Inference

The ability of BNs to factorise complex probabilistic spaces into more easily tackled math-

ematical problems is a key property of the framework. However, as outlined in section

2.2.3, the utility of a BN model lies in the ability to infer the state of the world according

to that model and any available information about the world. This requires updating and

manipulating the model’s JPD. As discussed in section 2.2.3.1, an explicit representation of

the model’s JPD is typically prohibitively large for the purposes of tractable computation.

The aim of BN inference algorithms is therefore to update and manipulate the model’s

JPD without computing the joint distribution. In the BN literature, this process is typ-

ically referred to as querying the model.14 This involves instantiating a model with any

available information, and then computing the model’s degree of belief in the state of the

variables in the model. The inference algorithms that facilitate these operations fall into

two categories: exact inference algorithms and approximate inference algorithms.

Figure 2.5: A high-level visualisation of the Junction Tree algorithm.

In general, algorithms in the former category are favoured whenever they can be fea-

sibly used: as their name suggests they provide the exact degree of belief in an RV’s state

given all available information. There are several approaches to exact inference for BNs.

The most ubiquitous approach relies on ‘belief propagation’ (BP) within a BN model.

Figure 2.5 shows the general process of a BP inference algorithm. As the figure indicates,

14This language appears to have somewhat fallen out of favour as the use-cases for BNs have grown and

the field has matured.
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the algorithm begins by performing a series of transformations (Moralisation and Tri-

angulation) over the graph structure of a BN. This produces an undirected and further

compacted representation of the original model. However, the semantic value of the origi-

nal model is often eroded or lost in the resulting structure. This structure is often referred

to as a Junction Tree (JT).15 The JTs produced from this process are then ‘calibrated’:

the probabilistic information from the originating BN is used to configure the JT’s struc-

ture. This ensures that the JT encodes an equivalent probabilistic representation to the

original model – even if some of the semantic value of the originating representation is

lost.

At this stage, the JT is ready for belief propagation. Belief propagation is typically

performed using some variant of a message-passing algorithm. These algorithms ensure

the probabilistic integrity of the JT is maintained (i.e. that the distribution encoded by

the JT remains a valid probability distribution). When this message passing is complete,

the distributions encoded within the JT are exactly equivalent to the state of belief in

the originating BN given all available information. The marginal distributions for each

variable within the JT can then be computed and represented within a BN model.16 An in-

depth review of belief propagation algorithms for BNs is beyond the scope of this chapter.

However, detailed explorations of this area can be found in the work of Lauritzen, Koller,

or in Pearl’s original publications [2, 16,17,32].

Whilst exact inference engines are generally desirable, they cannot always be employed

in BNSs. This is often because of the specific properties of the structure encoded by the BN

model, or because the complexity of the model undermines the ability of exact inference

approaches to function effectively. Circumstances such as this are common in applications

focussed on image processing, natural language processing and some robot localisation

and navigation tasks [47, 48, 49]. These applications are characterised by models that

can rapidly become extremely large and complex – even for relatively simple tasks. In

these cases, approximate inference methods are utilised. There are several approximate

inference algorithms available to BN developers. Amongst the most prominent of these

15The state-space of a JT is typically defined such that the combinatorial growth typical of other rep-

resentations is to some degree mitigated. However there are many open research problems relating to the

optimal construction of JTs and most rely on heuristics or brute-force search methods.
16Note that the Input and Output nodes inf Figure 2.5 correspond to model inputs (sometimes referred

to as evidence) and the marginal posterior distributions respectively.
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are approaches that utilise Markov Chain Monte Carlo (MCMC) sampling to estimate a

BN model’s marginal distributions.17

Inference techniques utilising MCMC methods are based on a simple concept: that

by generating a sequence of samples drawn from the underlying probability distribution

encoded in the BN model, an estimate of the ‘true’ posterior distribution of the BN can

be approximated. This approach is mathematically guaranteed to converge to the ‘true’

posterior of a BN model given a sufficient number of samples. However, sampling the

a BN’s distribution proceeds at random, and while these algorithms are guaranteed to

converge to an accurate estimate, when they will converge can sometimes be difficult to

estimate and therefore guarantee [2, 51, 52]. Furthermore, these approaches are typically

sensitive to their ‘initial conditions’ – the initial configuration of the algorithm and the

first random samples drawn from the BN model. This introduces additional uncertainty

into the estimate of the posterior that is obtained. A number of mitigation strategies

have been developed to tackle these problems, but ultimately, they remain an inherent

consideration for this class of algorithm.

2.2.3.3 Learning

Beyond the representational and inferential capabilities of the BN framework, there is the

final aspect of BNs that has driven the popularity and interest in these approaches – and

other techniques in the field of AI generally. This is the ability to define and develop a

BN model such that it can learn from data rather than being ‘manually’ programmed.

Indeed, many AI approaches have been developed and designed to accomplish tasks that

traditional, explicit, and therefore transparent programming methods are poor at (or inca-

pable of) performing. These tasks are often too complex, variable or novel for conventional

software development approaches to effectively tackle [53,54].

In the case of BNs, the semi-transparent mathematical constructs that drive them may

constitute a significant proportion of a system’s programming. The learning algorithms

that identify and define these models can be considered to (partially) take the place of

a software system’s programmer. The BN developer’s role is then shifted to a parallel

but distinct set of considerations focussed on identifying and configuring a learning (i.e.

programming) method that will achieve desired performance characteristics when exe-

17Another widely used approximate inference approach is Variational Inference, an introduction to this

can be found in the work of Blei et al and Jordan [50,51].
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cuted; this is as opposed to designing the software architecture and ultimately manually

programming the system.18

From this perspective, the properties of learning algorithms and the hyperparameters

used to configure the algorithms that are used in the development of a BNS are of central

importance to the functional behaviours of the completed system. This is true even if these

algorithms are not physically encoded in the final system or otherwise deployed aboard

the completed system. In the context of learning algorithms, a hyperparameter can be

defined as follows:

Hyperparameter – Parameters that are set prior to the model learning process. For

example, these parameters can tune the rate of learning of an algorithm or the algorithm’s

tolerance to noise in any training data. This is in contrast to parameters: these are

derived through the learning process [51]. There may be additional optimisation/learning

phases focussed on identifying an optimal set of hyperparameters [55].

For BNSs, there are two principal aspects of a model that learning algorithms aim to

optimise: a model’s structure and/or a model’s parameters. In BNSs, the semantic value

of a model’s structure has driven the development of a wide variety of structure learning

algorithms for knowledge discovery; these algorithms can be used to automatically discover

relationships between variables within a domain. This has been used extensively in a

number of medical knowledge discovery studies [56,57]. The structure learning problem in

the case of BN models is often more important in than in alternative AI approaches [1,2].

For example, learning algorithms for ANNs and SVMs are often only minimally con-

cerned with directly learning the structure of a model – structure learning is instead

dominated by more ‘coarse’ structure aspects such as the higher-level architecture of an

ANN, or the size and variant of an SVM. In many cases these models have limited inherent

semantic value. The problem of learning models in these cases is instead generally more

focussed on parameter learning algorithms to identify an effective weighting configuration

for the model.19 For BN models, structure learning algorithms can identify model struc-

tures that imply conditional relationships that may in turn indicate causal relationships

18This is of course still an important phase of the development of a BNS, but its importance is diminished

for many systems utilising modern AI approaches.
19There is an equivalence in parameter learning and structure learning in ANNs: a zero-weighted con-

nection in an ANN is precisely equivalent to learning part of the model’s structure.
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between domain aspects [22]. This structure will define the reasoning behaviours of a BN

model and therefore directly influence the behaviour of a BNS utilising this model – it will

therefore also directly influence the interpretability of the model.

The most widely-used class of learning algorithm for BNSs are those that focus on

parameter learning. Algorithms of this class aim to parameterise the local structures of a

BN model. They often do not indicate the conditional or causal dependencies of variables

in a model and therefore do not influence the interpretability or reasoning performance

of a model in the manner of structure learning algorithms. Instead, parameter learn-

ing algorithms generally modify the degree of dependence of variables upon one another.

Expressing the quantified strength of dependence of variables within a domain is often

problematic for human experts, and the ability to achieve this with an automated pro-

cess has proved invaluable in a number of practical contexts [58, 59, 60]. For example,

the state-space of BN models is commonly so large that eliciting parameters from human

experts is impracticable. The combination of the limitations in the ability of experts to

quantify dependencies in a domain and the size of the state-space of a model can make

the assessment of the accuracy of individual learned (and expert-elicited) parameters a

challenging problem. The development of techniques that explore these learned properties

is an ongoing area of research [56,61].

While learning algorithms for BNs can be generally divided into those focussed on

either structure or parameter learning, they can also be used in support of ‘off-line’ and

‘on-line’ learning. These cases can be defined as follows:

Off-line Learning – A learning/optimisation activity that occurs prior to the deploy-

ment of the system. AISs using this form of learning are sometimes referred to as ‘pre-

trained’ or ‘static’ models.

On-line Learning – A learning/optimisation activity that may begin prior to the de-

ployment of the system, but continues after the system is operationally deployed. AISs

using this form of learning are sometimes referred to as ‘adaptive’ or ‘active’ models.

In the former case, a BN model would be a static artefact that does not vary after a

BNS is deployed. This learning approach is often appropriate for diagnostic roles or other

decision support roles where – to a good approximation – the domain being modelled can

be captured using only off-line training techniques (i.e. the domain will not vary signifi-

cantly over time). For example, a diagnostic problem may be well characterised by expert
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experience and extensive empirical trials: the problem may be sufficiently constrained so

as to ensure the continued validity of a static model.

However, in other cases, the target domain may be inherently dynamic and therefore

constantly evolving. In these cases, a pre-trained BN model may become obsolete dur-

ing deployment. In such cases, adaptive learning approaches may therefore be required

to maintain the performance of the BNS. Adaptive methods typically allow a model’s

structure and/or parameters to be updated in the presence of new data [62,63]. This can

allow a BNS to compensate for environmental and operational changes that may not have

been present during the development of the system. When effectively implemented, these

approaches can theoretically improve the robustness of a system to problems associated

with ‘distribution shift’ and shifting operational contexts.20

Any errors or distortions in the sensory capabilities of a system utilising a BNS –

or indeed in any input to the BNS – will be used by an adaptive learning algorithm to

revise the state of the world as captured by the BN models driving the systems. From an

assurance perspective, this introduces the possibility of a safety and security vulnerability

for this class of systems. This could be in the form of novel ‘hacking’ approaches that

target BNSs deployed with adaptive learning capabilities (and other AISs using similar

techniques). For example, an adaptive learning approach used aboard an Unmanned Aerial

System (UAS) for mission planning could be manipulated by low-levels of systematic biases

in inputs (i.e. through the vehicles sensory capabilities: radar, cameras, etc.). This may

have the effect of producing unexpected effects – the UAS may become situationally blind

or compromised (either in terms of ‘physical’ perception or in terms of its ability to reason

about its operational capabilities). As these vulnerabilities would exploit the learning and

model aspects of these systems, a platform could be compromised without access to its

hardware or software: the exposed ‘API’ of the system would be the world around it.

To summarise, the learning algorithms used by a BNS play a central role in the func-

tional behaviour of a BNS. In both the on-line and off-line cases, the effect of the precise

configuration of a learning algorithm may introduce significant differences in the reason-

ing and performance of two BN models trained on otherwise identical data. Indeed, the

manner of their use – in conjunction with the nature of the BN models they are used to

20Distribution shift refers to the slow, sometimes random, changes in the statistical profile of the processes

being modelled by an AIS. Technically this can result in increased statistical error in a model’s predictions.

Practically, this could result in an AIS manifesting apparently erratic or erroneous behaviours [21].
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define – is considered by some to be a new form of software. This approach has been

referred to within the AI community as differentiable programming, as Yann LeCunn, a

pioneer in the field of ANNs, states:

“... people are now building a new kind of software by assembling networks of

parameterized functional blocks and by training them from examples using some

form of . . . optimization . . . It’s really very much like a regular program, ex-

cept it’s parameterized, automatically differentiated, and trainable/optimizable

[sic].”

The emphasis on the optimisation of this class of system is critical. The learning algo-

rithms optimise a software system’s programming for a target problem. This optimisation

is a key aspect of the properties and capabilities that make many AI approaches desir-

able, and indeed the only currently practicable solutions to many computational problems.

However, these properties make them radically different from the conventional software

systems that form the focus of existing software development lifecycles and software as-

surance literature.

2.2.4 Development Lifecycle

The development of a BNS is often dependent on information and system aspects that

are not generally known a priori. For example, the quantity, breadth and type of data

required for the development of a BNS may not be known. Similarly, the specific learning

algorithm, its configuration and mathematical properties may be unknown at the incep-

tion of a project. These aspects may remain unknown or otherwise poorly defined until

comparatively late in the development of a BNS [5, 6]. Aspects such as these are refined

through iterative design, analysis and evaluation. The development lifecycle of many BNSs

is therefore characterised by highly iterative design and testing phases, the duration and

extent of which may not be possible to specify in advance. This is sometimes cited as the

major source of technological risk in the development of AISs: it may not be possible to

know whether a system will be performant until much later in the lifecycle of a BNS than

is typical in conventional software systems [2, 6, 58, 64]. The difficulty in pre-emptively

defining and decomposing a set of requirements alongside a general set of systematic de-

velopment practices is well known within the AI domain [2, 64]. It is a major ongoing

research challenge within the field. This is highlighted by Koller who states:
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“... at the moment, the design process is more the result of trial-and-error

experimentation, combined with some rough intuitions that practitioners learn

by experience. It would be an important achievement to turn this process from

a black art into a science.”

Indeed, the development of an effective BNS can share more conceptual similarities

with the empirical experimental practices common to the natural sciences than to ‘top-

down’ design processes more common to software engineering practices: whether a new

experiment will succeed or fail at providing a particular observation cannot be known

in advance. Moreover, precisely how an observation will be made may not be known in

anything other than the most coarse-grained terms. Typically, experimentation proceeds

from a high-level goal, and the decomposition of this goal into sub-goals (requirements) is

commonly a highly iterative process of discovery. The decomposition process may reverse

or change as new information becomes available to refine the experimental process. If a

BN model is considered to be an empirical, probabilistic model of a target domain, this

could be considered to be an unavoidable consequence of the framework – and is shared

with other AI approaches.

While a generic framework for the development of a BNS has not yet been established,

several authors have published work on the development of domain- and context-specific

development practices which each aim to systematise or formalise some aspects of the iter-

ative lifecycle of BNS [6,59,65]. One approach, proposed by Przytula et al, was developed

specifically for constructing BN models for fault diagnosis aboard complex systems. It

aims to provide a systematic process for the development of BN models. However, it is

high level and still somewhat driven by BN developer intuition. The process defines four

steps based on developing and deploying diagnostic BNs for complex aerospace systems:

1. System Decomposition The system is systematically decomposed on the basis of

expert guidance into a set of subsystems. The boundaries of subsystems are then

defined in accordance with the scope of knowledge of individual human experts (or

teams of experts focussed on a given system aspect or subsystem). These subsystems

are then decomposed further if the complexity of the subsystem is assessed to be too

high. The principal aim of this stage of development is stated as being to identify

individual BN models or model fragments, and to ensure the objective of these
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models (i.e. to diagnose subsystem faults) is minimally complex.21

2. Subsystem Definition With the preliminary set of subsystems identified, the enu-

meration and definition of all faults and observations associated with each given

subsystem then begins. Once again, the process aims to establish a minimal level

of granularity for a BN model by defining faults in accordance with maintenance

practices and knowledge of system experts. The process advocates defining faults

according to replaceable subsystem components and standard maintenance activi-

ties. The example provided is as follows: if a group of circuit boards is replaced en

masse, then this group of boards should be considered a single fault (as opposed to

each individual board). At this point, the complexity of the subsystem should be

re-evaluated. Further decomposition may be necessary in the event the complexity

of the subsystem has grown beyond a heuristically derived value – though this can-

not be established until after this phase of development. The process should then

proceed iteratively until a minimal level of granularity of the subsystem model is

agreed upon by relevant stakeholders.

3. Subsystem Modelling Next, the process advocates the development of BN models

using the outputs from the previous phase (i.e. a list of faults and observations) by

beginning from a minimal fault model of the subsystem. This initially takes the form

of BN model with a single fault node: all faults within the subsystem are represented

as being mutually independent and are all regarded to be direct causal factors in the

occurrence of each observation. Therefore, at this stage, the subsystem is modelled

as being equivalent to a näıve Bayesian Network. This is the simplest representation

possible in the BN framework. If the model is not performant, an iterative process of

refinement begins whereby the faults are gradually modelled as increasingly granular

faults (i.e. iteratively broken into separate nodes with their own dependencies). This

process continues until the model satisfies domain experts and may require regression

to the previous phase of development for continued decomposition of the system or

subsystem.

4. Subsystem Model Integration The final stage of the development of the models

21The emphasis of this development methodology on establishing ‘minimally complex’ models can be

summarised by the quote attributed to Einstein that says; ‘Everything should be made as simple as possible,

but no simpler’. The aim here is to ensure the modelling activities produce parsimonious models.
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is the integration of subsystem BN models into larger hierarchical models. These

hierarchical models are iteratively tested over the course of these integration ac-

tivities to ensure that the models remain performant when integrated with other

models. If there are any shared dependencies across subsystems, the integration of

these subsystem models may erode the performance of the models. The guidance

suggests the parallel development and testing of such interdependent subsystems to

avoid these issues where possible. However, it is noted that the integration process

is highly application dependent. The guidance provided for the model integration

phases is therefore comparatively scarce. It also indicates the potential need for

further regression to previous development phases.

With little existing guidance into the development of large, complex BNSs for ‘real

world’ applications, this research provides insight into the development of these systems

in a practical context. However, as a piece of guidance, it applies only to a subset of

BN applications: it makes a number of assumptions with respect to the BN models used

– particularly with regard to the structure variants and modelling objectives of the BN

models and subsystems. Consequently, the guidance does not provide (nor does it attempt

to provide, given the research scope) a generic framework for developing BNSs. For the

class of BNS it targets, it provides a set of heuristics for identifying when a development

phase is complete. Finally, the research highlights a recurrent feature of existing BN

development literature and methodologies: a near-complete absence of discussion of the

role of the software and hardware implementation aspects – those aspects most of concern

to software safety practitioners in conventional systems. The emphasis is once again placed

on the BN models and the data (and expert input) used to develop the system. It again

raises the issue of the effective communication of these unconventional system aspects to

other domain experts and system stakeholders.

Another more general development methodology – referred to as the Knowledge Engi-

neering for Bayesian Network (KEBN) methodology – has also been proposed by Pollino

[59]. This approach does not assume any specific application but does assume that the

BNS being developed is a knowledge-based decision support tool; this therefore narrows

the scope of the guidance. The methodology was proposed to support the development of

BN models for ecological modelling applications. As noted by the authors of the method-

ology, these applications are exposed to particularly high levels of both statistical and

systemic uncertainty in their target domains. While the KEBN methodology is more gen-
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erally applicable to a broader range of BN applications than the previous methodology,

it still makes significant assumptions about the development process. In particular, the

methodology does not provide guidance on the development of BNSs that utilise model

structure learning approaches. These aspects are assumed to be derived through expert

elicitation rather than an automated learning approach. Furthermore, as a knowledge-

driven methodology, the approach does not provide insight into the development of purely

data-driven BNSs – those systems that are developed with limited expert input. A flow

chart illustrating the development methodology is shown in Figure 2.6.

As with the previous development methodology, the KEBN approach relies heavily on

highly iterative development activities. As can be seen from Figure 2.6, the methodol-

ogy is composed of three core processes: Structural Development and Evaluation (SDE),

Parameter Estimation (PE), and Quantitative Evaluation (QE). The SDE process is not

explored in detail within the research, though the authors indicate this is entirely elicited

from experts. The PE processes are aimed at facilitating the integration of information

from both domain experts and any available quantitative data into a single BN model.

This process has an internal iterative cycle of evaluation and development aimed at ad-

dressing the need to continually review parameter estimates obtained from automated

(parameter) learning approaches.

The QE processes in the methodology are once again highly iterative. They address

an important feature of the development of BNSs: the quantitative (generally statistical)

evaluation of BN models. As indicated by the authors’ experiences in developing these

systems, the development of a knowledge-based BNS must accommodate many iterations

between the evaluation of a BN model, and the incremental revision of a BN model’s

parameters or structure. This process is driven by model-focussed analysis and evaluation

techniques as opposed to conventional software analysis techniques. As with the previous

methodology, there is no explicit discussion of the software implementation and evaluation

aspects from a conventional software development perspective. Again, the operational

experience of the authors stresses the disproportionate importance of evaluating the model,

data and knowledge of domain experts when developing a BNS.

Ultimately, both of these methodologies and other items of existing work on defining

structured approaches to BN development are highly limited. As discussed here, research

and guidance that does exist is focussed on specific applications and domains and does not

provide more generic guidance that could accommodate the development of a ‘modern’
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Figure 2.6: The Knowledge Engineering for Bayesian Networks (KEBN) development

cycle, as proposed by Pollino et al [59].
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data-driven BNS. The few guidance documents and development methodologies that do

exist stress the necessity of accommodating highly iterative development cycles, the general

constraints placed on the development of BNSs that arise from limitations in knowledge

and resources that are particularly influential on the development, and finally the analysis

and evaluation activities that will need to be performed by BN developers [5, 6, 59, 65,

66]. No existing methodologies or guidance for BNSs provide the rigour that would be

necessary for the development of mission-critical BNSs. There is no existing guidance

on how decisions on the sufficiency of BNS-specific analysis and evaluation techniques

can be made with respect to the role of a BN model in the functional behaviour of a

mission-critical BNS.

2.3 Safety Standards

The development and assurance of conventional safety-critical software systems is gener-

ally achieved through compliance with one or more safety standards. The safety-critical

systems domain has produced a range of standards and guidance documents that each aim

to tackle the design, implementation and deployment of this class of systems in various

engineering domains. These standards espouse an assortment of development and analy-

sis techniques that are believed to represent ‘best practice’ by engineers within the field a

given standard is relevant to. This section gives a general overview of a subset of systems-

and software-engineering safety standards and guidelines that are particularly pertinent

to the motivating example of this thesis. These standards and guidelines represent a

cross-section of key aerospace safety standards within the UK and provide insights into

existing schools of thought within the safety-critical systems domain. Where applicable,

general criticisms – and criticisms related to the applicability or relevance of aspects of

these standards with respect to AIS/BNSs – are provided.

The Aerospace Recommended Practice (ARP) 4754 (Revision A) document is a widely

used and generally well-regarded guidance document that addresses the development of

civil aircraft and systems [67]. It has found extensive use internationally, and in particular

is a de facto standard for aerospace systems developed within Europe and North America.

As a set of guidelines, ARP 4754 is aimed at addressing the lifecycle of system-level

functions, including system requirements, system verification and requirements validation.

It is written to integrate closely with other guidelines focussed on addressing software and

hardware aspects of an aircraft – aspects addressed by DO-178C and DO-254 respectively.
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The guidelines are also designed to be used in conjunction with a further document: ARP

4761. This latter document defines the safety assessment methodologies to be used in the

assurance of the aircraft. Taken together, these four documents are intended to provide

comprehensive guidance on the development and certification of any aircraft or other

airborne systems.

Practically, ARP 4754 provides a mechanism for assigning Development Assurance

Levels (DALs) to system-level functions (in the context of this thesis: UAS-level func-

tions). This includes the assignment of DALs to software systems deployed aboard an UAS

through the application of the safety analysis methodologies outlined in ARP 4761 [68].

The software-specific development, analysis and evaluation of software systems and their

associated lifecycles are handled by DO-178C [69]. For software systems, DO-178C pro-

vides sets of objectives alongside the recommended activities for satisfying these objectives.

As with many other standards, the number of objectives and the analytical rigour required

to meet them is typically proportional to some form of criticality of a given software system

or subsystem to that system’s safety: there are more objectives and an assumed higher

level of rigour associated with the development of systems to higher DALs. By focussing

on compliance with processes and pre-defined objectives, ARP 4754 and DO-178C have

remained popular with industry groups and engineers thanks to their relatively concrete,

well defined requirements. In the context of safety-critical systems, criticality can be

defined as follows:

Criticality – A product of the degree of contribution of a system (or subsystem) to

safety-related functional behaviours and the severity of hazards associated with these

behaviours.

Though popular and widely used, this group of guidance documents has been criticised

by safety practitioners. A frequent criticism originates in precisely the prescriptive nature

of the documents that has contributed to their popularity. While they provide well-

defined processes and requirements, the intent and rationale behind these processes and

requirements can be lost: as Weaver states, development activities may instead focus on

‘the letter of the law’ as opposed to the intended ‘spirit’ of the guidelines [70]. From

an assurance perspective this raises the possibility of the deployment of a system that

has been developed in exact accordance with guidelines but may retain significant and

potentially hazardous latent behaviours due to the narrowness of the verification and

validation activities carried out [70,71,72,73,74].

35



Chapter 2: Literature Review

A second related criticism arises from concerns over the completeness and relevance of

the processes and requirements laid out in the guidelines [75,76,77]. This becomes partic-

ularly concerning in cases involving the development of new and novel systems that may

integrate new development techniques, technologies or concepts [73, 78, 79]. For example,

DO-178C is intended to capture best practices in software engineering for aerospace sys-

tems at the time of issue and consequently for software systems in use or in development

at this time; there are assumptions implicit in the guidelines with respect to the nature

and scope of these systems, and the relative invariance of these systems and development

practices over time [79,80].

One general criticism of this form revolves around the application of ARP 4754 to

Autonomous Systems (AS) in the aerospace domain and the relation of these systems

to their operational environment [81]. Many AS applications will adopt the reasoning

and interactive behaviours of human operators. In these cases, they can become highly

sensitive to environmental factors that are not typically within the scope of conventional

systems. In its current form ARP 4754 provides little guidance on the role or importance of

environmental modelling activities. To date, it has relied on assumptions that the relevant

aspects of the operational environment of a system are well-defined, well-regulated and

well-understood. As discussed in previous sections, the scope of what is relevant to an

AIS may increase dramatically. This may be particularly true of BNSs that integrate and

reason over a wide range of environmental aspects. Consequently, the current near-absence

of guidance in this field will undermine the effectiveness of the guidelines in assuring this

class of system.

Figure 2.7: A visualisation of the ‘V lifecycle’ model [82].
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These criticisms extend to the consideration of the generality of the structure of system

lifecycles as assumed by both ARP 4754 and DO-178C. Specifically, both documents make

strong assumptions about the development process of a system, the activities that can

be carried out and the stages at which certain assurance information becomes available

to developers. Figure 2.7 shows the so-called ‘V lifecycle’ commonly used to describe

the development activities associated with a safety-critical software system [83]. Both

ARP 4754 and DO-178C make assumptions that the development of a software system

conforms closely to this general process. They assume that a conventional decomposition

of requirements is possible at an early stage and that the development process proceeds in

a roughly linear fashion. A number of authors have noted that for some classes of software

system, this conceptual model of the lifecycle of a system may not be appropriate [81,84,

85]. In the context of BNSs, ‘traditional’ software design and requirements decomposition

techniques will become less relevant and insightful. This is because at some point, the

functional behaviour of an AIS is often best described from a model-centric perspective as

opposed to a software-centric one. This could be regarded as a developmental boundary

for AISs – the point at which conventional function decomposition and analysis approaches

can progress no further (or are otherwise uninformative) and the principal determinant of

functional behaviour becomes the models that drive the system. This has been observed

in other classes of AIS [64,86].

These concerns are further compounded by the relatively slow pace of change in guide-

lines and standards in comparison to the pace of innovation in the broader technology and

engineering space. In some cases, standards and guidelines have existed almost unchanged

for decades despite changes to the technologies and applications they address [73, 80].

Moreover, even after modifications to guidance there is some debate as to the effective-

ness of additional requirements and processes mandated by these modifications [87]. For

example, it has been noted that in the case of earlier issues of DO-178C, the introduction

of additional testing activities may have increased the testing burden of developers while

producing no significant improvement in the effectiveness of this testing. It is assumed

that the same suite of software testing techniques will be capable of exposing hazardous

behaviours across all software systems addressed by the guidance [88,89].

An example of one such technique is coverage testing using Modified Condition/De-

cision Coverage (MC/DC). This is mandated for the highest DALs (i.e. DAL A). This

testing approach is aimed at exploring the code structures of a software system. In many

37



Chapter 2: Literature Review

contexts, it can be effective at identifying software errors in the system and can often

provide a high degree of confidence in the logical correctness of the system [90]. However,

it has been noted that within conventional systems this form of testing may be of only

limited use in identifying certain behaviours: it can be sensitive to some code structures

and may be no more useful in some contexts than other, less ‘expensive’ analysis ap-

proaches [75,91,92,93]. Moreover, in the context of BNSs, the properties of these systems

may further hamper the effectiveness of MC/DC testing (and other code-focussed testing

approaches) due to the importance of model and data aspects of the BNS in contributing

to the functional behaviours of the system. This will be explored in more detail shortly.

A further group of standards that are particularly relevant to the motivating example

of this thesis are those standards derived from the International Electrotechnical Com-

mission (IEC) 61508 standard. This standard aims to provide a general functional safety

standard [94]. This generality has made it popular in a number of fields, including the

nuclear, automotive, rail and process industries. A number of standards derived directly

from IEC 61508 are in active use in several domains. One such derived standard – of

particular note to road vehicles – is the automotive industry’s International Organisation

for Standardisation (ISO) 26262 standard [95]. This explicitly states that the autonomous

use of AI in these systems is not recommended. As IEC 61508 lays out a comprehensive

safety lifecycle for electrical, electronic and programmable systems it also makes strong

assumptions about the development process and activities. Similar criticisms have been

levelled at IEC 61508 as have been levelled at ARP 4754 and DO-178C, notably that

systems developed in accordance with this standard may encounter issues related to the

prescriptive nature of the standard, and the lack of explicit rationale that underpins the

defined requirements [70, 75, 76]. There is a general lack of clarity of how the processes

and requirements relate to the system in development [76]. Again, some of the novel de-

velopment activities and behaviours of many AISs have been identified as being poorly

addressed by the standard [96].

While the general landscape of safety engineering is still heavily reliant on relatively

prescriptive safety standards, there is increasing interest in the development of conceptu-

ally distinct, flexible standards to tackle the challenges discussed previously. One example

of this form of standard is the UK Ministry of Defence (MOD) Defence Standard 00-056

(DS 00-056) [97]. This standard sets out requirements addressing the safety management

of systems operated by the MOD but does not prescribe a set of objectives for how these
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requirements can be satisfied. Instead, it relies on a goal-based approach to assurance.

This is achieved through the development of a safety case that explicitly argues for the

safety of a system and uses evidence to support these arguments [70,98].

This standard is augmented by the recent re-introduction of the MOD’s Defence Stan-

dard 00-055 (DS 00-055) [99]. This standard specifically addresses the development of

‘Programmable Elements’ for safety-critical applications – with particular focus on soft-

ware aspects of safety-critical MOD programmes. It adopts a complementary stance to

DS 00-056 in focussing on providing a goal-based safety framework. Again, the standard

encourages assurance practitioners to explicitly expose the rationale for their assurance

activities and ultimately the safety of their systems.

The MOD has adopted this approach partially for flexibility; it enables developers to

use relevant civilian standards where appropriate (i.e. DO-178C for aerospace systems)

[100]. However, it has also been adopted to encourage more explicit reasoning when

establishing the safety of the system. Goal-based approaches have been criticised by

some as producing more ambiguous safety artefacts and for their often poor integration

with existing development practices [73].22 However, they have also been credited with

mitigating some of the weaknesses of standards such as ARP 4754 and IEC 61508: they can

ensure the reasoning behind assurance activities and development processes is explicit and

relevant to the system under development. They can also reduce the degree of disruption

caused by late-stage design or development changes [73,100].

2.3.1 Safety Analysis Techniques

The successful application of each of these standards is predicated on the effective utilisa-

tion of safety analysis techniques that explore the underlying properties and behaviours of

a system. The safety-critical systems domain has spawned a plethora of such techniques

that are both based upon techniques from the broader systems- and software-engineering

domains, and that have been developed entirely within the safety domain.

Understanding the general approaches to analysing the safety of a system and the

specific techniques that can be applied to these systems is a necessary prerequisite for

the assurance of the safety-critical systems. This section provides a top-level overview of

two of the most common safety analysis techniques currently in use: Fault Tree Analysis

22This issue of poor integration refers to cases in which goal-driven assurance cases are constructed

retrospectively, thereby undermining their potential utility.
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(FTA) and Failure Modes and Effects Analysis (FMEA). These two techniques have been

selected because of their ubiquity in the safety domain, and because they frame the two

logical approaches to safety analysis: inductive and deductive analysis. These two terms

can be defined as follows [83]:

Inductive – Any form of analysis which proceeds from a known or hypothesised condition

to possible outcomes.

Deductive – Any form of analysis which proceeds through the investigation of possible

causes of a specific system condition.

The logical process of all safety analysis techniques can be categorised in terms of

these two definitions. While they are presented here as a dichotomy, many widely used

techniques adopt elements of both forms of analysis. Perhaps the most popular technique

that consists of both deductive and inductive aspects is a Hazard and Operability study

(HAZOP).23 In the case of the two techniques selected for discussion in this section, FTA

is can be described as a deductive analysis technique, while FMEA can be described as

an inductive technique. Before continuing into a discussion of these two techniques, the

following terms must be defined [70]:

Error – A discrepancy between a computed, observed or measured value or condition,

and the true, specified or theoretically correct value or condition [101].24

Fault – An imperfection or deficiency in the system which may, under some operational

conditions, contribute to an error.

Failure – The inability of a system or component to fulfil its operational requirements.

Failure Mode – The way in which a system or component may fail.

These definitions will be used throughout this thesis.

2.3.1.1 Failure Modes and Effects Analysis

The aim of FMEA is to provide an inductive methodology for identifying how a system

may fail, and to assess the relative impact of these failures upon the system [83]. This

23A review of HAZOP is beyond the scope of this chapter. A good introduction can be found in Pumfrey’s

work [83].
24An error may not necessarily develop into a failure if it is within acceptable limits
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theoretically enables practitioners to prioritise assurance activities in order to address those

system aspects that require the highest levels of assurance. The analysis uses inductive

reasoning to identify a set of potential failure modes in a system, and then works backwards

from this point in order to attempt to identify possible causes of these failure modes,

and the safety effects these failures may have upon a system (and if applicable, system

operators) [83,102].

In some cases, the severity of the effects of a failure are also captured by the analysis.

In these cases, an FMEA is sometimes referred to as a failure modes, effects and criticality

analysis (FMECA).25 When the severity of a failure mode is assessed, it is common for

assurance practitioners to define the severity categories and any associated quantitative

risk profiles according to a given standard or guideline. Indeed, the specific form of an

FMEA and language used in these analyses are often defined by standards and guidelines.

For example, both FMEA and FTA are recommended analysis techniques in ARP 4761

[68]. Within the safety domain, FMEA methodologies are a core tool in a safety engineer’s

repository. They have been credited with providing a means of proactively exploring

a system’s failure modes rather than relying on analysis techniques that may identify

potential failure modes more reactively. They are also used to guide the design process

towards hazardous failure modes and the development of potential mitigation techniques

for these failures. A detailed breakdown of FMEA is beyond the scope of this chapter,

but a more complete review can be found in the work of Pumfrey [83].

However, while the utility of FMEA as a standard safety analysis technique is well

established, there have been a number of criticisms of the technique. One of the most

common criticisms is that FMEA is subjective: it is developed based upon a practitioner’s

internalised model of a system and is generally not driven by empirical observations or

other forms of objective evidence. Consequently, the repeatability of FMEAs is a major

source of criticism of this methodology: different safety engineers may produce divergent

FMEAs [103, 104]. In the most serious cases, this may result in the complete omission of

failure modes, an erroneous assessment of the effects of a failure mode, or some combination

of both [104, 105]. This contributes to a further common criticism of FMEAs: they may

25There is a degree of ambiguity in the usage of the term – the terms FMEA and FMECA are sometimes

used interchangeably by practitioners. Inclusion of severity/risk assessments are typically regarded as the

demarcation between techniques. More generally, the term FMEA is used to describe a range of similar

but distinct techniques, further complicating matters.
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inadvertently distort a safety practitioner’s estimate of risk in a system. This may be

particularly true of systems with unconventional properties.

2.3.1.2 Fault Tree Analysis

In contrast to FMEA, FTA is a deductive technique developed at Bell Labs in the 1960’s

as a by-product of the United States’ ballistic missile programme [106, 107]. The FTA

process begins with the selection of a failure mode (sometimes initially identified using

FMEA) and the use of this failure mode as the ‘top node’ of a Fault Tree (FT). The safety

practitioner then proceeds deductively from this failure mode by identifying causal factors

leading to this ‘top node’. These are typically represented using only “AND/OR” logic

gates. The intent of an FTA is to reveal combinations of events that may lead to the

occurrence of the top-level event (i.e. the failure mode). As the definition suggests, the

conclusions drawn from FTA are logically irrefutable provided the structure of the FT is

correct and complete. Figure 2.8 shows an example of a simple FT capturing a classic

fire-protection system failure [108]. A full review of the construction of a FT and the

symbols used is beyond the scope of this chapter but can be found in the work of Barlow

and Ericson [106,109].

An important feature of FTA is the integration of quantitative information into the FT

in the form of the assignment of event probabilities to each of the events in a given FT (in

the case of the tree shown in Figure 2.8, these are captured by the rectangular symbols in

the tree). This enables safety practitioners to estimate the probability of the occurrence

of an outcome (represented with the circular symbol in Figure 2.8) by evaluating the

probability of a sequence of events occurring over the whole FT. A by-product of this

capability is the ability to evaluate which aspects of a system’s design is most important

to a given outcome [106].

The probabilistic properties of FTs has resulted in the development of techniques

for the translation of FTs into BNs to overcome some of the limitations of the logical

structure of FTs: most notably the constraints imposed by the logical AND/OR gates

most commonly used in their construction [110,111]. Indeed, some research indicates that

the flexibility and robustness of BNs may provide a practical alternative to ‘traditional’

FT-based analysis techniques.

Again, despite its ubiquity and general popularity, FTA has received a number of

criticisms. For example, some studies indicate that the generation may not be as objective
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Figure 2.8: A simple Fault Tree for the classic ‘fire alarm’ problem. [108]
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or repeatable as sometimes thought; for complex systems, independent experts can produce

FTs with dramatically different estimates of failure rates or failure sequences [112]. Indeed,

some practitioners point to FTAs as being potentially misleading as the quantitative nature

of a FT can result in disproportionate confidence being expressed in aspects of a system.

2.3.2 Analysing Bayesian Network-based Systems

While there are many existing safety analysis techniques, it is important to explicitly

consider the applicability and utility of these techniques in the context of a given class

of system. This subsection provides a brief critique of existing safety analysis techniques

in the context of BNSs. For example, there may be limitations in the level of detail

that existing approaches can provide on the root causes of certain BNS-specific failure

modes. An example of this may be in the case of FTAs: these analyses are based upon

highly constrained causal structures that are often appropriate for many failure analysis

problems. However, they cannot capture more complex causal interactions due to the

constraints of their tree-structure.

For example, the causal sequence that produces an error mode in a BN model may

be dependent on interactions between model elements that cannot be well-approximated

using a FT: discrete, binary logic may provide – at best – only a coarse approximation of

the root cause of BN model errors (e.g. error modes may occur as a consequence of the

contributions of arbitrarily many continuous-valued variables). Indeed, the limitations of

FTs in capturing certain causal properties in a system is a contributing factor to the use

of BN models in state-of-the-art failure modelling (such as in the motivating example of

this thesis) and diagnostic systems as opposed to FTs.

Similarly, FMEA-like analyses can provide a proactive exploration of which system

aspects are of particular importance to failure modes in a BNS. As with conventional

systems it can be used to guide preliminary design activities. However, in practice the

methodology will be too high-level to provide detailed insight into the contribution of many

aspects of a BNS to failure modes in this class of system; once again, the ability of this

methodology to facilitate the useful analysis of some aspects of a BNS (particularly model

and data aspects) at anything other than the most coarse-grained analysis is doubtful.

In conclusion, both FTA and FMEA approaches will provide useful insights into a

subset of system aspects and behaviours of a BNS. However, they are likely to encounter

serious limitations in their ability to provide sufficient detail with respect to the specific
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error modes that may be encountered within a BNS. It may still be possible to categorise

BNS error modes using a more general framework. However, such a framework has not

yet been developed. Finally, current analysis techniques cannot provide the level of detail

necessary to evaluate the contribution of certain important BNS error modes to system-

level (i.e. UAS-level) failures: this also requires a new approach.

2.4 Safety-Critical Uses of Artificial Intelligence

For much of their existence, the fields of Artificial Intelligence and safety engineering have

existed largely independently. In some ways, this is surprising. Since its conception and

initial popularisation in the post-war years, AI has been touted as a solution for a plethora

of commercial, military, industrial and private applications. Many of these proposed

applications have clear (and potentially extremely serious) safety concerns associated with

them. Despite this, the published academic literature on the safety concerns and ultimate

assurance of these systems is at best scarce, and in some cases non-existent. This has arisen

due to a combination of the highly application-focussed nature of much safety research

and of the engineering domain more generally, and the fact that (until very recently) the

prospect of large-scale deployments of complex AISs into safety-related roles has been a

remote prospect.

2.4.1 Phases of Safety-Critical Artificial Intelligence Research

This situation – which has persisted for several decades – is changing rapidly. An increasing

number of major commercial and industrial interests have committed to developing new

products and platforms with AI at their centre. This includes many major automotive,

rail and aerospace manufacturers, medical organisations, and governments. The adoption

of AI in almost every sector is currently expected to accelerate. Many of these applications

will take on greater degrees of autonomy than have been previously possible. The fact

that these systems will require new – or heavily augmented – development and assurance

practices is increasingly recognised [21, 64, 72, 84, 86, 113, 114]. To date, research into the

development of safety-critical AISs remains comparatively limited, there have been at least

three significant waves of research into the problem. These can be defined as follows:
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2.4.1.1 Phase I - Expert Systems

Throughout the 1980s, academic research and the commercial application of so-called

‘Expert Systems’ (ESs) boomed [115]. During this period the first body of research into

the safety of AISs began to emerge. This research followed the general trend in the field of

AI and focussed almost exclusively on the assurance of ESs. Unlike modern AISs, many

of this generation of AISs relied on significant human input due to the comparatively

limited ability of ESs to ‘learn’ from data. Instead, these systems relied heavily on logical

conditions (i.e. rules) encoded by human experts. These systems broadly reflected the

early tendency in the AI field to believe that intelligent behaviour could be encoded with

a sufficiently specific set of logical rules – and could be programmed by a human expert

[3, 115]. The decline of research into ESs is generally attributed to the shortcomings of

many of this class of system: they failed to capture the subtleties in many reasoning tasks

and became computationally intractable in real-world applications [2, 3, 116].

During this period, a significant contribution in the field was the work of Culbert et al

on behalf of NASA. This work looked at the development of methodologies to support veri-

fication and validation of rule-based ESs [85,117,118,119]. In one paper, Culbert identifies

an assurance consideration that remains relevant in current AISs: that the enumeration

and refinement of requirements for an ES does not – and frequently cannot – proceed as

in conventional software systems. Culbert states [85]:

“Some expert systems can probably be developed by using conventional software

engineering techniques to create software requirements and design specifications

at the beginning of the design phase. However, the type of knowledge used in

other expert systems doesn’t lend itself to this approach.”

Consequently, Culbert suggests that the development cycle for an ES is perhaps best

represented with some modification of the ‘Boehm’s Spiral’ methodology, similar to that

shown in Figure 2.9. Boehm’s Spiral was developed to highlight and support the continued

iterative development of a software system while maintaining a structured requirements

documentation process [120]. A further observation Culbert makes (with relevance to

modern AISs) is the following:

“Another difficulty in writing complete specifications is that some expert sys-

tems deal with problems where there is no correct, absolute answer, only more

or less adequate answers.”
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This touches on a recurrent theme of the complexity and vagueness of the tasks for

which ESs were often developed to perform – and themes discussed in previous sections.

The difficulty in defining exhaustive and/or meaningful requirements for many of these

tasks is a recurrent challenge in AISs generally [85, 86]. This is a repeated observation

in other work in ESs at the time and is still commented upon in contemporary literature

[2, 21,64,80,81,113].

Figure 2.9: A visualisation of Boehm’s proposed software development process. [120]

Beyond Culbert’s work, other contributions during this time include research into the

evaluation of ESs used in medical applications by Spiegelhalter et al, and early contribu-

tions by Rushby on the ‘Validation and Testing of Knowledge-based Systems’ [121]. Other

contributions were made in domain- or context-specific applications for ESs, though these

were generally little more than position papers [116]. With the general decline of research

and commercial interest in AI in the late 1980s, research into the assurance of ESs similarly
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faded. However, the applications of ESs mirror many proposed (or deployed) contempo-

rary applications of BNSs; and so some of the insights gained from this research remain

relevant.

2.4.1.2 Phase II - The Second ‘AI Winter’

During the late 1980s and throughout the 1990s, AI as a field of research became relatively

stagnant.26 While advances were made, the pace of innovation slowed, and interest in the

application of AI to real-world problems waned. However, during this period a number of

comparatively significant advances were made in the assurance of AISs for safety critical

applications. These advances broadly centred on the assurance of Artificial Neural Network

(ANN) for safety-critical roles. In particular, they addressed use-cases of ANNs as adaptive

controllers in safety-critical systems. Several major industrial organisations instigated

programmes to develop (or attempt to develop) systems of this kind [72,122].

Of these programmes, the largest and most insightful contribution was made as part

of an effort by NASA to develop an ‘Intelligent Flight Control System’ (IFCS) using

several ANN architectures and multiple ANN learning algorithms. The IFCS programme

involved the live deployment of an ANN-based AIS aboard a NASA jet – arguably the first

published, overtly safety-critical application of a complex AIS. The IFCS was envisioned

as a system that could dynamically compensate for damage to the flight surfaces of an

aircraft, theoretically enabling a pilot to maintain control of the aircraft in circumstances

which would typically result in the loss of the aircraft and the pilot [64]. In this context,

errors in the outputs of the IFCS would directly affect the control input of a pilot. Errors

in the control inputs of the aircraft could lead to the complete loss of an aircraft. The

IFCS was therefore identified as a safety-critical software system, and therefore subject to

standard certification activities.

The IFCS programme produced a guidance document summarising the experience of

the teams working on the project. This document provides a detailed summary of the

considerations and practical experiences of ANN developers and safety engineers working

on the project, techniques that were used or developed for the IFCS programme and

26The ‘First AI Winter’ is said to have occurred in the 1970s – the early optimism about the feasibility

of the development of useful AI applications began to fade, and commercial and research funding was

cut dramatically. This is often attributed to the overly grandiose claims of the AI pioneers who set

extraordinary (and unattainable) expectations for the both the public and funding bodies.
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key lessons resulting from the development of the system. From this perspective, the

IFCS ‘Methods for the Verification and Validation of Artificial Neural Networks’ document

is perhaps the most complete piece of guidance on the assurance of AISs currently in

existence. While a full review of the document is beyond the scope of this chapter, a

number of important points are worth highlighting. Firstly, the document differs from

conventional software assurance guidance documents by providing comparatively little

detail on the assurance of conventional software aspects. Instead, the document focusses

on the augmentation of existing guidance (in this case IEC 12207) and advocates the

introduction of new evaluation and testing techniques and procedures [64,123].

Amongst these new techniques are a number of approaches that can be considered

to be software-independent: they directly address the architectural properties of a given

ANN and aim to evaluate the dynamics of the ANN model from a purely mathematical

perspective. For example, this includes an analysis of all activation functions used within

an architecture, and the weightings associated with each node within the ANN. The guid-

ance goes further by advocating the use of an FMEA-like analysis of an ANN’s components

(i.e. nodes, edges and activation functions) to analyse how the ANN may produce error

modes. In each case, the emphasis is placed on the ANN in the abstract and is largely

devoid of software-centric implementation considerations. The general sentiment of much

of the guidance is summarised in the following contemporaneous quotation from Lisboa27:

“In emerging computation, the complexity is often not in the software imple-

mentation, but in the interpretation and testing required to evaluate the oper-

ation of the model.”

More generally, the IFCS document advocates the need for additional appendices and

processes within a standard to tackle the iterative development practices associated with

the development of a system utilising an ANN. The document outlines how these processes

should focus specifically on addressing the architectural design and evaluation of the model,

and the unconventional considerations associated with the training and deployment of

an ANN. At a high-level, the guidance reflects the position of Culbert and the early ES

assurance researchers: the development of this class of AIS is an iterative process that relies

heavily on comparatively ad-hoc design decisions and iterative refinement of requirements

27Lisboa did not work on the IFCS project, but has published work on the evaluation and testing of

AISs in safety-related contexts.
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and associated testing. Indeed, in discussing the design and development of the ANN

architecture, the NASA team state:

“... the selection of the number of hidden layers and the number or neurons

within each layer is more of an art than a science. Similarly,the V&V analysis

of these choices is likewise an art form.”

This reinforces the shift – both conceptually and practically – in the development of an

AIS utilising ANNs or other complex, abstract mathematical artefacts common to AISs.

This is also highlighted within other independent outputs from the IFCS programme,

where a failure to grasp the distinctions between conventional software systems and AIS-

specific aspects is claimed to result in:

“’ ... [producing] long development times or project delays, improper [ANN]

configurations, failure to find adequate solutions, etc.”

