
 

1 

 

 

Numerical Simulation of Segregation 
of Formulated Powder Mixtures 

 

 

By 

 

Mohammadreza Alizadeh Behjani 

Submitted in accordance with the requirements for the 
degree of Doctor of Philosophy 

 

 

 

The University of Leeds 

School of Chemical and Process Engineering 

 

November, 2018 

 

 

 



 

i 

 

Declaration  

The candidate confirms that the work submitted is his own, except where 

work which has formed part of jointly authored publications has been 

included. The contribution of the candidate and the other authors to this work 

has been explicitly indicated below. The candidate confirms that appropriate 

credit has been given within the thesis where reference has been made to 

the work of others. 

Parts of Chapter 3 and Chapters 4 and 5 of this thesis have already been 

published as jointly publications in the Journal of Powder Technology (Alizadeh 

et al., 2018; Alizadeh et al., 2017), Advanced Powder Technology (Behjani et 

al., 2017), and the EPJ web of conferences (Alizadeh Behjani et al., 2017). All 

the numerical simulations, data analyses, discussions, and conclusions, as 

well as some parts of the experimental works, are done by Mohammadreza 

Alizadeh Behjani. The experimental data of the segregation during the heap 

formation of the binary and ternary mixtures are mainly provided by Dr 

Maryam Asachi. Part of the experimental data of the segregation of particles 

in the binary system under vibration is provided by Dr Umair Zafar’s. Some 

of the image analyses are carried out using the software designed by Dr 

Massih Pasha. Also, part the work, which is done for generating the 

clumped-sphere particles, is conducted by Dr Mehrdad Pasha.  

1- M. Alizadeh, M. Asachi, M. Ghadiri, A. Bayly, A. Hassanpour, 2018. A 

methodology for calibration of DEM input parameters in simulation of 

segregation of powder mixtures, a special focus on adhesion. Powder 

Technology. 339, pp.789-800. https://doi.org/10.1016/j.powtec.2018.08.028 

2- M. Alizadeh, A. Hassanpour, M. Pasha, M. Ghadiri, A. Bayly, 2017. The 

effect of particle shape on predicted segregation in binary powder mixtures. 

Powder Technology. 319 (Supplement C), pp.313-322. 

https://doi.org/10.1016/j.powtec.2017.06.059 

3- M. Alizadeh Behjani, N. Rahmanian, N.F Abdul Ghani, A. Hassanpour,, 

2017. An investigation on process of seeded granulation in a continuous 

drum granulator using DEM. Advanced Powder Technology. 28(10), 

pp.2456-2464. https://doi.org/10.1016/j.apt.2017.02.011 

4- M. Alizadeh Behjani, A. Hassanpour, M. Ghadiri, A. Bayly, 2017. 

Numerical Analysis of the Effect of Particle Shape and Adhesion on the 

https://doi.org/10.1016/j.powtec.2018.08.028
https://doi.org/10.1016/j.powtec.2017.06.059
https://doi.org/10.1016/j.apt.2017.02.011


 

ii 

 

Segregation of Powder Mixtures. EPJ Web Conf. 140, p06024. 

https://doi.org/10.1051/epjconf/201714006024 

This copy has been supplied on the understanding that it is copyright 

material and that no quotation from the thesis may be published without 

proper acknowledgement. 

© 2018 The University of Leeds and Mohammadreza Alizadeh Behjani. 

The right of Mohammadreza Alizadeh Behjani to be identified as the Author 

of this work has been asserted by him in accordance with the Copyright, 

Designs and Patents Act 1988. 

 

  

https://doi.org/10.1051/epjconf/201714006024


 

iii 

 

Acknowledgment 

((In the name of God, the merciful, the compassionate)) 

“… He is the Knower of the Unseen, Whom not weight of a tiny particle 

eludes, either in the heavens or in the earth; nor is there anything smaller or 

larger than that which is not in the Clear Book.” (Qur'an, 34:3) 

My highest praise and gratitude to my Lord, the initiator, the merciful. After 

Him, I would like to send my sincere salutation to the leader of the time, 

Imam Al-Mahdi.  

Throughout the course of this PhD, I have benefited from the support, help, 

and guidance of many individuals that I like to mention few of them here: 

My sincere gratitude goes firstly to my lovely supervisors, Dr Ali Hassanpour, 

Prof Mojtaba Ghadiri, and Prof Andrew Bayly for their support, guidance, 

and constructive comments, particularly Dr Hassanpour who boosted my 

energy whenever I felt distressed, encouraged me whenever I felt hopeless, 

and supported me in various aspects of my life in the UK.  

I would like to thank my friends and colleagues at the University of Leeds, 

namely Dr Amin Farshchi, Dr Jabbar Gardi, Dr Maryam Asachi, Dr Yi He, Dr 

Rafid Abbas, and Dr Mohammad Afkhami for their support and help. Being 

next to them made my academic life shinier. In addition, I specially thank Dr 

Zohreh Amoozgar (University of Harvard) and Dr Sayed Hashim Jayhooni 

(University of British Colombia) who helped me to apply for this funded PhD 

position. 

I am also very grateful of the financial support from the UK government’s 

Advance Manufacturing Supply Chain Initiative (AMSCI) [grant number 

31587, 233189], as well as my industrial supervisor, Mrs Claire Duckitt 

(Procter and Gamble, Newcastle Innovation Centre, Longbenton, UK) for 

coordinating this project. 

I hereby would like to send my warmest regards to my brothers and sisters 

in the Ahlulbayt cultural centre of Leeds, with a special mention to Mr/Mrs 

Kourosh Tajbakhsh, Sayed Hashim Fadul, Sayed Rahil Zaydi, Akbar 

Tajbakhsh, Sayed Mohammad Mozaffari, Mojtaba Moharrer, Farshid Sefaat, 

Ehsaneh Daghigh Ahmadi, Sheikh Mojtaba Jafari, Sayed Hamid Ahmadi, 

Nejat Rahmanian, Mohammad Eskandari, Hussain Karbalaei, Zainab Al-

Hariri, Fereydoon Khangostar, Ali Elkabengi, Erol Mutlu, Zaid Shukr, Sayed 

Aymen Badruddin, AbuHuda Al-Shimmari, AbuHadi Daneshyar, AbuZeid 



 

iv 

 

Daneshyar, and other lovely brothers and sisters. I was received by them 

from the beginning of my presence in the UK very warmly and I enjoyed 

every second of their company.   

Finally and on top of all, my warmest gratitude goes towards my mother and 

father for their support and kindness all these years. They are the meaning 

of my life and I am not able to appreciate their unconditional love. I sincerely 

thank my sisters, Mrs Zahra Alizadeh and Miss Fatemeh Alizadeh, my 

brother, Mr Ali Alizadeh, and my brother in-law, Mr Sayed Hussain Mousavi 

for making my life such colourful. I am also highly grateful of my relatives’ 

supports and encouragements in different stages of my PhD, including my 

uncles, aunties, and cousins in Iran. 

 

 

 

 

To My Dear Parents 

 

  



 

v 

 

Abstract 

Granular segregation is a common and costly challenge among industries 

dealing with particulate materials. Controlling segregation requires a deep 

understanding of its underlying mechanisms. Gaining this understanding, 

experimentally, is challenging especially for polydisperse systems, where at 

least one of the main ingredients is in low-level content and highly prone to 

segregation. In this regard validated numerical simulations could overcome 

the limitations of the experimental techniques in analysing the segregation 

and its root causes.   

A relevant example is the segregation of enzyme granules with low-level 

content (less than 2% by weight) in laundry detergent powders which has 

cost and health issues for the production as well as consumers. This study 

focuses on predicting, analysing, and controlling the segregation tendency of 

minor active ingredients in polydisperse formulated powder mixtures, using 

high-fidelity numerical simulations. An extensive literature review is carried 

out on the capabilities and shortcomings of the available numerical methods; 

where the Discrete Element Method (DEM) is found to be the most suitable 

tool for mimicking the segregation phenomenon in this research project.  

The segregation of the main ingredients of the conventional home washing 

powders (i.e. Blown powder (BP), tetraacetylethylenediamine (TAED), and 

enzyme granules) during the heap formation and vibration processes is 

investigated using DEM modelling. The particles properties including size, 

density, shape, and surface properties are measured experimentally, where 

possible, and the values are calibrated for the DEM simulations. The results 

are validated against experiments, where the Enzyme Placebo granules 

(EP) are used instead of the real enzyme for the health and safety reasons. 

As a part of this study, the significance of using particle shape in simulations 

instead of employing spheres with calibrated rolling friction is investigated.  

To simulate shape in DEM, particles are scanned using X-Ray Tomography 

technique (XRT) and their shapes are approximated by the clumped-sphere 

method. The results reveal that considering the particle shape in simulations 

is a necessity, as the clumped-sphere approach reliably predicts the 

segregation during the heap formation; whereas, the rolling friction approach 

underestimates the particles segregation tendency. 

In the second part of this study, a special attention is paid to minimising the 

segregation of the minor ingredient, i.e. EP granules, which constitutes less 
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than 2% of the weight of the mixture and is highly prone to segregation. This 

is investigated through 1) making the EP granules cohesive by tackifying 

agents as well as 2) manipulating their shapes.  

For the DEM simulation of the multi-component system with the cohesive EP 

granules, the interfacial energies of the components are inferred by 

matching the experimental and simulated repose angles. In addition, a 

dimensionless Cohesion number is introduced, based on the ratio of the 

particles cohesion energy and gravitational potential energy, to scale the 

interfacial energy when reducing Young’s modulus or changing the particle 

size for minimising the computation time.  

As a result of implementing a careful calibration methodology, a good match 

between the numerical and experimental analyses of the segregation of 

minor ingredient is observed. The results show that before coating, the EP 

granules easily penetrate into the top moving layers of the powder mixture 

during the heap formation, and therefore, segregate to the central area of 

the heap. This occurs due to their high density and round shape (push-away 

effect), leaving the corners and side walls with a lower mass concentration. 

However, both approaches of coating EP granules and making their shapes 

irregular reduce their ability to penetrate the powder bed, and hence, they 

are well distributed over the entire heap. It is observed via DEM simulations 

that manipulating shapes of minor ingredients in a mixture is a possible 

alternative to the coating approach. Less compromise in flowability of 

powder mixture and less exposure to variation in surface properties through 

time are two main advantages of the shape manipulation. Nevertheless, 

manufacturing particles which have a designed shape is more complex and 

costly compared to the coating approach. It is concluded that securing a 

reliable and predictive DEM simulation of segregation of formulated powder 

mixtures is possible only if the DEM input parameters are 1) justifiably 

selected and 2) precisely calibrated. 
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Chapter 1 Introduction 

1.1 Overview 

Segregation of particulate solids is a phenomenon through which the 

homogeneity of a mixture is deteriorated by the separation of components 

due to variation in their properties. Wherever particles have relative 

movements, there is a high possibility for them to segregate. This can occur 

in nature, e.g. during a sand avalanche in a mountain and particle deposition 

on a river/sea bed, or in industry as a result of pneumatic conveying, filling, 

discharging, handling, transportation, etc. 

Segregation is a serious challenge that many industries face on a daily basis 

and, depending on the nature of the industry, spend a considerable amount 

of money to overcome. Otherwise, segregation may impose extra costs, 

where loss of homogeneity of the formulated mixtures can lead to customer 

dissatisfaction and/or batch failure due to quality assurance examination.  

During an industrial process, segregation of particles is induced and 

accelerated by their variation in size, density, shape, and surface conditions. 

These factors can significantly reduce the mixture quality; therefore, 

controlling them is of high importance (Williams, 1976; Ottino and Khakhar, 

2000). To do so requires a good understanding of their roles.  

1.2 Context and rationale 

Understanding the root causes of the segregation of particles and their 

mitigation is challenging, especially for polydisperse systems where at least 

one of the ingredients is in low level content and highly prone to segregation. 

Some examples could be the segregation of APIs (Active Pharmaceutical 

Ingredient) in pharmaceutical powder mixtures and enzyme granules in 

laundry detergent industry, which is the case here. Wide size distribution, 

density variation, irregularity and diversity in particle shape, and various 

surface conditions are all observed in high level in such formulated powder 

mixtures, and should be taken into account in segregation analysis.  

There are various experimental methods available for assessing the effects 

of particle attributes on quality of a powder mixture before, during, or after a 

process. Some of these methods are intrusive, i.e. particle distribution 
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changes during an assessment and the powder can be used for further 

assessment. Non-intrusive methods do not intrude the bed, but have serious 

limitations in evaluating the particle distribution in three dimensions. The 

non-intrusive techniques which can provide 3D image of a powder bed are 

also very costly, time-consuming, and limited in terms of number and 

material of particles under assessment. To add to the difficulty, conducting 

tests with some materials is highly restricted in terms of health and safety. In 

this situation, gaining a deep insight into the particle’s behaviour during a 

process and understanding the elemental mechanisms of their segregation 

is extremely challenging. These limitations, however, can be simply 

overcome by using suitable numerical simulations, namely the Discrete 

Element Method (DEM) whereby individual particles are easily tracked 

spatially and temporally in a complex system. DEM enjoys the ability to 

incorporate the mechanical interactions of particles using a variety of contact 

models, which have been developed through the years. These unique 

features have made it a powerful and ever-rising technique in the field of 

particulate matters (Seville and Wu, 2016c).  

Particle size difference is arguably the most important segregation inducing 

factor which has been always taken into account in experimental and 

numerical studies. Density-induced segregation is also another case which 

has been studied by many researchers. However, the shape-driven 

segregation is not investigated as extensively, simply because it is normally 

dominated by other factors, like size and density, and hence its significance 

is overlooked. Regardless of its inherent impacts, particle shape can 

indirectly affect the significance of other factors such as density and surface 

conditions. The importance of considering the particle shape is higher in 

modelling a polydisperse system, where the components are made under 

different conditions and via different manufacturing processes. For example, 

particles made by a spray-drying process are normally more irregular in 

shape compared to those made by granulation. Often, particles of the same 

species vary in shape as well.  

Another important factor to be considered is the surface condition of the 

particles. Difference in particles surface conditions can have a huge impact 

on inducing or reducing segregation mainly by influencing the flowability of 

particles (Kim et al., 2005; Persson et al., 2011; Spillmann et al., 2008; 

Nijdam and Langrish, 2006). Difference in surface roughness, asperities, 

and adhesion/cohesion of the particles are the main factors contributing to 
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variation in surface conditions. Increasing the cohesivity of particles by 

coating with a thin layer of a tackifying agent (mainly in the form of a liquid) 

is a typical method to diminish the segregation; as cohesion stops particles 

from free relative movement and lowers the powder flowability (Li and 

McCarthy, 2003; Begat et al., 2004). In this case, finer particles are more 

affected by coating compared to the coarse ones, due to their lower 

momentum and higher granular Bond number (Hager, 2012). The presence 

of fine particles in a coated powder mixture leads to its poor flowability and in 

some cases caking and agglomeration. This is a serious issue which is 

particularly observed in the washing powder industry, where a tackifying 

liquid is introduced to the powder mixture so as to reduce the probability of 

segregation of minor active ingredients, such as the enzyme granules. This 

traditional approach has caused many issues during the conveying, 

handling, and storage of the powder mixture. An alternative approach would 

be to coat only the minor component. In this case, the segregation of the 

minor component may be reduced while the flowability of the whole mixture 

is not compromised. A comprehensive and detailed study on the feasibility 

and limitations of this approach is unavailable. DEM simulations can help us 

to understand the effects of manipulating the surface properties of minor 

ingredients on their segregation tendency. Nevertheless, securing a reliable 

DEM simulation with high fidelity requires a correct and careful 

implementation of the particle attributes in the simulations. 

A common challenge in DEM simulation of powder mixtures is how to model 

the effects of cohesion and shape of particles so as to reproduce their bulk 

behaviour accurately. This is of high importance when the particle stiffness 

and size are scaled to tackle the computational demand of DEM simulations. 

A rigorous and reliable methodology for modelling and calibrating DEM input 

parameters based on particles physical and mechanical properties is still 

lacking. In this study, much attention is paid to developing such methodology 

whereby the DEM input parameters, including the particles cohesion and 

shape, will be calibrated and inferred reliably.  

1.3 Objective and thesis structure 

In summary, the main focus of this research has been on studying the 

segregation tendency of particles in polydisperse powder mixtures, using 

numerical simulations. This study is part of a bigger Advance Manufacturing 

Supply Chain Initiative (AMSCI) project, termed Chariot, which aims to 
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harness new innovations to enhance the quality of powder manufacturing 

and processing for diverse applications, such as healthcare, consumer 

goods, personal care, food, etc. The current research project consists of 

both experimental and numerical works. More details of the experimental 

work, used as validation data, can be found in (Asachi, 2018). This research 

aims to enhance our capability of predicting and analysing the segregation 

phenomenon and understating its mechanisms in association with physical 

and mechanical attributes of particles. These aims have been pursued 

through the following areas: 

1- Evaluating the significance of particle shape in granular segregation 

by comparing the results from two approaches of clumped shapes 

and spheres with calibrated rolling friction. 

2- Establishing a method to find, scale, and calibrate the value of 

surface energy in the JKR model for modelling the coated particles. 

This approach should essentially follow a general rule which can be 

easily applied to other similar systems. 

3- Applying the achievements from the above investigations to a model 

system resembling a real washing powder mixture. The effect of 

manipulating surface properties on segregation tendency of minor 

components shall be investigated.  

4- Designing and tuning particle shapes for the minor component to 

reduce their segregation tendency within a powder mixture. 

This thesis consists of seven chapters. In Chapter 2, the fundamentals of the 

segregation phenomenon are delivered and different numerical and 

mathematical methodologies available in the literature for simulating and 

assessing the homogeneity of powder mixtures are reviewed based on 

which the DEM is selected for conducting the simulations. An introduction 

into the DEM and the utilised contact models is provided in Chapter 3. This 

Chapter is dedicated to describing the methodologies used to measure, 

calibrate, and tune the DEM input parameters based on particle properties. 

Using these calibration methodologies in simulations, Chapter 4 is focused 

on predicting the shape-driven segregation in binary mixtures. Chapters 5 

and 6 are dedicated to assessing potential methods for maintaining the 

homogeneity of powder mixtures. In the former chapter, the effects of 

manipulating the surface adhesion of minor ingredients on minimising their 
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segregation tendency and altering the flow behaviour of the mixture are 

investigated, and in the latter, designing the shape of minor ingredients as 

an alternative to coating them is proposed and studied. The summary of the 

findings, concluding remarks, and proposals for further investigations are 

given in Chapter 7. 
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Chapter 2 Literature review  

2.1 Segregation in powder mixtures 

Segregation in powder mixtures is the opposite of granular mixing (also 

called demixing) through which dissimilar particles migrate to various 

locations of the mixture and separate from each other. Granular materials 

are highly prone to segregation which is mostly regarded as an undesirable 

phenomenon. This phenomenon is frequently observed in industry during 

powder processing and powder handling. Sometimes even a small 

difference in physical or mechanical properties of particles can lead to non-

homogeneity of the mixture. In such cases, the more effort made to mix the 

particles, the higher the chance of dissimilar particles to segregate (Ottino 

and Khakhar, 2000).  

Segregation is an old challenge for both engineers and researchers; 

nevertheless, it is still one of the focal points of today’s particle technology 

research, since the issue is still not fully solved and the mechanisms are not 

deeply understood. The behaviour and response of the granular materials to 

a certain process is very contingent on test conditions, dynamics of the 

operating device, and geometry of the container (Hildebrandt et al., 2018). 

This makes any pertinent phenomena, e.g. segregation and mixing, complex 

as well. Due to this complexity, acquiring general formulae for interpretation 

and prediction of the behaviour of the segregating particles is far from 

practice. In this regards, some efforts have been made so far, mostly by 

physicists, to model the segregation by using constitutive equations (Gray, 

2018); however, these models are valid only for special cases and not 

applicable for multicomponent systems with complex particle shapes.   

To be able to tackle the issue efficiently, a deep understanding of the 

possible root causes and factors increasing the segregation tendency of 

particles is a necessity. This understanding will accelerate and enhance our 

capability to predict particle behaviour in various granular processes and will 

provide industries with practical methods to control the homogeneity of their 

products.  

2.1.1 Advantages and disadvantages 

Granular segregation is a phenomenon easily observed in nature. As long as 

a material is in the form of particles and exposed to movement, there is a 

chance for segregation to occur. Segregation is observed in various forms in 
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nature. The sedimentation of sands and rocks on river beds forming different 

conglomerate layers is a common example.  As a result of heavy water flows 

in rivers with a gravel-bed, an “armoured” layer of coarse grains forms on the 

surface of the river whereby the finer particles beneath this layer are 

protected from erosion (Ferdowsi et al., 2017).  Another case is observed in 

percolation of fine granules through the earth structures during earthquakes 

(Zhang et al., 2011) helping the natural cycle of the earth life as well as its 

stability.  

For millennia, human beings have been utilizing the advantages of the 

segregation phenomena to separate grains from chaffs and dust or sands. 

The ancient method of separating dense grains from their chaffs by utilising 

the breeze, known as wind winnowing, is a simple type of pneumatic 

segregation which has been utilized for millennia to facilitate the provision of 

wheat and other grains as the main ingredients of human beings’ food. 

Sorting granular materials based on their size, density, and shape is also 

another example of utilising the segregation. 

Having said that, in the modern industrialised life, segregation is considered 

as an adverse factor which diminishes the homogeneity of particulate 

matters, causing various difficulties from handling and processing issues to 

deteriorating the quality of final products (Williams, 1976; Ottino and 

Khakhar, 2000). Uncontrolled segregation can impose high-cost penalties on 

industries. According to industrialists and academics of the USA, lacking a 

deep understanding of the mixing phenomenon would lead to waste of up to 

$10 billion per year; which would be more drastic on the international scale 

(Nienow et al., 1992). For instance, over-packing a product, which happens 

normally due to the density variation induced by segregation, imposes 

millions of dollars each year on industries like detergent powder 

manufacturing. In addition to over-packing penalties, inhomogeneous 

products bring about consumer dissatisfaction. A product like coffee is a 

suitable example in this regard, where it is typically perceived to have high 

quality when its granules have uniformity in texture, shape, and taste; 

segregation, of course, adversely affects this uniformity.  

Another disadvantage of segregation is manifested in batch to batch 

variation of product specifications, where consistency in products contents 

and quality is a crucial factor in consumer satisfaction. For instance, a non-

uniform distribution of enzyme granules in a pack of washing powder can 

cause damage to customers’ fabrics due to its overdose, or otherwise, an 
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imperfect wash as a result of insufficient concentration. This issue becomes 

even more important when dealing with materials with high level of 

sensitivity, like pharmaceutical products, where lack of homogeneity results 

in batch failure due to quality assurance examination (Anderson and Velez, 

2018).  

2.1.2 Mechanisms of segregation  

Segregation of granular matters occurs only in the presence of relative 

movements of particles. Therefore, any process in which particles move can 

potentially cause segregation provided that there is a minimal difference in 

particles’ physical or mechanical properties. There are many contributing 

factors leading to segregation; these can be divided into two main 

categories: 1) differences in particle properties (internal causes) and 2) 

process dynamics (external causes). From the internal causes, differences 

in size, density, shape, surface properties, and electrostatic properties are 

some of the main factors contributing to segregation (Trohidou and 

Blackman, 1995; Hogg, 2009; Shimoska et al., 2013; Shimosaka et al., 

2013). For the external causes, vibration (Brone and Muzzio, 1997), shear 

strain (Gillemot et al., 2017), fluid drag (Yu et al., 2009), and equipment 

geometry (Hajra et al., 2012), are examples causing segregation by 

percolation, sifting, projection, and elutriation mechanisms (Brone and 

Muzzio, 1997; Dury et al., 1998; Dziugys and Navakas, 2007; May et al., 

2010b; Shimosaka et al., 2013; Shimoska et al., 2013; Guo et al., 2011b; 

Lim, 2010b; Lim, 2010a). 

2.1.3 Particle properties causing segregation (internal causes) 

Particles in nature are made from various types of elements, which 

essentially have different mechanical and chemical properties. In addition to 

that, particles of the same material can have different physical properties, 

such as different size, shape, surface roughness, porosity, etc. All of these 

differences in properties of particles of similar and dissimilar materials can 

be a source of segregation. As these properties are related to the nature and 

physics of the particles, we call them internal causes. Non-uniformity of 

powder mixtures is a big challenge in particle technology and is still not 

understood and addressed perfectly. Understanding and differentiating the 

root sources of segregation will help in tackling this challenge. 
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2.1.3.1 Difference in particle size 

Particles size difference is probably the most important internal cause of 

segregation which is observed almost in all types of powder mixtures. Size-

driven segregation is commonly manifested through mechanisms such as 

convection, percolation, sieving, rolling, and projection (Brone and Muzzio, 

1997; Dury et al., 1998; Dziugys and Navakas, 2007; May et al., 2010b; 

Thomas and D'Ortona, 2018). One reason for the significance of size over 

other potential causes of segregation is the fact that particles size 

distribution and size ratio (binary mixture, ternary, etc.) can range from very 

fine particles (micrometre) to large granules (centimetre) as shown in 

Table 2.1. In other words, the size of particles in one mixture can differ by 

some orders of magnitude; whereas, this large variation does not normally 

exist for other particle attributes. 

Table 2.1: Classification of particulate materials with respect to their 
sizes (Brown and Richards, 1970; Nedderman, 1992). 

Particle size 
range 

Category 

0.1 – 1.0 μm Ultra-fine powder 

Powder 
 Usual 

working 
range 

1.0 – 10 μm Superfine powder 

10 – 100 μm Granular powder Granular 
materials 0.1 – 3.0 mm Granular solid  

3.0 – 10 mm Broken solid   

 

Particle’s size, for sure, has a direct impact on its mobility in the process; 

nevertheless, form and extent of segregation depend on the type of process 

as well as other particle properties. Taking the heap formation process for 

instance, for particles of the same density and shape, larger particles gain 

higher momentum during the falling stage; therefore continue to move for a 

longer distance due to their higher inertia; whereas the finer ones normally 

lose their energy quickly and stop in the proximity of the centre. At the same 

time, when flowing on the heap’s surface, small particles readily penetrate 

the bed and fill the voids formed between the larger particles (Mosby et al., 

1996; Stephens and Bridgwater, 1978; Musha et al., 2013); while, the big 

particles are less likely to find a void big enough to be trapped in. Hence the 

bigger particles accumulate near the corners of the heap leaving the fines in 

the centre. This effect is often referred to as rolling segregation, sifting, or 

percolation (Marucci et al., 2018; Tang and Puri, 2004; Combarros et al., 

2014). 
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The counterintuitive Brazil nut effect is probably the most famous example of 

size segregation, where the heavier Brazil nuts surprisingly place on top of 

other smaller nuts after shaking or vibrating a pack of nuts. This 

phenomenon, shown in Figure 2.1, is discussed and investigated by many 

researchers (Rosato et al., 1987; Matsumura et al., 2014; Hong et al., 

2001a; Shinbrot, 2004a; Brito and Soto, 2009; Alam et al., 2006) and also 

used as a benchmark phenomenon by which the numerical techniques are 

validated (Matsumura et al., 2014; Rosato et al., 1987; Mobius et al., 2001; 

Shinbrot, 2004b).  

 

Figure 2.1 Brazil nuts rise to the top of a mixture of nuts after shaking 
due to their bigger size (Melchoir, 2006). 

An example of size-driven segregation is shown in Figure 2.2, where Shi et 

al. (2007) have qualitatively compared the results of the experiment and 

DEM modelling of a binary mixture in a rotating drum. It is clear that finer 

particles tend to stay in the centre of the mixture while the coarser ones 

migrate to the outer layer. This arrangement is caused by variation in repose 

angles of the particles, stemming from the difference in their size, as well as 

the percolation of fine particles in the voids, which are formed by large 

particles, and penetration to bed sublayers.  
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Figure 2.2 Radial segregation of particles in a rotating circular tumbler 
due to differences in particle size. (A) Experiment and (B) DEM 
modelling. (Shi et al., 2007)1. 

2.1.3.2 Difference in density 

The effect of density on segregation tendency of particles has been 

investigated in many studies along with the effect of size difference; 

however, it can be considered as an independent segregating cause (Liao, 

2018; Pereira et al., 2014; Tripathi and Khakhar, 2013; Guo et al., 2011b; 

Lim, 2010b; Lim, 2010a; Yang, 2006; Jain et al., 2005b; Tai et al., 2010; 

Musha et al., 2013; Jain et al., 2005a; Groh et al., 2013; Arntz et al., 2014). 

Density has a definite link with the gravitational potential energy of the 

particles, which tend to decrease to the lowest possible value during a 

process, i.e. the system moves towards the most stable condition. Figure 2.3 

illustrates the segregation of same-sized particles with different densities. 

