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Abstract
Coasts all over the globe are subjected to enhanced erosion as a result of rising sea levels

and negative effects of engineering work. In an effort to further understand the processes and

timescales of the underlying mechanisms that drive beach formation and erosion, a vertical Hele-

Shaw cell, representing a ‘slice’ of gravel beach, was introduced [90]. Within this set-up, wave-

sloshing and beach formation can be observed in a matter of seconds to minutes rather than months

to decades. An image-analysis algorithm was developed with the aim of translating images

from the experiment into useful data. Its core operation is based on a colour-channel-detection

method that can detect and export the depth and area occupied by the water and the moving

bottom topography in the tank over time. The simple and easy-to-use algorithm has been tested

successfully against a variety of experiments involving water and water-beds, with its novelty

being the precise tracking of water infiltrating the moving bed. The acquired wave-only data

were imposed as the boundary conditions during the validation process of a shallow-water and a

potential-flow shallow-water model, discretised using a one-dimensional finite-volume/Godunov

method and a second-order finite-element method respectively [47, 42]. It was found that the

finite-volume method handles steep waves of higher amplitudes better than the finite-element

method. The tracking results were further analysed with plunging, collapsing and surging breakers

present in the examined water-bed cases. It was also found that lower wave frequency cases lead

to faster beach formation, with the angles of repose of the corresponding final bed profiles being

in the same range as those for real-life gravel beaches [4], confirming the gravel-like nature of the

beach present in the Hele-Shaw cell.
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Chapter 1

Introduction

1.1 Motivation

Climate change is a growing issue in the modern world. One of the impacts of climate change is

the increase in temperature, which results in the melting of ice caps and ultimately leads to the

rise in sea levels, as well as an increase in the frequency and severity of coastal flooding events

[53, 99]. Despite the fact that beach erosion is already a widespread problem, it has been found

that increased sea levels can lead to severe flooding, enhancing beach erosion [59]. Engineering

works such as dredging, water extraction and the building of dams can also affect beach erosion

levels [1, 97]. Some beaches are even called “erosion hotspots” due to the high level of erosion

that occurs there [6]. However, it has been observed that erosion in one part of a coastal system

creates accretion in another, so that sediment is conserved and not lost [60].

Beach erosion threatens coastal properties and infrastructure such as roads, homes and businesses.

Figure 1.1 illustrates the effects that erosion has had in some coastal areas in the United Kingdom.

Note how close the cliff face is to the buildings in the left panel. Beach erosion such as this

can affect property and the travel of goods and people from one place to another, as well as

decreasing revenue from tourism in coastal areas. Erosion combined with the increased sea-water

levels causes waves to break further inland, intensifying erosion’s physical and social impact. The
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(a) (b)

Figure 1.1: Cliff erosion at Ulrome, East Riding of Yorkshire (left panel). Source: Channel Coastal

Observatory [55]. Coastal erosion at Minehead, Somerset (right panel). Source: Channel Coastal

Observatory [50].

amount of coastal area lost in Europe due to erosion has been calculated to be around 15km2 per

annum, with the alarmingly high cost of 3.2 billion euros spent to protect coastal areas at imminent

risk of erosion [1].

Current solutions for managing erosion for beaches with high erosion rates include beach

nourishment/re-nourishment and building of holding structures such as seawalls to protect the

sea fronts (see Figure 1.2). Beach re-nourishment can create opportunities for recreation, as a

part of a soft-engineering approach, and reduces the risk of property damage and the impact on

revenue from tourism. However, they are not permanent solutions and can often harm beaches and

nearshore habitats [70].

Beach re-nourishment involves moving sediment to a beach that has lost sediment and lacks

natural re-nourishment. This sediment transportation can be either from an external site, or

from the accretion site of the same beach. Re-nourished beaches require constant monitoring

and “topping up”, as regularly as every six months to two years [36], resulting in high costs.

Beach re-nourishment processes vary from one beach to another. The type of sediment required,

the amount needed and the total costs of transport all depend on a number of factors including the
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(a) (b)

Figure 1.2: Beach re-nourishment, Pevensey bay (left panel). The dredger is located as close as

possible to the beach and is pumping sediment to the beach through the tube. Source: Pevensey

Coastal Defence Ltd [49]. Rough seas near Saltdean, Brighton (right panel). Seawall, built in

1933 to protect the coastline as part of the Undercliff Walk. Source: The Geograph, Britain and

Ireland project [32].

height and width of the desired beach profile, the rate at which the shoreline is expected to erode

as well as the availability and cost of the new sediment. In some cases it is difficult to determine

the desired beach profile, and in the case of gravel beaches in particular, the height and the width

of the desired profile is determined empirically [36].

Seawalls are another way of preventing coastal flooding and beach erosion. They are solid

structures that hold the coastline at the same position thus affecting the natural equilibrium of the

coastline. Building seawalls is a medium-term solution, with lower maintenance costs than beach

re-nourishment schemes [40], providing protection from a couple of decades up to a century [9].

The main problem with this hard-engineering approach is the fact that seawalls cannot absorb the

energy from waves without often causing erosion at the beaches located in front of the seawalls

[29]. With the combined effect of waves, currents and storms, erosion is a ceaseless phenomenon.

It is therefore crucial to determine alternative ways and strategies to protect our coasts from

erosion.
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(a) (b)

Figure 1.3: Shingle beach at sunset at Hurst Spit, Hampshire (left panel). Source: Channel Coastal

Observatory [2]. Waves overturning as they approach the shingle beach of Leivada at Tinos island,

Greece (right panel).

In general, shallower and wider beaches are dissipative, while steeper and narrower beaches are

reflective [29]. Gravel beaches, similar to those illustrated in Figure 1.3, form an efficient and

natural form of sea defence [75]. Their advantage lies in the fact that they can dissipate wave

energy effectively and, in conjunction with beach re-nourishment and a wider and shallower shape,

provide the most economic and natural form of coastal protection [9]. Mathematical investigations

of the interaction between waves and gravel beaches, although poorly understood within the

scientific community, could provide significant insight on how to protect coastal communities from

possible changes to beach morphology, in addition to measuring and predicting erosion timescales.

These insights could be used to make new beach-protection policies, improving coastal protection

whilst adapting to the effects of climate and minimising costs. There thus lies a need to gain

further understanding of the interaction between waves and gravel beaches.
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1.2 Modelling

Coastal morphodynamics is the study of changes that affect the shape of a river or sea bed over

time [88]. It is meant for cases where wave dynamics and the variation of beach morphology over

time are interlinked as they interact with each other [83]. Many morphodynamic models have

been developed with the aim to investigate the variation of beach morphology over time under the

effect of waves, tides or both. These models are instrumental in measuring the impact of defence

structures on erosion levels [27], or providing assistance with the design of the latter [45]. In

models where the beach is paramount to the study, a moving bottom topography (bed) is present

and the wave model is coupled with a sediment transport formula and a bed evolution equation.

The sediment transport formula describes the dominant processes, affected by the sediments’ own

properties, that cause the sediments to move. However, the sediment transport formulas are not

well-understood and are highly empirical. The bed evolution equation computes the changes in the

bottom topography, given the particles’ porosity, and ensures that the computational time scales

match real time scales by using a morphodynamic factor. Once the bed equation has been updated,

it feeds back to the hydrodynamic equations to evolve the wave dynamics. The wave models

involved above are also known as wave- or phase-resolving. While wave- or phase-averaged

(spectral) models exist too, they are used independently of the morphodynamic modelling and are

not in the spectrum of this work [83, 88]. The main differences between the two types of models

are briefly described below.

Wave- or phase-averaged models are based on a spectral energy or wave action balance in which

the phase information of the individual waves is not retained [83]. These models are thus more

appropriate for cases where computing wave conditions in large spatial domains is significant.

They aim to provide a statistical description of the waves in an effort to better understand their

random large-scale behaviour. Consequently, these models often fail to describe in detail smaller-

scale events such as wave breaking and nonlinear wave interaction in random ocean waves [94].

In contrast to wave- or phase-averaged models, wave- or phase-resolving models are time-

dependent models which solve the hydrodynamics at all timescales, making them more suitable for

small-scale studies [83]. They are often depth-averaged which involves solving the hydrodynamics
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in a two-dimensional horizontal plane (2DH) using the nonlinear shallow-water equations

at shallower depths. The nonlinear shallow-water equations admit discontinuous solutions,

thus capturing wave-breaking, and are valid under the assumption of a hydrostatic pressure

distribution, negligible vertical accelerations and a velocity profile which does not vary with

depth. Alternatively, Boussinesq-type equations are used for intermediate to shallower water

depths, which become fully nonlinear and highly dispersive in deep water where the effects of

frequency dispersion on the free surface become stronger [16].

Using two-dimensional models poses a problem for modelling particle transport and breaking

waves as these phenomena are intrinsically three-dimensional. For example, wave-induced

currents such as the bed return flow (undertow) are a direct consequence of the breaking waves

and their height variations [41]. Undertow occurs when water that is carried to the shore through

the incident waves returns offshore after the waves have reached the coast. During this process,

sediment is transported in the shoreward direction. It is hence relevant to the structure of the

vertical flow field which is not resolved in a two-dimensional depth-averaged model [62].

In contrast to two-dimensional models, quasi-three-dimensional or three-dimensional models

allow for the vertical flow field to vary, accounting for undertow and its effects on sediment

transport. The river engineering field is already using three-dimensional approaches successfully,

however this is not the case for coastal applications [45]. A model that can take into account three-

dimensional properties is needed, combined with a deeper understanding of the main processes

affecting coastal sediment transport. To overcome this problem, a thin three-dimensional “slice” of

beach can be used so that the particle dynamics can exist within this framework. The vertical Hele-

Shaw cell was introduced as the ideal set-up to represent this thin slice of beach and investigate

the interaction between water and sediments [90].

The Hele-Shaw cell was originally introduced by Henry Selby Hele-Shaw in 1898 with the aim

to investigate flow through parallel plates of a narrow width and the displacement of one fluid

by another [37]. It consists of two parallel plates placed within close proximity of each other,

allowing the water flow to be laminar with a Poisseuille profile in the narrow direction and a small

Reynolds number. Since then, the Hele-Shaw cell has had applications in coastal engineering

[15, 42, 90] tissue engineering [22], biomedical engineering [95] and the oil industry [19]. It has
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been used to investigate viscosity-driven instabilities in two-phase flows such as viscous fingering

[66, 67, 71, 84], or droplet relaxation in microfluidic flows [17]. The viscous fingering, also

known as the Saffman-Taylor instability, occurs when an injected less viscous fluid displaces a

more viscous fluid. Hele-Shaw cells have also been used to investigate the Kelvin-Helmholtz

instability [57, 73], as well as free surface waves, either inertia-dominated thus creating Faraday

waves, or viscosity-dominated to achieve reduction of the sloshing motion in a closed tank [76],

[98].

In this project, the vertical Hele-Shaw cell has been employed to investigate the interaction

between forced water waves and a bottom topography and how the interaction of the two leads

to phenomena such as sediment transport, breaking waves and beach formation. The topography

consists of zeolite particles inserted into the tank, the diameter of which is found to represent

coarse gravel sediments [88]. The narrow width of the cell in the lateral direction, a property

attributed to its vertical rather than horizontal position, has transformed the tank into a “slice of

beach” and allows for the velocity variations in the lateral direction to be ignored. Waves are thus

created, propagate in the tank and reflect once they reach the right wall of the tank. In the full

case, the topography is present with the profile evolving in the cross-shore direction as a result of

the incoming waves. Inertia, rather than viscosity, dominates flow in the vertical Hele-Shaw cell

due to the wave-forcing attributed to the operation of the wave-pump. The gap width between the

two glass plates of the Hele-Shaw cell is based on the optimised plate width in article [90], and

was thus chosen carefully as it allows determination of the effects of inertia on the flow and can

lead to the flow’s deviation from the Poisseuille profile. The advantages of this set-up outnumber

its disadvantages [15]:

1. Its experimental design is easy to grasp whilst providing decent experimental data for the

validation of the mathematical models,

2. the quasi-two-dimensional dynamics significantly decrease computational efforts, and

3. turbulence is greatly reduced so that attention can lie mostly on the interaction between the

waves and the beach.

The disadvantages are mostly related to the existence of momentum dissipation and surface tension
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due to the close proximity of the glass plates. At these small scales, surface tension effects are

more likely to occur as the water molecules that make up the surface of the water tend to cling

to the glass plates. Fortunately, these effects can be modelled and managed experimentally to a

fair degree. For example, the momentum damping effect can be optimised by using a suitable gap

width, while the surface tension can be overcome by adding alcohol to the water to minimise the

water’s adhesive qualities.

1.3 Sediments

The material of seabed forms and associated sediments are roughly classified into three categories:

mud, sand and gravel; a classification based on their diameters and cohesion. Mud, i.e. clays and

silts, consist of sediments with diameters between 1-60µm, while sand grain diameters usually lie

between 0.06-2mm. The diameter of gravel such as granules, pebbles, cobbles and boulders fall

between 2-300mm [28, 88]. Of course in nature, beaches consist of sediments with more than one

diameter and even more than one type of sediment; a byproduct of the cumulative effects of wind,

water waves and storm events on beaches over the decades. Some of these beaches, also known

as mixed beaches [48], may have sediments with diameters ranging three orders in magnitude; for

example from fine sand (0.1mm) to small boulders (300mm).

The transport of sediments in the oceans or in river beds is highly dependent on the sediment

diameter. Gravel rolls, slides or jumps on a layer above the bed, always staying in contact with it

[61, 83, 88]. This type of sediment transport, called bedload, reacts directly to local flow conditions

and requires a substantial amount of work to trigger and maintain its motion. Bedload transport

is usually initiated when a threshold value for the bed shear stress is exceeded, a condition also

known as “initiation of motion”, originally described by Shields [28, 87]. As a result, the waves

that manage to lift the gravel dissipate energy. Sand, unlike gravel, is generally transported by

suspension: it is carried by the turbulent fluid flow and has less frequent contact with the bed.

These effects are visualised in Figure 1.4.
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Suspended load

Bed load

Figure 1.4: Bedload and suspended load sediment transport initiated by a wave travelling from

left to right. The bedload is at the bottom with gravel sliding and rolling, while suspended load is

occuring across the entire water column.

This study focuses on the formation of shingle beaches, in particular within the specific

aforementioned experimental setting of the Hele-Shaw cell. Shingle is defined as water-worn

rounded gravel. When dealing with gravel beaches and their profile variation over time, there are

some factors that can affect the evolution and the final shape of their profile. These factors can

roughly be divided into two groups: those related to the water and those related to the bed. Factors

related to the water include the wave frequency, wave height, wave duration and the angle of wave

attack [75, 96]. These are also called environmental influences. Factors related to the bed are the

sediment size and grading, the thickness of the bed and the initial bed profile. It is thus useful

when experiments allow control of these aspects as a greater understanding of their influence on

beach formation can be achieved.

In nature, changes in the beach profile often require decades to manifest, even though beach

dynamics dramatically changes mostly due to storm events. Having a set-up that can investigate

beach formation in a matter of minutes rather than years offers an ideal opportunity to rapidly

observe the dynamics of beach profile changes and the transition from one beach shape to another.



10 Chapter 1. Introduction

1.4 Objectives

This work was two-sided as it entailed both modelling and experimental work carried out in an

effort to combine and contrast theory with reality. After all, models work well when they do justice

to the phenomena they describe. The modelling aspect consisted of the following objectives:

1. Determine which mathematical models can capture the dynamics of waves in a vertical

Hele-Shaw cell. This objective is addressed in Chapter 3.

2. Measure how close the chosen mathematical models are in relation to reality, and to adapt

the models if necessary in the light of experimental results. This objective is addressed in

Chapter 4.

The experimental aspect aimed to:

3. Perform wave-only experiments for various wave frequencies and water depths and extract

useful measurements of the water depth, through a bespoke tracking algorithm. Then,

insert the measurements to the mathematical models and challenge their performance. This

objective is addressed in Chapters 2, 4 and 5.

4. Perform experiments with both water and particles. Vary the wave frequency, water depth

and wave height so as to investigate beach formation and beach-related phenomena such as

sediment transport and wave breaking. Then, collect measurements of the bed height and

the water depth from the experiment by extending the tracking algorithm. This objective is

addressed in Chapter 5.

1.5 Outline

The objectives mentioned in the previous section have been tackled within the thesis in the

following order. Chapter 2 introduces the experimental set-up in detail and summarises the
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water-only experiments that were carried out for different frequencies and depths. An image-

analysis algorithm, developed in Matlab with the purpose to track the water depth, is introduced

and described. After the process of translating images to raw numerical data has been fully

described, snapshots of the experiments compared against the tracking results follow. In this way

the efficiency of the algorithm can be fully fathomed.

Chapter 3 introduces the one-dimensional nonlinear shallow-water and potential-flow shallow-

water equations, extended with a momentum dissipation term due to the narrow width of the tank

in the lateral direction. A time-dependent forcing term is also introduced, to account for the wave

sloshing initiated from the aquarium wave-pumps, and is manifested in the boundary conditions

that accompany the models. Furthermore, the finite volume and finite element methods used to

spatially discretise the equations of each model are also introduced, with a particular focus on the

implementation of the boundary conditions.

The validation of the models ensues in chapter 4. It entails processing the raw data, previously

acquired in chapter 2, altering the boundary conditions and gradually imposing the processed data

to the latter. The novelty of the validation process lies in the fact that the data enters the model

through the boundary conditions, which are implemented in a different way for each numerical

method. Last but not least, the results stemming from the validation of each method are presented

and contrasted with each other, in order to elucidate the performance of the models and the effect

that the data have on their approximate solutions.

Chapter 5 introduces the full experimental set-up and describes water-bed experiments, of

varying wave frequency and depth, ultimately leading to beach formation through their constant

interaction. The extended image-analysis algorithm, initially presented in chapter 2, is presented.

Its novelty lies in the fact that it simultaneously tracks the changes in the water and the bed

morphology throughout the duration of each experiment efficiently and precisely as part of the

same algorithm. Snapshots of the experiments are overlaid against the tracking results so as to

illustrate the effectiveness of the extended tracking algorithm. The successful tracking of the water

and the bed allowed for further investigation of the creation of breaking waves, the measurement

of the bed angles, and the shape of the final bed profiles. In the quest for the parameters that

affect beach formation, the tracking results of three experiments have been used to determine the
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observed breaker types and their timescales, the final bed profiles and their corresponding angles

of repose. The determined angles are then compared against known angles of repose for shingle

beaches. To conclude, chapter 6 provides a summary of the work carried out, discusses key results

and suggests directions for future work.
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Chapter 2

Experimental tracking of the wave

dynamics

The interest behind this chapter was on water-only experiments as the means to acquire useful

experimental data. These data involved time series of the depth and the area flux of water and

they were to be used as a means of validating the mathematical models. Determining the depth

would then allow for the calculation of the area flux of water entering the tank. An image-analysis

algorithm that uses snapshots of the experiments to track water waves and translate them into

depth measurements was developed and is described below. Essentially, the input of the algorithm

are images and the output are time series for the depth and the area flux. The biggest part of the

processing has been spent on finding the optimal way to translate the water line from an image to

its corresponding depth data.

Two rounds of experiments were carried out, each in a different wave tank. The Hele-Shaw set-up

and the dimensions of each tank can be found in Section 2.1, with the experiments performed

in each tank presented in Section 2.2. The developed image-analysis algorithm, its tracking

methodology and the obtained experimental data are described in Section 2.3, with the conclusions

following in Section 2.4.
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2.1 The Hele-Shaw cell

The Hele-Shaw cell was used as the ideal set-up to investigate beach formation under the effect

of waves. In the absence of a beach the set-up, illustrated in Figure 2.1, includes a tank (cell)

consisting of two parallel glass plates of equal length, placed vertically at a fixed distance apart

from each other. It also comprises of a set of two underwater aquarium pumps, carefully placed in a

bucket hanging under the table (see Figures 2.2b and 2.2c), generating waves that propagate along

the tank. These pumps are operated by an Arduino Uno motor controller and are programmed by

a laptop. Essentially, a script determining signals is loaded to Arduino through a usb connection,

indirectly regulating the speed of the pump’s motor and the frequency and steepness of the waves

created. Choosing between two tanks of different lengths and widths was possible (see Table 2.1),

while the rest of the set-up remained the same. The only extra equipment required, was an average

digital camera and an efficient background lighting illuminating the water line.

Table 2.1: Dimensions of the wave tanks used during the experiments. Tank one was slightly

longer and wider than tank two. Tank one was used in [42].

Tanks Length (m) Width (m) Height (m)

1 0.57 0.0022 0.20

2 0.52 0.002 0.18

2.2 Experiments

All experiments were initialised in the same way; the bucket was partially filled with coloured

water to a still-water depth H0 before the pumps were switched on. Water-soluble blue food

dye powder, selected mainly due to its nontoxic nature and the uniformity of the colour that it

provided, turned the water blue thus helping achieve a better visualisation of the flow. Alcohol

was also added in the water so as to minimise the effects of surface tension in the flow. The lights

were switched on, constantly illuminating the water line and a Nikon camera D3300 was placed
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Figure 2.1: Hele-Shaw set up (tank two). Waves propagating in the cell as a result of the operation

of the submersible wave-pumps. The Nikon camera was placed in front of the cell and recorded

the propagating waves. Two stilling wells (black chambers) are located on the left and the right of

the glass plates. A power supply of 12V (white box) is connected to the Arduino.

(a) (b) (c)

Figure 2.2: Addition of 22 mL of ethanol to the dyed water (left panel). Pair of submersible wave

pumps with flow rate 12 litres per minute and water pressure 0.6 bar (middle panel). Wave pumps

submerged in a bucket filled with 10 litres of dyed water (right panel).

parallel to the cell so as to record the wave propagation. The core pump operation was essentially

one; they repetitively filled and emptied the tank, with water under the effect of gravity. Choosing
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appropriate combinations for the emptying (downward) and filling (upward) phase of the tank, as

well as the time required for each phase to happen, resulted in waves of varying speeds, steepness,

frequencies and wave heights. When the pumps were switched off, the tank was emptied out

of all water. The wave speed and wave steepness were also influenced by the distance between

the bucket and the tank; the larger the distance between the tank and the bucket, the lower the

incoming speed and steepness of the incoming wave were. This effect was due to the angle of the

hose, connecting the pumps with the water. Additionally, changing the voltage from the analog

dials affected the minimum and maximum wave depth whilst conserving the preset wave height.

2.2.1 Tank one

During the first round of experiments, tank one was used with the lights focused on the sides of the

tank (see Figure 2.3). This round of experiments was performed in an effort to determine an initial

but optimal experimental setting which would assist the water tracking. Through trial and error

and with the available resources in mind, the position of the camera the colour of the lights and the

dye were determined. An appropriate algorithm was then developed for the tracking of the water

line, subject to the corresponding limitations of the experimental set-up. Ultimately only one case

was selected from tank one for further tracking and processing, and has been summarised on Table

2.2. The reason for this choice was the background lighting that allowed for the water waves to

be captured in a clearer way compared to the other cases, providing improved tracking results.

The data set originating from this experiment was then used in [42] to validate the mathematical

models. The edge detection strategy related to this work has been described in Appendix A.1.

In spite of the polished design of the tank, the slightly larger gap width of about 0.002m which

had been adjusted proportionally to the longer length of the cell, created problems during runs of

the experiment where the particles were present. Plenty of particles would get stuck between the

plates, thus obstructing sediment transport and beach formation. Consequently tank two was used

to alleviate this problem, by only replacing the main wave tank and the background lighting while

keeping the rest of the set-up the same.
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Figure 2.3: Hele-Shaw set-up (tank one). This wave-tank was slightly longer than tank two. Two

individual LED lamps were placed near the left and right wall and a normal lamp at the top of the

cell.

Table 2.2: Water-only experiment performed in tank one.

Video f (Hz) Wave depth (max) Duration (min) Figures

47 0.7 Very deep (9.6cm) 00:21 A.4, A.5

2.2.2 Tank two

During the second round of experiments, and with the set-up more or less determined, the focus

was on improving the image tracking for tank two; not only through improving the image tracking

method but by improving the experimental setting too. The location of the lights was identified as

troublesome; focusing the lights on a specific region rather than having a uniform background
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colour, even though successful at tracking the regions near the walls, failed to help with the

tracking of the area in the middle of the tank. Especially when using a tracking method such

as edge detection, further explained in Appendix A.1, which largely relied on the location of the

lights. Hence, uniform colour was accomplished by switching from individual LED lamps to an

A2-sized LED light bank same with those seen in Figure 2.1. This LED light bank provided

colour uniformity and was placed behind the tank. In this way not only the wave propagation

phenomenon was much more visible compared to before, but the shadows which were previously

present due to the smaller range of light from the lamps, were eliminated.

Another improvement that was put into effect, was a change in the camera settings. Increasing the

aperture and decreasing the shutter speed of the camera manually before each recording began,

provided snapshots with a larger contrast between the water and the background colour; an effect

which proved very useful during the processing stage. The experiments performed in tank two

have been summarised on Table 2.3.

Table 2.3: Water-only experiments performed in tank two with frequencies ranging from 0.33Hz

to 0.67Hz. Duration refers to how long each experiment was recorded for.

Videos f(Hz) Wave depth (max) Duration(min) Figures

149 0.67 Medium (6.5 cm) 00:43 2.11, 2.12

154 0.48 Very deep (9.4cm) 00:45 A.7, A.8

165 0.33 Shallow (5.5cm) 00:43 2.13, 2.14

2.3 Tracking water waves

2.3.1 An introduction to digital imaging

Digital image processing is the procedure of manipulating images by developing and using suitable

programs in a computer. Image analysis refers mainly to the extraction of useful information from
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these images [18]. In the literature, the lines are blurred between where the processing stops and

where the analysis begins [33].

Image processing is an area of increasing interest; its numerous applications vary from detecting

features and improving the diagnosis in biomedical imaging [23, 77], to remote sensing [82];

where satellite images depicting areas damaged by flooding [26] or earthquakes [102] to capturing

water erosion [100] and monitoring crop conditions in the agricultural field [104]. The images are

often processed extensively so as to provide useful information. The variety of the applications of

image processing along with the increased computer capabilities have rendered image processing

a crucial step towards acquiring useful information by calibrating, correcting and analysing digital

images in various softwares.

Each image consists of elements with a horizontal and vertical component with a unique location

and specific value, called pixels. From a mathematical point of view, pixels can be regarded as

the coordinates (x, y) of a two-dimensional image array M with elements f(x, y), where x =

1, 2, ..., n and y = 1, 2, ...,m. The array is then of the form:

M =


f(1, 1) f(1, 2) . . . f(1,m)

f(2, 1) f(2, 2) . . . f(2,m)
...

