
Patterns and model transformation tools for designing

Contractual State Machines

Lishan Harbird

Submitted for the degree of Doctor of Philosophy

University of York

Department of Computer Science

December 2011



Dedication
To Kevin Harbird



Abstract

Design methods for reactive systems may start with an abstract description of a proposed

solution, which can be expressed in both an operational and declarative style. Typically

these descriptions are then incrementally elaborated into executable programs. The aim

of this research is to put this ad hoc design method on to a more systematic footing,

thus helping engineers produce more reliable and robust systems. This is accomplished

by providing a rigorous engineering process supported by engineer-friendly tools based on

the application of refinement and refactoring patterns for Contractual State Machines.

Contractual State Machines (CoSta) are a simplified form of statecharts extended with

temporal logic-based declarative specifications. A refinement pattern is an abstract way of

representing a common type of refinement frequently required during the stepwise design

of a system. Tool support is provided for system design and pattern application and is

integrated with model checking technology for formal verification. To demonstrate the

viability of the approach the new refinement and refactoring patterns are applied to the

design of a system through a case study.
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Chapter 1

Introduction

Our modern world is dependent on complex software systems. They are embedded in com-

ponents that are found in all kinds of electronic devices and other (e.g hydro-mechanical)

engineering products. These range from commonplace personal gadgets and products

that are essential for everyday living like mobile phones and computers, to highly com-

plex, safety-critical control systems (e.g. full authority digital engine control [FADEC]

systems for aircraft). These systems typically interact with other systems. The trend is

that they are becoming more ubiquitous and interconnected [67].

There are many reasons why software quality is important, and the need to design

correct software grows steadily as failures or deviations from intent could result in severe

material losses (mission-critical systems) or in the extreme case even leading to loss of life

(safety-critical systems) [45,59,124,241].

It may be considered that design methods for reactive systems do not adequately sup-

port the way that software and systems engineers work. This thesis has been motivated

by problems affecting software engineers designing real-world, safety-critical, reactive and

concurrent systems [131, 152]. The main goal of this thesis is to improve on the method-

ological basis and tool support for current design languages for critical systems. It focuses

on establishing a systematic model-driven approach to their design.

The research presented in this thesis concerns a theoretically justified specification

and design method for Contractual State Machines [100] 1 which supports incremental

derivation of operational designs that maintain desired properties. The specific focus is

1This paper presented a preliminary definition of Contractual State Machines. Forthcoming publications

and technical reports will present the de facto final version.
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on reactive systems that are in continual interaction with their environments. Reactive

behaviour is usually associated with embedded systems, (e.g. aviation and automotive

control systems), in which software is an integral part of devices.

Engineers who build reactive systems typically use various languages; these languages

can mix operational and declarative styles. For example, they may use a mixture of de-

scriptive English, diagrams, equations and algorithms. To express operational behaviour,

such engineers often resort to a dialect of statecharts, such as Stateflow, within the Math-

Works’ MATLAB tool suite [248]. To express declarative constraints, engineers frequently

use natural language. Occasionally this is supplemented with other notations to specify

preconditions, postconditions and invariants.

Engineers may describe different features at different levels of abstraction set in the

context of what has been modelled around the component being designed (e.g. in Math-

Works’ Simulink). However, arbitrary mixing of styles evidently lacks a sound formal

underpinning and will not support the verification of design steps. To support more ab-

stract, formal and declarative specification researchers have proposed several approaches

such as the use of temporal logic [81, 161, 202, 203, 238, 239], state-based formal specifica-

tions [207,234], and design by contract [33,162,182,210].

The design process for reactive systems is generally characterised by incremental elab-

oration and decomposition. It is mostly ad hoc, stepwise and component-based, and

potentially involves enriching abstract designs which may be both operational and declar-

ative to fully operational designs. It is ad hoc in the sense that there is no common or

standard approach used when designing a system and each design is treated as an individ-

ual case. It is stepwise, in the sense that the design process is incremental, with additional

information added at each step; and component-based, meaning that a system is usually

broken down into functional or logical components.

In recent years engineers have moved increasingly towards a model-driven approach

to developing software for reactive systems [26]. Models are often initially designed at

a high level of abstraction, and gradually enriched to a level in which they are deemed

satisfactory and then converted to code. A design step can alter the behaviour of the

model but consistency needs to be maintained between them. It is therefore important

that automated mechanisms exist for comparing models at different levels of abstraction

and validating consistency between them. These are typically not well supported by

current statechart design tools. Consistency between models during the design process
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is not normally verified formally but instead each model is validated independently, e.g,

through simulation.

There are many reasons why both formal methods and model-driven engineering may

potentially produce better evidence of correctness over traditional test-based approaches.

Formal methods are precise and correctness can be proven. Potentially errors can be

detected at an early stage, during the design process, rather than at the end when the

design is complete [17, 57]. Model-driven engineering can be used to develop automated

tools to support a rigorous design methodology that raises the level of abstraction at which

engineers work from programs and components to models [16,26,34,136].

The aim of the research presented in this thesis is to allow the design process to ben-

efit from greater formality and a systematic model-based approach to refine an abstract,

declarative specification to an operational design. The approach is based on Contrac-

tual State Machines, and a set of refinement and refactoring patterns which are model

transformations that maintain consistency and preserve desirable properties.

Tools are implemented that support verification techniques for refinement of specifica-

tions to designs based on pattern application. Pattern application instantiates a pattern by

matching wildcards in the pattern to syntactic and diagrammatic structures in the design.

Contractual State Machines have a formal semantics and are a form of hierarchical state

machines, embellished with contracts for expressing requirements. A case study demon-

strates the methodological utility of these patterns and their supporting tools during the

design process.

This chapter introduces the research area, giving the background and a brief overview

of the current state of practice. The problems with conventional, current approaches

are identified, and hence the motivations and rationale for this research are established.

Furthermore potential solutions to the problems are discussed. A summary of the main

contributions of this research is presented followed by an outline of the thesis structure.

1.1 Motivation

Reactive, concurrent systems are complex, often safety-critical and firmly established as a

crucial and inevitable part of our everyday life [98,101]. The increase in the complexity of

software has led directly to a higher risk of errors being introduced during the development

process, and thus a greater need for precision in software engineering [114, 123]. This

is particularly relevant for high-integrity systems where an extremely high assurance of
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correctness is an absolute necessity rather than a desirable but non-essential requirement

[152,154,241].

The term “software crisis” was first coined in the 1960’s to describe the fact that

software engineering projects were becoming too complex to manage, leading to problems

ranging from extensive budget overruns to catastrophic software defects. With the rise of

multi-core processors and in turn concurrent systems, the idea has been put forward that

the software crisis has subsequently evolved into the “new software crisis” [254].

Formal methods can be used to achieve a high assurance of correctness. They focus on

establishing mathematical and rigorous approaches to program construction and analysis.

It has been argued that the use of formal methods is expected to lead to increased software

quality and reliability [45]. The semantics of languages for formal methods are mathemat-

ically defined, and support tools can be used to reveal inconsistencies, ambiguities and

incompleteness. Formal methods are theoretically appealing but a wider acceptance of

formal methods is hindered for many reasons [108,109,261]. This is backed up by the fact

that direct use of formal techniques, which rely heavily on the ability of engineers to work

with unfamiliar notations, have not thus far been very successful in industry [3,4,35,46,95].

One such argument is that formal modelling techniques require a strong mathematical

background and are therefore considered to be difficult to apply by mainstream software

developers. In addition, conventional modelling is usually diagram-based; by comparison,

formal specifications are considered to be less intuitive and it can be argued that therefore

they are not as suitable as a communication tool [108]. This is a concern because com-

prehension is key to establishing validity, which is a vital consideration in safety-critical

systems.