Denser particles tend to stay in the centre of the mixture while the lighter 

ones migrate to the outer layer. This is due to the fact that denser particles 

push the lighter ones away (push-away effect) during the avalanching 

process and find their way to the core of the mixture (Félix and Thomas, 

2004). On the other hand, the particle’s relative velocities in the lower side of 

the mixture, that have contact with the tumbler wall, are very low so the 

pattern that is already formed during the avalanching will be maintained in 

the lower half of the tumbler until the particles reach the avalanching point 

again.  

                                            

1 Reprinted figure with permission from [(Shi et al., 2007) as follows: Deliang Shi et 
al., Physical Review Letters, 99(14), p148001, 2007. 
http://dx.doi.org/10.1103/PhysRevLett.99.148001] Copyright (2018) by the 
American Physical Society. 

http://dx.doi.org/10.1103/PhysRevLett.99.148001
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The main cause of segregation, as suggested by Hogg (2009), is the 

difference in the ability of particles to penetrate a bed of particles. Compared 

to other internal causes such as size and shape, density has generally a 

lower impact on the penetration power of the particles, especially when there 

is a compact bed existing due to agitation or vibration. Referring to the 

aforementioned “push away” mechanism (Tanaka, 1971), in compact 

systems, the weight of denser particles, i.e. the push-away force, compared 

to the force needed to shear the bed is much smaller; therefore, penetration 

to the bed would be hard. In loose/fluidized beds, however, density might 

play a significant role (Tai et al., 2010; Yang, 2006; Cano-Pleite et al., 2017). 

An example of a loose granular system, where the particles density 

difference plays a significant role, is observed in granular mixing in rotating 

drums as shown in Figure 2.3. Also, when the particles impacting a bed 

have equal initial velocity, denser particles can penetrate more deeply to the 

bed surface due to their higher momentum. In addition to the size and 

density of the particles, shape of the container (mixer), rotation speed, and 

fill level ratio have also influence on segregation pattern (Meier et al., 2006). 

  

 

Figure 2.3 Radial segregation of particles in a rotating circular tumbler 
due to differences in particles density, (A) Experiment and (B) 
DEM modelling (Shi et al., 2007)2. 

2.1.3.3 Difference in surface condition 

Particle surface condition can have a significant impact on inducing or 

reducing segregation mainly by influencing the flowability and mobility of the 

                                            

2Reprinted figure with permission from [(Shi et al., 2007) as follows: Deliang Shi et 
al., Physical Review Letters, 99(14), p148001, 2007. 
http://dx.doi.org/10.1103/PhysRevLett.99.148001] Copyright (2018) by the 
American Physical Society. 

http://dx.doi.org/10.1103/PhysRevLett.99.148001
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particles (Figueroa et al., 2009; Tamadondar et al., 2018). Particle flowability 

is directly linked to surface conditions and texture (Kim et al., 2005; Persson 

et al., 2011; Spillmann et al., 2008; Nijdam and Langrish, 2006). The effects 

of the surface condition are manifested in surface properties, namely the 

coefficient of sliding friction and interfacial adhesion/cohesion (Dziugys and 

Navakas, 2009; Dziugys and Navakas, 2007). For example, Kim et al. 

(2005) showed that the presence of fat on the surface of spray dried milk 

powder drastically reduced its flowability; whereas for the semi-skimmed 

milk powder, surface texture was less sticky and the powder was less 

cohesive. In many cases, ambient conditions of a process, such as the 

temperature and humidity, affect the flowability of particles as well (Teunou 

and Fitzpatrick, 1999; Fitzpatrick et al., 2004; Emery et al., 2009) and 

potentially affects the extent of segregation (Tang and Puri, 2004).  

Coating particles is a common method of manipulating the particle surface 

conditions, by which the powder mixture can transfer from a cohesive to a 

free-flowing mode and vice versa (Yang et al., 2005; Zhou et al., 2011; 

Samadani and Kudrolli, 2000). While dry coating is commonly used in 

industry to increase the flowability of cohesive particles (Yang et al., 2005; 

Zhou et al., 2011; Tamadondar et al., 2018), adding binders and tackifying 

agents (mostly in the form of liquid) to the powder mixture reduces the 

particles chance to move freely and eventually helps the mixture to maintain 

its homogeneity for a longer time (McCarthy, 2009; Samadani and Kudrolli, 

2000; Li and McCarthy, 2003). However, by the latter method, the mixture 

homogeneity is maintained in the cost of a reduction in its flowability, 

causing handling problems and imposing extra costs (Kim et al., 2005; 

Persson et al., 2011; Spillmann et al., 2008; Nijdam and Langrish, 2006). In 

some cases, like pharmaceutical and detergent powder industries, there are 

only a few low-level ingredients to be stopped from segregating. In these 

cases, it is possible to coat only those target ingredients instead of the entire 

mixture. By doing so, less binding agent is used and, consequently, the 

flowability will be less compromised. However, there is a high chance for 

cohesive ingredients to agglomerate during a process and make large 

lumps, which may segregate due to their large size. The extent of the 

influence of manipulating surface properties of minor ingredients on their 

segregation tendency and flowability is not investigated yet. 
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2.1.3.4 Difference in particle shape 

Shape is an influential element in control of mobility and dynamics of 

particles. Round particles are more agile, and hence, have higher flowability. 

This causes them to form smaller repose angles and be freer to segregate. 

In contrast, irregular shapes are subject to entanglement and interlocking 

among the matrix of other particles, preventing them from free flowing and 

percolations (Shimoska et al., 2013; Shimosaka et al., 2013; Roskilly et al., 

2010; Tang and Puri, 2007; Fan et al., 2017; Soltanbeigi et al., 2018). Shape 

can also be a complementary cause to other segregation-inducing factors, 

such as density and surface condition. For example, shape has a direct 

impact on the packing density of particles, which is potentially a source for 

segregation (Roskilly et al., 2010). Differing non-sphericity can also alter the 

surface to volume ratio of the particles which ultimately alters the influence 

of surface condition on particle movement. For instance, when dealing with 

particles having sticky surfaces, their interfacial adhesive force is a function 

of their contact area, which itself is a function of particle shape (Santamarina 

and Cho, 2004). On this basis, ignoring the shape in numerical simulations 

may cause misleading results (Escudié et al., 2006). Based on the 

aforementioned remarks, the particle shape has the potential to be utilised 

as an element for controlling the mixture uniformity. This can be fulfilled via 

coordinating the shape effect with that of the size and density and requires 

more investigation. 

2.1.4 Processes causing segregation (external causes) 

It is understood that segregation occurs only when particles have relative 

movements. Clearly, most of the processes through which powders are 

manufactured, processed, conveyed, and transported lead to at least a 

minor movement of particles in one way or another. This means that every 

operation on granular mixtures is likely to induce a level of segregation. To 

name but a few, vibrating, projecting, shear flowing, hopper discharging, 

heaping and piling, tumbling, and churning are the examples of external 

causes of segregation (Duran, 2012). There are different methods proposed 

for classification of the external causes of segregation (Tang and Puri, 

2004). In the following, different classes of segregation are summarized 

according to the system input energy. Based on this, the segregation may be 

categorized as vibrational, gravitational, and shear segregation (Rosato et 

al., 2002), all of which are observed in various types of industrial processes. 
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2.1.4.1 Vibrational segregation 

Vibration is a phenomenon through which objects oscillate around an 

equilibrium point. A well-mixed powder mixture can be easily exposed to 

vibration during and after a manufacturing process. In powder processing, 

oscillations can be periodic, like the powder movements on a conveyer belt, 

or random, like the sudden movements of a box of washing powder during 

the handling and packaging. As a typical example, vibration in powder 

mixtures is observed during their transport by trucks whereby the packages 

are exposed to varying modes of shock and vibration. The modes differ 

depending on the road surface pattern and roughness, vehicles suspension 

characteristics, and vehicle speed. Vibration-induced segregation can occur 

due to various combinations of lateral, longitudinal, and vertical vibrations 

(Zeilstra et al., 2008; Steven J. Maheras, 2013; Lu et al., 2008; Lu et al., 

2010; Kim et al., 2007), all of which are observed in transport processes. A 

combination of these factors and the specifications of particulate products 

can change their homogeneity. 

Vibration mainly contributes in segregation of particles through convection of 

coarse particles to the top and percolation/diffusion of smaller ones to the 

bottom of a mixture (Rosato et al., 1991; Knight et al., 1993); however, 

Rosato et al. (2002) stated that “void-filling” is a universal sorting mechanism 

by which the particles segregate under vibration with or without the presence 

of convection. Other mechanisms such as push-away and sieving are also 

present during a vibration. Vibration can also lead to axial/lateral segregation 

depending on the dominating pattern of oscillation of a bed (Brone and 

Muzzio, 1997).   

It should be noted that vibration is a process through which both mixing and 

segregation are possible depending upon the process conditions and input 

energy intensity (Ahmad and Smalley, 1973; Xu et al., 2017). This fact that 

vibration, in some cases, not only does retard segregation but also leads to 

a homogeneous mixture, is investigated by many researchers, termed the 

reverse Brazil nut effect (Ellenberger et al., 2006; Shinbrot and Muzzio, 

1998; Ciamarra et al., 2006; Majid and Walzel, 2009; Hong et al., 2001b; Xu 

et al., 2017). In a series of experiments, Brone and Muzzio (1997) studied 

the behaviour of particles in a binary mixture under vertical vibration. They 

used glass beads with various sizes and colours to capture the size-driven 

segregation of particles induced by vibration. The radial segregation of glass 

beads, differentiated in colours, is shown in Figure 2.4. This test was carried 
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out under vertical vibrations with a frequency of 14 Hz. They observed that 

for frequencies higher than 20 Hz, the segregation patterns faded away 

(Figure 2.4 (B)) and the granular system was able to be driven back and 

forth between the heterogeneous and homogenous states just by varying the 

frequency of vibration. In other words, they suggest that the segregation 

process is reversible. 

 

 

Figure 2.4 Distribution of fine (red particles) and coarse (white 
particles) glass beads within a cylinder at (A) 14 Hz and (B) 20 Hz 
vibration frequencies. (Brone and Muzzio, 1997)3. 

2.1.4.2 Gravitational segregation 

Gravity is a natural and unavoidable element in all processes operated on 

earth; nevertheless, some processes are designed based on the effect of 

gravity. Processes such as filling (Hastie and Wypych, 1999), heap 

formation (Chen et al., 1997; Baxter et al., 1997; Battye, 2007; Drahun and 

Bridgwater, 1983), piling , chute flow (Savage and Lun, 1988; Khakhar et al., 

1999a; Dolgunin et al., 1998a), and pneumatic sorting (Xiang et al., 2010; 

Dong and Beeckmans, 1990) are all designed based on the presence of 

gravity. The segregation mechanisms mostly observed in these processes 

are trajectory, rolling, and fluidisation; although, other mechanisms are 

involved as well.  

                                            

3 Reprinted figure with permission from [(Brone and Muzzio, 1997) as follows: D. 
Brone and F. J. Muzzio, Physical Review E, 56(1), pp.1059-1063, 1997. 
http://dx.doi.org/10.1103/PhysRevE.56.1059] Copyright (2018) by the 
American Physical Society. 

http://dx.doi.org/10.1103/PhysRevE.56.1059
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A typical gravitational segregation involves free falling or tumbling/rolling of 

particles. Due to their initial gravitational potential energy, particles may gain 

different levels of kinetic energy and momentum by which they tend to travel 

to different distances. The internal causes mentioned in section 2.1.3, i.e. 

particle size, density, shape, and surface properties, may increase or 

decrease the relative movement of particles during their gravity-induced 

journeys. As a general rule, for particles with the same density, shape and 

surface properties, larger ones travel more than the finer ones due to their 

higher momentum. If the density is different while the rest of the parameters 

are kept constant, the denser particles will gain more momentum which may 

cause the “push-away” effect by which the denser particles segregate inside 

the bed (Félix and Thomas, 2004). Another reason for density-driven 

segregation can be the fact that the drag force applied on falling particles by 

the surrounding fluid, mainly air, decelerate the lighter particles more 

significantly, contributing to the higher momentum of denser ones at the time 

of hitting the bed. Higher impact velocity of the denser particles gives them 

more chance to penetrate the sublayers of the bed.     

Shape-driven segregation during gravity-based processes is less 

predictable. Taking a heap formation process as an example, from one side, 

irregularity in shape increases the particle’s interlocking and their energy 

dissipation rate (Pereira and Cleary, 2017). This reduces their mobility and 

tendency to tumble down the heap. On the other side, shape irregularity 

decreases particles packing density, and hence, increases their tendency to 

segregate to the corners of the heap. The relation between these two driving 

mechanisms is still unclear.    
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Figure 2.5 Segregation of particles due to size difference in a rotated 
square tumbler (Meier et al., 2006)4. 

2.1.4.3 Shear-induced segregation  

Powder blending/mixing is usually achieved through shearing the mixture; 

however, it can cause segregation as well, if particles vary in properties. This 

type of segregation is very contingent on surface properties and shape of 

particles; nonetheless, other particles characteristics, i.e. size and density, 

have influence as well. For example, particle surface roughness affects the 

dynamics and consequently the kinematics of particles during the shearing 

and tangential movements with respect to other neighbouring particles. If 

particles present in a mixture are different in surface roughness, their 

response to shearing forces will be different and, hence, their mobility under 

shearing is dissimilar as observed by Gillemot et al. (2017). They showed 

that smooth particles have higher chance to fill voids and, as a result, sink to 

the bottom side of a shear zone; whereas the rough ones move to the top 

layer of the mixture.  

In addition to surface roughness, the adhesion force, influenced by particle 

interfacial energy, plays a significant role in the increase/decrease of the 

shear-driven segregation. Taking the case of segregation of minor 

components in an arbitrary mixture, the mobility of the targeted particles 

under shearing can be influenced by manipulating their surface adhesion. 

However, the significance of particle surface manipulation on their agility 

under shearing is not yet clear. A similar effect can be observed due to 

shape difference of the constituents of a mixture, where one type of particles 

is more irregular than the other, and resists more against movement when 

                                            

4 Reprinted figure with permission from [(Meier et al., 2006) as follows: Steven W. 
Meier et al., Physical Review E, 74(3), 2006. 
http://dx.doi.org/10.1103/PhysRevE.74.031310] Copyright (2018) by the 
American Physical Society. 

http://dx.doi.org/10.1103/PhysRevE.74.031310
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sheared. This effect is also manifested in the steeper angle of repose of 

particles with irregular shapes (Beakawi Al-Hashemi and Baghabra Al-

Amoudi, 2018).  

In summary, segregation is caused by the following mechanisms, as 

illustrated in Figure 2.6, in presence of the external and internal causes 

during a process:  

 Rolling 

which is associated with the variation in the ability of particles to roll 

during a process. This mechanism is mainly linked to the particle 

shape and moment of inertia.  

 Sieving 

which occurs due to the large difference in particle size, where finer 

ones move through the spaces made by the larger ones and deposit 

in the lower half of the powder bed. 

 Push-away effect 

which roots in the ability of some particles to push others away and 

penetrate the bed. This mechanism is mainly linked with the particle 

density and momentum.  

 Trajectory segregation 

which refers to the ability of particles to travel during trajectory 

process. This is mainly linked with the surface to volume ratio of 

particles. 

 Percolation 

which is very similar to sieving and depends on the agility of particles 

and how easily they move and fill the empty spaces. 

 Repose angle 

which shows the resistance of particle to move in a steepened slope. 

This mechanism has some overlap with the rolling mechanisms and 

highly depends on shape and surface condition of particles. 

 Agglomeration  

which is mainly observed in presence of fine and cohesive particles. 

This mechanism is linked with particles size and surface properties 

and function by altering the particles size distribution. 

 Fluidisation segregation 

which is observed when a powder bed is fluidised and functions 

based on variation in the drag coefficient of different particles. This 

mechanism is chiefly linked with the density and surface to volume 

ratio of particles. 
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Figure 2.6 Schematic of the segregation mechanisms. 

2.1.5 Segregation indices 

Indices to quantify segregation are the same as those used to quantify the 

degree of mixing within a mixture; most of which are based on the concept of 
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variance (Akao et al., 1976; Chandratilleke et al., 2012; Asmar et al., 2002; 

Nienow et al., 1997). Nonetheless, any segregation/mixing index should 

meet certain characteristics so that it can be utilised as a reliable criterion for 

assessing the mixture’s quality. Schofield (1976) has mentioned some of 

these characteristics, as any segregation/mixing index should: 

 be sensitive enough to variations in the mixing condition, 

 be clear and comprehensible, 

 be potentially applicable to various systems,  

 be non-destructive as much as possible, 

 need the minimum experimental effort, 

 have firm mathematical and statistical basis. 

2.1.5.1 Indices dependent on sampling 

With few exceptions, nearly all of the mixing/segregation indices are 

dependent on sampling, i.e. the mixture must be divided into several 

samples, each sample should be assessed individually, and finally, they are 

compared with each other. Obviously, each sample can contain different 

components differentiated based on their chemical composition, size, 

density, colour, etc. Therefore, the composition of each sample can be 

quantified by its constituents’ mass, volume, particle number, or colour pixel 

number. The concentration of constituent 𝑖 in sample 𝑘 is denoted as 𝐶𝑖𝑘
 and 

given by Equation (2.1), 

𝐶𝑖𝑘
=

𝑁𝑖𝑘

∑ 𝑁𝑖𝑘

𝑚
𝑖=1

 
(2.1) 

To assess the quality of the mixture, it is necessary to calculate variations of 

the concentration of the constituents, 𝐶𝑖𝑘
, across different samples. To do so, 

the mean value of the concentrations, 𝜇𝑖,  is first determined as follows: 

 𝜇𝑖 =
1

𝑛
∑ 𝐶𝑖𝑘

𝑛

𝑘=1

 (2.2) 

where n is the number of samples. Then the standard deviation of the 

components concentrations is calculated by Equation (2.3), 

 

𝜎𝑖 = √
1

𝑛
∑(𝐶𝑖𝑘

− 𝜇𝑖)
2

𝑛

𝑘=1

 (2.3) 

Standard deviation provides valuable insight into the quality of mixtures. 

However, it is sometimes more common to utilize the variance, 𝜎𝑖
2, rather 
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than the standard deviation, which is also an indication of the mixture quality, 

i.e. the higher the variance of constituents’ concentration, the less uniform 

the mixture. The mixing indices have, normally, upper and lower boundaries 

defined based on the maximum and minimum values that the variance can 

take for the concentration of a particular component in the mixture. In this 

regards, Lacey (1954) shows that in a binary mixture containing particles of 

equal size, the maximum and minimum values of the variance for fully 

segregated and randomly mixed cases are obtainable from Equations (2.4) 

and (2.5) respectively. 

 𝜎0
2 = 𝑝𝑞 = 𝑝(1 − 𝑝) 

(2.4) 

 

 𝜎𝑅
2 =

𝑝(1 − 𝑝)

𝑁
 (2.5) 

where p and q are the proportions of the two components of the mixture and 

N is the number of particles in the mixture sample. Equations (2.4) and (2.5), 

as the upper and lower boundaries of the variance, are applicable only for 

the case where the particles of two kinds are in equal size; this case is very 

unlikely to happen in a real industrial process. To find the upper and lower 

boundaries of the variance for a binary mixture differing in size and density, 

Fan et al. (1979) modified the previous equations as follows:  

 𝜎0
2 =

𝜌

𝜌𝑝
𝑝(1 − 𝑝)2 + 𝑝 (1 −

𝜌

𝜌𝑝
𝑝) 

(2.6) 

 

 𝜎𝑅
2 =

𝑝𝑞

𝑀

𝜌2

𝜌𝑝𝜌𝑞

𝑚𝑝𝑚𝑞

(𝑝𝑚𝑝 + 𝑞𝑚𝑞)
 

(2.7) 

where 𝑀 is the total mass of the sample, 𝑝 and 𝑞 are the components mass 

fractions, 𝑚𝑝 and 𝑚𝑞 show the average masses of particles of the two 

components. ρ is the average density of the particles in the mixture 

expressed in Equation (2.8), and ρp and ρq show the components particle 

densities.  

 𝜌 =
𝜌𝑝𝜌𝑞

𝑞𝜌1 + 𝑝𝜌2
 

(2.8) 

If the mixture is homogeneous, i.e. the components particles are similar in 

size and density, the Equations (2.6) and (2.7) will reduce back to Equations 

(2.4) and (2.5), respectively (Fan et al., 1979). Based on the upper and lower 
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limits of the particles distribution variance, researchers proposed different 

mixing indices. The Lacey index, 𝑀𝐼𝐿, is one of the earliest and most popular 

indices proposed for a mixture of particles with particle distribution variance 

of 𝜎𝑖
2, as given in Equation (2.9): 

 𝑀𝐼𝐿 =
𝜎0

2 − 𝜎𝑖
2

𝜎0
2 − 𝜎𝑅

2
 (2.9) 

This index is supposed to vary between zero and one, indicating a fully 

segregated mixture and a randomly mixed system respectively; however, 

some researchers have argued that the values of the Lacey index are more 

inclined to the upper limit of the index, i.e. 𝑀𝐼𝐿 = 1 (Schofield, 1976) (Ashton 

and Valentin, 1966; Williams, 1968; Schofield, 1976), showing a large index 

value even for a poor mixture. To enhance the Lacey’s index performance, 

Ashton and Valentin (1966) used the logarithm of the variance in Equation 

(2.9) and proposed 𝑀𝐼𝐴 (Equation (2.10)). 

 
𝑀𝐼𝐴 = (

log 𝜎0
2 − log 𝜎𝑖

2

log 𝜎0
2 − log 𝜎𝑅

2
)

1 2⁄

 (2.10) 

This index also varies between zero and one pointing to fully segregated and 

randomly mixed systems respectively. Another index was proposed by Poole 

et al. (2014) comparing the standard deviation of a mixture with its ideal 

randomly mixed condition as expressed in Equation (2.11): 

 𝑀𝐼𝑃 =
𝜎𝑖

𝜎𝑅
 

(2.11) 

The value of this index starts from 1, showing a randomly mixed system, and 

increases as the mixture becomes less homogeneous. Another commonly 

used segregation index is the relative standard deviation, RSD, which is 

known as the coefficient of variation, CoV, as well (Cleary, 1998; Sudah et 

al., 2005; Arratia et al., 2006b; Kukukova et al., 2009; Kukuková et al., 

2008). CoV is defined as the ratio of the standard deviation to the mean 

value of the components concentration as expressed in Equation (2.12).   

 𝐶𝑜𝑉𝑖 =
𝜎𝑖

𝜇𝑖
 

(2.12) 

CoV normally ranges from zero to one, meaning no segregation (a perfectly 

mixed system) for values close to zero and highly segregated system for one 

and greater. Other indices are also available which are similar in essence to 

those mentioned so far (Massol-Chaudeur et al., 2003). 
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The Achilles heel of all of these indices is their dependence on sampling, 

either the sample size or its trial number. Also, these indices lack any ability 

to show the pattern of the segregation; therefore, a combination of 

qualitative and quantitative analysis is still needed.   

2.1.5.2 Indices independent of sampling 

If the position of the particles is known, as is the case in some numerical 

simulations, the mixture quality can be quantified by comparing the position 

of the particles of component i with the average position of all particles 

available in the mixture (Asmar et al., 2002). This index is called the 

Generalised Mean Mixing Index (GMMI) as given in Equation (2.13): 

 𝐺𝑀𝑀𝐼𝑖 = (𝐺𝑀𝑀𝐼𝑥𝑖 + 𝐺𝑀𝑀𝐼𝑦𝑖 + 𝐺𝑀𝑀𝐼𝑧𝑖) 3⁄  (2.13) 

where sub-indices x, y, and z denote the directions towards which the 𝐺𝑀𝑀𝐼𝑖 

is calculated. For example, the 𝐺𝑀𝑀𝐼 for component 𝑖 in x direction is 

calculated as following: 

 𝐺𝑀𝑀𝐼𝑥𝑖 = [
∑ (𝑥𝑖𝑗 − 𝑥𝑟𝑒𝑓)𝑛

𝑗=1

𝑛
] [

∑ (𝑥𝑘 − 𝑥𝑟𝑒𝑓)𝑁
𝑘=1

𝑁
]⁄  (2.14) 

where n shows the number of particles of component 𝑖, and N stands for the 

whole number of particles present in the mixture. Also, 𝑥𝑟𝑒𝑓 is the reference 

position on x-axis, 𝑥𝑖𝑗 is the x-coordinate of the 𝑗𝑡ℎ particle of component 𝑖, 

and  𝑥𝑘 denotes the x-coordinate of all particles of different components. For 

a perfectly mixed system, the GMMI equals one, whereas higher and lower 

values indicate segregation of component i above or below the average 

coordinates of the particles, respectively. The advantage of this method is 

that it gives some information about the location of segregation as well as 

the extent of it. However, using this method can be misleading when there is 

a symmetrical layered segregation in the mixture. In this case, the value of 

GMMI can be very close to 1, while in reality, the mixture may not be 

perfectly mixed. Also, this method cannot be readily employed for analysing 

the segregation in experiments. 

2.2 Challenges of evaluating the granular segregation  

Segregation of particles has been studied extensively in academia and 

industry. This has been fulfilled mainly through experimental investigations in 

the laboratory or in the manufacturing plants. There are various methods 

available for analysing the quality of a mixture before, during, or after a 
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process. Some of these methods are intrinsically non-intrusive, such as 

optical imaging technique, near infra-red spectroscopy (NIR), X-ray 

microtomography (XRT), Raman spectroscopy, acoustic emission 

spectrometry, magnetic resonance imaging tomography (MRI), etc. Other 

methods are inevitably intrusive, such as the wet chemistry analysis (Erni, 

1990). Anyhow, each of these techniques has its benefits and challenges 

which should be regarded before being employed.  

The challenges encountered for evaluating the uniformity of mixtures are 

related to the accuracy, cost, functionality, flexibility, and time required in 

each technique. Generally, the required time for analysing the uniformity of a 

mixture and the accuracy of the results have an inverse relation. 

Additionally, techniques having more functionality and flexibility are costlier. 

A comprehensive review of the experimental techniques, available for 

analysing mixtures uniformity, is provided by Asachi et al. (2018).  

Most of the available non-intrusive approaches can provide information 

about the particles distribution only in two dimensions, i.e. analysing the 

segregation on a surface of a particle bed. In many cases, 3D analysis of a 

mixture requires intruding the powder bed by sampling that is a 

disadvantage. Using expensive methods, such as the MRI and XRT, also 

have limitations. The MRI technique often requires particles to be coated for 

better detection and the XRT needs a significant amount of time for post-

processing of the data (Sederman et al., 2007).  

For many industries, instantaneous and in-line evaluation of the 

homogeneity of their powder mixtures is still a big challenge. Analysing the 

mixture quality in dynamic systems experimentally is not practical in some 

cases, due to the chaotic conditions of processes and low response time of 

the analysis techniques. In-line measurement techniques being used 

currently face more limitations compared to the off-line ones. Some 

techniques, like imaging and spectroscopy, only give a 2D analysis of the 

particle stream and the particles should be distinguishable either by colour or 

spectrum. These techniques often require to intrude the particle stream as 

well. Other techniques, such as the electrical capacitance tomography (ECT) 

and thermal analytical method, are only applicable if the particles are 

electrically or thermally distinguishable. Some techniques, such as the 

positron emission particle tracking (PEPT), are also highly expensive and 

still have some limitations (Parker et al., 1993).  
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Designing and building experimental setups whereby the effect of various 

parameters, such as the particle properties and process conditions, on 

inducing segregation is assessable, can be challenging. Firstly, designing an 

experiment which is representative of a real powder process is difficult, and 

more importantly, evaluating the significance of each parameter independent 

of other properties is very delicate. These limitations can be overcome by a 

validated numerical simulation, which is the topic of the next section.  

2.3 Numerical methods for simulation of segregation of 

powder mixtures 

The recent developments in computers power and numerical methods have 

turned the numerical simulations to an inevitable part of academic and 

industrial studies of particulate systems. There are many advantages 

associated with utilising numerical simulations, such as saving time, 

material, and energy. Acquiring satisfactory results out of experiments is not 

easily achieved in many cases due to tenuous environmental conditions, 

variation in material properties, shortage of measurement techniques, and 

inaccuracies, all of which have caused the numerical simulations to be 

accredited as complementary methods to experimental techniques.  

The level of complexity in particulate processes is extremely high. On 

account of the fact that particles display a combination of solids and liquid 

behaviours during a process, capturing the system’s dynamics in 

experiments, with regards to physical and mechanical properties of the 

individual particles, is very challenging. In numerical methods, on the other 

hand, the process conditions and material properties are controlled with less 

effort and cost. Having said that, achieving a valid, reliable, and efficient 

numerical model requires some effort and special considerations.  

Segregation, as a persistent challenge in academia and industry, has 

benefited tremendously from the capabilities of numerical techniques. 