While the by-products of the NASA IFCS programme are arguably the most signifi-

cant contributions to the field in this period, several other important contributions were

also made. One notable contribution (also cited in the IFCS guidance), is the work of

Kurd et al. In their work, Kurd attempts to address a recurrent challenge with many AIS

approaches: interpretability. Historically, ANN developers (and assurance practitioners)

have considered the analysis of an ANN-based system to be a ‘black box’ problem. To

compensate for this, Kurd proposes a methodology for constraining the functional prop-

erties of the ANN by injecting rules based on available knowledge into the ANN, and then

extracting and refining these rules iteratively. The safety lifecycle developed as part of

this work is shown in Figure 2.10.

This approach has a number of merits, chief amongst which is a coherent process for

the structured, systematic development of a safety-critical ANN-based AIS. However, the

process has a potential weakness: the tendency of safety engineers in software assurance

generally is to impose strict constraints on the software. In conventional software, this

is a well-established practice: a constraint will have well defined, deterministic effects on

the behaviour of a system. However, this may not be true for AISs. The power of mod-

ern AISs comes from their ability to learn from data. Some architectures and training

algorithms exhibit a strong ‘sensitive dependence’ on their initial conditions (architecture

and parameterisation) and training algorithms: their behaviours can be dramatically al-

tered by perturbations in this data or by modifications to their architectures [64,124,125].
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Figure 2.10: A visualisation of Kurd’s proposed safety-critical ANN development lifecycle.

Without care, applying constraints will hamper the ability of the system to learn and may

directly undermine the very property that makes an AIS useful in the first place. An

assurance practitioner may introduce new, more pervasive, error modes into an AIS than

they mitigate.

2.4.1.3 Phase III - Deep Learning

The current wave so-called ‘Deep Learning’ (DL) AISs that have emerged since 2012 have

been used to rapidly solve (or mitigate) a range of long-standing computational problems

within the field of AI [12, 28, 53, 126, 127, 128]. In general, this generation of AISs utilise

ANN architectures that overcome the limitations of earlier generations of AISs through the

utilisation of more powerful learning techniques and novel architectures [129,130,131,132].

Currently, these systems are extremely data-hungry. Their success has been facilitated

by near-simultaneous breakthroughs in the development of learning algorithms for DL-

based Systems (DLSs) and the proliferation of huge quantities of widely-available data

on everything from facial recognition to natural language processing. Their success has

accelerated the demand for their deployment aboard products ranging from smartphones

to cars. For the first time in the history of the field of AI, these systems are on the verge

of becoming both ubiquitous and truly safety-critical.
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Superficially, the assurance of DLSs bears many similarities with the work carried out

by previous work on the assurance of AI. However, in the intervening decade between

this earlier research and current state-of-the-art DLSs, the scope and complexity of the

applications of these systems has grown dramatically. For example, modern DLSs utilise

models many orders of magnitude larger than those in general use when the previous wave

of assurance work was introduced. Furthermore, the architectures and learning algorithms

used by many DLSs rely on extracting richer representations of information from a domain

with no (or limited) direction on the part of developers – this is part of the origin of the

term ‘deep’ in DL. Consequently, some current approaches to assuring DLSs actively

avoid constraining the learning of the system, and instead focus on providing increased

transparency or robustness of the system’s behaviours through novel analysis or training

techniques [113,133,134].

One notable example of such a technique is the work produced by the DeepXplore

team [113]. This work highlights shortcomings of traditional notions of software testing

coverage in exposing potentially hazardous behaviours in DLSs. It advocates the intro-

duction of new notions of coverage for DLSs that address model architecture aspects as

opposed to code structures. The paper introduces an automated tool for exploring the

parameter-space of a Convolutional Neural Network (CNN) for computer vision tasks

aboard an autonomous vehicle and highlights the ability of their tool to more comprehen-

sively explore the dynamics of their CNN models. The work bears some similarities to

the earlier work of the IFCS programme in focussing on exploring model-centric aspects

of the system. However, DeepXplore provides a more systematic, quantitative analysis

than that proposed in the IFCS guidance, and therefore more readily accommodates the

additional complexity associated with using a DLS.

Other notable techniques include the utilisation of adversarial testing approaches to

produce learning algorithms that bear some resemblance to conventional fault injection

techniques [133,134]. In these cases, the aim is to improve the performance of the DLS by

injecting ‘faults’ into the data and aiming to have the DLS learn to recognise or mitigate

such faults. A parallel movement within the AI domain has been to develop training

algorithms that enable a model to explain its decision making. Rather than constraining

the learning algorithm as in traditional approaches, these approaches typically modify the

objective of the DLS to include information pertaining to the reasoning of the model. In

some sense, the current efforts to test and evaluate AISs are tending towards more ‘holistic’
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techniques that avoid the historical tendencies of assurance practitioners to attempt to

exert low-level end-to-end control over system behaviours.

2.4.2 Emergent Themes

While each of the three waves of research into the development of safety-critical AISs dealt

with a distinct set of AI technologies and approaches, a number of shared themes emerge

across them. These themes provide some general insights into the challenges facing the

assurance community in developing safety-critical AISs and are relevant to BNSs. In the

case of all three, whilst the language and technical considerations vary, a consistent set of

recurrent assurance concerns are evident. These can be generalised as follows:

• Existing software analysis and testing techniques may fail to identify the source of

many hazardous behaviours.

• Typical approaches to the definition and decomposition of requirements are not (in

general) feasible/useful.

• Conventional software development lifecycles poorly accommodate the development

of safety-critical AISs.

• The complexity of the development and testing of an AIS does not lie in software

implementation challenges.

In the two later waves of research, AISs have become increasingly data-driven and are

powered by more complex or elaborate AI architectures. Given the similarities in the core

technologies and approaches that drive the systems developed as part of these two later

generations of research, a further set of shared themes emerge. These can be generalised

as follows:

• Key aspects of a modern AIS’s functional behaviour are – in a sense – ‘offloaded’

onto black- or grey-box system aspects that can be considered ‘implementation in-

dependent’.

• Analysis and testing techniques that rely on exploration of code structures will not

provide insight into the origin of many of the functional behaviours of an AIS’s.

• Existing safety standards do not adequately address learning and adaption capabil-

ities of AISs.
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The distinction between the second and third phases of safety-critical AI research can

be described in terms of the scope and power of the latest generation of learning algorithms

and their underlying architectures. For example, some ‘historical’ facial recognition tech-

nologies would often include several pieces of pre-processing software for extracting and

transforming faces in images before this was passed to the recognition system. Modern

DLSs learn can be trained to extract and recognise faces in an image – thereby cutting

out the intervening software layers. Technically, this is described as automatic feature

extraction. Furthermore, the architectures of these systems are generally more elaborate,

utilising many more layers of neurons than in ‘traditional‘ ANN architectures. Indeed, in

many cases, each layer of these Deep Learning ANN architectures is composed of different

neuron variants.

For example, it is common practice to ‘stack’ convolutional layers with recurrent layers,

and use these alongside ‘traditional’ layers common to earlier Multi-layer Perceptron-style

(MLP) models. Consequently, DL models can be considered – in a very general sense –

to be less internally homogenous in terms of architecture than previous generations of

ANN-based approaches. They also significantly more internally complex than previous

ANN architectures. Finally, they can provide end-to-end preprocessing, transformation

and prediction capabilities beyond those available in earlier generations of AI techniques.

2.5 Summary of Research Problems

The survey of existing literature presented in this chapter highlights several important

themes with respect to the current state of research into the assurance of BNSs for mission-

critical and safety-critical applications. Fundamentally, there is a pervasive lack of concrete

guidance on how to approach the development of BNSs for these applications. What

guidance there is for AISs is typically targeted at addressing the assurance concerns of

related, non-BNS AISs. Some of the key outstanding problems identified by this literature

survey are:

1. There are no published methodologies for explicitly analysing the assurance implica-

tions of the various data, representational and algorithmic choices made during the

development of a BNS. Specifically, while some published techniques may have utility

in evaluating representational aspects of mission-critical BNSs, there is no existing

guidance on how these techniques may be applied to a mission- or safety-critical
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BNS to address the concerns of assurance practitioners.

2. There are no established techniques for communicating assurance information be-

tween all pertinent stakeholders of a mission-critical BNS. In particular, there is an

absence of any concrete examples of techniques for capturing the full range of con-

cerns that BN developers and assurance practitioners alike may have with respect

to the development of a mission-critical BNS.

3. There is no standard guidance for managing the unconventional design aspects of

BNSs (e.g. non-deterministic aspects of their design) across the entirety of their

developmental and operational lifecycles. For example, there is no guidance on how

to manage the continued validity of many representational properties and algorithmic

behaviours over the course of the extended life of a system.

4. There are no published analyses of the implications of using existing software stan-

dards to certify the behaviours of mission-critical and safety-critical BNSs. There

is no information on the specific shortcomings of these standards with respect to

the development and operation of BNSs and any related considerations assurance

practitioners may need to address in order to certify a BNS for such an application.

5. Whilst there are techniques for performing various types of analyses on BNSs, there

is an absence of literature on how these techniques relate to mission-critical BNSs.

There are no existing safety analysis techniques that are readily capable of accom-

modating the unconventional properties of BNSs. In particular, techniques that

cater for aspects such as the unique role of data and abstract mathematical models

in determining functional behaviour, and the non-deterministic properties of these

systems are notably absent from existing literature. There is also potential for mod-

ifying BNS-specific techniques to integrate safety information directly into existing

BN-focussed analyses.

6. There is no guidance and there are no established techniques for addressing the impli-

cations of the unconventional forms of safety evidence. For example, the properties

of a BNS may manifest failure modes that are non-deterministic, and the corre-

sponding evidence for the mitigation of hazards associated with these failure modes

is often highly statistical in nature. There is also no guidance on how such evidence

could be used to contribute to arguing that a BNs is safe. The nature and impli-
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cations of evidence required to assure such properties of BNSs is often dramatically

different from the evidence generated by existing software analysis techniques.

The following chapters will touch on each of these points and in particular aim to make

contributions to resolving problems related to points 1, 2 and 5.

2.6 Conclusion

This chapter has presented an overview of the current state of research into BNSs and

safety-critical AISs generally. The discussion throughout this chapter has focussed on

those areas of BNS design and development and safety engineering that are most relevant

to the motivating example of this thesis, though a number of additional concepts have

been introduced to provide context for the position of BNSs within the AI field, and of the

status of safety-critical AI in general. The survey of literature presented here highlights

the near-complete lack of existing guidance on the development of BNSs for safety-critical

roles. Some early work on the assurance of probabilistic expert systems provides perhaps

the closest guidance on this problem, though the systems used vary dramatically in both

technical details and applications. Whilst the field of BN development is largely devoid

of safety research that directly addresses BNSs, some of the more recent work in the

development of safety-critical DLSs shares strong similarities with the aspects of BNS

design and development.

However, the lack of structure within the field of safety-critical AIS development is

concerning. Many teams use language specific to their AI approach and, as highlighted

by NASA’s IFCS programme, failure to effectively communicate the properties and be-

haviours of an AI approach to all relevant stakeholders can have a serious impact on

the effectiveness and safety of the resulting AIS. In the context of mission-critical BNSs,

this highlights the need for standardised approaches to sharing BN-specific system in-

formation between BN developers and assurance practitioners. Moreover, many existing

analysis techniques developed for AI development do not integrate additional contextual

information.

For BNSs, this raises a second key area of research: the extension of existing BN

analysis techniques to accommodate additional safety considerations. Such approaches

are attractive as they do not undermine the development and analysis activities of BN

developers, but rather add a layer of ‘safety-awareness’ into the training or testing of a
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BNS. Finally, there remains the challenge of establishing the adequacy of activities carried

out to address AIS system aspects. As repeatedly indicated in this chapter, many aspects

of AIS development are – at best – relatively ad hoc. Key design decisions are frequently

made on little more than the intuition of an AI developer, and the rigour of testing these

systems is similarly erratic. In the case of BNSs, this indicates the need to consider how

a BNS may be developed in a more rigorous fashion: one that directly establishes why a

given technique (or set of techniques) is relevant and adequate for the assurance of a given

system aspect.
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Chapter 3

Establishing Verification and

Validation Objectives

3.1 Introduction

The assurance of any system is predicated on a comprehensive understanding of the na-

ture and behaviours of that system. As discussed in Chapter 2, this can be challenging in

the case of Artificial Intelligence-based Systems (AISs) generally, and Bayesian Network-

based Systems (BNSs) specifically. To date, literature focussed on the assurance of AISs

has typically considered high-level aspects of AIS assurance. In general, this work does

not provide any concrete, technical insight into how this class of systems can manifest haz-

ardous behaviours. In contrast, the Artificial Intelligence (AI) domain has predominantly

explored the practical and theoretical understanding of the approaches and technologies

it has developed.

Until very recently, both domains have been able to maintain largely independent

spheres of research and commercial interests. This has been possible as a consequence

of the relative technological immaturity and various related limitations of many previous

generations of AI-based technologies, and the (naturally) risk-averse position of the safety

domain. In the former case, there have historically been very few compelling reasons

for the adoption of AISs. Often conventional software systems offered comparable – and

better understood – solutions. In the latter case, the safety domain has tended to adopt

a highly cautious position on AISs, in some cases going as far as to proscribe AISs in

safety-critical applications [94].

Consequently, the existing repertoire of vocabulary, tools and concepts familiar to as-
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surance practitioners is poorly equipped for the detailed technical description and analysis

of AISs. Moreover, there is a similar lack of analysis tools and techniques in the AI do-

main that explicitly address system safety considerations. This is a significant barrier

to ensuring all relevant system stakeholders understand precisely what has been built.

By extension, without this mutual technical understanding, the assurance of this class of

systems may not be possible.

This chapter presents a framework that aims to provide a structured, comprehensive

and mutually intelligible approach for describing BNSs. From an assurance perspective

the development, properties and behaviours of BNs differs markedly from conventional

software in a number of ways. The framework introduced here has been designed to ex-

plicitly capture the ways in which these unconventional aspects may directly or indirectly

influence the functional behaviours of a system. It is intended to provide a shared concep-

tual basis for the description and understanding of BNSs in general, and to expose these

distinctions to safety practitioners for subsequent analysis.

This framework is then built upon to develop a set of generic BNS verification and

validation objectives that have been defined to provide a concrete enumeration of system

properties that must be explicitly addressed by developers and assurance practitioners. A

methodology for generating system-specific objectives is then introduced. The objectives

aim to provide a systematic approach to developing assurance objectives for BNSs, and

a first step towards a comprehensive approach to assuring this class of system. They

have been defined with the intention of providing a means of comprehensively addressing

system aspects that are inadequately addressed by existing software safety standards.

The chapter is structured as follows. First, an overview of how and why a BNS may fail

is introduced, and a consolidation of existing work on error modes in BNSs is provided.

This discussion is then used as the basis for the introduction of a set of system view-

points for BNSs. These viewpoints are subsequently developed into a Reference Model

for Bayesian Network-based Systems (RM-BNS). Next, this reference model is used to de-

velop a set of generic verification and validation objectives. A methodology for generating

system-specific objectives is then introduced.

3.2 System Error Modes

The field of AI is notable for its extraordinary diversity. There are a number of distinct

schools of thought, each with a rapidly developing and ever-expanding set of techniques
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and concepts. What constitutes ‘AI’ can vary between practitioners, and the language

and approaches used reflect this internal variation. In many cases, this diversity of ideas

and language is a direct result of the highly cross-disciplinary nature of the field [1,2,63].

Consequently, technical concepts within the domain can be challenging to grasp – in

part due to the overlapping language and semantics of different fields and research areas.

However, at a high-level, there are a set of general concepts and techniques that unify the

domain. A clear, succinct description of the field is provided by Wilson [135]:

Artificial Intelligence is about algorithms, enabled by constraints, exposed by

representations, that support models targeted at thinking, perception and ac-

tion.

This description is compatible with the area of AI concerned with Probabilistic Graph-

ical Models (PGMs), and by extension, Bayesian Networks (BNs). This statement can be

further condensed by stating that the field of AI (and by extension BNs) is principally

concerned with the intersection of three primary areas: representation, algorithms and

methodology [1, 2, 135]. Each of these areas is focussed on the development of aspects of

AI that may independently introduce erroneous behaviours into a completed AIS.

This section provides a high-level overview of the concerns associated with these three

areas. The aim is to provide a general conceptual understanding of how errors may emerge

in BNSs and what effect these errors may have on a system’s behaviours. It highlights

how these errors differ conceptually from those common to conventional software systems.

The section concludes by providing a summary of existing research into BN error modes

and their corresponding references. A consolidated enumeration of this work has not yet

been presented within literature.

3.2.1 Representation

The selection of an effective approach to representing a given computation problem is a

critical first step in the development of any AIS. Within the AI domain, the area of repre-

sentation is focussed on producing conceptual and (typically) mathematical mechanisms

for capturing a given problem. Common representational approaches include Artificial

Neural Networks (ANNs) and, of course, BNs. Research in this area is motivated by the

need to produce compact, efficient solutions to notoriously complex problems. Indeed,

these representations are often applied to problems that may be intractable for conven-
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tional, explicit, imperative programming approaches.

In some fields, BNs and related approaches and variants are among the most popular

representational frameworks currently in use for this reason. The BN representational

framework lends itself well to complexity and uncertainty inherent in many diagnostic

and causal reasoning tasks [22,60]. Behaviours and knowledge can be learned rather than

manually programmed. This has made it a popular approach for many state-of-the-art

medical applications [2, 56].

Heart Rate

Heart Rate BPHeart Rate SATHeart Rate EKG

Figure 3.1: An example of a fragment of a BN model representing the conditional rela-

tionships of factors effecting a patient’s heart rate [136].

Figure 3.1 shows a fragment of a toy medical BN model of a patient’s heart rate that

illustrates key features of local and global representation considerations.

Each of the nodes in the model represents a Random Variable (RV). In this case,

the Heart Rate RV is modelled as hidden: the model assumes that it cannot be directly

observed. Instead, the patient’s heart rate is modelled as a variable whose state can be

inferred through observations. This more accurately reflects the state of the world: a

medical practitioner invariably relies on a machine’s estimate of a patient’s vital signs,

they do not observe it directly. The BN fragment in Figure 3.1 therefore integrates infor-

mation from three distinct observations in order to provide a more accurate probabilistic

estimate of a patient’s current heart rate. This approach can compensate for errors in

one of the inputs and dynamically weight the estimate of the patient’s vital signs to those

observations that are less uncertain. This can produce adaptive, precise monitoring of

signals that can outperform other approaches. Indeed, for these types of applications BNs

have been shown to provide an optimal estimate of hidden states (such as a patient’s heart

rate) – provided a number of formal mathematical properties hold.

Formally, each edge in the fragment represents the conditional dependence of these

variables upon one another. The properties of BN models are such that each of these RVs
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can be considered as a ‘component’ – or local – model of the global BN model. The local

model can be considered to be the conditional relationships of an individual RV, and the

internal structure of the RV’s distribution. This internal structure may be a simple table-

structured distribution, a decision tree, or an ANN. The global model refers to the BN

model taken together. A discussion of the structural properties of BN models is presented

in in section 2.2.3.

3.2.1.1 Local Representation

The composition and structure of these models – both locally and globally – may di-

rectly influence the functional behaviour of a BNS. For example, consider again the BN

fragment shown in Figure 3.1. Here, the ECG node captures a probabilistic model of

the measurements of an ECG machine. There are a number of important modelling de-

cisions associated with capturing an ECG measurement using this local representation.

Figure 3.2 shows two toy probabilistic models for illustration purposes. Figure 3.2a shows

a continuous probabilistic model of a patient’s heart rate measurements - the measure-

ments of the machine are characterised as being normally distributed. This is a standard,

theoretically well-founded probabilistic model for many measurement problems similar to

this [20]. In contrast, Figure 3.2b shows a discretised version of this distribution, where the

continuous-valued sensor measurements are binned into low, normal and high categories.

(a) A normal distribution fitted to a pa-

tient’s heart rate (HR).

(b) Visualisation of weights in an ANN

trained for handwriting recognition.

Figure 3.2: A discretised normal distribution fitted to a patient’s heart rate (HR).

The selection of the representation of these local models has important consequences

for the capabilities of the global model (i.e. the BN taken as a whole). Error modes

may emerge in a BNS directly or indirectly due to errors associated with local models.
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In the case described here (choosing between representing an ECG sensor as a normally

distributed set of measurements, or a discretised categorical model) there are two principal

consequences of this decision:

1. The structure of the model is constrained if a RV is represented as a normally-

distributed variable; the BN representational framework does not support represent-

ing a normally distributed RV as having discrete child RVs [2, 3].1 This limits the

expressive power of the resulting model. Similar constraints include the inability of

the BN framework to represent recurrent or cyclical relationships within its struc-

ture. Constraints of this kind can result in excessively strong modelling assumptions,

which may in turn compromise the effectiveness of a BN model. Error modes may

emerge as a consequence of these limitations in local models – constraints intro-

duced by local structures may prevent a BN from capturing information necessary

for reasoning and fulfilling its intended functionality.

2. The discretisation of a continuous-valued RV necessarily suffers information loss

during the discretisation process [137]. Concretely, the discretisation of a continuous-

valued RV requires the specification of a finite set of states to represent a distribution

with an infinite number of states. In the example in Figure 3.2b, a developer has

represented a patient’s heart rate as being in either a high, medium or low category.

However, from an assurance perspective, there is the question of whether or not these

categories are sufficient. For example, if an additional category is added (e.g. very

high, very low), a model’s diagnostic performance may change. This is because access

to this additional information may boost its reasoning capabilities – in the same

way a doctor may refine their reasoning if presented with more detailed information.

Without this additional state, the global BN model is ‘blind’ to any information

it may convey to the broader diagnostic problem. However, an excessive number

of categories in this local model may produce the same effect as having too few

categories – the model may actually decrease in performance. Error modes associated

with this can be considered as being manifestations of excessive local bias or variance

1There are workarounds to this problem, with a number of proposals for solving this challenge. However,

they can be regarded as non-standard approaches.
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for a given model.2

The examples shown in Figure 3.2 are toy examples. Practical applications of these

systems often demand the utilisation of high dimensional probability distributions. In

these contexts, intuitive visualisation and analysis of RVs is more challenging. Further-

more, even in comparatively simple cases such as that in the example given, a modern

medical diagnostic BN may be comprised of thousands of such variables. A detailed review

of the modelling decisions taken for each RV may be extremely labour intensive.

3.2.1.2 Global Representation

The discussion so far has focussed on some of the properties of local models in a BN.

However, there are several key decisions associated with the particular variant of the

BN representational framework selected. These decisions play a role in the functional

behaviour of a BNS. Many diagnostic systems are developed as static models. There is

an assumption that the model is time-invariant: the model does not depend on any other

previous time aside from the present [2]. For medical diagnosis, for example, this may well

be a sound assumption. However, it will not be the case universally.

An example of this is the use of BNs for some control and navigation tasks aboard

autonomous vehicles. The state of the road and the location of the vehicle provides

important information about where the vehicle will be and the state of the road at a future

time. The BN framework supports the representation of this class of problem. Dynamic

Bayesian Networks (DBNs) can be used to model temporal dependencies of this kind [2,

2This alludes to the so-called ‘Bias/Variance Tradeoff’. The Bias/Variance Tradeoff is a key concept

in applied statistics, Machine Learning (ML) and AI. It addresses the need to produce models that are

sufficiently coupled to their target application that they produce useful outputs, but that are not so

strongly coupled to their training data that they perform poorly when used in ‘live’ operational contexts.

The aim of a good AIS is to provide a well generalised representation of a problem – one in which the

system can perform well in contexts outside of those in its training data. This means BN developers

will typically select models that manifest lower ‘absolute’ performance on training data in favour of a

model that demonstrates better generality. For example, a medical diagnostic BN model may achieve

99% accuracy on training cases, but may achieve only 75% accuracy in test cases. A second model may

achieve approximately 90% accuracy in both training and test cases. Typicaly, BN developers will select

the latter model: it demonstrates more stable, generalised performance, while the former can be described

as ‘overfitting’ to the training data. Models with high complexity are more susceptible to overfitting;

adding too many states to a model may cause it to demonstrate poor generalisation performance.
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49,138]. However, there are once again important limitations on what these dependencies

may represent. The selection of the specific BN representational framework variant is a

key step in the development of a BNS. Failure to represent temporal dependencies within

a model may produce erroneous model outputs – a model cannot reason about something

it does not ‘know’.

A further consideration for the representation of a problem domain as a BN model is the

utilisation of object-oriented (or template) models. In many applications of BNSs, aspects

of the problem being modelled manifest self-similar properties that lend themselves well to

object-oriented (OO) approaches. These OO approaches facilitate the re-use of structures

– including sets of RVs, BN fragments or complete BN models – within a single larger BN

model.

For example, consider a theoretical use-case of a BNS used to monitor the launch of a

Space-X Falcon Heavy launch vehicle. As with other launch vehicles, the architecture of

this system exhibits a number of self-similar properties: the system is composed of three

similar booster sections and each booster is comprised of nine Merlin 1D engines [139].

From an OO modelling perspective, a BN model of such a system may represent each

engine, and then each booster as objects. This would involve the definition of a single BN

model object or model fragment for each engine. These objects would then be replicated

nine times and integrated within a single BN model of a booster. In turn, this single

booster model could be replicated three times and integrated into a model of the whole

launch vehicle. This enables a more compact representation of the problem.3

These OO approaches minimise the modelling challenge in the case of complex appli-

cations [4, 141]. They reduce the burden of specifying structures and parameters in a BN

model by reusing structures and parameters across the model. This can help reduce issues

arising from the bias/variance trade-off common to AISs. However, these approaches of-

ten rely on strong assumptions about the degree of similarity between the system aspects

modelled. The reasoning for the justification of the use of OO approaches is sometimes

not made explicit. They do not rigorously explore or demonstrate why such assumptions

hold across all objects; face-validity is the most commonly used justification.

As a simple example, while the use of an OO for modelling engines may seem rea-

sonable, a number of problems may present themselves. For example: engines on the

3For a discussion of OOBNs with examples, see [4] and [140].
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central booster achieve a higher altitude before separation than the two other boosters

and may therefore experience a greater range of atmospheric effects as a consequence.

If a BN engine model object does not account for this potential variation, it may have

unexpected effects on the system’s reasoning capabilities. For example, it may assume

an over-simplistic representation of the dynamics experienced by the central booster, and

consequently produce erroneous outputs. This may produce a similar category of error

as that experienced by the European Space Agency’s (ESA) Schiaparelli lander. In this

case, an excessively simple model of the atmospheric dynamics of the vehicle during its

landing resulted in the complete loss of the vehicle - despite the software executing exactly

as intended [142].

A BN model artefact, what it represents, and how it is represented, are primary deter-

minants of the functional behaviour of BNSs. In the same way a single hardware platform

may support many software systems, a single software platform may support many BN

models. In BNSs, the system may not be explicitly programmed by a human developer.

Instead, the BN models used by the software system act as the system’s programming.

This may be without any concrete changes to the underlying software itself (in a traditional

sense).

This is perhaps most intuitively illustrated by considering ANNs as the general con-

cept is transferrable to BNs. Figure 3.3 shows aspects of two ANNs with identical model

architectures that have been trained to provide two distinct functional capabilities. Fig-

ure 3.3a visualises an ANN trained on a facial recognition problem, while Figure 3.3b

shows an ANN trained on a handwriting recognition task. The systems run with identical

code, using identical system resources. The only distinction in this case is the specified

path to training data, and the ultimate parameterisation of the respective ANNs. These

parameters are therefore the primary source of distinction between the two systems.

However, the parameters should not be considered independently of their parent ANNs.

For example, the importance of the parameters in the ANN models are related to the exact

structure of the ANN and the activation functions used by neurons within the model.

Consequently, understanding the functional behaviour of these systems is fundamentally

a problem of understanding the respective model’s dynamics, and these dynamics are - in

principle - independent of any given software implementation. As stated, these concepts

also hold true for BNs.
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(a) Visualisation of weights in an ANN trained for facial

recognition.

(b) Visualisation of weights in an ANN trained for hand-

writing recognition.

Figure 3.3: Visualisations of the ‘hidden’ weights of two identical ANN architectures

trained for two distinct tasks.

68



3.2 System Error Modes

3.2.2 Algorithms

The second principal focus of the AI domain is on the development of algorithms for

the efficient and effective utilisation of the abstract mathematical representations and

modelling techniques for practical applications. Breakthroughs in this area have resulted

in the deployment of AISs using domain representations and techniques that were erstwhile

computationally intractable [126,130]. For BNSs, these algorithms facilitate two primary

capabilities: optimisation and reasoning. Algorithms aimed at optimisation are focussed

on extracting estimates for the structure and/or parameters of a given model. In contrast,

algorithms supporting reasoning capabilities are used to query a model. The output of

these queries can be used to directly inform the behaviour of a BNS, or to otherwise inform

subsequent decision-making or control systems that may be dependent upon it.

3.2.2.1 Optimisation Algorithms

Optimisation algorithms (commonly referred to as learning algorithms) have enabled AISs

to provide solutions to technical challenges that have been beyond the ability of human

developers to program manually. For example, many computer vision, autonomous sys-

tem control and natural language processing tasks are not well-suited to the conventional

explicit, imperative programming of traditional software. For BNs, there are two primary

optimisation considerations: learning a suitable structure and learning an effective set of

model parameters [2, 3]. As the properties of the BN representational framework support

the compartmentalisation of modelling activities, so too does it support the compartmen-

talisation of certain aspects of the optimisation of the model in specific contexts. This can

have important consequences for the emergence of errors in resulting BN models.

In cases in which a complete data set is available, and a BN model is not represented

as having any hidden or latent variables (or any shared parameters) it is typically possible

to locally optimise the parameters of each variable within the model separately. From the

assurance perspective this has the useful property that validity of the local model repre-

sentation and the local model optimisation can be largely considered as distinct activities

from the representation and optimisation of the global model. However, the final validity

of a global BN model should not be established by independently evaluating the validity

of the model’s individual local models. This requires a comprehensive understanding of

the interactions within a BN.

For example, consider again the simple BN model fragment shown in Figure 3.1. In
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order to achieve optimal performance over the global structure of the model, there may

need to be local trade-offs that make aspects of the local model strictly sub-optimal in

isolation. For example, in order to ensure certain properties of the ‘Heart Rate’ variable, it

may be necessary to modify the distributions of the child nodes (i.e. Heart Rate EKG and

Heart Rate SAT). Common modifications include injecting various forms of noise during

the training of a local structure, or setting the distribution of a local structure to some

form prior to training the model.4

In terms of assuring a BN model, the properties of all parameter optimisation algo-

rithms selected for use in the BNS will directly determine many of the properties of the

resulting BN. For example, in some contexts, the optimisation of a model’s parameters may

require the convergence of an optimisation algorithm towards a given solution [9,52]. The

exact convergence properties of these algorithms, and their implications for any resulting

model must be carefully assessed. Errors arising from poorly converged local parameter

estimates can propagate in subsequent reasoning tasks and produce errors elsewhere in a

model [2, 52].

Furthermore, the properties of learning algorithms are often tuned by hyperparam-

eters. These hyperparameters are used to modify the rate of convergence of optimisa-

tion algorithms, or the sensitivity of an algorithm to noise in data ingested by the algo-

rithm [1, 2, 52, 65]. A parameter optimisation algorithm may produce a poor parameter

estimate as a consequence of any combination of the following circumstances: the speci-

fication of erroneous hyperparameters, the inherent behaviour of the algorithm given the

BN model it is applied to, and the properties of the dataset it has ingested [2, 9].

Similar considerations apply to optimising the structure of a BN model. However,

optimising a model’s structure - or structure learning - is further complicated by the limi-

tations of these algorithms and through the structural properties of BNs themselves. There

is a fundamental challenge in structure learning in BNs in establishing a uniquely opti-

mal model structure. Many structure learning algorithms have no way of distinguishing

between certain model structures - two distinct models may be an I-map of the other [2].

Practically, this means it may not be possible to distinguish (from the algorithm’s per-

spective) between two or more distinct model structures [2]. As a consequence of these

properties of structure learning algorithms, the learned model structures may indicate de-

4These activities are forms of ‘regularisation’ and can boost the generality of a model. An introduction

to regularisation in BN models can be found in Koller’s excellent textbook on probabilistic AI [2].
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pendencies that may be interpreted as causal dependencies where none exist. A further

consequence of these properties is the fact that the structure learning algorithm may pro-

duce a model with a non-parsimonious parametric space. The combined effect of these

algorithm behaviours may be to introduce error modes into a BNS by learning erroneous

structures, or by increasing the complexity of a BN model in such a way as to render

selected inference techniques intractable. This latter case may be particularly problematic

for adaptive systems.

3.2.2.2 Reasoning Algorithms

Perhaps the most important reasoning algorithm for the utilisation of BNs in practical

applications has been the development of the Belief Propagation (BP) algorithm [22, 32].

This algorithm made exact inference over many BN models computationally tractable.

Many variants of this algorithm have been developed, with the intent of providing various

computational trade-offs that are appropriate for different applications. For example,

a number of algorithms exchange accuracy for guaranteed performance properties (e.g.

timeliness) of the algorithm [50,51]. Others make common algorithmic exchanges such as

exchanging memory usage for CPU usage [1, 2]. An important property of this class of

reasoning algorithm is the dependence of the algorithm on certain structural properties of

the BN model it is being applied to [1, 2].

For example, areas of high complexity within a BN model may result in (computa-

tional and reasoning) performance changes in the chosen algorithm [60, 143]. In some

cases, this may result in exact inference becoming intractable, as discussed in the previ-

ous section. This has resulted in the development of a range of approximate reasoning

algorithms. These algorithms commonly utilise sampling-based or convergence-based in-

ference approaches to achieve an estimate of the state of the BN model. The selection

of an inference algorithm must therefore be paired with the model it is to be applied

to. In cases in which a model’s complexity is guaranteed to remain within the bounds in

which exact reasoning remains computationally tractable, exact inference will naturally

be preferred by assurance practitioners - errors emerging from this class of algorithm will

fall within the scope of considerations associated with ‘standard’ algorithm concerns (i.e.

complexity, timeliness, logical correctness etc.).

In contrast, the approximate reasoning algorithms may present an additional set of

challenges and a corresponding set of potential error modes. Sampling-based reasoning al-
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gorithms typically rely on systematically drawing samples from the probability distribution

represented by a given BN model. These approaches often provide a statistical guarantee

of convergence of the sampled distribution to the ‘true’ posterior distribution [51]. How-

ever, this convergence is often highly sensitive to the structure of the model and to the

local properties of individual RVs in the model [2,51]. Moreover, the error in the estimate

of the posterior distribution behaves statistically [20, 51]. By extension, this introduces

an additional source of uncertainty in the posterior distribution of the model, and by

extension in a ‘BNS’s output.

A practical effect of the properties of statistical errors arising from these algorithms

may be that a BN model converges poorly to its true posterior, and thereby produces

an erroneous output. In a safety-critical context, this may produce a model that under-

or over-estimates the probability of a given diagnosis, thereby producing an incorrect

diagnosis which may then directly inform subsequent actions of a crew or vehicle. In

contrast, variational (approximate) inference algorithms produces a deterministic estimate

of the true posterior within a well-defined limit. These have proven popular in contexts in

which the stochastic nature of sampling-based algorithms cannot be tolerated [50,51]. In

both cases, error modes arising from the approximate nature of the algorithms themselves

are of central importance and must be addressed in the design of both the BN model and

the BNS more broadly.

3.2.3 Methodology

The final primary focus of the AI domain is the development of methodologies for the

construction and deployment of AISs. These methodologies focus overwhelmingly on the

development of techniques to tackle AI-specific development challenges. Indeed, these

methodologies often overlook conventional software implementation aspects altogether [2,

6,65]. As highlighted in section 2.2.4, this is principally because the weight of development

work lies in the construction and optimisation of models, the acquisition and processing

of data and the evaluation and the development of tailored optimisation and reasoning

algorithms.

For BNs, the range of development methodologies is expanded thanks to the capacity

of BNs to integrate subjective and objective information. Consequently, BN development

methodologies integrate many data acquisition, processing and model construction con-

cepts common across the AI domain with Knowledge Engineering (KE) activities and
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frameworks that support the integration of subjective data artefacts into BN models. A

focus of these KE frameworks is on the effective elicitation of data from experts. It is

frequently reported that data elicited from experts contains errors, including contradic-

tions and serious under- or over-estimates of the probability of certain outcomes. In BNSs

derived from data elicited from experts therefore, the selected KE framework must be

robust to these errors. Failure to identify possible errors of this kind will result in a BN

model that is not representative of the target domain, and by extension highly likely to

produce erroneous behaviour.

While BNSs frequently use some degree of engineer-elicited information in their con-

struction, it is increasingly common to rely partially or entirely on empirically-derived

data: data that has been obtained directly from measurements, operational and mainte-

nance records, and manufacturer statistics. It is often assumed that data of this variety

are necessarily better than that derived from subjective estimates. Indeed, these data are

often more amenable to statistical analysis and evaluation [1, 20, 59]. However, extreme

care must be taken in the selection, processing and utilisation of data in a BN model.

Errors in these aspects of a BNS development methodology will be directly reflected in

the resulting system. Systemic errors, such as biases in the underlying data may produce

a BN model that is similarly biased [2]. Furthermore, care must be taken in KE and em-

pirical data acquisition activities to ensure that the data is representative. Data acquired

during a system’s development and those encountered in operational deployment may be

dramatically different.

For example, consider a BNS developed to provide fault diagnosis capabilities for an

autonomous aerial vehicle. If the BNS is developed using failure profile data obtained dur-

ing flight trials, the same system may be blind to distributional shifts in the failure profile

of the vehicle after the vehicle becomes operational. An example of such a distributional

shift may be in the change in failure profile of certain vehicle components after the sys-

tem is deployed to a new environment or climate. If the development methodology of the

BNS is not robust to accounting for factors such as this, the completed BNS may not be

representative of the target domain despite apparently successful testing and deployment

phases. In such cases, the BNS may begin to diverge from the ‘true’ failure characteristics

of the vehicle it is modelling and produce erroneous outputs. Practically, the BNS may

begin to fail erratically as the vehicle it is modelling ages or is exposed to new environ-

mental factors [21]. This problem may not be unique to BNSs but is heightened by the
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scope and complexity of these systems [144].

3.2.4 Existing Work

This section has provided a conceptual overview of how a BNS may produce erroneous

outputs, and some of the key sources of error modes in this class of system. To date, a

comprehensive overview of existing literature on the error modes of BNSs has not been

collated. Table 3.1 provides a set of references to existing literature that explore many of

the aspects discussed in this section in more detail. In particular, many of the papers listed

provide an insight into analysis and mitigation techniques, as well as detailed examples of

how these error modes may emerge in practice. These error modes highlight two points:

1. The error modes emerge from system aspects that can be considered to be ‘soft-

ware independent’. They arise from abstract mathematical interactions with the

underlying data artefacts used to train the systems;

2. The error modes are associated with development activities and system aspects that

are poorly addressed by existing safety guidance and safety analysis techniques.

There is therefore a need to develop approaches that effectively communicate the dis-

tinctions between BNSs (and AISs generally) and conventional software systems to all

relevant system stakeholders. In particular, these approaches must expose and structure

the communication between BN developers and safety engineers in such a way that safety

implications of BN design and development decisions are transparent to all involved. Fi-

nally, the approach must be comprehensive: it must explicitly capture the interactions

and distinction between conventional software aspects of a BNS and unconventional or

BNS-specific aspects. The rest of this chapter is dedicated to addressing this challenge.

3.3 Viewpoints on Bayesian Network-based Systems

As outlined in the previous section, the properties and behaviours of BNSs produce a

number of error modes as a consequence of the atypical aspects of this class of system. In

order to assure these systems, a comprehensive description of these properties is necessary.

The full range of concerns of all relevant stakeholders must be addressed. In particular

the concerns of both BN developers and safety practitioners must be clear and explicit

for both parties. To-date, the integration of ideas between these two domains has been
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Table 3.1: A selection of existing work on error modes associated with developing and

using BN-based systems.

Errors References

CPD Discretisation [2, 59,137]

CPD Distributions [2, 44,137,145]

CPD Parameterisation [60,65,143,146]

CPD Bias and Variance [137,145]

Structural Dependencies [1, 141,147]

Variable Omission [2, 3, 65,141]

Model Hyperparameters [2, 44]

Model Complexity [44,146,148]

Limited Data [52,59,65,149]

Incomplete Data [2, 60,65,150,151]

Unrepresentative Data [9, 54,60,65,152]

Data Selection [2, 65]

Global Bias and Variance [2, 3, 9]

Structure Optimisation [2, 44,60,153]

Approximate Inference [2, 51,154]

Exact Inference [3, 155]

essentially non-existent. Without such integration, the assurance of these systems will

not be possible. This section introduces a set of system viewpoints that aim to provide a

mechanism for this integration of concepts and concerns. The viewpoints aim to provide a

structured, comprehensive view of the key assurance considerations for BNSs and explicitly

address the unconventional aspects of this class of system. The following terms are defined

for clarity:

Abstraction - Abstraction is a mechanism and practice to reduce and factor out details

so that one can focus on a few concepts at a time. It is the process of extracting the

underlying essence of a concept, removing any dependence on real-world objects with

which it might originally have been connected, and generalizing it so that it has wider

applications.

Object - An object is an abstract model of an entity in the real world. It contains
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information, and may offer services. A system is composed of interacting objects. An

object is characterized by that which makes it distinct from other objects.

Representation - A representation is (1) some way of organizing, manipulating, pre-

senting, and storing information; and (2) a visual or tangible rendering of something.

Viewpoint - A Viewpoint is a form of abstraction achieved using a selected set of

architectural concepts and structuring rules, in order to focus on particular concerns

within a system. A Viewpoint Specification defines a pattern or template from which

to construct individual Views, and it establishes the rules, techniques, and methods

employed in constructing a View.

View - A View is a representation of a system from the perspective of a set of concerns.

Views are themselves modular and well formed, and each View is intended to correspond

to exactly one Viewpoint. A View may include representations or correspondences to

elements defined in other Viewpoints.

These definitions are drawn from [156]. A more complete definition of a Viewpoint can

be found can be found in IEEE 1471-2000 and is given as follows:

“ A viewpoint establishes the conventions by which a view is created, depicted

and analyzed. In this way, a view conforms to a viewpoint. The viewpoint

determines the languages (including notations, model, or product types) to be

used to describe the view, and any associated modeling methods or analysis

techniques to be applied to these representations of the view. These languages

and techniques are used to yield results relevant to the concerns addressed by the

viewpoint. An architectural description (AD) selects one or more viewpoints

for use. The selection of viewpoints typically will be based on consideration of

the stakeholders to whom the AD is addressed and their concerns.”

Utilising viewpoints to describe a system’s architecture is a well-established approach

in systems engineering. The viewpoints presented here were inspired by the work of

Shames et al on the development of the Reference Architecture for Space Data Systems

(RA-SDS) [156]. This work set out to address the unconventional aspects of engineering a

complex space-borne system with complex communication networks over extreme ranges

(relativistic effects, extreme latency etc.). The viewpoints presented in this chapter have

been developed specifically for BNSs and reflect the design and operational experience in
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existing AISs in safety critical roles, the safety domain generally, and the BN development

domain. They have been designed to be broadly intelligible to all relevant stakeholders,

and to reflect the concerns of these stakeholders. The viewpoints can be summarised as

follows:

Data Viewpoint – The data viewpoint is concerned with all aspects of BNS design,

development and deployment associated with the acquisition, processing (including data

transformations of any kind) and storage of data artefacts that are to be used directly by

a BNS. This viewpoint is particularly focussed at evaluating the properties of all resultant

data artefacts used in the definition, training or evaluation of any BN models in a BNS.

Model Viewpoint – This viewpoint addresses all concerns related to the properties

and behaviours of all BN models developed and deployed within a BNS. This viewpoint is

intended to particularly address assurance considerations associated with the modelling

decisions and assumption, parameterisation and structure of each individual model within

the completed system, as well as the behaviour of all models.

Computational Viewpoint – The computational viewpoint is aimed at targeting

assurance concerns associated with the properties, behaviours and potential limitations

of all optimisation (learning) and reasoning algorithms specific to a BNS, as well as

any unconventional data flow considerations related to the utilisation of hierarchical or

distributed modelling approaches [43,157].

Technology Viewpoint – The technology viewpoint is included to explicitly account

for the reasoning behind the selection of a given modelling or development framework

for a BNS. It is aimed at addressing concerns associated with the initial selection and

acquisition/development of physical and technological infrastructure necessary for the

development and deployment of BNS in an operational environment. It also addresses

the technological risk that will accommodate the utilisation of a BNS.

Operational Viewpoint – This viewpoint aims to address the concerns related to the

BNS-specific considerations associated with the deployment, evolution and maintenance

of a BNS, and the associated role of the operational environment on the behaviour and

performance of the BNS. This includes, where applicable, climate, population demo-

graphics, localisation (language, culture etc.) and operational load to name a subset.
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Implementation Viewpoint – The final viewpoint subsumes all ‘traditional’ concerns

that are typical of a conventional software system. This includes conventional software

and hardware architecture and implementation considerations, including standard func-

tion allocation and existing verification and validation activities.

These viewpoints have been defined with the aim of capturing system aspects that – if

not adequately addressed – may independently result in the introduction of BNS-specific

error modes into a resulting system. However, while each viewpoint is defined indepen-

dently, it is important to note that in practice, there will be significant overlap between the

concerns and activities associated with each of the viewpoints. Interactions between sys-

tem aspects addressed by individual viewpoints may in fact be the most pernicious source

of errors in the development of a BNS. The interactions between a model and the range

of data artefacts used to generate it, or between a model and any reasoning algorithms,

or indeed a combination of aspects of all three, may produce errors that are difficult to

isolate using conventional techniques [64,121].

As a step towards explicitly addressing these interactions, the viewpoints have been

decomposed into a set of distinct views. This once again follows standard practice in the

systems engineering domain. The views represent a specific subset of concerns associated

with each respective viewpoint and provide a reduced scope within which to perform

targeted analyses of system properties. Each view has then been associated with an object

model. These objects provide the basis for the Reference Model for Bayesian Network-

based Systems (RM-BNS) that will be introduced shortly. The definition of each view and

their associated objects is provided in the following subsections.

3.3.1 Data Viewpoint

As Chapter 2 and section 3.2.2.1 discuss, many data artefacts used in the development

of a BNS take on a heightened degree of importance. The role of data in a BNS is

expansive; almost all aspects of the system will be directly configured by some form of

data. Moreover, any system that learns from a given data artefact will reflect (to some

degree) the properties of the underlying data it has ingested [2, 54]. By extension, a

systematically biased data set, or otherwise some data set that does not adequately reflect

the target domain, will produce a biased model.

Moreover, assuming some subset of the training data is ‘held back’ for validation

activities, these systemic errors may persist within the validation set. In cases such as this,
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the system may be consistent with the test cases and consequently produce acceptable

performance. However, the system may manifest poor performance upon operational

deployment if these systemic errors are not present in ‘live’ data. To anthropomorphise:

the system may learn to ‘cheat’ the test cases. There is therefore a need to proceed with

extreme care, first in the initial data selection and acquisition of data artefacts, and then in

subsequent processing and management activities to mitigate the chances of this occurring.

It is also essential that the properties of all individual resultant data artefacts are reviewed

and evaluated, with particular attention being paid to their representativeness, quality and

integrity. This applies to all data artefacts that are used directly by a BNS.

79



C
h

a
p

ter
3
:

E
sta

b
lish

in
g

V
erifi

catio
n

a
n

d
V

alid
ation

O
b

jectives

Table 3.2: The views and objects associated with the Data Viewpoint.

Viewpoint ID View Description Object/s

Data DV-1 Acquisition This acquisition view defines the sources, pro-

cesses and personnel used to obtain all data arte-

facts.

Artefact, Process

Data DV-2 Transformation This view describes all processing (e.g. normali-

sation, discretisation) applied to data artefacts.

Process

Data DV-3 Management The management view describes the databases

and assorted management activities used to

store/archive and transfer data artefacts. It

addresses data-specific aspects of configuration

management (e.g. training and evaluation

datasets).

Artefact, Process

Data DV-4 Data Artefact This view describes the properties of each result-

ing data artefact (e.g. the quality and integrity

of an artefact). It addresses sources of uncer-

tainty in the artefact/s.

Artefact

80



3.3 Viewpoints on Bayesian Network-based Systems

These considerations are the basis of the motivation and reasoning behind the decom-

position of the data viewpoint into the four views presented in Table 3.2. The acquisition

view (DV-1) specifically targets the need to evaluate the activities involved in producing

a given artefact. For example, in the context of a BNS for fault diagnosis aboard an

aircraft, this may involve some form of audit of the activities of maintenance crews in

logging the status of an aircraft before and after a flight. Any under- or over-reported

faults may produce systemic biases that may not be detected in model evaluation phases.

The transformation view (DV-2) is aimed at establishing the motivation for and the ap-

propriateness of any transformation applied to the data. In the case of discretisation of

continuous data, if the information loss associated with this process is not articulated to

model developers, or is otherwise inappropriate for a given application, errors arising from

this may be challenging to isolate in subsequent evaluation activities.

The penultimate view, the management view (DV-3), addresses the need to carefully

evaluate all storage and transfer processes associated with an artefact. In particular, this

view targets aspects beyond conventional integrity and quality considerations. Instead,

it is focussed on managing data artefacts in terms of assessing and maintaining the con-

tinued validity of an artefact - in particular the continuous evaluation of assumptions

underpinning all data artefacts used by a BNS.