Formal methods provide a specification/design language, and possibly a process or

methodology for applying the language. They can also be used for system verification and

may support refinement techniques enabling models to be formally related at different

intermediate levels of abstraction [63].

The correct-by-construction approach typified by refinement is appealing due to the

rigour it brings to the development process and its ability to capture errors in the sys-

tem specification/design at an early stage. However the stepwise refinement process is

normally based on the application of very many small reasoning steps that usually entail

proof obligations [17]. Jones [127] suggests that this may increase the cost of system devel-

opment in terms of time and effort and for large reactive systems, this can quickly become
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prohibitive. Automated support for the challenging task of discharging proof obligations

for each refinement step is thus highly desirable.

Statecharts are a widely used language for reactive systems design. They are used

in industry often in preference to languages with more formal mathematical foundations.

They are considered easy to get to grips with initially, thus requiring less time and effort

before productive results can be achieved. Statecharts are often classified as being a semi-

formal language [102]. This may be due to them having a formally defined syntax but not

semantics and thus no tool support for formal reasoning. Despite the fact that statecharts

have been given numerous formal semantics in the literature, including a definitive one by

its originator, Harel [104] none are in widespread use for formal reasoning. The diversity

in the perceived meaning of diagrams has led to their interpretation varying subtly from

tool to tool. Statecharts have a graphical syntax, intuitive notation and extensive tool

support as exemplified by Statemate [103,105].

When building reactive systems, statecharts are often designed in a top-down manner.

First system interfaces are defined (e.g., focusing on input events and output events) and

the external systems or context which supplies them is modelled using a suitable language,

such as the MathWorks’ Simulink, SysML, or a profile of UML [195,244,248]. The detailed

design for these interfaces can then be modelled using state machines.

In essence, the state machines refine the interface model and describe how input events

can be processed and how output (externally visible) events are generated. In practice the

process of developing a large-scale state machine model is often done in an ad hoc way,

which does not make it easy to provide evidence of correctness. Evidence of correctness is of

vital importance for safety-critical reactive systems, which have substantial requirements

for demonstrating the absence of defects.

Although statechart languages are a popular choice for designing reactive systems

and describing operational behaviour, perceived weaknesses of particular relevance to this

research include the fact that they typically do not support declarative styles of description

which may be needed in the early design stages for expressing precise, high-level properties

[123, 161, 162, 171]. State machine designs often become large and cumbersome; it can be

argued that some parts of the design could be expressed more concisely and compactly

using declarative descriptions, e.g., in the form of contracts.

Moreover top-down development by formal refinement, whether for statechart lan-

guages or other languages, is not yet common practice. The absence of support for formal
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reasoning is not limited to statecharts. It is also a limitation of the models that contextu-

alise statecharts. There are a number of reasons for this: the semantics for a language may

be ambiguous or unclear or for abstract models such as those expressed in UML not de-

fined at all. Although effort has been made to improve the situation, for instance the UML

2 semantics project [240], a uniform semantic model from requirements to implementation

has not yet become commonplace.

Additionally, statechart languages do not fully support component-based software engi-

neering which requires components to have well-defined interfaces, to enable encapsulation

and reusability. Statechart components, however, may not be self-contained e.g., due to

inter-level transitions. This makes it challenging to support a refinement-based design

process [158, 183]. For a language to support component-based refinement a composi-

tional semantics is needed. Currently statechart variants have subtly different informal

semantics which tend not to be compositional.

It may be argued that to fully address the above issues and produce more reliable and

robust systems a tool supported, rigorous, model-based approach to designing reactive

concurrent systems with a formal, heterogeneous and compositional specification and de-

sign language is required. The contributions of the thesis will be discussed in more detail

in the following section.

1.2 Contributions

The overall aims of the research are to enable the derivation of concurrent, data-rich, re-

active programs using Contractual State Machines (CoSta) in a calculational style. The

contributions of this thesis include a rigorous engineering process for developing Contrac-

tual State Machine models through application of so-called refinement and refactoring

patterns, which are update-in-place model transformations. These patterns encode rea-

soning steps and transform a Contractual State Machine into a new model that preserves

required properties.

Refinement and refactoring patterns are expressed as model transformations and are

automated. The tool that supports this incorporates model checking technology to dis-

charge side-conditions and thus offers greater analytical depth than a drawing tool and a

simulator. A key rationale for the patterns and tool support is that they ensure the models

that are produced throughout the development process preserve correctness to prevent the

inadvertent introduction of mistakes and omissions.
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This thesis builds on other work carried out within my research group which has focused

on putting statecharts on a formal footing e.g. by defining a language, (Contractual State

Machines) with a compositional semantics which includes declarative statements. First a

brief introduction to CoSta, on which the work is based, is presented and then the key

contributions are described.

1.2.1 Contractual State Machines

Contractual State Machines (CoSta) [100] 2 (see Section 2.13 for further details) are an

intuitive design language that combines a simplified state machine language with temporal

logic-based declarative contracts for safety-critical, reactive, concurrent systems. CoSta

incorporates features of formal and semi-formal languages having a formal underpinning, a

graphical and intuitive notation (state machines) for describing operational behaviour and

a declarative specification language for expressing high-level temporal properties. Declara-

tive constructs (contracts) are expressed in a language based on the µ-calculus [47,64,239].

CoSta has an integrated semantics for both data and behaviour which are freely inter-

mixed. The statecharts dialect is based on Symbolic Transition Graphs with Assignment

(STGA) [71, 155]. The semantics is currently expressed as labelled transition systems

(LTS), which give meaning to state machines and contracts alike. CoSta’s refinement

relation and the language of contracts3 is based on Lüttgen and Vogler’s work on Logic

LTS [157], which itself is derived from Ready Simulation [41].

The compositional, heterogeneous language supports component-based reasoning and

modularity of specifications/designs. The heterogeneous nature of the language allows

engineers to model system components at different levels of abstraction. The language

provides a formal basis for a stepwise design process that refines contracts describing

constraints on the behaviour of a component to state machines satisfying this prescribed

behaviour or tighter contracts.

2This paper presented a preliminary definition of Contractual State Machines. Forthcoming publications

and technical reports will present the de facto final version.
3Full formal details of the refinement relation are not yet in the public domain; this thesis does not rely

on these formal details.
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1.2.2 Refinement and refactoring patterns

This section describes the principal contribution of the thesis which is a systematic ap-

proach to component-based, stepwise refinement based on the application of patterns

during the design process. The patterns constitute a comprehensive set of valid refine-

ment and refactoring steps for CoSta to support the derivation, in a calculational style,

of concurrent reactive programs. A refinement pattern, when applied, reduces nondeter-

minism in a specification; a refactoring pattern changes the structure of a specification

without affecting its behaviour. The refinement process transforms an abstract (loose)

specification into a concrete design that preserves the functionality of the original specifi-

cation and introduces design language constructs as it proceeds. Designs can be correctly

constructed in a stepwise fashion. Each step can be justified by the application of a re-

finement or refactoring pattern and possibly the discharge of side-conditions (Chapter 6).

A pattern is an abstract way of representing a common type of refinement or refactoring

that is frequently required during the stepwise design of a system. These patterns can aid

and simplify the design process as they encapsulate refinements and refactorings whose

correctness may have already been established thus reducing development effort over com-

parable approaches such as formal proof.

