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Abstract

Dementia can affect a person's speech, language and conversational interaction

capabilities. The early diagnosis of dementia is of great clinical importance.

Recent studies using the qualitative methodology of Conversation Analysis

(CA) demonstrated that communication problems may be picked up during

conversations between patients and neurologists and that this can be used to

differentiate between patients with Neuro-degenerative Disorders (ND) and

those with non-progressive Functional Memory Disorder (FMD). However,

conducting manual CA is expensive and difficult to scale up for routine clinical

use.

This study introduces an automatic approach for processing such conversa-

tions which can help in identifying the early signs of dementia and distin-

guishing them from the other clinical categories (FMD, Mild Cognitive Im-

pairment (MCI), and Healthy Control (HC)). The dementia detection system

starts with a speaker diarisation module to segment an input audio file (deter-

mining who talks when). Then the segmented files are passed to an automatic

speech recogniser (ASR) to transcribe the utterances of each speaker. Next,

the feature extraction unit extracts a number of features (CA-inspired, acous-

tic, lexical and word vector) from the transcripts and audio files. Finally, a

classifier is trained by the features to determine the clinical category of the

input conversation.

Moreover, we investigate replacing the role of a neurologist in the conversation

with an Intelligent Virtual Agent (IVA) (asking similar questions). We show

that despite differences between the IVA-led and the neurologist-led conver-

sations, the results achieved by the IVA are as good as those gained by the

neurologists. Furthermore, the IVA can be used for administering more stan-

dard cognitive tests, like the verbal fluency tests and produce automatic scores,

which then can boost the performance of the classifier.



The final blind evaluation of the system shows that the classifier can identify

early signs of dementia with an acceptable level of accuracy and robustness

(considering both sensitivity and specificity).
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Introduction 2

Dementia is an umbrella term covering a broad category of memory disorders, mostly

observed amongst the elderly, even though it is not a natural consequence of the human

ageing process. Dementia normally starts with subtle word finding difficulties and a decline

in thinking or memorising ability, however, it aggravates over time and interferes with

almost all aspects of daily functioning, and ultimately leads to loss of communication

ability. People with severe dementia become passive and often unaware of the presence

of others. They may totally forget about their basic living needs such as eating, drinking

and taking rest. Thus they need 24-hour care and monitoring.

The number of people suffering from dementia in the United Kingdom (UK) has in-

creased significantly in recent years and the economic impact of dementia on the society is

huge. It is now one of the major concerns of the UK National Health Services (NHS). Ac-

cording to a recent update from the Department of Health (DoH) in January 2018 [Depart-

ment of Health, 2018], there are around 850,000 people in the UK living with dementia,

and this is estimated to rise to 1 million by 2025 and continue to reach 2 million by

2050. The costs of dementia for the society is over £26 billion a year, from which £11.6

billion is for unpaid care. Every 3 seconds a person develops dementia in the world and

it was estimated that there were around 50 million people with dementia worldwide in

2017, which is going to be almost doubled each 20 years, soaring to 152 million by 2050

[Alzheimer’s Disease International, 2018]. The main causes of dementia in the UK are

Alzheimer's Disease (AD) (covering over 60% of all cases) and Vascular Dementia (VD)

(20%) [Department of Health, 2018].

Normally, speech and language are influenced early on in dementia. Dementia can

affect the prosodic features of speech such as pitch, intonation and loudness. People with

dementia may also lose the ability to remember words. In the early stage of developing

dementia they might find their own strategies to cope with the problem. For instance, they

might refer to the names by words such as “thing” or “thingy”, or try to find substitutions

(e.g. “car” instead of “truck”). However, over time, the issue become worse. Therefore, loss

of vocabulary, impoverished (or simplified) syntax/semantics, and overuse of semantically

empty words are commonly found in the language of people with dementia [Appell et al.,

1982; Bayles and Kaszniak, 1987; Hamilton, 1994; Tang-Wai and Graham, 2008].
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1.1 Motivation

Generally, there is no cure for dementia, but, there are drugs and treatments (e.g. cognitive

stimulation therapy and cognitive rehabilitation) which can help with reducing dementia

symptoms. However, the treatments are most effective in the early stage of the disease

before dementia has developed and irreversible brain damage has occurred. Therefore,

early detection of signs of dementia is highly desirable.

Currently, there are no known or reliable bio-markers for dementia and the process

of diagnosing this disorder is very complex, mostly due to overlapping symptoms with

normal ageing and low accuracy of existing cognitive screening tools.

Current tests capable of identifying people at high risk of developing dementia are

expensive and invasive: Positron Emission Tomography (PET) scans expose people to ra-

diation, and amyloid analysis of the CerebroSpinal Fluid (CSF) involves a lumbar punc-

ture. The currently available tests for stratifying (screening) people with cognitive com-

plaints, based on pen-and-paper testing, lack sensitivity or specificity especially early in

the disease process. Most non-invasive tests also suffer from learning effects which prohibit

frequent re-testing.

Therefore, it is highly desirable to build a cheap and reliable non-invasive automatic

screening tool to identify people at risk of developing dementia. People found at high risk

of developing dementia can be quickly referred to specialist clinics for treatments, while at

the same time, people at low risk of developing dementia can be reassured much quicker.

An automatic screening tool assessing a person's language and communication skill,

can be easily used for re-testing people as their conditions change, and it ideally would

be used without presence of an examiner in a person's own home.

Recent advances in speech technology and machine learning has opened up a wide

range of applications including medical aids and helps in diagnosis. This project inves-

tigates a solution for automatic detection and a screening tool, based on analysis of a

person's speech and language.
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1.2 Focus of study

Figure 1.1: Automatic dementia detection system.

There have been a number of studies based on social interaction and communication

ability of people with dementia using CA1 [Elsey et al., 2015; Jones, 2015; Jones et al.,

2015; Kindell et al., 2013; Oba et al., 2018; Perkins et al., 1998]. It is evident from these

studies that patient interactions (communicating with others, e.g. doctors, caregivers

and family members) can contribute to finding several features that could be used in

identifying dementia. These approaches require audio and/or video recording of the con-

versations with the patient, and the recordings are subsequently transcribed before being

qualitatively analysed by an expert (conversation analyst). The process is carried out

manually, which is time-consuming and relatively expensive and not applicable for large-

scale use. One alternative is to develop a system for doing the automatic analysis of the

conversations2 where dedicated speech technology is used to analyse the audio-recorded

interactions.

Automatic analysis of conversation is an emerging and challenging area of research

involving numerous disciplines to automate all the steps of the manual CA including

Automatic Speech Recognition (ASR), speaker diarisation and classifier. Furthermore,

in order to develop an automatic system to identify dementia, it is necessary to utilise

1It was originally introduced by Sacks et al. [1974] in sociology but then expanded to different fields
of studies. Refer to Lerner [2004]; Sidnell and Stivers [2012] for more information.

2Please note that the phrase Conversation Analysis (CA) is used for a specific methodological ap-
proach. To avoid confusion, we will use ‘analysis of conversation’ to cover the general analysis of conver-
sations which can be done through different approaches including CA, analysing acoustics, etc.
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the latest techniques and tools developed for Natural Language Processing (NLP) and

Machine Learning (Ml). Figure 1.1 shows the block diagram of an automatic dementia

detection system, which consists of a diarisation toolkit, followed by a speech recognition,

feature extraction and classification units 1.

Each of the technologies listed above have their own limitations and issues and in

addition, natural human conversation is mostly unstructured and spontaneous with extra

hidden complexities such as handling turn-taking, overlapping talk, repair, coping with

disfluencies or hesitations and non-linguistic information (e.g. emotions).

This study is an attempt towards developing a screening tool based on analysing con-

versations that could be used in differentiating people with dementia from other disorders

and also monitoring the signs of dementia in patients who have already developed the

disorder.

Especially, this work will try to answer the following questions:

1. Is it feasible to develop an automatic tool to help doctors in detecting dementia?

2. What kind of speech, text and machine learning technologies and tools can be used

for developing such a system?

3. How to generate more detailed diagnostic analysis of the conversations for the doc-

tors?

4. How to collect data and keep track of the signs of dementia in the patients' speech

and language over time?

The methodology that we will use to develop our system is based on Prototype Model2

systems development. We will start with building an initial system to automatically ex-

tract features inspired by the qualitative interactions findings of Elsey et al. [2015] study

(i.e. try to find the automatic equivalents of their features), and use those features to train

classifiers to detect dementia. Therefore, the focus of the initial system will be on feature

1For more details refer to Section 3.2
2The Prototype Model approach develops an estimated sample of the final system, which is built

earlier to give an idea of the functionality of the system in advance, and collect feedback from the clients.
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extraction and classification tasks. This simplification would be possible by directly ex-

tracting features from the manual transcripts of the conversations between doctors and

patients. Building the prototype model of the system helps us to find an answer to the

first research question, proof-of-concept and feasibility of developing automatic dementia

detection system. Later on, we will add more automation to the system, i.e. speaker

diarisation and ASR (answering question 2).

We also investigate extracting different types of features and try to provide more

diagnostic information for doctors (answering question 3).

Finally, we develop an Intelligent Virtual Agent (IVA) to act as a neurologist leading

conversations with patients. This will ensure that our dementia detection system doesn't

require speciality of an expert and the automatic tool can be easily used everywhere (e.g.

in GP or patient's home). The IVA also let us to collect more data from patients during

the study (answering question 4) and keeping the information over time to observe the

changes.

1.3 Thesis contributions

1. An automatic pipeline for a dementia detection system based on con-

versations: Most work on automatic dementia detection is not based on analysis of

conversation (between doctor and patient), but rather they implement systems for au-

tomatically processing existing cognitive tools such as describing a picture, naming

animals. If there were interviews between patients and examiner, the speech segments

relating to the examiner were manually removed from the audio recording. A number

of studies have used the manual transcripts of interviews and a few authors have at-

tempted to use ASRs for converting the input audio to transcriptions. It is very rare

that studies have included a full, automatic pipeline consisting of speaker diarisation,

ASR, feature extraction and classification (Weiner et al. [2018] worked in parallel using

a similar pipeline to our system). The pipeline is introduced in Chapter 3, and the

system components in Chapter 4, 5 and 6). We first introduced the pipeline system

in our two published papers [Mirheidari et al., 2017b, 2016] and gradually completed
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the components of the system throughout the study.

2. Data collection using an IVA: The main dataset that we started our work

with, was originally collected by a number of neurologists in the Hallamshire Hospital

with the aim of doing manual conversation analysis of interactions between doctors

and patients, i.e., not intended for automatic processing. Therefore, the recording are

not similar to the standard recordings in convenient corpora for speech recognition.

For instance, the microphones were not close to the patients and the accompanying

persons, doors were opening/closing during the interviews, you could clearly hear the

other background noises, and even noise made of the pen and paper used by the

neurologists. Due to the high cost of replicating similar settings (especially recruiting

neurologists) to collect more data, we developed an IVA to act as a neurologist and

ask a number of questions from the participants. Using the IVA, a number of master

students (from medical background) as part of their study collected data from a number

of participants in summer 2016, 2017 and 2018 (IVA: Chapter 7). Some results from

comparing doctor-patient interaction and the IVA-patient conversation are published

in two Interspeech papers [Mirheidari et al., 2017a, 2018a].

3. Developing a cognitive test tool: Introducing the IVA also allowed us to not

only elicit conversations but also administer more standard cognitive tests and inves-

tigate methods for automatically scoring them. We hypothesised that the automatic

scores of the cognitive tests are useful in identifying dementia. Then, we showed that

they can boost the performance of the automatic dementia detection system, when

they are combined with the conversation-based features [Mirheidari et al., 2018b] (see

Chapter 8).

4. Novel types of features for identifying dementia: During the study we inves-

tigated different types of features for identifying early signs of dementia. The types of

features are conversation analysis-inspired features [Mirheidari et al., 2017b], acoustic

features/lexical features [Mirheidari et al., 2017a] and word vector representation fea-

tures [Mirheidari et al., 2018a]. Although a few of these features can be found in other

studies (e.g. average length of pauses, average number of nouns), the collection of the
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features we explored are unique (features: Chapter 8).

5. Evaluation in a clinical settings: To evaluate our tool and our automatic methods

findings from this study we worked closely with a team of neurologists, neuroscientists

and neuropsychologists which enabled us to test out system in the local memory clinic.

All participants were recruited by clinicians in the Hallamshire Hospital and the gold

standard for their diagnosis were based on their medical history, screening and cognitive

tests and a team of experts and medical consultants (final evaluation: Chapter 8).
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1.4 Thesis structure

The remainder of the thesis is organised as follows:

Chapter 2 reviews the literature regarding dementia and its impact on language and

communication skill, as well as the current diagnosis processes for people with dementia.

Chapter 3 begins by reviewing other studies focused on developing an automatic

dementia detection system and the challenges of developing such a system. Then we

demonstrate our pipeline system consisting of a speaker diarisation tool to segment the

audio stream and identify the speakers, followed by an ASR, and a feature extraction

unit as well as a classifier trained to identify dementia conversations. Initially we focus

on the feature extraction and classification tasks to build a baseline system inspired by

human conversation analysis, and gradually, in the following chapters we automate other

components of the pipeline.

Chapter 4 introduces the IVA component of the dementia detection system. The

chapter briefly describes the challenges of spontaneous speech recognition, the architecture

of an IVA system and outlines how neural networks have been applied to acoustic and

language modelling of IVA. For our dementia detection system, we start with training a

baseline IVA based on HMM-GMMs. Then we add an extra dataset to our dataset which

enables us to train a state-of-the-art IVA, based on neural network models.

Chapter 5 describes the speaker diarisation module of the system which segments

the input audio streams and identifies the speakers of the segments. We also select a final

classifier of the dementia detection system.

Chapter 6 includes the feature extraction component of the system. We explore

different types of features which are useful in identifying the early signs of dementia.

Chapter 7 introduces the IVA, who acts as a neurologist and asks questions from

patients. We compare the IVA-led conversations with the neurologist-led conversations.

Chapter 8 includes the final evaluation of the system based on both the accuracy and

the robustness of the final classifier. Finally, the chapter focuses on the automatic scoring

of two cognitive tests collected by the IVA and how they can improve the performance of

the overall system.
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Chapter 9 contains the summary, conclusions and further work.
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This study aims to identify early signs of dementia through analysis of conversation.

It is, therefore, intuitive to begin the thesis with an introduction to dementia. Dementia is

a state of sustained impairment of multiple cognitive domains leading to an impairment

in function. In particular, we will focus on the effects of dementia on language and

communication skill and how we can find clues for identifying dementia through analysis

of people's conversation. This chapter is structured as follows:

Section 2.1 includes the definition of dementia and explores the common causes.

Section 2.2 describes the different stages of dementia in terms of severity and how

this disorder affects language and communication skill of people.

Section 2.3 explores other important memory issues with similar symptoms to de-

mentia. These include non-neuro-degenerative causes, which have the potential to improve

and present challenges to the diagnosis of dementia.

Section 2.4 briefly introduces different scans and screening tests which can help in

diagnosing dementia. Then we will list the benefits of developing an automatic tool to

help doctors in diagnosing dementia.

Finally, Section 2.5 summarises the key points of this chapter.
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2.1 What is dementia?

Dementia is not a natural consequence of human ageing, but rather it is a syndrome1 of

progressive deterioration in intellect, personality and communicative functioning [Bayles

and Kaszniak, 1987, ch: 1 p: 1] e.g. loss of reasoning and maintaining attention, ori-

entation, and learning skills [Hamilton, 1994, ch: 1 p: 6]. Dementia is associated with

multi-domain cognitive impairments (with over 50 causes [Bayles and Kaszniak, 1987,

ch: 1 p: 1]) including at least memory impairment and one other deterioration such as

aphasia (inability to produce speech or/and comprehend), apraxia (inability to perform a

planned task), agnosia (inability to process sensory information), and executive dysfunc-

tion [Bayles and Kaszniak, 1987, ch: 1], [Quinn, 2014, ch: 1 p: 1]. Irreversible dementia,

caused by brain diseases such as AD and Fronto-Temporal Dementia (FTD), are referred

to as Neuro-degenerative Disorders (ND)s. These are characterised by the progressive loss

of neuronal cells (up to 10% of the brain) [Bayles and Kaszniak, 1987, ch: 1 p: 8].

The most common cause of dementia is AD, which itself accounts for approximately

60% of all dementia cases [Alzheimer’s Society, 2015a; Department of Health, 2018]. AD

typically presents with an insidious progressive memory impairment gradually affecting

executive and visuospatial functioning as well as the patient's behaviour. Other important

causes of dementia are VD, Dementia with Lewy Bodies (DLB) and FTD [Quinn, 2014,

ch: 1 p: 7]. In VD (the second most common cause of dementia [Alzheimer’s Society, 2015d;

Department of Health, 2018] accounting for 20% of dementia in the UK) vascular events

(e.g. reduced blood supply) are responsible for cognitive decline in presence of strokes

[Quinn, 2014, ch: 1 p: 8]. DLB shares clinical features with both AD and Parkinson'

Disease (PD) including impairments of cognition and movement respectively [Alzheimer’s

Society, 2015b]. FTD or Frontal Lobe Dementia (FLD) [Alzheimer’s Society, 2015c] is

another important type of dementia characterised by progressive non-fluent speech (called

non-fluent Primary Progressive Aphasia (nfPPA)), or loss of knowledge of object meaning

(known as Semantic Dementia (SD)), or progressive changes in personality and behaviour

(called behavioural variant Fronto-Temporal Dementia (bvFTD)) [Fernández-Matarrubia

1‘constellation of signs and symptoms associated with a morbid process’ [Bayles and Kaszniak, 1987,
ch: 1 p: 1]
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et al., 2014]. FTD typically has a young onset (starts before age 65) causing behavioural

features such as dis-inhibition, loss of sympathy or empathy and preservation (repeating

same responses) or compulsions [Quinn, 2014, ch: 1 p: 10].

2.2 Stages of dementia and effect on communication

In terms of clinical severity, there are three stages of dementia: early, middle and late

[Bayles and Kaszniak, 1987, ch: 1 p: 8] [Hamilton, 1994, ch: 1 p: 11],[Klimova et al.,

2015]. In addition to this, there is a pre-clinical stage [Alberdi et al., 2016] characterised by

pathological changes in the brain, the blood, and the CSF, but preceding the development

of any symptoms. Detecting this stage is very hard and it may start up to 20 years before

the symptoms appear.

In the early stage of dementia (known as mild dementia), the patient experiences

subtle memory (short- and medium-term [Klimova et al., 2015]) and language issues like

object naming difficulties. Initially this may be compensated for with strategies developed

by the patient. There may also be signs of disorientation for time, but generally not for

place or person. Discourse is somehow ‘wordy’, ‘imprecise’ and ’off-topic’ and the patient

finds it difficult to detect sarcasm or humour [Hamilton, 1994]. She/He may get trouble

with everyday activities, especially complex activities or those in a professional context.

Behavioural symptoms such as depression or anxiety may emerge as she/he becomes aware

of the deterioration [Klimova et al., 2015]. These features can be subtle and may not be

easily detectable. Specialist assessment is therefore valuable.

In the middle (moderate) stage, naming issues increase and conversation seems less

meaningful, irrelevant and less interactive. The patient may be disoriented to time and

place [Hamilton, 1994]. They are typically not able to adequately react to conversations

and their attention, mathematics, reading and writing skills deteriorate significantly.

In addition, they may develop psychotic symptoms such as delusion and hallucination

[Klimova et al., 2015].

In the late (severe) stage, the disease is characterised by disorientation for time, place

and person, and lack of communication. The patient may not be aware of the presence of



17 2.2. Stages of dementia and effect on communication

others, she/he produces limited discourse which is filled with repetition and nonsensical

utterances [Hamilton, 1994, ch: 1 p: 11]. They also lose judgement, reasoning and social

skills [Klimova et al., 2015].

At the moment there is no cure for dementia, however, there are a number of medicines

and treatments to help with dementia symptoms [NHS, 2018]. For instance, ‘Acetyl-

cholinesterase inhibitors’ (e.g. Donepezil and Rivastigmine) improve communication be-

tween nerves by increasing the availability of acetylcholine, an important neurotransmitter

that is reduced in AD [Mehta et al., 2012], and ‘Memantine’ can block the effect of an

excessive amount of a chemical known as ‘glutamate’ in the brain of people with moderate

or severe AD [Reisberg et al., 2003]. Conditions such as stroke, depression and high blood

pressure can affect symptoms of dementia, and in the late stages of dementia, behavioural

and psychological symptoms (such as anxiety, aggression, delusions and hallucinations)

can emerge. There are a number of complementary treatments to deal with these con-

ditions, such as cognitive stimulation therapy, cognitive rehabilitation and reminiscence

and life story work [NHS, 2018].

Communication is one of the most important and complex human behaviours. Speech,

language and the ability to communicate are affected early in the natural history of demen-

tia. Prosodic characteristics of speech of people with dementia (fundamental frequency,

intonation, speech rate, etc.) could be affected. People might use more hesitation and

pauses in their conversations as they struggle to find an appropriate word [Gonzalez-

Moreira et al., 2015; Khodabakhsh et al., 2015]. They may communicate by non-verbal

means like posture, facial expressions and eye contacts. However, their intentional, ver-

bal communication ability declines. People communicate in order to share ideas. People

with dementia gradually lose their abilities to produce meaningful communication and

comprehend ideas [Bayles and Kaszniak, 1987, ch: 2] .

Dementia affects both the expressive and comprehension elements of language. Pa-

tients experience both cognitive and behavioural impairment affecting their communica-

tion abilities resulting in ineffective communication and inappropriate behaviours [Potkins

et al., 2003].

The language degradation normally manifests through object naming difficulties or
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Table 2.1: Common language deficits among people with dementia [Tang-Wai and Gra-
ham, 2008].

Speech and language difficulties Example

Disfluency (disfluent speech hesitant/-
faltering with abnormal prosody and
reduced phrase length)

“My speech ... I can't tell the, I can't
... express it.”

Word finding (empty speech/lack
of meaning, reduced content words,
pauses while searching for words, using
generic substitutions like ‘thing’, and
use of circumlocution)

Empty speech: “You can see out there
and the things are out there.”. Circum-
locution: “Something that goes up in
the air” (to indicate ‘helicopter’)

Simplifying grammar or grammar er-
rors

“My wife, umm, teacher, umm, full
time, umm, umm, children, umm,
school.”

Paraphasic errors (literal substitution
for one sound, or semantic substitu-
tion)

Literal substitution: “tricycle” instead
of “bicycle”, semantic substitu-
tion: “car” instead of “truck”

loss of vocabulary, verbal disfluencies, simplified grammar, and overuse of words with

empty meaning [Bayles and Kaszniak, 1987, ch: 3], [Hamilton, 1994, ch: 1]. Table 2.1

[Tang-Wai and Graham, 2008] shows some of the common language difficulties amongst

people with dementia with a few explanatory examples. For instance, instead of helicopter

they may use empty speech and say “something that goes up in the air”, and simplify

grammar like “My wife, umm, teacher ...”, instead of “My wife is a teacher ...”.

People with dementia gradually lose their sociolinguistic abilities, i.e. their language

worsens in social situation. For instance, when they start a conversation, they may speak

inappropriately, too loudly or repeat the same phrases [Klimova et al., 2015].

2.3 Other causes of memory difficulties

People referred to doctors with memory complaints may not have dementia. There are

a number of memory disorders that share symptoms with dementia. In contrast to ND,

these conditions are often reversible. The overlapping symptoms can cause confusion for

specialists and makes the diagnosis of dementia challenging.
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Although some specialists may consider the early stage of dementia the same as the

‘Mild Cognitive Impairment (MCI)’, there are important differences. MCI refers to not

only patients with neuro-degenerative pathology but also to patients with depression-

related cognitive issues or cognitive impairments due to alcohol/drug use or other co-

morbidities [Blackburn et al., 2014]. MCI symptoms may stabilise or even improve over

time. Thus, not all patients diagnosed as MCI develop AD (only between 10 and 15%).

The reason some people progress to AD and others do not is unknown [Alberdi et al.,

2016].

Subjective memory complaints are very common amongst the patients referred to

memory clinics. Subjective Cognitive Decline (SCd) is an earlier ‘clinical manifestation’

of AD than MCI. However, self-awareness of memory difficulties often does not necessarily

indicate the presence of dementia. There might be a number of other factors causing

subjective memory issues such as psychological, environmental and pathological features

[Blackburn et al., 2014].

Functional Memory Disorder (FMD) is one of the major causes of memory prob-

lems. FMD is a syndrome, a medical and psychological condition causing failure of mem-

ory and concentration in daily life. It is not related to organic factors and presumably

caused by distress and psychological factors. In contrast to SCd patients, their problems

are not subjective but rather are credible and real [Schmidtke et al., 2008]. Depression

can also cause nonorganic cognitive disorder and it can be associated with FMD. FMD

can cause and promote depression, but most FMD patients are not depressed.

Although depression can contribute to the presence of dementia, there is a group of

patients who are depressed but not demented. Responding ‘I don’t know‘ to questions and

confusing, for instance, salt with sugar, demonstrates lack of concentration/interest rather

than dementia. Inability to perform constructive tasks is common among Depressive

Pseudo-Dementia (DPD) patients. Elderly depressed patients are particularly liable to

become confused, disoriented and incontinent. Also, lack of intellect, sadness, fatigue and

insomnia are common in DPD patients [Kramer, 1982].
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2.4 Current diagnosis processes

The process of diagnosing dementia is complicated and typically consists of a number of

examinations and screenings including [Quinn, 2014, ch: 1 pp: 3-6] general examination (to

identify co-morbid conditions1 e.g. atrial fibrillation, congestive heart failure), cognitive

evaluation (to test attention, orientation, memory, executive function, language, etc.) and

neurological examination (such as cranial nerve testing and gait assessment).

Recently, many physiological signals have been evaluated by researchers to help in the

diagnosis process, including CSF, blood samples, Computed Tomography (CT) scans,

PET molecular scans, Single Photon Emission Computed Tomography (SPECT) (mea-

suring brain activity), structural and functional Magnetic Resonance Imaging (MRI),

Magnetic Resonance Spectroscopic Imaging (MRSI), Diffusion Tensor Imaging (DTI)

(type of MRI scanning micro-structure of brain), Transcranial Doppler (TCD) ul-

trasonography, Electroencephalogram (EEG)/Magnetoencephalogram (MEG), and eye

movements [Alberdi et al., 2016]. However, these investigations are costly and/or invasive.

In addition to the psychological changes, neurologists consider behavioural changes in

patients such as sleeping/walking patterns, and speech and communication ability. There

are a wide range of screening tools and cognitive batteries to assess the communication

ability of patients.

The assessment of people with memory complaints normally begins with a history

taken from the patient and any accompanying person(s) [Elsey et al., 2015] which may

be followed by a number of screening tests. The examiner normally uses a pen and paper

to take notes during the interview and scores different parts of the tests.

2.4.1 Cognitive tools

Each cognitive battery or tool is comprised of various assessments (e.g. verify orientation

to time and place by asking about the current year and where they are), and complet-

ing tasks (e.g. retelling stories, describing pictures). Based on the patient's responses

and the predefined criteria the examiner scores each task. The total score can then be

1presence of one or more disorders simultaneously
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compared with the standard threshold(s) (cut-offs) to determine the level of dementia. It

is important to note that a good screening tool should have both high ‘sensitivity’ and

high ‘specificity’. Sensitivity refers to the ability of a test to identify correctly those with

a disease (true positives), while specificity refers to the test's ability to identify those

without a disease (true negatives).

There is a wide range of neuropsychological assessment tools that can be used, de-

pending on a patient's conditions. A number of the common tests and batteries are listed

below. Each one of these tools has their own limitations and neurologists may use some of

them and/or other tests, in addition to interviews with patients, carers or family members

to help in diagnosing dementia.

2.4.1.1 Minimal Mental Status Examination

The most common tool for cognitive evaluation is the Mini Mental Status Examination

(MMSE) [Folstein et al., 1975]. It is a 30-point questionnaire which assesses orientation

to time and place, repeating/remembering words, calculation, naming objects, etc. A

cognitively normal person may score over 25. A score less than 10 indicates a severe

cognitive impairment, a score between 10 and 20 shows a moderate impairment, and a

person scoring between 20 and 25 might be considered to have a mild cognitive issue.

Despite its simplicity and popularity, the MMSE has limitations and typically requires

additional comprehensive instruments [Quinn, 2014, ch: 1 p: 5].

2.4.1.2 Montreal Cognitive Assessment

The Montreal Cognitive Assessment (MOCA) is another widely used brief screening tool

which is specially designed to detect MCI [Nasreddine et al., 2005]. Similar to the MMSE,

it has 30 points, although its cutoff score for normal performance is 26. It assesses various

skills including visuo-constructional skill (drawing cubes and clocks), naming, repeating,

short-term memory, verbal fluency, attention and abstraction. Compared to the MMSE,

the MOCA is more sensitive to MCI but with low specificity and the most appropriate

cut-off point is not clearly agreed [Coen et al., 2016].
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2.4.1.3 Addenbrooke Cognitive Examination

The Addenbrooke Cognitive Examination (ACE), first introduced by Mathuranath et al.

[2000], has 100 points and focuses on five cognitive skills: attention/orientation, memory,

language, verbal fluency, and visuospatial ability. It takes more time than the MMSE

and requires a higher level of familiarity with cognitive disorders (i.e. the examiner of

the MMSE can be a General Practitioner (GP), but the ACE normally carries out by

a neurologist). Addenbrooke Cognitive Examination-Revised (ACE-R) [Mioshi et al.,

2006] is a revised version of the ACE with more clear domain scores and two cut-offs at

88 and 82. A more recent version of the ACE is Addenbrooke Cognitive Examination-

III (ACE-III) which adds some similar items from the MMSE to the ACE assessment

[Hsieh et al., 2013].

2.4.1.4 Boston Naming Test

The Boston Naming Test (BNT) [Goodglass et al., 1983] is a common Confrontational

Naming test designed to assess people with language difficulties such as aphasia and

dementia. It consists of 60 pictures that are presented one by one to a patient, who are

asked to say what the pictures represent. If the patient struggles to name an item, the

examiner gives a hint or performs ‘phonemic cuing’, i.e. the first phoneme of the word.

Despite its popularity, there are some studies questioning whether the BNT is adequately

standardised and whether it captures all of the processes known to be involved in a

successful naming [Harry and Crowe, 2014].

2.4.1.5 Wechsler Adult Intelligence Scale

The Wechsler Adult Intelligence Scale (WAIS) is the most common intelligence quotient

(IQ) test, measuring intelligence and cognitive abilities in adults. The fourth version of

the test (Wechsler Adult Intelligence Scale-IV (WAIS-IV)) released in 2008 comprises

of 10 core subsets and five supplementary tests. There are four main index scores in-

cluding Verbal Comprehension Index (VCI), Perceptual Reasoning Index (PRI), Working

Memory Index (WMI), and Processing Speed Index (PSI) [Wechsler, 2014].
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2.4.1.6 Wechsler Memory Scale

The Wechsler Memory Scale (WMS) [Wechsler, 1945] is designed to assess different mem-

ory functioning. The latest version (Wechsler Memory Scale-IV (WMS-IV))[Wechsler,

2014] contains seven sub-tests: logical memory, verbal paired associates, visual reproduc-

tion, brief cognitive status exam, designs, spatial addition and symbol span.

2.4.1.7 Patient Health Questionnaire-9

The Patient Health Questionnaire-9 (PHQ-9) is a short self-assessment questionnaire with

9 items designed to detect depression and its severity [Kroenke and Spitzer, 2002]. Each

question can be scored between 0 and 3, making 27 score in total. People with scores up

to 4 are normal. A score between 5 and 9 shows mild depression, 10 to 14 moderate, 15 to

19 moderately severe and over 20 severe depression. It assesses features like having little

interest/pleasure doing things, feeling down/hopeless, sleeping trouble, tiredness, poor

appetite or overeating, feeling bad about yourself, trouble concentrating, moving/speaking

slowly or feeling restless, thought of better being dead or self-harm. Inoue et al. [2012]

reported a high sensitivity but a low specificity for PHQ-9.

2.4.1.8 Generalised Anxiety Assessment-7

The Generalised Anxiety Disorder assessment-7 (GAD-7) questionnaire has seven ques-

tions to assess generalised anxiety and its severity. Each question has scores between 0

and 3 (21 maximum score). A score of less than 5 shows mild anxiety, between 6 and 14

indicates a moderately severe anxiety, and above 15 severe anxiety [Spitzer et al., 2006].

2.4.2 Assessing conversational ability

As previously mentioned, assessing people with memory complaints starts with history

taking. Neurologists may also need different cognitive tests and screening tools to help

them in diagnosing dementia. Traditionally, most of the tests were designed based on

assessing language solely, reflecting the methodological techniques used for the cognitive

batteries, picture describing and similarity tests. For instance, according to the findings
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from a study conducted by Blanken et al. [1987], analysing short interviews with dementia

and healthy participants, the patients with dementia were able to produce almost the same

amount of both simple and complex sentences as the healthy control group, however, the

number of nouns produced by people with dementia was considerably lower than those

used by the healthy seniors.

Bucks et al. [2000] also measured the linguistic features from the interviews with AD

patients and a healthy group. They reported lower rates of noun production amongst the

AD patients, but a higher usage of pronouns and verbs in contrast to healthy elderly,

although the verbs produced by the AD group were poor in terms of comprehension and

lexical richness. Recently, the validity of studies based only on the language produced

by people with dementia has been questioned and there has been a significant increase

in understanding the social interaction of people with dementia, which tends to show

more pragmatic deficits such as inappropriate word selection, topic shift, taking turn, etc

[Jones, 2015; Kindell et al., 2013].

2.4.2.1 Conversation Analysis

The CA was originally introduced in sociology 1 around 1967-1968, however, it has rapidly

expanded to other disciplines including linguistics, communication, political science, an-

thropology and psychology [Sidnell and Stivers, 2012]. CA is a qualitative research method

designed to investigate the structural organisation of everyday social interaction.

Conversations are built on structures known as adjacency pairs (such as question and

answer, greeting and greeting, compliment and down player, request and grant [Jurafsky

and Martin, 2008], they take place as a joint activity between two or more interlocutors

who exchange discourses in a consecutive manner (turns). Turn-taking behaviour occurs

based on a rule identified by Sacks et al. [1974] for the first time. At a transition relevance

place, the current speaker might select the next speaker, if not, any other speakers may

take the next turn. Occasionally the current speaker has to carry on when no one else takes

the next turn. There are other important rules in a conversation such as topic management

(carrying on with the current topic or initiating a new one) and repair (e.g. to change a

1by three pioneers: Emanuel Schegloff, Harvey Sacks and Gail Jefferson
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message due to false starts, mishearing and misunderstanding) [Sidnell and Stivers, 2012].

The process of CA requires a number of steps including audio and/or video recording

of a conversation, transcribing the encounters, and finally carrying out a qualitative anal-

ysis by a trained expert (conversation analyst). In addition to the words being exchanged

in a conversation, the transcription should include extra information such as non-verbal

behaviours (e.g. turning to someone, looking at windows, opening a door), pauses be-

tween words or speaker turns, the loudness of utterance and overlapping speech. The CA

community has developed standard symbols to display such information (for more details

refer to [Lerner, 2004]).