Numerical simulations have improved our understanding of segregation and 

its underlying mechanisms. Various types of numerical techniques are 

reported in the literature by which the segregation of powder mixtures can be 

modelled. These methods can be categorised into two main groups of 

discrete and continuum approaches (Schlick et al., 2016; Weinhart et al., 

2013). In discrete approaches, individual particles are given identities, from 

which their physical and mechanical attributes are allocated. In this 
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approach, the movements of each particle can be observed and their 

interactions can be considered based upon the numerical methods utilised. 

The famous methods of this category are Molecular Dynamics (MD), Monte 

Carlo (MC), Discrete Element Method (DEM), and Movable Cellular 

Automata (MCA). The continuum approach, conversely, considers the whole 

domain as a continuous medium. Here, individual particles are not modelled 

separately, rather, as a bulk of connected entities. Computational Fluid 

Dynamics (CFD), constitutive models, Population Balance Modelling (PBM), 

and Finite Element Method (FEM) are some examples of the continuum 

approach. 

Taking the effect of individual particles and their interactions into 

consideration, discrete approaches are closer to the nature of granular 

matters compared to continuum approaches. The methods which are 

classified as discrete can be categorised into two groups of deterministic and 

stochastic models, based on their mathematical approaches. Deterministic 

models predict solid and determined paths for the elements of a system 

throughout the time evolution; therefore, the outputs made by a deterministic 

model should be always the same for a similar initial condition. On the other 

hand, stochastic methods, like Monte Carlo and Lattice Boltzmann, function 

based on probabilities. These methods are ideal for systems having a high 

degree of randomness. Segregation occurs in various conditions and 

through different mechanisms, and suitability of any such methods for 

modelling this phenomenon should be assessed first. Despite the ubiquitous 

usage of numerical methods for simulation of particulate segregation, there 

is still lack of a comprehensive review of the pros and cons of each method.  

Through the following sections, the aforementioned numerical approaches 

will be critically reviewed, their advantages and disadvantages will be 

discussed, and subsequently, their reliability, fidelity, applicability, and 

relevance to the present study will be assessed. 

2.3.1 Statistical and probabilistic models 

Statistical analysis and the theory of probability are of those mathematical 

branches which are historically used for predicting the behaviour of discrete 

elements under variable and determined conditions. In the context of 

granular media, statistical and probabilistic models are mostly utilised as 

complementary tools for modelling the processes of granular mixing 

(Ammarcha et al., 2012; Ponomarev et al., 2009; Doucet et al., 2008b) and 
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fluidisation (Mitrofanov et al., 2018), and occasionally to predict the granular 

segregation (Mizonov et al., 2015). Such methods function based on 

defining an initial particle content distribution and evolving probability 

functions to predict the direction of a process. For example, in the theory of 

Markov chains, as a well-known method in this field, the operating volume is 

modelled as a sample space where the temporal change of probabilities 

distribution is monitored. Based on the physics and nature of the process, 

the diffusion and convection probability terms are defined for particles of 

each position and the probability of particles presence in different parts of 

the domain of the process is predicted (Berthiaux and Mizonov, 2004). The 

advantage of this method is its time-efficiency. If a reliable method is 

established for a certain system, it has the potential to predict the process 

with reasonable accuracy in a very short time. However, this method still 

requires mathematical correlations which are supported by experimental 

data to predict the desired aspects of a particulate process. Therefore, the 

method should be tuned for each type of process separately, where adding 

an extra feature to the process requires additional considerations in the 

model. It also lacks the ability to take account of particle-particle and 

particle-wall physical interactions in a real system (Mitrofanov et al., 2018).  

Data-driven statistical models, such as Kriging, Response Surface 

Methodology (RSM), and High-Dimensional Model Representation (HDMR), 

are also popular for running sensitivity analysis for optimisation of outputs of 

chemical processes. These techniques are useful when there are many 

variables affecting a certain process and the time to run each 

experiment/simulation, for assessing the significance of those variables, is 

too lengthy. Boukouvala et al. (2012a) have discussed the applications of 

computationally low-cost models in prediction of particles behaviour in 

continuous blending processes. They try to introduce the most common 

data-driven methods and compare their performance in assessing the 

sensitivity of a case of a continuous blending process of pharmaceutical 

powders to different operating parameters. The results show a relatively 

close match for the Relative Standard Deviation (RSD) of the API (Active 

Pharmaceutical Ingredients) mass fractions versus the flow rate and impeller 

speed, as shown in Figure 2.7. Nevertheless, in spite of their time-efficiency, 

the data-driven approaches require experimental/simulation data set to 

predict the output at intermediate non-sampled conditions. Such methods 

have low fidelity due to their high level of dependence on prior data.  
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Figure 2.7: Predicted relative standard deviation against the flow rate 
and impeller rotation rate values estimated by (A) RSM, (B) 
Kriging, (C) HDMR, and (D) RSM, Kriging, and HDMR all together 
for a certain feed rate (30 kg/hr) (Boukouvala et al., 2012b)5. 

2.3.2 Continuum approach 

Continuum methods, mainly developed in continuum mechanics, are 

branches of numerical approaches in which the materials are defined as 

continuous media rather than discrete elements. Although all materials are 

made up of molecules and atoms separated by empty spaces, it is possible 

and scientifically rational to consider fluids and solids as continuous media in 

macroscale, if their masses are distributed continuously throughout the 

space. In continuum mechanics, the effect of intermolecular spaces and 

forces are considered by imposing the equivalent mechanical and physical 

properties of the material. Based on what is said so far, numerical analysis 

of a single particle or attached granules using a continuum method is quite 

reasonable and common; however, using this approach for simulating the 

                                            

5 Reprinted with permission from (Boukouvala et al., 2012b). Copyright (2012) John 
Wiley and Sons. (https://doi.org/10.1002/mame.201100054)  

https://doi.org/10.1002/mame.201100054
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behaviour of the number of discrete particles in a chaotic process is a 

delicate job and sometimes questionable.  

Continuum methods mainly work based on the Eulerian approach which 

requires less computation compared to its Lagrangian counterpart. On this 

basis, modelling some industrial processes by this approach with a real 

scale seems to be more practical. This approach is mainly used for 

modelling the particle flow processes, where the movement of a bulk of 

powder is considered similar to the fluids flow.  

Mathematical constitutive models and Computational Fluid Dynamics (CFD) 

are of the most popular continuum methods used for modelling 

segregation/mixing in particulate systems. Population Balance Method 

(PBM) is also another continuum method used in granular processes. The 

main features and applications of these techniques are described in the 

following sections.   

2.3.2.1 Mathematical constitutive models 

The first descriptions about solid mixing were introduced through making 

analogies with fluids behaviour. For example, Lacey (1954) materialized the 

terms “convective mixing”, “dispersive mixing”, and “shear mixing” for the 

first time in granular systems. The term “chaotic advection” was introduced 

by Ottino and Khakhar (2000) showing the collisional diffusion of particles. 

Sold particles flow similarly to fluids from many aspects. Nakagawa et al. 

(1993) showed some important features of particle flow in rolling regimes by 

using magnetic resonance imaging (MRI), as presented in Figure 2.8. These 

fluidic behaviours of solid particles can be modelled by constitutive 

equations which consider transport terms such as advection and diffusion 

(Gray, 2018). In tumbling drums, as presented in Figure 2.8, the regime of 

the granular flow varies with the speed of rotation. For example, a half-full 

tumbler would present four main regimes of granular flow, including 

avalanching, rolling or cascading, cataracting, and centrifuging (Ottino and 

Khakhar, 2000). These patterns are mathematically described as well, but 

mainly for monodisperse granular systems (Khakhar et al., 1997).  
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Figure 2.8: Velocity and repose angle images of particles flow at 
various angular speeds obtained by MRI technique (Nakagawa et 
al., 1993)6. 

Modelling segregation/mixing of particles using continuum approach is 

predominantly carried out for size bidisperse granular systems. These 

studies mainly include the size segregation in chute flows (Savage and Lun, 

2006; Dolgunin et al., 1998b), shallow granular flows (Gray and Thornton, 

2005; Fan et al., 2013), and shallow granular avalanches (Gray and 

Chugunov, 2006; Gajjar and Gray, 2014). There are few records of using 

continuum methods for polydisperse granular systems (Schlick et al., 2016). 

In spite of numerous studies conducted using the continuum approach, a 

comprehensive methodology which incorporates different characteristics of 

granular systems, such as particle shape, size, density, surface properties, 

and dynamics of the process, is lacking. Therefore, the application of this 

approach is mainly focused on simple cases, some of which are presented 

in Figure 2.9.  

                                            

6 Reprinted by permission from Springer Nature Customer Service Centre GmbH: 
Springer, Experiments in Fluids, 16(1), Nakagawa M. et al., Non-invasive 
measurements of granular flows by magnetic resonance imaging, pp.54-60, 
Copyright (1993). 
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Figure 2.9: Configuration of particles velocity in shallow free surface 
granular flow in bounded geometries (Fan et al., 2013)7.  

2.3.2.2 Computational Fluid Dynamics 

Among the continuum methods, Computational Fluid Dynamics (CFD) is a 

well-known tool for simulating granular processes. CFD is used to model 

granular segregation processes, either as an independent method (Mazzei 

et al., 2010; Coroneo et al., 2011b) or as a complementing method for DEM 

modelling (Hilton and Cleary, 2014; Liu et al., 2012; Engblom et al., 2012; 

Xiao and Sun, 2011; Guo et al., 2011a; Yu et al., 2009; Wang et al., 2009; Di 

Renzo et al., 2008; Di Maio and Di Renzo, 2007). In the latter case, CFD 

and DEM methods are coupled either to consider a higher number of 

particles with less computation (coarse-graining method) or to account for 

the dynamics of the fluid phase during solid-fluid flow, e.g. simulation of 

fluidised beds, where using an Eulerian approach for simulation of the fluidic 

part of the process is highly preferred (Jiang et al., 2018; Clarke et al., 2018; 

Yang et al., 2015; Azimi et al., 2015; Sharma et al., 2014; Julian et al., 2014; 

Tagliaferri et al., 2013; Rokkam et al., 2013; Al-Rashed et al., 2013; Chang 

et al., 2012; Coroneo et al., 2011a; Zbib et al., 2018; Reddy and Joshi, 2009; 

Bahramian et al., 2009; Al-Rashed et al., 2009; Cooper and Coronella, 2005; 

Agrawal et al., 2018).  

Some examples of using CFD for simulating granular mixing and 

segregation are presented in Figure 2.10 and Figure 2.11. In Figure 2.10, 

the effect of using various constitutive expressions for the particle-particle 

drag force on mass distribution and the voidage profile of the fluidised beds 

                                            

7 Reprinted with permission from (Fan et al., 2013). Copyright (2013) Royal Society 
Publishing. (http://dx.doi.org/10.1098/rspa.2013.0235) 

http://dx.doi.org/10.1098/rspa.2013.0235


 

33 

 

is presented and compared with the snapshots of the experiments. Clearly, 

differing the constitutive laws in the model leads to change in the voidage 

profile (Olumuyiwa et al., 2007). Figure 2.11 shows the volume fraction of 

pinewood and biochar solid particles in a bubbling fluidised bed simulated by 

an Eulerian-Eulerian approach in CFD (Sharma et al., 2014). It is observed 

by Sharma et al. (2014) that the biochar particles segregate to the bottom 

section of the bed and much less number of pinewood particles are 

observed at the bottom.  

Using CFD, as an independent method, for modelling powder 

mixing/segregation in non-fluidised systems is still widely lacking. More 

importantly, this method is not mechanistic and, therefore, the effects of 

shape, size, and adhesion on particles mechanical interactions are not 

predictable by CFD analysis. In other words, the constitutive laws behind the 

CFD approach should be adapted and modified for each case scenario. For 

fluidised beds, Coroneo et al. (2011a), after investigating the capability of 

their fully predictive CFD model to capture the size/density-induced 

segregation in a fluidised binary mixture, suggest that a firm deduction about 

the reliability of CFD models in predicting the dynamics of segregation is 

achievable merely after vigilant consideration of the numerical uncertainties 

for the applied conditions under investigation.  
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Figure 2.10: Snapshots of the bed voidage profiles of the (a) 
experimental and (b-e) modelling approaches, where various 
constitutive expressions are used for the particle-particle drag 
force (Olumuyiwa et al., 2007)8.  

 

                                            

8 Reprinted with permission from (Olumuyiwa, O. et al. 2007). Copyright (2007) 
John Wiley and Sons. (https://doi.org/10.1002/aic.11227) 

https://doi.org/10.1002/aic.11227
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Figure 2.11: Average volume fraction of pinewood and biochar 
granules for two and three dimensional models. (a) 2D pinewood 
model; (b) 3D pinewood model; (c) 2D biochar model; and (d) 3D 
biochar model (Sharma et al., 2014)9. 

2.3.2.3 Population Balance Modelling 

Population balance modelling (PBM) is a rather old but recently well-

received technique which has found its way through diverse branches of 

science, especially those dealing with particulate entities (Ramkrishna and 

                                            

9 Reprinted from Chemical Engineering Science, 106, Sharma, A. et al., CFD 
modeling of mixing/segregation behavior of biomass and biochar particles in a 
bubbling fluidized bed, pp.264-274, Copyright (2014), with permission from 
Elsevier. 
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Mahoney, 2002). PBM has the capability to model the formation and 

depletion of particles due to aggregation and breakage. This method 

considers the probability of the existence of particles in a specific time and 

space, where the population of constituents of the system is under control 

and balance; i.e., their birth, growth, aggregation, breakage, and death are 

monitored during a process (Braumann et al., 2007).  

In the context of granular media, the PBM is often utilised for modelling the 

mixing and fluidisation processes, in coupling with the CFD techniques 

(Akbari et al., 2015; Zhu et al., 2014; Mazzei et al., 2012) and to model the 

granulation process (Immanuel and Doyle Iii, 2003; Immanuel and Doyle III, 

2005); however, application of this method for modelling segregation of 

particles is scarce in the literature. For example, Boukouvala et al. (2012a) 

predict the concentration of API particles and their temporal and spatial 

variations at the output of a blender using PBM and a hybrid PBM-DEM 

technique. In spite of the time-efficiency of PBM, it still requires an initial 

particles distribution to be provided by either DEM simulations or 

experiments. It also lacks the ability to incorporate the effects of particles 

physical interactions into the system. 

2.3.3 Discrete approach  

Discrete modelling approaches consist of numerical methods in which 

individual members of an assembly of distinct elements are given identities 

and their positions are traced through time. The relation between the terms 

particle, as a discrete element, time, and motion is the definitive point here 

(Greenspan, 1974). It is well understood that granular media are composed 

of distinct elements, i.e. particles, which move and pause under the 

influence of external forces and interactions. On this basis, the discrete 

methods represent the nature of particles mechanistic behavior the best 

(Cundall and Strack, 1979). The famous methods of this category are the 

Molecular Dynamics (MD), Monte Carlo (MC), Discrete Element Method 

(DEM), and Cellular Automata (CA, also known as Movable Cellular 

Automata). Some of these methods, which have history and potential of 

being used in modelling particulate matters, are reviewed in this section. 

2.3.3.1 Monte Carlo 

The Monte Carlo (MC) methods are classified as stochastic discrete 

approaches in which computations and numerical models are based on 

repetitive random sampling. This method is very useful for the situations and 
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problems where a high degree of freedom and randomness exists 

(Metropolis and Ulam, 1949). Since 1946, when Monte Carlo was given a 

name for the first time by a mathematician called Stanislaw Marcin Ulam, 

many studies have been carried out using this method. This extends from 

purely mathematical and physical problems to even financial and economic 

issues. Although the MC approach has a long history in science, simulation 

of segregation in granular materials using this method is a relatively new 

application. Rosato et al.  (Rosato et al., 1991) were perhaps the first group 

to simulate the segregation of particles using the Monte Carlo method. They 

investigated the effect of size on segregation of a ternary mixture under 

vibration. Although they used a simple 2-D model, the results were in good 

agreement with previous general observations regarding the size-induced 

segregation and Brazil nut effect.  

Monte Carlo method, after DEM, is the second most used and developed 

technique for capturing the granular segregation. MC has shown a high 

capability in simulation of segregation of particulate materials (Lebovka et 

al., 2017; Granada et al., 2010; Murakami et al., 2009; Anand et al., 2005; 

Yen et al., 1998; Abreu et al., 1999; Castier et al., 1998). The effects of 

particles physical properties such as size, density, and shape on segregation 

tendency of particles are investigated in different studies. For example, 

Khakhar et al. (1999b) used the MC results as a data provider for validating 

their proposed constitutive model to simulate radial density-induced 

segregation of particles in a tumbler. Abreu et al. (2003) studied the effect of 

particle shape on segregation in a binary mixture under mechanical 

vibration. They defined a range of spherocylindrical shapes with differing 

aspect ratios to test the effect of shape on packing density and porosity of 

the bed and to ascertain the relation of segregation and packing density. 

Figure 2.12 displays the general shape of their particles and how they 

change from completely spherical (φ=0.0) to spherocylindrical shapes 

(φ=3.5).  
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Figure 2.12: Particle shape definition in Abreu et al. study (Abreu et al., 
2003)10.  

It is known that particles with equal volume but varying aspect ratios behave 

differently in the packing process and, hence, have different packing 

densities, as presented in Figure 2.13. Based on this, Abreu et al. prepared 

two mixtures containing particles with different aspect ratios and exposed 

them to vibration. After 1500 oscillations, the particles are arranged based 

on their packing densities (Figure 2.14), i.e. particles with φ=0.5, which have 

higher packing density, locate beneath the other particles; whereas, the 

elongated particles with φ=3.5 move to the top of the mixture, owing to their 

lower packing density.  

                                            

10 Reprinted from Powder Technology, 134(1-2), Abreu, C.R.A. et al., Influence of 
particle shape on the packing and on the segregation of spherocylinders via 
Monte Carlo simulations, pp.167-180, Copyright (2018), with permission from 
Elsevier. 
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Figure 2.13: Particles with equal volume but various aspect ratios 
display different packing density (Abreu et al., 2003)11.  

 

Figure 2.14: Particles segregation after 1500 shaking steps modelled 
by Monte Carlo method (Abreu et al., 2003)12. All types of particles 
have the same volume.  

                                            

11 Reprinted from Powder Technology, 134(1-2), Abreu, C.R.A. et al., Influence of 
particle shape on the packing and on the segregation of spherocylinders via 
Monte Carlo simulations, pp.167-180, Copyright (2003), with permission from 
Elsevier. 

12 Reprinted from Powder Technology, 134(1-2), Abreu, C.R.A. et al., Influence of 
particle shape on the packing and on the segregation of spherocylinders via 
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The application of MC in simulating the shape-driven segregation of particles 

under vibration is also reported by Roskilly et al. Roskilly et al. (2010). A 

range of particle shapes, shown in Figure 2.15, were used to study more 

realistic binary mixtures, containing crystalline-like forms. They used a 

commercial software package for modelling the particle packing (MacroPac 

6.2), where particles of different shapes have equal volume and undergo 

hard interactions. They suggest that in the case of high-amplitude low-

frequency oscillations, particle effective size defines the direction of the 

shape-driven segregation, where particles of larger effective size tend to 

migrate to the upper side of the mixture, as displayed in Figure 2.16.  

In spite of the high capacity of MC in simulating the granular segregation, it 

lacks a clear strategy for considering particles interactions. Contacts are not 

mechanistically modelled in the MC method and the whole approach does 

not reflect the sophistication of a real process, such as particle surface 

conditions and elastic/plastic deformations. This simplicity, of course, 

reduces the computational demand of MC, coming in the cost of lower 

fidelity. Due to its nature, Monte Carlo is very popular for solving the 

problems dealing with nano-sized and smaller particles, which have 

stochastic behaviour (Vasilakaki et al., 2018).  

 

Figure 2.15: Two types of particles in Roskilly et al. research, (A) Cube, 
(B) Jack shape (Roskilly et al., 2010)13.  

                                            

Monte Carlo simulations, pp.167-180, Copyright (2003), with permission from 
Elsevier. 

13 Reprinted from Powder Technology, 203(2), Roskilly, S.J. et al., Investigating the 
effect of shape on particle segregation using a Monte Carlo simulation, pp.211-
222, Copyright (2010), with permission from Elsevier.  
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Figure 2.16: Segregation of spherical and cubic-rectangular shapes 
after 10 shakes modelled using MC method (Roskilly et al., 2010)14. 

2.3.3.2 Cellular Automata 

The Cellular Automaton (CA) is a mathematical technique in which the 

physical space is discretized into cells assigned with discrete values of 

physical quantities marching through discrete time (Wolfram, 1983). Cellular 

automata, which is used in many fields of science such as mathematics, 

physics, complexity science, theoretical biology, and microstructure 

modelling, encounters a structured mesh in which each cell can take on a 

finite number of states, such as colour, size, velocity, etc., among a finite 

number of neighbours developed in any finite number of dimensions. The 

initial state is defined when initial conditions are allotted to each cell at t=0 

and the next states for individual cells are updated based on the initial state 

and according to the physical or mathematical governing rules.  

The Cellular Automaton is a relatively handy approach with less complexity 

compared to other discrete techniques. Nevertheless, CA is not well 

received by the community of granular material scientists and engineers, 

and therefore, a limited number of studies on granular processes have been 

carried out with this method. These studies mainly include a limited number 

                                            

14 Reprinted from Powder Technology, 203(2), Roskilly, S.J. et al., Investigating the 
effect of shape on particle segregation using a Monte Carlo simulation, pp.211-
222, Copyright (2010), with permission from Elsevier. 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Physics
https://en.wikipedia.org/wiki/Complexity_Science
https://en.wikipedia.org/wiki/Theoretical_biology
https://en.wikipedia.org/wiki/Microstructure
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of spherical particles modelled in two dimensions. For instance, Marks and 

Einav (2011) have used the cellular automata technique to model size-

induced segregation of avalanching particles on an inclination, due to the 

kinetic sieving mechanism (Figure 2.17). They used a regular one-

dimensional lattice and allocated a particle diameter 𝑑𝑖 to each discrete cell i 

mutated through time t. This research shows how a CA technique can 

capture the segregation of particles owing to size disparity; however, this 

model shows an over-simplified approach by which many aspects and 

complexities of segregation are simply ignored and its compliance with 

experiments is not investigated. Santomaso et al. (2013) studied the effect of 

mixer geometry, wall friction, and angle of repose on axial segregation in 

horizontal rotating drums. They used a CA model to mimic their experimental 

work. In their understating, the segregation can be justified by looking at the 

local gradients of the surface slope, and therefore it is controllable by local 

modification of the geometry of the mixer as well as the wall surface 

roughness. They observed a good semi-qualitative agreement between the 

experimental and CA results.  

 

Figure 2.17: a) Size-induced segregation of particles (small particles: 
orange, large particles: blue a) modelled by cellular automata, b) 
smaller particle likely to percolate in the void space, c) particles 
are swapping their locations based on frequency f (Marks and 
Einav, 2011)15. 

An undeniable advantage of the CA technique compared to other 

techniques, especially DEM, is its low computational demand, which is 

observed more clearly when a high number of particles are taken into 

account. Very recently, Marinack and Higgs (Marinack and Higgs, 2015) 

                                            

15 Reprinted by permission from Springer Nature Customer Service Centre GmbH: 
Springer, Granular Matter., 13(3), Marks, B., Einav, I., A cellular automaton for 
segregation during granular avalanches, pp.211-214, Copyright (2011).  
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developed a three-dimensional cellular automata framework to simulate 

particles behaviour inside a shear cell device. They reported accurate 

predictions from the CA model against the experimental data for local flow 

property profiles as well as the solid fraction and granular temperature of the 

particles. In addition, a parametric study is done about the effect of using the 

current proposed 3D model instead of utilizing the previous 2D models and 

DEM technique on simulation time, as displayed in Figure 2.18. This graph 

shows that the computational demand in the CA increases smoothly as 

particle number is surged in the system; whereas, DEM shows an 

exponential surge in computational time by increasing the number of 

particles.  

 

Figure 2.18: Computational efficiency of various CA and DEM models 
against the number of particles (Marinack and Higgs, 2015)16. 

The CA technique owes its low computational demand to ignoring many 

physical and mechanical aspects of the granular process. The main 

disadvantage of this method is its incapability to model realistic particle 

physical interactions and forces, i.e. mechanical contact models cannot be 

incorporated into CA. This makes it immature and unsuitable for simulation 

of particle processes having highly interactive and adhesive particles. 

2.3.3.3 Discrete Element Method (DEM) 

The Discrete Element Method, DEM, is probably the fastest developing 

mathematical model in granular materials in recent decades (Huang and 

                                            

16 Reprinted from Powder Technology, 277, Marinack, M.C. and Higgs, C.F., Three-
dimensional physics-based cellular automata model for granular shear flow, 
pp.287-302, Copyright (2015), with permission from Elsevier. 
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Kuo, 2014a). In the 1970s, mainly Cundall and Strack (Cundall, 1971; 

Cundall and Strack, 1979) along with other scientists materialized and 

developed the principals of DEM in which the Newtonian laws of motion are 

applied to describe the particle motion and their interactions with the 

implementation of certain mechanical contact models. DEM was primarily 

developed to address the geomechanical problems (Smith, 1979); 

afterwards, many other scientists followed this method to solve their complex 

particulate problems in various fields of study (Liffman et al., 2001; Rhodes 

et al., 2001; Feng and Yu, 2004; Pournin et al., 2005; Sudah et al., 2005; 

Wassgren and Curtis, 2006). However, DEM was not well received until 

nearly 2 decades later due to the fact that it was a computationally 

expensive method compared to other numerical techniques and would 

demand high-performance computers, which rarely a researcher could 

access at that time. Nevertheless, its popularity surged up significantly with 

the evolution of computer hardware. Figure 2.19 shows how the seminal 

proposed discrete element method of Cundall and Strack has been 

increasingly cited since the year 1989. Nowadays DEM has become an 

unrivalled technique in granular materials simulations due to its exclusive 

attributes.  

 

Figure 2.19: Citations referred to the Cundall and Strack (1979) seminal 
work on DEM. 
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2.3.3.4 DEM and segregation 

DEM is one of the best numerical methods for simulating the segregation of 

granular materials (Seville and Wu, 2016c). Following a deterministic 

approach, by which the individual elements in the system can be tracked 

with a reasonable accuracy, DEM has the ability to take account of various 

properties of particles, which has made it a flexible and reliable approach for 

modelling segregation/mixing processes (Huang and Kuo, 2014b).  

The early DEM-based segregation simulations date back to nearly two 

decades ago (Yosida et al., 1996; Williams and Rege, 1997; Cleary et al., 

1998; Matchett et al., 2000; Yang and Hsiau, 2000; Cleary, 2001; Liffman et 

al., 2001; Rhodes et al., 2001; Asmar et al., 2002). Despite the efforts 

needed to be made by these researchers, these studies were limited to 

simple cases without any sophistication in the process, geometry, particles 

number, and particle interactions. Simplicity in contact models, smallness in 

number of particles, spherical shapes, and two-dimensional models, were 

the main features of these studies. For example, about two decades ago, 

Cleary et al. (1998) started to carry out simple DEM simulations of 

particulate processes, e.g. particle mixing in a rotating box having pre-

segregated layers of different-sized particles. Figure 2.20 depicts the 

subsequent conditions of the mixture after 8.75 revolutions of the box and 

with 15 rpm angular velocity. In another study, Liffman et al. (Liffman et al., 

2001) investigated the effect of segregation on stress distribution in conical 

sand piles. Their study showed that ordered segregated layers of particles 

were contributing to the dip stress; whereas, a mixed heap had the lowest 

level of dip stress. DEM modelling in their study was in a good agreement 

with analytical results, but no experimental comparison was provided.  

Experimentally validated DEM simulations were scant in the beginning, and 

gradually, researchers started to validate their modelling qualitatively using 

visualisations. For example, Yang (2006) modelled the effect of density on 

segregation and mixing of particles induced by vibration. Figure 2.21 shows 

the experimental and DEM visualization of mixing of previously segregated 

particles under a vertical vibration. Although they used a simple setup for 

their experimental and numerical investigations, the results showed a big 

promise for DEM to be used as an effective technique in segregation and 

mixing problems. Quantitative validation of DEM simulations is more 

challenging due to the randomness of the granular processes as well as 

simplifications usually made in DEM modelling. In the following sections, 



 

46 

 

more recent examples of utilisation of DEM in the simulation of segregation 

and mixing processes are reviewed, and the capability of DEM to model the 

effect of particle physical and mechanical properties on their bulk behaviour 

is assessed.   

(a) 

 

(b) 

 

Figure 2.20 Illustration of a) fully segregated particle layers and b) 
semi-mixed mixture, (Cleary et al., 1998)17. 

 

 

Figure 2.21: Experimental and DEM modelling of vertically-vibrated bed 
of segregated particles with different densities (Yang, 2006)18. 

                                            

17 Reprinted from Applied Mathematical Modelling, 22(12), Cleary, P.W. et al., How 
well do discrete element granular flow models capture the essentials of mixing 
processes? pp.995-1008, Copyright (1998), with permission from Elsevier. 