...

f(n, 1) f(n, 2) . . . f(n,m)

 .

Each entry in the image array is called intensity and measures the amount of light captured by

each pixel. For example in greyscale images, which are also called monochromatic because of the

lack of colour, black is 0 and white is equal to 255 with the intensity values being in the range of

[0, 255]. The product of the vertical by the horizontal pixels, m × n , is called image resolution

and it refers to the total amount of pixels in an image. Thus, the more pixels in an image (more

pixels per unit distance) the smallest the area of the image depicted in each pixel, hence the more

accurately this image is described.

Images obtained during the experiments, with a rate of fifty frames per second, described in

Section 2.2 have a resolution of 1980 × 1080 pixels or 1280 × 720 pixels. For experiments

with duration less than one minute, higher resolution images were preferred. For experiments that
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lasted longer than one minute the volume of the images was too big, ranging from a couple to

hundreds of thousands snapshots per experiment, hence the lower resolution was selected so as to

avoid a potential data overload.

Useful information can be exported from these coloured snapshots of the experiment provided

some processing and analysis. In this thesis, image processing consists of two stages; image pre-

processing and main processing/image tracking. Image pre-processing aimed to prepare the raw

images for the main processing that followed. Then the object in question was tracked in the

main processing stage in image coordinates and was ultimately translated into useful data (image

analysis). Matlab was the selected software, used throughout all stages of image processing. It

is simple to use and favours performing tasks iteratively, especially for large data sets, while

providing further support through specific toolboxes with useful preset functions, such as the

Image Processing Toolbox.

2.3.2 Image pre-processing

Image pre-processing during this work entails exporting images from each video, segmenting and

organising them in each folder by assigning appropriate sequential names to them. Videos consist

of sequential images captured under a specific rate (frame rate). The advantage of using recorded

videos to taking images lies in the fact that videos have a higher frame rate compared to images.

Higher frame rates translate to more images, hence more information, per second. The output

images were then saved in a portable network graphics (PNG) format. This universal format

provides better compression rates, i.e the image quality does not degrade when saving or viewing

the image, while it supports a full spectrum of colours [7].

Image segmentation was the last step of the image pre-processing. It was essential as it ensured

that only the physical area of interest remained in each image with the unnecessary and potentially

troublesome background information being discarded. Proper care was taken to adjust the image

resolution of the segmented images to the physical area depicted within the images. In order for

the segmenting to be optimal, the position of the camera during each experiment was fixed.
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2.3.3 Main processing

Main processing refers to the steps taken to further manipulate the images and track the object

in question, with the input and the output being images. Depending on the method used for the

tracking the main steps are roughly classified into:

1. Loading the segmented images,

2. further processing, thresholding and tracking object(s) within each image.

In a nutshell, the image processing and analysis performed within this chapter aimed to primarily

track the water line location. Each step of the main processing has been further explained below,

with a particular focus on step two of the main processing; a step highly dependent on the tracking

method used.

2.3.3.1 Loading segmented images

The first step of the processing was to load each image, in an iterative way, in Matlab. Each image

was then translated into an image array, with a form similar to the one described in Section 2.3.1

and a number of rows and columns determined from the resolution of the segmented image.

2.3.3.2 Further image processing and tracking of the water line

When tracking the shape or the outline of a one-dimensional object, colour or edge detection

methods are usually preferred. Both methods track objects through different mechanisms. During

this thesis, both of these methods have been used. Edge detection, colour or monochrome, is a

method used for locating the boundaries of objects within images by locating the discontinuities

in brightness (gradient method) [18, 72]. Monochrome edge detection was used in earlier work,

with the corresponding experiment carried out in tank one and its obtained data used in [42]. At

the time it was the most suitable method to detect the free surface line, in view of the specific light

settings. Further information on edge-detection can be found in Appendix A.1.
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Colour-channel detection, uses properties of coloured images to locate whole regions of similar

brightness rather than just focusing on the location where the brightness changes. This method

was used for tank two after the improvement of the experimental setting had been accomplished.

The change in the lights and the camera settings, paved the way for the colour-channel detection

to work more precisely and effectively. The performance of each method was tested against each

other for experiment 154 in Appendix A.2, with the same tank and experimental setting present.

Indeed the colour-channel-detection method yielded better results and is further discussed in the

following section.

Tracking the water line with colour-channel detection

Colour-channel detection tracked the water depth by optimising the information ‘hidden’ in the

snapshots. The steps leading to the acquisition of the water line have been summarised below and

are illustrated in Figure A.6 (see Appendix A.2).

(i) Selecting an appropriate colour channel

In order for colours to be adequately described, colour models with different coordinate systems

have been created. In essence, each colour is described by a specific combination of colour

coordinates provided for each coordinate system. Depending on which device is being used,

different colour models are utilised. For example, colour monitors, TVs and video cameras use

the Red Green Blue (RGB) colour model while printers use the Cyan Magenta Yellow and Black

(CMYK) model [7, 33], to name a few. The work described here has been carried out using the

RGB colour model.

The RGB colour model is based on a cartesian coordinate system with axes (x = R, y = G, z =

B). The advantage of the this model lies in the fact that by using red, green and blue as the

primary colour palette any other desired colour can then be described uniquely as a combination of

these three colours in the range of [0,1] (see Figure 2.4) without sacrificing the image algorithm’s

accuracy or the image quality [7]. Hence each image obtained from the experiments consists of

three colour channels; a red, green and blue with different sensitivity to depicting light. Hence

each channel contains information and the composition of all three channels results in a coloured
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Blue (0; 0; 1)

Green (0; 1; 0)

Red (1; 0; 0)

Cyan (0; 1; 1)

Magenta
(1; 0; 1)

Yellow (1; 1; 0)

White (1; 1; 1)

Black (0; 0; 0)

Grey-scale

x
y

z

Figure 2.4: RGB cube, as determined in [18]. Colours expressed in RGB coordinates with axes

(x = R, y = G, z = B).

image obtained by a camera, as sketched in Figure 2.5.

Red

Green

Blue

Coloured (RGB) imageColour channels

m

nn×m

Figure 2.5: RGB colour channels (left panel) composing a coloured image of resolution n × m

pixels (right panel).

Working backwards to Figure 2.5, i.e. starting from the coloured image and using information

stored in the colour channels, can yield useful information. For example, if a coloured image

has blue colour in some parts of it, when observing the blue colour channel of the image, the
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blue is ignored and turned to white. Hence, it is important to use the colour channel that is most

appropriate for either the colour that is wished to be ignored or further intensified.

Figure 2.6: Original (cropped) image from experiments.

(a) Red (b) Green (c) Blue

Figure 2.7: Comparison of the three colour channels applied on image 2.6. The blue channel has

eliminated most of the image, while the highest contrast between the background and the wave

shape has been achieved by the red channel.

Working in a similar way, tracing the water line required for a specific colour channel that would

make the water stand out from the background. A comparison of the three colour channels has

been carried out for one of the experimental images and is illustrated in Figure 2.7. Because the

water and the background colour were blue, the red channel was optimal (Figure 2.7a) as the shape

of water was depicted well and was distinguishable from the background.
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(ii) Histogram equalisation and thresholding

The histogram of a monochrome image depicts the intensity values found in that image, between 0

and 255, by organising them in groups of pixels with the same intensity magnitude. These groups

of similar intensities, are also called classes and are separated by a valley. When the classes are

nearby it translates to the image having similar intensities and hence being poorly contrasted; a

setting not ideal when detecting a sub-region of the image. Tracing the water line as efficiently

as possible, required for the contrast between the water and the background to increase through

histogram equalisation.

Histogram equalisation is an enhancement technique applied in the spatial domain; it is based on

manipulating pixels in the image, in contrast to frequency domain techniques applied at the Fourier

transform of the image [72]. It transforms narrow-located classes to further spread-out classes of

a more uniform shape. In other words, the intensities closer to white get whiter and the dark ones

darker thus increasing the distance between the classes. The effect of histogram equalisation on

one of the snapshots is visualised in Figure 2.8.
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10
4
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Figure 2.8: Effect of histogram equalisation on intensity values. Before histogram equalisation

(blue) two classes/groups of intensities were closely located to each other in the range of 150-

220. After histogram equalisation (orange), the classes moved further away from each other to the

broader intensity range of [20, 255], providing a higher intensity difference between the darkest

and the brightest pixels. A valley formed between the intensity classes at 135.15. The threshold

value (TH) (green) is thus TH=135.15, with its value normalised to TH=0.53.
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With the contrast enhanced, thresholding was optimised. Thresholding in essence occurs by

selecting the intensity value that is found at the bottom of the valley in the image histogram.

Using one valley to determine the threshold is called global thresholding whilst if more than one

valleys/values are used it is called local thresholding. This threshold value (TH) then acts as a

criterion to create a binary image, i.e., a black and white image similar to Figure 2.9. If f(x, y) is

the image matrix before thresholding, and g(x, y) is the matrix of the binary image determined by

a global threshold TH then:

g(x, y) =


0 if f(x, y) < TH

1 if f(x, y) ≥ TH
.

Figure 2.9: Binary image after thresholding. The area under the water line is white.

As the water was only one object that had to be tracked, and with the rest of the background being

of a uniform colour, only two classes were found in the histogram of each image. Hence a single

valley was enough to determine the threshold. Otsu’s method [33, 63], a global thresholding

method which minimises the within-class variance of intensities, allowed for the gap between

the dominant classes from the histogram in Figure 2.8 to be used to calculate one normalised

threshold value within the range [0, 1] in an iterative way for each image. After the water area had
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been determined, the next step was to translate the area into measurements. This was achieved by

tracking the area occupied by water and determining the coordinates of the water depth, described

in the following section.

2.3.4 Image analysis: turning images to data through coordinate

acquisition

Image analysis refers to translating the traced objects from image-dependent units such as pixels

to useful numerical data, expressed in universal units such as metres. This transformation came

true by tracing the coordinates of the moving object in question and translating them to length

and depth values. Hence, the more precise the processing and the analysis, the more accurate the

obtained data are.

Each snapshot was read from top to bottom and from left to right. The free surface line in the

binary images, was white with the background having a black colour. Depending on the selected

detection method, the area under the free surface would be either black or white, as illustrated in

Figures 2.9 (colour-channel method), A.3 (edge-detection method). For either one of the tracking

methods, the free surface line coordinates ci,j were determined at the location where the white line

was, i.e. at the transition point from black to white. These pixel coordinates ci,j , depicting the free

surface line were thus acquired and stored.

As aforementioned, the coordinates of the tracked area were in pixel units (length lpx, depth

depthpx) and had to therefore be transformed to metric units. It was thus important to first calibrate

the images, which entailed determining the metre-to-pixel ratio for snapshots with the same

resolution, so as for the translation of the tracked area from pixels to metres to occur successfully.

For the calibration to be successful, the snapshots were first segmented such that only the wave

tank remained in each of them. The reason for this was because both the tank’s measurements

and the snapshot’s resolution were known by construction and from the segmentation stage

respectively. As a result calibrating the tank, enabled by determining the metre-to-pixel ratio from

the measurements and the image resolution, also calibrated the water depth because the water was

in the same frame of reference with the tank. Segmenting the images reduced their resolution,
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therefore an ‘updated’ calibration ratio was determined separately for the length and the height of

the tank. After that, the length and height coordinates of the tracked water line were translated

from pixels to metres.

The following formulas were hence used to perform this transformation for the length and the

height/depth by using the calibration ratios for the length lengthcell
nocol

and the height/depth depthcell
norows

,

embedded in equation (2.1). During the transformation, the results were flipped so that the length

and depth could be interpreted as being read from bottom to top. The transformation relationships

are:

lm = lpx ×
lengthcell

nocol
× 10−2, (2.1a)

hm = depthcell × (1− depthpx

norows
)× 10−2, (2.1b)

where lm, hm are the length and depth coordinates in metres, lengthcell and depthcell are the

dimensions of the cell enclosed in the snapshot in centimetres and norows × nocol is the total

resolution of the snapshot. In the case that the snapshots had been uniformly segmented, lengthcell,

depthcell as well as norows and nocol were still constant but adapted to the smaller resolution of

the cropped snapshots.

Using equations (2.1a) and (2.1b) provided sets of coordinates ci,j=(`i,maxi(hj)) measured in

metres, for every image element c on the free surface with coordinates: i = 1, 2, ..., nocol for the

length (horizontal axis) and j = 1, 2, ..., norows for the depth (vertical axis). It was, however,

possible to have multiple depth coordinates for one length coordinate. To this end, maxi(hj) was

introduced; thus always selecting the largest depth value out of all to locate the free surface. Figure

2.10 illustrates how the tracking works.
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n

i = 1

j = 1

n− 1

norows

nocolm− 1

`

h

ci;j = (`i;maxi(hj))

dx1

dx2

A(t)=
R
h(x; t)dx

: surrounding pixels

: pixel at the free surface

A(t) : Total area under free surface

dx1, dx2: distance between pixels

m

Figure 2.10: Coordinate acquisition of the free surface line. Pairs (li, hj) of equal length li are

used for the computation of the area under the free surface line, with the free surface coordinates

given by ci,j=(`i,maxi(hj)). In this graph i = m and j = n are the coordinate indices at the free

surface.

Provided that `i,maxi(hj) were turned into vectors of the same length, the area under the free

surface with coordinates ci,j could be then computed for each snapshot. Having the depth

coordinates in metres allowed for the computation of the area occupied by water and located

under the free surface line for each moment in time:

A(t) =

∫
h(x, t) dx. (2.2)

In general, for each case the output of the image-analysis algorithm were depth h(x, t) and area

A(t) time series. In the following figures, area A(t) and depth at the left wall h(0, t) time series

have accompanied snapshots of cases 149, 165 overlaid against the tracked depth. In this way the

tracked water area is illustrated in an image as well as in a numerical form.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.11: Tracking the water line at medium depths for video 149 during times t =

0.02s, 0.2s, 0.48s, 0.76s, 1.06s, 1.44s. Wave period is T = 1.42s. The fully tracked video of the

experiment can be found here: https://www.youtube.com/watch?v=WXTVx-RDT5o.

https://www.youtube.com/watch?v=WXTVx-RDT5o
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Figure 2.12: Raw data for the area (top panel) and the depth at the left wall (bottom panel). These

data originated from video 149 (tank two).

It can be seen that the data in Figure 2.12 have a sinusoidal shape. The variations on the minimum

and maximum area are attributed to Arduino. Even though Arduino was already in operation prior

to the recording, the electrical current controlling the pumps was stabilised much later on with

some variations on the water depth still visible over the course of the experiment. As a result,

the minimum and maximum water depth were relatively stabilised during the second half of the

recording of the experiment (20s-40s).
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(a) (b)

(c) (d)

(e) (f)

Figure 2.13: Tracking the water line at shallow depths for video 165 at times t =

0.02s, 0.32s, 0.48s, 0.92s, 1.68s, 2.6s, 3s. Wave period is T = 3s. The fully tracked video of the

experiment can be found here: https://www.youtube.com/watch?v=fwtB55BSU4o.

https://www.youtube.com/watch?v=fwtB55BSU4o
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Figure 2.14: Raw data for the area (top panel) and the depth at the left wall (bottom panel). These

data originated from video 165 (tank two).

It can be seen in Figures 2.11 and 2.13 that the detection of the free surface line has been computed

accurately for various frequency and wave steepness values. It should be noted that the shape of

the depth data at the left wall h(0, t) of case 165 is different than of case 149. Thus for different

Arduino settings, i.e frequency and water depth, no deviations in the minimum and maximum wave

height were observed in the above data. Consequently the assumption that Arduino’s operation

influenced the output data, for those specific settings, was further enforced.
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2.4 Conclusions

The colour-channel-detection method has been selected as the most suitable, precise and reliable

tracking method for detecting the water line and translating it into useful measurements. It

successfully tracked waves of various frequencies and steepness. The advantages of this method

are that the main processing algorithm works iteratively, adapting to the threshold values of each

snapshot, while it remains simple to use. In addition an option to choose the times of interest that

the processing should occur has been provided, thus offering flexibility to the user while saving

time from running the algorithm for all images. The main disadvantage is that the code has been

developed in Matlab using the Image Processing Toolbox, which is not an open source software.

For cases such as this, where a large number of snapshots has to be processed iteratively, OpenCV

could alternatively be used by translating the Matlab commands to Python commands accordingly.
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Chapter 3

Modelling water waves

In the quest for the models that capture the water dynamics in the Hele-Shaw cell the best,

two one-dimensional nonlinear shallow-water models were selected and have been presented in

this chapter. A shallow-water and a potential-flow shallow-water model1, later validated against

experiments in Chapter 4. Both (shallow-water) models have been extended to include terms

responsible for momentum damping and forcing at the left boundary, effects directly related to the

narrow width of the tank and the operation of the wave pump.

The structure of the chapter is as follows: the developed mathematical models are presented in

Section 3.1 and the numerical discretisation of the models ensues in Section 3.2. Lastly, the

conclusions follow in Section 3.3.

3.1 Mathematical models

Two one-dimensional shallow-water models, one using the velocity u and one using the velocity

potential φ (such that u = ∇φ), have been used to model the hydrodynamics in the vertical Hele-

Shaw cell. Taking into consideration the narrow width of the tank, any contributions to the velocity

1initially developed and partly validated in [42]
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profile from the lateral dimension can be encapsulated by width-averaging the three-dimensional

Navier-Stokes equations.

The shallow-water equations comply with the shallow-water approximation; there is no wave

dispersion and the wavelength must be roughly twenty times larger than the water depth, following

the long-wave approximation. As a result, any variations of the velocity profile outside the

boundary layer are very small and can be neglected by depth-averaging. Even though the long-

wave approximation is only satisfied to leading order (in a suitable aspect ratio) in our experiment,

the shallow-water approximation forms a useful first step towards approaching the modelling. In

[90] the one-dimensional shallow-water model was recovered by width- and depth- averaging the

three-dimensional Navier-Stokes equations and by omitting the rest of the terms. However, there

is evidence from the results found in Chapter 4 that future work can benefit from the inclusion of

the dispersible terms omitted in shallow-water theory. The potential-flow shallow-water equations

have been derived from Luke’s (extended) variational principle, with the dynamics considered

only at the free surface.

Experimentally, higher frequencies combined with shallower depths or the presence of a bottom

topography, are the factors responsible for creating steeper waves or even wave-breaking, with

the latter investigated in Chapter 5. Wave breaking has thus been accounted for in the shallow-

water model by using the theory of hydraulic jumps and bores [101] and is approximated by a

local line or point discontinuity, which violates the long-wave approximation. Even though this

discontinuity violates the long-wave assumption, the hydraulic bore model has proven to be a very

powerful to model wave breaking. This is because after wave-breaking wave motions become

quasi-steady they become analogous to a spilling breaker or a bore, if only the macroscopic-scale

effects are of interest [12, 69]. In the case of the potential-flow approximation, wave breaking

violates the irrotational assumption and thus cannot be handled without extra parameterisations.

3.1.1 Shallow water model

An incompressible fluid has been considered in a one-dimensional domain x ∈ [0, L] with water

depth h = h(x, t) and velocity u = u(x, t) as functions of space and time, incoming area flux



Chapter 3. Modelling water waves 37

Q(t) at x = 0 and a hard wall at x = L. The fluid is bounded from below by a bottom topography,

which is flat in this instance, and from above by a free surface. Dispersion is absent and the

dynamics have been reduced to the free surface only by providing solutions for the depth at the

free surface and the velocity.

Momentum damping −γu is present as a result of the close proximity of the glass plates, with a

damping factor γ = 3ν
l2

defined as the ratio of the kinematic viscosity ν and the tank’s half-width

l = 0.001m. The momentum damping term was originally derived in [90], as a result of width-

and depth-averaging the three-dimensional Navier-Stokes equations. As the water viscosity is

small (ν = 10−6 m2/s) its effect on the fluid’s velocity in the lateral direction is confined to a thin

boundary layer between the fluid and the boundary walls (effectively the gap width), where it is

dominant. The effect of viscosity on the flow’s momentum was encapsulated by width-averaging

the Navier-Stokes equations, thus revealing the momentum damping term.

The gap width for tank two was not chosen randomly. In [90] simulations of the system (3.1) were

carried out, prior to the design of the tanks, with the aim to investigate the dissipative effect of

various gaps thickness on the momentum of generated bores. It was found that for a frequency

range of 0.5-1Hz and gap widths 2l < 1.5mm the fluid’s momentum dissipated too quickly and

the bores never reached the end, for a chosen tank length of 0.7-1m. On the contrary, above the

width threshold of 1.5mm, the generated bores travelled across the tank. Consequently, the tank

was built with a gap width equal to 2l = 2mm (see Chapter 2) with aluminium oxide particles of

a diameter d = 1.75± 0.05mm used to represent a gravel beach in water-beach experiments (see

Chapter 5).

In the simulations of the experiment the momentum damping factor γ was determined from the

half-width l of the wave tank, which was fixed by construction, and was thus constant for each

wave tank. In addition, as water was the only fluid used during the experiments meant that the

kinematic viscosity remained constant and was equal to ν = 10−6 m2/s for all simulations.

Given that ∂x and ∂t represent the partial derivatives with respect to space and time and g is the

acceleration due to the effect of gravity, the one-dimensional nonlinear shallow-water equations
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read:

∂th+ ∂x(hu) = 0, (3.1a)

∂tu+ u∂xu+ g∂xh = −γu, (3.1b)

with an inflow boundary condition at the left wall due to the pump action resulting in an in- or

outflow of water:

Q(t) = hu|x=0. (3.1c)

Throughout the simulations in tank two, the momentum dissipation factor was γ = 3s−1, with

ν = 10−6 m2/s and 2l = 0.002m. For tank one, it was equal to γ = 2.479s−1, with the kinematic

viscosity same as before and the gap width equal to 2l = 0.0022m.

3.1.1.1 Non-dimensionalisation

Provided that Lx, H0 are the horizontal and vertical length scales and the non-dimensional

variables are denoted by the superscript stars, the scales used to non-dimensionalise the equations

are: x = Lxx
∗ , h = H0h

∗, t = Lx
U0
t∗, Q = H0

√
gH0Q

∗, u = U0u
∗, with U2

0 = gH0

resulting in g∗ = 1. Substituting the scales, dropping the stars, rearranging the equations and

taking U0 =
√
gH0, equations (3.1) become:

∂th+ ∂x(hu) = 0, (3.2a)

∂t(hu) + ∂x(hu2 +
h2

2
) = −Cdhu (3.2b)

Q = hu|x=0, (3.2c)

0 = u|x=L, (3.2d)

with scaled damping Cd = γLx

U0
. Details on the discretisation of equations (3.2) can be found in

Section 3.2.1.

3.1.2 Potential-flow shallow-water model

The potential-flow shallow-water model was originally developed in [42] where it was partly

validated against obtained experimental data. Following this line of work the model was fully
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validated against new and improved experimental data, with further details on the validation

process found in Chapter 4 of this thesis. The model is therefore presented in this section for

closure and, similarly to the shallow-water model, describes the water dynamics in the Hele-Shaw

cell while enhanced with the effects of momentum dissipation and inflow of water.

The variational principle offers the advantage that the whole system is described by a single

functional. The dimensionless equations for the potential-flow shallow-water model can be thus

recovered by determining a variational principle for the system. The variational principle also

leads to energy conservation through Hamiltonian dynamics. In particular, Miles’ variational

principle [58] uses the Hamiltonian dynamics and is dynamically equivalent to Luke’s variational

principle, with the latter presented below. Luke’s (dimensional) variational principle [51],

visualised in equation (3.3) for the two-dimensional case assuming irrotational flow, has been

used as a building block for the variational principle of the mathematical system:

0 = δ

∫ T

0

∫ L

0

∫ h(x,t)

0
−ρ(φt +

1

2
(∇φ)2 + g(z − h0)) dz dx dt, (3.3)

with ρ the density, 0 ≤ z ≤ h(x, t) the depth between the bottom and the free surface h(x, t) and

φ the velocity potential such that u = ∂xφ. The lateral direction has been ignored, following the

quasi two-dimensional nature of this vertical Hele-Shaw set-up, which is why the free surface

does not depend on the lateral direction y either. The velocity potential is two–dimensional

in space φ = φ(x, z, t) with h0 the depth of the water at rest. Equation (3.3) is essentially

equal to Bernoulli’s principle for an unsteady and irrotational flow. Due to the incompressibility

assumption, the density ρ is constant and has thus been simplified from the following equations.

The variational operator (δ) is applied on the action functional S =
∫ T

0 L [h, φ] dt, with L the

Lagrangian (difference between potential and kinetic energy [51]), and is defined as follows [52]:

0 = δS = δ

∫ T

0
L [h, φ] dt ≡ lim

ε→0

∫ T

0

L [h+ εδh, φ+ εδφ]−L [h, φ]

ε
dt. (3.4)

The first variation δS, i.e. the change in the action functional S, is zero if its arguments functions

h, φ change by an infinitesimal amount.

In the case of the potential-flow shallow-water model, the dynamics only at the free surface

are considered hence resulting in φ = φ(x, z = h, t). Consequently, the velocity potential
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becomes one-dimensional in space and thus depends only on the horizontal dimension and time

(φ = φ(x, t)). With φ defined at the free surface, the integral with respect to z can be computed

for equation (3.3) and integrating the first term by parts for t yields:

0 = δ

∫ T

0

∫ L

0
φ∂th−

1

2
h(∂xφ)2 − g

2
(h− h0)2dx dt. (3.5)

The effect of the momentum damping due to the close proximity of the glass plates has to be

included through the term eγ̃t following formulations for damped oscillators [64], with γ̃ the

nondimensional momentum damping factor equal to Cd from system (3.2). In addition the

existence of forcing at the left wall, a direct consequence of the operation of the pumps, has

to be accounted for at the left boundary with the inclusion of the term Q(t)φ(0, t).