Figure 2.1 (from [Lerner, 2004]) shows a part of a conversation between two speakers

Dean and Nixon. First Dean starts with the utterance “I don't know the full extent 'v

it.” and after 0.7 sec gap, continues with “uheh”. After another gap of 0.9 sec, Nixon

replies “I don'noo 'bout anything else except”. Before finishing the end part of the word

except, Dean says “I don't either in I w'd also”, and the conversation carries on. The left

square bracket indicates the overlap between two utterances, gaps with timing in tenth

of second are inside parentheses, arrows indicate pitch goes up/down, degree signs shows

softness, underscore shows stress, etc. (for more details refer to [Lerner, 2004], Appendix

A summarises some of the common CA symbols)

Figure 2.1: A sample CA of a conversation (from Lerner [2004]) between two speakers,
Dean and Nixon. The numbers in parentheses indicate gap in tenth of second, the ar-
rows shows pitch change; degree signs indicates softness; brackets shows overlapping time;
underscore displays stress, etc.
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2.4.2.2 Analysis of conversation of people with dementia

Analysis of conversation is a promising approach for understanding and analysing the

communication ability and social interaction of people with dementia. Heidi Hamilton,

as part of her PhD thesis, for around four and half years recorded conversations with a

patient with AD to understand the patient's communicative ability at the discourse level

(known as Conversation Discourse Analysis). The results of her work were published as

a book [Hamilton, 1994]. She found that initially the patient had slight memory impair-

ments but remained active and able to use strategies to mask her issues. For instance she

used alternative words to handle the word-finding difficulties; she was somewhat confused,

yet aware of her circumstances and the alternative words she was using were semantically

close to the original words. However, gradually the patient's communication abilities de-

teriorated. In the second stage of disease (moderate dementia), her awareness decreased

considerably, but she still managed to deal with her difficulties by using empty or unre-

lated alternative words. In the third stage (severe dementia), however, the level of her

function was reduced markedly and she could barely initiate any conversations. Instead,

she would produce excessive inappropriate responses or no response when asked questions.

In the end, she entered a totally passive state, where, to communicate with others, the

patient could only produce very limited utterances such as “uhhuh”, “mhm”,“mm hm”,

“mmm” and “hmm”.

Perkins et al. [1998] worked on analysing the ability to produce different forms of

discourse by people with dementia, including picture description, storytelling, procedu-

ral discourse and clinical interviews, and especially focused on the role of the conversa-

tional partner (caregivers) in interactions. They analysed three key aspects in the inter-

actions: the turn taking, repair and topic management. They noticed that the positive

attitude of the conversational partner has an important impact on the success of conver-

sations.

Kindell et al. [2013] used CA approach to examine everyday communication of a family

living with dementia: a participant with SD and his wife. They took a few video recordings

of the family at home. Their findings revealed that the subject repeated the practice of

enactment (speaking out as an actor who is performing an act in a scene and describing
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events and using body movements point out somewhere and talking loudly, etc.) as a

strategy to enable him to generate a higher level of meaningful communication rather

than using a limited vocabulary alone.

Considering the limitations of the current neurological tests, Oba et al. [2018] investi-

gated the feasibility of using a conversation-based test among the residents of care homes

(Conversational Assessment of Neurocognitive dysfunction (CANDy)1) to assess cogni-

tive functioning of patients. In a conversation between the caregiver and the patients, the

test is run, evaluating frequent characteristics of conversation such as “repeatedly ask-

ing same question”, “vague understanding of conversational partner”, “lack of showing

interest in conversation” and “not an expansion of conversation content”. They found

correlations between the results of the test and other standard cognitive tests like MMSE,

while their approach was reported to be less invasive (causing less distress to patients)

and less intrusive to the relationship between the patients and the examiners.

Elsey et al. [2015]; Jones et al. [2015] applied CA to doctor-patient interactions in

a memory clinic. The study revealed several features that could be used to distinguish

between patients suffering from FMD (people with memory complaints not due to neuro-

degenerative aetiology) and patients with ND. Interviews were conducted between neu-

rologists and patients (15 ND and 15 FMD) and audio and video data was recorded. The

patients were encouraged in advance to bring someone along to help them throughout the

process (Accompanying Person (AP)). The interviews consisted of two parts: history-

taking conversation and the formal assessment ACE-R (more details about the study will

be covered in the next chapter).

They found several important qualitative features2 which can differentiate between

ND and FMD, such as the role of the AP (ND group could not talk most of the time

and the APs answered the questions on their behalf) and the meaning of “I don't know”

(for ND it means inability to recall not unsure), ND patients typically cannot recall the

last time their memory let them down. Table 2.2 summarises the distinctive qualitative

1http://cocolomi.net/candy/en/
2Using the CA approach, they found a number of qualitative features which differ in the two patient

groups. Since the term feature can cause confusion for the readers, we refer to these features as the
“qualitative features”.
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Table 2.2: Summary of the key qualitative features extracted via CA by Elsey et al. [Elsey
et al., 2015].

Qualitative feature Findings in FMD group Findings in ND group

F1) Accompanying per-
sons

gave a second opinion to
confirm the patient

main spokesperson

F2) Response to ‘who's
most concerned’

mostly patients both patients and partners,
or ‘I don't know’ answer

F3) Patient recall of re-
cent memory failure

yes, with details they had difficulties to an-
swer, used filling words, or
replied ‘all the time’

F4) Inability to answer marks unsure of response
rather than inability to re-
call

marks inability to recall,
nonverbal behaviours like
head turning and long gaps

F6) Patients' elabora-
tions and length of
turns

answer all parts of the ques-
tion

answered only a single part
of the question

F6) Elaboration of an-
swers

yes no, despite having a second
chance

features found using the CA by Elsey et al. [2015].
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2.4.3 Advantages of an automatic screening tool

The process of diagnosing dementia is difficult due to overlapping symptoms between

dementia and other memory and depression-related disorders (e.g. SCd, FMD, DPD),

and normal ageing. Unfortunately, most of the tests capable of identifying people at high

risk of developing dementia are expensive and invasive. They may expose people to risks

such as radiation, lumbar puncture, distress, etc. Other standard screening tools are much

cheaper and non-invasive. These are mostly based on pen-and-paper and lack sensitivity

or specificity. There is also the learning effect which does not allow frequent, repeated

use of the tests.

There is, therefore, an urgent medical need for a reliable, repeatable, non-invasive,

easy to use, and low-cost tool for identifying people at risk of developing dementia. This

would ensure quicker access to specialist assessment and treatment for those found to

be at high risk. It would also allow for reassurance for those at low risk of developing

dementia. An ideal tool would allow re-testing for those at intermediate risk or those

whose performance fluctuates and would be usable without requiring assessor expertise,

for example, in people's own homes.
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2.5 Summary

Dementia disorders are associated with progressively deteriorating memory, human intel-

ligence, personality and communication ability. ND is a group of irreversible dementias,

which cause loss of the neuron cells in the brain. AD is the most common cause of dementia

accounting for up to 60% of dementia cases. Other important types of dementia include

Lewy body, Frontotemporal, and Vascular dementia. In terms of severity, dementia can

be categorised generally into three stages: mild, moderate and severe.

Language and communication is affected early on in dementia and as the disease

progresses people with dementia lose their ability to produce meaningful communica-

tion. Effects on language includes disfluencies, word finding difficulties and using empty

speech or generic substitutions (e.g ‘thing’), grammar simplification and literal/semantic

substitutions. Dementia also affects acoustics and speech prosodic features, i.e. pitch,

intonation, longer pauses in conversation, and it may cause people to use more hesitation

words, filler words and pauses like “umm” and “er”.

Diagnosing dementia is a challenging task and comprises of several examinations and

tests, such as brain scans (MRI, and PET), blood tests, Gait assessment, and many

cognitive screening tools like MMSE, MOCA, ACE-R. Although widely used, each of

these tests and screening tools has its own limitations in both sensitivity (identifying true

positives) and specificity (identifying true negatives). There is, therefore, a need to build

a cheap, non-invasive and reliable automatic screening tool to identify people at risk of

developing dementia. There are a number of studies on dementia focusing on the analysis

of conversation, which reveals more communication ability of people when they interact

with doctors, family members or caregivers. In the study carried out by Elsey et al. [2015],

they found a number of qualitative features that can be used for distinguishing between

people with ND and FMD disorders.

This thesis is about delivering an automatic detection tool for screening and monitor-

ing dementia through analysis of conversation. Developing a low-cost non-invasive and

reliable tool for identifying people with a high risk of developing dementia will enable

quicker referral to a specialist. It can also bring reassurance for those found at low risk
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of developing dementia.
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This chapter is about exploring and finding an answer to the first research question,

i.e. the feasibility of developing an automatic tool to detect dementia via analysis of

conversation. Due to the complexity of such a system and influenced by the “prototyping

model” software development, we start with a simplified version of the system (assuming

other components are ready) to produce results. In the following chapters, we will add

more automated components to the system. This chapter mainly focuses on providing a

“proof-of-concept” for the development of an automatic dementia detection system. In-

spired by Elsey et al. [2015] qualitative study, we extract automatic features from the

same conversations to identify dementia. The chapter is organised as follows:

Section 3.1 is a literature review of the recent studies focussing on automatic detec-

tion of dementia using speech processing and/or analysis of conversation.

Section 3.2 introduces the pipeline of our system, which consists of a speaker diari-

sation unit, an ASR, a feature extraction component and a classifier.

Section 3.3 contains the details of a pilot study conducted as a proof-of-concept of

the introduced system.

Section 3.4 and 3.5 are the discussion and the summary of the chapter, respectively.
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3.1 Literature review

Whilst the automatic analysis of interaction is quite a new field of study [Moore, 2015;

Shriberg, 2005], a significant amount of work has been carried out using machine learning

techniques to identify signs of dementia in patients' speech and language. Most of these

studies are based on features extracted from audio recordings of people in order to de-

tect dementia. Unfortunately, due to lack of standard datasets, each study is based on

their own dataset (collected from different people with different medical conditions, and

with different recording conditions). Sharing these datasets is not available due to ethical

issues. The authors investigated different features from their datasets. However, due to

high variances in recording conditions and the participants, it is very difficult to compare

between the results gained by different studies.

Some researchers worked on extracting only acoustic features from the speech of peo-

ple with dementia. Lopez de Ipina et al. [2013] investigated a number of acoustic features

including durations (e.g. voice/unvoiced segments), time domain (short time energy),

frequency domain (spectral centroid), and the fractal dimension from the AZTIAHO

database of multilingual recordings of the spontaneous speech of 50 healthy adults and 20

Alzheimer patients. They used a Multi Layer Perceptron (MLP) classifier to distinguish

between the patients with dementia and the healthy control group. Later Lopez de Ipina

et al. [2015], introduced different fractal dimensional algorithms as a quantitative mea-

surement capturing dynamic systems in multidimensional space. The accuracy of their

classifier was around 80%.

Roark et al. [2011] extracted a number of speech-and language-related features from

a recall task of the Clinical Dementia Rating (CDR) procedure, to distinguish between

37 healthy people and 37 people with MCI. They investigated the use of both manually

annotated time alignments as well as an automatic approach (forced alignment of the ASR

and automatic parsers) to identify different sets of features. They found that combining

the features identified using the automated approach with the neuropsychological test

scores outperformed other feature combinations.

Toth et al. [2015] found other acoustic and lexical features (such as the number of
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phones per second, length of utterance and pauses) very useful in identifying patients with

MCI. They have trained their ASR using the BEA Hungarian Spoken Language Database

(spontaneous speech of people with MCI) focusing only on the phoneme recognition.

The same group later [Gosztolya et al., 2016] expanded the initial feature set from 27

features to 84 ‘extended’ features included descriptors for silence pauses, filled pauses and

some particular phones, and 708 ‘overcomplete’ features redundant version of features with

different descriptors for 57 phones, pauses, breathing noises, laughter and coughs. They in-

vestigated applying a number of different feature selection algorithms to identify the most

informative and significant features for classification. The results revealed that training

a classifier with a few features obtained by an efficient feature selection algorithm can

outperform classifiers trained on all the features of the initial feature sets, the extended

or overcompleted ones. They also suggested a new technique for the feature selection

(‘correlation-based’ method) which can be as accurate as forward feature selection al-

gorithm, yet, more efficient and faster. Recently, they used ASR outputs to extract the

features [Toth et al., 2018]. They had 38 healthy controls as well as 48 patients with MCI.

Using the most important features for classification, they gained a 75% accuracy rate (F1

measure 78.8%) by a Random Forest (RF) classifier.

Lehr et al. [2012] developed an automatic system to asses the MCI patient's memory

as well as the healthy controls in retelling a story (part of the Wechsler Logical Memory

(WLM) test) (35 MCI and 37 Healthy Control (HC)). They trained an ASR to recognise 25

elements from the story (keywords) both in immediate re-telling (patient should rephrase

what they heard from the story without any delay) and delayed re-telling of the story (50

features to train an Support Vector Machine (SVM) classifier). Despite the high Word

Error Rate (WER) (between 23% and 43%) of the ASR, the classification accuracy was

close to the classification achieved by the manual transcripts with an 81.5% accuracy

rate.

Jarrold et al. [2014] combined half of their ASR outputs with half of their human

transcriptions of spontaneous speech to extract acoustic and lexical features and classified

48 participants into a group of patients with different types of dementia and a healthy

control group. The classification accuracy amongst all types of subjects was 61%, while
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the binary classification accuracy between AD and healthy controls rose to 88%.

Thomas et al. [2005] extracted several lexical and semantic features to achieve 95%

accuracy in a binary classification task differentiating between patients with severe de-

mentia and normal controls. The performance of such automated diagnostic approaches,

however, dropped to around 75% when they attempted to differentiate between patients

with mild dementia and healthy elders. When four classes of cognitive performance were

introduced (severe dementia, moderate dementia, mild dementia, and a normal group),

the classification accuracy decreased drastically to around 50%.

Satt et al. [2013] carried out a study on 89 subjects (43 with MCI, 27 with AD, and 19

healthy adults). The subjects were asked to complete tasks such as verbally describing a

picture while looking at it, looking once at a picture and describing it from memory and

repeating a sentence given by the interviewer. They extracted a number of vocal features

for each task (e.g. total speech duration, the standard deviation of pause duration, the

average verbal reaction time). Then they used N-lowest p-value approach to select a

number of features and train classifiers. They gained 80% accuracy for a binary classifier

between MCI and AD. Later on, modifying some of the features, they reported a classifier

accuracy between HC and MCI of 79% and between HC and AD of 87% [König et al.,

2015].

In a study on the data collected from the Interdisciplinary Longitudinal Study on

adult development and aging (ILSE)(a German dataset consisting of 1000 participants'

spontaneous speech in their middle adulthood and later life spanning, over 10000 hours

recordings), Weiner et al. [2016] focused on extracting a number of acoustic and qualitative

features (e.g. silence duration, silence to speech ratio, word rate, phoneme rate) to train a

classifier to distinguish between three categories: AD (5 patients), Aging-Associated Cog-

nitive Decline (AACD) (13 patients) and HC (80). They emphasised that the ratio of their

selection of the different patient groups reflected a very similar real-life situation. They

have used the manual transcriptions for the lexical features and trained a Voice Activity

Detection (VAD) to calculate the acoustic features. Using a Linear Discriminant Anal-

ysis (LDA) classifier, they have obtained 85.7% accuracy amongst the three participant

groups with 0.66 Unweighted Average Recall (UAR). While differentiating between the



Automatic dementia detection using analysis of conversation 38

healthy and AD was successful, the classifier was not capable of categorising the healthy

group from the AACD patients. Then they trained an ASR to transcribe the conver-

sations and extract a number of different features (acoustic, lexical richness, perplexity

features, etc.) from both the manual transcriptions and the outputs of the ASR [Weiner

et al., 2017]. Despite having a high mean WER (59.2%) of the ASR, the automatic within-

speaker perplexity features (not the manual) achieved the best UAR of 0.623 among all

features. They also trained an speaker diarisation and used it in their pipeline of auto-

matic system to segment the audio files of the interviews [Weiner et al., 2018]. Using only

the acoustic features and a Gaussian classifier, they gained 0.493 UAR for their original

transcribed dataset. However, on an un-transcribed data of 218 subjects (in 241 inter-

views), the classifier achieved 0.645 UAR. They also found out that using only 12.5 mins

of the interviews was fairly enough to gain the best results by the classifier.

Fraser et al. [2015] and Yancheva et al. [2015] used the Dementia Bank corpus (contain-

ing speech of patients with AD, vascular dementia, MCI and healthy controls describing

the Boston ‘Cookie Theft’ picture1) to predict changes in patients' MMSE scores over

time. The researchers extracted a wide range of features (over 477 lexico-syntactic, acous-

tic, and semantic) and selected the 40 most informative, reporting an accuracy of over

92% in terms of the distinction of AD patients from HC.

Their relatively high accuracy comes from the human transcriptions of the audio files,

however, in their next study [Zhou et al., 2016] they used ASR to produce automatic

transcriptions. Their best ASR had a 38.24% WER. Ignoring the prosodic and the acoustic

features, this time, they have only extracted lexical features to train an SVM classifier in

order to differentiate between the HC and AD patients. The accuracy of the classifier drops

significantly as the ASR WER increases. Poor quality of the recordings and challenges

of people's voice (with a high level of breathiness, jitter, shimmer, and slower rate) by

ASR were reported as the main challenges for the ASR. What is more, the distinction

between AD and HC represents much less of a diagnostic challenge in clinical practice

than the differentiation of MCI and age-matched adults without cognitive complaints - or

even age-matched adults with non-progressive memory complaints. The dataset contains

1‘Cookie Theft’ picture is a part of the Boston Diagnostic Aphasia Examination in which the examiner
shows the picture to the patient asking them to tell about everything that is going on in the picture.
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240 audio recordings of people with either “possible AD” or “probable AD” from 167

participants and 233 additional recordings of HC group from 97 speakers.

Yancheva and Rudzicz [2016] used Global Vector (GloVe) word vectors to make 10

common clusters of the words (only nouns and verbs) in the training set of the dementia

group as well as 10 common cluster of words in the HC (each cluster representing a topic

or related words, e.g. C0: window, floor, curtains, plate, kitchen, D0: cookie, cookies,

cake, baking, apples). Then using the average scaled distance between the words of a

given transcript from the test set and the created clusters, they extracted 20 semantic

features. In addition they calculated the ‘idea density’ as the number of topics mentioned

in the transcript divided by the number of words, and the ‘idea efficiency’ as the number

of topics mentioned in the transcript divided by the length of recording. They gained 80%

accuracy and 80% F1 when they combined all their features with the lexicosyntactic and

acoustic features from Fraser and Hirst [2016].

Working on the same dataset, Al-Hameed et al. [2016] achieved a 94% classification

accuracy using acoustic-only features, thereby avoiding the need to use ASR. They also

predicted the MMSE scores from the acoustic features as well as adding an MCI group

for classification [Al-Hameed et al., 2017]. They gained an accuracy rate between 89.2%

and 92.4% for the pairwise classifications.

Asgari et al. [2017] used the Linguistic Inquiry and Word Count (LIWC) software

to categorise the words of the transcripts of interviews between interviewers and people

with MCI and healthy group (14 MCI and 27 HC). The subcategories included 68 differ-

ent categories like positive emotions and negations, fillers, home, sport, job, nonfluencies

(‘um’,‘er’). They passed these 68 dimensions for each conversation to train an SVM clas-

sifier with an Radial Basis Function (RBF) kernel. They gained a 76.2% accuracy rate for

the classification.

Other modalities aside from voice have also been investigated and found to be good

predictors for cognitive decline and dementia including eye movement [Parsons et al.,

2017; Zhang et al., 2016], olfactory sense [Karunanayaka et al., 2017; Lafaille-Magnan

et al., 2015] and even hand dexterity [Stringer et al., 2018].

In general, the distinction between AD and HC represents much less of a diagnos-
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tic challenge than the differentiation of MCI and age-matched adults without cognitive

complaints, or even age-matched adults with non-progressive memory complaints.

In brief, recent research has demonstrated that automatic audio and speech technol-

ogy may provide diagnostic markers that can aid the classification between e.g. HC and

people with AD or MCI. However, most studies have focused on providing a supplemen-

tary, automatic method based on existing test procedures currently used in the clinical

settings like picture description. In addition, many research studies have used manual

transcription, thereby side-stepping the known challenges associated with the automated

analysis of spontaneous, conversational speech.

3.2 Dementia detection system

In this section we introduce the pipeline of our dementia detection system as well as our

original dataset for the study, the “Hallamshire data”. Our initial focus was on replicating

the findings of Elsey et al. [2015] with human transcriptions. Therefore, we started with

the last component of the system (feature extraction and classification). In order to prove

the feasibility of the approach, a pilot study was conducted and the results published in

Mirheidari et al. [2017b]. The rest of this chapter includes details of the study.

Figure 3.1: Automatic dementia detection system.

A fully automatic dementia detection system would comprise of several units includ-

ing the ASR, the speaker diarisation, the feature extraction and the machine learning
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classifier (Figure 3.1)(It is worth mentioning that Weiner et al. has started working on a

similar pipeline since 2016. In their recent paper [Weiner et al., 2018], they included the

diarisation unit, similar to our dementia detection system ). First, an audio file contain-

ing a recording of the conversations is passed to a diarisation tool to identify the speech

portions of the input audio stream, as well as the speaker identification of each speech

segment. Diarisation techniques first identify the speech and non-speech (silence, music,

background noise, etc.) portions of the input audio stream, then, processing the speech

parts of the input streams, they identify the speaker of each segment. This information

is then passed to an ASR system. The ASR is given both the input audio file and the

output produced by the diarisation tool to generate a string of words spoken by each

speaker (patient, neurologist and AP). Next, the output of the diarisation tool and the

ASR are given to the feature extraction unit to extract a number of features. Some fea-

tures may rely on techniques such as signal-, text- and natural language processing as

well as spoken language understanding. A number of acoustic features can be extracted

directly from the audio recording. Finally, the extracted features are sent to a machine

learning classifier to decide which category the whole conversation belongs to; e.g. ND

and FMD. Note that, there were one or two accompanying persons in the conversations.

Therefore we considered all of the other speakers as the APs.

The diarisation, ASR and classification are further described in the next chapters.

3.2.1 Hallamshire data

The first step for assessing people with memory difficulties is the history-taking from

the patient and accompanying person(s). It is believed that the patient's history is a

key to appropriate diagnose and treatments. Therefore, the interaction between doctor,

AP and patient during the history-taking is assumed to play an important role for the

diagnosis process. The initial motivation was to apply CA to find diagnostic clues from

the conversations in different patient groups.

Recruiting the participants for Hallamshire study took place between October 2012

and October 2014 at the Royal Hallamshire Hospital in Sheffield, United Kingdom. The

participants were routinely encouraged to bring someone along to the memory clinic ap-
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pointment if possible (AP). All participants underwent MRI brain imaging and cognitive

screening using the ACE-R. Participants underwent detailed neuropsychological testing

with a neuropsychological battery which included the MMSE [Folstein et al., 1975], tests

of short and long term memory (verbal and non-verbal) [Wechsler, 1997], tests of abstract

reasoning [Raven, 1995; Rey, 1964], tests of attention and executive function [Stroop,

1935], language comprehension, naming by confrontation, category and letter fluency

[De Renzi and Faglioni, 1978].

The participating doctors were encouraged to adhere to a communication guide (for

the guidelines of the study refer to Appendix B), which had been developed in close co-

operation with these clinicians and was based on their routine practice. Neurologists were

guided to start their history-taking with an open enquiry, not explicitly directing pa-

tients to talk about their memory problems. They were encouraged to maximise patients'

opportunities to produce an account of their own concerns and to minimise interrup-

tions. After this open beginning, neurologists were asked to prompt further extended talk

from patients by encouraging them to give an example of when their memory let them

down. Finally, the communication guide listed some specific enquiries (such as who was

more concerned about the memory difficulties, the patient or others). The ACE-R was

carried out after the history-taking and not recorded or analysed. Demographic informa-

tion of the participants for this study as well as information about the cognitive test scores

are presented in Table 3.1.

There were 30 audio recordings of the interviews1 between the neurologists, patients

and APs with an average recording length of 16 minutes and an average utterance length

of 4.6 seconds for each interview (see Table 3.2 for more information about the Hallamshire

data set).

3.2.2 Extracted features

In the process of translating qualitative features from the earlier CA study [Elsey et al.,

2015; Jones et al., 2015], it became apparent that, in most cases, several complementary

programmable features had to be combined to generate a reasonably close translation of a

1we only had access to the audio files of the interview
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Table 3.1: Demographic information of the participants.
FMD
(n=15)

ND (n=15) Mean Cut
Off

Score
range

P-value

Age 57.8(+−2.02) 63.73(+−2.29) N/A N/A N/A p = 0.06

Female 60% 53% ns∗

ACE-R 93.0(+−1.4) 58.27(+−5.21) 88 0− 100 p < 0.0001

MMSE 28.87(+−0.19) 18.79(+−1.97) 28.88(1.28) 26.32 0− 30 p < 0.0001

PHQ-9 5.6(+−1.02) 5.25(+−2.04) 5 0− 27 ns

GAD-7 4.73(+−1.23) 4.75(+−1.52) 5 0− 21 ns

CF 19.8(+−0.11) 17.15(+−0.93) 19.65(0.63) 18.39 0− 20 p = 0.0052

VPA 16.87(+−0.74) 5.85(+−0.94) 14.81(3.76) 7.29 0− 24 p < 0.0001

P&PT 51.13(+−0.19) 44.50(+−2.49) 51.23(0.82) 49.59 0− 52 p = 0.0063

Rey's CF 34.0(+−0.44) 21.42(+−3.02) 33.70(2.30) 29.1 0− 36 p < 0.0001

SF 52.73(+−2.91) 23.77(+−4.03) 59.81(13.17) 33.47 N/A∗∗ p < 0.0001

PF 41.2(+−3.02) 19.15(+−3.69) 45.58(12.05) 21.48 N/A∗∗ p < 0.0001

DS 6.73(+−0.33) 4.54(+−0.48) 6.76(1.48) 3.8 0− 9 p = 0.0007

VCA 13.2(+−0.2) 10.08(+−0.97) 13.77(0.51) 12.75 0− 14 p = 0.0023

TT 34.97(+−0.27) 26.50(+−1.89) 34.67 1.03 0− 36 p < 0.0001

PM 15.07(+−0.92) 5.25(+−1.1) 12.37 2.08 0− 25 p < 0.0001

Legends: ACE-R: Addenbrooke's Cognitive Examination - Revised; MMSE: Mini Mental State
Examination; PHQ-9: Patient Health Questionnaire-9; GAD-7: Generalised Anxiety Assessment
7; CF: Confrontational Naming; VPA: Verbal Paired Associates; P&PT-Pyramid & Palm Trees;
Rey's CF: Rey's Complex Figure; SF: Semantic Fluency; PF: Phonemic Fluency; DS: Digit
Span; VCA: Visuoconstructive Apraxia; TT: Token task; PM: Prose Memory. trials.
∗: not significant
∗∗: For the CF and PF tests there is no maximum score as it depends on individuals' word
production speed within the time limit of three one minute trials. We have included all the
maximum scores on the cognitive tests apart from GAD-7 and PHQ-9 where we have included
the minimum to reflect a score if no depression or anxiety were present.

Table 3.2: Hallamshire data set information.
Number of audio recordings 30 (FMD: 15, ND: 15)

Number of speakers 81 (Patient: 30, Neurologist: 30, AP: 21)

Number of utterances 6266

Total length of recordings 8 hours

Average recording length 16 minutes

Average utterance length 4.6 seconds
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Table 3.3: Qualitative features from Table 2.2, and corresponding features extracted
from the transcripts by automatic analysis of conversation. Prefixes: Pat=patient,
Neu=neurologist, and APs=accompanying person(s).
Qualitative feature
[Elsey et al., 2015]

Corresponding extracted feature(s)

F1. Role of accompany-
ing persons (APs)

Number of turns (APsNoOfTurns , PatNoOfTurns);
Average length of turn (APsAVTurnLength, PatAVTurnLength);
Average unique words (APsAVUniqueWords, PatAVUniqueWords)

F2.“Who's most con-
cerned?”

Patient answered “me” (PatMeForWhoConcerns)

F3.Recall of recent mem-
ory failure

Number of empty words (PatFailureExampleEmptyWords);
average length of pauses (PatFailureExampleAVPauses);
used “all the time” (PatFailureExampleAllTime)

F4.Inability to answer Patient replies “I don't know” to the question about their expectations
of the memory clinic appointment (PatDontKnowForExpectation);
Frequency of “don't know” responses in combination with
turning to APs (PatAVNoOfDontKnow);
Average instances of head shakes (PatAVNoOfShakesHead);
Average number of filler words (PatAVFillers);
Average number of empty words (PatAVEmptyWords);
Average number of common words (PatAVAllWords)

F5.Responding to com-
pound questions

Average number of repeated questions (AVNoOfRepeatedQuestions)

F6.Patients' elabora-
tions

Average unique words (PatAVUniqueWords,
Average turn length PatAVTurnLength)

Role of the neurologist
(Not investigated in orig-
inal study)

Number of turns (NeuNoOfTurns);
Average length of turns([sec]) (NeuAVTurnLength);
Average number of unique words (NeuAVUniqueWords);
Average number of topics discussed (AVNoOfTopicsChanged);
Average length of pauses by patient (PatAVPauses)

qualitative observation (see Table 2.2). Table 3.3 shows how the six key features described

qualitatively were translated into 17 features suitable for conversation based analysis. Note

that [Elsey et al., 2015] refereed to these qualitative features simply as “features”, but to

not cause confusion for the readers we refer to them as qualitative features. In addition,

we defined five potentially diagnostic features suited for conversation based analysis which

focused on the interactional contributions of the neurologist, but which were not based

on any previous qualitative findings (see Table 3.3).

To extract some of those features, a common NLP approach known as the Bag of

Words (BoW) model [Salton, 1983] was used. This technique underpins many search
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engines (like Google) and is supported by numerous NLP packages (e.g. Natural Language

Toolkit (NLTK) [Bird et al., 2009]). The BoW ignores the order of words, punctuation,

commonly used words in English (such as ‘the’, ‘a’, ‘this’), and trims verbs to their

stems. For instance, for the clause ‘He wanted to get a new job’, the BoW would contain

the words: ‘want’, ‘new’, and ‘job’.

F1.(Role of the APs): The detection of most of the features depends on an au-

tomatic way of identifying turns, i.e., splitting the conversation into questions and an-

swers. This is a relatively hard task. However, this study is based on the automated

analysis of a small number of highly structured conversations (30 conversations in total),

in which new topics are almost exclusively initiated by the clinician. This means we were

able to use a far simpler topic detection1 method relying on the detection of particular

words or phrases in a turn. This facilitates the extraction of features aiding the identi-

fication of the role of the APs (F1). Features such as the number of turns, the average

length of turn and the average number of unique words produced by the patient and the

APs can be used individually to determine whether the patient or the AP talks more. A

total of six features are defined to select the dominant speaker: the number of turns in

the conversation (PatNoOfTurns and APsNoOfTurns), the average length of the turns

(PatAVTurnLength and APsAVTurnLength), and the average unique number of words in

the whole conversation (PatAVUniqueWords and APsAVUniqueWords).

F2.(Who's most concerned?): To extract information related to who is the most

concerned about the patient's condition (F2), the topic detection approach described

above is used first to identify the question, and subsequently assess the associated answer

to determine whether the patient has replied that they are the most concerned (in effect

answering “me” or similar words (I, myself, etc.)) or not (PatMeForWhoConcerns). Since

not all the patients were asked this question, the feature actually had three possible

values: “yes”, “no”, and “not available”.

F3.(Recall of recent memory failure:) It relates to the question when patients

last noticed a problem with their memory. Patients with ND were found to give three

different types of answer to this question: providing mostly empty words, answering with

1detecting the topic of a particular question, i.e. what they are talking about.
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a lot of hesitation or gaps in the speech, or answering something to the effect of ‘all the

time’. Therefore, three features were defined to capture the answer to this question: num-

ber of empty words in the response (PatFailureExampleEmptyWords), the average length

of silences within the utterances (PatAVPauses), pause for failure example (PatFailure-

ExampleAVPauses), and replying “all the time” (PatFailureExampleAllTime).

F4.(Inability to answer): In order to extract the feature “inability to answer” (F4),

five different features were defined. The feature PatDontKnowForExpectation indicates

that either the patient has replied “I don't know” or used a similar phrase in response

to the question about what expectations they had when they came to the clinic. Elsey

et al. [2015] also described “don't know” responses at other points of the interaction as

diagnostically meaningful, although they differentiated between different types of this par-

ticular response: contextualised “don't knows” in which the speaker provides appropriate

information addressing parts of a question but identifies particular aspects s/he is unable

to answer, or non-contextualised “don't know” responses in which no attempt is made to

provide a more detailed reply to any aspect of a question. To improve the diagnostic con-

tribution of “don't know” statements, we, therefore, did not only count these utterances

(PatAVNoOfDontKnow), we also coded additional information sometimes associated with

these words (such as patient turns head to the AP encouraging them to answer the ques-

tion instead of the patient). Similarly, we coded head shaking (translated into the feature

PatAVNoOfShakesHead). Other important features, which may be helpful in determining

the meaning of “don't know” statements, are the average number of filler words like “I

mean”, “I see” (PatAVFillers), the average number of empty words such as “er”, “em”

(PatAVEmptyWords) and the average number of words in a turn (ignoring very common

words such as “a”, “the”, “that”, PatAVAllWords).

F5.(Responding to compound questions): In their responses to compound (multi-

part) questions (F5), ND patients typically failed to answer all parts of the question so the

neurologist had to repeat the question in the following turn. This is captured by feature

AVNoOfRepeatedQuestions which takes into account parts of compound questions which

were not answered by the patient straight away.

F6.(Patient's elaborations) The lack of elaboration of answers by patients with
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Table 3.4: Types of extracted features: acoustic, lexical, semantic and visual-conceptual.
Type Features

Acoustic APsNoOfTurns PatNoOfTurns
NeuNoOfTurns APsAVTurnLength
PatAVTurnLength
PatFailureExampleAVPauses
NeuAVTurnLength PatAVPauses

Lexical PatAVUniqueWords
NeuAVUniqueWords
APsAVUniqueWords PatAVAllWords

Semantic PatMeForWhoConcerns
PatFailureExampleEmptyWords
PatFailureExampleAllTime
PatDontKnowForExpectation
PatAVFillers PatAVEmptyWords
AVNoOfRepeatedQuestions
AVNoOfTopicsChanged

Visual-conceptual PatAVNoOfShakesHead
PatAVNoOfDontKnow

ND was captured by the features PatNoOfTurns, PatAVTurnLength, and PatAVUnique-

Words.

In addition, we also extracted three extra features based on the contributions of neu-

rologists (NeuNoOfTurns, NeuAVTurnLength and NeuAVUniqueWords). Although the

differential diagnostic value of the neurologists' contribution has not been studied ex-

plicitly by Elsey et al. [2015], it has been identified as a conversational observation of

potential value by others [Hamilton, 1994; Perkins et al., 1998]. Similar to the APs and

patient features, NeuNoOfTurns, NeuAVTurnLength, and NeuAVUniqueWords were iden-

tified. Finally, the feature AVNoOfTopicsChanged takes into account the average number

of different topics discussed by the neurologist and patient throughout the conversation.

The extracted features can be divided into four different types: acoustic, lexical, se-

mantic and visual (non-verbal). Table 3.4 lists all features.

3.3 Baseline results

There are several standard machine learning classifiers, however, choosing the best clas-

sifier for a given dataset is a challenging task, because each one has advantages and
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Table 3.5: Classification accuracy rate using all 22 extracted features (10-fold cross vali-
dation).

