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Abstract

This thesis concentrates on two fields in natural language processing. The main
contribution of the thesis is in the field of morphology learning. Morphology
is the study of how words are formed combining different language constitu-
ents (called morphemes) and morphology learning is the process of analysing
words, by splitting into these constituents. In the scope of this thesis, morpho-
logy is learned mainly by paradigmatic approaches, in which words are analysed
in groups, called paradigms. Paradigms are morphological structures having the
capability of generating various word forms. We propose approaches for captur-
ing paradigms to perform morphological segmentation. One of the approaches
proposed captures paradigms within a hierarchical tree structure. Using a hier-
archical structure covers a wide range of paradigms by spotting morphological
similarities.

The second scope of the thesis is part-of-speech (POS) tagging. Parts-of-
speech are linguistic categories, which group words having similar syntactic fea-
tures, i.e. noun, adjective, verb etc. In the thesis, we investigate how to ex-
ploit POS tags to learn morphology. We propose a model to capture paradigms
through syntactic categories. When syntactic categories are provided, the pro-
posed system can capture paradigms well. Following this approach, we extend it
for the case of having no syntactic categories provided. To this end, we propose
a joint model, in which POS tags and morphology are learned simultaneously.
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6 Abstract

Our results show that a joint model is possible for learning morphology and POS
tagging.

We also study morpheme labelling, for which we propose a clustering al-
gorithm that groups morphemes showing similar features. The algorithm can
capture morphemes having similar meanings.
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CHAPTER 1

Introduction and Motivation

“Every beginning is difficult, holds in all sciences.”
Karl Marx, preface to Das Kapital

1.1 Introduction

This thesis presents unsupervised statistical methods for morphological segment-
ation and part-of-speech (POS) tagging in natural languages. In this chapter, we
provide an introduction to both fields by answering two main questions:

• Why are morphological segmentation and POS tagging needed?

• Why is unsupervised learning important for morphology learning and POS
tagging?

To answer the first question, we motivate the research in this thesis by demon-
strating the prominent application areas that have benefitted from both fields. As
a response to the second question, we discuss why the research in this thesis
focuses on unsupervised learning methods. The discussion is supported with
a comparison between different learning methods that have been adopted for
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26 Introduction and Motivation Chapter 1

morphological segmentation and POS tagging. The research questions are also
presented, along with the research directions followed to answer each research
question.

1.2 Morphological Segmentation

Morphology is the study of the internal structure of words. The term ‘morpho-

logy’ was first introduced by the German linguist August Schleicher in 1859
(Schleicher 1859), and refers to the study of how various sub-word units com-
bine together to form new words, through a sequence of rules. These units, called
morphemes, are the smallest meaning bearing units in a word.

Example 1.2.1. The word interestingly is made up the morphemes interest, ing,
and ly.

Morphological segmentation is the process of analysing a word by identify-
ing its constituent morphemes. In earlier research, the process was performed
manually. However, since the manual process is expensive, different ways to
automate the process have been explored. Automating a process requires repla-
cing the manual process with a system that fulfils the same function.

Which applications of morphological segmentation will benefit from the auto-
mation of morphological segmentation? The answer lies in the relation between
morphology and other fields. Morphological segmentation serves a number of
fields, which will be illustrated below.

1.2.1 Application Areas of Morphological Segmentation

Speech Recognition is one of the fields that benefits from morphological seg-
mentation extensively. Speech recognition systems are mostly based on a word
dictionary, along with a language model. Language models explore the char-
acteristics of a language by investigating the sequences of constituents in the
language, such as morphemes, words, utterances etc. Forming a word dictionary
is troublesome, especially for morphologically rich languages (Finnish, Turk-
ish, Arabic, etc.); at this point, morphology is adopted to cope with the infinite
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number of word forms in the language. Language models consider morpheme se-
quences rather than word sequences. Using morphemes instead of words helps to
deal with the out-of-vocabulary (OOV) words and also with data sparsity (Creutz
et al. 2007). Creutz et al. (2007) propose morpheme modelling for speech re-
cognition for Finnish, Estonian, Turkish and a dialect of Arabic spoken in Egypt
(Egyptian Colloquial Arabic) which are all considered to be morphologically rich
languages. Arısoy et al. (2006) model sub-word units such as stems, endings and
syllables, instead of words, as recognition units for the Turkish language. Kirch-
hoff et al. (2006) present several approaches where morphemes are modelled,
to reduce the data sparsity for Arabic. Additionally, Berton et al. (1996), Lar-
son et al. (2000), and Roeland Ordelman & Jong (2003) exploit segmentation of
compound words into their sub-words for compoundic languages, for example
the Germanic family of languages (German, Swedish, Dutch etc.).

Machine Translation is another field that uses morphological segmentation.
Machine Translation systems benefit from morphological information either in
the pre-processing step, post-processing step, or integrating the morphological
information along with the translation process. Some machine translation ap-
proaches using morphological knowledge within the pre-procesing step are Brown
et al. (1993), Goldwater & McClosky (2005), and de Gispert & Mariño (2008).
In these approaches, the translation process exploits morphological knowledge.
Some other systems use morphological segmentation to integrate additional know-
ledge about words (called factored models) (Yang & Kirchoff 2006; Koehn &
Hoang 2007; Avramidis & Koehn 2008). In factored models, different types of
knowledge such as the lemma and part-of-speech can be used, as well as mor-
phological information. In contrast to the approaches mentioned so far, other
translation systems use morphological segmentation within the post-processing
step, once the translation is completed (Minkov et al. 2007; Kristina Toutanova
2008). These systems generally use a stemmed text to perform the translation
and morphological forms of words are generated within the post-processing step.

Information Retrieval researchers also benefit from morphological segment-
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ation due to ambiguity and OOV words. Truncation1 and stemming, two simple
approaches, can be adopted in information retrieval to match query words with
document words (Harman 1991; Krovetz 1993; Järvelin & Pirkola 2005). How-
ever, these approaches are too simple to handle morphologically rich languages,
and therefore, cannot handle the ambiguity and OOV words. Stem generation is
also adopted in information retrieval by generating various word forms, before
matching stems with document words (Kettunen et al. 2005). Yet, stem gen-
eration does not give reliable results either, especially in morphologically rich
languages. Lemmatisation is a prominent approach that solves the ambiguity
problem by extracting the base forms of words, considering the context. It is
similar to stemming in the sense that both methods extract the base forms of
words. However, lemmatisation is more reliable than stem generation, because
it considers the context. The two-level morphology by Koskenniemi (1983) is a
well-known approach in morphological analysis, which is adopted for lemmat-
isation (Järvelin & Pirkola 2005).

Question Answering is another field that extensively uses morphological
segmentation. In a question answering system, a morphological analysis is usu-
ally required for extracting questions, as well as answers retrieved. Approaches
that are used for question answering are similar to information retrieval, i.e.
stemming (Bilotti et al. 2004), lemmatisation (Aunimo et al. 2003). Query ex-
pansion is also adopted in question answering, where all word forms are in-
dexed, then words are expanded with their morphological variants during re-
trieval (Bilotti et al. 2004).

1.3 POS Tagging

Syntax is another influential field in linguistics. While morphology is the study
of the rules of how morphemes are organised in a word; syntax is the study of the
rules of how words can be organised in a sentence. Each language has its own
syntactic rules, in the same way that each language has its own morphological

1Truncation is trimming a word to match words having the same initial characters.
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rules. Some languages have a free word order, whereas some have restrictions
on the word order. The smallest units considered in syntax are words. Each word
functions to fulfil a role in a sentence. Some words fulfil the function of express-
ing actions. These are typically called verbs. Some words fulfil the function of
expressing objects that are affected by these actions. These are typically called
nouns. Some words fulfil the function of defining some property of the nouns.
These are typically called adjectives, etc.

Words are classified into categories according to the functions they fulfil in
a sentence. These categories are called syntactic categories (or parts-of-speech
- POS). Numerous natural language processing areas benefit from syntactic cat-
egorial information.

1.3.1 Application Areas of POS Tagging

Information Retrieval is one of the areas that benefits from syntactic categorial
information. Information retrieval applies syntactic categorial information in
several ways: during information retrieval (Croft et al. 1991), during the filtering
out of irrelevant documents (Chandrasekar & Srinivas 1997), for indexing docu-
ments to reduce the index size (Chowdhury & McCabe 1998), or for weighting
terms according to their syntactic contexts (Lioma & Blanco 2009).

Word Sense Disambiguation (WSD) also uses syntactic categorial inform-
ation. Although POS tagging is considered by researchers as a separate problem
in natural language processing today, researchers argued that POS tagging should
be considered as part of WSD (Wilks & Stevenson 1998). However, Wilks (2000)
argues that POS tagging should be considered as a different problem since the
process does not induce any semantic information about words. In other words,
POS tagging does not perform any disambiguation on sense. Numerous works
exploit POS tags for the sense disambiguation (Wilks & Stevenson 1998; Yoon
et al. 2006; Cai et al. 2007).

Machine Translation (MT) is one of the fields that substantially requires



30 Introduction and Motivation Chapter 1

syntactic information as well as morphological information. Syntactic inform-
ation is adopted in MT systems either within the pre-processing step (Habash
& Sadat 2006) or within a language model as a separate component in the MT
system (Kirchhoff & Yang 2005; Monz 2011; Youssef et al. 2009),

Last but not least, in Parsing (Watson 2006; Hänig et al. 2008), Text to
Speech (Schlünz et al. 2010; Sun & Bellegarda 2011) and also in Name Entity
Recognition (Stevenson & Gaizauskas 2000) syntactic information is substan-
tially re-coursed as well.

1.4 Learning Morphology and POS

As mentioned earlier, automating a process requires a system that fulfils the
same function as the manual process. The literature comprises different learning
model: supervised learning, unsupervised learning and semi-supervised learning.

In supervised learning, a system learns the process on condition that target
outputs that the system should produce for a set of input data are provided to
the system. Using the target outputs, the system learns how to produce similar
outputs for a set of unseen input data. In other words, the system is supervised
by a set of tagged data, where tags refer to the outputs of a set of inputs. In
semi-supervised learning, a small set of tagged data is provided in addition to
a large set of untagged data. Therefore, system learns from both tagged and
untagged data. Unsupervised learning does not require any tagged data, only
plain input data. Learning is led by sophisticated methods and the system learns
the structures in data through these methods2.

It is possible to see the examples of the mentioned learning mechanisms for
both morphology learning and POS tagging in the literature:

The PC-KIMMO (Koskenniemi 1984), a two-level morphology3, is a prom-
inent example in the context of supervised morphology learning. The system

2Various algorithms for unsupervised learning shall be presented in Chapter 2.
3Morphology is defined on two levels: surface form and lexical string. Surface form expresses

the word in terms of the characters that the word is made from and the lexical string consists of
different forms of morphemes (Ritchie 1992).
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requires a set of manually defined rules and tagged data to learn the morphology
of the given data. In the recent years, it has also been possible to see the ex-
amples of semi-supervised morphology learning (Kohonen et al. 2010). Further
examples of unsupervised morphology learning are reviewed in Chapter 3.

Brill’s tagger (Brill 1992) is one of the prominent examples in the context of
supervised POS tagging that adopts rules to learn the parts-of-speech in the text.
The tagger requires a set of rules along with tagged data. The system learns the
tags by adding, removing or modifying existing rules. There are also numerous
examples in semi-supervised POS tagging (Clark et al. 2003; Wang et al. 2007).
Further examples of unsupervised POS tagging are reviewed in Chapter 3.

In the case of any supervision being adopted, both morphology learning and
POS tagging require human taggers to constitute tagged data. Especially, the
manual morphological segmentation becomes very arduous, when the evolution
of languages is considered. Languages are not stable and evolve every day with
the adoption of new words. Therefore, discovering morphology in an unsuper-
vised manner gives flexibility with the changes in the language. Following the
motivation to avoid any tagging process, the concept of this thesis is directed
towards only unsupervised learning methods.

1.5 The Interaction Between Morphology and POS

There is a strong interaction between morphology and syntax at two distinct lin-
guistic levels. The interaction exhibits mutual effects on both levels. Morphology
in any language is constrained by syntactic rules, while syntax is shaped by the
morphological rules of that language. In the sentence “She walked quickly.”. The
word quickly is an adverb, which is enforced by the ending -ly. If we investigate
it at the morphological level, the morphology of the word is adapted according
to the syntactic rules, which requires an adverb to follow a verb in English.

This type of interaction challenges the research in both morphology learning
and POS tagging. Learning mechanisms for morphology and POS can be par-
tially or fully incorporated. Learning can be partially incorporated in the sense
that the system exploits information from one of these linguistic levels to extract
information from the other linguistic level. Thus, the extraction can be conduc-
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ted to learn morphology by using POS information. Alternatively, the extraction
can be conducted to learn POS by using morphological information.

Moreover, a full incorporation of the two learning mechanisms enables a joint
learning, where morphology and POS can be learned simultaneously. The joint
learning of morphology and POS is one of the research objectives in the thesis
(see Section 1.6).

1.6 Research Objectives & Questions

This thesis focuses on machine learning methods for morphological segmenta-
tion and POS tagging in an unsupervised setting. The research in the thesis either
tackles morphology as a separate research problem, or incorporates syntactic and
morphological information within a joint learning problem. The cooperation of
syntax and morphology is motivated by the high correlation between two lin-
guistic levels, as discussed in Section 1.5. This cooperation takes place in two
directions in the thesis: first cooperation attempt tries to learn the morphology
using the syntactic categories which follows in a pipeline process, where the
syntactic categories are assumed to be learned in a separate process; the second
cooperation attempt is conducted within the same learning process where mor-
phology and syntactic categories are learned simultaneously which is called a
joint learning model. Both attempts try to discover how the two linguistic levels
can be incorporated.

In addition to these goals, there are also other research directions in the thesis.
We demonstrate how morphology of words can be learned by making use of
hierarchical structures (i.e. trees) without using any syntactic information. By
adopting trees, we learn morphological structures that are called paradigms4.
Paradigms are very influential in morphology learning, giving the flexibility of
capturing many word forms which do not exist in the corpus.

We also look into how morphemes can be classified, by considering their

4A paradigm is a morphological structure that consists of various morphemes that have the
potential of combining together to create new word forms. E.g. a simple paradigm can consist of
{quick, slow} and {-ness, -ly}. Therefore, these word forms can be generated from this paradigm:
quickly, slowly, quickness, slowness.
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functions in sentences in an unsupervised setting.

Therefore, the research questions and proposed research directions to answer
these questions can be summarised as follows:

• Question 1: How can syntactic categories be incorporated to learn mor-
phological paradigms for unsupervised morphological segmentation?

Direction 1: Development of a novel unsupervised algorithm that
captures morphological paradigms through syntactic categories that are
learned in a separate process by an unsupervised algorithm.

• Question 2: How can morphological paradigms be captured?

Direction 2a: Development of a novel unsupervised probabilistic model
that captures morphological paradigms in a hierarchical tree structure where
words are organised in tree nodes in a way that morphologically similar
words are placed close to each other in the tree structure.

Direction 2b: Definition of an algorithm that discovers hidden struc-
tures in data while also discovering a tree structure that represents the data
along with the hidden structures.

• Question 3: Is it possible to learn syntactic categories along with morpho-
logical segmentation of words in an unsupervised joint model?

Direction 3: Development of a novel joint learning model that learns
morphology and syntactic categories simultaneously.

• Question 4: How can morphemes be classified according to their functions
in sentences?

Direction 4: Construction of a clustering algorithm to capture morph-
eme classes by using morpheme sequences in sentences.
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1.7 Thesis Structure

The thesis is structured as follows:

Chapter 2 presents a detailed description of the essential background know-
ledge that will be referred to throughout the thesis. The chapter is organised into
two main sections, in which the linguistic and machine learning backgrounds
are presented separately. The linguistic background describes the morphology
and syntax in general terms, along with a discussion of how the linguistic levels
are related to each other. The machine learning background describes general
concepts and explains a variety of estimation algorithms in machine learning
that are frequently used for unsupervised learning algorithms. In addition, the
section presents the most common inference algorithms which are used in this
research.

Chapter 3 presents previous work on unsupervised learning of morphology
and POS tagging. The chapter is organised into two main sections. In the first
section, previous work on unsupervised morphology learning is demonstrated,
showing the most prominent works in the field. The research is presented in
two categories: deterministic and stochastic models. The section is finalised
with a discussion of evaluation algorithms for morphological segmentation, and
a discussion about the benefits of unsupervised learning. In the second section,
previous work on unsupervised POS tagging is presented. The previous research
is investigated in two categories, where the research in the first category considers
POS tagging as a clustering problem and the research in the second category
considers POS tagging as a sequence labelling problem (using hidden Markov
models - HMMs). The chapter also presents collaborative work that combines
morphological and syntactic knowledge.

Chapter 4 presents a novel clustering algorithm that captures morphological
paradigms through syntactic categories. First, the chapter presents previous work
that makes use of syntactic information for morphological segmentation. Then,
following the motivation behind the contribution presented here, the proposed
algorithm is described in detail. Finally, the experiments and evaluation scores
are demonstrated for different languages.
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Chapter 5 demonstrates a novel probabilistic approach that adopts a hier-
archical structure to capture paradigms, along with a tree structure. The infer-
ence algorithm is described, and an explanation of how a novel word is segmen-
ted, using the learned tree structure. Finally, the chapter presents experiments
and evaluation scores along with a discussion about the results.

Chapter 6 demonstrates a novel joint model in which morphology and syn-
tax are learned cooperatively and simultaneously. Presenting previous work that
attempts to combine morphology and syntax in the same learning mechanism, the
description of the novel model is given in two sections, where the morphology
component and POS tagging component of the model are explained separately
for a clearer presentation. Finally, the inference algorithm is described, and the
chapter ends with a presentation of experiments and evaluation scores for differ-
ent settings that adopt various corpus sizes.

Chapter 7 presents a clustering algorithm for morpheme labelling, which la-
bels morphemes according to their functionalities. Describing allomorphs and
homophonous morphemes, two different types of morphemes, the chapter ex-
plains the hierarchical clustering algorithm that aims to capture allomorphs and
homophonous morphemes. Finally, the chapter presents experiments with differ-
ent settings (i.e. various features) and the evaluation scores.

Finally, Chapter 8 concludes the thesis with a brief summary of the con-
tributions made to the fields of morphological segmentation and POS tagging.
In addition, the chapter presents a discussion about future research directions in
both fields.



CHAPTER 2

Background

“He who loves practice without theory is like the sailor who boards ship without
a rudder and compass and never knows where he may cast .”

Leonardo Da Vinci

2.1 Introduction

In this chapter, the linguistic background and the machine learning background
will be presented to facilitate an understanding of the remainder of the thesis for
the reader. To this end, the chapter is organised into two sections: Section 2.2
presents the linguistic background that involves the general concepts in mor-
phology and syntax, also giving examples regarding the interaction between dif-
ferent linguistic levels (such as morpholoy-phonology, morphology-syntax etc.),
and Section 2.3 focuses on the machine learning background with a presentation
of widely-used machine learning methods that have been employed for learning
morphology and syntactic categories.

36
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Semantic level

Syntactic level

Morphological level

Phonology

Figure 2.1: Linguistic levels (Katamba & Stonham 2006)

2.2 Linguistic Background

This section focuses on the linguistic levels, of morphology and syntax, from
the linguistic perspective, by giving fundamental definitions in morphology and
syntax to ease understanding of the remainder of the thesis.

2.2.1 Morphology

Components of a language, such as syntax and semantics are established on the
constituents of morphology, which makes automatic acquisition of morphology
an area that has drawn a lot of attention in natural language processing. Katamba
& Stonham (2006) define the linguistic levels in a language as phonology, mor-
phology, syntax, and semantics; so that each word is first constructed by the
sounds, then the word structure is formed, words come together to form sen-
tences, and finally the meanings are established. Therefore, each level bears
information about the levels below it (see Fig. 2.1). Therefore, according to this
definition, to analyse the morphology in a language, for example syntactic and
semantic information could be useful.

Bauer (2003) depicts the history of the study of morphology from a linguist’s
point of view as follows:

The study of morphology has been influenced by all major groups of

linguists: by the philologists of the nineteenth century, by the struc-
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turalists in the twentieth century, by the transformational grammari-

ans in the second half of the twentieth century and by linguists with

other theoretical orientations as well.

This indicates that morphology has a profound position in the structure of
a language which has drawn the attention of researchers from different areas of
linguistics. The history of morphology acquisition starts with the theory of dis-
tributional characteristics of letters by Harris (1955) (see Chapter 3 for a deeper
discussion). A definition of morphology, which occupies a broad place in the
literature is needed:

Morphology studies words and their inner structures (Bauer 2003). It stud-
ies the organisation of subwords to constitute different word forms which are
semantically distinct from the original word. This distinction can also be syn-
tactically true.

Example 2.2.1. The word organise can be derived into different morphological
forms such as organisation, organising, organised, organisations, organisational,
organisation, disorganise, reorganise etc. All word forms bear a different mean-
ing whereas they can be either a noun, a verb, or an adjective.

In that sense, we can say that morphology enables the creation of new words
in a language. Each language has its own rules for forming words. Morphology
also studies these rules. Some languages have little or no morphology. Isolating
languages fall into this category. For instance, Chinese is an isolating language
in which words are mostly formed from syllables. In some languages, words
have complex internal structures, in which different units (see 2.2.1.1 for the
definitions of these units) come together and create words. These languages are
called agglutinative languages. Finnish and Turkish are instances of agglutin-
ative languages. Another group of languages fall into the fusional languages
group where different units with different meanings combine to create a word
form. Russian and Polish fall into this category. The following section will de-
scribe these units.
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2.2.1.1 Morphemes, Affixes, Roots, Stems etc.

The smallest meaning-bearing unit of a word is called a morpheme. Agglutin-
ative languages have a high number of morphemes in a word, while isolating
languages have few morphemes or even none.

Example 2.2.2. The word form “Türkçeleştiremediklerimizden mi?” in Turkish
which means “Is it the one which we could not translate into Turkish?” can be
divided into its morphemes as: Türk-çe-leş-tir-e-me-dik-ler-imiz-den mi?. As it
can be observed from the translation, each morpheme has a different meaning
such as past tense, the third person plural, the stem, negation etc.

Remark. The term morph is also used alternatively in the literature referring
to the physical form (a set of sounds - phonemes) of a morpheme (Katamba &
Stonham 2006). For example, the morph of car is /ka/.

Morphemes can be classified into two groups: free morphemes and bound
morphemes. Morphemes which can freely occur, without combining with other
morphemes are called free morphemes. Bound morphemes can only be part of a
word, and can only exist by combining with other morphemes.

Example 2.2.3. Pen, effect, sleep are free morphemes which can occur without
combining with other morphemes, whereas un-, de-, -ism are bound morphemes
which can only be a part of a word such as uninteresting, deactivate, determ-

inism. In the word houses, there are two morphemes, one of which is a bound
morpheme, -s and the other one is a free morpheme, house.

Free morphemes which cannot be analysed further, and to which the bound
morphemes are attached, are called roots (Bauer 2003). The difference between
a stem and a root is that roots cannot be divided further, whereas a stem can be
divided into more morphemes.

Example 2.2.4. The word blackboards is segmented into the stem blackboard

and bound morpheme -s, where the stem blackboard can be divided more to
induce the roots black and board.

Morphemes can be further subdivided into affixes with a distinct abstract
meaning (Haspelmath 2002). For example, in Turkish, there are 5 different case
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affixes (-i for accusative, -de for prepositional, etc.). Affixes have different names
according to the position they attach in the word. Suffixes attach to the end of a
stem, prefixes attach to the front of a stem. There also other affix types such as
infixes which are added within the stem, and circumfixes that are added as two
parts in different positions in a word (Bubenik 1999).

Example 2.2.5. In the word unintentionally, un- is a prefix, -ion , -al and -ly are
suffixes. In Bontoc, a language of Philippines, fikas (strong) becomes fumikas

(to be strong) with the infixation.

Base is a part of a word to which any affix is attached (Bauer 2004). Both
stems and roots are a special case of a base.

Example 2.2.6. The base of the word successful is success to which the affix -ful

is attached, another affixation1 is applied with the affix -ly which is added to the
base successful.

2.2.1.2 Allomorphs

Allomorphs are morpheme variants (or morpheme alternants) that differ in shape
from each other (Haspelmath 2002; Bauer 2004). The shape refers to the phon-
etic representation of a morpheme, this may only occur in pronunciation or in
written form, that yield a change in the phonetic representation.

Example 2.2.7. The English plural may be pronounced differently in different
words such as in cats as [s], in dogs as [z], and in faces as [az] although the
morpheme forms are written exactly the same2.

In some languages allomorphs are very common due to vowel harmony.
Vowel harmony is the adaptation of morphemes phonologically according to the
adjacent morphemes.

Example 2.2.8. Turkish is a language which has intensive vowel harmony, mak-
ing allomorphs very common. For example, the accusative case of a word might

1Affixation is to attach affixes to a base.
2The example is taken from Haspelmath (2002)
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Figure 2.2: Inflectional and derivational affixes (The figure is taken from Bubenik
(1999)).

have several different forms due to vowel harmony: [ı], [i], [u], [ü].

ı baraj dam baraj-ı the dam

i kent town kent-i the town

u koyun sheep koyun-u the sheep

ü üzüm grape üzüm-ü the grape

2.2.1.3 Inflectional and Derivational Morphology

Affixes are further analysed into two categories: inflectional and derivational
affixes. Inflectional affixes construct new word forms, whereas derivational af-
fixes create new words. Here another term arises to distinguish words from word
forms. Each word form that is constructed with an inflection belongs to the same
lexeme, whereas each word which is created by a derivation is a distinct word.

Example 2.2.9. The word forms buying, buys, bought belong to the same lexeme
buy. In other words, these word forms are generated by adding inflectional affixes
(in the example, tenses) to the same root. However, the word buyer is a different
lexeme that is generated by adding the derivational affix -er to the root.

Fig. 2.2 depicts how a grammatically correct word is generated through in-
flection and derivation. New lexemes are first constructed through the deriva-
tional process, and an inflectional affixation follows a derivation.
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2.2.2 Syntax

Syntax studies how sentences are formed through syntactic rules of a language.
The rules govern how words are ordered in a sentence. As Tallerman (1998)
remarks, every language has a syntax.

There have been several approaches to syntax which have different aspects:
relational grammar, categorial grammar, universal grammar, cognitive grammar
etc. One of the prominent theories in the literature has been universal grammar
which originates from the work of Chomsky (1965). According to the theory of
universal grammar, every language has its own syntax, however languages share
a common set of properties which are limited in the human brain, and that makes
them universal.

2.2.2.1 Syntactic Categories

Under syntactic rules, the main criteria that restricts the sequence of words are
their classes. These classes or syntactic categories (grammatical categories, parts-
of-speech etc.) consist of nouns, verbs and adjectives. These are the fundamental
syntactic categories that exist in almost every language. What changes in differ-
ent languages is the subcategories such as adverbs, determiners, conjunctions,
and so on.

According to the typical definition of these terms, a noun is either the subject
or the object in a given sentence, which is affected by an action; a verb is the
action or state in a sentence; an adjective is the word that describes a noun,
and a preposition links the words in a sentence by describing their relationship.
Although these definitions do not change from one language to another, the order
in the sentence may differ.

Example 2.2.10. In English, adjectives precede the nouns that they define; how-
ever, in Spanish, it is vice versa. For example, “a young boy” becomes “un chico

joven” in Spanish, where chico means boy and joven means young.

Therefore, even if a word is unknown in a sentence, it is possible to tell its
category just by looking at the sentence (even a small portion of the sentence that
surrounds the word, i.e. the context of the word).
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Example 2.2.11. : In the sentence, “The blue skafer is on the table.”, although
the reader might not know what skafer means, she will be able to tell that it is a
noun.

It is also possible to tell whether a word belongs to a category through a
substitution test (Manning & Schütze 1999). The substitution test shows that
if the words belong to the same syntactic category, they should be able to be
substituted for each other.

Remark. The context of a word is a vital clue to its syntactic category. In
Chapter 3, we present the prominent work in syntactic acquisition, where it will
be noticed that all the research makes use of the context of a word, to induce its
syntactic category.

2.2.2.2 Open-Class vs Closed-Class Syntactic Categories

Syntactic categories are traditionally divided into two classes: open class cat-
egories (or lexical categories) and closed class categories (or functional categor-
ies). Open categories are classes which accept many members or where the num-
ber of members is indefinite, however, the number of members of a closed cat-
egory is definite and do not receive any new members3. Open categories are nor-
mally universal categories such as nouns, adjectives, and verbs; whereas, closed
categories consist of conjunctions, determiners, prepositions, and so on.

2.2.3 Interaction Between Linguistic Levels

2.2.3.1 The Morphology-Phonology Interaction

Morphology is influenced by phonology, which determines the use of sounds
within morphemes. Allomorphs and vowel harmonisation are two samples of
this interaction between morphology and phonology.

Example 2.2.12. Another example is the indefinite article a/an in English. When
words begin with a consonant, a is used, whereas the article becomes an with
words that begin with a vowel (Katamba & Stonham 2006).

3The number of members of a closed category is said to be twenty to thirty at most (Emonds
1985)
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2.2.3.2 The Morphology-Syntax Interaction

The interaction between morphology and syntax is shaped by the inflection and
derivation of words. Inflection of a word is determined by the syntactic rules in
a sentence. In other words, the appropriate word form is chosen according to the
syntactic structure of the sentence.

Example 2.2.13. The word talk is exposed to affixation to form a grammatically
correct sentence. For example, it can be in the past tense form talked, progressive
form talking, present tense form talks etc. It should be noted by the reader that
all these forms belong to the same syntactic category, which is ‘verb’.

In contrast to inflection, derivation may change the syntactic category of a
word.

Example 2.2.14. The words personal, personally, personalise belong to differ-
ent syntactic categories (adjective, adverb, and verb respectively) which are gen-
erated from the root person.

2.2.3.3 The Morphology-Semantics Interaction

Obviously each word/word form bears a distinct meaning, therefore, yielding a
tight interaction between morphology and semantics. Independently from the
affixation type (either inflection or derivation) each word form has a semantic
analysis.

Example 2.2.15. Different affixations result in different meanings; such as in
Turkish, with the inflection, it is possible to embed the person, tense, pass-
ive voice, obligation, possibility, conditionality etc. within the word. For ex-
ample, gid-iyor-um (‘I am going’) has the meaning of a first person singular and
present continuous tense, whereas git-meli-y-di-ler (‘they must have gone’) has
the meaning of an obligation, a past tense, and a third person plural, and more
than that the word git-me-meli-y-se-m (‘if I should not go’) has the meaning of a
negation, an obligation, a conditionality, and a first person singular.
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2.3 Machine Learning Background

After giving the linguistic preliminaries, this section presents the basic computa-
tional preliminaries, which include the learning approaches that have been used
for NLP tasks, especially for morphology learning and POS tagging. All the ap-
proaches presented can be considered as a model learning where the actual data
needs to be represented by a model with a set of parameters. Learning refers
to the estimation of these parameters. The approaches diverge according to the
parameter estimation techniques employed.