Finally, the Artefact View (DV-4) is concerned with the properties of all artefacts

directly used to train and evaluate a BNS. As these artefacts are typically a product or

composite of multiple distinct artefacts, this view primarily addresses only those artefacts

used directly by the BNS. In particular, it addresses considerations related to the quantity,

completeness, accuracy and precision of the data used to train the model.5 The consid-

erations associated with underlying data artefacts used in the production of the artefacts

used directly by the system are addressed by the preceding views. In the abstract, each

of these views can be described generally in terms of processes and artefacts. This is the

motivation for the objects outlined in Table 3.2. The notion of objects will be developed

more fully in following sections.

5In this context, considerations relating to the ‘completeness’ of data included should address two cases:

the complete absence of data pertaining to cases or scenarios within the data, and the absence of elements

within the data associated with specific cases or scenarios.
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3.3.2 Model Viewpoint

The role of data in modern software-intensive systems is being recognised by assurance

practitioners. This has led to the development of the Data Safety Guidelines (DSG) and

increasing research in this area [144]. The DSG working group note that an argument may

be made that software is simply data, and that the DSG document is therefore unnecessary.

However, they note:

“... data and software emphasise different facets of risk and they are susceptible

to different mitigation approaches; this means there is also a need to adopt a

data-focussed perspective ...”

Similarly, model aspects of a BNS emphasise different facets of risk to both data and

software aspects, and likewise model aspects may be tackled with alternative mitigation

strategies. The Data Viewpoint aimed to address data-centric aspects of a BNS and is

in some respects conceptually convergent with aspects of the DSG document [144]. In

contrast the model viewpoint stresses the need to explicitly consider the models used

within a BNS as standalone artefacts with properties and behaviours of their own.

Indeed, the need to develop extended documentation and analysis techniques to address

the specific properties of model aspects of AISs has been highlighted in the work of Taylor

et al on safety-critical ANNs [64]. The Model Viewpoint presented here broadly aligns

with the recommendations made in this work. However, it has been designed to target

BNS specific aspects that are distinct from ANN systems, and to treat BN models as

artefacts central to a system’s design, as opposed to a consideration that is ancillary to

the ‘traditional’ software considerations.

The views defined in Table 3.3 reflect this approach. Each of the views has been

defined in a manner that ensures the generality of the view to both local and global

models. Concretely, the views have been defined to be equally applicable in terms of

addressing the concerns of that view when considering a BN model either at the local RV

level, or at a higher BN object model, or indeed at a fully integrated, complete BN model

level. This means that any component of a BN model up to and including the BN model

itself can be described in terms of these views. This property extends to the RM-BNS, as

will be discussed shortly.
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Table 3.3: The views and objects associated with the Model Viewpoint.

Viewpoint ID View Description Object/s

Model MV-1 Structure Concerned with the structure (local and/or

global) of a model.

Model

Model MV-2 Parameterisation Concerned with the properties (e.g. confidence,

quality etc.) of all parameters and hyperparam-

eters used in a model.

Model

Model MV-3 Definition Concerned with aspects of the model associated

with the qualitative aspects of representation,

including the context of the model and the def-

inition of model components.

Model

Model MV-4 Dynamics Concerned with the high-level properties and

dynamics of a model.

Model
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For example, the Structure View (MV-1) addresses those concerns associated with the

structure of a model. In the context of RVs, this view is aimed at addressing the local

structure of the RV: the properties of the distribution used to represent it. The view is also

applicable to the global BN model. At this level, the view is similarly aimed at addressing

the concerns associated with distribution of the model, but in this context, it is considering

the higher-level interactions between all RVs within the model. The Parameterisation View

(MV-2) complements MV-1 by addressing the properties of all parameters in a given model.

Once again, it is applicable to local and global considerations. In the former case, the view

addresses the need to establish statistical confidence and bounds on the parameterisation

of a variable, while in the latter case it addresses the performance implications of a given

parameterisation.

In contrast, the Definition View (MV-3) is defined to target concerns associated with

establishing the scope of individual variables and full BN models, and to ensure precisely

what a given BN model (or RV) represents and when it represents it. It is aimed at

ensuring that a given model represents what it is intended to, and under what conditions

this representation remains valid. Finally, the Dynamics View (MV-4) aims to address

higher-level concerns associated with the evaluation and testing of BN models, and is

concerned with all activities related to these aspects.

In all cases, these system aspects can be considered to be properties related to each

individual BN within the system. Consequently, each of these views can be described in

abstract as some particular property of a given model. The model object is therefore used

to represent these aspects. As before, this will be developed more fully in subsequent

sections. Finally, it is also important to note that attempting to ensure the generality of

these views has been partially motivated by the need to accommodate novel BN archi-

tectures. These architectures may include RVs that are themselves decision trees, ANNs

or any other model that satisfies the constraints of the BN framework. Consequently,

the viewpoint and views have been defined without any inherent assumptions about the

topology or variant of the BN (or RV) selected.

3.3.3 Other Viewpoints

A complete enumeration of all views is beyond the scope of this chapter. Instead, a

subset of views has been selected for discussion. A full tabulated set of all viewpoints

and their associated views and objects can be found in Appendix A. Table 3.4 shows the
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four selected views. As before, each of these views is targeted at drawing attention to

BNS-specific considerations: there may be parallel or analogous considerations in other

software systems, but these are not the focus of these views.

The first view in table 3.4 is the Optimisation View (CV-1) from the Computational

Viewpoint. This view is aimed at addressing concerns related to all learning capabilities a

system may have, both in off-line and on-line (adaptive) contexts. It targets the properties

and mathematical behaviours of all learning algorithms that may be utilised by a system.

For example, this view addresses the need to consider the robustness of algorithms to noise

in data, whether the algorithm is biased (statistically speaking), and what other limita-

tions the algorithms may have in terms of providing an accurate estimate of a given BN

model’s structure or parameterisation. This latter consideration of a learning algorithm’s

limitations refers particularly to circumstances in which an algorithm may converge poorly

to an estimate of a BN model’s properties; this may occur if certain algorithms encounter

underlying properties of a BN model or available training data.

Next, the Infrastructure View (TV-1) of the Technology Viewpoint addresses a funda-

mental challenge associated with the development of a BNS (and other AISs): the need

to develop and maintain a tailored set of skills, tools and physical infrastructure in order

to subsequently develop a BNS. For many BNS applications, this may include the devel-

opment of new technology test-beds, new data gathering processes and infrastructure and

training of developers, as well as operational and maintenance staff. In terms of the engi-

neering field more generally, the development of a large-scale, complex BNS may require a

similar degree of additional training and infrastructure as was necessary for the transition

towards software-intensive systems that the field has experienced in the past. The Infras-

tructure View is therefore focussed on addressing concerns associated with establishing

that the organisational and technological prerequisites are in place and are adequate for

the BNS being developed. This view then underpins considerations associated with other

viewpoints, particularly the Model and Data Viewpoints.
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Table 3.4: A subset of views from taken from the Computational, Technology, Operational and Implementation viewpoints.

Viewpoint ID View Description Object/s

Computational CV-1 Optimisation This view is concerned with all aspects related

to the optimisation (i.e. learning) algorithms

utilised in both the development and deploy-

ment of a BNS.

Computation

Technology TV-1 Infrastructure This view addresses considerations related to

the selection, development and use of skills,

tools, processes, physical infrastructure and re-

sources necessary for the deployment of a BNS.

Framework

Operational OV-3 Evolution This view targets concerns associated with any

continuous changes that may be present in the

target domain, both in terms of engineered

changes to that domain, and ambient changes,

perhaps due to operational change, natural

degradation due to age, or location.

Process, Scenario

Implementation IV-4 Integration Concerned with those activities necessary for the

transfer of a BNS from a simulated test-bed into

a ‘live’ environment, and to ensure data passed

to it is in alignment with each model’s expecta-

tion.

Activity
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The third view in Table 3.4, the Evolution View (OV-3) of the Operational Viewpoint

is aimed at addressing activities related to ensuring the continued validity of the system

in continuously changing operational environments. This includes changes arising both

as a result of engineered changes (e.g. platform upgrades, configuration changes etc.),

‘entropic’ changes occurring as a consequence of continued use (i.e. age, or other simi-

lar performance degradations or fluctuations), and changes occurring as a result of new

operational environments (e.g. new climate, new operational theatre/context etc.).

Consider the motivating example of this thesis: a BNS providing prognostic health

monitoring support for the mission planning functions aboard an Unmanned Aerial Sys-

tem (UAS). The BNS will be designed to model the physical characteristics of the UAS - in

particular the UAS’s components and their statistical failure profiles. If these components

or their failure profiles change for any reason, and these changes are not monitored and

captured by the BNS, then the BNS’s ‘understanding’ of the characteristics of the UAS

will begin to diverge from the actual characteristics of the UAS. This would be a practical

example of ‘distributional drift’. The Evolution View is therefore focussed on addressing

how existing change management systems and other related operational activities may

be augmented to target and mitigate errors emerging from BNS-specific properties such

as this. Note that it is not addressing how a model may be designed to ensure robust-

ness to these changes, but rather the operational processes that must be developed and

implemented to mitigate these behaviours.

Finally, the Integration View (IV-4) of the Implementation Viewpoint targets those

concerns associated with moving a BNS from a test-bed or idealised development envi-

ronment into a production system and on to an operational environment. This view is

focussed on drawing attention to the need to ensure assumptions made during develop-

ment are valid throughout integration and deployment of the system, and for managing

the integration of all future BNS upgrades aboard target platforms. Like OV-3, this view

is essentially focussed on addressing how existing techniques for managing the migration

of a software system from a development environment into a deployment environment can

be expanded to include considerations specific to a BNS.

Using the same UAS example, this could be ensuring that the operational environment

the system is migrated to aligns exactly with the development environment. This may

include considerations related to the similarity of the ambient operational environment

(again, including climate, operational context etc.). It will include ensuring that the
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target system is sufficiently similar to development test-beds that the model is applicable

to that system. This will require a process for ensuring a BNS is calibrated for the system

it is deployed onto; this will differ between vehicles and operational environments. In some

respects, this view is concerned with tackling concerns related to the ‘overfitting’ of a BNS

to any development test-beds.

3.3.4 Justification of RM-BNS Viewpoints

The primary concern when developing these viewpoints was to provide a comprehensive,

holistic perspective on the important technical issues facing the development of a mission-

critical BNS. Each of the viewpoints was derived from an extensive search of existing

literature on the development and deployment of AI-based systems and BNSs. This search

was made with a particular focus on identifying contributions in literature that were

derived through direct experience of deploying and operating an AI-based system, and

other complex and/or novel software-intensive systems.

Consequently, many of the concerns captured by the viewpoints have previously been

discussed within the AI or safety-critical systems literature at varying levels of detail.

However, at the time of writing, the concerns captured by the viewpoints have not previ-

ously been structured and unified in a manner that addresses the needs of assurance and

AI practitioners alike, and in particular in a manner that directly addresses the particular

concerns associated with the development of a mission-critical BNS.

Practically, the viewpoints aim to standardise and structure these BNS-specific con-

cerns, while also integrating insights and concepts developed over the course of this re-

search project. This includes insights gained from analysing and describing the failure

modes of BNSs. For example, the Data, Model and Computation Viewpoints were defined

to broadly conform with certain existing strategies for framing and communicating more

general AI concepts within literature [2, 54]. However, these viewpoints were defined to

specifically address safety and assurance concerns related to these concepts, and – impor-

tantly – map these concerns directly to published BNS development practices. Table 3.5

enumerates a list of publications and standards that were used to inform the definition of

each of the viewpoints.

These viewpoints were then further refined through the inclusion of assurance concerns

arising from the experiences of Jacklin et al that were gained through the development of

neural-network based flight control systems at NASA [72,159,160]. Insights derived from
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Table 3.5: A mapping of RM-BNS viewpoints to a selection of corresponding publications

that informed the definition of a given viewpoint.

Viewpoint References

Data [2, 54,60,65,137,144]

Model [2, 3, 16,54,65,141,158]

Computation [2, 72,156]

Technology [6, 141,159]

Operational [72,158,159]

Implementation [72,156,159]

this work were adapted to align with the parallel but often distinct technical considera-

tions associated with the development of BNSs. This work also highlighted the need to

consider broader system aspects related to system maintenance and the ongoing validation

of unconventional AIS components in operational environments [159]. These experience-

derived insights, along with work of Przytula et al and other work on the development of

other techniques developed to describe and model complex, novel systems motivated the

introduction of the Operational, Technology and Implementation viewpoints in particu-

lar [6, 161].

With this comprehensive survey completed, the identified concerns were then struc-

tured to maximise the orthogonality of each of the viewpoints with respect to each other

viewpoint. This was driven by a desire to ensure a separation of key concerns, and to

thereby minimise the coupling of these concerns across viewpoints wherever possible. To

achieve this, concerns were identified and grouped according whether system aspects re-

lated to a particular concern could independently produce system-level failure modes in a

BNS. Practically, this should allow AI and assurance practitioners to reason and commu-

nicate more effectively about the design of a particular BNS. Of course, no system aspects

exist in true isolation, and the implications of this fact will be dealt with in more detail

later in this chapter.

Ultimately, the viewpoints and their respective views represent a distillation of an

extensive search of existing literature across multiple pertinent fields of research on the

development of safety-critical systems; novel software-intensive systems; AI-driven systems

and BNSs themselves. This distilled information was then systematically structured ac-

cording to standard engineering best practices, cross-checked against published experiences
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of developers producing mission-critical AISs and then presented in a format designed to

be transparent and useful to all relevant BNS stakeholders.

3.3.5 Relationship to Existing Safety Standards

The software safety principles that underpin the Ministry of Defence’s (MOD) Defence

Standard (DEFSTAN) 00-055 highlight the particular issues the viewpoints are aimed at

addressing [162].

Principle 1: Software Safety Requirements shall be defined to address the software

contribution to system hazards.

Principle 2: The intent of the software safety requirements shall be maintained through-

out the requirements decomposition.

Principle 3: Software safety requirements shall be satisfied.

Principle 4: Hazardous behaviour of the software shall be identified and mitigated.

Principle 4+1: The confidence established in addressing the software safety principles

shall be commensurate to the contribution of the software to risk.

For the safety assurance of BNSs, these principles do not change. However, the focus

of the work required to address them does. For example, in guidance such as DO-178C,

there is emphasis on the development of High Level Requirements (HLRs) and the decom-

position of these HLRs into Low Level Requirements (LLRs) [69]. This decomposition and

refinement of requirements is captured in Principle 2. For AISs based on statistical learn-

ing approaches (such as BNSs), the refinement process may proceed in a highly iterative

and uncertain manner [59,64,86]. Moreover, the refinement process will be coupled to the

behaviours the model learns and contains. In the case of BNSs for example, the functional

behaviour of the system is often dependent on factors that may be difficult or impossible

to specify a priori [81,121]. Examples of common difficulties associated with these factors

include the requirements for the necessary quantity and quality of data, aspects of the

model’s structure and associated modelling choices, and by extension details pertaining

to relevant optimisation and reasoning algorithms [64,72,163].

Importantly, the interactions between these aspects can introduce sensitive dependen-

cies in the system. These properties contribute to the emergence of the highly iterative
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and relatively ad-hoc development cycles commonly used in the development of BNSs.

In some cases, they may be inherent manifestations of the aleatoric and epistemological

uncertainty associated with the target problem or with using statistical learning methods.

These observations also highlight additional considerations associated with Principle 4.

The functional behaviour of BNSs is often determined by a complex combination of factors

that are outside the scope of considerations common to conventional software systems. In

particular, the functional behaviour of the system is often strongly coupled to system

aspects encompassed by the proposed Model and Data viewpoints. As discussed, the

Model viewpoint aims to highlight issues surrounding what a given system has learned.

The system may perform well on available test data but may exhibit dramatically different

- and potentially hazardous - behaviours upon deployment. This may be because available

test data was not sufficiently representative of a real-world environment. In a simplistic

sense, it may also be because the trained model represents a problem that is different from

the intended target problem.

A frequently cited (possibly apocryphal) example of both of these issues describes the

case of a US project to develop an ANN-based system for the automatic identification of

camouflaged armoured vehicles [164]. The development team achieved good performance

in their test environment, but poor performance in subsequent third-party testing. Analy-

sis revealed that rather than learn to identify armoured vehicles, their system had learned

to identify the weather conditions in the photographs used to train it. This occurred

because the development team had used photographs in which camouflaged vehicles hap-

pened to be taken on cloudy days, and un-camouflaged vehicles happened to be taken

on clear days. Importantly, the trained ANN model can be described as being consistent

with the data-set: the system had learned a model from the data consistent with the

classification objective given to it, but this model was not representative of the intended

problem. There is also a broader problem of establishing whether – except in the most

trivial circumstances – a specific model/modelling framework can be sufficiently represen-

tative of a target domain. In the case of BNs, the specific variant and structure of a BN

model will provide a hard constraint on the capabilities of the model and therefore any

system/s utilising that model.

Consequently, code coverage-focussed testing such as that advocated by DO-178C is

unlikely to identify hazardous behaviours associated with errors of this kind. The view-

points aim to support the identification and mitigation of hazardous behaviours arising
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from this type of error (and others specific to BNSs). They also indicate the need for

additional data- and model-focussed coverage activities. Without these targeted analy-

ses, establishing a meaningful assessment of the contribution of the system to risk may

be challenging. In this way, the viewpoints also aim to address considerations related to

Principle 4+1. Concretely, the viewpoints address the 4+1 principles as follows:

Principle 1: The viewpoints expose and address BNS-specific aspects that may con-

tribute to system aspects – including those beyond the scope of conventional systems.

Principle 2: The viewpoints enable the comprehensive description of system aspects

using a structured framework that enables relationships between system aspects to be

explored. This will be more rigorously addressed in the following sections.

Principle 3: Software safety requirements shall be satisfied. The satisfaction of soft-

ware safety requirements is predicated on the generation of requirements that can be

tested. The viewpoints represent a first step towards guiding assurance practitioners

towards analysis and testing techniques that can be used to satisfy BNS software safety

requirements.

Principle 4: By supporting the description of BNSs and drawing attention to unconven-

tional system aspects, the viewpoints can be used to drive assurance efforts towards more

expansive analysis and testing activities that address BNS-specific system behaviours.

Principle 4+1: The viewpoints expose the full range of safety-related considerations

for BNSs. They therefore provide a first step towards identifying which system aspects

contribute to system risk. This is itself the first step towards establishing to what degree

a system aspect contributes to hazardous behaviours. By extension, they can be used to

provide a foundation for the discussion of the sufficiency of assurance efforts targeting

system aspects addressed by a given viewpoint in the context of the contribution of

that aspect to system risk. This will be addressed more comprehensively in subsequent

chapters.

Ultimately, current safety standards and guidelines do not provide adequate mecha-

nisms for addressing these AI-specific concerns. In the case of IEC-61508, this is because

systems with AI-based aspects are actively not recommended [94]. In other cases, lan-

guage and guidance is included that covers some of the aspects outlined in the viewpoints,

but this guidance is invariably new and limited. DO-178C falls into this latter category
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with its inclusion of guidance for Data Parameter Items (DPIs). This guidance focusses

on data artefacts physically encoded in the software system. For many BNSs, the bulk of

data used to train (configure) the system is not physically present in the implemented soft-

ware system. Therefore, the contribution of this data to system risk may not be explicitly

addressed.

More recent work has acknowledged the increasingly influential role of data in modern

software systems, and the corresponding shortfalls of existing standards. An example

of this is the aforementioned Data Safety Guidance (DSG) [144]. This guidance aligns

conceptually with some of the aspects outlined by the proposed Data Viewpoint. However,

some of the technology-specific considerations associated with BNSs are naturally beyond

the scope of the document, particularly those associated with the interactions between data

acquisition, processing and management choices and the learning and reasoning behaviours

of implemented BNSs.

Finally, no standards currently tackle concerns associated with the modelling frame-

works and activities that produce the models that drive these systems. Work by NASA

on the use of ANNs for adaptive flight control systems identified the need to consider

additional, independent verification and validation activities in parallel with conventional

software assurance activities. This need is reflected in the AI domain generally, where it

is common practice to evaluate software and model aspects independently, and is directly

relevant to BNs. The Model viewpoint is therefore aimed at addressing those concerns di-

rectly associated with the development and deployment of BNSs that otherwise fall outside

of the scope of existing software- and data-assurance guidance.

3.4 Reference Model for Bayesian Network-based Systems

(RM-BNS)

The viewpoints and their constituent views provide a basis for the structured description

of all key aspects of BNSs. They aim to capture the important conceptual distinctions

specific to BNSs (and in some cases to AISs generally). However, as alluded to in previous

sections, there is an overlap between the spheres of interest of each of the viewpoints,

and by extension their views. The interactions between many aspects that are addressed

independently by distinct viewpoints may lead to emergent behaviours – some of which

may be hazardous. Consequently, while it is possible to address the concerns of each of
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the viewpoints individually, it is essential that these interactions are made explicit and

understood by all relevant system stakeholders. To this end, this section introduces a

reference model for BNSs that aims to achieve this. The reference model builds upon the

language defined by the viewpoints, their views and corresponding objects.

3.4.1 Definition of Objects

The objects associated with viewpoints were defined in accordance with the guidance

provided by the RM-ODP and IEEE 1471-2000 documents. This is defined as:

“An object is an abstract representation of an entity in the real world. It con-

tains information and offers services. A system is composed of interacting

objects. Each viewpoint defines its own objects, their relationships and inter-

actions.”

In accordance with this definition, in the Data Viewpoint the objects are artefacts

and the processes that produce them. In the Model Viewpoint, the objects are abstract

mathematical models that encapsulate both local and global aspects of a BN model. The

objects associated with the Computational Viewpoint are abstract computations: a gen-

eralisation of any optimisation or inference algorithms that may be used in the system. In

the Technology Viewpoint the objects are Frameworks and Infrastructure – abstractions of

developmental approaches and infrastructure/tools selected for the BNS lifecycle. Objects

in the Operational Viewpoint are Scenarios, Capabilities and Environments related to the

deployment of a BNS. Finally, the objects associated with the Implementation Viewpoint

are abstract Functions and Resources that characterise a BNS.

3.4.2 Capturing Interactions in BN-based Systems

Many modern applications of BNs utilise a number of distinct development approaches,

model architectures, training data types and learning and reasoning algorithms within a

single system. The interactions between design decisions and implementation details as-

sociated with these aspects can be a source of error in their own right and can occur as a

consequence of errors directly associated with a given interaction or as a product of sen-

sitive dependencies between system aspects. An approach to capturing these interactions

can provide a degree of transparency to the system and can be used to support subsequent

analysis of a system’s architecture.
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As with the modelling of any complex system, capturing the complexity of these BNSs

requires an approach that maintains an acceptable level of abstraction. This must in turn

facilitate a useful level of generality. Practically, a suitable modelling approach must be

able to capture the diverse and complex architectural properties of BNs without itself

becoming too complex. A number of reference models and reference architectures have

been proposed to tackle precisely the problem outlined here - that of providing a practically

useful, but sufficiently general model of complex, unconventional systems that reflect the

interactions between aspects of these systems [156].

The solution proposed here is based on the concepts outlined in existing research on

the development of reference models for complex systems [156]. The Reference Model

for Bayesian Network-based Systems (RM-BNS) builds on these concepts and provides a

structured, comprehensive approach to modelling BNSs. The building blocks of this model

are the objects introduced previously. These objects directly connect the RM-BNS to the

defined BNS viewpoints. Consequently, this link provides the language for the description

of the concerns associated with objects in a model. A full enumeration of objects is beyond

the scope of this chapter, but is included within the complete set of viewpoints and views

included in Appendix A.

Figure 3.4: The RM-BNS Reference Model.
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The proposed reference model is shown in Figure 3.4.6 The reference model is intended

to clearly and explicitly represent the key interactions between objects in the model, and

consequently between views both within and across individual viewpoints.7 For example,

the reference model can be used to make explicit the interactions between learning and

reasoning algorithms (represented in the abstract as the Computation object), training

and validation data (represented by the Data Artefact object) and each of the BN models

(represented by the Model object) within a given BNS. Similarly, the interactions between

Data Artefacts and Models with conventional software aspects (captured by the Function

object) are made explicit. These interactions are only implicit in the viewpoints, but are

intended to be transparent and intelligible to safety practitioners and BN developers alike.

The utilisation of the RM-BNS for the modelling of an example BNS will be demonstrated

in the case study at the end of this chapter.

3.4.3 Role of RM-BNS

The role of the reference model is envisioned as a tool to support the development of a

structured, comprehensive description of a given BNS. It is not intended to act as a formal

model of a system, and by extension has not been designed to support formal analysis of

a BNS’s properties. Its primary function is to support the development of a transparent,

well understood BNS architecture, and to focus attention on system aspects that may

otherwise be overlooked.

Consequently, this chapter has been focussed on providing an ontology for the descrip-

tion of BNSs in the form of a set of viewpoints and the accompanying reference model

that provide a clear, comprehensive and structured description of key system aspects ei-

ther unique to, or disproportionately important to, BNSs that can be used effectively by

safety practitioners and other system stakeholders with limited exposure to the technical

aspects of a BNS.

Furthermore, this ontology has been designed to support extensibility. This notion of

the extensibility of the ontology specifically refers to the intent to provide a reference model

6This image is included alongside the rest of the core components of the RM-BNS framework in Ap-

pendix A.
7Note that for ‘undeveloped’ parts of a RM-BNS instantiation, a diamond is used to represent aspects

of a model that could have been developed further but were not. This will be demonstrated with examples

in subsequent chapters.
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that is flexible, and can be modified to address any application-specific considerations that

may fall outside of the scope of the ontology as defined. This may occur in circumstances

in which an AIS utilises BN-based components in a hybridised architecture. It may also

occur in the event a BNS is developed as part of a platform using other technologies

outside of the BN or AI domains that may influence a BNS’ behaviour in a novel way.

This could include novel sensors or other hardware technologies. Finally, it is likely that

many BNS applications may not need to consider all aspects of all presented viewpoints.

In these circumstances, it is expected that developers simply omit views where necessary,

though this should be explicitly justified.

3.5 Generic Verification and Validation Objectives

The previous sections have outlined an approach to describing and modelling BNSs in

a comprehensive, structured format. The shortcomings of existing standards have also

been discussed. An approach to the assurance of a BNS must overcome these shortcom-

ings - primarily by directly addressing the BN-specific assurance considerations discussed

throughout this chapter, and by mitigating weaknesses in existing safety standards. This

section therefore introduces an approach to using the viewpoints and reference model to

generate a set of comprehensive verification and validations objectives for BNSs that aim

to achieve this.

3.5.1 Deriving Objectives

The reference model has been designed to provide an ontology that can be used to develop

a general description of all aspects of a BNS. Each of the objects within the reference

model can be used to capture an abstract representation of a given system’s composition

or development processes. Each of these objects can be associated with design choices,

and by extension these design choices can be associated with the introduction of errors

into the BNS. Where appropriate, this fact can be used to generate a set of error modes

for each respective object. The evaluation and enumeration of mitigation strategies for

these error modes can then be used to generate a set of objectives.

When this approach is applied to the reference model shown in Figure 3.4, a set of

generic verification and validation objectives for BNSs can be generated. These objectives

provide a high-level insight into the composition and engineering challenges associated with
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the development of a BNS, while also providing an abstract set of objectives that can be

used to guide early-stage requirements engineering, or other aspects of safety management.

Furthermore, by utilising the RM-BNS as the basis of the generic objectives, it is then

possible to generate system-specific objectives. This can be achieved by producing an

instantiated instance of the reference model that maps onto a target BNS. The instantiated

model can then be used to derive a set of objectives for the given BNS that capture the

properties of the architecture and processes used to develop the BNS. The fact that the

reference model provides a comprehensive basis for describing a BNS can be utilised to

generate a set of objectives that provide coverage of all key system-specific properties.

By extension, instantiations of the reference model - and therefore the system-specific

objectives - can similarly facilitate a comprehensive set of objectives that target BN-

specific assurance considerations that are directly relevant to the system’s architecture

and development strategies.

Furthermore, the ability of the reference model to capture interactions between objects

also supports an understanding of how design decisions and verification and validation

activities associated with individual objectives may overlap. The process for the derivation

of system-specific objectives is explored in more detail in Chapter 6. The scope of this

chapter once again prevents a full enumeration of verification and validation objectives for

BNSs. Instead, an overview of a number of the objectives associated with the Data and

Model Viewpoints is provided, alongside a subset of objectives sampled from the remaining

viewpoints.

3.5.2 Data Viewpoint Objectives

The first objective (DV-3.3) is concerned with addressing safety-related assumptions as-

sociated with the acquisition of data for use in the BNS. A particular example of an

assumption that must be made explicit is that any data gathering activities carried out

by different operators, at varying geographical locations, or on distinct platforms are suffi-

ciently comparable that data taken from these various sources can be combined effectively

and transparently into a single fault database or dataset. In the context of the motivat-

ing example of this thesis, this may involve the acquisition of data from many distinct

aircraft operators, or geographically and environmentally distinct sites. Each operator or

site may have different internal processes or standards for the acquisition or handling of

operational data prior to that data being acquired for use in a BNS. The quality, integrity
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Table 3.6: A subset of generic verification and validation objectives for the Data Viewpoint.

Viewpoint View Object Objective ID

Data Acquisition Process Establish and justify any as-

sumptions made during data ac-

quisition [Process].

DV-3.3

Data Processing Process Establish and justify the neces-

sity of the data transformation

[Process].

DV-2.2

Data Artefact Artefact Establish and justify the in-

tegrity of the [Data Artefact].

DV-1.4

and underlying statistical properties of data acquired from distinct operators may vary;

aircraft operators in different operational theatres or in different geographical regions may

require a more frequent turnaround of aircraft components (which may indicate an increase

incidence of component failures), or deviate from normal procedures due to operational

pressures.

In a medical diagnosis context, further assumptions may be that the location at which

data is gathered - a particular hospital or district - is representative of the population

that the system will be used to treat. For example, if the patient demographics at the

location at which acquisition processes are performed are skewed (perhaps in terms of

socio-economic status, ethnicity or age, as examples), the prevalence of different diseases

and patient outcomes will be expected. As repeatedly discussed in this chapter, a BNS

will learn to represent the underlying distributions in the data it is trained on. A BN can

be designed to be robust to biases such as this - but only if model developers are aware of

the assumptions underpinning the data that has been acquired.

The second objective is aimed at addressing the need to establish and justify all trans-

formations applied to data artefacts. For example, it is common within the AI domain

to apply a range of scaling and decomposition transformation to data prior to that data

being used to train a system. Three common reasons for transforming data in this way

are: to ensure acquired data conform to a target distribution, to reduce the dimension-

ality of the data, and to ensure a degree of homogeneity (in terms of the range of values

elements within a data artefact may take) in the data artefact. Each of these motivations

can improve the overall performance and robustness of the resulting model. They can also
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improve the ability of optimisation algorithms to converge to locally optimal solutions.

However, erroneous or inappropriate application of certain transformations may have the

opposite effect. A further transformation that may be applied ‘silently’ is the discretisation

or rounding of data. These processes may result in the loss of information in the data, and

may once again alter the characteristics of the completed BNS. This objective is therefore

aimed directly at ensuring that each transformation used during the development of a

BNS is adequately justified and is materially necessary for the resulting BNS.

The final objective presented here addresses considerations associated with the proper-

ties of data artefacts used directly by a BNS. It is particularly interested in the evaluation

of data artefacts used in training BN models (or more generally in the definition of any

BN model) in a BNS. The satisfaction of this objective is dependent on the satisfaction of

other objectives, both within the Data viewpoint objectives and in other viewpoints. In

this case, the objective is addressing the integrity of each data artefact used to train or

define a BN model. The definition of data integrity in this context aligns with the DSG

definition of data integrity as [144]:

“The [artefact] is correct, true and unaltered.”

From a BNS perspective, satisfaction of this objective indicates that artefacts used

to subsequently train BN models have not been manipulated and are representative of

the target domain. The manipulation of data is a particular assurance concern for AISs:

injection of synthetic or falsified data into a data artefact used to train an AIS can be

used to influence the functional behaviour of the completed system. Existing examples of

attacks of this kind include making small changes to images (both with editing or ‘real

world’ changes) that can render AISs with AI-based computer vision aspects ‘blind’ to stop

signs or certain objects [133]. From a safety perspective on the motivating example of this

thesis, this is concerning for diagnostic systems as the manipulation of data either used to

train the system, or ingested by the system after deployment may introduce latent errors

in a model that may ‘blind’ the diagnostic system to some system faults. The elimination

of errors arising from these considerations is the primary target of this objective.

3.5.3 Model Viewpoint Objectives

The first objective in Table 3.7 (MV-1.1) is intended to address the need to establish and

justify the selected approach to representing a given model (again, either local structure
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Table 3.7: A subset of generic verification and validation objectives for the Model View-

point.

Viewpoint View Object Objective ID

Model Structure Model Establish and justify the basis for

using the [structural variant] for

the [Model].

MV-1.1

Model Param. Model Establish and justify the accu-

racy of the parameterisation of

[Model].

MV-2.2

Model Dynamics Model Establish and justify confidence

in the dynamics of the [Model].

MV-4.5

of an RV, or global structure of a BN) with a given structure. At the local structure level,

this will focus on the RV variant selected to be included in the model. For example, this

will require establishing which local structure best represents the target variable the struc-

ture is modelling. This will involve establishing whether the variable is best represented

as a discrete distribution (e.g. Bernoulli, Poisson etc.), or as some form of continuous

distribution (e.g. Gaussian, Weibull etc.), and why this structure is adequate for the task

of modelling the target variable.

For example, consider an RV representing a sensor measurement. The statistical profile

of the quantity being measured may be approximately normally distributed, and therefore

a developer may select a conditional normal distribution as the local structure of that

RV. However, the intent of this objective is to establish that this structure is optimal on

the one hand (i.e. to establish the structure variant), and to justify that the structure

is capable of capturing the required behaviours. This latter consideration may result in

the selection of a local structure that in an absolute sense is not the optimal structure in

one sense (e.g. it represents the data most closely), but instead represents the properties

of the data a BN developer requires. This may involve selecting a structure that is a

compromise: it may not be the best approximation to the process being modelled, but

may produce the desired performance (or other property).

These local structure considerations also extend to global structure considerations. As

outlined previously, the selection of local structure variants can have implications for the

global structure of a model. For example, hybrid BN models with continuous and discrete
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RVs are often severely constrained: a local structure captured by a continuous conditional

distribution may not have discrete child RVs. This is one example where attempting to

achieve absolute fidelity to the distributions in training data may produce a model with

reduced performance on some tasks. Beyond these structural constraints, this objective is

also aimed at addressing considerations associated with the selection of dynamic models

(where appropriate), and whether the use of directed models is appropriate given the

target domain being modelled. Ultimately, the variant of the model structure selected will

influence what a BN model (or RV) can represent (i.e. ‘know’), and when it can represent

it. Failure to rigorously justify the selection of a given structure variant may result in

several distinct error modes that may seriously impact functional behaviours of a BNS.

The second objective builds conceptually upon the objectives associated with the struc-

ture view. This objective is aimed at establishing the accuracy of the parameterisation

of the model. The aim of this objective is to ensure a concrete, explicit measure of the

statistical confidence of a given parameter (wherever possible) is provided. This informa-

tion is intended to be used to support other objectives, including MV-4.5. The accuracy

of the parameterisation refers primarily to the need to establish a concrete link between

a model’s parameters and underlying data artefacts used to estimate those parameters.

Provided this link is established, the objective can build upon the objectives of the data

viewpoint to establish that the parameters are indeed an accurate estimate of some ‘real

world’ aspect.

The final objective in Table 3.7, objective MV-4.5, is defined to establish confidence in

a given model holistically: the model is more than a sum of its parts; it cannot be assured

by considering its definition, structure and parameterisation independently. This objective

therefore aims to assess the model as a whole. It builds upon other objectives associated

with this viewpoint to establish and justify confidence in a model by evaluating the overall

behaviour of the model. As with the other viewpoints, this can be considered at two levels

of granularity: at a local level, or at a global level. At a local level, the objective seeks to

assure the behaviour of a local model across the range of inputs it may encounter - that

the model as defined and trained will be robust to anomalies, for example.

Similarly, satisfying this objective at a global level will require that a model is robust

to outliers. However, it is also aimed at ensuring the model is robust to some degree of

errors in inputs, for example, or to ensure that the model does not enter a circumstance

in which its reasoning capabilities are diminished. Ultimately, it is aimed at establishing
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and justifying the adequacy of all modelling efforts associated with the objectives in this

viewpoint.

3.5.4 Other Viewpoint Objectives

Table 3.8: A subset of generic verification and validation objectives for the Computational,

Technology, Operational and Implementation Viewpoints.

Viewpoint View Object Objective ID

Computation Optimisation Comp. Establish and justify the neces-

sity of optimisation [Computa-

tion].

CV-1.1

Technology Infrastructure Framework Establish and justify the suf-

ficiency of available tooling

[Framework].

TV-1.2

Operational Evolution Process Establish and justify the [Pro-

cess] for monitoring the validity

of the [System].

OV-3.4

Implementation Allocation Function Establish and justify the chosen

[Function] allocations.

IV-3.1

The Computation Viewpoint’s first optimisation objective (CV-1.1) is focussed on

ensuring that every optimisation approach selected is necessary for the given system.

At the highest level, this is aimed at addressing the need to ensure that optimisation

approaches used within the system are appropriate for the application, and that no simpler

or more transparent approaches could be used in place of the selected approach. For

example, there are a range of structure learning algorithms. If a model can be represented

as a tree-structured BN model, there are structure learning algorithms that have been

proven to be mathematical optimal for this application. If another algorithm is used in

cases such as this, the justification of the necessity of the chosen approach will rely on

defining what specific properties a chosen algorithm has that means a simpler algorithm

was not selected. Similar concepts are also applicable to parameter learning approaches.

The second objective in Table 3.8 (TV-1.2) addresses the need to establish the suffi-

ciency of available software tooling that will be used to design and test BN models and the
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completed BNS. For example, many commercial software packages for BN development

are highly constrained with respect to the available learning and optimisation algorithms

available, and the BN variants they support. These constraints may result in hard con-

straints on the resulting BNS - it may be discovered later in development that a learning

algorithm or structure variant may be necessary that is not supported by available tools.

These constraints may directly contribute to the introduction of error modes into a com-

pleted BNS.

Beyond these considerations, data processing, storage and transfer tools will also be

necessary. These may include tools for BN- or AI-specific data pre-processing tasks. There

will also need to be robust (software and hardware) tools in place to test a BNS. This will

include the development and availability of BNS test-beds. Finally, there is the need to

establish confidence in the quality and integrity of the tools themselves. This objective

therefore seeks to ensure that the tooling used is of sufficient quality and is sufficiently

flexible and robust to meet the demands of the BNS’s lifecycle. This is particularly im-

portant as existing software safety standards do not provide adequate guidance on the

development of tool qualification packs for BNS (and AIS) development. In the case of

BNSs, it will be necessary to develop standardised testbeds for this class of system that

share conceptual parallels with conventional software systems, but aim to address specific

model performance characteristics.

A number of projects are in progress with the aim of developing standardised testbeds

for the validation of autonomous vehicle models within the commercial domain [165].

These projects have begun to develop standardised model test suites, including ‘high-

fidelity’ simulated operational environments based upon recorded data and constrained

‘real world’ testing facilities for live testing and system integration activities. Other in-

dustries will require similar industry- or application-specific testbeds. These testbeds

should focus on the evaluation from at least four perspectives:

1. Numerical simulation and analysis - Standard metrics and evaluation techniques

should be adopted that address the performance and behaviour of models at a low

level. They will need to provide standard performance benchmarks and these ap-

proaches are likely to be highly framework-specific. For example, a testbed developed

for BNSs is likely to be BNS-specific and would not be usable for ANNs. An example

of existing tools that may be developed into more holistic testing frameworks are

the DeepXplore and DeepTest tools [113,166].
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2. Simulated testbed environment - Standardised test suites with high-resolution

simulated environments and scenarios. These are likely to be application-specific,

but could be shared across multiple modelling frameworks (i.e. may not be BN-

specific). Examples of existing testbeds include testbeds developed by DeepMind to

evaluate the AlphaGo and GoZero AISs. Proposed examples within the aerospace

and military domains include utilising recorded mission footage and telemetry to

evaluate a model’s performance in previous activities. These could be ‘perturbed’

to produce a broader set of test cases.

3. Constrained testbed environment - Standardised real-world environments for

testing model predictions in the presence of real-world operational noise and uncer-

tainty. A prominent example of this form of testbed is the ‘Castle’ testbed developed

by Waymo for testing autonomous vehicles. This is an ersatz town with extensive

mock-up roadways and obstacles that is designed to simulate a small village. This

simulated village is used by Waymo’s vehicles as ‘structured testing’ environment

that must be ‘passed’ before deployment [165]. These are likely to be industry-

specific. These too can be shared across modelling frameworks.

4. Test deployment - A final set of standardised AIS-specific ‘shakedown’ tests to

confirm assumptions and observations made in earlier developmental phases.

Next, the objective associated with the Operational Viewpoint’s Evolution view (OV-

3.4) addresses the need to establish and justify all operational processes that will be used to

continuously monitor the validity of a BNS after deployment. This objective is intended to

ensure that attention is paid to what processes need to be developed and implemented by

operators to ensure the continued validity of a BNS in whatever operational environment

it is deployed - and by extension to maintain confidence in the safety of a system over its

Finally, the last objective in Table 3.8 is aimed at justifying conventional software or

hardware function allocation decisions. For clarity: this is with respect to any software

or hardware deployed as part of the completed BNS, and not with respect to supporting

tools or development software. The objective aims to ensure that the software architecture

itself is designed to mitigate potential error modes associated with the underlying models

the system uses. For example, the software architecture may be designed to deprecate the

use of BN model outputs for decision making in certain scenarios, or to use supporting

information external to a model wherever possible. The objective essentially aligns with
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conventional safety-focussed function allocation considerations, but is particularly focussed

on establishing the effect of a system’s architecture with respect to BN models.

3.6 Justification of the Completeness of the RM-BNS Ob-

jectives

The RM-BNS objectives have been designed to provide a complete set of verification and

validation objectives for BNSs and should be of practical utility to developers working to-

wards the assurance of a mission critical BNS. The completeness of the generic verification

and validation objectives can be justified from the following perspectives:

1. By building upon the comprehensive nature of the viewpoints introduced previously

and by systematically cross-checking against existing work in other areas of AI, the

objectives can be regarded as being complete by construction;

2. The objectives were generated through the systematic consideration of all BNS error

modes and design concerns that were identified over the course of this research, both

through experimentation and from published literature.

In the case of the first perspective, the generic objectives were derived directly from the

structure and content of the RM-BNS viewpoints. The RM-BNS was designed to provide

a comprehensive framework for the description of BNSs, and the viewpoints, views and

their associated objects and model are the product of a systematic review and the collation

of all research on the development and assurance of AISs and BNSs that was found at the

time of writing.

As discussed in Section 3.3.4, this search process integrated information from the full

breadth of published literature from across work in software engineering, assurance of

complex and novel systems and from within the AI and BN domains. As the generic

objectives were systematically derived directly from this work, their completeness can be

regarded as a by-product of their construction.

Beyond this, a systematic review of all published BN error modes was conducted as

outlined in Section 3.2.4, and a summary of these BN-specific error modes was provided

in Table 3.1. A detailed review of each of the error modes as described in that table was

then conducted, and in all cases at least one of the provided generic objectives was found

to address the specific error modes in the given publication.
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Furthermore, a number of case studies based on published literature were developed

over the course of the work for this thesis (the most comprehensive of which is presented in

Chapter 6), and in all explored cases the objectives provided were found to be complete for

the given case study. However, there may be cases where a given objective is not applicable.

In these cases, the provided set of generic objectives could therefore be considered to be

a superset of the relevant objectives for the specific application. Handling cases such as

this will be discussed in more detail in subsequent chapters.

Beyond the generic objectives themselves, these case studies also indicated the utility

and completeness of the system-specific objectives generated for a particular system. The

structure and flexibility of the generic objectives ensured that in all encountered cases

the system-specific objectives covered concerns related to the BNS aspects considered.

Alternatively stated: no cases were encountered that involved concerns that could not

addressed by the derived objectives.

However, while the case studies indicated the effectiveness of the framework for gen-

erating derived objectives, it should be noted that the character of the derived objectives

is different from their generic counterparts. The completeness of any set of derived objec-

tives is predicated on this distinction: the generation of a set of system-specific objectives

requires the participation and input of a practitioner. As with any similar process, this

practitioner will be required to exercise their best judgement throughout.

From this perspective, the process of deriving a set of system-specific objectives from

the generic objectives could be considered analogous to an extremely strong variant of

a guide-word-based generative process. Unlike other such approaches (e.g. HAZOP),

the generic objectives stipulate specifically what aspects of a system must be addressed,

and how these aspects should be captured within derived objectives [83]. An assurance

practitioner will be tightly constrained to consider a BNS in terms of the language and

concepts captured explicitly within the generic objectives.

As previously discussed, these constraints have been systematically defined to com-

prehensively address assurance concerns for BNSs. Consequently, while there is no strict

guarantee that a derived set of objectives will be complete, the objectives and process

introduced here and the derived objectives that result from them will ensure a level of

completeness that would not have been possible through the use of an ad hoc approach.

Furthermore, practitioners are encouraged to cross-check their derived objectives against

the viewpoints and the concerns described in their definition. This should help ensure
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that the focus of a given viewpoint or concern is maintained in any derived objectives.

This should further boost the level of completeness attainable for a given set of derived

objectives.

3.7 Conclusion

In conclusion, BNSs introduce a number of assurance concerns that emerge as a direct

consequence of both their nature and their use-cases; in particular the high degree of

dependence of certain functional behaviours on system aspects that can be considered to

be software-independent artefacts, as well as the aleatoric and epistemological uncertainty

commonly inherent in their use. This chapter has outlined the need to effectively capture

the full scope of concerns associated with this class of system. This includes many error

modes that are either unique to BNSs or conceptually distinct from analogous error modes

found in conventional software systems. This has been one of the lesser contributions of

this chapter: to summarise the conceptual distinctions associated with the development

and deployment of BNSs for assurance practitioners, and to provide a summary of existing

work into analysing and evaluating error modes in BNSs.

Beyond this, the chapter has made two primary contributions. These are:

• Providing a framework for the structured, comprehensive description and modelling

of BNSs that specifically targets key assurance concerns associated with BNs. As-

pects of this framework have been discussed in terms of their relationship to existing

thought in the safety engineering domain, and to existing standards;

• Introducing a set of generic BNS verification and validation objectives for BNSs that

aim to mitigate the inadequacies of existing safety standards in handling BNSs, as

well as an approach to refining these objectives into system-specific objectives when

necessary.

Taken together, the contributions of this chapter aim to provide a step towards de-

veloping a strategy for the assurance of BNSs that address the technical and conceptual

disparities between this class of system and conventional software systems. The framework

presented here (and its associated BNS ontology) can be used (and expanded) to analyse

the composition of BNSs and to ensure assurance practitioners adequately address system

aspects they may overlook.
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3.7 Conclusion

Finally, due to the scope of this thesis and the resources available over the course

of research, subsequent chapters will focus primarily on system aspects associated with

the Model Viewpoint. This has been motivated by several practical factors, as well as a

number of salient research considerations.

The two most important motivating factors for this decision were:

1. Of the three viewpoints defined to draw most heavily from concepts in the AI domain

(i.e. the Data, Model and Computation Viewpoints), the Model Viewpoint addresses

a number of considerations that are likely to be seen as the most unconventional and

potentially controversial of the six viewpoints. From this perspective, it was regarded

as the most interesting research direction to pursue. This was further reinforced

by the fact that early in the course of this research project it became apparent

that system aspects that would fall under the Data Viewpoint were increasingly

recognised as serious assurance concerns in more general applications [144].

2. Over the course of this research project, the relative absence of real-world data due to

both the relative scarcity of such data, and the sensitivity of the data that did exist

prevented concrete conclusions and examples pertaining to certain system aspects

addressed by the other five viewpoints from being explored in this thesis.

Beyond these two primary considerations, a further practical benefit of focussing on

the Model Viewpoint in subsequent chapters is the availability of several well-studied BN

models for research use. These provide more concrete examples than may otherwise have

been possible.
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Chapter 4

Model Criticality Analysis

4.1 Introduction

The previous chapter introduced a structured approach to establishing verification and

validation objectives for Bayesian Network (BN) based systems. The objectives aim to

improve the coverage of verification and validation activities over aspects of BN-based sys-

tems that may be poorly addressed by existing safety guidance. However, the exhaustive

analysis, testing and absolute satisfaction of the proposed objectives will not be practicable

in many use-cases.

Consequently, the objectives need to be prioritised with respect to the relative contri-

bution of all aspects of a BN-based System (BNS) to overall system hazards. Moreover,

the adequacy of efforts associated with the satisfaction of these objectives must be con-

sidered from this perspective. This chapter therefore focusses on establishing a means of

discussing the adequacy of assurance activities related to the objectives outlined in the

RM-BNS Model viewpoint. Specifically, it aims to address the need for a structured,

replicable approach to defining the importance of BN models (and their constituent parts)

that are used by a safety-critical system to support safety-related software functionality.

To achieve this, the chapter introduces a notion of model criticality, and a means

of systematically analysing safety-related BN models. This approach aims to establish

the criticality of both individual, independent models in a system, and aspects of the

internal structure of a BN model. This revolves around the introduction and utilisation of

a combination of safety analyses and automated numerical analysis activities to establish

Model Criticality Indices (MCIs) and Variable Criticality Indices (VCIs) for BN models.