18 Reprinted from Powder Technology, 164(2), Yang, S.C., Density effect on mixing 
and segregation processes in a vibrated binary granular mixture. pp.65-74, 
Copyright (2006), with permission from Elsevier. 
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2.3.3.4.1 Size-driven segregation 

Size-driven segregation of particles, due to its significance and major 

contributions, has traditionally attracted more scientific endeavours 

compared to other types of segregation and hence is more explored (Zhao 

et al., 2018; Yang et al., 2018; Yosida et al., 1996; Matchett et al., 2000; 

Hildebrandt et al., 2018; Wangchai et al., 2018; Wu et al., 2013; Thornton et 

al., 2012; Rahman et al., 2011; Zhang et al., 2004). For example, Yamane 

(2004) utilized a DEM technique to model the mechanism of segregation of 

pharmaceutical powders, having differing sizes, in a rotating cylinder. He 

showed that DEM is able to capture radial and axial segregation three-

dimensionally (Figure 2.22); however, the extent and mechanisms of 

segregation are not compared with any experimental data. In another study, 

size segregation of spherical nickel pellets during their flow into a packed 

bed is modelled by Moysey and Baird (2009). They observed that smaller 

particles concentrate near the centre of the granular assembly, while the 

larger ones tend to migrate further from the feeder tube and settle closer to 

the outer wall. They also observe a proportionality between the coefficient of 

variation of particle mass fraction and the size ratio of the spheres and the 

length of the mixture surface. The latter depends on the fill ratio of the 

rotating drum. 

 

Figure 2.22: DEM modelling of segregation in pharmaceutical powders. 
(a) Initial condition, (b) mixture condition, and (c) radial 
segregation (Yamane, 2004)19. 

In a more elaborated case, Yu and Saxen (Yu and Saxen, 2010) simulated 

the discharge of a ternary mixture from a 3D cylindrical hopper using DEM. 

Their main aim was to validate their computational model by simple small-

scale experiments. By using spherical particles in both experiments and 

simulations, they could capture the main segregation trends correctly; 

                                            

19 Reprinted from Journal of Materials Research, 19(02), Yamane, K., Discrete-
element method application to mixing and segregation model in industrial 
blending system. pp.623-627, Copyright (2010), with permission from 
Cambridge University Press. 
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nevertheless, their simulation slightly under-predicted the degree of 

segregation. They realised that segregation in their modelling was affected 

by the number of particles, as well as the sliding and rolling frictions between 

particles and wall. This also suggests that the primary distribution pattern of 

particles has a considerable impact on the discharge segregation, as 

displayed in Figure 2.23. The mass fractions of particles throughout the time 

of discharge, previously filled by sieving method, are depicted in Figure 2.24. 

The graphs confirm the agreement of the results of DEM and experiments.  

 

Figure 2.23: DEM modelling of hopper discharge of ternary mixture 
applying two different filling methods. (Red, grey, and green 
colours represent the coarse, intermediate, and fine pellets 
respectively.) (Yu and Saxen, 2010)20 

                                            

20 Reprinted from Chemical Engineering Science, 65(18), Yu, Y.W. and Saxen, H., 
Experimental and DEM study of segregation of ternary size particles in a blast 
furnace top bunker model. pp.5237-5250, Copyright (2010), with permission 
from Elsevier. 
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Figure 2.24: Mass fraction of particles versus normalized discharged 
mass for the hopper filled by sieving method depicted in 
Figure 2.23 (Yu and Saxen, 2010)21.  

2.3.3.4.2 Density-driven segregation 

Density variation is a major cause of granular segregation. This material 

property is readily changed in DEM simulations while other parameters can 

be set as constant or variable. Numerous DEM studies have been 

conducted on the effect of density on granular segregation while other 

parameters such as size are constant (Yang, 2006; Hayter et al., 2008; 

Musha et al., 2013; Tripathi and Khakhar, 2013; Arntz et al., 2014; Guo et 

al., 2010; Xu et al., 2018). Density is believed to have a complementary role 

to size for improving or deteriorating the mixture homogeneity. The relation 

between the size- and density-driven segregations has also been a matter of 

concern for many researchers (Pereira et al., 2014; Arntz et al., 2014; 

Musha et al., 2013).  

                                            

21 Reprinted from Chemical Engineering Science, 65(18), Yu, Y.W. and Saxen, H., 
Experimental and DEM study of segregation of ternary size particles in a blast 
furnace top bunker model. pp.5237-5250, Copyright (2010), with permission 
from Elsevier. 
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An interesting example of the combined effect of density and size on 

granular segregation can be observed in the work of Arntz et al. (2014). Five 

cases of binary mixture differing in particle density and size are presented in 

Figure 2.25. The specifications of each simulation case are listed in 

Table 2.2. The particle density and size in these five cases are arranged 

differently so that various patterns of segregation can be formed. In case 

one, the segregation is driven only by size (density constant), while case 2 

shows the effect of density-driven segregation (size constant). The rest of 

the cases have a combination of size and density variations. Arntz et al. 

(2014) have observed that a wide range of segregation extents, from 

perfectly segregated to a well-mixed system, can be achieved by an 

appropriate adjustment of particle size and density.  

 

Figure 2.25: Snapshots from the five cases listed in Table 2.2 at Froude 

number equal to 0.035 (𝛚=𝛑/2 rad/s). The blue and red spheres are 
particle types a and b respectively (Arntz et al., 2014)22. 

Table 2.2: Properties of the cases simulated by (Arntz et al., 2014) 
using DEM23. 

System ra (mm) rb (mm) ρa 

(kg/m3) 

ρb 

(kg/m3) 

ma (mg) mb (mg) 

1 1.0 1.5 2500 2500 10.5 35.3 

2 1.0 1.0 7500 2500 31.4 10.5 

3 1.0 1.5 2500 7500 10.5 106.0 

4 1.0 1.5 7500 2500 31.4 35.3 

5 1.0 1.5 7500 2220 31.4 31.4 

                                            

22 Reprinted with permission from (Arntz, M.M.H.D. et al. 2014). Copyright (2014) 
John Wiley and Sons. (https://doi.org/10.1002/aic.14241) 

23 Reproduced with permission from (Arntz, M.M.H.D. et al. 2014). Copyright (2014) 
John Wiley and Sons. (https://doi.org/10.1002/aic.14241) 

https://doi.org/10.1002/aic.14241
https://doi.org/10.1002/aic.14241
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2.3.3.4.3 Shape-driven segregation 

The effects of size and density on predicted granular segregation have been 

studied extensively (Dury et al., 1998; Fan et al., 2014; Gray and Ancey, 

2011; Hu et al., 2003; Mateo-Ortiz et al., 2014; Shimosaka et al., 2013; 

Thornton et al., 2012; Wu et al., 2013); however studies which focus on the 

effect of shape are mainly limited to those which use a rolling friction term as 

a surrogate for shape, and studies which use realistic particle shapes are not 

widely reported (Huang and Kuo, 2014a; Lu et al., 2015). 

A common approach to consider the effect of shape has been the use of an 

artificial rolling friction in the modelling (Shimosaka et al., 2013; Wensrich 

and Katterfeld, 2012; Goniva et al., 2012; Combarros et al., 2014), which 

can be calibrated against experimental data. Alternatively, a more rigorous 

approach is to simulate particle shape by clumping spheres together, as 

proposed by Favier et al. (1999), and optimise conformity with the real 

shape. Nevertheless, the use of spheres with calibrated rolling friction in 

DEM simulations is more prevalent simply because this method is less 

computationally expensive. Recently, Pasha et al. (2016) have shown that 

the rolling friction can be tuned to simulate the experimental trends, but the 

shortcoming of this approach is that the optimum value of rolling friction 

coefficient is not available a priori, and hence the approach is not predictive. 

Instead, approximating the particle shape by clumped spheres has shown a 

good agreement with the experimental data (Pasha et al., 2016). 

Considering the effect of particle shape in DEM simulations is now becoming 

more common.  

Particle shape difference causes variation in particle flow behaviour, which 

can ultimately lead to segregation. In a case study, Cleary (2013) simulated 

mixing in a lab-scale plough-shear mixer using DEM and non-spherical 

particles. He reported that using realistic particle shapes led to a dramatic 

surge in the angle of repose of particles inside the mixer (increasing from 20 

to 31 degrees), and made the results more comparable with the repose 

angle obtained from the experiments. In spite of the implementation of he 

clumped sphere technique in the simulation of various granular processes, 

its validity, advantages, and limitations for using in DEM simulation of 

granular segregation are still not widely investigated. 
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2.3.3.5 DEM and mixing 

The process of granular mixing and segregation phenomenon are closely 

related topics, and the same methods to assess the quality of mixing are 

utilised in segregation analyses as well. Therefore, a quick review over DEM 

simulation of powder mixing in conventional mixers is beneficial.  

DEM modelling has been used to simulate powder mixing within various 

types of mixers. For example, particle mixing is modelled in simple-rotating 

drums (Baumann et al., 1994; Ahmadian et al., 2011), tumbling blenders 

(Moakher et al., 2000; Chaudhuri et al., 2006; Shinbrot et al., 2001), bin 

blender (Lemieux et al., 2007), v-blenders (Alexander et al., 2003; Doucet et 

al., 2008a; Lemieux et al., 2008; Brone et al., 1998), tote blenders (Arratia et 

al., 2006a; Sudah et al., 2005), paddle mixer (Hassanpour et al., 2011), 

double-cone blender (Alexander et al., 2001), slant cone mixers (Alchikh-

Sulaiman et al., 2015; Alian et al., 2015), and bladed mixers (Chandratilleke 

et al., 2012; Musha et al., 2013; Radl et al., 2010; Remy et al., 2010; Remy 

et al., 2009). A glance over these articles shows DEM’s high capacity in 

modelling the entire mixing process, including the details of particle 

distribution at different stages of mixing as well as the path through which 

every single particle travels. These features, and especially the latter 

advantage, are very difficult and expensive to be obtained by empirical 

approaches, as mentioned in section 2.2. Similar to the case of segregation, 

the effects of particle size, density, and shape on the particle distribution 

pattern during the process of powder mixing are investigated by numerous 

researchers (Schlick et al., 2015; Sarkar and Wassgren, 2015; Musha et al., 

2013; Cleary, 2013; Siraj et al., 2011), leading to an invaluable improvement 

in our understanding of the mixing and segregation mechanisms.  

DEM has proven its power to deal with complicated geometries (Hassanpour 

et al., 2011), complex interactions (Deng et al., 2013), and industrial scale 

mixing simulations (Xu et al., 2011; Radeke et al., 2010). Xu et al. (2011) 

and Radeke et al. (2010) could model respectively 9.6 and 7.68 million 

particles using GPU (Graphics Processing Unit). These figures can surge up 

to 100 million particles, as mentioned by Eva et al. (2017), using new 

generations of GPU and adapted DEM codes, like XPS (eXtended Particle 

System). They remarked that GPU is of high potential for moving towards 

industrial scale DEM modelling.  



 

53 

 

In spite of the advantages mentioned about DEM, modelling large-scale 

systems, like industrial mixing and segregation in natural phenomena, with 

real particle attributes, e.g. real size and shape, is almost impossible at 

present. To tackle this issue, the majority of simulations are carried out via 

downscaling the material stiffness and upscaling the particle size. This, 

however, can alter the final results and cause misleading interpretations. As 

an example, the effect of particle upscaling is studied by Radeke et al. 

(2010), as presented in Figure 2.26. The particles are in a segregated mode 

initially, distinguished by colour, and then start to mix by the revolution of the 

mixer’s blades. In this figure, four different simulation cases are presented in 

which the particle size and number are different. It can be observed that the 

segregation pattern varies with particle size, where coarser particles mix 

faster with less sharp segregation lines. This test also shows that using 

coarser particles instead of fine ones in order to reduce computational time 

should be accompanied by scaling the system dynamics; otherwise, the 

outcome of mixing process would not represent that of the original scale 

(Figure 2.26 (a) and (d)).  

 
 

Figure 2.26: Top view snapshots of the mixture containing (a) N=7680, 
(b) N=76,800, (c) N=768,000, and (d) N=7,680,000 particles before 
and after 5 revolutions of the mixer (Radeke et al., 2010)24.  

Although numerous investigations have been done on mixing and 

segregation of particles and their modelling, there is still a lack of a 

                                            

24 Reprinted from Chemical Engineering Science, 65(24), Radeke, C.A. et al., 
Large-scale powder mixer simulations using massively parallel GPU 
architectures. pp.6435-6442, Copyright (2010), with permission from Elsevier. 
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systematic study on the effects of particle properties collectively, e.g. size, 

shape, density, and surface conditions, on the efficiency of mixing in 

accordance with realistic and industrial specifications. It is understood from 

the literature that the previous studies have more focus on the impacts of 

variation in particle size and density on the mixture quality, and less attention 

is paid to particle shape and surface properties. More importantly, there has 

not been any focus on control of segregation of targeted minor ingredients 

by manipulating their surface conditions.  

2.4 Conclusions 

Maintaining the homogeneity of powder mixtures is of high interest and 

importance for the industry. In a powder process, conversely, particles of 

similar attributes tend to segregate from the rest of the particles and 

congregate at certain positions of the container. Segregation depends on the 

internal causes, i.e. particles physical and mechanical properties, mainly 

particle size, density, shape, and surface properties, and is driven by 

external causes, i.e. the processes through which particles have the chance 

to move relative to each other. This fact has caused some industries to add 

binding agents to their powder products so as to lessen particles’ relative 

movements and, accordingly, the segregation. The major drawback of this 

method is its adverse impact on mixture flowability, which is another cost-

imposing issue to be solved. In many cases, there is only one active minor 

ingredient which is prone to segregation and requires special attention. A 

practical method by which the uniformity and flowability of a mixture are 

preserved simultaneously is still lacking in the literature. This requires a 

deep understanding of the underlying mechanisms by which the particles 

segregate. Historically, more attention has been paid to size and density-

driven segregation and less to the effect of shape and surface friction 

(Chapter 4). More importantly, no investigation has been carried out on 

diminishing the segregation tendency of targeted minor ingredients by 

manipulating their properties, including their surface conditions (Chapter 5) 

and shape (Chapter 6).   

Experimental analysis of particles’ behaviour during segregation is highly 

challenging. The complexity and multivariable nature of segregation 

necessitate the utilisation of numerical simulations, whereby the underlying 

mechanisms of segregation can be understood more deeply. There are 

three general approaches to numerically predict and simulate segregation, 
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namely statistical, discrete, and continuum approaches. The discrete 

approach is closer to the nature of particulate materials and more predictive, 

while the other ones are more dependent on experimental data and less 

predictive, yet, suitable for simulating large-scale granular flows in nature. In 

the discrete approach, the movement of individual particles can be tracked 

and their interactions can be considered based on which numerical method 

is used. The most famous techniques of this category, i.e. the Discrete 

Element Method (DEM), Monte Carlo (MC), and Cellular Automata (CA), are 

explained and reviewed in this chapter. The continuum approach; however, 

considers the whole domain as a continuous and connected medium. 

Deriving and solving constitutive laws for particle flow, based on advective 

and diffusive transport terms, and using Computational Fluid Dynamics 

(CFD) are the main examples of the continuum approach.  

Every one of the aforementioned numerical approaches has its strong and 

week points when it comes to simulating granular segregation. A brief 

summary of the available numerical techniques for modelling the 

segregation of particles as well as some of their specifications is provided in 

Table 2.3. In this table, the numerical methods are categorized into the 

discrete/continuum and stochastic/deterministic groups. In addition, the 

methods are assessed by five more criteria, such as method developments, 

literature resources, computational efficiency, closeness to the nature of 

particles, and applicability for modelling the segregation phenomenon.  

As it is presented in the table, regardless of the computational cost, DEM 

has the highest score among all other types of numerical methods and is the 

most capable technique for simulating the segregation of complex granular 

mixtures. Due to its robustness and capability in capturing particles 

dynamics, DEM is selected in this study to be used as the main tool for 

simulation of segregation of particles. The main drawback of DEM is its 

computational demand and lack of a robust strategy for calibration of its 

input parameters. Fortunately, the former issue is already addressed to 

some extent and, promisingly, will be resolved more and more by fast 

development in computers hardware and software. The latter issue is 

discussed in Chapter 3, where a general methodology for calibration and 

inference of DEM input parameters is proposed. DEM is of high fidelity and 

superiority in incorporating the effects of particle shape (Chapter 4 and 6) 

and adhesion (Chapter 5), which are the focal points of this study, into 

simulations.  



 

 

Table 2.3: Summary of the characteristics of the numerical techniques available for modelling the granular segregation. 

                      Methods 

Criterion 

CFD MC DEM Data-driven PBM CA Constitutive 

models 

Theory Navier- 

Stocks 

equations 

Statistical 

physics/kinetic 

theory 

Newton’s 

equations 

of motion 

Statistics 

and 

probability  

Population balance 

equations (PBEs)/ 

derived from 

Boltzmann equation 

Equations of the 

field/ gravity, 

interactions, etc. 

Advection, 

diffusion, 

granular 

temperature 

Discrete/continuum C D D N/A C D C 

Deterministic/stochastic D S D S D/S D D 

Development in granular 

materials and literature 

resources 

∗∗∗ ∗∗∗ ∗∗∗∗∗ ∗ ∗ ∗∗ ∗∗∗∗ 

Computational efficiency ∗∗ ∗∗∗ ∗ ∗∗∗∗∗ ∗∗∗∗ ∗∗∗∗∗ ∗∗∗ 

Closeness to the nature of 

granular materials 

∗ ∗∗∗ ∗∗∗∗∗ ∗ ∗∗ ∗∗ ∗ 

Applicability for this 

problem 

∗∗∗ ∗∗∗ ∗∗∗∗∗ ∗ ∗∗ ∗∗ ∗∗∗ 
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Chapter 3 Experimental and numerical methodology 

 

3.1 DEM simulation 

DEM, as a powerful tool in modelling granular media and particulate 

mixtures, has incorporated the necessary features by which both 

macroscopic and microscopic aspects of particles interactions are observed.  

The idea behind this method is quite simple yet influential. In this method 

individual particles are tracked based on their initial and median conditions 

including their positions, velocities, and external forces. In spite of the 

simplicity of the idea behind DEM, the microscopic interactional behaviour of 

the particles can be a source of complexity.  

There are two main approaches to be followed in DEM, namely soft-sphere 

approach and hard-sphere approach (Di Renzo and Di Maio, 2004). In soft-

sphere approach, the particles (spheres) are allowed to deform which means 

they experience some extent of overlaps during the collisions. To commit 

this, the velocity of the interacting particles must be unchanged within a 

certain time interval during which the particles positions are updated. Also, 

for reducing the computational time of the simulation, particles interactions 

do not go further than their neighbours and only the immediate neighbours 

are considered. On the other hand, if the particles interact impulsively and 

their momentum is exchanged only throughout their collisions, then the hard-

sphere approach is used. To be more precise, in hard-sphere approach the 

particles are like hard spheres that do not have flexibility or ability to save 

potential energy; hence, the collision between particles is regarded to be 

completely spontaneous which seems to be inaccurate in many cases 

(Martín, 2014). Most of the modelling cases being carried out nowadays use 

the soft-sphere approach due to its higher capability and accuracy. 

In the present study, simulations are carried out using the EDEM 2.7.1 

software, provided by DEM Solutions, Edinburgh, UK. The models used for 

particles contacts are Hertz-Mindlin no-slip (Mindlin, 1949; Hertz, 1882) and 

JKR (Johnson et al., 1971) by which the effects of collisions and 

cohesion/adhesion are taken into consideration. A general introduction into 



 

58 

 

the governing equations, calculating the time-step, and the contact models 

used in the software is provided in the following sections.  

3.1.1 Governing equations 

The general governing equations used in DEM modelling are given in 

Equations (3.1) and (3.2).  Equation (3.1) displays the translational motion of 

particle i in 3 dimensions where 𝑚𝑖 is the mass and 𝐯i is the translational 

velocity of particle i. 𝐅ij
c shows the contact forces imposed on particle i by 

particle j or other geometries, 𝐅𝑖𝑘
𝑛𝑐 represents the non-contact forces like van 

der Waals and electrostatic forces acting on particle i by particle k or the 

other possible sources, 𝐅𝑖
𝑓
 is the particle-fluid interaction force, and 𝐅𝑖

𝑔
 is due 

to the gravity. Equation (3.2) displays the rotational motion of particle i in 3 

dimensions where 𝐼𝑖 is the moment of inertia and 𝛚𝒊 is the angular velocity of 

particle i. Also 𝐌𝑖𝑗 shows the torque imposed on particle i by particle j. 

 𝑚𝑖

d𝐯𝒊

d𝑡
= ∑ 𝐅𝑖𝑗

𝑐 +

𝑗

∑ 𝐅𝑖𝑘
𝑛𝑐 + 𝐅𝑖

𝑓
+ 𝐅𝑖

𝑔

𝑘

 
(3.1) 

 

 𝐼𝑖

d𝛚𝒊

d𝑡
= ∑ 𝐌𝑖𝑗

𝑗

 
(3.2) 

Figure 3.1 depicts the summary of all the aforementioned contact forces 

acting on a model particle i by particle j and non-contact capillary force 

imposed on i by particle k. It also illustrates the gravitational force and 

velocities of the particles. These equations then should be solved utilizing a 

suitable numerical technique like forward Euler method, considering an 

adequately small time-step. Suitable contact models should be used 

according to the nature of the problem.  
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Figure 3.1: Free body diagram of the forces applied on three arbitrarily 
interacting particles.  

3.1.2 Time-step 

A particle within a particulate system is influenced directly by its immediate 

neighbours and indirectly by the further particles. Each vibration or 

movement of a single particle in the system is sensed by all other particles 

directly or indirectly in contact with each other and transferred by the speed 

of sound wave in that medium. Although these contacts are important to be 

considered for the immediate neighbouring particles, they have negligible 

impacts on farther ones and are regarded as disturbance waves which 

should be avoided in DEM. In addition, taking all the contacts into account is 

not an efficient computational approach; hence, the time-step should be 

sufficiently smaller than the time needed for a disturbance wave to go 

beyond its neighbour. In this regards, the smallest particle radius in the 

system is the limiting factor. The time-step is calculated based on the 

Rayleigh surface wave propagation speed as expressed in Equation (3.3): 

 
𝑇𝑅 =

𝜋𝑅(𝜌 𝐺⁄ )1 2⁄

0.163𝜗 + 0.8766
 (3.3) 

where 𝑇𝑅 is the Rayleigh time-step, 𝑅 is the particle radius and 𝜌, 𝐺, and 𝜗  

are the particle density, shear modulus, and Poisson’s ratio respectively. In 

DEM simulations, time-step should be set smaller than Rayleigh time-step in 

order to avoid the disturbance propagation. However, using smaller time-

step contributes to heavier computations. For the systems of high 

coordination numbers, time-step is recommended to be set around 20 per 

cent of the Rayleigh time-step, while for lower coordination numbers, it is 



 

60 

 

sufficient to be 40 per cent of the Rayleigh time-step (DEM-Solutions, 2009; 

Pasha, 2013; Martín, 2014). 

3.1.3 Forces in DEM 

Forces in DEM are classified into two major groups of contact and non-

contact forces. Evidently, contact forces are those forces which arise from 

direct contacts and collisions of particles with each other or with the 

boundaries of the geometry; whereas the non-contact forces comprise the 

forces acting from distant points such as gravitational, electrostatic, and 

magnetic forces. Undoubtedly, each force needs an appropriate 

mathematical model to be implemented in DEM; however, one might not 

need to employ all models at the same time.  For example, in most of the 

cases magnetic force is not existent and electrostatic force is negligible and 

they simply do not need to be considered.  

3.1.3.1 Contact forces 

Contact forces arise from either particle-particle or particle-geometry 

interactions. These forces consist of both collisional and frictional forces 

which play major roles in the final behaviour of the bulk granular material. 

Based on considering the collisions as elastic, plastic or elasto-plastic the 

formulations and the application of the models differ. In other words, various 

particles have differing levels of deformability which maintain the extent of 

elasticity or plasticity of the collisions. Many attempts have been made to 

propose appropriate contact models which are able to cover a wide range of 

phenomena; however, a comprehensive model covering all aspects of the 

particles interactions is still lacking. Based on this, there are many contact 

models available in the literature, each of which is suitable for a specific 

case depending on the problem nature. A comprehensive review on 

fundamentals of the most famous contact models as well as their 

applications is done by Tomas (2006) and Pasha et al. (Pasha, 2013; Pasha 

et al., 2014).  

3.1.3.2 Non-contact forces 

Particulate objects in reality are affected not only by direct contacts, but also 

by other sources acting from a distance such as the van der Waals force, 

electrostatic force, magnetic force, and even particle-particle gravitational 

force. These forces, when present, can have major influence on the pattern 

of the mixture based on the problem condition. For example, van der Waals 

force should be considered only if the particles are adequately fine and close 
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to each other and particle-particle gravitational force is negligible for fine 

particles; it becomes important only in astronomical problems where 

massive objects like planets, big asteroids, or stars are modelled as 

particles. Electrostatic force may also become important depending on 

material properties and their response to the contact electrification as well as 

the process in which the particles are handled (Matsusaka et al., 2010). If 

the particles are made from magnetic substances such as iron, nickel, and 

cobalt, the magnetic forces may become significant in the presence of an 

internal/external magnetic field; nevertheless, it is not the case in most of the 

real industrial applications.   

3.1.4 Contact models 

Contact models are mathematical equations by which the contact forces 

between the particles are modelled according to the nature of the contact 

force. Various contact models are proposed in the literature covering the 

perfectly elastic (Hertz, 1882; Deresiewicz et al., 1952), elasto-plastic 

(Thornton, 2015), elastic adhesive (Johnson et al., 1971; Derjaguin et al., 

1975), and elasto-plastic adhesive (Pasha et al., 2014; Thornton and Ning, 

1998) contacts, from the most ideal to the most realistic cases, respectively. 

Nevertheless, the ideal contact models like the Hertz perfectly elastic contact 

model can still be used in many cases provided that the particles bear 

relatively low stresses so that the particle interactions are reasonably elastic. 

The same simplification can be made for dry and relatively large particles to 

allow for the effect of adhesion to be neglected in the modelling.  

The contact forces applied on a particle can be summarised into normal and 

tangential components. One of the most famous and widely used elastic 

normal contact models is the Hertz model (Hertz, 1882) which is based on 

the normal force between two perfectly elastic spherical objects in contact. 

For the tangential contact force, Mindlin (1949) proposed a model which he 

modified later, known as the Mindlin no-slip tangential contact model. Also 

taking account of the adhesion force for elastic contacts, the JKR model is 

one of the most well-known theories to implement. These models are 

explained in more detail. 

3.1.4.1 Hertz normal contact model 

Known as Hertz theory (1882), the original normal contact model was 

published as “on the contact of elastic solids” in 1882. This theory says that 

if two spheres come into contact, as depicted in Figure 3.2, the pressure 
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distribution 𝑃(𝑟) at the contact area can be given by a quadratic equation as 

follows: 

 
𝑃(𝑟) = 𝑃0 (1 − (

𝑟

𝑎
)

2

)
0.5

 (3.4) 

where 𝑃0, r, and 𝑎 show the maximum pressure at the contact centre, the 

distance from the contact centre, and the radius the contact area 

respectively.   

 

Figure 3.2 Normal pressure distribution and contact force of two 
interacting spheres.   

 To implement this theory, some assumptions should be made: 

 The area of contact between the two objects is circular. 

 The area of contact is much smaller than the size of the contacting 

objects. 

 The deformation is elastic and very small. 

 Only normal contact force is present, i.e. the contact is frictionless 

and adhesionless.  

By integrating the pressure distribution function in Equation (3.5), the relation 

between the normal contact force and the maximum pressure is obtained 

(Equation (3.6)). 

 𝐹𝑛 = ∫ 𝑃(𝑟)2𝜋𝑟𝑑𝑟 =
2

3

𝑎

0

𝜋𝑎2𝑃0 (3.5) 
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 𝑃0 =
3𝐹𝑛

2𝜋𝑎2
 (3.6) 

Knowing the Young’s modulus of elasticity, 𝐸, and Poisson ratio, 𝜗, of the 

material, the normal displacement due to the contact pressure can be 

obtained at any desired distance, 𝑟, from the centre of contact. 

 𝑤(𝑟) =
1 − 𝜗2

𝐸

𝜋𝑃0

4𝑎
(2𝑎2 − 𝑟2) (3.7) 

Now imagine that the contacting spheres have different materials and radii. 

The total displacement at distance 𝑟 can be expressed as: 

 𝑤1(𝑟) + 𝑤2(𝑟) = 𝛼 −
𝑟2

2𝑅∗
 (3.8) 

where 𝑤1 and 𝑤2 are the normal displacements at an arbitrary point with a 

distance 𝑟 from the centre of contact, 𝛼 shows the relative approach of 

spheres and 𝑅∗ is the equivalent radius (also known as effective radius). 