Here, we mainly refer to the mathematical models. A mathematical model
typically describes real world phenomena in terms of mathematical terms. In
other words, real world phenomena, e.g. the behaviour of a system, are described
by using mathematical language.

Example 2.3.1. A sample model could be one which measures the total energy
of a body at rest, which is a well known equation in natural sciences:

E = mc2 (2.1)

which describes energy in terms of its mass and the speed of the light. Here
the equation consists of a variable and a constant to infer a quantitative measure
about the observed data. A variable is an attribute which may change for dif-
ferent types of problems; whereas a constant has a stable value which does not
change from one problem to another.

Moreover, we will refer to statistical models specifically. A statistical model
is a mathematical model in which everything is defined in terms of probability
distributions. The aim of modelling is either summarising the data, or making
predictions about future observations, which are defined as probability distribu-
tions.

Example 2.3.2. In a probabilistic model, a set of data that is known to be in
the form of a Gaussian distribution can have parameters, a mean and a variance
which need to be estimated through a learning procedure, where the aim is to
define the probability distribution that will summarise the data in a Gaussian
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form. The definition of a parameter is a quantity which describes the relation
between variables in the model.

A well-defined statistical model can be considered as a black box which out-
puts predictions based on the input. These predictions can be referred to as hy-
potheses.

Example 2.3.3. For a morphological analysis system, a hypothesis H1 refers to
any morphological segmentation of the dataD. Therefore, each hypothesis (each
distinct analysis of the data) defines a probability that yields to the probability
distribution p(H|D) where H includes all the hypotheses.

Various estimation methods with distinct principles have been used in the
literature when looking for the hypothesis that explains the data best. We will
describe the most prominent parameter estimation methods that have been used
for morphological segmentation and syntax acquisition.

2.3.1 Maximum Likelihood Estimate

Maximum Likelihood Estimate (MLE) outputs the hypothesis that leads to the
highest probability of data under this hypothesis. The probability of data under a
hypothesis is called the likelihood. Let the likelihood of the data under a model
with parameters θ be L(θ|D) where D = {x1, x2, . . . , xk}, that is:

L(θ|D) = p(D|θ) (2.2)

The MLE estimate θ̂ is given as:

θ̂ = arg max
θ
p(D|θ)

= arg max
θ
p(x1, x2, . . . , xk|θ)

= arg max
θ

k∏
i=1

p(xi|θ)

(2.3)

if we assume that data is distributed independently and identically (iid).
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The MLE employs only the observed data to find a good estimate of para-
meters. Therefore, model and empirical distributions are identical and have a
minimum divergence between. For this reason, maximum likelihood estimation
is also regarded as the minimisation of the Kullback-Leibler (KL) divergence.
The KL divergence is a non-symmetric measure that defines how different two
distributions are. It is computed as follows:

DKL(P ‖ Q) =
∑
x∈D

P (x) log
P (x)

Q(x)
(2.4)

Hence, the MLE can be redefined by using KL divergence between the model
and the empirical distribution:

θ̂ = arg min
θ
DKL(Pθ ‖ PD)

(2.5)

where Pθ denotes the model distribution and PD denotes the empirical distribu-
tion.

With a small set of data, the MLE may mislead us to an estimation which
is far from estimating the data generating probability distribution accurately.
Therefore, it is crucial to have sufficient data to have a decent estimate.

Concerning morphological segmentation, the hypothesis that outputs the ana-
lysis such that the stem is the full word and the suffix is an empty character leads
to a MLE. The reason is that the hypothesis that does not split words is exactly
the same as the empirical data, which makes the KL divergence between the
hypothesis and the empirical data zero4.

Example 2.3.4. Let the empirical data consist of words walked, talked, walking,

washed, washing. If we consider the hypothesis that outputs the words without
splitting, such that walked+∅, talked+∅, walking+∅, washed+∅, washing+∅ yields
a probability of (1

5
)5 for stems and 15 for suffixes, therefore a probability of

0.00032 for the hypothesis. However, if we consider another hypothesis that
splits the words such that walk+ed, talk+ed, walk+ing, wash+ed, wash+ing, the

4See Goldwater (2007) for more discussion about the same argument.
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probability of stems becomes (2
5
× 1

5
× 2

5
× 2

5
× 2

5
) and the probability of suffixes

becomes (3
5
× 3

5
× 2

5
× 3

5
× 2

5
); therefore the entire probability of the hypothesis

becomes 0.00018. The hypothesis that does not suggest any split points has got
a higher probability than the one which suggests split points. The difference
becomes more explicit with larger corpora.

2.3.2 Maximum A Posteriori Estimate

MLE does not involve a prior distribution over hypotheses. However, in some
cases, it is useful to define a prior probability distribution over hypotheses. The
prior probability distribution is defined before the data is considered. The prob-
ability which is defined before seeing the data is called the prior probability.
The likelihood and the prior probability determine the posterior probability,
which will lead us to a Maximum a Posteriori Estimate (MAP). The same for-
mulation that is given in Equation 2.3, but now including prior information about
the hypothesis is given as follows for the MAP estimate:

θ̂ = arg max
θ
p(θ)p(D|θ)

= arg max
θ
p(θ)p(x1, x2, . . . , xk|θ)

= arg max
θ
p(θ)

k∏
i=1

p(xi|θ)

(2.6)

Prior information could be either informative or non-informative. Inform-
ative prior gives expressive information about each hypothesis; whereas non-
informative does not give any significant information about the hypotheses. A
typical non-informative prior is a uniform distribution which assigns an equal
probability to each hypothesis.

Both ML and MAP estimates serve as an optimisation problem where a point
estimate is searched which will result in one solution. Using these two estim-
ates it is not possible to estimate a probability distribution over hypotheses or
parameters. Bayesian modelling introduces a different perspective from these
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two estimation methods by discovering the estimate in the form of a probability
distribution.

2.3.3 Bayesian Modelling

Bayesian modelling originates with the idea of having a probability distribu-
tion over the target instances (either parameter values, latent variables, or hypo-
theses). A Bayesian model can be either a parametric or a nonparametric statist-
ical model.

Bayesian modelling derives from Bayes’ theorem5:

p(θ|D) =
p(D|θ)p(θ)
p(D)

(2.7)

Bayes’ theorem defines an inverse probability distribution over the paramet-
ers using the likelihood and the prior probability. The inverse probability distri-
bution over parameters given the data is called the posterior probability. Pos-
terior probability defines how probable the parameter values for the observed
data are, by taking into account the likelihood and the prior probability. Here
the probability of the data which is computed through all possible values of the
parameters is used for normalisation. It is the marginal probability of data. Ac-
cording to the type of the parameter values, either discrete or continuous, it can
be calculated in two different ways. If the parameters are discrete:

p(D) =
∑
i

p(D|θi)p(θi) (2.8)

whereas if the parameters are continuous:

p(D) =

∫
p(D|θ)p(θ)dθ (2.9)

In addition to defining a posterior probability over the parameter values,
Bayes’ theorem, can also be used to update the parameter values, whenever new
data is seen. This way of learning the parameter values is called online learn-

5Bayes’ theorem was proposed by Thomas Bayes (c. 1702 –17 April 1761), an English
mathematician.
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ing where the data is continuously employed to improve the current parameter
values during learning. Another type of learning is batch learning, which takes
the entire data to perform the learning by fixing the parameter values at the end.
Whatever learning method is followed, the final aim is to estimate the parameters.

2.3.4 Minimum Description Length Principle

Another estimation method is Minimum Description Length (MDL) principle.
Differently from other estimation methods described earlier, the MDL is based
on information theory. The method was proposed by Rissanen (Rissanen 1978,
1989). The MDL performs reasoning based on information theory, by searching
for the hypothesis which will lead to the best compression of the data. Compres-
sion of the data is performed over the regularities in the data (Grünwald 2005).
Grünwald (2005) states that, the more compression is performed, the more is
learned from the data.

Example 2.3.5. If the MDL is applied to morphological segmentation, the hypo-
thesis which leads to the corpus that occupies the minimum space is chosen as the
output analysis of the data. While compressing the corpus, regularities (which
are the common morphemes) are determined, to minimise the data length. Let
a sample data set be D = {walked, talked, walking, talking}. If the data is
compressed as D = {walk, talk, ed, ing}, which has all the vital information
about the actual data, the true morphological analysis of the corpus is considered
to have been discovered.

It it essential to mention that the MDL principle can be defined using different
frameworks, such as a frequentist approach, or a Bayesian approach. In either
case, the main principle remains the same, which is to express the data in a
compact state.

Remark. More discussion about MDL is given in Section 3.2.1.2 where also
some examples from the literature are also presented.
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2.3.5 Integration over Parameters

Some estimation approaches which aim to estimate the parameter values are dis-
cussed above. Another perspective lies in an integration over all possible values
of the parameters without fixing them. Therefore, any inference of the latent
variables is carried out through an integration over the parameters without estim-
ating them. Imagine the latent variables are the segmentation points in each word
where S represents the set of all segmentations in corpus D:

p(S|D) =

∫
p(S|D, θ)p(θ|D)dθ (2.10)

where θ denotes the set of parameters. As seen in the equation, the parameters
θ are integrated out without being estimated. Therefore, the latent variables are
inferred from all possible values of the parameters, which eliminates the probab-
ility of having a biased estimation of parameters, by leading to a more robust and
correct inference.

If Bayesian modelling is adopted, prior probability over the parameters can
be defined. In the integration over parameters, it is also very convenient to use
conjugate priors which enable the integration procedure to become tractable.
Conjugate priors have a way of neutralising the form of the likelihood probability
distribution, in a way that the posterior probability distribution results in the same
form as the prior probability distribution.

For example, a Multinomial distribution has a conjugate prior in the form of
a Dirichlet distribution. Therefore any Multinomial-Dirichlet conjugation results
in a posterior distribution, with a Dirichlet distribution form. Let a Multinomial
distribution be defined on a set of possible outcomes {1, . . . , K} with paramet-
ers θ, and the prior probability distribution be defined for the parameters in a
Dirichlet distribution form with hyperparameters6 β:

6The parameters of a prior probability distribution are hyperparameters.
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xi ∼ Multinomial(θ)

θ ∼ Dirichlet(β)

(2.11)

Here the first line states that the variable xi is drawn from a Multinomial
distribution with parameters θ and the second line declares that the parameters θ
are drawn from a Dirichlet distribution with hyperparameters β. The definition
of the Dirichlet distribution follows the form:

p(θ|β) =
1

B(β)

K∏
k=1

θβk−1k

(2.12)

where B(β) is a normalising constant in a beta function form:

B(β) =

∏K
k=1 Γ(βk)

Γ(
∑K

k=1 βk)

(2.13)

where Γ is the gamma function. The gamma function is defined as Γ(t) =∫∞
0
xt−1e−xdx for positive complex numbers, whereas it becomes Γ(t) = (t−1)!

for positive integers.

The Multinomial distribution is defined on the outcomes x = {x1, . . . , xk}
as follows:

p(x|θ) =
N !∏K
k=1 nk!

K∏
k=1

θxkk

(2.14)

where N represents the total number of data points belonging to one of the
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possible outcomes:

N =
K∑
k=1

nk

(2.15)

Here, nk denotes the number of data points belonging to the outcome xk.

The first factor in Equation 2.14 provides the exchangeability over the vari-
ables, the second factor computes the probability of observing each outcome.

After giving the preliminaries about Multinomial and Dirichlet distributions,
we can now apply Bayes’ rule to define a posterior distribution over the paramet-
ers θ:

p(θ|x, β) ∝ p(x|θ)p(θ|β)

=
N !∏K
k=1 nk!

K∏
k=1

θnkk

∏K
k=1 Γ(βi)

Γ(
∑K

k=1 βk)

K∏
k=1

θβk−1k

=
N !∏K
k=1 nk!

∏K
k=1 Γ(βi)

Γ(
∑K

k=1 βi)

K∏
k=1

θnk+βk−1k

∝ Dirichlet(nk + βk − 1) (2.16)

As can be seen in Equation 2.16, the posterior probability distribution is in
a Dirichlet form, like the prior probability distribution, but with a new set of
parameters.

It makes it tractable to use conjugacy when making predictions from the data
through an integration:
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p(xN+1 = j|x, β) =

∫
p(xN+1 = j|x, θ)p(θ|β)dθ

=

∫
θj

Γ(N +
∑K

k=1 βk∏K
k=1 Γ(nk + βk)

K∏
k=1

θnk+βk−1k dθ

=
Γ(N +

∑K
k=1 βk∏K

k=1 Γ(nk + βk)

∫
θjθ

nj+βj−1
j

K∏
k 6=j

θnk+βk−1k dθ

=
Γ(N +

∑K
k=1 βk∏K

k=1 Γ(nk + βk)

∫
θ
nj+βj
j

K∏
k 6=j

θnk+βk−1k dθ

=
Γ(N +

∑K
k=1 βk∏K

k=1 Γ(nk + βk)

Γ(nj + βj + 1)
∏K

k 6=j Γ(nk + βk)

Γ(N +
∑K

k=1 βk + 1)

=
nj + βj

N +
∑K

k=1 βk
(2.17)

As we can see in the second line, the posterior distribution of the parameters
which is derived in Equation 2.16 is used as a prior probability distribution over
the parameters. The fifth line is derived by considering the probability distribu-
tion must sum up to 1. Therefore, the inverse of the normalising constant in the
Dirichlet probability distribution (given in Equation 2.13) is inserted as the result
of the integration. The final result is interpreted by a rich-get-richer behaviour,
where the observation xN+1 has a higher probability of belonging to a category
if the number of previous observations in that category is greater in number. It is
noteworthy to mention that Equation 2.17 has derived the posterior mean.

It is also possible to consider this as a mixture model with K components,
where each component is made up of nk data points. According to Equation 2.17,
components attract more data points in proportion with the number of the data
points they have (see Section 2.3.6 for a further discussion). If we take the infinite
limit of the number of components, by considering the probability of creating a
new mixture component, the final equation is modified accordingly:
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p(xN+1 = j|x, β) =


nj

N+
∑K
k=1 βk

j ∈ K
βj

N+
∑K
k=1 βk

otherwise
(2.18)

With the new perspective for having a new category, either the new data point
is assigned to an existing category, with a probability that is proportional to the
number of data points in that category, or it is assigned to a new category with
a probability in proportion to the hyperparameter defined for that category. The
perspective gives a natural smoothing by leaving some of the probability mass for
the unseen events. The perspective can be applied to any type of model selection
problem, such as determining the number of hidden states in a hidden Markov
model7, determining the number of latent variables in a latent variable model,
etc. (Orbanz & Teh 2010). This leads to non-parametric Bayesian modelling
which will be explained thoroughly, below.

Remark. In Section 2.3.7 Dirichlet process mixture models shall be explained
in depth by deriving the Equation 2.18 from a mixture model perspective.

2.3.6 Bayesian Non-Parametric Modelling

The term non-parametric causes serious confusion in the field by suggesting
the idea that there are no parameters in the model. However, non-parametric

means that there are an infinite number of parameters. In other words, in a non-
parametric model the number of parameters can grow with the data. In real life,
data is very complicated. Therefore, Bayesian non-parametric models present a
more realistic and flexible framework to capture the irregularities in the data by
permitting flexibility in the parameter space.

A well-known approach in Bayesian non-parametric modelling is the Dirich-
let Processes. A Dirichlet process defines a probability distribution over an in-
finite number of objects (Orbanz & Teh 2010). Imagine we have a space of
partitions A = {A1, . . . , AK}; each consisting of a set of data points. Each draw
from a Dirichlet Process is a distribution over a variable number of partitions

7See Section 3.3.2 in Chapter 3 for the definition of a hidden Markov model (HMM).
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Figure 2.3: Plate diagram of a Dirichlet process: DP (α,H)

which may also vary in size. In addition, probability distributions belonging to
each partition are Dirichlet distributed:

(G(A1), . . . , G(AK)) ∼ Dirichlet(αH(A1), . . . , αH(Ak)) (2.19)

Here α is a concentration parameter, which determines the variance between
the probability distributions of each partition, whereas H is a base distribution
and is the mean of the probability distributions. A summarised definition presen-
ted in support of an example, where the data points x = {x1, . . . , xN} are gener-
ated from a Dirichlet process DP (α,H) with a concentration parameter α and a
base distribution H (see Figure 2.3):

xi ∼ G

G ∼ DP (α,H)

(2.20)

We can apply the same integration procedure to integrate out the probability
distribution G for the estimation of the latent variables or future observations, as
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discussed in Section 2.3.5. Here we apply it for a future observation xN+1 = j

(Blackwell & MacQueen 1973):

p(xN+1 = j|x, α,H) =
1

N + α

N∑
i=1

I(xi = j) +
α

N + α
H(j)

=
nj + αH(j)

N + α
(2.21)

Here I is an identity function that outputs 1, if xi = j, otherwise the function
outputs 0.

This leads us to a well-known perspective in Dirichlet process which is the
Chinese Restuarant Process (CRP). Imagine a restaurant that consists of an in-
finite number of tables with an infinite number of seats at each table where each
customer chooses a table and sits down(see Figure 2.4). At each table, a different
type of meal is served. The customer chooses an occupied table with a probab-
ility which is proportional to the number of customers who are already sitting at
the table, whereas she chooses an empty table with a probability proportional to
a defined constant α. Therefore, tables which have a great number of customers
attract more customers according to the rich-get-richer principle. A particular
setting of a table with N customers has a joint probability of:

p(x1, . . . , xN) = p(x1)p(x2|x1)p(x3|x1, x2) . . . p(xN |x1, . . . , xN−1

=
αH(x1)

α

(αH(x2)||1)

1 + α

(αH(x3)||1||2)

2 + α
. . .

(αH(xN)||1||2| . . . )
N − 1 + α

=
αK

α(1 + α)(2 + α) . . . (N − 1 + α)

K∏
i=1

H(xi)
K∏
i=1

(nxi − 1)!

=
Γ(α)

Γ(N + α)
αK

K∏
i=1

H(xi)
K∏
i=1

(nxi − 1)!

(2.22)

In Equation 2.22, the second line chooses one of the factors depending on
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Figure 2.4: An illustration of the Chinese Restaurant Process. The new customer
xN+1 sits at a table which is already occupied with a probability proportional
to the number of customers sitting at the table; which is 3
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respectively. The customer sits at a table which is empty with a probability
proportional with the concentration parameter; which is αH(xN+1)

11+α
.

whether the table is occupied or has just been created. Therefore, for each table,
at least one creation is performed which forms the second factor and the third
factor in the last equation. Once the table is created, factors that represent the
number of customers sitting at each table are chosen accordingly, which forms
the last factor in the last equation.

The Chinese Restaurant Process explains a Dirichlet process from a restaur-
ant perspective. There are also other perspectives that explains a Dirichlet pro-
cess, i.e. the stick-breaking process (Sethuraman 1994; Ishwaran & James 2001),
and the Pitman-Yor process (Pitman 1995; Pitman & Yor 1997).

2.3.7 Mixture Models

In real life, data is not so simple that it can be explained as a group of data
in which the members have similar properties, so that this can be considered
as one class. In contrast, real life data is generally complex and made up of
various subpopulations that have items sharing similar properties within the same
subpopulation. The target of mixture models is to find out about the underlying
populations. To this end, mixture models have been applied to various types
of problems due to their capability to overcome the complexity of the data. The
applied problems include density estimation, clustering, latent class analysis, etc.

A simple mixture model with k mixture components {c1, . . . , ck} where each
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of them having a density of fi, has the following form:

fi(x) =
N∑
j=1

πifi(xj) (2.23)

where πi denotes the weight of the mixture component. This is a simple finite
mixture model, where the number of components is fixed. It is also possible to
apply it for an infinite number of components. Imagine that the weights of the
clusters follow a Multinomial distribution with parameters θ. In addition, a prior
distribution is defined for θ in a Dirichlet form with hyperparameters β (follows
Rasmussen (2000)):

πi ∼ Multinomial(θ)

θ ∼ Dirichlet(β)

(2.24)

If Multinomial-Dirichlet conjugation is applied while integrating out the para-
meters θ (see 2.3.5, we get the following joint distribution over the weights:

p(π1, . . . , πN |β) =

∫
p(π1, . . . , πN |θ1, . . . , θk)p(θ1, . . . , θk|β1, . . . , βk)dθ1 . . . θk

=
Γ(β)

Γ(N + β)

k∏
i=1

Γ(nci + β/k)

Γ(β/k)

(2.25)

where nci represents the number of elements in ci. The conditional distribution
of a component indicator, given the rest of the components, is defined as follows,
which is to be used for sampling (following Equation 2.17):

p(ci = j|c−i, β) =
n−i,j + β/k

N − 1 + β
(2.26)

From here, it is possible to define the model as an infinite mixture model
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where k ← ∞. If the infinite limit of Equation 2.26 is taken, the following
equations are obtained depending on whether an existing mixture component is
used, or a new component is created respectively:

p(ci = j|c−i, β) =
n−i,j

N − 1 + β
(2.27)

p(ci = j|c−i, β) =
β/n

N − 1 + β
(2.28)

Remark. Infinite mixture models are briefly mentioned in Section 2.3.5 and
the equation obtained here is also derived, to explain the Multinomial-Dirichlet
conjugation from a mixture model perspective.

After giving the definition of a mixture model, the Dirichlet Process Mixture
Models (DPMMs) will now be explained. DPMMs (Antoniak 1974; Ferguson
1983) are like infinite mixture models where a model is composed of an infinite
number of mixture components. Each mixture component of a Dirichlet process
mixture model is drawn from a Dirichlet process (see Section 2.3.6 for a detailed
discussion on Dirichlet processes). Imagine we convert the model explained
above into a DPMM:

G ∼ DP (β,G0)

πi ∼ G

yi ∼ F (πi)

(2.29)

In the modified model, each mixture component’s parameters πi are drawn
from a mixture distributionGwhich is generated by a Dirichlet processDP (β,G0)

with base distribution G0 and concentration parameter β. Members of each mix-
ture component are drawn from the component’s distribution F (πi).
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2.3.8 Inference

Inference of the parameters is an essential part in a learning mechanism. Para-
meters of a model or if needed, latent variables in the data, are inferred using
various approaches, such as MAP or ML (discussed in Section 2.3.2 and Sec-
tion 2.3.1), which give a point estimate for the parameters as mentioned above.
However, sometimes it is needed to guess the true nature of the parameters by es-
timating their posterior probabilities. A thorough Bayesian inference requires an
estimation of the distributions over the possible values of the parameters instead
of a point estimate.

One common way to estimate the parameters’ posterior distributions is to
draw random samples from their posterior distributions. Drawing random samples
from a distribution is called sampling. Markov Chain Monte Carlo (MCMC)
methods constitute a big portion of the sampling algorithms in machine learning,
and will be presented shortly in the following section.

2.3.8.1 Markov Chain Monte Carlo (MCMC)

MCMC algorithms are designed to find out about complex probability distribu-
tions. They are usually used in Bayesian statistics where the underlying pos-
terior probability distribution is unknown. These probability distributions are
generally posterior distributions that need to be modelled. In an MCMC al-
gorithm, samples are drawn from a sequence of probability distributions where
the samples form a Markov chain. A Markov chain is made up of a sequence of
states. Let the sequence of states be X = {X1, X2, . . . , Xn}. With the Markov
property, each state is dependent only on the previous state:

p(Xn+1 = x|X1 = x1, . . . , Xn = xn) = p(Xn+1 = x|Xn = xn) (2.30)

With a random sampling from the distribution that is being estimated, the
Markov chain should converge to a distribution over states, which is called an
equilibrium. Gibbs sampling and Metropolis-Hastings algorithm are two prom-
inent examples of the MCMC algorithms.
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2.3.8.1.1 Metropolis-Hastings Algorithm
The Metropolis-Hastings algorithm was first proposed by Metropolis et al.

(1953) for the Boltzman distribution. The algorithm was enhanced for other
types of distributions by Hastings (1970). The algorithm is based on random
draws from a series of distributions, where after a number of iterations, the dis-
tribution from which samples are drawn becomes the target distribution. Each
sample that is drawn is subjected to an acceptance-rejection rule, where the
sample might be added to the Markov chain or might be rejected, and there-
fore another new sample is drawn. Let a Markov chain consist of states X =

{. . . ,X(t−2),X(t−1),X(t)} at various time intervals. To determine the following
stateX(t+1)

1 in the next time interval (t+1), a new state is generated that only de-
pends on the current state X(t). The transition is based on a proposal distribution
q(X|X(t)

1 ). The new state X(t+1)
1 is accepted if:

α <
p(X

(t+1)
1 )

p(X
(t)
1 )

q(X
(t)
1 |X

(t+1)
1 )

q(X
(t+1)
1 |X(t)

1 )
(2.31)

where α is a random value drawn from α ∼ Uniform(0, 1). Otherwise, the
system stays in the same state X(t)

1 and a new sample is drawn to be added to the
Markov chain.

Accepting the new state, although its probability is lower than the previous
state, makes the sampler mix well. If the new state is not accepted in either case,
then it is rejected. New states are suggested incrementally, until the distribution
from which the new values are sampled converges to the target distribution.

One advantage of using the Metropolis-Hastings algorithm is that any integ-
ration that comes within a normalisation constant disappears due to the propor-
tion of the probabilities of the two states. Therefore, the algorithm is convenient
in problems where it is computationally expensive to calculate a normalisation
constant through an integration.

The proposal distribution should be chosen to ensure that the Metropolis-
Hastings algorithm produces an ergodic Markov chain. The ergodicity of a
Markov chain assures that it converges to a stationary distribution after a number
of iterations. An ergodic chain must be aperiodic and irreducible. A state in a
Markov chain is called aperiodic if the greatest common divisor of return times to
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the state is 1. If all the states in a Markov chain are aperiodic, the chain is called
aperiodic. Irreducibility of a chain means that in any state it must be possible to
reach any other state within a limited number of moves.

2.3.8.1.2 Gibbs Sampling
Gibbs sampling is a special case of Metropolis-Hastings algorithm. In contrast

to the Metropolis-Hastings algorithm, Gibbs sampling accepts every new state to
reach an equilibrium state. Every new sample in the Gibbs sampling is drawn
from the distribution of the sample conditioned on the rest of the parameters or
random variables of interest. Let X = {X(t−1)

1 , X
(t−1)
2 , X

(t−1)
3 , . . . , X

(t−1)
n } be a

set of parameters that needs to be estimated through Gibbs sampling. The new
value of each parameter is drawn from the conditional distribution on the rest of
the parameters, such that:

X
(t)
1 ∼ p(X

(t)
1 |X

(t−1)
2 , X

(t−1)
3 , X

(t−1)
4 , . . . , X(t−1)

n )

X
(t)
2 ∼ p(X

(t)
2 |X

(t)
1 , X

(t−1)
3 , X

(t−1)
4 , . . . , X(t−1)

n )

X
(t)
3 ∼ p(X

(t)
3 |X

(t)
1 , X

(t)
2 , X

(t−1)
4 , . . . , X(t−1)

n )

X(t)
n ∼ p(X(t)

n |X
(t)
1 , X

(t)
2 , X

(t)
4 , . . . , X

(t)
n−1)

(2.32)

Until the joint distribution of the parameters p(X1, X2, . . . , Xn) converges
to an equilibrium distribution, Gibbs sampling continues to sample new values
for the parameters. The reader should note that in Gibbs sampling only one
change can be applied at a time. Therefore, in the example given above, only one
parameter’s value can be updated at a time. There are other types of sampling
algorithms, such as block sampling, where a set of parameters can be sampled
together.

A difference between the Metropolis-Hastings algorithm and Gibbs sampling
is the need for a normalisation. As mentioned above, in the Metropolis-Hastings
algorithm, normalisations can be ignored due to the division operation. However,
Gibbs sampling requires a normalisation, to draw from a conditional distribution
which must be normalised beforehand.
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2.4 Conclusion

In this chapter, essential background knowledge is presented to be referred through-
out the the thesis. The background knowledge is presented in two main sections.

The first section presents some fundamental linguistic knowledge. As the
thesis mainly focuses on morphology and syntax, a general overview of the two
fields is given from the linguistic perspective. The overview consists of the basic
terms and their definitions. In addition, the relationship between morphology
and syntax, as well as the connection between morphology and other linguistic
fields is given.

The second section presents some statistical machine learning methods which
are either exploited in the presented works in this thesis, or used for morphology
learning and POS tagging in the field frequently. The machine learning back-
ground consists of most prominent parameter estimation methods. Following the
descriptions of MLE and MAP estimation, the Bayesian modelling perspective is
presented along with non-parametric Bayesian modelling, where most prominent
examples of non-parametric Bayesian modelling are described, i.e. the Dirichlet
Process, Dirichlet Process mixture models, and the Chinese restaurant process.
In addition to the estimation methods, it is also discussed about how to perform
inference from a model without estimating the parameters, but integrating out
the parameters.



CHAPTER 3

A Literature Review of Unsupervised Morphology

Learning and POS Tagging

“The only source of knowledge is experience.”
Albert Einstein

3.1 Introduction

Morphology learning and POS tagging are two longstanding areas in natural
language processing. This chapter presents previous research on unsupervised
learning of morphology and POS tags. The literature review consists of only
unsupervised approaches since the scope of this thesis consists of only unsuper-
vised learning.

65
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3.2 A Literature Review of Unsupervised Morpho-
logy Learning

In this section, previous research on unsupervised morphology learning is presen-
ted by classifying the approaches according to the type of the mathematical
model used. Mathematical models are used to define beliefs about any partic-
ular problem mathematically. Defining the beliefs mathematically, we can test
how a system will react and what outputs it will produce in terms of mathem-
atical equations. In morphology learning, a mathematical model produces the
morphological analysis of a word as an output of a series of mathematical calcu-
lations.

Mathematical models can be classified using different criteria. However, in
this thesis, the classification will be made according to the predictability of the
model, classifying models into: deterministic models or stochastic models.

3.2.1 Deterministic Models

Deterministic models define variables in a deterministic fashion, where no ran-
domness is engaged. The deterministic models used for morphological segment-
ation in the literature, are categorised into two main approaches: Letter successor
variety models and information theoretic models.

3.2.1.1 Letter Successor Variety (LSV) Models

Harris (1955) is the source of the inspiration for the contributions in this cat-
egory. Harris introduces the distributional characteristics of letters within a word.
He identifies morpheme boundaries using letter successor counts following each
letter. If the number of the successor types increase significantly at a position
within an utterance, then a new morpheme boundary is introduced.

Example 3.2.1. Within the utterance talked, the number of letter successors is to
be low until the letter k, however, this number is to rise after the letter k because
of the number of possible morphemes that could follow the word (i.e. -ed, -s,
-ing etc).
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Figure 3.1: Word split points in a LSV model

If words are inserted into a tree, branches occur in the nodes that reserve
potential split points. An example is given in Fig. 3.1. In the example, re- is a
potential prefix whereas -s, -ed and -ing are potential suffixes in the tree.