This chapter is structured as follows: an overview of modelling and assurance consid-
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erations associated with the Model Viewpoint are outlined to highlight the motivation for

the establishment of MCIs and VCIs for BN-based systems; a methodology for categoris-

ing the criticality of all independent BN models used in a system is introduced; the notion

of model criticality is then extended to include variables within the model, with the aim

of highlighting structures within a model that influence safety-related model behaviours;

the analysis approaches are then applied to a case study; and finally the limitations and

possible extensions to the approaches are discussed.

4.2 Motivation

The BN framework is a flexible approach to developing Artificial Intelligence-based Sys-

tems (AISs) that supports a number of distinct model architectures and modelling ap-

proaches. These model architectures can integrate other Artificial Intelligence (AI) ap-

proaches, and can be utilised by a BNS in a number of different ways. For example, it is

common for a single BNS to utilise multiple independent BN models to support different

software functions: a system may include a fault diagnostic BN model for each subsystem

aboard a vehicle, or for each group of related diseases in a medical context. Consequently,

a single model may be used to directly support one or more software functions, and

each function may be utilised in one or more BN models. As these BNs may ultimately

constitute a significant proportion of a BNS’s control logic, understanding the relative

influence of individual models, their architectures and their constituent components on

safety-related software functions becomes vital.

Furthermore, the technical and practical limitations of the assurance activities under-

taken in the course of satisfying the RM-BNS Model Viewpoint objectives necessitates

an approach that can be used to establish the proportionality of these activities in a

systematic, rigorous, targeted manner. There are three principal motivating factors for

developing the Model Criticality Analysis approach outlined in this chapter; these are:

• Traceability - The need for a systematic approach to establish which models (and

model components) in a BNS influence safety-related functions.

• Influence - The need to understand the degree of influence of BN models (or model

components) on safety-related functions.

• Proportionality - The need to establish an approach for describing the proportion-

ality of safety-focussed BN analysis techniques.
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4.2 Motivation

This section gives a brief overview of the key aspects of each of these motivations in

the context of BNSs.

4.2.1 Traceability

Systems utilising AI are commonly criticised within the assurance domain for their ‘black

box’ properties. Black boxes are concerning for assurance practitioners: establishing the

traceability of a system’s behaviours to individual functions and requirements is a core

tenet in all systems engineering domains. While a number of techniques have been pro-

posed within the field of AI to mitigate some of the issues associated with using black

box AI approaches, these techniques use language, concepts and ideas that are beyond the

scope of existing standards and assurance practices.

In some AI approaches, groups of structures within a model are responsible for individ-

ual behaviours – individual behaviours may be distributed across a model and may be (to

some degree) emergent properties of the model. This differs from conventional software

systems where errors can often be traced directly to logical errors in individual lines of

code. As a loose analogy, the current activities of assurance practitioners in the analysis

of software systems when applied to AISs are akin to attempting to assure the quality of

a human driver by individually evaluating the neurons in a driver’s brain for biological

defects. In general, this is unlikely to provide any meaningful assurance of the driver’s

quality.

For AISs, typical function decomposition approaches may begin to break down at the

point at which a system’s behaviour may become principally determined by the models

that drive them. At this ‘software-model boundary’, conventional approaches to main-

taining traceability may become less useful or uninformative. An approach to maintaining

traceability must use the language of the AI framework used in the system. In the case of

BNs, this will require that functional behaviours are traced to individual models, model

structures, or internal structures of Random Variables (RVs). Establishing the role of

models (and again, model structures and RVs) in the functional behaviour of a system

may require a bottom-up approach (as opposed to top-down function decomposition). The

dynamics of a complete model must be understood before these assertions can be made.

Maintaining traceability of functional behaviours to system aspects therefore requires

an approach that directly analyses the models in each BN model in a system in order

to establish the assurance implications of each model’s dynamics. This approach must
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be systematic, rigorous and target assurance concerns. There are a number of extant

BN analysis techniques that support the evaluation of BN models, but none provide a

mechanism for integrating assurance considerations into the analyses. The adaption of

existing techniques for the targeted assurance and analysis of a BN model’s dynamics,

and the use of these techniques to support the traceability of behaviours was therefore a

primary motivator for this chapter.

4.2.2 Influence

While the traceability of behaviours was a primary motivation for the development of

the work presented in this chapter, simply providing an approach to tracing behaviours

to model aspects would not have been sufficient: ultimately, an assurance practitioner

must understand the degree of contribution of a system aspect to potentially hazardous

behaviours. This is essential if the confidence in a system aspect is to be proportional to

the hazard contribution of that aspect. This is captured explicitly in the final principle of

the 4+1 software safety principles [162]:

“The confidence established in addressing the software safety principles shall

be commensurate to the contribution of the software to risk.”

This principle can be considered to include the BN model aspects of a BNS; under-

standing a BN model’s (and its components) contribution to system risk is essential. This

requires an understanding of how much individual BN model aspects influence the be-

haviour of a software system. Unlike the problem of traceability of behaviours, this is not

a binary proposition: establishing influence categories for BN model aspects is therefore

necessary.

4.2.3 Proportionality

Establishing the influence of a BN model or model component is then a direct precursor to

establishing the proportionality of analysis and testing techniques used to assure a BNS.

This was the final core motivation for establishing the criticality of BN models and model

components. By developing a robust approach to establishing which models and model

aspects contribute to which software functions, it becomes possible to provide a targeted,

proportional response to model aspects that are of particular concern to assurance practi-

tioners. This is as opposed to treating BN models as black boxes, or otherwise applying a
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blanket approach to the rigour applied to the analysis of BN model aspects. These latter

approaches may produce either intractably large analysis problems, or otherwise fail to

exploit the information contained within a model.

The targeted approach to proportionality as presented here is supported by the fact

that the BN models often have inherent semantic value: they directly represent a physical

process or entity (e.g. a sensor measurement or vehicle component). This is in contrast to

other AI approaches that may be less explicit in what a model has learned or represents.

Furthermore, by directing and prioritising model assurance activities towards aspects of

a model that have the most influence on safety related functionality, the method can be

used to facilitate more efficient, targeted assurance activities. This will be returned to

in Chapter 5, where the criticality analysis and RM-BNS are used to support the notion

of the sufficiency of assurance efforts in the satisfaction of the verification and validation

objectives introduced in the previous chapter.

4.3 Model Criticality

In conventional software systems, software criticality is commonly used to capture the im-

portance of software components to safety-related functions. Software criticality metrics

therefore support the prioritisation of assurance activities and ensure proportionality of

assurance activities. They also support the traceability of hazardous behaviours to soft-

ware components. Conceptually, therefore, the notion of criticality aligns closely with the

stated requirements for an approach to establishing the traceability, influence and priori-

tisation of assurance activities for BNSs. However, in this work, the notion of criticality

is extended to include BN models and model components. Taken together, this is defined

here as ‘model criticality’:

Model Criticality - A product of the degree of contribution of a model to safety-related

functional behaviours and the severity of hazards associated with these behaviours.

As discussed in Chapter 3, BN models can be considered in terms of both local and

global properties. Analyses can target either of these properties and evaluate their respec-

tive behaviours. The notion of model criticality extends to both local and global model

aspects. However, for clarity, the criticality of local models (e.g. RVs) is referred to here

as variable criticality. A given model’s criticality is therefore a combination of both its

global criticality (model criticality) and local criticality (variable criticality). Establishing
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a model’s criticality is therefore based on the definition and assignment of two sets of crit-

icality indices to a given model: Model Criticality Indices (MCIs) and Variable Criticality

Indices (VCIs). The former set of indices capture the criticality of a BN model taken as a

whole, while the latter address the criticality of the constituent parts within a BN model.

4.3.1 Justification for Proposed Structures

Before continuing, it is worth exploring the motivation for the introduction of the struc-

tures proposed in this chapter. The tables and figures in this chapter are aimed at ad-

dressing the fact that not everything within a software system’s architecture is of uniform

criticality (a point recognised by many standards, including IEC-61508), and that this

remains true in the case of BNSs. Effectively capturing and managing the variability of

criticality and the corresponding level of assurance required for a given degree of criticality

across a system is a widely recognised problem within the assurance domain [74, 79, 83].

Concretely, assurance practitioners must establish replicable mechanisms for:

1. The determination and description of the criticality of aspects of a system’s archi-

tecture.

2. The moderation of confidence in aspects of a system’s architecture given its critical-

ity.

Many existing standards attempt to provide such mechanisms. For example, docu-

ments such as ARP-4754A and ISO-26262 introduce the concepts of Development Assur-

ance Levels (DALs) and Automotive Safety Integrity Levels (ASILs) respectively [67,95].

In both cases, DALs and ASILs can be considered proxy mechanisms for capturing and

moderating assurance based upon the criticality of a given system or system aspect. Other

documents such as MIL-STD-882E more explicitly capture these ideas by introducing

Software Control Categories (SCCs) that are used in conjunction with Software Safety

Criticality Matrices (SSCMs) to determine the Level of Rigour (LOR) required for the

satisfaction of a given objective [167]. Similar constructs can be found across the safety

domain [83,94].

In all cases, the producers of these guidelines and standards are attempting to balance

the faithfulness of a chosen representation against the identifiability of that representation.

For example, it is clear that in reality the criticality of software components would be more
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accurately ‘measured’ on a continuous scale. A truly faithful representation would there-

fore dictate that practitioners utilise continuous scales when describing and moderating

criticality and assurance in a system. Practically, however, such methods are difficult to

define and utilise effectively: identifying measures of criticality is extremely difficult, and

actioning assurance activities based upon this information would typically be unfeasible.

Existing standards therefore adopt a compromise by delineating a finite number of

levels or categories that are used to render the problem tractable. In these cases, there

is an implicit understanding that the given representation (e.g. integrity levels or criti-

cality matrix) is not truly faithful to the problem at hand but that the ability to offer a

practicable solution is an acceptable compromise.

These considerations are precisely the motivation and rationale for the development of

the structures presented in this chapter. It is essential that a mechanism for capturing the

variability of criticality in BN models is provided, as this is a prerequisite for apportioning

the effort to objectives associated with the given system aspect. While the precise struc-

tures could be debated and represented in alternative ways, the aim here is to provide

a practicable, transparent approach for tackling the two key considerations introduced

above. As the common aphorism in statistics says: all models are wrong, but some are

useful.

Finally, it should be noted that while the application of these techniques to conven-

tional software systems is a well-established approach to describing and delineating crit-

icality of components in a given software system, the application of these ideas to novel

systems carries additional risks. In the case of the contributions presented in this chapter,

the definitions, concept and relative utility of the structures has been validated against

architectures and systems explored over the course of this research, and through their

application to a number of case studies.

However, until such a time as rigorous testing, refinement and validation in an active

development environment has been performed, these structures should be carefully consid-

ered in the context of a particular BNS application to ensure their appropriateness for the

given problem. Furthermore, whilst it is possible that the exact definitions of the tables

proposed here will vary over time as the proposed structures are applied and evaluated,

this does not detract from the feasibility of the approach established here, namely that it

is possible and potentially useful to define such structures for BNSs.
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4.3.2 Authority Categories

The models within a BNS can be structured and utilised in a number of ways. Common

approaches include the development of multiple independent BN models to capture specific

aspects of a target domain; a BN model may be used to model and reason about many

different system components, for example an aircraft’s engine, an autonomous vehicle’s

mission planning system, or for data fusion and processing for sensor telemetry. A BN

model capturing all three could be deployed aboard a single platform. This approach

has been popular with commercial and industrial systems [157]. For example, product

troubleshooting software from Microsoft and satellite monitoring systems from NASA have

both used this approach, in the case of the former by representing individual products or

troubleshooting problems with separate BN models, and in the latter by modelling satellite

subsystems as independent BN models [6].

As a simple illustration, Figure 4.1a shows how a single software system may use

multiple BN models to support software functionality. The system architecture shown

in the figure utilises a single inference engine that supports two functions (functions A

and B). Each of the functions provides a distinct operational capability to the system. In

the event failure to provide these functions has safety implications, each of the software

functions becomes safety-related. The contribution of each of the models to the behaviour

of a function is then of interest to safety practitioners. In the event the severity of the

hazards associated with some failure mode of function A are greater than those associated

with function B, the relative interest of assurance practitioners will focus more heavily on

analysing function A. If an error in model A may directly produce a high-severity failure

mode in function A, this model will then also be of more interest to assurance practitioners

- and may therefore be considered to have of greater criticality than model B.

While this approach is common, there are alternative approaches to utilising BNs. One

approach is to utilise multiple independently trained (or developed) BN models in place of

single models. In this case, a system may reason over the outputs of each individual model

- it will use some form of model averaging before the model outputs are used to provide

a ‘final’ output. This approach is conceptually similar to the concept of redundancy

in conventional systems. An example ensemble architecture is shown in Figure 4.1b.

These approaches are sometimes referred to as ensemble modelling approaches [2,168,169].

Ensemble approaches may seem a clear choice for a BNS used in mission-critical contexts.

However, the development of ensembles of BN models may not be practically feasible. The
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(a) A monolithic architecture.

(b) An ensemble architecture.

Figure 4.1: RM-BNS Fragments of Ensemble and Monolithic Architectures.

development of multiple models may require large quantities of data for each individual

model and may require other resources which may be prohibitively expense to obtain (i.e.

time and cost). This is particularly difficult in so-called low data regimes - contexts in

which limited data (and/or expert experience) is available.

There is a further consideration when considering the roles of models in BNSs. This

is how the output from a model is used to support the provision of a given software

function (or set of software functions). For example, in the example shown in Figure 4.1a,

both of the models in the figure are used to directly support the provision of functions

A and B, respectively. This approach would mean that errors in models A or B would

directly inform the behaviour of functions A or B. In contrast, if a BNS required user

input, or was otherwise used in a purely decision support role that informs operator

behaviours, it may be described as indirectly informing safety-related system functionality.

For completeness, there is also the case in which a BN model is independent of safety-

related software functions.

To generalise, the models used within a BNS’s architecture can be defined either as

being used in either monolithic or ensemble configurations. An example of a monolithic

model may be the development of a single BN model to represent a single vehicle, whereas

an ensemble may use multiple BN models that each represent the same vehicle. The role

of these models can also be defined as either being executive, advisory or independent

models. For clarity, these terms are defined here as follows:

Monolithic Models - Models that are used independently of any other model to support

the provision of a set of software functions.
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Ensemble Models - Models that are used collectively to support the provision of the

same set of software functions.

Executive Models - Models that are used directly in the support of the provision of

one or more safety-related software functions.

Advisory Models - Models that are used indirectly in the support of the provision of

one or more safety-related software functions.

Independent Models - Models that are never used to directly or indirectly support

the provision of any safety-related software functions.

Finally, there is the need to consider whether or not the reasoning of a given model

occurs in isolation; there may be additional information available to a BNS that can

support the output of a given BN or ensemble of BNs that is not derived from a model

itself. This may take the form of sensor readings, operator input, or developer-imposed

thresholds, rules or other constraints. More generally, there is a need to consider whether

or not there exists information external to the model or ensemble of models that can be

used to corroborate or validate the model outputs. This can be referred to as a means of

external validation, and can be defined as:

Means of External Validation - Any source of data or input external to the model

that can be used to corroborate or otherwise validate the output of a model.

These definitions provide the basis of the Model Authority Categories (MACs) for

BNSs. The MACs bear conceptual similarities with the Software Control Categories

(SCCs) outlined in MIL-STD 882E [167]. In this case, the SCCs are used to categorise

the degree of control software components have over safety critical functions. In contrast,

a BN model’s MAC assignment is intended to reflect the degree of exposure of a safety-

related software function to a BN model, and by extension any errors that are entirely

attributable to the model utilised in the provision of that function.1 Concretely, a MAC

can be defined as follows:

Model Authority Category - The degree of exposure of a safety related function to a

BN model.

1This refers to any errors that are entirely encompassed by the concerns addressed by the Model

Viewpoint of the RM-BNS: errors that can in principle be considered software and platform independent.
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The definitions of each of the proposed MACs is enumerated in Table 4.1. The defini-

tions have been designed to be exhaustive and sufficiently general to accommodate various

BN architectures.

Table 4.1: Model Authority Categories (MACs)

Cat. Name Description

0 Full Authority [Monolithic and Ensemble] Executive Models without

means of external validation.

1 Partial Authority

(I)

[Monolithic] Executive Models with means of external

validation.

2 Partial Authority

(II)

[Ensemble] Executive Models with means of external

validation.

3 Supporting Au-

thority

[Monolithic and Ensemble] Advisory Models with or

without means of external validation.

4 No Authority Independent Models

4.3.3 Justification for Model Authority Categories

Practically, Table 4.1 was defined to represent a comprehensive taxonomy of possible BNS

architectures from the perspective of the Model Viewpoint: all identified BNS architectures

can be categorised according to this table. Consequently, the table provides a standardised

approach for describing the influence of BN models in BNSs on other system aspects.

However, as discussed in Section 4.3.2, while designed to be comprehensive, the adoption

of a constrained number of categories can obfuscate some technical subtleties.

For example, consider BNSs using BN models in an ensemble configuration. In these

cases, it is common for the outputs of a set of models to be weighted in accordance with

how ‘correct’ that model is given some task. In cases in which one model out of a set is

dramatically more accurate than the others, such weightings may overwhelmingly favour

the predictions of one model out of the set over all others. In circumstances with severely

asymmetric weightings such as this, the categorisation would unequivocally fall under the

Partial Authority II category in Table 4.1, though their degree of influence would suggest

they may be best categorised as Partial Authority I or even Full Authority given the level

of influence of a single model over the system.

Ambiguities around the most appropriate classification or level for a given component
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are common challenges within the assurance domain [74,79]. The resolution of these am-

biguities is invariably a task delegated by existing standards to the development teams

working on a system. This is again true of the contents of Table 4.1: developers should

carefully consider the particular characteristics of their system in the light of the contents

of the table and should adopt their best judgement in the event any discrepancies or am-

biguities are discovered. Indeed, future validation efforts should focus on establishing the

utility of this structure and the category definitions it contains in a real-world development

environment. These efforts should also attempt to refine the proposed definitions in the

light of any ambiguities that are found. For example, the example presented above is gen-

erally a sign of a poorly generalised BN architecture, and should occur highly infrequently

in operational BNSs. However, if circumstances exist in which ‘edge cases’ such as this

are identified, these should be used to improve the contents of Table 4.1.

4.3.4 Model Criticality Index

The MACs provide a first step towards supporting the maintenance of the traceability

of functional behaviours in BNSs by providing a means of assessing and describing the

degree of influence of each individual BN model within a system upon any safety-related

functionality. However, the MACs do not provide a mechanism for addressing the pro-

portionality of efforts beyond identifying the general role of a BN model in the system.

Specifically, they do not integrate any notions of severity into their definitions. The no-

tion of the relative severity of a failure mode is central to the concept of the criticality

of system aspects. The Model Criticality Indices (MCI) provide this mechanism. They

directly relate the authority of a BN model to the worst-case severity of hazards related

to failure modes associated with system functions that may emerge as a consequence of

errors within the given model. This can be summarised as:

Model Criticality Index - The degree of authority of a model with respect to the

maximum severity of hazards arising from failure modes of functions utilising erroneous

outputs from that model.

After assigning a model a MAC, the next step towards defining a model’s MCI is to

establish the severity of hazards associated with the failure of any functions over which the

model exerts a degree of authority. This can be achieved by applying a standard Failure

Modes and Effects Analysis (FMEA) to the BNS. A FMEA can provide a robust approach
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to tracing failure modes to software functions within a system. The severity associated

with each failure mode can then be defined as normal for each function. The definitions

of the severity categories are those provided in DO-178C [69]. These are given as:

Catastrophic - Failure may cause a crash. Error or loss of critical function required to

safely fly and land aircraft.

Hazardous - Failure has a large negative impact on safety or performance, or reduces the

ability of the crew to operate the aircraft due to physical distress or a higher workload,

or causes serious or fatal injuries among the passengers.

Major - Failure is significant, but has a lesser impact than a Hazardous failure or sig-

nificantly increases crew workload.

Minor - Failure is noticeable, but has a lesser impact than a Major failure.

No Effect (Negligible) - Failure has no impact on safety, aircraft operation, or crew

workload.

With the severities assigned to failure modes of individual software functions using

FMEA, the MCIs for each model in a BNS can be assigned. This can be achieved by using

an architectural model of the BNS defined using the RM-BNS framework. A RM-BNS

instantiation will directly map individual software functions to any BN models associated

with that function. The severity associated with each individual BN model is established

by selecting the most severe failure mode amongst each of the functions that that model

supports. With this category established, the MCI can be defined using the matrix shown

in Figure 4.2.

4.3.5 Application of MACs and MCIs

The utility of this approach can be illustrated using the architecture fragments shown in

Figure 4.1. Consider the case in which Function A (Figure 4.1a) and Function C (Figure

4.1b) are used to provide some diagnosis capability to a system. In this case, an FMEA

could be performed on the system and may determine that both functions manifest failure

modes that could be assigned a severity rating of Hazardous. The MACs and MCIs

can then be used to distinguish between the criticality of the models used in the two

architectures.
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Cat. Haz. Maj. Min. Neg.

MAC-0 MCI-0 MCI-0 MCI-1 MCI-2 MCI-4

MAC-1 MCI-0 MCI-1 MCI-1 MCI-2 MCI-4

MAC-2 MCI-1 MCI-1 MCI-2 MCI-3 MCI-4

MAC-3 MCI-2 MCI-2 MCI-3 MCI-3 MCI-4

MAC-4 MCI-4 MCI-4 MCI-4 MCI-4 MCI-4

Figure 4.2: The Model Criticality Index (MCI) Matrix

By using Table 4.1, a MAC can be assigned to each of the models shown in the figure.

For example, Model A in Figure 4.1a would fall into the MAC-0 category; the system has

no available method validating the output of the model, and the model is used directly

in the support of Function A. Consequently, Model A would receive a MCI-0 rating. In

contrast, Models C, D and E in Figure 4.1b would receive a preliminary assignment of

MAC-2 due to their use as an ensemble of models. When combined with the severity

category, this would result in each model receiving a MCI-1 assignment. The process

of assigning MACs and MCIs will be discussed in more detail in Chapters 5 and 6. In

the event either function has access to additional information, the MCIs may be reduced

further.

4.4 Variable Criticality

The previous section established an approach to defining criticality indices for each BN

model within a BNS. This section addresses the need to extend the further analysis of the

criticality of BN models to local properties of a model. This notion of criticality is referred

to as Variable Criticality and is defined as:
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Variable Criticality - A product of the degree of contribution of local aspects of a

model to safety-related functional behaviours, and the severity of any hazards associated

with these behaviours.

In this case, ‘local aspects’ refers principally to the properties of individual RVs within

a BN model. However, a RV may itself be a complete BN model, or some other complex

local structure [2, 44, 153]. This term is therefore intended to preserve the generality of

the statement to include any additional considerations beyond those of a standard RV.

A first step towards exploring the criticality of variables within a BN model is to

establish which variables directly influence the behaviours of safety-related functionality.

For example, consider a medical diagnosis BN model that is utilised for the provision

of two distinct software functions. One function (function A) provides an indication of a

patient’s vital statistics, while the other (function B) automatically administers pain-relief

drugs - based on the output of the model. The former function may not fall under any

safety-related considerations, while the latter may have severe repercussions in the event

of the failure of that function to behave as intended.

Using the MACs introduced in the previous section, an assurance practitioner may

provide the model a high MCI assignment to reflect this. However, functions A and B may

utilise a disjoints set of output RVs. From this perspective, RVs directly supporting the

provision of function A (RV-A) may appear to have a lower criticality than those directly

supporting function B (RV-B): errors in the states of RV-A may not directly affect the

provision of function B and vice versa. This observation leads to the introduction of a new

class of RV to capture these assurance considerations: the Safety-Related Variable (SRV).

This is defined as:

Safety-Related Variable - Any random variable whose state, value or configuration is

used directly in the provision of a safety-related system function.

The assignment of the SRV classification to individual variables within a BN model

provides an immediate insight into which areas of that model to prioritise for evaluation

and testing. However, as has been indicated in Chapters 2 and 3, the behaviours of a

BN model are heavily dependent on the interactions between RVs within a model. This

requires an approach that augments the straightforward classification of variables as SRVs

by explicitly evaluating interactions in order to identify which other variables influence

the SRVs, and most importantly, to what extent.
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The basis of the analysis of the criticality of variables in BN models is therefore pred-

icated on two steps:

• A safety focussed analysis that extends the analysis performed in the assignment of

MCIs in order to identify SRVs;

• An analysis of the dynamics of a model that integrates safety information in order

to categorise the degree of influence of all variables upon SRVs.

Practically, the first step can be achieved through the utilisation of the RM-BNS to

decompose a ‘model’ object into local models (i.e. RVs). These can then be directly asso-

ciated with individual software functions. This is an extrapolation of the process outlined

in section 4.3.2. The second step requires the development of a systematic approach to

exploring the parametric space of a BN model to characterise the model’s interaction, and

to integrate safety information into this analysis. The proposed methodology supports

the targeted evaluation of individual variables within the model and maintains a degree of

traceability down to the level of RVs. This can then be used to prioritise assurance activi-

ties associated with both the system aspects addressed by the RM-BNS Model Viewpoint,

as well as many of those associated with the RM-BNS Data Viewpoint. The methodology

is based upon the introduction of three key concepts: an augmented sensitivity analy-

sis, Variable Authority Categories (VACs) and Variable Criticality Indices (VCIs). The

methodology is the focus of this section.

4.4.1 Modified Sensitivity Analysis

In the context of BN models, the term Sensitivity Analysis (SA) is used to refer to a

range of techniques for analysing how the dynamics of a BN model change in the presence

of perturbations applied to a model’s structure or parameterisation. Generally, the aim

of these analyses is to quantify how the output of a BN model depends on its inputs.

For example, in a medical application, practitioners may be interested in establishing the

relative importance of a specific subset of symptoms upon a specific disease diagnosis. In

this case, various forms of SA can be used to rank the symptoms in terms of importance,

or to bound the range of values a variable’s parameters may take to guarantee certain

behaviours. Fundamentally, SA provides insight into the interactions between RVs in a BN

model. It therefore forms an ideal basis for the development of an approach to categorise

the criticality of variables based upon the influence of variables upon one another [170].
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There are many forms of SA in active use. For the purposes of the analysis proposed

in this chapter, one of the simplest forms is used as its basis [59]. This is sometimes

referred to as a Sensitivity to Findings Analysis (SA-F). As with other approaches, this

analysis seeks to monitor how the posterior distributions of RVs in a given model change

in the presence of inputs. Specifically, by monitoring the behaviours of individual RVs in

a model through the systematic introduction of evidence, the analysis builds up a picture

of the degree of influence of individual RVs upon one another.

The analysis algorithm can be summarised as follows. First, a target variable is se-

lected; this can be any variable in the model. A set of query variables is identified (this

set may not include the target variable). Inputs are then provided to the query vari-

ables. With the inputs provided, the posterior distribution of the target variable is then

computed, and the change (perturbation) in the distribution is recorded. This process is

repeated systematically for each of the variables in the model. Practically, this process

measures the response of individual variables in a model to inputs elsewhere in the model.

Consequently, the magnitude of changes induced in a (target) variable given a change of

state in another (query) variable can be used to estimate the influence of one variable

upon the other.

With the general methodology of SA-F defined, there remains the problem of selecting a

measure to quantify the degree of influence. Most common SA techniques utilise entropy-

based metrics [59, 65, 171]. For a discrete probability distribution, the entropy can be

defined as:

H(X) = −
∑
i=1

P (xi)logP (xi) (4.1)

Where P (xi) is the ith state of the discrete RV X. The entropy provides a measure

of the dispersion of a distribution: it is an expression of the degree of uncertainty in a

distribution [3]. In the case of a RV modelled using a discrete distribution, a state of

low entropy would correspond to a case in which a single state has the majority of the

probability mass of the distribution (i.e. one state is close to 1.0). In contrast, a maximally

entropic state would correspond to a distribution for which all states have equal probability

mass (i.e. all states are equally likely). In the form provided in Equation 4.1, the entropy

of only one distribution is computed. A common entropy-based measure for capturing

the changed induced by a second variable is the Mutual Information (MI) metric. This is

expressed as [59]:
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I(X,Y ) = H(X)−H(X|Y ) =
∑
i=1

∑
j=1

P (xi|yj)log
P (xiyj)

P (xi)P (yi)
(4.2)

Where the first term is the entropy of variable X and the term H(X|Y ) is given

separately as:

H(X|Y ) = −
∑
i=1

P (xi, yj)logP (xi|yj) (4.3)

This represents the conditional entropy of the two RVs X and Y . The conditional

entropy provides a measure of the amount of information required to characterise a random

variable (X) given the state of a second random variable (Y ) is observed [2, 172]. This

term captures the conditional influence of one variable upon another. Using this, the MI

(I) of variables X and Y provides a direct statistical measure of the dependence between

two RVs: it measures the amount of information the two variables share. If the two RVs

are completely independent, Equation 4.2 will evaluate to zero. In all other cases, the MI

will produce a non-zero value. However, in these cases, the value of I can take a range of

non-zero values. This makes it less intuitive as a measure for categorising the dependence

of variables (as is the aim of the modified SA presented here). A Normalised MI (NMI)

measure can be used instead. This is sometimes referred to as the uncertainty coefficient

of two variables [2, 172]. This can be expressed as:

U(X|Y ) =
I(X,Y )

H(X)
(4.4)

This measure scales the MI score between the values of 0 and 1. This can naturally

be expressed as a fraction or percentage - this is likely to be a more intuitive measure for

BN developers and assurance practitioners. For clarity, in the context of a discrete RV the

NMI represents the fraction of bits of variable X that can be predicted given knowledge of

the state of variable Y . Importantly, the measure is asymmetric. This enables the SA-F

to capture asymmetric influence within a model (i.e. cases in which variable X may have

more influence on variable Y than Y has on X). This is an essential feature: asymmetric

influence within a BN may have serious assurance implications. For these reasons, the

NMI is used as the selected influence measure.

With both the analysis framework defined and an influence measure selected, the

modified SA analysis can be introduced. There are two principal modifications to the

SA-F algorithm described previously. First, at each step in the algorithm, a single query
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variable is selected, and each state of that variable is iteratively instantiated. For each

state instantiated a vector representing the NMI score for each other variable in the model

is obtained. Each element of this vector captures the influence of the instantiated variable

upon each other variable given the instantiated variable’s current state. Therefore, for

each query variable a set of NMI vectors is acquired. The maximum NMI score for each

variable over each vector is retained.

For example, in the event a query variable has two states, one step in the analysis would

produce two NMI vectors. Each element in each NMI vector represents the influence of

the query variable upon the ith variable in the model. In this case, the ith elements of

each NMI vector can be used to produce a 2-element vector capturing the NMI for each

state of the query vector. The maximum NMI score from this vector is selected. More

commonly, averages of the NMI scores are used as this gives a clearer overall view of the

relative influence of variables within the model. However, the worst-case (i.e. strongest

influence) scenario is typically of interest to assurance practitioners. Therefore, this is the

motivation for using the maximum NMI score: it reflects the most influence a variable

may have upon another. This is the second modification to the algorithm. Concretely,

this can be expressed as retaining:

Score = max(U(X|Y )) (4.5)

This process is repeated iteratively for each variable in the BN model. The result of this

process will be an N×N sensitivity matrix (SM), where N is the number of individual RVs

within the BN model. Each element within this matrix will then represent the maximum

influence of the ith variable upon the jth variable. The diagonal elements of the SM (i.e.

where i = j) will be exactly 1.0. These small modifications to the algorithm can be used

to generate a ‘heat-map’ of influence of variables in a model. This visualisation can be

used to provide an intuitive interpretation of the dynamics of a BN model to assurance

practitioners.

Without further analysis - or the integration of assurance information - Figure 4.3

provides an intuitive overview of the degree of influence (between 0 and 1) that individual

variables have over one another in this BN model. For example, the figure indicates

that the state of the ‘XRAY’ variable strongly influences the ‘LUNG’ variable. In this

context, the ‘XRAY’ variable represents an input derived from the results of a patient’s

x-ray, specifically whether the x-ray indicates any abnormalities in a patient’s lungs. The
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‘LUNG’ variable represents a diagnosis of whether a patient has lung cancer. It also

shows that ‘LUNG’ (i.e. the presence lung cancer) is strongly influenced by the ‘SMOKE’

variable (i.e. whether the patient smokes).

Figure 4.3: Visualisation of Variable Sensitivity in Asia Model

It may be clear to the BN model’s developers that as a crucial diagnosis variable, it

is particularly important to assure the behaviours of the ‘LUNG’ variable. In this case, it

may also be clear that both whether a patient smokes and the results of a lung x-ray are

strong indicators of whether or not the model indicates that a patient has lung cancer –

as shown by Figure 4.3. However, in more complex models, these interactions may not

be obvious and may be highly counter-intuitive [173,174,175]. Furthermore, this method

provides a quantification of the degree of influence, and therefore provides a more concrete

assessment of the interactions and relative importance of variables in the BN.

4.4.2 Justification for Utilising Sensitivity Analysis

From an assurance perspective, SA can be built upon to provide a useful mechanism for

exploring the criticality of BN models and their components. As previously discussed,

the aim of criticality analyses is to systematically identify and categorise components of

a system that are influential to the behaviour of that system and are therefore dispropor-

tionately important to the safe functioning of the system in question.
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Sensitivity analysis provides an analogous mechanism: the aim of sensitivity analysis

is to characterise a BN model such that BN developers can identify which specific model

components are most influential to specific model behaviours. These model behaviours

could be anything from identifying which aspects of a model are most influential with

respect to specific diagnoses or a given range of values of interest that an RV may take.

From this perspective, sensitivity analysis provides the ideal technical basis for extend-

ing the notion of criticality to model aspects of a BNS. By integrating additional assurance

concepts into existing SA techniques and thereby mapping specific behaviours to corre-

sponding severity categories, conventional SA approaches can be adapted to explore the

dynamics of a given BN model in a more assurance-focussed manner. Concretely, SA pro-

vides a technical mechanism for addressing both of the points identified in Section 4.3.1

as key concerns of assurance practitioners. These were mechanisms that enable:

1. The determination and description of the criticality of aspects of a system’s archi-

tecture.

2. The moderation of confidence in aspects of a system’s architecture given its critical-

ity.

Beyond these assurance considerations, a range of SA techniques are widely used and

studied within the BN domain. This has produced a rich and varied body of literature

that could be harnessed to further explore assurance-focussed properties of BN models.

Furthermore, these techniques could be substituted for the technique presented in this

section if the need arose. This will be discussed in more detail in Chapter 7. SA-based

criticality analysis techniques are appealing as they can provide flexible, informative anal-

ysis approaches for identifying the influence of safety related variables upon one another,

and is underpinned by rigorous technical, quantitative theory.

4.4.3 Variable Authority Categories

The next step in assigning Variable Criticality Indices is to develop a notion of authority

categories for local structures that is analogous to the MACs introduced in section 4.3.2.

Unlike the MACs, the Variable Authority Categories (VACs) are defined quantitatively.

They directly utilise the results of the modified sensitivity analysis. A VAC is defined as:

• Variable Authority Category - The degree of exposure of one variable to the

state of another variable.
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For each interaction captured in the SM, a VAC is assigned. This assignment reflects

the degree of exposure of the jth variable to the state of the ith variable. The quantitative

threshold used to define the VACs are shown in Table 4.2. The thresholds reflect evenly

distributed quintiles for all possible smax scores. Figure 4.6a shows an augmented version

of the basic heat-map shown in Figure 4.3. This visualisation shows the assigned VACs to

each interaction in the SM.

Table 4.2: Variable Authority Categories (VACs)

Category Name Score (smax)

0 Very High S > 0.8

1 High 0.8 ≥ S > 0.6

2 Medium 0.6 ≥ S > 0.4

3 Low 0.4 ≥ S > 0.2

4 Negligible S < 0.2

4.4.4 Justification for Variable Authority Categories

As discussed in Section 4.3.3, the use of the categories and scores as provided in Table 4.2

is motivated by the fact that the normalised mutual information score is fixed between

the range zero and one. The value of this score can be directly interpreted as providing

information on how coupled two variables are. Consider two variables A and B. Practically,

if the score computed for the case P(A—B) is 0.8, this indicates that knowledge of the

state of variable B increases knowledge of the state of variable A by 80%. Fundamentally,

this would indicate that variable A has a strong correlation to certain states of variable

B. Similarly, all combinations of pairs of variables in a model can be interpreted this way.

It naturally provides the quantified degree of influence of one variable on another. Note

that the method does not distinguish which state in particular is strongly coupled, just

that the variable has a strongly coupled state.

As indicated, the breakdown of the Variable Authority Categories (VACs) in Table 4.2

that are based on these scores was derived by taking the quintiles of the possible normalised

mutual information scores. This was been motivated by the need to provide an intelligible,

constructive approach to categorising the relative influence of variables upon one another

that lends itself to a fully automated methodology. However, as with any technique that

attempts to apply a finite set of categories to an infinite set, information is lost. For
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example, the provided approach will treat a variable with a score of 0.81 (VAC-0) as

equidistant from another variable with a score of 0.61 (VAC-1) and a third variable with

a score of 0.79 (VAC-1).

Despite this, the proposed approach and the given table make a complex, infinitely-

valued problem tractable and intelligible, and therefore its utility should outweigh the

previously discussed risks introduced as a by-product. This is another manifestation of the

considerations outlined in Section 4.3.1: to provide a practicable solution to the problem

of delineating the relative influence of variables upon one another, a compromise such as

this is necessary. Practically, the provided table should therefore provide a useful guide

to the relative safety-related importance of variables within a BN model.

Future work should look at validating the use of the quintiles as they have been defined

here, and in particular should aim to identify any potential systematic weaknesses of the

categories provided in the table, and of their use. This could be achieved through the

evaluation of a more complex real-world system and the analysis of the potential safety

effects of applying the categories to such a system. An analysis of this form should also

evaluate whether evenly distributed quintiles is appropriate for the given system. Such an

analysis was beyond the scope of this thesis.

4.4.5 Variable Criticality Index

Finally, a VCI can be assigned to each interaction. As with the assignment of MCIs, this

requires the introduction of a notion of severity; once again, the definitions of severity

categories (SCs) as defined in DO-178C are used. A severity category is assigned to a

variable as follows:

• All variables that directly support the provision of safety-related functions (SRVs)

are assigned a severity category that is appropriate given the most severe hazard

related to any failure modes to which a given SRV may contribute.

• All remaining variables are assigned the No Effect category (4).

The establishment of the severity of failure modes associated with errors in a model

output used by safety-related functions (i.e. a SRV) can be established in a manner

analogous to that set out in section 4.3.4. By extending the RM-BNS model to represent

variables, failure analyses can explore the contributions of individual RVs to hazardous

system behaviours. The assignments of VCIs are based upon the combination of SCs and
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Cat. Haz. Maj. Min. Neg.

VAC-0 VCI-0 VCI-0 VCI-1 VCI-2 VCI-4

VAC-1 VCI-0 VCI-1 VCI-1 VCI-2 VCI-4

VAC-2 VCI-1 VCI-1 VCI-2 VCI-3 VCI-4

VAC-3 VCI-2 VCI-2 VCI-3 VCI-3 VCI-4

VAC-4 VCI-4 VCI-4 VCI-4 VCI-2 VCI-4

Figure 4.4: The Variable Criticality Index (VCI) Matrix

VACs. The VCI matrix is shown in Figure 4.4. For each interaction between the ith and

jth variables in a model, a VCI is assigned based on the VAC of the interaction and the

SC of the jth variable. This process will generate multiple VCIs for each variable. The

final VCI is established by selecting the most critical VCI assigned to any interactions

associated with that variable.

X Y

Z

Figure 4.5: A Simple BN Model Fragment.

For example, consider the small network shown in Figure 4.5. Variables X and Y have

been assigned SCs of Hazardous and Minor respectively; variable Z is not a SRV and is

therefore assigned the No Effect category. Further analysis assigns a VAC of 1 to the

interaction between variables Z and X (i.e. the influence of Z on X) and a VAC of 2 on

the interaction between variables Z and Y . The former interaction would receive a VCI-1
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assignment, while the latter interaction would receive a VCI-3 assignment. Variable Z

would therefore receive a final assignment of VCI-1.

An example application of the VCI matrix to the Asia Model used previously can

be seen in Figure 4.6b. For the sake of this example, the variables representing disease

diagnosis variables (‘LUNG’, ‘BRONC’, ‘TUB’ and ‘DYSP’) were assumed to be SRVs,

with the ‘LUNG’ variable being assigned a ‘Hazardous’ classification, ‘BRONC’ and ‘TUB’

receiving ‘Major’ classifications and ‘DYSP’ receiving a ‘Minor’ classification. As the figure

shows, this provides an overview of the criticality of each variable with respect to each

other variable. Table 4.3 shows how the VCIs can shift with inclusion of interactions.

The preliminary VCI assignment in Table 4.3 reflects the criticality indices that would

be assigned to each variable without analysing interactions. This in effect assumes all

off-diagonal sensitivity matrix elements are set to zero, and all diagonal elements are set

to one. This can of course be defined without using the modified sensitivity analysis. This

highlights the additional insight assurance practitioners can gain into the safety-related

behaviours of a BN by explicitly addressing the role of a model’s internal dynamics on a

model’s outputs (and therefore SRVs).

Table 4.3: Example VCI Assignments

Variable Preliminary

VCI

VCI

ASIA 4 3

SMOKE 4 2

TUB 2 2

BRONC 2 2

LUNG 0 0

EITHER 4 2

DYSP 4 4

XRAY 4 0

4.4.6 Justification for the Utilisation of Criticality Matrices

The matrices shown in Figures 4.4 and 4.2 were once again adopted with the considerations

presented in Section 4.3.1 in mind as a mechanism for capturing the relationship between

the influence of various model aspects within a BNS and the severity of hazards associated
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(a) Visualisation of VAC Assignments to Asia Model Variables.

(b) Visualisation of VCI Assignments to Asia Model Variables.

Figure 4.6: Visualisations of VAC and VCI Assignments to the Asia Model.
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with those system aspects. In existing literature, matrices of this form are widely used to

provide a simple, standard mechanism for analogous tasks.

As discussed, the initial concept for the tables and matrices in this chapter was in-

spired by the manner in which Software Control Categories (SCCs) and Software Safety

Criticality Matrices (SSCMs) were defined and structured within the software standard

MIL-STD 882-E. Once again, the aim of adopting structures similar to these in this chap-

ter is to provide a useful, pragmatic solution to the problem of delineating the criticality

of a system aspect and the corresponding assurance required in that aspect.

Practically, Figures 4.4 and 4.2 (and their related tables) can be considered as an il-

lustration of how BNS development practices and concerns can be mapped into existing

practices within the assurance domain, and a way of utilising a standard approach to mit-

igate the epistemic uncertainty associated with the development and categorisation of the

criticality of aspects of any software system in the context of BNSs. Again, practitioners

utilising these structures should be aware that they do not guarantee a solution to a given

problem but should provide useful guidance on how to pragmatically structure and com-

municate discussions around the criticality of BNS-specific system aspects among system

stakeholders.

Future work should once again focus on evaluating and refining Figures 4.4 and 4.2 in

the light of practical experiences of their application to the development of an operational

mission-critical BNS. In particular, evaluation of the progression of MCIs and VCIs within

these figures should be reviewed to ensure they are of utility to practitioners, and that

no violations or important edge cases are identified. Until such a point, practitioners are

advised to consider these structures as guidance and assurance heuristics, and to carefully

consider their use during the development of a BNS.

4.4.7 Application of VACs and VCIs

The process for the assignment of VACs and VCIs to local aspects of a BN model has

been designed to be agnostic to the specific form of sensitivity analysis used, provided the

analysis technique selected satisfies two requirements:

1. The technique provides quantified measures of all pairwise interactions between vari-

ables in a BN model.

2. The technique utilises any asymmetric, normalised measure of the degree of interac-
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tion between variables, and that this measure can be mapped directly onto the VAC

categories shown in Table 4.2.

The modified sensitivity analysis algorithm introduced in this chapter is therefore

intended to provide a minimally viable solution to the analysis of interactions within a

BN model. It was selected as it provides a relatively intuitive, computationally cheap

approach to evaluating interactions within a given BN model; it is an ideal ‘baseline’

algorithm.

However, it has a number of important limitations. Of these limitations, the most

important arises from the fact the algorithm falls into the ‘one-at-a-time’ (OAT) class of

SA techniques. This class of SA does not exhaustively explore the parametric space of BN

models. By analysing pairwise interactions between variables by changing the state of a

single variable at a time, they do not evaluate the pairwise interactions of two variables

in the presence of additional inputs.

For example, OAT analyses can not evaluate circumstances in which the presence of

two inputs results in the creation of new active paths in the model. These active paths can

enable the exchange of information between two or more variables that were previously

d-separated.2 This means that OAT analyses may indicate a reduced degree of pairwise

interactions between two variables, and this may not accurately represent the ‘true’ degree

of interaction between the variables.

From this perspective, OAT analyses (and by extension the modified SA technique

introduced here) can be considered as providing a ‘first-order approximation’ to the inter-

actions within a BN model.

This algorithm can therefore be considered as something of a ‘first-order approxima-

tion’ to the interactions within a BN model. More elaborate analysis methods have been

proposed and implemented in literature. Many of these approaches could be used in place

of the algorithm presented here. The only requirement of any replacement algorithms is

that they quantify the interactions in terms of the NMI score introduced in this section.

2See section 2.2.3.1 for more information on the role of BN model structures in the transmission of

information a network.
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4.5 Methodology

Taken together, the techniques introduced here form the basis of a proposed Model Crit-

icality Analysis (MCA) methodology. This methodology is aimed at providing assurance

practitioners with an intuitive grasp of which model-centric aspects of a BNS are most im-

portant from an assurance perspective. To summarise, the MCA methodology introduced

here is composed of the following seven steps:

1. Create an RM-BNS architecture model for a BNS.

2. Carry out an FMEA-like failure analysis on functional aspects of the system.

3. Assign MACs to each model within the BNS.

4. Apply the MCI matrix to each model within the BNS.

5. Perform a modified sensitivity analysis on each model in the BNS.

6. Assign VACs to each variable within each model in the BNS.

7. Apply the VCI matrix to each model in the BNS.

8. Extract final VCI assignments for each variable in the BNS.

The primary utility of this methodology is intended to be the indication of which

models and aspects of models are the most critical; this information can then be used to

support the subsequent targeted analysis of model-centric aspects of a BNS.

Moreover, by facilitating these analyses, the approach is intended to provide a means

of addressing assurance considerations associated with other viewpoints outlined in the

RM-BNS. In particular, it can be used to support the assurance of some Data Viewpoint

aspects. For example, in many applications, individual variables within a BN model can

be trained independently. Consequently, individual variables may be directly associated

with individual data artefacts. Therefore, the MCA approach can be used to identify

individual data artefacts (or elements of data artefacts) that are particularly important

to the reasoning capability of a BN model.

4.6 Conclusion

This chapter has introduced a systematic approach to establishing the criticality of each

model used within a BN-based system, and of all variables that comprise each model.
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The motivation for this work was threefold. First, there is a need to ensure that the

traceability of behaviours is maintained in BNSs in cases in which traditional software-

centric approaches may begin to break down. Second, it is essential that unconventional

aspects of BNSs can be directly targeted and prioritised based on their relative importance

to the safety-related functional behaviours of a system. Finally, there must be a mechanism

for ensuring the proportionality of analysis and testing techniques used in the verification

and validation of BNSs.

The Model Criticality Analysis (MCA) approach presented here has provides a solution

to each of these problems for those system aspects addressed by the RM-BNS Model

Viewpoint. The approach provides a targeted means of analysing model-centric aspects

of BNSs to establish the criticality of these aspects to the behaviour of the completed

system. It supports the attribution (though not in a binary sense) of individual model

components to a system’s functional behaviours. By providing a means of prioritising

individual model components, the proportionality of the efforts carried out in the assurance

of those components can then be established.

The primary contributions of this chapter are therefore:

• The introduction and definition of Model Authority Categories (MACs) to system-

atically characterise the relative importance of models.

• The introduction and definition of Model Criticality Indices (MCIs) to capture the

criticality of independent models.

• The introduction and definition of Variable Authority Categories (VACs) to stan-

dardise the description of the influence of variables upon one another.

• A modified sensitivity analysis algorithm for deriving VACs.

• The introduction, definition and methodology for assigning Variable Criticality In-

dices (VCIs) to capture and standardise the description of the relative importance

of variables upon safety-related outputs (SROs).

The following chapter looks at how the RM-BNS and verification and validation objec-

tives of the previous chapter can be used alongside MCA and other existing evaluation and

analysis techniques to develop a framework for describing safety evidence generated during

the development of a BNS, and how the sufficiency of this evidence may be established.
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From Objectives to Evidence

5.1 Introduction

So far, the work presented within this thesis has focussed upon making two principal

contributions: first it has aimed to ensure the full scope of assurance considerations are

understood and accounted for by system developers (Chapter 3); and second, it has pro-

vided an targeted safety analysis technique to help explore the assurance implications of

BN model aspects (Chapter 4). This chapter aims to provide guidance on addressing the

outstanding problem of establishing the sufficiency of the assurance efforts undertaken

during the development of a BNS.