 
𝑅∗ = (

1

𝑅1
+

1

𝑅2
)

−1

 (3.9) 

𝑅1 and 𝑅2 are the radii of the contacting spheres. Combining Equations (3.7) 

and (3.8), a relation between the contact radius and the relative approach is 

derived as: 

 𝜋𝑃0

4𝑎𝐸∗
(2𝑎2 − 𝑟2) = 𝛼 −

𝑟2

2𝑅∗
 (3.10) 

where 𝐸∗ shows the equivalent Young’s modulus of elasticity of the spheres: 

 
𝐸∗ = (

1 − 𝜈1
2

𝐸1
+

1 − 𝜈2
2

𝐸2
)

−1

 (3.11) 

𝐸1 and 𝐸2 are the Young’s moduli of the spheres and 𝜈1 and 𝜈2 are their 

Poisson’s ratios. Setting 𝑟 equal to 0 and 𝑎 respectively, the following 

relations are obtainable which are independent of the distance 𝑟: 

 𝛼 =
𝜋𝑎𝑃0

2𝐸∗
 (3.12) 

 

 𝑎 =
𝜋𝑃0𝑅∗

2𝐸∗
 (3.13) 
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Now the force-displacement relation can be derived using Equations (3.6), 

(3.12) and (3.13) as expressed below: 

 𝐹𝑛 =
4𝐸∗

3𝑅∗
𝑎3 =

4

3
𝐸∗𝑅∗0.5𝛼1.5 (3.14) 

3.1.4.2 Mindlin tangential contact model (no slip) 

In reality, the contacting objects have friction and therefore a tangential force 

should be considered at the interface. Mindlin (1949) showed that any point 

within the contact area should be either in the state of sticking or slipping. At 

the stick region, which occurs in the central region of the contact interface, 

there is no relative movement between the adjacent points of the two 

contacting spheres. It can be assumed that one sphere is instantaneously 

rotating around the other at this point. Also the tangential force at this region 

cannot be greater than the tangential traction (𝜇𝑃(𝑟)). On the other hand, at 

the slip region spheres have a relative velocity at the point of contact and the 

tangential traction will be equal to 𝜇𝑃(𝑟) opposite to the direction of the slip. 

The relation between the outer radius of the slip region, 𝑎, and the inner 

radius of the stick region, 𝑐, is shown in Equation (3.15). 

 
𝑐 = 𝑎 (1 −

𝐹𝑡

𝜇𝐹𝑛
)

0.5

 (3.15) 

where 𝐹𝑡 is the tangential contact force. The tangential traction in the slip 

region is simply 𝜇𝑃(𝑟) shown as below. 

 
𝑞(𝑟) = (

3𝜇𝐹𝑛

2𝜋𝑎2
) (1 −

𝑟2

𝑎2
)

0.5

          𝑐 ≤ 𝑟 ≤ 𝑎 (3.16) 

Using Equation (3.15) and (3.16), the tangential traction for the stick region 

is obtained as follows: 

 
𝑞(𝑟) = (

3𝜇𝐹𝑛

2𝜋𝑎2
) [(1 −

𝑟2

𝑎2
)

0.5

−
𝑐

𝑎
(1 −

𝑟2

𝑐2
)

0.5

]           0 ≤ 𝑟 ≤ 𝑐 (3.17) 

Due to the tangential traction, the centres of the spheres will experience a 

relative displacement which can be obtained by Equation (3.18). 

 
𝛿 =

3𝜇𝐹𝑛(2 − 𝜗)

8𝐺∗𝑎
[1 − (1 −

𝐹𝑡

𝜇𝐹𝑛
)

2 3⁄

] (3.18) 

where 𝐺∗ shows the equivalent shear modulus of the spheres: 

 
𝐺∗ = (

2 − 𝜈1

𝐺1
+

2 − 𝜈2

𝐺2
)

−1

 (3.19) 
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Neglecting the effect of micro slips, the tangential stiffness in Mindlin theory 

is obtained from the following equation, 

 𝑘𝑡 = 8𝐺∗𝑅∗0.5𝛼0.5 (3.20) 

Later on, Mindlin and Deresiewicz (1953) showed that the traction 

distribution at the interface of two contacting spheres depends on the history 

of loading as well as the normal and tangential contact forces. This is mainly 

important when oblique impact occurs where the contact deformation also 

should be considered for finding the rebound velocity.  

3.1.4.3 JKR elastic-adhesive contact model 

The JKR model (Johnson et al., 1971) is in fact an extension for the Hertz 

theory in which the adhesive force between contacting bodies is also taken 

into account. Due to presence of adhesive forces, the contact area in JKR 

model is larger than that in the Hertz theory. The contact area consists of an 

annulus which experiences tensile stress and an inner circle which tolerates 

the Hertzian compressive stress. Therefore the total normal contact force is 

as follows:  

 𝐹�̂� = 𝐹𝑛 + 6𝜋𝛾𝑅∗ ± √12𝜋𝛾𝑅∗𝐹𝑛 + (6𝜋𝛾𝑅∗)2 (3.21) 

where 𝛾 is the adhesion interface energy per unit area of the contacting 

spheres. The equation for the contact radius in this case will follow a similar 

pattern as of the Equation (3.14), 

 𝑎3 =
3𝐹�̂�𝑅∗

4𝐸∗
 (3.22) 

Using Equations (3.21) and (3.22), the exerted force 𝐹𝑛 will be: 

 𝐹𝑛 =
4𝐸∗𝑎3

3𝑅∗
− 4√𝜋𝛾𝐸∗𝑎3 (3.23) 

Also, the relative approach 𝛼 can be expressed as (Johnson et al., 1971): 

 
𝛼 =

𝑎2

𝑅∗
− √

2𝜋𝛾𝑎

𝐸∗
 (3.24) 

When there is no adhesion, i.e. 𝛾 = 0, the relative approach 𝛼0 will be equal 

to that of the Hertzian prediction. On the other hand, when the exerted force 

is zero (𝐹𝑛 = 0) the contact radius will be obtained from Equation (3.25). 

 
𝑎0

3 =
9𝜋𝛾𝑅∗2

𝐸∗
 (3.25) 
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It can be understood from Equation (3.25) that for a material with certain 

interfacial energy, there is a minimum area of contact that will be reduced if 

a negative tensile force pulls the spheres apart. The maximum tensile force 

that the spheres can tolerate due to the adhesive force is called the pull-off 

force and is given by Equation (3.26): 

 𝐹𝐶 = 3𝜋γ𝑅∗ (3.26) 

In the JKR model, the attractive forces between particles are limited just to 

the contact zone and are basically assumed to be short range. Figure 3.3 

shows how the JKR model predicts the force-overlap response during an 

elastic-adhesive contact. Considering two spheres approaching each other, 

when they come close enough, their normal force drops to 8 9⁄ 𝐹𝐶 due to the 

van der Waals force, where 𝐹𝐶 is the pull-off force (Thornton and Ning, 

1998). Then because of the initial velocities of the two spheres towards each 

other a positive overlap happens and the particles kinetic energy gradually 

converts to elastic potential energy until their velocities become zero. At the 

loading stage, spheres experience maximum compression at zero velocity 

after which the kinetic energy is fully recovered by conversion of the elastic 

potential energy into kinetic energy. Therefore, the sphere’s velocities 

increase until their overlap becomes zero; however at this stage, the 

particles do not detach owing to the adhesive force. The adhered particles 

then experience a tensile force and lose kinetic energy until they fully depart 

with a negative overlap of 𝛼𝐹 at 𝐹 = 5
9⁄ 𝐹𝐶. The work needed to break the 

contact and detach the spheres is known as the work of cohesion and is 

shown by the shaded area in Figure 3.3. 
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Figure 3.3 Force-overlap diagram in JKR model (Thornton and Ning, 
1998). 

Knowing the relative approach as well as the normal force, the work needed 

to detach the spheres can be obtained by the following integration using 

Equations (3.23) and (3.24): 

 
𝑊𝐶 = ∫ 𝐹𝑛𝑑𝛼

𝛼𝐹

0

= ∫ (
4𝐸∗𝑎3

3𝑅∗
− 4√𝜋𝛾𝐸∗𝑎3)

𝑎𝐹

𝑎0

(
𝑎2

𝑅∗
− √

2𝜋𝛾

𝐸∗𝑎
) 𝑑𝑎 (3.27) 

where 𝛼𝐹 shows the relative approach at the separation.  

 
𝛼𝐹 =

3

2
(

π2𝛾2𝑅∗

2𝐸∗2 )

1
3⁄

 (3.28) 

The integration results in Equation (3.29) (Thornton and Ning, 1998) which is 

also known as the work of cohesion.  

 
𝑊𝐶 = 7.09 (

Γ5𝑅∗4

𝐸∗2 )

1
3⁄

 (3.29) 

where Γ shows the interfacial energy. 

3.1.5 Cohesion number 

Bonding forces in wet coating are because of the surface tension and 

viscous forces. By using the particle surface energy in the JKR model 

(Johnson et al., 1971) the surface tension forces are taken into consideration 

and to account for the viscous dissipation, low restitution coefficients are 

selected; this is an alternative approach to the capillary bridge model when 

particles are still not dominated by liquid (Hassanpour et al., 2013). 



 

68 

 

However, predicting a valid interface adhesion energy for the particles in the 

JKR model and calibrating it against the experiments are the challenges 

normally observed in DEM simulations. There is still lack of a robust criterion 

by which the level of cohesivity of the particles is scaled. Using the Bond 

number (Bond, 1935; Clift et al., 2005) is one of the ways to show the 

significance of the adhesive force compared to the gravitational force; 

nevertheless, this number is not comprehensive enough to be used for 

scaling the particle size in DEM, or as a mediator number between the DEM 

simulations and experiments. The reason is that the material stiffness, which 

is missing in the Bond number, affects the relative approach of the particles 

during the interactions which finally changes the particles response to the 

applied force. Another method is proposed by Thakur et al. (Thakur et al., 

2016) which relates the cohesive force with the square of the particles 

radius. This scaling method is, however, an empirical curve fitting which is 

obtained by trial and error for special cases of confined and unconfined uni-

axial loading and unloading processes.  

Another method is to compare the particle cohesion energy (Equation (3.29)) 

with the gravitational potential energy of the particles, as presented in this 

study. To fulfil this, a dimensionless number is made based on the ratio of 

the work of cohesion and the particle’s gravitational potential energy with 

regards to a characteristic height equal to the equivalent radius defined in 

Equation (3.9). The choice of the characteristic height depends on the 

dynamics of the process. Here, the characteristic height is chosen the same 

as the particle’s equivalent radius, because of dealing with a heap formation 

process where the angle of repose is static. However, in a dynamic system, 

like powder mixing in a tumbling drum, the characteristic height may be 

chosen as the drum diameter to represent the system’s dynamics more 

clearly. The free body diagram of the particles and their corresponding 

applied forces are depicted in Figure 3.4.   
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Figure 3.4 Schematic of the normal forces applied on a suspended 
particle due to adhesion and gravity. 

Based on the definition provided, the dimensionless number (Cohesion 

Number) is derived as follows:  

𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛 𝑁𝑢𝑚𝑏𝑒𝑟 =
𝑊𝑜𝑟𝑘 𝑜𝑓 𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛

𝐺𝑟𝑎𝑣𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦
 

 

𝐶𝑜ℎ =

7.09 (
Γ5𝑅∗4

𝐸∗2 )

1
3⁄

𝑚𝑔𝑅∗
 

(3.30) 

By substituting the mass by density times the volume and eliminating the 

constant fractions, Equation (3.30) will be:  

 

𝐶𝑜ℎ =

(
Γ5𝑅∗4

𝐸∗2 )

1
3⁄

𝜌𝑅∗3𝑔𝑅∗
 

(3.31) 

Simplifying the Equation (3.31), the Cohesion number is obtained as follows: 

 
𝐶𝑜ℎ =

1

𝜌𝑔
(
Γ5

𝐸∗2𝑅∗8)

1
3⁄

 (3.32) 

This number, which is shown in Equation (3.32), depends on the particle 

surface energy, particles size, density, gravity, as well as the material 

Young’s modulus. This number well justifies that the materials having lower 

stiffness become “stickier” if adhesive and it is a useful scaling method for 

the DEM simulations at which Young’s modulus is selected smaller than the 

real value in order to increase the computational speed. Recently, a rigorous 



 

70 

 

analysis of contact stiffness reduction for adhesive contacts to speed up 

DEM calculations shows the same fractional form (Hærvig et al., 2017). 

Nevertheless, for adhesive contacts it is critical to avoid too unrealistic 

contact stiffness values, especially when the surface energy is very high as 

otherwise the simulations will not be predictive (Moreno-Atanasio et al., 

2007). The Cohesion number is then utilized to select the appropriate values 

of the surface energy and the shear modulus in DEM analysis with respect 

to the level of scale up desired. The details of how to tune and calibrate the 

surface energy based on the experimental data will be explained in Chapter 

5. 

3.2 Mechanical and physical properties of the particles 

Mechanical and physical properties of the particles are the main sources of 

the segregation tendency in powder mixtures. In this study, the efforts have 

been made to tune DEM input parameters based on the experimental values 

as much as possible. The procedure of the experiment as well as some data 

examples are provided in this chapter; the complete tables and information 

regarding the experiments and simulation input parameters are provided in 

the relevant chapter.  

3.2.1 Materials and particle size  

The spray-dried detergent powder (termed Blown Powder, abbreviated to 

BP) and TetraAcetylEthyleneDiamine (TAED) particles used here are the 

main ingredients of conventional home washing powders. In some laundry 

detergent formulations, active enzyme granules are also used. For safety 

reasons, Enzyme Placebo granules are used instead in this study, 

abbreviated as EP. The optical images of some selected particles used in 

the experiments are shown in Figure 3.5. 
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Figure 3.5 Typical shapes of (a) BP (white), (b) TAED (blue), and (c) EP 
granules (red) with respective sieve-cut ranges of 425-500, 850-

1000, and 600-700 𝛍m. 

BP particles are manufactured through the spray drying process; therefore, 

they are highly irregular in shape. Nearly 40 to 99 wt% of a typical washing 

powder is made from BP particles, making it a key ingredient in the final 

product. TAED is a bleach activator and manufactured via the granulation 

process. It has lower irregularity compared to the BP and its portion in the 

finished product is normally less than 10 wt%. In contrast, EP granules are 

round in shape and they are also manufactured by the granulation process. 

In reality, the powders have wide ranges of size distribution; however, in this 

study, narrow sieve-cut sizes of species are used in the experiments and 

simulations in order to have fewer computational elements as well as a 

better control on the effect of particle size on segregation tendency. The 

actual size of particles used in each simulation is reported in the relevant 

chapter. 

3.2.2 Density measurement 

Various types of density can be reported for particulate matters such as 

packing density, tapped density, envelope density, and true density (Seville 

and Wu, 2016b; Seville and Wu, 2016a). The value for each of the above 

might differ based on the material properties of the particle as well as its 

internal structure, shape, and even surface properties. For example, while 

the true density of one species is constant at constant temperature, its 

envelope density can differ based on the level of porosity it has. It should be 

noted that during particle interactions, the space a particle occupies and its 

corresponding mass play roles; therefore, particle envelope density is the 

parameter which is measured and used in DEM analyses. The particles 

used here are very soft and irregular with non-homogeneous internal 

structures. Therefore finding the envelope density experimentally is very 
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difficult and sometimes unreliable. Nevertheless, when the experimental 

envelope density is used in the simulations, as the shapes are modelled and 

are not the exact shapes, still a level of calibration in needed.  

In this study, the particle packing density is measured experimentally and 

then the density in DEM is tuned in a way to give the same packing density 

as of the experiment. Particles are firstly poured into a cylindrical tube to a 

certain level. Then their weight is measured and the packing density is 

obtained. The same procedure is imitated by DEM by pouring the modelled 

clumped spheres into the same geometry of the experiment from the same 

height. The tuned envelope densities are then used in the DEM simulations. 

3.2.3 Restitution coefficient measurement 

The coefficient of restitution, CoR, is an important input parameter used in 

DEM to account for damping of the energy of oscillations. In a case of 

collision of objects, CoR is the ratio of the rebound velocity relative to the 

impact velocity. Its value depends upon many factors, such as the particle 

size, material type, internal structure, surface adhesion, speed of collisions, 

etc. In this study, the CoR of each type of particles against a wall made of 

Perspex is measured by using a high speed camera and image analysis 

technique. A particle is selected randomly and then released from a height 

similar to that of the test box presented in Figure 4.1. The height is chosen 

such to resemble the same height from which the particles are poured into 

the box to for the heap. The incident and rebound velocities are then 

determined by image analysis from which the CoR is calculated. This 

procedure is repeated 12 times and the average of the CoR is selected as 

the final value. The results of the test together with other properties will 

come in the relevant chapters, i.e. chapters 4, 5, and 6. Determining the 

CoR of particle-particle collisions is more difficult, as efforts are required to 

align the particles for collisions and due to the particle roughness, a wide 

spread in the measured values are expected. Considering that for the 

particles used in this system the values of CoR for the particle-wall 

interaction is small indeed, the same value for the inter-particle collisions is 

used as well. 

3.2.4 Sliding friction 

For non-spherical particles with asperities/surface roughness, the 

characterisation of the coefficient of inter-particle sliding friction, CoF, is 

difficult and subject to large variations. Here, an approach is followed in 
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which a simple sliding process of two layers of particles adhered to a plane 

is simulated by DEM and compared against the experiment. To find the 

particle-particle CoF, two flat plates are covered by monolayers of particles 

and are placed on each other as shown in Figure 3.6 (a). Then they are tilted 

together at a rate of 0.1 𝑟𝑎𝑑/𝑠 until the upper surface slides and the angle at 

which the sliding occurs is measured (Figure 3.6 (b)). The same process is 

simulated in DEM using surfaces covered by monolayers of clumped 

spheres. The surfaces are placed on top of each other and then tilted 

together. The sliding angle is then compared with the experiment and the 

CoF is tuned to predict and match the observed sliding angle of the plates. 

To measure the CoF of the particles against the wall, a monolayer of the 

particles is glued to a flat plate and placed over a plain surface made from 

Perspex. When the surfaces are tilted, at a certain angle (Figure 3.6 (c)), the 

upper surface, with the particles glued on, starts to slide. The tangent of this 

angle is taken as the coefficient of sliding friction between particles and wall. 

In the case of particle-wall contact, the tangent of the angle at which the 

particles slide can be used directly in DEM modelling without any further 

calibration; whereas for the particle-particle contact, the sliding friction 

coefficient has to be tuned such that it mimics the experimental repose 

angle. This is due to the effect of interlocking which is present only in the 

case of particle-particle contact. 

 

Figure 3.6 Schematic diagram for measuring the coefficient of sliding 
friction. Graph (a) shows the surfaces at rest, graph (b) shows the 
particle-particle sliding friction experiment, and graph (c) depicts 
the particle-wall sliding experiment. 

3.3 Characterisation and modelling of particle shape 

As mentioned before, particle shape is among the internal causes of 

segregation and needs to be considered. Different approaches are proposed 

in the literature for considering the effect of shape among which the clumped 

spheres and rolling friction approaches are the most common. In this study 
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both of these methods are investigated in the DEM analyses as surrogates 

for the real shapes.  

3.3.1 X-ray microtomography 

Due to the irregularity of the BP and TAED particle shapes, the X-ray 

Tomography (XRT) technique is used to capture the 3D images of the 

particles. Three particles from each material are randomly selected and 

scanned using the Phoenix Nanotom XMT machine at the University of 

Leeds. The 3D images are then post-processed using the Avizo 3D 

software, where the 2D X-ray images from different layers of the particle are 

composed to construct the 3D geometry as shown in Figure 3.7. This 

geometry is then imported into the Automatic Sphere-clump Generator 

(ASG) software (Price et al., 2007), where the clumped spheres are 

generated based on the obtained particle shape. To account for the effect of 

the shape variation within a single species, three different particles are 

scanned for each type and size of particle.  

 

TAED 850-1000 

μm 

 

BP 850-1000 μm 

 

TAED 450-500 μm 

 

BP 450-500 μm 

Figure 3.7: Particle shapes scanned and analysed by applying XRT 
technique and using Avizo software. 

3.3.2 Clumped spheres 

A generated particle shape can include different numbers of spheres 

clumped together as shown in Figure 3.8. To have a better representation of 

the real shape a large number of small spheres are needed; however, using 

them in the simulations leads to more computational effort due to the 

increase in number of elements and shorter computational time-steps, which 

are required for smaller particles. Therefore some optimisation of the size 

and number of clumped spheres is necessary to simulate the phenomenon 

reliably and efficiently (Pasha et al., 2016). In this work the arrangement of 
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the clumped spheres, as shown in Figure 3.8, has been evaluated 

considering the same volume and centre of mass as of the real particle.  

 

Figure 3.8 The non-spherical TAED particle shape representation by 
increasing the number of spheres (TAED particles’ size range: 
850-1000 μm). 

3.3.2.1 Calibration of particle shape 

In a box of washing powder, particle shapes are as diverse as the number of 

particles, due to the processes by which they are manufactured. Therefore, 

considering a full distribution of particle shapes in DEM modelling is not 

feasible. For the present lab-scale study with more than 600,000 particles in 

a single mixture, even modelling the shapes of 1% of the particles is 

impractical. Considering the available time and computational power, 

selection of a particle shape, which is representative of the bulk powder, 

based on matching the modelling angle of repose with the experimental one 

is more practical and considered here.  

Every clumped-sphere can be modelled by a various number of spherical 

elements, as discussed before. To assess the sensitivity of the simulation 

results to the number of spheres used in each clump, the angle of repose of 

the representative particles is simulated and benchmarked against the 

experiments. In this study, it is assumed inevitably that the selected particles 

for each species represent the typical shapes of that species. Three particles 

from each species is selected and scanned, from which the clumped-

spheres are modelled. The validity of these particles are assessed based on 

their capability of their modelled clumped-spheres to mimic the experimental 

angle of repose, i.e. if a particle shape cannot accurately replicate the angle 

of repose, it is not used in the final simulations. Also, the effect of rolling 

friction is minimised by keeping the values of the coefficient of rolling friction 

constant at 0.01 for all the simulations. 

As an example, the repose angle of the TAED particles with 5-sphere 

clumps is depicted in Figure 3.9. The optimum sphere number for shape 

modelling of each type of powder is then determined from the 

aforementioned sensitivity analysis (Figure 3.10). This approach is followed 
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for three particles scanned from each species and the capability of each 

clumped-sphere for mimicking the experimental angle of repose is assessed.  

 

Figure 3.9 DEM simulation of a TAED particle heap using 5-sphere 
clump model. (Particle size range: 850-1000 μm). 

Using 5-sphere clumps in the modelling, the angle of repose obtained from 

the simulation is 36.2°±0.5°, which is very close to 36°±1° from the 

experimental result of TAED particles. The clumped-spheres made by a 

lower number of spheres give a smaller angle of repose. Hence the 5-sphere 

clump is selected for shape representation since it has enough accuracy 

with lower computational cost compared to the 10-sphere system. The same 

analysis has been carried out for BP particles, where the minimum number 

of spheres required to match the experimental angle of repose is also found 

to be five (Figure 3.10).  
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Figure 3.10 The effect of number of spheres in the clumped-spheres 
model on the heap repose angle.  

All clumped spheres of BP and TAED particles, generated based on the 

XRT 3D images, are presented in Figure 3.11. As it is observed, some of the 

particles fail to replicate the experimental angle of repose. Also for the TAED 

particles, the combination of different clumped spheres have failed to mimic 

36° experimental angle of repose (AoR). Therefore, only particle 1 (p1-

TAED) is used in the simulation of binary mixtures. In the case where a 

combination of different clumped spheres is used, it is possible to reach the 

36° AoR for TAED by increasing the rolling friction coefficient in DEM; 

however, this is avoided here so that the effect of particle shape is not 

influenced by the rolling friction. For the BP particles also the particle 1 (P1-

BP) is selected as the representative of the bulk powder. This assumption is 

made to make the calibration process more time-efficient. It is worth 
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mentioning that the particles used in the experiments are highly diverse in 

shape and to have an alternative accurate representation of their shapes, 

one would require to scan and analyse a large number of particles of the 

same species; this makes the whole process impractical.     

 

Figure 3.11: The modelled clumped-spheres for BP and TAED particles 

of the 850-1000𝛍𝐦 sieve-cut range. The angle of repose (AoR), 
obtained by DEM simulation, using each clumped sphere is 
presented by red colour. 

The general details and specifications of the modelling and particle shapes 

used in the simulations are listed in Table 2. 

Table 3.1: Specifications of the modelling and particle shape. 

Material TAED BP 

Number of particles 57902 52098 

Total mass (g) 25 32 

Particle shape 5-sphere 8-sphere 

Equivalent-volume diameter (μm) 938 1058 

Repose angle (°) 
Simulation 36.2 33.0 

Experiment 36.0 33.0 

3.3.3 Spherical particles and rolling friction approach 

The use of the rolling friction coefficient to account for the effect of particle 

shape has been reported previously (Wensrich and Katterfeld, 2012; Ai et 

al., 2011); however, its applicability for modelling the segregation has not 

been addressed so far. A series of simulations are carried out by 
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investigating the role of rolling friction on the angle of repose, comparing and 

matching with the experimental data. The volume-equivalent diameter of the 

particles, 𝑑𝑉, is used for these simulations. The process of heap formation of 

particles is simulated for low (0.01), medium (0.05), and high (0.10) values of 

coefficient of rolling friction as shown in Figure 3.12. The calibrated value of 

the rolling friction coefficient is determined using the trend line obtained from 

the graph. This helps to spot a primary estimation for the value for the 

coefficient of rolling friction after which another simulation is carried out to 

ensure that this rolling friction coefficient gives the desired angle of repose. 

The values for the calibrated coefficient of rolling friction are given in 

Table 3.2. This procedure is carried out for all the species in different sizes. 

 

Figure 3.12 The procedure of calibrating the spheres rolling friction 
against the angle of repose. 

Table 3.2 Calibrated coefficient of rolling friction for the spherical 
particles. 

Material TAED BP Wall (Perspex) 

BP 0.073 0.064 0.064 

TAED 0.082 0.073 0.082 

3.4 Segregation quantification methodology 

There are various ways of quantifying the quality of a mixture in 

experiments, such as optical imaging technique, near infrared spectroscopy, 
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wet analysis, etc. In modelling, on the other hand, there is the possibility of 

counting particle number/mass exactly within the mixture as well as knowing 

their positions. When the particles are distinguishable by their colours, as is 

the case here, image analysis is a fast technique as it is easy to apply and 

less expensive compared to the other techniques (Huang and Kuo, 2014a). 

Another advantage of image analysis is that it can be used for both 

experiments and numerical simulations, allowing a consistent comparison 

between the results. Nevertheless, lack of providing an insight into the depth 

of the mixture is a great shortcoming for most of the imaging techniques. In 

this work, imaging technique is used as an option to find the CoV of the 

particles at the heap surface. These results are then used to validate the 

DEM prediction of the quality of the mixture using the same technique 

(image analysis). Once the DEM results are validated, a more in-depth 

analysis is carried out in DEM by counting the particles number in different 

sections of the heap. This helps to assess the quality of the mixture in 3D. 

There are various segregation indices available in the literature as described 

in Chapter 2 (Fan and Wang, 1975; Rollins et al., 1995; Hogg, 2003; Chou et 

al., 2016; Asmar et al., 2002; Chandratilleke et al., 2012; Lacey, 1997). In 

the current study, both the segregation pattern (particle concentration 

distribution) as well as the segregation intensity are significant. The first is 

obtained by calculating the concentration of each species in different 

positions and the latter from the normalised variation of the particles 

concentration known as the coefficient of variation (CoV). Also the lowest 

possible CoV for this system in randomly mixed mode is calculated to 

compare with the segregated system. In addition to these indices, two new 

indices are proposed which are independent of the sample size and will be 

described in following sections.  

3.4.1 Image analysis technique (2D analysis) 

Heap formation of a binary/ternary mixture of the model particles is first 

simulated using the physical and mechanical properties obtained by the 

aforementioned methods. As shown in Figure 3.5, particles are in different 

colours, which allow for detecting their positions in the binary mixture by 

image analysis.  

To find the segregation extent, an image is taken from the front view of the 

heap which is then divided into several square bins as shown in Figure 3.13. 

The image analysis MATLAB code developed by Pasha et al. (2016) as well 
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as other image processing software, such as Photoshop and Corel 

PaintShop Pro, are used here. The number of pixels of each constituent in 

each bin is calculated, from which their pixel number concentrations are 

determined. The CoV of these pixel concentrations is then calculated for the 

whole heap. The effect of bin size on CoV of the constituents is also 

assessed by using different numbers of bins in the analysis. As expected, 

larger bins give smaller CoV; however based on the case under study and 

its application, bin size should be neither too large nor too small. In this 

study, the bins are squares with 10 mm sides, selected to be roughly 10 

times wider than the size of the largest particle. CoV values normally range 

from zero to one, meaning no segregation (an ideal and totally mixed case) 

for values close to zero and highly segregated system for one and greater 

(Equation (3.33)). This approach is applied to both experimental as well as 

simulated heaps. 