Hafer & Weiss (1974) follow the same idea using statistical properties of
successor and predecessor letter successor varieties to define a segmentation
point in a word. As well as using a cutoff value to decide where to define a
segmentation point like Harris, Hafer & Weiss (1974) improve the original idea
by also using the entropy of the successors and predecessors analogously to the
counts.

Déjean (1998) uses a morpheme dictionary that consists of the most frequent
morphemes in a corpus, identified by letter successor properties. The segmenta-
tion process is performed by a morpheme dictionary.

Bordag (2005) uses the same approach by incorporating letter successor vari-
eties with context information to eliminate noise. Bordag employs context sim-
ilarity to analyse similar words together. This eliminates a significant amount of
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noise.

Example 3.2.2. If the words early and clearly are analysed together, the num-
ber of different letters preceding the word early increases because of the word
clearly. However, these two words are contextually distinct and need to be ana-
lysed independently.

Bordag (2006) places letter successor varieties on a trie1 classifier to gen-
eralise the results for novel words. He inserts analysed words on a Patricia trie
(Morrison 1968) with the frequencies of the morphemes. If a novel word is to
be analysed, the trie is searched from the root until the correct branch in the trie
is found which gives a split for the word. Using tries helps to handle exceptions
as well. For example, a trie with the words clear+ly, strong+ly and early can
classify hundreds of words ending with -ly, but still remembers one exception
which is early.

Bordag (2008) improves the previous approach to analyse a concatenative
morphology. To this end, the existing model is combined with a compound iden-
tifier that finds the compounds in a language such as German.

3.2.1.2 Information Theoretic Models

Among information theoretic models, only method used, to our knowledge, is
the Minimum Description Length (MDL) principle for morphology learning. Al-
though the principle can also be defined in a probabilistic framework, it will be
introduced as an information theoretic model, due to its inspiration from inform-
ation theory.

The model is extensively referred to in statistical models. The length of a
probability measure p(x) in bits is the negative binary logarithm − log2 p(x) of
the measure. The Bayesian rule can easily be applied for the MDL principle.

1A trie is a sophisticated tree structure where strings are usually stored. The word comes from
another word re(trie)val. Searching tries is efficient since it allows searching through prefixes
and suffixes.
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To maximise the posterior probability of a model θ given data x is equivalent to
minimising the description length of the model:

arg min
θ

[− log2 p(θ|x)] =
− log2 [p(x|θ)p(θ)]
− log2 [p(x)]

∝ − log2 [p(x|θ)p(θ)]

Brent et al. (1995) encode a list of words using binary sequences as a com-
bination of stems and suffixes, where the stems and suffixes are kept in tables.
The morphological analysis of the lexicon which yields the minimum code is
chosen to be the final segmentation. In another approach, in addition to stem
and suffix codes, another set of codes using syntactic categories are employed.
Similarly, the size of the coded lexicon is minimised.

Linguistica (Goldsmith 2001, 2006) is one of the state of the art systems
in unsupervised morphology learning. Goldsmith introduces the morphological
structures signatures to encode the data. A signature represents the inner struc-
ture of a list of words that have similar inflective morphology. The morphology
of a corpus is represented in three lists: an affix list, a stem list, and a signature
list (see Figure 3.2). The affix and the stem list contain the letters, whereas the
signature list only contains pointers to stems and affixes2. The aim is to find the
morphology that will analyse the corpus in its most compact state. This postu-
lates finding the minimum description length of the corpus and the morphology:

DescriptionLength(Corpus,Model) = length(Model) +

[− log2 (p(Corpus|Model))] (3.1)

Here, the same notation as Goldsmith is used, so as not to cause any con-
flict between two descriptions. Stems will be represented by t, affixes will be

2Goldsmith explains the reason for using the pointers (in the signatures) because of the less
space requirement of the pointers in comparison to the letters. Another reason explained by
Goldsmith is that the compactness of the signatures is the issue which will define a compact
corpus (Goldsmith 2001).
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Signature 1:

  ptr(the)           ptr(NULL)

Signature 2:

  ptr(pen)          ptr(NULL)
  ptr(paper)       ptr(s)

Signature 3:

  ptr(walk)         ptr(NULL)
  ptr(work)         ptr(ed)
  ptr(talk)           ptr(s)
                         ptr(ing)

Signature 4:

  ptr(approv)       ptr(e)
  ptr(organis)      ptr(es) 
  ptr(imagin)       ptr(ing)

{

1. NULL
2. ed
3. ing
4. e
5. s
6. es

Affixes: 6
1. the
2. pen
3. paper
4. walk
5. work
6. talk
7. approv
8. organis
9. imagin

Stems: 9

Signatures: 4

}}

}}

}

{

{ }

{

{

{

}}{ {

Figure 3.2: A sample morphology from Linguistica, that can generate the words:
the, pen, pens, paper, papers, walk, walked walking, walks, work, worked, work-
ing, works, talk, talked, talking, talks, approve, approves, approved, organise,
organises, organised, imagine, imagines, imagined.

represented by f , and signatures by σ. The corpus will be notated by W . As
the generation of a word requires a signature, an affix, and a stem; Goldsmith
defines the probability of each word using the probability of its signature × the
probability of its stem given the signature × the probability of its affix given the
signature:

p(w = t+ f) = p(σ)p(t|σ)p(f |σ) (3.2)
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With this definition, the size of a word becomes the sum of the size of the
pointer to its signature, stem, and affix. Goldsmith uses the information theoretic
measure to calculate the size of a pointer, which is the inverse logarithm of a
probabilistic value (Ming Li 1997). Goldsmith determines the probabilities with
the relative frequencies in the corpus. Therefore, the length of a pointer to a stem
becomes:

〈ptr(s)〉 = − log2

[s]

[W ]
(3.3)

where [s] denotes the number of occurrences of a stem s, and [W ] is the length
of a corpus. This gives the length of a pointer to a stem in bits. The length of
a pointer to an affix and a signature are calculated analogously. The length of a
corpus is determined over all words in the corpus. The length of a morphology
is the sum of the lengths of all lists, plus information about how many items
each list consists of. The length of a stem in a list is determined by the letters
that it comprises. The length of a letter is log2 26 for a language with 26 letters.
Therefore, the length of a stem is estimated by:

〈s〉 = λ(〈T 〉) +
∑

t∈Stems

len(t) (3.4)

where len(t) is the summation of the lengths of letters that the stem t consists of
and λ(〈T 〉) denotes how many items the stem list consists of. The length of a list
of affixes and signatures are calculated analogously.

Goldsmith also defines a recursive morphology, in which complex stems are
employed. To this end, a flag for each stem is placed in the stem list to determine
whether the stem is a simple stem or a complex stem with a triple pointer to a
signature, stem, and affix. This modification in the definition of a stem enables
the analysis of words such as [organis-ation]-s where the stem organis-ation is
decoded as a complex stem that consists of a pointer to a signature which includes
the stem organis and the affix -ation.

Goldsmith’s morphology definition employs some heuristics for the initial
analysis of a corpus. Given the initial analysis of the corpus, the description
length of the corpus and the model is minimised.
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Morfessor (Creutz & Lagus 2002) is another state of the art model in the
field. The model has several versions that adopt different methods. Morfessor
Baseline (Creutz & Lagus 2002) engages the MDL principle to minimise the
length of a codebook3 and a corpus. Using a cost function, the compact repres-
entation of a corpus is inferred through:

Cost = Cost(Corpus) + Cost(Codebook)

=
∑
i∈D

− log p(mi) +
∑
j∈M

k × l(mj)

where mi denotes the morphemes. Here the corpus is generated by morphemes
in the codebook. The length of a corpus is computed using the maximum likeli-
hoods of the morphemes, whereas the length of a codebook is the summation over
all morphemes’ lengths l(mj) where k is the number of bits to encode each let-
ter. Morfessor Baseline deploys a recursive segmentation where each discovered
morpheme is analysed recursively as long as it improves the cost. Morfessor
Baseline does not make use of signatures, instead a codebook is used for all
morphemes that are used to generate the entire corpus.

Remark. The other members of the Morfessor family are not described here
as they diverge from the type of the model adopted. Morfessor ML (Creutz &
Lagus 2004) and Morfessor MAP (Creutz & Lagus 2005a) are presented in Sec-
tion 3.2.2.1, and another member of the Morfessor family that employs the prior
probabilities of the morpheme lengths and morpheme frequencies is presented in
Section 3.2.2.2, as a statistical approach.

Argamon et al. (2004) introduce a novel recursive algorithm using the MDL
principle to segment the words recursively by suggesting multiple split points in
a word.

3A codebook consists of the morphemes that will generate a corpus.
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Kazakov & Manandhar (Kazakov 1997; Kazakov & Manandhar 2001)
develop a hybrid approach. The hybrid approach is a combination of genetic
algorithms and inductive logic programming (ILP). A MDL bias is introduced
to genetic algorithms, as a fitness function. First, an initial segmentation is per-
formed by the genetic algorithms. Subsequently, by using the initial segmenta-
tion, rules are learned by a decision list to generalise the rules for novel words.
In a later approach, the authors also engage semantic similarity.

3.2.1.3 Other Approaches

There have been other attempts in the field, which use techniques which do not
belong in the categories reviewed earlier.

Neuvel & Fulop (2002) propose an algorithm based on the word-based the-
ory of morphology (Ford et al. 1967). In this approach, instead of inducing the
morphemes, morphological relations between the words are defined to learn new
word forms.

Keshava & Pitler (2006) derives a new algorithm called RePortS which
builds trees with the letters of the lexicon. A forward tree is used for the suf-
fixes, whereas a backward tree is used for the prefixes. Using trees, Keshava &
Pitler (2006) defines some criteria based on the strings’ conditional probabilities
on the tree, to identify the suffixes and prefixes by giving them scores. Finally,
words are segmented using these scores.

Demberg (2007) improves the original RePortS algorithm for a complex
morphology, by adding an extra step to the algorithm, to find a candidate stem
list.

Lavallée & Langlais (2009) use formal analogies to find the relation between
4 word forms, such as {walking, speaker, walks, speaks}. However, due to the
complexity of the searching analogies, it is considered to be impractical for large
lexicons.
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Monson et al. (2008) follow a paradigmatic approach that discovers candid-
ate suffixes and stems to build paradigms. In their approach, candidate suffixes
are any final substrings of words that are found iteratively through a corpus. Once
partial paradigms are built, they are merged by clustering. Finally, words are seg-
mented by stripping off suffixes that occur in paradigms.

Remark. Monson et al. (2008) derive the probabilistic version of the ap-
proach, which will be reviewed in the following section.

Last but not least, Lignos et al. (2009) employ Base and Transforms model
(Chan 2008) that is based on the discovery of the base and derived forms of
words. The discovery is performed through transforms, which are orthographic
modifications that are applied on a word to derive another form of the same
word. A transform given by (s1, s2) removes the suffix s1 from the word and
adds another suffix s2 to derive another form of the word. Lignos (2010) extends
the previous version by introducing base inference model which learns the base
forms when the base form of a word does not exist in the corpus. The new model
handles also compounding during learning by decomposing a word into its com-
ponent words which yield the highest geometric mean of the component frequen-
cies, whereas Lignos et al. (2009) handle compounding as a post-processing.

3.2.2 Stochastic Models

Stochastic modelling has randomness while defining the data, on the contrary to
deterministic modelling. Statistical modelling also has randomness in the pro-
duction of outputs. In contrast with deterministic approaches, models in this
category suggest stochastic solutions to the problems. In the literature, sig-
nificant attention is given to statistical modelling. Statistical models that are
used for morphology learning will be classified into four groups: probabilistic
frameworks, generative models, log-linear models and contrastive estimation.
Although in some categories, there is only one attempt in terms of morphology
learning, I find it noteworthy to classify them in a separate category.
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3.2.2.1 Probabilistic Frameworks

There is a remarkable amount of work using a probabilistic framework for mor-
phology learning.

Creutz & Lagus (2002) propose another baseline member of the Morfessor
family that employs Maximum-Likelihood (ML) estimation rather than a MDL
criterion. The model is optimised by Expectation Maximisation (EM). Initially
words are split randomly. Iteratively, words are split by drawing a morpheme
length from a Poisson distribution. Splits are either accepted or rejected accord-
ing to the rejection criteria which has two conditions; rare morphemes and one
letter morphemes are rejected. This model is similar to the MDL version of the
baseline model (Creutz & Lagus 2002) that is mentioned in Section 3.2.1.2. The
difference being the ML version does not use any prior probability for the mod-
els.

Creutz & Lagus (2004) propose Morfessor Categories ML. In this version
of Morfessor, again ML estimation is adopted. Moreover, differently from the
baseline ML model, a first order Markov chain is used to assign probabilities to
each possible split of a word form. In the model, each segmented morph belongs
to one of these categories: prefix, suffix or stem. Within a bigram model, the
probability of a segmentation of a word w into the morphemes m1,m2, . . . ,mk

is computed as follows:

p(m1,m2, . . . ,mk|w) = [
k∏
i=1

p(Ci|Ci−1)p(mi|Ci)]p(Ck+1|Ck) (3.5)

where p(Ci|Ci−1) is the transition probability from one category to another. Once
the category is selected, a morpheme is emitted from the selected category with
the probability p(mi|Ci). To learn the probabilities in the model, words are ini-
tially segmented by applying the Morfessor Baseline Creutz (2003) (see Sec-
tion 3.2.2.2 for further description). Once the words are segmented initially,
initial category membership probabilities p(Ci|mi) are estimated by using the



76
A Literature Review of Unsupervised Morphology Learning and POS

Tagging Chapter 3

perplexity measure. The perplexity measure expresses the predictability of the
preceding and following words of a given word. The EM algorithm is used to
estimate the probabilities in each iteration after re-tagging the words, by using
the Viterbi algorithm until the probabilities converge. This work proves that the
dependencies between the morphemes are crucial in morphology learning.

Creutz & Lagus (2005a) develop Morfessor Categories MAP (maximum a
posteriori) introducing prior information for the lexicon. In this approach, each
morpheme is defined using two parameters: meaning and form. The form of a
morpheme refers to the substructure of the morpheme (made of a string of letters
or by two submorphemes) and the meaning of a morpheme consists of the length,
frequency and perplexity of the morpheme as defined in the previous members
of the Morfessor family (Creutz 2003; Creutz & Lagus 2004).

Christian Monson (2009) extend ParaMor (Monson et al. 2008) by assign-
ing a likelihood for each morpheme boundary before applying the segmentation
using paradigms. In order to assign a likelihood for each morpheme boundary, a
tagger is trained through the segmentation results of the baseline ParaMor (Mon-
son et al. 2008). The tagger tags each split point within a word as a morpheme
boundary if the split point corresponds to a morpheme boundary or the split point
is tagged as the continuation of a morpheme, which means that it is not a morph-
eme boundary. The probabilistic ParaMor has a higher accuracy compared to
the baseline ParaMor. Moreover, the authors combine the results of the baseline
ParaMor with Morfessor (Creutz 2006) to train the tagger in another experiment.

There are other contributions using a probabilistic framework. Some of these
approaches use a nonparametric Bayesian framework:

Goldwater et al. (2006) introduce a two stage model in which initially words
are generated by a generator component and then the frequencies of the words
are estimated by an adaptor, to create a power-law distribution. The adaptor runs
a Pitman-Yor process by locating the words in tables in a rich-get-richer fashion.
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Snyder & Barzilay (2008) develop another non-parametric Bayesian model
that makes use of bilingual parallel corpora to induce frequently occurring morph-
emes (abstract morphemes) within parallel short phrases, instead of inducing the
morphemes in each language individually. The model is a hierarchical Bayesian
model where the defined distributions are drawn from Dirichlet processes. Al-
though it has only been tested on bilingual corpora, the model can also be exten-
ded to induce morphemes across multiple languages.

3.2.2.2 Generative Probabilistic Models

Differently from a discriminative model, a generative model defines a joint prob-
ability distribution between variables and data. It is based on intuitions about
how the data is generated. However, a discriminative model turns to a condi-
tional probability distribution of a group of target variables, conditioned on the
observed data. For the problem of morphological segmentation, a typical gen-
erative model defines a joint probability distribution between the possible seg-
mentations of the corpus and the corpus itself.

Creutz (2003) proposes another member of the Morfessor family adopting
a generative probabilistic model. This version of the Morfessor is proposed to
overcome the over-segmentation problem in the Baseline Morfessor. The pro-
posed model uses prior information about morpheme lengths and morpheme
frequencies, within a generative probabilistic model framework. The model is
based on the probabilistic model by Brent (1999). The generative story begins
by determining the number of morphemes in the lexicon according to a uniform
distribution. Morpheme lengths are then drawn from a gamma distribution, and
each morpheme is formed by letters. Letter probabilities are the maximum like-
lihoods of each letter in the corpus. Finally, morpheme frequencies are defined
by Mandelbrot’s correction of Zipf’s formula (see Baayen (2001)). Once the
lexicon has been generated, the corpus is generated with the morphemes. The
optimal model is searched following a similar recursive search algorithm which
is used in the Baseline Morfessor (Creutz & Lagus 2002). Results show that the
usage of prior information increases the accuracy of the algorithm.
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Chan (2006) suggests an algorithm based on the Latent Dirichlet Allocation
(LDA) which is also a generative probabilistic model, where the collections of
the data are generated through a three-level hierarchical Bayesian model (Blei
et al. 2003). When it is applied to topic discovery, the three levels consist of
documents, topics and a vocabulary. Chan applies a similar approach by repla-
cing the data collections with the suffixes, stems and paradigms, where the latent
classes are the paradigms to be induced.

3.2.2.3 Log-Linear Models

In contrast to the directed generative models such as HMMs, log-linear models
(also known as maximum entropy models, or exponential models) make use of
the dependent features in the data. Log-linear models were first used for several
supervised tasks (for machine translation by Och & Ney (2002), for sentence
boundary detection by Reynar & Ratnaparkhi (1997), parsing by Johnson et al.
(1999) and Johnson (2001), etc). They have also been used for several unsuper-
vised tasks (POS tagging by Smith & Eisner (2005), coreference resolution by
Poon & Domingos (2008)). However, Poon et al. (2009) is the primary work
that uses log-linear models for unsupervised morphological segmentation; their
model observes morphemes and their contexts as dependent features.

Poon et al. (2009) develop a log-linear model where the joint probability
between the corpus and all possible segmentations is defined. Since it is not pos-
sible to derive all the pairs belonging to this joint probability, a normalisation
constant Z is estimated to normalise the joint probability. A few techniques are
suggested earlier to compute the normalisation constant. Smith & Eisner (2005)
apply contrastive estimation by searching around the neighbourhood of the data,
whereas Rosenfeld (1997) and Poon & Domingos (2008) use sampling to com-
pute the normalisation constant.

Poon et al. (2009) use both contrastive estimation and sampling to compute
the normalisation constant. The neighbourhood is searched by transposing pairs
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of letters to create invalid words. Gibbs sampling is used to find the optimum
segmentation. In the model, also a prior information that is inspired by the MDL
model which controls the number of morpheme types in the lexicon and the
morpheme tokens in the corpus is used.

3.2.3 Evaluation of Morphology Segmentation Algorithms

The evaluation of morphological segmentation requires a gold standard to com-
pare with the suggested analyses, as do most natural language processing tasks.
However, the evaluation process is not as complicated as the evaluation of other
NLP tasks such as POS tagging (see 3.3.4). The reason is that the results in
a morphological segmentation consist of only the split points of the words that
match to a gold standard. However, in addition to matching the split points to a
gold standard, any identified feature (such as ambiguity, morphophonology etc.)
should also be rewarded. Another difficulty comes with obtaining a gold stand-
ard; morphology learning is a troublesome task itself that requires many issues
to be handled; such as ambiguity of words, morphological complexity of lan-
guages, stem changes etc. When all these issues are considered, it is noticeable
that obtaining a gold standard is a demanding task itself.

Spiegler & Monson (2010) define the features of a good evaluation metric as:

• Correlating well with other NLP tasks.

• Being computationally easy.

• Being robust.

• Being informative about the strengths and weaknesses of the system.

• Being able to account for the linguistic structure of the language, such as
morphophonology, allomorphy, syncretism, and ambiguity.

The evaluation methods for morphological segmentation can be investigated
using two categories: methods based on a comparison with a gold standard and
methods based on embedding of the segmentation results in other NLP tasks to
evaluate how the segmentations improve the performance of the task.
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3.2.3.1 Evaluation Using a Gold Standard Segmentation

For morphological segmentation, precision, recall and f-score are predominantly
used as evaluation scores, like most machine learning tasks. Precision evaluates
how many of the suggested split points match up with the gold standard split
points, whereas recall evaluates how many of the split points in the gold standard
are suggested by the system. In other words, precision states the validity of
the morphemes suggested and recall states whether the desired morphemes are
found. F-score combines the two scores which is usually the harmonic mean of
precision and recall:

F -score =
1

1/Precision+ 1/Recall
(3.6)

For evaluations of some work, a full gold standard that consists of a segment-
ation of all words is used (Goldwater et al. 2006; Poon et al. 2009), whereas in
some work, only a part of the output words are used to do a random compar-
ison with the gold standard segmentations to produce a generalised score. For
the former evaluation method, either a highly accurate morphological analyser is
used (for Arabic such as Habash & Rambow (2005), or some heuristics are used
for the construction of a gold standard (for English, see Goldwater et al. (2006).
Morpho Challenge (Kurimo et al. 2010) utilises the latter evaluation method,
where only a small set of gold standard words are used to evaluate the resulting
segmentation. In the gold standard, words are given with their segmentations
which consist of morpheme labels and morphemes, such as:

ablatives ablative:ablative A s:+PL
abounded abound:abound V ed:+PAST
carriages carri:carry V age:age s s:+PL
detraction detract:detract from V ion:ion s
entitling entitl:entitle V ing:+PCP1

Here morpheme labels represent some information about the word forms; i.e.
plural, past tense form, participle etc. To measure precision, a group of words
are sampled from the resulting word list. For each morpheme in the list, another
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word is found that includes the same morpheme. This will create a word pair
list. Finally, word pairs are checked in the gold standard to see whether the pairs
share a common morpheme. For each true guess, one point is given. The score
is computed by dividing the total number of received points by the number of
sampled words. Recall is measured analogously to precision, where the word
pairs are sampled from the gold standard, and comparisons are made through the
resulting segmentations.

Remark. The gold standard datasets and the evaluation method described in
(Kurimo et al. 2010) are used to evaluate the models described in Chapter 4 and
Chapter 5.

Apart from these evaluation metrics, Spiegler & Monson (2010) propose
a novel evaluation metric called EMMA which does not perform a one-to-one
comparison with the gold standard data, but instead finds the maximum match-
ing between the suggested segmentations and the gold standard segmentations
through an optimal maximum matching (in a bipartite graph) which is based on
graph theory.

3.2.3.2 Evaluation through Other Tasks

Another way of evaluating the results of a morphological segmentation is to em-
bed the suggested segmentations into a real world NLP task which utilises the
analysed words. In addition to the traditional evaluation metric which is de-
scribed earlier, Morpho Challenge (Kurimo et al. 2011b) performs information
retrieval and machine translation tasks. In both tasks, words are replaced with the
word segmentations. In information retrieval, queries are replaced with their seg-
mentations, whereas in machine translation, task the source language is replaced
with its segmentations. Finally, the tasks are evaluated using average precision
and BLEU4 score respectively.

4BLEU (bilingual evaluation understudy) score is an improved version of precision that can
account for multiple translations.
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3.3 A Literature Review of Unsupervised POS Tag-
ging

The previous work on unsupervised part-of-speech (POS) tagging can be classi-
fied into two main categories regarding the methods been used: clustering and
Hidden Markov Models (HMMs). Some work on unsupervised POS tagging
considers tagging as a clustering problem and clustering algorithms are used
to group the words into syntactic categories. From a similar perspective, some
works consider the task as a sequence labelling problem.

Principally, Harris’s distributional hypothesis (Harris 1955) has a great influ-
ence on most of the approaches:

”Words of similar parts of speech can be observed in the same syntactic con-

texts.”

Harris points out the importance of the contextual similarity of words that
have similar linguistic roles, such as nouns, adjectives etc.

Lamb (1961) pioneers in syntactic category induction originating from ideas
on the distributional hypothesis. He makes use of the left and right neighbours
of the words to measure a token-neighbour (token-left neighbour, token-right
neighbour) ratio to construct horizontal and vertical groupings (H-groups and
V-groups).

3.3.1 Clustering

A group of approaches consider POS tagging as a clustering problem, where the
words are clustered into syntactic categories that each represents a POS tag.

Brown et al. (1992) employs an information theoretic approach where the
word clusters yielding the greatest average mutual information between adjacent
classes are discovered. To this end, initially each word is assigned to a separ-
ate cluster. Then the cluster pair which yields the minimum loss in the average
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mutual information is merged. The process is repeated until a set of clusters is
found. Finally, each word is replaced into another cluster, if the resulting cluster
leads to a greater average mutual information. The algorithm terminates if no
more moves are possible, which leads to greater average mutual information.

Some of the earlier work represents the words in terms of their context vec-
tors, where the words in the neighbourhood are used to measure the similarity
between words. To this end, vector space models are widely used to represent
statistics regarding the contexts of the words.

Finch & Chater (1992) consider the two preceding and the two following
words that are in the most frequent 150 words as the context. To measure the lin-
guistic similarity between context vectors, a Spearman Rank Correlation Coeffi-
cient is used. Using the similarity measure, hierarchical agglomerative clustering
is performed to capture the linguistic categories in a hierarchical structure.

Schütze (1993) uses context vectors that keep the counts of the context words
in a variable size of window. Because of the unfeasibility of such large vectors,
Singular Value Decomposition (SVD) (see Deerwester et al. (1990)) is used to
reduce the dimensionality in the concatenated context vectors. In the reduced
space, nearest neighbours are induced to form individual clusters by Buckshot
clustering (Cutting et al. 1992). Schütze (1993) also uses neural networks to
cluster ambiguous words which are poorly clustered by the Buckshot clustering.

Schütze (1995) improves the previous work also using the contexts of the
context words, in addition to the context words itself. Another difference in this
approach is that the context vectors are used separately instead of being com-
bined in to a single context vector.

Clark (2000) follows the same distributional hypothesis within a distribu-
tional clustering algorithm. Differently from the others, he defines the contexts
probabilistically where each word defines a probability distribution over all pos-
sible contexts. Instead of using context words, the clusters of the context words
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are used to eliminate the sparseness problem. Kullback-Leibler (KL) divergence
is used to measure the divergence between the clusters, to decide which merges
will be appropriate in each step.

Remark: We adopt the clustering algorithm in Clark (2000) for morpholo-
gical segmentation (see Chapter 4). A detailed explanation of the algorithm is
given in the chapter concerned.

Freitag (2004) employes an information theoretic co-clustering algorithm
(Dhillon et al. 2003) to induce the POS tags of the words. The algorithm makes
use of both words and their contexts in a similar fashion to the other approaches
given in this section. Words and their contexts are replaced in the clusters to
find the clusters which will maximise the mutual information between the words
and the contexts in a particular cluster. Freitag also developes a Hidden Markov
Model (HMM) tagger (see Section 3.3.2) to tag low frequency words.

Biemann (2006b) employes a graph based clustering algorithm to induce
POS tags. One advantage of the graph based clustering algorithms is that the
number of clusters does not need to be initially defined. In a graph cluster-
ing algorithm, the number of clusters is discovered while the graph is formed.
Biemann uses two graphs; one for high frequency words where there is sufficient
contextual information and one for medium and low frequency words where only
likelihood statistics are been used. In his approach, to assign the classes, he
uses the Chinese Whispers (CW) graph-clustering algorithm (see Biemann et al.
(2007) for a more detailed definition of the algorithm and its application to nat-
ural language). A graph is constructed for the high frequency words by using the
context similarity of the words to draw an edge between two words. A threshold
is used which employs the cosine similarity of the words. Another graph is con-
structed by using the log-likelihoods and the number of common neighbours
shared between the words. Both graphs are partitioned by the CW algorithm
which produces some syntactic categories. However, to enlarge the dataset for
tagging, Biemann defines a trigram model in which the joint probability of the
tags and the words are maximised in a corpus.
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3.3.2 Hidden Markov Models

Rather than using clustering methods to group words into syntactic categories,
this set of studies uses hidden Markov models (HMMs). These approaches em-
ploy either dependencies between words or contextual information similar to the
clustering approaches given earlier. The difference is that these approaches in-
vestigate the POS tagging problem as a formulation of a Markov chain. Markov
chains are greatly used as statistical models. A Markov chain defines a random
process which consists of random variablesX = {X0, X1, X3, . . . }with discrete
values s0, s1, s3, . . . where the following state depends only on the current state,
but not on previous states visited:

p(Xt+1 = s|X0 = s0, X1 = s1, . . . , Xt = st) = p(Xt+1 = s|Xt = st) (3.7)

It is also possible to define a history of size m for each state where the chain
becomes a Markov chain of order m:

p(Xt = st|Xt−1 = st−1, Xt−2 = st−2, . . . , X1 = s1) =

p(Xt = st|Xt−1 = st−1, Xt−2 = st−2, . . . , Xt−m = st−m) (3.8)

Markov chains are the basis for HMMs. An HMM is a Markov chain whose
states are hidden, and states can only be observed through the observations which
are emitted from each state. A sample HMM is given in Figure 3.3. The given
HMM involves states X = {X1, X2, X3, X4}. There is a probability assigned to
each transition from one state to the following one. These probabilities are called
transition probabilities. Transition probabilities are given as a = {a1, a2, a3} for
the sample HMM. There is also a list of observations which are emitted from
each state, such that Y = {Y1, Y2, Y3, Y4}. Each observation is obtained with an
emission probability assigned to each state to produce that observation. These
probabilities are called emission probabilities and given as b = {b1, b2, b3, b4} on
the figure.

In POS tagging, the states of the HMM become the possible tags. For a
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X1 X2 X3 X4

Y1 Y2 Y3 Y4

a1 a2
a3

b1 b2 b3 b4

Figure 3.3: An HMM

sequence of states, the most probable sequence of tags is produced by the HMM.
The ultimate goal of an HMM is to find the model that maximises the probability
of a given text. The text is stated as a sequence of states and words are emitted
from these states.