In particular, this chapter focusses primarily on the sufficiency of assurance efforts re-

lated to the RM-BNS Model Viewpoint. This viewpoint has been selected as it represents

the most conceptually divergent of the RM-BNS viewpoints with respect to conventional

software systems: the other RM-BNS Viewpoints have novel BNS-specific concerns as-

sociated with them, but these viewpoints typically have more conceptual overlaps with

conventional software development practices. While the focus of the discussion will be on

system aspects associated with the Model Viewpoint, the concepts introduced in this chap-

ter are relatively general and should therefore be extensible to system aspects associated

with the other RM-BNS viewpoints. The chapter is structured as follows:

• The challenges associated with the development of a BNS are re-introduced to pro-

vide context for subsequent sections. This provides a brief review of relevant concepts

introduced in Chapters 2 and 3.

• The role of evidence in existing safety-critical systems is then reviewed. This pro-
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vides additional context and highlights potential shortcomings in existing standards

and practices. A framework for describing and classifying safety evidence is then

introduced and applied to BNSs.

• Next, the evidence classifications are combined with the RM-BNS verification and

validation objectives to provide an overview of how evidence may be used to satisfy

the objectives, and how evidence may be refined alongside these objectives. This

section provides a mapping of objectives to the techniques that may be used to satisfy

them, and their associated items of evidence. It also builds upon the contributions

of Chapter 4 to indicate how criticality metrics may be mapped onto the RM-BNS

objectives and evidence to further clarify the role and relative importance of specific

items of evidence in a given BNS.

• Finally, the chapter provides a discussion on how the sufficiency of evidence may

be established during the development of a BNS. This section reviews two potential

approaches and evaluates the relative merits of each.

5.2 Assurance Considerations

As discussed in Chapter 2, existing safety standards commonly adopt a prescriptive ap-

proach to safety: a standard will stipulate a set of mandatory development processes

that must be performed if a system is to comply with that standard. These approaches

frequently provide either an enumeration of techniques that must be carried out by a devel-

opment team, or a set of activities (or specific items of evidence) that must be performed

(or provided) in order to satisfy a given set of safety objectives [69]. These techniques

typically make strong assumptions about the nature of the system being developed and

of the utility of the practices they mandate [70].

Many such standards have earned enduring popularity within the various engineer-

ing domains; the well-defined activities and development steps lend themselves to large

projects and organisations – and to the understandably risk-averse mentality of many

such projects and organisations. Indeed, a recurrent criticism of prescriptive approaches

to safety is that these approaches may encourage an uncritical ‘check list’ mentality to

assurance [76,100]. This criticism is rooted in the fact that the rationale for the activities

and evidence mandated by a given standard is commonly only implicit. Many authors have

noted that the underlying assumptions of these standards may not be valid in practice:
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the generality and flexibility of various analysis techniques and best practices is frequently

debated within the assurance domain [74,75,162].

In previous chapters, a number of important conceptual distinctions between BNSs and

more conventional software-intensive systems were introduced. As outlined in Chapter 3,

these conceptual distinctions may erode the validity of some of the assumptions associ-

ated with modern software safety standards [64]. The shift in the importance of aspects

of the system’s design away from traditional software engineering concerns will be partic-

ularly problematic. In Chapter 2 the results of the DeepXplore study into the analysis

of Deep Learning (DL) systems for autonomous vehicles were outlined. In this work, the

researchers highlighted that conventional software testing strategies were inadequate for

the task of assuring the functional behaviour of a DL system. This research indicated that

despite achieving complete code coverage of the DL system, less than 10% of the system’s

model space was explored: there remained nearly 90% of the model’s behaviours that were

unexplored by conventional code-structure focussed testing [113]. As discussed in Chapter

3, in many cases it is the models that drive these systems that should be considered to be

the primary determinant of their functional behaviour.

Moreover, the complexity and scope of many of the applications of AISs introduces

additional assurance considerations: the altered role of the environment and the related

operational context upon the behaviour of an AIS may further erode the validity of some

of the assumptions underpinning existing software engineering best practices. This is

particularly true for those activities and standards that make very strong assumptions

about the relationship of a software system to its operational environment [81].

For example, aviation safety standards may be particularly exposed to these assurance

concerns: they have long assumed that the operational environment is highly regulated

and that the software systems are relatively ‘closed off’ to this environment. Both of these

assumptions will be challenged with modern AISs – many of these systems are (sometimes

dynamically) modelling their environments and receiving feedback from the environments

they operate in. This can create an information challenges associated with the interaction

of an AIS with their operating environments [81,176,177].

Furthermore, the nature of BNSs is such that they actively integrate highly uncertain

information into their design, development and functionality [2]. As discussed in previous

chapters, the lifecycle of a BNS is commonly characterised by highly iterative development

practices and may require a significant degree of empirical and statistical validation – the
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BN models are ultimately probabilistic representations of some aspects of the world and

can often only be validated against the world [1, 2, 22]. Standard approaches of ‘offline’

software testing will be of limited use in identifying or mitigating hazards in many cases.

In this sense the development of a BNS introduces considerations more akin to those

common to hardware engineers, with reliability quoted statistically and verified through

‘physical’ testing. This raises two points:

1. The complexity and scope of modern AI applications coupled with the technical

properties of the AI approaches themselves will generally limit the utility of defining

a concrete set of development activities or prescriptive practices for these systems.

Constraints on the development and implementation of these systems may actually

hinder the capabilities of a BNS and the constraints may compromise the effec-

tiveness (and safety and/or security) of the system. The inclination to apply such

constraints to a BNS or AIS may inadvertently introduce more error modes than

they may mitigate [178].1

2. The non-deterministic properties of these systems will further limit the ability of

safety practitioners in applying conventional software assurance activities during

the development of a BNS. It may not be possible to unequivocally satisfy some pre-

defined set of objectives: the satisfaction of objectives will be more heavily based

upon statistical confidence in the behaviour of a system as opposed to the concrete

Boolean satisfaction of objectives common to conventional software systems. It may

not be possible to know a priori the statistical confidence that is necessary and/or

achievable prior to the development and implementation of the system [2,6].

These points are generally symptomatic of standard BNS development lifecycles as

being more of a ‘dark art’ than a traditional engineering process [2]. The development

of a performant BNS requires an uncommon degree of latitude on the part of the BN

developer in making design decisions for a given system. Many of these design decisions

will only become known as development progresses. This indicates that any guidance on

the assurance of a BNS should focus on providing a flexible framework that accommodates

the iterative and somewhat erratic lifecycle that can typify BNS development activities.

1From a technical perspective, the introduction of additional constraints on a model may introduce

problems with errors arising from high bias and over-regularisation. Chapter 2 discusses some of these

aspects in more detail.
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It is essential that the rationale for the use of specific techniques is made explicit, and the

relevance of any information produced by these techniques is disseminated to all applicable

stakeholders.

5.3 An Evidence Framework for BNSs

Accommodating novel designs or applications is not a problem unique to BNSs. There

are many well-known problems within the safety domain in mapping existing software

safety standards and certification practices to the development of unconventional sys-

tems [179, 180]. There have also been problems with the certification of legacy systems –

those systems that were developed prior to the introduction of a certain standard or set

of assurance practices and therefore cannot easily be brought into retroactive compliance

with a given standard [181]. This has driven interest in establishing standards that avoid

highly prescriptive and inflexible approaches to safety. One approach that has become

increasingly accepted within the safety engineering community is that of evidence-based

safety standards. These approaches provide reduced prescriptive guidance for assurance

activities in favour of emphasising the explicit discussion of the rationale behind the ac-

tivities and safety lifecycle adopted for a given system. Proponents of this approach to

system safety propose two primary benefits:

• The approach supports the direct mapping of safety goals to evidence, enabling

the explicit consideration of the sufficiency of individual items of evidence in the

satisfaction of individual safety goals.

• The approach avoids the late-stage (and costly) re-development work sometimes

associated with failing to meet prescriptive standards.

Practically, these are attractive benefits in the context of developing BNSs. As dis-

cussed throughout this thesis, the development of a BNS includes a number of activities

and design decisions that may prove resistant to the application of conventional software

engineering practices: the BN model design, development and evaluation phases of a BNS’s

lifecycle are often characterised by their highly iterative nature. This can make traditional

requirements decomposition activities both challenging and potentially inefficient. This

also means that the techniques or evaluation activities (and associated evaluation metrics)

that will be used by assurance practitioners may not be known until well into the system’s

development lifecycle [2, 6, 66].
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So called ‘evidence-based’ approaches to assurance may therefore provide a more ap-

propriate means of assuring BNSs: they ensure that the rationale for specific development

and evaluation techniques is made explicit (and by extension avoid mandating the use of

techniques or practices that may be irrelevant or uninformative to a given application).

This more readily accommodates the shifting design decisions and evaluation techniques

employed during the development of a BNS and the more ‘dynamic’ lifecycles of these

systems.

While many industry standards still adopt prescriptive approaches to system safety,

standards are being introduced that encourage or require evidence-based approaches to

assurance. Perhaps the most significant of these is the UK Ministry of Defence (MOD)

Defence Standard 00-056 (DS 00-056). This standard focusses on defining a set of safety

goals that are then refined for a specific system. It does not mandate a set of processes for

the satisfaction of these goals but instead demands that an argument is made to justify

the use of items of evidence in the satisfaction of these goals. Furthermore, DS 00-056

discusses the characteristics of evidence used in the satisfaction of a given safety goal. For

example, it states:

“Explicit, objective evidence [items] are more compelling than those that appeal

to judgement, custom or practice.”

This statement alludes to the implicit underlying hierarchy of evidence: not all items

of safety evidence are created equal [70]. This hierarchy should be extended to evidence

generated for the assurance of a BNS: a BN model walkthrough may not be as compelling

as evidence for the presence of a given behaviour as an extensive analytical evaluation

of a BN model’s dynamics. However, it may not be technically possible or feasible to

produce exhaustive analytical evaluations of a BNS, and so reliance on expert testimony

may be unavoidable or even desirable in some cases. Understanding the interplay of

evidence – what is feasible, available and sufficient – requires a framework for describing

and understanding the relationship of evidence to the capabilities and limitations of the

techniques that generate them, and to the objective the item of evidence addresses.

5.3.1 Evidence Characteristics

Discussing the characteristics of an item of evidence is somewhat unconventional [70,100].

As indicated previously, the role of evidence (and the associated rationale behind a given
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item of evidence) is not commonly discussed in many current software safety standards

[100]. From a safety perspective, the assurance of a BNS will require the generation

of items of safety evidence that are highly novel, abstract and BN-specific. Ensuring

the transparency of the rationale behind the generation of an item of evidence and its

relationship to a given goal or objective is therefore essential. In particular, ensuring that

BN developers and assurance practitioners can effectively communicate about these novel

items of evidence in the context of the safety of a BNS is key.

One approach to achieving this is to adopt a set of evidence characteristics for describ-

ing safety evidence generated for the assurance of a BNS. These can be used to provide a

generic framework for discussing and communicating the rationale and role of evidence in

the context of a given system. A number of evidence characteristics have been proposed

within the safety engineering literature. Rather than develop a new set of evidence char-

acteristics, this chapter instead adopts the evidence characteristics as proposed by Weaver

et al. These are defined as follows:

• Relevance - The extent to which the evidence directly addresses the software safety

goal.

• Coverage - The proportion of the software safety goal which the evidence addresses.

• Independence - The extent to which complementary evidence follow diverse ap-

proaches to fulfilling the requirement for evidence.

Two further characteristics are also adopted from the work of Menon et al. These are:

• Trustworthiness - The likelihood that the evidence is free from errors.

• Replicability - The ease with which the evidence could be replicated.

In the context of Weaver’s work, the former set of characteristics were defined with

respect to the relationship of an item of evidence to a safety goal. In the context of this

chapter, these five characteristics are used to describe role of evidence in the satisfaction of

RM-BNS verification and validation objectives. The satisfaction of an individual objective

may rely upon several distinct items of evidence, each of which addresses a specific aspect

of that objective.

For example, it is common practice within the BN domain to apply a suite of evaluation

techniques to a BN model without providing any explicit rationale for why these techniques
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were used and what specifically has been demonstrated as a result [73, 75]. Furthermore,

few BN evaluation techniques and development frameworks adopt a parallel adversarial

position on the evaluation of a system in order to explicitly consider the weaknesses of

the evaluation techniques used: considerations such as the coverage, replicability and

trustworthiness of evidence is rarely explicitly discussed.

In the context of BNSs, each of these five characteristics should be explicitly associated

with every item of safety evidence generated during the development of a system. While

the definitions provided by Menon and Weaver are sufficiently general to be applied to

evidence generated for BNSs, there are a number of additional considerations relevant

to BNSs. To illustrate this, Table 5.1 re-defines these characteristics in the context of

the RM-BNS objectives, and provides high-level examples of key considerations related to

each characteristic.

Perhaps the two most important considerations shown in Table 5.1 are those related to

the Coverage and Trustworthiness characteristics respectively. These characteristics touch

on two aspects of AI development that are increasingly recognised as key considerations

in the development of safety-critical AI systems. The former characteristic has conceptual

links to the work of the DeepXplore team and others within the AI community. These

teams are developing techniques that adopt new notions of coverage that specifically target

key aspects of AISs [113, 166]. These techniques can be regarded as falling under a new

category of coverage testing: ‘Model Coverage Testing ’. From this perspective, many of

these techniques may also be mapped onto the notion of Coverage as defined here with

respect to the RM-BNS Model Viewpoint objectives: the degree of evidential coverage

may be closely related to the Model Coverage established by BNS developers.

The latter characteristic explicitly addresses common issues with misleading or flawed

evaluation outputs – outputs that may be used as safety evidence in safety-critical BNSs.

An example of the considerations exposed by this characteristic would be that of the Tank

Detection AIS introduced in Chapter 3. This AIS encountered issues with underlying

biases in the data and the development process that produced evidence that provided

false-confidence in the system’s behaviours.
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Table 5.1: Evidence characteristics and example considerations for evidence generating techniques in BNS development.

Characteristic Description Example Considerations

Relevance The extent to which the evidence directly ad-

dresses the RM-BNS objective.

(a) In what specific way does a given technique produce evidence that

addresses a given objective?

(b) Are there any alternative techniques that may produce more relevant

evidence for a given objective?

Coverage The proportion of the RM-BNS objective which

the evidence addresses.

(a) What degree of Model coverage has been established?

(b) What factors influence the evidential coverage of a given technique?

Independence The extent to which complementary items of ev-

idence follow diverse approaches to fulfilling a

given RM-BNS objective.

(a) To what degree is an evaluation technique vulnerable to technical

limitations that are shared with other techniques used to address the

same objective?

(b) What degree of correlation exists between the items of evidence

generated by two or more techniques used to address the same objective?

Trustworthiness The likelihood that the evidence is free from er-

rors.

(a) In what ways can the evaluation technique be ‘fooled’?

(b) In what ways can an item of evidence be misleading?

Replicability The degree to which the evidence could be in-

dependently replicated.

(a) What factors may influence the replicability of the evidence gener-

ated by a given technique?

(b) Are there alternative (more replicable) methods for generating evi-

dence?
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Examples of other considerations related to this characteristic include whether or not

an evaluation technique controls for problems related to ‘reward hacking’, or more generally

the degree to which an evaluation technique is exposed to technical issues related to so-

called ‘class-biases’ or other related problems.2

The remaining three characteristics are also important considerations when generating

safety evidence for BNSs. Of these three, the Replicability characteristic may be the most

challenging aspect for BN developers and assurance practitioners to address. Many of

the problems for which BNSs are used are inherently uncertain, and in many cases the

assurance of these systems is likely to be at least partially dependent on testing activities

that cannot be wholly replicable. This is once again a distinction between conventional

software systems and BNSs. This characteristic is therefore aimed at exposing these

considerations in the context of the safety evidence.

5.3.2 Evidence Classifications

These evidence characteristics have been selected to encourage the recognition and de-

scription of the limitations and implications of BNS evaluation and testing activities in

the production of safety evidence for safety-critical BNSs. By explicitly describing every

item of safety evidence in terms of the evidence characteristics, the role of an item of

evidence and the rationale behind its use in the satisfaction of a given objective should be

more readily exposed to BN developers and assurance practitioners.

However, as outlined in DS 00-056, there is a ‘hierarchy of evidence’ to consider when

assuring a system. This is particularly important when considering a BNS – the context

and application of a BNS will dramatically alter the availability and scope of possible

evaluation techniques and associated items of evidence. Having the ability to explicitly

articulate this hierarchy is therefore the next step in describing the role of evidence in

BNSs. One approach to developing such a hierarchy is to rely on evidence classifications.

There are several existing evidence classification frameworks within the safety domain

[76, 100, 184]. As was the case with the evidence characteristics, this chapter adopts two

of these existing classifications instead of introducing a proprietary BN-specific set of

classifications. These classifications have been selected (and modified where appropriate)

to maximise the relevance of the classifications to BNS safety-evidence. The first set of

2Good discussions of the concepts of ‘reward-hacking’ and ‘class-bias’ can be found in [63,182] and [183].

An overview of the possible safety impact of ‘reward-hacking’ can be found in [21].
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classifications addresses the type of evidence items and is drawn from the classifications

proposed in the SHIP [185]. The classifications are defined as follows:

• Deterministic – Relying upon axioms, logic, and proof.

• Statistical – Relying upon probabilities and statistical analysis. 3

• Qualitative – Relying upon adherence to standards, design codes etc.

These three classifications provide enough information to begin to develop a basic

hierarchy of evidence: evidence produced by Deterministic techniques should be prioritised

over evidence produced by either Statistical or Qualitative methods. Similarly, Statistical

techniques should generally be favoured over Qualitative techniques. However, establishing

the relationship of an item of evidence to a given verification and validation objective is

also necessary to establish context for that evidence.

For example, an analysis of a model’s structure may provide Deterministic evidence

of a particular property. This may suggest that this item of evidence should have prece-

dent over evidence associated with the two other classifications. However, this can mask

important information. The evidence generated by this process may only indirectly ad-

dress a given objective or may require additional evidence to provide supporting context

to the implications of the evidence. In these cases, evidence that more directly addresses

an objective may be prioritised by developers – even if this other evidence is classified

as belonging to one of the other two classes. Three further classifications are therefore

adopted here to capture these additional considerations. The classifications are adopted

from Weaver and are defined as follows [76]:

• Direct – evidence that directly shows the [verification and validation objective] is

fulfilled.4

• Backing – evidence that shows that the direct evidence is soundly based.

3This classification was defined in [185] as the Probabilistic classification. Given the overloaded use of

this term in the context of probabilistic graphical models – and therefore BNSs – it has been renamed here

to ‘Statistical’ evidence. It is felt this also more appropriately captures the nature of many BNS analysis

techniques.
4The definition refers to safety goals. To support the clarity of the content of this chapter, this has

been substituted for the verification and validation objective.
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• Reinforcement – evidence that shows that direct evidence can be extrapolated to

meet higher integrity requirements than can be met with direct evidence alone.

To distinguish between these two classifications, the former set of classifications will be

referred to as the Evidence Type Classification (ETC), while the latter set of classifications

are referred to as the Evidence Role Classification (ERC). Together, these classifications

can be used to provide a more expressive hierarchy of evidence. In general, those items of

evidence that are both Direct and Deterministic will be the most desirable as they should

be fully replicable and most closely align with the sentiment expressed in DS 00-056.

However, much of the evidence associated with the assurance of the BN Model Viewpoint

will fall into the Statistical classification, and the processes used to generate these items

of evidence will influence their evidence classifications.

5.3.3 Evidence-Generating Processes

There are a plethora of AI- and BN-specific techniques that can be employed during

the development and evaluation of a BNS with a similarly extensive variety of metrics

and considerations associated with their use [2, 65]. Assigning an ETC to an item of

evidence (and by extension to the evidence-generating process that produced it) may

therefore become challenging for assurance practitioners. This section looks at a selection

of evidence-generating techniques commonly used during BNS development and evaluation

and classifies them according to the ETC of the evidence they produce.

5.3.3.1 Statistical Processes

Within the BN domain, the most prevalent form of analysis and evaluation techniques are

those that produce statistical information. In the context of BNSs used for diagnostic and

prognostic applications, two of the most widely used techniques that produce items of ev-

idence that fall into this classification are Receiver Operating Characteristic (ROC) curve

analysis, and Cross Validation (CV) testing. Both of these techniques can be used to as-

sess and compare the diagnostic performance of a given BN model against other diagnostic

models, or to tune a single model to meet the required performance characteristics.

In the case of the ROC analyses, the aim is to quantify (and typically visualise) the

trade-off of a given model in terms of the rate of occurrence of true-positives with respect
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to false-positives.5 Simpler accuracy metrics may provide misleading indications of the

performance of a system. For example, a model that is designed to diagnose a single disease

may end up diagnosing every patient as having that disease. The accuracy metric for how

often such a model correctly diagnoses the disease in a patient can be 100%. However, the

false-positive rate would be very high, and the corresponding diagnostic power of the BN

would therefore be very low – despite the seemingly impressive headline statistic.

Figure 5.1: A comparison of two Receiver Operating Characteristic (ROC) curves used to

evaluate two diagnostic models.

The visualisation of these analyses is generally achieved using a ROC curve. These

curves can be used to evaluate and tune the diagnostic performance of a BN model [186].

Figure 5.1 shows an example curve for two simple BN models. Qualitatively, the closer

the ROC curve is to the top left corner in Figure 5.1, the higher the performance of a

diagnostic model. More technically, the area under the curve (AUC) of each of these ROC

curves provides a single metric for the diagnostic performance of each of these models –

the larger the value the better the model.

5In this context, a true-positive reflects a correct diagnosis, while a false-positive reflects a specific type

of incorrect diagnosis.
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Consequently, given the information in Figure 5.1 a BN developer is likely to favour the

selection and use of Model A over Model B for this task. From an assurance perspective,

these analyses may be used to evaluate safety trade-offs between model architectures. As

is often the case in the safety domain, the safety implications of a false-positive (e.g. ‘drug

administered when not required’) may have radically different implications than a false-

negative in a given context and vice versa. The ROC curves and ROC metrics can be used

to directly address these considerations from a model-centric perspective.

A second prominent analysis technique in the AI domain is so-called Cross Validation

(CV) testing. The aim of these analyses is not to simply assess the diagnostic performance

of a model, but to assess the generality of the model.6 This helps to ensure that a model

is developed in such a way that it is not excessively sensitive to the data used to train it.

A practical example of this may occur in a medical diagnosis setting. For example, a

diagnostic model may become extremely accurate at making diagnoses within the patient

data used to train it. However, it may be extremely poor when applied to patient cases

outside of this data. Models that demonstrate such behaviours are said to have ‘overfit’ to

their training data. A rough analogy to human learning would be the distinction between

‘rote learning’ and learning a deeper understanding of a problem: generally, the former

should be deprecated in favour of the latter. The same is true for BNs and other AI

techniques.

From an assurance perspective, CV testing can be used to provide confidence in the

behavioural characteristics of a BN model outside of the cases used to design and train it.

In general, CV testing can help to ensure the robustness of the representation of a domain

learned by a BN. However, CV testing should not be used alone except in the most trivial

of use-cases (or in the context of this thesis: the lowest criticality models). This is because

CV testing will not identify biases that persist across all available data, certain forms of

human biases in the model development process and generally will not mitigate issues

related to the evolution of a domain over time [63, 187, 188, 189]. It may be possible to

adapt existing CV testing techniques to target safety-related model aspects – perhaps

through the integration of information derived from a Model Criticality Analysis (MCA)

or similar technique. Such a modification may prioritise the generality of safety-related

model aspects over the broader notions of generality currently used in CV testing.

6CV testing is sometimes referred to as out-of-sample testing as it involves exposing a model to ‘unseen’

data instances.
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As the classification suggests, both of these analyses are fundamentally based upon

statistical assessments of the behaviours and properties of a model. They each address

complementary but distinct BNS development considerations. Evidence generated using

these techniques is associated with a degree of inherent aleatoric uncertainty, and the

evidence produced will not generally be in a Boolean format. There will be explicit uncer-

tainty in the utilisation of these techniques for the satisfaction of any goals or objectives

targeting BN model aspects. In many cases, the bulk of the safety evidence generated for

the assurance of a BN model will be derived from evidence generating processes of this

class. Unlike conventional software systems, there is therefore a possibility of generating

meaningful failure rate statistics for BNSs.

5.3.3.2 Deterministic Processes

Processes that are associated with the production of items of evidence that are designated

as Deterministic according to the ETC definitions share some similarities with evaluation

and analysis techniques commonly referred to as ‘Formal Methods’ within the software

engineering domain. Two of the most prominent techniques that produce this class of

evidence are some forms of sensitivity analysis and a group of techniques that could be

described as ‘independence analyses’. Both groups of techniques are based upon exact

mathematical proofs of the properties of BN models.

In the case of sensitivity analyses, there are a range of techniques available to practi-

tioners. Of these, a subset of techniques focus on establishing constraints on parameters

within a BN model. For example, they can be used to guarantee certain parameters within

a BN model fall within a certain range, or provide information on what value other pa-

rameters must take in order to produce certain behaviours in a model [190]. From an

assurance perspective, these techniques can be used to provide evidence that a BN model

cannot produce certain behaviours. However, they should typically be used alongside

other evidence that indicates why the absence of such behaviours is desirable.

The second group of ‘Deterministic Processes’ – independence analyses – broadly fo-

cus on identifying similarities and distinctions between one or more BN models, and on

providing mathematical proof of the independence properties of these models. For ex-

ample, they can be used to demonstrate that a group of BN models share independence

relationships such that one model may be a more complex super-set of the variables in a

second model. They may also be used to show that a variable within a model can never
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interact with other variables within that model, and can provide the precise mathemat-

ical states in which this holds true. For assurance practitioners, this could be used to

demonstrate unequivocally that Safety-Related Variables within a model are always con-

ditionally independent of a set of variables for which limited safety evidence is available.

Practically, this may mean that structures within a BN model are compartmentalised into

those that are strictly safety-related, and those that are not, and the mathematical con-

texts in which these two parts of the model may interact are precisely defined and used

to justify modelling decisions related to the structure and parameterisation of a model.

5.3.3.3 Qualitative Processes

Finally, there are two prominent examples of qualitative evaluation activities commonly

used during the development of a BNS. A popular approach to the evaluation of BN

models in some applications is to perform a model walkthrough with one or more domain

experts. A BN model is often transparent to non-BN developers: in many contexts, experts

may interpret the structure and parameterisation of a model with guidance from the BN

development team. In this approach, an expert can assess the degree to which a BN model

conforms to their knowledge of the domain being modelled. As in other domains, using

multiple independent walkthroughs should be favoured in order to mitigate the risk of

oversights, biases or other errors on the part of the assessing expert [61,64,121]. However,

this is not always a straightforward task, especially for larger BN models [61].

Therefore, an alternative approach has been to develop tools that enable a BN model

to ‘explain’ its reasoning given a test case. This can be used to produce an explanation

of a model’s properties and behaviours in natural language [191]. This can eliminate the

need for a detailed review of underlying mathematical constructs in some contexts and

can enable a higher-level review of how a model aligns with expert knowledge: it can be

used to produce sets of explanations that can be divided between multiple experts, which

in turn can reduce the burden when assessing large models [61,191].

A second evaluation technique comes from the Expert Systems (ES) domain. Knowl-

edge Base Reviews (KBRs) are frequently advocated as an essential part of the devel-

opment of an ES [85, 192, 193]. In the context of a modern BNS, the aim of a KBR is

to provide a detailed review of all data artefacts available pertaining to the ES being

developed. Part of the motivation for this is the reduction of the epistemic uncertainty

associated with capturing the reasoning of experts within a software system. In particu-
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lar, ES developers aim to identify potential gaps in the knowledge of the experts used to

develop the ES. This can include inconsistencies in expert opinion or data artefacts, as

well as identifying more general epistemic uncertainties relating to potential practical or

fundamental limitations o knowledge or data relating to a given domain.

In the utilisation of BNs for ES roles, the experience of the ES developers remains

relevant. Detailed qualitative evaluations of data artefacts can be used to provide evidence

of many properties of a data artefact, including the integrity and scope of the artefact.

With respect to the structure and parameterisation, KBRs can provide evidence that a

model has captured the intended domain. Without the careful selection of data artefacts,

a BN model may be trained on a data set that does not adequately reflect the domain

being modelled. The KBR is aimed at mitigating these issues.

5.3.3.4 Mapping Evidence Classifications to Techniques

These processes represent a subset of the techniques available to BN developers. As

with any fast-growing research field, techniques are regularly adopted and modified. The

evidence classes (and evidence characteristics) were introduced as a general framework for

classifying and describing evidence generated by all of these techniques. The adoption of

the framework for the development of mission-critical BNSs could also further strengthen

the systematisation of the development of these systems. A complete enumeration of these

techniques is beyond the scope of this chapter. Furthermore, such an enumeration would

rapidly become obsolete given the pace of change and innovation within the AI domain.

Instead, Table 5.2 shows a mapping of some of the most common analysis and eval-

uation techniques applied to BNS models to their corresponding ETC. The aim here is

to provide a reference point for BN developers and assurance practitioners when describ-

ing and classifying other techniques, or modifications to existing techniques within the

table. The table does not list the ERC assignments for these processes. These can only be

meaningfully defined in the context of a given safety goal or objective that a given item

of evidence is used to address.
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Table 5.2: Technique-Evidence Mapping for Model Viewpoint

Process Classification (ETC) Evidence Items

Model Walkthroughs Qualitative Structure Review, Parameter Review, Independent Elicitation & Corrobora-

tion

Architectural Walkthroughs Qualitative Model Assumptions Review, Model Design Review, Architectural Assump-

tions Review, Model Structure Review

Uncertainty Analyses (Quali-

tative)

Qualitative Knowledge-base Review, Qualitative Risk Analysis, Data Acquisition/Man-

agement Audits

Developmental Reviews Qualitative Model Development Review, Operational Review, Developer Qualification Re-

view

Uncertainty Analyses (Statis-

tical)

Statistical Bayesian Credible Intervals, Confidence Intervals, Volatility Analyses

Quality-of-Fit Analyses Statistical Fisher-F test, Student-T test, Kolmogrov-Smirnov test, Chi-squared test, Box-

Cox test, Confusion Matrices, Receiver Operating Characteristic (ROC)

Generality Tests Statistical k-Fold Cross Validation, Leave-one-out Cross Validation, AIC, BIC

Generative Analyses Statistical Markov Chain Monte Carlo (MCMC) test-case generation analysis (Implicated

Variables, Covariance Metrics [161])

Structural Analyses Deterministic Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC),

Barren Nodes, d-separation, I-map

Sensitivity Analyses Deterministic Sensitivity to Findings, Sensitivity to Parameters, Parameter Bounds Check-

ing

Robustness Testing Deterministic Model Fault Injection Performance Metrics, Adversarial Model Testing, Pa-

rameter Bounds Checking
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5.4 Relationship of RM-BNS Objectives to Evidence

5.4 Relationship of RM-BNS Objectives to Evidence

In Chapter 3, a set of verification and validation objectives for BNSs was introduced.

These objectives represent generic objectives for the assurance of a BNS. As outlined in

that chapter, they require refinement to specific objectives over the course of a BNS’s

development. Each objective addresses an assurance-related aspect of a BNS’s design and

development. For each objective, multiple BN analysis and evaluation techniques may be

utilised to address it. By relating the RM-BNS objectives to BN analysis and evaluation

techniques in this way, a generic mapping of objectives and evidence can be constructed.

To illustrate the concept of this mapping process, Table 5.3 shows an example mapping

of the objectives to the techniques and associated items of evidence. The table maps a

number of generic RM-BNS objectives to corresponding generic techniques and evidence.

As with the objectives themselves, pre-emptively refining the specific variant of a technique

or the metric that will be used as an item of evidence from a technique should not be

attempted without consideration for the specific context of a given BNS and BN model,

and should therefore not occur prior to the instantiation of a system-specific RM-BNS

model.

Attempting to refine the mapping in Table 5.3 without this system-specific contextual

information may prove to be misleading and inefficient. This is because the operational,

developmental or technical context of a given BNS or BN model may preclude the use of

any number of techniques for certain objectives: the exact implications of these contexts

is unlikely to be known until development is well underway. For example, consider the

mapping for objective MV-1.1:

“Establish and justify the basis for using structural variant for the [Model].”

In Table 5.3, this objective is mapped to four general groups of evidence items that

could be used to support the satisfaction of this objective. These items may be produced

by a range of techniques and may be used in various combinations as determined by the

system-specific instantiation of an objective. As indicated, it may also be the case that for

a system-specific objective, only a subset of techniques – and therefore items of evidence

– will be available to BN developers.

It is important to note that the difficulty in generating evidence items given these

techniques can vary dramatically: some items of evidence require a qualitative review by

an expert, while others demand computationally intensive simulations and evaluations.
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This of course raises the question: why not simply generate an item of evidence that is

easiest to generate? As alluded to previously, BN developers and assurance practitioners

must evaluate the confidence in the items of evidence generated by a technique. This

will involve assessing the adoption of a technique based on the evidence classification

(i.e. ETC, ERC) assigned to the evidence generated by that technique is assigned, as

well as considering the criticality of the system aspect addressed by the objective an

item of evidence is used to address. Assurance practitioners should not hold an objective

addressing a highly critical system aspect as satisfied based upon the opinion of a system

expert.

In general, assurance practitioners should favour Direct, Deterministic evidence in the

first instance. However, as indicated in the previous section, many items of evidence

generated during BN development will fall into the Statistical classification. Techniques

that generate this evidence should be considered after Deterministic evidence, but prior

to Qualitative evidence. Typically, it will be necessary to adopt multiple items of evidence

to ensure comprehensive evidential coverage of an objective [70]. The selection of evidence

should be performed in conjunction with the assessment of criticality. Example heuristics

for utilising evidence based upon MCA-derived criticality metrics will be introduced in

subsequent sections.
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Table 5.3: Objective-Evidence Mapping for Model Viewpoint (Structure View)

Identifier Objective Process Evidence Item

MV-1.1 Establish and justify the basis for using

the structural variant for the [Model].

Model Walkthrough Structure Review

Uncertainty Analysis

(Qualitative)

Knowledge-base Review, Qualitative Risk Analysis

Quality-of-Fit Analysis Fisher-F test, Student-T test, Kolmogrov-Smirnov test,

Chi-squared test, Box-Cox test, Confusion Matrices, Re-

ceiver Operating Characteristic (ROC)

Structural Analyses Akaike Information Criterion (AIC), Bayesian Informa-

tion Criterion (BIC), Barren Nodes, d-separation, I-map

MV-1.2 Establish and justify the any assump-

tions in the structure of the [Model].

Model Walkthrough Structure Review

Uncertainty Analysis

(Qualitative)

Knowledge-base Review, Operational Context Review

Quality-of-Fit Analysis Statistical Test Scores (e.g. Fisher-F, Student-T,

Kolmogrov-Smirnov, Chi-squared)

Structural Analyses AIC, BIC, Barren Nodes, d-separation, I-map

Architecture Walkthrough System Design Review, Architectural Assumptions Re-

view, Model Independence relations
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Table 5.3: Objective-Evidence Mapping for Model Viewpoint (Structure View, continued)

Identifier Objective Process Evidence Item

Development Reviews Model Development Review, Developer Qualification Re-

view

MV-1.3 Establish and justify the implemented

structure of the [Model].

Model Walkthrough Structure Review

Sensitivity Analysis Sensitivity to Findings, Sensitivity to Parameters

Dependency Analysis I-map, d-separation

Dev. Process Analyses Model Assumptions Review, Developer Qualification Re-

view, Modelling Setup Review

Structural Complexity

Analyses

Information Criterion Metrics (e.g. Akaike, Bayesian),

Model Complexity Score (e.g. Fisher-F score)

MV-1.4 Establish and justify confidence in the

structure of the [Model].

Model Walkthrough Structure Review

Architecture Walkthrough System Design Review, Architectural Assumptions Re-

view, Model Independence relations

Dev. Process Analyses Model Assumptions Review, Developer Qualification Re-

view, Modelling Setup Review
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To illustrate this point, consider the following two example BNSs:

System A - A BNS developed to reason about the population dynamics and ecological

properties of a region (similar to the work of Pollino et al) [59].

System B - A BNS developed for information-discovery that models biological and

chemical interactions in drug-discovery tasks, and that utilises a number of ‘hidden’

nodes within its structure to improve certain model performance attributes [40].

In the case of the first application (System A), it is typical for developers to have access

to only very limited quantities of data: the development of BNs for ecological modelling

applications is often mired in challenges associated with the absence of data on certain

ecological variables. Information on the populations of certain fauna or flora, or other

environmental data is often scarce [59]. In these cases, developers may be limited only

to items of evidence derived from Qualitative processes. An example of a system-specific

version of objective MV-1.1 could be generated for the model outlined in the work of

Pollino et al, and would be defined as follows:

Establish and justify the basis for using a multivariate normal distribution for

the ‘Current Diversity of Fish Population’ Random Variable.

In this work, this variable was highlighted as a variable for which no quantitative

information was available during development. It is therefore likely that expert evalu-

ations – model walkthroughs – would constitute the majority of the evidence available

for the satisfaction of this specific objective. This evidence would be classified as direct,

qualitative evidence. This indicates that it may be particularly necessary to evaluate the

trustworthiness of a given item of evidence in circumstances such as this, and to focus on

establishing the diversity of expert opinion on the BN aspect. It also raises the consid-

eration of whether or not an assurance practitioner should tolerate the inclusion of this

model aspect in the first instance.

The second example BNS (System B) may present the opposite problem: the model

generated entirely through parameter and structure learning approaches that minimise the

ability of a human expert to pass judgement on the nature of the model in question. A

variable within this model may have no semantic value and may be used only as a purely

abstract mathematical modelling tool. For example, an example system-specific version

of objective MV-1.1 for this application could be defined as follows:
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Establish and justify the basis for using a NoisyOR distribution for the ‘Latent

Variable A’ Random Variable.

In this circumstance, evidence derived from model walkthroughs may be impossible

to produce, or otherwise uninformative; empirical testing, statistical analysis and math-

ematical proofs may therefore be the only route open to generating evidence to satisfy

this objective. From an assurance perspective, both of these circumstances have relative

advantages and disadvantages. In cases such as System A, assurance practitioners can

gain a transparent understanding of a BN model from an expert’s perspective. However,

this will lack the mathematical rigour and statistical insights that are generally desirable

for BNSs, and these items of evidence are likely to be exposed to the standard human

biases and errors that commonly accompany expert elicitation activities [61, 116]. In the

case of System B, the availability of data can ensure a stronger mathematical basis for

the testing of the system’s BN models, though the implications of the output of these

techniques may be hard to translate into meaningful assurance insights.

5.4.1 Refining Objectives and Evidence

In the context of developing a mission-critical BNS, BN developers must therefore carefully

consider what techniques and items of evidence are available to their specific system, and

the implications of this information for the assurance of that system. In general, the

diversity of applications and development contexts in which BNSs have been – and will

continue to be – developed limits the availability or relevance of specific techniques and

evidence for a given objective. In general, only a subset of possible techniques and their

corresponding items of evidence will be used in the satisfaction of any given system-specific

objective. A lower-level objective-evidence mapping is therefore unlikely to be meaningful

until the development of a BNS is well underway.

Establishing this subset of techniques and associated items of evidence requires the

refinement of the mapping in Table 5.3 in parallel with the refinement of the RM-BNS

objectives as outlined in Chapter 3 and the development of the BNS more broadly. The

general process for this refinement is shown in Figure 5.2. Assurance practitioners will

begin with the generic RM-BNS objectives provided in Chapter 3 and the framework

outlined in this chapter. They will then iteratively refine this mapping over the course of

the development of the BNS.

The previous section indicated how two example systems (Systems A and B) could be
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Figure 5.2: The objective-evidence refinement process.

associated with system-specific instantiations of the same objective (MV-1.1), and how

the techniques associated with each of these instantiations may vary. By considering the

context and technical basis of these objectives, BN developers and assurance practitioners

can then identify specific technique variants and items of evidence that may be used to

satisfy them. This can produce a refined mapping of objectives to their associated evidence

items and techniques.

Table 5.4 shows an example of a refined, system-specific objective-evidence mapping

for objective MV-1.1 in the context of Systems A and B. From an assurance practitioner’s

perspective, this mapping provides insight into what evidence is available, and by compar-

ing the mapping to the technique-evidence mapping in Table 5.2 (specifically the evidence

classifications), an understanding of how compelling this evidence may be can be ob-

tained. The quality and integrity of the evidence can be described and assessed, but the

sufficiency of this evidence must still be addressed. This can be achieved by understanding

the criticality of a given objective.

5.4.2 Integrating Criticality Metrics

In Chapter 4, the Model Criticality Analysis (MCA) approach to analysing BN model

aspects was introduced. This approach can be used to provide an assessment of the

criticality of BN models and their components. As the metrics produced by MCA are

associated directly with individual models and model aspects, these metrics can be mapped

across to system-specific instantiations of the RM-BNS Model Viewpoint objectives. By

extension, these metrics can be used to generate an objective-evidence mapping.
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Table 5.4: Refined objective-evidence mapping.

Objective

ID

Objective Processes Evidence Item

... ... ... ...

MV-1.1-A Establish and justify the basis for

using a multivariate normal distri-

bution for the ‘Current Diversity of

Fish Population’ Random Variable.

Independent Walkthroughs of Ecological Model

of Fish Populations (Global) definition and

scope, Independent Walkthroughs of definition

and scope of ‘Current Diversity of Fish Popula-

tion’ variable.

Expert Opinion

... ... ... ...

MV-1.1-B Establish and justify the basis for

using a NoisyOR distribution for the

‘Latent Variable A’ Random Vari-

able.

Empirical testing of the Drug Discovery model

(global), statistical analysis of ‘Latent Variable

A’, Structural analysis of the NoisyOR distribu-

tion for ‘Latent Variable A’, parameter bounds

checking for ‘Latent Variable A’.

Statistical Metrics, Em-

pirical Results, Mathe-

matical Proof

... ... ... ...
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For example, MCA could be used to assess the previously introduced BNS ‘System A’.

This would produce a Model Criticality Index (MCI) for the BN in System A, and a set

of Variable Criticality Indices (VCIs) for each variable in the BN model. Each of these

indices could then be mapped directly onto the RM-BNS objectives associated with the

model aspect. Consider again the ‘Current Diversity of Fish Population’ Random Variable

in System A’s BN model. The application of the MCA methodology to System A’s BN

models will assign this variable a VCI. This VCI can then be assigned to all system-specific

RM-BNS objectives that directly address this variable. Given the additional information

from the MCA, this could be used to produce a mapping such as that shown in Table 5.5.

The consideration of additional criticality metrics for other system aspects associated

with the remaining RM-BNS Viewpoints is beyond the scope of this chapter. However,

there many existing approaches to establishing the criticality of software systems. For

example, methodologies for establishing the criticality of software components are pro-

posed in the defence standard MIL-STD-882E [167]. Other techniques for establishing the

criticality of broader system aspects are provided or discussed in [94, 194] and [195, 196].

The Data Safety Guidance document also provides approaches to establishing notions of

risk for data items [144]. Extensions to this guidance may enable its integration with the

techniques presented here.

These techniques can be used to produce criticality metrics that can be mapped to other

RM-BNS objectives, and by extension the associated evidence and evidence classifications.

Figure 5.3 shows an updated representation of the refinement process for the objective-

evidence mapping that includes the criticality analyses introduced here.
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Table 5.5: Refined objective-evidence mapping with integrated criticality metrics.

RM-BNS

Object

Objective

ID

Objective Criticality Process Evidence Item Type

(ETC)

Role

(ERC)

... ... ... ... ... ... ...

Current

Diversity

of Fish

Population

(RV)

MV-1.1-A Establish and justify

the basis for using a

multivariate normal

distribution for the

‘Current Diversity

of Fish Population’

Random Variable.

VCI-4 Model

Walk-

through

Two independently

elicited expert opinions

on the use of the given

statistical model to

represent the variable.

Qualitative Direct

... ... ... ... ... ... ...
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Figure 5.3: The objective-evidence refinement process with integrated criticality metrics.

5.5 Establishing the Sufficiency of BNS Assurance Efforts

Achieving ‘absolute safety’ for a given system is impossible. Assurance practitioners focus

on establishing the safety of a system in terms of confidence in the safety of a system’s

behaviour. This is typically predicated upon establishing the sufficiency of the activities

and processes carried out during the development of a system. As discussed in Chapter

2, strategies aimed at establishing confidence in a system can broadly be divided into two

principal groups: those strategies that derive confidence from compliance with a given

safety standard, and those that derive confidence through the development of argument-

based assurance documents. In the context of BNSs, there are no existing standards that

adequately address the considerations necessary to assure them – though as discussed

there is extensive guidance on establishing confidence in the more conventional software

aspects of a BNS. Similarly, while an argument-driven approach to assurance could (in

principle) be more flexible, the absence of existing guidance on what safety practitioners

should look for (and why), and techniques for the safety-focussed analysis and evaluation

of BNSs, also renders these approaches potentially problematic.

The intention of this thesis has been to outline a structured framework for the descrip-

tion of BNSs, and an approach to addressing the BNS-specific assurance considerations
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associated with these systems. The objectives introduced in Chapter 3 and the safety-

focussed analysis technique introduced in Chapter 4 have been integrated in this chapter

alongside an evidence classification framework based on best-practices in existing work.

The resulting framework is aimed at providing the basic components for an approach to

building up a comprehensive picture of the state of confidence in a BNS. Within the scope

of the work presented here, the criticality of the RM-BNS Model Viewpoint aspects of a

given BNS can be established and mapped to system-specific objectives.

In the software safety domain, the sufficiency of assurance efforts is often established

with respect to some pre-defined set of goals or objectives. Commonly, the number and

associated rigour of the objectives varies according to the risk associated with the operation

of a given system. In the case of BNSs, the sufficiency of assurance efforts will be predicated

on at least two factors: the variability of the objectives themselves, and the approach

adopted to the satisfaction of the RM-BNS objectives.

5.5.1 Variability of RM-BNS Objectives

The properties of the techniques used to analyse and evaluate a BNS are atypical of con-

ventional software analysis and testing techniques. Perhaps the most important distinction

between BNS testing techniques and conventional software testing techniques is the heavy

reliance on Statistical evidence produced during BNS testing. This has important conse-

quences for the satisfaction of objectives dependent upon these techniques. For example,

consider again the objective MV-1.1:

“Establish and justify the basis for using [structural variant] for the [Model].”

At a high-level, the motivation for this objective is to establish the necessity for a given

Model, and the appropriateness of the selected structural variant. The satisfaction of this

objective will regularly be predicated on providing compelling Statistical evidence of the

properties of a given Model structure. For example, the ROC analysis outlined in section

5.3.3.1 could be used to compare the selected structure against alternative structures. This

could be used alongside some form of CV testing to justify the selection of a given variant.

However, from a technical perspective, the satisfaction of the objective based upon

evidence produced by these two techniques will not be a Boolean proposition: the depth

of analysis and evaluation activities that may be performed to address an objective will

often be variable. For example, in the case of CV testing, there are a number of ‘levers’
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that an assurance practitioner may control: they may choose to change the number of

‘folds’ in a dataset, the cross-validation variant, the measure-of-fit, or the target threshold

for model performance, to name a few.7

Practically, CV testing will produce statistical evidence for the performance of a BN

model. The confidence associated with this measure will vary as a product of these ‘levers’:

more folds, different measures-of-fit or different model performance targets will modify

the degree of confidence gained from this technique. However, it is rarely possible to

define an objectively optimal CV testing configuration: for any given model there are

generally an extremely large number of potential CV techniques or configurations available

to developers. Consequently, the sufficiency of CV testing should only be established in

the context of a given objective, the criticality of that objective and the rationale behind

the use of the given CV testing variant or configuration.

These considerations are not limited to the techniques listed above. Many BN anal-

ysis and evaluation techniques require the exploration of extremely large parameter- or

state-spaces or otherwise may have no objectively optimal test configuration. A simple

example of such a method is the sensitivity analysis technique outlined in Chapter 4. For

large models, the application of this technique will become computationally intractable.

The question of depth is then a key consideration – it may not be possible to render the

outcomes of a BNS test down to a yes-no answer without masking important assurance

information. Another example is the selection of confidence intervals as outlined in the

previous section of this chapter. Again, the optimal analysis will be heavily dependent

on the system begin developed. This is a recurrent problem for many aspects of BNSs,

particularly those associated with the Model, Data and Computational Viewpoints. Con-

sequently, many of the RM-BNS objectives associated with these viewpoints are potentially

exposed to a high degree of variability in the efforts required to satisfy a given objective.

5.5.2 Reducing Objective Variability

One approach to eliminating or reducing this variability would be to introduce fixed target

metrics within (or associated with) the RM-BNS objectives. Many existing standards have

pre-defined quantitative targets for systems developed in compliance with that standard

7In this context, the number of folds in a CV test refers to the number of sets of unseen data a model

is tested over. Each of these folds is a subset of the dataset. A detailed review of CV testing for Machine

Learning (ML) can be found in [63].
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[69,94]. In the case of BNs and the RM-BNS objectives, it is technically possible to generate

such metrics. However, the temptation to set pre-defined quantitative targets should

generally be avoided for BNSs (and AISs more broadly). Conventional software systems

are often developed in a top-down, sequential process with designs that can be largely

defined at the outset. The development of a BNS is typically more of an iterative process

of discovery and refinement. It is rarely possible to define meaningful quantitative targets

for many aspects – particularly lower-level aspects – of a BNS prior to the development

of the system.

Awareness of the specific properties, behaviours and context of a BNS is essential if any

degree of confidence is to be derived from setting the objectives – or in this case, a given

metric. Furthermore, in cases where it is possible to produce meaningful target metrics

a priori, the wisdom of doing so is debated [77, 197]. From an assurance perspective,

the ‘dark art’ aspects of many AI development practices demands that the metrics and

evaluation techniques should be closely and explicitly coupled to the specific developmental

and operational context of the BNS. In some ways, this could be considered to be an AI-

centric manifestation of Goodhart’s Law:

“When a measure becomes an objective, it ceases to be a good measure.”