A catalogue of refinement and refactoring patterns has been proposed (in Chapters

4 and 5) and evaluated by the case study (in Chapter 7). Automated tools have been

developed to support the application of patterns, model transformations and discharge of

side-conditions. Patterns are a tool supported, model-based approach to the refinement

process providing rigour but not at the cost of practicality. They can be pre-proven to

preserve the refinement ordering, reducing the proof burden to the discharge of a proof

obligation if required.

The refinement and refactoring patterns can be placed into two categories, syntactic

or semantic. Syntactic patterns can be applied solely by interrogating the abstract syntax

of the Contractual State Machine. Semantic patterns have side-conditions that require

mathematical reasoning and thus the use of external verification tools. The side-conditions

express the deeper properties that must hold for the pattern to be applicable.

It may be argued that patterns reduce the proof burden as it is not necessary to carry

out a general refinement check between the designs. Instead it is only required to prove

that the specific side-condition of a pattern holds which ensures that it is applicable to

the design in the circumstance it is selected. The proof burden is also lessened by the
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compositionality of the underlying refinement theory. Compositionality means that local

refinements (e.g. parallel components or states within the hierarchy) ensure refinements of

the model as a whole. This makes the refinement process efficient, and allows refinement

and refactoring patterns to be applied in a local context rather than to the model as a

whole.

1.2.3 Design process

The research contributions of this thesis include an exemplar design process, which is de-

scribed in this section, to transform a high-level specification into an operational design.

This involves gradually being more specific about the behaviour of the system, adding

more detail to the design by introducing design constructs as it proceeds, and reducing

nondeterminism whilst maintaining consistency with the original specification. The devel-

opment will consist of a sequence of models where each model is a refinement or refactoring

of a previous one in the series. A refinement corresponds to an elaboration of the more

abstract model that preserves the refinement relation (and in the case of a refactoring the

stronger equivalence relation).

Together the refinement and refactoring patterns provide a framework for the con-

struction process as only valid correctness-preserving transformation rules can be applied

at a certain time under certain circumstances when certain properties of the design hold.

Collectively the patterns and the process of applying them will achieve the overall benefit

of making the state machine refinement process more systematic and providing guarantees

of correctness by construction. The automation and tools to support the design process

are described in the next section.

1.2.4 Automation and tools

It is generally accepted that performing repetitive tasks, like applying refinement steps

to models manually is time-consuming and error-prone and failing to complete such tasks

correctly and precisely compromises the consistency and quality of the design. This has an

even bigger impact in the context of model-driven engineering where models are processed

to automatically produce an implementation [16]. An aim of the research is for a tool

supported, model-based refinement process where the library of refinement and refactor-

ing patterns are expressed as model transformations and integrated with model checking

technology.
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The tool suite supports the application of patterns and model transformations so that

an engineer can highlight the component of the Contractual State Machine under investiga-

tion and select an applicable pattern. The tool will verify that the highlighted component

is an instance of the abstract template of the selected pattern and if so will replace the

abstract template with an instance of the concrete template. This tool holds a repository

of patterns to which further patterns can be easily added.

Tool support for patterns and the engineering process has been provided, via use of

the Epsilon toolset [136] and with external invocation of an SMT-based model checker

to automate the discharge of side-conditions constraining the validity of application of a

pattern. Thus the research presented in this thesis achieves a seamless integration of state

of the art model transformation with model checking technology. The tools are used for

the design of a system during the case study to validate and evaluate the refinement and

refactoring patterns. This is described further in the next section.

1.2.5 Evaluation

A case study is conducted that applies the refinement and refactoring patterns to design

a system. The case study presents the refinement of an abstract system description to

a concrete design in order to provide empirical evidence that the rigorous development

of data-rich, concurrent, reactive processes using CoSta’s refinement and refactoring pat-

terns and tool support is possible in practice. The case study illustrates the approach

and demonstrates its viability. An evaluation of the refinement and refactoring patterns,

systematic design process and automated tools is presented with suggestions for possible

improvements and further work.

1.3 Thesis structure

Chapter 2 gives an overview of the research area, an analysis of closely related research for

this thesis and identifies the remaining open research problems. Chapter 3 presents the re-

search hypothesis, objectives and contributions for the thesis. Chapters 4 and 5 present the

catalogue of refinement and refactoring patterns for Contractual State Machines. Chapter

6 addresses the implementation of software support for defining and applying the pat-

terns. Chapter 7 evaluates the research hypothesis by applying the proposals to a case

study and finally Chapter 8 evaluates the results of the research, summarises conclusions
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and discusses proposals for further work.
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Chapter 2

Research context

2.1 Introduction

This chapter begins with a description of reactive and concurrent systems followed by an

analysis of the languages and approaches typically used for their specification and design.

This chapter also incorporates a literature review, analysing closely related research. The

chapter closes by identifying the remaining open problems and motivation for the research

in this thesis. This is necessary to provide the context for the remaining parts of the thesis

and the basis upon which it builds.

2.2 Reactive systems

This section will provide a description of the distinguishing features and characteristics

of reactive systems and the approaches taken to their specification and design. Reactive

systems are complex and often safety-critical. They are pervasive in modern society, and

firmly established as a crucial and inevitable part of our daily life. Their application do-

main is very wide ranging from embedded systems for household appliances to automotive

electronics, missile guidance and flight control [8, 101,161].

The role of a reactive system is to maintain an on-going interaction with its envi-

ronment, to monitor and control some physical phenomena, rather than produce some

final value on termination. It is an event-driven system continuously having to change

its actions, status or outputs in response to external and internal stimuli. In addition to

discrete states, the specification of such a system may need to refer to physical quantities

that change as continuous functions of time, such systems are referred to as hybrid.
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It is a difficult problem that is not always solved adequately [14] to describe reactive

behaviour in ways that are clear and understandable and at the same time formal and

rigorous. Numerous formalisms and methodologies have been proposed in the literature

for specification and verification methods for reactive systems [101,103,161,162,177,178,

203,219].

Design processes proposed for reactive systems typically transform an abstract, nonde-

terministic specification into a concrete, deterministic system with the aim of preserving

the functionality of the original specification [8,48,114]. More specific details are gradually

introduced to the design, reducing or removing nondeterminism. In industry, engineers

may use a graphical modelling language for designing reactive systems such as MathWorks’

Simulink and Stateflow within the MathWorks’ MATLAB tool suite [248]. The latter of

these is based on statecharts which is a subject of particular relevance to this thesis.

2.3 Concurrency

A concurrent system can be viewed as a collection of sequential processes, possibly running

on different processors, that interact and exchange results with each other and the external

environment [219]. Many concurrent systems are reactive and possibly safety-critical.

Ensuring that concurrent systems are of high-quality is difficult and prohibitively expensive

by conventional means (i.e. testing). Thus a lot of effort has been put into research on

concurrency theory and the specification and verification methods for concurrent systems

[112,147,198,199,209,228].

The theory of concurrency is concerned with developing mathematical frameworks for

modelling and verifying concurrent systems [211]. A distinguishing feature of concurrent

systems is multiple threads of control that allow a concurrent program to perform com-

putations simultaneously. This can lead to problems like race conditions, deadlocks and

livelocks. Various languages and techniques have been proposed in the literature for speci-

fying and verifying concurrent systems. The main approaches are based on temporal logic,

model checking and process algebras. However there is often no distinction in practice as

many approaches freely mix ideologies.

Process algebras offer an algebraic approach to the specification and verification of

concurrent communicating programs [24,25,29]. Important formal algebraic languages for

specifying and verifying concurrent systems are Bergstra and Klop’s Algebra of Commu-

nicating Processes (ACP) [30], Milner’s Calculus of Communicating Systems (CCS) [178],
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and Hoare’s Communicating Sequential Processes (CSP) [115]. Their common charac-

teristics include the use of synchronisation on an atomic event as the basis for process

interaction, and their ability to represent event occurrence, choice, abstraction and recur-

sion.