Merialdo (1994) employs a triclass HMM where two previous words are
considered as the history (see Fig. 3.4). This is a standard trigram model for POS
tagging which has influenced many studies in POS tagging. In a trigram model,
each tag is only dependent on the tags of the previous two words. Therefore, the
transition probability becomes:

p(ti|wi−1, ti−1, wi−2, ti−2, . . . , w1, t1) = p(ti|ti−1, ti−2) (3.9)

Each word is emitted from a tag with the emission probability:

p(wi|wi−1, ti−1, wi−2, ti−2, . . . , w1, t1) = p(wi|ti) (3.10)

which only depends on the tag itself. Two different types of training are ap-
plied in Merialdo (1994), relative frequency training (RF) and maximum likeli-
hood (ML) training. In relative frequency training, probabilities of tag trigrams
and word-tag pairs are estimated based on the data that has been tagged so far;
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whereas with the ML training, the model that maximises the probability of a
corpus is searched. In the relative frequency training, distributions are interpol-
ated with a uniform distribution to discard the zero probabilities. The Forward-
Backward algorithm (Leonard E. Baum 1967; Jelinek 1976; Bahl et al. 1983) is
used for training the HMMs, when using the ML estimation for the parameters.
Once the parameters are estimated, the data is tagged by a Viterbi tagger to find
the most probable sequence of tags in a text. The author shows that if a small
amount of tagged data is used for training, then the ML training performs with
better accuracy whereas if more tagged data is available RF training gives more
accurate results.
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Figure 3.4: Trigram HMM tagger

Banko & Moore (2004) use a contextualised HMM tagger which also em-
ploys the part-of-speech tags of the previous and following words to tag the cur-
rent word. This helps to disambiguate the tag of a word that can have multiple
tags (see Figure 3.5).

In a contextualised HMM tagger, the transition and emission probabilities of
the contextualised HMM tagger become:

p(ti|wi−1, ti−1, wi−2, ti−2, . . . , w1, t1) = p(ti|ti−1, ti−2) (3.11)

Each word is emitted from its tag with the emission probability:
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Figure 3.5: Contextualised HMM tagger

p(wi|wi−1, ti−1, wi−2, ti−2, . . . , w1, t1) = p(wi|ti−1, ti, ti+1) (3.12)

Banko & Moore (2004) suggest constructing a filtered lexicon which does not
include noisy part-of-speech assignments. In addition to these, a slightly differ-
ent training approach is employed by the authors. In the standard HMM taggers,
the transition and emission probabilities are estimated simultaneously, however,
in the suggested training algorithm, this procedure has been made sequential,
first the transition probabilities are estimated, while the emission probabilities
remain fixed, then the emission probabilities are estimated keeping the transition
probabilities fixed.

Kupiec (1992) proposes a trigram HMM tagger which employs category
classes rather than considering words individually. The common words are still
represented individually, but in this new approach, the rest of the words are
defined in equivalence classes that consist of words which have the same part-
of-speech. His experiments indicate that using word classes contributes to the
robustness of the tagger.

Kupiec (1992), Merialdo (1994), and Banko & Moore (2004) focus on con-
textual dependencies to increase the accuracy of the suggested taggers, whereas
other researchers (Church 1988; Cutting et al. 1992; Smith & Eisner 2005) focus
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on parameter estimation techniques.

3.3.3 Other Approaches

While most algorithms use EM for the estimation in the taggers (Church 1988;
Cutting et al. 1992), some researchers (Johnson 2007) show that the EM al-
gorithm does not give a good estimation in real world problems i.e. learning
language constituents. In POS tagging, the number of word tokens per tag is
skewed. However, the EM algorithm assigns a similar number of word tokens to
each POS tag. To overcome this problem, Bayesian approaches are used defining
the prior probabilities for skewed distributions.

Johnson (2007) uses a Bayesian approach that uses a first order Markov
model (also known as bitag model) where two different estimation techniques
are compared: ML estimation with EM and Bayesian estimation with Gibbs
sampling and variational Bayes. In ML formulation, each transition probability
is generated from a discrete Multinomial distribution θt which defines a distri-
bution over POS tags for an assigned number of POS tags, and each emission
probability is generated from also a discrete Multinomial distribution φw which
defines a distribution over all words wi for a number of words given their POS
tags.

ti|ti−1 ∼ Multinomial(θt)

wi|ti ∼ Multinomial(φw)

(3.13)

Johnson uses the Forward-Backward algorithm (a special case of Expectation-
Maximisation (EM) algorithm) to estimate the model parameters (θ, φ). Exper-
iments demonstrate that the EM algorithm converges slowly to a local maxima
that needs a great number of iterations. In his second set of experiments, he de-
rives the model in a Bayesian framework where the prior probabilities are defined
for the model parameters:
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θt ∼ Dirichlet(αt)

φt ∼ Dirichlet(αw)

ti|ti−1 = t ∼ Multinomial(θt)

wi|ti = t ∼ Multinomial(φt)

(3.14)

Here αt controls the sparsity of the transition probabilities through a Dirich-
let distribution, and αw controls the sparsity of the word emission probabilit-
ies through another Dirichlet distribution. Therefore, unlike the EM estimation,
the emission probabilities are not close to a uniform distribution and define a
skewed distribution, which is controlled by the hyperparameter αw. The same
property is also true for the state-to-state transition probabilities, which are also
skewed with the hyperparameter αt. For the Bayesian estimation, Johnson uses
Gibbs sampling and Variational Bayesian inference (Jordan et al. 1999). Vari-
ational Bayesian inference gives an approximate inference, defining bounds on
the probabilities. The experiments show that Variational Bayesian performs bet-
ter than the Gibbs sampling. In addition to this, the EM algorithm performs a
comparably higher many-to-1 accuracy whereas it has a lower 1-to-1 accuracy
(evaluation methods are discussed in Section 3.3.4).

Goldwater & Griffiths (2007) develop a second order HMM where similarly
to the first order HMM of Johnson (2007), Dirichlet priors are defined for the
Multinomial parameters of the transition and emission probabilities:

θt ∼ Dirichlet(α)

φt ∼ Dirichlet(β)

ti|ti−1 = t, ti−2 = t′ ∼ Multinomial(θt)

wi|ti = t ∼ Multinomial(φt)

(3.15)
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Parameters are estimated using Gibbs sampling. The authors perform two
different sets of experiments, one for the fixed values of the hyperparameters, and
one with a hyperparameter inference. The experiments show that the Bayesian
approach improves the performance, allowing skewed distributions for POS tags.
It should be noted that although Goldwater & Griffiths (2007) use an unsuper-
vised approach, a dictionary is engaged to determine the possible POS tags that
can be emitted from each word.

It should be noted that, although Goldwater & Griffiths (2007) and Johnson
(2007) use HMMs for POS tagging, because of the Bayesian approach adopted,
they are investigated in a different section to make a discrimination between
earlier standard HMM taggers.

In addition to the Bayesian approaches, there are also other attempts that
make use of other estimation techniques.

Smith & Eisner (2005) use a novel unsupervised estimation technique called
contrastive estimation which is an alternative to EM. The authors employ con-
ditional random fields (Lafferty et al. 2001). In the learning of a probabilistic
model, the aim is to shift the probability mass from unseen events to observed
events. However, in contrastive estimation the aim is also to decide from where
to take this probability mass. To decide, positive examples are used to derive
negative examples. This is done by perturbing the positive examples to search
the neighbourhood around them to generate negative examples. For example, to
search through the neighbourhood of the syntax of a given sentence, a word can
be removed, or any two adjacent words can be transposed. Both of these pro-
cesses give ungrammatical sentences, which can be used as negative examples
from which some of the probability mass can be shifted. The authors show that
contrastive estimation gives a better accuracy than the EM algorithm.

Van Gael et al. (2009) propose an infinite HMM for POS tagging where the
number of hidden states are estimated through a non-parametric Bayesian ap-
proach. In earlier HMM based models (Goldwater & Griffiths 2007; Johnson
2007), the number of POS tags is initially defined. However, it is difficult to set
the number of hidden states. Van Gael et al. define a hierarchical Pitman-Yor
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process, where the model is considered to be an infinite mixture model, with
the components being in a hidden state. The authors employ one extra layer to
define a common distribution for all hidden states, to be able to emit any word
from any state. Otherwise, for each hidden state, there would be a separate out-
put set which differs from the other states. The suggested model employs a beam
sampler (which is a block Gibbs sampler) that alternately samples hyperparamet-
ers, states and outputs. The authors suggest an evaluation method which uses the
produced POS tags for a real task in natural language processing, shallow pars-
ing. Principally, using POS tagging in shallow parsing improves the accuracy
of the shallow parsing. The shallow parsing results support this, with a higher
accuracy with the use of POS tags. However, the performance of the model is
not as high as a supervised model, but the scores are still at an acceptable level.
A similar evaluation method is also used in Biemann (2006a).

Naseem et al. (2009) propose multilingual part-of-speech tagging. Multilin-
gual learning incorporates various languages in the learning scheme. Multilin-
gual learning of language draws attention to many natural language problems:
word sense disambiguation (Diab & Resnik 2002; Bhattacharya et al. 2004), ma-
chine translation (Chen et al. 2008; Och & Ney 2001), grammar induction (Kuhn
2004), morphological segmentation (Snyder & Barzilay 2008). Incorporating
different languages helps reduce the ambiguity, which is an important issue in
POS tagging. For example, it is possible to disambiguate the word can, used as
a modal verb or as a noun, by looking at the same sentence in another language.
Naseem et al. (2009) propose two different types of the model: a merged node
model, which combines the tag structures from an aligned pair of words in two
different languages, and a latent variable model which constructs a model with
latent variables that make use of monolingual tag structures through a set of lat-
ent variables shared between different languages. The first model can function
for bilingual data whereas the second model can function for more than two lan-
guages. Naseem et al. (2009) evaluate the models for parallel corpora in 8 dif-
ferent languages: Bulgarian, Czech, English, Estonian, Hungarian, Romanian,
Serbian, and Slovene.
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3.3.4 Evaluation of the POS Tagging Algorithms

Evaluation of the unsupervised POS tagging is not very straightforward due to
the lack of a qualified method for mapping the resulting tags to the gold standard
tags. The main difficulty lies in the number of tag types that differ in the res-
ulting hidden states and in the gold standard. Even having the same number of
tag types with the gold standard, a method is required to find out which tag type
correspond to which tag in the gold standard to be able to evaluate the results.
Different approaches are proposed to tackle the evaluation issues in POS tagging.
Some of the common ones are given below:

Many-to-1 accuracy: This type of accuracy maps each resulting tag to a
gold standard tag which has the highest frequency of words assigned with the
result tag. Therefore, it is possible to assign multiple result tags to each gold
standard tag, while some gold standard tags might be left unassigned to any of
the resulting tags. Clark (2003) argues that many-to-1 accuracy gives the highest
accuracy if each word is tagged with a different POS tag. In fact, many-to-1 ac-
curacy increases with the number of resulting POS tags.

One-to-one accuracy: This evaluation method is proposed by Haghighi &
Klein (2006). The method maps each resulting tag to only one gold standard tag.
Nevertheless, if the number of tag types differ in results and in gold standard,
again it makes the evaluation demanding. If the number of resulting tag types is
higher than the number of tag types in the gold standard, only a few of the tags
will mapped to the gold standard tags, and the rest are left unassigned, therefore
yielding a low accuracy.

Variation of Information (VI): Meilǎ (2003) proposes an information theor-
etic measure. Unlike the accuracy measures, VI does not aim to map the resulting
tags to the gold standard tags, but instead, it measures how different two clusters
are. To this end, the summation of the conditional entropies of each clustering is
measured, which gives the variation of information VI:
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V I(C, T ) = H(C|T ) +H(T |C) (3.16)

where C is the resulting clustering and H(C|T ) is the conditional entropy of
the resulting clustering conditioned on the gold standard clustering T , whereas
H(C|T ) is vice versa measured. Unlike the accuracy measures, the lower the
VI, the closer the resulting clustering is to the gold standard clustering. There-
fore, VI becomes zero, if the two clusterings are the same. Goldwater & Griffiths
(2007) use this type of measure to evaluate their Bayesian model.

Substitutable F-score: Frank et al. (2009) proposes a completely different
measure which does not require a gold standard. The measure is based on the
substitutability of different words that share the same frame. A frame is defined
as a context which consists of a pair of words having a word between. If the
words occurring in the same frame are assigned the same POS tag, the resulting
tag is regarded as true. To this end, S-clusters, which consist of the frames in
a corpus, are constructed, and each of them is mapped to a word that occurs in
that frame. In addition to this, C-clusters are also created where each consists
of the resulting clusters. Finally these two clusters are compared to measure the
precision SP and the recall SR:

SP =

∑
s∈S
∑

c∈C |s ∩ c|(|s ∩ c| − 1)∑
c∈C |c|(|c| − 1)

SR =

∑
s∈S
∑

c∈C |s ∩ c|(|s ∩ c| − 1)∑
s∈S |s|(|s| − 1)

(3.17)

A few of the evaluation measures that are commonly used are discussed here.
It has to be noted that there are other measures to evaluate POS tagging results
(cross-validation (Gao & Johnson 2008), V-measure (Rosenberg & Hirschberg
2007), V-beta (Van Gael et al. 2009)).
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3.3.5 A Literature Review to Cooperative Learning of
Morphology and Syntax

Morphology and syntax are two nested fields where each has an influence on
the other. The relationship between morphology and syntax, although, true for
morphologically complex languages, where the morphology of a word is a salient
feature for its syntactic role in the word, it is also true for morphologically poor
languages, where the context is also a useful feature to analyse the morphology
of a word. Therefore, this relationship has been used for morphology learning in
which the syntactic features are considered, and also it is used for the induction
of the syntactic categories where the morphological features are considered.

Example 3.3.1. The rightmost suffix of a word is a useful feature to determine
the part-of-speech of a word (Hu et al. 2005). For example, most adverbs end
with the suffix -ly, whereas the suffix -ed usually belongs to a verb in the past
tense in English. Therefore, knowing either the syntax, or the morphology will
help discover the other one.

3.3.5.1 Morphology Learning by Using Syntax

Hu et al. (2005) improve the Linguistica (Goldsmith 2001) by adding syntactic
information along with the morphology of the words within the same MDL
framework. To this end, another list is inserted for the part-of-speech tags in
addition to the list of stems, affixes, and signatures. Therefore, the entire de-
scription length of the model becomes the addition of the lengths of four lists.
An illustration of the modified model is given in Fig.3.6.

In addition, Hu et al. (2005) propose an algorithm to collapse signatures.
To this end, signature transforms, which consist of the signature-affix pairs are
defined. Signatures are collapsed using context vector similarities, where the
context vectors consist of high frequency words and the signature transforms.

Remark. We also propose an algorithm that employs the syntactic clusters to
build paradigms for morphological segmentation. The details of the algorithm
are presented in Chapter 4 ( see also Can & Manandhar (2009)).
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Stems Signatures Affixes POSs

t1

t2

t3

tm

...

σ1

σ2

σn

...

f1

f2

f3

fi

...

π1

π2

π3

πj

...

Figure 3.6: The derived model from Linguistica that employs the parts-of-speech
of words as a separate list (Hu et al. 2005).

3.3.5.2 Learning Syntactic Categories Using Morphology

Clark (2003) employs morphological information to apply a distributional clus-
tering to infer the part-of-speech tags of rare words. As Clark implies, POS
tagging is not an easy task for especially infrequent words. To this end, he em-
ploys morphological information as well as the context of the words to enable the
tagging process for infrequent words. Clark applies Ney-Essen clustering (Ney
et al. 1994; Martin et al. 1998) for syntactic clustering, and combines the cluster-
ing with morphological information. Therefore, morphologically similar words
are grouped into the same syntactic cluster. Frequency information is also added
to the model. The reason is that the frequency of a word is also an indicator of
its part-of-speech.

Example 3.3.2. A rare word is likely to be a noun, proper noun etc rather than a
pronoun or article (Clark 2003).

Abend et al. (2010) suggest a POS tagging algorithm through prototype dis-
covery. Prototypes are words which frequently represent each POS tag cluster.
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In the algorithm, the authors define scores regarding the context of the words.
These scores include the right/left adjacency score, which defines the tendency
of a word to be a neighbour (the context word) of another word, and the inter-
changeability score, which defines the replacability of a word with another. De-
fining the scores in a vector, prototype clusters are formed by an average linkage
clustering algorithm that clusters the words through the average scores that each
cluster has. This procedure is repeated until the distance of the clusters become
larger than a manually set threshold. Having the prototype clusters, unclustered
words are mapped to one of the clusters with the minimum distance. The authors
extend the algorithm further by using morphological segmentations of the words
which are obtained from Morfessor (Creutz & Lagus 2005a). Morphological
signatures are constructed, merging the words with the same endings within the
same cluster. The average linkage clustering algorithm is applied in two steps,
first, words are clustered through the morphological signatures, then the resulting
clusters are clustered further. Similarly, unclustered words are mapped into one
of the clusters to which they have a minimum distance.

3.3.5.3 Cooperation with Other Types of Linguistic Features

As can be seen from the literature, morphology and syntax have a close relation-
ship, which enables them to be discovered in collaboration. Nevertheless, the
relationship between linguistic constituents is not limited to this. For example,
morphology also plays an important role in semantics, which enables an invest-
igation of the meaning of a word by analysing its morphological segmentation.
These relationships are usually mutual. Therefore, it is also possible to do a mor-
phological segmentation using the semantics of a word.

Schone & Jurafsky (2000) employ semantic similarity between words to
perform a more robust morphological segmentation. In the proposed algorithm,
first, potential morphemes are discovered from the branchings, once the words
have been inserted on a trie. Second, potential morphological variants and their
rulesets are discovered from the trie, where the words share the same ancestors.

Example 3.3.3. Possible morphological variants could be cars-car or caring-
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car, where the aim is to discover which morphological variants are legimitate
(the example is taken from Schone & Jurafsky (2000)).

To determine whether the words are morphological variants, Latent Semantic
Analysis (LSA) is used by Schone and Jurafsky. Latent Semantic Analysis is a
method which was first initiated by Deerwester et al. (1990) with the aim of re-
trieving requested documents, based on the meaning of words rather than the
word occurrences in the documents (for the methodology of LSA see Landauer
et al. (1998)). Latent Semantic Analysis projects each word onto a semantic
space by means of a method called Singular Value Decomposition (SVD). SVD
decomposes a given matrix into different matrices. LSA constructs the dimen-
sional semantic vectors of a word by using the matrices that are produced by
SVD. Once the words are projected onto the semantic space, semantic correla-
tions can be easily computed. Schone & Jurafsky (2000) use normalised cosine
similarity to compute the semantic relatedness of the morphological variants.

Example 3.3.4. Some of the normalised cosine measurements of morphological
variants are car-cars:5.6, car-caring:-0.71, ally-allies:6.5, ally-all:-1.3 (Schone
& Jurafsky 2000). The scores prove that legitimate morphological variants have
a higher cosine similarity, whereas the invalid morphological variants have a low
cosine similarity.

Schone & Jurafsky (2001) extend the LSA based approach of Schone &
Jurafsky (2000) using syntactic and orthographic features, as well as semantic
features. The new approach also considers circumfixing5 and employs transitive
closure. The new algorithm follows these steps: 1. Potential morphological vari-
ants are discovered, considering the circumfixing where, first, potential prefixes,
and second, potential suffixes are stripped off the words, to construct the potential
circumfixes 2. Semantic correlations are computed through the semantic vectors
that are built using LSA 3. Orthographic features (in terms of affix frequencies)
are deployed 4. Syntactic contexts (left and right neighbours) of the morpho-
logical variants are examined 5. Finally, transitive closures are discovered, to

5A circumfix is a morphological structure which independently occurs in any part of a word
by wrapping around other units. A well-known example is the German past participle ge–s such
that the German word spielen has the past participle form as gespielt.
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capture more legitimate morphological variants which were not discovered in
the earlier steps.

Remark. To our knowledge, there are no remarkable contributions in the field
of learning morphology and syntax simultaneously. Rather than a simultaneous
learning, the literature has samples of sequential learning where first, one of the
fields is learned, and then the other one is learned by using the inferred know-
ledge. This is the source of inspiration for Chapter 6 where a joint learning model
is proposed.

3.4 Conclusion

In this chapter, a literature review of unsupervised morphology learning and POS
tagging is presented. We are aware that there is a remarkable amount of work
on supervised learning of morphology and syntax. However, as the scope of
the thesis is bounded to unsupervised learning methods, only research based on
unsupervised learning is reviewed.

The first section of the chapter (Section 3.2) reviews the literature in unsuper-
vised morphology learning. The contributions in the field are categorised accord-
ing to the type of mathematical model that forms the basis of the approach. The
categorisation consists of letter successor variety models, information theoretic
models and stochastic models. Some prominent examples in the area represent-
ing each methodology are presented.

The second section of the chapter (Section 3.3) reviews the literature in unsu-
pervised POS tagging. The contributions are classified into two main categories:
clustering models and HMMs. The most prominent research in the area is re-
viewed to give an idea of how the field has evolved.

The reader should note that the chapter reviews most of the significant con-
tributions in the area. However, morphology learning and POS tagging are two
long-standing fields in natural language processing, the literature of the fields is
rather broad and it is difficult to cover all the attempts in the timeline.



CHAPTER 4

Morphological Segmentation Using

Syntactic Categories

“A hundred times every day I remind myself that my inner and outer life depend
on the labors of other men, living and dead, and that I must exert myself in order

to give in the same measure as I have received and am still receiving.”
Albert Einstein

4.1 Introduction

In this chapter, an algorithm for unsupervised morphological segmentation is
presented. The algorithm uses syntactic categories to capture morphological
paradigms for unsupervised morphological segmentation.

The chapter is organised as follows: Section 4.2 motivates the research presen-
ted in this chapter; Section 4.3 describes the algorithm for capturing paradigms;
Section 4.4 explains the segmentation process; Section 4.5 demonstrates the ex-
periments performed.

100
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4.2 Motivation

The inspiration behind the work presented in this chapter comes from the mor-
phological similarity of words that belong to the same syntactic category. For
example, words ending with -ly are typically adverbs in English, (e.g. quickly,
patiently), whereas words ending with -ful or -ive are typically adjectives (e.g.
successful, respective).

Most morphological segmentation systems (Goldsmith 2006; Creutz & Lagus
2005b) do not exploit syntactic information to learn morphology of a given cor-
pus. These systems only use word-based statistics rather than context-based stat-
istics.

However, there has been research that makes use of the correlation between
syntactic and morphological information. Some research exploits syntactic in-
formation in order to perform morphological segmentation (Freitag 2005; Hu
et al. 2005). On the other hand, some research exploits morphological informa-
tion in order to learn syntactic categories (Clark 2003).

The contribution in this chapter is closer to Freitag’s work (Freitag 2005)
where he induces transformation rules from term clusters. These clusters are
rough syntactic groups. He defines transformation rules between syntactic groups
to analyse words morphologically.

Differently from the other research that utilises syntactic information in order
to learn morphology, we motivate our research from a paradigmatic perspective.
Paradigms are great sources of morphological information by covering morpho-
logical relation between words as well as providing flexibility to generate new
word forms. With this work, we aim to capture paradigms by using syntactic
categorial information.

4.3 Learning Morphological Paradigms Using
Syntactic Categories

In this work, we only focus on capturing paradigms and leave learning syntactic
categories beyond this research. In order to learn syntactic categories, we adopt
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distributional clustering algorithm of Clark (Clark 2000, 2001). Following a
brief description of the distributional clustering algorithm, we will explain our
algorithm for capturing paradigms.

4.3.1 Learning Syntactic Categories

In order to learn syntactic categories, we adopt Clark’s distributional clustering
algorithm (Clark 2000, 2001) which can be considered as an instance of average
link clustering. It should be emphasised that any other method for unsupervised
induction of part-of-speech (POS) tags can be substituted without affecting the
method presented in this chapter. Clark (Clark 2000, 2001) uses the same intu-
ition with other researchers who employ local distributional information of words
for learning syntactic categories; that is:

“Similar words occur in similar contexts.”

Following Clark’s approach, each word is clustered by using its context. A
context consists of the previous word and the following word. Each word has
a context distribution over all ordered pairs of left-context/right-context words.
To measure the distributional similarity between words, Kullback-Leibler (KL)
divergence is used which is defined as:

D(p‖q) =
∑
x

p(x) log
p(x)

q(x)
(4.1)

where p, q are the context distributions of the words being compared and x ranges
over contexts.

In his approach (Clark 2000), Clark defines the context as< w1, w2 >, where
w1 denotes the previous word and w2 denotes the following word. The probabil-
ity of a context for a target word is calculated as follows:

p(< w1, w2 >) = p(< c1, c2 >)p(w1|c1)p(w2|c2) (4.2)

where c1 and c2 denote the POS cluster of words w1 and w2 respectively.
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Hence, the KL divergence between two words becomes:

D(p1‖p2) =
∑
w1,w2

p1(< w1, w2 >) log
p1(< w1, w2 >)

p2(< w1, w2 >)
(4.3)

Equation 4.3 is simplified as follows (Clark 2001):

D(p1‖p2) =
∑
w1,w2

p1(< w1, w2 >)log
p1(< w1, w2 >)

p2(< w1, w2 >)

=
∑
w1,w2

p1(< c1, c2 >)p(w1|c1)p(w2|c2)

log
p1(< c1, c2 >)p(w1|c1)p(w2|c2)
p2(< c1, c2 >)p(w1|c1)p(w2|c2)

=
∑
c1,c2

∑
w1∈c1

∑
w2∈c2

p1(< c1, c2 >)p(w1|c1)p(w2|c2)

log
p1(< c1, c2 >)

p2(< c1, c2 >)

=
∑
c1,c2

p1(< c1, c2 >) log
p1(< c1, c2 >)

p2(< c1, c2 >)

Thus, KL divergence between two words becomes simply the divergence
between context distributions of the words over clusters.

The algorithm requires the number of clusters K to be specified in advance.
In addition to K clusters, one spare cluster is employed containing all unclustered
words. Initially, K clusters are filled by one of the most frequent words in the cor-
pus. During each iteration, one word is chosen from the spare cluster having the
minimum KL divergence with one of the K clusters. For each cluster, its context
distribution is computed as the averaged distribution of all words in the cluster.
In addition, the KL divergence between clusters is computed after each iteration
and clusters are merged if the divergence is below a manually set threshold.

We set K=77, the number of tags defined in CLAWS tagset used for tagging
the BNC (British National Corpus). We use the same number of clusters for
Turkish and German. Final clusters show that POS clusters are related with the
major syntactic categories. The algorithm finds syntactic categories that can be
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Cluster 1 much, far, badly, deeply, strongly, thoroughly, busy, rapidly,
slightly, heavily, neatly, widely, closely, easily, profoundly, read-
ily, eagerly etc.

Cluster 2 made, found, held, kept, bought, heard, played, left, passed, fin-
ished, lost, changed, etc.

Cluster 3 should, may, could, would, will, might, did, does, etc.
Cluster 4 working, travelling, flying, fighting, running, moving, playing,

turning, etc.
Cluster 5 people, men, women, children, girls, horses, students, pupils,

staff, families, etc.

Table 4.1: Some sample syntactic categories obtained from the English dataset.

identified as proper nouns, verbs in past tense form, verbs in present continuous
form, nouns, adjectives, adverbs, and so on (see Table 4.1).

Example 4.3.1. An illustration of the algorithm is given in Figure 4.1. Last
cluster shows the ground cluster which involves all the unclustered words. The
rest of the clusters involve the clustered words. In each iteration, the KL diver-
gence for all the words in the ground cluster is calculated for each cluster. For
each word, the cluster which yields the minimum KL divergence is kept and the
others are discarded. After sorting all the KL divergences for each word, the
word that yields the minimum KL divergence is chosen. The chosen word is
removed from the ground cluster and placed in the cluster that yields the min-
imum divergence. Imagine that beautiful has the minimum KL divergence with
the third cluster when it is compared with all the other KL divergences between
each word in the ground cluster and the existing clusters. Therefore, beautiful is
placed in the first cluster in the next iteration.

4.3.2 Identifying Potential Morphemes

Each POS cluster includes a set of potential morphemes produced by splitting
each word into all possible stem-suffix combinations. For each potential morph-
eme, we calculate its conditional probability p(m|c) where m denotes the morph-
eme, and c denotes the cluster. When potential morphemes are ranked according
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walked
talked
slept
tried
...

breaking
writing
trying
running
...

clever
good
tidy
quick
...

wrote
cleaning
organises
interprets
beautiful
slow
quickly
...

....

Figure 4.1: An illustration of the distributional clustering algorithm.

English German
Cluster Morphemes Cluster Morphemes
1 -s 1 -n,-en
2 -d,-ed 2 -e,-te
3 -ng,-ing 3 -g,-ng,-ung
4 -y,-ly 4 -r,-er
5 -s,-rs,-ers 5 -n,-en,-rn,-ern
6 -ing,-ng,g 6 -ch,-ich,-lich

Table 4.2: Some high ranked potential morphemes in PoS clusters for English
and German.

to their conditional probabilities, only those above a threshold (see Section 4.5)
are considered in the following step. This ranking is used to eliminate the poten-
tial non-morphemes with a low conditional probability hence reducing the search
space.

A list of highest ranked morphemes are given in Table 4.2 for English, Ger-
man, and in Table 4.3 for Turkish.
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Turkish
Cluster Morphemes
1 -i,-si,-ri
2 -mak,-mek,-mesi,-masi
3 -an,-en
4 -r,ar,er,-ler,-lar
5 -r,-ir,-dir,-ır,-dır
6 -e,-a

Table 4.3: Some high ranked potential morphemes in PoS clusters for Turkish.

walking
fighting

repeating
running
playing 

fights
travels
repeats
walks
plays

girls
students

boys
pupils
horses

horse
person
pupil

student
girl

Cluster 1 Cluster 2 Cluster 3 Cluster 4

P1 = <{s/2,ing/1},{walk,fight,repeat,play}> P2 = <{s/3,0/4},{girl,student,pupil,horse}>

Figure 4.2: A sample set of syntactic clusters, and the potential morphemes in
each cluster

4.3.3 Inducing Mophological Paradigms

Our definition of a paradigm deviates from that of Goldsmith (2001) due to the
addition of POS tags. In our framework, each morpheme is tied to a POS cluster.
More precisely, a paradigm P is a list of morpheme/cluster pairs together with
a list of stems: P = < {m1/c1, . . . ,mr/cr}, {s1, . . . , sk} > where mi denotes
a morpheme belonging to the POS cluster ci, and sj denotes a stem such that
∀mi/ci ∈ {m1/c1, . . . ,mr/cr} and ∀sj ∈ {s1, . . . , sk} : sj +mi ∈ ci.

In each iteration, a potential morpheme pair across two different POS clusters
with the highest number of common stems is chosen for merging. Once a morph-
eme pair is merged, words that belong to this newly formed paradigm are re-
moved from their respective POS clusters. This forms the basis of the paradigm-
capturing mechanism (see Fig. 4.2). We postulate that a word can only belong
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Algorithm 1 Algorithm for paradigm-capturing using syntactic categories
1: Apply unsupervised PoS clustering to the input corpus.
2: Generate all possible morphemes by splitting the words in all possible stem-

suffix combinations.
3: For each PoS cluster c and morpheme m, compute maximum likelihood es-

timates of p(m | c).
4: Keep all m (in c) with p(m | c) > t, where t is a threshold.
5: repeat
6: for all PoS clusters c1, c2 do
7: Pick morphemes m1 in c1 and m2 in c2 with the

highest number of common stems.
8: Store P = {m1/c1,m2/c2} as the new paradigm.
9: Remove all words in c1 with morpheme m1 and as-

sociate these words with P .
10: Remove all words in c2 with morpheme m2 and as-

sociate these words with P .
11: end for
12: for each paradigm pair P1, P2 such thatAcc(P1, P2) > T , where

T is a threshold do
13: Create new merged paradigm P = P1 ∪ P2.
14: Associate all words from P1 and P2 with P .
15: Delete paradigms P1, P2. .
16: end for
17: until No morpheme pair consisting of at least one common stem is left

to a single morphological paradigm. The above procedure is repeated until no
further paradigms are created.