 

Figure 3.13 A heap image, processed in MATLAB and divided into 
square bins, ready for image analysis. After indexing, BP and 
TAED particles are shown by blue and green colours, respectively. 

The pixel number fraction for each constituent per bin, 𝑪𝒊𝒌
, is given by 

Equation (3.33): 

𝑪𝒊𝒌
=

𝑵𝒊𝒌

∑ 𝑵𝒊𝒌

𝒎
𝒊=𝟏

 

 

(3.33) 

where 𝑵𝒊𝒌
 is the number of pixels of the constituent i in the bin number k, 

with m being the total number of bins. The mean value, standard deviation, 

and coefficient of variation are given by Equations (3.34) to (3.36). 

 𝜇𝑖 =
1

𝑛
∑ 𝐶𝑖𝑘

𝑛

𝑘=1

 (3.34) 
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𝜎𝑖 = √
1

𝑛
∑(𝐶𝑖𝑘

− 𝜇𝑖)
2

𝑛

𝑘=1

 (3.35) 

 

 𝐶𝑜𝑉𝑖 =
𝜎𝑖

𝜇𝑖
 

(3.36) 

 

 

Figure 3.14 The discretisation of the heap into bins in three dimensions 
to be used for measuring the coefficient of variation 

3.4.2 Particle number/mass fraction analysis (3D analysis) 

Another method for quantifying the segregation, which is only applicable to 

simulation, is to count the particle number in each bin of the mixture. In this 

method the heap is discretised three-dimensionally into a number of bins 

(Figure 3.14) in which the particle number fractions for each species are 

calculated and their CoV for the entire heap is then obtained.  A major 

advantage of this method is the ability to observe the segregation across the 

depth of the heap, i.e. the whole heap can be analysed three-dimensionally 

by DEM; while by image analysis only the segregation on the front face of 

the heap can be calculated.  

3.4.3 CoV of randomly mixed systems 

Calculating the CoV of the mixture components in a randomly mixed system 

provides a suitable reference for comparison. To do so a random generator 

number is used in the Excel software to obtain random particle number 

fractions for each bin with regards to the particles mean value (e.g. 0.5 for 
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the binary system) and the lower limit of standard deviation (randomly 

mixed) using Equation (3.37) (Rhodes, 2008; Lacey, 1997).  

 
𝜎𝑅 = √

P(1 − P)

𝑁
 (3.37) 

P is the volumetric probability of species in the bin and N is the total number 

of particles in the bin when they are monosized. The standard deviation of 

each bin is calculated separately as the number of particles in the bins (e.g. 

corners and edges) are different, which affects the variability of the 

randomised mixture. After the random particle number fractions are 

generated for all the bins, the CoV of these fractions is calculated 100 times 

(with new random fractions) and the average is obtained. The ratio of the 

CoV of the simulated mixture (CoVm) to the CoV of the random mixture 

(CoVr) is our normalised segregation index given in Equation (3.38) which is 

similar to the index proposed by Poole et al. (Poole et al., 1964).  

Sn =
CoVm

CoVr
 (3.38) 

Sn values smaller than one indicate a well-mixed mixture and values over 

one show a segregated system. 
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Chapter 4 The effect of particle shape on predicted 

segregation in binary powder mixtures 

 

Particle shape is one of the factors that undeniably affects the mixing quality 

of powder mixtures and its variation can lead to segregation of particles. 

Although important, particle shape driven segregation in particulate mixtures 

has received limited attention in the literature either experimentally or via 

simulation. The underlying mechanisms of the shape driven segregation are 

not fully understood by doing experimental investigations only. Numerical 

simulations help to cover the shortcomings of the experimental efforts. This 

study investigates the shape-driven segregation which occurs during the 

process of heap formation and vertical vibration. It is tried to evaluate the 

ability of different DEM simulation approaches to predict the particle shape 

effect on mixture disorder. The system studied is a binary mixture of 

irregularly shaped particles: a typical spray dried detergent powder (BP) and 

a granulated detergent additive (TAED). Particle shapes are obtained using 

X-ray micro-tomography. In the first case, the shape is resolved via the 

clumped sphere approach, as described in Chapter 3, after which the 

particles segregation during the heap formation and vibration is simulated. In 

the second case, spherical particles, with rolling friction calibrated to 

reproduce the experimental angle of repose, are used in the simulations. 

The segregation tendency of the BP and TAED particles is analysed in each 

case and the results are compared with the experiments to assess the 

impact of particle shape on segregation prediction.  

4.1 Geometry and materials 

In this study, only BP and TAED particles are used in the DEM simulations. 

Prior to launching the DEM simulations, the particle physical and mechanical 

properties are measured experimentally, where possible, and/or calibrated 

by DEM simulations as described in Chapter 3.  

The geometry used in the simulations and experiments is shown in 

Figure 4.1. It consists of a transparent box (200 mm in height, 191 mm in 

width, and 16 mm in depth)  made from Perspex and a plastic funnel on top. 

The particles are discharged from the funnel and make a heap in the box 
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from which the repose angle is measured. The same process and geometry 

is used in DEM simulations in which the angle of repose is used as a 

benchmark for calibration of the DEM input parameters. All the simulation 

tests are carried out with a 50:50 bulk volume ratio of BP and TAED. 

 

 

Figure 4.1 Geometry utilised in DEM simulations based on the 
geometry of the experimental set up. 

4.1.1 Particles physical and mechanical properties   

One important part of the DEM modelling is to set appropriate physical and 

mechanical properties for the simulation. In this work efforts have been 

made to characterise the physical and mechanical parameters as much as 

possible, as described in chapter 3. The properties used in the DEM 

simulations are given in Table 4.1. It is noteworthy that the calibration study 

starts with setting the appropriate sliding friction coefficient, after which the 

restitution coefficient is tuned. Afterwards, the particle shape calibration is 

achieved by forming an angle of repose. The calibration of particle density 

comes at the final stage, as described in Chapter 3. 
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Table 4.1 Physical properties of BP and TAED particles used in DEM 
simulations. 

Material TAED BP wall 

Sieve-cut size (μm) 850-1000 850-1000 - 

Density (kg/m3) 1000 1000 1190 

Shear modulus (MPa) 10 10 100 

Poisson’s ratio 0.25 0.25 0.25 

CoR (BP-Particle/wall) 0.30 0.20 0.28 

CoR (TAED-Particle/wall) 0.32 0.30 0.32 

CoF (BP-particle/wall) 0.69 0.62 0.42 

CoF (TAED-particle/wall) 0.76 0.69 0.36 

CRFClumped-spheres (Clumped spheres) 0.01 0.01 0.01 

CRFSpheres (BP-particel/wall) 0.073 0.064 0.064 

CRFSpheres (TAED-particel/wall) 0.082 0.073 0.082 

 

4.1.2 Particle shape 

Particles selected and tested here are shown in Figure 4.2. BP particles are 

more irregular, because of the spray drying process, compared to the TAED 

particles which have smaller asperities as a result of granulation process. To 

ensure that the effect of particle shape on segregation extent is not 

dominated by the particle size effect, narrow size cuts, 850-1000 µm, of BP 

and TAED particles were prepared by sieving and used in the experiments. 

It should be mentioned that in DEM simulations, only one particle size is 

utilised for each species with equivalent-volume diameters given in 

Table 4.2.  
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Figure 4.2 Typical shapes of (a) BP (white) and (b) TAED (blue) 

particles sieved between 850 and 1000 𝛍m. 

The particle shapes are then characterised and their clumped spheres are 

generated as described in chapter 3. The clumped sphere for TAED particle 

shape is shown in Figure 4.3. The same volume and centre of mass as of 

the real particles are considered in generating the clumped spheres. Here, 

the volume of individual particles are compared not that of the bulk material.  

 

Figure 4.3 The non-spherical TAED particle shape representation by 
increasing the number of spheres (TAED particles’ size range: 
850-1000 μm). 

The general details and specifications of the modelling and particle shapes 

used in the simulations are listed in Table 4.2. 

Table 4.2 Specifications of the modelling and particle shape. 

Material TAED BP 

Number of particles 57902 52098 

Total mass (g) 25 32 

Particle shape 5-sphere 8-sphere 

Equivalent-volume diameter (μm) 938 1058 

Repose angle (°) 
Simulation 36.2 33.0 

Experiment 36.0 33.0 
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4.2 Segregation during the heap formation  

Using the geometry and the particle properties, the heap formation of the 

binary system of TAED and BP particles is simulated. The particles used in 

this study are dry and free flowing and their sizes are relatively large; 

therefore the contact adhesive interactions are not dominant and hence 

negligible compared to the gravitational force (high Bond and low Cohesion 

numbers) (Hager, 2012). On this basis, only the Hertz-Mindlin (no slip) 

(Johnson et al., 1971; Hertz, 1882; Deresiewicz et al., 1952) contact model 

is applied as detailed in chapter 3. 

4.2.1 Simulation of segregation using clumped sphere approach  

The process of heap formation of a binary mixture of BP and TAED is 

simulated using clumped sphere approach as shown earlier. A visual 

comparison between the results from the front view of the heap in 

experiment and the front and mid-plane views in DEM modelling is given in 

Figure 4.4. Although the particle sizes of both species are in the same 

range, BP particles still show segregation near the corners of the heap at the 

front wall which might be due to the difference in shape or surface properties 

of the particles. 

 

Figure 4.4 Heap formation of binary mixture of the BP (beige/weight 
colour) and TAED (blue colour), for experiment and DEM 
modelling. (The photo of the experimental case shows a number 
of pins holding the front wall and are not within the bed.) 

For analysing the experimental data, only the image analysis technique is 

used, while for the simulation results, both methods of image analysis 

(CLUMPED-Front view) and counting particle number (CLUMPED-Front 

layer), as described previously, are employed. For the latter, thin layers, 

having 2 mm width (2 times wider than the particles), from the front side and 

middle of the heap are selected as shown in Figure 4.5, and the particles are 

counted in each bin in these domains. Then the particle number fraction of 

the species at each bin (𝑪𝒊𝒌
) for the front and middle layers of the heap are 

calculated and the values are depicted in format of contours to show the 

map of particles concentrations (Figure 4.6). 



 

89 

 

 

Figure 4.5 A thin layer from the front side of the heap is selected and 
discretised. 

As depicted in Figure 4.6, the BP particle distribution at the front layer of the 

heap is clearly different from that of the middle layer. For the front layer, 

segregation of the BP particles is clearly visible in the corners of the heap, 

whereas for the middle layer, the particles are well mixed throughout the 

whole heap. The concentration map of the TAED particles has also the 

same visual pattern as of the BP; the only difference is that for the front 

layer, the corners have lower concentration values as the summation of 𝑪𝒊𝒌
 

in each bin must equal one. The central region, however, does not have 

much concentration difference (not shown).  

 

Figure 4.6 Particles number concentration map of the PB particles for 
the front and middle layers of the heap (DEM simulation-clumped 
spheres approach). 

The CoV of BP and TAED particles from these two analysis methods are 

presented in Figure 4.7. A reasonable agreement between the experimental 
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and numerical results is observable for both BP and TAED particles. The 

CoV of the BP particles is less than that of the TAED for both the 

experimental case and when the front view is analysed (i.e. CLUMPED-

Front view). In contrast, the CoV obtained from the method of counting the 

particle number (i.e. CLUMPED-Front layer) is close for both species. The 

slight difference between the CoVs of the BP and TAED particles, observed 

in the image analysis method, is likely due to considering the projected area 

of the particles rather than the particle number. When 2D imaging is used to 

analyse the segregation, particles presentation on the screen is dependent 

on their packing style on the wall influenced by the particle’s aspect ratio, 

asperities, and surface roughness. This will lead to differences in the mean 

values of the colour pixels concentration on the wall and finally the value of 

the CoV for each species will be different. It is also likely that the use of a 

thin layer in the segregation analysis dilutes what is shown for the 

segregation tendency on the front surface. This fact is observed in both 

experiment and DEM simulation, which shows that the simulation has been 

able to capture this effect.   

It is also observed that the CoV of the middle layer of the heap is much 

lower than the CoV of the front layer (nearly half). As observed in Figure 4.6 

as well, particles have a very even distribution in the middle of the heap in 

contrast to the front. In so far as the segregation in the heap front is 

concerned, simulation with clumped spheres can reliably predict the extent 

of segregation.  
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Figure 4.7 CoV of BP and TAED particles obtained from experiments 
and clumped sphere approach using image analysis of the front 
view of the heap (CLUMPED-Front view) and counting particle 
number for the front layer (CLUMPED-Front layer) and the middle 
layer (CLUMPED-Middle layer). 

4.2.2 Simulation of segregation using rolling friction approach 

The rolling friction approach is used here to simulate the process of heap 

formation. Similar to the case of clumped-spheres the CoV of the particles 

obtained from the simulations using the rolling friction approach is analysed 

by image analysis and particle number methods. The results are shown in 

Figure 4.8 and compared with the experimental data. Clearly the rolling 

friction approach underestimates the segregation tendency. ROLLING-Front 

view and ROLLING-Front layer results show the front of the heap analysed 

by the image analysis and counting particle number methods, respectively. 

ROLLING-Middle layer results show the condition in the middle of the heap 

based on counting the number of particles.  

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Experiment-
Front view

CLUMPED-
Front view

CLUMPED-
Front layer

CLUMPED-
Middle layer

C
o

V

BP

TAED

Image analysis method Counting the particle 
number method



 

92 

 

 

Figure 4.8 CoV of BP and TAED particles obtained from experiments 
and rolling friction approach using image analysis at the front 
view of the heap (ROLLING-Front view), counting particle number 
for the front layer (ROLLING-Front layer) and the middle layer 
(ROLLING-Middle layer).  

The segregation index for the mid-layer of the heap is much lower than that 

of the front layer. This is also clear from the particle number concentration 

map of the heap, shown in Figure 4.9, where an extent of variation in 

concentration of BP particles is observable in the front layer of the heap. In 

contrast, the particle distribution in the middle of the heap is quite uniform. 

This difference between the particle distribution in the middle and front 

layers of the heap is likely due to the effect of particle shape at the wall. In 

fact wall and free surfaces facilitate the segregation by reducing the level of 

constraints imposed on the particles and hence the particles can easily 

rotate and segregate. This is not the case when the particles are subject to 

an interconnected mesh of particles restricting their movement, similar to 

what happens in the middle of the heap. 
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Figure 4.9 BP particles (white) number concentration map for the front 
and middle layers of the heap (rolling friction approach). 

Comparing Figure 4.9 with the results obtained from the clumped sphere 

approach (Figure 4.6), the rolling friction approach gives a slightly lower 

particle concentration in the corners of the heap.  

4.3 Effect of shape on predictability of DEM technique in 

granular segregation 

The average values of the CoV for a randomly mixed system are calculated 

to be 0.14, 0.15, and 0.19 for the CLUMPED-front layer, ROLLING-front 

layer, and CLUMPED-front view cases, respectively. These numbers are 

between the CoV values of the front and middle layers, showing that the 

middle layer is well mixed while the front layer has segregation. Also, the 

CoV values obtained by the rolling friction approach are some 35% lower 

than those of the experiments. The fact that the clumped sphere approach is 

predictive, while the rolling friction approach is not, most likely stems from 

the effect of particle-particle mechanical interlocking as well as the particle’s 

different aspect ratios and moment of inertia, which only happens in the real 

system and the clumped sphere approach. This can be observed clearly 

from close-up images of the particles at the front view of the heap as shown 

in Figure 4.10. Different shapes give different behaviours during the packing 

and an extra effect of bed dilation during particle rotation (May et al., 2010a). 

The difference observed between the arrangements of particles in these two 

approaches shows that the effect of particle shape is not limited to the rolling 
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mechanism of the particles, rather it affects the particles contacts in a more 

complex network.  

 

Figure 4.10 Arrangements of the BP (white) and TAED (blue) particles 
at the heap front, simulated by the clumped sphere and rolling 
friction approaches. 

4.4 Shape driven segregation during vertical vibration 

After the particles are settled thoroughly and the heap is stable, the box is 

exposed to a vertical sinusoidal vibration with 6 mm amplitude and 8 Hz 

frequency and the particles behaviour is simulated. This study is carried out 

to assess the effect of shape on simulation of vibration-induced segregation. 

This process resembles a condition encountered during the transport of 

washing powders. The front views of the heap at several times of vibration 

are shown in Figure 4.11. As the heap is vibrated, the mixture decreases in 

repose angle until it becomes completely flat as the particles are free 

flowing. The initial pattern of the mixture gradually changes through the 

vibration stage, e.g. the BP particles in the corners distribute over the whole 

mixture during vibration, leading to a lower segregation index. 
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Figure 4.11 Front view of the BP (white) and TAED (blue) mixture at 
various vibration times using clumped sphere and rolling friction 
approaches. 

As described before, two methods of (1) image analysis and (2) counting 

particle number are used in this study to determine the segregation index 

(CoV). The segregation indices indicate that the mixtures are not highly 

segregated; however, the CoV drops by at least 25% after 10 s of vibration. 

For the BP particles, the CoVs obtained from experiment by the image 

analysis and from DEM by both image analysis and counting particles are in 

good agreement and show the same trends (Figure 4.12). In contrast, the 

CoV of the TAED particles shows a small deviation from the experiment in 

the second technique, while the results from image analysis are still in good 

agreement. Generally a minor difference between the CoVs of the first and 

the second methods is natural and anticipated due to considering a depth for 

the front layer in the second method, while just a projected area is used in 

the first method. 
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Figure 4.12 Coefficient of variation of the TAED and BP particles within 
the mixture calculated by image analysis and particles number for 
the front plane face. 

A comparison between the CoVs of BP and TAED for the front view from the 

experiment and the middle plane from the simulations is made and 

demonstrated in Figure 4.13. For the front view and before vibration, the 

CoV of BP and TAED are 0.27 and 0.33 respectively, gradually decreasing 

by nearly 25% to 0.25 and 0.2 and remaining constant for the rest of the 

vibration time. On the other hand, the middle layer has a much lower CoV 

from the beginning of vibration, i.e. 0.11, showing a well-mixed condition 

through the middle layer of the heap, remaining nearly constant during the 

vibration. This graph indicates that the mixing pattern of the front view of the 

heap is not well representative of the whole mixture condition. It can be 

attributed to the effect of wall friction and also weaker particle-particle 

interlocking close to the walls and free surfaces. Closer to the centre of the 

heap, the particles are more interlocked and experience a mesh of 

entangled particles reinforced by the forces exerted from walls and other 

particles in surrounding. During the vibration, the interlocked particles of the 

middle layers tend to move together in the form of batches of mixed particles 

which reduces the rate of percolation or penetration of individual particles. 

This bulk-like migration of particles maintains the mixture homogeneity in the 

middle of the heap even during the vibration.  
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Figure 4.13 The values of CoV of particles concentration for the front 
and middle views of the heap. 

The process of vibrating the mixture is also simulated using the rolling 

friction approach. The results are compared with the experiments and 

clumped sphere approach in Figure 4.14. It is observed that the segregation 

of the heap is underestimated by 24% on average for both particle species, 

when using rolling friction approach. However, both systems show similar 

trends of CoV for particles segregation.  

 

Figure 4.14 Coefficient of variation of TAED and BP particles during the 
vibration process obtained from DEM modelling and experiments. 

Applying the right shape in DEM simulations not only affects the rolling of 

particles on each other, but also changes the relative behaviour of particles 

when in contact. This is mainly due to the interlocking of the irregular 

particles which is not simulated rigorously when spherical particles are used. 

In fact, their contact behaviour and momentum during the collisions are 
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considerably different from those of irregular shape objects, mainly due to 

the symmetry of sphere.  

CoVs of the middle layer of the heap made up of spherical and clumped-

sphere particles are compared in Figure 4.15. It is observed that the 

segregation indices from both types of simulations are considerably low with 

a slight decrease after the vibration; however, the average CoV of the 

spheres is approximately 16% less than that of the clumped-spheres 

indicating that the segregation by the spherical particles, using a value of 

coefficient of rolling friction which reliably predicts the repose angle, is 

underestimated here as well. 

 

 

Figure 4.15 CoV of the particles in the middle layer of the vibrated heap 
obtained from clumped sphere and rolling friction approaches.  

4.5 Conclusions 

The segregation of a binary powder mixture during the heap formation is 

modelled numerically using the DEM method. Two main ingredients of 

washing powders, namely BP and TAED, are used as model test materials. 

Clumped spheres and rolling friction approaches are utilised for modelling 

the particle segregation and the results are compared with the experiment. It 

is observed that parti repose angle is highly dependent on the particle shape 

and there is a minimum number of spheres which gives adequate 

comparison, after which not much improvement is obtained. The results 
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obtained from DEM simulations show that the clumped sphere approach is a 

predictive tool for simulating the segregation during the heap formation. In 

contrast, the rolling friction approach underestimates the segregation 

tendency even when it is tuned to predict the repose angle. It is also 

observed that the middle and front layers of the heap give two different 

predictions of the segregation tendency. Thus the particle distribution pattern 

at the front view of the heap is not well representative of the condition of the 

whole mixture.  

Calibrated rolling friction as a substitute for particle shape is not an accurate 

approximation of irregular particles for the simulation of segregation 

behaviour, even for a system which is not significantly prone to segregation. 

This situation becomes exacerbated when segregation due to size difference 

becomes more extensive. 
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Chapter 5 The effect of adhesion on segregation tendency of 

minor active ingredients in ternary systems 

In this study, the effect of particle interfacial adhesion on segregation of 

minor components during heap formation is addressed using DEM 

simulation accompanied by experimental validation. The model mixture is a 

ternary mixture of the main ingredients of home washing powders. The 

particles properties including size, density, and shape are characterised 

experimentally and calibrated in DEM as described in Chapter 3. The minor 

component is a round and dense Enzyme Placebo granule (EP) which is 

prone to segregation. The EP granule’s surface condition is manipulated via 

tackifying them by spray coating and the process of heap formation of the 

ternary mixture of powders is simulated for the systems having coated and 

uncoated EP granules. To account for the effect of adhesion, a systematic 

methodology is proposed for selection and calibration of the particle 

interfacial energy according to a rule taking account of size, stiffness, shape, 

and density. Heap formation tests of the ternary mixture are also carried out 

in the laboratory and the segregation index of the EP granules is calculated 

before and after coating using the image analysis technique described in 

Chapter 3. The simulation results are validated by the experimental work 

both qualitatively and quantitatively. The underlying mechanisms of the 

particle segregation before and after coating are also analysed.  

5.1 Geometry and materials 

The geometry of the test box used in this study is shown in Figure 5.1 which 

is similar to the one used in Chapter 4. The box walls are transparent and 

made from Perspex and the box frame is metallic. The powders are mixed 

manually and then poured into the funnel from which the mixture is 

introduced into the box to form the heap. This process is simulated in DEM 

with the same geometrical specifications as the experiment. The physical 

parameters are measured where possible and used in DEM as detailed 

below.  
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Figure 5.1 Image of the geometry of the test box used in the experiment 
and modelling. (The bottom of the image of the heap test box 
shows a number of screws holding the front transparent wall 
which are not intruding the powder bed) 

5.2 Computational methodology 

EDEM 2.7.1 software, provided by DEM Solutions, Edinburgh, UK, is used to 

model the heap formation process. The models used for particle contacts 

are Hertz-Mindlin (Johnson et al., 1971; Hertz, 1882; Deresiewicz et al., 

1952) for elastic deformation and frictional traction and JKR (Johnson et al., 

1971) for adhesion, by which the effects of collisions and cohesion/adhesion 

are taken into consideration. The particles used in this study are relatively 

large and do not experience high stresses, therefore the JKR theory is valid 

for this case according to the Tabor’s criterion (Tabor, 1977). The details of 

these models are available in Chapter 3. The particles used in this study are 

dry and free flowing and their sizes are relatively large; therefore the contact 

adhesive interactions are not dominant before coating and hence negligible 

compared to the gravitational force (low Cohesion Number). Therefore for 

the uncoated materials, the JKR model is switched off and the contact model 

is reduced to Hertz-Mindlin. For the coated EP granules, the appropriate 

interfacial energy values are predicted using the Cohesion Number of the 

real particle (experimental properties) and further tuned by comparing the 

simulation results with the experiments as will be detailed below. The 
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particle shape is also taken into account using the clumped sphere approach 

(Favier et al., 1999). The particles are generated by clumping spheres 

together in a way that their general shape, aspect ratios in different 

directions, envelope volume, and the relative position of the centre of mass 

are the same as of the original real shape.   

5.3 Particles physical and mechanical properties 

In this study, all the three types of particles mentioned previously, i.e. BP, 

TAED, and EP, are used in DEM simulations, with their typical shapes 

shown in Figure 5.2. The particles are sieved and their size for this study is 

selected based on the mode of their size distribution. The particle properties 

are measured experimentally and further tuned by DEM analysis as 

described in Chapter 3. After characterisation of the particles, they are mixed 

manually, using a representative formulation of washing powders 

(Table 5.1), and introduced into the test box to form the heap (Figure 5.1). It 

should be noted that only the EP granules are made sticky in this study, 

which is in line with the manufacturer’s preference. This species is the most 

expensive and active element of the formulation whose segregation has 

severe consequences and it is more prone to segregation compared to other 

species.  

 

Figure 5.2 Typical shapes and colours of (a) BP, (b) TAED, and (c) EP 
granules shown by optical images.  
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Table 5.1. Specifications of the modelling and material properties. 

Material type BP TAED EP Perspex 

Size (μm) 425-500 850-1000 600-700  

Particles number 633,597 4667 1401  

Total mass (g) 28.53 1.71 0.61  

Mass generation rate (g. s−1) 18.5 1.1 0.4  

Weight Percentage 92.0 6.0 2.0  

Particle shape 5-sphere 5-sphere 1, 2, 3-sphere Wall 

Repose angle (uncoated) (°) 40.0 36.0 31.0  

Shear modulus (MPa) 100 100 100 1000 

Density (kg. m−3) 780 850 2320 1180 

Coefficient of rolling friction 0.10 0.01 0.05 0.01 

Poisson’s ratio 0.25 0.25 0.25 0.25 

CoF (BP-element) 0.62 0.69 0.70 0.42 

CoF (TAED- element) 0.69 0.75 0.75 0.36 

CoF (EP- element) 0.70 0.75 0.75 0.75 

CoR (BP- element) 0.20 0.30 0.20 0.28 

CoR (TAED- element) 0.30 0.32 0.20 0.32 

CoR (EP- element) 0.20 0.20 0.10 0.20 

 

5.3.1 Particles shape  

The particles are different in shape due to the difference in processes by 

which they are manufactured. To account for the particle shape, particles are 

scanned using X-ray tomography technique (XRT). Using ASG software 

(Price et al., 2007) the clumped spheres are generated afterwards and the 

optimum number of spheres for each clump is selected using a comparison 

between the angle of repose of the DEM and the experiment (Figure 5.3). 

The details of the shapes calibration method are given in Chapter 3. 



 

104 

 

 

Figure 5.3 The clumped spheres representing the real shapes of BP, 
TAED, and EP particles. 

5.4 Modelling the adhesion 

5.4.1 Background 

The Cohesion number, given in Equation (3.32), is a useful scaling tool for 

the DEM simulations for which the Young’s modulus is selected smaller than 

the real value in order to increase the computational speed. Using this 

umber, the relation between the particles Young’s moduli and interfacial 

energies is expressed in Equation (5.1), 

 
Γ𝑠𝑖𝑚 = Γ𝑒𝑥𝑝 (

𝐸∗
𝑠𝑖𝑚

𝐸∗
𝑒𝑥𝑝

)

2
5⁄

 (5.1) 

where Γ𝑒𝑥𝑝 and E𝑒𝑥𝑝 are the values obtained from experiments and Γ𝑠𝑖𝑚 and 

E𝑠𝑖𝑚 denote the values used in simulations. Γ𝑒𝑥𝑝 can be measured by 

different techniques, like the Dynamic Vapour Sorption (DVS), and theE𝑒𝑥𝑝 is 

normally measured using mechanical compression test. In the current study, 

these values are extracted from literature, as reference in Table 5.2.    

Recently, a rigorous analysis of contact stiffness reduction for adhesive 

contacts to speed up DEM calculations shows the same functional form 

(Hærvig et al., 2017). For adhesive contacts it is critical to avoid too 
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unrealistic contact stiffness values, especially when the interfacial energy is 

very high, as otherwise the simulations will not be predictive (Moreno-

Atanasio et al., 2007). In the present study, the interfacial energy values are 

in moderate range (not very high) and the shear modulus used in 

simulations is 100MPa which is not much below the real shear modulus of 

the particles and is safe to be used in the DEM simulations.  