An advantage of the algebraic approach with regards to program verification is that

the same language is used for system specification and implementation. This means that

system descriptions at different levels of abstraction (e.g., design and implementation) are

easier to compare and relate. Using a single notation makes stepwise development from

requirements to implementation conceptually more straightforward.

The semantics of CCS is based on the notion of labelled transition systems (LTS), and

thus the algebraic properties of the language are usually defined in terms of bisimulation.

Preorders exist for relating the abstract to the concrete, based on simulation [41]. Many

are supported by workbenches such as The Concurrency Workbench [65] and its successors

e.g. The Concurrency Workbench of North Carolina [66]. Labelled transition systems are

important in the immediate context of the work presented in this thesis.

CSP is probably the most successful process algebra in industry with some commercial

tools available to support the analysis and simulation of specifications. FDR2 [156] is a

CSP model checker. The semantics of CSP can be expressed in terms of traces, failures

and failures-divergence, all of which can be used to check refinement in FDR2.

There have been various promising attempts to combine CSP with other languages that

fully support the ability to describe state aspects of systems such as Z [259] or B [52,53],

(and more widely, e.g. with time). Examples include, TCOZ [159], (Timed Commu-

nicating Object-Z integrates Object-Z and Timed CSP), CSP-OZ, (integrates CSP and

Object-Z) [227], CSP||B, (combines CSP with B) [86]. Circus is an important example of a

language that integrates CSP and Z, [187,257], and supports a fully integrated refinement

theory, to refine specifications as a whole as oppose to refining the parts relating to CSP

or Z separately.

There are other examples of languages that combine formalisms, for example, Z and

B [1]. State machines have been combined with action languages and various forms of

temporal logic for specifying and reasoning about concurrent programs have been proposed

[62]. Temporal logic are an extension of classical logic with specific operators that can be

used to describe and reason about behaviour that changes over time.

CCS is sometimes used in combination with a modal logic which permits assertions

15



Chapter 2: Research context

about the changing process state. In particular Hennessy-Milner Logic (HML), [238],

adapts modal logic to LTS, and the full µ-calculus is an extension of HML with the

introduction of maximal and minimal fixpoints. Formal properties describe the behaviour

of the system under development, and must be satisfied however the system may evolve.

Some of the properties that are of interest to a system designer concern liveness, deadlock

freedom, security, safety, and functionality.

Spin (Promela) may be described as a model checking approach although the distinc-

tion is blurred due to its underlying theory [117]. All of the examples given above rely on

model checking to a greater or lesser extent. The Promela language allows communicating

guarded commands as well as CSP-like communication. Spin is its model checker.

2.4 Validation and verification

Validation is concerned with checking the intended software functionality against the ac-

tual software functionality, and is usually carried out up-front as well as post-implementation.

Up-front validation involves establishing a specification/design is correct with respect to

its intended behaviour before the development of the software is progressed and fur-

ther commitments made. Simulation is very relevant to this form of validation. Post-

implementation validation is usually achieved by acceptance testing where the product

is tested by the end user or within its operating environment to ensure it performs as

intended.

Verification involves showing a design or implementation meets its specification. Tra-

ditional industrial practice uses informal approaches ranging from peer reviews to testing

and simulation. Unit and integration testing are by far the most widely used verification

techniques in industry, however the cost of testing can be as high as 50% of the devel-

opment costs. Testing may not be very suitable for verifying concurrent systems, which

usually behave nondeterministically and where interference and race conditions can lead

to an arbitrary execution order of program statements. The nondeterminism adversely

affects the ability to write test cases, and their reliability; as well as the resources required

to achieve adequate test coverage. Non-deterministic execution of concurrent processes

leads to state-explosion problems, thus meeting adequate coverage criteria for concurrent

systems is problematic.

By contrast, state of the art techniques such as a formal approach to verification

involve showing that a design at some level of abstraction is consistent with designs,
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specifications and properties at higher levels of abstraction according to some required

notion of consistency, usually a refinement relation. Formal verification essentially provides

a proof of consistency between two formal representations. These representations can be

expressed with property-oriented or operational formalisms. Property-oriented formalisms

specify the constraints of the system, and operational formalisms specify a model of the

system in terms of mathematical structures. There are two main approaches to formal

verification of desired properties of a specification, these are proof-theoretic and model

checking. Proof-theoretic (or axiomatic) verification is where specifications are written in

or translated into a notation of a proof system in which theorems may be proved using

equational reasoning and term-rewriting for example.

Model checking involves a fully automated exhaustive search of a transition, state or

inference graph [130]. Justified heuristics are used to minimise the search space needed

to provide exhaustivity, or to converge on a solution faster [60, 181, 264–266]. It may

be argued that formal approaches are difficult to construct and understand as they are

typically carried out on mathematical representations of the system. For CCS with µ-

calculus and CSP with temporal logic, model checking is a common approach. The µ-

calculus or temporal logic express the property constraints or invariants which describe

the functional or safety properties of the system.

Formal program verification for concurrent systems typically entails defining a deadlock

and livelock free abstraction where the main action of the abstraction must preserve the

state invariants (where the language supports them), and proving that the model refines

the abstraction. Deadlock freedom guarantees that some action is possible, and deadlock

properties usually require visibility of the action. Divergence arises when a system engages

in an infinite sequence of internal actions and may result, for instance, from a computation

being invoked outside its precondition.

2.5 Statecharts

Statecharts are a graphical modelling language for the design of complex reactive sys-

tems, that is, concurrent systems interacting with their environment. Statecharts are

used by engineers for designing reactive systems in industry, as is typical in the avionics

and aerospace domain. This is largely due to their extensive tool support and intuitive

nature as exemplified by IBM Rational’s Statemate [105,120]. There are many variants of

statechart design tools, such as UML state machines [43,191,214,223], MathWorks’ MAT-
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LAB Stateflow [248], and IBM Rational’s Rhapsody product [119]. Statecharts model

behaviour in terms of states, transitions and actions. Their intuitive notation may be

preferable, and more likely to be adopted by engineers than a more mathematically-based

formal language [102].

The advantages of statecharts include their ability to express hierarchical information

and concurrency in a clear and intuitive way. On the other hand there are inherent prob-

lems relating to their typically incomplete and imprecise semantics. In addition statecharts

usually do not provide a declarative language for expressing desired high-level properties.

Statecharts were developed in part to help deal with limitations of finite state machines

(FSM) for modelling reactive systems. Finite state machine notation cannot represent

hierarchical abstraction, component decomposition or concurrent states. Such systems

can have very large state spaces rendering their use extremely difficult. Statecharts ad-

dressed these drawbacks by providing “depth” (hierarchy), “orthogonality” (concurrency)

and “broadcasting” (communication) [102].

A state can be basic or composite. Composite states can be AND states and OR states.

Graphically, hierarchy is represented as a superstate encapsulating substates. Hierarchy

permits collections of states to be grouped together and entered or exited as a whole. This

reduces the number of transitions between states and simplifies the model. Orthogonality

is the AND decomposition of states which represents substates operating concurrently.

Each substate has its own independent current state, thereby allowing the definition of

systems having simultaneously active subsystems which communicate by broadcasting

events. Orthogonality helps avoid unmanageably large state spaces and the potential

exponential increase in the number of states.