Algorithm 1 describes the complete paradigm capturing process. Some sample
paradigms captured are given in Table 4.4, Table 4.5, and Table 4.6 for English,
Turkish and German respectively.

4.3.4 Merging Paradigms

For capturing more general paradigms, paradigm merging is performed. We rank
potential paradigms by the ratio of common stems with the total number of stems
captured by the paradigm. More precisely, given paradigms P1, P2, let S be the
total number of common stems. Let S1 be the total number of stems in P1 that
are not present in P2. Similarly, let S2 be the total number of stems in P2 that
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ed ing reclaim, aggravat, hogg, trimm, expell, administer, divert, register,
stimulat, shap, rehabilitat, exempt, stiffen, spar, deceiv, contam-
inat, disciplin, implement, stabiliz, feign, mistreat, extricat, mim-
ick, alert, seal, etc.

s d implicate, ditche, amuse, overcharge, equate, despise, torpedoe,
curse, plie, supersede, preclude, snare, tangle, eclipse, relinquishe,
ambushe, reimburse, alienate, conceive, vetoe, waive, envie, nego-
tiate, diagnose, etc.

er ing brows, wring, worship, cropp, cater, stroll, zipp, moneymak, tun,
chok, hustl, angl, windsurf, swindl, cricket, painkill, climb, heckl,
improvis, scream, scaveng, panhandl, lawmak, bark, clean, lifesav,
beekeep, toast, matchmak, bodybuild, etc.

e ed subsid, liquidat, redecorat, exorcis, amputat, fertiliz, reshap, regu-
lat, foreclos, infring, eradicat, reverberat, chim, centralis, restructur,
crippl, rehabilitat, symbolis, reinstat, etc.

ly er dark, cheap, slow, quiet, fair, light, high, poor, rich, cool, quick,
broad, deep, bright, calm, crisp, mild, clever, etc.

0 s benchmark, instrument, pretzel, wheelchair, scapegoat, spike, in-
fomercial, catastrophe, beard, paycheck, reserve, abduction, etc.

Table 4.4: Sample paradigms in English

are not present in P1. Then, we can define the expected paradigm accuracy of P1

with respect to P2 by:

Acc1 =
S

S + S1

(4.4)

Acc2 is defined analogously.

We use the average of Acc1 and Acc2 to compute the combined (averaged)
expected accuracy of the merged paradigms P1, P2:

Acc(P1, P2) =
S

S+S1
+ S

S+S2

2
(4.5)

During each iteration, all paradigm pairs having an expected accuracy greater
than a given threshold value are merged (see Figure 4.3). Once two paradigms
are merged, stems that occur in only one of the paradigms inherit the morphemes
from the other paradigm. This mechanism helps create a more general paradigm



Section 4.3 Learning Morphological Paradigms Using
Syntactic Categories 109

i e zemin, faaliyetin, törenler, seçim, incelemeler, eyalet, nem,
takvim, makineler, yöntemin, becerisin, görüşmeler, tekniğin,
merkezin, iklim, görüntüler, etc.

i a cevab, bakımın, mektuplar, esnaf, olayın, akışın, miktar, kayd,
yaşamay, bulgular, sular, masrafların, heyecanın, kalan, hakların,
anlamın, etc.

i in sanayiin, değerlerin, eşin, denizler, duman, teminat, erkekler,
kurulların, birbirin, vatandaşlarımız, gelişmesin, milletvekillerin,
partisin, etc.

de e bölgesin, düzeyin, yönetimin, dergisin, sektörün, birimlerin,
bölgelerin, tümün, bölümlerin, tesislerin, dönemin, kongresin,
evin, etc.

mesi en izlen, yürütül, degiş, üretil, gerçekleştiril, desteklen, geliştiril, etc.
0 i iman, çekim, mahkemelerin, örneklem, gaflet, yazman, sanat,

trendler, mahalleler, eviniz, hamamlar, piller, öğretim, olimpiyat,
etc.

Table 4.5: Sample paradigms in Turkish

r n kurze, ehemalige, eidgenoessische, professionelle, erste, bes-
cheidene, ungewoehnliche, ethnische, unbekannte, besondere, na-
tionalsozialistische, deutsche, etc.

e en praechtig, gesichert, dauerhaft, bescheiden, vereinbart, biologisch,
natuerlich, oekumenisch, kantonal, unterirdisch, wissenschaftlich,
nahegelegen, chinesisch, etc.

t en funktionier, konkurrier, schneid, mitwirk, ansteig, plaedier, pfeif,
aufklaer, schluck, ausgleich, weitermach, abhol, ankomm, spazier,
speis, aussteig, aufhoer, etc.

er ung versteiger, unterdrueck, erneuer, vermarkt, beschleunig, besetz,
geschaeftsfuehr, wirtschaftsfoerder, finanzverwalt, verhandl, etc.

0 s potential, instrument, flohmarkt, vorhang, pilotprojekt, idol, rech-
ner, thriller, ensemble, bebauungsplan, empfinden, defekt, auf-
schwung, etc.

Table 4.6: Sample paradigms in German

and helps recover missing word forms. Thus, although some of the word forms
do not exist in the corpus, it becomes possible to capture these forms.
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P1:{ed, ing}{confirm, detain, affirm,  
allow, complement, reject, absorb, 

protect}

P2:{s, 0}{betray, alter, affirm, reject, 
protect, confirm, absorb, find, allow, 

confirm, detain}

Acc = 0.76,  
P1+P2:{ed, ing, s, 0}{confirm, detain, affirm, allow, complement, 

reject, absorb, protect, betray, alter, find}

Figure 4.3: An illustration of paradigm merging. P1 and P2 are merged with an
accuracy measure of Acc = 0.76.

es ing e ed sketch, chew, nipp, debut, met, factor, profit, occurr, err,
trudg, participat, necessitat, stomp, streak, siphon, stroll, sprint,
drizzl, firm, climax, gestur, whipp, roll, tripp, stemm, dangl,
shuffl, kindl, broker, chalk, latch, rippl, collaborat, chok,
summ, propp, pedal, paralyz, parad, plough, cramm, slack,
wad, saddl, conjur, tipp, gallop, totall, catalogu, bundl, barg,
whittl, retaliat, straighten, tick, peek, jabb, slimm.

s ing ed 0 benchmark, mothball, weed, snicker, thread, queue, jack, paw,
yacht, implement, import, bracket, whoop, conflict, spoof,
stunt, bargain, honor, bird, fingerprint, excerpt, handcuff, veil,
comment.

Table 4.7: Merged paradigms in English

Some example paradigms that are found by the system are given below in
Table 4.7, Table 4.8, and Table 4.9 for English, Turkish, and German respect-
ively.

4.4 Morphological Segmentation

Once words are clustered given a corpus thereby creating POS clusters, steps de-
scribed earlier are followed to capture paradigms. Having paradigms, words are
analysed by following different algorithms for known, unknown, and compound
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u a e i yapabileceklerin, kredisin, hizmetleri’n, sevdikleriniz, yeter’,
transferlerin, sevkin, elimiz, tehlikelerin, sas, mucizey, te-
hditlerin, bakir, muhasebesin, gayrimenkuller, ecevit’, defterim,
izlemelerin, tescilin, minarey, tahsilin, lastikler, yerlestirmey.

i lar li in ruhsat, semt, ikilem, reaksiyonlar, harc, tip, prim, gidilmis,
kaldirmis, degistirmis, bulunmayacak, aktarmis, bulunacak,
kapanacak, yazilabilecek, devredilmis, degisecek, gelmemis.

Table 4.8: Merged paradigms in Turkish

er 0 e en kassiert, beguenstigt, eingeholt, genuegt, an-
gelastet, beruehrt, beinhaltet, zurueckgegeben,
beschleunigt, initiiert, abgestellt, bewirkt, mitgen-
ommen, abgebrochen, beruhigt, besichtigt.

te ung er ten t en lich e fahr, gebrauch, blockier, identifizier, studier, ent-
falt, gestalt, agier, passier, sprech, berat, tausch,
kauf, such, weck, beug, erreich, bearbeit, beo-
bacht, erleid, ueberrasch, halt, helf, oeffn, pruef,
uebertreff, bezahl, spring, fuell, toet.

0 te t er lichtenberg, limburg, hill, trier, elmshorn, dreie-
ich, praunheim, heusenstamm, heddernheim,
hellersdorf, schmitt, muehlheim, lueneburg, kas-
sel, schluechtern, preungesheim, rodgau, bieber,
osnabrueck, rodheim, muenchen, london, lissabon,
seoul, wedding, treptow.

Table 4.9: Merged paradigms in German

words:

4.4.1 Handling known words

If the word exists in one of the paradigms, it is segmented by using the morpheme
in the paradigm in which the word is found. For example, let a paradigm exist as
given below:

s ing ed 0 : benchmark mothball weed snicker thread queue jack paw yacht
implement import bracket whoop

If a word ‘importing’ is to be morphologically analysed, it is automatically
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segmented by using the morpheme ’ing’.

4.4.2 Handling unknown words

If the word does not exist in any of the paradigms, a sequence of segmentation
rules are applied. By using paradigms, we created a morpheme dictionary to
split the words which do not belong to any of the paradigms. All morphemes in
each paradigm are included in the morpheme dictionary if in any of the paradigm
the initial letters of the morphemes are not the same. If the initial letters of all
morphemes in the same paradigm are the same, the longest morpheme is included
in the dictionary. Using the morpheme dictionary, the word is scanned from the
right-most letter to check if any of the endings of the word exist in the dictionary.
The longest letter sequence (of the word) existing in the dictionary is chosen to
split the word. The same process is repeated after splitting the word until no split
can be applied.

4.4.3 Handling compounds

For the compounds, such as ‘hausaufgaben’ in German, or ‘railway’ in English,
for both known, and unknown words a recursive approach is performed. The
compounding rules split a word recursively from the rightmost end to the left. If
an ending sequence of letters exists as a word in the corpus, the sequence is split,
and the same procedure is repeated until no valid internal word part is a valid
word itself in the corpus. When there are multiple matches the longest match is
chosen. This recursive search is also able to find the prefixes as it searches for
the valid sub-words in words.

Algorithm for the segmentation of the words is given in Algorithm 2.

4.5 Experiments & Evaluation

The algorithm was evaluated in the Morpho Challenge 2009 competition. The
corpus from Morpho Challenge 2009 and the Cross Language Evaluation Forum
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Algorithm 2 Morphological Segmentation
1: for all For each given word, w, to be segmented do
2: if w already exists in a paradigm P then
3: Split w using P as w = u+m
4: else
5: u = w
6: end if
7: If possible, split u recursively from the rightmost end by using the

morpheme dictionary as u = s1 + . . .+ sn otherwise s1 = u
8: If possible, split s1 into its sub-words recursively from the rightmost

end as s1 = w1 + . . .+ wn
9: end for

(CLEF) 2009 were used for training our system on 3 different languages: Eng-
lish, German and Turkish. For the initial POS clustering, corpora provided in
Morpho Challenge 20091 were used. For clustering the words in the word list to
be segmented, for English and German, datasets supplied by the CLEF organiz-
ation 2 were used. For Turkish, we made use of manually collected newspaper
archives.

Although our model is unsupervised, two prior parameters are required to be
set: t for the conditional probability p(m|c) of the potential morphemes and T for
the paradigm accuracy threshold for merging the paradigms. We set t=0.1 and
T=0.75 in all the experiments.

The system was evaluated in Competition 1 & 2 of Morpho Challenge 2009.
In Competition 1, proposed analyses are compared to a gold standard analysis
of a word list. Details of the tasks and evaluation can be found in the overview
and results of Morpho Challenge 2009, which was reported in Kurimo et al.
(2009) (see also Kurimo et al. (2011a)). Evaluation results corresponding to the
Competition 1 are given in Table 4.5. Our system comes 8th out of 14 participant
systems in English, whereas the system comes 4th out of 15 systems in German
and the system comes 8th out of 14 participant systems in Turkish. These scores
are scientifically significant due to the well-established evaluation framework

1http://www.cis.hut.fi/morphochallenge2009
2http://www.clef-campaign.org/. English datasets: Los Angeles Times 1994 (425 mb), Glas-

gow Herald 1995 (154 mb). German datasets: Frankfurter Rundschau 1994 (320 mb), Der
Spiegel 1994/95 (63 mb), SDA German 1994 (144 mb), SDA German 1995 (141 mb)
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Language Precision(%) Recall(%) F-measure(%) F/Winner(%)
English 58.52 44.82 50.76 62.31
German 57.67 42.67 49.05 56.14
Turkish 41.39 38.13 39.70 53.53

Table 4.10: Obtained evaluation scores in Morpho Challenge 2009 Competition
1 with the winner participant’s F-score.

Language AP(%) AP(%)-Winner
English 0.2940 0.3890
German 0.4006 0.4490

Table 4.11: Obtained average precisions (AP) for the Morpho Challenge 2009
Competition 2

provided by Morpho Challenge.

In the Competition 2, proposed morphological analyses are used in an in-
formation retrieval task. For this purpose, words are replaced with their morph-
emes. Our results for German had an average precision of 0.4006% whereas the
winning system Christian Monson (2009) had an average precision of 0.4490%.
Our results for English had an average precision of 0.2940% whereas the winning
system Lignos et al. (2009) had an average precision of 0.3890% (see Table 4.5).

We did not perform an evaluation on the created paradigms since the eval-
uation requires a huge amount of corpus that involves all possible word forms
in the given language. Having such a corpus, it will be possible to check each
paradigm whether it consists of valid stem+suffix combinations. Preparing such a
corpus requires extra work and we skipped the evaluation of accuracy of paradigms
in this work. However, the morphological segmentation results provide a signi-
ficant indicator on the accuracy of paradigms.

4.6 Conclusion

To our knowledge, there has been limited work on the combined learning of syn-
tax and morphology. In Morpho Challenge 2009, our model is the only system
making use of the syntactic categories. Morphology is highly correlated with
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syntactic categories of words. Therefore, our system is able to find the potential
morphemes by only considering conditional probabilities p(m|c).

The paradigm including the most number of stems for English has the morph-
eme set {s, ing, ed, 0} where 0 denotes the NULL suffix, for Turkish it has {u,

a, e, i}, and for German it has {er, 0, e, en}. Our paradigm merging method is
able to compensate for the missing forms of the words. For example, as shown
in Figure 4.3, although the words such as altering, and finding do not exist in
the real corpus, they are produced during the merging. However, our system still
requires a large dataset for POS clustering. We only consider words having a
frequency greater than 10 to eliminate noise. To segment non-frequent words we
propose a heuristic method based on using a morphmeme dictionary. However,
the usage of such a morpheme dictionary can often have undesirable results. For
example, the word beer is forced to be segmented as be-er due to the morpheme
er found in the dictionary.

Our model allows more than one morpheme boundary. This makes our sys-
tem usable for the morphological analysis of the agglutinative languages. For
example, in Turkish, the word çukurlarıyla (which means “with their burrows”)
has the morpheme boundaries: çukur-lar-ı-y-la. However, in our heuristic method,
the use of morpheme dictionary causes undesirable results. For example, the
same word çukurlarıyla is segmented by our method as: çu-kurları-y-la since
the word kurları also exists in the corpus.

Our system is sensitive due to the thresholds we set for 1. identifying poten-
tial morphemes and 2. expected paradigm accuracy. In future work, we hope to
address these and previously mentioned deficiencies.

Despite the observed deficiencies, we obtained promising results in Morpho
Challenge 2009. Our precision and recall values are balanced and undersegment-
ation is not very prominent for all languages that we evaluated. We believe that
our work clearly demonstrates that joint modeling of syntactic categories and
morphology is the key for building successful morphological analysis system. In
addition, our work demonstrates how morphological paradigms can be learnt by
taking advantage of POS categories.



CHAPTER 5

Probabilistic Hierarchical Clustering for

Morphology Learning

“From where we stand, the rain seems random. If we could stand somewhere
else, we would see the order in it.”

Tony Hillerman

5.1 Introduction

In this chapter, a probabilistic hierarchical clustering algorithm for morpholo-
gical segmentation is presented. An inference algorithm is introduced to capture
latent variables in data along with the hierarchical structure. Latent variables are
morpheme boundaries of words in morphological segmentation.

The chapter is organised as follows: Section 5.2 motivates the research presen-
ted in this chapter both linguistically and computationally; Section 5.3 describes
the probabilistic hierarchical model; Section 5.4 defines the mathematical model
for morphological segmentation; Section 5.4.2 describes the employment of the
clustering algorithm for morphological segmentation; and finally, Section 6.6
presents experiments and results.

116
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walk walking talked  talks

{walk}{0,ing} {talk}{ed,s} {quick}{0,ly}

quick quickly

{walk, talk, quick}{0,ed,ing,ly, s}

{walk, talk}{0,ed,ing,s}

Figure 5.1: A sample tree structure.

5.2 Motivation

The proposed algorithm in this chapter is motivated both linguistically and com-
putationally. The algorithm is linguistically motivated in the sense that it bears a
new perspective for morphological segmentation. With the new perspective, the
aim is to capture morphological paradigms hierarchically. A hierarchical struc-
ture will be efficient to extract morphological regularities between words which
will naturally lead to discover morphological paradigms (see Figure 5.1). We
also propose that if morphological paradigms are defined probabilistically, it will
also overcome any sparsity in the data. For these purposes, we define a probabil-
istic hierarchical clustering algorithm that captures morphological paradigms to
be employed for morphological segmentation. There has been research in the
field of morphological segmentation that employed morphological paradigms;
however, to our knowledge, there has not been any research that combines statist-
ical hierarchical clustering with morphological segmentation through a paradig-
matic structure.
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Remark. Chan (2006) employs paradigms within a hierarchical structure
where Latent Dirichlet Allocation (LDA) is used to discover stem-suffix matrices.
However, true morphological analyses of words are assumed to be provided to
the system. Therefore, the proposed model focuses only on capturing paradigms.
On the contrary, the suggested model in this chapter learns both morphological
segmentation and paradigms along with a hierarchical structure.

The algorithm is computationally motivated in the sense that it defines an
inference algorithm to discover latent variables in data along with a hierarchical
representation. Most hierarchical clustering algorithms are single-pass where
once the hierarchical structure is built, the structure does not change anymore.
However, it may be the case that the hierarchical representation of data may
not be the only aim that needs to be achieved. Another aim may be the dis-
covery of latent variables in data. In the circumstances, latent variables have to
be discovered along with a hierarchical structure. For the problem of morpho-
logical segmentation, morpheme boundaries are latent variables that have to be
discovered. We propose an inference algorithm that learns morpheme boundar-
ies associated with a structure which will represent morphemes hierarchically.
The proposed inference algorithm samples new tree structures until finding one
consistent hierarchical representation of latent variables.

5.3 Probabilistic Hierarchical Model

The hierarchical clustering, proposed with this research, is different than many
traditional hierarchical clustering algorithms in two aspects:

• It is not single-pass as hierarchical structure changes.

• It is probabilistic and does not use distance metric.

5.3.1 Mathematical Definition

The suggested hierarchical structure for the hierarchical clustering algorithm is a
binary tree where each internal node represents a cluster. Data points are located
in leaf nodes.
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Di

Dk

Dj

X1 X2 X3 X4

Figure 5.2: A segment of a tree with internal nodesDi, Dj, Dk having data points
{x1, x2, x3, x4}. The subtree below the internal node Di is called Ti, the subtree
below the internal node Dj is called Tj , and the subtree below the internal node
Dk is called Tk.

Let a data set be D = {x1, x2, . . . , xn} and T be the entire tree where
each data point xi is located in one of the leaf nodes (see Figure 5.2). Here Dk

denotes data points in the branch Tk. Each node defines a probabilistic model for
words that the cluster acquires. The probabilistic model can be denoted as p(xi|θ)
where θ represents parameters of the probabilistic model. It is possible to embed
different types of probabilistic models with different number of parameters. It
is also possible to define a prior probability distribution over parameters of the
probabilistic model; such that p(θ|β) with hyperparameters β.

Adopting a probabilistic model, the marginal probability of data in any node
can be calculated:

p(Dk) =

∫
p(Dk|θ)p(θ|β)dθ (5.1)

Using conjugate priors makes the integration tractable. The likelihood of data
in any subtree is defined as follows:

p(Dk|Tk) = πkp(Dl|Tl)p(Dr|Tr) (5.2)

where the probability of data in any node under a tree structure is defined in terms
of left Tl and right Tr subtrees since the data is the combination of two differ-
ent clusters. When Equation 5.2 is applied recursively for left and right subtrees
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until reaching leaf nodes, the likelihood of data can be obtained under the given
tree structure. The likelihood of data will be used for inference algorithm. In
the equation, πk denotes the prior probability of the node. The marginal prob-
ability of data will be exploited as prior probability (Equation 5.1). We use the
marginal probability as prior information since the marginal probability bears the
probability of having the data in one cluster.

5.4 Morphological Segmentation

The hierarchical model proposed earlier is employed for capturing morpholo-
gical paradigms where data points are words to be clustered and each cluster
represents a paradigm. In the hierarchical structure, words will be organised in
such a way that morphologically similar words will be located close to each other
to be grouped in the same paradigms.

5.4.1 Model Definition

As mentioned immediately above, each cluster is generated from a probabil-
istic model. The embedded probabilistic model is a morphological segmentation
model as part of this thesis.

Let a dataset D consist of words to be analysed where each word wi has a
latent variable which is the split point that analyses the word into its stem si and
suffix mi:

DDD = {w1 = s1 +m1, . . . , wn = sn +mn}

The model can identify only one split point for each word yielding an analysis
such that wn = sn +mn.

A Dirichlet process model is chosen for the problem of morphological seg-
mentation due to its flexibility to adapt to any kind of data. It should be noted
that any probabilistic model can be embedded depending on the type of the data
to be clustered. Depending on the probabilistic model, different set of paramet-
ers can be defined. If it is a multivariate Gaussian, then the parameters become:
θ = (µ,Σ). In the model that will be explained here, we use a Dirichlet process
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model where the variables are generated from a Dirichlet process. Since each
word is generated from a stem and a suffix, we define two Dirichlet processes
to generate stems and suffixes independently. Here, we assume that stems and
suffixes are independent, which is not completely true. However, morphemes are
widely more independent, when other segments of words are considered.

Example 5.4.1. If we observe the split points in the word slowly, the probability
p(ly|slow) will be lower than the probability p(wly|slo). The reason is that the
number of possible segments that can exist before the segment -ly is more than
the number of possible segments that can exist before the segment -wly. As
both segments ly and slow can freely exist in the corpus by attaching to other
segments, they are more independent than other segments and are assumed to be
independent in our model.

Following a generative story, the probability of a morphological analysis of a
word could be defined as follows:

p(w = s+m) = p(m)p(s|m) (5.3)

which dictates that a suffix is generated, and a stem is generated conditioned on
the generated suffix subsequently. However, applying the independence assump-
tion, the probability of the morphological analysis can be redefined such that:

p(w = s+m) = p(m)p(s) (5.4)

Stems and suffixes are generated from two distinct Dirichlet processes such
that:

Gs ∼ DP (βs, Ps)

Gm ∼ DP (βm, Pm)

s ∼ Gs

m ∼ Gm

(5.5)
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whereDP (βs, Ps) denotes a Dirichlet process that generates stems andDP (βm, Pm)

denotes another Dirichlet process that generates suffixes. Gs and Gm are random
probability distributions that are distributed according to the DPs. Here βs and
βm are the concentration parameters and determine the number of stem types
that can be generated by the Dirichlet process. The smaller the value of the con-
centration parameter is, less likely to generate new stem types by the process is
(Goldwater & Griffiths 2007). On the contrary, the larger the value of concen-
tration parameter is, the more likely it is to generate new stem types yielding
a more uniform distribution over stem types. If βs < 1, sparse stems will be
supported yielding a more skewed distribution; however if βs > 1, the distribu-
tion gets closer to a more uniform distribution assigning similar probabilities for
each stem type; and if βs = 1, the distribution becomes uniform where all stems
are equally likely to be generated by the Dirichlet process. For these reasons,
concentration parameter has a significant impact on the number of stems that
can be generated from each cluster. The concentration parameter is also called
strength parameter when the Dirichlet process is used as a prior in a Bayesian
nonparametric model (Teh 2010). To support a small number of stem types in
each cluster, we determined βs < 1 for a skewed distribution. Otherwise, it is
possible to have many stems due to an oversegmentation of words.

Here, Ps is the base distribution that determines the mean of the Dirichlet
process (Teh 2010). The base distribution defines the properties of variables gen-
erated from the Dirichlet process (Goldwater et al. 2009); and it is independent
from the concentration parameter. The base distribution can be either discrete
or continuous. We use the base distribution as a prior probability distribution
for morpheme lengths. Morpheme lengths can be modelled implicitly through
letters that the morpheme consists of:

Ps(si) =
∏
ci∈si

p(ci) (5.6)

Letters are denoted by ci where p(ci) is a uniform distribution defined on
the alphabet letters. A letter in an alphabet with 27 letters will have a probabil-
ity 1/27. Modelling morpheme letters is a way of modelling morpheme lengths
since shorter morphemes are favoured to have a smaller number of factors in
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βs βm

Ps PmGs Gm

si mi

wi

L N

n

Figure 5.3: The plate diagram of the model, representing the generation of a
word wi from the stem si and the suffix mi that are generated from Dirichlet
processes. In the representation, solid-boxes denote that the process is repeated
with the number given on the corner of each box.

Equation 5.6 (Creutz & Lagus (2005b)). Therefore, longer morphemes are less
likely to be generated due to a low probability obtained from the base distribu-
tion.

The Dirichlet process, DP (βm, Pm), is defined for suffixes analogously. The
graphical representation of the entire model is given in Figure 5.3.

Once the probability distributions G = {Gs, Gm} are drawn from both Di-
richlet processes, words can be generated by drawing a stem fromGs and a suffix
from Gm. However, we do not attempt to estimate the probability distributions
G; instead, G is integrated out. The joint probability distribution of stems after
integrating out Gs becomes:
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p(s1, s2, . . . , sL) =

∫
p(Gs)

L∏
i=1

p(si|Gs)dGs

(5.7)

where L denotes the number of stem tokens. The joint probability distribution
of stems can be tackled as a Chinese restaurant process. The Chinese restaurant
process introduces dependencies between stems. Hence, the joint probability
distribution of stems S = {s1, . . . , sL} becomes:

p(s1, s2, . . . , sL) = p(s1)p(s2|s1) . . . p(sL|s1, . . . , sL−1)

=
Γ(βs)

Γ(L+ βs)
βKs

K∏
i=1

Ps(si)
K∏
i=1

(nsi − 1)!

(5.8)

where K denotes the number of stem types. In the equation, the second and the
third factor correspond to the case where novel stems are generated for the first
time; last factor corresponds to the case where stems which have been already
generated for nsi times previously are being generated again. The first factor
consists of all denominators from both cases.

The integration process is applied for probability distributions Gm for suf-
fixes analogously:

p(m1,m2, . . . ,mN) =

∫
p(Gm)

N∏
i=1

p(mi|Gm)dGm

(5.9)

where N denotes the number of suffix tokens.

Hence, the joint probability distribution of suffixes is defined accordingly:



Section 5.4 Morphological Segmentation 125

p(m1,m2, . . . ,mN) = p(m1)p(m2|m1) . . . p(mN |m1, . . . ,mN−1)

=
Γ(βm)

Γ(N + βm)
αT

T∏
i=1

Pm(mi)
T∏
i=1

(nmi − 1)!

(5.10)

where T denotes the number of suffix types and nmi is the number of stem types
mi which have been already generated.

Following the joint probability distribution of stems, the conditional probab-
ility of a stem given previously generated stems can be derived:

p(si|S−si , βs, Ps) =


nS
−si
si

L−1+βs if si ∈ S−si
βs∗Ps(si)
L−1+βs else

(5.11)

where nS−sisi
denotes the number of stem instances si that have been generated

previously where S−si is the set of stems excluding the new instance of the stem
si.

The conditional probability of a suffix given the other suffixes that have been
generated previously is defined similarly:

p(mi|M−mi , βm, Pm) =


nM
−mi

mi

N−1+βm if mi ∈M−mi

βm∗Pm(mi)
N−1+βm else

(5.12)

where nM−mimi
is the number of instances mi that have been generated previously

where M−mi is the set of suffixes excluding the new instance of the suffix mi.

It should be noted that Equation 5.11 and Equation 5.12 create a Chinese
restaurant process for stems and suffixes. The process naturally overcomes the
sparsity of data without any need for smoothing.

5.4.2 Embedding Morphology into the Hierarchical Model

Hitherto, the hierarchical model and the morphological segmentation model have
been described separately. Here, we combine these two models within the prob-
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abilistic hierarchical clustering scheme. As mentioned earlier, each cluster is
a probabilistic model. The morphological segmentation model will be embed-
ded into the hierarchical model as a probabilistic model. If the segmentation
model is embedded in the hierarchical tree, the marginal likelihood of words
DkDkDk = {w1 = s1 +m1, . . . , wn = sn +mn} in cluster k is defined such that:

p(Dk) = p(Sk)p(Mk)

=

∫
p(Gs)

L∏
i=1

p(si|Gs)

∫
p(Gm)

N∏
j=1

p(mi|Gm)

=
Γ(βs)

Γ(L+ βs)
βKs

K∏
i=1

Gs(si)
K∏
i=1

(nski − 1)! (5.13)

Γ(βm)

Γ(N + βm)
βTm

T∏
i=1

Gm(mi)
T∏
i=1

(nmki − 1)!

(5.14)

where nski denotes the number of stem instances si in cluster k, whereas nmki is
the number of suffix instances mi in cluster k. Equation represents two distinct
Chinese restaurant processes for stems and suffixes that will generate words in a
cluster.

Words in each cluster represents a paradigm that consists of stems and suf-
fixes. In the hierarchical structure, the model locates words sharing the same
stems or suffixes close to each other in the tree. Hence, paradigms are formed
naturally in the tree. Each word is seen in all the paradigms on the path from
the leaf node having that word till the root. The word can share either its stem or
suffix with other words in the same paradigm. By means of this feature, infinitely
many words can be generated through a paradigmatic approach that may not be
even in the corpus.

Example 5.4.2. Let a corpus be D = {quickly, recentness, slow, quickness}.
Let a paradigm be P = {quick, recent, slow}{∅, ly, ness}. Naturally, the paradigm
has the ability to generate the words quick, recently, recent although they do not
appear in the corpus.
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plugg+ed skew+ed

exclaim+ed

borrow+s borrow+ed

liken+s liken+ed

consist+s consist+ed

Figure 5.4: A portion of a tree where leaf nodes keep the words, and the internal
nodes correspond to paradigms.