Non-dimensionalising equation (3.5) with the same scaling as in Section 3.1.1.1 was possible, with

the velocity scale transformed accordingly for the velocity potential: φ = Lx
√
gH0φ

∗. Adding

the influx term and multiplying by eγ̃t results in the relevant variational principle for the damped

shallow-water flow in the Hele-Shaw cell:

0 = δ

∫ T

0

∫ L

0
[φ∂th−

1

2
h(∂xφ)2 − 1

2
(h− h0)2dx −Q(t)φ(0, t)]eγ̃tdt. (3.6)

Integrating by parts for the first term, for reasons explained later on (cf. Section 3.2.2.2), yields:

0 = δ

∫ T

0

∫ L

0
h∂t(φeγ̃t) +

(
1

2
h(∂xφ)2 +

1

2
(h− h0)2

)
eγ̃t dx

+Q(t)φ(0, t)eγ̃t dt. (3.7)

Taking the variation of (3.7), in the same way as in equation (3.4) gives:

0 =

∫ T

0

∫ L

0
[δh∂t(φe

γ̃t) + h∂t(δφe
γ̃t) +

1

2
δh(∂xφ)2eγ̃t + h(∂xφ)(∂xδφ)eγ̃t

+ δh(h− h0)eγ̃t]dx+Q(t)δφ(0, t)eγ̃t dt. (3.8)

The second and fourth terms in equation (3.8) are integrated by parts in time and space,

respectively. Then, some of the terms that arise are eliminated by considering a solid wall
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boundary condition at the right wall ∂xφ|x=L = 0 and applying suitable end point conditions

δφ = 0 and δh = 0 at t = 0, T . Then equation (3.8) becomes:

0 =

∫ T

0

∫ L

0

((
∂t(φeγ̃t) +

1

2
(∂xφ)2 eγ̃t + (h− h0)eγ̃t

)
δh−

(
∂th+ ∂x(h∂xφ)

)
eγ̃tδφ

)
dx+

(
Q(t)− h∂xφ

)∣∣
x=0

δφ(0, t)eγ̃t dt. (3.9)

It can be seen that the influx term is balanced by the left boundary term (h∂xφ|x=0) acquired from

the integration by parts. Since the variations δφ and δh are arbitrary, the potential-flow shallow-

water equations are obtained:

δh : ∂t(φeγ̃t) +
1

2
(∂xφ)2 eγ̃t + (h− h0) eγ̃t = 0

⇔ ∂tφ+ γ̃φ+
1

2
(∂xφ)2 + (h− h0) = 0, (3.10a)

δφ : ∂th+ ∂x(h∂xφ) = 0, (3.10b)

δφ(0, t) : Q(t) = h∂xφ at x = 0, (3.10c)

δφ(L, t) : 0 = h∂xφ at x = L. (3.10d)

Equations (3.10b), (3.10c), (3.10d) can be directly obtained from (3.2a), (3.2c), (3.2d) by setting

u = ∂xφ everywhere. Similarly, substituting (3.2a) in equation (3.2b) leads to the same result as

differentiating (3.10a) by x and multiplying it by h, while setting the scaled momentum damping

Cd = γ̃ in (3.2b). The scaled acceleration due to gravity remains g∗ = 1.

3.2 Numerical discretisation

Numerical methods are used so as to compute approximations of the solutions to the sets of

differential equations of physical variables. This is accomplished by replacing the continuous

system, that is described from the partial differential equations in each model, with a set of

discrete and finite values for space and time; a process also known as discretisation process. Each

numerical method then approximates the solution of the discretised equations at those allocated

times and locations, based on a specific strategy determined for each numerical method.
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The shallow-water and the potential-flow shallow-water models have been discretised in space

using either the finite-volume method or the finite-element method and in time using either the

Forward Euler or the Störmer–Verlet method. This section is going to provide some background

on how these methods work.

3.2.1 Finite-volume method

The 1D shallow-water equations have been discretised in space and time using the finite-volume

and Forward-Euler method, respectively. The finite-volume method used is a first-order method

and has been chosen due to its advantage to handle discontinuities arising from hydraulic bores.

The shallow-water equations (system (3.2)) are a system of conservation laws which can be

rewritten as follows:

∂tU + ∂xF (U) = S, (3.11)

where U = (h, hu) and the flux vector F (U) = (hu, hu2 + g h
2

2 ) is a function of the variables

involved. In addition, the vector S = (0,−Cdhu) is the source term, here including the damping

term. For non-flat topographies, the (dimensionless) topography term is also located in the source

term (S = (0,−Cdhu− h∂xb)).

The shallow-water equations belong in the family of hyperbolic problems, whose Jacobian (J) has

real and distinct eigenvalues. Turning equation (3.11) to its quasi-linear form in equation (3.12),

in which we set S = 0 for simplicity, reads:

∂tU + J∂xU = 0, with J =

 0 1

−u2 + gh 2u

 . (3.12)

Following from [47], the eigenspeeds of the Jacobian J are: λ± = u ±
√
gh. An estimate of the

time step required to ensure numerical stability of the FV method can be made by considering the

eigenvalues, characteristics and grid size. A time step criterion, also known as Courant, Friedrichs

and Lewy (CFL) condition [21], can yield an estimate provided a finite time step ∆t and a grid

size ∆k: ∆t ≤ cfl min(∆k)
max(λ−,λ+) . In this formula for ∆t a constant value for the cfl has to be
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selected. Theory suggests that for the Godunov method a CFL value satisfying 0.5 < CFL < 1 is

appropriate [54]. Our numerical simulations suggested a value of 0.6, which was suitable and was

adopted in all simulations that used this method and are found in Chapter 4.

Going back to the vectorial conservation laws found in equation (3.11) with U , F (U) same

as before, one can discretise the one-dimensional spatial domain x of length [0, L] into N

intervals/volumes and determine n number of times [0, n] at which the solutions U are to be

computed. The Godunov method [46, 93] has been selected in order to compute these solutions.

The basis of the Godunov method, after a space-time mesh has been introduced, is to integrate

the conservation law over one space-time cell xk−1/2 < x < xk+1/2 and tn < t < tn+1. The

vector of cell-averaged quantities or means U1, U2, ..., UN , visualised in Figure 3.1 and separated

by a one step discontinuity, comprises the unknowns of the problem that are determined by the

numerical method. The cell-averaged quantities are updated in time with the help of the flux,

evaluated at the intercell edges also known as faces/nodes. After the resulting flux at the nodes is

replaced by a numerical flux, this immediately yields the FV scheme. Defining the numerical flux,

which will allow for the solution to be updated in time, is key.

A Riemann problem [46, 92] is an initial value problem and in the field of hyperbolic problems

consists of the equation of the conservation law and an initial state for the system expressed by

piecewise constant data with a single discontinuity (see Figure 3.2). The Godunov method uses

the solution of each “local” Riemann problem in order to determine the flux at the interface at

the discontinuity, using the solution/states U of the surrounding volumes of the system. Here

the Harten, Lax and van Leer (HLL) flux has been used, also known as the approximate HLL

Riemann-type solver [47, 92], and has been further described in Appendix B.2.

Provided that subscripts and superscripts denote the space and time discretisation, equation (3.13)

reads:

Un+1
k = Unk −

∆t

|∆xk|
(Fk+1/2 − Fk−1/2) + ∆t Snk , (3.13)

Unk is the space- and time- cell average of the solution for volume k at time n with source term

Snk = (0,−Cdhnkunk), grid size ∆xk and the HLL flux F which depends only on Uk and Uk+1.

The origin of equation (3.13) has been further described in Appendix B.1. In the case that the
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t

t = tn

U1

U2 Ui

∆x

U3

x1/2 x1+1/2

UN

xi+1/2xi−1/2 x

UN−1

Figure 3.1: The computational domain has been divided into k = 1, 2, ..., N volumes each of

length ∆x. At each volume, a piecewise constant value for the solution Uk is assigned at the

centre of the cell, contained within edges [xk−1/2, xk+1/2]. Pairs of states are separated by a

discontinuity at the edges. The vector of all these piecewise constant solutions forms the numerical

solution of the problem at time tn.

UL

UR

x0 x

U

Figure 3.2: Riemann problem. Piecewise constant states UL, UR separated by a single

discontinuity (red dash).

bottom topography is not flat, the topography term is implemented in the numerical shallow-water

model with the help of well-balanced schemes [3].

In the following section, the boundary conditions as well as their implementation are presented.

It should be noted that the implementation of the boundary conditions was crucial; the latter were
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the entrance through which the experimental data entered the model, which ultimately led to its

validation in Chapter 4.

3.2.1.1 Boundary conditions and ghost cells

For the shallow-water equations (system (3.2)), a hard-wall condition was imposed on the right

wall un|x=L = u|x=L · n̂ = 0, with n̂ the normal unit vector and u|x=L = 0, such that no mass

of water goes through the solid impermeable wall and the fluid is reflected when it reaches the

right wall. On the left wall (at x=0), the measured mass flux and depth were imposed to the model

through an in- and out-flow boundary condition (equation (3.2c)). The boundary conditions have

been sketched in Figure 3.3.

h0 = h0data
(sim2)

0 L

uL = 0

Flux solid wall

Boundary conditions

h0u0 = Qdata(sim1, sim2)

Figure 3.3: Boundary conditions for the Hele-Shaw cell. Inflow and outflow (flux) boundary

condition imposed on the left wall to account for the existence of the pump. Solid wall assigned

on the right wall, responsible for the water reflection (black, red arrows). The implemented form

of the boundary conditions is found in Section 4.2, and is closely linked to the validation of the

model through simulation one (sim1) and simulation two (sim2). In sim1 only the inflow of water

was prescribed through a function, which was superimposed on the data, Qfitted. In sim2, both

the depth at the left wall and the inflow of water were ‘directly’ prescribed from the data h0final,

Qfinal and by employing linear interpolation.

In the finite-volume method, fluxes determine the communication between cells. Similarly, using
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the ghost cells boundary treatment [47], [93] sketched in Figure 3.4, the boundary conditions

were not imposed directly but indirectly as values that entered the numerical flux at x = 0

and x = L, together with the information on the left of x=0 (ghost cell) and the right of x=L

(ghost cell) within the domain. The addition of the ghost cells thus required the extension of the

computational domain so as to accommodate for these two extra cells. Hence the domain was a

union of the true interior volumes, where the solution was calculated, and the ghost cells that were

only used for the computation of the fluxes at the boundaries. The HLL flux, using approximations

of the characteristics of the hyperbolic system, then determined the extent at which the boundary

information was used.

U1 U2 UNUi UN−1U00 UNN

Interior nodes

F1/2 FN+1/2

x = 0 x = L

Figure 3.4: Addition of the ghost cells U00, UNN (grey) to the main computational domain

consisting of cells U1, U2, .., UN enclosed at x = 0, L. Intercell fluxes F1/2 (x = 0), FN+1/2

(x = L) lead to solutions that satisfy the boundary conditions.

Provided an initial condition at t = tn for Uk one can generalise the process for all times, as

follows from equation (3.13) and is illustrated in Figure 3.5. Calculating the intercell fluxes by

using the previous time information of the state Unk , allows for the computation of an updated

solution Un+1
k .
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tn

tn+1

t

x=Lx=0

U1U00 UN
UNN

UN−1

F1/2 F1+1/2 FN+1/2

Ui

Fi+1/2

U2

i+ 1/2 N − 1/2

FN−1/2

1 + 1/2 i− 1/2

U3

∆x
∆x

∆t

Figure 3.5: The computational domain has been divided into N cells of length ∆xk, and is

bounded by the green squares. The ghost cells, U00, UNN have the same length ∆x and have been

added to the left and right of the computational domain to facilitate the intercell flux computation

at the boundaries F1/2, FN+1/2 at time tn. The updated solution can be then computed at time

t = tn + ∆t through equation (3.13).

3.2.2 Finite-element method

The potential-flow shallow-water equations were implemented in Firedrake; an automated system

that uses the finite-element method to solve the equations spatially [79]. A summary of the

implementation process can be found in Figure 3.8, after the explanation of the steps has been

completed. The finite-element method (FE) works similarly to the finite-volume method, in

the sense that it aims to approximate the solution of a system of partial differential equations

by breaking down the domain into a discrete and finite number of sub-regions/elements and

computing approximations of the solutions on each of these intervals. Depending on the geometry

and the number of spatial dimensions required to simulate the problem at hand, the elements can be

lines (1D), triangles or quadrilaterals (2D) and tetrahedra or hexaedra (3D) [78]. FE can deal with

complex geometries in the fields of engineering and fluid dynamics, by allowing for its elements to

be adapted to the geometry of interest, and that is its great advantage. For example, when dealing

with a curved geometry one can use curved elements during the discretisation; depending on the

dimensions of the problem it could be a curved line element, or a triangle with curved sides or a

hexahedron with curved sides.
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Apart from the selection of the type of element to discretise the mesh, functions are required to

approximate the variables on the mesh. The function can be a polynomial of any degree with

different continuity requirements; thus not only facilitating the integration and differentiation

procedures but also providing improved accuracy of the numerical solution as the polynomial

degree increases. At this point it is useful to point out that if a zero-degree polynomial was to be

selected for each element, the approximate solution would be computed by a piecewise constant

function, similarly to the finite-volume method.

The first step is to bring the system of equations into a weak form. Each equation is multiplied

by an arbitrary, yet suitable, test function. A suitable function space must be defined for these

test functions, which depends on the differential equation at hand. Then, integrating by parts

and applying appropriate boundary conditions reduces the spatial derivatives and leads to the

weak form. In Section 3.1.2, Luke’s variational principle was modified and the potential-flow

for shallow-water equations were acquired. As the variational principle has already brought the

system of equations in an integral form, the calculation of the weak form for the implementation

stage is not necessary. Instead, starting directly from the variational principle in equation

(3.7), discretising it using an appropriate mesh, basis functions and first-order polynomials to

approximate the solutions, taking the variations, integrating by parts and applying Dirichlet

boundary conditions at the two walls results in the implemented equations.

3.2.2.1 Mesh, basis functions and approximate solutions

The one-dimensional potential-flow equations originating from equation (3.7) have been

discretised by using a one–dimensional mesh consisting of line elements. As depicted in Figure

3.6, the domain has been partitioned into N + 1– nodes such that each line element is located

between each set of nodes. Hence for nodes k = 1, 2, ..., N + 1 each line element can be defined

as Ek = {x|x ∈ (xk, xk+1)}. The union of these line elements results in a tessellation, with the

line elements not overlapping with each other.

Approximations to the solutions h, φ of equation (3.7) are then computed at each line element.

The variables are approximated using Ritz-Galerkin finite-element expansion with C0-continuity
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1 i N + 1

E2 Ei EN

2 i+ 1

E1

Figure 3.6: One–dimensional computational domain for the finite-element method. The domain

has been partitioned into N elements Ek with k = 1, 2, ..., N + 1 nodes. Within each pair of

nodes, a line element is enclosed.

as determined in equation (3.14). The basis functions ϕk(x), ϕl(x) determine the order of the

polynomial approximating the solution and affect the quality of the approximations. In this

work, one–dimensional continuous linear Lagrange polynomials 2 have been used in the following

approximations:

h(x, t) ≈ hh(x, t) =

N+1∑
k=1

hk(t)ϕk(x), φ(x, t) ≈ φh(x, t) =

N+1∑
l=1

φl(t)ϕl(x), (3.14)

where uh, hh are the approximations to the solutions, with respective coefficients hk(t) and

φl(t). The basis functions have compact nodal support, being unity at the centre node and zero at

neighbouring nodes. For example, the basis function at the first element, also visualised in Figure

3.7, will be:

ϕ1(x) =


1 if k = 1

0 if k 6= 1

.

Substituting the approximations in equation (3.7) and taking the variations results in the discretised

form of equation (3.8):

0 =

∫ T

0

∫ L

0
[δhh∂t(φhe

γt) + hh∂t(δφhe
γt) +

1

2
δhh(∂xφh)2eγt + hh(∂xφh)(∂xδφh)eγt

+ δhh(hh −H0)eγt]dx+Q(t)δφh(0, t)eγt dt. (3.15)

In view of the equations being solved in Firedrake, equation (3.15) was modified by integrating

the second term by parts with respect to time, using end-point condition and leaving the fourth

2Lk(x) = Πn+1
m=1

x−xk

xk−xm
, with k the number of nodes in the domain and n the order of the polynomial

used to approximate the numerical solution.
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1 2 3 4 5 6 7 8

1
ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 ϕ8

E1 E2 E3 E4 E5 E6 E7

x1 = 0 x8 = L

h1

h2

h3
h4

h5
h6 h7

h8

hexact ≈ hh =
∑k=8

k=1
hkϕk

Figure 3.7: Approximation of the exact solution hexact (blue) with hh (magenta dash). The

computational domain has been divided into seven line elements and eight nodes (circles). The

approximate solution is computed at each line element with the help of basis functions consisting

of continuous linear Lagrange polynomials ϕk, with k = 1, 2, ..., 8. Compact support has been

enforced at each of the nodes.

term as it was. Recall that the equations were acquired by integrating the second and fourth term

of equation (3.8) by parts. Rearranging equation (3.15) yielded:

0 =

∫ T

0

∫ L

0
δhh
[
∂t(φhe

γt) +
1

2
(∂xφh)2eγt + (hh −H0)eγt

]
−
[
∂thhδφh − hh(∂xφh)(∂xδφh)

]
eγt dx+Q(t)δφh(0, t)eγt dt. (3.16)

In usual software such as Matlab, FE discretisation would occur as follows. The approximations

of the solutions would be used in equation (3.7) and would be replaced with their expansion. This

replacement would result in a discretised-in-space variational principle whilst continuous in time.

Spatial matrices would then arise from the discretised variational principle, usually referred to

as mass and stiffness/Laplace matrices in FE terminology, as a part of equations that need to be

discretised in time. Once the time discretisation is completed, the equations and these matrices

would be implemented and solved for φh, hh. The presence of nonlinearity can complicate the

expressions for the matrices and an iterative method is needed to reach to a solution. To this end,
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Firedrake has been able to tackle this complication as it provides a user-friendly interface and can

solve nonlinear problems with the help of PETSc [10, 11]. It does not require for the matrices to be

specified by the user during the space discretisation; it essentially does it behind the scene. It only

requires for a time-discrete weak form, a mesh and a function space. Consequently, discretising

equation (3.16) in time was the only step remaining before the equations were implemented on

Firedrake. The time discretisation of the potential-flow shallow-water equations has been carried

out by using the second order Störmer–Verlet scheme.

3.2.2.2 Non-autonomous system

The system has explicit time-dependence due to the existence of the exponential dissipation term

eγt and the influx term Q(t). This turned the system from autonomous to non-autonomous which

ultimately makes the system more complicated, prone to numerical instabilities with the energy not

longer being conserved. Hence work done for non-autonomous systems in [14, 30] was employed.

Starting from non-autonomous Hamiltonian dynamics casted in the following variational

principle:

0 = δ

∫ T

0
L(q, p, t) dt = δ

∫ T

0
p
dq

dt
−H(q, p, t) dt, (3.17)

with a time coordinate t, a conjugate momentum vector p = p(t), a generalised coordinate vector

q = q(t) and a time-dependent HamiltonianH(q, p, t). In general, the non-autonomous variational

principle in equation (3.17) can be brought to an autonomous form similar to equation (3.18). This

is accomplished by transforming the variables p, q, and by considering time to be an auxiliary

variable with a new time coordinate τ(t) = t as well as introducing a new variable p̃ conjugate

to τ . The energy is thus written in a Kamiltonian form [14], [42], defined as K(Q,P, τ) ≡

H(Q,P, τ)+p̃. Following the aforementioned steps leads to the autonomous variational principle:

0 = δ

∫ T

0
P
dQ̃

dt
+ p̃

dτ

dt
−K(Q̃, P, τ) dt. (3.18)

As mentioned earlier, the explicit time-dependence creeps in through the damping term eγt

and the forcing. As the latter is applied on the boundary, its effect has not been included in

the Kamiltonian. Considering the effect of the momentum dissipation, the non-autonomous
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variational principle of the mathematical problem is equation (3.6). Equation (3.6) has been

compared with (3.18) in an effort to determine the variables P, Q̃ which can turn the variational

principle to autonomous. Thus the goal is to determine a transformation for the original variables

φ, hwhich can “absorb” the exponential term and result in an autonomous variational principle for

the Hele-Shaw problem in the form of equation (3.18). A suitable transformation is the following:

P = φeγ̃t, Q̃ = h, (3.19)

with P, Q̃ time- and space-dependent functions. Substituting the transformations from equation

(3.19) in equation (3.6) leads to:

0 = δ

∫ T

0

∫ L

0
P
dQ̃

dt
−
(

1

2
Q̃(∂xP )2e−γ̃t +

1

2
(Q̃− h0)2eγ̃t

)
dx −Q(t)P (0)dt, (3.20)

with the term inside the parenthesis, integrated over space, being the transformed Hamiltonian.

Considering time as an auxiliary variable with a new time coordinate τ = τ(t), such that dτdt =

1 and τ(0) = 0, and introducing a conjugate variable p̃ results in the autonomous variational

principle:

0 = δ

∫ T

0

∫ L

0
P
dQ̃

dt
+ p̃

dτ

dt
−
(

1

2
Q̃(∂xP )2e−γ̃τ +

1

2
(Q̃− h0)2eγ̃τ + p̃

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dx

−Q(t)P (0)dt, (3.21)

with the underlined term being the Kamiltonian. The variation of equation (3.21) yields:

0 =

∫ T

0

∫ L

0
δP

dQ̃

dt
− dP

dt
δQ̃+ δp̃

dτ

dt
− dp̃

dt
δτ − δP

(
Q̃(∂xP )(∂xδP )e−γ̃τ

)
− δQ̃

(1

2
(∂xP )2e−γ̃τ + (Q̃− h0)eγ̃τ

)
− δτ

(
− γ̃

2
Q̃(∂xP )2e−γ̃τ +

γ̃

2
(Q̃− h0)2eγ̃τ

)
− δp̃+ PδQ̃

∣∣T
t=0

+ p̃δτ
∣∣T
t=0

dx−Q(t)δP (0) dt. (3.22)

Taking end-point conditions δQ̃(0) = δQ̃(T ) = 0 and δτ(0) = δτ(T ) = 0 and rearranging the

terms leads to:

0 =

∫ T

0

∫ L

0
δP

dQ̃

dt
− Q̃(∂xP )(∂xδP )e−γ̃τ − δQ̃

(
dP

dt
+

1

2
(∂xP )2e−γ̃τ

+ (Q̃− h0)eγ̃τ
)
− δτ

(
dp̃

dt
− γ̃

2

(
Q̃(∂xP )2e−γ̃τ − (Q̃− h0)2eγ̃τ

))

+ δp̃

(
dτ

dt
− 1

)
dx −Q(t)δP (0)dt. (3.23)
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If one integrates the expression for δτ in time, an expression for p̃(t) can be recovered of the form:

p̃(t) =
∫ T

0
γ
2 (Q̃(∂xP )2eγ̃t − (Q̃ − h0)2eγ̃t) dt, with dτ = dt yielding t = τ . The underlined

terms in equation (3.23) were discretised in time using the second-order Störmer–Verlet method

(equation (3.24)) [14, 35]. Symplectic integrators [35] such as this help the discretised system

to avoid numerical instabilities and maintain energy conservation, as is the case for the original

system. Provided that P, Q̃ are the same as before and that superscripts denote time, the time-

discretisation reads:

Pn+1/2 = Pn − ∆t

2

∂H(Q̃n, Pn+1/2, tn+1/2)

∂Q̃n
, (3.24a)

Q̃n+1 = Q̃n +
∆t

2

(
∂H(Q̃n, Pn+1/2, tn+1/2)

∂Pn+1/2
+
∂H(Q̃n+1, Pn+1/2, tn+1/2)

∂Pn+1/2

)
, (3.24b)

Pn+1 = Pn+1/2 − ∆t

2

∂H(Q̃n+1, Pn+1/2, tn+1/2)

∂Q̃n+1
. (3.24c)

Transforming back to the original variables (φ, h), the following weak forms for the respective

variations are recovered, with the exception of the δτ equation which is decoupled from the

rest. Provided that superscript notation corresponds to time levels the time- and space-discretised

potential-flow shallow-water equations read:

First, a half update of φh:

0 =

∫ L

0

(
(φ
n+1/2
h eγt

n+1/2 − φnheγt
n
)

∆t/2
+

1

2
(∂xφ

n+1/2
h )2eγt

n+1/2

+ (hnh − h0)eγt
n+1/2

)
δhh dx (3.25a)

followed by a full step to update hh,

0 =

∫ L

0

hn+1
h − hnh

∆t
δPh −

1

2

(
hnh + hn+1

h

)
∂xφ

n+1/2
h ∂x(δPh) dx

−Q(tn+1/2) δPh(0), (3.25b)

and a final half step for φh,

0 =

∫ L

0

(
(φn+1
h eγt

n+1 − φn+1/2
h eγt

n+1/2
)

∆t/2
+

1

2
(∂xφ

n+1/2
h )2eγt

n+1/2

+ (hn+1
h − h0)eγt

n+1/2

)
δhh dx. (3.25c)
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Equations (3.25) were directly implemented in Firedrake and solved with the nonlinear solver. A

snippet of the code illustrates the Firedrake implementation in Chapter 4 Figure 4.3. A sketch

summarising the steps leading to the implemented equations is illustrated below.
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Start from the extended variational principle:

0 = δ

∫ T

0

∫ L

0

h∂t(φe
γ̃t) +

(

1

2
h(∂xφ)

2 +
1

2
(h− h0)

2

)

eγ̃t dx+Q(t)φ(0, t)eγ̃t dt, (3.7)

Approximate φ, h with φh, hh:

h(x, t) ≈ hh(x, t) =
N+1
∑

k=1

hk(t)ϕk(x),

φ(x, t) ≈ φh(x, t) =
N+1
∑

l=1

φl(t)ϕl(x), (3.14)

Determine:

• mesh type - line elements

• size - number of elements (N)

• basis functions ϕk,l(x) - linear Lagrange polynomials

Compare eq. (3.6) with the autonomous variational principle in eq.
(3.18)

0 = δ

∫ T

0

∫ L

0

[φ∂th−

1

2
h(∂xφ)

2
−

1

2
(h− h0)

2dx −Q(t)φ(0, t)]eγ̃tdt. (3.6)

Turn the system to autonomous by setting:

P = φeγ̃t, Q̃ = h. (3.19)

0 = δ

∫ T

0

∫ L

0

P
dQ̃

dt
+ p̃

dτ

dt
−

(

1

2
Q̃(∂xP )2e−γ̃τ +

1

2
(Q̃− h0)

2eγ̃τ + p̃

)

dx −Q(t)P (0)dt. (3.21)

Take the variations:

0 =

∫ T

0

∫ L

0

δP
dQ̃

dt
− Q̃(∂xP )(∂xδP )e−γ̃τ

− δQ̃

(

dP

dt
+

1

2
(∂xP )2e−γ̃τ + (Q̃− h0)e

γ̃τ

)

− δτ

(

dp̃

dt
−

γ̃

2
(Q̃(∂xP )2e−γ̃τ

− (Q̃− h0)
2)

)

+ δp̃

(

dτ

dt
− 1

)

dx −Q(t)δP (0)dt. (3.23)

Take underlined terms, apply time discretisation (Störmer–Verlet), return to original variables approximated by
eq. (3.14). First, a half update of φh:

0 =

∫ L

0

(

(φ
n+1/2
h eγt

n+1/2
− φn

he
γtn)

∆t/2
+

1

2
(∂xφ

n+1/2
h )2eγt

n+1/2

+ (hn
h − h0)e

γtn+1/2

)

δhh dx (3.25a)

followed by a full step to update hh,

0 =

∫ L

0

hn+1

h − hn
h

∆t
δPh −

1

2

(

hn
h + hn+1

h

)

∂xφ
n+1/2
h ∂x(δPh) dx

−Q(tn+1/2) δPh(0), (3.25b)

and a final half step for φh,

0 =

∫ L

0

(

(φn+1

h eγt
n+1

− φ
n+1/2
h eγt

n+1/2
)

∆t/2
+

1

2
(∂xφ

n+1/2
h )2eγt

n+1/2

+ (hn+1

h − h0)e
γtn+1/2

)

δhh dx. (3.25c)

=

Figure 3.8: Summary of the steps leading from Luke’s extended variational principle to the fully

discretised potential-flow shallow-water equations implemented in Firedrake.
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3.3 Conclusions

Two one–dimensional models a shallow-water and a potential-flow shallow-water model, used to

model water dynamics in a Hele-Shaw cell, have been presented in this chapter. The presence

of a wave-pump to generate waves as well as an inherent narrow width between the glass plates,

required for the models to be extended so as to include the effects of the above on the flow. An

inflow boundary term has thus been included, accounting for the in- and out-flow of water caused

by the operation of the pump. A momentum dissipation term linked to the narrow width of the

tank and the viscosity of the fluid was also added.