The graphical notation of statecharts represents states as boxes, and transitions as

directed arrows with a label consisting of an event, optional conditions and actions. Labels

may be viewed as pairs of event sets. The first component of a pair is referred to as the

trigger, which may include negated events, and the second as an action. Intuitively, a

transition is enabled if the environment offers all events in the trigger but not the negated

ones. When a transition fires it produces the events in its action. For example a[P ]/s has

a triggering event a, a guarding condition P on the data state of the system, and an action

s involving both events and data assignments to be carried out should the transition be

taken. Usually transitions can originate and terminate at any level in the hierarchy.

Figure 2.1 is an example Stateflow statechart for a stopwatch [99].
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Figure 2.1: Stopwatch chart

Different dialects of statecharts support a variety of features (e.g., priority, condition

and selection entrances, delays, timeouts, a history mechanism, actions and activities).

There are many statechart variants which has led to a multitude of different interpretations

for what diagrams mean despite their relatively common syntax. This makes it impossible

to achieve a consistent interpretation.

A common point of variance in statechart semantics between different dialects relates to

what is in a macro-step [205]. A macro-step is defined as all transitions within a reaction,

these are observable time steps. Micro steps describe the causal chain within reactions.

Every macro-step is divided into an arbitrary but finite number of micro-steps. Von der

Beeck [28] compared statechart variants and the properties they supported. Von der

Beeck’s research showed that although most statechart dialects support a set of common

properties (i.e. synchrony, hierarchy, concurrency, broadcasting, causality, etc.), some are

only supported trivially. For example, typically causality is only trivially supported, (an

exception to this is the Esterel language [84]) and problems are avoided in some languages

(e.g., Statemate and Stateflow) by consuming emitted events in the next macro-step, or

disallowing negated events (e.g. UML).

Limitations of statechart semantics also include shortcomings relating to composi-

tionality [88, 158]. A compositional semantics is desirable as it is necessary for modular

analysis of statechart designs and a component-based design process. Although the syntax

for UML state machines is formally defined, the semantics is quite loose leading to possible

ambiguity [89]. For real-time, safety-critical systems this is a problem. There are many

approaches aimed at formalisation of UML such as ROOM [215] and Catalysis [73, 74]
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which use OCL constraints to eliminate ambiguities. Although statechart semantics may

be ambiguous, safety-critical systems could be modelled using a “safe” subset of state

diagrams that avoid notations with an unclear meaning.

Statechart designs can become large and unwieldy, it can be argued that some parts

of the design could be expressed more concisely with declarative descriptions in the form

of contracts but these are not supported by the statechart design tools in common use.

Statechart languages typically do not support a systematic, stepwise refinement process

or a set of refinement patterns for capturing rules expressing how to refine an abstract

declarative description into a fully operational design. Consistency between statechart

models is not normally verified formally; each model is validated through simulation.

Clearly this is not desirable or acceptable for safety-critical systems that have substantial

requirements for demonstrating the absence of defects.

2.6 Tool support

The preceding sections discussed languages and theories for reactive systems. This section

will discuss tool support that exists for designing reactive systems. Today, statecharts

are used for the software development of complex, safety-critical systems such as the Air-

bus A380 and the Eurofighter Typhoon [9, 85]. Tools such as Simulink/Stateflow, within

the Mathworks’ tool suite [248], IBM Rational’s Statemate [120] and Esterel Technolo-

gies/SCADE [84] offer specialised modelling and simulation environments. These typi-

cally include a graphical programming language for specification and design, a test suite

for debugging and simulation and a code generation tool to generate program code or a

hardware description (VHDL) from a model of the system.

Stateflow is an interactive design and simulation tool for event-driven systems. State-

flow extends Simulink with a design environment for developing state machines and flow

charts. It is tightly integrated with MATLAB and Simulink products, providing an en-

vironment for designing embedded systems that contain control, supervisory, and mode

logic. The semantics differ from that of a synchronous language such as Esterel/SCADE

Safe State Machines. The term synchronous is overloaded and means subtly different

things depending upon whether one is a hardware designer or software modeller/imple-

mentor. Similarly in different settings the term synchronous may relate to different things,

for example in the context of statecharts it is a description of how time is modelled but

in process algebra it describes how the parallel operator works, (i.e. in process alge-
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bra synchrony means lockstep, while asynchrony means interleaving). In the context of

this section of the thesis synchronous means models that obey the synchrony hypothesis.

Berry’s perfect synchrony hypothesis states that control transmission, communication, and

elementary computation actions take no time [31], i.e. any responses from a stimulus that

are supposed to occur at the same point in time actually do (despite the model having to

perform a computation to work out what they are).

Stateflow semantics are not formally specified, only informally by the Stateflow man-

ual. It supports a single-event, run-to-completion semantics. Stateflow run-to-completion

semantics insists that if an event is broadcast, the active transitions triggered by this

event are evaluated successively according to the execution order of their parent states

(e.g parallel states have a predefined execution order, depending on graphical layout or

user input). For each transition evaluation, new signals might be emitted by transition

or condition actions. Each new event emission immediately calls this interpretation al-

gorithm and runs to completion and only then resumes with the processing of the next

transition for the original event. Exactly one event is evaluated when it occurs. Triggers

with multiple concurrent events and negated events are not possible.

The two main development environments for UML-based languages are IBM’s Rational

Rhapsody [119] and RoseRT [118]. RoseRT implements a sublanguage of statecharts, for

example, it does not support orthogonal state components. Rhapsody statecharts are

object-oriented, asynchronous and intended for real-time embedded software systems. The

action language of Rhapsody is a subset of the target programming language; so the events

and actions defined along transitions and in states, etc., are fragments of C++ or Java.

Model execution in Rhapsody is carried out solely by running code generated from the

model, the high-level programming language is compiled down into executable code.

IBM Rational’s Statemate [120] is not object-oriented and is intended for mixed hard-

ware/software systems. Statemate has different step semantics depending on how the user

configures the tool. There is a single step semantics (which Statemate calls synchronous),

as well a micro-step/macro-step semantics that assumes the synchrony hypothesis. State-

mate supports compound (joined with conjunction and disjunction) and negated events.

Statemate has three views of a system representing its structure, functionality and be-

haviour. It uses activity-charts for the hierarchical functional structuring of the model.

An activity-chart is an enriched kind of hierarchical dataflow diagram to represent the

possible flow of information between the functions or activities. Each activity could be
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associated with a controlling statechart, which would also be responsible for inter-function

communication and cooperation. Statemate uses module charts to describe the structure

of the system. They describe the main components in the implementation of the system

and their connections. Statemate can execute statecharts directly, in an interpreter mode

that is separate from the code generator.

Esterel/SCADE Suite is a development environment for safety-critical, embedded soft-

ware. Esterel/SCADE has both a textual and graphical syntax (Safe State Machines). The

main semantic characteristics of Safe State Machines (SSM) are synchrony and determin-

ism. They are a reactive model of synchronous parallel systems with instantaneous broad-

casting of signals. SSM allow multiple and negated events but do not permit inter-level

transitions. Esterel programs are given an operational semantics as labelled transition sys-

tems and are compiled into finite state sequential machines [32]. SCADE has a graphical

editor for the statechart dialect, (Safe State Machines), a graphical simulation and testing

environment, a code generator and a compiler for C code production.

2.7 Contracts

The high-level declarative properties of a system during the design process are typically

described in the form of a contract [171]. Dictionary.com defines a contract as, “An

agreement between two or more parties for the doing or not doing of something specified”.

An advantage of contracts is that they can simplify a design by making it concise and more

easily understood. Contracts may express the mutual rights and obligations of clients and

suppliers.