5.4.2 Evaluation of the EP granules interfacial energy 

The process of evaluation of the particle interfacial energies to be used in 

DEM modelling is presented as a flow chart in Figure 5.4. For the coated EP 

granules the initial value of the surface energy is based on the surface 

tension of the PEG 400. Then the angle of repose is used as the criterion for 

tuning the surface energy. To do so, the process of heap formation for the 

EP granules with each level of coating is carried out experimentally and its 

corresponding angle of repose is measured. It should be noted that for lower 

levels of coating (less than 2.5 wt% of PEG) the heap edges are sharp 

straight lines and the angle of repose is measured accurately; while for the 

higher levels of coating, due to the fluctuations on the heap surface, the 

angle of repose is measured considering the average angle of the heap 

profile. For this, the heap is divided into right and left sections as displayed 

in Figure 5.5. For each section, the horizontal distance between two points 

on the heap surface which correspond to 10% to 90% of the heap height is 

measured as shown in Figure 5.5, from which the repose angle is calculated. 

The final value for the repose angle is the average of the values measured 

for the left and the right sections. The angle of repose test is repeated five 

times for each level of coating and the average value is reported in 

Figure 5.6, where the error bars show the variations in the repose angle in 

each case. Clearly, the error band depends on how sticky the granules are.  
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Figure 5.4 Schematic of the interfacial energy calibration methodology 
in a flow chart. 

 

Figure 5.5 The method of determining the angle of repose of cohesive 
powders. 
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Figure 5.6 Calibration of the EP granules interfacial energy based on 
level of coating using the angle of repose approach.  

 

For the dry granules, the interfacial energy is set to zero in the DEM 

simulation, giving a repose angle which matches nicely with that from the 

experiment, i.e. 31.0°. For DEM simulation of the coated granules, the initial 

value of the interfacial energy is based on the surface tension of PEG 400 

and scaled using the Cohesion number for a lower value of Young’s 

modulus than that of real EP granules. The surface energy of the coating 

material, 𝛾𝑃𝐸𝐺 is 0.043 J. m−2 (Van Ness, 1992; van Oss et al., 1987)). 

Therefore, the interfacial energy of the EP granules is taken as Γ𝐸𝑃 ≅

2𝛾𝑃𝐸𝐺 = 0.086 J. m−2  (Butt and Kappl, 2009). Using this value in combination 

with the particles density, radius, and modulus of elasticity, listed in 

Table 5.2, the Cohesion number of the coated particles in the experiments is 

found to be 1.6 × 10−3. The value of Young’s modulus used in the 

simulations is taken as nearly one order of magnitude smaller than the real 

value (i.e. ~ 0.25 𝐺𝑃𝑎 compared to 1.6 𝐺𝑃𝑎) to speed up the computations. 

Now keeping the value of the Cohesion number the same as of the 

experimental one, the equivalent interfacial energy for the lower Young’s 

modulus is calculated as 0.046 J. m−2. Using this initial value for the 

simulation of heap formation gives an angle of repose of 37.6°. It turns out 

that this angle of repose matches that of the experimental case with 0.5 wt% 
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PEG. Further calibrations are carried out to tune the interfacial energy in 

DEM so that the simulated angle of repose matches with the experimental 

one for other levels of coating (1.5-3.5 wt% of PEG). The equivalent 

interfacial energy for different mass fractions of the coating material is 

displayed in Figure 5.6. In addition, a visual comparison between the heaps 

from the experiment and DEM modelling is made in Figure 5.7, where a 

good match prevails. 

Table 5.2 The physical and mechanical properties of EP granules and 
PEG400. 

Material Property Value 

EP  

Sieve-cut Size (𝛍m) 600-700 

Density (kg. m−3) 2320 

Young‘s modulus for EP granules (GPa) 
(Ahmadian, 2009) 

1.6 

Poisson’s ratio 0.25 

Interfacial energy in DEM (J. m−2) 0.0 - 0.350 

PEG 400 
Surface energy in experiment (J. m−2) (Van 
Ness, 1992; van Oss et al., 1987)  

0.043 

 

 

Figure 5.7 The angle of repose of EP granules obtained from DEM and 
experiment for different levels of coating.  

 

5.4.3 Setting the interfacial energy of dissimilar species  

In experiments, the lowest segregation index was observed when the EP 

granules were coated by 2.5 wt% of PEG (Asachi, 2018). Due to the high 

computational cost, only three scenarios are simulated in the present study, 

including the uncoated, optimally coated, and excessively sticky EP 

granules. Therefore, the focus is only on these coating levels, the latter 

producing very sticky EP granules.  
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The equivalent interfacial energy for the EP contacts in the DEM modelling is 

found to be 0.250 Jm-2 for 2.5% PEG, as shown in Figure 5.6. To find the 

interfacial energy of the EP-BP and EP-TAED contacts, some assumptions 

and calculations are necessary. When the coated EP granules are mixed 

with the other particles, the adhesive surfaces of the EP granules make 

contact with the dry surfaces of the BP/TAED particles. Since the 

relationship between the coating level in the experiment and the interfacial 

energy in modelling is almost linear, as inferred from Figure 5.6, it is 

assumed that the interfacial energy of the contact of dry-adhesive surfaces 

is half of that of the case where both surfaces are adhesive, based on JKR 

model. The value obtained from this method shows the interfacial energy (𝛤1) 

of two spheres with equal sizes (𝑅1
∗). However, the sizes of the BP and 

TAED particles are different from the EP granules. In this case, the 

equivalent volume radii of the BP and TAED particles are used to find 𝑅2
∗ 

from Equation (3.9) for EP-BP and EP-TAED contacts. The relationship 

between the interfacial energy and the particle size is derived from the 

Cohesion number and expressed by Equation (5.1), 

 
𝛤2 = 𝛤1 (

𝑅1
∗

𝑅2
∗)

8
5

 (5.2) 

The equivalent interfacial energy values of the EP-BP and EP-TAED (𝛤2) are 

predicted to be 0.037 and 0.060 Jm-2, respectively, and are used in the 

simulations of the segregation index as described below.  

The initial value of the interfacial energy for simulation is estimated using the 

Cohesion number and further calibrated by the angle of repose method. In 

the beginning, the Cohesion number of the coated particles in experiments is 

taken as 5.2 × 10−4 considering the physical and mechanical properties of 

the EP granules (E = 1.6 GPa and R = 650 μm) and the interfacial energy of 

the PEG 400 as 0.043 J. m−2 as detailed in Table 5.2. The value of Young’s 

modulus used in the simulations is one order of magnitude smaller than the 

real value to speed up the computations. Keeping the value of the Cohesion 

number the same as that of the experiment, the equivalent interfacial energy 

is obtained for the initial simulation trial as 0.05 J. m−2. This value, as 

highlighted in Figure 5.6, results in a slight increase in the angle of repose of 

the heap made from the EP granules. The interfacial energy values needed 

to replicate the angle of repose of the granules with the next higher level of 

coating can be approximated by a linear extrapolation, where the first point 
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of the extrapolation is the angle of repose of the dry EP granules (0.0, 31°) 

and the second point is obtained from the DEM simulation heap formation of 

EP granules using the interfacial energy predicted by the Cohesion number 

(0.01, 33°). Subsequently, further comparisons and calibrations are made to 

tune the interfacial energy more accurately in DEM to match the simulated 

angle of repose with the experimental ones for differing levels of coating (0-

3.5 wt.% of PEG). The equivalent interfacial energy for different mass ratios 

of coating material is displayed in Figure 5.6.  

5.5 Segregation index 

The particles have different colours as shown in Figure 5.2, which allows for 

detecting their positions in the ternary mixture using image analysis. To find 

the extent of the segregation, firstly an image is taken from the front/back 

view of the heap. Then the image is divided into 21 bins (Figure 5.8) where 

the bin size is defined based on the scale of scrutiny, i.e. a small scoop of 

washing powder (e.g. less than 20ml). The bin size is selected in a way to 

contain a meaningful number of EP granules. Notably, the empty bins are 

not taken into account in calculation of the segregation index. The 

concentration of material in each bin, given by colour pixels, and their 

corresponding coefficient of variation (CoV) are calculated as described in 

Chapter 3.  

The EP granules are small in number compared to other species which 

affects the range of their CoV values. To consider the effect of low number 

of particles on CoV variability, the CoV of a randomly mixed system is also 

calculated for comparison using Equation (3.36) (Rhodes, 2008; Lacey, 

1997). Using Equation (3.37), the segregation index, Sn, is obtained which 

shows the ratio of the actual EP granules CoV and its corresponding value 

for the randomly mixed system. The Sn values smaller than one indicate a 

well-mixed mixture and the values over one show a segregated system. 
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Figure 5.8 Discretisation of the heap into bins for calculating the 
segregation index. 

The image analysis technique described in Chapter 3 is used for both 

experiment and DEM simulation to compare and validate the results. This is 

only applicable for the surface of the heap from which the image is taken; 

however, in DEM, it is possible to observe the particle distribution across the 

depth of the heap. In this regard the heap is discretised three-dimensionally 

into a number of bins in which the mass concentrations of the species are 

calculated and their CoV for the entire heap are then obtained. The same 

segregation indices used for the image analysis are applied here for finding 

the CoV.  

5.6 Mixtures flowability 

There are various ways to assess how easy bulk powders flow. In this study 

the flow behaviour of the powder mixtures is assessed using the angle of 

repose approach and the Jenike flow index (Jenike, 1964). In the first 

approach the values of the angle of repose of the bulk of powder, before and 

after coating, are measured readily and compared. To find the Jenike flow 

index, the Schulze ring shear cell device is used under different levels of 

consolidation stress. The Jenike flow index (ffC) is in fact the ratio of the 

maximum consolidation stress σ1 to the unconfined yield stress σc as 

described in (Seville and Wu, 2016a); the Equation (3.32) shows the Jenike 

flow index: 

 ffC =
σ1

σc
 (5.3) 

The flow regimes of the bulk of powders then can be classified with regards 

to the value of ffC as provided in Table 5.3. 
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Table 5.3: Classification of the flow regimes based on the Jenike flow 
function (Schwedes, 2003). 

ffC value Flow regime 

ffC < 1 Not flowing 

1 ≤ ffC < 2 Very cohesive 

2 ≤ ffC < 4 Cohesive 

4 ≤ ffC < 10 Easy flowing 

ffC > 10 Free flowing 

 

5.7 Particle generation in DEM 

Once all the particles are characterised and the interfacial energy of the 

coated EP granules is calibrated, particles are introduced into the test box to 

form the heap. The three particle types are generated simultaneously at a 

constant rate (dynamic factory) according to the mass ratio reported in 

Table 5.1. Also, the particles are randomly generated in the factory and 

spatially distributed and allowed to fall down into the funnel to make sure 

that the mixture is initially homogeneous. The results are given in the 

following section. 

5.8 Results 

5.8.1 Segregation on the side walls (2D analysis) 

In the first test, particles are uncoated and free flowing, so their interfacial 

energy is set equal to zero. In this situation, although EP granules (red 

particles) are round and relatively larger than BP, they tend to accumulate in 

the central area of the heap due to their higher density, which is observable 

from the front view of the experimental heap (Figure 5.9 (A)) and DEM 

simulation (Figure 5.9 (B)). In contrast, the corners of the heap lack EP; this 

is clearer when looking at the exaggerated indexed images from the DEM 

analysis shown in Figure 5.9 (C), where the EP granules are visually 

enlarged. On the other hand, having the EP granules coated has caused 

them to be well distributed in the heap front face and even the heap corners. 

The DEM results also agree with the experimental ones and their 

comparison is better visualised by the indexed images of the front side.  

The CoV of the EP granules pixel concentration is calculated for the system 

before and after coating and a comparison is given in Figure 5.10. A 
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reasonable match between the results of the experiments and simulations is 

observed with approximately 10% variation. It is also observed that coating 

has mitigated the segregation extent significantly, where CoV is reduced by 

at least 40%.  

 

Figure 5.9 Heap formation of a ternary mixture of BP (white), TAED 
(blue), and EP (red) granules in experiment and DEM simulations. 
The EP granules are shown by white colour in the indexed image 
(C) and enlarged to show their number population in the image. 
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Figure 5.10 The CoV of the EP granules before and after coating 
obtained by image analysis.  

5.8.2 Particle distribution inside the heap (3D analysis) 

The particle spatial distribution through the depth of the heap is displayed in 

Figure 5.11. In each case, the heap thickness is divided into eight layers (2 

mm thick) and the spatial distribution of the EP granules is presented for 

layers 1, 3, 6, and 8. It is clear that the segregation extent increases from the 

middle to the back and front sides of the heap before coating. After coating, 

the distribution patterns become more uniform and there is less variation in 

EP granule distribution through the depth of the heap. This can also be 

observed in Figure 5.12, where the CoV of the EP granules at different depth 

layers of the heap is provided. Clearly, coating the particles has led to low 

variations in CoV through the depth of the heap and the average value of the 

CoV for the entire heap has also decreased significantly after coating. It is 

also evident that for both coated and uncoated systems the middle layers 

(layer numbers 3 to 6) have lower CoV values. This indicates that the visible 

wall segregation is not well representative of the segregation of the entire 

mixture for the freely flowing uncoated system. 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Before coating After coating

C
o

V

Experiment

DEM



 

115 

 

 

Figure 5.11 The distribution patterns of the EP granules within selected 
layers across the depth of the heap. (The particles have been 
enlarged by 100% to be easier observable.) 
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Figure 5.12 The CoV of the EP granules at different depth layers from 
the central layer of the heap obtained from particles mass 
fractions. 

The CoV of the EP granules for a randomly mixed system is calculated as 

described before. The values of CoVr for the whole mixture and the front 

layer are equal to 0.21 and 0.50, respectively. Using these values the 

segregation index, 𝑆𝑛, on the front face (2D analysis) as well as for the entire 

heap (3D analysis) is calculated and presented in Figure 5.13. All the 

analyses show that 𝑆𝑛 is greater for the uncoated EP granules than that of 

the coated ones, as the segregation index drops to less than one after 

coating for the case of the whole heap. It is also clear that the segregation 

indices on the front and back faces are larger than that of the whole mixture. 

The coating has caused the segregation index to decrease by more than 

70% in total and well over that locally near the side walls. Although the 

segregation indices of the front/back faces (2-D analysis) are not 

comparable with the whole mixture (3-D analysis) due to packing 

differences, their decrease due to the coating shows similar patterns in both 

approaches. 
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Figure 5.13 The segregation index of the EP granules obtained by 
image analysis (2D analysis) and particles mass fraction in the 
heap (3D analysis).  

5.8.3 Effect of coating on mixture flowability 

The images of the simulated heaps, showing the particle spatial distribution 

before and after tackifying the EP granules are displayed in Figure 5.14. The 

repose angles measured for the experimental heaps with uncoated and 

coated EP granules are 36.4° and 38.0°, respectively. The corresponding 

values obtained from DEM simulations are 36.0° and 37.6°, which closely 

match those of the experiment (Figure 5.14 (A)). The values of the angle of 

repose show a slight change as a result of coating of the minor component 

(EP) in both experiments and DEM simulations. In addition to comparing the 

angle of repose, the powder discharge time from the funnel can be affected 

by flowability of the powder mixture. It is observed that the total time taken to 

empty the funnel changes from 2.22 s to 2.32 s when the EP granules are 

coated. This is about 5% increase in the discharge time, and indicates a 

slight decrease in flowability of the mixture with coated granules.  

The spatial distribution pattern of the EP granules in the heap changes due 

to coating (Figure 5.14 (B)); however, the rest of the particles, which are not 

coated, have the same pattern in all tests. For example, the CoV values for 

TAED particles before and after coating of the EP granules are 0.76 and 
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0.74, respectively, showing a negligible change. Also, their spatial 

distribution patterns are very similar as displayed in Figure 5.14 (C). 

 

 

Figure 5.14 Front view image of the simulated heap before and after 
coating, displaying the full spatial distribution of (A) all particles 
present, (B) the EP granules only (red), (C) the TEAD particles only 
(blue).   

The Jenike flow function of the actual ternary mixture is also measured at 

different consolidation conditions to assess the flowability of the mixture 

before and after coating as given in Figure 5.15. The average value of ffC 

has reduced from 6.27 to 4.42 due to the coating, indicating a reduction in 

flowability. Nevertheless, comparing the values of ffC with the flow regimes 

classification provided in Table 5.3 shows that the mixture remains in the 

easy-flowing regime for different pre-consolidation stresses, even after 

coating the minor components. Also it is evident for both cases presented 

that the change in flow function as a function of pre-consolidation stress is 

insignificant. The EP granules are rounded in shape and act as roller in the 

mixture during the shear test. In fact their spherical shape aids the whole 

mixture to flow more easily (Fu et al., 2012). Conversely, when these 

rounded particles are made sticky, they function as a “break” (damping 

effect) which partially deteriorates the flowability. 
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Figure 5.15 Jenike flow function of the powder mixture before and after 
coating the EP granules. 

5.8.4 Segregation mechanisms 

The use of DEM gives an opportunity to have a closer look at the particle 

movement before and during the heap formation. To do so the mass fraction 

of the species after discharging from the funnel is calculated and plotted 

versus time to check if there is any pre-segregation occurring in the funnel. 

As shown in Figure 5.16 the particle mass fraction starts from zero, then 

increases to a certain level, and continues with random fluctuations around 

their average mass fraction values over the discharge time towards the end. 

For the EP granules, there is no significant change in the average mass 

fraction through time which is an indication that the EP granules do not pre-

segregate in the funnel and the observed segregation is mainly due to the 

heap formation. However for the TAED, there is a slight decrease in its mass 

fraction over the discharge time. This is because the TAED particles are 

larger compared to the BP particles and stay on the moving layer of the 

particles in the funnel. Therefore, they discharge quicker than the other 

particles in the beginning, and as a results, there are fewer TAED particles 

left at the end compared to the other species. Nevertheless, this is not 

significant compared with the segregation happening during the heap 

formation  
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Figure 5.16 The mass fraction variation of the EP and TAED particles 
versus the discharge time at the outlet of the funnel as given by 
DEM simulation. 

Focusing on the heap formation process, the EP granules accumulate 

centrally with lower concentration close to the side walls and the base. 

Bearing in mind that they are relatively larger than the main ingredient of the 

mixture (e.g. BP particles) and rounded in shape, their segregation in the 

centre is driven by their higher density. To figure out the underlying 

mechanisms of the segregation, some EP granules are selected and 

followed during the heap formation as displayed in Figure 5.17. As the dry 

uncoated EP granules fall down on the heap surface they push other 

particles away and get locked in a layer beneath the top moving layer (push-

away effect (Félix and Thomas, 2004)). In this case their rounded shape and 

higher density help them to penetrate more deeply and escape from the 

shearing top layer. On the other hand, the coated granules show less 

penetration into the top layer and hence spread more over the heap surface 

compared with the uncoated ones (Figure 5.18). The TAED particles, 

however, are significantly less dense and less spherical compared to the EP 

granules, both of which prevent them from penetrating into the sublayers; 

thus they tumble down more freely and segregate to the corners. The 

penetration analysis also suggests that the initial impact velocity of the 

particles changes the extent of segregation by affecting the level of 

penetration of the EP granules. Therefore, pouring the particles from a 

shorter height should decrease the density-induced segregation. 
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Figure 5.17 The movement pattern of selected EP granules (red 
particles) immediately before and after falling on the heap surface 
(blue particles are TAED). A schematic of the EP granules 
movement is also displayed with size exaggeration. 

 

Figure 5.18 The extent of penetration of uncoated and coated EP 
granules into the heap surface.  

 Coating the EP granules attenuates the push-away mechanism using the 

damper-effect. Any relative movement of the particles adjacent to the EP 

granules will be damped because of the stickiness of the coated granules. In 

this case, the coated EP granules mostly get locked in the top moving layer 

and follow the main stream of the mixture during the heap formation; 



 

122 

 

therefore they reach everywhere uniformly. This is clear from the analysis of 

the specific kinetic energy (kinetic energy per unit mass of the particle) of the 

granule during the heap formation, shown in Figure 5.19, where the particles 

kinetic energy is plotted for the uncoated and coated cases. This graph 

shows that the granule specific kinetic energy drops dramatically at the point 

of hitting the heap surface; nevertheless, a difference in the way the coated 

and uncoated granules behave is observed. The zoomed part of the graph 

shows that the specific kinetic energy of the dry EP granules approaches 

zero very quickly and smoothly indicating that the particles stop their motion 

after the hit. For the coated particles, on the other hand, the kinetic energy 

stays non zero for a longer time with less smooth pattern showing that the 

particles maintain their motion for a longer time after hitting the heap 

surface. This corroborates the previous hypothesis made about the 

movement of sticky particles escorted by the rest of the particles on the top 

layer of the heap. 

 

Figure 5.19 The variation of specific kinetic energy of the selected EP 
granules versus time for a short period before and after hitting the 
heap surface. 

5.8.5 Effect of coating level 

The interfacial energy values utilised in the previous tests were scaled and 

tuned using the Cohesion Number. In a case study, the interfacial energy 

values for all the particles. i.e. the EP-EP, EP-BP, and EP-TAED interactions 

are set equal to 0.25 J. m−2 to see the effect of high interfacial energy on 

segregation. As displayed in Figure 5.20 the EP granules accumulate in the 

corners and the segregation index in this case is 2.58 (CoV=0.98) which is 
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even greater than the segregation index of the uncoated system. High 

interfacial energy between the EP and BP particles causes the small BP 

particles to attach to the EP granules. In this case, the EP granule acts as a 

seed and a large agglomerate is formed which still has a higher density 

compared to the BP particles. These large agglomerates cannot penetrate to 

the sublayers of the heap, rather they avalanche down the heap and the 

segregation forms.  

5 

 

Figure 5.20 The EP segregation after applying high interfacial energy 
values in DEM modelling. A) Presentation of all particles, B) 
presentation of EP granules only. 

5.9 Conclusions 

In this chapter, a systematic methodology is proposed for selection and 

calibration of the DEM input parameters with a particular focus on calibration 

of the particle interfacial energy with regards to their size, stiffness, shape, 

and density. As a proof of concept, this methodology is applied to modelling 

of segregation of low-level ingredients in a ternary powder mixture. The 

particles are of different sizes, densities, shapes, and mass fractions based 

on a real model case of home washing powders. The segregating minor 

component (EP) is made sticky by coating it with a thin layer of PEG 400 

and the rest of the species are unchanged. The interfacial energy values for 

the particle interactions are calibrated using experimental angle of repose 

mesurements and the dimensionless Cohesion number.  

A good agreement between the experimental and DEM simulation results is 

observed. The experimental trends for the segregation tendency of the 

coated EP granules are replicated with high fidelity by DEM simulations. For 

the mixture with coated granules, the interfacial energies of the components 

are inferred by matching the experimental and simulated repose angles. The 

Cohesion number is used to scale the interfacial energy when reducing 

Young’s modulus or changing the particle size for faster simulation. As a 

result, the segregation extent can be reliably predicted.   
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It is observed that before coating, the EP granules segregate to the central 

area of the heap due to their high density leaving the corners and side walls 

with a lower mass concentration. However, they are very well distributed 

over the entire heap after being coated. As a result, the segregation index 

value is reduced 40% in total and nearly 100% locally on the side walls. The 

round shape of the granules acts in favour of the push-away effect by which 

the EP granules penetrate more easily into the sublayers of the heap surface 

and segregate more.  

It is also observed that coating minor ingredients does not change the flow 

properties of the mixture considerably and for the present case, the mixture 

flowability remains in the easy flowing regime indicated by the flow function 

value (Jenike flow index). The DEM simulation results also show that in a 

confined space, the segregation tendency is magnified on the walls while the 

middle layers of the heap are in a better condition. These trends can be 

readily predicted and observed by DEM simulation, considering the 

measured and calibrated particle properties such as shape, density, size, 

and surface adhesion.  
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Chapter 6 Minimising segregation tendency of particles by 

manipulating their shapes  

In this chapter, the capability of minimising segregation tendency of particles 

by manipulating their shapes is investigated. As mentioned previously in 

Chapter 4, particle shapes variation can be a great source of granular 

segregation, as different shapes induce dissimilar levels of interlocking, 

which means their mobility in a powder mixture may differ. The segregation 

tendency is also very contingent on surface conditions, such as surface 

roughness and surface energy of the particles, as discussed in Chapter 5, 

where adding tackifiers (coating the particles) to particles can reduce their 

segregation tendency significantly. During the experimental investigations on 

segregation in washing powders, it was observed that during the process of 

mixing and heap formation the coated minor ingredients may be covered by 

other mainly smaller particles, such as fine BP particles, and form 

agglomerates, as shown in Figure 6.1. These agglomerates no longer have 

the physical characteristics of the coated EP granules as their size, shape, 

and even surface conditions have changed. These agglomerates are in fact 

new large BP particles with much higher density (EP granules as a core) and 

very irregular shapes. Potentially, their high density and large size can make 

a balance during the heap formation reducing the chance for segregation; in 

addition, their irregular shape reduces their mobility among other particles. 

This draws attention to the fact that manipulating the shape, or better to say, 

designing the particle shape, is a possible way of reducing the segregation 

tendency of such particles within the powder mixtures. This study 

investigates the possibility of designing anti-segregating shapes as an 

alternative to the coating technique. 

Similar to the previous studies, the segregation tendency of the particles is 

studied using DEM simulation accompanied by experimental validation. It 

should be noted that the experiments are conducted by Mrs Maryam Asachi 

and more details of them are available in her PhD thesis (Asachi, 2018). The 

model mixture is a ternary mixture of the main ingredients of the home 

washing powders. The particle properties including size, density, shape, and 

surface properties are measured experimentally and calibrated in DEM as 

described in Chapter 3. The minor component ingredient, i.e. the EP 

granules, are covered by fine BP particles using a granulation process and 
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introduced into the system as dry granules. The shape of the EP granules is 

manipulated by covering them with small BP particles in a process known as 

“seeded granulation” (Rahmanian et al., 2011).  

The process of heap formation of the ternary mixture of powders is 

simulated for the systems having the EP granules with manipulated shapes 

(case 2) as well as for the system with the normal rounded EP granules 

(case 1). Heap formation tests of the ternary mixture are also carried out in 

the laboratory and the segregation indices of the round and agglomerated 

EP granules are calculated using the image analysis technique (2D) and 

mass fraction analysis (3D). The simulation results are validated by the 

experimental work both qualitatively and quantitatively. The underlying 

mechanisms of the particle segregation for normal and manipulated shapes 

are also analysed by DEM. Also to reduce the time of computations, a scale-

up methodology is used and the simulations with scaled particles are 

compared with the simulations having particles with real size.  

 

Figure 6.1 SEM and XRT images of the coated EP granules after being 
mixed with other particles. (Reprinted from (Asachi, 2018)) 

6.1 Geometry and materials 

The geometry of the test box used in this study is shown in Figure 4.1 which 

is similar to the one used in Chapter 4. The box walls are transparent and 

made from Perspex and the box frame is metallic. The powders are mixed 

manually and then poured into the funnel from which the mixture is 

introduced into the box to form the heap. This process is simulated in DEM 

with the same geometrical specifications as the experiment. The physical 

parameters are measured where possible and used in DEM as detailed 

below.  
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6.2 Computational methodology 

EDEM2018 software, provided by DEM Solutions, Edinburgh, UK, is used to 

model the heap formation process. The models used for particle contacts 

are Hertz-Mindlin no slip as used in the previous studies. In this section, the 

JKR model (Johnson et al., 1971) is no longer implemented as the particles 

are assumed to be totally dry and not cohesive. The details of these models 

are available in Chapter 3. The particle shape is also taken into account 

using the clumped sphere approach (Favier et al., 1999) as described in 

Chapter 3.  

6.3 Designing new particle shapes by seeded granulation  

As explained in the introduction section of this chapter, when coated EP 

granules are mixed with other species finer particles of BP and TAED easily 

attach to the EP granules and form large lumps (agglomerates). These 

agglomerates, which are low in quantity, have higher density and larger size 

compared to the density and size of the BP particles, which form 92 weight 

per cent of the mixture. They also have new shapes which need to be 

considered. Here, the idea is to form particles which have the same shape 

and characteristics as of those aforementioned agglomerates in order to 

mimic the situation in which the EP granules are coated. To do so, the EP 

granules previously sieved between 600-700 𝜇𝑚 are introduced into a 

granulator where a binder (PEG400) is added and the granules are coated. 

Then the BP particles are added into the granulator so that the coated EP 

granules are covered with them. The granules are left to dry and afterwards 

are sieved within the range of 850-1000 𝜇𝑚. Typical shapes of the 

agglomerates are presented in Figure 6.2. To carefully consider the effect of 

particle shape, the new granules are scanned by the XRT technique. Using 

the AVISO image processing software, the mesh files of the real shapes are 

generated as .stl files by which the clumped spheres are modelled as 

presented in Figure 6.3. The rest of the particles used in this study are 

similar to the ones used in Chapter 5 and are shown in Figure 5.2. The 

procedure of the heap formation and the modelling specifications are 

described in following sections.   
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Figure 6.2 The EP granules covered with BP particles in the process of 
seeded granulation.  