A portion of a tree is given in Figure 5.4. As seen in figure, all words are
located in leaf nodes. Rest of the nodes correspond to paradigms that consist of
words below that node.

5.4.3 Inference

Morphological segmentation of a corpus and the hierarchical structure that rep-
resents the morphological segmentation are learned through an inference proced-
ure which forms the probabilistic hierarchical clustering scheme. As mentioned
earlier, many traditional clustering algorithms are single-pass and do not suggest
any alternative hierarchical structures, once the tree is learned. The reason is
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Algorithm 3 Creating initial tree.
1: input: data D = {w1 = s1 +m1, . . . , wn = sn +mn},
2: initialise: root← D1 where D1 = {w1 = s1 +m1}
3: initialise: c← n− 1
4: while c >= 1 do
5: Draw a word wj from the corpus.
6: Split the word randomly such that wj = sj +mj

7: Create a new node Dj where Dj = {wj = sj +mj}
8: Choose a node Dk on the tree randomly to make it a sibling

node to Dj

9: Merge Dnew ← Dj

⋃
Dk

10: Remove wj from the corpus
11: end while
12: output: Initial tree

that the data is explicit, and no latent variables are to be inferred. However, for
either improving the final clustering structure or for learning latent variables, an
inference step is compulsory.

The initial tree is constructed uniformly by adding each word from the corpus
into a randomly chosen position on the tree. While choosing an arbitrary position
on the tree, latent variables are assigned randomly as well; i.e. words are split at
a random position (given in Algorithm 3).

Once the initial tree is built randomly, sampling is performed by relocating
nodes on the tree. Iteratively, a leaf node Di = {wi = si + mi} is drawn from
the current tree structure. The drawn leaf node is removed from the tree causing
its parent node to be removed as well to adjust the tree to maintain the binary
structure. Once the leaf node is removed from the tree, a node Dk is drawn
uniformly from the tree to make it a sibling node to Di. In addition to a sibling
node, a split point wi = s

′
i + m

′
i is drawn uniformly. Having the tree position,

and the split point, the node Di = {wi = s
′
i + m

′
i} is inserted as a sibling node

to Dk. After updating all the probabilities along the path to the root, the new
tree structure is either accepted or rejected. The marginal likelihood of the entire
tree is used for the sampling probability. Hence, the sampled tree structure is
accepted with a probability of:
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PAcc =
pnext(D|T )

pcur(D|T )
(5.15)

where pnext(D|T ) denotes the marginal likelihood of data under the new tree
structure, and pcur(D|T ) denotes the marginal likelihood of data under the latest
accepted tree structure.

If the condition in Equation 5.15 is not met, the new tree structure is still
accepted with a probability of PAcc; otherwise, the new structure is rejected. The
inference algorithm is accompanied by simulated annealing. A temperature γ is
determined for the initial temperature of the system where all probabilities are
raised to the power of the inverse of the system temperature such that:

PAcc =

(
pnext(D|T )

pcur(D|T )

) 1
γ

(5.16)

The system temperature is reduced in each iteration of the inference algorithm.
Most tree structures are accepted in the earlier stages of the algorithm, as if tree
structures are drawn from a distribution closer to uniform. However, as the tem-
perature becomes lower, tree structures which lead to a considerable improve-
ment in the marginal probability p(D|T ) are accepted.

An illustration is given in Fig.5.5 that depicts an example for suggesting a
new tree structure. In the illustration, D0 is drawn to be removed from the tree.
Once the leaf node is removed from the tree, as the parent node D5 will consist
of only one child, the parent node is removed from the tree. The node D8 is
drawn as a sibling node to D0. Subsequently, the two nodes are merged within a
new cluster that introduces a new node D9. The inference algorithm is given in
Algorithm 4.

It should be noted that while the tree structure changes, some nodes disap-
pear; some nodes accept or deduct words; and new nodes are introduced. Due to
these changes, marginal likelihoods of affected nodes should be updated in each
iteration of the inference algorithm. Due to the updating process in each iteration
of the inference algorithm, it is not computationally feasible to train on a large
corpus. The largest data set we trained has 22K words (see Section 6.6).



130
Probabilistic Hierarchical Clustering for Morphology Learning

Chapter 5

D5

D1

D6

D2 D3 D4
D0

D7

D8

(a) D0 will be removed from the tree.

D9

D1

D6

D2 D3 D4 D0

D7

D8

(b) D8 is sampled to be the sibling ofD0.

Figure 5.5: Sampling new tree structures. a) Before sampling a new position for
the node D0. b) After inserting the node D0 as a sibling node to D8

5.4.4 Morphology Segmentation

Once the optimal tree structure is inferred along with the morphological seg-
mentation of words, any novel word can be analysed. For the segmentation of
novel words, the root node is used as it contains all stems and suffixes which are
already extracted from the training data. The split point yielding the maximum
probability given inferred stems and suffixes is chosen to be the final analysis of
the word:

arg max
j

p(wi = sj +mj|Droot, βm, Pm, βs, Ps) (5.17)

where Droot refers to the root of the entire tree.

Here, the probability of a segmentation of a given word given Droot is calcu-
lated as given below:

p(wi = sj +mj|Droot, βm, Pm, βs, Ps) = p(sj|Sroot, βs, Ps) p(mj|Mroot, βm, Pm)

(5.18)

where Sroot denotes all the stems in Droot and Mroot denotes all the suffixes in
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Algorithm 4 Inference algorithm
1: input: data D = {w1 = s1 + m1, . . . , w1 = s1 + m1}, initial tree T ,

initial temperature of the system γ, the target temperature of the system κ,
temperature decrement η

2: initialise: i← 1, w ← wi = si +mi, pcur(D|T )← p(D|T )
3: while γ > κ do
4: Remove the leaf node Di that has the word wi = si +mi

5: Draw a split point for the word such that wi = s
′
i +m

′
i

6: Draw a sibling node Dj

7: Dm ← Di

⋃
Dj

8: Update pnext(D|T )
9: if pnext(D|T ) >= pcur(D|T ) then

10: Accept the new tree structure
11: pcur(D|T ) ← pnext(D|T )
12: else
13: random ∼ Normal(0, 1)

14: if random <
(
pnext(D|T )
pcur(D|T )

) 1
γ then

15: Accept the new tree structure
16: pcur(D|T ) ← pnext(D|T )
17: else
18: Reject the new tree structure
19: Re-insert the node Di at its previous

position with the previous split point
20: end if
21: end if
22: w ← wi+1 = si+1 +mi+1

23: γ ← γ − η
24: end while
25: output: A tree structure where each node corresponds to a paradigm.

Droot. Here p(sj|Sroot, βs, Ps) is calculated as given below:

p(si|Sroot, βs, Ps) =


n
Sroot
si

L+βs
if si ∈ Sroot

βs∗Ps(si)
L+βs

otherwise
(5.19)

Similarly, p(mj|Mroot, βm, Pm) is calculated as:
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p(mi|Mroot, βm, Pm) =


n
Mroot
mi

N+βm
if mi ∈Mroot

βm∗Pm(mi)
N+βm

otherwise
(5.20)

5.5 Experiments

Two sets of experiments are performed to test the proposed model in this chapter.
In the first set of experiments, words are split at single point that segments each
word into a single stem and a single suffix. In the second set of experiments,
multiple split points are allowed during segmentation by splitting each stem and
suffix once more if necessary. In all experiments, words are assumed to be made
of stems and suffixes where prefixes and other morphological forms are neg-
lected.

In both set of experiments, Morpho Challenge datasets (Kurimo et al. 2011b)
were used. We have performed the experiments for three different languages:
English, German, and Turkish where the datasets consist of 878034, 2338323,
and 617298 words respectively. Although, all datasets provide word frequencies,
we did not use any frequency information. Since it is a nonparametric probabil-
istic model, the model is supposed to learn the underlying distributions of latent
variables without any frequency information. Word frequencies are only used for
choosing words to insert on the tree; i.e. words with a frequency more than 200
are chosen to construct the tree. The exceptions of the frequency threshold are
mentioned separately if any other value is assigned.

For each experiment, a tree is constructed with a number of words. The num-
ber is assigned manually. Once the tree is learned by the inference algorithm,
the final tree is used for the segmentation of complete datasets. Several exper-
iments are performed for each language with various settings where the setting
varies with the tree size and the model parameters. Model parameters are the
concentration parameters β = {βs, βm} of the Dirichlet processes for stems and
suffixes.

In all experiments, the initial temperature of the system is set γ = 2 where
it is reduced to a temperature of γ = 0.01 with decrements η = 0.0001. It is
depicted in Figure 5.6 how the log likelihoods of the trees of size 10K, 16K, and
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Figure 5.6: Marginal likelihood convergence in time for datasets of size 16K and
22K.

22K converge in time.

As explained earlier, trees are constructed by choosing words from the corpus
randomly considering the frequency threshold defined. Since different training
sets will lead different tree structures, each experiment is repeated three times
keeping the experiment setting the same. Evaluation scores are presented as
intervals where only the highest and lowest scores are given.

5.5.1 Experiments with Single Split Points

In this set of experiments, words are split into a single stem and a single suffix.
During the segmentation, Equation 5.21 is used to determine the split position
for each word.

The evaluation scores regarding the experiments with a training set of 10K
words is given in Table 5.1. The maximum score is obtained with βs = 0.1 and
βm = 0.1 which is %47.01.

Some sample tree nodes obtained from trees with 10K words are given in
Table 5.2. As seen from the table, morphologically similar words are grouped
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βs, βm Precision(%) Recall(%) F-measure(%)
0.001 0.001 79.87..84.42 31.20..32.51 45.20..46.21
0.002 0.002 76.25..79.27 30.61..31.38 43.68..44.96
0.01 0.005 77.17..86.08 29.76..31.85 44.26..45.09
0.01 0.01 75.66..80.86 29.71..31.58 42.66..45.42
0.02 0.02 75.66..84.21 30.65..32.46 44.61..45.90

0.1 0.1 78.95..81.48 29.59..33.03 43.05..47.01
0.2 0.2 74.07..82.10 32.07..32.72 44.70..46.84

Table 5.1: Evaluation scores of single split point experiments obtained from the
trees with 10K words.

together. The morphological similarity both refers to the similarity in terms of
the endings and the stems of words. For example, words second+hand and
third+largest are grouped in the same node through the word second+largest

which shares the same stem with second+hand and same ending with third+largest.

Remark. For each set of experiments, some sample tree nodes are demon-
strated to give an idea about how the tree nodes are organised generally. The
discussion about the node contents are although given separately for each set of
experiments, as the algorithm is the same, similar rules are to be met in each tree
structure. However, as the training set is to change in each experiment, words are
expected to be different each time.

Another set of experiments has been performed with 16K words. The results
are demonstrated in Table 5.3. The maximum F-measure obtained is %50.02 with
the setting of concentration parameters as βs = 0.001 and βm = 0.001. If we
compare the scores of the experiments with 10K and 16K words, it is noticeable
that scores are slightly higher with the larger dataset.

Some sample tree nodes obtained from the trees with 16K words is given in
Table 5.4. As seen from the sample nodes, prefixes can also be segmented al-
though they are identified as roots; such that anti+fraud, anti+war, anti+tank,

anti+nuclear. This gives a flexibility in the model by capturing the similarit-
ies through either stems, suffixes, or prefixes. However, as mentioned before,
the model does not consider any discrimination between different types of mor-
phological forms during training. As the prefix pre- appears at the beginning of
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scrambl+ed, scrambl+e, scrambl+ing, transferr+ed, influenc+ing, influenc+ed,
plung+ed
downgrade+s, crash+ed, crash+ing, lack+ing, blind+ing, blind+, crash+, stifl+e,
compris+ing, compris+es, stifl+ing, compris+ed, lack+s, assist+ing, blind+ed,
blind+er,
third+-year, booth+, second+-largest, reign+ed, interpret+er, syndicat+ion, echo+ed,
second+-round, second+ly, syndicat+ed, third+ly, second+-hand, interpret+ed,
third+-largest, booth+s, reign+s, second+-best
near+ing, slight+est, deliberat+ing, slight+ly, afflict+ing, near+ly, downsiz+ing
foot+age, foot+ing, foot+note, foot+-tall, slight
commut+ers, bondhold+ers, steel+ers, wrestl+ers, rul+ers
anti-govern+ment, advance+ment, embezzle+ment, punish+ment
pragmat+ism, robot+ic, euphem+ism, pragmat+ic, marx+ism, popul+ism, aca-
dem+ic
hen+ley, mcsor+ley, heff+ley, wheat+ley, tit+ley, mose+ley
clijst+ers, kais+er, helicopt+ers, kilomet+res, kilomet+er, teenag+er, kilomet+ers,
mak+eshift, mak+ers

Table 5.2: Some tree nodes obtained from the trees with 10K words.

βs, βm Precision(%) Recall(%) F-measure(%)
0.001 0.001 78.75..86.84 31.84..35.92 46.45..50.02
0.002 0.002 76.25..81.17 30.61..34.25 43.68..48.17
0.01 0.01 78.75..85.00 31.73..34.27 45.45..48.84
0.02 0.02 79.61..83.75 32.31..34.41 46.40..48.78
0.1 0.1 80.82..86.36 29.87..34.32 44.39..48.18
0.2 0.2 71.25..86.36 32.07..33.65 45.71..47.07

Table 5.3: Evaluation scores of single split point experiments obtained from the
trees with 16K words.

words, it is identified as a stem. However, identifying pre- as a stem does not
yield to a change in the morphological analysis of the word.

Sometimes similarities may not yield a valid analysis of words. For example,
the prefix pre- lead the words pre+mise, pre+sumed, pre+gnant, pre+cincts to
be analysed wrongly whereas pre- is a valid prefix for the word pre+face (see
Table 5.4). Another type of wrong analysis arises with common endings in Eng-
lish as mentioned in the previous set of experiments with 10K words. For ex-
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regard+less, base+less, shame+less, bound+less, harm+less, regard+ed, relent+less
jave+lin, crome+lin, krem+lin, medel+lin, mer+lin
solve+d, high+-priced, lower+s, lower+-level, high+-level, lower+-income, his-
tor+ians
imit+ation, sens+ation, acceler+ation, beginning+, liquid+ation, spill+s, spill+ed, be-
ginning+s, privatis+ation
pre+mise, pre+face, pre+sumed, pre+, pre+cincts, pre+gnant
base+ment, ail+ment, over+looked, predica+ment, deploy+ment, compart+ment,
embodi+ment
anti+-fraud, anti+-war, anti+-tank, anti+-nuclear, anti+-terrorism, switzer+, anti+gua,
switzer+land
sharp+ened, strength+s, tight+ened, strength+ened, black+ened
reduc+es, trac+es, lifestyl+es, trac+tors, subcontrac+tors, phras+es, muffin+, ac-
complic+es, tamal+es, illness+es, nois+es, edn+ey, institut+es, trac+ey, bon+dage,
muffin+s, bon+es,
purc+ell, coldw+ell, grenf+ell, sew+ell, ferr+ell, sew+age, orw+ell, caldw+ell

Table 5.4: Some tree nodes obtained from the trees with 16K words.

ample, in Table 5.4, the words krem+lin, mer+lin, jave+lin, coldw+ell, sew+ell,

orw+ell are analysed wrongly due to a number of words ending with -lin and ell.
On the other side, the model can easily capture the common suffixes such that
-less, -s, -ed, -ment etc.

The final set of experiments have been performed with a training set of 22K
words. The maximum F-score acquired is %51.28 with the concentration para-
meters βs = 0.002 and βs = 0.002 (see Table 5.5). When the evaluation scores
are compared with the first two sets of experiments’ scores, it is noticeable that
scores are rather higher with the largest training set. Although, the highest scores
of the experiments with 16K and 22K words are not very far from each other, the
overall scores are much higher with 22K words.

Sample tree nodes obtained from the trees with 22K words are presented
in Table 5.6. Similar features apply here as well; such that similar stems and
endings tend to be grouped together. Another nice feature about the model is
that compounds are easily captured through common stems; e.g. doubt+fire,

bon+fire, gun+fire, clear+cut.
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βs, βm Precision(%) Recall(%) F-measure(%)
0.001 0.001 82.50..84.62 35.69..36.02 50.15..50.33
0.002 0.002 83.55..89.04 34.66..36.01 49.16..51.28
0.01 0.01 81.51..87.18 33.49..35.48 47.85..50.43
0.02 0.02 80.86..85.00 34.60..36.16 48.47..50.36
0.1 0.1 80.67..84.18 33.45..35.36 47.70..49.17
0.2 0.2 80.26..87.50 34.52..35.59 48.28..50.50

Table 5.5: Evaluation scores of single split point experiments obtained from the
trees with 22K words.

doubt+fire, bon+fire, stain+less, doubt+less, gun+fire
close+s, close+ness, close+ly
investiga+tor, defini+te, investiga+te, determin+ation, determin+ing, defini+tively,
determin+ed, admir+ation, determin+es, revolv+ed, investiga+tion, revolv+ing
symbol+ic, hak+e, symbol+s, unit+s, admir+ed, hak+im, aesthetic+s, kind+er,
sal+im, taci+t, sal+monella, unit+ed’s, admir+ers, admir+e, kind+s, taci+s, kind+red,
aesthetic+
inspir+e, inspir+ing, inspir+ed, inspir+es, earn+ing, ponder+ing
stok+es, utiliz+ing, utiliz+e, utiliz+ed
group+s, group+ing, interview+, interview+ing, account+ing, account+, group+
brig+ade, borrow+ings, fac+ade, jan+ice, earn+ed, earn+, appeal+, appeal+s, dis-
pens+ing, appeal+ing, interview+ed, dispens+ed, interview+ers, co-ordinat+ion, co-
ordinat+ed, earn+s, jan+, interview+s, fac+ed, jan+ata, appeal+ed
aid+es, inspir+ation, doubt+, prob+es, doubt+ful, doubt+s, prob+e, doubt+ed,
aid+ed, aid+e, emancip+ation, prob+ation
clear+est, clear+, clear+-cut, clear+ance

Table 5.6: Some tree nodes obtained from the trees with 22K words.

5.5.2 Experiments with Multiple Split Points

The initial model that we propose can only find one split point for each word. Re-
call that each word is segmented at the split point which provides the maximum
conditional probability given the analyses of all words in corpus, such that:

arg max
j

p(wi = sj +mj|Droot, βm, Pm, βs, Ps) (5.21)
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To discover more split points, we propose a hierarchical segmentation where
each segment, which is identified in the first split as a stem+suffix combination,
is split further. Here, we postulate that words cannot have more than two stems,
and always suffixes follow stems (not allowing any circumfixing or infixing).

In the first split, each word is analysed into two segments [s1][m1] that yields
the maximum probability according to the Equation 5.21. In the second split,
we analyse each segment further. There are 4 possible analyses of the word:
[sm][mm], [ss][mm], [s][sm], and [s][mm]. Therefore, the first segment s1 can
be analysed as either [s][m] or [s][s]. The decision to choose which segmentation
is made as follows:

s1 ← s

 s if p(s|S, βs, Ps) > p(m|M,βm, Pm)

m otherwise
(5.22)

where S and M denote the stem and suffix lexicons captured within the tree
structure. The second segment can be analysed as [m][m], where the first seg-
ment is analysed as either [s][m] or [s][s]. Therefore, the first split yields two
different analyses: [sm][mm] and [ss][mm].

Another possibility is that the first segment cannot be split further and left as
a stem [s]. In this case, the second segment can be analysed as [s][m] or [m][m].
The decision to choose which segmentation is made as follows:

m2 ←

 s if p(s|S, βs, Ps) > p(m|M,βm, Pm)

m else
m (5.23)

Thus the second split yields two different analyses in the second case: [s][sm]
and [s][mm].

An example for finding multiple split points is given in Figure 5.7. The word
housekeeper is analysed as [s][sm].

These changes do only affect the segmentation step in the algorithm keeping
the inference step the same as before. Therefore, in all experiments with multiple
split points, trees are generated following the same MCMC sampling process.

The first set of experiments with multiple split points has been performed by
constructing a tree with 10K words (see Table 5.7). The maximum F-measure
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housekeeper

house keeper

house Ø keep er

Figure 5.7: An example that depicts how the word housekeeper can be analysed
further to find more split points.

βs, βm Precision(%) Recall(%) F-measure(%)
0.001 0.001 58.59..62.37 52.06..53.95 55.13..58.14
0.002 0.002 56.77..62.02 49.97..54.97 53.83..58.28
0.01 0.01 56.16..64.39 51.87..53.68 53.93..58.09
0.02 0.02 57.02..67.64 51.05..53.77 53.87 ..59.17
0.1 0.1 61.21..63.39 57.42..54.73 58.74..59.98
0.2 0.2 59.91..61.70 55.33..57.30 57.53..59.42

Table 5.7: Evaluation scores of multiple split point experiments obtained from
the trees with 10K words.

obtained is %59.98. The second set of experiments has been performed with a
tree of size 16K words (see Table 5.8). The maximum F-measure obtained is
%62.36. Final set of experiments has been performed on a dataset of size 22K
(see Table 5.9) where we obtained the highest F-measure of %62.56.
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βs, βm Precision(%) Recall(%) F-measure(%)
0.001 0.001 58.93..64.89 53.20..53.99 55.92..56.72
0.002 0.002 56.92..67.80 55.54..57.72 56.92..62.36

0.01 0.01 62.10..64.76 53.05..55.16 57.22..59.58
0.02 0.02 64.12..65.95 55.42..56.04 60.23..60.48
0.1 0.1 61.27..63.23 54.93..57.59 57.40..59.37
0.2 0.2 62.20 ..65.82 56.60..59.70 59.21..61.39

Table 5.8: Evaluation scores of single split point experiments obtained from a
tree with 16K words.

βs, βm Precision(%) Recall(%) F-measure(%)
0.001 0.001 64.81..68.71 55.64..57.42 60.68..62.56
0.002 0.002 63.11..67.18 56.94..58.82 60.89..61.64
0.01 0.01 60.11..67.81 55.82..57.61 57.89..62.30
0.02 0.02 64.11..66.58 56.46..56.81 60.24..61.10

0.1 0.1 62.29..65.28 55.09..58.97 58.86..60.58
0.2 0.2 60.88..66.18 56.07..58.28 58.73..61.15

Table 5.9: Evaluation scores of single split point experiments obtained from a
tree with 22K words.

5.5.3 Comparison with Other Systems

We compare our results with other unsupervised systems participated in Morpho
Challenge 2010 (Kurimo et al. 2010). In order to compare the system with the
other systems, first we used a separate development set to find the best parameter
values. Then, we applied this model on the actual evaluation data. Given com-
parison between the post-evaluation results and the original evaluation results is
not completely fair.

The highest F-measure that was obtained in Morpho Challenge 2010 was the
base inference algorithm of Lignos (2010). We also compare our model with
one of the state of art systems in unsupervised morphology learning, Morfessor
Baseline (Creutz & Lagus 2002, 2005b, 2007) and Morfessor CATMAP. Our
model outperforms both members of Morfessor family with the multiple split
setting. These scores are scientifically significant since they were obtained as a
result of several experiments, where the results were all evaluated by the Morpho
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System Precision(%) Recall(%) F-measure(%)
Prob.Clustering (single) 70.76 36.51 48.17
Prob.Clustering (multiple) 57.08 57.58 57.33
Morf. Baseline (Creutz & Lagus 2002) 81.39 41.70 55.14
Morf. CatMAP (Creutz & Lagus 2005a) 86.84 30.03 44.63
Base Inference (Lignos 2010) 80.77 53.76 64.55
Iterative Comp. (Lignos 2010) 80.27 52.76 63.67
Aggressive Comp. (Lignos 2010) 71.45 52.31 60.40
Nicolas (Nicolas et al. 2010) 67.83 53.43 59.78

Table 5.10: Comparison of our model with other unsupervised systems particip-
ated in Morpho Challenge 2010 for English.

Challenge organisers.

Remark. It should be noted that we only show the unsupervised systems
participated in Morpho Challenge 2010 in the table since the supervised systems
use training sets provided by the Morpho Challenge to tune parameters of their
systems. Therefore their systems are more likely to be overfitted.

The official results of the Morpho Challenge 2010 are presented in Table 5.10
(Virpioja et al. 2011). Since the development sets that are used for the official
evaluation differ from the publicly available sets (Kurimo et al. 2011b), the eval-
uation scores may differ from the ones presented in authors’ published papers.
Here, since our model is also evaluated with the official development sets, the
scores may differ from the ones that we presented in previous sections.

We also performed experiments with Morpho Challenge 2009 English data-
set. The dataset consists of 384904 words. Our results and other participant
systems’ results are given in Table 5.11 (Kurimo et al. 2009). As seen from the
table, our system comes 5th out of 16 systems.

5.5.4 Experiments in Various Languages

We also provide results for German and Turkish datasets using the Morpho Chal-
lenge 2010 (Kurimo et al. 2010) datasets. As both languages are morphologically
rich (German is a compound language and Turkish is an agglutinative language),
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System Precision(%) Recall(%) F-measure(%)
Allomorf (Virpioja et al. 2009) 68.98 56.82 62.31
Morf. Base. (Creutz & Lagus 2002) 74.93 49.81 59.84
PM-Union (Christian Monson 2009) 55.68 62.33 58.82
Lignos (Lignos et al. 2009) 83.49 45.00 58.48
Prob. Clustering (multiple) 70.04 59.06 57.33
PM-mimic (Christian Monson 2009) 53.13 59.01 55.91
MorphoNet (Bernhard 2009) 65.08 47.82 55.13
Rali-cof (Lavallée & Langlais 2009) 68.32 46.45 55.30
CanMan (Can & Manandhar 2009) 58.52 44.82 50.76
Morf. CatMAP (Creutz & Lagus 2005a) 84.75 35.97 50.50
Prom-1 (Spiegler et al. 2009) 36.20 64.81 46.46
Rali-ana (Lavallée & Langlais 2009) 64.61 33.48 44.10
Prom-2 (Spiegler et al. 2009) 32.24 61.10 42.21
Prom-com (Spiegler et al. 2009) 32.24 61.10 42.21
MetaMorf (Tchoukalov et al. 2009) 68.41 27.55 39.29
Ungrade (Golénia et al. 2009) 28.29 51.74 36.58

Table 5.11: Comparison with other unsupervised systems participated in Morpho
Challenge 2009 for English.

we performed only the experiments with multiple split points. We set the con-
centration parameters as βs = 0.01 and βm = 0.005, and the tree size as 22K.
We set the frequency threshold as 50 for Turkish since the Turkish dataset is not
large enough and we set the frequency threshold 200 for German similarly to
the previous experiments. Each experiment was repeated three times for both
German and Turkish.

The results of the experiments for German is given in Table 5.12. The table
also demonstrates other participants’ scores in Morpho Challenge 2010.

The results of the experiments for the Turkish dataset is given in Table 5.13
with other participants in Morpho Challenge 2010.
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System Precision(%) Recall(%) F-measure(%)
Prob. Clustering (multiple) 57.79 32.42 41.54
Morf. Baseline (Creutz & Lagus 2002) 82.80 19.77 31.92
Morf. CatMAP (Creutz & Lagus 2005a) 72.70 35.43 47.64
Base Inference (Lignos 2010) 66.38 35.36 46.14
Iterative Comp. (Lignos 2010) 62.13 34.70 44.53
Aggressive Comp. (Lignos 2010) 59.41 37.21 45.76

Table 5.12: Experiment results with concentration parameters: βs = 0.01 and
βm = 0.005 for German with other participants in Morpho Challenge 2010.

System Precision(%) Recall(%) F-measure(%)
Prob. Clustering (multiple) 72.36 25.81 38.04
Morf. Baseline (Creutz & Lagus 2002) 89.68 17.78 29.67
Morf. CatMAP (Creutz & Lagus 2005a) 79.38 31.88 45.49
Base Inference (Lignos 2010) 72.81 16.11 26.38
Iterative Comp. (Lignos 2010) 68.69 21.44 32.68
Aggressive Comp. (Lignos 2010) 55.51 34.36 42.45
Nicolas (Nicolas et al. 2010) 79.02 19.78 31.64

Table 5.13: Experiment results with concentration parameters: βs = 0.01 and
βm = 0.005 for Turkish with other participants in Morpho Challenge 2010.

5.6 Conclusion

In this chapter, we present a novel probabilistic model for unsupervised mor-
phology learning. The model adopts a hierarchical structure where words are
organised in a tree in a way that morphologically similar words are located close
to each other. We present the results that we have obtained with Morpho Chal-
lenge datasets for English, German and Turkish. We also experimented with
the Morpho Challenge 2009 datasets in English. Our system outperforms other
systems in Morpho Challenge 2009 for English.

For German and Turkish languages, although our model gives lower scores
compared to other systems, the model can easily capture the morphological sim-
ilarity between words. Capturing similarity between words facilitates handling
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frequent morphological forms naturally; i.e. compounds. However, German and
Turkish are morphologically richer than English, and these languages require
more sophisticated methods to handle the concatenation of various morpholo-
gical forms of words.



CHAPTER 6

Joint Learning of Morphology and POS Tagging

“It takes two to tango.”
British idiom

6.1 Introduction

This chapter presents a joint model for learning morphology and POS tags sim-
ultaneously. The proposed method adopts a finite mixture model that groups
words having similar contextual features thereby assigning the same POS tag to
those words. While learning POS tags, words are analysed morphologically by
exploiting the morphological features of the learned POS tags.

The chapter is organised as follows: Section 6.2 motivates the research con-
tributed with this chapter; Section 6.3 describes the model mathematically; Sec-
tion 6.4 explains the inference algorithm; Section 6.3 presents the experiments
and their results; and finally Chapter 6.8 concludes with a brief summary of the
chapter.
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6.2 Motivation

The correlation between morphology and syntax has been of great interest in
the field. Most research focus on learning either morphology or POS tags as-
suming the other is already provided. Chapter 3 reviews the research that can
be considered as an instance of a single model that learns only one type of lat-
ent variable (either morphology or POS tags). Here we review more literature
relevant to the joint learning problem to motivate the research presented in this
chapter.

In the recent years, there have been several attempts to learn morphology
and syntax cooperatively. Hasan & Ng (2009) propose a model that exploits the
trigram model of Goldwater & Griffiths (2007) to improve POS tagging by using
suffixes. Words that exist in the word lexicon (which is adopted for learning) are
tagged using the original model of Goldwater & Griffiths (2007), whereas words
that do not appear in the word lexicon are tagged by using a suffix lexicon where
suffixes are emitted from each tag instead of words. Using a suffix lexicon that
has the possible tag assignments for each suffix, the authors could use a smaller
word lexicon. However, it should be noted that the model is not unsupervised
due to the employment of a tagged lexicon. Their model can be considered as
weakly supervised since the lexicon size is small compared to the one used in
Goldwater & Griffiths (2007).