The extended models were solved numerically, with the implementation of each model following

its mathematical description. Namely, the shallow-water model was discretised in space and

time using a first-order finite-volume and a Forward-Euler method, respectively. The potential-

flow shallow-water model was discretised in space and time using a second-order finite-element

and a Störmer–Verlet method. The spatial discretisation of the latter model was implemented in

Firedrake; an automated software environment that essentially computes the numerical solution

under the user’s surface, and only requires for a mesh, a weak form, test functions and a time-

discretisation. Special attention was paid to the implementation of the boundary conditions (inflow

at x = 0 and solid wall at x = L) of both numerical models. The boundary conditions in the finite-

volume method were indirectly applied by introducing ghost cells to the numerical domain. In the

finite-element method the inflow boundary condition was added directly in the weak form thus

being part of the implemented equations. The validation of the numerical models ensues in the

following chapter.
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Chapter 4

Numerical simulations for

hydrodynamics

In this chapter the goal was to validate the models against the experiments described in Chapter

2. In essence, simulations of each model were performed with the obtained experimental data as

an input. In this way, each model was tuned into the experiment thus allowing for its behaviour to

be further investigated under the conditions that the experimental data determined. Inserting the

data into each model was two-sided. First, the experimental data were processed further prior to

their inclusion in each model. Once the data had been fully processed, each numerical model was

amended to receive these data as an input.

The data imposed in the numerical models were the influx/area flux Q(t) and the depth at the left

wall h(0, t). Processing these data series thus entailed calculating Q(t) from the time-series for

the area A(t), smoothing Q(t), h(0, t) to avoid any peaks in the data and fitting a function Qfitted

to the influx time series.

The boundary conditions of each numerical model, presented in Chapter 3, were modified to

include the experimental data. The inclusion of the data in the modified numerical models

was done in two separate simulations for each numerical model, summarised in Table 4.1. In

simulation one (sim1), also used in [42], only the influx data were imposed and reproduced by the
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fitted function. This intermediate step allowed the introduction of the data in the model without

any potentially troublesome peaks in the data, left from the smoothing. Then in simulation two

(sim2), the smoothed data for both Q(t), h(0, t) entered the code ‘directly’, in the sense that no

fitted function was used and linear interpolation was used to recover data at missing times.

Table 4.1: Summary of the validation stages. Sim1 used only a fitted function for the influx, while

h(0, t) was determined internally in the numerical algorithm without any data being used (free).

In sim2 the Q(t), h(0, t) smoothed data were imposed directly to the boundary conditions.

Simulation Q(t) h(0, t)

One Qfitted free

Two Qfinal h0final

The summary of this chapter is as follows: the processing of the data is presented in Section

4.1, while the changes in the finite-volume model and the finite-element model are described in

Sections 4.2 and 4.3, respectively. The validation results from the simulations are presented in

Section 4.4 accompanied by the conclusions in Section 4.5.

4.1 Stage one: Data processing and analysis

Running the image-analysis algorithm in Chapter 2 yielded data consisting of two arrays, one for

the depth at the left wall h(0, t) and one for the area under the free surface A(t), with both data

sets being functions of time. Given that Q = dA
dt , Q(t) can be calculated and approximated also as

a function of time. Unfortunately, calculating the area influx Q directly from A(t) resulted in very

peaky flux data. Hence, smoothing techniques were employed so as to minimise the peaks, which

also helped the function fitting required for preparatory stage one. A moving average method was

selected for the smoothing: it uses the average of seven neighbouring data points (span) to the

current one to readjust its location closer to the span, thus reducing the noise/peaks. The reason

behind this choice was that it provided the least peaky results for data originating from tank one

when compared against other smoothing methods such as the Savitzky-Golay method and the local
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regression method.

The smoothing process for Q is summarised in the following sketch. Initially, the area data were

smoothed, whereafter an intermediate Qsmooth was determined by applying a numerical time

derivative (finite difference in time) to these smoothed area data. Subsequently, the finalQ (Qfinal)

was determined by smoothing this intermediate Qsmooth once more.

Araw Asmooth Qsmooth

moving

average 7 Qsmooth =
dAsmooth

dt

Qfinal

moving

average 7

A = Afinal

Afinal =
R

Qfinaldt

Double smoothing of A, Q

Figure 4.1: Smoothing process for A(t) and Q(t) ultimately leading to Qfinal, later imposed to the

numerical models. One can also recover the double smoothed area data (Afinal) at the end of the

smoothing process.

The smoothing for the depth at the left wall h(0, t) was also performed with a moving average

method, which was applied once or twice, ultimately yielding h0final(t). For example in the case

of tank one, where the image processing provided relatively accurate results, double smoothing

was preferred to minimise the peaks as much as possible. On the contrary, tank two provided very

accurate results for the depth such that a second round of smoothing was not required.
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4.1.1 Comparison of initial against smoothed data

To visually assess the effect of the smoothing, a comparison between the raw and the smoothed

data for Q(t), h(0, t) for case 165 has been visualised in the following figure. Comparison plots

for the rest of the cases can be found in Appendix D.1.

5 10 15 20 25 30 35 40

-0.01

0

0.01

0.02

0.03

0.04
Raw data Single Double

(a) Inflow Q(t).

5 10 15 20 25 30 35 40

0.02

0.04

0.06

0.08

0.1 Raw data Single

(b) Depth at the left wall h(0, t).

Figure 4.2: Comparison between double (green dash), single (red) smoothed and raw data (light

blue) for Q(t) (top panel), h(0, t) (bottom panel), case 165 (tank two).

It can be seen that the smoothing had an influence on the amplitude of Q(t) and no influence on

the amplitude of h(0, t), for case 165. This was the case for all tank-two data and was somewhat
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expected as the colour-channel-detection method provided less erroneous and peaky data. The

influence on Q is also confirmed by looking at the data from tank one (Figure D.14); the edge-

detection method yielded very peaky data for Q. From the above, it is concluded that double

smoothing for h0final(t) was only required in case 47, where the data were the most spiky. After

the smoothing had been completed, the next step was to fit a function to Q.

4.1.2 Step two: Function fitting to area flux data

Superimposing a sinusoidal function to the influx data was essential for simulation one; the goal

was to insert this function in the numerical model thus reproducing the (smoothed) experimental

data at various times. The pump action was assumed to lead to a straightforward sinusoidal wave

parametrised as follows:

Qfitted = Qa sin(2πftn + c), (4.1)

with f the wave frequency, Qa the influx amplitude and c the phase of the fitted function; all

determined from the smoothed influx data. The wave frequency had been calculated during the

experiments, and it was thus known. Qa was determined by Qa = max(Qfinal)−min(Qfinal)
2 , while c

was the angle that brought the fitted function in phase with the data. Essentially, each experiment

provided a unique combination of f , Qa and c, summarised in Table 4.2. At this point it should be

pointed out that smoothing preceded the fitting because it ensured that any peaks in the data would

disappear hence providing a “finalised” value for Qa.

Table 4.2: Values of the flux amplitude (Qa), wave frequency (f ) and phase (c) that determine the

fitted inflow of equation (4.1) for each case.

Cases Qa(m2/s) f (Hz) c(radians) Figures

47 −0.0188 0.7042 0 4.3

149 0.01569 0.675 π/2 D.17

154 0.0136 0.48 π/6 D.18
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By construction the tank could not hold the water inside unless the pump was switched on. This

resulted in an initial condition that was not a state of rest (u = 0, h = H0), hence affecting

the data. As the exponential damping indicates, the system looses memory of its initial state and

momentum will thus decay at a rate of 1/γ. Thus starting the simulation from the recorded data,

produced after the pumps had been switched on, and allowing for a couple of wave periods for the

system to sync to the experiment resolved the initialisation problem. The smoothed Q data as well

as the functions fitted to them for each case, apart from case 165, can be visualised in Figure 4.3

and in Figures D.17 and D.18.

2 4 6 8 10 12 14 16 18 20 22

-0.02

-0.01

0

0.01

0.02

0.03

Double Fitted

Figure 4.3: Case 47: Double smoothed data for Q(t) (green) compared against the fitted function

Qfitted(t) = −0.0188 sin(2π ∗ 0.7042t) (black). This plot was used in [42].

After Qfitted had been determined, the next step was to modify the boundary conditions where the

fitted function for each experiment would be imposed on.

4.2 Alterations to the finite-volume model

In the finite-volume method, the ghost cells are introduced to help calculate the flux at the

boundaries which then lead to the satisfaction of the boundary conditions. For simulation one

(sim1), the value of the depth at the left ghost cell (hL) of the domain was set to be the same
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as the value of the depth at the right cell (hR). In addition, the value of hLuL at the ghost cell

was set equal to Qfitted, while hR, uR were determined from the values of the numerical solution

evaluated at the first cell.

In simulation two (sim2), both the depth and the inflow of water were determined by the data.

Thus the measurements h0final, Qfinal, originating from the experiments were imposed directly.

As mentioned earlier, linear interpolation was applied to recover values of Q at unknown times

from known (neighboring) data. The interpolation process was optimised by ensuring that the

known time entries were tracked within the data set and were as close as possible to time tn. The

modified boundary conditions at the left wall, for each simulation, are the following:

(i) Simulation one:  hL

hLuL

 =

 hR

Qfitted

 ,
such that ∂xh|x=0 = 0 and hu|x=0 = Qfitted.

(ii) and for simulation two:

 hL

hLuL

 =

h0final

Qfinal

 ,
such that h|x=0 = h0final and hu|x=0 = Qfinal. The right solid-wall boundary condition stayed

the same for both simulations, and was imposed at x = L by setting:

 hR

hRuR

 =

 hL

−hLuL

 ,
which implies that ∂xh|x=L = 0 and mimics u(L, t) = 0 by taking an equal but opposite jet (recall

Figure 3.3). The total number of boundary conditions remained the same for either simulation,

with the depth at the left ghost cell determined either internally for sim1 or from the data for

sim2. Then, the HLL flux would ‘decide’ which information to use, based on the eigenspeeds.

This means that the boundary condition, which is applied in each simulation by allocating the

influx and depth data, does not necessarily imply that the HLL flux will use the data provided (see

Chapter 4, Figure 4.18).
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4.3 Alterations to the finite-element model

The finite-element model was validated in a similar way to the finite-volume model; with some

minor changes to inserting the data. Linear Lagrange polynomials were used for the basis

functions and the boundary conditions for each simulation were similar to the ones in the finite-

volume method. For the finite-element code and with a second-order time discretisation scheme

in effect, the influx at half-time step Q(tn+1/2)
(
i.e., Q05

)
, had to be determined.

Similarly to the FV method, the influx during simulation one was determined from the fitted

function, while for simulation two it was directly determined from the data. In contrast to the FV

method, the boundary condition was not implemented via the numerical flux but was introduced

after integration by parts in the weak formulation equation (3.25b). Hence the solver, which

was where the boundary condition came in effect, utilised the updated value of Q(tn+1/2) and

prescribed it at x = 0. For simulation two h0final(t) was not imposed via the weak formulation

but was nonetheless imposed by taking out the degree of freedom at x = 0; essentially by applying

a Dirichlet boundary condition through a built-in command directly rather than manually after the

update of the solution. In the following figure, snippets of the implementation in Firedrake have

been illustrated.

Firedrake implementation:

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Q−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#

if use data==’True’:

# Sim2−Interpolation for Q

Qint=Q interpolation(t, Qdata, h0data)

Q t expr.Q=Qint # Updating the value of Q

else:

# Sim1−Use fitted function

Q t expr = Expression("−Ampl*sin(2*pi*F*t+c)")

Q t0 5.interpolate(Q t expr)
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#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−h(0,t)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#

# Sim2−Depth interpolation

h0d=find depth(t, Qdata, h0data);

# Define the dirichlet boundary

bcval1.assign(h0d)

bc=DirichletBC(V,bcval1 ,1)

Figure 4.3: Computation of the influx Q(tn+1/2) (top panel) and allocation of h(0, t) (bottom

panel). For sim1, Q was computed by the superimposed function evaluated at t = tn+1/2 =

t + 0.5dt and h(0, t) was not determined from the data. For sim2 Qfinal(t), h0final(t) entered

the model directly and linear interpolation was employed. For each time tn in sim2, a function

bcval was used to store the interpolated depth, which was then passed on the Dirichlet boundary

condition (bc). Lastly, Q(tn+1/2), bc were called in the solvers where they came into effect (see

following figure).

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Solvers−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#

# Variational problem for phi equation (called at first/third step) #

Fphi = ( v*(phi1*exp(gamma*t1)−phi0*exp(gamma*t0))/(0.5*dt) + (v*(h0−

h 0) +0.5*inner(grad(phi0 5),grad(phi0 5))*v )*exp(gamma*t0 5) )*dx

phi problem = NonlinearVariationalProblem(Fphi, phi1)

phi solver = NonlinearVariationalSolver(phi problem)

return phi solver;
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# Variational problem for h equation (called at second step) #

Fh = ( v*(h1−h0)/dt − 0.5*(h0+h0 5)*inner(grad(v),grad(phi0 5)) )*dx −

Q t0 5*v*ds(1)

if use data == ’True’:

#Apply Dirichlet to the left boundary

h problem = NonlinearVariationalProblem(Fh, h1, bcs=[bc])

else:

h problem = NonlinearVariationalProblem(Fh, h1)

h solver=NonlinearVariationalSolver(h problem)

return h solver;

Figure 4.3: Implementation of equations (3.25). Steps one and three in equations (3.25) are

performed by solver phi, while step two from solver h. The test functions from system (3.25)

have been implemented with their name changed: v ≡ δhh and v ≡ δPh. The data entered the

model through the boundary conditions (underlined terms).
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4.4 Numerical validation

In this section the numerical results, the output of simulations from the two numerical models

are compared with each other and the experimental data. Two scenarios were investigated with a

summary of the cases made in Figure 4.4. Firstly, a comparison of the two simulations (one and

two) under the finite-volume and the finite-element method is carried out in Sections 4.4.1 and

4.4.2. Secondly, comparisons of the finite-volume and the finite-element method for simulation

one and two are carried out in Section 4.4.3. In other words, either the numerical method is kept

constant and the improvement between the two simulations within that method is investigated or

alternatively, the simulation is kept the same and the performance of the numerical methods for

that specific simulation is investigated.

Validation results

FV
Sim1 vs. Sim2

FEM
Sim1 (nonsteep cases) vs. Sim2

FV vs. FEM
(Sim1, Sim2)

Tank one: Video 47
Tank two: Videos 154, 149, 165

Figure 4.4: Diagram of the comparison of the results. The results have been divided into

two categories. Comparison between simulations (blue, red) or comparison between numerical

methods (purple). For each case, experimental data originating from two tanks have been used

(tank one and tank two).

The relative error for the depth between simulations and measurements, quantified by equation

(4.2) and defined as the quotient of the L2-norm of the difference between two quantities over the
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L2– norm of the most precise one, was computed. For example the numerical depth computed

from the finite-element method, was compared with the measured depth as follows:

RE =
||hnumerical − hmeasured||2

||hmeasured||2
. (4.2)

As mentioned earlier, the boundary conditions in the two numerical methods were imposed in

a different way. It is therefore of interest to assess the numerical models’ ability to adapt to

the imposed data and the effect the latter had on the solution approximations. To this end, a

similar formula to equation (4.2) was used to assess how close the depth approximations from

each numerical method were to each other:

RE =
||hFV − hFE||2
||hFE||2

. (4.3)

It should be pointed out that the L2 - norm takes the square root of the sum of the squares of the

differences between the depth values in comparison. It thus provides an indication on how close

the two numerical methods are to each other. However, it doesn’t indicate the method closest

to reality. In what follows, the results from the simulations will be displayed over the analysed

experimental data overlaid on snapshots of the experiments, in order to facilitate a direct visual

comparison. A summary of the examined cases, accompanied by their respective parameters and

associated figures, is given in the following table.

Table 4.3: Summary of the experimental cases. Each experiment had a frequency f , influx

amplitude Qa and approximated depth at rest H0. The figures accompanying the analysed cases

have been provided.

Cases f(Hz) Qa(m
2/s) H0(cm) Figures

47 0.704 0.0188 8.82 D.19

154 0.48 0.0136 8.2 4.5, 4.6, 4.10, 4.11, 4.12

149 0.675 0.0157 5.74 4.7, 4.13, 4.14

165 0.338 - 4.28 4.15, 4.16
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4.4.1 Finite-volume results

In this section, the finite-volume model was used to approximate the hydrodynamics in the Hele-

Shaw cell using the (boundary) data. Recall that simulation one requires fitted functions for Q

while simulation two uses the smoothed data for Q, h0 directly.

The finite-volume method is equipped to deal with discontinuities, hence the steepest wave

simulations have been carried out and are analysed below. The comparison between the two

simulations has been performed in an effort to visualise and quantify the positive effect of the

inclusion of the experimental data on the boundary conditions and on the overall approximation of

the water depth. Case 154 has been presented first as the measurements were obtained in deeper

water depth with the wave steepness being small. It is thus a good initial test case as it does not

challenge the numerical methods.

(a) (b)

(c) (d)
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(e) (f)

Figure 4.5: Comparison between the results of sim1 and sim2 for the FV method, case 154. Sim1

(blue) has only the influx fitted function imposed. Sim2 (red dash) has the data for Qfinal(t),

h0final(t) at x = 0 imposed. Results have been plotted together with the raw images and the

measured value h0final(t) (black dot) at times t = 5s, 6s, 15.8s, 23.8s, 30.4s, 42s. The momentum

damping factor is equal to γ = 3 s−1. 800 elements have been used. A video of the above

comparison can be found here: https://youtu.be/hBHZzQb9Fp4.

It can be seen in Figure 4.5 that sim1 overestimates the inflow of water entering the cell, compared

to sim2, ultimately overestimating the whole free surface. The biggest difference between the two

simulations is particularly observed when the water enters the cell (t = 6s) or when the waves

propagate in the tank (t = 23s). Sim2 is thus more accurate than sim1, a fact also confirmed ‘by

eye’ in Figure 4.6, where the error of the overall depth between the simulations is shown.

It can be seen in Figure 4.6 that the largest error is observed when the water enters the cell, an

event highly dependent on the boundary conditions of each simulation, while both simulations are

the closest to the data at the right wall. Since the tank’s right boundary was not quite but almost

a solid-wall boundary, less reflection occurred at the right-hand side region in reality. It is thus

expected that all simulations are likely to overestimate the depth at the area of reflection. In spite

of the more precise computed depths and the near-wall (numerical) depth value getting closer to

the real value (black dot) in sim2, there are times that a difference is still particularly visible. The

origin of this difference will be discussed further in the next sections.

The same conclusions that hold for case 154 hold for case 149.

https://youtu.be/hBHZzQb9Fp4
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Figure 4.6: Logarithm of the relative error for the depth as computed in sim1 and sim2 from the

FV method, case 154. The two methods are the closest during the reflection of the water from the

right wall. By inspecting individual snapshots it is found that the largest error is observed when

the water enters the cell (t = 6s) and the smallest one is right after reflection (t = 23.8s).

(a) (b)

(c) (d)
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(e) (f)

Figure 4.7: Comparison between the results of sim1 (blue) and sim2 (red dots) for the FV method,

case 149. Results have been plotted together with the raw images and the measured value h0final(t)

(black dot) at times t = 1s, 11s, 14.2s, 21s, 34s, 41s. The momentum damping factor is equal to

γ = 3 s−1. 800 elements have been used. A video of the above comparison can be found here:

https://youtu.be/JCKPNVETmgM.
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Figure 4.8: Logarithm of the relative error for the depth as computed in sim1 and sim2 from the

FV method, case 149. Maximum error is found when the water enters the cell (t = 34s) in Figure

4.7. Minimum error is achieved when the tank is being emptied out of the water (t = 14.2s). The

error between the simulations has increased as inflow amplitude and steepness increased.

The logarithm of the relative error for the depth between the two simulations for cases 154, 149

(see Figures 4.6, 4.8) was higher for case 149 hence revealing a larger disagreement between sim1

and sim2 for case 149. This increasing difference between the two simulations was also observed

https://youtu.be/JCKPNVETmgM
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‘by eye’ in the overlaid snapshots (see Figures 4.5, 4.7), where sim2 was a better fit for the captured

free surface line while sim1 overestimated it particularly during case 149. Recalling that case 154

has deeper and less steep water waves while case 149 has shallower and steeper waves, it is thus

concluded that steeper and shallower waves are approximated better from sim2 than from sim1.

4.4.2 Finite-element results

As the wave dynamics were too steep for sim1 in the FE method resulting in the non-convergence

of the FE method (case 149) only case 154 has been illustrated.

(a) (b)

(c) (d)
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(e) (f)

Figure 4.9: Comparison between the results of sim1 and sim2 for the FE method, case 154. Results

have been plotted together with the raw images and the measured value h0final(t) (black dot) at

times t = 5s, 6s, 15.8s, 23s, 30.4s, 42s. The momentum damping factor is equal to γ = 3 s−1.

200 elements have been used. The video of the above comparison can be found here: https:

//youtu.be/_94wBY1shhs.

Paradoxically, in the previous figure for case 154 instabilities appeared during sim2, instead of

sim1. It is understood that imposing shallower depths through the data, is the reason for these

instabilities. Consequently, the plot of the relevant error between the numerical depths has not

been provided.

4.4.3 Finite-volume versus finite-element results

Cases 154, 149 and 165, involving waves of increasing steepness, were approximated from each

numerical method for sim2. Only the FV results have been provided for cases 149 and 165 as the

FE method became highly unstable due to reaching the limit of the irrotational assumption.

Prescribing the depth was not always effective for the FV method, a fact confirmed by the data

h(0, t) (black dot) not coinciding with the FV depth (blue line). The origin of this difference is

investigated later on in Section 4.4.4.

In contrast to the FV method, the FE method picked up the imposed depth but not without

consequences. Instabilities appeared after reflection, in spite of the waves not being steep. The

same instabilities appeared for a finer resolution (400 elements) and confirm that the flow is in

https://youtu.be/_94wBY1shhs
https://youtu.be/_94wBY1shhs
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(a) (b)

(c) (d)

(e) (f)

Figure 4.10: Comparison between the results of sim2 for FV (blue dashed) and the FE (red),

case 154. Results have been plotted together with the raw images and the measured value

h0final(t) (black dot) at times t = 3.4s, 4s, 24.8s, 28s, 30.2s, 43.4s. The momentum damping

factor is equal to γ = 3 s−1. 800 (FV) and 200 (FE) elements have been used. A video

of the above approximation can be found here: https://www.youtube.com/watch?v=

s74vjT3aiUE.

the limit of becoming irrotational. Lastly, similarly to the earlier cases, the numerical models

overestimated the reflected depth.

The relative errors between the numerical methods and the numerical methods and the

https://www.youtube.com/watch?v=s74vjT3aiUE
https://www.youtube.com/watch?v=s74vjT3aiUE
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measurements have been visualised in the following figure, ensued by the values of h(0, t) used in

the FV and FE method in Figure 4.12.
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Figure 4.11: Logarithm of the relative errors for the computational depth, obtained during sim2

case 154, between the numerical models (green) and each model and the measured depth value

(blue, red). Inspecting the snapshots revealed that the maximum error is achieved right after

reflection (t = 3.4s, 28s, 30.2s), while the error is minimised once the water is on its minimum

depth (t = 4s, 24.8s, 43.4s).
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Figure 4.12: Comparison of the h(0, t) data between the FE (red dashed) and the FV method

(blue) for sim2, case 154. The difference between the two is quantified to be in the range of

(O(−6), O(−4)) orders of magnitude.
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The same observations made for case 154 apply for case 149 that ensues.

(a) (b)

(c) (d)

(e) (f)

Figure 4.13: Results of sim2 for the FV method (blue dash) for sim2, case 149. The numerical

depth has been plotted with the raw images and the measured value h0final(t) (black dot) at times

t = 0.6s, 1s, 11s, 21s, 34s, 41s. The momentum damping factor is equal to γ = 3 s−1. 800

elements have been used. A video of the above approximation can be found here: https:

//youtu.be/3p2qiW8Y4Qw.

https://youtu.be/3p2qiW8Y4Qw
https://youtu.be/3p2qiW8Y4Qw
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Figure 4.14: Logarithm of the relative error for the depth obtained from the FV method (blue)

for sim2, experiment 149. Similarly to case 154, maximum error occurs at wave reflection

(t = 11.2s, 20.2s, 32s) and minimum error when the minimum water depth is in the tank

(t = 10.8s, 18.2s, 34.6s). Errors stabilise around t = 3s possibly due to the decay of momentum,

following the exponential decay rule with a rate of 1
γ ≈ 0.33s.

The final case studied, 165, concerns the steepest waves, almost overturning on shallow water. It

also has the shallowest water depth while the pump action is very strong thus exceeding an influx

threshold of 0.02 m2/s (recall Figure 4.2a). The same observations made for cases 154,149 apply

for case 165. The only difference is that the error between the measured and the numerical depth

is larger in magnitude (see Figure 4.16).