Classifier Accuracy(%)

Linear SVM 90

Random Forest 92.5

AdaBoost 95

Perceptron 90

Logistic Regression 92.5

Linear via SGD 90

AVG (STD) 91.7(2.04)

Table 3.6: P-values of significance test (five repeats of 2-fold cross validation) for the pairs
of the six classifiers. P-value less than 0.05 indicates a significant difference.
- SVM RF AdaBoost Perceptron LR SGD

SVM - 0.2484 0.9394 1.0000 0.0318 0.1829

RF 0.2484 - 0.5119 0.0582 0.5157 1.0000

AdaBoost 0.9394 0.5119 - 0.9469 0.7644 0.5367

Perceptron 1.0000 0.0582 0.9469 - 0.6338 0.4868

LR 0.0318 0.5157 0.7644 0.6338 - 0.3741

SGD 0.1829 1.0000 0.5367 0.4868 0.3741 -

disadvantages, depending on factors such as the number of samples of training and test-

ing data, and the variances of the different features in the data. Therefore, a very common

methodology is to try several classifiers and use a validation approach to find the best

classifier for a particular dataset.

The focus of this study was the differentiation between patients with ND and FMD,

so a binary machine learning classifier was used. The “Scikit-learn” [Pedregosa and Varo-

quaux, 2011] is a Python library with a wide range of machine learning classifiers. From

this library, six standard machine learning classifiers were chosen: SVM with linear kernel,

RF, Adaptive Boost (AdaBoost), Perceptron, Logistic Regression (LR), and Stochastic

Gradient Descent (SGD).

In this study, we used a common evaluation technique, the 10-fold cross-validation

approach. In this approach, data is divided into 10 groups. For each group, the data of

the group is held out as a test set and the remaining groups are used for training. The

average accuracy over all the test sets determines the accuracy of the classifier. Table 3.5

displays the overall accuracy in percentage for the six evaluated classifiers using all 22
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features extracted from the transcripts using 10-fold cross validation. The best accuracy

rate was achieved by the AdaBoost classifier with 95%, while the minimum accuracy was

achieved by three classifiers: linear SVM , linear via SGD and Perceptron classifiers all

with 90%. The mean classification accuracy of all classifiers was 91.7% (with a standard

deviation of 2.04%).

McNemar's test (McNemar [1947]) could not identify any significant differences be-

tween the accuracy rates of the six classifiers. We also applied another machine learning

classifier's significant test suggested by Dietterich [1998] in which the classification should

be repeated 5 times using a 2-fold cross validation. This method only showed a significant

difference between the LR and the linear SVM classifiers with a p-value of 0.0318. Table

3.6 shows all the p-values calculated for each pair of the six classifiers. Note that the

p-value of comparing the Perceptron classifier with the RF classifier was the second min-

imum p-value in the table, but it was slightly bigger than the 0.05 threshold (0.0582),

hence does not constitute a significant difference.

Thus, based on the significance test, the LR classifier accuracy was significantly better

than the SVM classifier, while there were not significant differences between the remaining

classifier. In the subsequent chapters only one classifier was chosen (LR) as the nominated

classifier.

3.3.1 Feature selection

Generally, the best features to use in automated classification approaches are complemen-

tary and highly discriminative for the task at hand. In practice though, it is common

for two types of features to exhibit a high degree of interdependence, and a process of

feature selection is often beneficial. This makes the machine learning model simpler (fewer

features need to be extracted), regulates the variance amongst the extracted features and,

more importantly, reduces the risk of overfitting (many features do not necessarily yield

better classification, but rather make the final prediction too dependent on a specific

dataset [Guyon and Elisseeff, 2003]).

One approach is to consider the input data (disregarding the output classes) with the

aim of identifying those features with the greatest variance and diversities using statistical
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tests such as t-tests. Another approach considers the outputs of the classification task in

order to find the most discriminative features. Feature selection in this way depends on

the amount a particular feature contributes to the classification. Some classifiers, such as

those that are based on trees, automatically use feature contribution for the classification

task. Therefore, they have a built-in ranking which can show the importance of features.

For linear classifiers, Recursive Feature Elimination (RFE) (see [Pedregosa and Varo-

quaux, 2011] for more details) is a common approach to selecting the most significant

features. RFE finds the most important features by examining how eliminating each fea-

ture from the feature set affects the classification accuracy. One by one, the feature mak-

ing the smallest contribution is eliminated and the accuracy of the remaining features is

evaluated. Elimination continues until all features have been eliminated. Reverse order

elimination shows the importance of the features in the classification task.

For the tree-based classifiers (AdaBoost and RF) the built-in ranking was employed

and for the other linear classifiers, the RFE technique (on the train set) was used to

identify the best features. The most significant (top 10) features overall were selected by

combining the feature rankings of five classifiers (the six classifiers except the Percep-

tron). Table 3.7 lists the most important features contributing to the classification. The

most significant five features were the average number of unique words used by the neurol-

ogist (rephrasing the questions somewhat differently depending on the patient), accompa-

nying person's number of turns, the average number of unique words used by the patient,

the average turn length for the patient, and the average number of repeated questions.

There are other approaches such as component analysis e.g., the Principle Component

Analysis (PCA) which can be used to reduce the dimensionality of the features. However

PCA is better suited to reducing very large datasets (e.g., with hundreds of features) and

also, by using feature selection methods directly affected by the classifier in question, we

ensure we identify the most important features for the task at hand. This also enables us

to arrive at a subset of features that needs extracting as opposed to PCA-based reduction

which would still require us to extract all features prior to dimensionality reduction.

Applying the PCA resulted in a classification accuracy rate of 92.5% for the Perceptron,

the SVM and the LR, however, the accuracy rate for the SGD, the AdaBoost and the
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Table 3.7: The most significant (top 10) features with the highest contributions for the
classification between the ND and the FMD patients using the RFE on the train set.

Rank Feature Name

1 NeuAVUniqueWords

2 APsNoOfTurns

3 PatAVUniqueWords

4 PatAVTurnLength

5 AVNoOfRepeatedQuestions

6 PatFailureExampleEmptyWords

7 PatAVFillers

8 PatAVAllWords

9 PatMeForWhoConcerns

10 PatAVPauses

RF dropped to 87.5%, 72.5% and 67.5% respectively. The McNemar test and 5 repeats

of 2-fold cross validation test showed these declines were statistically significant.

Using only the most significant (10) features instead of all 22 features resulted in a

better performance for most of the five nominated classifiers. The mean accuracy of correct

diagnosis prediction improved to 92.5% across all classifiers with standard deviation of

2.74%. While the correct classification rate of the RF dropped from 93% to 90%, the

accuracy rate for the linear SVM, the LR rose from 90% and 93% to 95% and 95%

respectively. The accuracy rates for the remaining three classifiers stayed the same (see

Figure 3.2). The McNemar test and 5 repeats of 2-fold cross validation test, however, did

not show any significant differences between the accuracy rates of the classifies using the

10 features.

In order to show that a feature is statistically important in discriminating between

two or more classes, it is necessary to first determine whether the values of the feature

are distributed normally (i.e. follow the Gaussian distribution). For the features which

are normally distributed, we can then use the Student's t-test to show the values of the

feature are significantly different in the classes. For the features which are not normally

distributed we can use a non-parametric test to show the significance difference.

To determine the statistical normality of the 22 features extracted from the manual

transcripts of the conversations, we used two normality tests: Shapiro-Wilk test(Shapiro

and Wilk [1965]) and D'Agostino's K-squared test. For the features which could pass
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Figure 3.2: Comparison of accuracy rates using individual classifiers based on all features
and the most significant (10) features.

the normality tests we then applied the two tailed Student's t-test and calculated the

p-values, and for the non-normal features we applied the Mann-Whitney U test (Mann

and Whitney [1947]), which is an effective way to show the significant difference for the

values which are not normally distributed.

The results showed that 10 features out of 22 had values which were significantly

different between the two classes (FMD and ND). Table 3.8 shows the 10 features with

significance difference between the two classes using the statistical tests. Note that three

features AVNoOfRepeatedQuestions, PatDontKnowForExpectation and PatMeForWho-

Concerns could not pass the Shapiro-Wilk normality test, but they passed the D'Agostino

normality test. We could consider these three features as “soft” normal features.

Using the 10 most statistically significant features we calculated the accuracy rates

of the classifiers. The mean accuracy of correct diagnosis prediction improved to 93.75%

across all classifiers with standard deviation of 2.09%. Figure 3.3 compares the accu-
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Table 3.8: The 10 most statistically significant features using the normality tests (Shapiro-
Wilk and D'Agostino) and then parametric (Student's t-test) for normal (norm.) features
and non-parametric (Mann-Whitney U test) for non-normal (non-norm.) features. Fea-
ture marked with star were in the top 10 features in Table 3.7.

No. Feature Name Shapiro-Wilk p-value D'Agostino p-value

1 NeuNoOfTurns non-norm. 0.0339 non-norm. 0.0339

2 *APsNoOfTurns non-norm. 0.0006 non-norm. 0.0006

3 *AVNoOfRepeatedQuestions non-norm. 0.0053 norm. 0.0086

4 *PatAVTurnLength norm. 0.0004 norm. 0.0004

5 *PatAVUniqueWords norm. 6.5e-6 norm. 6.5e-6

6 PatAVEmptyWords norm. 0.0199 norm. 0.0199

7 PatDontKnowForExpectation non-norm. 0.0269 norm. 0.0446

8 *PatMeForWhoConcerns non-norm. 0.0015 norm. 0.0014

9 *PatAVAllWords non-norm. 3.4e-5 non-norm. 3.4e-5

10 *PatAVFillers non-norm. 0.0004 non-norm. 0.0004

Figure 3.3: Comparison of accuracy rates using individual classifiers based on all features
and the 10 most statistically significant features.

racy rates gained by these 10 features to all 22 features. While the accuracy rate of the

AdaBoost and the Perceptron remained the same, accuracy rate of the remaining four

classifiers rose to 95%. The McNemar test and 5 repeats of 2-fold cross validation test,
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Figure 3.4: Classification accuracy rates for different types of features acoustic, lexical,
semantic and visual-conceptual, as well as all features.

did not reveal any significant differences between the accuracy rates of the classifies using

these 10 features. Comparing the 10 most statistically significant features with the top 10

features from the RFE approach, 7 features are common between the two selections. The

accuracy rates from the former are slightly higher but not significantly different.

3.3.2 Feature type importance

In order to identify the relative diagnostic contribution of individual feature types, the

classification task was repeated using only acoustic, only lexical, only semantic and only

visual-conceptual features. The results are presented in Figure 3.4; however, the impor-

tance of feature type depends on the classifier itself to some degree. So, in brief, visual-

conceptual features were the least discriminant with an accuracy rate ranging from 58%

for the RF to 33% for the AdaBoost (an average accuracy rate of around 41% across all

the classifiers), whereas the lexical features were the most important feature types with an

average of around 85% contributions for the six classifiers. Acoustic and semantic features
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were the second and third most important feature types with an average of around 77%

and 73% across the six classifiers respectively.

Looking again to Tables 3.7 and 3.8 we can see that none of the top features in

both tables includes the visual-conceptual features. That indicates that they contributed

less discriminative information than the two classes. However, the top 10 features from

the RFE feature selection and the 10 most statistically significant features includes the

remaining three features types.

3.4 Discussion

The early diagnosis of ND and their distinction from normal ageing or FMD is a chal-

lenging clinical task and recently, the number of referrals from primary care to specialist

memory clinics has increased considerably [Royal College of Psychiatrists, 2016]. However,

many patients referral are associated with subjective memory concerns, but not dementia

[Bell et al., 2015c; Larner, 2014; Menon and Larner, 2011]. Currently the decision to refer

is based on a GP's interpretation of the history given by patient and informant (such as

partner, friend or family member) and the result of short screening tests. Although these

tests have a high sensitivity, they have a low specificity for dementia [Boustani et al.,

2005; Hessler et al., 2014].

This study explored whether the insights gained by an expert qualitative study of

detailed transcripts can be used to develop an automated screening process for ND. We

tested a simplified version of the automatic analysis of conversation, focussing on machine

learning and classification. Six standard machine learning classifiers were used. The accu-

racy rate of all the classifiers were high (an average accuracy of 92% across the classifiers)

and we could not find statically significant differences (using 5 repeats of 2-fold cross

validation test) between the classifiers except for a significant difference between theLR

and the SVM . In the subsequent LR classifier was chosen as the nominated classifier

Using the most significant (10) features from the RFE selection approach as well

as using (10) most statistically significant features resulted in slightly improved overall

performance than using all initially defined features (an average of 92.5% and 93.75%
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respectively). Visual-conceptual features were the least important for the classification,

while the lexical features were the most important features followed by the acoustic and

semantic features respectively.

In addition, the study has identified some new interactional features with diagnostic

potential now requiring further in-depth analysis using methods such as CA: quantita-

tive features extracted from the contributions which APs and neurologists made to the

conversation were amongst the most significant features. The contributions of these indi-

viduals were not studied in the previous qualitative studies of memory clinic encounters

by Jones et al. [2015] and Elsey et al. [2015]. Whilst the interactional role of APs in clinic

conversations requires more research, the conversational role of caregivers to people with

dementia (i.e. individuals with more significant cognitive problems than those exhibited

by the patient group described here) has been studied by Perkins et al. [1998], focussing

on turn taking, repair and topic management. They found that caregivers had a key role in

successful conversations. For instance, caregivers used touch, gaze and the patient's name

before talking, to achieve better responses from patients. Greater familiarity between

patient and caregiver reduced dysfluencies, mishearing and misunderstanding, while un-

familiarity between the interviewer and the patient resulted in fewer topic initiations.

It is possible that the differences in neurologists' communication behaviour in encoun-

ters with ND patients on the one hand and FMD patients on the other, which we picked

up by automated CA in this study, are due to the fact that they became aware of the

diagnosis relatively early in the consultation. Future studies will need to examine whether

less expert clinicians (for instance those working in primary care) would change their

communication in similar ways and whether they could be made more aware of that fact

that they are adjusting their conversational style (which could help with the diagnostic

process).

This study has several limitations. Although the recruitment of patients first referred

to a memory clinic with cognitive concerns increases the clinical validity of our findings,

our recruitment method means that the findings cannot be readily generalised to patients

complaining of memory problems in other settings, for instance in primary care. Further-

more, we were only able to analyse a relatively small number of conversations (30). The
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patients whose interactional behaviour we studied, however, represented two neurologi-

cally well-characterised groups. Importantly, our study did not compare patients with ND

with healthy controls but with patients with FMD, enhancing the practical relevance of

our findings.

We assumed perfect accuracy of transcription by ASR (close to the manual tran-

scripts), which is not an uncommon first step in this research area. Looking ahead, this

part of an automated analysis of conversation will be one of the most difficult aspects and

will need to be the focus of further studies. It is possible that features not described here

would perform better diagnostically if less perfect transcripts than used in this study were

employed in a fully automated diagnostic procedure. Furthermore, in this initial proof-

of-concept study we focused on a relatively small number of features described by Elsey

et al. [2015]. There are, however, potentially many other distinctive semantic, acoustic

and lexical features that could be extracted from audio or video recordings which may

further improve the classification accuracy.

Following chapters will include more in-depth analysis of the classifiers, Additional

data allows us to analyse e.g. confusion between multiple classes.

It is worth mentioning that, initially, when we started the study, the group of neurolo-

gists that we were working with, were interested in discriminating between the FMD and

the ND groups, but gradually they recruited more patients with MCI and finally included

HC subjects. They wanted to gradually add the new groups to avoid the complexity of

four-way classification. That is why we started with a binary classifier (FMD vs. ND)

in Chapter 3 , and Chapter 6, and then in Chapter 7 we included the MCI patients and

finally, in Chapter 8 we put together all the four patient groups.
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3.5 Summary

Automatic analysis of conversation for diagnosing dementia is a relatively new field of

study. Most studies worked on extracting acoustic features from the audio recording of

people and pass them to a classifier to distinguish between healthy group vs. AD and/or

MCI groups. The accuracy rate of binary classifiers (between two groups) were consider-

ably high, however, as the number of groups increased, the accuracy rate of the classifiers

dropped considerably. Some studies extracted other types of features such as lexical/syn-

tactical and semantic features from the manual transcripts of the speech or they have

used ASR to automatically convert the speech to text. A number of studies achieved a

low accuracy rate using the ASR comparing to the manual transcripts, but some reported

results as good as using the manual transcripts. Different studies focused on different

datasets which has made it difficult to compare between their results.

In this chapter, we introduced the pipeline of our automatic system to identify de-

mentia, which compromises a speaker diarisation unit to identify the speakers and the

segments of their speech in a conversation. The output of the diarisation is given then to

an ASR to convert to text. Then a feature extraction unit uses the output of the ASR as

well as the audio file of the conversation to extract different types of features. Finally the

features are passed to a classifier to categorise the entire conversation.

A pilot study is conducted to find an answer to the first research question, concenter-

ating the feasibility of developing an automatic tool to identify dementia through analysis

of conversation.

The results of our initial study on our dataset, the Hallamshire, suggests that au-

tomated analysis of conversation has the potential to improve the screening and triage

procedures for patients with possible ND. The improvement of case selection for referral

to specialist clinics would mean that those at high risk of developing dementia could be

seen more quickly, whilst those with FMD could be reassured at an earlier stage in the

clinical management pathway. Although further work is required to develop our method

into a screening tool that could be deployed in primary care, the approach described here

has the advantage of being non-invasive and usable in a wide range of health care settings.
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Despite its limitations, this study demonstrates the feasibility of translating interac-

tional findings derived from the qualitative study of transcripts into features which can be

automatically extracted and analysed. Our findings show that such an automated process

has the potential to improve the early identification of patients at high risk of develop-

ing dementia. At the same time our study provides further support for the validity of

analysing conversation.
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Automatic speech recognition
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In the previous chapter we introduced the pipeline of our automatic system to detect

dementia analysing conversation. In this chapter we introduce the ASR component of

the system. So this chapter is an investigation to find an answer to the second research

question, what kinds of speech technologies are needed for developing dementia detection

system. The chapter is structured as follows:

Section 4.1 is an introduction to spontaneous speech recognition, different compo-

nents of the long vocabulary continuous speech recognition system and the main challenges

of the system.

Section 4.2 discusses about the deep neural networks and in particular Recurrent

Neural Network (RNN), Long Short-Term Memory (LSTM).

Section 4.3 is about ‘semi-supervised learning’. Using this approach we can improve

both acoustic and LMs of ASR.

Section 4.4 lists some of the state-of-the-art results reported by other authors on the

common datasets dedicated to conversational speech recognition.

Section 4.5 gives details of the ASRs we trained for dementia detection and the

results gained by the systems.

Section 4.6 and 4.7 are the discussion and the summary of this chapter, respectively.



Automatic speech recognition 64

Figure 4.1: General architecture of a conventional LVCSR system.

4.1 Spontaneous speech recognition

In recent years, Large Vocabulary Continuous Speech Recognition (LVCSR) has ex-

tended to spontaneous speech for various applications such as telephone conversations,

lectures, seminars, meetings, etc. At the moment, using state-of-the-art ASR, WER of

non-spontaneous speech (e.g. for reading mode) can easily reach better than 5%, however,

for natural spoken speech, the error rate is still high due to the acoustic and linguistic

differences between the written (formal) and the spoken (informal) language and the un-

predictable nature of spontaneous speech. The structure of written language is well-formed

and known, while natural spoken language is normally loosely structured with a high de-

gree of flexibility and variance. The mismatch between training and testing conditions is

also a fact and reflects the low level of robustness of the current LVCSR systems [Saon

and Chien, 2012]. Thus training a decent spontaneous speech recognition system is a

challenging task. The state-of-the-art of the speech recognition system at the moment has

not solved totally the classical problems such as background noise, channel distortions,

foreign accents, casual and disfluent speech, and unexpected topic change which can be

easily handled by human listeners.
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The main purpose of an LVCSR system is to convert the acoustic signals of continu-

ous speech to a sequence of corresponding words. Although the acoustic signal is highly

variant, in a very short interval (around 10-15 ms) it is assumed that it remains invariant

and it is possible to extract a number of features representing the speech for the short

interval (these feature vectors are called observations).

Words can be represented as a sequence of phones. There are around 45 phones in

the English language and normally dictionaries (lexicons) are required to determine the

way phones construct a given word. An ASR attempts to find a mapping between the

observations and the phones guided by a language model (search). However, this requires

the training of good representatives for each phone in advance using the available dataset

(input: observations and output: related phones). The recognised phones, then, can be

used for producing the outputs of the ASR. Mono-phones, however, are not usually used,

as it is very hard to find the borders between phones, both inside words and between two

consequent words, since neighbouring phones affect each other.

In addition to the current phone, AM normally takes into account a number of pre-

ceding phones as well as succeeding phones (e.g, tri-phones: the previous phone + current

phone + the next phone).

Language model, which is normally trained on a general corpus, provides more generic

information about how likely a word is to appear in a phrase or sentence. These informa-

tion can boost the ASR performance by narrowing down the search space.

Figure 4.1 shows a general architecture of a modern LVCSR system which consists

of four major components front-end processing, AM, LM, and search (decoding). More

details are given in the following paragraphs.

4.1.1 Front-end processing

The main purpose of this part is to extract acoustic feature vectors from the input wave

files. This is normally carried out by framing the input speech signals using the short

term Fast Fourier Transform (FFT) of a window of 25-30 ms length at each 10 ms. The

energies of the neighbouring frequencies within each frame are then binned together using

the Mel scale filter bank followed by applying logarithm and Discrete Cosine Transform
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(DCT). The output representation of each frame is 13-dimensional Mel Frequency Cepstral

Coefficient (MFCC). In order to capture the dynamics of the features, normally deltas

and delta-deltas are calculated as well, i.e. 39 dimensions in total.

In early years of ASR history, a number of studies reported slightly better results

using the Perceptual Linear Prediction (PLP) coefficients for feature extraction for noisy

environments compared to MFCC [Cui et al., 2003; Rajnoha and Pollák, 2011].

In order to improve the performance of system, the acoustic features can be normalised

using methods such as Cepstral Mean Subtraction (CMS) and Cepstral Variance Normal-

isation (CVN). Transformation techniques such as LDA are also used at this stage to

make the feature vectors distributed with diagonal co-variance Gaussians (feature dim

reduction), which in turn helps to have much easier computations for the AM. In recent

years other feature level techniques have been proposed such as noise robustness meth-

ods (e.g. Stereo Piece-wise Linear Compensation for Environment (SPLICE) [Droppo

et al., 2001] and Quantile Equalisation (QE) [Hilger and Ney, 2006]), speaker adap-

tive approaches (e.g. Vocal Tract Length Normalisation (VTLN) [Eide and Gish, 1996],

feature-space Maximum Likelihood Linear Regression (fMLLR) [Gales et al., 1998]), and

discriminative techniques (e.g. feature-space Minimum Phone Error (fMPE) [Povey et al.,

2005]).

In recent years more robust features have been extracted from the audio files specially

for training Deep Neural Network (DNN)s, for instance the log-scaled mel spectrogram

(Petridis and Pantic [2016]; Salamon and Bello [2017]; Salamon et al. [2017]) and deep

bottleneck features (Mun et al. [2016]; Nguyen et al. [2013]; Yu and Seltzer [2011]).

4.1.2 Acoustic modelling

The AM aims at training the acoustic representatives (statistics) for each output unit

(e.g. phone, tri-phone, word). One of the most important approaches for AM is Hidden

Markov Model (HMM)s [Rabiner, 1989] which can represent sequential data (like speech)

by a set of states, transitions and the probabilities of each state and the transition between

the states.

Figure 4.2 displays an example of an HMM with 6 states, the transition proba-
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Figure 4.2: Example of an HMM with 6 states for observation sequence o1 to o6, output
probabilities for each state bj(ot), and transition probabilities aij's [Young et al., 2006].

bilities between the states (aij's) and the probability distribution of observing a fea-

ture vector in a certain state, bj(ot) (output probabilities). The sequence of the states

X = x(1), x(2), ..., x(T ) are unknown or hidden, however, given the Markov model M ,

the likelihood of observing O = o1, o2, ..., oT can be calculated by summing up over all

possible state sequences as Young et al. [2006]:

P (O|M) =
∑
X

ax(0)x(1)

T∏
t=1

bx(t)(ot)ax(t)x(t+1) (4.1)

The output probabilities normally are represented by a Gaussian Mixture Model

(GMM), means and co-variance of K Gaussian components, each with a weight (all the

weights together sums up to 1). The probabilities for the states, transitions and the weights

can be calculated using the generative Maximum Likelihood (ML) criteria (or minimis-

ing the empirical risk in respect to the joint likelihood loss [Deng and Li, 2013]) using a

number of the Expectation-Maximisation (EM) (or Baum-Welch method [Levinson et al.,

1983]) steps or iterations.

Despite the great success of the HMMs, there are a few limitations of using these

stochastic models. The main issue is the assumption that the sequence of observations

is independent. So their probabilities can be written as a product of the individual ob-
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servation, and the assumption that the distribution of the individual observation can be

parametrised by GMMs. Also, the Markov assumption (that the probability of being at

a state at time t, only depends on the state at time t − 1) may not be totally true for

speech [Rabiner, 1989].

In recent years, discriminative algorithms based on DNN have shown a better perfor-

mance and more robustness comparing to the conventional HMM-GMM approach [Abdel-

Hamid et al., 2014; Bengio, 2009; Graves and Jaitly, 2014a; Hinton et al., 2012, 2006; Seide

et al., 2011]. Discriminative learning can be used in two ways: Using a discriminative

model directly or employing a discriminative training objective function to a generative

model [Deng and Li, 2013].These approaches use different criteria to train the AMs such as

Minimising Classification Error (MCE), Maximum Mutual Information (MMI), Minimum

Phone Error (MPE), and Maximum Word Error (MWE) [Deng and Li, 2013; Saon and

Chien, 2012].

4.1.3 Language modelling

The LM provides information about the sequences of words in a general context (or a

special domain), e.g. what is the probability of the word ‘are‘ following the word ‘there’?

According to the chain rule of probability, the probability of seeing a sequence of words

w1 to wn (or wn1 ) can be written as the product of the conditional probabilities of seeing

previous words as:

P (wn1 ) = P (w1)P (w2|w1)P (w3|w2
1)...P (wn|wn−11 ) =

n∏
k=1

P (wk|wk−11 ) (4.2)

The most common LM approach, the n-gram, only takes into account N−1 preceding

words to calculate the probability of seeing a sequence of words:

P (wn1 ) ≈
n∏
k=1

P (wk|wk−1k−N+1) (4.3)

Generally the Maximum Likelihood Criteria Estimation (MLE) is used to calculate

the conditional probabilities by counting the occurrence of N − 1 previous words before
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word n from a corpus and normalising it (dividing by the total number of occurrence of

N −1 previous words before any words). For a bi-gram (when N = 2; C stands for count)

the probability can be written as:

P (wn|wn−1) =
C(wn−1wn)∑
w C(wn−1w)

=
C(wn−1wn)

C(wn−1)
(4.4)

The main issue of n-gram LM is zero probabilities for unseen words in training

dataset. There are techniques to deal with this issue such as smoothing by adding

one or k to the counts, back-off (using n-1 gram to estimate the probabilities) and

interpolation (mixing with probabilities from other models) e.g. Kneser-Ney (KN) and

Good Turing (GT) smoothing [Chen and Goodman, 1996].

4.1.4 Search (decoding)

Decoders (e.g. Viterbi algorithm [Forney, 1973]) attempt to find the optimal sequence of

words or hypotheses for an input feature vector sequence using the acoustic and LMs. This

is performed usually by the equation 4.6 taken from the well-known Bayes' rule (4.5) that

combines the acoustic and LM together (note that the denominator is ignored since the

observation sequence is the same for all sequence of the words):

P (W |O) =
P (O|W ) .P (W )

P (O)
(4.5)

Ŵ = argmax
w

P (W |O) = argmax
w

P (O|W ) .P (W ) (4.6)

where W is a sequence of words, W = w1, w2, ..., wn, O is a sequence of observed feature

vector (pre-processed audio files into feature vector sequence) and O = o1, o2, ..., ot. The

posterior probability P (W |O) is computed from the AM and the prior probability of

words P (W ) obtained by the LM.

Viterbi beam search (Viterbi [1967]) is one of the common solutions for performing

efficient The Weighted Finite-State Transducer (WFST) [Mohri and Pereira, 2002] is a

technique which can efficiently combine different sources of knowledge together (such as
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HMMs, pronunciation dictionaries, grammars, LM and context trees). When combining

large amounts of different knowledge, however, the computational cost of running them

grows considerably up.

4.1.5 LVCSR challenges

In addition to the general problems of an LVCSR and informal and unpredictable struc-

ture of spontaneous speech, there are a number of other fundamental challenges. The

following is a list of the major issues which had been gathered in an early survey by

Shriberg [2005]. These issues still have not been solved, and have been in the focus of a

number of recent studies such as Moore [2015]; Nakamura et al. [2008]; Sani et al. [2015];

Verkhodanova and Shapranov [2015].

Hidden punctuation and sentence boundaries: Punctuation is an essential part

of written language which is very helpful for ‘automatic downstream processes’ (e.g. pars-

ing, information extraction, summarization) as well as human readability. However, spo-

ken language lacks explicit punctuation and relies mostly on prosody (pitch, duration,

stress and intonation). The outputs of current ASRs, however, are streams of words with-

out any punctuation. There have been a number of studies dealing with this issue by

combining the ASR models with pauses [Wald, 2013], or use other approaches including

knowledge-based information, machine translation techniques [Bell et al., 2015b], super-

vised machine learning approaches [Blanchard et al., 2016], and DNN based approaches

(e.g. Tilk and Alumäe [2015] and Chan et al. [2016]).

Dealing with disfluency: Disfluencies (e.g. filled pauses, reputation, repair, false

start) are non-separable parts of natural speech which occur very frequently (appears

in up to one-third of our natural utterances) and downgrades the performance of ASR

severely. There have been various efforts for resolving these natural phenomena such

as detecting and removing disfluencies or clean-up before speech recognition [Kaushik

et al., 2010], developing statistical modelling of disfluencies [Lease et al., 2006], transition-

based techniques [Wu et al., 2015], and detecting or predicting disfluencies using different

approaches such as using prosodic information and pauses, syntax, Conditional Random

Fields (CRF)s and DNNs [Cho et al., 2015; Christodoulides et al., 2015].
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Turn-taking and overlapping: In spontaneous speech, speakers take turns not

always in a sequential manner, but often in a competitive approach and they may start a

turn before the current speaker's turn has finished. The overlapping speech affects ASR

and introduces a considerable amount of errors to the system. Some techniques to reduce

the effect of overlapping include source separation [Heittola et al., 2013] and auditory scene

analysis [Okuno et al., 2007], recording each speaker using a separate channel [Dat et al.,

2016], and multi-speaker LM. Overlap detection can be a part of a speaker diarisation

system.

Emotions and para-linguistic: What is heard from a natural spoken conversation,

is normally more than only the sequences of words, and often the speech is mixed up

with emotions (e.g. laughter, anger, stress) which are difficult to capture correctly by

an ASR. A number of different approaches have been proposed for emotion detection

such as prosodic feature extraction [Yu et al., 2009], using machine learning classifiers

[Kumar and RangaBabu, 2015] and DNN based techniques [Laffitte et al., 2016; Rawat

and Mishra, 2015].

For the purposes of this study, dealing with all of the above-mentioned challenges

is not essential. Punctuation and sentence boundaries are very useful for reading a text

and are essential parts of CA. As mentioned above, it would be possible to combine the

outputs of the ASR with a corpus of English sentences to add punctuation to the output

of ASR, however, for natural language processing or feature extraction purposes, it is

also possible to use algorithms and techniques which do not rely directly on the sentence

boundaries or particular punctuation. For instance, the BoW ignores the punctuation,

capital letters, and also very common words (e.g. ‘the’ in English). Also, displaying emo-

tions (e.g. laughing, crying) in the outputs of ASR similarly can be ignored (although

ASRs can be trained to distinguish different spoken noise such as laughter). Dealing with

overlapping speech can be a part of a speaker diarisation system and some disfluencies

can be captured by ASR applying an in-domain LM. It is worth mentioning that due to

having all of these issues in our dataset, we expect a high WER for the ASR and we will

investigate how the error will effect the results of our dementia detection system.
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Figure 4.3: Multi-layer neural network with feed-forward way from the input x, through
the hidden layers hj, to the network output h4 [Bengio, 2009].

4.2 Deep neural networks

DNNs are the current common approaches for machine learning in general and speech

recognition in particular, which can outperform the other conventional methods if enough

training data and memory space are provided and high speed Central Processing Unit

(CPU)s (or Graphics Processing Unit (GPU)s) are employed.

A DNN, simply, is a feed-forward Artificial Neural Network (ANN) or MLP with

more than one hidden layer between its inputs and outputs (see Figure 4.3) [Bengio,

2009; Hinton et al., 2012; Jiang, 2010]. Each hidden unit, j, typically uses a ‘logistic

function’ (e.g. hyperbolic tangent) to map its total input from the previous layer xj to a

scalar value, yj which is then sent to the next layer [Hinton et al., 2012]:

yj = logistic(xj) =
1

1 + e−xj
, xj = bj +

∑
i

yiwij (4.7)

where bj is the bias of unit j, i is an index over units in the previous layer and wij is

the weight on a connection to unit j from unit i. For a multiclass classification task, the

output unit j converts its total input xj into a class probability, pj using the ‘softmax
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nonlinearity’ [Hinton et al., 2012]:

pj =
exj∑
k e

xk
(4.8)

where k is an index over all classes.

DNNs can be discriminatively trained by ‘backpropagating’ derivatives of a cost func-

tion (or objective function or errors) measuring the discrepancy between the target out-

puts and the actual outputs produced for each training case. In a forward propagation

the costs are calculated and in a backward propagation the partial derivatives of the

costs with respect to the weights are calculated and can then be used to update the

weights. For softmax output function, the cost function C is the cross-entropy between

the target probabilities, d, and the outputs of softmax, p [Hinton et al., 2012]:

C = −
∑
j

djlog(pj) (4.9)

where the target probabilities taking values of one or zero, are the supervised information

provided for training the DNNs. For a phone recogniser, for instance, the softmax outputs

can be used as the phone's posteriors, i.e. an output node for each phone and its value is

the posterior of observing that phone.

For large training sets, it is typically more efficient to compute the derivatives on a

small random “mini-batch” of data rather than the whole set, before updating the weights

in proportion to the gradient. The “stochastic gradient descent” method for updating the

weights, then, can be improved by using a momentum coefficient 0 < α < 1 that smooths

the gradient computed for mini-batch, t, damping oscillation across ravines and speeding

progress down ravines [Hinton et al., 2012]:

∆wij(t) = α∆wij(t− 1)− ε ∂C

∂wij(t)
(4.10)

One of the major issues of the DNNs is “overfitting” in which the layers learn well the

parameters from the training data, however, facing unseen test data, they perform poorly

and cannot discriminate the classes as expected. To reduce the effects of this problem,
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large weights can be penalised in proportion to their squared magnitude, or the learn-

ing process can stop when the performance on a held-out validation set starts getting

worse. However, the most effective approach for reducing overfitting is pre-training which

provides much better starting points and makes faster discriminative fine tuning. Tech-

niques such as Restricted Boltzmann Machine (RBM) and autoencoders are used for

pre-training DNNs. RBM uses one forward step (prediction) and one backward step (us-

ing the prediction guess for the initial input) in order to predict its input' probability

distribution (normally by the KullbackLeibler Divergence (KLD) criteria [Bengio, 2009;

Hinton et al., 2012, 2006]).

“Dropout” is another technique to deal with overfitting [Cheng et al., 2017]. In this

approach the activations are multiplied by random zero-one masks only during the train-

ing stage. For instance, the dropout probability p=0.5 means half of the masks are

ones. Dropout technique allows for the training of robust networks which are not too

fitted to the training set input data. However, setting a proper dropout probability and

locating it in deep neural network layers is not straightforward.