Lee et al. (2011) exploits context to learn morphology. Their model is in-
spired by our approach that has been described in Chapter 4. The method that
we propose in Chapter 4 considers POS tagging as a separate step, whereas Lee
et al. (2011) combine POS tagging and morphology learning within the same
learning mechanism. However, the main focus of the study is to learn morpho-
logy by benefiting from the context as much as possible. Hence, the contribution
can be easily counted as a part of morphology learning rather than a joint learn-
ing.

Although in the recent years, there have been attempts to combine morpho-
logy learning and POS tagging, none of the existing work has proposed a joint
learning process for morphology and POS tags. Although Lee et al. (2011) share
a similar goal with us for combining two learning processes, the final aim of their
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model is to learn morphology by exploiting the context, Thus, the model can be
considered more on the morphology learning side of the field. As a matter of
fact, authors do not present any evaluation for POS tagging, but only for mor-
phology learning. It should be also noted that in their experiments, the number
of POS tags is determined as 5.

The model that will be described in this chapter brings a new perspective in
the field by combining morphology and POS tagging within the same learning
mechanism where both are learned simultaneously and without using any tagged
lexicon. The model can be considered as a sophisticated version of the algorithm
suggested in Chapter 4. However, it should be noted that this model does not
adopt a paradigmatic approach like the one in Chapter 4.

6.3 Model Definition

The model proposed in this chapter adopts a Bayesian approach. We will de-
scribe the model in two parts: POS tagging and morphology learning. However,
it should be noted all the time that the model adopts a joint learning where two
parts are learned simultaneously.

6.3.1 POS Tagging

The model adopts a finite mixture model for POS tagging. By definition, a mix-
ture model consists of a set of mixture components. In our model, each mixture
component ci corresponds to a POS tag. Therefore, each POS tag is a mixture
component indicator. Each mixture component ci consists of words and their
contexts. Words are denoted by wi and every word that belongs to ci is meant
to have the respective component indicator as its POS tag. Each context is a tag
pair < ci−1, ci+1 >, where the first tag < ci−1 > corresponds to the POS tag
of the previous word wi−1 and the second tag corresponds to the POS tag of the
following word wi+1.

Example 6.3.1. Let a phrase be ‘an/c1 interesting/c2 study/c3’. Here, the word
‘interesting/c2’ belongs to the mixture component c2, which is also its POS tag.
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Moreover, ‘interesting/c2’ has the context words < an/c1, study/c3 > and its
context is defined as < c1, c3 >.

Mathematical representation of the model is given in terms of underlying
distributions as follows:

ci ∼ Mult(φ) (6.1)

φ ∼ Dir(π) (6.2)

wi|ci ∼ Mult(θw) (6.3)

θw ∼ Dir(κ) (6.4)

ci−1,i+1|ci ∼ Mult(θc,c′) (6.5)

θc,c′ ∼ Dir(β) (6.6)

Graphical representation of the model is given in Figure 6.1.

Mixture component indicators ci are drawn from a Multinomial distribution
with parameters φ (see Equation 6.1). For the Multinomial parameters, we define
a prior distribution which is distributed according to a Dirichlet distribution with
hyperparameters π (see Equation 6.2). The reason for defining a Dirichlet distri-
bution is to obtain Multinomial-Dirichlet conjugacy. Multinonial-Dirichlet con-
jugation shapes the component indicators within a Chinese Restaurant Process
where each indicator is distributed proportionally with the number of words in
the mixture component.

Since each mixture component consists of a set of words wi distributed ac-
cording to a Multinomial distribution with parameters θw (see Equation 6.3).
Dirichlet distribution with hyperparameters κ is defined as prior information for
the Multinomial parameters θw (see Equation 6.4).

Each mixture component ci also consists of a set of contexts ci−1,i+1, which
are the contexts of the words in ci. The contexts are distributed according to a
Multinomial distribution with parameters θc,c′ (see Equation 6.5). For the con-
text multinomials, we again define prior information in the form of a Dirichlet
distribution with hyperparameters β (see Equation 6.6).
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Figure 6.1: Plate diagram of POS tagging part of the model.

Following the model definition, conditional probabilities can be derived to be
used for the inference (see Section 6.4). The probability of a class indicator is
derived as follows (see Chapter 2 for the derivation):

p(ci|π) =
nci + π

N +Kπ
(6.7)

where nci denotes the number of word tokens tagged with ci, N denotes the
number of total word tokens, and K is the number of class indicators. Class
indicators with more words are more likely to be assigned to new words with the
rich-get-richer principle.

The conditional probability of a context given a tag is derived as follows:

p(< ci−1, ci+1 > |ci, β) =
nci−1,ci,ci+1

+ β

nci + Lβ
(6.8)
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where nci−1,ci,ci+1
denotes the number of contexts < ci−1, ci+1 > in the mixture

component ci. The total number of contexts in ci is denoted by nci whereas L
denotes the possible number of different contexts in the model. The possible
number of different contexts is limited by the number of tags in the model. Max-
imum number of context types is K ∗K.

Similarly, the conditional probability of a word given a tag is derived as fol-
lows:

p(wi|ci, κ) =
nwi,ci + κ

nci +Wciκ
(6.9)

where nwi,ci is the number of word-tag pairs < wi, ci >; nci is the number of
word tokens having the tag ci; and Wci is the number of word types that are
tagged with ci.

Each process can be interpreted as a Chinese Restaurant Process (CRP):

• Let one of the restaurants be a class indicator restaurant where each table
has the same meal i.e. ci. Customers are words that decide which table to
sit themselves accordingly with the number of customers already sitting at
the table. Thus, each table represents the class indicator with a number of
customers having the same tag.

• The second one is a context restaurant chain where each restaurant is a
member of a different tag. Each table in each restaurant has the same meal
i.e. a context < ci−1, ci+1 >. Customers are various contexts that decide
which table in which restaurant to sit themselves accordingly with the other
contexts sitting at the same table. Therefore, same contexts tend to appear
more.

• The final restaurant is a word restaurant chain where each restaurant is
again a member of a different tag. Each table has the same meal i.e. word
wi. Customers are words. Each word sit themselves at a table accordingly
with the number of same words already sitting at the table.
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Figure 6.2: Plate diagram of morphology part of the model.

6.3.2 Morphology Learning

Morphology is modelled by Dirichlet processes in the model. The model splits
each word into two segments: a stem and a suffix. Stems are generated by a
Dirichlet process DP (γs, Hs) with the concentration parameter γs and the base
distributionHs. Analogously, suffixes are generated by another Dirichlet process
DP (γm, Hm) with concentration parameter γm and base distributionHm. Hence,
the model is summarised as follows:

si ∼ DP (γs, Hs)

mi|ci ∼ DP (γm, Hm)

(6.10)

The plate diagram of the model is given in Figure 6.2.

The reason for using Dirichlet process for morphemes (stems and suffixes) is
the nature of a Dirichlet process to generate a Chinese restaurant process. Mor-
phology is established on morphemes which are repeated; therefore, morphemes
can be discovered by a rich-get-richer behaviour. While generating a Chinese res-



152 Joint Learning of Morphology and POS Tagging Chapter 6

taurant process, a Drichlet process can adopt a probability distribution to define
the features of the items that will be generated by the Dirichlet process. This
probability distribution is called the base distribution of the process. We use the
base distribution in the Dirichlet processes to embed prior information for the
lengths of the morphemes.

The base distribution Hs is an implicit length prior that favours shorter stem
lengths (Creutz & Lagus 2005b):

p(si) = p(cij)
|si| (6.11)

where |si| denotes the length of the stem in characters. Each character has a
probability of p(cij) where characters are assumed to be distributed uniformly in
an alphabet. Thus, a letter in English alphabet will have a probability of 1/26.
We also assume that each morpheme ends with a special character; i.e. end of
morpheme marker.

Following the Dirichlet process, while drawing a stem from DP (γs, Hs)

rather than generating a new stem, an existing stem is preferred. If the stem is
not generated before, then base distribution forces shorter stems to be preferred.
Since longer stems will generate more terms in the base distribution, shorter
stems are forced to be generated. Suffixes are generated from DP (γm, Hm) sim-
ilarly.

Here, it is important to emphasise that DP (γs, Hs) is a global Dirichlet pro-
cess where stems may belong to any POS tag. However, suffixes are generated
based on each POS tag locally. The reason for defining the model such that is
to enable stems to be shared amongst different tags. However, generally words
with the same tag have similar endings leading us to define local distribution for
suffixes instead of a global one.

We can derive the conditional probability of stems and suffixes to be used for
the inference. The conditional probability of a stem is derived as follows:
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p(si|s, γs, Hs) =
nsi + γsHs(si)

Ns + Sγs
(6.12)

where nsi is the count of stem type si that is generated previously and Nsi is the
number of all stems generated. Finally, S is the number of stem types generated
by the model. The conditional probability of a suffix is derived as follows:

p(mi|mci , γm) =
ncimi + γmHm(mi)

N ci
m +Mγm

(6.13)

where ncimi is the count of suffix types mi that are previously generated in ci, and
N ci
m is the number of all suffixes assigned with tag ci. Finally M is the number

of suffix types generated in the model so far.

6.4 Inference

The full model to be learned, by combining POS tagging and morphological
segmentation, is given in Figure 6.3. The model has got both observed and un-
observed variables. Observed variables are words wi and the hyperparameters of
the prior distributions: π, κ, β, γs, γm, which are determined empirically. Unob-
served variables are POS tags, stems, suffixes and other parameters: φ, θw, θc,c′ .
However, we do not aim to estimate the parameters φ, θw, θc,c′ , instead we integ-
rate those parameters out by using the Multinomial-Dirichlet conjugacy. There-
fore, we only address to infer POS tags, stems and suffixes as unobserved latent
variables.

For the inference of latent variables, we use Gibbs sampling. In Gibbs sampling,
POS tags, stems and suffixes are sampled interchangeably. We divide the infer-
ence into two steps where first a POS tag is sampled, and then a stem and a suffix
are sampled for each word.
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Figure 6.3: The complete joint model.

6.4.1 Inferring POS

Each word’s POS tag is sampled subject to its context. Let a word be wi and
imagine that it occurs in context < wi−1, wi+1 > where wi−1 belongs to ci−1 and
wi+1 belongs to ci+1. The sampling probability of a POS tag ci for a given word
wi is defined as follows:
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p(ci| < wi−1, wi+1 >,wi) ∝ p(< wi−1, wi+1 >,wi|ci)p(ci)

∝ p(wi|ci)p(< wi−1, wi+1 > |ci)p(ci)

(6.14)

Bayes’ rule is applied here to be able to calculate the sampling probability in
terms of likelihood and prior probability. We omit the denominator in the Bayes’
rule that is the triple < wi−1, wi, wi+1 >; and it is the same for any ci. We also
assume that< wi−1, wi+1 > andwi are independent since it is possible to remove
wi from < wi−1, wi+1 > and insert another word instead. It should be noted that
this is only an assumption and it is not completely true in the real world.

Example 6.4.1. Let the sample phrase be ‘an interesting study’. In the context<
an, study >, it is possible to insert another adjective (e.g. boring, nice, formal,

etc.) instead of ‘interesting’. This is only true for a set of words, say adjectives.
For example, inserting a noun in the given context does not yield a grammatically
correct phrase.

In the equation, it is simple to calculate p(wi|ci) and p(ci) using Equation 6.9
and Equation 6.7 respectively. However, both equations requirewi to be removed
from the corpus (as a requirement in Gibbs sampling). Therefore, Equation 6.9
can be rewritten for Gibbs sampling:

p(wi|c−i, κ) =
nwi,c−i + κ

nc−i +Wc−iα
(6.15)

where c−i denotes the mixture component ci excluding wi.
Equation 6.7 can be rewritten as follows:

p(ci|c−i, π) =
nc−i + π

N−i +Kπ
(6.16)

To calculate the context probability in a given mixture component which is
denoted by p(< wi−1, wi+1 > |ci) in Equation 6.14, we use an approximation
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suggested by Clark (2000). When the actual words are used for a context, it
yields to sparsity. Thus, the approximation is applied to eliminate the sparsity. In
the approximation, each context (< wi−1, wi+1 >) is approximated with the tags
of the context words such that:

p(< wi−1, wi+1 > |ci) = p(< ci−1, ci+1 > |ci)

p(wi−1|ci−1)p(wi+1|ci+1) (6.17)

where the approximation is weighted by the probabilities of context words in
the respective mixture components: p(wi−1|ci−1) and p(wi+1|ci+1). Conditional
probabilities of words are calculated using Equation 6.15. To calculate p(<
ci−1, ci+1 > |ci), Equation 6.8 is rewritten by omitting the respective contexts.
Since wi is the right context word of the previous word, and also left context
word of the following word, < ci−2, ci > and < ci, ci+2 > have to be removed
from the respective mixture mixture components, in addition to the context of
the current word being sampled: < ci−1, ci+1 >. Therefore, the final context
sampling probability becomes:

p(< ci−1, ci+1 > |c−<ci−1,ci+1>
i , c

−<ci−2,ci>
i−1 , c

−<ci,ci+2>
i+1 , c−i, β) =

nci−1,ci,ci+1
+ β

nc−i + Lβ

(6.18)

where c−<ci−1,ci+1>
i denotes the mixture component ci that excludes the context

< ci−1, ci+1 >, c−<ci−2,ci>
i−1 denotes the mixture component ci−1 that excludes the

context < ci−2, ci >, and c−<ci,ci+2>
i+1 denotes the mixture component ci+1 that

excludes the context < ci, ci+2 >.

6.4.2 Inferring Morphology

Subsequent to sampling of the POS tag of a given word, its morphology is
sampled. In the morphology, two different latent variables are to be inferred:
stems and suffixes. The sampling probability for the morphology is defined as
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follows:

p(wi = si +mi|s−i,mci
−i) = p(si|s−i)p(mi|mci

−i) (6.19)

where s−i is the stem lexicon that consists of all stems in the model excluding si,
and mci

−i denotes all suffixes assigned with ci excluding mi. Equation 6.12 and
Equation 6.13 are rewritten by excluding si and mi. Therefore, the conditional
probability of a stem becomes:

p(si|s−i, γs, Hs) =
ns−i + γsHs(si)

Ns−i + S−iγs
(6.20)

where ns−i is the count of the stem type si generated previously and Ns−i is the
number of all stems excluding si.

The conditional probability of a suffix is rewritten as follows:

p(mi|mci
−i, γm) =

ncim−i + γmHm(mi)

Nm
ci
−i

+M−iγm
(6.21)

where ncim−i is the count of suffixes mi previously generated, and Nm
ci
−i

is the
number of all suffixes assigned with tag ci that excludes mi.

6.5 Algorithm

Algorithm starts by assigning random POS tags to each word and splitting ran-
domly. Inference algorithm goes through each word iteratively by sampling a
POS tag, a stem and a suffix for the word. Before sampling, all constituents of
the respective word (tag, stem, suffix, context, contexts of adjacent words) are
removed from the model. After a number of iterations, the distributions from
which POS tags and stem-suffix are sampled converge to the target distributions.
The inference algorithm is summarised in Algorithm 5.
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Algorithm 5 The inference algorithm to infer POS tags and morphology inter-
changeably.

1: input: Corpus W = {w1, . . . , wn}
2: initialise: number of clusters c ← T , W = {w1/c1, . . . , wn/cn},
W = {w1 = s1 +m1, . . . , wn = sn +mn}, number of iterations J

3: for j = 1→ J do
4: for i = 1→ n do
5: Sample a POS tag for wi with the sampling prob-

ability:
p(ci| < wi−1, wi+1 >,wi) (6.22)

6: Sample a stem and a suffix forwi with the sampling
probability:

p(si,mi|s−i,mci
−i) (6.23)

7: end for
8: end for
9: output: POS tags, stems, suffixes of words in W .

6.6 Experiments & Evaluation

To evaluate the proposed model in this chapter, we use Penn WSJ treebank (Mar-
cus et al. 1993) in all experiments. Each experiment is performed on a corpus
with a different size which is obtained from the Penn WSJ treebank.

The model is evaluated for both POS tagging and morphology learning in-
dividually. For the evaluation of POS tagging, different evaluation methods are
applied.

We manually set the hyperparameters and concentration parameters for each
experiment; i.e. π = 10−6, β = 10−6, κ = 10−6, γs = 10−6, γm = 10−6. These
values are set as a result of several experiments with different settings.

In all experiments, we leave the punctuation since punctuation helps learn-
ing the syntax. We also leave words starting with an upper case character as
they are. The reason is that proper nouns usually begin with an upper case char-
acter and these words can easily be distinguished from other nouns having the
same spelling. As a preprocessing, we only insert a special character for sen-
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Figure 6.4: Many-to-1 accuracy scores obtained from corpora of size 24K, 36K,
48K, 60K, 72K, 84K, 96K, 120K, and 250K.

tence boundaries. The special character for the sentence boundary is assigned a
separate POS tag and no other words can be assigned this tag.

For POS tagging, a token-based approach is followed due to the significance
of the context for each individual token. Therefore, each token is considered
individually during sampling. However, for morphological segmentation, types
are considered during sampling. When tokens are considered for morphology,
then words with a high frequency are likely to be split since they are recognised
as distinct words to be analysed.

We present the results in two sections where POS tagging and morphological
segmentation results are demonstrated and discussed separately.

6.6.1 POS Tagging Results

Penn WSJ tree bank has 45 distinct POS tags (see Appendix A). In all of our
experiments we constrain the number of POS tags induced by the model as 45 as
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well. This helps evaluating the model using the well-known evaluation methods
for unsupervised POS tagging. As discussed in Chapter 3, different evaluation
methods are suggested for POS tagging. The first evaluation method we apply
is many-to-one accuracy. If we recall briefly, in the many-to-one accuracy eval-
uation, each result tag is assigned to a gold standard tag that has the highest
frequency among the words assigned with the result tag. Therefore, it is possible
to assign each gold standard tag more than one result tag. We ran several experi-
ments with different size of corpora. Many-to-1 accuracy scores are depicted in
Figure 6.4 for various corpora with different size. As it seen on the figure, the ac-
curacy increases with the corpus size. One reason is that in larger corpora there
is more context information and less sparsity of words. More context inform-
ation leads the probability distributions over contexts to reflect the truth more,
therefore leading to a higher accuracy.

We also applied one-to-one accuracy. In the one-to-one accuracy evaluation,
the number of assignments (goldstandard tag to result tag) is constrained by one
where each gold standard tag can be assigned only one result tag. Thus, in one-to-
one accuracy there is one-to-one correspondence. We adopt a greedy algorithm
where each gold standard tag is assigned a result tag randomly. In each step of
the greedy algorithm, the two gold standard tags swap their assigned result tags
which lead to the highest increment in the accuracy. The algorithm terminates
when there is no more improvement in the accuracy. One-to-one accuracy results
are depicted in Figure 6.5 for different size of corpora. The same situation holds
for the one-to-one accuracy scores. The larger the datasets are the higher one-to-
one accuracy scores are. The final results of the one-to-one accuracy are lower
than the state-of-art system (Clark 2003), however, smaller number of tag classes
would be more meaningful and would yield much higher scores. On the other
hand, our system should not be interpreted solely as a POS tagging system. It is
one step towards joint learning and requires more work to improve the scores.

We also measure variation of information (VI) between two clusterings. As
explained in Chapter 6, VI measures how much information is lost from one clus-
tering to another. Differently from the previous two evaluation scores (many-to-
one and one-to-one), the smaller VI is, the better the result clustering is. Fig-
ure 6.6 shows the VI scores for various sizes of corpora. Although there is not a
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Figure 6.5: One-to-1 accuracy scores obtained from corpora of size 24K, 36K,
48K, 60K, 72K, 84K, 96K, 120K and 250K.

smooth decrement in VI measure, it improves with the larger datasets in average.
VI score is not consistent with the previous two scores mentioned. For example,
we obtain a higher one-to-one accuracy with 48K words than 36 words (Fig-
ure 6.5). However, it may not be the case with the VI. Figure 6.6 shows that VI
is lower with 36K words than 48 words. VI is more informative than one-to-one
accuracy and many-to-one accuracy. For example, two different clusterings may
have the same one-to-one accuracy, but may have different VI measures (Gold-
water & Griffiths 2007). The clustering in which the erroneous tag assignments
are more scattered with different tags would have a higher VI measure.

For each experiment, Gibbs sampler starts to converge in different iterations
due to the corpus size. We ran each experiment for a sufficient number of it-
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Figure 6.6: Variation of Information (VI) obtained from corpora of size 24K,
36K, 48K, 60K, 72K, 84K, 96K, 120K and 250K.

erations by ensuring that the sampler has enough time to converge. Figure 6.7
depicts one-to-one accuracy scores for various corpora of size 24K, 36K, 48K,
60K in different iterations of sampling.

If tags are considered individually, determiners, modal verbs, prepositions,
pronouns, conjunctions, and numbers are captured generally correctly. Proper
nouns are also distinguished from other nouns. However, they are spread over
different tags. The most common errors are due the confusion of nouns and
adjectives. Normally, nouns are over-spread in several tags. Verbs and adverbs
are also generally confused; and spread over different tags.

We report our results with comparison to other systems in Table 6.1. We use
a small portion of Penn WSJ treebank for the comparison. The dataset involves
250K words where the number of word types is 20957. The other systems are
also tested on a small portion of WSJ involving 16850 word types, which is
reported in Christodoulopoulos et al. (2011). One of the unsupervised state-of-
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Figure 6.7: One-to-one scores that vary in different iterations of Gibbs sampler.

art system in POS tagging is Clark (2003), which is the best published score
reported in (Christodoulopoulos et al. 2010). The system follows a type-based
setting. Christodoulopoulos et al. (2010) reports higher scores for a small set
in WSJ with their Bayesian multinomial mixture model (BMMM). However,
it is worthwhile to say that Clark (2003) still outperforms Christodoulopoulos
et al. (2010) on the full dataset of WSJ. However, both systems are type based.
Since it will make more sense scientifically to compare our system with another
token based system, we also report the scores of Christodoulopoulos et al. (2011).
Christodoulopoulos et al. (2011) formulates POS tagging as a Bayesian mixture
model similarly to our system and also employs morphological features. The
main setting of their system is type-based. However, they present results in both
token and type-based settings. We compare our results with their token-based
setting. Our system outperforms Christodoulopoulos et al. (2011) with the many-
to-one evaluation. However, Christodoulopoulos et al. (2011) performs better
than our system based on V-measure evaluation. These scores are scientifically
significant due to the common datasets and the common evaluation methods used
for all experiments.
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V-measure Many-to-one
Christodoulopoulos et al. (2011) 48.6 57.8

Joint 41.11 59.67
Clark (2003) 63.8 68.8

Christodoulopoulos et al. (2010) 67.7 72.0

Table 6.1: Comparison with other systems.

6.6.2 Morphological Segmentation Results

For the evaluation of morphological segmentation, a similar approach with Gold-
water (2007) is applied. Evaluation is performed over verbs. To prepare a gold
standard for verbs, common endings of verbs are stripped off. To this end end-
ings such that -ed, -d, -ing, -s, -es are stripped off from verbs ending with one
of those morphemes. In addition, irregular verb forms are also considered. If a
verb is ending with -n or -en, they are again stripped off from the verb provided
that the stem is also a word; such that begun is left unsplit whereas broken is split
with the morpheme -n. Other irregular verb forms (i.e. torn, sworn, spun, etc.)
are exceptionally introduced to be left as they are (with a NULL suffix).

Confusion matrices depicting found morphemes against true morphemes are
given in Figure 6.8 and Figure 6.9 for various sizes of corpora. The darker shades
denote a higher matching between found and true morphemes, whereas lighter
shades correspond to a lower matching between found and true morphemes.

The common ending -e is usually recognised as a valid morpheme as also
other most morphological segmentation systems do. The other common mistake
comes with the identification of morphemes -ed with other adjacent letters for
some words; such that -ted. The same mistake is made with the morpheme ing

by recognising in some cases as -ting. Another type of common mistake comes
from words identified with NULL suffix while in some cases it is true.

In addition to the common verb endings, additional morphemes such as -ize,

ized, -ify, -ied, -ped, etc can also be identified by the model (see Table 6.2). These
are not considered in the evaluation since they are rare in the corpus.

Obtained morphology results are compared with Morfessor Baseline. The ex-
periment results obtained from 96K setting is compared with Morfessor Baseline.
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Figure 6.8: Confusion matrices obtained from different corpora show how cor-
related found morphemes and true morphemes are.

We run Morfessor Baseline on only the verbs to have the same dataset. Table 6.3
shows a comparison between our model (MorSyntax) and Morfessor Baseline re-
garding various values. The comparison contains percentages of: missing types

which means that gold standard suggests a suffix but no suffix is identified in the
results, extra suffixes denotes that gold standard does not identify any suffixes but
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Figure 6.9: Confusion matrices obtained from different corpora show how cor-
related found morphemes and true morphemes are.

results contain suffixes, wrong suffixes mean that both gold standard and results
identify suffixes but they are not the same, and finally correct types mean that
both gold standard and results contain suffixes and they match. Our model iden-
tifies 12257 suffix types, whereas Morfessor Baseline identifies 2309 due to un-
dersegmentation. This leads many suffixes to be missed by Morfessor Baseline.
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-ize standard+ize, material+ize
-ized critic+ized, public+ized, balkan+ized, special+ized
-ped drop+ped, scrap+ped, swap+ped
-ify test+ify
-ied appl+ied, clarif+ied,

-ified unjust+ified

Table 6.2: Additional morphemes captured by the system.

missing types extra types wrong types correct types
MorSyntax 0.72% 28.55% 10.13% 60.60%

Morfessor Baseline 15.07% 7.23% 10.22% 67.48%

Table 6.3: Comparison with Morfessor Baseline.

Although correct types have a lower percentage in our model, when the number
of identified morphemes are considered, our results cover more morphological
information since wrong types have a similar percentage in both models.

6.7 Discussion

We proposed a new model that learns POS tags and morphology jointly. When
the performance of both are considered, they are far from the state-of-art systems
in both fields. However, our model is significant in both fields since it demon-
strates that it is possible to learn POS tagging and morphology simultaneously.

We applied POS tagging with a Bayesian mixture model which is different
than most traditional approaches in POS tagging. Most traditional approaches
view POS tagging as a sequence labelling problem. With the proposed model,
we tried a new approach where we viewed POS tagging as a clustering problem in
a probabilistic perspective. The idea is similar to Clark’s distributional clustering
approach. However, our model considers other features as well as the contextual
information. We benefit from mixture modelling where each mixture component
is weighted by the number of words it contains. Therefore, mixture components
that have more members attract more members.

Another difference in our model is its token based aspect. Most POS tag-



168 Joint Learning of Morphology and POS Tagging Chapter 6

ging research adopts a type based approach where each word type is assumed to
have only one tag. However, with our approach we made it possible to assign
different tags for each word token. Thus, we consider each occurrence of word
tokens belonging to the same word type individually by exploiting their context.
For constraining the number of possible tags for each word type, we defined a
probability distribution over words for each mixture component. It works like an
emission probability in HMMs. The distribution favours having the same word
types in each mixture component whereas still leaving probability mass for in-
cluding the word types in other mixture components. The token-based aspect is
the main reason that affects the accuracy in POS tagging.

We applied morphology learning by adopting Dirichet process. The Dirich-
let process enables introducing an additional distribution to define some features
about morphemes to be favoured. We used a length prior by exploiting this prop-
erty of a Dirichlet process. Since a Dirichlet process shows rich-get-richer be-
haviour, it is possible to capture morphemes which are repeated within different
words. This behaviour also supports MDL principle by preferring same morph-
emes throughout the corpus. The model can capture most common morphemes
in words. Therefore, it forms a baseline system for morphology learning by
identifying common endings. The common errors are similar to other systems’
errors; such that identifying -ed as -ted.

Our results show that learning POS tags and morphology can be combined
and performed cooperatively. In our model, morphology exploits POS tags; how-
ever, we did not employ morphological information for POS tagging. The model
can be improved by adding more cooperation between morphology and POS tag-
ging. We believe that this will increase the accuracy of the model.

6.8 Conclusion

A Bayesian model is proposed in this chapter to perform joint learning of mor-
phology and POS tagging. The model definition is given along with the inference
algorithm to infer POS tags and morphology simultaneously.

Results provide an evidence that a joint learning of morphology and POS tag-
ging is possible. Although, there is still a lot to improve the model, the proposed
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approach can be considered as a baseline system for morphological segmentation
and POS tagging within the same learning mechanism.



CHAPTER 7

Morpheme Labelling

“Science is the systematic classification of experience.”
George Henry Lewes

7.1 Introduction

In this chapter, an algorithm is presented for morpheme labelling. The algorithm
employs hierarchical agglomerative clustering to group morphemes (mainly in-
flectional ones) according to their functions. The algorithm aims to capture allo-
morphs (for the definition see Chapter 2) and homophones 1.

7.2 Previous Work

There is little work on morpheme labelling in the literature. Spiegler (2011)
presents two algorithms for morpheme labelling: one of them learns morpheme
labels once morphological segmentation is completed and the other one learns

1Homophonous morphemes which are the same in writing, however have different roles such
as the plural morpheme -s and present tense morpheme -s.

170
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labels concurrently with morphological segmentation. Both algorithms are su-
pervised where ground truth morphemes are provided.

Virpioja et al. (2009) focus on discovering allomorphs by extending the Mor-
fessor Baseline (Creutz & Lagus 2007). Allomorphic variants are learned via
mutations, which are modifications (i.e. substitution and deletion) that are ap-
plied on morphemes to produce various word forms. The concept of allomorphs
in their work is slightly different than ours, where Virpioja et al. (2009) focus on
learning base forms of words by using the fact that whether they are allomorphic
variants of each other. For example, glue and blue are not allomorphic variants
of each other, whereas priest and priest’s are allomorphic variants.

Bernhard (2008) suggests another morpheme labelling algorithm which la-
bels morphemes as a stem, suffix, base, or prefix. However, Bernhard (2008)
does not address allomorphs or homophonous morphemes in her work.

7.3 Intuition

Most morphological segmentation algorithms consider only segmenting words
into its morphemes and ignore labelling morphemes. However, morpheme la-
bels are not only useful for other NLP problems (such as POS tagging), but also
they give a better understanding on the morphological analysis of words. As
mentioned in Chapter 2, there are different types of morphemes having different
grammatical functions. The algorithm presented in this chapter aims to group
morphemes according to their functionalities. This grouping is accomplished by
considering two types of distinction among morphemes: allomorphs and homo-
phonous morphemes.

7.3.1 Allomorphs

Morphemes may differ in the shape but still can carry out the same function in
words such as the plural morpheme -s and -ies in English. Allomorphs are also
seen quite often in some languages where vowel harmony (see Chapter 2 for
the definition) takes place, such as in Turkish, Hungarian, Finnish etc. Some
examples are given below in Turkish:
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• The plural form (-lar, -ler): e.g. elma-lar (apples), ev-ler (houses).