It can be seen in Figure 4.15 that the numerical depth is very close to the real depth. The numerical

wave front slightly overestimates the real wave front. This difference may be a byproduct of the

HLL flux not using the prescribed data exactly or the result of surface tension. Even though

alcohol was added in the water to minimise surface tension effects, the food dye increased the

surface tension of the flow. This change was manifested with the water not flowing as easily as

before and rather getting “stuck” between the glass plates forming little ripples (see Figure 5.28

t = 3min30s).
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(a) (b)

(c) (d)

(e) (f)

Figure 4.15: Results of sim2 for the FV method (blue dashed) for sim2, case 165. The numerical

depth has been plotted with the raw images and the measured value h0final(t) (black dot) at times

t = 14.6s, 14.8s, 23.2s, 26.8s, 35.8s, 36.4s. The momentum damping factor is equal to γ = 3

s−1. 800 elements have been used. A video of the approximation can be found here: https:

//www.youtube.com/watch?v=PvhaJb_AWfk.

https://www.youtube.com/watch?v=PvhaJb_AWfk
https://www.youtube.com/watch?v=PvhaJb_AWfk
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Figure 4.16: Logarithm of the relative error for the computational depth obtained from the FV

method in sim2, case 165. Maximum error reached at reflection (t = 36.4s), minimum error

reached when water is on its minimum depth (t = 23.2s).

Comparing the magnitude of the finite-element instabilities on the overlaid snapshots for cases

47, 149, 154 it was found that as the influx approached this threshold (0.02m2/s) the depth

became shallower, and more instabilities arose. In the absence of inflow of water in the tank,

the instabilities naturally disappeared with the relative errors between the numerical and measured

depths at their minimum.

Even though the finite-volume method handled waves of increasing steepness successfully, it also

provided larger errors between the numerical and the measured depths. Overestimated reflection

highly contributed to this increasing errors. However, as this effect was uniform for all examined

cases, the source of the error may originate from the model.
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4.4.4 Effect of imposed depth data on wave speeds

Recalling Sections 3.2.1, 4.2 and B.2, the boundary conditions were implemented in the finite-

volume method by creating ghost cells, which in turn helped determine SL, SR and ultimately led

to the computation of the HLL flux at the boundaries x = 0, L. At the left boundary (x = 0) in

particular, the Q(t), h(0, t) measurements were imposed on the left ghost cell, as sketched below.

x = 0

U00 ≡ UL = (h0final; Qfinal) U1 ≡ UR

F1=2=HLL(UL, UR)

Figure 4.17: Left state UL and right state UR surrounding the left boundary at x = 0. The flux

at the boundary F1/2(UL, UR), is determined from the HLL approximate Riemann solver (see

section B.2) by utilising the information from the two states.

In order for Qfinal, h0final to be imposed at the left wall, the HLL Riemann-type solver has to use

the information originating from the left ghost cell. Hence the information from the left wall is

either fully used, if the wave is supersonic on the right (SL > 0), or partially if the wave is subsonic

(SL ≤ 0 ≤ SR). In the case of a supersonic wave on the left (SR < 0), the measurements are

not used. Consequently, checking the values of SL, SR can provide further insight on the types

of waves created and the wave regime(s) prevalent during simulation two for each case. The

minimum and maximum wave speeds SL, SR, originating from the cells that surround the left

boundary x = 0, have been computed for case 154 and are illustrated in the following figure.
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(a) Minimum wave speed SL = min (uL −
√
ghL, uR −

√
ghR) over time.
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(b) Maximum wave speed SR = max (uL +
√
ghL, uR +

√
ghR) over time.

Figure 4.18: Minimum and maximum wave speeds SL, SR computed for case 154. It can be seen

that throughout the experiment the flow is subsonic/subcritical (SL ≤ 0 ≤ SR), as Fr < 1.

It can be seen that the values belong in the range of SL ≤ 0 ≤ SR, where the flow is subsonic. This

range of values thus confirms that the measurements are partly used in the HLL flux computation.

This condition therefore explains why the measured depth was not always picked up by the FV

method, hence resulting to errors in the order of magnitude of O(-6)-O(-4) reported in earlier

sections. The wave speeds for cases 149, 165 also indicate a subsonic flow and are found in

Appendix D.4.
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4.5 Conclusions

The numerical models, presented in Chapter 3, were validated against experimental data, obtained

using image-analysis techniques to videos of the experiments in Chapter 2. The validation of the

models involved processing the data, modifying the boundary conditions and gradually imposing

the experimental data to the numerical models.

Data processing involved smoothing the data to discard troublesome peaks and fitting sinusoidal

functions to the (smoothed) influx data. The boundary conditions were modified, accordingly for

each numerical method, to accept the measurements as an input. Two simulations were used to

gradually impose the measurements to the numerical models; simulation one and simulation two.

Fitted functions for the influx were imposed in sim1, which was quickly discarded as it led to

inferior results overestimating the waves’ steepness. Sim2 ensued with the smoothed data for the

influx and the depth at x = 0 imposed to the numerical models.

It was found that for sim2 the finite-element method became highly unstable for waves with

an influx amplitude reaching 0.02 m2/s. It is thus suggested that the finite-element method

is either used as is with weaker forcing or for surface tension to be included in the model to

offset nonlinearities by introducing dispersion. The finite-volume method, in contrast to the finite-

element method, performed better in sim2 for waves of various steepness and forcing magnitudes.

This is directly linked to its inherent ability to handle discontinuities arising from steep waves.

The HLL flux partly used the prescribed boundary data, resulting in subsonic flow and small

differences between the numerical and the measured depth at the left wall in the order of O(-6)

to O(-4) decimal points. In addition, the bore profile of the numerical wave was different to the

experimental one. This is attributed either to the flow’s changed surface tension as a result of

the addition of the food dye. Even though reflection has been overestimated causing the largest

errors for the finite-volume method, one can argue that its negative influence has been uniform

throughout all cases thus indicating that the source of the error may lay elsewhere. A missing

term, omitted from the width- and depth-averaging during the shallow-water derivation, may be

the reason behind the increasing error between the numerical and the measured depth for waves of

increasing steepness and inflow amplitude.



84 Chapter 4. Numerical simulations for hydrodynamics



85

Chapter 5

Experimental tracking and analysis of

the wave-beach dynamics

In this chapter the focus was on beach formation as a result of the interaction of the incoming

waves with the bottom topography. An investigation on this interaction was carried out through

water-bed experiments. Data were obtained from these experiments, with the help of an extended

image-analysis algorithm, and were further analysed. In particular, they were used to understand

the effect of wave period and water depth on the time and shape of the beach at the final quasi-

equilibrium, i.e. the state at which the beach profile is almost formed but is still subjected to the

influence of the incident waves with the dynamics of the two, i.e. the waves and the bed, in balance.

The data were also used to relate the formed beaches to real-life beaches by computing the angles

of repose and comparing them against values reported in the literature as well as identifying the

breaker types observed in the experiments.

The summary of the chapter is as follows: Section 5.1 presents the water-bed experiments carried

out as well as the extension of the image-analysis algorithm, initially presented in Chapter 2, aimed

to track the water and the bed simultaneously. In Section 5.2 the obtained experimental data are

further analysed to understand beach formation. Finally the conclusions of the chapter ensue in

Section 5.3.
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5.1 Experiments and tracking the waves and bed

5.1.1 The Hele-Shaw beach set-up

The addition of aluminium oxide particles of diameter 1.75mm to the Hele-Shaw cell was aimed to

accommodate the study of the coupled water-wave and bed-form dynamics; an interaction leading

to a laboratory and mathematical modelling proxi of gravel beach formation and destruction. The

diameter of the particles used corresponds to gravel bed when the tank is upscaled to real beach

sizes (42m× 1.5m× 1.4m). As the particles have a largely similar diameter, enforced by sieving

them before each experiment, the bed behaves as a purely gravel beach. Consequently during the

experiments, bedload sediment transport was solely present.

Sieving was undertaken the day before each experiment using a 1.7mm and a 2mm sieve,

respectively. This process ensured that the particles in the tank would be in a set diameter range,

consequently ensuring similar sediment grading and minimising the number of particles trapped

between the glass plates. On the day of the experiment, the particles would be gradually poured

into the empty tank so as to form a uniform bed. After a uniform horizontal profile of the dry bed

had been reached by levelling the sediment bed to the required initial thickness, which was around

4cm (see Figure 5.13a), the wave pumps would then allow water to enter the cell. In this way, all

experiments had the same initial condition for the bed and variations in the wave frequency and

wave duration could be further investigated, variables identified as important to the development

of the beach profile by Powell [75].

The addition of the particles increased the duration of the experiments as a result of the longer

timescales required for the formation of a quasi-steady beach shape, i.e. a final shape formed as

a result of the wave-bed system reaching an equilibrium, under a set wave action established by

the periodic action of the pumps. It should be noted that in this thesis, the terms quasi-steady

state and final quasi-equilibrium both refer to acquiring a fairly constant final beach profile, with

the wave-bed dynamics in balance when viewed over a few wave periods. While wave-only

experiments lasted around 30-50s, bed evolution to a quasi-steady final bed form took place in

matters of minutes to an hour. These longer timescales, combined with the porous nature of
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the particles, somewhat restricted the cases investigated experimentally from a day-to-day basis;

once the particles were wet the experiment could not stop and only a particular case was to be

investigated. To this end, questions arose such as: should the experimental set-up change in light

of the particles and which cases could be of interest to investigate when running the experiments?

Having two elements present in the cell (water and particles), affected the analysis too as it created

the need for a reliable and adaptive tracking algorithm that could deal with the extra complexity

of two interfaces: the water-air and water-bed ones. It was important to determine whether the

same algorithm could track the water and the bed efficiently, given the vast number of snapshots

obtained by capturing fifty of them every second. The above aspects will be discussed in Sections

5.1.2 to 5.1.4.

5.1.2 Framework for the experiments

The aim of this study was to obtain experimental data for the depth of the water and the moving

bed. These data could then be used to further understand beach formation and to accurately

translate the observed physical phenomena into valid experimental data.

Investigating the effects of wave frequency, depth and wave height on the final shape and slope of

each formed beach through the experiments, determined the range of frequencies and wave heights

that could be achieved in this set-up. In order for these effects to become apparent, the initial bed

depth and shape was kept the same as much as possible by using a ruler. The set-up (tank, lights,

dyed water) was initially kept the same and it was thus left to the tracking to determine whether

any changes would be required to improve the physical conditions of the recorded experiments. A

summary of the experiments carried out is can be found in Table 5.1.

Tracking the water and the moving bed is a concept different from the particle tracking velocimetry

(PTV) and particle image velocimetry methods (PIV). PIV and PTV in principle determine the

flow’s velocity by measuring the distance travelled by tiny buoyant particles which are tracked

from one image to the next. These particles therefore work as markers of the fluid under a

Lagrangian or Eulerian framework, respectively [8]. Experimentally, these methods require a

laser and a high-speed camera which illuminate and track the movement of these tiny particles.
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Table 5.1: Experiments performed investigating the water-bed interaction, in view of various

frequencies and wave depths. Wave frequencies were in the range of 0.3 to 0.7 Hz. Maximum

depth values have been provided by computing the mean depth for each experiment (see Figure

5.14). Duration denotes the length of time that the recording of each experiment lasted and it is

larger or equal to the time it took for the wave-bed dynamics in each experiment to reach a quasi-

equilibrium state, i.e. the time required for the uniform horizontal bed to transition to a formed

beach shape under the continuous wave influence.

Videos f(Hz) Water depth(max) Duration(min) Figures

219-223 0.41 Deep (7cm) 70:05 5.7, 5.24, 5.25

232-237 0.67 Medium (5.7cm) 103:05 5.8 , 5.26, 5.27

248-256 0.5 Shallow (4.9cm) 81:53 5.9, 5.28, 5.29

Though popular within the scientific granular flow community, these methods were neither

available nor suitable for the present experiments. The interest was on tracking the moving bed as a

whole instead of tracking individual particles. In addition, the corresponding timescales for beach

formation were relatively long (minutes to an hour) and were therefore restrictive for recording

with high-speed cameras, particularly as they provide optimal image resolution but sacrifice the

duration of the recordings to just a couple of tens of seconds.

ImageJ/Fiji is a popular image processing software, based on Java, widely used because of the

variety of imaging operations that it offers; from visualising, processing and analysing images to

tracking particles [18, 86]. Unfortunately, the large number of images that needed to be processed

and analysed required a lot of memory thus rendering the use of ImageJ impossible. Alternatively,

a robust algorithm was required to work recursively in a precise manner so as to analyse each

image and extract the information in question.
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5.1.3 Tracking the bed

The first step towards tracking the moving bed alone was to investigate to what extent the current

image-analysis algorithm was adequate. The water and the background colour were in shades of

blue, an effect accomplished by the use of the food dye and appropriate aperture and shutter speed

values. The colour uniformity of the water and the background translated into similar threshold

values. As a result, these regions could be ignored simultaneously, provided an appropriate colour

channel and threshold value could be determined. Indeed, taking the blue channel removed the

blue from each snapshot as seen in Figure 5.1.

(a) Original image. (b) Blue channel.

Figure 5.1: Comparison between the original (segmented) image with the water and the bed

(left panel) and its corresponding blue colour channel (right panel). The water has been ignored

successfully and only the bed is depicted in the image.

It can be seen in Figure 5.1 that the use of the blue colour channel allowed the elimination of the

water and the background colour successfully and only the sediments have remained. The binary

version of Figure 5.1b, illustrated in Figure 5.2, depicts the bed area that remained after the colour

channel selection and thresholding had been completed. The same area was then tracked by the

extended image-analysis algorithm, resulting in Figure 5.3.

Some isolated particles, located at the top of the bed, can be identified in Figures 5.1 and 5.2. These

particles did not remain in the image after the application of the colour channel. It is believed that

their tiny size, combined with the fact that they were further away from the rest of the bed, led to

the filter identifying them as part of the water rather than a part of the bed. Contrastingly, in highly
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Figure 5.2: Binary bed image obtained after the intensity threshold has been applied.

particle-populated areas the colour filter correctly neglected the water and the background effects.

Figure 5.3: Tracked bed (red) overlaid against the initial snapshot.

The green channel was another option when tracking the moving bed individually; one that yielded

slightly better results. Keeping in mind that the final goal was to track the bed and the water

as accurately as possible, the blue and green channels were selected accordingly during each

experiment with respect to the one that provided optimal tracking for the bed without interfering

with the water tracking. Ultimately, the use of blue and green channels was done in a ratio of two

to one, respectively. Further snapshots, overlaid against the bed tracking results, can be found in

Figure 5.4.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.4: Tracked bed overlaid with snapshots from experiment 219-223 captured at t =

0min 2s, 10min 2s, 20min 2s, 40min 2s, 45min 2s, 50min 2s, 60min 2s, 70min 2s.
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5.1.4 Tracking the bed and the water in unison

After tracking the moving bed with the same algorithm had been accomplished, the next step

was to investigate if the water and the bed could be tracked simultaneously. The main difficulty

stemmed from the fact that the particles were underwater; tracking the water was at risk of being

intercepted by the presence of the particles. Consequently, only an appropriate choice for the water

colour channel would resolve this issue and keep the water and the particle areas seperate.

Indeed instead of using the red channel to track the water, as done in the cases without the

bed, a different strategy was preferred for the colour channels. The red-channel image (C1) was

subtracted from the original image thus creating image CC = C − C1. Lastly, the green channel

of image CC was selected, CC(:, :, 2), as the one to be further processed. An example of tracking

the water and the bed simultaneously can be visualised in Figure 5.5.

Figure 5.5: Tracking the water (blue) and the bed (red) simultaneously. In this image, the bed is

fully submerged under water.

The image processing algorithm was then used to track the water and the bed for all experiments.

Applying the tracking algorithm to various topographies was the best way to test the effectiveness

and accuracy of the colour-detection method. In particular, tracking the water around a submerged

and emerged topography was of interest. A summary of the main steps of the adapted algorithm

has been provided in the following figure.

The tracked experimental images for all cases have been visualised in the figures below.
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Load image
(wave, bed, both)

Apply colour channel
(red, blue, green)

Adjust contrast &
Find threshold

Create binary
image

Track & Transform
coordinatesSave depth

Export, crop &
rename all images

Figure 5.6: Summary of the colour-channel-tracking algorithm. One image is processed for the

water and one for the bed simultaneously. Then the image-analysis stage translates the height of

the water and bed from images into data, same as before.

(a) (b)

(c) (d)

(e) (f)

Figure 5.7: Tracking the water and bed for videos 219-223, at t =

0min 30s, 43s, 5min, 7min 41s, 11min 20s, 18min 20s.
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(g) (h)

(i) (j)

(k) (l)

Figure 5.7: Tracking the water and bed for videos 219-223, at t =

22min 12s, 30min, 35min 20s, 50min 30s, 68min 44s, 69min 48s. A video of the above

tracking can be found here: https://youtu.be/UYhgxUMKBQ0.

https://youtu.be/UYhgxUMKBQ0
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(a) (b)

(c) (d)

(e) (f)

Figure 5.8: Tracking the water and bed for videos 232-237, at t =

17s, 19s, 45s, 1min 43s, 2min 45s, 7min 25s.
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(g) (h)

(i) (j)

(k) (l)

Figure 5.8: Tracking the water and bed for videos 232-237, at t =

23min 24s, 50min 6s, 70min 40s, 83min 24s, 101min 40s, 103min 5s. A video of the above

tracking can be found here: https://www.youtube.com/watch?v=1ov8JdjNGzA&t=

51s.

https://www.youtube.com/watch?v=1ov8JdjNGzA&t=51s
https://www.youtube.com/watch?v=1ov8JdjNGzA&t=51s
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(a) (b)

(c) (d)

(e) (f)

Figure 5.9: Tracking the water and bed for videos 248-256, at t =

16s, 50s, 10min 20s, 20min, 23min 27s, 30min 4s.
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(g) (h)

(i) (j)

(k) (l)

Figure 5.9: Tracking the water and bed for videos 248-256, at t =

40min, 50min 40s, 60min, 62min 28s, 81min 20s, 82min 34s. A video of the above tracking can

be found here: https://youtu.be/uza-NCZZV_Q.

https://youtu.be/uza-NCZZV_Q
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The tracking of the water and the bed was carried out successfully, as evidenced in the previous

figures. One of the issues that became apparent through the various experiments was the fact that

the porous nature of the bed interfered with the tracking of the water. In the cases where the water

depth was lower than the bed height of the wet beach, the part of the code tracking the water often

picked up the bed height instead of the water depth. This meant that the code could not distinguish

the saturated areas from those actually in contact with the water, which resulted in the saturated

particles contaminating the water measurements. Some examples of this effect can be seen in

Figures 5.8j-5.8l and 5.9g-5.9l.

Using a ruler and knowing the scaling of the tank from snapshots to reality, it was of interest to

quantify potential tracking errors in the water and the bed depth by manually inspecting some

snapshots, as they were the only way to visually compare the real with the tracked depth over

the course of each experiment. The error in the tracking of the water line was more visible when

tracking the water and the bed in unison, and was around 1mm. However, the tracking error for

the bed height was found to be between 1.5-2mm, the same size as a single particle, only in some

regions of the snapshots. This is believed to be due to the colour channels, which ‘misinterpreted’

the particles at the top of the bed for water thus ignoring them. In addition, the reduced resolution

of the cropped snapshots resulted in less pixels per unit distance, ultimately providing a less

accurate representation of the bed line. In order to visualise the effect of the colour channels

on the tracking, one can compare Figures 5.7-5.9 with their binary version that is ultimately

tracked during the image-analysis stage in Figures E.22-E.24, in Appendix E.1. Unfortunately

the computation of the area flux error was not possible; neither the computation would have been

carried out effectively, given the large number of snapshots, nor would have yielded accurate

results as all depth and errors would have to be computed by hand while accounting for scaling

errors between the snapshots and reality.

The novelty of tracking the water and the moving bed with the colour channel method lies in

its simplicity while being relatively sufficient. Not only is the method easy to understand and

replicate, but both its computational time and effort are greatly reduced since the same software

and the same piece of algorithm are used to simultaneously perform two similar, yet different,

tasks.



100 Chapter 5. Experimental tracking and analysis of the wave-beach dynamics

5.2 Results

In this section, the obtained data were used to further understand gravel beach formation by

relating it to variables such as the wave period and the water depth. The bed angles were

also computed for each case with the angles of repose compared with angles of repose for real

gravel beaches. Lastly, wave-breaking was investigated with the types of breakers found in the

experiments recorded and identified.

5.2.1 Final-time bed profiles and angles

The swash zone is the portion of the sloping beach that gets alternately wet and dry during the wave

action. The wave action comprises of the incident waves that reach the shore, run up the beach

slope (uprush), infiltrate into it and run down again (backwash) being less powerful than before.

The amount of fluid infiltrating the beach, determines not only the strength of the backwash but

also the final profile of the beach [43].

Porosity and permeability are physical properties responsible for the passage of fluids through a

mass of solid. Porosity n measures how much of the total volume of a material Vt is taken up by

void space Vv and is defined in [39] as:

n =
Vv
Vt
. (5.1)

Porosity is affected by sediment properties such as the shape and the degree of sorting. For this

type of particles, porosity is about 0.55 [90].

Hydraulic conductivity/permeability measures how easily the flow infiltrates a porous material

under gravity [39, 25]. Permeability, depends on the properties of the porous material and the

fluid that percolates through it and has units of velocity. This dependence is also revealed through

the following formula:

K = ki
γ

µ
, (5.2)
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with γ = ρg the specific weight of the fluid, µ the viscosity of the fluid and ki = Cd2 the specific

permeability; the value of C is determined solely by the porous medium properties such as the pore

diameter d and the shape of the pore openings of the material [39, 88]. Permeability thus depends

on the diameter of the sediments; the higher the grain diameter is the higher the infiltration will

be. Consequently, sediments with higher diameter, such as gravel, have higher permeability than

sand.

The angle of repose θr, also known as the angle of internal friction [88], is the steepest slope angle

at which the sediments can stay on the bed without sliding down [88, 103]. If the angle of repose

is exceeded, then avalanching occurs and sediments flow down the slope. The angle of repose

is determined when the bed has reached a final quasi-equilibrium state where its overall shape

does not change further under wave action. In general, the steeper the slope the higher the angle

of repose. Percolation is a phenomenon highly correlated to the angle of repose; the higher the

infiltration of a fluid into the bed, the steeper the bed slope can be. Consequently, the factors that

explicitly affect percolation, implicitly affect the angle of repose. These factors are the degree of

sediment sorting and the grain size as well as the angularity of the sediments.

High and uniform sediment sorting and larger grain sizes, favour the amount of fluid infiltrating

the bed [43]. This is why gravel beaches, with no large deviations in sediment sorting, have higher

permeability than sand. Inversely, higher sediment roundness translates to less gaps between the

particles, i.e. decreased porosity [88], consequently leading to decreased percolation and to a

decreased angle of repose [20, 85]. There are different methods of measuring the angle of repose

of soils such as the tilting box method, the fixed funnel method and the revolving cylinder/drum

method to name a few. Unfortunately, not all methods give the same angle of repose [24]. The

angle of repose of natural gravel is considered to fall in the range of 25° - 30° [4]. An investigation

into the slopes of the beach profiles, created at the end of each recording of the experiment, was

carried out. The final bed profiles of all experiments were used to determine the bed angles, and

have been plotted against their wave frequency in Figure 5.10.
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Figure 5.10: Final bed profiles formed as a result of the effect of monochromatic incident waves

entering the tank through the left boundary. Each case had a measured frequency of f219=0.41Hz

(green), f232=0.67Hz (red) and f248=0.5Hz (blue).

Each bed profile was assumed to consist of two regions, the wet and swash region. The wet region

was always submerged under water while waves entered and exited the cell. The region was

located between the toe of the bed and the minimum water depth. The swash area, was alternately

wetted and dried as the water entered and exited the cell. Consequently, during the experiments

the swash zone was located at the part of the beach surrounded by the minimum and maximum

water depth in the tank.

Identifying the points that belonged to each region was possible by inspecting the corresponding

snapshots of the final quasi-equilibrium states and using the bed coordinates of the tracked images

to determine the slope. Essentially, three position vectors were specified for each region. Namely,

at the wet region the toe of the bed was denoted with the vector (x1, y1), the bed at the minimum

water depth with (x3, y3), while (x2, y2) was a measurement between the two. The same logic

applied for the swash region with vectors (x3, y3) at the minimum water depth, (x5, y5) at the

maximum depth, with (x4, y4) the measurement between the two. Note that the upper limit of the

wet region located at (x3, y3) was the lower limit of the swash region. Consequently, for three

known position vectors, located at each region, the slope of the bed was calculated as the average

of two angles using:



Chapter 5. Experimental tracking and analysis of the wave-beach dynamics 103

slope = tan θ =
y2 − y1

x2 − x1
and

y3 − y2

x3 − x2
, or

y4 − y3

x4 − x3
and

y5 − y4

x5 − x4
. (5.3)

Taking the inverse tangent of the slope provided the required angle θ. The final bed angles

corresponding to the wet and swash region for each experimental case are visualised in Figure

5.11 and have been summarised in Table 5.2.

Swash

Wetθwet1 θwet2

θswash1

θswash2

θwet =
θwet1

+θwet2

2

θswash =

θswash1
+θswash2

2
max

min

(x1, y1)

(x2, y2)

(x3, y3)

(x4, y4)

(x5, y5)

Figure 5.11: Bed profile, consisting of the wet and the swash region. Wet region

consists of position vectors (x1, y1), (x2, y2), (x3, y3) and the swash region consists of vectors

(x3, y3), (x4, y4), (x5, y5). The vectors then help determine two angles in each region, θwet1,2

(red) and θswash1,2 (green). The average of the two determined the angles θwet, θswash for each

region and each case, summarised in Table 5.2.

It can be observed in Table 5.2 that the swash zone angles are larger than the wet zone angles, cf.

[90]. This difference stems from the presence of a reduced-in-magnitude cohesive force acting on

the particles, affected by the existence of trapped water between them. This reduced cohesive force

between the immersed particles affected their stability thus resulting in smaller bed angles, with

the volume of water between the particles known as liquid bridge [5, 24]. In [5], this phenomenon

was attributed to the fact that the contact regions between spherical polysterene beads (diameter

0.8±0.2mm) were small hence contributing only a little volume of liquid bridge to the cohesive

forces, with the higher fraction of the liquid surrounding the bead area being passive. In contrast

to the wet zone, the swash zone was not constantly wet so the inter-particle forces, such as friction,
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Table 5.2: Final-time bed angles for each experiment. Two sub-regions, wet and swash with

corresponding angle values θwet, θswash have been determined. For each region, i.e. wet and

swash, two angles were computed using equation (5.3). Taking the average of the two angles at

each region, yielded an improved angle estimate, which was more accurate in the cases of very

steep bed slopes. The data figures, indicated below, used for the angles calculation can be found

in Appendix E.2.