DNNs can be trained as a multiple classifier on a frame-level cross entropy criteria,

however, since the ASR is naturally a sequence classification, a sequence-discriminative

criteria (MMI, MPE, or state-level minimum Bayes risk (state-level Minimum Bayes Risk

(sMBR)) can be used to estimate the HMM states. This is known as a hybrid DNN-HMM

approach [Bourlard and Morgan, 2012; Veselỳ et al., 2013].

For the utterance u at time t, the HMM output for the state s can be obtained by the

softmax activation function as the following equation [Veselỳ et al., 2013]:

yut(s) = P (s|Out) =
eaut(s)∑
s′ e

aut(s′)
(4.11)

where Out is the observation for the utterance u at time t, and aut(s) is the activation

function in the output layer for the state s.

A pseudo log likelihood can be obtained as:

log(P (Out|s)) = log(yut)− log(P (s)) (4.12)
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where, P (s) is the prior probability and can be gained from the training data.

For the sequence of all observations Ou = Ou1, ..., OuT , the MMI objective function

can be calculated as:

FMMI =
∑
u

log(
P (Ou|Su)KP (Wu)∑
W P (Ou|Su)KP (W )

) (4.13)

Where Wu is the reference word sequence for utterance u, and Su = Su1, ..., SuT is the

sequence of states for Wu.

MPE/sMBR criteria can be written as:

FMBR =
∑
u

∑
W P (Ou|Su)KP (W )A(W,Wu)∑

W ′ P (Ou|Su)KP (W ′)
(4.14)

Where A(W,Wu) is the number of correct phone labels for MPE or correct state labels

for sMBR.

4.2.1 RNN/LSTM and TDNN

Data in a feed-forward neural network flows in one direction, from the input layer towards

the output layer, and the network only looks at the current input data. However, in a

RNN, A recurrent neuron has a loop (directed connections in time series) which allows it

to look at the previously seen input data (known as short term memory) as well as the

current input data. The internal state of RNN stores the previous input data. Therefore,

RNN can capture the contextual information which allows it to model the sequential data

better than the feed-forward neural networks. Figure 4.4 shows an RNN with one input,

one output and one recurrent hidden layer with a dotted cycle [Lipton et al., 2015].

In a RNN weights are updated using the backpropagation through time approach

[Williams and Peng, 1990]: each RNN can be considered as a sequence of neural

networks. The errors backpropagate from the last time-stamp towards the first time-

stamp. RNNs, however, suffer from two issues: exploding and vanishing gradient. In

updating the weights, the gradient measures how much the output changes in re-

spect to a the change in input. In the exploding gradient (high slope), the weights
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Figure 4.4: A simple RNN with one input, one output and one recurrent hidden unit
[Lipton et al., 2015].

increases drastically, while in the vanishing gradient the slope gets very small which

causes it practically to loose any learning. In addition, as the length of the sequence

increases, the computational cost of calculations rises drastically. The Long Short-Term

Memory (LSTM) [Hochreiter and Schmidhuber, 1997] is introduced to resolve these

issues. LSTM can learn long time memory as well as short term. This happens using

gated cells. Initially, there were two types of gates: input and output gates, then Gers

et al. [1999] introduced other gate known as forget gates. These three gates act similar

to what we can do with the memories in computers, i.e. read (input gate), write (output

gate), and delete (forget gate). In training the networks, LSTM learns which data should

be kept and which can be ignored. The gradient can be controlled accordingly thereby

avoiding the exploding or vanishing issues.

Recently, LSTMs have been successfully used for the AM of LVCSR [Sak et al., 2014]

as well as LM [Sundermeyer et al., 2012].

Figure 4.5 shows an LSTM architecture with a recurrent project layer and an optional

non-recurrent projection layer suggested for the AM by Sak et al. [2014]. Normally the

LSTM network consists of an input layer, a recurrent LSTM layer and an output layer,

however, they introduced two more layers, one recurrent and one optional non-recurrent

layer as in Figure 4.5.

For an input sequence x = x1, ..., xT and an output sequence y = y1, ..., yT (time
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Figure 4.5: LSTM with a recurrent projection and an optional non-recurrent projection
layer [Sak et al., 2014].

t = 1, ..., T ), the activation units equations are [Sak et al., 2014]:

it = σ(Wixxt +Wirrt−1 +Wicct−1 + bi) (4.15)

ft = σ(Wfxxt +Wrfrt−1 +Wcfct−1 + bf ) (4.16)

ct = ft � ct−1 + it � g(Wcxxt +Wcrrt−1 + bc) (4.17)

ot = σ(Woxxt +Worrt−1 +Wocct + bo) (4.18)

mt = ot � h(ct) (4.19)

rt = Wrmmt (4.20)

pt = Wpmmt (4.21)
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yt = Wyrrt +Wyppt + by (4.22)

Where W denotes weights, b denotes biases, σ is the logistic sigmoid function, i, o, and

f indicate input, output and forget gates, c shows cell activation vector, m cell output

vector, � element wise product, g and h, cell input and cell output activation functions,

r and p recurrent and non-recurrent unit activations.

Similarly to the AM, RNNs and LSTMs can be used for LM. RNNs take into account

the whole history of the words in training and testing which can overcome the issues

of the conventional n-gram based LM, i.e. only considering n previous/next words and

backing-off. Combining RNN/LSTM with an n-gram approach results in an efficient and

robust LM [Mikolov et al., 2010; Sundermeyer et al., 2012].

The Time Delay Neural Network (TDNN) Waibel et al. [1990] is a feed-forward neural

network in which the neural network units are arranged in a hierarchy and get input

from their lower layers activations as well as time delayed inputs (previous data, in time

t−1, t−2, etc.). This allows shift-invariance (no need to prior alignments) and models

long time context. However, for modern AM other techniques should be combined with

LSTMs to make it efficient. For instance, Peddinti et al. [2015] applied sub-sampling to

improve the speed and performance of LSTMs. Figure 4.6 shows the sub-sampling which

needs a low number of connections and efficient computations using LSTMs (e.g. 10 times

faster). Instead of considering all the previous time steps, only in a selection of them

activations are computed.

4.2.2 End-to-end ASR

Recently, end-to-end ASR systems have been introduced to simplify the complex pipeline

of ASR. They attempt to directly find a map between speech and words. In a hybrid

DNN-HMM approach, we need the alignment information of the trained HMMs, prior to

building the DNNs which may take time and resources. Connectionist Temporal Clas-

sification (CTC) [Graves et al., 2006; Graves and Jaitly, 2014b] is an objective function

introduced to train RNNs directly without knowing the alignments between input and
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Figure 4.6: Sub-sampling technique to improve computation cost of LSTMs. Sub-sampled
connections (red lines), original LSTMs connections (blue and red lines) [Peddinti et al.,
2015].

target sequences. The output layer compromises a single unit for each individual label as

well as a blank label representing the ‘null emission’. For an input sequence x = x1, ..., xT

and the output vector yt at time t, the probability of emitting label can be denoted as:

P (k, t|x) =
ey

k
t∑

k′ e
yk
′

t

(4.23)

where ykt is element k of yt. A CTC alignment ‘a’ is gained using the chain rule and by

multiplying probability emission labels over time-stamps as:

P (a|x) =
T∏
t=1

P (at, t|x) (4.24)

Removing repeated and blank labels from the alignments using the β operator, the

probability of an output transcript y can be written as:

P (y|x) =
∑

a∈β−1(y)

P (a|x) (4.25)
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For a given target transcript y∗, the objective function can be written as:

FCTC = −log(P (y∗|x)) (4.26)

Decoding for the CTC networks can be done using a beam search algorithm which

also enables the integration with an LM [Graves and Jaitly, 2014b]. However, for an

efficient decoding approach, WFSTs are used for decoding. Miao et al. [2015] introduced

a combination of a grammar, a lexicon and a token WFST to use for decoding CTC

networks.

An alternative to CTC is encoder-decoder networks. Bahdanau et al. [2016] used a

bidirectional RNN to encode the input sequence as feature representatives and then an

Attention-based Recurrent Sequence Generator to decode the representatives to a se-

quence of labels. The attention mechanism tempts to select the temporal locations over

input sequence that needed to be updated and used to predict the output data.

4.3 Semi-supervised learning

Generally, making annotations (’faithful transcripts’) ready for spontaneous speech recog-

nition is a challenging task. For broadcast news, as Li et al. [2015] mentioned, even given

the closed caption text, a lot of work is still needed to make the annotations ready for the

ASR, especially due to the differences between the actually uttered phrases and what is

transcribed (e.g. filler words and repairs).

The ‘semi-supervised’ approach is a solution for training ASRs with a low amount

of ‘labelled data’ and a considerable amount of ‘unlabelled data’. A conventional semi-

supervised technique is known as ‘self-learning‘ in which, first a small amount of the

labelled data is used to make a poor LM for the ASR and then, automatically use it to

decode the larger set of unlabelled data (automatic transcripts). The transcripts can be

filtered (selecting a subset of segments) using measures such as confidence scores. These

outputs, finally, can be used to make a new and perhaps stronger language and acoustic

models for the ASR [Kemp et al., 2004; Novotney and Schwartz, 2009; Zavaliagkos and

Colthurst, 1998].
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However, in recent years, there have been attempts to develop more effective ap-

proaches to semi-supervised learning mostly based on DNNs. For instance, for the lightly

supervised scenario (e.g. closed captions are available for the broadcast news), Li et al.

[2015] found out that using the conventional matching technique to filter the automatic

transcripts can result in missing some informative data (e.g. when caption the text is

wrong but the ASR output is right) and also generates extra errors (e.g. when both the

caption text and the ASR are wrong but they match each other). Using binary clas-

sifiers and performing verification they could recover the informative data and reduce

the errors. They used a mixture of GMM and DNN approach for training AMs for the

ASR. Later they extended their work to a semi-supervised approach without the limita-

tion of the lightly supervised assumption, i.e. they used a significant amount of unlabelled

data to boost the AMs [Li et al., 2016].

Graph-based semi-supervised learning is another approach, in which the labelled and

unlabelled data are jointly used to construct weighted graphs in which the nodes represent

the data samples and the edges contain the similarity between the data samples. The closer

data samples receive the same or similar labels, while the dissimilar data is given different

labels [Kanda et al., 2016]. Although the performance of this approach is relatively high,

it suffers from a computationally high complexity (constructing and keeping the weighted

graphs in memory).

Dhaka and Salvi [2017] proposed a frame-based phone classification on the

Texas Instruments-Massachusetts Institute of Technology (TIMIT) database using

semi-supervised sparse auto-encoder (an encoder DNN followed by a decoder DNN,

representing data by sparse matrix) by combining the supervised cost function of a deep

classifier with the unsupervised cost function of the auto-encoder. Using the graph-based

algorithm, however, they reported a slightly better performance comparing to their

proposed approach.

Committee-based semi-supervised training has been proposed by Vu et al. [2011], in

which first, a core and some complementary AMs are trained using the labelled data. Then

using each one of those, a large unlabelled dataset is decoded by the ASR to produce

multiple transcripts. The transcripts are lined up and the filtering is performed on the
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segments with a certain level of agreements in the committee. Finally, the selected data

and the original labelled data are combined to make a new AM. They trained a primary

model (baseline) using the normal DNNs with filter bank features, two other DNNs with

MFCC and PLP features, one filter bank-based Sigmoid-unit-type Recurrent Neural Net-

work (SigRNN) and one filter bank-based LSTM. Agreement of the SigRNN and LSTM

resulted in the best performance for their experiments.

4.4 State-of-the-art

The early ASRs, which appeared around 70 years ago, could barely recognise digits and/or

a limited number of single words. Nowadays, the ASRs can recognise continuous speech

with a relatively high accuracy rate and many applications have been introduced using

the ASRs which can help us in everyday life (e.g. Amazon Alexa, Google OK). The

ASR improvements have been achieved owing to the advances in memory, hardware,

speech technology, machine learning, and more importantly the common datasets that

the educational and the industrial companies have provided over time for researchers in

this field of study.

There have been a number of well-known databases particularly dedicated to recognise

continuous and spontaneous speech including

• Texas Instruments-Massachusetts Institute of Technology (TIMIT) [Garo-

folo, 1993]: is a reading style continuous speech corpus of American English with 630

speakers who uttered 10 sentences. Data was collected by a microphone with a 1-channel

and 16000 sample rate (pcm). The dataset designed for acoustic-phonetic studies pro-

viding both phone and word level time alignments which allows phone recognition as

well as normal word evaluation for ASRs.

• Switchboard (SWB) [Godfrey et al., 1992]: is a large scale multi-speaker corpus of

American English conversational speech over telephone lines (2-channel ulaw with 8000

sample rate) with around 2500 conversations lasting between 3 and 10 mins. Hub5 2000

is an evaluation data set of 20 telephone conversations of SWB.
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• Call Home (CH) [Alexandra et al., 1997]: consists of 120 telephone calls (2-channel

mu-law, sample rate: 8000) with family and friends spoken by native American speakers

each lasting about 30 mins.

• Fisher (Fsh) [Cieri et al., 2004]: is a collection of 5850 conversational telephone speech

(2-channel ulaw with 8000 sample rate) with time-aligned transcript each around 10

mins. In contrast to SWB and CH the speakers were assigned to specific topics to talk

about and some of the topics were similar to the topics in SWB conversations.

• Wall Street Journal (WSJ) [Consortium et al., 1994; Garofolo et al., 1993]: is a

large scale read style speech corpus from the Wall Street Journal news. WSJ recorded

by over 240 speakers with American English accent and 78000 utterances (73 hours).

Data was recorded by close-talking head-mounted microphone as well as a secondary

microphone (sampling rate: 16000, type: 1-channel pcm compressed). 4000 utterances

were spontaneous speech uttered in dictation mode. Wall Street Journal Cambridge

(WSJCam) is a similar dataset to WSJ recorded by 140 British speakers (92 for training

set and 48 for testing set) [Fransen et al., 1994; Robinson et al., 1995].

• International Computer Science Institute (ICSI) [Janin et al., 2003]: comprises

of 75 weekly meeting conversations at International Computer Science Institute in

Berkeley, each speech between 17 and 103 mins. Speakers were wearing close-talking

microphones (sample rate: 48000). Each meeting was between 3 and 10 (average of 6)

speakers.

• Augmented Multi-party Interaction (AMI) meeting corpus [Renals et al.,

2010]: with over 100 hours worth of interactions of multi-party meetings (in three

different rooms) recorded by close-talking and far-field microphones (microphone ar-

ray) as well as cameras. The speakers were mostly non-native English speakers. The

audio wave files down-sampled from 48000 to 16000 sample rate.

• Computational Hearing in Multi-source Environments (CHiME) [Barker

et al., 2013]: is a series of challenges dedicated to distance speech recognition oper-

ating in a robust and human-like environmental condition. In the recent challenge
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(CHiME-5) [Barker et al., 2018], they provided over 40 hours of training data collected

by 6 Kinect microphone arrays and 4 wearable binaural microphone pairs in 16

homes (2 extra homes for development and 2 more for evaluation purposes). They

used a dinner party scenario with 4 speakers (2 acting as hosts and 2 as guests) for

the challenge. Speakers, who were friends, moved around and talked to each other

about different topics in kitchen, dining room and living room. The recording are

available in single-array as well as multiple-array tracks (32 microphones per session,

6 microphone arrays with 4 microphones, plus 4 participants wearing 2 microphones,

wave files sample rate: 16000).

The word error rate (WER) is the standard measure for evaluating the performance

of an ASR, which can be written as [Holmes and Holmes, 2001]:

WER = 100× C(substitutions) + C(deletions) + C(insertions)

N(reference)
% (4.27)

where N is the total number of words in the reference and C(substitutions), C(deletions),

C(insertions) are the number of substitutions (for wrong words), deletions (for missing

words) and insertions (for extra words) errors in the hypothesis respectively. ASR accu-

racy rate can be defined as the number of words correctly recognised as a proportion of the

total number of words. Note that the ASR accuracy and 100−WER are not always equal

(WER could be higher than 100% when summing up the three errors together makes a

bigger number than the total number of words in the reference).

In the following paragraphs, we will be giving an overview of the state-of-art perfor-

mance of ASRs based on DNN techniques.

Hinton et al. [2006] proposed the Deep Belief Net (DBN) which is a single multilayer

generative model obtained by combining a stack of RBMs. The DBN-DNN used for

the Bing Mobile Voice Search (BMVS) application that has a high degree of acoustic

variability (noise, music, accent, sloppy pronunciation, hesitation, repetition, etc). The

initial results based on only using only 24 of training data has shown a 69.6% accuracy

(5.6% improvement compared to the best HMM-GMM trained with the MPE criteria).

They then extended the training data to 48 hours which led to a significant increase
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in accuracy (71.7%). Applying the HMM-DNN recipe to other tasks such as the SWB

(with over 300 hours training data), English Broadcast News (50 hours data), Google

Voice input (5870 hours data) and Youtube (1400 hours data) all has resulted in a better

performance comparing to the HMM-GMM recipes [Hinton et al., 2012]. Seide et al.

[2011] also reported a significant improvement in recognition by combining the context-

dependent DNN with HMMs. They could reduce the WER error for the SWB task from

40.9% to 27.5% in a single pass Speaker Independent (SI) model, and additionally, further

improvement achieved by a multi-pass adaptive approach (dropping WER to 25.2%).

Recently, using RNNs for AM and combining n-grams with neural network LM Saon

et al. [2015] reported 8.0 % WER for the SWB dataset evaluated by the Hub5 2000

evaluation set, while a group from Microsoft [Xiong et al., 2016] obtained 6.3 % WER

for the same test set combining RNN LM with bidirectional LSTM (Bidirectional Long

Short-Term Memory (BLSTM)) for AM.

Xiong et al. [2016] achieved 11.9 % WER for CH dataset, and IBM [Saon et al., 2015]

12.5 % WER.

In a recent work using RNNs, a WER of around 40 % has been reported for ICSI

corpus [Enarvi and Kurimo, 2016].

Chen et al. [2014] expanded the Automatic Speech Attribute Transcription (ASAT)

framework to spontaneous speech recognition, using the lattice rescoring approach for

the SWB corpus. The ASAT consists of two key elements: (a) bank of attribute detectors

with confidence scores, and (b) an evidence merger, which combines the low-level attribute

scores into higher level evidence like the phoneme posterior. The output of the attribute

detector is stacked together and made a supervector. They gained a slight improvement

comparing to the baseline ASR for the SWB task particularly using the deep merger

(around 3%).

Abdel-Hamid et al. [2014] used the Convolutional Neural Network (CNN) (originally

developed for image recognition tasks) with a limited weight sharing scheme on the

TIMIT dataset which has resulted in 6 to 10% better performance than the conventional

DNNs. Graves et al. [2013] used LSTM for the TIMIT dataset and could get 17.7% Phone

Error Rate (PER). In their recent work, combining the LSTM with CTC and integrat-
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ing the output with a LM in the decoding phase, they could achieve an state-of-the-art

accuracy of 6.7% for the WSJ dataset [Graves and Jaitly, 2014a].

Hori et al. [2016] obtained 22.6 % WER using the AMI dataset, while Swietojanski

and Renais [2016] reported 26.2 % WER for this dataset.

Barker et al. [2013] reported that the baseline DNN-based ASR trained by Kaldi for

CHiME-5 challenge, achieved 47.9% WER using the binatural microphone pairs, while

using Kinect microphone array (with beamforming) they gained an 81.3% WER.

Due to the complexities of conversations between the neurologists and the patients in

our study, the current commonly available ASRs (e.g. Google Go, Amazon Alexa) can

not be used directly for automatic transcription (mostly they are good for recognition

in reading style). Despite the recent advances in the speech recognition area in general,

unfortunately at present, in medical applications there is not any appropriate database

available to train our own ASR. As we will show in the next sections, the well-known

databases on their own are not enough for training a good ASR and we need a considerable

amount of data which is recorded in a similar conditions as the interviews between the

neurologist, the patients and the APs.

4.5 Automated transcription

This section aims at describing the ASR component of the system. The ASR should deal

with the challenges of spontaneous speech recognition which are listed at the beginning

of this chapter. In addition, the quality of the recordings is not as good as the quality

of common datasets available for speech community. They were recorded by a single

normal microphone which was not located close to the speakers. Also, there were not any

alignments for the transcripts. So we had to make the alignment manually ready for the

ASR1

In order to automatically transcribe, we start with a baseline ASR trained using

HMM-GMM approach for the AM and n-gram with KN/GT smoothing for LM of the

1Since giving the whole audio file of a conversation (e.g. 20 minutes) at once to the ASR to process,
requires a considerable amount of memory, we have to first use the alignment to segment the audio file
into smaller parts and then pass the smaller audio segments to the ASR to process.



87 4.5. Automated transcription

ASR. Then we improve the acoustic and LMs to boost the performance of the ASR.

4.5.1 Baseline ASR

The first step towards automatic transcription is to use the manually produced segments

for the conversations. In this chapter we only focus on the ASR part of our dementia

detection system, assuming that the segmentation information is available for the ASR.

This will allow us to see the effect of adding ASR to the system. In the next chapter,

we will add the speaker diarisation unit of the dementia detection system to provide

automatic segments and see the effect of diarisation and ASR together on the system.

Using the manually produced transcripts, speaker turn segmentation were prepared

and since dealing with short length segments was a challenging task for ASRs, all the

segments lasting less than 0.5 second and overlapping segments were removed from the

data. The final data consisted of approximately 8 hours of spontaneous speech from 81

speakers (some doctors appeared in multiple interviews), with 6266 utterances with mean

length of 4.6 seconds. In total, the data set comprised of 30 conversations with an average

recordings time of 16 minutes.

The Kaldi toolkit [Povey et al., 2011] was used for speech recognition. For the LM, a

set of 3- and 4-gram models were trained using KN or GT, and the model with the lowest

perplexity was chosen. The dataset for training the LM came from the transcripts of the

training set itself, i.e. in-domain LM (more details about the LM in Section 4.5.4 Table

4.3).

Table 4.1 shows the average WER and the standard deviation in brackets, for the

baseline ASRs. We trained three baseline ASRs and as we go through the table from top

to bottom, WER decreases considerably.

First, we trained a model (WSJCam), using the Kaldi's standard recipe on WSJCam

dataset. Decoding on the model for Hallamshire (Hal) dataset resulted in 91.4%

WER. Maximum A Posterior (MAP) adaptation of the WSJCam on the Hal dataset

(WSJCam+MAP Hal) could not improve the performance of the ASR significantly

(86.3% WER). Therefore, another model trained using only the Hal dataset itself

(Speaker Adaptation Training (SAT) Hal). The ‘leave-one-out’ cross validation approach
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was used for training the ASR. For this model, the HMM-GMM based AM, the training

process included: (1) mono training using only 13-dimensional MFCC as acoustic

input features, (2) delta training (adding deltas and delta-deltas to the input features,

i.e. MFCC with 39 dimensions), (3) LDA MLLT training (applying LDA and MLLT

feature transformation), and (4) SAT. Following this approach, we obtained 69.5%

average WER (13.4% standard deviation). As you can notice, the average WER is still

high, which reflects the very challenging nature of the dataset. Since the amount of data

was very limited (around 8 hours), following the DNN recipes on the dataset could not

improve the results.

Table 4.1: Baseline speech recognition results: the average WER with the standard devia-
tion in brackets.

Model avg. WER (sd) [%]

WSJCam 91.4(6.1)

WSJCam+MAP Hal 86.3(8.12)

SAT Hal 69.5(13.4)

4.5.2 Adding additional data

A commonly used approach to increase the performance of ASRs is to add out of domain

data, when there are not enough data to train a robust ASR. However, the out of domain

data should be selected carefully. If there are considerable differences between the two

datasets (e.g. recording conditions, the style of speech and the language used by the

speakers), adding dataset may not result in a better performance.

We had access to around hundred hours of a new dataset, (“Seizure (Sez)” dataset),

which was recorded in a similar way as the Hal dataset (i.e. interviews between neurol-

ogists and patients with or without seizure (epilepsy)). The Sez dataset consisted of 241

recordings between doctors and patients, each interview lasting between 20 to 40 mins.

The interactions were transcribed manually for different CA studies. The transcripts,

however, were not suitable to train ASRs, i.e. there was no speaker segmentation infor-

mation available. Manual alignment of Sez dataset would take a considerable amount of
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time and efforts. Therefore, we needed a way to select a subset of the data which can be

easily segmented in an automatic approach.

Figure 4.7: Block diagram of the automatic segmentation system.

We followed the conventional approach of semi-supervised training to produce auto-

matic segmentation for the Sez dataset and mix the dataset with the Hal dataset to let

us train a better ASR. The process of automatic segmentation, however, needed to be

repeated a few times to find the best segmentation (the segmentation which achieves the

lowest WER for the whole dataset).

Figure 4.7 shows the block diagram of the automatic segmentation system. First, the

input wave files are given to the initial ASR (trained on the previous available dataset,

i.e. Hal dataset) to generate the automatic transcripts with timing information (start and

end time for each word). Then these transcripts are aligned with the manual transcripts to

make segments. Since the performance of such ASR is not perfect, not all of the generated

segments are reliable. Using a filtering algorithm we can choose the segments which are

recognised with a high accuracy rate (we are confident about them). These segments,

then, are joined to the previous dataset to train a new ASR with more training data. The

whole process can be repeated. Each loop can generate more data which should carefully

be selected/filtered to train a better ASR. This continuous until we reach an optimum
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point1 (no further improvement can be seen). Using this technique we managed to recruit

50 hours and 16 minutes data (28k utterance, 597 speakers and average utterance length

of 6.3 seconds) out of the whole 100 hours of Sez data. Note that here, we only wanted to

select a subset of the Sez dataset with the lowest possible errors in segmentation which

then can be added to the Hal dataset to improve the ASR acoustic and language models.

4.5.3 Improving the AM

Mixing the Sez dataset with the Hal dataset allowed us to have enough data to follow a

recent Kaldi recipe using LSTM-TDNNs [Cheng et al., 2017]. In this approach, first, we

trained a SAT HMM model and then followed a deep neural network recipe for LSTMs

and LSTMs on top of it. The input layer of the neural network consisted of 100 neurons

for the input i-vectors2 as well as 40 neurons for 40-dimensional high resolution MFCC

input features. There were two layers of LSTMs with 800 neurons each after the input

layer. The next layer was an LSTM layer with 800 neurons and 200 recurrent-project as

well as 200 non-recurrent-project layers. The pattern of 2 layers of LSTMs + LSTM layer

was repeated for three times, i.e. the total network consisted of 3 layers of LSTMs and

6 layers of LSTMs. The output layer is constructed from 4555 neurons for each possible

context dependent phonemes.

Table 4.2: Improved speech recognition results: the average WER with the standard devi-
ation in brackets.

Model avg. WER (sd) [%]

SAT Sez Hal 54.8(13.7)

LSTM-TDNN Sez Hal 40.9(12.9)

Table 4.2 shows the effect of adding around 50 hours recordings from the Sez dataset

to the Hal dataset (8 hours). Similar to the baseline ASR, we used the leave-one-out cross

validation for training the ASRs and then calculated the average WER for the ASRs. Fol-

lowing the SAT training (SAT Sez Hal), we obtained WER 54.8%, which is a remarkable

1We tried using the segments with the highest confidence scores, but it was not as good performance
as choosing the segments with the lowest WER.

2The intermediate vectors representing speaker characteristics, were originally introduced for speaker
verification by Dehak et al. [2009]. These acoustic features have also been used for speech recognition.
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drop of almost 15% comparing to SAT Hal (Table 4.1). The WER for the LSTM-TDNN

recipe (LSTM-TDNN Sez Hal), however, reached at a 40.9% WER (another additional

14% decrease).

4.5.4 Improving the LM

We further investigated the effect of improving the LM on the performance of the ASR. In

order to demonstrate the effect of an ideal LM, we trained a LM using both the training

and the testing transcripts together. We call this the ‘oracle’ LM, as it can be considered

as an upper baseline (an upper bound golden standard).

To improve the LM, we trained n-gram LMs on Fsh [Cieri et al., 2004] and SWB

[Godfrey et al., 1992] transcripts, and then interpolated them with the LM trained on the

Hal data (using different weights, e.g. 0.2 for LM1 and 0.8 for LM2).

There are a number of metrics for evaluating an LM including: perplexity, vocabulary

size, Out Of Vocabulary (OOV) and coverage.

Perplexity is the standard measure to evaluate a LM [Jurafsky and Martin,

2008]. Perplexity shows how well a model can predict probability distributions such as

n-grams. For a test set of words, perplexity is the inverse probability of the test set words

normalised by the number of words. Intuitively, perplexity can be seen as a branching

factor, i.e. how many words an average the model could choose. The lower perplexity,

the better model prediction.

Vocabulary size is the total number of words in the train set and OOV is the number

of unknown words, i.e. not seen in the train set. Generally for a LM bigger vocabulary

size and lower OOV are desirable.

Coverage of an n-gram shows the percentage of known n-grams in a test set. To cal-

culate the coverage of n-grams for the LMs we used the equation from Wu and Matsumoto

[2014], i.e. the number of unique n-grams in the test set which are seen in the train set

as well, divided by the total number of unique n-grams in the test set. Obviously more

coverage (i.e. close to 100%) indicate a better LM.

Table 4.3 lists the evaluating metrics for the six trained LMs. Since we followed the

leave-one-out cross validation approach we trained 30 LMs, therefore all of the metrics



Automatic speech recognition 92

in the table are the average of the metrics.

The first LM, ‘Hal LM‘, is the original LM used for the SAT Hal ASR (in-domain 3/4

gram LM using KN or GT smoothing) with a perplexity around 150. The vocabulary size

was 4024 and OOV =74. The number of 3-grams was over 16k with a high coverage of

92.9% (i.e. only around 7% unknown 3-grams). However, the coverage for 54k 4-grams

dropped to 70.7%. This means that 3-grams had a better coverage for this LM.

Interpolation with Fsh and SWB transcripts, ‘Hal Fsh/SWB LM‘ caused a decline in

the perplexity from 150 to 106 (a drop of 44). The interrelated LM consisted of many

words (vocabulary size of 54k) which resulted in a lower OOV (11 vs. 74) and increased

number of 3-grams (48k) 4-grams (606k). The coverage of 3-grams reached almost 100%

and the coverage of 4-grams jumped to around 99%.

However, the lowest perplexity was gained by the Oracle (Orc) model (‘Hal Orc LM’)

with 17.4 which used all of the train and test set data. So the OOV reached 0 and the

coverage for both 3-grams and 4-gram increased to 100%.

Mixing the Sez dataset with the Hal dataset improved the perplexities for both

in-domain and interpolated LMs, a drop of around in 45 perplexity comparing the

‘Hal/Sez LM’ to ‘Hal LM’ (around 105 vs. 150), and a 12 perplexity decrease comparing

‘Hal/Sez Fsh/SWB LM’ to ‘Hal Fsh/SWB LM’ (around 94 vs. 106), although, the

perplexity for the oracle LM ‘Hal/Sez Orc LM’ slightly increased, in comparision to the

‘Hal Orc LM’, most likely due to enlarging the text of the training set. Obviously adding

the Sez dataset increased the vocabulary size, number of 3/4 grams and coverage and

decreased the OOV. The coverage of 3-grams and 4-grams increased comparing to the

LMs without the Sez dataset. Therefore this mixing improved the performances of the

LMs in terms of the metrics.

Using the LMs listed in Table 4.3, the average WER was recalculated and listed in

Table 4.4. The results shows that improving the LM can reduce the average WER for the

ASRs drastically. For the baseline ASR (SAT Hal model), first three rows in the table,

the LM interpolation (‘Hal Fsh/SWB LM’) decreased the WER by 1.2%, while the oracle

LM, could improve the performance of the ASR considerably to 54%(14.5% improvement).

For the SAT Sez Hal ASR (rows 4 to 6), the LM interpolation resulted in 0.8% de-
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Table 4.3: Evaluating metrics for the six LMs. For training the LMs we used the leave-
one-out cross validation approach (i.e. for each model 30 LMs). Orc: oracle, LM: LM,
Fsh: Fisher dataset, SWB: Switchboard dataset. PPL: average perplexities, #vocab: vo-
cabulary size, #OOV: average number of out of vocabulary words, #3-g: average number
of 3-grams, 3-g cov.: average coverage of 3-grams, #4-g: average number of 4-grams 4-g
cov.: average coverage of 4-grams.

LM PPL #vocab OOV #3-g 3-g cov. #4-g 4-g cov.

Hal LM 149.8 4024 74 16365 92.9% 54426 70.7%

Hal Fsh/SWB LM 106.1 53907 11 48046 99.9% 606547 98.6%

Hal Orc LM 17.4 4098 0 16563 100% 55617 100%

Hal/Sez LM 105.3 11667 26 29754 99.0% 188952 91.4%

Hal/Sez Fsh/SWB LM 94.1 55643 8 48325 99.9% 616725 98.8%

Hal/Sez Orc LM 18.1 11693 0 29780 100% 189292 100%

crease in WER, and the improvement from using the oracle LM was approximately 20%

(comparing 34.9% WER vs. 54.8%).

Similarly, for the DNN based ASR (‘LSTM-TDNN Sez Hal’) (the last three rows in

the table), the interpolation improved the WER from 40.9% to 40.0%, and using the

oracle LM ‘Hal/Sez Orc LM’ we achieved a WER 25.8%. Therefore, improving the LM

can reduce the WER considerably, especially if we improve the coverage of n-grams and

reduce OOV.

Finally, we focused on training RNN based LMs, which are the current state-of-the-art

for training a robust LM for ASRs. We managed to train 15 RNN-based LMs (out of the to-

tal of 30 for the leave-one-out cross validation). For those models, we obtained around 0.6%

further WER improvement (i.e. an estimation of 39.4% WER comparing to 40.0% WER

for the Hal/Sez Fsh/SWB LM). However, due to the computational and memory limita-

tions that we have had in our university, we preferred to choose the Hal/Sez Fsh/SWB LM

for the next experiments in this project.

4.5.5 WER per speaker group

The Hal dataset consists of conversations between doctors, patients and accompanying

person(s). The doctors mostly talked with a clear and more formal language in the inter-
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Table 4.4: Speech recognition results for different LMs.

Model Language Model WER(std) [%]

SAT Hal Hal LM 69.5(13.4)

SAT Hal Hal Fsh/SWB LM 68.3(13.3)

SAT Hal Hal Orc LM 54.0(16.6)

SAT Sez Hal Hal/Sez LM 54.8(13.7)

SAT Sez Hal Hal/Sez Fsh/SWB LM 54.0(13.8)

SAT Sez Hal Hal/Sez Orc LM 34.9(16.2)

LSTM-TDNN Sez Hal Hal/Sez LM 40.9(12.9)

LSTM-TDNN Sez Hal Hal/Sez Fsh/SWB LM 40.0(13.0)

LSTM-TDNN Sez Hal Hal/Sez Orc LM 25.8(13.1)

actions, comparing to the patients and the accompanying persons. Since we are interested

in the whole conversation (not only the patient's segments), as a further analysis, we

investigate the WER per different speaker type in a different patient group (ND/FMD).

Figure 4.8 shows the WER for the LSTM-TDNN Sez/Hal ASR with Hal/Sez Fsh/SWB LM

LM, which was split per different speaker (patient, neurologist and accompanying per-

son(s)) in different patient group (ND vs. FMD). On the whole the words uttered by the

speakers in the FMD patient group were recognised better than those in the ND group

(38% WER vs. 44%), although the neurologists in the ND group had a slightly better

WER (34% vs. 33%).