  

 

Obligations Benefits 

Client Weight < 5kg pay £1.50 Delivery < 4 hours 

 

Supplier Delivery < 4 hours No need to deliver unless 

weight < 5kg & paid £1.50 

 

 

Table 2.1: Example contract for delivering a letter

Many languages support contracts (e.g. Z, JML, Eiffel) [153, 162, 172, 231]. Contracts

[33, 182] describe what is required to use a component, and what benefits are obtained

from its use, typically in a precise mathematical style. Design by Contract [171, 173] is
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an approach to designing computer software. It prescribes that software designers should

define precise, verifiable, interface specifications for software components based upon the

theory of abstract data types and the conceptual metaphor of a business contract. Design

by contract was first introduced by Meyer [172] with the Eiffel programming language, as

an alternative to defensive programming.

Design by contract is intended to improve the reliability of reusable software com-

ponents. Contracts permit the declarative descriptions of behaviour and describe how

elements collaborate with each other. A contract consists of assertions (Boolean expres-

sions) which are used to establish what a component does, clearly state service guarantees

and provide parameters against which a component can be verified. Assertions can be

preconditions or postconditions which apply to individual routines as well as invariants

which constrain all instances of a given class.

There are different classes of contract [125]. For example, basic contracts are used

to capture simple syntactic properties (e.g, operations that a component can perform).

Behavioural contracts describe the permissible effects of operations similar to Eiffel’s pre

and post-conditions or OCL constraints [190]. Synchronisation contracts apply within

distributed or concurrency contexts. They show synchronisations between method calls

and the dependencies between services provided by a component. Quantitative contracts

stipulate the quality of service levels such as quantifying expected behaviour or offering

the means to negotiate these values (e.g. to define maximum response delay).

Contracts and concurrency is a complicated research area, with tricky issues to resolve,

such as how to satisfy preconditions or determine whether postconditions have been met

that depend on shared objects in a concurrent environment [179]. Contracts are a con-

cept embraced by many formal methods. Morgan’s specification statements consist of a

precondition and postcondition pair [P,Q] [180]. The precondition represents a predicate

over the variable state, inside which the postcondition is expected to hold. Outside P the

behaviour is unconstrained (and might not even terminate). The postcondition is a step

condition (or first-order condition) in that it can refer to variables before and after the

required operation.

Jones’s rely/guarantee conditions [126] are step constraints. A step predicate that

defines what the state can “rely” upon from its environment is an effective way to antic-

ipate how the environment operates on shared variables. Whilst Morgan’s specification

statements are usually thought of as a means to develop sequential rather than reactive
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systems, they have been applied in a reactive setting. For example in [123,249,250] essen-

tially the same mechanism is used within statecharts to express and verify assumptions

on states.

In PFS [124], contracts such as this (called “current” and “next” conditions) are used

to decorate the states in the machine. They scope outgoing transitions from the source

state, and provide a proof goal for establishing the precondition (current condition) at the

target state. Additional goals are generated vertically down the hierarchy to ensure anno-

tations are consistent. The root node contains the abstract contract, i.e. set of conditions,

on which the correctness of the whole machine rests.

Step contracts are first order, but control systems often require higher order constraints

(both in pre and postcondition). Blow [42] proposed that differential extensions to the

notion of a data contract for subsystems rendered them far more relevant to the control

systems domain. The idea advocated was to extend contracts so that both preconditions

and postconditions could range over arbitrary subsequences of inputs and outputs. These

were represented symbolically by allowing them to refer to arbitrarily prime decorated

variables rather than just the usual unprimed and single-primed variables. Differential

contracts constrain arbitrary sub-sequences of input and output. A limitation of differen-

tial contracts is their inability to constrain entire state histories in a general way. Temporal

logic supports general constraints on state histories.

Temporal logic can be linear time or branching time. Linear time logic supports the

view that at each moment there is only one possible future and temporal modalities are

provided for describing events along a single time path. Whereas branching time supports

the view that at each moment there may be different possible futures and the modalities

reflect the branching nature of time by allowing quantification over possible futures [81,82].

The features present in the logic are of primary importance such as the ability to specify

nondeterminism and the presence of a negation operator to express what outcomes are

not possible, as well as those that are.

Hennessy-Milner logic/µ-calculus is a multimodal logic used to specify properties of

labelled transition systems. A theoretical background to contracts based on temporal logic

is offered by Lüttgen and Cleveland’s work on mixing temporal and process algebraic styles

of specification [64] and Lüttgen and Vogler’s work on the compositional operators and

refinement orderings needed to support such a mixture of styles [157].
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2.8 Patterns

Patterns and pattern languages in software engineering are ways to describe best practices,

and capture experience so that it is possible for others to reuse this experience [10]. They

document and support sound engineering architecture and design. The goal of patterns in

software engineering is to help developers resolve recurring problems. They communicate

insight and experience about these problems and codify their solutions.

There are different types of patterns. For example, a design pattern is a general

reusable solution, at the level of modules and interconnections, to a commonly occurring

problem in software design [97]. An architectural pattern in software is a standard design

in the field of software architecture so it has a broader scope than a software design

pattern, and addresses a wider range of issues such as computer hardware performance

and minimisation of business risk [50].

Analysis patterns in software engineering are conceptual models, which capture an

abstraction of a scenario that can often be encountered in modelling. An analysis pattern

reflects conceptual structures of processes rather than actual software implementations.

It can be represented as a group of related, meta-classes with attributes, behaviours and

expected interactions defined in a domain-neutral manner [92].

2.8.1 Design patterns

Design patterns abstract reusable design experience and address system design issues [97].

They capture expert knowledge and design trade-offs [208]. Design patterns provide de-

sirable software engineering benefits [125,149,197] such as modularisation, encapsulation,

reuse, extensibility, clarity and maintainability. Patterns express design structures, i.e.,

they are building blocks for constructing more complex designs, and can help implement

specific architectures and mechanisms present in the problem domain. The refinement

and refactoring patterns for this research are conceptually similar to design patterns. De-

sign patterns however only focus on guiding the process of implementation and not on

verifiably correct transformations.

Design patterns generally consist of an abstract description of class/object collabora-

tions and their responsibilities and determine the circumstances under which the pattern

is applicable and the changes to be made. There are different classifications and catalogues

of design patterns and many share some commonality. Patterns have been classified as

compound, creational, structural or behavioural [97].
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There are numerous design patterns for real-time, reactive and concurrent systems.

Powel-Douglass [72] has identified many for UML. Some are based on collaborations of

states or are for implementing certain behaviours, for example relating to task priorities

and synchronisation. There has been research into design patterns for statecharts [243]

with the aim of facilitating the reuse of object-oriented statechart implementations for

the deployment of basic and hierarchical statecharts, optionally supporting orthogonality,

broadcasting and history.

Bordeleau et al [44] have identified design patterns for state machine implementation.

Unlike Douglass’s patterns that offer reuse of state machines at the level of a class and its

roles, these patterns relate to design decisions at the level of scenarios. They focus on the

transition between scenario models and hierarchical state machines. Their Uninterruptable

Sequence of Actions pattern uses deferred events to ensure while executing the sequence

of actions in the composite state that all irrelevant messages are ignored. This pattern

could be used to implement a critical section. Another example is their Coregion pattern

which implements a set of messages whose temporal ordering is undefined. The pattern

avoids a naive solution that leads to a combinatorial explosion of states. To achieve this

it relies on state variables.