 

Figure 6.3 Clumped spheres modelled based on the XRT images of the 
real agglomerates and used in the DEM simulations (The images 
belong to one shape presented from different angles). 

6.4 Particle size scaling 

A major issue with DEM modelling is the time of computation as discussed in 

Chapter 2. Using clumped spheres to take account of real shapes 

exacerbates this issue by increasing the number of computational elements 

in the simulation as well as shortening the computational time step. To tackle 

this issue, the particles used in the simulations are scaled up to 4 times of 

their original volume, which is equivalent to 1.587 times of their original 

diameter. A series of analyses are carried out using particles with different 

size scales and the results are compared to assess the effect of the size 

scaling on final results.  

6.4.1 Packing density and angle of repose 

The process of heap formation is simulated using the TAED particles with 4 

different size scales including the original particle size. The details of the 
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simulations are given in Table 6.1. Two main parameters are calculated for 

each size scale, namely the bed packing density and the angle of repose 

and the comparison is presented in Figure 6.4. It is observed that increasing 

the size of particles leads to a slight increase in the angle of repose and 

slight decrease in bed packing density. These changes are negligible for the 

scaling groups 2 and 3; however for the scaling group 4, the changes in 

angle of repose and packing density seem to be considerable. It is also clear 

that as the particle size increases, the number of particles present in the 

simulated heap decreases and consequently the computation time drops 

down immensely. A similar study is carried out on evaluating the behaviour 

of the BP particles, where similar trends as of the TAED particles are 

observed.  

Table 6.1 Specifications of the heap formation simulations tests carried 
out for TAED particles with different sizes. 

Scaling group 1 2 3 4 

Diameter scale 1 1.26 1.587 2 

Volume scale 1 2 4 8 

Volume (10−5 𝑚3) 3.24 3.64 3.92 4.12 

Mass (g) 14.3 15.9 17 17.6 

Packing density (kgm−3) 443 438 433 428 

Angle of repose 31.2 31.2 31.6 32.8 

Particles number 39165 21779 11598 6025 

Simulation time (for 1.5 s of 

process) 

18 

hours 

9 

hours 

4 

hours 

1.1 

hours 
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Figure 6.4 The packing density and angle of repose of the heaps 
simulated using TAED particle with different size scale.  

6.4.2 Examination on validity of size scaling  

A model binary system similar to the one in Chapter 4 is simulated using the 

scaled particles. This is considered to assure if larger particles can mimic the 

segregation tendency correctly. It is also noteworthy that simulating the 

ternary mixture with real sizes required more than five months of 

computation; therefore, only two species, i.e. BP and TAED particles, are 

used in simulations using scaling groups 2 and 3 and the results are 

compared with those of the real size (group 1), which are already reported in 

Chapter 4. The details of the simulation and particle properties are similar to 

the previous simulations described in Chapter 4, except for the particle size 

which is based on the scaling group mentioned earlier. The specifications of 

the modelling and particles properties are summarised in Table 4.1.  

After heap formation of each group is simulated, the CoV of the particles 

mass fraction for BP and TAED in each scaling group are calculated and 

compared with those of the original mixture. The methodology of finding the 

CoV is described in Chapter 3, section 4.2. As presented in Figure 6.5, the 

values of the CoV of the particle concentrations are very similar for the size 

scales shown. There is a slight discrepancy observed between the CoV of 

the TAED particles with original size and those obtained from the scaled 

particles, which is not considerable. Based on the results of different 

analyses conducted, i.e. repose angle, packing density, and segregation 

tendency, as well as considering the time-saving of each scaling group, the 
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3rd size scale (𝑑𝑠𝑐𝑎𝑙𝑒𝑑 = 1.59𝑑𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙) is selected and used for the rest of 

simulations in this study.  

 

Figure 6.5 The CoV of the pixel concentrations obtained from front 
images of the simulated heaps using different particle sizes. 

6.5 Modelling the ternary mixture 

In experiments, once all the particles are characterised, they are mixed 

manually using a representative formulation of the washing powders 

(Table 5.1) and introduced into the test box to form the heap (Figure 4.1). 

The heap formation process is simulated by DEM modelling using the 

normal spherical EP granules (case 1) and EP granules with manipulated 

shapes (case 2). To simplify the analysis, it is assumed that the outer layer 

of the granules with manipulated shape (case 2) are covered with the BP 

particles; therefore, similar surface properties as of the BP particles are 

considered for the granulated particles. However, the agglomerates have a 

dense core of EP and lighter shell of the BP particles which gives a non-

uniform structure to the agglomerates. To find the agglomerates density, it is 

assumed that they have a uniform structure with an equivalent density, 

which falls between the densities of the EP granules and BP particles. The 

total volume and total mass of agglomerates are known from experiments. 
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Using this information, the equivalent density of the agglomerates is 

calculated by dividing the total mass by the total volume. The friction 

properties of the agglomerates are selected similar to those of the BP 

particles, as the agglomerates are covered by BP and, therefore, they have 

only BP-BP and BP-TAED contacts. The specifications of the modelling and 

the physical and mechanical properties of the particles used in simulations of 

the cases 1 and 2 are detailed in Table 6.2 and Table 6.3, respectively. 

Table 6.2. Specifications of the modelling and the material properties 
for simulations with spherical EP granules (case 1). 

Material type BP TAED EP Perspex 

Size (μm) 425-500 850-1000 600-700  

Particles number 205774 1517 554  

Total mass (g) 37.03 2.22 0.74  

Weight Percentage 92.59 5.56 1.85  

Particle shape 5-sphere 5-sphere 1-sphere  

Shear modulus (MPa) 100 100 100 1000 

Density (kg. m−3) 780 850 2320 1180 

Coefficient of rolling 
friction 

0.10 0.01 0.05 0.01 

Poisson’s ratio 0.25 0.25 0.25 0.25 

CoF (BP-element) 0.62 0.69 0.70 0.42 

CoF (TAED- element) 0.69 0.75 0.75 0.36 

CoF (Placebo- element) 0.70 0.75 0.75 0.75 

CoR (BP- element) 0.20 0.30 0.20 0.28 

CoR (TAED- element) 0.30 0.32 0.20 0.32 

CoR (Placebo- element) 0.20 0.20 0.10 0.20 
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Table 6.3 Specifications of the modelling and the material properties 
for simulations with agglomerated EP granules (case 2). 

Material type BP TAED agglomerates Perspex 

Size (experiment) (μm) 425-500 850-1000 850-1000  

Scale up ratio (diameter) 1.587 1.587 1.587  

Particles number 205774 1517 537  

Total mass (g) 36.83 2.22 0.95  

Weight Percentage 92.0 5.6 2.4  

Particle shape 5-sphere 5-sphere 21-sphere  

Shear modulus (MPa) 10 10 10 1000 

Density (kg. m−3) 780 850 1704 1180 

Coefficient of rolling friction 0.10 0.01 0.10 0.01 

Poisson’s ratio 0.25 0.25 0.25 0.25 

CoF (BP-particle) 0.62 0.69 0.62 0.42 

CoF (TAED- element) 0.69 0.75 0.69 0.36 

CoF (Agglomerate- element) 0.69 0.75 0.69 0.42 

CoR (BP- element) 0.20 0.30 0.20 0.28 

CoR (TAED- element) 0.30 0.32 0.30 0.32 

CoR (Agglomerate- element) 0.20 0.20 0.20 0.28 

 

6.6 Segregation index 

The methodologies used here to quantify the segregation extent are similar 

to the ones used in Chapter 5, which can be referred to for more details. The 

particles have different colours, which allow for detection of their positions in 

the ternary mixture using image analysis. This technique can only provide a 

2D segregation map of the system. The image taken from the heap is 

divided into 2 rows and 5 columns giving 10 bins in total, as shown in 

Figure 6.6, and the concentration of materials in each bin, given by colour 

pixels, is calculated, as described in Chapter 3, section 4.1. The coefficient 

of variation of these concentrations is then calculated to show the 

segregation tendency of the species at the side walls. Here, the bin size is 

selected according to the experimental procedure so that the numerical 

results can be compared with the experiments.  
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Figure 6.6 The front images taken from the simulated heaps and 
analysed for simulation cases 1 and 2. The green colour shows 
the BP and TAED particles and the black spots indicate the EP 
granules.  

To have a more in-depth analysis of the mixture quality, the heap is 

discretised three-dimensionally into 21 bins in which the mass 

concentrations of the species are calculated using Equation (3.33)and their 

CoV for the entire heap is obtained from Equation (3.36). In addition to 

finding the segregation index of the entire heap, the heap width is divided 

into 5 layers where the particle distribution and segregation indices are 

calculated and compared for different layers of the mixture (Figure 6.7).  
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Figure 6.7 Discretisation of the heap into bins for calculating the 
segregation index. 

6.7 Results 

6.7.1 Particle distribution at side walls (2D analysis) 

The particle distributions on the front and back sides of the simulated heap 

are presented in Figure 6.8. To present the particles more clearly, a very thin 

layer of the mixture is cut from each side of the heap (2 mm thin) and TAED 

particles (blue colour) are removed from images, so that the EP granules are 

more distinguishable. Then the heap is discretised, as presented in 

Figure 6.6, to find the CoV of the particle concentrations, using the image 

analysis technique. When spherical EP granules are used (case 1) the 

granules are clearly inclined to segregate in the centre of the heap, while the 

agglomerated EP granules spread all over the heap. The average values of 

the CoV for the front and back walls are calculated and compared with the 

experiment as shown in Figure 6.9. A good agreement between the 

experimental and DEM simulation results is obtained. It is observed that 

replacing the round EP granules (case 1) with manipulated irregular shapes 

(case 2) has halved the segregation extent (50% reduction in CoV).  
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Figure 6.8: Distribution pattern of EP granules at the front and back 
faces of the heap for the case 1 (spherical granule) and case 2 
(agglomerated granules). 

 

Figure 6.9: The CoV of the EP granules with spherical (case 1) and 
manipulated shapes (case 2) obtained from the experimental and 
DEM results using the image analysis technique. 

 

6.7.2 Particle distribution inside the heap (3D analysis) 

The particle spatial distribution through the depth of the heap is displayed in 

Figure 6.10. In each case, the heap thickness is divided into five layers 3.2 

mm thick and the EP granule’s spatial distribution is presented for each 
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layer. It is clear that the EP granules have poor distribution at the front and 

back sides of the heap before being manipulated in shape (case 1). After the 

agglomerated EP granules are used, the distribution patterns become more 

uniform and there is less variation in EP granule distribution through the 

depth of the heap. This can also be observed from the simulation results 

presented in Figure 6.11, where the CoV of the EP granules at different 

depth layers of the heap is provided. Clearly, using agglomerated EP 

granules has led to low variation in CoV values through the depth of the 

heap and the average value of the CoV for the entire heap is also decreased 

significantly. It is also evident that for both cases the middle layers (layers 2, 

3, and 4) have lower CoV values. This indicates that the visible segregation 

on the side walls is generally more intense than the average segregation of 

the whole mixture. Finally, all the layers are put together and shown as a full 

heap (Figure 6.10) where lack of EP granules in the corners of the heap in 

the case 1 (spherical EP) is clear. 
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Figure 6.10 Comparison between the distribution patterns of the EP 
granules at different layers of the heap. Left and right columns 
belong to the simulations carried out with the spherical and 
agglomerated EP granules respectively. (The particles on the right 
hand side seem to be larger as they are agglomerates of EP and 
BP particles.) 
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Figure 6.11 The CoV of the EP granules at different depth layers from 
the central layer of the heap obtained from particles mass 
fractions (3D analysis). 

Using Near Infra Red spectroscopy technique (NIR) in experiments, it is 

possible to analyse the mixture quality three-dimensionally. In this technique, 

the heap is divided into a number of bins and the powder mixture available in 

each bin is spread over a flat surface. Afterwards, the mixture composition of 

each bin is obtained by scanning the surface of the spread powder in two 

dimensions (Asachi et al., 2017b). It should be noted that this approach 

functions based on the reflection of electromagnetic waves from the surface 

of particles. Therefore, it is a surface area-based method; whilst in DEM 

modelling, the CoV is obtained considering the granule’s mass fractions in 

the bins, i.e. it is a volume-based method. Although the methods of 

analysing the segregation extent are not exactly the same, the results of 

these analyses are still comparable, as the CoV is a normalised quantity, 

whether for the surface area or volume of particles. Having said that, some 

discrepancies between the experimental and DEM results are expected here 

due to the following reasons: 

1) Calculating particle mass in DEM gives a very accurate value, while 

finding the surface area of EP granules by NIR technique is accompanied 

with at least ±10% error (Asachi, 2018).  
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2) In the experiments, the agglomerated EP granules (case 2) are partially 

covered with the BP particles. In this case, the NIR may mistake the 

agglomerated EP granules for the BP particles and slightly alter the results.  

3) Discrepancy in discretisation of the bins in experiment and modelling is 

inevitable. 

Having the above issues in mind, the CoV obtained from the NIR might get 

larger or smaller values than that obtained by DEM modelling. This 

potentially leads to underestimation or overestimation of the segregation 

extent in experiments. The results obtained from the experimental and 

numerical approaches are presented and compared in Figure 6.12, both of 

which show significant decrease in segregation tendency of the EP granules 

with irregular shapes compared to the rounded granules. It is observed that 

the value of CoV from experiments decreases by 70% after using the 

agglomerated EP granules. Using the particles mass fraction in analysis of 

the DEM modelling results, a 40% decrease in CoV is achieved. Although 

the CoV values in the two methods do not show similar figures, they 

corroborate each other by showing similar decreasing trends.   
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Figure 6.12 The CoV of the EP granules with spherical (case 1) and 
manipulated shapes (case 2) obtained from experiment and DEM 
modelling. In experiment, the CoV is calculated by analysing the 
surface area of the mixture using NIR technique. In DEM 
modelling, the CoV is obtained considering the granules mass 
fractions in the bins.   

6.7.3 Segregation mechanisms 

DEM gives an opportunity to have a close observation on particle 

movements during the heap formation process. Similar to the analysis 

conducted in Chapter 5 on movement of particles during the heap formation, 

here some particles are selected and tracked before and after impacting the 

heap bed, as presented in Figure 6.13. It is observed that the round EP 

granules (case1) pass to one side of the top moving layer of the heap, while 

their agglomerated counterparts distribute in a more uniform fashion. In 

addition, the agglomerated granules stay in the moving layer for a longer 

time and travel down the heap for a longer distance compared to the round 

granules. This is because the highly irregular shape of the EP lumps causes 

a considerable level of interlocking with BP and TAED particles which helps 

the agglomerates to stay with the main stream of moving powder.  
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Figure 6.13: The movement pattern of selected EP granules (red 
particles) before and after impacting the heap surface (blue 
particles are TAED). The EP granules are exaggerated in size. 

The balance between size and density of particles is also an important 

reason for mitigation of segregation in the present case. As reported by 

Arntz et al. (2014), if a parameter like density is driving particles to 

segregate, increasing their size can neutralise the adverse effect of density, 

and vice versa. In the present case, where the EP granules have a density 

nearly three times higher than other species, formation of the EP-BP 

agglomerates has reduced the segregation via increasing the granule size 

as well as reducing their effective density in the system. Obviously, if the 

proportion of BP to EP granules increases in agglomerates, too large lumps 

with low packing density will form. These lumps will segregate to the heap 

corners, as discussed in Chapter 5, Section 8.5. Therefore, a careful 

balance between the size and density of agglomerates should be 
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considered. The same concept is also studied and discussed in different 

cases by Asachi et al. (2017a).  

The effect of introducing EP agglomerates into the mixture, instead of the 

round ones, on distribution pattern of TAED particles is investigated as well. 

In this regard, the images of the simulated heaps, showing the particle 

distributions of cases 1 and 2 are displayed in Figure 6.14, showing the 

distribution of (A) all particles present, (B) the EP granules only (red), and 

(C) the TEAD particles only (blue). The distribution pattern of the EP 

granules in the heap changes due to manipulating their shape (Figure 6.14 

(B)); however, the rest of the particles, which are not changed in shape, 

maintain roughluy the same visual pattern in the tests. Quantitatively, the 

CoV of the TAED particles is increased by 15% in the present case. 

Although the general distribution patterns of TAED particles are the same in 

Figure 6.14 (C); a slight decrease in TAED population on the sides of the 

heap is observable in case 2. Even a slight change in distribution of TAED 

particles can differ the CoV value considerably. A possible reason for this 

might be due to replacing the smaller round EP granules with large 

agglomerates, which distribute everywhere in the heap. Here the presence 

of large agglomerates at the slopes of the heap reduces the chance for their 

counterpart, i.e. TAED, to be surrounded by the smaller BP particles. The 

TAED particles which cannot compete with the EP agglomerates will tumble 

down and congregate in the heap corners.  
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Figure 6.14 Front face image of the simulated heap using the EP 
granules with normal shape (case 1) and manipulated shape (case 
2), displaying the distribution of (A) all particles present, (B) the 
EP granules only (red), (C) the TEAD particles only (blue). 

 

6.7.4 Effect of shape manipulation on flowability 

The effect of changing shape on flow behaviour of the powder mixture is 

studied via analysing the heap angle of repose and discharge time. The 

repose angles measured for the simulated heaps with spherical EP granules 

and agglomerated ones are 39.6° and 40.4°∓2°, respectively which are very 

close to one another (Figure 6.14 (A)). This indicates that manipulation of 

the shape of the minor component does not have a considerable impact on 

flow behaviour of the mixture during the heap formation. In addition, change 

in the rate of powder discharge from the funnel can be an indicator of a 

change in powder flowability. The powder mixture discharge times are 3.14s 

and 3.16s for cases 1 and 2 respectively, which are close to each other. The 

close match of the discharge time corroborates the results of the angle of 

repose analysis and shows that manipulating the particle shape has less 

negative impact on particle flowability than the coating approach.    

6.8 Conclusions 

The controllability of the segregation of low level ingredients by shape 

manipulation in a ternary powder mixture is investigated using DEM 

simulation and the results are compared with the experiments. The particles 
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are different in size, density, shape, and mass fraction based on a real 

model case of home washing powder. To reduce the computational effort, 

particles are scaled up to have 4 times larger volume, i.e. reducing particle 

number to one fourth. A sensitivity analysis is carried out for the scaled 

particles to assure that the scaled particles mimic the same bulk behaviour 

as of the original particles. It is observed that round EP granules tend to 

segregate in the middle of the heap; whereas the agglomerated ones spread 

more evenly all over the heap. As a result, 40% reduction in CoV of the EP 

granules is achieved when the agglomerates are utilised instead of the 

rounded EP. In addition, a reasonable quantitative match between the 

experimental and DEM results is observed for the CoV of particles visible at 

the front and back walls of the heap box.    

Two tests are conducted to assess the influence of changing the shape of 

EP granules on flow behaviour of the mixture. A nearly 1% increase in the 

angle of repose is observed when the agglomerated EP is used. The 

discharge time of the powder mixture from the funnel, however, shows 

negligible difference (less than 0.1%). Overall, the change in powder mixture 

flowability is not considerable at all. It is concluded that manipulating shapes 

of minor ingredients in a mixture can be a possible and advantageous 

alternative to the coating approach. Less compromise in flowability of 

powder mixture and less exposure to variation in surface properties through 

time are two main advantages of shape manipulation. Nevertheless, there 

are some difficulties involved with the process of manufacturing the 

agglomerated EP, such as controlling the size and density as well as the 

irregularity of final shapes.  

Uncoated round EP granules, clearly, have a high segregation tendency. 

Coating their surface and manipulating their shape are both applicable to 

diminish their segregation tendency; however, the functionality of each 

method remains dependent on process type and may vary through time. 

Especially in highly dynamic systems, coated granules lose their coating 

liquid gradually, because of being constantly rubbed by uncoated particles, 

and as they are in minor content level, eventually their level of stickiness 

may reduce considerably. As a side effect, the uncoated particles have 

gained stickiness to some extent which may deteriorate their flowability. In 

contrast, agglomerated EP granules are all dry and, if manufactured well, 

highly durable; therefore, they do not experience similar issues as of the 

round granules. Nevertheless, the agglomerates are more prone to 
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breakage, which will potentially lead to production of enzyme debris. This 

has potentially serious implications, as the debris are fine and readily 

segregate. Also they can be easily fluidised during a process, causing health 

issues for both workers and consumers. In the case of using the latter 

method, high quality-assurance and strict production monitoring is 

necessary.          
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Chapter 7 Conclusion and future work 

In this chapter, a summary of the work carried out and the concluding 

remarks of the findings of the three previous results chapters are provided. 

The suggestions for future works are also given at the end of the chapter.    

7.1 Summary 

During the course of this PhD, the segregation tendency of minor active 

ingredients in polydisperse formulated powder mixtures was simulated using 

DEM simulations. Three different cases were studied through which the 

effects of different parameters on inducing/reducing the segregation tendency 

of particles were assessed. As the first step, the particle properties including 

size, density, shape, and surface properties were measured experimentally 

and the values were calibrated to be used in DEM simulations (Chapter 3). In 

the first case study (Chapter 4) the significance of employing particle shape in 

segregation simulations instead of using spheres with calibrated rolling friction 

was investigated. In this study, the granular segregation during the heap 

formation and vibration of a binary mixture of BP and TAED particles was 

simulated. In the second study (Chapter 5), the segregation of minor 

components, e.g. EP granules, in a ternary mixture of particles (BP, TAED, 

and EP granules) during the heap formation was investigated. The EP 

granules are dense and round in shape and, hence, prone to segregation; 

therefore, they were coated by PEG 400 to manipulate its stickiness. The 

effect of coating the minor ingredient on its segregation tendency and the 

mixture flowability was then simulated and the results were analysed and 

compared with the experimental data. In the last case study (Chapter 6), the 

feasibility of manipulating the shape of particles for controlling their 

segregation was analysed. This was fulfilled through covering the EP granules 

by fine BP particles via seeded granulation process. The newly designed 

granules were then mixed with the BP and TAED particles to form a ternary 

mixture. The segregation tendency of the new agglomerated granules was 

simulated using DEM and the results were compared with the experimental 

data.  

In summary, the main focus of this research has been on the following 

areas: 
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 Finding the significance of representing the particle shapes in 

granular segregation by comparing the results from two approaches 

of clumped shapes and spheres with calibrated rolling friction. 

 Developing a method to find, scale, and calibrate the DEM input 

parameters, particularly the interfacial energy, for modelling cohesive 

particles. This approach should essentially follow a general rule which 

can be easily applied to other similar systems. 

 Proposing practical solutions to the industry for mitigating the 

segregation tendency of active ingredients without compromising 

flowability.  

7.2 Concluding remarks 

It is observed in the first study that the particle’s repose angle is highly 

dependent on particle shape, and for the clumped sphere method there is a 

minimum number of spheres which gives adequate comparison to 

experiment, above which not much improvement is obtained. The results 

obtained from DEM simulations show that the clumped sphere approach is a 

predictive tool for simulating the segregation during heap formation. In 

contrast, the rolling friction approach underestimates the segregation 

tendency even when it is tuned to predict the repose angle separately. It is 

also observed that the middle and front layers of the heap give two different 

predictions of the segregation tendency. Thus, the particle distribution 

pattern at the front view of the heap is not well representative of the 

condition of the whole mixture.  

Calibrated rolling friction as a substitute for particle shape is not an accurate 

approximation of irregular particles for the simulation of segregation 

behaviour, even for a system which is not highly prone to segregation. This 

situation becomes exacerbated when segregation due to size difference 

becomes more extensive.  

In the ternary system with coated EP granules, the interfacial energies of the 

components are inferred by matching the experimental and simulated 

repose angles. The Cohesion number is used to scale the interfacial energy 

when reducing Young’s modulus or changing the particle size for faster 

simulation. As a result, the segregation extent is reliably predicted. It is 

observed that before coating, the EP granules segregate to the central area 
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of the heap due to their high density, leaving the corners and side walls with 

a lower mass concentration. However, they are very well distributed over the 

entire heap after being coated. As a result, the segregation index value is 

reduced 40% in total and nearly 100% locally on the side walls. The round 

shape and high density of the granules acts in favour of the push-away 

effect by which the EP granules penetrate more easily into the sublayers of 

the heap surface and therefore segregate more.  

It is also observed that coating minor ingredients does not change the flow 

properties of the mixture considerably, and for the present case the mixture 

flowability remains in the easy flowing regime indicated by the flow function 

value (Jenike flow index). In addition, the DEM simulation results show that 

in the systems with confinement in at least one spatial dimension, the 

segregation tendency is magnified on the walls while the particles in the 

middle layers of the heap are less segregated. These trends can be readily 

predicted and observed by DEM simulation, considering the measured and 

calibrated particle properties such as shape, density, size, and surface 

adhesion.  

In the third case, where a shape manipulation by agglomeration was 

investigated for the segregation tendency, it is observed that the round EP 

granules tend to segregate in the middle of the heap; whereas the 

agglomerated ones spread more evenly all over the heap. As a result, a 40% 

reduction in CoV of the EP granules is achieved when the agglomerates are 

utilised instead of the rounded EP. In addition, a reasonable quantitative 

match between the experimental and DEM results is observed for the CoV of 

particles visible at the front and back walls of the heap box.  

Two tests are conducted to assess the influence of changing the shape of 

EP granules on flow behaviour of the mixture. Only a 2% increase in the 

angle of repose is observed when the agglomerated EP granule is used, 

while this figure is around 5% for the coated EP granules. The discharge 

time of the powder mixture from the funnel shows negligible difference as 

well (less than 0.1%). Overall, the change in powder mixture flowability is not 

considerable at all. It is concluded that manipulating shapes of minor 

ingredients in a mixture can be a possible and advantageous alternative to 

the coating approach. Less compromise in flowability of powder mixtures 

and less exposure to variation in surface properties through time are two 

main advantages of shape manipulation. Nevertheless, there are some 

difficulties involved with the process of manufacturing the agglomerated EP, 
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such as controlling the size and density as well as the irregularity of final 

shapes. Also, agglomerated particles are more prone to breakage which 

potentially contributes in formation of fine particles and dusts, and 

subsequently results in EP granules becoming closer to their original shape.  

In general, good agreements between the results of the experiments and 

DEM simulations are observed for all the three cases. The experimental 

trends for the segregation tendency of the uncoated and coated EP 

granules, as well as of the one with manipulated shapes, are replicated with 

high fidelity by DEM. It is concluded that DEM is a powerful and reliable 

technique for simulation of segregation of formulated powder mixtures 

provided that its input parameters are 1) justifiably selected and 2) precisely 

calibrated.  

7.3 Suggestions for future work 

The present work can be continued through different directions some of 

which are listed below: 

1- Investigating the scaling methodologies more widely and fundamentally  

In the present study, the proposed methodology for scaling particle adhesion 

and size was applied only to the heap formation process. It is recommended 

to examine the applicability of this method in other cases with different 

conditions. Also, more fundamental analysis should be carried out on the 

concept of Cohesion number and on its capabilities and limits. 

2- Designing new anti-segregation shapes  

Particle shape can reduce segregation by increasing the particle mechanical 

interlocking. An investigation on designing a class of particle shapes which 

resist segregation is highly valuable. The design of these shapes should be 

in harmony with the real life application of the particles. Furthermore, the 

challenges related to manufacturing the designed particles must be 

considered.  

3- Designing special anti-segregation carriers  

Vibration can both induce and reduce the granular segregation. Therefore, 

the vehicles which carry the materials can be equipped with smart vibrators 

or shock absorbers which potentially compensate those modes of vibration 

that highly induce segregation. To do so, a sound understanding of the 
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vibration patterns during the transportation and their impact on segregation 

is necessary. DEM can help in this regard to find these optimum vibration 

patterns. 

4- Using High Performance Computing (HPC) and GPU-based codes for 

increasing the computation power 

Among all the numerical approaches available for modelling the segregation, 

DEM is the most predictive, yet very time-consuming. One way to partially 

tackle his issue is to utilise HPC facilities as well as GPU-based codes for 

simulations. This can be achieved by developing parallel in-house or open-

source codes, which have the capability to run on GPU processors as well 

as CPUs.  

5- Sample independent mixing index 

A major challenge in quantitative assessment of the segregation tendency of 

particles is the dependence of mixing indices on sampling. This issue 

reduces the reliability of the current assessments, especially when particle 

size varies from one case to another. Developing indices which are less 

sensitive to sampling is highly valuable.   

6- Using DEM to generate mathematical correlations for predicting the 

segregation tendency of particles  

This approach works based on proposing a mathematical correlation by 

which particle tendency to segregate is determined. The particle segregation 

tendency is defined as a function of particles size, density, shape, surface 

conditions, stiffness, etc. The significance of each variable (physical and 

mechanical properties) and its impact on inducing/reducing segregation in a 

particular process should be determined. To do so, it is necessary to define 

a particle with standard properties and conditions as a reference and assess 

the effect of varying each property on the particle’s segregation tendency. In 

this method, a segregation tendency number can be defined by which the 

probability of the presence of each type of particle at various coordinates of 

the mixture is determinable.  
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