The WER for the patients in the ND group was the highest amongst the different

speakers in the different patient group with a 51% WER (considering the error bar, we

had patients in the ND group with over 65% WER), while the patients in the FMD group

had 39% WER (12% less). The second worse WER was for the accompanying person(s)

in the ND group with 48% WER (the corresponding speakers in the FMD group had 41%

WER).
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Figure 4.8: WER per speaker for different patient groups: ND, FMD. Pat=patient,
Neu=neurologist, Aps=accompanying person(s), All spks=all speakers.

4.6 Discussion

The aim of this chapter was to find an answer to the second research question, what

types of speech technologies are needed for developing dementia detection system. The

conversations between the doctors and the patients in our main dataset, the Hal dataset,

were spontaneous and recorded in a real hospital with normal microphones. It is not

applicable to use the current commercial ASR systems (e.g. ‘OK Google’ and ‘Siri’) to

recognise these conversations(we need to train our own ASR). They are trained mostly

with read style and command mode speech for individual speakers, and therefore not a

good match for the speaking style of our data. Besides in conversations there are other

complexities such as turn taking and overlapping speech which can not be handled well

by these ASRs. A diarisation unit is needed to segment the audio file into smaller parts

and pass the audio of a single speaker to the ASR. There are a number of commonly used

datasets dedicated to spontaneous speech recognition. However, they are either recorded

using telephony channels (e.g. SWB and CH) or with good quality microphones and/or

arrays of distance microphones (e.g. AMI, CHiME-5).

In terms of style of the conversation, the Hal dataset is not like a broadcast TV show
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and neither a meeting. TV shows normally are recorded by high quality microphones and

people mostly talk clearly and speak formally. In a meeting, which is normally recorded

by arrays of high quality microphones, there are many speakers, and depending on the

topic, people also try to talk more formal (e.g. academic speaking). The main speaker

may ask some questions from the audience and he/she controls the flow of conversation.

To train an ASR for our dementia detection system, we started with training a few

ASRs on the available datasets. Although not mentioned inside the chapter, the SWB

dataset was the first dataset we choose to train, however, due to the its differences with

the Hal datasets (i.e. in recording channels (telephone vs. normal microphone) and the

English accents (American vs. Yorkshire British), topics, etc), we obtained a high WER

around 95% for the ASR. Similar results gained from the AMI and WSJCam datasets

with around 91% WER for both datasets (see WER for WSJCam in Table 4.1). MAP

adaptation could not improve the performance of the ASR, therefore, we started to use

parts of the Hal dataset itself for training ASRs, i.e. n-1 recordings to train the ASR and

1 to test (leave-one-out cross validation). Since the amount of data for training was not

enough to train a DNN ASR, we added out of domain data from the Sez dataset to boost

the acoustic and LMs.

Despite the improvements that we gained by following different approaches, the WER

still seems high, which shows the challenging nature of the Hal dataset. Training a decent

LM was essential in improving the performance of the ASRs. We trained LMs with lower

perplexities and OOV and higher n-gram coverage. Interpolating the LM with Fsh and

SWB datasets, improved the perplexity and n-gram coverage of the LM and in turn

reduced the WER of the ASR. However, mixing with the Sez dataset improved the LM

and ASR considerably. We also showed that having oracle LM can boost the ASR and

reduce the WER from 40% to 25.8%, see Table 4.4). The oracle LM (the perfect LM)

had 0 OOV and 100% coverage (nothing unknown) which resulted in the best result.

In terms of speakers group we found out that generally, the conversations in the FMD

group had lower WER than those in the ND group and the neurologists had the lowest

WER amongst the speakers (around 33%) in both the FMD and the ND groups. However,

patients and the APs in the ND group had the worst WER. The neurologists used far
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more clear and formal language and patients in the FMD group could talk more clearly

since they had fewer conversational issues which let them to provide longer and more

natural responses. While the patients in the ND group were struggling to provide clear

responses. There were lots of gaps in their talk and they relayed on the APs to complete

their answers to the asked questions.

In this chapter we trained ASR unit of our dementia detection system focussing on

reducing the WER. Despite having a relatively high WER ( 40%) for the ASR, in the fol-

lowing chapters (Chapter 6 and 8) we will investigate how these errors can affect the clas-

sifier results (i.e. compared to the features extracted from the manual transcripts). Also

we will look at different types of features (acoustic, lexical, etc.) which can be extracted

automatically from the audio files which can be affected by the ASR errors.

It is worth mentioning that due to having a high number of experiments needed for

training the ASRs (30 ASRs, 4 models, i.e. 30 * 4 = 120 LMs) and limitation that we have

had in using university's computational resources e.g. CPU/GPUs and memories, we can

not claim that we trained the best possible ASRs with the best possible tuning techniques

(i.e. tuning the parameters for one ASR is easy, but finding the best parameters for 30

ASRs is not).
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4.7 Summary

Spontaneous speech recognition is a challenging task due to its unstructured and unpre-

dictable nature and a significant mismatch between training and testing conditions. In

addition, issues such as disfluency (filled pauses, repair, false start, etc.) and overlap in

conversation should be dealt by ASR. The conventional ASR architecture consists of a

front-end processing to extract acoustic features from the input stream, an AM to built

decent representatives for different phonemes (or tri-phones), a LM to model the word or-

der in general utterances, and a decoding unit to use the combination of the acoustic and

LMs for the unseen (test) acoustic stream and find the best match text output. High speed

CPUs and GPUs, recently, has enabled us to apply deep neural network approaches for

speech recognition task. Commonly DNNs can be used in hybrid mode for AM, e.g. HMM

+ LSTM-TDNN.

For the ASR unit of our dementia detection system, we firstly trained an HMM model

using SAT training of Kaldi toolkit. Since we had a limited amount of data (Hal dataset

with total recording time of 8 hours), we had difficulties to apply the DNN recipes to train

ASR. DNN recipes need hundreds or thousands hours of data to train a robust ASR. We

had given extra data (Sez) recorded in similar conditions as our dataset, but without

segmentation. Using a conventional approach similar to the semi-supervised training we

could select a subset of Sez dataset, around 50 hours to mix with the Hal dataset.

Combining the extra dataset allowed us to followed the recent Kaldi recipe of LSTM-

TDNNs. Comparing to the SAT model, LSTM-TDNN based ASR performed with a con-

siderably lower WER (42.7% vs. 55.8%).

As a further improvement we investigated boosting the LM using interpolating with

another dataset (Fsh/SWB) as well as applying RNN based LM. These improvements

slightly (2-3%) reduced the ASR performance, however, the oracle LM could remarkably

decrease the WER (up to 25.8%). This indicates the challenging unstructured behaviour

of the spontaneous speech. Despite having a high WER , in the next chapters we will

investigate whether replacing the outputs of the ASR with manual transcripts of the

conversations can still be useful for dementia detection.
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This chapter aims at investigating an answer to the second research question, that is

what type of speech technologies needed for dementia detection system through analysis

of conversation, focusing on the speaker diarisation unit of the system. A Speaker diarisa-

tion unit determines who talks when in a conversation. It splits the audio into segments

(showing start and end times of each segment) and specifies which speaker each segment

belongs to by assigning the segments to a number of speaker ids in the conversation. Due

to the challenging nature of the recordings of our major dataset, the Hal dataset, it is es-

sential that we can train a (or use an existing) diarisation toolkit with the best diarisation

performance. We also need to nominate a classifier as our final classifier in the dementia

detection system.

Section 5.1 introduces the speaker diarisation systems and the general components

of the system.

In Section 5.2 we discuss about a few baseline diarisation units for our dementia

detection system and find the best baseline unit.

In Section 5.3 we train i-vector based diarisation units and compare their perfor-

mances with the best baseline speaker diarisation unit.

Section 5.4 includes the discussion part of this chapter.

Section 5.5 summarises the chapter.
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5.1 Diarisation

Audio diarisation is the task of labelling and categorising audio sources within a spoken

document [Tranter and Reynolds, 2006]. Speaker diarisation refers to the task of identi-

fying “who spoke when?” in an audio (and/or video) recording. The number of speakers

and the amount of the spoken audio are normally unknown. Thus diarisation can be con-

sidered as unsupervised identification of speakers and their intervals (segments) of speech

within an audio stream [Miro et al., 2012; Moattar and Homayounpour, 2012; Tranter

and Reynolds, 2006].

Speaker diarisation can be used for applications of audio/video processing and infor-

mation retrieval ranging from telephone conversations, broadcast news, Total Variability

(TV) shows, and movies to conference, lectures and meetings. A diarisation challenge was

initially introduced by the National Institute of Standard and Technology (NIST). The

Rich Transcription (RT) and subsequent Rich Meeting Transcription (RMT) projects were

dedicated to speaker diarisation (RT02, ..., RT07 and RT091).

There are three primary domains for using speaker diarisation: broadcast news,

recorded meetings and telephone conversations [Tranter and Reynolds, 2006]. The nature

of data for these three domains are different. For instance, in telephone conversations, the

recording channel and environment is typically different for each recording and there are

normally 2 or 3 speakers each one using a different microphone [Moattar and Homayoun-

pour, 2012]. Broadcast news normally are recorded by good quality microphones and/or

cameras while in contrast, meetings are recorded by a single or an array of far-field

microphones. Thus the quality of meeting data is somewhat poorer. The broadcast news

is often recorded in read mode and normally with more speakers (e.g. hosts, reporters,

audience) whilst the meeting by nature is more spontaneous with fewer speakers and

normally fewer utterance turns per speaker [Miro et al., 2012].

1http://www.itl.nist.gov/iad/mig/tests/rt
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5.1.1 Diarisation architecture

Most of the speaker diarisation systems are developed based on two major approaches: the

bottom-up and the top-down. As illustrated in Figure 5.1 (a), the top-down method

starts with one cluster (or a few clusters) for the speakers and eventually adds more

clusters as the process progress, while the bottom-up approach starts with more clusters

than expected speakers (usually single cluster for each segment) and gradually merge the

clusters together to reach an optimum number of clusters. If the final number of clusters

is smaller than the optimum number, the process is called under-clustering; when the

number is more than the optimum, it is known as over-clustering. Both approaches are

generally modelled by HMMs with states represented by GMMs corresponding to each

speaker, and transitions corresponding to the speaker's turns.

The bottom-up approach (known as Agglomerative Hierarchical Clustering (AHC) is

the most common approach for diarisation, which trains a number of speaker clusters

and then successively merges the clusters until only one cluster remains per speaker. Ini-

tialisation can be carried out in different ways such as k-means and uniform initialisa-

tion. Initially the audio stream is over segmented, exceeding the maximum number of

speakers. Then iteratively, those are closely matching are identified and merged together,

i.e. each iteration results in one reduction. Each cluster is modelled by a GMM and as

a new cluster is merged, the two previous GMMs of their clusters are used to train a

new GMM. Standard distance metrics are used to identify the close clusters. After each

merging, normally a reassignment of the frames to the new clusters (e.g. via Viterbi

realignment) is needed, and the whole process is repeated until a stopping criterion is

reached (see Figure 5.1 (b)).

A typical diarisation system may include the following components [Le et al., 2007;

Miro et al., 2012; Moattar and Homayounpour, 2012]: speech activity detection, speaker

change detection/speaker segmentation, speaker clustering and re-segmentation.
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Figure 5.1: General diarisation system. (a) Alternative clustering schemes. (b) General
speaker diarisation architecture [Miro et al., 2012].

5.1.1.1 Speech activity detection

An important initial step for speaker diarisation is Speech Activity Detection (SAD)1.

The SAD labels the segments as speech or non-speech and directly affects the diarisation

error. Poor SAD can significantly decrease the diarisation performance. The SAD process

can be performed separately and before diarisation. Some SAD approaches use feature ex-

traction, energy based thresholds and pitch estimation. However, model-based approaches

often perform better [Le et al., 2007]. In these approaches, models are usually trained for

speech and non-speech separately. Drawbacks of this approach become apparent when

there are significant differences between the training and the testing conditions. Hybrid

approaches have been proposed in which, first, energy based decisions are made and then,

the models improve the decisions [Le et al., 2007].

5.1.1.2 Speaker change detection or speaker segmentation

Speaker segmentation is the core step for diarisation, which attempts to split the audio

stream into ‘speaker homogeneous’ segments, or it can be reviewed as detecting changes

in speakers or turns. Speaker change detection is normally performed by comparing the

1sometimes it is called VAD
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acoustic segments in two consecutive sliding windows [Le et al., 2007; Miro et al., 2012;

Moattar and Homayounpour, 2012]. In order to compare the similarity/dissimilarity be-

tween two segments a number of distance measures have been proposed including relative

cross entropy or the KLD [Siegler et al., 1997], Bayesian Information Criterion (BIC)

[Chen and Gopalakrishnan, 1998], Cross Likelihood Ratio (CLR), Normalised Cross Like-

lihood Ratio (NCLR), Log Likelihood Ratio (LLR) [Reynolds, 1995], Information Change

Rate (ICR), and Probabilistic Linear Discriminant Analysis (PLDA) [Prince and Elder,

2007].

5.1.1.3 Speaker clustering

While the segmentation step works on the adjacent windows to determine whether they

belong to the same speaker, clustering attempts to identify and merge together the same

speaker segments anywhere in the audio stream. Measuring similarity is performed by the

same measures used for the segmentation.

5.1.1.4 Re-segmentation

The numbers of change points are often higher than the real number of speaker changes

due to the high level of false alarms of speaker clustering errors. Therefore, it is often

necessary to realign the adjacent segments of the same speakers together or perform re-

segmentation. So as a further refinement for diarisation, another round of segmentation

is needed between two neighbouring segments (to make sure they belong to two different

speakers or they belong to a single speaker). Generally for realignment, the Viterbi decod-

ing is applied in which the audio stream is re-segmented based on the current clustering

prior retaining on the new segmentation [Le et al., 2007; Miro et al., 2012].

5.1.2 Diarisation toolkits

There are a number of diarisation toolkits which are designed particularly for research

purposes. The following is a number of the current common open-source diarisation

toolkits:
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• CMUseg Siegler et al. [1997]: is an open source C and C++ toolkit developed at

Carnegie Mellon University (CMU). The KLD distance is used as a distance measure

for segmentation and clustering is based on a simple agglomerative technique.

• Speech Recognition Research at the University of Twente (SHoUT)1 Hui-

jbregts [2008]: is a C++ toolkit which has been developed by Huijbregts as a part

of his PhD. It uses agglomerative model based diarisation applying the BIC distance

measure for segmentation and clustering criterion.

• Laboratoire d’Informatique de l’Universit du Mans (LIUM)2 [Meignier and

Merlin, 2010]: is a Java based toolkit developed by the researchers from University of

Maine (France) which uses DNN by distance measures such as BIC, CLR and NCLR.

• AudioSeg3 Gravier et al. [2010]: is a C based toolkit which provides different types of

segmentation and speaker clustering such as silence/audio activity detection, segmen-

tation using BIC, LLR or KLD distances, GMM/HMM based clustering and Viterbi

segmentation.

• Diarisation Toolkit (DiarTK)4 Vijayasenan and Valente [2012]: is a C++ based

toolkit developed in Idiap research institute which uses a non-parametric clustering

and realignment based on a technique known as agglomerative information bottleneck

and avoids explicit GMM speaker modelling.

• Kaldi diarisation toolkit5: extracts i-vectors from the input recordings and uses

PLDA as a scoring metric. The AHC is used for clustering and a threshold learned

from the data is used to stop clustering.

5.1.3 State-of-the-art

The most commonly used corpora for diarisation are those introduced by the NIST

Speaker Recognition Evaluation (SRE) (e.g. [Greenberg et al., 2014, 2013; Martin and

1http://shout-toolkit.sourceforge.net/
2http://www-lium.univ-lemans.fr/diarisation/doku.php/welcome
3https://gforge.inria.fr/projects/audioseg
4http://www.idiap.ch/scientific-research/resources/speaker-diarisation-toolkit
5https://github.com/kaldi-asr/kaldi/tree/master/egs/callhome diarization/v1/diarization
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Greenberg, 2009, 2010a,b; Sadjadi et al., 2017]). In addition there have been a few chal-

lenges dedicated to diarisation such as Multi-Genre Broadcast (MGB) Bell et al. [2015a],

and Arabic acMGB-2 and 3 [Ali et al., 2016, 2017]

The standard diarisation error metric is Diarisation Error Rate (DER) defined by RT

evaluations (NIST Fall Rich Transcription on meetings 2006 Evaluation Plan 2006) as:

DER =

∑S
s=1 dur(s)(max(Nref (s), Nhyp(s))−Ncorrect(s))∑S

s=1 dur(s)Nref (s)
(5.1)

where S is the total number of speaker segments in which the reference and hypothe-

sis speaker pairs are the same, Nref (s) and Nhyp(s) indicate the number of speakers in

the reference and the hypothesis respectively, Ncorrect(s) is the number of speakers that

correctly matched between the reference and the hypothesis, and dur(s) is the segment

length [Huijbregts, 2008; Miro, 2006].

The DER consists of three different sources of errors: missed speech, EMISS (from

the segments which exist in the reference but are missed in the hypothesis), false alarm

speech, EFA (from the segments which exist in the hypothesis but not in the reference),

and speaker error ESPKR.

DER = ESPKR + EFA + EMISS (5.2)

The speaker error ESPKR itself consists of two errors: the number of incorrectly as-

signed speakers and the speaker overlap error. The overlap error is the most significant

source of errors [Huijbregts et al., 2012; Miro et al., 2012; Yella and Valente, 2012] for diari-

sation tasks. In particular, for recorded meetings, where detecting and treating the over-

laps reliably remains unsolved problem [Miro et al., 2012]. However, overlapping speech

is inevitable in a natural conversation. A significant amount of our spontaneous conver-

sations include overlapping speech. It generally occurs when speakers try/compete to

take a turn or show their agreement or disagreement with the current speaker by back

channelling. Therefore it is desirable to find efficient ways to deal with this issue.

A number of studies focused on dealing with overlapping speech. Otterson and Osten-

dorf [2007] showed that assigning the overlapping speech according to the labels of two
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nearest neighbouring segments can considerably reduce the diarisation error and remov-

ing the overlapping segments directly from the input stream does not necessarily improve

diarisation, however,“robust speaker clustering” may perform better than removing over-

laps.

Boakye et al. [2008] proposed an HMM-based overlap segmenter using different kinds

of features (MFCC features, Root Mean Squared (RMS) energy and Linear Predictive

Coding (LPC) coefficient) and applying Diarisation Posterior Entropy (DPE) measure

based on frame-level speaker likelihoods. After detecting the overlaps, the system modifies

the segments using a post-processing component.

Motivated by CA studies, Yella and Bourlard [2014] proposed an acoustic based overlap

detector using long-term conversational features such as silence/speech statistics captured

in windows around 3 to 4 sec. These features are used for estimating the probabilities of

the overlap and the single-speech speaker categories. The main hypothesis of the work

is that the most silent segments are less overlapped. Testing their approach on three

meeting datasets: AMI [Renals et al., 2010], NIST RT091 and ICSI [Janin et al., 2003],

they could improve DER considerably (AMI: from 30.4% to 24.2%, NIST RT09: from

33.9% to 31.5%, and ICSI:from 33.3% to 30.9%).

Some works on diarisation were based on the concept of ‘i-vector’ which was originally

introduced for speaker verification by Dehak et al. [2011]. Using the Joint Factor Analysis

(JFA) [Kenny et al., 2007] as a feature extractor, they trained a model containing both the

channel and the speaker information. The factor analysis defined a new low-dimensional

space (opposing the GMM based JFA with high-dimensional super-vectors). In this space,

each utterance was represented by an intermediate vector or i-vector.

Sell and Garcia-Romero [2014] first applied an unsupervised segmentation (1-2 second

length with 0.5 second overlapping with the preceding and following segments) on the

input audio stream. Then extracted i-vectors for the segments. The dimension of the i-

vectors was further reduced by a conversation-dependent PCA. PLDA was used as a score

metric to determine whether a pair of segments belong to the same speaker. The AHC was

used for clustering and a threshold learned from the unlabelled data used as the stopping

1http://www.itl.nist.gov/iad/mig/tests/rt/
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criterion.

Garcia-Romero et al. [2017] used a DNN and replaced the two-step generative pro-

cesses of extracting i-vectors and learning the PLDA scoring function with an efficient

single embedding while learning a scoring metric to discriminate between pairs of embed-

dings. Using PCA, they projected the embeddings into a conversation-dependent space

adapting the PLDA to the conversation. The conventional AHC was used for clustering

the segments and a threshold based approach was applied to stop the clustering. Further-

more, Variational Bayes (VB) re-segmentation [Sell and Garcia-Romero, 2015] refined

the borders. They trained a DNN using 10K utterances taken from Fisher English [Cieri

et al., 2004], NIST SRE04 [Martin and Przybocki, 2004], NIST SRE05 [Martin et al.,

2005], NIST SRE06 [Przybocki et al., 2006], NIST SRE08 [Martin and Greenberg, 2009]

datasets and used the utterances to learn PLDA scoring function. The CH corpus [Alexan-

dra et al., 1997], with 500 recordings, was used for the evaluation. They gained 12.8%

DER knowing the number of speakers in advance and then using the VB re-segmentation

reduced the error to 9.9% (comparing to the normal i-vector approached with 13.6% and

11.2% respectively). While using the oracle threshold, they reached at DER of 12.6%

without VB re-segmentation and 10.3% with VB re-segmentation.

Recently, for the inaugural DIHARD Challenge1, Sell et al. [2018] investigated re-

placing i-vectors with x-vectors (introduced by Snyder et al. [2016]). The models us-

ing x-vector performed considerably better for both two tasks of Track1 (25.94% DER

vs. 28.06% DER) and Track2 (39.43% DER vs. 40.42% DER). Further improvements by

VB re-segmentation and fusion resulted in their best performance (for Track1 23.99%

DER , for Track2 37.19% DER).

In recent studies, linking speakers across different recordings has been shown to im-

prove performance for diarisation tasks. The main idea is to use the previous recordings

of the same speakers to improve the clustering accuracy for the current recording, which

ultimately results in better accuracy for the overall diarisation process. Techniques such

as JFA, an extension to the TV parametric adaptation technique using the GMMs, are

normally applied for the speaker linking task. Ferras and Bourlard [2016] used two differ-

1https://coml.lscp.ens.fr/dihard/



109 5.1. Diarisation

ent diarisation techniques (an Information Bottleneck (IB) diarisation, a discriminative

approach, and an HMM-GMM based approach, generative method) in parallel followed by

a fusion step (combining two diarisation results according to the maximum vote between

the two) prior to the speaker linking. They reported a relative improvement of 7% using

the fusion approach over their test dataset and also at least 25% relative gain in the JFA

technique in comparison to the TV.

Milner and Hain [2016]; Milner et al. [2015] trained a DNN based SAD model and

a DNN based speaker segmentation stage followed by the speaker linking using the BIC

criteria for the Sheffield MGB1) challenge. They obtained the final DER of 57.2% for the

linked speaker diarisation, and 50.1% without linking. The University of Cambridge team

[Wang et al., 2016], however, have achieved DER rates of 47.5% and 40.2% for the linked

and unlinked diarisation respectively. They have developed a DNN-HMM hybrid approach

for segmentation which is used for all the four evaluation tasks of the challenge. Using a 40-

dimensional filter bank with PLP encoding first they used a Viterbi decoding for the DNN-

based SAD task followed by a divergence based Speaker Change-point Detection (SCD)

[Wang et al., 2016].

Sinclair and King [2013] focused on addressing the roots of various challenges for di-

arisation over the three recent RT evaluation datasets (RT05, RT07 and RT09) and using

a number of oracles (ideal assumptions, models). They have found out that having the

oracle number of speakers (i.e. knowing the real number of speakers in advance) only

gives a little improvement in DER in their diarisation system and it often slightly reduces

the accuracy. The oracle SAD model can eliminate both the missing speech and false

alarm speech errors but at the price of introducing more speaker errors, and arguably

the authors have concluded that the performance of a diarisation system is not highly

dependent on the SAD output. They also tried ‘ideal cluster initialisation’ rather than

the random initialisation, and found it can be effective for meeting conditions, yet not

useful for the end-to-end conversations. The ideal segmentation/clustering models (e.g. in

terms of approach itself, the number of Gaussians), however, reduces the ESPKR, signif-

icantly. More importantly, they have reported that ignoring the overlap did cost 19.11%

1The challenge included four different tasks: speech-to-text transcription, alignment, longitudinal
speech-to-text transcription, and longitudinal speaker diarisation and linking [Bell et al., 2015a]
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EMISS reduction in performance, however, assigning the overlaps to one of the speakers

can halve this cost, and further assigning to the second speaker resulted in another error

decrease by half.

Zajıc et al. [2017] trained a CNN as a regressor (i.e. producing values between 0 and

1; 0 = no change and 1 = a speaker change) for SCD. A conversation is split into short

segments which are represented by i-vectors. Then the output of the trained CNN is used

to refine the statistics gained for the segments, resulting in improved performance. To

train the i-vectors, they used the NIST SRE 2004, 2005 and 2006 corpora combined with

the SWB-1 release2 and the SWB-2 phase 3. They used the English part of the CH corpus

covering only two speaker conversations (109 telephone conversation: 35 conversations for

training CNNs and the rest for testing). They gained 7.8% DER for their suggested system

while the baseline with constant length windowing segmentation obtained DER 9.2%.

5.2 Baseline diarisation for dementia detection

In order to perform the speaker diarisation, initially two common diarisation toolkits

were used: SHoUT [Huijbregts, 2008] and LIUM [Meignier and Merlin, 2010]. SHoUT is

a toolkit which is designed especially for meeting speaker diarisation. LIUM, on the other

hand, is designed for performing speaker diarisation on broadcast news and telephone

conversation applications.

The audio files of the interviews were passed to the two diarisation toolkits. Table 5.1

shows the components of the diarisation errors when using the two different systems. As

can be seen, the DER using the SHoUT system is marginally lower (around 5%) than

the LIUM, 45.7% compared to 49.5%. The speaker error for the LIUM with 20.2%, was

considerably more that of the SHoUT system with around 13.5%. However, the missing

speech error in the SHoUT diarisation system was approximately 3% greater than the

LIUM system and comprised the most significant portion of the DER. The speaker false

alarm error, however, did not make a major contribution to the DER of either diarisation

system. Since the SHoUT diarisation system outperformed the LIUM, the SHoUT toolkit

was used in the subsequent experiments. Note that the conditions of our recordings were
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much closer to the meeting conversations than the broadcast/telephone ones for which

LIUM was originally designed.

Table 5.1: Diarisation error (consisting of the missing speaker error: EMISS, false alarm
error: EFA, and speaker error: ESPKR) for the Hal30 data using the SHoUT and LIUM
toolkits.

Diarisation system EMISS EFA ESPKR DER

SHoUT 32.2% 0.0% 13.5% 45.7%

LIUM 29.3% 0.0% 20.2% 49.5%

Because our dataset is different to the standard datasets in terms of speaking style,it

is difficult to evaluate the performance of our diarisation module. For instance, as men-

tioned before DER for AMI was around 24% [Yella and Bourlard, 2014] and for DIHARD

challenge [Sell et al., 2018] Track1 was 24% for Track2 and 37%.

5.2.1 Effect of overlapping speech and within-turn gaps

The speaker diarisation of conversations with a low level of overlapping speech normally

produces fewer speaker errors than that of conversations with more overlapping seg-

ments. There are different strategies for dealing with overlapping speech. Overlapping

speech either can be left in for the system to handle, or it can be detected and then

totally or partially removed from the audio files, after which the diarisation is applied

only to the non-overlapping speech.

The outputs of diarisation systems consist of a number of gaps within the same

speaker's segments (we refer to this as the ‘within-turn gaps’). These types of gaps detected

by the diarisation systems are either real gaps (or jingle, noise, or a very short utterance

of the other speakers), or they have been detected by mistake. Inspection revealed that

there were frequent within-turn gaps in our data, and that it should be possible to detect

these gaps and remove them from the output of the diarisation system. Figure 5.2 displays

the automatic process of removing the within-turn gaps and merging the short segments

of speech by the speaker 1.

Removing the within-turn gaps, however, would result in producing very long seg-

ments for the speakers, which in turn enforces more memory allocation and increased
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Figure 5.2: Example of removing the within-turn gaps. After eliminating the gaps (here,
three gaps), four shorter segments of speaker 1 are merged together to form a longer
segment.

computational load for the ASR. Thus in order to solve this issue, after removing the

gaps and joining the segments together, the new long segments (of > than 20 second

length) were divided into a number of smaller segments.

Table 5.2: DER for Hal30 data using the SHoUT toolkit after removal of overlapping
segments (no-overlaps: NoV), within-turn gaps (no-gaps: NoG, and both (no-overlaps/no-
gaps: NoV NoG).

Diarisation system EMISS EFA ESPKR DER

SHoUT NoV 38.6% 0.0% 11.3% 49.9%

SHoUT NoG 2.4% 0.0% 22.3% 24.7%

SHoUT NoV NoG 3.4% 0.0% 23.4% 26.8%

Table 5.2 shows the DER for the Hal30 after removal of overlapping speech

(SHoUT NoV), the within-turn gaps (SHoUT NoG) and both (SHoUT NoV NoG). Hav-

ing eliminated the overlapping segments (comparing the SHoUT NoV to the SHOUT

in Table 5.1), the DER increased slightly (around 4%). Speaker error reduced by 3%,

however, the missing speaker error were increased by approximately 7% while the false

alarm remained the same.

Removing the within-turn gaps by applying the above-mentioned post-processing

(SHoUT NoG), however, resulted in the best diarisation performance amongst the three

different diarisation approaches (with 24.7% DER). The missing speaker error measure

was lowered significantly from over 32.2% to 2.4%, although speaker error was almost dou-

ble that of SHoUT NoV. Eliminating both the overlapping segments and the within-turn

gaps (SHoUT NoV NoG) did not improve the diarisation performance further.
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5.2.2 Word diarisation error rate

Although the DER is the most common error measure for diarisation procedures, it is only

based on the duration of the segments and does not indicate to what extent the diarisation

outputs would be useful for ASRs alignments when word boundaries are detected, i.e, how

many words would be assigned to the correct speaker if a perfect ASR was used. Therefore,

for evaluation purposes, using forced alignments and the manual reference transcripts, we

attempted to calculate some measures to indicate how the outputs of the diarisation

systems would be useful for ASRs.

The measure which we used for this purpose is based on the ratio of the number of

words, not assigned to the right speakers, to the total number of words (we refer to this

measure as word diarisation error, Word Diarisation Error Rate (WDER)). This can be

calculated by adding two errors (equation 5.3): the ratio of the number of missing words

to the total words (missing words ratio, EMWR) and the ratio of the number of words

assigned to the wrong speakers (words assigned to the wrong speakers ratio, EWAWSR):

WDER = EMWR + EWAWSR (5.3)

Table 5.3 shows the WDER for the four diarisation systems (SHoUT, SHoUT NoV,

SHoUT NoG, and SHoUT NoV NoG). SHoUT without the within-turn gaps

(SHoUT NoV) performed best and would lose only 5.4% of the total words if a

perfect ASR was used after the diarisation system. This includes 3.6% of words assigned

to wrong speakers and 1.8% of words missing.

Table 5.3: Word diarisation error for the baseline diarisation systems.

Diarisation system EWAWSR EMWR WDER

SHoUT 23.4% 6.2% 29.6%

SHoUT NoV 24.4% 6.4% 30.8%

SHoUT NoG 3.6% 1.8% 5.4%

SHoUT NoV NoG 3.7% 3.6% 7.3%

The results displayed in Tables 5.2 and 5.3 confirm that the best diarisation system

was SHoUT NoG, which only lost 5.4% of the words expected to be recognised by the
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ASR.

5.3 I-vector based diarisation

First following the Kaldi diarisation recipe for the CH dataset (with 500 conversations

between friends over phone), a model was trained for the SWB and SRE2004, SRE2006

and SRE2008 datasets (named Kaldi(SWB) diarisation model). The model consist of

2048 GMM components and i-vector dimensions of 128. 32K utterances from the training

set were used for learning the Universal Background Model (UBM) prior to the i-vector

feature extraction. PLDA scoring was used for clustering and a threshold based criterion

for stopping the AHC clustering approach. The threshold based criterion resulted in 12.7%

DER for the CH diarisation task. Also we repeated the recipe knowing the number of

speakers per conversation as a criterion to stop clustering. This way ended up to a further

improvement and reduced the diarisation error to 12.1% (named Kaldi(SWB Number of

Speakers (NumSp))).

We used these two diarisation systems for evaluating the Hal dataset (Hal30). Table

5.4 shows the details of the diarisation error. Knowing the number of speakers in ad-

vance (Kaldi(SWB NumSp)), gained 31.3% DER, slightly better than the model with the

thresholds (Kaldi(SWB)) with 31.6% DER. Speaker false alarm and missing errors for

both models were not important (0% and 0.1% respectively).

Similarly, we trained two diarisation models without and with knowing the num-

ber of speakers in conversation trained by Seizure dataset mixed with half of the Hal

dataset (the other half were used for testing, i.e. two models trained without having

overlap between training and testing sets). These two models were called Kaldi(SezHal)

and Kaldi(SezHal) NumSp respectively. As can be seen from the table, these two di-

arisation systems, had better performances since they were trained using the conversa-

tions recorded with similar conditions to the Hal data. The best i-vector based diarisa-

tion system Kaldi(SezHal) NumSp achieved 20.6% DER which is around 4% better than

SHoUT NoG (with 24.7% DER in Table 5.1).

It is worth mentioning that the mentioned-above post-processing step (section 5.2.1)
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Table 5.4: DER for the Hal30 data using the Kaldi diarisation trained by the switchboard
(SWB) or seizure data mixed with half of the Hal data (held-out approach)(SezHal), with
or without knowing the number of speakers (NumSp).

Diarisation system EMISS EFA ESPKR DER

Kaldi(SWB) 0.1% 0.0% 31.5% 31.6%

Kaldi(SWB) NumSp 0.1% 0.0% 31.2% 31.3%

Kaldi(SezHal) 0.1% 0.0% 22.5% 22.6%

Kaldi(SezHal) NumSp 0.1% 0.0% 20.5% 20.6%

on the i-vector based diarisation models did not change the results, therefore, we ignored

the step.

The word diarisation error for these models are summarised in Table 5.5. Comparing

to Table 5.3, i-vector based diarisation systems, generally have less word diarisation error,

however, surprisingly, SHoUT NoG have a better performance with 5.4% WDER com-

paring to the best i-vector based diarisation system (Kaldi(SezHal) NumSp with 7.2%

WDER).

Table 5.5: Word diarisation error for the i-vector based diarisation systems.

Diarisation system EWAWSR EMWR WDER

Kaldi(SWB) 15.4% 4.4% 19.8%

Kaldi(SWB) NumSp 13.9% 5.9% 19.8%

Kaldi(SezHal) 4.5% 3.3% 7.8%

Kaldi(SezHal) NumSp 4.2% 3.0% 7.2%

5.4 Discussion

The main dataset for our study, the Hal, contains interviews between doctors, patients

and accompanying person(s) (if present). The style of the conversations is similar to that

of a general meeting, although in a meeting people tend to speak more clearly and in a

more formal manner using better structured language and a higher level of articulation.