• The possessive case (-in, -un, -ün, etc): e.g. Ali’n-in (Ali’s), Banu’n-un

(Banu’s), Üstün’-ün (Üstün’s).

• The present tense (-ar, -ir, etc): e.g. yap-ar (he does), gel-ir (he comes).

• The prepositional case (-de, -da): e.g. ev-de (at home), okul-da (in the
school).

Vowel harmony is not the only phonological change which causes allomorphs
in Turkish, also some consonants at the end of words are mutated depending on
the following morpheme which is called a consonant mutation. The mutation
occurs with the unvoiced consonants which are evolved into the voiced morph-
emes. Words ending with one of the unvoiced consonants (i.e. p, ç, t, k, s, ş, and
h) force the added morpheme to mutate into an unvoiced consonant:

• The ablative case (den, ten): e.g. ülke-den (from the country), sepet-ten

(from the basket).

• The locative case (de, te): e.g. şehir-de (in the city), kent-te (in the town).

• The third person singular: e.g. nefis-tir (it is delicious), zeki-dir (she is
clever).

Due to the vowel harmony and the consonant mutation, Turkish has many
examples of morphemes which have the same functions but are phonological
variants of each other. To this end, it is useful to group these morphemes into the
same cluster assigning the same label.

7.3.2 Homophonous morphemes

On the contrary to allomorphs, some morphemes can have the same phonological
properties but however they function differently. These morphemes are called ho-
mophonous morphemes. Homophonous morphemes should belong to different
clusters due to the difference in their functions. Some examples in Turkish are
given below:
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• kalem-i: -i may correspond to an accusative (e.g. his/her pen) or a possess-
ive case (e.g. give me the pen) depending on the context of the word.

• yap-ın (do it) and kapın-ın (the door’s): -ın corresponds to an imperative
in yap-ın , whereas it is a possessive in kapın-ın.

• geliyor-lar (they are coming) and yatak-lar (the beds): -lar refers to a 3rd
person plural in geliyor-lar, whereas it is a plural in geliyor-lar.

Although homophonous morphemes do not occur very often like allomorphs,
it is crucial to determine homophony to be able to distinguish morphemes having
different functions. Homophonous morphemes should be grouped into separate
clusters, whereas allomorphs should be grouped in the same cluster.

7.4 Background

In this section, hierarchical clustering algorithms are briefly described.

7.4.1 Hierarchical Clustering

Hierarchical clustering builds a hierarchy during the construction of clusters.
The construction of the hierarchy can be accomplished in two different ways,
agglomerative or divisive. In agglomerative clustering, each data point forms it
own cluster initially. In each iteration, the most similar cluster pair is merged un-
til having a single cluster. On the contrary, in divisive clustering, the algorithm
starts with a single cluster and iteratively clusters are divided into two dissimilar
clusters until having each data point as a separate cluster (see Figure 7.1).

Agglomerative clustering falls in three different types depending on how the
distance between clusters are measured: single-linkage clustering, complete-
linkage clustering and average-linkage clustering.

7.4.1.1 Single-Linkage Clustering

In single linkage agglomerative clustering (or nearest neighbour technique, shortest
distance), the distance between two clusters is the distance between the closest
members of two clusters (see Figure 7.2):
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Agglomerative
Divisive

Figure 7.1: Agglomerative vs divisive clustering.

Figure 7.2: Distance measuring in single-linkage agglomerative clustering.

D(R, S) = Minr∈R,s∈Sd(r, s) (7.1)

where d(r, s) is the distance between the members r and s which are in cluster
R and S respectively.

In each iteration, two clusters having the closest two members are merged.
Since the distance between two members is considered in clustering, this ap-
proach may force two clusters, even though the rest of the data are dissimilar, if
they have the closest members.
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Figure 7.3: Distance measuring in complete-linkage agglomerative clustering.

7.4.1.2 Complete-Linkage Clustering

In complete-linkage agglomerative clustering (or farthest neighbour), in contrast
to single-linkage clustering, the distance between two clusters is the distance
between the most distant members of two clusters (see Figure 7.3):

D(R, S) = Maxr∈R,s∈Sd(r, s) (7.2)

where d(r, s) is the distance between the members r and s which are in cluster
R and S respectively.

Clusters having the minimum distance according to the given distance meas-
urement are merged iteratively until having all the data in one cluster. Complete-
linkage clustering has the same drawback as single-linkage clustering, because
the distance depends on only two members in clusters, therefore the rest of the
data is not considered.

7.4.1.3 Average-Linkage Clustering

In average linkage agglomerative clustering, the distance between two clusters is
the average distance which is calculated through all pairs of data points between
the clusters (see Figure 7.4):

D(R, S) =
1

NR ×NS

NR∑
i=1

NS∑
j=1

d(ri, si) (7.3)
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Figure 7.4: Distance measuring in average-linkage agglomerative clustering

where the total distance between two clusters R and S with sizes NR and NS is
the summation of distances between each members of the clusters. The distance
is normalised with the number of pairs.

The cluster pair having the minimum distance is merged in each iteration.

On the contrary to single-linkage and complete-linkage clustering, average-
linkage clustering takes into account each data member which leads to a more
realistic measurement.

7.5 The Algorithm for Clustering Morphemes

For morpheme labelling, we suggest a bottom-up agglomerative hierarchical
clustering where morphemes showing functional similarities are clustered to-
gether. Functional similarities of morphemes are defined by a set of features
as an input to the algorithm. Therefore, a feature vector is constructed to repres-
ent each morpheme by a vector. Each feature vector consists of a sequence of
features which is given below:

• Current morpheme to be clustered (CurMor).

• Previous morpheme that precedes the current morpheme in the analysis of
the same word (PreMor).

• Following morpheme that follows the current morpheme in the same word
(FolMor).
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CurMor PreMor FolMor Stem
Turkish -ıl -dır -acak ceza
English ion - s calculate

Table 7.1: Clustering features

PreWMor FolWMor pos len
Turkish -lar - 1 2
English - -ly 0 3

Table 7.2: Clustering features (cont’)

• Stem of the word (Stem).

• The last morpheme of the preceding word (PreWMor).

• The last morpheme of the following word (FolWMor).

• Morpheme position in the word (pos) (i.e. if the morpheme comes just
after the stem, then it is 0. If the morpheme is the last morpheme of the
word, then it is 2, and if it surrounded by other morphemes, the value is
1.).

• Morpheme length in letters (len).

An example is given in Table 7.1 and Table 7.2. The first example is for
the morpheme -ıl in the context “O-n-lar ceza-lan-dır-ıl-acak-lar.” (they will
be punished) in Turkish. The second example is for the morpheme -ion in the
context “She made the calculat-ion-s quick-ly.’.

Constructing the feature vector of each morpheme initially, morphemes are
placed in individual clusters to initiate the clustering algorithm. In each iteration,
two clusters having the minimum distance between is chosen to be merged. The
distance between two clusters is measured via Kullback-Leibler (KL) divergence
through all features. Recall that KL divergence is not called as a distance metric
since it is not symmetric:
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KL(p ‖ q) =
∑
i

p(i)log
p(i)

q(i)
(7.4)

We use Jensen-Shannon divergence (also called information radius) which is
the symmetric version of the KL divergence:

D(p ‖ q) = KL(p ‖ q) +KL(q ‖ p) (7.5)

In average linkage agglomerative clustering, the distance between two clusters
is the average distance which is calculated through all pairs of data points between
the clusters. In our approach, instead of measuring the distance between all
member pairs, we represent each cluster with a feature vector that keeps all the
information that comes from each morpheme in that cluster. For example, previ-
ous morphemes of a cluster is the combination of all previous morphemes of the
morphemes in that cluster. While qualitative features are combined, quantitative
features, such as morpheme position and morpheme length, are averaged. Hav-
ing a feature vector for each cluster, the similarity between two clusters, c1 and
c2, is measured as follows:

Sim(c1, c2) = D(CurMorc1 ‖ CurMorc2)

+ D(PreMorc1 ‖ PreMorc2)

+ D(FolMorc1 ‖ FolMorc2)

+ D(Stemc1 ‖ Stemc2)

+ D(PreWMorc1 ‖ PreWMorc2)

+ D(FolWMorc1 ‖ FolWMorc2)

+ |posc1 − posc2|+ |lenc1 − lenc2|

(7.6)

where CurMorc1 denotes the current morpheme set belonging to the cluster c1,
PreMorc1 is the set of previous morphemes, FolMorc1 denotes the following
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morphemes, Stemc1 denotes the stems, PreWMorc1 is the set of last morph-
emes of previous words and FolWMorc1 is the set of last morphemes of fol-
lowing words in cluster c1. In addition to the qualitative features, quantitative
features posc1 and lenc1 refer to the average position and the average length of
the morphemes respectively belonging to the cluster c1.

The algorithm starts with N morphemes, each belonging to an individual
cluster. In each iteration, two clusters having the minimum KL divergence are
merged until having all the morphemes in one cluster, which is to be the root node
in the hierarchical tree. Before computing KL divergence between two feature
vectors, we apply add-n smoothing to eliminate counts having a zero value in the
vectors.

7.6 Experiments & Results

We used the gold standard word lists in Turkish and English provided by Kurimo
et al. (2011b) for the experiments. The word lists contain 552 words in English
and 783 words in Turkish. The datasets are small, however, it is sufficient to
show that the algorithm can capture a good number of allomorphs.

The gold standard lists consist of morphological analyses of words, such as:

abacuses abacus N PL

abstained abstain V PAST

where both the segmentations of words and the labels of the morphemes are
provided. For example, the analysis of the abacuses is provided with the label
of the suffix, which is plural. Moreover, part-of-speech tags are also provided in
the gold standard lists (e.g. verb (V), noun (N), etc.). However, we do not use
part-of-speech tags.

To constitute the training sets for our clustering algorithm, we replaced morph-
eme labels in the gold standard sets with the actual morphemes manually, as fol-
lows:
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Morphemes Words
-ism, -ion, heroism, deduction etc.
-ed, -ing inserted, roofed, leaked, arising, pulsing, rating etc.
-ness, -ity extensiveness, community, earthiness etc.
-s townsman, yachts, yachtsman etc.
-er baby-sitters, planners, matchmakers etc.
-s’ humanities’, protestants’, swimmers’, reductions’ etc.

Table 7.3: Some clustered morphemes in English.

abacuses abacus es

abstained abstain ed

As an input to the clustering algorithm, we extracted all morphemes in the
training sets. The final lists consist of 567 morphemes in English and 1749
morphemes in Turkish. Once having morphemes in the gold standard sets, we
constructed feature vectors of morphemes. Subsequently, we applied the hier-
archical clustering algorithm. Once the tree is constructed, we cut the tree at
different levels to retrieve final clusters. Some resulting clusters in English is
given in Table 7.3.

As English is not a morphologically rich language, no homophonous morph-
emes or allomorphs could be captured. The reason is that morphemes do not
have sufficient contextual information. Nevertheless, morphemes that show sim-
ilar functional properties (i.e. tenses, derivative morphemes) are captured by the
clustering algorithm. For example, both ism and -ion are derivative morphemes
that make the resulting word a noun, -ed and -ing are inflectional morphemes that
define the tense of a verb and -ness and -ity are derivative morphemes. There are
many redundant clusters that have only one type of morpheme, such as plural
morpheme -s, possessive morpheme -s’ etc.

Experiments in Turkish provide a better understanding of what type of clusters
are obtained from the clustering algorithm. Some resulting clusters in Turkish are
given in Table 7.4. It is easier to see from the Turkish results that a good number
of allomorphs are captured due to the widely used vowel harmony in Turkish.
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Morphemes Words
-a, -e, -i, ı, -in faturaların-ı, kongreler-i, bilinmelerin-e,

bağışıklığı-n, mağazaların-a etc.
-dır, -dir almakta-dır, ödeyecekler-dir, değinilmeli-

dir etc.
-let, -t iş-let-ecek, kuru-t-urken, uza-t-abilir etc.
-lığ, -liğ, -yış başarısız-lığ-ı, başla-yış-ını, isteksiz-liğ-

inin etc.
-nı, -ni, -ne, -na bırakabileceği-ni, yakalandığı-nı,

düzeyleri-ne, mağazaları-na etc.

Table 7.4: Some clustered morphemes in Turkish.

For example, allomorphs -i and ı; -dır and -dir, and -nı and -ni are captured. In
addition to allomorphs, functionally similar morphemes -a, -e, -i and ı, -in that
refer to the dative, accusative and genitive case respectively are also captured.

Here, we did not evaluate how much morpheme labelling helped in evaluation
compared to without clustering. If the actual morphemes in the training sets in-
stead of obtained cluster labels are used for the evaluation, we get a 100% accur-
acy since the evaluation is based on morphological segmentation and we already
use the gold standard sets for the training. We leave the evaluation to meas-
ure how much morpheme labelling helped in evaluation compared to without
clustering as a future work, which should be performed on the output of a real
morphological segmentation system.

To evaluate our results, we replaced the morphemes in training datasets with
the cluster labels which are obtained from the clustering algorithm, such that:

commutation c50 mutate +c34

contradiction contradict +c34

decoded c50 code +c43

knifed knife +c43

Here, the numerated ids of the clusters are used to define the cluster labels.
Suffixes are inserted with a plus sign, whereas the rest of the morphemes are
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Non-affixes Affixes Total
Precision 84.53 62.14 68.02
Recall 77.62 28.40 42.86
F-measure 80.93 38.98 52.58

Table 7.5: Evaluation results with 162 clusters in Turkish, using previous morph-
eme, following morpheme, current morpheme, stem and morpheme position as
features.

inserted solely with their labels. This provides a more comprehensive analysis
on affixes and non-affixes separately.

We applied the evaluation method that Morpho Challenge (see Kurimo et al.
(2011b)) follows. In the Morpho Challenge evaluation method, words are ana-
lysed through word pairs that share common morphemes. For example, two
words book+s and pen+s share a common morpheme in gold standard. To ana-
lyse if they are correctly segmented, it is checked whether the two words share a
common morpheme in the results. Therefore, it does not make difference to use
morphemes or labels.

We tested our algorithm with different combinations of features. Results
for Turkish exploiting the features, previous morpheme, following morpheme,
current morpheme, stem and morpheme position are given in Table 7.5. The
results consist of 162 clusters. The number of clusters is chosen accordingly
with the highest evaluation score obtained.

Here, two types of analyses are presented: non-affixes and affixes. As men-
tioned shortly before, evaluation with non-affixes considers only non-affixes;
whereas evaluation with affixes considers the rest of morphemes, stems and pre-
fixes.

Results from another experiment, employing previous morpheme, following
morpheme, current morpheme, stem, morpheme position and morpheme length
are given in Table 7.6. The results are analysed based on the same number of
clusters, to investigate the impact of using different features. Here we can ob-
serve that using morpheme length as a feature improves the results.

Another experiment explores the impact of using the last morphemes of the
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Non-affixes Affixes Total
Precision 87.15 57.45 65.04
Recall 79.51 31.76 45.79
F-measure 83.15 40.91 53.74

Table 7.6: Evaluation results with 162 clusters in Turkish, using previous morph-
eme, following morpheme, current morpheme, stem, morpheme position and
morpheme length.

Non-affixes Affixes Total
Precision 87.93 46.95 61.06
Recall 73.05 12.03 29.96
F-measure 79.80 19.15 40.20

Table 7.7: Evaluation results with 162 clusters in Turkish, using previous morph-
eme, following morpheme, current morpheme, stem, morpheme position, last
morphemes of the previous and following word.

previous word and the following word. Results of the experiment, using previous
morpheme, following morpheme, current morpheme, stem, last morpheme of the
previous word and last morpheme of the following word are given in Table 7.7.
Results show that using last morphemes of the previous and following word does
not improve, but reduce the scores.

We carried out another experiment by weighting features. The weights are
set as a result of several experiments, as follows:

D(c1, c2) = 0.3D(CurMorc1 ‖ CurMorc2)

+ 0.2D(PreMorc1 ‖ PreMorc2)

+ 0.2D(FolMorc1 ‖ FolMorc2)

+ 0.2D(Stemc1 ‖ Stemc2)

+ 0.1|posc1 − posc2|

(7.7)
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Non-affixes Affixes Total
Precision 93.82 69.64 80.23
Recall 86.34 44.08 74.41
F-measure 89.92 53.98 77.21

Table 7.8: Evaluation results, by weighting features, previous morpheme, fol-
lowing morpheme, current morpheme, stem and morpheme position in Turkish

Non-affixes Affixes Total
Precision 95.60 90.72 92.93
Recall 84.79 34.46 70.59
F-measure 89.87 49.95 80.24

Table 7.9: Evaluation results by weighting features previous morpheme, fol-
lowing morpheme, current morpheme, stem, morpheme position an morpheme
length. The experiment is performed on English and observed through 100
clusters.

The results of the weighted clustering algorithm, using the previous morph-
eme, following morpheme, current morpheme, stem and morpheme position are
given in Table 7.8 in Turkish.

We also evaluated the algorithm for English. We employed previous morph-
eme, following morpheme, current morpheme, stem, morpheme position and
morpheme length as features. We obtained the results from 100 clusters. Results
are given in Table 7.9. In the experiment, the features are also weighted the same
as the previous experiment.

7.7 Discussion

We tested the proposed clustering algorithm with various combinations of fea-
tures. It should be noted that using previous and following morpheme in English
is not very beneficial due to the simple morphology of the language. However,
we still used these two features because of a number of words having more than
one morpheme. Since Turkish is richer in morphology than English, previous
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and following morpheme are more helpful in clustering of Turkish morphemes.
Another issue in Turkish morphology that needs to be considered is the am-

biguity of morphemes. Words can be segmented in different ways depending on
the context in the sentence, which can be discovered by looking at the meaning of
the word. Hence it is meaningful to use the context of a morpheme in clustering.

In all experiments we assign weights to features manually. Weighting fea-
tures improves results since features are not equally important in clustering. We
leave the issue of estimating weights to be explored in the future.

7.8 Conclusion

In this chapter, an agglomerative hierarchical clustering algorithm is presented
for morpheme labelling. The algorithm aims to capture allomorphs and homo-
phonous morphemes for a deeper analysis of segmentation results of a morpholo-
gical segmentation system. Most morphological segmentation systems focus on
only segmentation rather than labelling morphemes according to their functions
in words, i.e. inflectional (cases, tenses etc.) vs. derivational. Nevertheless, it is
helpful to have a better understanding of the functions of morphemes in a word
to be able to judge the grammatical function of that word in a sentence; i.e. the
syntactic category. We believe that a good morpheme labelling system will help
POS tagging, as well.

The presented algorithm can discover allomorphs in Turkish by clustering
them together. However, as far as we could observe from the results, it cannot
show the same accuracy for homophonous morphemes.



CHAPTER 8

Conclusion and Future Work

“Every end is a new beginning.”
Proverb

8.1 Introduction

In this chapter, we provide a summary of the main conclusions of the thesis. The
chapter provides also a list of research directions to lead subsequent research in
the fields of unsupervised morphology learning and POS tagging.

8.2 Thesis Summary

This thesis presents various research directions in the fields of unsupervised mor-
phology learning and POS tagging. In Chapter 2, the essential background know-
ledge is presented to prepare the reader for the rest of the thesis. In the chapter,
linguistic terms are defined, along with prominent statistical parameter estima-
tion methods, which are either used for the research in the thesis, or for other
research in morphology and POS tagging. Chapter 3 presents a literature review

186
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of unsupervised morphology learning and POS tagging. The most prominent re-
search is reviewed in both fields. In Chapter 4, we present a novel algorithm that
learns morphology by using syntactic categories. The algorithm learns the mor-
phology along with a set of morphological paradigms that are captured through
syntactic categories. In Chapter 5, we present another novel approach for mor-
phological segmentation, which suggests adopting hierarchical tree structures to
capture morphological paradigms. In Chapter 6, we illustrate a joint learning
model where morphology and POS are learned simultaneously within the same
learning mechanism. Finally, in Chapter 7, we present an algorithm for clustering
morphemes according to the functions they fulfil in a sentence. The clustering
algorithm is used for labelling morphemes where each label refers to a different
function that a morpheme can adopt.

8.3 Contributions

This thesis makes the following contributions to the research in the context of
two fields, unsupervised morphology learning and POS tagging:

• Learning morphology through syntactic categories: We define a novel
algorithm that incorporates syntax to conduct morphological segmenta-
tion. The approach we propose is a paradigmatic approach that performs
morphological segmentation through morphological paradigms. Morpho-
logical paradigms are very influential in morphological segmentation, and
have been adopted extensively in the field of morphological learning. How-
ever, the incorporation of syntax into paradigm learning has not been ap-
plied in the field before.

• Probabilistic hierarchical clustering of morphological paradigms: We
define a probabilistic hierarchical clustering algorithm for morphological
segmentation. The proposed clustering algorithm captures paradigms in a
hierarchical structure, i.e. trees. This method not only provides a hierarch-
ical organisation of paradigms, but also efficiently captures morphological
similarities between words. To our knowledge, current paradigmatic ap-
proaches in the field are flat and do not provide any hierarchical structure.
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The proposed hierarchical clustering algorithm also contributes to the field
of machine learning, by proposing an inference algorithm to learn latent
variables in data, while learning the tree structure that will represent the
data, within an optimum hierarchical structure.

• Joint learning of morphology and POS tagging: We define a novel ap-
proach that adopts a joint learning mechanism for morphology and POS
tags. The proposed model contributes to the field in three ways: firstly, it
is the first method to learn morphology and POS simultaneously; secondly,
it is different from the traditional POS tagging approaches, which mostly
view POS tagging as a sequence labelling problem, where our model ad-
opts a mixture model, rather than a sequence modelling (i.e. HMMs);
thirdly, it adopts a token-based setting in which words are tagged individu-
ally depending on their different contexts. Our results cannot outperform
the type-based approaches, which is sensible. Nevertheless, our results
outperform Christodoulopoulos et al. (2011) in their token-based setting.
Morphology results are also promising, by suggesting a lot more segment-
ation than Morfessor Baseline (Creutz & Lagus 2002), where Morfessor
Baseline suffers from undersegmentation. Although, there is still a lot to
improve in the current method, our results are promising and prove that a
joint learning of morphology and POS is possible.

• Morheme labelling: We propose a simple clustering algorithm to label
morphemes according to their functionalities in sentences. The results
show that morphemes can be distinguished according to their functions
by using several features of morphemes (such as context of morphemes)
within a hierarchical clustering scheme.

8.4 Future Work

We make several contributions to the research with this thesis. However, there is
still a lot to improve the proposed approaches in this thesis:



Section 8.4 Future Work 189

• Extension of capturing paradigms through syntactic categories: The
proposed model in Chapter 4 can be improved by eliminating the use of a
dictionary. In the current approach, if a dictionary is not used, the number
of paradigms is not sufficient to propose morphological segmentation for
every word, especially for large vocabularies such as the one provided by
Morpho Challenge 2010. To tackle this problem, the model can be settled
in a Bayesian framework to capture more word forms, which leads to more
paradigms and naturally to a more robust morphological segmentation sys-
tem.

• Extension of probabilistic hierarchical clustering: The probabilistic hier-
archical clustering algorithm suggested in Chapter 5 can be enhanced fur-
ther to learn various features from the tree structure, i.e. POS tags. Learned
tree structures provide a natural organisation of words, in a way that words
with similar endings are grouped together. Since words with similar end-
ings show similar syntactic features in general, it is possible to extract the
syntactic categorial information (i.e. POS tags) from the tree structure.

In the same probabilistic hierarchical clustering algorithm, instead of ex-
tracting syntactic features, we can use POS tags to improve morphological
segmentation. In the current model, words with similar endings, regardless
of their syntactic category, are grouped together. We can utilise the POS
information to group words which are both morphologically and syntactic-
ally similar. This will improve the tree structure, and therefore morpholo-
gical segmentation. To do this, we can also embed context information of
words in each tree node, in addition to stem and suffix lists. Thus, while
sampling a new position for a word in the tree, both its morphology and
syntax are considered to make a coherent decision.

• Extension of joint learning of morphology and POS tagging: In Chapter 6,
we use simple prior information for morphemes that favours shorter morph-
emes. The prior information can be replaced with more linguistically mo-
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tivated prior information. This would improve the morphological segment-
ation in both models.

Another open issue with the model is the hyperparameter settings. The
model can be improved by adding a hyperparameter training step in the
current inference algorithm. Therefore, it would be possible to tune the
hyperparameters to adapt to different languages, and different corpora.

One more possible improvement for the joint learning model is to use in-
finite mixture models for a flexible number of POS tags. Infinite HMMs
have been used for POS tagging (Van Gael et al. 2009), however, infinite
mixture models have not been used. Most systems define the number of
POS tags apriori. The model can also be applied with a type-based set-
ting, instead of a token-based setting. We believe that type-based setting
will improve the current scores both for POS tagging and morphological
segmentation.

• Morpheme labelling: The clustering algorithm proposed in Chapter 7
can be improved by deriving the approach in a nonparametric probabilistic
environment by adopting mixture components for each morpheme label.
Therefore, the model will be able to handle sparsity in the data. It is also
possible to adopt infinite mixture models to introduce flexibility for the
number of morpheme labels. In addition, mixture model formulation will
enable using multiple features of morphemes.

8.5 Final Words

In this thesis, we focus on unsupervised morphology learning and POS tagging.
Along with several contributions made to the research with this thesis, there is
still a lot to contribute to the field by improving the proposed approaches.

As George Bernard Shaw said:

“Science never solves a problem without creating ten more.”



APPENDIX A

Penn Treebank tags

Name Category Name Category

$ dollar “ opening quotation mark

” closing quotation mark ( opening paranthesis

) closing paranthesisk , comma

– dash . sentence terminator

: colon or ellipsis CC conjunction, coordinating

CD numeral, cardinal DT determiner

EX existential there FW foreign word

IN preposition or conjunction,
subordinating

JJ adjective or numeral, ordinal

JJR adjective, comparative JJS adjective, superlative

LS list item marker MD modal auxiliary

NNPS noun, proper, plural NNS noun, common, plural

NN noun, common, singular or
mass

NNP noun, proper, singular

191
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PDT pre-determiner POS genitive marker

PRP pronoun, personal PRP$ pronoun, possessive

RB adverb RBR adverb, comparative

RBS adverb, superlative RP particle

SYM symbol TO “to” as preposition or infin-
itive marker

UH interjection VB verb, base form

VBD verb, past tense VBG verb, present participle or
gerund

VBN verb, past participle VBP verb, present tense, not 3rd
person singular

VBZ verb, present tense, 3rd per-
son singular

WDT WH-determiner

WP WH-pronoun WH-
pronoun

possessive

WRB WH-adverb

Table A.1: 45 tags in full Penn Treebank tag set.
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Larson, M., Willett, D., Köhler, J., & Rigoll, G. (2000). Compound splitting and
lexical unit recombination for improved performance of a speech recognition
system for German parliamentary speeches. In International Conference on

Spoken Language Processing, (pp. 945–948).
Lavallée, J. F. & Langlais, P. (2009). Morphological acquisition by formal ana-

logy. In Working Notes for the CLEF 2009 Workshop.
Lee, Y. K., Haghighi, A., & Barzilay, R. (2011). Modeling syntactic context im-

proves morphological segmentation. In Proceedings of the Fifteenth Confer-

ence on Computational Natural Language Learning, CoNLL ’11, (pp. 1–9).,
Stroudsburg, PA, USA. Association for Computational Linguistics.

Leonard E. Baum, J. A. E. (1967). An inequality with the applications to statist-
ical estimation for probabilistic functions of markov processes and to a model
for ecology. Bulletin of the American Mathematicians Society, 73, pp. 360–
363.

Lignos, C. (2010). Learning from unseen data. In Kurimo, M., Virpioja, S.,
Turunen, V., & Lagus, K. (Eds.), Proceedings of the Morpho Challenge 2010



206 REFERENCES

Workshop, (pp. 35–38)., Aalto University, Espoo, Finland.
Lignos, C., Chan, E., Marcus, M. P., & Yang, C. (2009). A rule-based unsuper-

vised morphology learning framework. In Working Notes for the CLEF 2009

Workshop.
Lioma, C. & Blanco, R. (2009). Part of speech based term weighting for in-

formation retrieval. In Proceedings of the 31th European Conference on IR

Research on Advances in Information Retrieval, ECIR ’09, (pp. 412–423).,
Berlin, Heidelberg. Springer-Verlag.

Manning, C. D. & Schütze, H. (1999). Foundations of Statistical Natural Lan-

guage Processing (2nd ed.). Cambridge, Massachusetts: The MIT Press.
Marcus, M. P., Santorini, B., & Marcinkiewicz, M. A. (1993). Building a large

annotated corpus of english: The Penn Treebank. Computational Linguistics,
19(2), pp. 313–330.

Martin, S., Liermann, J., & Ney, H. (1998). Algorithms for bigram and trigram
word clustering. Speech Communication, 24, pp. 19–37.
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Déjean (1998), 67

Demberg (2007), 73

Diab & Resnik (2002), 92

Emonds (1985), 43

Ferguson (1983), 59

Finch & Chater (1992), 83

Frank et al. (2009), 94

Freitag (2004), 84

Freitag (2005), 101

Gao & Johnson (2008), 94

de Gispert & Mariño (2008), 27

Goldsmith (2006), 69, 101

Goldsmith (2001), 69

Goldwater et al. (2009), 122

Christodoulopoulos et al. (2011), 161,
163

Goldwater et al. (2006), 76, 80

Goldwater & McClosky (2005), 27

Goldwater & Griffiths (2007), 90, 91,
94, 145, 160

Goldwater (2007), 47

Golénia et al. (2009), 142

Grünwald (2005), 50

Habash & Rambow (2005), 80

Habash & Sadat (2006), 30

Hafer & Weiss (1974), 67

Haghighi & Klein (2006), 93

Hänig et al. (2008), 30

Harman (1991), 28

Hasan & Ng (2009), 145

Haspelmath (2002), 40

Hastings (1970), 61

Ishwaran & James (2001), 57

Järvelin & Pirkola (2005), 28

Jelinek (1976), 87

Johnson et al. (1999), 78

Johnson (2001), 78

Johnson (2007), 89

Katamba & Stonham (2006), 37, 39,
43

Kazakov (1997), 73

Kazakov & Manandhar (2001), 73

Keshava & Pitler (2006), 73

Kettunen et al. (2005), 28

Kirchhoff & Yang (2005), 30

Kirchhoff et al. (2006), 27

Koehn & Hoang (2007), 27

Krovetz (1993), 28

Kuhn (2004), 92

Kupiec (1992), 88

Kurimo et al. (2010), 80, 81

Lamb (1961), 82

Landauer et al. (1998), 98

Larson et al. (2000), 27

Lavallée & Langlais (2009), 73, 142

Lee et al. (2011), 145

Ming Li (1997), 71

Lignos et al. (2009), 74, 114

Lignos (2010), 74, 141

Lioma & Blanco (2009), 29



214 INDEX

Manning & Schütze (1999), 43

Marcus et al. (1993), 157

Martin et al. (1998), 96

Hu et al. (2005), 101
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