For example, an obvious target metric may be to define a minimum level of statistical

confidence for BN model aspects for varying levels of model criticality. However, the

dynamics of a specific BN model may render such metrics highly inefficient: the topology

of the model may make it highly insensitive to statistical error, thereby making the target

values excessively conservative [171]. Alternatively, the model’s topology may make it

extremely sensitive to certain forms of statistical error, which may in turn make the

target values too lenient [190]. There are documented cases of these issues in the BN

literature [2, 190]. This applies to multiple aspects of an AIS development lifecycle. This

has been noted in parallel contexts in Google’s work on AI safety [21]. The satisfaction of

a given objective with respect to a metric should therefore only be determined when the

full context of a model is known.

5.5.3 Varying Objectives

Beyond the variability of the objectives themselves, there remains the challenge of adopting

an approach that demonstrates the overall satisfaction of the RM-BNS objectives. Many

172



5.5 Establishing the Sufficiency of BNS Assurance Efforts

industry standards adopt a similar approach to establishing the sufficiency of assurance

activities: they offer a set of objectives for a given class of system and vary the quantity

of objectives in accordance with the criticality of the system in question.

For example, DO-178C mandates that developers satisfy 71 objectives for systems

developed to the highest Development Assurance Level (DAL), while requiring that only

26 objectives must be satisfied for the lowest safety-related (i.e. system aspect with safety

effect) DAL. The independence of these objectives also varies across the levels.8

In the case of DO-178C, the DALs can be seen to address Principle 4+1 of the Software

Safety Principles and therefore offer one approach to solving the problem of establishing

sufficiency in assurance efforts for a given system. This suggests the first conceptual

approach to establishing the sufficiency of assurance activities in the context of BNSs:

the number of assurance objectives may be varied in accordance with the criticality of the

system aspect associated with that objective. This can be achieved through the satisfaction

of only a subset of the RM-BNS objectives as determined by the criticality of the BNS

aspect addressed by a given objective. For example, at the lowest levels of criticality a

small subset of objectives may be satisfied, while at the highest levels of criticality all

objectives should be satisfied.

Support for this approach was considered when the RM-BNS objectives were defined.

They have been defined to address aspects of a BNS such that the objectives can be con-

sidered become progressively higher-level and build upon preceding objectives. Consider

objective MV-1.1:

MV-1.1 - Establish and justify the basis for using the structural variant for the [Model].

This objective is defined to address low-level considerations that are likely to arise

early in a BNS’s development. It addresses the utilisation of a given model or variable in

the abstract, potentially before a model has been constructed. Using the language of the

work of Przytula et al (as outlined in section 2.2.4), this objective targets the modelling

activities carried out as part of development Stages 2 and 3 (Subsystem Definition and

Subsystem Modelling, respectively). In these stages individual variables are selected and

defined by developers. The probabilistic structure of the variable is also commonly defined

8In this context, ‘independence’ refers to the independence of the software verification and validation

activities from the development teams. It is assumed that this separation ensures the ‘objectivity’ of these

processes.

173



Chapter 5: From Objectives to Evidence

at this point (i.e. prior to integration with the complete BN model). From an assurance

perspective, it is defined to explicitly capture and document lower-level modelling decisions

that may influence confidence in a model at later stages of development.

However, for low-criticality system aspects, it may not be necessary to satisfy this ob-

jective. For such systems, these low-level assurance activities may be deemed superfluous

– provided the BN model/s still perform well overall on higher-level tasks. This is the aim

of objective MV-1.4:

MV-1.4 - Establish and justify confidence in the [structural variant] of the [Model].

This objective addresses the need to establish overall confidence in a system aspect: in

this case the structure of a model. The three preceding objectives are aimed at ensuring

development steps, design decisions and evaluation activities that specifically address those

system aspects are explicitly documented and reviewed, and this leads naturally into the

final objective. By satisfying only MV-1.4, developers would leave activities and decisions

associated with the other objectives implicit, undocumented or simply unperformed, but

could still demonstrate that confidence in a structure has been achieved by appealing to

higher-level model performance metrics and other evaluation approaches.

Such an approach would bring the objectives into approximate alignment with the

evaluation activities of a high-standard existing BN development programme [6,52]. These

programmes typically look to model-level evaluation metrics and design decisions and do

not generally tackle the model’s performance and characteristics on a more granular level.

This seems appropriate for models associated with the lowest levels of criticality. In

contrast, the higher levels of criticality demand a more granular, rigorous enumeration of

design decisions, model evaluation and integration activities. Technical verification and

validation of a BNS at these levels is atypical within the existing literature. These aspects

are tackled by objectives addressing lower-level considerations (in this example typified by

objectives MV-1.1 to MV-1.3).

For example, considering only the RM-BNS Model Viewpoint, it would be possible

to use this general approach to map objectives to model criticality metrics. An example

of how this could be achieved is shown in Table 5.6. A summary of the total number

of objectives is shown in Table 5.7. As with DO-178C, at the highest levels of critical-

ity, all objectives should be satisfied, and the total number of objectives then declines

alongside the criticality. This should be extended to include similar notions of verification
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Table 5.6: A suggested breakdown of how the number of compulsory Model Viewpoint

RM-BNS Objectives may be varied as a function of the criticality of a system aspect.

Crit. (MCI/VCI) View Objectives (MV) No. Objectives

0 Structure 1.1, 1.2, 1.3, 1.4 4

Parameters 2.1, 2.2, 2.3, 2.4 4

Definition 3.1, 3.2, 3.3, 3.4 4

Dynamics 4.1, 4.2, 4.3, 4.4, 4.5 5

1 Structure 1.2, 1.3, 1.4 3

Parameters 2.2, 2.3, 2.4 3

Definition 3.2, 3.3, 3.4 3

Dynamics 4.2, 4.3, 4.4, 4.5 4

2 Structure 1.3, 1.4 2

Parameters 2.3, 2.4 2

Definition 3.3, 3.4 2

Dynamics 4.3, 4.4, 4.5 3

3 Structure 1.4 1

Parameters 2.4 1

Definition 3.4 1

Dynamics 4.4, 4.5 2

5 Structure None 0

Parameters None 0

Definition None 0

Dynamics 4.5 1

Table 5.7: Total number of suggested compulsory Model Viewpoint RM-BNS Objectives.

Criticality Viewpoint No. Objectives

0 Model 17

1 Model 13

2 Model 9

3 Model 5

4 Model 1
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and validation independence as set out in DO-178C: at the highest levels of criticality a

significant proportion of the RM-BNS objectives should be satisfied with independence

from the development team. As with the rest of this chapter, while the discussion here

has focussed on the Model Viewpoint RM-BNS objectives, the approach can be applied

to all objectives across all viewpoints.

5.5.4 Varying Evidence

A second possible approach to establishing the sufficiency of assurance activities for BNSs

is to adopt a strategy in which the confidence in the evidence used to satisfy an objective

varies. Adherents of this approach would therefore explicitly address every RM-BNS

objective for a given system but would vary the quality and/or quantity of evidence used

to satisfy a given objective as a product of the criticality of the system aspect the objective

addresses. An approach that explicitly varies the evidence with respect to the criticality

of an objective would be in closer conceptual alignment with standards such as DS 00-056

in which the emphasis is placed upon assurance practitioners to justify the sufficiency of

their assurance efforts with direct reference to the system at hand and the techniques

used [97].

The contributions of this chapter could be used to facilitate this approach: the pro-

posed evidence classifications and objective-evidence mappings could be used to provide

a structured basis for rationalising the sufficiency of the evidence addressing a given ob-

jective. Assurance practitioners can target those models and model components directly

according to the respective criticality of those aspects, and describe the role and type

of evidence in this context. Using the previous approach (varying the number and inde-

pendence of objectives), assurance practitioners may choose to omit this objective from

consideration for low-criticality system aspects. However, as discussed throughout this

chapter, it is important that the rationale for the use of a given technique with respect to

a given objective is made explicit. By instead varying the confidence in the evidence used

to satisfy an objective, assurance practitioners can provide explicit, end-to-end rationale

for the design, evaluation and testing decisions made during the development of a BNS.

While this confidence in the evidence used to satisfy system-specific objectives will

vary across each BNS, it will ensure that each system aspect addressed by the RM-BNS

objectives is explicitly considered by assurance practitioners. This should encourage a

more critical evaluation of the use of evidence in the development of a BNS and avoid
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the ‘masking’ of uncertainty and decision making that may become a problem with the

previous approach.

From a practical perspective, this would produce a situation in which the confidence

in the evidence used to satisfy a given objective is proportional to the criticality of the

objective the evidence addresses: an objective pertaining to low criticality system aspects

may require little evidence, or evidence with significant aleatoric or epistemological un-

certainty, while the same objective addressing a higher-criticality system aspect would

demand more evidence and less uncertainty in that evidence.

A further practical benefit of this approach may also be its ability to adapt to the highly

dynamic, iterative lifecycles common to BNSs. Specifically, in the event the criticality of

a system aspect changes in the presence of modifications to a model’s design, or the role

of data in the system, for example, this approach would allow assurance practitioners to

revisit and modify the existing evidence rather than be forced to adopt new evaluation

techniques and develop new evidence. An approach that varies the confidence in the

available evidence could be seen to encourage the utilisation of a single test-harness for

a given BNS, but in which the rigour and depth of the analyses of system aspects varies

proportionally with the criticality of the system aspect being evaluated.

5.5.5 Satisfying RM-BNS Objectives

To illustrate how these concepts may be applied to a BNS, consider the following example.

Within the BN literature, ‘common wisdom’ suggests that small errors in the parameter-

isation of a model do not seriously influence the output of the model, and therefore BN

developers need not focus much effort on evaluating the accuracy of individual parame-

ters within a BN model [171]. However, others have noted that while this may generally

be true, small variations in the parameters of a model can produce dramatic variations

in the outputs of a model [198]. The RM-BNS Objective MV-2.2 is aimed at explicitly

addressing this issue:

“MV-2.2 – Establish and justify the accuracy of the parameterisation of [Model].”

From an assurance perspective, the satisfaction of this objective will provide assurance

practitioners with confidence that the dynamics of a given BN model are robust to errors in

the parameterisation of the system aspect addressed by the objective. To achieve this, BN

developers and assurance practitioners will typically rely on a range of statistical analyses,
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mathematical proofs and expert-elicited information.

Condition Diagnosis P (C)

Treatment Capability P (T |C)

Figure 5.4: A fragment of System C’s medical diagnosis BN model.

Consider a third BNS: System C. System C provides diagnosis and prognosis capa-

bilities for critically ill patients and can administer drugs to patients if certain medical

conditions are detected and diagnosed. Figure 5.4 shows an example fragment from a BN

model that is used to drive the system. The figure shows two variables: The Condition

Diagnosis and Treatment Capability RVs. The latter variable represents an output from

this model that is used to inform System C to administer drugs to a patient, while the

former represents an internal diagnosis variable that identifies specific medical conditions.

The system-specific refinement of MV-2.2 for the Condition Diagnosis CPD would then

be defined as follows:

“MV-2.2-C – Establish and justify the accuracy of the parameterisation of the

Condition Diagnosis RV.”

This objective can be mapped directly to a criticality metric using the MCA technique

introduced in Chapter 4. The aim of assurance practitioners will then be to satisfy this

objective such that the confidence established is proportional to the criticality of the system

aspect. In the context of the model in Figure 5.4 and the above objective, the primary

aim of this objective is to address the need for assurance practitioners to demonstrate that

errors in the parameterisation of the Condition Diagnosis RV do not affect the output of

the Treatment Capability RV.

5.5.5.1 Evaluating Statistical Confidence

One strategy that BN developers and assurance practitioners may adopt to tackle this

challenge may be to analyse the statistical confidence in the parameters learned by the

178



5.5 Establishing the Sufficiency of BNS Assurance Efforts

model. Consider a simple scenario in which BN developers have access to one hundred

patient records pertaining to a particular condition. Of these records, 33 are diagnosed as

having the condition, and 67 are not. A simple BN parameter-learning algorithm would

then assign the probability of a patient having the condition as a 33% chance, and of the

patient not having the condition as a 67% chance.

However, this is an estimate of the frequency of the occurrence of the condition. It

is drawn from a small sample of individuals, and other samples may produce different

estimates. For cases such as this, it is therefore useful to evaluate the statistical confidence

in the learned parameter and estimate upper and lower bounds on the plausible values

of the parameter. A common approach for estimating these bounds is to compute the

so-called Wilson Confidence Intervals [199]. These bounds are given by:

p0 + t
2

1 + t
±

√
p0q0t+ t2

4

1 + t
(5.1)

Where p0 is the rate of occurrence of some observation, q0 is the rate of the non-

occurence of some observation, and t is defined as:

t =
z2

n
(5.2)

Where z is the probit function for a specific confidence interval, and n is the total

number of overall observations. This establishes bounds on either side of a parameter

estimate.

These confidence intervals can be set based upon the tolerances of assurance practition-

ers and the BNS in question. A standard confidence interval is the 95% interval, though

other common choices include 75%, 90%, 99% and 99.9% respectively. This interval can

be considered as defining the range within which the ‘true’ value of a parameter is likely to

exist – the wider the interval the greater the statistical confidence that a parameter falls

within that range. Table 5.8 shows these confidence intervals computed for the Condition

Diagnosis RV parameter estimate using Equation 5.1.

It is also common to vary these intervals, and assurance practitioners may choose to

do so based on the development context of a given model and the differing criticality

assignments associated with the particular parameter estimate.9 Specifically, this can be

9A discussion on the use and interpretation of confidence intervals in statistics is beyond the scope of

this chapter, though a good introduction can be found in [20].
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extended to the concept of criticality – higher criticality system aspects would be associated

with higher statistical confidence. An example mapping of confidence intervals to MCA

criticality metrics is also shown in Table 5.8. However, in practice the precise confidence

intervals used should be carefully considered in the context of the BNS in development

and only selected based upon the specifics of the system as discussed in section 5.5.2.

Table 5.8: Example mapping of Variable Criticality Indices (VCI) to statistical confidence

intervals for System C’s model fragment.

VCI Interval Parameter Lower Limit Upper Limit

4 75.0% 67.0% 61.4% 72.1%

3 90.0% 67.0% 59.0% 74.2%

2 95.0% 67.0% 57.3% 75.4%

1 99.0% 67.0% 54.2% 77.7%

0 99.9% 67.0% 50.5% 80.1%

In the case of System C, this approach could be adopted to select the 95% confidence

intervals for the parameters of the Condition Diagnosis CPD. As can be seen in Table 5.8,

this would produce a lower confidence bound of 57% and an upper confidence bound of

75%. This can be considered as indicating that there is high statistical confidence that

the ‘true’ value of this parameter falls within the range 57-75%. This could be used to

provide Direct, Statistical evidence of establishing the accuracy of the parameters, thereby

partially fulfilling the objective.

However, there remains the need to justify this level of accuracy. One approach to

addressing this second aspect of the objective could be to utilise the confidence intervals

to evaluate how the dynamics of the model change over this range of plausible values, and

whether the model outputs are sensitive to these changes. If they are, this may indicate

assurance practitioners may need to take more measurements and gather more records

to improve the statistical confidence in these parameter estimates, or perhaps modify the

model itself to ensure its robustness to these errors.10

10This example is of course for an extremely simple BN model, and therefore other techniques may be

necessary to hold this objective as satisfied for more complex models.
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5.5.5.2 Analysing Parameter Bounds

A technique that could be used for this purpose was introduced by Chan et al [190].

This approach allows BN developers to evaluate the dynamics of a BN model in order

to establish the robustness of the outputs of a model to variations in parameters within

the model. The previous statistical analysis can be utilised to guide this analysis. By

demonstrating that a model (or in this case: model output) is insensitive to changes in

the parameter over the range identified previously, practitioners could justify that the

accuracy of the parameters obtained is sufficient for the system.

Figure 5.5: An example of the output from Chan’s parameter bound analysis technique.

An example output from Chan’s technique is shown in Figure 5.5. The figure shows

how the degree to which the value of a parameter (p) in the Condition Diagnosis RV can

be allowed to change (δ) as a function of the value of that parameter while maintaining

the desired output properties for the model (in this case the Treatment Capability RV ).

The inner ‘envelope’ guarantees that the output will remain above a specified lower bound,

while the outer ‘envelope’ guarantees the output will remain below a specified upper bound.

Concretely, the figure can be used to indicate the range of possible changes to the

parameters of the Condition Diagnosis RV that will not affect the output of the model.
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Technically, Figure 5.5 allows practitioners to deduce that for the Condition Diagnosis

RV parameters to modify the Treatment Capability RV outputs, the value of the Condi-

tion Diagnosis RV parameters must lie either below 50% or above 81%. This is Direct,

Deterministic evidence for the satisfaction of this objective.

When this information is combined with the statistical analysis introduced earlier, an

assurance practitioner can establish that the 95% confidence intervals for the parameter

lie well within this range. Indeed, the 99.9% confidence intervals also lie within this range,

suggesting that the evidence for the accuracy of the parameterisation of the variable would

be acceptable even at high criticality levels.

Practically, this can indicate to an assurance practitioner that the Treatment Capa-

bility RV SRV outputs of the model would not change over the entire range of plausible

parameter values for the Condition Diagnosis RV. This directly justifies the established

accuracy of the parameterisation of the Condition Diagnosis RV and may thereby satisfy

the objective. Taken together, these two techniques can provide complete evidential cov-

erage of the objective in this specific context. In other circumstances, one or both of these

techniques may not be practicable, or may not provide complete coverage of the objective.

5.6 Conclusion

The primary aim of this chapter has been to provide guidance on the considerations

and strategies an assurance practitioner must consider when developing and evaluating a

mission-critical BNS. The highly iterative design and development activities and statistical

properties of these systems introduce a number of novel assurance concerns that must be

carefully considered and addressed by assurance practitioners.

In particular, this chapter has focussed on establishing a framework for describing and

classifying evidence used in the assurance of a BNS. This framework draws upon existing

work in the safety domain to build a single framework that can facilitate the description

of any safety evidence generated during the development of a BNS.

The chapter then proceeded to outline the utilisation of this framework in the context

of the RM-BNS objectives. Specifically, it used the proposed evidence framework to show

how individual items of evidence may be mapped explicitly to individual system-specific

objectives, and that through consideration of the characteristics and classifications of this

evidence, assurance practitioners can begin to address the sufficiency of the evidence.

The final section focussed on potential strategies for demonstrating the sufficiency of
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BNS assurance efforts. Both strategies essentially focussed on providing a mechanism for

addressing the 4+1 software safety principle by varying either the number of objectives

(in a manner similar to DO-178C) or varying the confidence in the evidence used to satisfy

the objectives (more akin to DS 00-056).

The contributions of this chapter are therefore as follows:

• It has provided a framework for characterising and classifying evidence generated

for the assurance of a BNS.

• It has introduced an approach to mapping individual objectives to items of evidence

and criticality metrics built upon this framework.

• It has outlined an approach to the refinement of objective-evidence mappings over

the course of the development of a BNS.

• It has provided guidance on approaches that may be used in establishing the suffi-

ciency of assurance efforts undertaken during the development of a BNS.
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Chapter 6

Evaluation

6.1 Introduction

The Thesis Hypothesis as introduced in Chapter 1 was given as follows:

It is possible to provide targeted assurance for BN-based Systems through the

analysis and evaluation of underlying probabilistic models, data artefacts and

computational techniques that have the potential to affect confidence in the

safety of a system.

This hypothesis was defined with the principal aim of addressing the assurance con-

cerns associated with the motivating use-case of this project: the utilisation of an ad-

vanced Bayesian Network-based Prognostic Health Monitoring (PHM) system aboard an

Unmanned Aerial System (UAS) in mission-critical applications. While this has been the

motivation behind this project, the concepts, language and techniques presented in this

thesis have been generalised wherever possible to accommodate a broader range of possible

Bayesian Network-based System (BNS) variants and architectures than are likely to be

encountered in this specific application. In accordance with this hypothesis, the principal

contributions of this thesis are as follows:

• A generic, comprehensive framework for describing and modelling BNSs that also

aims to facilitate the communication of the many unconventional aspects of these

systems to both BN developers and safety practitioners;

• A set of generic verification and validation objectives that provide a flexible, com-

prehensive framework for the verification and validation of BNSs, and expose safety

considerations that are poorly addressed in existing standards;
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• A systematic, generic approach to establishing the criticality of model-centric aspects

of BNSs that integrates safety information with BN model analysis techniques; and

• Guidance on establishing the sufficiency of BNS assurance efforts through the ex-

tension of existing assurance concepts to the techniques and concepts introduced

throughout the thesis.

Due in part to the sensitive nature of the use-case of this thesis, the application of

these techniques to a ‘real-world’ system has not been possible over the course of the

project. This chapter utilises a combination of public-domain resources to construct a

case study that outlines the application of the techniques and concepts introduced in this

thesis and supports the evaluation of these contributions in the context of this research

project. Insights drawn from this case study are then extended to evaluate the scope and

utility of the contributions of this thesis in the context of ‘real-world’ BNSs, and in the

context of the safety domain more generally.

The chapter is structured as follows: a case study is provided that applies the concepts

and methodologies introduced in previous chapters to an example system based upon

existing systems within the BN literature; the contributions of the thesis are then evaluated

in the context of this case study with respect to the thesis hypothesis; the contributions

are then further evaluated with respect to the scope of the thesis and its motivating

example; and finally, the contributions will be evaluated against existing standards and

BN development practices to explore what has been gained through the contributions of

this thesis.

6.2 Case Study

This section looks to the existing BN literature to introduce a BNS that represents an

amalgamation of existing concepts, architectures and models that showcase the utility

and application of the contributions of this thesis in a more tangible setting.

6.2.1 System Definition and Methodology

Several candidate systems and development approaches were reviewed for use in this case

study. The system presented here represents an combination of multiple distinct BNSs and

corresponding BN models that are drawn from a range of domains [6,59,200]. The system

has been defined to represent a BNS that is used for medical diagnosis and prognosis
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alongside the delivery of a limited set of medical treatments – principally the adminis-

tration of drugs to patients. It is assumed that this latter aspect of the system includes

direct responsibility for the unsupervised administration of drugs to a patient, and that

incorrect use of these drugs could have serious consequences for the health of a patient.

There is a precedent for this type of device [201]. There are existing software-intensive

medical devices that use software to moderate the administration of drugs to patients. A

typical example of a safety-critical software-based medical device is a system dedicated

to automatically dispensing insulin to diabetic patients [201, 202]. The system devised

for this case study is intended to reflect an extrapolation of this form of software to one

that utilises BN models in place of conventional control logic when treating patients.

Practically, such a system could support the diagnosis and treatment of a more diverse

set of medical conditions and scenarios.

For the purposes of this case study, the system is defined to enable the provision of

only two forms of treatment: the administration of anaesthetic/pain management drugs,

and the administration of drugs to combat anaphylactic shock. Both of these treatments

represent plausible treatments given the scope of the BN models upon which the system

is based [136]. The example system will be referred to throughout the case study as the

Autonomous Monitoring and Treatment System (AMTS).

6.2.1.1 Source Material

The AMTS system architecture is based upon architectures drawn from public-domain

research and documentation. The systems upon which the AMTS is based were selected

based upon three criteria:

• The system must have been deployed in a ‘live’ operational environment.

• The system must not be a ‘toy’ research system – it must be sufficiently complex

that it illustrates the application of the methods introduced in this thesis.

• The system must have a direct application to a complex diagnosis or decision making

problem.

The system architecture presented here is based principally on two system architec-

tures. The first is that outlined in the work of Przytula et al on the development of

diagnostic support systems for satellites [6]. The second draws upon the work of Velikova
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et al who looked into the development of a medical prognosis system for use in medical

applications, specifically in monitoring pregnancy disorders [35]. As discussed in Chapter

2, the former work outlines an approach to developing the architecture of BNSs in fault

diagnosis roles that involves the utilisation of multiple distinct BN models to support the

diagnosis of specific subsystems. The latter work outlines an approach to using more novel

model architectures for patient prognostics and provides an overview of the integration of

a BNS into a broader treatment platform.

Finally, due to the constraints of this chapter, only a single BN model is discussed and

analysed in detail. The model selected is the widely-used Alarm ICU model developed

by Beinlich et al that was introduced in Chapter 3. As discussed in that chapter, this

model was used to support the monitoring of patients in a hospital’s Intensive Care Unit

(ICU) ward [136]. From a technical perspective, this model was selected as it represents

a good ‘baseline’ BN model: it consists of only discrete, table-structured CPDs and it is

a low-to-medium complexity model.1 From a practical perspective, it was selected as the

model is publicly available, and reflects a complex, near-safety-critical diagnosis problem

and is relatively ubiquitous in the BN domain. A graphical representation of the ICU

model is shown in Figure 6.1. A copy of the exact structure and parameterisation used is

presented in Appendix B.

1This model is commonly used for benchmarking various BN learning, inference and modelling ap-

proaches for precisely this reason: it is a practically useful model with sufficient complexity to test algo-

rithms and approaches, but also sufficiently transparent to support meaningful analysis.
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Figure 6.1: A visualisation of the Alarm ICU network and its local CPD structures. [136]
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6.2.1.2 Assumptions and Scope

The limitations in the scope and detail of the materials used to define the AMTS archi-

tecture force a number of assumptions to be made. The most significant of these are as

follows:

• Models in the AMTS were trained on complete data using a simple (Bayesian) Max-

imum Likelihood Estimation (MLE) for parameter learning;

• These model structures were obtained through expert elicitation only, and no structure-

learning algorithms were utilised [136];

• There are no adaptive/on-line learning aspects of the system;

• All models contain only discrete, table-structured CPDs (i.e. they are of the same

form as Beinlich’s ICU model);

• All models in the system are ‘pure’ BNs: there are no undirected or hybrid models,

only Directed Acyclic Graphs (DAGs) [2];

• All models used in the system are static – there are no time-dependent models in

the system;

• The system uses only exact inference algorithms (some form of Junction Tree algo-

rithm);2 and

• The system functions without direct oversight from a medical practitioner.

Operationally, the AMTS is defined as providing three primary functions: an alarm

system for summoning medical practitioners; a BN-controlled drug administration system

and an ‘enhanced’ patient health monitoring function (e.g. an AI-enhanced User-Interface

that provides additional information on a patient’s health – much like current Electrocar-

diograms (ECGs) but with additional analysis and prognosis capabilities). These three

functions are carried out fully autonomously by the system. To achieve this, the AMTS

utilises four distinct BN models in the provision of these functions. These models are as

follows:

2This is a relatively strong assumption. Many practical applications of BNSs use some form of Markov

Chain Monte Carlo (MCMC) or variational inference. For a technical introduction to approximate algo-

rithms, see [51].
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• Two models are used to reason over a diagnostic model of patients. These mod-

els provide redundant signals on whether to summon medical practitioners. These

models will be referred to as Alert Model A and B respectively.

• A model for reasoning about a patient’s health status. For the purposes of this

case study, this model is Beinlich’s ICU model. This model will be referred to as

the Diagnosis Model. This model informs whether or not a patient should receive

treatment from the AMTS.

• A model for integrating, processing and enhancing input data from medical devices

and providing this to medical practitioners when required. This will be referred to

as the Data Fusion Model.

6.2.2 System Description and Modelling

The first step in the application of the ideas presented in this thesis is the generation

of a RM-BNS architecture model that captures the components of a given BNS and the

corresponding interactions between these components. The definition of model objects

proceeds according to the methodology outlined in Chapter 3. Figure 6.2 shows an example

of a fragment of a RM-BNS architecture generated for the AMTS. The model shown in

the figure is a high-level representation of the system. Even at such a comparatively high

level of abstraction, the model captures a number of important interactions within the

system.

For example, consider the ‘ICU Ward’ Environment object. As discussed in Chapters

2 and 3, BNSs are exposed to their environments in a manner atypical of conventional

software systems. This exposure can produce errors in a system’s functionality related to

distributional drift in the model, systemic biases, or other errors in the data. The fragment

in Figure 6.2 highlights the impact of the environment upon data acquisition activities and

which data artefacts are produced by these activities.3 For example, the fragment shows

that all four BN models are exposed to the environment, how they are exposed, and that

three of those models are directly influenced by a single data acquisition activity.

3Note that the diamond symbols discussed in Chapter 3 are used here to denote ‘undeveloped’ aspects

of the model. In this case, they are simply used for conciseness.
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Figure 6.2: A high-level representation of (a fragment) of the AMTS architecture represented in the RM-BNS framework.
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This suggests the system may be vulnerable to a data-centric equivalent of a common-

cause failure. Examples of how such data-centric failures could occur may include stress-

related errors on the part of medical practitioners in the acquisition process4, or changes

in operational processes on the ICU ward that effect the data acquisition process for the

BNS. If the BN model is ‘unaware’ of these changes or potential errors (i.e. it has not

been designed to accommodate changes or mitigate errors), the system will continue to

function – from a conventional software perspective – normally. However, its diagnostic

accuracy may gradually decline and this may erode safety margins. In this sense a BNS

is likely to be less ‘brittle’ than a conventional software system, but this may also mask

more subtle errors in the system’s functionality. The RM-BNS fragment in Figure 6.2

explictily captures the interactions and dependencies between these aspects precisely so

BN developers and assurance practitioners can discuss and analyse the implications of

these interactions.

To cast these concepts in terms of the motivating example of this thesis, differences

in the habits or practices of maintenance teams on different shifts or across different

geographical regions may produce data of varying degrees of integrity or with different

underlying patterns or properties [64, 116, 121]. This may include producing data that

is in some way biased towards the environment in which they are working, or other op-

erational differences between teams. For example, significant variations in temperature,

precipitation, humidity or altitude may produce different failure profiles for an autonomous

vehicle. A disproportionate or uncharacteristic failure rate may skew a BN model towards

erroneous behaviour if it is not identified by practitioners and/or mitigated by the BN

model’s design.5 Chapters 2 and 3 provide a more detailed overview of the potential effect

of environmental changes on BNSs.

A second consideration indicated by Figure 6.2 is the degree of exposure of the system

to expert-elicited data; the corresponding role of the ‘Knowledge Engineering’ framework

selected to produce this data; the interactions between inference algorithms, model frame-

4This may include cutting corners with medical measurements and observations.
5This may include uncharacteristically low failure rates, perhaps associated with data gathered early

in a vehicle’s lifecycle, during testing or other similar, idealised scenarios.
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works, models and input data6; the utilisation and role of specific BN models in the

provision of specific software functions; and, more generally, the role of computational as-

pects of the system in producing and facilitating the utilisation of these models. From an

assurance perspective, this introduces a degree of traceability into the architecture of the

AMTS: an assurance practitioner can see – at a high-level in this case – the interactions

between system aspects and potentially also the relative importance of those aspects on

certain system behaviours and capabilities.

For subsequent analysis and objective-generation activities, lower-level representations

generated using the RM-BNS will be necessary. Figure 6.3 shows an example RM-BNS

fragment for the system aspects associated directly with the Drug Administration func-

tion and Patient Treatment capability. This fragment exposes a further set of interactions

that may also be of interest to assurance practitioners. For example, the fragment high-

lights more precisely how the Diagnosis Model is used by the system. It indicates the

dependence of this model on specific data sources, and once again highlights the role of

the environment in the optimisation and structure of the model, and ultimately in the

provision of the Patient Treatment capability. Furthermore, the fragment highlights the

importance of the Diagnosis Model and Parameter Optimisation objects in the provision

of the Drug Administration software function. Qualitatively, these two functions are asso-

ciated with far more interactions with other objects than any other objects in the model.

This highlights the centrality of these system aspects in the architecture of the AMTS.

6This can be seen in the fragment with the interactions between the Data Fusion Model, the Exact

Inference object and the EKG Inputs object. In this case, the model makes explicit the dependency of

the Exact Inference algorithm upon (the structure of) the Data Fusion Model and the EKG Data. For a

discussion of the role of models and data in BN inference algorithms, see [1, 2, 60].
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Figure 6.3: A lower-level RM-BNS fragment capturing system aspects associated only with the Diagnosis Model.
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Finally, as discussed in Chapters 2 and 4, BN models can be considered to be models

composed of a set of smaller models in a factorised representation. The RM-BNS approach

is intended to reflect this. In Figure 6.3, a sub-model has been broken out from the

Diagnosis Model object. In this case, this object is generically titled ‘Variable’, and the

RM-BNS fragment indicates that the parent model is composed of ‘1 to n’ ‘Variable’

objects. Subsequent modelling activities should break this down further such that each

variable within a BN model is explicitly represented as a ‘Model’ object in the RM-BNS

architecture model. The resulting RM-BNS instantiation may then explicitly represent

the internal structure of the BN model and expose this to qualitative analysis.

6.2.3 Definition of System-Specific Objectives

With an initial RM-BNS model generated, it is possible to begin generating system-specific

objectives for the AMTS. A full enumeration of system-specific objectives is beyond the

scope of this chapter, however. Instead, a selection of objectives have been provided for

discussion. These objectives have been generated in accordance with the methodology

set out in Chapter 3, and were generated specifically for the RM-BNS fragment shown

in Figure 6.3 and deal with only Model and Data Viewpoint system aspects.7 Table 6.1

shows the set of selected objectives.

These four objectives represent a small cross-section of a full set of objectives that

would be generated for the AMTS: each object in the architectural model would have a

set of objectives generated that addresses it. However, these four objectives have been

selected as they highlight a number of important considerations that must be brought to

the attention of assurance practitioners. For example, consider objective DV-2.2 in Table

6.1:

Establish and justify the necessity of the discretisation pre-processing technique

applied to the Patient Record data.

This objective addresses the need to ensure that all pre-processing activities that apply

transformations to the Patient Records are absolutely necessary. A practical example of

such an approach could be as simple as translating a patient’s heart rate from a continuous-

valued variable (e.g. a heart rate in the range of 40-200 beats-per-minute) into a discrete-

7The generic RM-BNS objectives can be found in Appendix A.

197



Chapter 6: Evaluation

valued variable (e.g. low, medium or high).8 As discussed in previous chapters, this

approach is associated with information loss, and can potentially influence the performance

of a BN model.

For example, in the case that a patient’s heart rate is categorised as either low, medium

or high, an assurance practitioner should be interested in why this scheme was selected –

there may be performance or safety implications (both positive and negative) if a fourth

category (e.g. very high) were to be introduced. This may allow a model to learn more

subtle relationships, perhaps that ‘very high’ heart rates are much more likely than ‘high’

heart rates to indicate a certain disorder. However, it may also reduce the performance of

the system by making a model excessively sensitive to the peculiarities of the data used

to train it.9

In the context of this objective, assurance practitioners will need to demonstrate the

practical utility of the discretisation scheme selected, and that the presence of this pre-

processing step has desirable assurance implications (e.g. discretisation improves the per-

formance of the system on safety-related tasks, and/or improves the interpretability of the

system from a medical practitioner’s perspective). Assurance practitioners will need to

explicitly consider the effect of the information loss associated with the application of any

discretisation approach to a continuous-valued dataset.10

8This process is often called binning. There is an extensive body of literature on strategies to perform

various types of discretisation on data sets [52,54,61,203].
9This is another specific example of the bias/variance trade-off. See Chapters 2 and 3 for more infor-

mation, or [137,145] for a review of local bias/variance considerations.
10Two of the most commonly used transformations that are applied to data used in BNSs are data dis-

cretisation and dimensionality scaling. The objective discussed here addresses the former transformation.

The latter transformation is concerned with ensuring a form of consistency across data. In this context,

‘dimensionality’ refers specifically to the units of a measurement. Failure to maintain consistent dimen-

sionality within a BN model may lead to erroneous reasoning by the model. Such errors in reasoning may

be difficult to identify as BN models are often robust to errors in inputs of this kind. System developers

may therefore satisfy this objective by demonstrating the need to use the scaling process to avoid a BN-

specific manifestation of the dimensionality error that led to the infamous loss of the Mars Climate Orbiter

(MCO) [204]. The nature of the assurance activities used to satisfy any two system-specific objectives that

are derived from the same generic objective may therefore vary significantly. However, in this context, the

objective is designed to address both cases equally.
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Table 6.1: System-Specific Objectives for the AMTS example.

Viewpoint View RM-BNS Object Objective ID

Data Artefact Medical Database Establish and justify the integrity of the Med-

ical Database data artefact.

DV-1.2

Data Processing Data Discretisation Establish and justify the necessity of the dis-

cretisation pre-processing technique applied

to the Patient Record data.

DV-2.2

Model Structure Diagnostic Model Establish and justify the basis for using a

static Discrete Bayesian Network for the Di-

agnostic Model network.

MV-1.1

(Global)

Model Structure Anaphylaxis Vari-

able

Establish and justify the basis for using a

categorical distribution for the ‘Anaphylaxis’

Random Variable.11

MV-1.1

(Local)

11This objective represents a further decomposition of the Variable ‘Model’ object shown in Figure 6.3 into a specific Random Variable object.
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Objective DV-1.2 addresses a second important data-centric consideration:

Establish and justify the integrity of the Medical Database data artefact.

As discussed in Chapters 2, 3 and 5, the ‘raw material’ of a BNS is the data used in its

construction. Data directly (or indirectly) influences the behaviour of BN models. This

includes data that is not explicitly encoded within a deployed BNS. For example, it is un-

likely that the AMTS would be deployed with direct access to the Medical Database used

to train it. However, a latent representation of this data would persist in the parameterisa-

tion of the BN models within the AMTS. To establish confidence in this parameterisation,

therefore, it is essential that the integrity of all data artefacts used in the design, construc-

tion, and training of a BNS are rigorously assessed.

This is the intent of this objective: to address the need to establish that the integrity

of the Medical Database is assured – including in the event the database is not physically

deployed as a part of the final system. The objective highlights the need to broaden the

scope of what is considered to be a part of a software-intensive system in the context

of BNS (and AIS generally). In the context of DO-178C, this is a subtle but important

distinction from the provisions made in that guidance for ‘Data Parameter Items’ [69].

The remaining two objectives in Table 6.1 address model-centric system aspects. For

example, consider objective MV-1.1 (Global):

Establish and justify the basis for using a static Discrete Bayesian Network for

the Diagnostic Model network.

This objective addresses the need to tackle the theoretical and practical motivation

for using a static, discrete BN for the AMTS Diagnosis Model. It aims to ensure that

a BN framework variant is selected with explicit consideration of the appropriateness of

that BN variant for a specific problem. It is not uncommon for BN developers to select

a BN variant without explicitly justifying why the variant was chosen. The selection of

an inappropriate BN variant may prevent developers from capturing behaviours that may

prove to be important in a given application, or from representing certain aspects of the

domain being modelled [2]. This may constrain the completed BNS or produce undesired

behaviours in the resulting system.

Conceptually, the objective also addresses a facet of the typical question of validity

levelled at conventional software systems:

200



6.2 Case Study

Has the right system been built?

For BNSs, this should be expanded to address a related but distinct question [64,159]:

Does the system need a BN model?

This objective (and objective MV-3.1) has been defined with this consideration in

mind.12 Specifically, it helps to address the question:

Does the system need the specific BN variant?

This aligns with a similar notion of validity discussed in the context of utilising Arti-

ficial Neural Networks (ANNs) in NASA’s Intelligent Flight Control System (IFCS) pro-

gramme [72]. Concretely, the objective addresses the problem of whether or not a given

application requires a given BN variant to achieve the desired functionality. This includes

evaluating whether or not alternative techniques or variants could be used to fulfil the

same role.

The satisfaction of this objective will require BN developers to explicitly discuss the

rationale behind the use of a specific BN variant – and therefore model – in their system.

From a practical perspective, this objective is focussed on ensuring that no simpler ap-

proaches exist to solving the same problem. For example, a BN development team may

use an elaborate, complex BN model for a given task when a simple Naive Bayes model

(or something simpler still) would suffice for the task at hand. These simpler solutions

may avoid the assurance challenges of more complex BNSs altogether.

The final objective in Table 6.1 addresses a similar, lower-level assurance consideration:

Establish and justify the basis for using a categorical distribution for the ‘Ana-

phylaxis’ Random Variable.

The objective is aimed at addressing the need for the inclusion of the variable-level

structure of the ‘Anaphylaxis’ variable within the Diagnosis Model, and for choosing to

use a given structure to represent an entity in the target domain. In this context, this

objective could be seen to complement objective DV-2.2: it ensures that considerations

related to potential sources of information loss are made explicit and considered from a

model-centric perspective (while DV-2.2 addresses them from a data-centric perspective).

12MV-3.1 (Generic): Establish and justify the definition of the model.
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It addresses the problem of selecting which distributional structure to represent a variable

with: there may be modelling considerations that motivate the use of a discrete distribu-

tion to represent a continuous variable, such as reducing the complexity of a model, or

improving its interpretability. A BN developer may choose a distribution to represent a

variable that is known to be a crude approximation in the case of a variable, but generalises

better to out-of-sample data than a more ‘faithful’ structure.

6.2.4 Model Criticality Analysis

While the objectives shown in Table 6.1 address the Diagnosis Model in particular, in

practice similar objectives would be generated for each other model in the system, along-

side each model’s constituent ‘component’ models (i.e. variables). From an assurance

perspective, each model may play a distinct role in the functional behaviours of the sys-

tem. Consequently, the effort and rigour required to satisfy the objectives associated with

models influencing safety-related behaviours will differ from those models that do not.

6.2.4.1 Failure Modes and Effects Analysis

The first step of the Model Criticality Analysis (MCA) process is to perform a failure

analysis on any functional components of a BNS that utilise BN models. These components

could be influenced by errors in the BN models – and ultimately in the data artefacts used

to build these models. For this case study, a Failure Modes and Effects Analysis (FMEA)

is used to illustrate how the MCA interfaces with existing safety analysis techniques. The

FMEA was performed on three Functions defined in the system architecture model shown

in Figure 6.2; these are the Drug Administration, Health Monitoring and Practitioner

Alert functions.

The process of applying the FMEA proceeds as normal, with the selection of a function

and the exploration of any associated failure modes, the effects of these failure modes and

an enumeration of potential causes of these failure modes.13 The results generated from

the FMEA are shown in Table 6.2. For brevity, only a subset of those causes directly

associated with errors in models have been listed in the analysis.

The FMEA indicates that the same model may be a contributing factor to failure

modes associated with differing severity categories, and that distinct BN models may be

13An extensive review of failure analysis techniques can be found in the work of Pumfrey [83].
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associated with failure modes with widely varying severity assignments within the same

software system. For example, errors in the Data Fusion model may produce failure

modes in the AMTS, but as this model is used only by software functions that provide

advisory information (i.e. it does not execute any actions that directly affect the health of

a patient), the severity of these failure modes is classified by the FMEA as negligible. In

contrast, the case study assumes that the Drug Treatment function administers potentially

dangerous drugs directly to patients without the possibility of human intervention. The

FMEA highlights that the system may administer multiple different drugs to treat distinct

symptoms. For example, consider the failure mode:

Failure to command administration of drug (Epinephrine) when required.

This failure mode is ranked as the most severe failure mode directly associated with

a BN model in the AMTS. Practically, this would reflect a case where a patient is suffer-

ing from (potentially fatal) anaphylactic shock and would require an immediate dose of

epinephrine as treatment. Failure to diagnose this state in a patient due to an error in the

Diagnosis Model may directly lead to this outcome. Without further analysis, this could

be attributed to an error in the state of the output variable associated with this diagnosis

(i.e. the Anaphylaxis variable). However, the analysis sheds little light on precisely how

this error may emerge. The following failure mode is also directly associated with a similar

error in the Diagnosis Model :

Failure to command administration of drug (Morphine) when required.

In this case, the severity of the failure mode is lower. This highlights that the severity

of failure modes associated with errors within individual models - and more importantly

- individual variables, can vary significantly. As stated in previous chapters, the causes

of these errors can not necessarily be identified through conventional analysis techniques:

they may be the result of interactions between disparate parts of a BN model that may only

be discovered through exploration of a model’s structure and parameter-space [65,170,205].
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Table 6.2: Failure Modes and Effects Analysis (FMEA) excerpts for an example applied to the RM-BNS architecture.

Function Failure Mode Local Effect System Effect Severity Cause

Drug Administration:

Treat Onset of Ana-

phylaxis (Software

Component)

Failure to command

administration of drug

(Epinephrine) when

required.

BNS does not inform

drug management

systems to administer

drug (Epinephrine).

System does not ad-

minister patient with

primary treatment for

Anaphylactic Shock.

Very high risk of pa-

tient death or serious

physical damage.

Catastrophic ...

c) Erroneous patient diagnosis (fail-

ure to recognise onset of Anaphylac-

tic Shock) due to Diagnosis Model

error (error in state of Anaphy-

laxis Variable). d) Erroneous pa-

tient diagnosis (failure to recognise

onset of Anaphylactic Shock) due to

algorithmic error (inference engine).

...

Command to admin-

ister dose of drug

(Epinephrine) when

not required.

BNS informs drug

management subsys-

tems to administer

epinephrine.

System administers

dose of drug to patient.

High risk of patient

death (induced heart

attack, organ failure),

serious discomfort and

physical damage.

Hazardous

... c) Erroneous patient diagno-

sis (diagnoses Anaphylactic Shock

when not present) due to Diagno-

sis Model error (error in state of

Anaphylaxis Variable).

...
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Table 6.2: Failure Modes and Effects Analysis (FMEA) excerpts for an example applied to the RM-BNS architecture (continued).

Function Failure Mode Local Effect System Effect Severity Cause

Drug Administration:

Treat Discomfort

(Software Component)

Failure to command

administration of drug

(Morphine) when re-

quired.

BNS fails to inform

drug management

systems to administer

drug (Morphine).

System does not ad-

minister patient with

treatment for moder-

ate to severe discom-

fort. Risk of severe pa-

tient discomfort.

Minor ...

b) Erroneous patient diagnosis (fail-

ure to recognise need for addi-

tional anaesthetic) due to Diag-

nosis Model error (error in state

of Insufficient Anaesthetic Vari-

able).

...

Command to admin-

ister drug (Morphine)

when not required.

BNS informs drug

management systems

to administer drug

(Morphine) to patient.

System administers

drug (Morphine) dose

to patient. Risk of

patient overdose, lead-

ing to serious physical

damage or death.

Hazardous ...

b) Erroneous patient diagnosis (er-

roneously diagnosing the need for

additional anaesthetic) due to Di-

agnosis Model error (error in state

of Insufficient Anaesthetic Vari-

able). ...
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Table 6.2: Failure Modes and Effects Analysis (FMEA) excerpts for an example applied to the RM-BNS architecture (continued).

Function Failure Mode Local Effect System Effect Severity Cause

Health Monitoring

(Software Component)

Failure to accurately

indicate current Pa-

tient Health Status.

BNS does not reflect

current status of pa-

tient.

System does not pro-

vide accurate informa-

tion to medical prac-

titioners on health of

patient. Very low risk

of erroneous treatment

by medical practition-

ers.

Negligible ...

d) Erroneous patient health indica-

tors due to Data Fusion Model

error.

...

Practitioner Alert

(Software Component)

Failure to Alert Practi-

tioner when required.

BNS does not signal

system to raise alarm.

System fails to sum-

mon medical prac-

titioner to patient.

Risk of serious phys-

ical damage and/or

discomfort.

Hazardous ...

b) Erroneous alert recommendation

due to Diagnosis Model error.

c) Erroneous alert recommendation

due to errors in Alert Model (A)

and Alert Model (B).

...
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6.2.4.2 Assigning Model Authority Categories

The Model Authority Categories (MACs) and Model Criticality Indices (MCIs) provide a

mechanism for describing the safety role of each model in a system at a lower level. The

FMEA is used to provide the severity categories for the MCIs, while a RM-BNS system ar-

chitecture model (similar to that provided in Figure 6.2) provides the necessary details for

the assignment of MACs. For example, the MAC categories assigned to both Alert Models

and the Diagnosis Model directly reflect the architecture. The initial MAC and MCI as-

signments are shown in Table 6.3. All three models are utilised directly by safety-related

system functions, though the Alert Models would receive only a MAC-2 assignment, and

the Diagnosis Model would receive a MAC-0 assignment. This arises as a consequence of

the Diagnosis Model being used in a monolithic architecture. In contrast, the Alert Models

are used in an ensemble architecture; this configuration ensures a degree of redundancy in

how each model’s outputs are used.14 Ensemble configurations may reduce the potential

for model-centric common-cause error modes and single point of failure error modes, the

latter of which is the principal weakness of monolithic configurations.

The MCIs are then defined based upon the MAC assignment and the severity categories

provided by the FMEA. The severity category used to define the MCIs is drawn from the

most severe category of failure mode identified by the FMEA. Both Alert Models receive an

MCI-1 assignment. This reflects the additional risk associated with the use of these models

given the most severe category assigned to a failure mode associated directly with these

models is defined as Hazardous. Similarly, the Data Fusion Model reflects the criticality of

a model that despite indirectly influencing the state of a patient (captured in its MAC-3

assignment), the low severity of failure modes associated with this model produces the

lowest category of MCI: MCI-4.

14The definitions of ensemble and monolithic models can be found in section 4.3.2.
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Table 6.3: Model Authority Categories (MACs) and Model Criticality Indices (MCIs) for the AMTS system.

Model Description Authority Criticality

Data Fusion Model for synthesising data from all available input

sources to provide additional insight into patient health

and status (e.g. predicting vital signs, drug levels).