In the experiments presented in this chapter, we aimed to find the best diarisation

tool for the Hal dataset conditions. Initially two pre-trained diarisation tools were cho-
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sen: LIUM (tuned for broadcast news and telephone conversation) and SHoUT (trained

for meeting condition). The performance of two systems were evaluated using DER. The

SHoUT diarisation system outperformed the LIUM with 5% less overall diarisation error

and in particular with around 7% less speaker errors. Using a post-processing technique

(merging gaps in segments and re-segmenting long portions) the overall DER was further

reduced to around 25%. The i-vector based diarisation system trained by the Kaldi CH

recipe (tuned for telephone conversation condition) had a relatively poor performance for

the Hal dataset. Therefore, a new diarisation system was trained with a similar Kaldi

recipe, but using Seizure data and half of the Hal dataset (avoiding any overlap with

the test recordings). This diarisation system outperformed the best SHoUT diarisation

system.

We expect that, with more data available we would be able to further improve the

diarisation unit for our system.

The DER, although widely used, does not show how well the diarisation component

will work when its outputs is passed to ASR. Therefore, we introduced the word-based

WDER measure which is compromised of the missing word rate and the words wrongly

assigned to speaker errors.

Although most of the i-vector based diarisation systems were better in terms

of DER, the SHoUT NoG were slightly better in terms of WDER (5% vs. 7% for

Kaldi(SezHal) NumSp). However, the i-vector based Kaldi diarisation system will be

used as the final diarisation unit of our system (for convenience we will refer to this as

the Kaldi diarisation in the following chapters).

In our study, we are interested in the conversations between doctors and patients, and

will use a diarisation tool to determine who talks when. The speaker diarisation task for

our study, thus, is not necessarily as difficult as the general diarisation problem (unknown

number of speakers and conditions, audio mixing up with music, jingles, etc), since the

number of speakers for each conversation can be assumed to be known and limited between

two to and maximum of four speakers, and the speaker information such as gender and

age is also available.

The conditions of the interviews of the doctors with the patients and/or accompanying
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person(s) (APs) (who may help the patients to answer the questions) is close in style to

the general meeting condition for diarisation, apart from the fact that the doctors mostly

ask the questions, which would make their speech less spontaneous compared to the

patients or the APs. Therefore we may expect to see that both the diarisation and speech

recognition tasks for the doctors' part result in a lower error rate than observed for the

patients or the APs.
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5.5 Summary

Speaker diarisation system aim at segmenting input audio streams into smaller segments

and assigning the segments to the speakers in a conversation. The general architecture

of the system comprises of acoustic beamforming for a meeting condition (in cases with

multiple distant microphones), a speech activity detection unit to split audio into speech

and non-speech (e.g. noise, music, laugh) segments, a speaker segmentation unit to seg-

ment the audio into smaller portions, with each neighbouring portion assumed to belong

to a different speaker (speaker change detection), and finally speaker clustering to merge

the smaller segments that belong to the same speakers. A second pass of the diarisation

system may needed to further re-segment and cluster segments.

A few commonly used diarisation toolkits were listed in the chapter and in particular

we used the SHoUT, LIUM and Kaldi diarisation toolkits.

A new measurement for evaluating the performance of different diarisation system was

introduced (WDER). WDER is word-based and therefore more suitable for assessing how

well a particular diarisation performance affects the subsequent ASR. Regarding both the

DER and the WDER, between the two best diarisation systems, the Kaldi diarisation

system was chosen, as it produced better classification results in the dementia detection

system.
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In Chapter 3 initially we focused on the feature extraction and classification units of

our dementia detection system, assuming the other components were available. A number

of classifiers and features were introduced to confirm the proof of concept for the automatic

dementia detection.

After introducing the ASR and the diarisation units of the system in Chapter 4

and Chapter 5, this chapter focuses again on the feature extraction component of the

automatic system, exploring more features with the aim of narrowing down the final

features of the system. The chapter is organised as follows:

Section 6.1 describes the expansion of our initial feature set to a numbers of different

types of features, including the extended acoustic, the extended lexical, and the word

vector based features.

Section 6.2 provides the classification results of the automatic dementia detection

system, as well as discussion about the importance of different feature types, feature

selection and robustness of the classifier.

Section 6.3 and Section 6.4 provides the discussion and the summary of this chapter

respectively.
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6.1 Introduction

Due to the lack of standard datasets and ethical difficulties around the sharing of data

collected from people with medical conditions, still it is hard to find robust and widely

used set of features based on audio and speech which can help in identifying demen-

tia. Exploring and identifying such features continues to be an important part of current

studies. Moreover, different studies have been based on different datasets each with a lim-

ited number of examples recorded in different conditions (e.g. patient describing a picture

or completing a task) and as a result different types of features have been introduced by

different research groups.

In Chapter 3 we introduced a set of CA-inspired features (refer to Section 3.2.2 and

Table 3.3). Due to time limitations, we chose not to focus on extracting visual features

automatically. Therefore, out of the 22 features, the two visual-conceptual features were

removed. The remaining 20 CA-inspired features consisted of three feature types: acoustic,

lexical and semantic features. In this chapter we will extend the acoustic and lexical fea-

tures and also we will add the word vector features as an additional feature type. Note

that in order to avoid the confusion between the new acoustic and lexical features with

the previous acoustic and lexical features (see Table 3.4) we call them the extended

acoustic and the extended lexical features.

6.1.1 Extended acoustic features

In our baseline CA-inspired features we already introduced a number of acoustic features

based on the length and the number of turns for each speaker role and the pauses for

patients in conversation. However, many studies introduced other acoustic features (see

Section 3.1). Adding more acoustic features will let us to explore and identify more

important features which can help in identifying dementia from the audio recordings of

the conversations.

Using the well known ‘Praat vocal toolkit’ [Boersma et al., 2002], the total number

of 36 acoustic features (12 for each speaker role: neurologist, patient and accompanying

person(s)) were extracted from the audio files. Since we were interested in features usually
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Table 6.1: 20 CA-inspired features: acoustic, lexical, semantic. Note: two visual-
conceptual features from Table 3.3 were removed.

Type Features

Acoustic APsNoOfTurns PatNoOfTurns
NeuNoOfTurns APsAVTurnLength
PatAVTurnLength
PatFailureExampleAVPauses
NeuAVTurnLength PatAVPauses

Lexical PatAVUniqueWords
NeuAVUniqueWords
APsAVUniqueWords PatAVAllWords

Semantic PatMeForWhoConcerns
PatFailureExampleEmptyWords
PatFailureExampleAllTime
PatDontKnowForExpectation
PatAVFillers PatAVEmptyWords
AVNoOfRepeatedQuestions
AVNoOfTopicsChanged

seen in formal CA transcripts, we extracted a number of features including the prosodic

features (average overall duration, pitch, intonation, and silence), the features capturing

creakiness and breathiness (difference between the first harmonic and the harmonic close

to the first, second and third formants: H1-A1, H1-A2, H1-A3 [Gordon and Ladefoged,

2001; Khan et al., 2015]; difference between the two first harmonics: H1-H2), and features

related to the vocal stability (jitter, shimmer, harmonics-to-noise and noise-to-harmonics

ratios). In order to extract these acoustic features, we gave the timing information from the

ASR outputs (i.e. start and end time of the words and silences) to the Praat. We calculated

the pitch, intonation, duration, etc. on the speech (spoken words) of the audio files, and

only the average silence length feature was extracted on the silence segments. Table 6.2

shows these features for the three speaker roles.

It is worth mentioning that there are other toolkits for extracting the acoustic features.

For instance, the Open Smile toolkit [Eyben et al., 2010] is widely used for extracting

different types of acoustic features. However, for our system, we preferred to use the

Praat to extract the acoustic features.
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Table 6.2: List of the extended acoustic features.

Speaker role Feature

‘Neu’ (neurologist) average overall intonation, pitch, duration and
silence(NeuAvgIntonation, NeuAvgPitch,
NeuAvgDuration NeuAvgSil); difference between the first
harmonic and the harmonic close to the first, second and third
formants(NeuAvgH1-A1, NeuAvgH1-A2,
NeuAvgH1-A3); difference between the two first harmonics
(NeuAvgH1-H2); local jitter and
shimmer(NeuAvgGitterLocal, NeuAvgShimmerLocal);
harmonics-to-noise and noise-to-harmonics
ratios(NeuAvgMeanHNR, NeuAvgMeanNHR)

‘Pat’ (patient) average overall intonation, pitch, duration and
silence(PatAvgIntonation, PatAvgPitch,
PatAvgDuration PatAvgSil); difference between the first
harmonic and the harmonic close to the first, second and third
formants(PatAvgH1-A1, PatAvgH1-A2, PatAvgH1-A3);
difference between the two first harmonics (PatAvgH1-H2);
local jitter and shimmer(PatAvgGitterLocal,
PatAvgShimmerLocal); harmonics-to-noise and
noise-to-harmonics ratios(PatAvgMeanHNR,
PatAvgMeanNHR)

‘APs’
(accompanying
person(s))

average overall intonation, pitch, duration and
silence(ApsAvgIntonation, ApstAvgPitch,
ApsAvgDuration ApsAvgSil); difference between the first
harmonic and the harmonic close to the first, second and third
formants(ApsAvgH1-A1, ApsAvgH1-A2,
ApsAvgH1-A3); difference between the two first harmonics
(ApsAvgH1-H2); local jitter and
shimmer(ApsAvgGitterLocal, ApsAvgShimmerLocal);
harmonics-to-noise and noise-to-harmonics
ratios(ApsAvgMeanHNR, ApsAvgMeanNHR)

6.1.2 Extended lexical features

As mentioned in Chapter 2, some studies focused on extracting the lexical fea-

tures. Blanken et al. [1987]; Bucks et al. [2000] reported that the number of nouns

produced by people with dementia were significantly less than the healthy controls. Jar-

rold et al. [2014] found out that 11 out of 14 of their Part Of Speech (POS) features were

statistically significant in differentiating between different types of dementia. Therefore,
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Table 6.3: List of the extended lexical features.

Speaker role Feature

‘Neu’ (neurologist) average number of verbs, nouns, adjectives, adverbs, pronouns,
wh words(e.g, who), determiners, conjunctions, cardinals,
existential(e.g., there is), prepositions (NeuAvgVerb,
NeuAvgNoun, NeuAvgAdjective, NeuAvgAdverb,
NeuAvgPronoun, NeuAvgWh word,
NeuAvgDeterminer, NeuAvgConjunction,
NeuAvgCardinal, NeuAvgExistential,
NeuAvgPreposition, NeuAvgOtherPOS)

‘Pat’ (patient) average number of verbs, nouns, adjectives, adverbs, pronouns,
wh words(e.g, who), determiners, conjunctions, cardinals,
existential(e.g., there is), prepositions (PatAvgVerb,
PatAvgNoun, PatAvgAdjective, PatAvgAdverb,
PatAvgPronoun, PatAvgWh word, PatAvgDeterminer,
PatAvgConjunction, PatAvgCardinal,
PatAvgExistential, PatAvgPreposition,
PatAvgOtherPOS)

‘Aps’
(accompanying
person(s))

average number of verbs, nouns, adjectives, adverbs, pronouns,
wh words(e.g, who), determiners, conjunctions, cardinals,
existential(e.g., there is), prepositions (APsAvgVerb,
APsAvgNoun, APsAvgAdjective, APsAvgAdverb,
APsAvgPronoun, APsAvgWh word,
APsAvgDeterminer, APsAvgConjunction,
APsuAvgCardinal, APsAvgExistential,
APsAvgPreposition, APsAvgOtherPOS)

we were interested in extracting the lexical features, i.e. different POS for the words in

conversations.

Penn Treebank part of speech tags [Taylor et al., 2003] were assigned to the words

uttered by each type of speaker in the conversations. The number of the Penn Tree-

bank' tags were originally 36, however, similar tags (e.g. different types of verbs) were

joined together to make more general, higher-level tags. The tags were gathered under

12 different groups for each speaker role (a total of 36 features for the three speaker

roles). Table 6.3 shows these tags for the three speaker roles, including average number

of verbs, nouns, adjectives, adverbs, pronouns, ‘wh’ words, determiners, conjunctions,

cardinals, existential and prepositions.
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6.1.3 Word vector features

Machine learning algorithms work on vectors of numbers, and word embedding is a tech-

nique which is widely used to convert text to numbers; instead of a word, a series of num-

bers are used. Traditionally, techniques such as BoW [Harris, 1954] and Term Frequency-

Inverse Document Frequency (TF-IDF) [Sparck Jones, 1972] were used for word embed-

ding with some success. Recently, more successful approaches have used deep learning

techniques to produce vector representing words. Two recently introduced techniques are

‘Word to Vector (W2vec)’ [Mikolov et al., 2013a,b] and ‘GloVe’ [Pennington et al., 2014]

which are both based on the co-occurrences of words, taking into account the context

(neighbouring words) in a text.

The ‘W2vec’ is trained using a simple three layer deep neural network (input, hidden

and output layers). It can learn the word vector using two techniques: skip-gram and

Continuous Bag of Words (CBoW). The skip-gram aims at predicting the context from

a given word, while the CBoW attempts to predict a word given a context. Generally,

the skip-gram can capture more information than that captured by the semantics of a

single word, and using the negative sub-sampling technique, the skip-gram technique

can outperform the CBoW. Mikolov et al. [2013a,b] demonstrated that the resulting

‘W2vec’ vectors exhibits some interesting properties, for instance, that vector(“King”)

- vector(“Man”) + vector(“Woman”) is very close to the vector(“Queen”). Despite the

amazing advantages of the ‘W2vec’, it has some limitations including not taking into

account the global co-occurrence of the words in the whole corpus. The ‘GloVe’ adds

the benefits of the matrix factorisation approaches to the skip-gram to capture the global

statistical information. Instead of focusing only on the probabilities of words in the

context, the ratio of co-occurrence probabilities are taken into account. In fact, the

‘GloVe’ attempts to associate the logarithm of ratios of co-occurrence probabilities with

the vector differences. The authors of the ‘W2vec’1 and ‘GloVe’2 have both shared their

pre-trained models for public use.

One of the main applications of the word vector encoding techniques is sentiment

1http://mccormickml.com/2016/04/12/googles-pretrained-word2vec-model-in-python/
2https://nlp.stanford.edu/projects/glove/



Feature extraction 126

analysis - the problem of identifying opinions or moods in a piece of text. A popular

benchmarks for sentiment analysis is the ICL Internet Movie Database (IMDB) containing

50000 movie reviews associated with positive or negative sentiments (half for training

and half for testing). Inspired by the language modelling and probabilistic latent topic

models, Maas et al. [2011] introduced a model for the vector representation and achieved

an accuracy of 88.89% for the binary classification task. Le and Mikolov [2014] extended

the ‘W2vec’ model to make vectors representing paragraphs or documents (‘Document to

Vector (Doc2vec)’). The main idea was to add an extra token (ID) for each document to

the content while training the BoW or skip-gram model. They reported 92.58% accuracy

for the sentiment analysis task of IMDB, however, other researchers have struggled to

reproduce the same outcomes [Lau and Baldwin, 2016]. Combining CNNs with BLSTMs

Shen et al. [2017] resulted in a classification rate of 89.7% for the IMDB sentiment analysis

task. Random embedding substitution obtained 88.98% accuracy by using a normal

LSTMs and 89.71% using BLSTM. Yenter and Verma [2017] also reported 89% accuracy

using CNN and LSTM. In addition to the sentiment analysis, the word vector has been

used in various NLP tasks such as semantic queries [Bordawekar and Shmueli, 2017],

semantic textual similarity [Lau and Baldwin, 2016], document analysis [Park et al.,

2018], and text understanding [Gao et al., 2017].

Recently, word vector has been used in a number of different tasks involving spoken

language. Tao et al. [2016] applied the ‘Doc2vec’ (an expansion of ‘W2vec’ to documents)

to the ASR outputs of non-native English speaker taking the TOEFL internet-Based

Test (iBT) to score (measure) the responses, and they observed a considerable amount

of improvements comparing to using TF-IDF features. Audhkhasi et al. [2017] used the

‘GloVe’ embedding to initialise the final dense layer of their deep neural network to directly

convert acoustic features to words and reported reasonably low WER on the SWB and

CH dataset.

The use of word vector for detection of pathologies and para-linguistic information in

speech is very novel. Lopez-Otero et al. [2017] used the ‘GloVe’ word vector to detect

depression from the transcripts produced by the ASR on the de-identified speech (mod-

ifying voice characteristics for privacy reasons). They split each turn of a speaker into a
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series of words. Each turn was then represented by summing up the normalised ‘GloVe’

word vector of the turn. They also considered applying a weight coefficient to the vectors

allowing them to assign more importance to the rarer words. Then, they reduced the

dimension of the turn vectors by using the PCA algorithm and used an SVM classifier

to classify between depression and non-depression speech. They gained 80% classification

accuracy using de-identified speech recognised by ASR (with 37.3% WER).

For classification tasks we need to use the word vector representations of the individual

words in a transcript in a way that enables us to distinguish the different classes. This

section describes the four different approaches we have investigated. The first two are

based on composing a vector from the individual word vector and using these vectors to

train a classifier as per usual; the third method uses a cosine similarity as a measure of

how different a word vector is to typical word vector found in the labelled/known classes;

the fourth approach models the vectors from the first two approaches in a sequential

model.

Average/Variance of word vector

Assume a corpus C consists of n documents, Di; 1 ≤ i ≤ n. Each document consists of

a number of words, Di = wi1, ..., wij and each word can be converted to a vector V with

d dimensions as V (wij) using one of the pre-trained word vector algorithms like ‘W2vec’

or ‘GloVe’. Ignoring the non important words in a text (stop list) as well as replicated

words, we can make a new vector by calculating the average of the word vector appended

to the variance of the word vector as:

(6.1)AV (Di) = [µ(Di), σ(Di)]

where µ and σ are the average and variance and AV (Di) has dimensions 2 ∗ d. The first

proposed approach uses the AV (Di) vectors for training a classifier.

Difference between Average/Variance of word vector

The second approach is similar but based on a feature vector derived as the difference

between AV (Di) and a vector combined over all training documents in each class. That is,

for a supervised classification task with m known classes, c1...m, we can make m combined

AV vectors: AV (cl); 1 <= l <= m. The feature vector in this second approach is found

by summing the differences between AV (Di) and each AV (cl). We refer to this vector as
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DiffAV :

(6.2)DiffAV (Di) =
m∑
l=1

(AV (cl)− AV (Di)

Cosine similarity between word vector

As a third approach for representing documents, we calculate the cosine similarity between

the word vector of a document and the word vector of each class. The value of the cosine

similarity will be normalised (sum up to one). We refer to this as CosWV (cosine word

vector) and define it as:

(6.3)CosV (cl, Di) =
k∑
j=1

r∑
t=1

cos(V (wij), V (wlt))

(6.4)CosWV (Di) =

[
1

M
CosV (c1, Di), ..,

1

M
CosV (cm, Di)

]
where M = Max(CosV ) and k and r number of words in document Di and class cl

respectively.

Sequence word vector

For the fourth and final approach, we extract fixed length frames of the whole document

using a sliding window over the text (we have used the length of 80 words with a 25%

overlap) and computing the AV and DiffAV vector of each frame gives us SeqAV (Di) =

[AV (Di1), ..., AV (Dif )] and SeqDiffAV (Di) = [DiffAV (Di1), ..., DiffAV (Dif )].

From these approaches, which were introduced in Mirheidari et al. [2018a], we choose

the first measure (AV) to represent the meaning of the conversations. This feature, then,

is added to the other features to complete our system's feature set. Using the Principal

Component Analysis (PCA) approach we could reduce the dimension of the vectors from

600 to 7. Almost the same results can be achieved using the reduced dimensions.

Note that in the paper we showed that the CosWV will give us the best classifier

accuracy for the Hallamshire dataset, however, since we use leave-one-approach to split

data into train and test sets, each time the CosWV values changes for different data

samples, and so it is not possible to add the word vector feature to our other features.
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6.2 Classification results

As mentioned before in Chapter 3, the LR classifier was nominated as the final classifier

for the dementia detection system. In addition to the baseline CA-inspired features, in

this chapter three additional feature sets are introduced. Now we want to investigate the

contribution of the different feature types in the classification task.

6.2.1 Effect of different feature types

Table 6.4 shows the accuracy of the LR classifier for different features types and the

three levels of automation to classify between ND and FMD patients of the Hallamshire

dataset (15 ND and 15 FMD). Each row shows the classifier accuracy with increasing

transcription automation and segmentation ranging from the manual transcript to the

automatic segmentation and transcription (Diarisation (Diar)+ASR). The CA-inspired

features for the ASR and the Diar+ASR were produced using the output text and the

timing information provided by the ASR outputs. Note that due to the diarisation error

we could not manage to extract the word vector features for three conversations (affected

results are marked with stars in the table).

Table 6.4: Accuracy of the LR classifier to classify between ND and FMD patients using
different feature types, the three levels of transcription automation and segmentation. In-
side the brackets is the number of features. CA: CA-inspired features, E-LX: extended
lexical features, E-AC: extended acoustic features, WV: word vector features, *: due to
the errors caused by the diarisation systems, 3 out of 30 word vector based results were
missing. Combined features: final column shows results for all feature combined together.

Level of automation CA(20) E-LX(36) E-AC(36) WV(7) Combined features(99)

Manual Transcript 90.0% 76.7% 66.7% 70.0% 76.7%

ASR 96.7% 80.0% 73.3% 70.0% 83.3%

Diar+ASR 90.0% 83.3% 66.7% 74.1%* 90.0%

For the manual transcript (row 1), accuracy of the classifier trained on the baseline

CA-inspired features was 90.0% (the best result amongst the four feature types). Using

the extended lexical features, the accuracy of the classifier dropped to 77%, while for the

extended acoustic and the word vector features the accuracy were 67% and 70% respec-
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tively. Putting together all the features (the combined features), however, resulted in 77%

accuracy (13% less than the CA-inspired features). Combining all features together not

necessarily result in a better accuracy rate for the classifier (some features may correlated

negatively together, i.e. putting them together cause more confusion for the classifier).

That is why sometimes feature selection can achieve a better result than using all the

features.

For the ASR, the classifier trained on the CA-inspired features achieved 97% accuracy,

while the accuracy for the extended lexical features was 80.0%. The extended acoustic fea-

tures and the word vector features gained 73% and 70% accuracy respectively. Accuracy

of the classifier with the combined features was also 83%.

Similarly for the Diar+ASR, the accuracy of the classifier trained on the CA-inspired

features achieved the best result among the four feature types with 90.0%. The second

highest accuracy was achieved by the extended lexical features with 83%. The word vector

features and the extended acoustic features came third and fourth with 74% and 67%

respectively. Using the combined features, the accuracy achieved 90%.

On the whole, the CA-inspired features always achieved the best classifier accu-

racy. The second most important features were the extended lexical features. The extended

acoustic features and the word vector features had lower accuracy.

Combining all features together (99 features) resulted in the same or slightly better

classifier accuracy than the extended lexical features, but was not as good as the accuracy

achieved by the CA-inspired features. Some features in the combined features are not

complementary and they may correlated together negatively. Therefore, to have a better

result it is needed to find a subset of the features with the highest contributions.

6.2.2 Confusion matrix

Confusion matrix is a table which can be used to show the performance of a classifier. The

rows of this matrix shows the predicted class by the classifier and the columns shows the

real or true classes. Table 6.1 shows the confusion matrix for the classifier (Diar+ASR)

trained using the 99 features. 14 out of 15 FMD were predicted correctly (93% correct)

and only one (7%) was confused with ND, while 13 out of 15 ND were predicated truly
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Figure 6.1: Confusion matrix for the classifier (Diar+ASR) using all 99 combined features.

(87%) and 2 were confused with FMD (13%). This shows that predicting the FMD group

was slightly easier (with less confusion) than the ND.

6.2.3 Feature selection

In this section, as in Section 3.3.1, using the RFE technique (on the train set) the impor-

tant features (the top n features) were selected from the combined features. The results of

the classifier accuracy for the three levels of transcription automation and segmentation

(manual transcript, ASR, Diar+ASR) using the top n features (n = 1, ..., 10) are shown

in Figure 6.2.

For the manual transcript (red line) using the top 1 feature, the accuracy of the

classifier was 77%. Adding one more top feature resulted in a 83% accuracy. For the top

3 to the top 10 except for the top 8, the classifier achieved an accuracy of 97%. Using the

top 8 features, the classifier achieved 100% accuracy.

For the ASR (grey line), the top 7 to the top 10 features all resulted in 100% accuracy,

while for the Diar+ASR (green line), the top 3 to the top 5 features had 100% accuracy.

As can be seen from the figure, deciding on the optimum number of top features is

unknown and there is not a clear answer to it, i.e. it may differ from one classifier to an-

other classifier. The minimum n with the highest accuracy rate for the three transcription
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Figure 6.2: The classifier accuracy for the three levels of transcription automation (manual
transcript (hatched red), ASR (grey), Diar+ASR (hatched green)) using the top n features
from the combined features. n = 1, ..., 10. The lowest number of features to achieve a 100%
accuracy, for the three levels of transcription automation are marked by arrows.

automation are marked with arrows.

The list of the top 10 features is shown in Table 6.5. As expected from the previous

section, the CA-inspired features are the dominant top features with the highest ranks

for the three levels of transcription automation. In addition it is seen that features from

all the three speaker roles are in the top 10 features.

For the manual transcript (the first column), 8 out of 10 important features are acoustic

features and the remaining 2 are the lexical features. Note that, some of the features which

were chosen by the RFE in Table 3.7 could be found in Table 6.5, but not all of them.

Since, here the classifier had a combination of 99 features to select using the RFE approach

(remove one feature at time with the lowest contribution in classification) which let the

extended acoustic and word vector features come in to the top 10 list as well.

For the ASR (the second column), 5 important features are acoustic, 3 are lexical and

2 are word vector features. Comparing to the first column, 7 features are the same, which

shows despite the errors caused by of the ASR most of the important features remained
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Table 6.5: Top 10 features with the highest contributions in classification between ND and
FMD patients for the three levels of transcription automation (Manual transcript, ASR,
and Diar+ASR). WV col1: The word vector features column 1. *: were seen in Table
3.7. AC: acoustic features, LX: lexical features, SM: semantic features, and WV: word
vector features.

Rank Manual Transcript ASR Diar+ASR

1 PatAVAllWords*(LX) PatAVAllWords*(LX) NeuAVTurnLength(AC)

2 NeuAvgH1-A1(AC) NeuAvgH1-A1(AC) APsNoOfTurns*(AC)

3 APsNoOfTurns*(AC) APsNoOfTurns*(AC) NeuAvgH1-A2(AC)

4 APsAVTurnLength(AC) APsAVTurnLength(AC) WV col3(WV)

5 PatAvgMeanHNR(AC) APsAvgH1-H2(AC) PatFailureExampleEmptyWords*(SM)

6 ApsAVUniqueWords(LX) PatAVTurnLength*(LX) WV col1(WV)

7 PatNoOfTurns(AC) WV col1(WV) WV col5(WV)

8 NeuNoOfTurns(AC) APsAVUniqueWords(LX) NeuAvgH1-A1(AC)

9 PatAVTurnLength*(AC) WV col4(WV) WV col2(WV)

10 NeuAvgH1-H2(AC) NeuAvgH1-A2(AC) NeuAVUniqueWords*(LX)

the same (70%).

For the Diar+ASR (the last column), fully automatic system, however, the most

important features are very different (only 3 are the same as the first column). The errors

of the diarisation and the ASR together has made much more effect on selecting the

top 10 features. 4 features are acoustic, 4 are word vectors and 1 semantic feature and

1 lexical features. The turn length for the neurologist and the number of turns for the

accompanying person (NeuAVTurnLength and APsNoOfTurns) are the top two important

features, followed by the average number of unique words uttered by the neurologists

(NeuAVUniqueWords) and the number of empty words uttered by the patients in response

to recalling the last memory failure example (PatFailureExampleEmptyWords).

It worth mentioning that we followed the approach introduced in Chapter 3 to find

the most statistically significant features using the normality tests (Shapiro-Wilk and

D'Agostino) and then parametric Student's t-test for normal features and non-parametric

Mann-Whitney U test for non-normal features. We found 28 out of 99 features were

statistically important features for the three level of automation (manual transcript, ASR

and Diar+ASR), however, the accuracy of the classifier using those 28 features were

83.3%, 93.3% and 90.0% respectively, which were less than the accuracy gained by using

the RFE feature selection.
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6.2.4 The ROC curve

As it was mentioned in Chapter 2, both sensitivity and specificity are important for the

cognitive diagnostic process. For instance, if a cognitive test can recognise the ND patients

with 100% accuracy, but it cannot correctly recognise most of the non-ND patients, its

sensitivity is high but its specificity is low.

Similarly, for a classifier, it is important to have high sensitivity and high speci-

ficity1. The ROC curve shows the true positives against the false positives for different

settings (thresholds) of a classifier, i.e. compares the sensitivity against the specificity.

Figure 6.3 shows the ROC curve for the classifier for the fully automated transcription

using the 99 features. The dashed red line shows the chance level (i.e. 50% for a binary

classifier). The curve below the chance level (down right) could be considered as a weak

classifier (here, there is not any curve below the chance level). As can be seen, by increasing

the false positive rates, the true positive rates are not going to drop considerably. Note

that we could not use the standard leave-one-out cross validation approach here (the

test set should have samples from more than one class) and instead we used the k-fold

(k = 15) cross validation. The accuracy of the classifier trained by the k-fold (k = 15)

cross validation was 90%. The average ROC Area Under Curve (AUC) was 92%, which

indicates a robust classifier (with a high sensitivity and a high specificity).

For the top 3 features the ROC AUC was 98% with classifier accuracy of 100% (Figure

6.4).

6.3 Discussion

In addition to the initial baseline CA-inspired features (which already consisted of some

acoustic, lexical and semantic features), new features were introduced for the three levels

of automation for transcription and segmentation: the extended acoustic, the extended

lexical and the word vector features. Therefore, we had four feature types: acoustic, lexical,

semantic and word vector features.

Considering the feature types separately, for the three levels of automation for

1Often these are referred to as recall and precision respectively
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Figure 6.3: ROC curve for the classifier of Diar+ASR using the 99 features (k-fold (k =
15) cross validation, accuracy of the classifier: 90%).

Figure 6.4: ROC curve for the classifier of Diar+ASR using the top 3 features (k-fold
(k = 15) cross validation, accuracy of the classifier: 100%).

transcription and segmentation, the most important features mostly were acoustic

features. However, the second important features for the manual transcript were the

lexical features but for the ASR the second important features were the lexical and

the word vector features, while the second important feature type was the word vector

feature for the Diar+ASR. The least important features for the Diar+ASR were the
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lexical and the semantic features.

Having different top 10 features for the three levels of automation for transcription

and segmentation, shows that the errors caused by the ASR and the diarisation unit

changes the extracted features, however, despite having these errors the binary classifier

can classify with a high accuracy rate of 90%. This might be because of the fact that the

binary classification between the two patient groups was not a complicated task. As we

add more patient groups to the classification, the effects of the errors of the ASR and the

diarisation unit will be more.

Comparing the top 10 out of 99 features for the manual transcript to the top 10

features in Table 3.7 (out of 22), three of the features (PatAVAllWords, APsNoOfTurns,

PatAVTurnLength) were the same but the rest were different. One important reason for

the difference is that in Chapter 3 we used the ranking from the five classifiers together to

find the top 10 features, but here we only used the ranking of a single classifier (LR). The

other reason is that we provide the classifiers wit different sets of features. Although 20

of the features were the same, the RFE approach recursively removes a feature with the

lowest contribution in classification task. So it is possible in the middle of the selection

process, to have some features with rankings close together which let the approach choose

different features to remove. Also some of the new extended features were important in

discriminating between the two patient groups.

Al-Hameed et al. [2018] extracted 812 acoustic features from the patient-only segments

of the audio files of the Hallamshire dataset (same as our manual transcript, except they

manually separated the patient parts of the conversations and manually aligned the words

in the segments). They trained five classifiers and their best classifier, the linear SVM,

gained 87% accuracy using all features, and 97% accuracy using the top features (both

for the top 7 features using the SVM wrapper approach and the top 24 features using the

Pearson's Filter). Comparing to their results, for the manual transcript, the CA-inspired

features achieved 90% accuracy (3% better than their accuracy for 812 features), and

the combined features had 77% accuracy (10% less than their result). However, for all

the three levels of automation, using the feature selection approach (top n features), the

accuracy of our classifier could achieve 100% accuracy (3% better than their result for the
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top features with 97%).

It should be mentioned that our extended acoustic features (even for the manual

transcript) were extracted completely automatically from the conversations using the

ASR alignments and the Praat toolkit, i.e. first we determined the start and end time

of each word from the alignments produced by the ASR and then we passed the timing

information to the Praat. As we know, the ASR alignments at both the phoneme and

the word levels are error-prone. These errors affect the extracted acoustic features, while

Al-Hameed et al. [2018] used the manual alignments, which hardly can be produced by

the automatic approaches.

In addition, since the baseline CA-inspired features already had high contributions

to classifications (see Table 3.5), adding new features types did not improve the overall

classification accuracy much. The CA-inspired features included the acoustic, lexical fea-

tures and semantic. Looking at the top 10 features for the three levels of transcription

automation, we can find acoustic features and lexical features as the most important fea-

tures especially the turn related features (e.g. APsNoOfTurns, NeuAVTurnLength) and

the lexical features (e.g. PatAVAllWords, APsAVUniqueWords).

The ROC curve analysis showed that the binary LR classifier that we used for our ex-

periments, was robust, i.e. it was not showing low sensitivity nor low specificity, however,

we expect that as we add more patient groups to the classifier (in the next chapters), the

curve would tend more to the chance line, since the task of the classification gets harder

and the classifier makes more mistakes.
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6.4 Summary

In this chapter, two feature types were extended (acoustic and lexical) and one new feature

type was introduced, i.e. the word vector features.

The four feature types were extracted for the three levels of transcription automation

(the manual transcript, the half automated (ASR), and the fully automated (Diar+ASR))

and used to train the classifier to classify between the two patient groups: ND and FMD.

The feature types with the highest classification accuracy were the CA-inspired with

a 90% accuracy and the extended lexical features with a 83% accuracy for the fully

automated transcription. Putting together the four feature types (combined features)

resulted in the same accuracy.

Using the RFE feature selection approach, the accuracy of the classifier achieved 97%

using the most significant (2 or 7) features for the fully automated transcription (same

accuracy achieved for the manual transcript using the most significant 3 features). The

majority of the features were acoustic features. The next important feature types were

the word vector and lexical features. The least important features, however, were the

semantic features.

Finally, using the ROC curve analysis we showed that the classifier was robust with

an average 98% ROC AUC using the most significant (3) features for the fully automated

transcription (92% ROC AUC using all 99 combined features).
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In Chapter 3, we introduced our automatic dementia detection system and in Chap-

ters 4, 5 and 6 we focused on different components of the system including the ASR, the

speaker diarisation unit, the classifier and the feature extraction. As a final step towards

full automation, in this chapter, we will introduce an Intelligent Virtual Agent (IVA)

(an animated talking head displayed on a screen) to conduct the conversations with pa-

tients (asking similar questions as the neurologists asked in the Hallamshire dataset). The

conversations between the IVA and the patients then will be passed to the automatic

dementia detection system to predict a diagnostic label for the conversation.

We have been able to deploy the IVA in a memory clinic setting (at the Sheffield Royal

Hallamshire Hospital) in three summers (2016, 2017 and 2018). This chapter focuses on

the data collected during the 2016 summer (the dataset is called IVA2016). The chapter

is structured as below:

Section 7.1 is a general introduction to virtual agents.

Section 7.3 describes our IVA, which was designed to collect data from people with

dementia and other memory issues.

Section 7.4 contains the results achieved from the IVA2016 dataset using the demen-

tia detection system.