Videos θwet θswash Figures

219-223 29 ° 40 ° E.25

232-237 26 ° 50 ° E.26

248-256 26 ° 40 ° E.27

weight, repulsion and cohesion, were stronger thus allowing for a better slope stability and larger

angles to be reached. Furthermore, the wet angles were found to be in the natural range of angles

discussed earlier (25° - 30°), for all three experiments, with the remaining one being close to the

lower limit. Following the discussed effect of the liquid bridges, it is believed that the presence

of the water resulted in smaller angles of repose compared to those found for dry gravel beaches.

Lastly, no correlation between the above angles and the initial bed conditions has been discovered.

5.2.1.1 Duration of the experiments

By the end of each experiment, the bed had reached a final quasi-equilibrium profile, with small

variations on its slope and shape, as a result of the interaction it had with the incident waves. This

final profile was determined by observation and in this thesis has been referred to as duration of the

experiment/recording. In order to ensure that the duration of each experiment did not overestimate

the time required for the beach to reach a final quasi-equilibrium, plots comparing the final bed

profiles were created. Essentially, the time required for the beaches to have a more or less constant

shape, under the continuous influence of wave action, was referred to as proposed duration (PD).

The chosen final bed profile, which did not change further and was selected by observation, was

used to determine the proposed duration.
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(a) First quasi-equilibrium (red) for case 219 reached at t = 10min 53s. PD: 59min 40s (orange).
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(b) First quasi-equilibrium (red) for case 232 reached at t = 26min 34s. In the videos of the

experiment the step, located at the beach front, collapsed between t =72min-85min, and was built

back up by the end of the recording hence PD: 103min 5s (black).
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(c) First quasi-equilibrium (red) for case 248 reached at t = 40min 9s. PD: 61min 10s (orange).

Figure 5.12: Bed evolution over time for cases 219 (top panel), 232 (middle panel) and 248

(bottom panel). The time required for each beach to acquire a quasi-steady shape, i.e. final quasi-

equilibrium, is calculated in the above panels and has been referred as proposed duration (PD).

See also the 3D beach evolution in Figure 5.17.
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5.2.1.2 Effect of wave period on the final quasi-equilibrium beach profile

The effects of the wave period and (updated) duration were identified as important by Powell [75]

and have been further investigated during these experiments.
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(a) Initial bed profiles for experiments. All cases were initialised with a uniform horizontal bed

profile of similar depth hb0 . The initial mean bed depths for each case were: 4.36cm (219-223),

3.29cm (232-237) and 3.6cm (248-256).
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(b) Final bed profiles of various depths hbtend
, as a result of the effect of incident waves of various

periods. Final bed times are 59min 40s (219), 63min 56s (232) and 61min 10s (248).

Figure 5.13: Comparison of the initial uniform bed profiles (top panel) against the final bed profiles

(bottom panel) for each experiment. Wave period for each case: T219 = 2.5s, T232 = 1.5s,

T248 = 2s.
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A negative correlation between the proposed duration and the wave period can be observed. The

larger the wave period, the shorter the duration of the experiments.

5.2.1.3 Effect of water depth on the final bed profiles

Over the course of the experiment a beach was gradually formed and ultimately acquired a quasi-

permanent shape at a certain time (proposed duration, see Figure 5.12). The final beach shape in

this section is equal to the quasi-permanent beach shape captured at the time that the proposed

duration indicated. As the action of waves is continuous in principle can affect the shape of the

beach at all times, hence the beach shape can only be almost permanent. However, by the time

that the quasi-permanent shape had been reached, the effects of the wave action were minor thus

not causing significant changes to the beach profile. As seen in Figure 5.12, the final bed profile

was determined by observation.

A correlation between the mean water depth and the proximity of the top of the bed to the right

wall was observed. Essentially the deeper the water, in comparison to the bed depth, the narrower

in the horizontal and taller in the vertical the beach would be; as observed in Figure 5.13. This

argument holds experimentally too if one considers a wave that overturns when it is near the beach.

The deeper the wave, the further on the right the sediments move and only when the beach is high

enough and near the right wall, then the waves break hence resulting in the top of the beach being

very close to the right wall. The validity of the above statement was investigated through the

available data. The mean water depth present in the tank during each experiment has been plotted

in Figure 5.14.
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Figure 5.14: Mean water depth in the tank, computed at selected time batches. Case 219 (green)

had the highest depth, 232 (red) had a medium water depth, while 248 (blue) had the shallowest

depth. As each system starts to stabilise (t219 ' 10min, t232 ' 26min, t248 ' 40min) the

minimum and maximum depth values are stabilised too, thus facilitating the recovery of the mean

wave heights. Mean wave heights are roughly: 2.7cm (219), 1.4cm (232) and 1.7cm (248). Cases

have different wave frequencies, wave depths and thus steepness, which have been summarised in

Table 5.1.

Even though the above measurements include the effect of the beach, due to the contamination of

the water measurements from the latter, they still allowed for a classification of the experiments

based on the water depth to be made. This is the reason why 219 has been classified as deep water

experiment, 232 medium water and 248 as shallow-water in Table 5.1. Using this classification

system as is, the bed depth just off the right wall in Figure 5.15 and the length of the beach in

Figure 5.16 have been compared against each other.
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Figure 5.15: Value of the height of the beach at the end of the tank (x = L), left of the right

wall. The height of the beach for each case follows the same order as for the mean water depth,

provided the system has stabilised (t219 ' 10min, t232 ' 26min, t248 ' 40min). The higher

the mean depth, the closer the top of the beach is to the right wall. Cases have different wave

frequencies, wave depths and thus steepness, which have been summarised in Table 5.1.
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Figure 5.16: Evolution of the toe of the bed over time. As soon as the system has stabilised

(t219 ' 10min, t232 ' 26min, t248 ' 40min), each beach begins at x219 = 0.29m, x232 = 0.275m

and at x248 = 0.22m. The beach ends at xend = 0.515m. Cases have different wave frequencies,

wave depths and thus steepness, which have been summarised in Table 5.1.
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Comparing Figures 5.14, 5.15 and 5.16, it can be indeed confirmed that experiments in deeper

water, relatively to the bed depth, led to taller and narrower beaches at the cross-shore direction

with their top being very close to the right wall. It should be noted that these graphs are not an

adequate diagnostic for determining the (final) quasi-equilibrium. The reason for this is because

Figures 5.15, 5.16 demonstrate how the two ends of the beach, the toe on the left and the depth

on the right, behave. As a result, after the initial beach profile (red) is formed in Figure 5.12, the

beach front builds up without changing the beach height and length much. Hence Figures 5.15,

5.16 can be used to only roughly determine when the bed reaches the first quasi-equilibrium state.

It is therefore concluded that at the end of the beach, i.e. the left toe (xb0) and depth at right wall

(hbx=L
), the bed equilibrated the quickest while the swash region equilibrated last with the waves

honing the beach front.

The initial bed profile was kept uniform as much as possible throughout all experiments. The

initial bed depth on the other hand, the values of which are displayed in Figure 5.13a, presented

some deviations throughout the experiments. Although the mean water depth has been found to

affect the shape of the formed beach in the experiments outlined in this thesis, it is expected that the

difference between the water and bed depth (hw − hb) is what ultimately determines the final bed

profiles. This effect was not apparent in the experiments undertaken as the initial bed profiles were

set to have similar thickness values thus masking the influence of the bed depth on hw − hb. The

current data is therefore inadequate to allow a conclusion to be drawn on the effect of the initial

bed conditions on the final bed profile. An investigation on the effect of the beach thickness on

hw−hb is thus suggested as future work, with the effective beach thickness considered influential

by Powell [75].

The effect of the initial beach shape, though not investigated in this thesis, is expected to have

an effect on how fast waves start breaking. At the moment the initial bed profile is horizontal

and a variety of breaking waves are captured as the bed gradually steepens, due to wave action,

ultimately forming a beach. If an experiment with a sloped initial bed profile is performed, it

is expected that it will either lead to a reduced spectrum of created breaking waves or to some

breakers being formed more often than others. More information on breaking waves can be found

in the next section.
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In the following 3D figure, the bed evolution has been tracked for all cases for the duration of the

recording, with some interim times omitted so as to assist with the figures visibility. As mentioned

earlier, the deeper the water the narrower in length and taller in height the beach is.

(a) Case 219. As time goes by, the top of the beach builds up. The beach is wide with its top high

up.

(b) Case 232. As time goes by, the top of the beach builds up. In this case, a step is observed

between the top of the beach and the area in front of it, a result of the water depth being smaller

than in case 219. In videos of the experiment it was observed that between t =72min-85min the

step collapsed. By the end of the recording, the previously collapsed step had been built back up.
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(c) Case 248. The formed beach is the widest out of three with its top the furthest offshore.

Figure 5.17: Tracked bed evolution ultimately leading to beach formation for each experiment.

Some interim times have been omitted from the above graphs to assist with the data visualisation.

See 1D beach evolution in Figure 5.12.

5.2.1.4 Sediment flux

Tracking the bed height over the course of the experiments paved the way towards understanding

how the flux of sediment over time changed the bed. It was thus of interest to quantify the bed

flux, qb, and understand how it varied in the tank over a wave-cycle, i.e. a wave period. More

specifically, the interest was on monitoring whether a transition to a quasi-steady state occurred as

the bed flux approached zero (qb → 0). To this end, the cell was divided into bins of equal length

(see Figure 5.18), in which the bed height was tracked by the image-analysis algorithm at various

wave-cycles over the course of the recorded wave-bed experiments, previously summarised in

Table 5.1.

As the bins always had the same coordinates, it was easier to track the bed ‘flowing’ in and out

of each of them. This was not the case during the wave-bed tracking, because the bed coordinates

would solely indicate the regions in the tank where the bed was present, while being updated
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accordingly to follow its movement over time. A summary of the calculation of the bed flux can

be found in Figure 5.19. Superscripts denote time and subscripts space/bins, the bed height at time

tn is equal to:

bn = (bn1 , b
n
2 , ...b

n
N ), (5.4)

where bn the vector consisting of the bed height contributions from each bin j = 1, 2, ..., N .

1 2 3 4 NN−1

x

b1 = (b1
1
, b1

2
, ..., b1

N
)

b2 = (b2
1
, b2

2
, ..., b2

N
)

Figure 5.18: The tank’s length has been divided into N = 40 bins with the bed height coordinates

mapped into each bin at various times. Sample bed heights at two different times (b1, b2) have

been sketched above.

The bed flux was computed in the same way as the area flux for the water (see Section 4.1). The

formula for the bed, computed at time tn, was thus the following:

qb(t
n) =

dAnb
dt

, (5.5)

with Anb =
∑N=40

j=1 bnj ∗ ∆x ≈
∫
bdx the total bed area enclosed in all bins, defined as the sum

over the number of bins of the product of the bed height bnj at time tn by the bin length ∆x.

Bed in pixel
coordinates

Bed in bin
coordinates bnj

Total bed area in bins
An

b =
∑N=40

j=1
bnj ∗∆x

Total bed flux over a wave-cycle

qb(t
n) =

dAn

b

dt

Bed flux amplitude in one wave-cycle
qb(t

n + T )− qb(t
n)

Figure 5.19: Steps to bed flux computation: i) transform the bed height from pixel to bin

coordinates, ii) compute the total bed area present in all bins Anb and iii) determine the bed flux by

taking the difference in the total area over one wave-cycle/period, with iv) the bed flux amplitude

equal to qb(tn + T )− qb(tn).
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The bed flux for each case has been visualised in the following figures:
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(a) Bed flux for case 219-223. The value of qb starts to decrease at t = 36min 40s with the

transition to a quasi-steady state happening gradually as qb → 0.
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(b) Bed flux for case 232-237. The value of qb decreases at t = 41min 43s; after that the profile of

the bed flux fluctuates in a small neighbourhood close to zero. In this case the bed flux fluctuates

the most, an event also observed in Figures 5.12b and 5.17b, and attributed to the medium water

depth that caused the bed to alternately collapse (t =72min-85min) and rebuild (t = 85min-end)

therefore delaying the system from reaching a final quasi-equilibrium.
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(c) Bed flux for case 248-256. The value of qb starts to decrease at t = 42min 1s and remains in a

small neighbourhood about zero after t = 53min 22s.

Figure 5.20: Bed flux computed over a wave-cycle at various times for case 219-223 (top panel),

case 232-237 (middle panel) and case 248-256 (bottom panel). The system reaches a quasi-steady

state when the bed flux approaches zero. The amplitude of the flux in each wave-cycle can be

found in Figure 5.21.

It can be seen in Figure 5.20 that each experiment had a different bed flux profile. In case 219, the

bed flux qb gradually reached zero after the first twenty minutes without any deviations. Case 232

behaved differently than case 219 in the sense that the values of qb decreased after the first twenty

minutes, but still fluctuated close to zero until the end of the recording. Lastly, the bed flux for case

248 took forty minutes, the longest out of all cases, to decrease with some fluctuations in its value

close to zero visible. Recalling Figures 5.12 and 5.16, the times for the first quasi-equilibrium

partly agree with the temporal changes in the profile of the bed flux. It should be noted that the

bed flux profile would not have been impacted if the tracked bed heights had been smoothed first

(see Appendix E.3, Figure E.28). The effect of smoothing on the bed flux values in particular, has

been found to be in the order of O(-8) to O(-6) (see Appendix E.3, Figure E.29 ).

A relationship between the water depth and the different bed flux profiles is revealed in Figure

5.20. Case 219-223 had the highest water depth, and the smoothest transition to zero of the bed-
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Figure 5.21: Amplitude of the variation of qb over each wave-cycle at various times for each

experiment. Case 219 (green squares), case 232 (red circles) and case 248 (blue diamonds) have

been depicted in the above panel.

flux profile. On the other hand, cases 232-237 and 248-256 resulted in bed fluxes that approached

zero but still varied, hence revealing that the bed profile was potentially more sensitive to changes

the closer it was to the water. This was particularly the case for case 232-237, where the bed

collapsed and was rebuilt during the last forty minutes of the recording.

It can be thus confirmed that the wave-bed system starts to equilibrate, i.e. to approximate a quasi-

steady state, once the bed flux starts to decrease. However as long as water is pumped into the

tank, the interaction between the waves and the beach does not cease; an event manifested by

the presence of small bed flux fluctuations. Due to the limitations of the current work, there are

not enough data to fully investigate the effect of various water depths on the bed flux profile and

development in this area is proposed as future work.

5.2.1.5 Sediment loss

It can be seen in Figure 5.22, that sediment loss was an issue that all experiments faced. Videos

232-237 endured the least amount of sediment loss out of three experiments. The reason for this

goes back to the experimental set-up. The wave tank used, though very easy-to-operate with pumps
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that could reach a broad range of frequencies, had originally been created solely for demonstration

purposes with limited access to the inside of it.
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Figure 5.22: Proportion of sediment area lost over the duration of each experiment. Case 219

(green) lost 43.5% of sediment, 232 (red) lost 29% and 248 (blue) lost 36%.

The left side of the tank, where the water was entering the cell, was equipped with a mesh thus

not allowing for particles to leave the tank and reach the pumps. In contrast to the left wall, the

right wall of the cell had no such protection. The presence of an inner gap between the right wall

and the glass plates edges created a hiding spot for the particles. As a result, the particles often

ended up at this “hidden” gap as a result of their transport by waves. Ergo, the image tracking

could not access the particles that were lost; hence sediment volume was not conserved. As this

gap was difficult to access, the only way to minimise the effect of this space on the measurements

was by filling the gap with plastic tubes. These vertical tubes occupied some of this void space

thus preventing some of the particles from going in.

A positive correlation between the wave period and percentage of sediment loss has been observed.

In the framework of the examined experiments, higher wave periods coincided with higher

percentages of sediment loss. This is possibly related to the fact that smaller wave periods and

wave heights lead to beach formation at a slower rate, thus keeping sediment loss constantly at

lower levels.
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5.2.2 Breaking waves

Ocean waves reach the coasts by propagating from deep to shallow-water. The region where this

transition occurs is the shoaling zone; in essence the wave depth goes from being larger than half

of the wavelength to less than half of the wavelength. This transition affects the wave speed,

wave height and wavelength. The water waves then enter the shallow-water zone in which the

wave length is much larger than the depth. As a rule of thumb, in shallow-water the wavelength

is often selected to be twenty times or more than the depth. In the shallow-water zone the depth

decreases hence the wave speed, which is depth-dependent and determined from the linear theory

as ug =
√
gh, decreases too. Consequently, as the kinetic energy of the wave group decreases, the

potential energy increases thus causing the wave height to rise. The wave height keeps increasing

until the wave front becomes too steep and the wave front overturns, a phenomenon known as

wave breaking. Right after breaking, breaker jets of water of varying strength are created that

reach the beach and dissipate the waves energy. From a coastal protection point of view, gravel

beaches have the advantage that their permeability causes extra dissipation of wave energy, in the

form of turbulence and heat [28], in addition to that lost during wave breaking in the surf zone.

Shoaling zone

Surf zone

Swash zoneDeep water

Figure 5.23: Waves travel from deep water towards the shore, thus entering the denoted coastal

zones. They first enter the shoaling zone and later on break in the surf zone. At the swash zone

the beach is alternately wetted and dried with sediment transport being prevalent.
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5.2.2.1 Types of breakers

There are four types of breakers: spilling, plunging, collapsing and surging, deduced in [13, 31,

68]. Each breaker has a different profile, summarised in Table 5.3, with the wave steepness and

beach slope influencing the type of breakers created.

Table 5.3: Types of breakers and their description, as found in [56, 68].

Breaker Description

Spilling Presence of foam at the wave crest, water spills down the front face

Plunging Wave crest overturns and a jet plunges into the trough ahead

Collapsing The lower front face overturns and behaves like a truncated plunging breaker

Surging Associated with flat incident waves that overturn at the moving shoreline

The effects of the wave and beach slope on wave breaking were cast into a formula by Iribarren

(1948):

Ib =
tanα√

Hb
λb

, (5.6)

with tanα the slope of the bed of angle α, Hb the height of the breaking wave measured at the toe

of the bed and λb = gT 2

2π the wavelength as determined from the linear deep water theory under a

wave period T . The wavelength can be recovered if one takes the dispersion relation

ω2 = gk tanh(kh), (5.7)

with k the wavenumber, h the water depth and g the momentum acceleration due to gravity. At the

deep water limit the depth is much larger than the wavelength (kh >> 1) translates the dispersion

relation to

ω2 = gk, (5.8)

as limkh→∞ tanh(kh) = 1. Substituting the wavenumber k = 2π
λb

and ω = 2π
T , for a known wave

period T , to (5.8) the deep water wavelength λb is acquired. In spite of the fact that wave breaking

occurs in shallow-water, a deep water wavelength formula is in use. According to Battjes [13],
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taking the deepwater wavelength is equivalent to taking the shallow-water wavelength because the

height-to-depth ratio is of order one right before breaking.

The classification of the breaker types is thus possible based on the values of the Iribarren number,

defined in equation (5.6). Consequently, spilling breakers were identified for Iribarren values in

the range of Ib < 0.4, plunging for 0.4 < Ib < 2, collapsing for 2 < Ib < 3.3 and surging for

Ib > 3.3.

5.2.2.2 Identifying breaker types in experiments

During each set of experiments water waves of varying frequency, depth or steepness were created.

The shape of the beach changed over time as a result of the incident waves; hence a gradual

transition from uniform to steeper bed profiles was observed. For each experiment the breaker

types were determined initially by observation and their type was then confirmed by computing

the Iribarren number.

The first step towards determining the Iribarren number was to calculate the slope of the bed, wave

period and wave height at the toe of the bed. The wave period had already been measured during

the recording of the experiments and it was thus known. The wave height at the toe of the bed was

calculated by substituting the maximum and minimum water depth measurements, located at the

start/toe of the beach x0 and acquired from runs of the image-analysis code at the times of interest

(xb0), into the wave height formula:

Hb|xb0 = hmax − hmin
∣∣∣
xb0

. (5.9)

The slope of the bed was computed by substituting the coordinates of the minimum and maximum

bed measurements located at the wet region, acquired from the image-analysis code, in equation

(5.3); thus working in a similar way as for the angle of repose. The only difference was that

this time the slope of the bed was required at interim times from beginning to end, at the times

of the observed breakers, while previously it was only computed at the end of the experiments.

Substituting the values of the slope of the bed, wave period and wave length in equation (5.6)

determined a value for the Iribarren number. Finally, this value was compared against the values
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classifying the breakers mentioned earlier. Comparing the observed breakers and their respective

Iribarren number, it was found that the latter predicted the breaker types successfully. Further

information on the specific times, wave and bed heights that the breakers were computed for can

be found in Appendix E.4.

After the breakers had been identified, they were organised in a timely manner from beginning to

end for each experiment. In other words, a timeline was created depicting the transition from one

breaker type to another throughout each experiment, elucidating the interaction between beach

formation and breaking waves. In the timeline figures that follow, each identified breaker type has

been denoted with a different colour. Spilling breakers are marked with orange, plunging with

cyan, collapsing with yellow and surging with green.
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t = 70 : 05

1 : 02 9 : 08
1 : 38

21 : 45 68 : 06 70 : 02

Plunging (Ib = 1:94)

Surging (Ib = 8:03) Surging (Ib = 20:23)

Surging (Ib = 11:53)

Surging (Ib = 15:78)

t = 0

Plunging - Collapsing
(Ib = 2:04)

time (min)

Figure 5.24: Timeline of breakers observed in videos 219-223 at times t =

1min 2s, 1min 38s, 9min 8s, 21min 45s, 68min 6s, 70min 6s. The first breaker is transitioning

from plunging to collapsing and a surging breaker appears on the first ten minutes of the

experiment.
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(a) Tracked breaking waves. The porous bed has contaminated the water measurements during the

last sixty minutes.

(b) Bed morphology evolution viewed from a different angle. The beach front becomes taller,

steeper and is closer to the right wall.

Figure 5.25: The interaction between the incident waves and the bed has led

to wave breaking (top panel) and beach formation (bottom panel), tracked and

reproduced by the image-analysis algorithm for videos 219-223, at times t =

1min 2s, 1min 38s, 9min 8s, 21min 45s, 68min 6s, 70min 6s.
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t = 103 : 05

2 : 54 42 : 30
4 : 55

62 : 35 82 : 26 102 : 46

t = 0
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Collapsing (Ib = 2:5)

Collapsing (Ib = 3:28)

Surging (Ib = 5:49) Surging (Ib = 8:11)

Surging (Ib = 11:62)

Surging (Ib = 7:76)

Figure 5.26: Timeline of breakers observed in videos 232-237 at times t = 2min 54s, t =

4min 55s, t = 42min 30s, t = 62min 35s, t = 82min 26s, t = 102min 46s. The first breaker

is of a collapsing type.
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(a) Tracked breaking waves. The porous bed has contaminated the water measurements during the

last forty minutes.

(b) Bed morphology evolution viewed from a different angle. The beach front becomes steeper,

taller and closer to the right wall.

Figure 5.27: The interaction between the incident waves and the bed has led

to wave breaking (top panel) and beach formation (bottom panel), tracked and

reproduced by the image-analysis algorithm for videos 232-237, at times t =

2min 54s, 4min 55s, 42min 30s, 62min 35s, 82min 26s, 102min 46s.
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t = 82 : 19

3 : 30 31 : 08

20 : 56

80 : 25
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Figure 5.28: Timeline of breakers observed in videos 248-256 at times t =

3min 30s, 20min 56s, 31min 8s, 61min 26s, 80min 25s. The first breaker is of a plunging

type.
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(a) Tracked breaking waves. The porous bed has contaminated the water measurements during the

last twenty minutes.

(b) Bed morphology evolution viewed from a different angle. The beach front becomes steeper as

it gradually builts up and widens towards the left.

Figure 5.29: The interaction between the incident waves and the bed has led

to wave breaking (top panel) and beach formation (bottom panel), tracked and

reproduced by the image-analysis algorithm for videos 248-256, at times t =

3min 30s, 20min 56s, 31min 8s, 61min 26s, 80min 25s.
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5.3 Conclusions

In this chapter an extended image-analysis algorithm, created primarily for tracking the water

and moving bed, has been discussed. Its performance has been successfully tested against three

experiments involving water and sediments. The algorithm tracked the moving bed and the water

successfully, with water tracking errors around 1mm and bed tracking errors in the range of 1.5-

2mm, thus manipulating and analysing hundreds of thousands of images accurately for each of the

examined cases.

The tracked images provided useful data that were further analysed. In some cases, the wet

bed interfered with the tracking of the water thus contaminating the acquired data. Analysing

the obtained data, revealed that lower frequencies affect beach formation the fastest and that the

distance between the water and the bed affects how wide and tall the final beach profile will be.

It was also found that at the end of the beach, i.e. the left toe and the beach height at the right

wall, the bed equilibrates the fastest while the continuous wave action hones the beach shape at

the swash region. In fact, the wave-bed system reached a (final) quasi-equilibrium for each case

when the bed flux in the domain approached zero over various wave-cycles. Unfortunately, due

to the practical limitations of the set-up these effects have not been investigated extensively. The

presence of a gap in the tank has also resulted in loss of sediment, at different rates for different

wave heights and wave periods, which in turn affected the experiments and ultimately the beach

measurements.

Furthermore, the angles of each of the final bed profiles have been computed manually, using the

measurements provided by the image-analysis algorithm, for two regions of the bed, the wet and

the swash region. The angles of the wet region were always smaller than the swash angles, a

phenomenon also observed in [90] and attributed to the effect of liquid bridges. The angles of the

wet region of the final-bed profiles have also been compared against reported angles of repose for

gravel beaches; in all cases θwet was within the range provided by the literature. The presence of

the water in the wet region may potentially be the reason for obtaining smaller angles.

Lastly, the image-analysis algorithm has been used as a proxi for the identification and

classification of the observed breaker types, essentially by providing measurements for each
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experiment. Measurements such as the angle of the bed, the wave height and wave period have

been used for the computation of the Iribarren number with plunging, collapsing and surging

breakers identified in the experiments. Indeed, the Iribarren number predicted the breaker types

that were observed during the experiments successfully.
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Chapter 6

Conclusions and future work

This thesis concerned the development of an image-analysis algorithm tailored to the vertical

Hele-Shaw cell’s shape and size. It allows the conversion of experimental images with water and

a moving bottom topography into useful data in a simple yet precise way. The acquired data

were not only used as a means of validating the relevant mathematical models, but also led to

better understanding of beach formation and the factors that affect it. A summary of the research

outcomes can be found in Section 6.1, with the research aims revisited in Section 6.2. Lastly,

future work recommendations are provided in Section 6.3.