2.9 Refactoring

A refactoring is a behaviour-preserving transformation on an artifact constructed during

system engineering. A refactoring is a horizontal transformation in the sense that the

level of abstraction and thus external behaviour stays the same. The key purpose of

refactoring is to clean up code separately from adding new functionality, using common

refactoring methods. In Extreme Programming and other agile methodologies, refactoring

is an integral part of the software development cycle, to improve the internal structure and

clarity of code [27]. Fowler’s refactorings [93] provide examples of evolutionary changes to

object-oriented systems, (e.g. operational refactorings focus on restructuring behaviour).

For example,

1. The Encapsulate Field refactoring is a technique that allows for more abstraction by

forcing code to access a field with getter and setter methods.

2. The Extract Class refactoring is a technique for breaking code apart into more logical

pieces by moving part of the code from an existing class into a new class.
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More recently some research has proposed raising the level of abstraction from program

refactoring to model refactoring which aims to apply refactoring techniques at the model

level (e.g., UML models), rather than to source code [247, 253]. The refactoring and

refinement patterns for this thesis are described in Chapters 4 and 5. They are model

transformations to perform refactorings on Contractual State Machine designs.

2.10 Refinement

Refinement supports the construction of correct programs from their specifications through

a sequence of steps. Stepwise refinement consists of developing a design through different

levels of abstraction, from a high level to a more detailed design [18,51,54,58,255,256,262].

Iterative refinements are performed, producing a design in which the behaviour is fully

described, which is consistent with the initial more abstract description. In general re-

finement is a transformation in a vertical direction from abstract to concrete. It is a

relationship that preserves desirable properties. The properties may be varied such as

simulation, equivalence, understandability, performance, or hierarchy. Refinement pat-

terns are designed to maintain these properties. When such patterns are fully formal they

are usually referred to as laws.

According to [57] there are two approaches to refinement. The verification approach

to refinement allows the practitioner to offer a possible refinement of a program, and tools

are applied to prove the correctness. On the other hand the calculational approach to

refinement uses laws that may have associated proof obligations to guide the refinement

process and prove that the new more detailed design refines the more abstract description.

The transformation process from specification through to implementation consists of a

series of correctness preserving refinements. The design is gradually elaborated in a step-

wise fashion as the result of incremental manipulation of the specification/design using

refinement laws. These may alter internal representation as well as introduce executable

constructs. On completion both the design and its proof of correctness with respect to

the original specification have been achieved.

The refinement calculi of Back and Morgan [17, 180] represent a typical framework of

how to achieve formal software development through refinement. Central to this approach

is the notion of a formal specification statement and the formal definition of the refinement

relation. Formal specification statements are regarded as particular forms of programs

and (non-executable) program statements in their own right. The refinement laws are
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pre-proven to uphold the refinement relation between the abstract and more concrete

designs. The correctness of the refinement process can be established by showing that the

refinement relation is preserved all the way through the design process.

2.11 Model-driven engineering (MDE)

Model-driven engineering (MDE) is based on the idea of a highly automated environment

for the specification, elaboration and management of models throughout the engineering

lifecycle [16, 225]. MDE is a state of the art approach to software development that

attempts to raise the level of abstraction at which software and system engineers carry

out their tasks beyond the use of programming languages and components. To achieve

this models are promoted to first-class artefacts in the development process [34]. They are

precisely defined and successively elaborated until they are complete, then finally they are

automatically transformed into an implemented system.

MDE automates the full range of model management tasks such as model transforma-

tion, validation, comparison and merging. In an MDE workspace the models are typically

interrelated, possibly overlapping, and usually expressed using different modelling lan-

guages. MDE transformations can support refinement and refactoring.

MDE is not a development method or process, it can be implemented in a number

of ways (e.g. Extreme Programming (XP) or by a refinement calculus [15, 160]). The

Model-Driven Architecture (MDA) [135,164,165] is an initiative of the Object Modelling

Group (OMG), aimed at providing a standard approach for MDE. MDA requires the

use of a standard modelling language, UML and meta-steps that should be followed in

the development of models and systems. MDA attempts to achieve the benefits of MDE

while also improving interoperability to enable different projects to share models and

standardizing the system development process.

The Object Constraint Language (OCL) [190] is a language for defining constraints on

metamodels such as Meta-Object Facility (MOF) [193] and UML models. Constraints are

expressed as invariants on classes and tested against class instances. There are a number

of open source tools that facilitate evaluation of OCL invariants such as Object Constraint

Language Environment (OCLE) [151] and Octopus [232]. An OCL invariant is restricted

to expressing constraints on a single model, and thus can only achieve intra-model consis-

tency or internal model consistency to check a model conforms to its metamodel and does

not contain any contradictions. OCL does not support inter-model consistency (external
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model consistency) which could be used to check consistency between models that capture

different but overlapping aspects of the problem domain or to ensure consistency between

models at different levels of abstraction.

Model transformation is a core concept in model-driven engineering (MDE) [68, 69,

134, 169, 226]. It is the automatic production of target models from source models based

on a transformation definition, usually consisting of a set of transformation rules. A

transformation rule is a description of how one or more constructs in the source languages

can be transformed into one or more constructs in the target languages.

There are a wide range of different types of transformations in MDE, including model-

to-model and model-to-text. Two specific forms of model-to-model transformations of rel-

evance to the research presented in this thesis are horizontal and vertical transformations.

Horizontal transformations are typically characterised by a change to the internal structure

of software to improve certain software quality characteristics such as understandability,

modifiability, reusability, modularity and adaptability without changing observable be-

haviour. A horizontal transformation is a transformation where the source and target

models reside at the same abstraction level. A typical example is refactoring, which is a

horizontal transformation where the source and target languages are the same [37,167].

A vertical transformation is a transformation where the source and target models reside

at different levels of abstraction. A typical example is refinement. Formal refinement in

the sense of [221, 224] (which is defined in terms of reducing nondeterminism) is vertical

and within a single language (i.e., endogenous), Model transformations preserve properties

of the source models. In particular, refactorings preserve the external behaviour, while

the structure is modified. By contrast, refinements preserve correctness [252].

Two critical types of model transformation are the mapping transformation which

translates a number of source models into a number of target models and does not al-

ter the source models. The other type is the update-in-place model transformation [69]

which by contrast performs modifications to the source model itself. The effects of the

transformation are visible while performing the transformation. They can be applied in

a user-driven manner on model elements that have been selected by the user, (update-

in-place transformations) [140]. This approach can support refactoring and refinement

transformations, and in turn, patterns.

An essential part of an MDE process is to transform models into textual artefacts

(model-to-text transformation). For the research reported here the tool suite for Con-
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tractual State Machines provides model-to-text transformation to translate a graphical

Contractual State Machine design into the STGA-like language required by the model

checker (HST).

2.12 Eclipse-based development tools for MDE

This section discusses Eclipse development tools for MDE. The Eclipse Foundation [78] is

an organisation formed by major software vendors, and supported by a large and active

development and user community. Its main purpose is to provide an open platform for

integrating interoperable development tools. Eclipse has a modular architecture consisting

of a small core, its Rich Client Platform (RCP), and extension mechanisms that enable

developers to contribute additional functionality in the form of plugins which are grouped

by features and products.

A significant body of tools have been developed as plugins for Eclipse such as editors,

compilers and launchers for many programming languages, management tools for source

code repositories and most importantly, modelling tools. Productivity and quality benefits

can be achieved as Eclipse offers a significant amount of stable and tested functionality

for reuse. Eclipse supports model-driven engineering based on the OMG standard model-

driven architecture (MDA) [135, 165, 175, 176, 194]. The Eclipse Modelling Framework

(EMF) and the Graphical Modelling Framework (GMF) support development of model-

view-controller based graphical modelling tools, and were used to implement the graphical

model editor for Contractual State Machines.