Section 7.5 and Section 7.6 present the discussion and the summary of this chapter

respectively.
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7.1 Introduction

The use of IVAs has recently become more prevalent in healthcare applications. An IVA

is a talking head animation displayed on a screen which might be accompanied by other

speech/video technologies such as Text To Speech (TTS), pre-recorded audio/video and

ASR embedded in a form of Spoken Dialogue System (SDS) that conducts conversations

with users or provide different services for them (e.g. motivating them to go for a walk).

Applications include use by people with mental health problems [Hayward et al.,

2017; Huckvale et al., 2013; Leff et al., 2014; Rus-Calafell et al., 2014], MCI [Morandell

et al., 2008], AD [Carrasco et al., 2008; Tran et al., 2016], and the HC [Cyarto et al.,

2016]. Nakatani et al. [2018] developed a 3D virtual agent from a photo of a familiar face,

such as a family member, to communicate with people with dementia and provide “person

centred care”. IVAs have been used for detecting dementia as well. Tanaka et al. [2017]

designed an IVA with spoken dialogue for detecting the early signs of dementia. Although

that system was based on standard cognitive tests (MMSE and Wechsler logical memory),

in line with our findings, it demonstrated encouraging results for the use and acceptability

of an IVA-based, automatic interactional system for patients with memory concerns.

In general, an interface based around conversation is often preferred over other modes

of interaction with computers (keyboards or touch screens) as it is seen as more natural

and easy to use. It is sometimes even preferred over interaction with human; for example,

the disclosure of potentially embarrassing information to a computer may be easier than

to a human being, especially if the talking head is perceived to be supported by Artificial

Intelligent (AI) Rizzo et al. [2016].

7.2 Verbal fluency tests

A verbal fluency test is one of the standard cognitive tests used for assessing people at

risk of developing dementia, and comes in two main varieties: semantic (naming from

a category e.g. animal or fruit) and phonemic (naming words beginning with a letter

e.g. “P”). Impaired verbal fluency is common amongst people with dementia. For example,

people with AD show more deficiency in the 1-minute fluency semantic test comparing
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to the 1-minute fluency phonemic test [Canning et al., 2004]. Forbes-McKay et al. [2005]

reported that compared to HCs, people with AD i) produced fewer words, ii) tended to

use words acquired earlier in life, i.e. words with a lower Age of Acquisition (AoA)1, iii)

use words with a higher occurrence frequency and as well as more typical examples (e.g.

thinking of ”lion” faster than ”kangaroo”).

Pakhomov and Hemmy [2014] claimed that the performance of the fluency semantic

test is dependent on the efficiency of clustering the related items in a category by the

examiner. They used a Latent Semantic Analysis (LSA) approach to automatically de-

termine the category of the words and calculate the mean of semantic clusters for all

words, as well as the mean of semantic clusters in the neighbouring words. However, they

could not find a significant correlation between their automatic features and the manual

scores. Later, they extended the features to the density of repeated words and semantic

and lexical diversity. On a longitudinal study of people with dementia and HC, they found

that the later features showed a much more significant decline in MCI and AD patients,

while they almost stayed the same for HC Pakhomov et al. [2016].

Verbal fluency tests are routinely administered as part of diagnosing and automating

this as well as the scoring would free up valuable time for the clinicians.

7.3 Using an IVA to elicit conversation

The initial objective of introducing the IVA was to assess the feasibility of eliciting con-

versations with people with memory problems. That is, the IVA acted as a neurologist (a

virtual doctor) and asked similar questions to those asked in a real assessment situation.

The IVA software used for this study was based on the Botlibre2 library. Only a single

IVA was used for this experiment (a head of an adult male character with glasses). Based

on feedback from end-users3, we chose to replace the synthesized speech with recordings

of human speech. The IVA had eye movements as well as lip syncing abilities (no other

emotional behaviour like smiling, getting excited, etc.). The Botliber uses the image

1The age we normally learn a word for the first time.
2https://www.botlibre.com
3The South Yorkshire Dementia Research Advisory Group (SYDEM RAG)

http://sydemrag.group.shef.ac.uk
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Figure 7.1: The IVA setup: a laptop was located on a table displaying the IVA to the par-
ticipants, while a hue camera as well as the laptop's built-in web-cam was video recording
the session. Distant microphones on the table were used for audio recording.

Figure 7.2: The IVA acting as a neurologist. The web page plays a question and the
patient can listen again by pressing the ‘repeat’ button (or ‘space bar’ key) or pressing the
‘next’ button (or ‘enter’ key) to move to the next question.

replacing technique to simulate the eye movement and lip syncing. We did not also

use any dialogue system techniques to provide feedback to the subjects based on their

responds to the questions (i.e. it could not make the interactional conversation with the

subjects).

The IVA asks a question when the participant clicks on a button. Since the participants

were mostly elderly, who were less familiar with computers and the use of a PC mouse, as

a further simplification, they were directed to use just two keys: ‘enter’ (play) and ‘space

bar’ (repeat). A laptop was used to run the IVA application. The audio was recorded

using a distant microphone, TascamTM DR-40, which was placed on the table, as well as
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two other microphones close, attached to the subjects. The laptop's built-in camera was

used for video capturing the participant's face (and/or that of the accompanying person)

from the front, while another camera (Hue) was located on a table near to participants,

and recorded the session from a side angle. This allowed us to capture extra movements

of the patient which may not be captured by the front camera (see Figure 7.1). In the

current study, we have not used the videos. Figure 7.2 shows a screen-shoot of the IVA.

The participants were asked a number of conversational questions and encouraged to

take part in two 1-minute verbal fluency tests (”name as many animals...”, and ”name as

many words starting with the letter P...”. Data were collected in three summers: 2016,

2017, and 2018 (we refer to these as IVA2016, IVA2017 and IVA2018 datasets). Table 7.1

shows the questions and fluency test prompting. Note that these questions are very similar

to those being asked by the neurologists in our initial data set (the Hal data set). The

two verbal fluency tests are the standard screening tests known as the ‘fluency semantic’

and ‘fluency phonemic’ tests.

Note that we updated some of the questions/tests. For example, question Q1 changed

slightly in 2018 since we were interested in adding a new group of participants, HC

and they were not being recorded in the memory clinic, hence a more broad compound

question was used. The question Q3 was divided into two separate questions in summer

2017, because the original question was a very long compound question which proved to be

confusing for the participants in summer 2016. The phrase “Please give as much detail as

you can” at the end of the question Q4 was omitted, since it triggered the participants to

provide very long responses to the question. The test questions T1 and T2 were removed

from the list in 2017 since the answers provided by the participants in 2016 were not very

useful.

7.3.1 IVA datasets

The IVA has enabled us to evaluate our dementia detection system in a real clinical

setting, and we have collected data during the summers of 2016, 2017 and 2018. The

data was collected by three MSc students at the Department of Neurology, University of

Sheffield based at the Royal Hallamshire Hospital.
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Table 7.1: Conversational questions/verbal fluency tests asked of the participants in three
summers: 2016, 2017, and 2018.

2016 2017 2018 Question

Q1 X X - Why have you come today and what are your ex-
pectations?

- - X Where have you come in from today and what are
you hoping to find out?

Q2 X X X Tell me what problems you have noticed with your
memory?

Q3 X - - Who is most worried about your memory, you or
someone else? What did you do over last weekend,
giving much details as you can?

- X X Who is most worried about your memory, you or
someone else?

- X X What did you do over last weekend, giving much
details as you can?

Q4 X - - What has been in the news recently? Please give as
much detail as you can.

- X X What has been in the news recently?

Q5 X X X Tell me about the school you went to and how old
were you when you left

Q6 X X X Tell me what you did when you left school, what
jobs did you do?

Q7 X X X Tell me about your last job, give as much detail as
you can.

Q8 X X X Who manages your finances you or someone else?
Has this changed recently?

T1 X - - How well do you think your memory is perform-
ing compared to other people your age?, Please se-
lect one of the following options A: much better, B:
slightly better, C: the same, D: slightly worse or E:
much worse.

T2 X - - How well do you think your memory is performing
now compared to how it performed five to ten yeas
ago? Please select one of the following options A:
much better, B: slightly better, C: the same, D:
slightly worse or E: much worse.

Phonemic test X X X Please name as many animals as you can in one
minute, you can name any animal, you may now
begin.

Semantic test X X X Please name as many words as you can that begin
with the letter P. It can be any word beginning
with P except for names of people such as Peter or
names of countries such as Portugal. You have one
minute and you may now begin.
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A total number of 78 participants were recorded in the IVA2016/2017/2018

datasets: 24 in 2016, 21 in 2017, and 33 in 2018. Table 7.2 shows the number of the

participants per year and diagnostic class. In addition to the two original diagnostic

classes (FMD and ND), an additional class was introduced: the Mild Cognitive Impair-

ment (MCI). They are patients who may develop dementia in the future, although a

considerable number of people with the MCI might get better or stay the same (see

Chapter 2). Some of the participants were diagnosed as having other memory difficulties

and are labelled as the ‘Rest’ class in the table. Also the IVA2018 included a HC group. It

is worth mentioning that the majority of the studies of automatic detection of dementia

include either two diagnostic classes: ND (such as Alzheimer's Disease) vs. HC, or

three: ND vs. MCI vs. HC (see Chapter 3). We will include the HC group in the next

chapter (the final evaluation).

Table 7.2: The number of participants in the IVA2016/2017/2018 datasets with the di-
agnostic classes. FMD: Functional Memory Disorder, ND: Neuro-degenerative Disorder,
MCI: Mild Cognitive Impairment, HC: Healthy Control.

FMD ND MCI HC Rest Total

IVA2016 6 6 6 0 6 24

IVA2017 0 6 8 0 7 21

IVA2018 5 7 4 15 2 33

Sum 11 19 18 15 15 78

Tables 7.3 and 7.4 show the demographic information of the participants of the

IVA2016 dataset and the IVA2017/2018, respectively.

Table 7.3: Demographic information of the participants in the IVA2016 dataset.

FMD (n=6) ND (n=6) MCI (n=6)

Age 55.7 (+/-8.94) 65.8 (+/-10.38) 63.3 (+/-8.96)

Female 16.7% 33.3% 33.3%
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Table 7.4: Demographic information of the participants in the IVA2017/2018 datasets.

FMD (n=5) ND (n=13) MCI (n=12) HC (n=15)

Age 54.6 (+/-2.70) 71.8 (+/-6.99) 61.6 (+/-10.13) 69.5 (+/-7.95)

Female 100.0% 38.4% 33.3% 60.0%

7.4 Results

In this chapter, we only focus on the IVA2016 dataset, and the data collected in the

IVA2017/2018 datasets will be used for final evaluation of our dementia detection system

in Chapter 8.

The recordings of the 18 conversations between the IVA and the participants (the

IVA2016) were given to our dementia detection system (6 FMD, 6 ND, and 6 MCI). The

automatic transcript and segmentation had 11% DER and 59% WER. The k-fold, k = 5,

cross validation is used for training the classifiers in this section.

The outputs from the manual transcript and the automatic transcript plus segmen-

tation were then given to the feature extraction and the classifier components of the

dementia detection system. Out of the 99 combined features introduced in Chapter 6,

27 feature were extracted from the speech of the neurologists. These features were re-

moved from the combined features, since the IVA (who acted as a neurologist) played

pre-recorded phrases to ask the same questions of the participants. Therefore a total

number of 72 features were extracted by the feature extraction module of the dementia

detection system to train the LR classifier to classify between the three patient groups: the

FMD, the ND and the MCI.

Table 7.5: Accuracy of the LR classifier to classify between different patient
groups: FMD/ND/MCI, FMD/ND, FMD/MCI, and ND/MCI using the 72 combined
features.

Level of automation FMD/ND/MCI FMD/ND FMD/MCI ND/MCI

Manual Transcript 61.1% 91.7% 58.3% 83.3%

Auto transcript+segmentation 66.7% 83.3% 33.3% 91.7%

Table 7.5 shows the classification accuracy using the 72 features for the two levels

of automation of transcript and segmentation: manual transcript, and automatic tran-
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script+segmentation (i.e. using both the Diar and the ASR). The results are for the

three-way classifier (FMD/ND/MCI) as well as the three binary classifications for the pa-

tient groups FMD/ND, FMD/MCI, and ND/MCI respectively. Since an extra class (MCI)

has been introduces, this will make the classification task harder. Thus it is expected that

the classifier accuracy drops considerably.

For the manual transcript, an accuracy of 61% was achieved by the three-way clas-

sifier. The accuracy of the FMD/ND and the ND/MCI classifiers were 92% and 83%

respectively, while the FMD/MCI classifier achieved only 58% accuracy. This indicates

that there were much overlaps between FMD and MCI groups and it was the hardest task

in comparison to the other binary classifiers.

For the auto transcript+segmentation, comparing to the manual transcript results,

the accuracy of the three-way classifier was slightly better than for the manual transcript

(67% vs. 61%). The accuracy of the FMD/ND changed from 92% to 83%, and for the

ND/MCI from 83% to 92%. However, the accuracy of the FMD/MCI classifier dropped

considerably to 33% (a 24% decrease compared to the manual transcript). This indicates

that there was a trade off between the accuracy of the binary classifiers, i.e. increasing

accuracy of one of them resulted in decreasing the others.

7.4.1 Confusion matrix

Table 7.3 shows the confusion matrix for the 3-way classifier (Auto transcript+segmentation).

Among the six samples of the FMD group, 4 (67%) were identified truly by the classifier,

while one confused as the ND and one as the MCI. However, all the six ND were predicted

correctly (100%, no confusion at all), while only two MCI were predicted truly (3 were

identified as FMD and 1 as ND by mistake). This shows that identifying the MCI had

the highest confusion among the three patient groups and there were mostly confused by

the FMD patients. The high confusion between the MCI and the FMD can be seen also

in the Table 7.5 (row 3, column 4), where the binary classifier only had 33% accuracy

rate. On the whole identifying the ND group was the easier task followed by the FMD.

The hardest group to identify correctly was the MCI group.
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Figure 7.3: Confusion matrix for the 3-way classifier (Auto transcript+segmentation).

7.4.2 Feature selection

Using the RFE feature selection approach (we applied the k-fold cross validation (k=5),

and the RFE was performed on the trained set.), which chooses first a feature with the

highest contribution in classification and then recursively find the next feature with the

highest contribution in the remaining feature set, until the desired number of features are

selected. Using this approach, the top n features for the two levels of automation were

chosen. The classification results are summarised in the Table 7.6. A similar approach as

described in Chapter 6 was employed to find the n.

Table 7.6: Accuracy of the LR classifier to classify between different patient groups:
FMD/ND/MCI, FMD/ND, FMD/MCI, and ND/MCI using top features for the three
systems. NT: Number of top features.

Level of automation NT FMD/ND/MCI FMD/ND FMD/MCI ND/MCI

Manual Transcript 11 66.7% 83.3% 83.3% 91.7%

Auto transcript+segmentation 5 66.7% 100.0% 66.7% 25.0%

The top 11 features for the manual transcript system could improve the accuracy of

the three-way classifier from 61% to 67%. This could also improve the accuracy of both

the FMD/MCI (from 58% to 83%) and the ND/MCI (from 83% to 92%) classifiers. For

the auto transcript+segmentation, using the 5 top features, the three-way classifier stayed
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the same at 67%, while the accuracy of the FMD/ND classifier achieved 100%, and the

accuracy of the FMD/MCI almost doubled (from 33% to 67%), however, the accuracy of

the ND/MCI classifier drastically decreased from 92% to 25%.

This shows that feature selection by the RFE algorithm might find a subset of features

which result in an overall (3-way) good classification rate, but at the price of having a

worse accuracy for the binary classes. So more care has to be taken when carrying out-e.g.

using different feature selection algorithm.

Table 7.7 shows the lists of the top 11 features for the manual transcript as well as

the top 5 features for the auto transcript+segmentation. Surprisingly the word vector fea-

tures had the highest ranks in the lists, followed by the acoustic features. There was only

one lexical feature in the top features (average number of words for patient, PatAVAll-

Words). Also there was not any features associated with the accompanying person in

the top feature lists. It is worth mentioning that only 3 out of 18 participants had APs,

which might be the reason why none of the features extracted for the APs were in the top

features.

Table 7.7: Top features the RFE for the manual transcript and the Auto tran-
script+segmentation. WV col1: The word vector features column 1. AC: acoustic fea-
tures, LX: lexical features, and WV: word vector features.

Rank Manual Transcript Auto transcript+segmentation

1 WV col6(WV) WV col5(WV)

2 WV col2(WV) WV col7(WV)

3 WV col3(WV) PatAVPauses(AC)

4 WV col1(WV) PatAvgH1-H2(AC)

5 WV col5(WV) PatAvgH1-A1(AC)

6 WV col4(WV)

7 PatAVAllWords(LX)

8 PatAVTurnLength(AC)

9 PatAvgH1-A2(AC)

10 PatNoOfTurns(AC)

11 PatAvgIntonation(AC)



151 7.4. Results

Figure 7.4: The ROC curve for the FMD/ND/MCI classifier using the 72 features for
Diar+ASR.

Figure 7.5: The ROC curve for the FMD/ND/MCI classifier using the top 5 features for
Diar+ASR.
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7.4.3 The Receiver Operating Characteristic curve

In this section, similarly to the previous chapter, we will use the ROC curve analysis in

order to show how robust the three-way classifier for the transcript+segmentation was.

The ROC curves for the three-way classifier using the 72 features and the most sig-

nificant (5) features are shown in Figures 7.4 and 7.5 respectively. For the former, the

average ROC-AUC was 81% (k-fold, k = 5). For the latter, however, the average ROC-

AUC dropped to 69%. This shows that the three-way classifier trained on the 72 features

was much more robust than the classifier trained on the most significant (5) features

despite the fact that both classifiers had 67% accuracy.

7.4.4 Comparing neurologist-led to IVA-led conversations

In this section, we compare the FMD/ND conversations in the IVA2016 dataset (IVA-

led conversations, referred to as iva in the following) with the human-led conversations

in the Hallamshire dataset (hum in the following). Out of the original 99 features, 27

neurologist-associated features were removed and using the k-fold, k = 5, the classification

experiments repeated. The classifier accuracy for the two levels of automation of transcript

and segmentation are listed in Table 7.8. To make it easier, we repeated the accuracy of

the FMD/ND classifier for the iva in the last column. Note that the hum comprises of 15

FMD and 15 ND participants, and the iva comprises of 6 FMD and 6 ND participants.

Table 7.8: Accuracy of the FMD/ND classifier for the human-lead (hum) and the IVA-led
( iva) conversations.

Level of automation hum iva

Manual Transcript 76.7% 91.7%

Auto transcript+segmentation 83.3% 83.3%

For the manual transcript, the accuracy achieved by the classifier for the hum

and the iva conversations were 77% and 92% respectively. However for the auto

transcript+segmentation, the accuracy of both classifiers were the same at 83%. Using

the statistical test (Student's T test) no significant difference was found between the

accuracy of the classifier obtained for the hum and the iva conversations.
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(a)

(b)

(c)

Figure 7.6: (a) Distribution of the average turn length (in seconds). (b) Distribution
of the average silence (in seconds). (c) Distribution of the average overall duration (in
seconds).
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Some differences were observed between the iva and hum conversations. Figure 7.6

shows three measures plotted for the ND and FMD groups for the iva and hum respec-

tively. Looking at the distribution of the average length of the turns (Figure 7.6(a)),

in both datasets, the patients speaking to the neurologist had shorter turns than when

speaking to IVA. However, overall the iva conversations had much longer turns, which is

likely to be related to the fact that this prototype IVA provides no feedback to the patients

in the form of nods, clarifying questions or back-channel noises to steer the conversation.

As a result, some patients chose to give very lengthy responses to some of the questions.

The average silence plotted in Figure 7.6(b) shows a different picture. The least silence

is observed for the ND-iva group and the most for the ND-hum group. This may be a

result of the neurologists being instructed to wait much longer than would normally be

expected for the patients to provide an answer. When working with the IVA, the patients

always had the option of clicking ’next’ and moving the IVA on to the next question. This

suggests that many chose to take this option quite readily when they were unable to give

a satisfactory answer.

Finally, Figure 7.6(c) shows the average total duration of the conversation. Despite

the average turn length (a), appearing to be quite a discriminative measure, this is less

clearly so.

7.5 Discussion

The accuracy of the three-way classifier using the manual transcript and the automatic

transcript and segmentation were 61% and 67% respectively, this indicates that despite

the errors caused by the Diar and the ASR, the 72 extracted features were robust when

classifying between the three classes with an acceptable level of accuracy (the chance

level accuracy is 33%), although, the discrimination for the FMD/MCI was harder (the

accuracy dropped from 58% to 33%) due to the high amount of overlaps between the

features' distribution for the two patient groups (i.e. the two groups do not share the

common issues seen in the ND patients, like struggling to remember, long pauses, not

able to answer all parts of questions, etc.). In clinical situations, similarly discriminating
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between FMD and MCI patients is not an easy task.

The most significant features for the manual transcript could improve the accuracy

of the three-way classifier from 61% to 67% while the accuracy of the binary classifiers

FMD/MCI and ND/MCI improved remarkably. However, for the automatic transcript

and segmentation, the most significant features resulted in the same accuracy for the

three-way classifier. The FMD/ND classifier achieved 100% accuracy while the accuracy

of the other two binary classifiers decreased considerably. This indicates that the classifiers

trained on the most significant features for the automated system were not as robust as

the classifiers trained on the 72 features.

The features extracted for the APs were not among the most important features. It

might be due to the fact that in the experiment, only 3 out of 18 participants had APs and

all of them were in the ND group (i.e. 50% of ND groups compared to 0% of FMD and

0% of MCI). Since there were not many APs involved in the experiment, their features

could not be in the top features.

Looking at the confusion matrix, all the ND patients were predicted correctly, while

67% of FMD were identified truly and only 33% of MCI could be identified without

confusion. Most of the confusion were between the MCI and the FMD.

Comparing the ROC-AUC of the three-way classifiers for the automatic transcript

and segmentation using the 72 features and the most significant (5) features confirms

that the former classifier was more robust than the latter (with 82% ROC-AUC vs. 69%

ROC-AUC).

In a real situation, doctors are faced with assessing many different patient groups and

due to the high degree of overlap between the symptoms of the different memory disorders,

making a final decision about a patient’s diagnosis is a challenging and complex task. On

the whole, adding the MCI group caused the classification to become harder, which de-

creased the accuracy of the classifier. The binary classifier MCI/FMD was the hardest

classification of the three binary classifications. Diagnosing between the two groups is

hard for clinicians as well.

Comparing the results of the IVA2016 dataset (the IVA-led conversations) to the

Hallamshire dataset (human-led conversations), we managed to somewhat improve the
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accuracy in the IVA-led conversations using the manual transcript. However, using the

automatic transcription and segmentation the same accuracy was achieved for both

datasets. There were differences between the two types of conversations in the length of

turns, silences and duration, however, these differences were mostly due the fact that the

participants knew they are talking to a virtual agent and they could themselves control

the conversation by clicking the ‘next’ button.
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7.6 Summary

In this chapter, we introduced an IVA to our dementia detection system. The IVA asked

similar questions of the patients as the questions in the Hallamshire dataset. Using the

IVA we collected data during three summers (2016, 2017 and 2018).

In this chapter we focused on the IVA2016 dataset containing a total number of 18

conversations from three different patient groups (FMD, ND and MCI). The three-way

classifier accuracy was 67% for the fully automated system (automatic transcription and

segmentation) using the 72 features introduced in the previous chapter. Although the

accuracy of the two binary classifiers the FMD/ND, and the ND/MCI achieved 83% and

92% respectively.

Using the most significant (5) features the accuracy of the three-way classifier did

not improve, however, the accuracy of the FMD/ND and the FMD/MCI increased from

83% and 33% to 100% and 67% respectively, whilst the accuracy of the ND/MCI dropped

drastically from 92% to 25%. This confirms that there were trade offs between the accuracy

of the three binary classifiers, increasing one classifier reduced the accuracy of the others.

The ROC curve analysis also confirmed the difficulty of the three-way classification.

Comparing the IVA-led conversations (the IVA2016) to the human-led conversations

(the Hallamshire dataset) using the 72 features on manual transcripts, the binary classifier

FMD/ND of the IVA-led conversations achieved 92% accuracy, which was 15% better

than the human-led conversations with 77% accuracy, however, both achieved the same

accuracy on the automatic transcript and segmentation (83%). Despite some differences

between the IVA-led and the human-led conversations (e.g. in the length of turns and

silences), the IVA-led conversations could be used successfully to discriminate between

the two patient groups similar to the human-led conversations.
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In this chapter the conversations collected by the IVA during the summer 2017 and

2018 will be used for the final evaluation of the dementia detection system. The datasets

include 8 conversational questions asked by the IVA from the participants, as well as three

verbal fluency tests. In addition to the 72 features extracted from the conversational

questions, some additional features will be extracted automatically from the first two

cognitive test questions. Comparing to the previous chapter, we will have another patient

group HC (4 patient groups altogether: ND, FMD, MCI, and HC). This will make the

classification task harder but it will reflect a more realistic situations. The chapter is

organised as below:

Section 8.1 is an introduction to the chapter.

Section 8.2 presents the results of training a number of classifiers using the conver-

sations and the verbal fluency tests of the IVA datasets.

Section 8.3 and Section 8.4 include the discussion and the summary of this chapter

respectively.
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8.1 Introduction

In the previous chapters, our dementia detection system was introduced as well as its

individual components. Despite the errors caused by the diarisation and the ASR modules,

the classifier trained on the features extracted from the automated transcript could classify

with a high accuracy for the two patient groups (FMD vs. ND, see Chapter 6) in

the Hal dataset. Then we introduced the IVA for conducting the conversations with the

participants as well as administering a few standard verbal fluency tests.

As we introduced the MCI as an additional patient group to the classifier, the accuracy

decreased considerably due to difficulties of the three-way classification task. More impor-

tantly, the complete systems based on the manual transcript and the automated transcript

and segmentation, both gave the same accuracy for the three-way and the FMD/ND clas-

sifiers. However, this was different for the two other binary classifiers ( FMD/MCI and

ND/MCI) where a decline in accuracy was observed for the former classifier, but there

was an increase for the latter.

In real clinical conditions, there might be a number of patients referred that do not

have any dementia-related memory issues. In the literature, many studies about detect-

ing dementia include healthy controls (HCs) which represents this group of referrals. The

IVA2017/18 datasets includes HCs. Therefore as a final evaluation of our dementia de-

tection system we will use the IVA2017/18 with four diagnostic groups: FMD, ND, MCI

and HC.

The four-way classification is likely to be much harder than the three-way and the bi-

nary classification. Thus the classifier would make more mistakes and the overall accuracy

would drop drastically.

In addition to processing the conversations of the datasets, as a further step, the

two verbal fluency tests (animal naming, and words beginning with letter ‘P’) will be

automatically scored. We examine two ways of using these scores to improve the accuracy

of the system, namely: as new features to train the classifier, or by adding them to the

72 features introduced in the previous chapter.
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8.2 Final results

So far we mostly used the accuracy of the classifier as a measure to evaluate the per-

formance of our dementia detection system. However as we mentioned in Chapter 6,

in addition to the accuracy, the high sensitivity and high specificity of a classifier are

important. The ROC analysis shows how the classifier sensitivity and specificity change

for different parameters and settings of a classifier, i.e. the higher ROC-AUC the better

sensitivity and specificity. It is possible to have a classifier with a high accuracy rate but

a low ROC-AUC and vice verse. However, it is generally acceptable to rely on a classifier

with both high accuracy and high ROC-AUC.

Therefore both the ‘accuracy’ and the ‘ROC-AUC’ will be used as the evaluation

measures of the final dementia detection system. Similar to the previous chapter, the

k-fold (k = 5) cross validation approach will be used for training the classifiers.

8.2.1 Effect of adding the healthy control group

As mentioned in Section 7.3, the IVA2017/18 datasets include an additional group,

HC (see Table 7.4). A total number of 45 (FMD:5, ND:13, MCI:12, and HC:15 ) con-

versations were passed to the dementia detection system to extract the 72 features and

train a four-way classifier (FMD/ND/MCI/HC). In addition to this classifier, 10 more

classifiers were trained with the subset of the participant groups: four three-way classi-

fiers (FMD/ND/MCI, FMD/ND/HC, FMD/MCI/HC and ND/MCI/HC), and six binary

classifiers (FMD/ND, FMD/MCI, ND/MCI, FMD/HC, ND/HC, and MCI/HC).

Figure 8.1 shows the accuracy of the 11 classifiers (the green bars) as well as their

corresponding ROC-AUC (the grey bars).

The accuracy of the four-way classifier (with the chance level of 25%) was 53% (+/-

10% errors) while its ROC-AUC was 74% (+/-7% errors). This indicates that we trained

a robust classifier despite the difficulties of the four-way classification task.

Amongst the four three-way classifiers, the classifiers including HC had better

results with 73% (+/-11%), 66% (+/-12%), and 63% (+/-11%) for FMD/ND/HC,

FMD/MCI/HC, and ND/MCI/HC respectively. They also all had a high ROC-AUC
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Figure 8.1: Accuracy and ROC-AUC of the 11 LR classifiers for the conversations of the
IVA2017/18 datasets with error bars (red lines: chance levels).

(over 79% with less than 11% errors). HC is clearly the easiest group to distinguish

from the rest. However, the accuracy of the FMD/ND/MCI classifier was low with

43% (+/-10%) (ROC-AUC 67% (+/-7%)). This shows the overlap between the features

extracted for these three groups were high, which made it harder for the classifier to

identify them correctly. Comparing these to the results gained by the IVA2016 dataset

(61% accuracy, 81% ROC-AUC, see Table 7.5 and Figure 7.4), here both the accuracy

and the ROC-AUC were considerably lower. This could be due to the imbalanced number

of participants and contributions of each gender in the IVA2017/18 datasets comparing

to the IVA2016 dataset. There were 6 FMD, 6 ND and 6 MCI in IVA2016 dataset, while

the number of FMD, ND and MCI in the IVA2017/18 were 5, 13 and 12 respectively. Also

only 16.7% of the FMD participants in the IVA2016 dataset were female, while 100% of

the FMD participants were female in the IVA2017/18 datasets (see Table 7.3 and 7.4).

Between the six binary classifiers, the ND/HC classifier had the best classification

accuracy (89% (+/-13%)) with a high ROC-AUC (88%, but with also a high error

range of 22%), followed by the MCI/HC (accuracy: 81% (+/-16%) ROC-AUC: 89%

(+/-13%)). However the lowest accuracy was achieved by the ND/MCI with 44% (+/-

10%). This indicates that discrimination of the MCI patients from the ND patients was

the hardest task done by the classifiers. Comparing the accuracy of the FMD/ND classifier
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with the accuracy of the Hal dataset, the accuracy achieved here was not good (67% vs.

77% see Section 7.4.4) with over a 24% error range. The FMD/MCI classifier had the

worse error range of 40%1 for its average ROC-AUC of 78% (i.e. for some folds ROC-AUC

was as little as 38%), despite having a relatively high accuracy of 82%.

8.2.2 Processing the verbal fluency tests

In addition to the conversational questions, the IVA2017/18 included the verbal fluency

tests (‘fluency semantic test’ and ‘fluency phonemic test’ see Table 7.1). The former test

shows the ability of remembering words from our semantic and episodic memory, while

the latter assesses our phonological awareness skill (reading ability). People with dementia

may struggle with their semantic memory and reading ability. In counting the names, the

repeated and non-relevant names should be omitted. The count below a threshold (e.g.

14 names in a minute) may indicate an issue with memory.

The number of correctly produced names as well as the average and the standard

deviation of the AoA for the words are produced automatically (from the outputs of the

ASR). The language model of the ASR (n-gram language model) used here was trained

on a general list of animals and words beginning with the letter ‘P’. Table 8.1 describes

details of the features extracted from the verbal fluency tests.

The six verbal fluency tests' features extracted from the IVA2017/18 datasets were

given to the 11 LR classifiers. Figure 8.2 shows the accuracy and the ROC-AUC for the

classifiers trained on the features.

The accuracy of the four-way classifier was 43% (+/-10%), which was 10% lower than

the four-way classifier trained on the conversations of the IVA2017/18 datasets, however,

the ROC-AUC was above 70% (+/-9%), which shows a relatively robust classification.

The four three-way classifiers all achieved the accuracy rates between 51% and 58%

and the ROC-AUC between 67% and 73%, although the error range for accuracy of

FMD/ND/HC was high (24%). In particular the FMD/ND/MCI classifier achieved better

results in comparison to the classifier for the conversations of the IVA2017/18 datasets

1when the error range of a ROC-AUC of a classifier is high, it is hard to claim that the classifier is
robust despite having a high average value for ROC-AUC.
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Table 8.1: verbal fluency tests' features.

No. Feature Description

1 PatSemCount Number of unique animals correctly uttered in the
fluency semantic test.

2 PatSemAVGAoA Average AoA for the fluency semantic test.

3 PatSemSTDAoA Standard deviation of the AoA for the fluency semantic
test.

4 PatPhnCount Number of unique words correctly uttered in the
fluency phonemic test.

5 PatPhnAVGAoA Average AoA for the fluency phonemic test.

6 PatPhnSTDAoA Standard deviation of the AoA for the fluency
phonemic test.

(accuracy: 53% vs. 43% , and ROC-AUC: 73% vs. 67%).

The best accuracy for the binary classifiers was achieved by the FMD/ND classifier

with 78% (but with a 25% error range) as well as the highest ROC-AUC (91% (+/-

13%)). This was better than the classifier for the conversations, and comparable with the

accuracy of the Hal dataset (78% vs. 77%). However the lowest ROC-AUC (22%) with

a high error range of 27% was achieved by the FMD/HC classifier as well as the lowest

accuracy (53% (+/-13%)). This indicates that the verbal fluency tests were not very

successful in distinguishing between the FMD and the HC groups. Also the FMD/MCI

classifier with a high accuracy of 77% (+/-12%) had the worse error range of 37% for

ROC-AUC. Thus distinguishing between both the FMD and the MCI participants and

the FMD and the HC participants were not easy tasks.

8.2.3 Combining the conversations with the verbal fluency tests

Since the results of the classifiers trained with the six cognitive fluency test features were

comparable with the results of the classifiers trained on the conversations, we combined

the fluency features with the conversation features (78 features in total). Figure 8.3 shows

the accuracy and the ROC-AUC of the classifiers trained on the combined 78 features.

The overall accuracy and ROC-AUC of the classifiers were considerably higher. The

four-way classifier achieved 59% (+/-10%) accuracy, which was 6% better than the classi-
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Figure 8.2: Accuracy and ROC-AUC of the 11 LR classifiers using the verbal fluency
tests' features of the IVA2017/18 datasets (red lines: chance levels).

Figure 8.3: Accuracy and ROC-AUC of the 11 LR classifiers using both the conversations
and the verbal fluency tests of the IVA2017/18 datasets (red lines: chance levels).



167 8.2. Final results

fier trained on the conversations only. The ROC-AUC for both the classifiers were almost

the same (74%).

Similarly, the tree-way classifiers included the HC group had higher accuracy and

ROC-AUC (accuracy: between 64% and 68% (error range between 9% and 17%), ROC-

AUC: between 77% and 81% (error range between 7% and 13%)). The FMD/ND/MCI

classifier achieved 63% accuracy (20% better than for the conversation-only) and 72%

ROC-AUC (5% better than for the conversation-only).

The best accuracy for the binary classifiers was achieved by the ND/HC classifier with

89% accuracy and 87% ROC-AUC (almost identical to the classifier of the conversation-

only). The FMD/ND achieved the same accuracy and ROC-AUC. The lowest accuracy

was gained by the ND/MCI with 48% and the lowest ROC-AUC by the FMD/HC with

50% and 33% of error range.