6.1 Summary

Chapter 2 of the thesis presented the Hele-Shaw set-up in detail for two wave tanks of different

length and width. The water-only experiments carried out within these tanks were also discussed

in this chapter. During the experiments, the operation of the wave pumps remained the same

throughout the tanks and allowed for a range of frequencies to be reached: between 0.3 and 0.7

Hz. The depth of the water also varied between experiments. The image-analysis algorithm, the

linking point between images and data, was also explored in chapter 2. The algorithm originally

provided an option to choose between two different tracking methods; an edge-detection method

and a colour-threshold-detection method, with their corresponding detection results discussed and
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compared against each other in Section 2.3.3.2 and Appendix A. The colour-tracking method, also

aided from the optimised experimental set-up, provided optimal results for a variety of wave cases.

Chapter 3 examined the suitability of two one-dimensional mathematical models to describe the

hydrodynamics in the Hele-Shaw cell. A shallow-water model and a potential-flow shallow-water

model were extended so as to include a time-dependent forcing term and a momentum dissipation

term. The forcing term accounts for the wave sloshing that occurs as a result of the operation

of the pumps and is in effect at the left wall, through which the water enters the cell. For this

reason an inflow boundary condition was imposed at the left wall in both models. Momentum

dissipation, attributed to the tank’s fixed-by-construction narrow width, depends on the kinematic

viscosity and the half-width of the tank. The shallow-water model was solved with first-order

numerical schemes: a finite-volume (Godunov) method in space and a Forward Euler method

in time. In contrast, the potential-flow for shallow-water model was solved using second-order

numerical schemes: a finite-element spatial discretisation utilising linear Lagrange polynomials

and a Störmer-Verlet time-discretisation.

The models were validated in chapter 4, by gradually imposing the obtained (smoothed) data to

the left-wall boundary condition; this is the novelty of the validation process. Initially, a fitted

function to the smoothed data was imposed at the inflow boundary condition of each model during

simulation one. Then, during simulation two, the smoothed data values for the inflow and the depth

at the left wall entered the models through the existing inflow boundary and a Dirichlet boundary,

respectively. Comparisons between either the simulations or the numerical methods were carried

out.

It was found that simulation two yielded more accurate results than simulation one for the majority

of the cases examined. The FE method became unstable for higher influx amplitudes combined

with shallower prescribed depths. In contrast to the FE method, the FV method handled steeper

waves better then the FE method. However, the numerical wave fronts were often different than

the ones observed during the experiments, with the difference increasing for waves of increasing

steepness. Even though overestimating reflection was one of the main sources for this error that

both numerical models faced, it was nonetheless an effect applied uniformly to all cases. Hence the

errors may originate from the model and in particular from a term missing from the shallow-water
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equations, ignored after the width- and depth-averaging.

In an effort to understand beach formation further, water-bed experiments were performed and

have been presented in chapter 5. This constant interaction between the water and the bed was

further analysed with the help of the extended image-analysis algorithm, discussed in the same

chapter. In a nutshell, the algorithm from chapter 2 was modified so as to track the water and the

moving bed simultaneously. Its novelty lies in the fact that it uses the same principles as before,

whilst tracking two objects and working in a precise, with water tracking errors around 1mm and

bed tracking errors between 1.5-2mm, and iterative way. The successful tracking allowed for an

investigation into the types of breaking waves created as well as the angles of the final bed profiles

and their comparison to real-life gravel beaches.

It was found that smaller frequencies led to beach formation faster than higher frequencies. In

addition higher water depths, in relation to the bed depth, resulted in beach profiles that were

narrower and taller as opposed to wider and shorter. To this end, both types of final beach profiles

were obtained during the experiments. It was also found that at the end of the beach, i.e. the left toe

and the bed height next to the right wall, the bed equilibrated the quickest with the continuous wave

action honing the beach shape. Then, the wave-bed system also reached a final quasi-equilibrium,

an event confirmed by observation as well as by the magnitude of the bed flux which was close

to zero. The final beach angles were computed for the wet and the swash region with the latter

being larger than the angles at the wet region. This result was found to agree with a phenomenon

also known as liquid bridges, which essentially weakens the inter-particle forces in the presence

of water. The angles of repose of the final beach profiles were also computed at the wet region

area and were found to be in the range of angles attributed to real-life gravel beaches. Finally

plunging, collapsing and surging breakers were identified during the experiments and were further

confirmed by calculating the Iribarren number for each one of them.

The negative influence of the incomplete design of the tank has been accounted for. It affected

both the numerical and the experimental results. Either by providing underestimated wave depth

measurements near the right wall or by interfering with sediment transport and beach formation

and not conserving total sediment volume.
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6.2 Aims revisited

The aims set in Chapter 1 have been revisited with the work done to meet these aims summarised

below.

1. Determine which mathematical models can capture the dynamics of waves in a vertical

Hele-Shaw cell.

Two one-dimensional models, presented in Chapter 3, were used throughout this work;

a shallow-water model and a potential-flow shallow-water model. The potential-flow

shallow-water model was obtained from Luke’s (extended) variational principle and

assumes that the flow is irrotational. Extended in that the effect of forcing at the left

boundary and momentum dissipation had to be included in both models, to account for

utilising a wave pump and having a small gap width between the glass plates. The linear

models were verified successfully against a standing-wave and forced-wave exact solution

of the linear problem with momentum damping being absent.

2. Measure how close the chosen mathematical models are in relation to reality, and to adapt

the models if necessary in the light of experimental results.

The models’ ability to describe reality was then tested by imposing experimental data

for the water depth and the area flux of water to the numerical models; a process

also referred as validation process. The validation of the models entailed imposing the

smoothed experimental data to the boundary conditions gradually through simulation one

and simulation two. Simulation one imposed the fitted function for the area flux. Then,

simulation two imposed the smoothed area flux data and the depth at the left wall.

Simulation two yielded better results than simulation one, with the waves being less

steep and closer to those observed in the experiments. This improvement was a direct

consequence of the inclusion of the Dirichlet boundary. Furthermore, for cases with

higher forcing, steep waves appeared that were in the limit of violating the irrotational

flow assumption of the potential-flow model, creating instabilities. The FV method

performed better than the FE method, especially for the cases with higher forcing. The
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suggestion could therefore be made that the finite element method is used only when the

forcing is weaker, i.e for smaller inflow amplitudes. Even though both numerical models

overestimated reflection in comparison to reality, it was an expected outcome attributed to

the almost-solid right wall of the tank.

It was also found that numerical wave fronts computed by the FV method were faster than

those observed during the experiments. The reason for this difference may be either the

altered surface tension due to the dyed water or a term missing from the shallow-water

equations.

3. Perform wave-only experiments for various wave frequencies and water depths and extract

useful measurements of the water depth, through a bespoke tracking algorithm. Then, insert

the measurements to the mathematical models and challenge their performance.

Optimising the experimental set-up was also accomplished and it was of great importance,

as it allowed for improved visibility of the tracked phenomena. An LED-bank provided

uniform background light and combined with the dyed-blue water, it resulted in appropriate

shades of blue that greatly assisted the colour-channels with the tracking.

In Chapter 2, water experiments as well as the development of a robust and accurate

image-analysis algorithm were presented. The algorithm’s operation, importing images

and exporting time series for the depth and the area of water under it, rely on the use of

a colour-detection method. It was tested and verified against propagating water waves of

various frequencies, depths and steepness in an automated way, with a selection of three

depicted in this thesis.

The algorithm was extended in Chapter 5 so as to recursively track two moving objects

(water and bed) in thousands of snapshots, while using the same principles as before

with water tracking errors around 1mm and bed tracking errors between 1.5-2mm.

Ultimately, the extended algorithm performed very well, often capturing effects such as

water infiltration, wave breaking and bed load sediment transport. Water measurements

contamination was an issue that all cases in shallow-water faced. Essentially the wet bed

was translated by the code as belonging to the water, thus overestimating the water depth



136 Chapter 6. Conclusions and future work

computation.

4. Perform experiments with both water and particles. Vary the wave frequency, water depth

and wave height so as to investigate beach formation and beach-related phenomena such as

sediment transport and wave breaking. Then, collect measurements of the bed height and

the water depth from the experiment by extending the tracking algorithm.

Pouring aluminium oxide particles of a diameter of 1.75±0.05mm in the tank and allowing

water waves to transport them, resulted in the formation of a beach. In the framework of the

vertical Hele-Shaw cell, gravel beach formation occurs as a result of the interaction of the

incoming waves and the particles leading to bed load sediment transport. Different settings

for the incoming waves can lead to different beach profiles and evolution rates.

The parameters that varied in the experiments in the framework of this thesis were the water

depth (4.9-7cm) and wave frequency (0.3-0.7Hz), indirectly influencing the wave height to

be between 1-2cm, while the initial bed depth was kept relatively constant throughout all

cases (3.29-4.26cm). Analysing the acquired data it was discovered that the larger the wave

period, i.e., the lower the frequency, the faster the bed reaches an equilibrium; an event

confirmed not only by observing the tracked bed profiles but also by observing when the

magnitude of the bed flux approached zero. In addition, the shape of the final bed profiles

revealed a correlation to the depth between the water and the bed. It was found that in

cases where the water was above the bed, the final bed profiles were taller and narrower

with their peak located closer to the right wall of the tank. Equivalently, for the cases where

the water was at shallower depths the beach was wider (closer to the left wall) and shorter

with its peak further way from the right wall. Unfortunately, experiments were negatively

influenced by the tank’s incomplete design.

The angles of the final bed profiles were also measured with the help of the data obtained

from the tracking. Wet and swash regions were identified as a result of the different

dynamics in effect in the Hele-Shaw cell. The wet region stayed submerged while the

swash region alternately became wet and dry. The angles of the bed in both regions

were computed, with the wet region angles always being smaller than the swash region

angles. This was also confirmed in [90] and is attributed to a phenomenon known as “liquid
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bridges”; the presence of the water interfering with the cohesion properties between the

particles thus preventing them from stacking at steeper slopes, and eventually collapsing.

As the swash zone was not constantly wet, it allowed the cohesion properties to magnify

and form steeper slopes. The angles of the wet region were then compared against angles

of repose for gravel beaches (25° - 30°). The measured angles were found to be in the angle

range for gravel for all cases. This finding further confirmed that the Hele-Shaw cell is a

suitable set-up for observing gravel beach formation, with the aluminium oxide particles of

a 1.75mm diameter imitating gravel sediments.

Breaking waves appeared in the tank and played a crucial role in transporting the sediment

eastwards towards the beach, as the waves enter the tank through the left wall, thus leading

to beach formation. In light of this, plunging, collapsing and surging breakers were

observed, with transitions from one type to another occurring at different rates for each

case.

6.3 Future work

This thesis has discussed the development of an image-analysis algorithm which can translate

videos of experiments performed in a Hele-Shaw cell into useful data. The chosen mathematical

models were validated against reality by using the obtained data. Despite the fact that the selected

image processing method and models performed well, below can be found several directions for

the work to move forward in the future.

1. Improve the tracking precision of the image-analysis algorithm.

The image-analysis algorithm vertically tracks the area occupied by the bed or the wave.

Each image is divided into vertical bins and each one of them is scanned with the

aim to locate the area occupied by the tracking object (water or bed). The shape of

water is overall easier to track than the shape of the bed. In contrast to the water, the

particles forming the bed are constantly moving and can be stacked in various ways,

resulting in different bed profiles. In cases where the bed morphology is more undulating
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(see figure below), or the morphology more complex, the code is expected to find

tracking challenging. In view of this, the tracking should be extended so as to occur

both vertically and horizontally. In this way, any information lost during the vertical

scanning can be recovered by scanning the same location from a horizontal perspective,

therefore taking into account undulating and complex morphology. This improvement

could potentially tackle the contamination of the water measurements from the porous bed.
vertical tracking

horizontal

tracking

Figure 6.1: Example of undulating bottom geometry. Horizontal tracking will locate the

curve under the tip of the bed that vertical tracking may miss.

2. Introduce a higher level of automation during the image-analysis step, to further assist

with the computation of the bed angles and the Iribarren number.

The bed angles and the Iribarren number have been determined manually in this work. This

was due to several issues such as:

• The code was not equipped yet to distinguish the wet from the swash region. As the

wet bed interfered with the water measurements, it was not possible to distinguish

between the wet and the swash regions of the bed in an automated way.

• The wave steepness was not known a priori from the measurements. The Iribarren

number was determined after the the bed slope and the wave height (max depth-min

depth) at the toe of the bed, had been computed from the measurements. As the bed

conditions and the bed shape changed over time, it would mean that one would have

to track all of the above simultaneously over time, to determine the Iribarren number

as a function of the wave steepness and the bed slope. The bed slope was computed

in a similar, but not automated, way as the angle of repose. The wave height was

determined by taking the difference in wave depth at the toe of the beach, at wave
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breaking and when the water depth is at its minimum. Automating the process would

thus mean that a criterion would have to be set such that the wave depth is saved when

the wave is steep enough to break. Currently, there is no way of determining the wave

steepness from the measurements, in a consistent and automated way.

• The coordinate systems for the water and the bed were different, thus making them

more difficult to cross-refence. The bed and water coordinates had independent

coordinate systems. Identifying the wet and swash regions, as well as computing the

wave height at the toe of the bed, require a certain level of cross-checking between the

coordinates of the two systems. Thus translating the water and bed coordinates from

locally-dependent measurements, originating from the tracking, to bin-dependent

coordinates that are constant over each snapshot, may help cross-reference the water

and bed coordinates thus preventing the wet bed from interfering with the water

tracking. This step may thus provide the basis so gradually deal with the above issues.

3. Add moving bottom topography to the shallow-water equations.

The effect of a bottom topography b(x, t) on the water dynamics can be modelled by adding

a term in the shallow-water equations (−gh∂xb), found within the source term. Audusse

[3] developed a numerical scheme for solving the shallow-water equations with a slowly

varying bottom topography. The scheme is well-balanced as it can preserve steady states

such as the “lake at rest” (h+b =constant, u = 0). In the case that the topography is moving

[65, 80], extra equations are required; a bed evolution and a sediment transport formula. A

bed evolution formula relates the bed evolution over time to the way the sediments, which

form the bed, are transported:

∂b

∂t
+
fmor

1− p
∂qB
∂x

= 0, (6.1)

with b(x, t) the bed and p the porosity of the bed directly related to the type sediments

forming the bed. qB is a bedload sediment transport formula describing how the sediments

move depending on their physical characteristics, for example their grain diameter. There

are a variety of bed-load transport formulas due to currents, waves or combination of both.
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4. Improve the mathematical modelling and simulations.

The FV handled steep wave fronts well but there was still some disagreement between

the numerical and the measured wave fronts. As mentioned earlier, this may be due to

a term missing from the shallow-water equations. Including this term in the equations

will introduce a prefactor 6
5 to the inertia term such that 6

5(u∇)u, and a non-conservative

product ( (0,−0.2u)∂xU ) in the sense that it cannot be re-written in terms of the derivative

dF (U)/dx of a flux F (U). Its inclusion will affect the eigenvalues and the HLL flux and

is expected to slow down the bore; as a result the work done for non-conservative products

will need to be employed. To this end, more information on how to handle these products

and information about using the Discontinuous Galerkin finite element methods, equivalent

to a one-dimensional finite volume Godunov method, can be found in [89], [81].

Including surface tension in the FE model can introduce dispersion which can offset

instabilities created from higher forcing and shallower depths. Hence a surface tension

should be included in the potential-flow shallow-water model. An alternative solution could

be to use the Gerris Flow Solver software [74]. A surface tension force term is added to the

Eulerian Navier-Stokes equations (σkδsn). It provides a balance-force approach between

the surface tension and the pressure gradient whilst allowing for a varying resolution along

the interface.

Traditional potential-flow models, cannot handle breaking waves due to the irrotational

flow assumption. A two- or three-dimensional boundary element potential-flow model

(wave generation and shoaling up to the point in time directly prior to when breaking)

combined with a higher order time-stepping scheme and coupled to a volume of fluid

(VOF) model (wave-breaking and post-breaking) could solve this problem, thus modelling

wave generation, shoaling and wave breaking [38, 44]. The Laplace equation is turned into

an integral equation and solved by a boundary element method, while the time-stepping

provides the time level that the equation is to be solved [34] and the volume of fluid

model can compute wave-breaking and post-breaking. The latter solves the Navier-Stokes

equations on a fixed grid and checks the presence of fluid in each grid cell.
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5. Improve the set-up and perform further experiments

Throughout the experiments a significant portion of the sediments was lost at the stilling

wells located at the right end of the glass plates and the wall of the cell. Placing plastic

tubes into their gap was the only non-intrusive solution to stop particles from entering.

Unfortunately, this did not prove to be successful. Pouring liquid plastic into the gap

and allowing it to set could possibly eliminate the enclosed space, stop sediment loss and

enhance the right solid-wall assumption. This type of task would require an appropriate

experimental setting and knowledge, resources not available at the time of the experiments.

The aquarium pumps that are currently used in the set-up though easy to use, have a limited

frequency range of [0.3,0.7]Hz. Increasing the upper limit of this range to 1 − 1.5Hz, by

using appropriate wave pumps, would allow for the correlation between the duration and

wave frequency and wave frequency and final bed profiles to be investigated.

The performed experiments started with a similar initial bed profile and depth, while the

water depth varied from shallow to deep. These experiments resulted into different final bed

profiles, hence revealing a correlation between the latter and the difference in depth between

the water and the bed (hw − hb). The final bed profile of case 232 in particular, changed

continuously up until the end of the recording. This was a result of the medium water depth

which did not allow for the bed to reach a final quasi-equilibrium sooner, and should be

thus investigated further. Additionally, the tank’s lost sediment did not allow for accurate

measurements of the bed depth to be acquired. Improving the set-up and investigating this

difference further, by varying the water and the bed depth, could provide insight not only on

the different types of beaches that can exist in this set-up, such as a dry-beach, a wet-beach

or a dune-beach, but also on the timescales that lead to these beach types.

Lastly, the effect of the initial bed slope on the breaker types and the final bed profiles

should be further investigated. During the experiments presented in this thesis, the initial

bed profile was horizontal and uniform for all experiments. Its effect on the final bed profiles

was not evidenced by any of the current data, while the observed breakers varied from

plunging to surging. Changing the initial bed slope, and keeping the rest of the settings

the same as before, may result in some breaker types being formed more often than others,
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while investigating closely whether the initial slope has any effect on the final bed profiles.
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A Water tracking

The monochromatic edge detection, originally used as an alternative method to translate images

from tank one to data in [42] is presented in Section A.1. Then, in an effort to confirm the

superiority of the colour-channel-detection results, a comparison between the edge-detection and

the colour-channel-detection method is performed for tank two (case 154) in Section A.2.

A.1 Tracking the water line with monochrome edge detection

A.1.1 Image conversion to greyscale and background removal

Monochrome edge detection was preferred to coloured edge detection due to its easy-to-do

implementation and manipulation of the greyscale image matrices. In addition, as the background

light in that set of experiments was not uniform, coloured edge detection was considered of being

at risk of picking up more edges near the change of colour hence creating more problems than it

could solve. Monochrome edge detection meant that the images had to turn to greyscale before

any further processing could occur. This process was also done in Matlab iteratively with each

coloured image being imported, turned to grayscale through manipulating its image matrix, and

then being exported as greyscale image.

The presence of a “static” background in the images interfered with the processing by adding more

edges to the snapshots in question, hence making it harder to distinguish the free surface line. As
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the lighting in the background was not uniform, the background interfered with the tracking and

a consistent way of ignoring its effects was nonexistent. In order for the static background to be

removed, the matrix of one snapshot A0 was subtracted from the matrices of each of the loaded

snapshots Ai. In this way, the final image matrix Bi = Ai−A0 would have a zero intensity at the

location of the pixels corresponding to the background, with only the free surface lines at those

two snapshots visible (see Figure A.3). By analysing the snapshots it was discovered that having

a constant A0 was not rendering optimal results, therefore a different snapshot selection strategy

was chosen. It was found by trial and error that ifA0 was not fixed but in a close neighbourhood of

the main snapshot Ai, then better results were obtained, as the tracked free surface lines were very

similar to each other and not interfering with each other. Hence choosing A0 to be four snapshots

after Ai, with A0 ≡ A0i = Ai+4, resulted in a more accurate detection of the water line.

A.1.2 Monochrome edge detection operators and the Sobel filter

The gradient method detects the discontinuities in brightness by looking for the maxima of the first

derivative or zero-crossings in the second derivative of an image [72]. These discontinuities then

reveal the edges of the image that aim to separate the object of interest from the background. The

image’s discrete derivative is approximated by applying horizontal and vertical linear filters/masks

on the source image as shown in Figure A.2, and originally depicted in [18]. The size and operators

of these filters vary depending on the selected edge detection method. For example some first order

edge-detection operators applied at the first derivative of a monochrome or colour image are the

Sobel, Prewitt and Roberts operators [18], [33]. The Laplacian and Mexican Hat operators are the

second-order edge-detection operators [72].

The Sobel filter was ultimately selected for tracking the water line. The advantage that came with

this filter was that it reduced the noise sensitivity, hence providing a smoothing effect in the image

that none of the other operators could offer. This smoothing effect originated from the discrete

derivative, a weighted summation of the filter and the nine-pixel values. Hence the derivative was

computed in a neighbourhood of nine pixels whose intensity values did not vary much [18].
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H

I

u

v

u

v

I ∗H
H: Linear filter/mask
I: Source image
I ∗H: Output image

Figure A.2: The convolution of the source image I with the Sobel filter H results to the image

on the right. The filter occupies nine pixels in the source image, three adjacent horizontally and

vertically, to compute the derivative for a single pixel of the output image.

The convolution of image I with the Sobel mask, expressed in equation (A.2) and visualised in

Figure A.2, produced an output image. The minimum and maximum gradient magnitude was then

calculated with the help of equation (A.3). The first-order image derivative as defined in [18] is

the following, with Dx, Dy denoting the discrete-in-space derivatives:

∇I(u, v) ≈ 1

8
(Dx(u, v), Dy(u, v))

=
1

8

(
(I ∗HS

x )(u, v), (I ∗HS
y )(u, v)

)
=

1

8

( 1∑
i=−1

1∑
j=−1

I(u+ i, v + j) ∗HS
x (i, j),

1∑
i=−1

1∑
j=−1

I(u+ i, v + j) ∗HS
y (i, j)

)
.

(A.2)

The Sobel mask for the horizontal and vertical direction is:

HS
x =


−1 0 1

−2 0 2

−1 0 1

 , HS
y =


−1 −2 −1

0 0 0

1 2 1

 .
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The gradient magnitude M(u, v) is:

M(u, v) =
√
D2
x +D2

y ≈ |(Dx)|+ |Dy|. (A.3)

It is less costly to use the approximation for the magnitude without losing the intensity information.

After the filter was applied, the matrix of each snapshot was updated with the magnitude values

that the filter indicated.

A.1.3 Thresholding

A threshold value was then determined, based on the known minimum and maximum gradient

magnitudes. This threshold value was then used as a criterion to transform the greyscale image

to a binary image; in a similar way to the colour-channel-detection method. The binary image,

visualised in Figure A.3, would then reveal the water line with white and everything else depicted

with black. Having the water line traced, paved the way for tracking its coordinates in the same

way as was described in Section 2.3.4. Figures A.4 and A.5 illustrate the tracked free surface and

the obtained data that were used in [42].

Figure A.3: Binary image depicting the tracked water line (white) and background (black). Two

free surface lines are depicted originating from snapshots Ai, Ai+4.
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(a) (b)

(c) (d)

(e) (f)

Figure A.4: Tracked and reproduced water line for video 47 at times t =

1.96s, 3.2s, 6.4s, 12.6s, 19s, 21.72s. Wave period is T = 1.42s.

It can be deduced from the above figures that even though the data are of a sinusoidal shape, they

underestimate the free surface line.



148 Appendices

2 4 6 8 10 12 14 16 18 20 22
0.0455

0.055

(a)

2 4 6 8 10 12 14 16 18 20 22
0.065

0.105

0.112

(b)

Figure A.5: Area (top panel) and depth at the left wall (bottom panel) data. This data set originated

from case 47 (tank one) and was used in [42].
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A.2 Comparison of the methods

The tracking methods had initially been applied to snapshots originating from different tanks with

different light and camera settings. Hence, comparing the two methods within the same set-up

further tested their performance. Video 154 was chosen for the method comparison, as it provided

the least steep waves. A summary of each detection process has been illustrated in Figure A.6,

with the tracking results overlaid against the snapshots in Figure A.7.

Edge detection Colour detection

Video ! Images

Image segmentation

Load image

Background removal
(optional)

Sobel filter
Thresholding

Dilation

Histogram
equalisation

Thresholding
(Otsu's method)

Residual objects
removal

Coordinate
acquisition

Pixels ! metres

Figure A.6: Summary of the detection methods. Pre-processing steps (grey) lead to the main

processing stage (red) for each tracking method. Lastly, the image analysis stage follows (black).

The tracking methods read the same snapshots and only differ during the main processing stage.
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(a) (b)

(c) (d)

(e) (f)

Figure A.7: Comparison between edge-detection (blue dots) and colour-channel-detection (red

dash) results for video 154 at times t = 4.28s, 4.6s, 7.82s, 7.98s, 11.14s, 26.76s. Wave period is

T = 2s. The fully tracked (colour-channel-detection) video can be found here: https://www.

youtube.com/watch?v=UxXw332EpEY.

https://www.youtube.com/watch?v=UxXw332EpEY
https://www.youtube.com/watch?v=UxXw332EpEY
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It can be seen in Figure A.7 that the colour-channel-detection method overall performed better

than the edge-detection method. Both methods performed equally well when the water was either

entering the tank (Figure A.7a) or reflecting on the right wall (Figure A.7d). The rest of the

time when the waves were propagating in the tank, edge detection in principle underestimated

the free surface line, while colour-channel detection remained accurate. It is believed that the use

of the monochromatic snapshots during the edge-detection method, was partly the reason for the

inaccurate detection of the free surface line. As illustrated in the RGB cube in Figure 2.4, greyscale

lies in the diagonal between white and grey. The RGB intensity values thus are all halved. Hence,

not much of a difference between the water and the background intensities was achieved. As a

result, the threshold was difficult to determine with similar intensity values found throughout the

image matrix.

An additional problem was the fact that edge detection tracked solely the free surface line based

on the intensity discontinuities. The uniformity of the intensity values combined with tracking

only a line, instead of a whole region like with colour-channel detection, made the tracking prone

to more detection errors. The time series provided by each method have been compared against

each other in the following figure.