MAC-3 Support-

ing

MCI-4

Diagnosis Model Model for diagnosing patients with the following health

statuses: Left Ventricular Failure; Pulmonary Embolism;

Anaphylactic Shock; Insufficient Anaesthesia; Tracheal

Intubation Status; Damaged Tubing (Equipment error);

Hypovolemia; Disconnected Devices (Equipment error).

MAC-0 Full MCI-0

Alert Model (A) Model (A) for alerting medical practitioners in the event

of patient discomfort or requirement of treatment outside

of AMTS’s scope.

MAC-2 Partial

(II)

MCI-1

Alert Model (B) Model (B) for alerting medical practitioners in the event

of patient discomfort or requirement of treatment outside

of AMTS’s scope.

MAC-2 Partial

(II)

MCI-1
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6.2.4.3 Assigning Variable Criticality Indices

The MCIs provide a mechanism for ensuring the proportionality of efforts to satisfy those

system-specific objectives that directly address the global aspects of a model: the overall

dynamics and properties of a model are the focus of the MCIs.15 They reflect the level of

required integrity and rigour of all processes associated with exploring these properties.

However, the MCI assignments are not intended to address the same notions of integrity

and rigour associated with local aspects of a model; this is the aim of the Variable Authority

Categories (VACs) and Variable Criticality Indices (VCIs).

Table 6.4: Severity assignments for variables in the Medical Diagnostic model.

Variable Type Identifier Severity

Anaphylaxis Safety Related ANAPHYLAXIS 0 - Catastrophic

Damaged Tubing Safety Related KINKEDTUBE 3 - Minor

Tracheal Intubation Safety Related INTUBATION 2- Major

Pulmonary Embolism Safety Related PULMEMBOLUS 0 - Catastrophic

Insufficient Anaesthesia Safety Related INSUFFANESTH 3 - Minor

Disconnected Device Non-Safety Re-

lated

DISCONNECT 4 - Negligible

Hypovolemic Shock Safety Related HYPOVOLEMIA 1 - Hazardous

Left Ventricular Failure Safety Related LVFAILURE 0 - Catastrophic

Assigning VACs begins by identifying a set of Safety-Related Variables (SRVs). These

are variables drawn from a given BN model that are utilised directly by a software function.

The SRVs will therefore be a subset of variables that will be a subset of a model’s output

variables. Importantly, a model may contain outputs that are never utilised in support of

safety-related software functions. The intent of the VACs and VCIs is therefore to provide

a higher degree of resolution on which parts of a BN model are influential with respect to

15Though not attempted in this thesis, the MCIs were defined with the aim of providing a general

framework for categorising AI models, including models other than BNs. Without change, the MCI and

MAC classifications could theoretically be applied to the description of other AISs.
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the SRVs.

From an assurance perspective, some variables within a model will be more important

than others. As outlined in Chapter 4, the VCIs aim to help ensure that effort is directed

towards those aspects of a system that most require them, and therefore avoid a ‘blanket’

approach to analysing a BN model indiscriminately. This is partially motivated by an

aim to ensure the efficiency of any assurance activities used to evaluate a BN model and

its components. However, it is also motivated by potential computational limitations:

indiscriminate, exhaustive application of some evaluation techniques may not simply be

inefficient, but also computationally intractable. Therefore, the VCIs aim to provide

information on which aspects of a model are most important to the model’s behaviours.

This then facilitates the targeted application of these evaluation techniques (and moderates

the scope and rigour of these techniques) to the aspects of a model that are of most interest

to assurance practitioners.

The identification of SRVs can be achieved using the outputs of the FMEA, or through

extensions of this analysis that specifically consider the role of model outputs in the func-

tional behaviours of the system. The FMEA produced for this case study includes limited

information on the role of variables, but this is sufficient to support the assignment of

VACs. Table 6.4 shows all output variables for the Diagnosis Model, alongside their

model identifiers (corresponding to the abbreviations used in the implementation of the

model), the category of the variable (i.e. either an SRV or Non-SRV), and the severity of

failure modes associated with each variable as identified by the FMEA.16

With the SRVs identified, Variable Criticality Analysis (VCA) may be performed.

The VCA technique was applied to the Diagnostic Model, and the resulting VCI matrix

is shown in Figure 6.4. The visualisation highlights the pairwise interactions within the

model and the relative degree of influence of these interactions upon one another. These

interactions are the basis of the VAC and VCI assignments. However, the visualisation

can also be used to highlight clusters of variables that interact with one another. While

the utility of this observation was not explored in detail in Chapter 4 and is beyond the

scope of this case study, it is worth noting that information such as this may be useful

to assurance practitioners in ensuring the targeted assurance and fine-tuning of a given

BN model. Furthermore, the algorithm introduced in Chapter 4 does not provide an

16Non-SRV indicates a variable that receives a severity rating of zero.
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exhaustive exploration of the state-space of a BN model, and therefore the absence of any

strong interactions (represented as light-coloured areas in the visualisation) between two

variables does not necessarily imply that no strong interactions could exist in some model

topologies.

Table 6.5 shows a subset of the final VCIs for the Diagnosis Model. The ‘Preliminary

Criticality’ assignments reflect the VCIs the variables would have received if interactions

between variables were not accounted for.17 This provides a measure of what has been

gained by performing the analysis: by using the technique, an assurance practitioner can

establish a clearer understanding of which aspects of the model influence safety-related

system functionality, and the degree of contribution of individual variables to the state of

the SRVs (i.e. the output of the model).

For example, the results of the VCA for the Patient History variable highlight this

point. The interaction between the ‘Patient History’ variable and the Left Ventricular

Failure variable is assigned a VAC-3 classification and VCI-2 index respectively. This

indicates that the former variable has a Low VAC over the latter variable. However, when

this category is considered in the context of the severity of a failure mode associated with an

error in the Left Ventricular Failure variable, the criticality of the Patient History variable

is then higher. This information can be used by assurance practitioners to proportionally

address assurance objectives associated with this variable.

The MCA methodology has been designed to provide insight when used as a standalone

technique. It can provide assurance practitioners with safety-related insights into the

dynamics of a BN model. For example, Figure 6.4 clearly highlights a number of strongly

interacting groups of variables within the model. Many of these are ranked as low criticality

model aspects, though some (such as ‘LVEDVOLUME’ and ‘STROKEVOLUME’) are

high criticality and appear to be highly influential upon one another. By highlighting

this assurance insight, assurance practitioners can begin to target development activities

related to these variables to better understand the implications of these interactions.

17This reflects the state of information available to assurance practitioners prior to using the VCA

technique.
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Figure 6.4: Visualisation of Variable Criticality Index (VCI) assignments for the Medical Diagnostic model.
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Table 6.5: Criticality assignments for a selection of variables for the Diagnostic Model.

Variable Identifier Preliminary

Crit.

Criticality

Anaphylaxis ANAPHYLAXIS VCI-0 VCI-0

Pulmonary Capillary

Wedge Pressure

PCWP VCI-4 VCI-0

Patient History HISTORY VCI-4 VCI-2

Lung Ventilation VENTLUNG VCI-4 VCI-3

Disconnect DISCONNECT VCI-4 VCI-4

The analysis for this section was performed using an inference engine developed and

implemented over the course of this project. The MCA algorithm introduced in Chapter

4 was built upon this engine, and the results shown in Figure 6.4 and Table 6.5 represent

outputs from this tool.

While MCA may be used as a standalone approach, it was design with the intent of

supporting the assurance of BNS Model Viewpoint Aspects more broadly. This involves

utilising the results of the MCA (and by extension, VCA) to enable the sufficiency of

assurance efforts to be established. This is the subject of the remaining sections of this

case study.

6.2.5 Mapping Objectives to Evidence Classifications

It is essential that the relationship and rationale linking objectives and their associated

items of evidence is now made explicit. This can be achieved using the framework and

concepts introduced in Chapter 5. Table 6.6 gives (an incomplete) set of evidence items

and evidence classifications for the RM-BNS Model Viewpoint objectives introduced earlier

in this case study generated using this framework. Consider the objective MV-1.1-A.

The table enumerates five distinct items of evidence that may be used to justify the

satisfaction of this objective. This is not an exhaustive list. However, for this single

objective, the evidence classes define a hierarchy within the evidence items that aligns

with the sentiments of standards such as Defence Standard (DS) 00-056. As discussed in
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Chapter 5, this standard states:

“Explicit, objective evidence [items] are more compelling than those that appeal

to judgement, custom or practice.”

For example, with respect to Table 6.6, Evidence Items (a) and (b) represent items

arguably most in keeping with the sentiment of DS 00-056. These are ‘objective’ analyses

that provide concrete statistical metrics for characterising the properties of the Diagno-

sis Model. In contrast, the remaining three objectives appeal to various forms of expert

judgement. However, within these remaining three evidence items, the role of those items

of evidence is made explicit and a hierarchy of these items is exposed. From an assurance

perspective therefore, the evidence classifications (and characteristics) provide the foun-

dation for an assessment of how compelling a given set of evidence items are with respect

to a given objective.

This is also important as the scope and importance of evidence items will vary across

system aspects and across specific objectives. For example, Table 6.6 also provides a

subset of evidence items that may be used to satisfy the second objective (MV-1.1-B).

As discussed in section previously, this objective represents an instantiation of objective

MV-1.1 for a specific local model structure aspect of the Diagnosis Model.

Consequently, the technical analyses applied to this variable may well be narrower in

scope and focus more on local considerations. By extension, additional distinct evidence

items may be used in the satisfaction of this objective (MV-1.1-B) in comparison to that

of the previous objective (MV-1.1-A). The evidence classifications once again support

the development of an evidence hierarchy which can be used as the first step towards

establishing the sufficiency of efforts to satisfy the given objective.
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Table 6.6: A mapping of AMTS System-Specific Objectives to Evidence Items and Evidence Classifications.

View ID Objective Evidence Item Class (ERC) Class (ETC)

Structure MV-1.1-A Establish and justify the ba-

sis for using a static Discrete

Bayesian Network for the ‘Di-

agnosis Model’ network.

(a) Statistical Analyses showing

that the domain (ICU ward/pa-

tients) can be modelled effectively

as a time-independent (static) prob-

lem.

Direct Statistical

(b) Statistical Analyses showing

that the use of a discrete distribu-

tion is appropriate for the problem.

Direct Statistical

(c) Expert opinion that the do-

main can be modelled as a time-

independent (static) problem.

Direct Qualitative

(d) A review of the available

‘Knowledge Base’ indicating that

there are no underlying scenarios

that may invalidate the ‘static’ and

‘discrete’ properties of the ‘Diag-

nostic Model’.

Backing Qualitative
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Table 6.6: A mapping of AMTS System-Specific Objectives to Evidence Items and Evidence Classifications (continued).

View ID Objective Evidence Item Class (ERC) Class (ETC)

(e) Expert justification that the do-

main should be modelled using a

time-independent (static) BN in-

stead of alternative modelling ap-

proaches.

Reinforcement Qualitative

... ... ... ... ...

Structure MV-1.1-B Establish and justify the basis

for using a categorical distri-

bution for the ‘Anaphylaxis’

Random Variable.

(a) Statistical Analyses showing

that the ‘Anaphylaxis’ RV can be

modelled as a discrete categorical

RV.

Direct Statistical

(b) Expert opinion that modelling

the ‘Anaphylaxis’ as a discrete

categorical RV is appropriate for the

domain aspect (the state of the pa-

tient) being modelled.

Direct Qualitative
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Table 6.6: A mapping of AMTS System-Specific Objectives to Evidence Items and Evidence Classifications (continued).

View ID Objective Evidence Item Class (ERC) Class (ETC)

(c) Statistical Analyses showing

that using a discrete categorical

RV would not negatively affect the

performance of the ‘Diagnostic

Model’.

Backing Statistical
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As with the MCA technique, while the evidence classification framework introduced in

Chapter 5 can be used alone, it was defined with the intent of being used alongside the rest

of the contributions of this thesis. Specifically, whether or not a set of items of evidence

are sufficient for the satisfaction of a given objective is dependent on the criticality of the

system aspect addressed by that objective. As discussed in Chapter 5, this requires the

integration of criticality metrics with the evidence classification framework.

6.2.6 Mapping Objectives to Criticality Metrics

With a framework for describing and communicating the role and nature of evidence in

place, and the evidence items for the AMTS system aspects classified, the next step is to

integrate criticality metrics to provide a clearer view of the safety implications of Model

Viewpoint system aspects and consider how compelling the available evidence for a given

objective is in the context of this information.

For the purposes of this case study, the outputs of the MCA are used to provide

criticality metrics for each Model object within the RM-BNS system architecture model

(such as that shown in Figure 6.3). Each of these objects will have a set of object-specific

RM-BNS objectives associated with it. This enables the criticality of a system aspect to

be mapped directly onto the objectives associated with that aspect. An example of such

a mapping is shown in Table 6.7.

While the MCA technique is used for this case study, alternative techniques could of

course be used to establish the criticality of other system aspects. Indeed, while there

are a number of potential techniques for establishing the criticality of system aspects

outside of the Model Viewpoint aspects addressed by the MCA technique, the selection

and application of such techniques to the RM-BNS objectives has been beyond the scope

of the project.

The mapping shown in Table 6.7 highlights a number of important considerations for

assurance practitioners. For example, objective MV-1.1-B addresses aforementioned assur-

ance concerns associated with the ‘Anaphylaxis’ RV. The MCA carried out in section 6.2.4

assigned this variable a VCI-0 classification. From an assurance perspective, therefore, the

assurance of the properties and behaviours of this variable is particularly important for

the AMTS. In contrast, the objective MV-1.1-C addresses the ‘Disconnected Device’ RV.

This RV received a VCI-4 assignment in the MCA. Consequently, what may be regarded

as sufficient for the satisfaction of each of these objectives may vary: the standard of
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evidence required for the satisfaction of MV-1.1-C may be lower than that required for

the satisfaction of MV-1.1-B.

6.2.7 Proportionality and Sufficiency

At this point in the case study, the following insights have been established:

• An understanding of the interactions between aspects of the AMTS (using the RM-

BNS architecture model).

• A set of system-specific assurance objectives.

• An in-depth understanding of the assurance implications of the dynamics of the

‘Diagnosis Model’.

• An understanding of the criticality of individual (model-centric) system-specific ob-

jectives and the items of evidence associated with them.

Together, these insights can be used to support the discussion of the sufficiency of

assurance efforts undertaken in the development of the AMTS. At a granular level, the

case study has identified how important a limited set of system aspects are to the safety

of the AMTS and described and classified the evidence available to satisfy the objectives

associated with these aspects. There are two principal approaches that could be adopted

by assurance practitioners in establishing the proportionality and sufficiency of efforts to

satisfy any given objective/s.
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Table 6.7: An Objective-Criticality Mapping for aspects of the AMTS.

View ID Criticality Objective Evidence Item Evidence Classes

Structure MV-1.1-A MCI-0 Establish and justify the basis for using a

static Discrete Bayesian Network for the

‘Diagnosis Model’ network.

... ...

MV-1.1-B VCI-0 Establish and justify the basis for using a

categorical distribution for the ‘Anaphy-

laxis’ Random Variable.

... ...

... ... ... ... ... ...

MV-1.1-C VCI-4 Establish and justify the basis for using a

categorical distribution for the ‘Discon-

nected Device’ Random Variable.

... ...

... ... ... ... ... ...

MV-1.1-D VCI-2 Establish and justify the basis for using a

categorical distribution for the ‘Tracheal

Intubation’ Random Variable.

... ...
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6.2.7.1 Varying Objectives

The first approach outlined in Chapter 5 that may be adopted by assurance practitioners is

an approach similar to that taken in DO-178C: to vary the number of objectives associated

with different system aspects in accordance with the criticality of a given BNS. One way

of implementing this approach could be to vary the number of RM-BNS objectives that

must be satisfied given the criticality of a system aspect addressed by that objective.

For example, in the context of the ‘Anaphylaxis’ variable in Table 6.7, an assurance

practitioner should seek to satisfy every RM-BNS objective associated with that system

aspect. In contrast, it may be reasonable to satisfy only a relatively small subset of

objectives for the ‘Disconnected Device’ system aspect.

As outlined in Chapter 5, a systematic way of implementing such an approach may be

to utilise the inherent structure of the RM-BNS objectives: the objectives associated with

each object in the RM-BNS framework are ordered such that lower indexed objectives

are the most granular objectives (typically dealing with specific technical system aspects),

while the higher indexed objectives are associated with more generic notions of assurance

for a given system aspect. The objectives have been defined to draw attention to system

aspects that may be overlooked by BN developers and assurance practitioners, and to

encourage stakeholders to explicitly discuss and justify the rationale behind key modelling

decisions.

Table 6.8: Varying the number of objectives for a BNS system aspect in proportion to the

criticality of the aspect.

Object Identifier Criticality No. Objectives

Model ANAPHYLAXIS VCI-0 17

Model HISTORY VCI-2 9

Model DISCONNECT VCI-4 1

Table 6.8 shows how the number of variables may be varied given the criticality of

the RVs introduced in section 6.2.4 in accordance with the suggestion outlined in Chapter

5. For example, the ‘Anaphylaxis’ RV would require the satisfaction of all 17 objectives
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targeting that system aspect as it was assigned the highest criticality category. In contrast

the ‘Patient History’ RV would require the satisfaction of only 9 objectives as it received

a moderate criticality assignment. Practically, this corresponds to all but the first two

objectives in each of the four Model Viewpoint Views.

Those variables with the lowest criticality assignments – such as ‘Device Disconnect’

– may only need to demonstrate the satisfaction of a single objective. These objectives

correspond to the highest-level objectives of each View. This would waive the need for

developers to explicitly justify the design decision associated with the other objectives,

and instead fall back to a higher-level (lower-confidence) stance on the assurance of the

system aspect. In all cases, the satisfaction of an objective would require the presentation

of equally compelling evidence.

Finally, as discussed in Chapter 5, there is scope for introducing additional considera-

tions related to the independence of these objectives. This would involve some number of

objectives being satisfied by independent development teams to – theoretically – ensure

the objectivity of the evidence used to satisfy an objective.

6.2.7.2 Varying Evidence

Alternatively, assurance practitioners may choose to adopt an approach that instead varies

the quantity and quality of assurance evidence for a given system aspect. In the case

of the AMTS, this would involve satisfying all objectives for all system aspects in the

AMTS. However, adherents of this approach would accept lower-confidence evidence for

system aspects associated with lower levels of criticality and would require more compelling

evidence as the criticality of a system aspect increased.

For example, consider again the objectives in Table 6.7. The objectives MV-1.1-B

and MV-1.1-C represent objectives addressing two RV objects at the opposite ends of

the criticality scale. In both cases, this approach would require the satisfaction of all

17 objectives for both objects. However, it may be the case that the evidence that is

available to demonstrate the satisfaction of objective MV-1.1-C is limited to an item of

evidence that would be classified as a Backing, Qualitative item of evidence. Given the

low criticality of the ‘Disconnect’ RV, an assurance practitioner may decide that this is

sufficient to hold MV-1.1-C satisfied. In contrast, such evidence would not be sufficient to

hold MV-1.1-B as satisfied.

A further example of this may be in the application of the techniques outlined in
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section 5.5.5.1 on the application of statistical techniques to satisfying objective MV-2.2.

This system-specific objective for the ‘History’ RV may be defined as follows:

“MV-2.2 – Establish and justify the accuracy of the parameterisation of the

History RV.”

As the AMTS parameterisation is learned from data, the statistical confidence in the

parameterisation and Chan’s parameter boundary checking technique can be applied di-

rectly to this problem. As Figure 6.4 indicates, the ‘History’ RV influences the higher

criticality SRV ‘Insufficient Anaesthesia’ RV. An assurance practitioner may therefore

seek to satisfy the above objective by first characterising the statistical confidence in the

parameter estimate. The confidence intervals for a parameter in the ‘History’ RV (assum-

ing 50 observations) are shown in Table 6.9. The lower number of observations acts to

broaden the confidence intervals, thereby making the parameter estimate more uncertain.

The ‘History’ RV was assigned a VCI-2 category earlier in this chapter. By adopting the

proposed confidence interval for this criticality as outlined in Chapter 5 (95% interval), an

assurance practitioner can have high statistical confidence that the parameter lies within

the range 52.1% and 77.7%. This establishes the accuracy of the parameter estimate.

Table 6.9: Confidence intervals on the ‘History’ RV parameter estimates.

Crit. Interval Parameter Lower Limit Upper Limit

4 75.0% 66.0% 57.9% 73.2%

3 90.0% 66.0% 54.4% 75.9%

2 95.0% 66.0% 52.1% 77.7%

1 99.0% 66.0% 47.8% 80.4%

0 99.9% 66.0% 42.9% 83.3%

As before, the next step is to justify this accuracy – why is it an acceptable accuracy

for the given application? This could once again be achieved using Chan’s technique. As

before, assuming that assurance practitioners wish to demonstrate that the ‘Insufficient

Anaesthesia’ RV would not be significantly influenced by potential errors in the ‘History’

RV, they can compute the upper and lower bounds on the possible values the ‘History’

parameters may take. Using the figures in Chan’s work, this would once again produce
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upper and lower bounds of 81% and 50% respectively.18

Given this information, an assurance practitioner can then demonstrate that the ac-

curacy of the ‘History’ RV is sufficient as the confidence intervals lie within the bounds

defined by Chan’s technique. Practically, an assurance practitioner can expect the outputs

of the ‘Insufficient Anaesthesia’ RV to be robust to errors in the ‘History’ RV. However,

if subsequent analyses were to increase the criticality of the ‘History’ RV for any reason,

this evidence would not be sufficient: the range of plausible values would lie outside of

the upper and lower bounds indicated by Chan’s technique. In this case, it would force

assurance practitioners to gather more data or run additional analyses to provide evidence

for the satisfaction of the objective – they would need greater confidence in their evidence.

As discussed in Chapter 5, the research carried out over the course of this project

suggests that an approach to the assurance of a BNS that focusses on the varying assurance

evidence should be favoured by assurance practitioners. In general, these approaches

should be able to accommodate changes within the BN field more readily, and can support

the development of more esoteric BNS applications without changes to the underlying

assurance framework – as may be the case with more prescriptive approaches.

In the context of this case study, varying the evidence instead of the objectives enables

assurance practitioners to ensure that all system aspects are explicitly considered and

targeted by their analyses. Moreover, it more readily accommodates the potential for shifts

in the criticality of system aspects as a system develops. For example, if the ‘Diagnosis

Model’ were to be updated to include additional RVs, the dynamics of the model may

be dramatically altered. This may produce different criticality assignments for variables

within the model. For assurance practitioners adhering to such an approach, this may

require only the enhancement of existing work, while those adhering to an objective-driven

approach may have to undertake entirely new assurance activities.

6.2.8 Note on Generalisability

The case study presented in this chapter has been designed to be representative of a typical

BNS used for a safety critical application. It was synthesised from several publications

and therefore reflects aspects of a number of BNSs that have been – or currently are –

18This is adopted purely for convenience and brevity. The dynamics of the ALARM network would

modify Chan’s figures and this estimate would therefore be inaccurate. However, it serves the purpose of

this example.
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in active service. However, it is still a singular case study and by extension cannot cover

all potential applications or operational scenarios of mission-critical BNSs. In particular,

while the case study covers a range of important BNS assurance concerns, it does not

provide evidence that the proposed approaches will cover all potential concerns in all

scenarios.

For example, there are no known limitations or omissions within the generic RM-BNS

objectives. However, it is possible that future work may identify concerns beyond the

scope of those considered over the course of this research. These concerns may arise as a

consequence of developing novel BNS applications, utilising BNS variants not considered

in the course of this work or from other technological advancements within the BN/PGM

modelling frameworks themselves. Importantly, it is unlikely that the emergence of new

assurance concerns would require the modification of the framework’s viewpoints or views,

though they may rather require the refinement or extension of the proposed objectives

instead. This would not invalidate the framework, and indeed the framework was designed

with thought to ensuring extensibility in the event of such a case as this.

Beyond the generic objectives themselves (justification of which has been provided in

Section 3.6), there remains the challenge of deriving a set of system-specific objectives.

When deriving objectives for this case study, no practical challenges were encountered,

and every important aspect of the system was covered by at least one derived objective.

However, as discussed in Chapter 3, the derivation of these objectives requires judgment

on the part of an assurance practitioner, and it is possible that a future case study may

highlight a case in which an objective is not applicable to a particular application, or that

may require modified or additional objectives to effectively cover a particular concern.

In the former case, practitioners should feel free to drop objectives provided a clear,

compelling rationale for doing so can be provided. In the latter case, the generic objectives

could be extended to accommodate these findings.

With respect to the application of the the MCA technique introduced in Chapter 4 to

this case study, no modification was required. In cases utilising ‘standard’ BN variants,

the technique should generalise well to other models, though extremely large models may

encounter issues related to scalability. This will be discussed further in Chapter 7. More

generally, some modifications to the core Sensitivity Analysis (SA) technique may be

necessary to accommodate some BN model variants, or other non-standard architectures.

In these cases, the general concept and insights will remain applicable and as outlined
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in Chapter 4, the MCA process was designed with the aim of enabling a practitioner

to replace the core SA algorithm with one of their choosing, provided a set of simple

constraints are satisfied.

In conclusion, the threats to the external validity of the techniques applied in this

case study and their ability to generalise to real systems revolve primarily around the

possibility that future work identifies omissions or shortcomings of the framework in the

light of an application that is beyond the scope of the applications considered in this

thesis. However, this would not be fatal to the framework and the contributions of this

thesis as a whole, though it may require the extension or modification to more effectively

account for such an outcome. Ultimately, this work has demonstrated the feasibility of the

provision of evidence for a subset of objectives. Future work will need to evaluate whether

the methodology presented here is equally feasible for a wider range of applications and

evidence.

6.2.9 Summary

This case study has provided an overview of the application of the techniques proposed

in this thesis to an example system. It has indicated the potential utility of the RM-BNS

framework in modelling BNSs and for generating comprehensive objectives that aim to

explicitly address unconventional system aspects and considerations. It has also provided

an example application of the MCA technique to a BN model, and illustrated a number

of the insights that may be gained through the utilisation of this approach. Finally, it

has outlined two potential strategies for ultimately assuring a BNS in the context of the

example system.

6.3 Practicability of Application

The utility of a new assurance technique or concept lies in the ability of assurance prac-

titioners to apply them to an engineering problem and observe the relative merits and

challenges associated with them. The application of the techniques and concepts pro-

posed in this thesis to a in-development BNS was not possible over the course of this

research project. However, it is possible to evaluate the practicability of these techniques

in the context of this chapter’s case study, and to explore some broader considerations

associated with the application of the contributions of this thesis to the development of a
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mission- and/or safety-critical BNS.

6.3.1 Application of the RM-BNS

The RM-BNS introduced in Chapter 3 was developed to support the description and

modelling of BNSs similar to that of the motivating example outlined in Chapter 1: a

fault diagnosis and prognosis system that directly influences the functional behaviour of a

system. The priority of the work presented throughout this thesis has been to support the

assurance of this class of system in the first instance. However, the RM-BNS framework

has been defined with the aim of accommodating a range of commonly used BN model

architectures and variants; it can be considered to be a general framework for modelling

BNSs. Consequently, it is envisioned that with relatively minor modifications, the RM-

BNS framework could be applied to any BNS.

The case study provides an indication that the RM-BNS framework can be applied

in a straightforward manner to the same class of system as the system in the motivating

example of the thesis. The case study also indicates that the techniques introduced in this

thesis can expose system aspects that may be overlooked in conventional software safety

analysis and certification approaches. In particular, it highlights the centrality of Model

Viewpoint and Data Viewpoint system aspects in the architecture of a BNS, and indicates

mechanisms through which a BNS may be exposed to its operational environment and

the potential impact of changes to this environment upon the functional behaviour of the

system. A primary function of the RM-BNS framework is to visually capture interactions

between system aspects. These interactions are crucial to understanding the behaviour of

a BNS and by extension to assure such a system.

One of the key concepts – and contributions – of the RM-BNS is the need to address

the assurance of BNSs using a multi-viewpoint approach. The viewpoints proposed in

Chapter 3 were defined to address specific BNS assurance challenges. The application of

these viewpoints both throughout this thesis, in section 6.2 and in other work suggests that

this may be a convenient and intuitive way to communicate key BNS assurance challenges

to relevant stakeholders [156]. Furthermore, the viewpoints (and to some extent the RM-

BNS framework more broadly) are intended to be relatively generic, and may be used to

describe assurance challenges associated with other AI techniques. They may therefore

provide a starting point for a generic framework for the assurance of AISs. However,
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further exploration of this work has been beyond the scope of this thesis.19

Finally, the RM-BNS provides a framework for sharing information between assurance

practitioners and BN developers about the implications of design and implementation

decisions upon a BNS using a shared language. The aim of the framework is to facilitate

an informed debate about the assurance implications of these decisions in a transparent,

interpretable format. The application of the framework to the AMTS (and other systems

within literature) indicates that the RM-BNS can capture and relay information about the

architecture of the system and that this can be used for subsequent analysis and testing

of the system. The experience of applying it to the AMTS also indicates that it is highly

flexible in terms of capturing novel system architectures.

6.3.2 Application of the RM-BNS Objectives

Much like the RM-BNS framework itself, the verification and validation objectives intro-

duced in Chapter 3 were defined to address assurance concerns associated with the system

in the motivating example of this thesis. The proposed objectives have been refined to

help ensure their generality to alternative BNS use-cases and variants. The objectives for

the Model Viewpoint have been defined with the hope of supporting the description of

other AI approaches too. This was aimed at providing a mechanism for defining a set of

generic AIS verification and validation objectives to support the assurance of AISs in gen-

eral. However, the development of these ideas was also beyond the scope of this research

project, though these ideas have been discussed in other work [207].

With respect to the case study, the RM-BNS objectives were applied and refined

according to the processes outlined in Chapter 3. The resulting system-specific objectives

facilitated the exposure of several important assurance considerations in the context of the

AMTS. The example objectives provided in section 6.2.3 highlight the need to consider

the role of various data pre-processing steps on the expressiveness of the BN models used

in a BNS, and the distinct assurance considerations that are introduced when refining a

Model Viewpoint objective for local and global model assurance considerations.

From a practical perspective, the generation of objectives for the AMTS was a slow

process. Objectives were generated for each object in the model fragment shown in Figure

6.3. This corresponded to more than 200 objectives, though the granularity and scope of

19Some of the concepts related to this idea were presented in [206,207].
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these objectives is much narrower than in existing standards.20 As the case study focussed

on only a subset of these objectives, a full exploration of the operational overhead asso-

ciated with satisfying all of these objectives was not attempted. However, the objectives

can be compartmentalised and tackled on an atomic basis, meaning that – in the limited

experience provided by the case study – the generation and management of system-specific

objectives for a larger system should not be an overwhelmingly complex problem.

More broadly, the application of the RM-BNS objectives to a BNS provides a struc-

tured mechanism for the development of a BNS that is unique within the BN domain [206].

The challenge of assuring a BNS lies in ‘unmasking’ the ‘dark art’ aspects of BNS develop-

ment for assurance practitioners and ensuring that all relevant stakeholders are fully aware

of the implications of design and implementation decisions for a given system. They pro-

vide a first step towards systematising the assurance of BNSs.

6.3.3 Application of the Model Criticality Analysis Technique

The Model Criticality Analysis (MCA) approach introduced in Chapter 4 was developed

to provide a general technique for exploring the dynamics of any BN model and to inte-

grate safety information into existing BN analysis techniques in order to provide a safety-

focussed assessment of a BN model. This assessment can then be used to derive Model

and Variable criticality metrics that can be used to provide assurance practitioners with

insight into the safety implications of BN model design decisions.

From the outset, MCA was developed with the aim of supporting the analysis of any

BN variant or BNS architecture: it does not assume the number or configuration of the

models used in a BNS, nor does it assume the internal structure of these models. Within

the case study, it was demonstrated that the MCA approach can be applied to models that

represent ‘basic’ architectures. This demonstrates that the MCA approach is applicable

to the most common forms of BN models. The implementation of the MCA algorithm

required only relatively small modifications to standard exact inference and sensitivity

analysis algorithms.

For this project, the MCA code was written as a standalone tool built upon a propri-

etary BN library that was developed specifically for this research project. The MCA tool

can parse many common BN model file formats and utilises a variant of the HUGIN algo-

20This does not include the generation of objectives for each variable in the Diagnosis Model.
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rithm for inference and sensitivity analysis. The implementation of the inference algorithm

was verified against both the SAMIAM BN tool developed by University of California, Los

Angeles (UCLA), and a trial version of the HUGIN software package (HUGIN LITE). This

tool will be made available alongside this thesis, and a more detailed description of the

implementation can be found in Appendix C. A more practical long-term solution would

be to re-implement the MCA algorithm on top of an existing BN tool. An attempt was

made to implement a version of MCA using the libDAI package developed by Stanford

University, though this was ultimately abandoned due to time constraints. Integration

with other tools was not attempted due to intellectual property and cost considerations.

However, implementation of the MCA technique atop more feature-rich tools could enable

the extension of the method to other BN architectures beyond those discussed in this

thesis.

With respect to the case study, the analysis performed in section 6.2.4 indicated how

the MCA technique could be used to help identify that a number of variables within the

Diagnosis Model were highly influential with respect to the state of several Safety-Related

Variables (SRVs). The output of the MCA (shown in Figure 6.4) provided additional

information on safety-related aspects of the model, and provided information beyond that

available through a simple inspection. Furthermore, MCA can be used to provide assur-

ance practitioners with a methodology for prioritising assurance efforts when targeting

both global and local aspects of a BN model. Practically, this enables assurance practi-

tioners to work more efficiently when evaluating a BN model – they need not treat the

entire model as a ‘black box’, and can instead focus efforts aspects of a model most rele-

vant to assurance efforts. A further side-effect of the MCA technique is that it provides

assurance practitioners with a visualisation of the safety-related dynamics of a BN model.

No other tool currently exists to provide this information.

However, as indicated in Chapter 4, the MCA approach as defined in this thesis should

be considered to provide an overview of the dynamics of a model rather than a detailed

analysis of interactions between variables. The MCA as it is proposed in Chapter 4

cannot explore combinations of interactions within the model and provides comparatively

coarse-grained insight into the underlying dynamics of the model. However, the case study

indicates that the analysis can be used to highlight that important assurance information

can be obtained and used to support the assurance of the BNS.

The modified SA approach that drives the MCA may be adapted in order to more com-
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prehensively explore the parametric space of a BN model. Indeed, provided the output of

a sensitivity analysis technique can be captured using pairwise Normalised Mutual Infor-

mation (NMI) scores, any valid SA approach could be substituted for the specific approach

introduced in Chapter 4. From this perspective, the MCA technique provides a general

approach for supporting the targeted assurance of BN models through the utilisation and

extension of SA.

A final contribution of the MCA technique is in demonstrating the potential value

and practicability of adapting existing BN and AI analysis techniques to support safety-

focussed analyses of BN models. Rather than attempt to adapt existing safety techniques

with the aim of addressing the assurance of BNSs, it may be more useful to instead adapt

BN techniques for targeted evaluation activities.21

6.3.4 Application of the Evidence Framework

The evidence framework introduced in Chapter 5 was developed using existing sources

from within the safety engineering domain. The resulting framework is therefore intended

to be general, and should be used to characterise and classify any items of evidence gen-

erated over the course of the development of an AIS. However, the scope of this project

prevented the exploration of other avenues of research associated with the characterisation

and classification of evidence generated from other AI approaches.

In general, within the AI domain there is a need to provide a more comprehensive basis

for the description and understanding of evidence drawn from the plethora of evaluation

activities and metrics used within the AI domain. From an assurance perspective, the

utility of these techniques can be hard to translate into useful information about the

safety and security of a system, and the relative value of this evidence can similarly be

hard to discern.

This contribution therefore takes a small step towards a more expansive and robust

framework for managing evidence in the context of AISs. It provides a standardised

approach to classifying evidence generated during the development of a BNS that can

be used to construct a hierarchy of evidence, and to communicate the relative value of

evidence between assurance practitioners and BN developers.

In the context of the case study, the application of the evidence framework was straight-

21This is likely to be particularly important for Model Viewpoint and Data Viewpoint aspects.
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forward given the generation of the system-specific RM-BNS objectives. By directly map-

ping the evidence classes onto objectives and relating these to the criticality of a given

objective, it enables a clearer understanding of the role and availability of evidence for

that objective. During the development of the case study, it became clear that the ev-

idence framework can also be used to prioritise the selection of analysis techniques to

maximise the confidence gained with respect to the satisfaction of a given objective. This

further contributes to the aim of providing a targeted approach to the assurance of BNSs

as outlined in the thesis hypothesis.

6.3.5 Application of the Proportionality and Sufficiency Concepts

In the context of AISs, establishing the proportionality and sufficiency of efforts to assure

an AIS may prove to be the most challenging single aspect of the assurance of a given

system. In the language of the RM-BNS, answering the question: ‘How much is enough?’

for almost every Viewpoint is a technically challenging proposition. This is particularly

true for the ‘Operational’, ‘Model’ and ‘Data’ Viewpoints.

For example, the sufficiency of available data is an omnipresent issue in the field of AI in

terms of quality, quantity and the underlying patterns that will be exploited by the system.

Likewise, the modelling process for any AIS is typically fraught with intuition-driven

decision making and ad hoc development practices that make the rigorous evaluation

and assessment of the sufficiency of these activities challenging prospects for assurance

practitioners. These insights could be used to help build up a compelling justification for

the sufficiency of available data-centric aspects, and for the adequacy of a BN model for

a particular application.

The contributions of Chapter 5 are aimed at taking a step towards mitigating some

of these difficulties. By integrating the contributions of the previous chapters with the

previously mentioned evidence classification framework, the aim of this chapter was to

establish a conceptual basis upon which to more rigorously tackle these challenges. While

the discussion focussed most heavily on model-centric considerations of assurance, the

concepts introduced and discussed in this chapter should be extensible to other system

aspects.

The case study indicates that the application of these ideas is tractable for a system

similar to the AMTS. It shows how the two approaches to utilising the RM-BNS objec-

tives may be applied to a BNS, and further reiterates the apparent benefits of utilising
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an approach that varies evidence in the satisfaction of both the RM-BNS objectives, and

for assuring a BNS in general. However, from a practical perspective, the utilisation of

the objective-varying approach to establishing sufficiency may overcome some of the (po-

tentially significant) operational overheads associated with managing the large number of

system-specific objectives that may be generated using the RM-BNS approach. By only

considering subsets of objectives as defined by the criticality of a system aspect, assurance

practitioners adopting this approach may need to manage a much smaller number of ob-

jectives – thereby reducing the complexity of the assurance challenge from one perspective.

However, this should be carefully considered with respect to the loss of information that

will accompany the adoption of such an approach and the resulting effect on the confidence

of a BN developer in their system.

More broadly, the objectives themselves necessarily lose information about the system

they are applied to. They can never define and address a truly exhaustive set of assurance

concerns. The adoption of objectives with the understanding of the potential imperfection

of these objectives is standard practice within the safety domain. Objectives are defined

such that they address aspects of a system’s design and development that are perceived

to be the most pressing assurance concerns, or the most likely sources of error. This

is also true for the RM-BNS objectives: they have been defined to address aspects of

BNSs that are commonly discussed as being the most probable sources of error within the

BN literature, and based upon the operational experiences of AI developers using other

roughly comparable techniques.

However, it is likely that the ‘variable evidence’ approach to the assurance of BNSs

will be most appropriate for many applications. As discussed throughout this thesis, the

assurance of a BNS will be predicated upon the assessment of a broader range of safety

evidence and unconventional design decisions and will demand a more holistic approach

to assurance than is typical for software systems. Evidence driven approaches should

more readily accommodate the iterative nature of BN development and limit the risk of

extensive redevelopment work in the event that the criticality of a system aspect changes

over the course of the development, or other design decisions dramatically alter the scope

and role of the system.

Finally, the objectives and concepts introduced in this thesis have been defined with

the aim of minimising the worst-case outcomes for a BNS. The properties of a BNS and

the scope of the applications they are commonly applied to introduces serious concerns
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related to assurance deficits. The objectives have been defined to attempt to minimise

these assurance deficits by addressing the most serious potential shortcomings of a BN

development programme. Prior to this thesis, no existing work has unified these ideas into

a single document.

6.3.6 Scalability of Application

The case study presented in this chapter outlines the application of the methodologies

and concepts presented in this thesis to a relatively simple BNS. The process of applying

these ideas to this system was relatively straightforward. However, as discussed in Section

6.2.7.1, depending on the approach to establishing the sufficiency of evidence selected,

the number of RM-BNS objectives that were generated (and therefore must be satisfied)

can vary dramatically. This appears to be the principal challenge to the scalability of the

framework and techniques presented here.

In the case of this case study, more than 200 objectives for aspects pertaining to the

Model Viewpoint alone were produced. While many of these objectives would be relatively

straightforward to address, much larger BNSs may ultimately produce many thousands

of objectives. In general, it is likely that the number of objectives generated for system

aspects related to the Model Viewpoint will grow linearly in the number of variables within

a network.

For example, another widely studied BN model – the MUNIN network – consists

of over 1000 variables [208]. This is therefore significantly larger than the 37 variable

ALARM model presented previously and represents one of the largest publicly available

models. Applying the technique proposed in this chapter may produce over ten thousand

unique objectives. This may make the RM-BNS and its associated evidence framework

unattractive to practitioners attempting to tackle the problem without any degree of

automation. In such cases, the challenge of managing and processing evidence associated

with each objective would be possible but highly laborious, particularly in low-criticality

applications.

However, simply having a large number of objectives is not sufficient to abandon the

them and the associated framework. In high-criticality applications, the utility of the

contributions of this thesis should outweigh their cost in labour, and there are clear op-

portunities for the automation of objective and evidence management within the proposed

framework. Indeed, it may be possible to frame some of the Model Viewpoint objectives
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as more akin to test objectives for which an automated test harness could be constructed

for a given application.

Ultimately, there are no known theoretical limitations on the scalability of the con-

tributions made within this thesis, though there may arise practical scalability challenges

related to the sheer quantity of information that could be generated through their appli-

cation to a complex BNS. However, large quantities of assurance data are not uncommon

in the development of mission critical systems, and in many cases these difficulties could

be resolved or mitigated through the development of new automated tooling and testing

strategies based upon the frameworks and techniques presented here.

6.4 Evaluation Against Thesis Hypothesis

The thesis hypothesis introduced in Chapter 1 was defined to address a number of assur-

ance challenges that were defined early in the course of this research project. This section

looks at each of the main aspects of the hypothesis and evaluates them in the context of

the final contributions of this thesis.

6.4.1 Targeted Assurance

In Chapter 2, the potential shortcomings of existing safety standards and guidelines when

applied to a BNS were introduced. The development of a BNS for mission-critical ap-

plications must mitigate these shortcomings by targeting the BNS- or AIS-specific sys-

tem aspects. This was the aim of the framework introduced in Chapter 3: to provide

an approach to describing and modelling BNSs in a format that comprehensively cap-

tures all aspects of the system that are pertinent to the system’s functional behaviours.

Consequently, the RM-BNS framework provides a flexible approach to representing BNS

architectures that should ensure the unconventional aspects of the system are known to

assurance practitioners, and the roles of these aspects are analysed from a safety-centric

perspective.

The verification and validation objectives also introduced in Chapter 3 build on this

framework. The objectives are designed to ensure that BNS-specific assurance concerns are

explicitly targeted by assurance practitioners. The case study outlines how the RM-BNS

framework and objectives can be used to ensure that system-specific aspects of a BNS

are targeted by assurance activities, and that the assurance of two superficially similar
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system-specific objectives may require the use of different analysis techniques and may

involve fundamentally different assurance considerations.

The need to target the unconventional aspects of BNSs from an targeted assurance

perspective was further extended in Chapter 4. This was achieved through the introduction

of the Model Criticality Analysis (MCA) methodology that was designed to support the

targeted analysis of system aspects associated with the Model Viewpoint. Practically, the

MCA approach has been developed to ensure that the effects of a BNS’s model dynamics

are more transparent to assurance practitioners.

As indicated in the case study, the effect of this analysis is to avoid the need to treat

a BN model as a black-box, or to otherwise take an indiscriminate approach to evalu-

ating models and their constituent variables. Instead, the MCA is intended to support

the targeted analysis of BN models and provide proportionate, targeted analysis of these

models. Furthermore, it is not aimed at addressing typical model performance considera-

tions, but rather supporting the evaluation of the role of individual models and variables

on safety-related functional behaviours.

Taken together, these contributions provide a comprehensive framework for generating

a highly system-specific representation of BNSs that includes information on the role

and type of evidence, the criticality of a system aspect and system-specific assurance

considerations related to that aspect. This representation can be used to identify specific

parts of this representation that are likely to be of interest to assurance practitioners.

An assurance practitioner can pinpoint a specific BN model variable within a BNS of

interest and quickly extract information about the safety implications of that variable,

the associated strengths and weaknesses of the available safety evidence, and the variable-

specific assurance considerations that must be addressed. From this perspective therefore,

the contributions of this thesis achieve this aspect of the thesis hypothesis.

Perhaps most importantly, the assurance of a BNS will require something of a paradigm

shift with respect to existing software safety standards: the primary determinant of a

system’s functional behaviour often lies in the mathematical models encoded within the

system. Current work on the assurance of BNSs has been piecemeal, and other work on

alternative AI approaches has generally been narrow in scope. The contributions of this

thesis in providing a comprehensive overview of BNS assurance therefore provide a first

step towards enabling assurance practitioners to understand precisely what they need to

consider when assuring a BNS.
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6.4.2 Analysis and Evaluation of Underlying Probabilistic Models

A principle weakness of existing safety guidance in the context of BNSs was identified in

Chapter 2 as being the role of models in the functional behaviours of this class of system.

In Chapter 3, the shortcomings of assurance practices in identifying system failure modes

arising as a consequence of errors in models was outlined. In both chapters, the role and

importance of these system aspects was explored. In Chapter 2, the potential concerns

associated with using existing BN model analysis techniques without the introduction of

assurance information into these analyses was discussed. A case for the need to direct

assurance efforts towards explicitly addressing these aspects was introduced in Chapter 3.

A first contribution towards the integration of assurance information into the analysis

and evaluation of BN models was then introduced. The MCA approach provides a mech-

anism for both modifying existing BN model analysis techniques to account for safety

considerations (e.g. focus on worst-case influence rather than average influence etc.), and

the explicit inclusion of safety information into these techniques. This approach is there-

fore intended to provide a targeted analysis of a BN model’s dynamics, and the potential

effect of these dynamics on the behaviour of the BNS.

Finally, Chapter 5 introduced a number of assurance techniques that could be used to

analyse and evaluate the models used in a BNS. The techniques are intentionally discussed

in relatively general terms in order to capture the broad range of possible approaches

currently available in literature. As with the modification of a standard Sensitivity Anal-

ysis (SA) approach into Chapter 4’s MCA technique, many of these techniques could be

adapted to more specifically address safety considerations. Chapter 4 also aims to stress

the importance of establishing coverage of BN model aspects as an independent assurance

process that is distinct from conventional software coverage activities.

6.4.3 Analysis and Evaluation of Underlying Data Artefacts

The scope of this thesis and the nature of the motivating example for this work has limited

the amount of research that could be performed into the analysis and evaluation of data

artefacts used both operationally and during the development of mission-critical BNSs.

Furthermore, the focus of this thesis on model aspects has been spurred - in part - by

the increasing acceptance of the need to adopt alternative approaches for data-intensive

systems that has emerged over the course of the compilation of this work. This is perhaps

best captured in the publication of the Data Safety Initiative Working Group’s Data Safety
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Guidance. While due to its scope this guidance does not rigorously explore the role of

data in AISs from an AI-centric perspective, it does provide some initial guidance that

overlaps conceptually with many of the concerns detailed in Chapters 2, 3, and 5 of this

thesis.

However, the RM-BNS introduced in Chapter 3 does provide a means of performing

qualitative analyses of the role of data artefacts in a given system. It also provides an

approach that aims to explicitly capture the role of data gathering activities in the devel-

opment and assurance of BNSs. This is likely to be the most challenging (and expensive)

aspect of the development of mission-critical BNSs generally. In commercial and non-

mission-critical applications, the need to rigorously evaluate all channels through which

data is acquired and processed prior to use in the training of a given system is often di-

minished: there is currently limited work on the active analysis and evaluation of data and

the auditing of data gathering practices to ensure the absence of accidental or deliberate

errors in acquired data that may produce ’undesirable’ emergent behaviours in the system

using models trained on this data. This includes manipulation of data that may be used

to train a BNS (i.e. attacks on BNSs that are effectively executed prior to the implemen-

tation of the system). This may have significant safety implications for the completed

system. The RM-BNS therefore aims to ensure that assurance practitioners understand

how errors introduced as a consequence of flawed data gathering activities may propagate

through their system to produce erroneous functional behaviours.

Chapter 4 touched on an important by-product of the MCA technique. By establishing

the criticality of individual variables within a model, and of models within a BNS, MCA

can be used to guide assurance practitioners to identify aspects of their data that are

used by high-criticality variables. While the MCA has not been extended to account for

a notion of data criticality, such a notion may be developed based upon the results of

this approach. This may be used to develop additional targeted analysis and evaluation

techniques that explore the role of data in a mission-critical BNS. However, the thesis has

identified and discussed in detail the need to understand the role of data in BNSs, and the

MCA technique and the RM-BNS framework introduced here could be used as the basis

of additional work in this area.

On a more general note, the Data Viewpoint aspects of the RM-BNS are potentially

the most challenging aspects of a BNS to assure. The infrastructure and processes that

will be required to develop a data-driven BNS for some applications will be extensive, and
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will necessitate careful review of a number of ‘Human Factors’ considerations during the

acquisition and management of data for such a system [61]. This will be further heightened

for those organisations developing BNSs that utilise data from distributed sources, or

for highly novel applications. Developing a robust set of data acquisition processes and

the corresponding infrastructure may prove to be a limiting factor in the ability of an

organisation to deploy a BNS.