8.2.4 Combining all the IVA datasets

Finally, we combined the IVA2016 and IVA2017/18 datasets and extracted the 78 fea-

tures. Note that there was a fluency test missing from the IVA2016 (one FMD participant),

therefore the combined datasets included 61 samples (FMD=10, ND=19, MCI=18, and

HC=14). For training the classifiers the k-fold (k = 10) cross validation approach was

applied. Figure 8.4 shows the accuracy and the ROC-AUC for the 11 classifiers trained

on the features extracted from the combined datasets IVA2016/17/18.

Generally, comparing to the results of IVA2017/18 datasets, the accuracy of all clas-

sifiers were slightly worse. Note that there were not any HC participants in the IVA2016

dataset, while 15 out of 45 participants (33%) of the IVA2017/18 datasets were HC. How-

ever, in the combined datasets, there were fewer percentage (15 out of 61 or 25%) of the

HC participants, who can be identified much easier than the other clinical categories.

The four-way classifier achieved 48% accuracy (5% less than for the IVA2017/18

datasets) but also with a higher error range of 25%, also with a 70% ROC-AUC (4%

less than for the IVA2017/18 datasets).

For the three-way classifiers, the accuracy of the FMD/ND/MCI classifier decreased

from 63% to 49%, and its ROC-AUC dropped from 72% to 70%. The accuracy of the
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Figure 8.4: Accuracy and ROC-AUC of the 11 LR classifiers for the IVA2016/17/18
datasets (78 features) (red lines: chance levels).

classifiers including the HC also declined considerably. The error ranges are also much

higher than for the IVA2017/18 datasets.

Amongst the 6 binary classifiers the ND/HC and the FMD/ND classifiers achieved

the highest accuracy, 85% and 79% respectively. The accuracy achieved by the FMD/ND

achieved a slightly better accuracy comparing to the classifier for the Hal dataset (79% vs.

77%). The worse error range of ROC-AUC belonged to FMD/HC which again confirms the

difficulty of training a robust classifier distinguishing between these two clinical categories.

Figure 8.5 shows the confusion matrix for the four-way classifier (IVA2016/17/18

datasets). The main diagonal of the matrix shows the percentage of the correct clas-

sification, and the entries outside of the main diagonal shows the confusion between the

predicted class and the true class. As it was expected, most of the HC recordings (71%)

were identified correctly. The rest were confused with the FMD class (29%).

For the ND class, 58% of the patients were identified correctly, however, 32% were

misclassified as MCI and 11% as FMD. Only 33% of MCI patients are classified correctly,

while confusion with ND was 33% and with HC 28%. The FMD patients are mostly

confused by HCs with 60% (the highest confusion) and only 20% of FMD patients were



169 8.2. Final results

Figure 8.5: Confusion matrix for the four-way classifier (IVA2016/17/18 datasets).

correctly identified. This indicates that identifying HC was the easiest task by the classifier

followed by the ND group. The distributions of the features extracted from the FMD

group might be close to the distributions of the features extracted from the HC group

and also there were similarities between the MCI and the ND groups, as we know that in

clinics the MCI and FMD patients have common symptoms with the ND patients.

8.2.5 Feature selection (RFE)

Using the RFE feature selection methodology (on the train set) and the approach in-

troduced in Section 6.2.3, the 22 most significant features were selected out of the 78

features for the IVA2016/17/18 datasets.

The accuracy of the four-way classifier was 62% (+/-21%) and the ROC-AUC 82%

(+/-15%). For this classification task, the trained classifier could be considered as a robust

classifier. Comparing to the classifier trained on 78 features, both the accuracy and the

ROC-AUC improved considerably.

All the four three-way classifiers achieved similar or higher accuracy and ROC-AUC

than those trained by all the features. More importantly the FMD/ND/MCI achieved
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Figure 8.6: Accuracy and ROC-AUC of the 11 LR classifiers for the IVA2016/17/18
datasets (the most significant features (22)) (red lines: chance levels).

64% accuracy but with 26% of error range.

The accuracy and ROC-AUC of the six binary classifiers remained the same or im-

proved significantly. The ND/HC classifier had the best accuracy of 94% (+/-12%), fol-

lowed by the MCI/HC with 88% (+/-30%) accuracy (with high ROC-AUC of 94% (+/-

15%) and 84% (+/-32%) respectively). The FMD/ND classifier achieved 79% (+/-24%)

accuracy and 89% (+/-30%) ROC-AUC, which was better than the classifier trained on

the IVA2017/18 datasets and the Hal dataset. Ironically the worse error bar of ROC-AUC

was for FMD/HC.

Figure 8.7 shows the confusion matrix for the four-way classifier using the most sig-

nificant features. Over 86% of HC and 74% of ND patient were classified correctly, while

the rate of correct classification for MCI and FMD were 44% and 40% respectively. Again

the highest confusion was between FMD and HC with 40% confusion. The confusion

matrix confirms that identifying ND from HC was the easiest task by the classifier, while

identifying FMD and MCI were the hardest (more confusing) tasks.

Table 8.2 lists 22 most significant features using the RFE approach (on IVA2016/17/18

dataset on the train set). Among these 22 features, 7 were acoustic, 6 were word vectors, 4

were fluency tests, 3 were lexical and 2 were semantic. Therefore the acoustic features and
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Figure 8.7: Confusion matrix for the four-way classifier (22 most significant features using
the RFE approach (IVA2016/17/18 datasets)).

word vectors were the two important feature types, while the semantic features were the

least important features. From the two verbal fluency tests, all three features related to the

fluency semantic test were in this set of most features, which indicates that the features

extracted from the fluency semantic tests had more contribution in the classification task.

Features in bold were seen in Table 3.7 (where only CA-inspired features used to

classify the Hal dataset, 15 FMD vs 15 ND). So 6 out 10 top features selected by the RFE

in Chapter 3 were amongst the top 22 features gained by the RFE on IVA2016/17/18

dataset (2 acoustic, 2 lexical and 2 semantic features).

8.2.6 Feature selection (statistically significant)

Similar to Section 3.3.1 in parallel to the RFE feature selection approach, we used the

statistic tests (Student's t-test for normal and Mann-Whitney U test for non-normal fea-

tures) to identify the statistically significant features among the 78 final features. Table

8.3 shows the 24 statistically significant features using the statistic tests. 10 out of 22 fea-

tures in Table 8.2 can be seen in this table as well (marked with *), however, considerable
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Table 8.2: The 22 significant features using the RFE approach. Features in bold were also
in Table 3.7 (top 10 features on Hal dataset using only CA-inspired features).

Rank Feature Feature type

1 ApsAvgSil Acoustic

2 PatAVPauses Acoustic

3 PatAvgSil Acoustic

4 PatSemSTDAoA Fluency semantic test

5 ApsAVUniqueWords Lexical

6 APsAVTurnLength Acoustic

7 PatAVFillers Semantic

8 PatSemCount Fluency semantic test

9 WV col5 Word vector

10 PatPhnAVGAoA Fluency phonemic test

11 PatSemAVGAoA Fluency semantic test

12 WV col4 Word vector

13 WV col7 Word vector

14 APsNoOfTurns Acoustic

15 WV col1 Word vector

16 WV col3 Word vector

17 PatFailureExampleEmptyWords Semantic

18 PatAVUniqueWords Lexical

19 WV col2 Word vector

20 PatAVTurnLength Acoustic

21 PatAVAllWords Lexical

22 PatNoOfTurns Acoustic

number of these 24 features were for the APs and mostly they were lexical features. 15 out

of 24 features were lexical features, 5 were acoustic features, 2 were semantic features, 1

is word vector feature and 1 is fluency test feature. Therefore, the features selected by the

statistic tests were different than the 22 features selected by the RFE and the classifier

accuracy gained by these features is different as well. In fact the accuracy of the four-way

classifier using the 24 statistically significant was 57%, which is 5% less than the accuracy

of the classifier trained by the 22 features (RFE approach).

Figure 8.8 shows the confusion matrix for this classification. Similar to confusion

matrix of the 22 features selected by the RFE approach, 86% (12 out of 14) of HC and

74% (14 out of 19) ND were predicted truly, however, only 33% (6 out of 18) of MCI and

30% (3 out of 10) of FMD were identified correctly. The maximum confusion were for

50% (5 out of 10) of FMD patients who were predicted as HC by mistake (this was 40%
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Table 8.3: The 24 statistically significant features using the normality tests (Shapiro-Wilk
and D'Agostino) and then parametric (Student's t-test) for normal (norm.) features and
non-parametric (Mann-Whitney U test) for non-normal (non-norm.) features. Features in
bold were also in Table 3.8 (top 10 features on Hal dataset using the statistic tests. Features
with ‘*’ were in Table 8.2.

Rank Feature Feature type

1 PatAvgNoun Lexical

2 PatAvgCardinal Lexical

3 ApsAVUniqueWords* Lexical

4 ApsAvgSil* Acoustic

5 PatSemSTDAoA* Fluency semantic test

6 ApsAVTurnLength* Acoustic

7 WV col5* Word vector

8 PatAVFillers* Semantic

9 APsNoOfTurns* Acoustic

10 PatAVEmptyWords Semantic

11 PatAVUniqueWords* Lexical

12 PatAVAllWords* Lexical

13 PatAVTurnLength* Acoustic

14 PatNoOfTurns* Acoustic

15 PatAvgOtherPOS Lexical

16 ApsAvgVerb Lexical

17 PatAvgPreposition Lexical

18 APsAvgPronoun Lexical

19 ApsAvgPreposition Lexical

20 PatAvgWhword Lexical

21 ApsAvgPreposition Lexical

22 APsAvgConjunction Lexical

23 APsAvgAdjective Lexical

24 APsAvgDeterminer Lexical

in Figure 8.7). 28% (5 out of 18) of MCI were confused by ND patients.

8.2.7 F1-measure

In addition to the accuracy of a classifier, some studies report the precision (the ratio of

the true-positives to the total predictions), the recall (the ratio of the true-positives to

the total true positives) and the F1-measure (combining the precision and the recall1) for

the classifier. Having a high F1-measure indicates a stronger classifier (with both good

1F1 = 2 precision.recall
precision+recall
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Figure 8.8: Confusion matrix for the four-way classifier (24 most statistically significant
features (IVA2016/17/18 datasets)).

Table 8.4: Unweighted average precision, recall and F1-measure for the four-way classi-
fiers. conv.: conversations, fl.tst.: fluency tests
Dataset Features Accuracy Precision Recall F1-measure

IVA2016/17/18 conv.+fl.tst. 78 47.6% 44.3% 45.7% 44.1%

IVA2016/17/18 conv.+fl.tst. 22(RFE) 62.3% 60.9% 61.0% 59.7%

IVA2016/17/18 conv.+fl.tst. 24(stats.) 57.0% 54.1% 55.7% 53.3%

precision and recall). Since in our experiments there were imbalanced number of samples

in each patient group we can use unweighted average F1-measure to show the performance

of the classifier.

For the four-way classifier using the 78 features, the 22 most significant features (RFE)

and the 24 most statistically significant features we calculated the unweighted average

precision, recall and F1-measure (Table 8.4). As can be seen, the unweighted F1-measures

for the classifier using all 78 features was around 44% (accuracy around 48%). Using the

22 features (RFE) the unweighted F1-measure increased to around 60% and using the 24

statistically significant features the unweighted F1-measure gained was 53%. Therefore,

in general the performance of the four-way classifier using the 22 features resulting from

the RFE performed better than all features and the 24 statistically significant features.
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Comparing our final results (blind evaluation) to the results reported by [Weiner et al.,

2018] (who used a similar pipeline as our dementia detection system), they achieved 49%

UAR using a three-way classifier (AD, HC and AACD groups) using 80 samples with

transcriptions. As can be seen from Table 8.4, our four-way classifier using all 78 features

gained around 46% UAR (UAR 61% using the 22 top features), while we had only 61

samples to train the classifier. They also used 188 un-transcribed samples and gained 65%

UAR, but we cannot compare our results with that since they had much more data to

train the classifier and fewer classes to identify (three vs. four).

8.3 Discussion

In this chapter we showed that the automatic dementia detection system can classify

between the four diagnostic classes with a relatively good accuracy and ROC-AUC. The

classifiers trained on the most significant (22) features could classify between 57% and

94% accuracy across the 11 classifiers (ROC-AUC between 50% and 94%). The four-way

classifier achieved between 62% and 82% ROC-AUC. In the previous chapters (Chapter

6 and 7) we showed that the differences between the results achieved by the classifiers

on the features extracted from the manual transcript were not much different than the

classifiers trained on the automatic transcript and segmentation. Now the question is why

the classifiers can identify almost the same way despite having the errors caused by the

automated segmentation (the diarisation module) and the automated transcript (the ASR

module).

The most important diarisation error was caused by the speaker error. This will intro-

duce uncertainty between the segments allocated to the patients and the accompanying

persons, i.e. some of the segments were wrongly associated to the speakers. Consequently

some of the features extracted for the patients were mixed up wrongly with the features

extracted for the accompanying person. This can affect the results of the classifier, how-

ever, since there were at most two speakers to be recognised by the diarisation module,

the effects of the error may not be too significant.

Most importantly were the errors from the ASR module. These errors include three
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sub categories of errors: insertion, deletion and substitution errors. Figures 8.9, 8.10 and

8.11 show the top 50 words with the highest insertion, deletion and substitution errors for

the automated system. Looking at the three figures, we found out that all lists include the

‘function words’ in English (‘I’, ‘and’, ‘you’, ‘a’, ‘the’, etc.), i.e. most errors caused by the

ASR were related to the very common words in English. These function words, although

very important in an English sentence, do no necessarily affect all the features extracted

by our system. Especially the semantic and the word vector features ignore these function

words. These words were normally considered as the stop list words which were omitted

from the other words during the pre-processing in almost all common NLP text processing

step. This can justify why the acoustic, semantic and the word vector features remained

as some of the most important features in the feature selection process. Also looking at

the top 50 words with the highest substitution errors, we can see that the substituted

words were phonetically very close together, examples: ‘er’ and ‘um’, ‘no’ and ‘know’,

‘and’ and ‘um’, ‘being’ and ‘been’. It is worth mentioning that considerable amount of

the total words were function words (e.g. 53% of IVA2016 dataset). We re-calculated the

WER ignoring the function words, however the number of errors did not decrease.

In addition to the conversations, the verbal fluency tests contained important infor-

mation which can be used for classification. The features extracted from the tests were

amongst the most significant features, which indicates how important these features were

for discriminating the diagnostic categorises. Of these two verbal fluency tests, the fluency

semantic test was much more discriminate than the fluency phonemic test. One of the

major reason for this is the difficulty of automatic recognition of the words beginning

with the letter ‘P’ compared to the animal names. Mixing up the P-words causes errors

in counting as well as calculating the precise age of acquisition for these words.

There were many acoustic, word vector and fluency test features in the 22 features se-

lected by the RFE approach which shows the importance of these feature types. However,

the 24 statistically significant features, were mostly lexical features and due to the ASR

errors the extracted lexical features could not not reliable. This might be the reason why

these statistically important features were resulted in a slightly lower unweighted average

f1-measure of the four-way classifier compared to the features gained by the RFE.
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Figure 8.9: The top 50 words with the highest insertion errors.

The confusion matrix for the four-way classifier using all the 78 features, 22 features

selected by the RFE approach and 24 statistically important features, all generally showed

that the HC patient groups and the ND groups had the least confusion with the other

patients group. However, most FMD subjects were confused as HC, and most MCI sub-

jects were confused as ND. These confusions reflect the common symptoms between these

patient groups. As we know that patients with MCI shares symptoms with ND and HC

also FMD patients have similar memory complain as ND patients but they might have

features close to HC.
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Figure 8.10: The top 50 words with the highest deletion errors.

Figure 8.11: The top 50 words with the highest substitution errors.
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8.4 Summary

In this chapter, we used the conversations and the verbal fluency tests collected in the

IVA2017/18 datasets to evaluate the overall dementia detection system. The measures

used for the final evaluation of the system were the accuracy of the classifiers as well as

the ROC-AUC (robustness of the classifier with regards to both the sensitivity and the

specificity).

The datasets included four diagnostic classes: FMD, ND, MCI, and HC. The best

results were achieved when we mixed the conversations and the tests of the IVA2016

dataset with the IVA2017/18 datasets and selected the 22 most significant features (RFE

approach). Despite having the ASR and diarisation errors, the accuracy of the four-way

classifier was 62% and the ROC-AUC 82%. Considering the difficulties of a four-way

classification task, the results seem promising and reflect much more realistically the

conditions of the referrals to the memory clinics and difficulties of making diagnostic

decisions by the neurologists. Specially we showed that the acoustic features, the word

vector and verbal fluency tests features were mostly in the list of the most significant

features gained by the RFE feature selection approach.
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9.1 Conclusions

After introducing the project in Chapter 1, the thesis started with a background overview

of dementia in Chapter 2. Dementia is one of the leading causes of death in the UK,

accounting for 12.7% of all deaths, and the number of people developing dementia is

predicted to rise to one million by 2021 [Alzheimer’s society, 2018]. According to the

UK governments' report [Department of Health, 2018], the cost of dementia on society

is estimated to be 26 billion a year. Dementia is a disorder of the brain, caused by a

number of different pathological processes including Alzheimer's Disease (AD). Dementia

predominantly affects the neuropsychological domains of learning and memory but speech

and language are also affected. As they lose their speech and communication ability, they

get gradually isolated and passive and and forget their very basic human needs. Dementia

ultimately leads to death.

Treatments are most effective in the early stages of neuro-degenerative disorders before

dementia has developed and irreversible brain damage has occurred (there is no cure, they

mostly delay the progression of the decease). However, it is difficult to identify people

in the early stages of neuro-degeneration because the symptoms of disorders causing

dementia overlap with memory concerns associated with normal ageing, depression or

excessive anxiety about cognitive function. Current tests capable of identifying people at

high risk of developing dementia (e.g. Positron Emission Tomography (PET) and amyloid

analysis of the CerebroSpinal Fluid (CSF)) are expensive and invasive. The currently

available tests for stratifying or screening people with cognitive complaints, based on pen-

and-paper testing, lack sensitivity or specificity, especially early in the disease process. In

addition, they require time and human resources.

It is evident that the qualitative Conversation Analysis (CA) of the neurologist-patient

interactions can help in identifying clues to distinguish between patients with memory

problems due to an emerging Neuro-degenerative Disorders (ND) and non-progressive

memory difficulties. However, applying such a manual process is prohibitively expensive

and time consuming, requires human expertise and resources and not feasible for large-

scale use.
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There is, therefore, an urgent medical need for a reliable, repeatable, non-invasive, easy

to use, and low-cost tool for identifying people at risk of developing dementia. This would

ensure quicker access to specialist assessment and treatment for those found to be at high

risk and more rapid reassurance for those at low risk of developing dementia. An ideal tool

would allow re-testing for those at intermediate risk or whose performance fluctuates, and

would be usable without requiring assessor expertise for example in people's own homes.

This thesis was based on deploying the latest technologies in speech, text and ma-

chine learning to automatically analyse conversations between patients and neurologists

to detect the early signs of Neuro-degenerative Disorders (ND). Automatic analysis of

conversation is a challenging task requiring especially automatic segmentation of the au-

dio streams and then transcribing the utterances of the segments. As we developed the

dementia detection system, we attempted to explore and find the answers to a number of

fundamental research questions listed in Chapter 1.

9.1.1 Feasibility of developing an automatic system to identify
dementia

The first research question was about the feasibility of developing such an automatic tool

to identify the early signs of dementia. In order to answer the question we started by

developing an initial prototype of the automatic dementia detection system. Chapter 3

was dedicated to introducing our suggested system. In this chapter we concentrated mostly

on the feature extraction module of the system (i.e. automatically extracting features

from the conversations). Then these features were passed to a classifier. We introduced a

number of CA features inspired by the features identified by Elsey et al. [2015]. The best

classifier accuracy trained on these features was 97% (using the Perceptron classifier),

however, two out of the features were visual-conceptual, and as we were concentrating on

audio processing techniques, these features were omitted from the list of the CA-inspired

features.

Chapter 3 showed the feasibility of developing an automatic dementia detection

system by processing the conversations between the patients, the neurologists, and the

accompanying persons if they were present. The initial promising results confirmed that
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the introduced quantitative features were as informative as the qualitative features iden-

tified by human experts (the accuracy of the classifiers were close to the results reported

by Elsey et al. [2015]). In addition, we discovered the importance of extracting features

from all the participants in a conversation, since some of the features extracted from

the neurologist and the accompanying persons were found to be contributing positively

and significantly in the classification task (they were in the list of the most significant

features).

9.1.2 Techniques and methodologies required for the system

The second research question was about the type of speech, text and machine learning

techniques that was required for developing a fully automatic system. The automated

dementia detection system, which was introduced in Chapter 3, included a speaker di-

arisation unit, an Automatic Speech Recognition (ASR), a feature extraction module and

a final classifier. Gradually in the following chapters, we introduced more automation to

the system by adding automatic modules to the system. We nominated six different clas-

sifiers, all showed a high accuracy rates (over 91%) to classify between the two patient

groups (Functional Memory Disorder (FMD) and ND), however, the statistic tests did

not show any significant differences between the performance of the classifier. For our

dementia detection, however, we needed to choose a single classifier. The Logistic Regres-

sion (LR) classifier was nominated for the system (in a number of experiments we found

this shows slightly higher accuracy).

Chapter 4 concentrated on the ASR module (automatic transcription) of the sys-

tem. We trained a number of baseline ASRs (HMM-based) as well as the final ASR

(DNN-based) using the Kaldi toolkit. Training ASRs to transcribe natural conversation

is a challenging task, especially when the conversations were not recorded by good quality

microphones and in a quiet environment with an acceptable level of noise. Despite all

these issues, we managed to train a relatively good ASR (in comparison to published

performance levels on similar spontaneous speech recognition tasks).

Chapter 5 presented the diarisation module (automatic segmentation) of the sys-

tem. We started with a baseline diarisation module, however, the best results on the
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Hallamshire (Hal) dataset (our original dataset) was achieved by the diarisation module

trained using the Kaldi toolkit.

The initial CA-inspired features included acoustic, lexical and semantic features (we

removed the visual-conceptual features due to time limitation of this work), however,

Chapter 6 explored additional features including the extended acoustic, the extended

lexical and the word vector features, and the total number of features arrived at was

99. In this combination, the acoustic and the word vector features were more important

than the semantic and the lexical features. The lexical features, and to some extent the

semantic features, were directly dependent on the words produced by the ASR. Therefore

the ASR errors could compromise the role of these features in discriminating dementia.

As we introduced the IVA in Chapter 7 we removed the features extracted from the

neurologist (since the agent always asks the same questions). The new data collection

using the IVA enabled us to also recruit patients with the third diagnosis, Mild Cognitive

Impairment (MCI) which made the classification task more challenging (the accuracy of

the classifier dropped from around 90% for two classes to 67% for three classes). Finally

in Chapter 8 we used the latest collected data which included the forth group, Healthy

Control (HC) to the classification task and to boost the classifier, the fluency test features

were added to the features. The classifiers results, confirmed the importance of these

features as well as the acoustic and word vector features.

The experiments reported in Chapters 4, 5, and 6 allowed us to identify different

methodologies and techniques required for completing the automatic dementia detection

system, hence addressing the second research question. A relatively standard pipeline was

sufficient to prove the functionality of the automatic dementia detection system, however,

great care needed to handle the challenges and complexities inherent in the automatic

processing of spontaneous speech found in these types of conversations.

9.1.3 Providing diagnostic information for neurologists

The third research question was focused on improving the diagnostic information that

neurologists might have access to. Throughout the project, we worked closely with the

neurologists and neuroscientists to ensure that the developed dementia detection system
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might one day be integrated in the current diagnostic pathways (e.g., as part of early

stratification), or be used for general population screening. In addition to diagnostic

categories that the system might output, some explorative work was done to find ways to

communicate the results of such a test to clinicians. They are mostly interested in human

readable information (quantitative and qualitative features) which might be achieved by

converting current feature values to scores (e.g., between 1 and 10). Further work is

needed though to fully understand what more would be needed.

9.1.4 Keeping track of dementia over time

The last research question was about how to collect more data and tracking the progres-

sion of the patients' symptoms over time. In order to answer this question we used the

IVA to collect data in the memory clinic during three summers (2016, 2017 and 2018).

The IVA enables us to not only elicit conversations with patients, but also to administer

two standard cognitive tests (the fluency semantic and fluency phonemic tests) and au-

tomatically score these tests. We showed that despite having different lengths of turns

and pauses, the IVA-led conversations achieved comparable results to the neurologist-led

conversations. The IVA allowed us to add to our data collection throughout three year,

however, only two of the participants were able to return for a second time to take the

IVA test. Therefore, we were not able to evaluate how repeatable the test is. This is

something we will be exploring in the future, and the accuracy achieved for the one-shot

tests is hopefully an indication that a good degree of sensitivity to a decline in cognition

can be measured.

9.1.5 Final evaluation on a real clinical setting

Finally, Chapter 8 included the final evaluation of the system, using the conversation

and the verbal fluency tests and using the full system as well as the full set of diagnostic

classes (combining the IVA2017/18 datasets with the IVA2016 dataset). The final dataset

contained the additional diagnostic class of the HC and hence reflecting more realistically

situations that neurologists face in memory clinics, where some HCs are also present. De-

spite the errors caused by the diarisation and the ASR, the four-way classifier and 10
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sub classifiers all had reasonably good classification accuracy and Receiver Operating

Characteristic (ROC)-Area Under Curve (AUC) using the most significant features.

The most important features were the CA-inspired and the word vector features which

are not dependent on the errors caused by the diarisation and the ASR. On the other

hand, the lexical-only and the acoustic-only features were not as significant of the other

feature types, since the ASR errors makes it difficult for them to contribute sufficient

discriminant information in the classification task. The cognitive tests (especially the

Semantic Test) were in the list of the most significant features as well.

In summary, we have developed and evaluated, in a real clinical setting, a system for

detecting early signs of dementia based on a number of text, speech and machine learning

technologies. The results achieved in the final evaluation chapter shows great promise,

and that potentially this system can help to detect the early signs of dementia.

9.2 Future work

9.2.1 Improving the components of the system

Working with medical datasets has its own issues such as having limited access to data,

mostly to do with ethical issues of sharing data, and a limited number of recordings to

work with. We are hoping to continue to record conversations with the IVA-based system.

Access to more data would allow to improve the different components of the dementia

detection system (training a better language and acoustic models for the ASR, improving

the diarisation module and training a better classifier (e.g. Deep Neural Network (DNN)

based)), which in return should result in better overall performance of the system in terms

of accuracy and robustness. In particular, having access to a critical mass of recordings

of the more rare types of dementia, such as Fronto-Temporal Dementia (FTD), would

improve the versatility of the tool.

9.2.2 Dealing with other challenges of conversations

In Chapter 4 we listed the major challenges of dealing with spontaneous speech. In

training the ASR we tried to deal with some of these issues, however, there is plenty of

room for improvement. Finding solutions for the mentioned problems is not easy. For
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instance, in order to deal with the overlapping segments we removed very short segments,

however, we might lose the words uttered by the speakers there. Investigating other

approaches to recover at least parts of the overlapping segments in a conversation, and

deal in a different way with the turn-taking phenomenon, would be beneficial. Disfluencies

were one of the other challenges to the ASR in spontaneous speech. In our approach, we

recognised them similar to the other words in utterance, however, it is possible to train

ASR to detect disfluencies and/or cope with them more effectively.

9.2.3 Extracting other types of features

There are other types of features we could explore in this study, but due to time limitation

we did not investigate them. For instance, we could detect the emotions of speakers in

their utterances. There might be informative emotional features which can contribute to

identifying dementia. Detecting disfluencies is another example of feature types which

need further investigations.

9.2.4 Investigating other cognitive tests

Although the main focus of this study was processing audio recordings of conversation,

we found that the other standard cognitive tests (e.g. semantic and phonemic tests) also

could be administrated by the IVA. The automatic scoring of the tests could improve the

overall accuracy and robustness of the classifier. There are other well-known standard

cognitive tests like the ‘Cookie Theft’ picture descriptions which can be automatically

scored and investigated with respect to how they could be useful in identifying early signs

of dementia.

9.2.5 Improving the IVA

Due to the limitations of this work, we used a relatively simple IVA to act as a neurologist

and conduct conversations with patients. Obviously, the quality of the IVA, especially

in terms of intelligibility and interactional capabilities could be improved, for instance

by applying the Spoken Dialogue System (SDS) techniques. More intelligent IVA could

conduct much more flexible and human-like conversations with patients. This can be
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investigated as a further study.

9.2.6 Longitudinal applications

Although we have demonstrated a system which potentially can help in diagnosing de-

mentia, we did not explore how this type of system can be used in longitudinal applica-

tions. The development of a fully-automatic test suitable for home-based tracking and

monitoring is another research area which would warrant further investigation. Also, in

developing such a system, investigating how clinicians could best access the information

of the patients as part of their diagnostic work is an open research question.

9.3 Concluding remarks

This thesis introduced a unique and novel approach to identify people in risk of developing

dementia based on the fully automatic analysis of people's conversational ability. We

explored and investigated a number of techniques and methodologies in machine learning,

speech technology and natural language processing. The final evaluation of the system on

a real clinical setting revealed promising results which confirms a potential bright future

of developing a low-cost, repeatable, non-invasive, and less stressful alternative to current

cognitive assessments.
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Veselỳ, K., Ghoshal, A., Burget, L., and Povey, D. (2013). Sequence-discriminative train-

ing of deep neural networks. In Proc INTERSPEECH, pages 2345–2349. ISCA. 74

Vijayasenan, D. and Valente, F. (2012). Diartk: An open source toolkit for research in

multistream speaker diarization and its application to meetings recordings. In Proc

INTERSPEECH. ISCA. 105

Viterbi, A. (1967). Error bounds for convolutional codes and an asymptotically optimum

decoding algorithm. IEEE transactions on Information Theory, 13(2):260–269. 69



219 References

Vu, N. T., Kraus, F., and Schultz, T. (2011). Rapid building of an asr system for under-

resourced languages based on multilingual unsupervised training. In Twelfth Annual

Conference of the International Speech Communication Association. 81

Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., and Lang, K. J. (1990). Phoneme

recognition using time-delay neural networks. In Readings in speech recognition, pages

393–404. Elsevier. 78

Wald, M. (2013). An exploration of the potential of automatic speech recognition to assist

and enable receptive communication in higher education. Approaches to Developing

Accessible Learning Experiences: Conceptualising Best Practice, page 9. 70

Walker, T., Christensen, H., Mirheidari, B., Swainston, T., Rutten, C., Mayer, I., Black-

burn, D., and Reuber, M. (2018). Developing an intelligent virtual agent to stratify

people with cognitive complaints: A comparison of human–patient and intelligent vir-

tual agent–patient interaction. Dementia, page 1471301218795238. 10

Wang, L., Zhang, C., Woodland, P., Gales, M., Karanasou, P., Lanchantin, P., Liu,

X., and Qian, Y. (2016). Improved dnn-based segmentation for multi-genre broadcast

audio. In Proc International Conference on Acoustics Speech and Signal Processing

(ICASSP), pages 5700–5704. IEEE. 109

Wechsler, D. (1945). Wechsler memory scale. Psychological Corporation. 23

Wechsler, D. (1997). Wechsler Adult Intelligence Scale. The Psychological Corporation.,

3rd edition. 42

Wechsler, D. (2014). Wechsler adult intelligence scale–fourth edition (wais–iv). San

Antonio, Texas: Psychological Corporation. 22, 23

Weiner, J., Angrick, M., Umesh, S., and Schultz, T. (2018). Investigating the effect of

audio duration on dementia detection using acoustic features. In Proc INTERSPEECH,

pages 2324–2328. ISCA. 6, 38, 41, 175



References 220

Weiner, J., Engelbart, M., and Schultz, T. (2017). Manual and automatic transcriptions

in dementia detection from speech. In Proc INTERSPEECH, pages 3117–3121. ISCA.

38

Weiner, J., Herff, C., and Schultz, T. (2016). Speech-based detection of Alzheimerś disease
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Appendix A

Conversation Analysis Symbols

Table A.1: Some common symbols of Conversation Analysis (CA) (Lerner [2004]).

Symbol Name Meaning

[ Left bracket point of overlap onset, e.g. A:how t[all are you, Al B:
[How tall’r you Al

] Right bracket end point of two overlapped utterances

= Equal sign no break or gap, one at the end of one line an another
at the beginning of a next, e.g A: thirty five pounds=
B:=AAUUGH

(0.0) Numbers on
parentheses

gap time by tenth of second, e.g. (0.2) for 0.2 second
silence

(.) Dot in paren-
theses

a brief interval, normally less than a tenth of second
within or between utterances

Underscoring stress via pitch and/or amplitude, e.g. A: Well Dean
has: uh:,h totally coop’rated with the U.S. Attorney.

: Colons prolongation of the immediately prior sound, e.g [W
o: : : : :] w

: Combination
of colon and
underscore

intonation contours, when underscore followed by
colon it indicates up-to-down contour and vise a verse
down-to-up contour, e.g. wo:rd comparing with wo:rd

↑↓ Arrows Shifts into high or low pitch, e.g. ↑↑Thank ↓you.

.,? Punctuation
marks

for usual intonation

WORD Uppercase loud sounds

◦word◦ Degree sign bracketing around utterance indicate sounds are ofter
that other parts

∗ Asterisk percussive non-speech sounds or creaky voice
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Table A.2: CA symbols continue..

Symbol Name Meaning

t∗, d∗ An asterisk fol-
lowing a conso-
nant

hardener, e.g. thet∗ which is tantalised and hard ver-
sion of that

t,d Bold conso-
nant

hardener e.g. it

>word A pre-
positioned
left carat

a hurried start for self-repair

word< A post-
positioned
left carat

while the word is fully completed, it seems to stop
suddenly

− Dash Cut off, e.g. I get- I get sick behind it.

>< Right/left
carats bracket-
ing

speeding up utterance or a part of utterance

<> Left/right
carats bracket-
ing

speeding down utterance or a part of utterance

.hhh A dot-prefixed
row of ’h’s

in breath, without dot, ’h’s indicate an out breath

(h) Parenthesised
’h’

plosiveness

() Empty paren-
theses

transcriber was unable to get what said

(( )) Doubled
parentheses

transcriber’s descriptions



Appendix B

General guidelines of the
Hallamshire study

As the main aim of these guidelines is to elicit the descriptions of patients and accompa-

nying others and to allow them to develop their own way of describing their subjective

memory problems, doctors are asked to choose an opening which does not make any direct

reference to memory problems, e.g. by starting with an enquiry such as ”what can I do

for you today?”. This question creates an open initial phase, in which patients can set out

their own agenda. During the next phase of the encounter, patients are prompted to de-

scribe events characterised by particularly memorable cognitive problems. This approach

encourages patients to reconstruct subjective experiences (like the first time they realised

something was wrong, or any examples of recent episodes of memory failure which were

particularly significant or embarrassing for them). It is anticipated that the first 15-20

minutes of the clinical encounter will be devoted to this open questioning. During this

part of the interview doctors are discouraged from interrupting patients or accompanying

persons, to ask additional questions (other than for clarification), or to introduce new

topics in the discussion. In a third and final part of the consultation the doctor can ask

any relevant questions which have not been addressed.

Sample questions:

• Why have you come to clinic today and what are your expectations?

• Tell me about a problem with your memory that you found particularly embarrassing?

• Tell me about the most recent time that your memory failed?
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• Is there anything else about your memory that you need to tell me?
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