0 5 10 15 20 25 30 35 40 45
0.035

0.04

0.045

0.05

(a)
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Figure A.8: Comparison of area (top panel) and depth (bottom panel) data, acquired by applying

the edge-detection (blue) and colour-channel-detection (red) method to images originating from

video 154.

It can be observed in Figure A.8 that the colour-channel-detection method performs overall much

better than edge-detection method. The overlaid snapshots in Figure A.7 revealed that edge

detection was accurate only when the water was at its maximum depth and was either inserting the

tank or reflecting on the right wall. During the rest of the stages when the water propagated in the

tank, the edge detection in principle underestimated the water depth. Figure A.8b confirms this

statement, as the values for the depth computed from edge detection are much smaller than those

from colour-channel detection. This disagreement was then passed on to the area data, through

the area computation described in equation (2.2). As a result, the edge-detection area data had

a smaller amplitude and deviated from the sinusoidal profile of the colour-channel-detection area

data.
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B Numerical implementation of the finite-volume

method

In this section, the Godunov method (Section B.1) and the HLL flux (Section B.2) have been

further described.

B.1 The Godunov method

Integrating equation (3.11) over one space- and one time step reads:

∫ tn+1

tn

∫ xk+1/2

xk−1/2

∂tU dxdt+

∫ tn+1

tn

∫ xk+1/2

xk−1/2

∂xF (U) dx dt =

∫ tn+1

tn

∫ xk+1/2

xk−1/2

S dx dt. (B.4)

If superscripts denote time and subscripts space, simplifying equation (B.4) yields:∫ xk+1/2

xk−1/2

U(x, tn+1)− U(x, tn) dx+

∫ tn+1

tn

F (U(xk+1/2, t))− F (U(xk−1/2, t)) dt

=

∫ tn+1

tn

∫ xj+1/2

xj−1/2

S(x, t) dxdt. (B.5)

The state vector U , flux F and source term S are averaged over one cell k and one time step

tn+1 − tn. A first-order approximation in time is achieved thus resulting to a Forward Euler

scheme. The cell-averages are the following:

Unk =
1

∆t

∫ tn+1

tn

Uk(t) dt, with Uk(t) =
1

|∆xk|

∫ xk+1/2

xk−1/2

U(x, t) dx, (B.6)

Snk =
1

∆t

∫ tn+1

tn

Sk(t) dt with Sk(t) =
1

|∆xk|

∫ xk+1/2

xk−1/2

S(x, t) dx. (B.7)

The flux is computed at the respective edges of each cell with k → k − 1 for the left cell and

k → k + 1 for the right cell:

Fk±1/2 =
1

∆t

∫ tn+1

tn

F (U(xk±1/2, t)) dt. (B.8)
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Substituting equations (B.6)-(B.8) in equation (B.5) and rearranging the terms yields the

discretised equation:

Un+1
k = Unk −

∆t

∆xk
[Fk+1/2 − Fk−1/2] + ∆t Snk . (B.9)

The flux F is then replaced by the HLL numerical flux described in the following section.

B.2 Harten, Lax, and van Leer (HLL) flux

The HLL approximate Riemann solver [47], [92] has been used to calculate the intercell flux

contribution during each step of the computation of Un+1
k for k = 00, 1, ..., NN number of

subintervals at time n+ 1. It essentially solves local Riemann problems not exactly, which can be

computationally expensive, but approximately by using a wave configuration that allows for two

waves to exist; thus determining three states and ignoring any intermediate waves [91].

Estimates of the wave speeds of these two waves are needed; these are determined by the

eigenvalues of the problem λ± = u ±
√
gh. Essentially the values of the lower (SL,) and upper

bound (SR) of the wave speeds are computed locally, in the sense that they use information from

a left and a right state UL = (hL, hLuL), UR = (hR, hRuR). Information from each state

enters the eigenvalues thus determining these two bounds as follows: SL = min(λ−L, λ−R),

SR = max(λ+L, λ+R); note that SL < SR, λ±L = uL ±
√
ghL and λ±R = uR ±

√
ghR.

Three wave patterns/states can occur as a result of the values of SL, SR: a right supersonic wave

(SL > 0), a subsonic wave (SL ≤ 0 ≤ SR) and a left supersonic wave (SR < 0). Based on the

wave pattern that prevails, the numerical flux is determined exactly as follows:

Fk+1/2 =


FL if SL > 0

SRFL−SLFR+SLSR(UR−UL)
SR−SL

if SL ≤ 0 ≤ SR,

FR if SR < 0.

A summary of the computation of wave speeds and HLL flux for each moment in time has been

sketched below.
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Determine
eigenvalues

λ± = u±
p

gh

Insert left & right states
UL, UR and compute

λ±L;R; SL, SR

Decide on HLL flux
Fk±1=2 based on the

SL, SR values

Insert flux in
discretised
equation

Loop for all volumes (pairs of two)

Figure B.9: Process of determining the HLL flux. Initially the eigenvalues are computed. For

each moment in time, pairs of cells UL, UR feed their values of u, h to the eigenvalues. Then

the two eigenvalues are used to calculate the lowest and highest wave speed. These speeds

ultimately determine which one of the three wave states is in effect (right supersonic, subsonic,

left supersonic). For the wave state in effect, the corresponding HLL flux (Fk+1/2, Fk−1/2) is

computed exactly at the edges of each cell and is fed into the discretisation equation (B.9).

C Models verification against exact linear solutions

When one has finished the implementation of a mathematical model the next step is to check the

work that has been carried out correctly and potentially locate any implementation errors. To this

end exact wave solutions of the linearised potential-flow shallow-water equations, i.e. solutions

that are known to be true under specific conditions, have been used as a means of verifying that

each code is behaving in accordance to the physical properties for which the exact solution is true.

In this section, the structure is as follows: the derivation of the exact solutions from the linearised

equations is presented in Section C.1, where two cases have been considered. A standing wave and

a forced-wave solution. The exact solutions are compared against the numerical solutions of the

linear models. In Section C.2, the imposed boundary conditions for the FV method are provided

and a comparison between the FV and the FE method follows for each exact solution.
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C.1 Derivation of the exact solutions

The linearised potential-flow shallow-water equations, in the absence of damping, read:

∂tφ+ η = 0, (C.10a)

∂tη +H0∂xxφ = 0, (C.10b)

with deviation from the depth at rest η << 1, and a perturbation to the velocity potential at rest

φ << 1.

Equations (C.10) can be merged into one differential equation. This can be accomplished by

differentiating equation (C.10a) over time and replacing the term ∂tη with its equal from equation

(C.10b) yielding:

∂ttφ−H0∂xxφ = 0. (C.11)

One can assume solutions of (C.11) of the form:

φ =
(
A cos(kx) +B sin(kx)

)
sin(ωt), (C.12)

with k the wavenumber and ω the angular wave frequency. Two types of exact solutions have

been derived. A standing wave solution with solid-wall boundary conditions at both walls and a

forced wave solution with an inflow boundary condition on the left wall and a solid-wall boundary

condition at the right wall. For each case, solutions for u and φ perturbation are determined.

C.1.1 Standing wave

For the standing wave, the solid-wall boundary conditions leads to ∂xφ|x=0, ∂xφ|x=L = 0.

Applying the boundary conditions sets B = 0 and provides a wavenumber k = 2m π
L ,

hence the solution is φ = A cos(kx) sin(ωt). Substituting this into equation (C.11) yields the

dispersion relation ω2 = H0k
2. Substituting φ in equation (C.10b) and solving for η yields

η = −AH0k2

ω cos(kx) cos(ωt). Hence for C = −AH0k2

ω :

h = H0 + C cos(kx) cos(ωt) . (C.13)
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Going back to equation (C.10a), substituting η and integrating in time for φ gives:

φ = −C
ω

cos(kx) sin(ωt) . (C.14)

An exact solution for u = ∂xφ can be recovered by differentiating equation (C.14):

u = ∂xφ =
Cω

H0k
sin(kx) sin(ωt) . (C.15)

C.1.2 Forced wave

For the forced wave case an inflow boundary condition has been imposed at the left wall hu|x=0 =

Q(t), translated into H0u|x=0 = H0∂xφ|x=0 and a solid-wall at the right wall ∂xφ|x=L = 0 as

before. The area flux is taken as a sinusoidal time-dependent function of amplitude q of the form

Q(t) = q sin(ωt).

Applying the boundary conditions provides the following expressions for the constantsA,B: B =

q
kH0

, A = B cos(kL)
sin(kL) . Substituting A in φ gives φ = B cos(k(x−L))

sin(kL) sin(ωt) and substituting φ in

equation (C.11) provides the dispersion relation ω2 = H0k
2, same as before. Solving equation

(C.10b) for η gives η = −H0
Bk2

ω
cos(ωt)
sin(kL) cos(k(x− L)). Substituting B gives:

h(x, t) = H0 −
qk

ω
cos(ωt)

cos(k(x− L))

sin(kL)
. (C.16)

Solving for φ knowing η gives:

φ =
q

H0k
sin(ωt)

cos(k(x− L))

sin(kL)
. (C.17)

The wavenumber is k = (2m+1)
2

π
L . An exact solution for u = ∂xφ can be recovered by

differentiating equation (C.14):

u = ∂xφ = − q

H0
sin(ωt)

sin(k(x− L))

sin(kL)
. (C.18)

C.2 Boundary conditions and results

The exact solutions for the linear problem have been compared against the numerical solutions

of the linear shallow-water equations. Each exact solution has been plotted against the deviation

from the depth at rest (η = h−H0) and the velocity u at various times.
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C.2.1 Standing waves

The boundary conditions used are:

a solid-wall on the left :

U00 =

 h00

h00u00

 =

 h1

−h1u1

 ,
a solid-wall on the right:

UNvol+1 =

 hNN

hNNuNN

 =

 hNvol

−hNvoluNvol

 .
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-0.005
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0.01

(a) Comparison for η = h−H0.

0 0.1 0.2 0.3 0.4 0.5
-0.04

-0.02

0

0.02

0.04

(b) Comparison for u.
Figure C.10: Verification of the FV linear numerical solution (blue dash) for the water elevation

η = h−H0 (top panel) and velocity u (bottom panel) against the standing-wave solution (magenta)

of the linear problem. 800 elements have been used.

It can be seen the numerical linear solution is in agreement with the exact standing wave solution.

The numerical model is thus verified and the forcing wave case is further examined next.
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C.2.2 Forced wave

The boundary conditions used are:

in- and outflow on the left wall:

U00 =

 h00

h00u00

 =

h1

Q

 ,
a solid-wall on the right:

UNvol+1 =

 hNN

hNNuNN

 =

 hNvol

−hNvoluNvol

 ,
with q the influx amplitude, as defined earlier. The comparison between the exact linear forced-

wave and linear numerical solution ensues.
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(a) Comparison for η = h−H0.

0 0.1 0.2 0.3 0.4 0.5
-0.04

-0.02

0

0.02

0.04

(b) Comparison for u.
Figure C.11: Verification of the FV linear numerical solution (blue dash) for the water elevation

η = h−H0 (top panel) and velocity u (bottom panel) against the forced-wave solution (magenta)

of the linear problem. 800 elements have been used.
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The comparison of the linear exact solutions with the linear finite-element solution, found in [42],

has been reproduced below for closure for the same values as for the FV case. Similarly to the

finite-volume method, the standing-wave case is initially presented. Then, the forced-wave case

follows and momentum dissipation is zero as before.
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-0.005
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0.005

0.01

(a) Comparison for η = h−H0.

0 0.1 0.2 0.3 0.4 0.5

-2

0

2

10-3

(b) Comparison for φ.
Figure C.12: Verification of the FE linear numerical solution (blue dashed) for the water elevation

η = h−H0 (top panel) and velocity potential φ (bottom panel) against the standing-wave solution

(magenta) of the linear problem. 100 elements have been used.

It can be seen that there is a good agreement between the numerical and the standing wave solution.

The solid wall boundary conditions that are in effect did not need to be implemented, as for the FV

method. Furthermore, the same results are obtained from both numerical methods (Figures C.10a
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and C.12a). The comparison of the numerical and the forced wave solution of the linear problem

follows.
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(a) Comparison for η = h−H0.
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(b) Comparison for φ.
Figure C.13: Verification of the FE linear numerical solution (blue dashed) for the water elevation

η = h−H0 (top panel) and velocity potential φ (bottom panel) against the standing-wave solution

(magenta) of the linear problem. 100 elements have been used.

The exact and forced linear solutions of the problem are in good agreement with each other. The

inflow boundary condition was implemented for the inflow in a similar way as for simulation one

and simulation two. In addition, Figures C.11a and C.13a reveal that the numerical methods yield

the same results for the linear models.
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D Further data processing and numerical results

The (smoothed) experimental data from videos 47,154 are provided in Section D.1, with functions

for the remaining Q data fitted in Section D.2. Numerical results for sim1 video 47 are presented

in Section D.3. Lastly, the computation of the numerical wave speeds for cases 149,165 follows.

D.1 Smoothed data

2 4 6 8 10 12 14 16 18 20 22

-0.04

-0.02

0

0.02

0.04

0.06

Raw data Single Double

(a) Inflow Q(t).

2.5 5 7.5 10 12.5 15 17.5 20 22

0.07

0.08

0.09

0.1

0.11

0.12

Raw data Single Double

(b) Depth at the left wall h(0, t).
Figure D.14: Comparison between double (green dash), single (red) smoothed and raw data (light

blue) for Q(t) (top panel), h(0, t) (bottom panel), case 47 (tank one).
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5 10 15 20 25 30 35 40 45

-0.01

-0.005

0

0.005

0.01

0.015
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(a) Inflow Q(t).

5 10 15 20 25 30 35 40 45
0.06

0.07

0.08

0.09

0.1

0.11

0.12
Raw data Single

(b) Depth at the left wall h(0, t).

Figure D.15: Comparison between double (green dash), single (red) smoothed and raw data (light

blue) for Q(t) (top panel), h(0, t) (bottom panel), case 154 (tank two).
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(a) Inflow Q(t).
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0.05

0.06

0.07
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0.09 Raw data Single

(b) Depth at the left wall h(0, t).

Figure D.16: Comparison between double (green dash), single (red) smoothed and raw data (light

blue) for Q(t) (top panel), h(0, t) (bottom panel), case 149 (tank two).
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D.2 Fitted functions

5 10 15 20 25 30 35 40

-0.01

0

0.01

0.02

0.03

Double Fitted

Figure D.17: Case 149: Double smoothed data for Q(t) (green) compared with the fitted function

Qfitted(t) = 0.01569 cos(2π ∗ 0.675t) (black).

5 10 15 20 25 30 35 40 45

-0.01

0

0.01

0.02
Double Fitted

Figure D.18: Case 154: Double smoothed data for Q(t) (green) compared with the fitted function

Qfitted(t) = 0.0136 cos(2π ∗ 0.48t− pi/3) (black).
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D.3 Finite-volume versus finite-element results

It should be noted that a comparison between the numerical methods for simulation one has only

been carried out for case 47. This comparison is important as it was the first data-validated

result within this work, included in [42], that indicated the finite-element method’s limitation

in describing the water dynamics.

(a) (b)

(c) (d)

(e) (f)

Figure D.19: Comparison between the results of sim1 (Q(t) imposed) for FV (blue dash) and the

FE (red), case 47. Results have been plotted together with the raw images and the measured value

h0final(t) (black dot) at times t = 3.88s, 4.88s, 6.88s, 9.08s, 12.68s, 14.68s. Momentum damping

is γ = 2.479 s−1. 800 (FV) and 200 (FE) elements have been used.

A relatively steep wave front, computed by the FV method for sim1, is observed. Unfortunately,
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the FE method creates instabilities at those steep wave fronts manifested by the ripples. These

ripples are considered to be a consequence of reaching the limit of the irrotational assumption,

while the numerical depth at the left wall does not coincide with the measurements (h(0, t)).

D.4 Computed wave speeds

In this sub-section, the wave-speeds for cases 149, 165 have been computed.

0 5 10 15 20 25 30 35 40

-1

-0.5

0

0.5

(a) Minimum wave speed SL = min (uL −
√
ghL, uR −

√
ghR) over time.

0 5 10 15 20 25 30 35 40

0

0.5

1

1.5

(b) Maximum wave speed SR = max (uL +
√
ghL, uR +

√
ghR) over time.

Figure D.20: Minimum and maximum wave speeds SL, SR computed for case 149. It can be seen

that throughout the experiment the flow is subsonic (SL ≤ 0 ≤ SR) as Fr < 1.
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0 5 10 15 20 25 30 35 40

-1

-0.5

0

0.5

(a) Minimum wave speed SL = min (uL −
√
ghL, uR −

√
ghR) over time.

0 5 10 15 20 25 30 35 40

0

0.5

1

1.5

(b) Maximum wave speed SR = max (uL +
√
ghL, uR +

√
ghR) over time.

Figure D.21: Minimum and maximum wave speeds SL, SR computed for case 165. It can be seen

that throughout the experiment the flow is subsonic (SL ≤ 0 ≤ SR) as Fr < 1.

E Water-bed dynamics

E.1 Tracked bed & water binary snapshots

In the figures that follow, the binary images of the tracked water and bed have been illustrated.

This “version” of the images was the one that was ultimately tracked from the algorithm.
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(a) (b)

(c) (d)

(e) (f)

Figure E.22: Tracked binary snapshots for case 219-223, at t =

0min 30s, 43s, 5min, 7min 41s, 11min 20s, 18min 20s.
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(g) (h)

(i) (j)

(k) (l)

Figure E.22: Tracked binary snapshots for case 219-223, at t =

22min 12s, 30min, 35min 20s, 50min 30s, 68min 44s, 69min 48s.
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(a) (b)

(c) (d)

(e) (f)

Figure E.23: Tracked binary snapshots for case 232-237, at t =

17s, 19s, 45s, 1min 43s, 2min 45s, 7min 25s.
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(g) (h)

(i) (j)

(k) (l)

Figure E.23: Tracked binary snapshots for case 232-237, at t =

23min 24s, 50min 6s, 70min 40s, 83min 24s, 101min 40s, 103min 5s.
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(a) (b)

(c) (d)

(e) (f)

Figure E.24: Tracked binary snapshots for case 248-256 248-256, at t =

16s, 50s, 10min 20s, 20min, 23min 27s, 30min 4s.
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(g) (h)

(i) (j)

(k) (l)

Figure E.24: Tracked binary snapshots for case 248-256, at t =

40min, 50min 40s, 60min, 62min 28s, 81min 20s, 82min 34s.

E.2 Final-time bed angle calculations

In this section, the final-bed angles are computed separately for the wet and swash region for each

case. Runs of the image analysis algorithm, at the times of interest, provided measurements for

the length and the height of the bed in each region. Then using these measurements the slope of



Appendices 175

the bed was calculated using equation (5.3). Lastly, taking the inverse tangent of the slope and

expressing the angles in degrees led to the following results.

(a) Minimum water depth at t = 70 : 01min.

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

X 33.67

Y 2.182

X 29.51

Y 0

X 34.95

Y 2.968

(b) Slope angle 29 °.

Figure E.25: Data originating from the wet region for videos 219-223. Bed angle computed by

the points (29.51,0), (33.67, 2.182), (34.95, 2.968). Units are in centimetres.
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(c) Maximum water depth at t = 70 : 02min.

0 5 10 15 20 25 30 35 40 45 50
0

2
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6

8

X 34.86

Y 2.749

X 39.82

Y 5.193

X 41.5

Y 7.637

(d) Slope angle 40°.

Figure E.25: Data originating from the swash region for videos 219-223. Bed angle computed by

the points (34.86, 2.749), (39.82, 5.193), (41.5, 7.637). Units are in centimetres.
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(a) Minimum water depth at 103 : 04min.
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0
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X 27.83

Y 0

X 37.79

Y 4.613

X 35.55

Y 3.376

(b) Slope angle 26°.

Figure E.26: Data originating from the wet zone for videos 232-237. Bed angle computed by the

points (27.83, 0), (35.55, 3.376), (37.79, 4.613). Units are in centimetres.
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(c) Maximum water depth at 103 : 05min.

0 5 10 15 20 25 30 35 40 45 50
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X 37.79
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X 39.07

Y 6.039
X 38.52

Y 5.279

(d) Slope angle 50°.

Figure E.26: Data originating from the swash zone for videos 232-237. Bed angle computed by

the points (37.79, 4.518), (38.52, 5.279), (39.07, 6.039). Units are in centimetres.
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(a) Minimum water depth at 82 : 31min.
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(b) Slope angle 26°.

Figure E.27: Data originating from the wet zone for videos 248-256. Bed angle computed by the

points (22.1, 0), (24.07, 1.789), (26.35, 2.226). Units are in centimetres.
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(c) Maximum water depth at 82 : 33min.

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

X 26.35

Y 2.444

X 29.15

Y 3.055

X 30.22
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(d) Slope angle 40 °.

Figure E.27: Data originating from the swash zone for videos 248-256. Bed angle computed by

the points (26.35, 2.444), (29.15, 3.055), (30.22, 5.717). Units are in centimetres.
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E.3 Bed flux

In contrast to Section 5.2.1.4, a moving average smoothing method was applied to the bed height

data prior to the flux computation. In this way, potential improvements to the bed flux computation

were investigated. Observing the following figures, it can be concluded that smoothing the bed

data would only result in changes in bed flux in the order of O(-8)-O(-6) thus rendering the

smoothing step unimportant.

0
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10-4

0 10 20 30 40 50 60 70

(a) Case 219-223.

-2

0
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4
10-4

0 20 40 60 80 100

(b) Case 232-237.
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-2

0

2
10-4

0 10 20 30 40 50 60 70 80

Raw Smoothed

(c) Case 248-256.

Figure E.28: Comparison of the raw and smoothed bed flux for cases 219-223 (top panel), 232-

237 (middle panel) and 248-256 (bottom panel). The error between the raw and the smoothed bed

flux has been visualised in Figure E.29.

0 20 40 60 80 100
-2

-1

0

1

2

10-6

Figure E.29: Bed flux error over individual wave-cycles, computed as the difference between

the raw and the smoothed bed flux for case 219 (green squares), 232 (red circles) and 248 (blue

diamonds).
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E.4 Iribarren number computations

In this section, the computation of the Iribarren number is performed. Essentially, the wave height

(Hb) at the toe of the bed and the slope of the bed (tanα) are computed with the help of the data

points indicated on the blue and red lines, respectively. Then the wavelength (λb) is computed

knowing the wave period for each experiment and acceleration due to gravity equal to 9.81m/s2.
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(a) t = 1min 2min, Ib = 2.04, suggests a plunging breaker at the limit of becoming a collapsing

breaker. Here: Hb=0.0371m, tanα = 0.126, λb = 9.7582m, g = 9.81m/s2.
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Y 0.5237

(b) t = 1min 38s, Ib = 1.94, suggests a plunging breaker. Here: Hb=0.0436m, tanα = 0.1298,

λb = 9.7582m, g = 9.81m/s2.
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(c) t = 9min 8s, Ib = 8.03 suggests a surging breaker. Here: Hb=0.0148m, tanα = 0.3131,

λb = 9.7582m, g = 9.81m/s2.
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(d) t = 21min 45s, Ib = 11.53, suggests a surging breaker. Here: Hb=0.0092m, tanα = 0.3536,

λb = 9.7582m, g = 9.81m/s2.
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X 35.4

Y 2.4
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Y 0.48

(e) t = 68min 6s, Ib = 20.23, suggests a surging breaker. Here: Hb=0.0031m, tanα = 0.3582,

λb = 9.7582m, g = 9.81m/s2.
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(f) t = 70min 2s, Ib = 15.78, suggests a surging breaker. Here: Hb=0.007m, tanα = 0.4223,

λb = 9.7582m, g = 9.81m/s2.

Figure E.30: Iribarren calculation for each of the breakers observed in Fig. 5.24. The Iribarren

number is calculated from the provided wave height at the toe of the beach, the beach slope and

the wave period is T219−223 = 2.5s.
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(a) t = 2min 54s, Ib = 2.5, suggests a collapsing breaker. Here: Hb=0.0171m, tanα = 0.1749,

λb = 3.5129m, g = 9.81m/s2.

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

X 16.09

Y 3.376

X 16.09

Y 5.564

X 27.47

Y 3.281

X 16.09

Y 0.3329

(b) t = 4min 55s, Ib = 3.28, suggests a collapsing breaker at the limit the limit of becoming a

surging breaker. Here: Hb=0.0219m, tanα = 0.2591, (λb = 3.5129m, g = 9.81m/s2.
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(c) t = 42min 30s, Ib = 5.49, suggests a surging breaker. Here: Hb=0.0171m, tanα = 0.3832,

λb = 3.5129m, g = 9.81m/s2.
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(d) t = 62min 35s, Ib = 11.62, suggests a surging breaker. Here: Hb=0.0048m, tanα = 0.4278,

λb = 3.5129m, g = 9.81m/s2.
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(e) t = 82min 26s Ib = 8.11, suggests a surging breaker. Here: Hb=0.0086m, tanα = 0.4006,

λb = 3.5129m, g = 9.81m/s2.
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(f) t = 102min 46s, Ib = 7.76, suggests a surging breaker. Here: Hb=0.0114m, tanα = 0.4424,

λb = 3.5129m, g = 9.81m/s2.

Figure E.31: Iribarren calculation for each of the breakers observed in Fig. 5.26. Wave period is

T232−237 = 1.5s.



Appendices 189

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

X 7.265

Y 5.368

X 7.265

Y 9.688

X 26.61

Y 3.273

X 7.265

Y 0.48

(a) t = 3min 30s, Ib = 1.74, suggests a plunging breaker. Here: Hb=0.0432m, tanα = 0.1444,

λb = 6.2452m, g = 9.81m/s2.
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(b) t = 20min 56s, Ib = 2.33, suggests a breaker which just transitioned from plunging to

collapsing. Here: Hb=0.0271m, tanα = 0.1532, λb = 6.2452m, g = 9.81m/s2.
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(c) t = 31min 8s, Ib = 1.65, suggests a plunging breaker. Here: Hb=0.0253m, tanα = 0.1053,

λb = 6.2452m, g = 9.81m/s2.
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(d) t = 61min 26s, Ib = 6.11, suggests a surging breaker. Here: Hb=0.0078m, tanα = 0.2168,

λb = 6.2452m, g = 9.81m/s2.
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(e) t = 80min 25s, Ib = 9.32, suggests a surging breaker. Here: Hb=0.014m, tanα = 0.4407,

λb = 6.2452m, g = 9.81m/s2.

Figure E.32: Iribarren calculation for each of the breakers observed in Fig. 5.28. Wave period is

T248−256 = 2s.
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