6.4.4 Analysis and Evaluation of Underlying Computational Techniques

As with analysis and evaluation techniques targeting data aspects, the scope of the thesis

has forced the deprecation of research into the development of approaches for analysing

and evaluating computational techniques used in mission-critical BNSs. As with the data

aspects, Chapters 3 and 5 have introduced the need to evaluate the role of learning and

inference approaches in the behaviour of a completed BNS. In particular, the RM-BNS

viewpoints introduced in Chapter 3 aim to ensure that the properties of a selected BN

learning technique are understood, and the potential safety implications are known to

assurance practitioners. This once again provides a framework for the qualitative analysis

of the role of learning and inference approaches, and the interactions of these aspects with

system aspects associated with the RM-BNS’s Model and Data Viewpoints.

6.5 Conclusion

This chapter has demonstrated that the contributions of this thesis provide new mecha-

nisms for facilitating the targeted assurance of the unconventional aspects of BNSs. It has

provided a limited demonstration of these techniques on a case study, and evaluated the

results of this case study against the thesis hypothesis and other practical considerations.

This chapter – and the thesis generally – provide a first centralised overview of the assur-

ance challenges of BNSs, and provide guidance on how some of these assurance challenges

can be identified and addressed. Ultimately, it will be through the practical application

of these ideas to a BNS that the effectiveness and utility of these contributions will be

established.
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Conclusion

7.1 Summary of Thesis Contributions

This thesis has made the following contributions:

• It has identified the key challenges for the assurance of BNSs and identified a number

of important distinctions between conventional software systems and BNSs. These

insights have been condensed and organised into a structured set of viewpoints on

BNSs that define these challenges and can be used to support targeted assurance

efforts.

• It has provided a new, structured, comprehensive framework for describing and

analysing BNSs. This framework has been designed to expose the interactions be-

tween disparate aspects of BN models and to help ensure BN developers and assur-

ance practitioners can communicate effectively about the properties of a BNS. This

framework was then used to generate a set of flexible verification and validation ob-

jectives that can be used to target and comprehensively address assurance challenges

for BNSs.

• It has provided a new technique for performing targeted analyses of BN models, and

outlined how this can be used to establish the criticality of model components within

a BN model.

• It has provided an approach for describing and understanding safety evidence gener-

ated during the development of a BNS. It has provided guidance on the assurance of

BNSs that may be used to support the satisfaction of verification and validation ob-
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jectives and to address the challenge of sufficiency of evidence and assurance efforts

in the development of BNSs used in safety-critical applications.

This chapter is structured as follows. An overview of the the key contributions of

this thesis is provided. This overview discusses the novelty and necessity of the work

introduced in this thesis. Next, it gives a short summary of potential limitations of this

work in the context of the application of the techniques and concepts to the deployment

of a BNS in a safety-critical role. The following section then builds upon this to suggest a

number of potential directions for future work. Finally, the chapter concludes with some

high-level considerations for assurance practitioners working towards the deployment of

AISs in safety-critical roles.

7.1.1 Contribution - A Multi-Viewpoint Approach to BNS Assurance

Early in the course of the research carried out for this research project, it became clear that

there were no existing approaches for explicitly communicating the distinctions between

conventional software systems and BNSs to both safety practitioners and BN develop-

ers. The recognition of the necessity for a framework that supports the omnidirectional

communication of BN-specific assurance concerns was therefore the motivation for the

definition of the RM-BNS and its associated verification and validation objectives.

At the heart of the RM-BNS framework are the six proposed viewpoints on BNSs.

These viewpoints have been defined to capture and communicate the full range of concerns

that assurance practitioners will face when attempting to assure a mission-critical BNS.

As discussed throughout this thesis, assuring a BNS will demand a more holistic approach

to software assurance than is common for many existing classes of software system. For

example, the role of the environment, the nature of the underlying mechanics that drive

functional behaviour of a BNS and the role of ancillary activities and artefacts that may

otherwise be regarded as outside the scope of a system’s definition (e.g. data gathering

activities) must be carefully considered in the context of BNSs.

Indeed, describing the assurance of a BNS (and AISs more generally) as a software

assurance problem in the conventional sense may be misleading in the first instance. The

assurance of AI is currently being approached as the assurance of a software system with

unconventional aspects. However, the complexity of this class of system does not typically

lie in the software design and implementation itself. As has been discussed in this thesis,

the complexity typically lies in the models, data, environment and operational role of the
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system being developed. Conventional software engineering concerns remain important

but are unlikely to be the overriding focus of assurance activities for this class of system.

Therefore, it may be more appropriate to describe the assurance of a modern AIS as a

new class of system with software aspects, or perhaps as the assurance of a new form of

software altogether.

Assurance practitioners working towards the assurance of these systems must consider

a broader range of concerns than in conventional software systems. Work in other fields

using alternative AI techniques repeatedly highlights the need to consider aspects of an

AIS that may be overlooked if it were to be treated as a conventional software assurance

problem. The proposed viewpoints and their constituent views therefore provide a basis

for describing and communicating the properties and assurance concerns of BNSs and

could be further generalised to accommodate other classes of AIS.

7.1.2 Contribution - Reference Model for Bayesian Network-based Sys-

tems

Chapter 3 introduced the RM-BNS framework for describing and qualitatively modelling

BNSs. This framework was designed to expose the full range of challenges that assurance

practitioners may face over the course of the development of a mission-critical BNS. As dis-

cussed in section 7.1.1, at the core of this framework are the six viewpoints on BNSs. The

modelling framework built upon these viewpoints was developed with the aim of explicitly

capturing the interactions between system aspects. Indeed, many of the most challeng-

ing design decisions during the development of a BNS arise during interactions between

Models and associated Computations (for example the selection of inference algorithms

with respect to the models the algorithm will operate on), or between Data Artefacts and

Models, where the available data may determine certain model aspects, or vice versa. The

case study in Chapter 6 indicates how the RM-BNS framework directly exposes precisely

these sorts of interactions.

There are a number of prominent, existing reference models that have been successfully

utilised in the development and analysis of complex systems. Indeed, the RM-BNS was

inspired by the RA-SDS framework utilised by NASA for modelling complex space systems.

The utility of these frameworks is well documented in systems engineering literature, and

a number of architectural frameworks are in active use in several domains – though no

such reference models existed for the description of a BNS prior to the work presented in

243



Chapter 7: Conclusion

this thesis. The aim of the RM-BNS framework is therefore to provide a similar level of

utility to BNS developers and assurance practitioners as other reference models, though

this will of course require engagement with practitioners and BN developers to refine

and expand the RM-BNS framework to meet their operational needs and to reach the

standard of the aforementioned frameworks. However, the RM-BNS framework provides

a first step towards a systematic basis for qualitatively modelling and describing BNS

system architectures, and for capturing the important interactions that may exist within

these systems.

Finally, the RM-BNS framework was used to help structure and define a set of generic

verification and validation objectives for BNSs. These objectives also represent a novel

contribution – no comprehensive set of assurance objectives has previously been produced

for BNSs. The process of refining and satisfying the objectives was outlined in Chapters 5

and 6, and the case study presented in Chapter 6 indicated the utility of the approach for an

example system. Further evaluation of the objectives in the context of ‘real-world’ systems

will be necessary to establish their flexibility and utility from an assurance perspective.

However, in their current form, the objectives provide a first step towards generating a

comprehensive, flexible set of objectives for the assurance of a BNS that could be built

upon in future work.

7.1.3 Contribution - Assurance-Focussed Model Analysis

The analysis technique introduced in Chapter 4 was developed with the aim of providing

a technique for transparently evaluating BN models from an assurance-driven perspective.

As defined in Chapter 4, Model Criticality Analysis (MCA) integrates concepts from both

the AI domain and the systems engineering domain to produce a technique that can be

used to map criticality metrics to abstract model aspects. As shown in the case study,

this can be used to provide targeted assurance of model-centric aspects and to identify

parts of a BN model that may be of particular interest from an assurance perspective.

More generally, it can be used to avoid the need to treat a BN model as a black box

and, by extension, to treat all variables within the model as equally important from a

safety perspective. On a practical level, this may produce intractable problems in some

circumstances. Instead, assurance practitioners can target specific models and model

components and address assurance concerns in proportion to the criticality of the model

aspect. The development of techniques such as this is essential if assurance practition-
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ers are to effectively expose and address the model-centric assurance concerns associated

with the deployment of BNSs (and AISs more generally) in safety-critical roles. No tech-

nique existed prior to this work that explicitly integrated assurance information into BN

evaluation techniques for the purposes of assuring the dynamics of a BN model.

At a high-level, Chapter 4 and the application of the MCA technique in Chapter 6

indicate the utility and practicability of modifying existing AI evaluation and analysis

techniques to develop new, targeted, information-rich assurance-focussed analysis tech-

niques. Indeed, going forward more developments of this type will be needed within the

safety domain if the challenges associated with establishing model coverage and the need

for model assurance are to be addressed. This will be explored more in the following

section.

7.1.4 Contribution - Evidence Framework and Sufficiency Concepts

In Chapter 5, a novel approach to describing and classifying evidence produced by tech-

niques utilised during the development of a BNS was proposed. The aim of this approach

was to capture the hierarchy that exists within evidence, and to do this in a format that

would enable communication of this information and the outputs of a particular analysis

technique between BN developers and assurance practitioners. Prior to this guidance, no

work had been performed into describing the output of BN-specific analysis techniques

using assurance-focussed language. The proposed approach therefore provides a first step

towards a systematic basis for describing and evaluating BN-specific development activities

with respect to their assurance implications. An approach such as this has not previously

been defined for BNSs.

Alongside this framework, Chapter 5 also provided guidance on possible approaches

to establishing the sufficiency of assurance efforts for mission-critical BNSs. As with the

evidence framework, there existed no prior guidance on how this may be achieved for a

BNS. The guidance provided in Chapter 5 therefore provides a step towards understanding

how the sufficiency of assurance activities may be established for BNSs and specifically

what assurance practitioners should consider when addressing system aspects associated

with the Model viewpoint.
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7.1.5 Limitations of Thesis Contributions

While the work presented in this thesis has been defined with the aim of providing a

general set of techniques and tools for developing BNSs for safety-critical applications, the

contributions presented here have been developed primarily with the motivating use-case

of this research in mind. Consequently, the work presented within this thesis has not been

extensively reviewed in the context of other potential BNS applications or BN variants.

In certain contexts, practitioners may therefore encounter some disparities between

the RM-BNS framework and its associated objectives, and the demands of their specific

use-case. This may also be true for the MCA and evidence classification approaches

introduced in Chapters 4 and 5 respectively. However, the contributions of this thesis are

intended to be sufficiently flexible that practitioners encountering these issues should face

little difficulty in adapting or extending these contributions to meet their needs.

Secondly, though the research presented here has been developed in collaboration with

BAE Systems, the techniques introduced and defined within this thesis have not been

tested as part of an active BNS development programme. As with any technique developed

in relative isolation from their intended use, the contributions of this thesis will need to

be evaluated as part of a broader engineering effort.

Finally, as discussed in Chapter 4, the MCA technique was developed to provide a

‘baseline’ analysis technique. The sensitivity analysis (SA) technique selected is among

the most simple SA techniques in use, and has known limitations with respect to remaining

a viable technique for larger BN models and with respect to the exploration of a model’s

dynamics. However, the aim of Chapter 4 was to establish a basis upon which more

advanced techniques could be developed. The need for additional research in this direction

will be discussed in more detail in the following section.

7.2 Future Work

The research conducted over the course of this project has identified a number of research

avenues. The contributions of this thesis are novel within the assurance field, and therefore

many of these avenues represent expansions or refinements of the work presented here.

However, some represent general research avenues that need to be explored if the assurance

of a BNS is to be achieved.
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7.2.1 Generalisation of Viewpoints and RM-BNS

As discussed in section 7.1.1, the RM-BNS viewpoints have been defined to address the

assurance concerns specific to BNSs. They were defined to be relatively general, and

therefore should accommodate many different BN variants, architectures and applications.

However, they may also be generalised further to accommodate AISs generally. Indeed,

there is a need for a common systematic, comprehensive framework for structuring and

describing the assurance challenges faced by AI developers and assurance practitioners.

The viewpoints and their constituent views could therefore be expanded and generalised

to capture the assurance challenges of AISs, and perhaps even to provide a conceptual

basis for developing guidance and standards for the assurance of AISs.

Some work was performed to this end over the course of this research project, though

it remained at very early stages of development. Future work in this area could look at

the applicability of the proposed viewpoints to other classes of AISs, and how they may

be refined or otherwise modified to address the considerations of other AI techniques or

applications. The application of the viewpoints to other systems and BNSs could also be

attempted to ensure their flexibility and utility in a practical setting.

7.2.2 Extension of Model Criticality Analysis

The MCA technique demonstrates the potential utility and practicability of adopting

and adapting existing BN evaluation and analysis techniques for assurance-focussed uses.

However, as previously discussed, the technique as outlined in Chapter 4 will run into

limitations in terms of its ability to scale to large BN models, and in its ability to analyse

more complex interactions within a BN model. As indicated in Chapter 4, the results of

a MCA should be considered as a simple approximation of the underlying dynamics of a

given BN model. For some models, this will be adequate. The MCA approach as outlined

in this thesis should therefore be considered to be a ‘baseline’ approach that should be

actively improved and extended.

For example, future work could explore the utilisation of more advanced sensitivity

analysis techniques in place of the simple approach adopted in Chapter 4. More sophisti-

cated techniques can be used to explore more interactions between variables within a BN

model, and may be able to do so more efficiently than the ‘baseline’ approach. This may

give a more extensive exploration of the dynamics of a BN model. As discussed in Chapter

6, any sensitivity analysis technique that can produce the metrics introduced in Chapter
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4 could be used in place of the proposed SA technique. Another avenue of research could

be the exploration of the application of the MCA approach to hybrid BN models and

any strengths or weaknesses of the technique in these cases. Finally, the potential value

of alternative metrics could be assessed and may provide further improvements to the

‘baseline’ technique introduced in Chapter 4.

7.2.3 Adaptation of BN Evaluation Techniques and Metrics

Beyond the MCA technique, there are other techniques that could be co-opted for BN-

specific assurance-focussed analyses. Indeed, there may be scope for developing general-

purpose adaptations of other techniques for use across multiple AI modelling approaches.

For example, the Receiver Operating Characteristic (ROC) outlined in Chapter 5 provides

an approach to analysing and quantifying the diagnostic performance of BN models. How-

ever, it can also be used generically to characterise the classification performance of other

AI representational frameworks. A standard approach to integrating safety or security

information into analyses such as these could enable these techniques to be used across

AISs. For example, a safety-enhanced version of the ROC may be used to evaluate a

range of systems, including those driven by BNs, Artificial Neural Networks (ANNs) and

Support Vector Machines (SVMs).

7.2.4 Refinement of the RM-BNS and Objectives

As discussed in section 7.1.2, the RM-BNS (and its associated objectives) represents a

first step towards providing a structured, comprehensive basis for modelling and assuring

BNSs. However, both the reference model and the objectives have not been tested on a

‘real-world’ project to evaluate their relative merit and limitations. Future work could

therefore look into refining and enhancing the RM-BNS by evaluating its use during the

development of a BNS and produce an updated version that reflects the input of BN

developers and assurance practitioners working on ‘real-world’ BNSs. This could produce

a more mature ‘field-tested’ RM-BNS that may be more readily adopted by assurance

practitioners.

7.2.5 Role of Data in AI

Much of this thesis has focussed on assurance concerns related to the RM-BNS Model

Viewpoint. Consequently, only a comparatively limited amount of research was performed
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on system aspects associated with the other five RM-BNS Viewpoints. Of these five, per-

haps the most rich avenue of research is likely to be around the utilisation of data in BNSs.

Indeed, there are a number of commonalities between the assurance concerns associated

with the Data Viewpoint and the concerns expressed in the Data Safety Initiative Working

Group’s Data Safety Guidance (DSG) document [144]. There may therefore be scope to

more closely integrate the language and concepts outlined in Chapters 3 and 5 with those

outlined in the DSG document.

More generally, the assurance implications and considerations associated with the pro-

cesses used to gather, manage and store data used in AISs, and the properties of the data

artefacts used to train and design a mission-critical AIS are still relatively unexplored.

Furthermore, while the DSG document does provide some guidance specifically related to

data used for Machine Learning (ML) applications, this guidance is comparatively lim-

ited. Indeed, there may be significant value in producing a DSG-like document specifically

targeting AI-specific concerns. This could perhaps build upon the concepts introduced in

Chapter 3 and outlined in the RM-BNS Data Viewpoint.

7.2.6 Addressing System Evolution

Early in the course of this research, the problem of distributional drift became apparent

as a key assurance concern for BNSs. Within the AI field, distributional drift refers to

situations when the representational framework and representational instantiation (i.e.

model) at the core of an AIS begins to diverge from ‘reality’. More concretely, the learned

representation of the world may become obsolete as the operational environment of the

system evolves over time. This may occur through planned changes to a BNS platform

or the environment within which it operates, including integration of new sensors, data-

streams or deployment to a new operational theatre, for example. It may also occur

through unplanned changes, such as changing weather patterns, demographics or other

environmental factors. In both cases, the performance of a BNS will fluctuate over time.

Many mission-critical applications will demand that the operational performance of an

AIS is maintained over an extended period. An important avenue of research is therefore

into effective ways of monitoring the evolution of a BNS with respect to its environment

over time, and how these monitoring approaches may be integrated with safety or security

information. One approach that was explored briefly during this research was the notion

of developing a second standardised AI monitoring tool to track the performance of the
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first AIS. It was envisioned that this would provide on-line validation and monitoring

capabilities and may flag when the system required ‘re-educating’. The initial idea was

to develop a second BN model to diagnose the performance of the first, though this was

ultimately abandoned as it merely moved the assurance challenge from one network to

another, without resolving the underlying technical challenge. However, there may be

value in this approach if a standardised method for diagnosing distributional drift (and

other evolution-driven errors) across distinct models can be devised.

7.3 Closing Remarks

The assurance of modern BNSs in safety-critical roles will require the adoption of tech-

niques and concepts currently alien to the broader safety engineering community. The

most radical conceptual distinctions between conventional software systems and AI sys-

tems lie in the role, capabilities and limitations of the representational frameworks (i.e.

models), the data artefacts that drive them and how they may interact with the world

around them. Being able to identify, describe and address these distinctions is an impor-

tant step for the assurance of BNSs, and AISs more generally.

Of all the diverse areas of AI research, research into the assurance of AI must be

unwaveringly clear on what precisely makes these systems different from conventional

software systems and how these specific aspects can be addressed. This was recognised in

work on the assurance of rule-based AI Systems in the 1980’s, as Rushby states [86]:

“... the best way to develop credible and effective ... assurance and evalua-

tion techniques for AI software will be to identify the facets of such software

that are inherently, or essentially, different from conventional software, and to

distinguish them from those facets that are only accidentally or inessentially

different.”

The aim throughout this work has been to introduce concepts and methodologies that

can be used to expose and address BNS-specific assurance challenges. There is no extant

assurance-focussed work on these problems in the context of BNSs, and still comparatively

limited technical work on the assurance of AISs more generally. Prior to this thesis,

no single document provided a unified approach for addressing the assurance challenges

related to the development of a BNS. The concepts and techniques presented here therefore
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represent a first step towards the assurance of BNSs, and may help shape the thinking of

assurance practitioners working within the field of AI assurance more generally.
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Appendix A

A Reference Model for Bayesian

Network-based Systems

This appendix contains a full enumeration of the constituent parts of the RM-BNS frame-

work. It is broken into three sections: Viewpoints, Objectives and Reference Model.

A.1 RM-BNS Viewpoints

Table A.1 shows the full set of RM-BNS Viewpoints with their associated descriptions and

objects.

A.2 RM-BNS Objectives

Table A.2 enumerates the full collection of RM-BNS Verification and Validation objectives.

A.3 RM-BNS Reference Model

Figure A.1 shows the RM-BNS reference model.
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Table A.1: RM-BNS Viewpoints and Objects.

Viewpoint View Description Objects

Model Structure Concerned with the structure (local and/or global) of a model. Model

Parameters Concerned with the properties (e.g. confidence, quality etc.) of

all parameters and hyperparameters used in a model.

Model

Definition Concerned with aspects of the model associated with the qualita-

tive aspects of representation, including the context of the model

and the definition of model components.

Model

Dynamics Concerned with the high-level properties and dynamics of a model. Model

Data Acquisition The acquisition view defines the sources, processes and personnel

used to obtain all data artefact.

Data Artefact, Process

Transformation This view describes all processing (e.g. normalisation, discretisa-

tion) applied to data artefacts.

Process

Management The management view describes the databases and assorted man-

agement activities used to store/archive and transfer data arte-

facts. It addresses data-specific aspects of configuration manage-

ment (e.g. training and evaluation datasets).

Process
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Table A.1: RM-BNS Viewpoints and Objects.(continued).

Viewpoint View Description Objects

Artefact This view describes the properties of each resulting data artefact

(e.g. the quality and integrity of an artefact). It is particularly

concerned with identifying and addressing sources of uncertainty

in the artefact/s.

Data Artefact

Computation Optimisation This view is concerned with all aspects related to the optimisa-

tion (learning) algorithms utilised in both the development and

deployment of a BNS.

Computation

Inference This view is concerned with all aspects related to the inference

algorithms utilised by a BNS during operational use.

Computation

Data Flow The data-flow view describes the passage of information through

the system. This is aimed at addressing concerns that may arise

through the use of certain classes of hierarchical or ensemble mod-

elling approaches.

Computation

Technology Infrastructure This view defines the tools, processes and resources needed to

develop the system.

Infrastructure

Standards This view is concerned with all standards relevant to the system

and its operation.

Framework
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Table A.1: RM-BNS Viewpoints and Objects.(continued).

Viewpoint View Description Objects

Frameworks The framework view describes the modelling frameworks that will

be used in the system. This includes Knowledge Engineering and

any BN development frameworks, and the implications of these

frameworks for the BNS (e.g. performance trade-offs, limitations

etc.).

Framework

Risk The risk view is aimed at addressing BN technology-specific devel-

opmental and operational risks. It is concerned with identifying

any risks arising from developing a BNS, in terms of both the

project itself (e.g. time and expense), and any novel cultural, en-

vironmental, safety and/or security risks that may be introduced

through the development and operation of a BNS.

Framework, Infrastruc-

ture

Operational Requirements This view represents concerns associated with establishing objec-

tives for the system, and capabilities that must be achieved.

Capability

Scenario This view is concerned with how the system will be deployed, as

well as demonstrable and potential latent properties of the system

in those contexts.

Scenario, Capability
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Table A.1: RM-BNS Viewpoints and Objects.(continued).

Viewpoint View Description Objects

Evolution The evolution view refers to concerns associated with the change

of the target platform over time, both in the terms of engineered

platform change, and change due to age, operational tempo or

location etc. See also OV-4 and OV-5.

Environment, Scenario

Environment Environmental concerns include the effect of ambient environmen-

tal aspects, including atmospheric properties and weather.

Environment

Maintenance This view is concerned with maintenance practices used with re-

spect to the system, and the target platform. It is aimed at ad-

dressing concerns related to the standardisation of maintenance

practices across all sites/operational theatres and the elimination

of maintenance practices that may result in degraded performance

of BNSs (e.g. introducing errors due to distributional drift).

Environment, Capabil-

ity

Implementation Software This view is concerned with ‘conventional’ software aspects of the

system. This includes all typical software design, implementation

and testing concerns.

Function, Resource
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Table A.1: RM-BNS Viewpoints and Objects.(continued).

Viewpoint View Description Objects

Hardware This view addresses any hardware aspects of the system. In par-

ticular, sensors used to provide input into BN models and any

pertinent features of the target platform/ environment into which

the BNS is to be deployed including memory and compute power.

Function, Resource

Architecture The Architecture view addresses concerns associated with the

high-level system architectural aspects of a BNS. This includes

all ‘conventional’ system design considerations, including the top-

level allocation of functionality to hardware and software compo-

nents.

Function

Integration This view is aimed at addressing all activities necessary to – for

example – transfer a system from a simulation environment into

a target platform.

Function, Resource
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Table A.2: RM-BNS Objectives.

Viewpoint View Identifier Objective

Model Structure MV-1.1 Establish and justify the basis for using the [structural variant] for the

[Model].

MV-1.2 Establish and justify the any assumptions in the structure of the [Model].

MV-1.3 Establish and justify the implemented structure of the [Model].

MV-1.4 Establish and justify confidence in the structure of the [Model].

Parameters MV-2.1 Establish and justify the precision of the parameterisation of [Model].

MV-2.2 Establish and justify the accuracy of the parameterisation of [Model].

MV-2.3 Establish and justify any assumptions in parameterisation of [Model].

MV-2.4 Establish and justify the confidence in the parameterisation of [Model].

Definition MV-3.1 Establish and justify the definition of the [Model].

MV-3.2 Establish and justify any assumptions in the [Model] definition.

MV-3.3 Establish and justify the context and scope of the [Model] definition.

MV-3.4 Establish and justify the confidence in the [Model] definition.

Dynamics MV-4.1 Establish and justify the dynamics of the [Model].

MV-4.2 Establish the justify any assumptions in the dynamics of the [Model].

MV-4.3 Establish and justify any constraints on the dynamics of the [Model].

MV-4.4 Establish and justify the necessity of the [Model] dynamics.
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Table A.2: RM-BNS Objectives (continued).

Viewpoint View Identifier Objective

MV-4.5 Establish and justify confidence in the dynamics of the [Model].

Data Artefact DV-1.1 Establish and justify the type of the [Data Artefact].

DV-1.2 Establish and justify the integrity of the [Data Artefact].

DV-1.3 Establish and justify the precision of the [Data Artefact].

DV-1.4 Establish and justify the sufficiency of the [Data Artefact].

DV-1.5 Establish and justify the accuracy of the [Data Artefact].

DV-1.6 Establish and justify any assumptions in the [Data Artefact].

DV-1.7 Establish and justify the confidence in the [Data Artefact].

Process DV-2.1 Establish and justify the type of the data transformation [Process].

DV-2.2 Establish and justify the necessity of the data transformation [Process].

DV-2.3 Establish and justify any assumptions in the use of the data transfor-

mation [Process].

DV-2.4 Establish and justify confidence in the data transformation [Process].

Acquisition DV-3.1 Establish and justify the types of the data acquisition [Process].

DV-3.2 Establish and justify the necessity of the data acquisition [Process].

DV-3.3 Establish and justify any assumptions made during data acquisition

[Process].
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Table A.2: RM-BNS Objectives (continued).

Viewpoint View Identifier Objective

DV-3.4 Establish and justify the resilience of the [Process] activities to opera-

tional change.

DV-3.5 Establish and justify confidence in the data acquisition [Process].

Management DV-4.1 Establish and justify the integrity of the data management [Process].

DV-4.2 Establish and justify the necessity of the data management [Process].

DV-4.3 Establish and justify the resilience of management [Process] to opera-

tional change.

DV-4.4 Establish and justify confidence in any ‘physical’ dependencies of the

data management [Process].

DV-4.5 Establish and justify confidence in the data management [Process].

Computation Optimisation CV-1.1 Establish and justify the necessity of optimisation [Computation].

CV-1.2 Establish the dynamics of [Optimisation Algorithm].

CV-1.3 Establish the accuracy of [Optimisation Algorithm].

CV-1.4 Establish and justify the objective of the [Optimisation Algorithm].

CV-1.5 Establish and justify any assumptions associated with the [Optimisation

Algorithm].

CV-1.6 Establish and justify confidence in [Optimisation Algorithm].

Inference CV-2.1 Establish and justify the necessity of [Inference Algorithm].
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Table A.2: RM-BNS Objectives (continued).

Viewpoint View Identifier Objective

CV-2.2 Establish and justify the dynamics of [Inference Algorithm].

CV-2.3 Establish and justify any assumptions associated with the [Inference

Algorithm].

CV-2.4 Establish and justify confidence in [Inference Algorithm].

Data Flow CV-3.1 Establish and justify the necessity of data-flow/fusion technique.

CV-3.2 Establish and justify all assumptions in data-flow/fusion technique.

CV-3.3 Establish and justify confidence in data-flow/fusion technique.

Operational Requirements OV-1.1 Establish and justify the operational requirements of the [System].

OV-1.2 Establish and justify the necessity of the operational requirements of the

[System].

OV-1.3 Establish and justify the contraints on the operational requirements of

the [System].

OV-1.4 Establish and justify confidence in the operational requirements of the

[System].

Scenario OV-2.1 Establish and justify the necessity of the system for the [Scenario].

OV-2.2 Establish and justify the manner of the utilisation of the system in the

[Scenario].
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Table A.2: RM-BNS Objectives (continued).

Viewpoint View Identifier Objective

OV-2.3 Establish and justify confidence in the functionality of the system in the

[Scenario].

Evolution OV-3.1 Establish aspects of the system that will be exposed to evolution of the

system or [Environment].

OV-3.2 Establish and justify the necessity of the exposure of the system to

evolving system or [Environment] aspects.

OV-3.3 Establish and Justify any assumptions about the evolution of the system

in the operational [Environment].

OV-3.4 Establish and justify the [Process] for monitoring the validity of the

system.

OV-3.5 Establish and justify confidence in the [Process] for accomodating system

evolution.

Environment OV-4.1 Establish and justify the operational [Environment] for the system.

OV-4.2 Establish and justify the context and scope of the operational [Environ-

ment] for the system.

OV-4.3 Establish and justify the necessity of interactions between the [Environ-

ment] and the system.
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Table A.2: RM-BNS Objectives (continued).

Viewpoint View Identifier Objective

OV-4.4 Establish and justify interactions between the [Environment] and the

system.

OV-4.5 Establish and justify confidence in the utilisation of the system in the

target [Environment].

Maintenance OV-5.1 Establish and justify the [Process] used for the maintenance of the sys-

tem.

OV-5.2 Establish and justify the resilience of the maintenance [Process] to

changes in the operational [Environment].

OV-5.3 Establish and justify the standard of maintenance staff and facilities

used to carry out the [Process].

OV-5.4 Establish and justify the dependence of the system’s performance on the

maintenance [Process].

OV-5.5 Establish and justify confidence in the [Process] for the maintenance of

the system.

Implementation Software IV-1.1 Establish and justify the necessity of the software [Function].

IV-1.2 Justify the implementation decisions for the software [Function].

IV-1.3 Establish and justify confidence in the functional behaviour of the soft-

ware [Function].
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Table A.2: RM-BNS Objectives (continued).

Viewpoint View Identifier Objective

Hardware IV-2.1 Establish and justify the necessity of the hardware [Function].

IV-2.2 Establish and justify the integrity of the hardware [Function].

IV-2.3 Establish and justify confidence in the functional behaviour of the hard-

ware [Function].

Architecture IV-3.1 Establish and justify the architecture of the system.

IV-3.2 Establish and justify the integrity of the architecture of the system.

IV-3.3 Establish and justify confidence in the architecture of the system.

Integration IV-4.1 Establish and justify the objective of the integration [Process].

IV-4.2 Establish and justify the necessity of the integration [Process].

IV-4.3 Establish and justify the utilisation of the integration [Process].

IV-4.4 Establish and justify confidence in the integration [Process].

Technology Infrastructure IV-1.1 Establish and justify the necessity of the [Infrastructure].

IV-1.2 Establish and justify the capabilities of the [Infrastructure].

IV-1.3 Establish and justify the integrity of the [Infrastructure].

IV-1.4 Establish and justify confidence in the [Infrastructure].

Standards IV-2.1 Establish and justify the standards [Framework] applicable to the sys-

tem.
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Table A.2: RM-BNS Objectives (continued).

Viewpoint View Identifier Objective

IV-2.2 Establish the limitations of the standards [Framework]with respect to

the system.

IV-2.3 Establish and justify the confidence in mitigating the limitations of the

standards [Framework].

Frameworks IV-3.1 Establish and justify the selection of the chosen [Framework].

IV-3.2 Establish and justify the necessity of the chosen [Framework].

IV-3.3 Establish and justify the use-case of the [Framework].

IV-3.4 Establish and justify confidence in the [Framework].

Risk IV-4.1 Establish and justify the risks of using the chosen [Framework].

IV-4.2 Establish and justify the necessity of the risks associated with the chosen

[Framework].

IV-4.3 Establish and justify confidence in the acceptability of risks associated

with the chosen [Framework].
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Figure A.1: The RM-BNS reference model.
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Appendix B

Beinlich ALARM Model

This appendix contains the Bayesian Network model defined by Beinlich et al [136]. This

model was used in the case study presented in Chapter 6. When used alongside the Apollo

package (see Appendix C), this model can replicate the results of presented in that chapter.

B.1 Beinlich Model (HUGIN Format)

net

{

}

node HISTORY

{

states = ( "TRUE" "FALSE" );

}

node CVP

{

states = ( "LOW" "NORMAL" "HIGH" );

}

node PCWP

{

states = ( "LOW" "NORMAL" "HIGH" );

}

node HYPOVOLEMIA

{

states = ( "TRUE" "FALSE" );

}
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node LVEDVOLUME

{

states = ( "LOW" "NORMAL" "HIGH" );

}

node LVFAILURE

{

states = ( "TRUE" "FALSE" );

}

node STROKEVOLUME

{

states = ( "LOW" "NORMAL" "HIGH" );

}

node ERRLOWOUTPUT

{

states = ( "TRUE" "FALSE" );

}

node HRBP

{

states = ( "LOW" "NORMAL" "HIGH" );

}

node HREKG

{

states = ( "LOW" "NORMAL" "HIGH" );

}

node ERRCAUTER

{

states = ( "TRUE" "FALSE" );

}

node HRSAT

{

states = ( "LOW" "NORMAL" "HIGH" );

}

node INSUFFANESTH

{

states = ( "TRUE" "FALSE" );

}

node ANAPHYLAXIS
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{

states = ( "TRUE" "FALSE" );

}

node TPR

{

states = ( "LOW" "NORMAL" "HIGH" );

}

node EXPCO2

{

states = ( "ZERO" "LOW" "NORMAL" "HIGH" );

}

node KINKEDTUBE

{

states = ( "TRUE" "FALSE" );

}

node MINVOL

{

states = ( "ZERO" "LOW" "NORMAL" "HIGH" );

}

node FIO2

{

states = ( "LOW" "NORMAL" );

}

node PVSAT

{

states = ( "LOW" "NORMAL" "HIGH" );

}

node SAO2

{

states = ( "LOW" "NORMAL" "HIGH" );

}

node PAP

{

states = ( "LOW" "NORMAL" "HIGH" );

}

node PULMEMBOLUS

{
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states = ( "TRUE" "FALSE" );

}

node SHUNT

{

states = ( "NORMAL" "HIGH" );

}

node INTUBATION

{

states = ( "NORMAL" "ESOPHAGEAL" "ONESIDED" );

}

node PRESS

{

states = ( "ZERO" "LOW" "NORMAL" "HIGH" );

}

node DISCONNECT

{

states = ( "TRUE" "FALSE" );

}

node MINVOLSET

{

states = ( "LOW" "NORMAL" "HIGH" );

}

node VENTMACH

{

states = ( "ZERO" "LOW" "NORMAL" "HIGH" );

}

node VENTTUBE

{

states = ( "ZERO" "LOW" "NORMAL" "HIGH" );

}

node VENTLUNG

{

states = ( "ZERO" "LOW" "NORMAL" "HIGH" );

}

node VENTALV

{

states = ( "ZERO" "LOW" "NORMAL" "HIGH" );
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}

node ARTCO2

{

states = ( "LOW" "NORMAL" "HIGH" );

}

node CATECHOL

{

states = ( "NORMAL" "HIGH" );

}

node HR

{

states = ( "LOW" "NORMAL" "HIGH" );

}

node CO

{

states = ( "LOW" "NORMAL" "HIGH" );

}

node BP

{

states = ( "LOW" "NORMAL" "HIGH" );

}

potential ( HISTORY | LVFAILURE )

{

data = ((0.9 0.1)(0.01 0.99)) ;

}

potential ( CVP | LVEDVOLUME )

{

data = ((0.95 0.04 0.01)(0.04 0.95 0.01)(0.01 0.29 0.70)) ;

}

potential ( PCWP | LVEDVOLUME )

{

data = ((0.95 0.04 0.01)(0.04 0.95 0.01)(0.01 0.04 0.95)) ;

}

potential ( HYPOVOLEMIA )

{

data = ( 0.2 0.8 );

}
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potential ( LVEDVOLUME | HYPOVOLEMIA LVFAILURE )

{

data = (((0.95 0.04 0.01)(0.01 0.09 0.90))((0.98 0.01 0.01)(0.05 0.90 0.05)

)) ;

}

potential ( LVFAILURE )

{

data = ( 0.05 0.95 );

}

potential ( STROKEVOLUME | HYPOVOLEMIA LVFAILURE )

{

data = (((0.98 0.01 0.01)(0.50 0.49 0.01))((0.95 0.04 0.01)(0.05 0.90 0.05)

)) ;

}

potential ( ERRLOWOUTPUT )

{

data = ( 0.05 0.95 );

}

potential ( HRBP | ERRLOWOUTPUT HR )

{

data = (((0.98 0.01 0.01)(0.3 0.4 0.3)(0.01 0.98 0.01))((0.40 0.59 0.01)

(0.98 0.01 0.01)(0.01 0.01 0.98))) ;

}

potential ( HREKG | ERRCAUTER HR )

{

data = (((0.3333333 0.3333333 0.3333333)(0.3333333 0.3333333 0.3333333)

(0.01 0.98 0.01))((0.3333333 0.3333333 0.3333333)(0.98 0.01 0.01)(0.01

0.01 0.98))) ;

}

potential ( ERRCAUTER )

{

data = ( 0.1 0.9 );

}

potential ( HRSAT | ERRCAUTER HR )

{

data = (((0.3333333 0.3333333 0.3333333)(0.3333333 0.3333333 0.3333333)

(0.01 0.98 0.01))((0.3333333 0.3333333 0.3333333)(0.98 0.01 0.01)(0.01
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0.01 0.98))) ;

}

potential ( INSUFFANESTH )

{

data = ( 0.1 0.9 );

}

potential ( ANAPHYLAXIS )

{

data = ( 0.01 0.99 );

}

potential ( TPR | ANAPHYLAXIS )

{

data = ((0.98 0.01 0.01)(0.3 0.4 0.3)) ;

}

potential ( EXPCO2 | ARTCO2 VENTLUNG )

{

data = (((0.97 0.01 0.01 0.01)(0.01 0.97 0.01 0.01)(0.01 0.01 0.97 0.01)

(0.01 0.01 0.01 0.97))((0.01 0.97 0.01 0.01)(0.97 0.01 0.01 0.01)(0.01

0.01 0.97 0.01)(0.01 0.01 0.01 0.97))((0.01 0.97 0.01 0.01)(0.01 0.01

0.97 0.01)(0.97 0.01 0.01 0.01)(0.01 0.01 0.01 0.97))) ;

}

potential ( KINKEDTUBE )

{

data = ( 0.04 0.96 );

}

potential ( MINVOL | INTUBATION VENTLUNG )

{

data = (((0.97 0.01 0.01 0.01)(0.01 0.01 0.01 0.97)(0.50 0.48 0.01 0.01)

(0.01 0.97 0.01 0.01))((0.01 0.97 0.01 0.01)(0.97 0.01 0.01 0.01)(0.50

0.48 0.01 0.01)(0.01 0.01 0.97 0.01))((0.01 0.01 0.97 0.01)(0.60 0.38

0.01 0.01)(0.97 0.01 0.01 0.01)(0.01 0.01 0.01 0.97))) ;

}

potential ( FIO2 )

{

data = ( 0.05 0.95 );

}

potential ( PVSAT | FIO2 VENTALV )
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{

data = (((1.0 0.0 0.0)(0.95 0.04 0.01)(1.0 0.0 0.0)(0.01 0.95 0.04))((0.99

0.01 0.00)(0.95 0.04 0.01)(0.95 0.04 0.01)(0.01 0.01 0.98))) ;

}

potential ( SAO2 | PVSAT SHUNT )

{

data = (((0.98 0.01 0.01)(0.98 0.01 0.01))((0.01 0.98 0.01)(0.98 0.01 0.01)

)((0.01 0.01 0.98)(0.69 0.30 0.01))) ;

}

potential ( PAP | PULMEMBOLUS )

{

data = ((0.01 0.19 0.80)(0.05 0.90 0.05)) ;

}

potential ( PULMEMBOLUS )

{

data = ( 0.01 0.99 );

}

potential ( SHUNT | INTUBATION PULMEMBOLUS )

{

data = (((0.1 0.9)(0.95 0.05))((0.1 0.9)(0.95 0.05))((0.01 0.99)(0.05 0.95)

)) ;

}

potential ( INTUBATION )

{

data = ( 0.92 0.03 0.05 );

}

potential ( PRESS | INTUBATION KINKEDTUBE VENTTUBE )

{

data = ((((0.97 0.01 0.01 0.01)(0.05 0.25 0.25 0.45)(0.97 0.01 0.01 0.01)

(0.20 0.75 0.04 0.01))((0.01 0.01 0.01 0.97)(0.01 0.29 0.30 0.40)(0.01

0.01 0.01 0.97)(0.01 0.90 0.08 0.01)))(((0.01 0.30 0.49 0.20)(0.01 0.15

0.25 0.59)(0.01 0.97 0.01 0.01)(0.20 0.70 0.09 0.01))((0.97 0.01 0.01

0.01)(0.01 0.01 0.08 0.90)(0.97 0.01 0.01 0.01)(0.01 0.01 0.38 0.60)))

(((0.01 0.01 0.08 0.90)(0.97 0.01 0.01 0.01)(0.01 0.01 0.97 0.01)(0.97

0.01 0.01 0.01))((0.10 0.84 0.05 0.01)(0.01 0.01 0.01 0.97)(0.40 0.58

0.01 0.01)(0.01 0.01 0.01 0.97)))) ;

}
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potential ( DISCONNECT )

{

data = ( 0.1 0.9 );

}

potential ( MINVOLSET )

{

data = ( 0.05 0.90 0.05 );

}

potential ( VENTMACH | MINVOLSET )

{

data = ((0.05 0.93 0.01 0.01)(0.05 0.01 0.93 0.01)(0.05 0.01 0.01 0.93)) ;

}

potential ( VENTTUBE | DISCONNECT VENTMACH )

{

data = (((0.97 0.01 0.01 0.01)(0.97 0.01 0.01 0.01)(0.97 0.01 0.01 0.01)

(0.01 0.01 0.97 0.01))((0.97 0.01 0.01 0.01)(0.97 0.01 0.01 0.01)(0.01

0.97 0.01 0.01)(0.01 0.01 0.01 0.97))) ;

}

potential ( VENTLUNG | INTUBATION KINKEDTUBE VENTTUBE )

{

data = ((((0.97 0.01 0.01 0.01)(0.97 0.01 0.01 0.01)(0.97 0.01 0.01 0.01)

(0.97 0.01 0.01 0.01))((0.30 0.68 0.01 0.01)(0.95 0.03 0.01 0.01)(0.01

0.01 0.01 0.97)(0.01 0.97 0.01 0.01)))(((0.95 0.03 0.01 0.01)(0.97 0.01

0.01 0.01)(0.01 0.97 0.01 0.01)(0.97 0.01 0.01 0.01))((0.97 0.01 0.01

0.01)(0.50 0.48 0.01 0.01)(0.97 0.01 0.01 0.01)(0.01 0.01 0.97 0.01)))

(((0.40 0.58 0.01 0.01)(0.97 0.01 0.01 0.01)(0.01 0.01 0.97 0.01)(0.97

0.01 0.01 0.01))((0.97 0.01 0.01 0.01)(0.30 0.68 0.01 0.01)(0.97 0.01

0.01 0.01)(0.01 0.01 0.01 0.97)))) ;

}

potential ( VENTALV | INTUBATION VENTLUNG )

{

data = (((0.97 0.01 0.01 0.01)(0.01 0.01 0.01 0.97)(0.01 0.01 0.97 0.01)

(0.03 0.95 0.01 0.01))((0.01 0.97 0.01 0.01)(0.97 0.01 0.01 0.01)(0.01

0.01 0.01 0.97)(0.01 0.94 0.04 0.01))((0.01 0.01 0.97 0.01)(0.01 0.97

0.01 0.01)(0.97 0.01 0.01 0.01)(0.01 0.88 0.10 0.01))) ;

}

potential ( ARTCO2 | VENTALV )
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{

data = ((0.01 0.01 0.98)(0.01 0.01 0.98)(0.04 0.92 0.04)(0.90 0.09 0.01)) ;

}

potential ( CATECHOL | ARTCO2 INSUFFANESTH SAO2 TPR )

{

data = (((((0.01 0.99)(0.01 0.99)(0.7 0.3))((0.01 0.99)(0.05 0.95)(0.7 0.3)

)((0.01 0.99)(0.05 0.95)(0.95 0.05)))(((0.01 0.99)(0.05 0.95)(0.7 0.3))

((0.01 0.99)(0.05 0.95)(0.95 0.05))((0.05 0.95)(0.05 0.95)(0.95 0.05))))

((((0.01 0.99)(0.01 0.99)(0.7 0.3))((0.01 0.99)(0.05 0.95)(0.7 0.3))

((0.01 0.99)(0.05 0.95)(0.99 0.01)))(((0.01 0.99)(0.05 0.95)(0.7 0.3))

((0.01 0.99)(0.05 0.95)(0.99 0.01))((0.05 0.95)(0.05 0.95)(0.99 0.01))))

((((0.01 0.99)(0.01 0.99)(0.1 0.9))((0.01 0.99)(0.01 0.99)(0.1 0.9))

((0.01 0.99)(0.01 0.99)(0.3 0.7)))(((0.01 0.99)(0.01 0.99)(0.1 0.9))

((0.01 0.99)(0.01 0.99)(0.3 0.7))((0.01 0.99)(0.01 0.99)(0.3 0.7))))) ;

}

potential ( HR | CATECHOL )

{

data = ((0.05 0.90 0.05)(0.01 0.09 0.90)) ;

}

potential ( CO | HR STROKEVOLUME )

{

data = (((0.98 0.01 0.01)(0.95 0.04 0.01)(0.30 0.69 0.01))((0.95 0.04 0.01)

(0.04 0.95 0.01)(0.01 0.30 0.69))((0.80 0.19 0.01)(0.01 0.04 0.95)(0.01

0.01 0.98))) ;

}

potential ( BP | CO TPR )

{

data = (((0.98 0.01 0.01)(0.98 0.01 0.01)(0.3 0.6 0.1))((0.98 0.01 0.01)

(0.10 0.85 0.05)(0.05 0.40 0.55))((0.90 0.09 0.01)(0.05 0.20 0.75)(0.01

0.09 0.90))) ;

}
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Bayesian Network Tool

C.1 Implementation Notes

A copy of the ‘Apollo’ Bayesian Network software package has been provided alongside

this thesis. This package was developed as both a learning exercise and as a means of

exploring the ideas presented in this thesis is in a more technical setting. The development

of this package and application of it to problems such as that outlined in Chapter 6

provided a number of insights into the technical challenges associated with the end-to-end

development of a BNS.

Figure C.1: A screenshot of the Apollo Dashboard app.

The package was written in Python. Experimental parts of the package were written

in Cython and C. However, for portability, stability and ease-of-use, the copy supplied
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contains only components written in pure Python. It is capable of performing exact and

approximate inference over several types of probabilistic graphical models. This includes

Markov Networks (and by extension Markov Chains), Hidden Markov Models, Conditional

Linear Gaussian Models and of course Bayesian Networks. A user interface (‘Apollo

Dashboard’) was also developed for the Apollo package. This is shown in Figure C.1.

The interface was built on top of the Qt User Interface (UI) framework. This has not been

included in the provided package due to the terms of the Qt licensing agreement.

Included in the Apollo package is an implementation of the MCA algorithm out-

lined in Chapter 4. Instructions for the installation of the package can be found in the

README.md file (this file is also available in plain text format within the package).

Directions for the use of the package are also provided in this file. The accuracy of the in-

ference engine implemented in the package was verified against two commercially available

inference engines: HUGIN Lite and SAMIAM. The primary limitation of the package with

respect to commercial solutions is speed – it is significantly slower than both HUGIN and

SAMIAM. Updates aimed at improving the performance of the package were abandoned

due to time constraints, though these could be completed if required.

As discussed in Chapters 4 and 6, the MCA implementation is a simple approach to

a complex problem. Therefore, the ‘ModelCriticalityAnalysis’ has been designed to work

with any object that conforms to the interface defined by the ‘BaseSensitivityAnalysis’

object. This is intended to support the modification of the MCA technique in the event

the package were to be used for some of the ‘Future Work’ avenues suggested in Chapter 7.

Finally, the package was developed in Python 3 and utilises a minimal set of dependencies

– the only dependency outside of Python 3’s standard library is ‘NumPy’ (Version 1.14.0

or higher).
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Abbreviations

BN Bayesian Network

BNS Bayesian Network-based System

AI Artificial Intelligence

AIS Artificial Intelligence-based System

MCA Model Criticality Analysis

RM-BNS Reference Model for Bayesian Network-based Systems

ANN Artificial Neural Network

SVM Support Vector Machine

FTA Fault Tree Analysis

FMEA Failure Modes and Effects Analysis

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronic Engineers

ISO International Organization for Standardization

UAV Unmanned Aerial Vehicle

UAS Unmanned Aerial System
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