2.12.1 Eclipse Modelling Framework (EMF)

EMF is a modelling framework and code generation facility for building tools based on

a structured data model [77]. It is a semi-formal object oriented modelling technology,

and it can be used to define the underlying model (domain model) of visual editors.

Metamodels describe the abstract syntax, symbol and link types (relationships) used in the

diagram of the visual language and do not contain information about their concrete layout.

Additional language constraints can be expressed by adding OCL constraints [190] to the

EMF model. EMF provides a graphical editor for specifying metamodels with its Ecore

M3 language. EMF generates executable code from metamodels. Given an EMF model,

a set of Java classes and a set of adaptor classes that enable viewing and command-based
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editing of the model can be generated. A basic, tree-based editor for model instances can

be generated and directly executed in the Eclipse run-time workbench. EMF also provides

a framework (EMF.edit) for generating new modelling languages (graphical editors) from

a metamodel. EMF is aligned to MOF 2.0 [193] supporting model validation with OCL

and XML Metadata Interchange (XMI) for interchange and serialization of models [192].

2.12.2 Graphical Editor Framework (GEF)

The Graphical Editor Framework (GEF) provides technology to develop graphical editors

for the Eclipse workbench UI [76]. Basic and advanced editor functionalities are supported.

GEF applications have a model-view-controller architecture. GEF provides facilities for

loading a graphical model, creating controllers for each model element and constructing

and associating views with the controllers. Figures for the concrete layout of diagrams in

the graphical editor and commands to be used in the editor are specified, alternatively a

graphical editor can be generated using GMF.

2.12.3 Graphical Modelling Framework (GMF)

GMF Tooling [75] provides a set of generative components and runtime infrastructures

for developing graphical editors/modelling tools in Eclipse, based on EMF and GEF. It

is a model-driven approach for creating a graphical editing surface for any domain model

in EMF. It links a GEF diagram definition to an EMF domain model. GMF is used for

concrete syntax development. It enables the definition of graphical syntaxes for meta-

models by attaching visual elements such as lines and polygons to metamodel elements.

Additional language constraints can be applied using OCL. GMF generated editors offer

basic editing commands to create, edit, move and delete single model elements. GMF and

EMF allow a developer to get started quickly when producing a domain specific modelling

tool, however a drawback is that typically it is necessary to fine-tune or customise the

generated software and there may be a high cost associated with maintaining the software

as requirements change.

2.12.4 EuGENia

EuGENia is a front-end for GMF, its aim is to speed up the process of developing a GMF

editor [83] and it is based on the principles of model transformation. It enables developers

to generate a fully functional GMF editor by defining a few high-level annotations in
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the Ecore metamodel. It automatically generates the .gmfgraph, .gmftool and .gmfmap

models needed to implement a GMF editor.

2.12.5 Epsilon

The Extensible Platform for Specification of Integrated Languages for mOdel maNagement

(Epsilon) [136, 143], is a suite of tools for MDE, built on top of the Eclipse platform.

Epsilon provides a set of interoperable task-specific model management languages that

enable composition and seamless integration of individual model management tasks as well

as non-MDE tasks into coherent workflows. The family of model management languages

are built on top of an extensible platform of reusable core facilities.

Epsilon supports a common model repository to provide centralised management of

loading and storing models. This centralisation alleviates the resource and time consum-

ing process of repeatedly loading and storing the same models when more than one model

management task is to be performed on them. Epsilon provides an inter-task communi-

cation facility which enables different model management programs to communicate at

runtime by exporting variables to enable the results of a complex query, for example, to

be exported instead of being recalculated by subsequent tasks.

The architecture of Epsilon is shown in Figure 2.2. The Epsilon Model Connectivity

layer provides the abstractions that free Epsilon from tie-in to a specific metamodelling

technology. The core of the platform is the Epsilon Object Language (EOL) [139], a re-

working and extension of OCL that provides support for model update, conditional and

loop statements, statement sequencing, and access to standard output and error streams.

The Epsilon task-specific languages are built on top of EOL, giving highly efficient inher-

itance and reuse of features.

The task-specific languages are, the Epsilon Object Language (EOL) [139], for the

direct manipulation of models, the Epsilon Merging Language (EML) [137], for model

merging, the Epsilon Comparison Language (ECL) [138], for model comparison, the Ep-

silon Transformation Language (ETL) [141], for model-to-model transformation, the Ep-

silon Validation Language (EVL) [91], for model validation, the Epsilon Generation Lan-

guage (EGL) [212], for model-to-text transformation, and the Epsilon Wizard Language

(EWL) [144], for in-place model transformations. In contrast to most other model man-

agement tools like XPand and MOFScript, which are standalone or only loosely integrated,

all the languages of the Epsilon platform build on a common model navigation and manip-
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Epsilon Model Connectivity

Epsilon Object Language

EMF driver MDR driver XML driver Z driver

M2M Transformation (ETL) M2T Transformation (EGL)

Model Comparison (ECL) Model Merging (EML)

Model Refactoring (EWL) Model Validation (EVL)

Model Migration (Flock) Unit Testing (EUnit)

Figure 2.2: The architecture of Epsilon

ulation language (EOL) and run-time environment and are therefore interoperable, (i.e.

an operation defined using EOL can be reused, without changes, by any of the Epsilon

languages).

Epsilon supports a wider range of model management tasks than comparable platforms,

and provides better integration due to the common infrastructure on which the languages

have been built. There are other differences and advantages of Epsilon over comparable

model management tools, for example, for each model manipulation task, the language

is tailored to the task’s specific requirements, unlike the Atlas Transformation Language

(ATL) [128, 129], which uses a single language for all tasks. Epsilon languages provide

excellent Eclipse-based tools which are supported by stable execution engines [142]. The

differences between Epsilon and openArchitectureWare (oAW) [196] are that oAW is a

proprietary framework for coordinating model management tasks, and the range of sup-

ported model management tasks is different to Epsilon. OAW does not support model

comparison and merging and Epsilon does not support text-to-model transformation tasks.
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2.12.5.1 Epsilon Wizard Language (EWL)

The Epsilon Wizard Language (EWL) is a language designed for performing interactive,

in-place model transformations in the form of wizards that can be coupled loosely with

arbitrary model-view-controller GUIs [140]. EWL plays a key role in this thesis being used

to create wizards for the refinement and refactoring transformations proposed in Chapters

4 and 5. It is important for the catalogue of wizards to be extendable. EWL will allow

additional wizards to be implemented for refinement and refactoring patterns tailored to

needs not yet met. A wizard specifies the types of elements to which it applies and defines

the actions it will perform when it is applied to a selection of model elements.

An EWL wizard defines a name, a title part, a guard part, and a do part.

wizard name {

guard 〈predicate〉

title 〈title〉

do {

〈transformation〉

}

}

The name of a wizard acts as an identifier (for the software engineer implementing wizards)

and the title is the name of the wizard or a short description of its functionality (e.g.“Unfold

Always”) that acts as an identifier for the user when selecting wizards to apply to a

design. A wizard defines the actions it will perform when it is applied to a selection of

model elements in the do part. The guard is a predicate that specifies when a wizard is

applicable to a specific selection of model elements, the approach here is a declarative one.

The title, guard and do parts are expressed in the Epsilon Object Language (EOL). EOL

can express simple declarative statements or blocks of imperative statements. It is an

OCL-based language tailored to navigating, querying and modifying models and provides

mechanisms for capturing user input [139].

The process of executing EWL wizards is user-driven. The EWL interpreter filters

applicable patterns at design time. The user selects model elements in the modelling

tool and each time the selection of model elements changes the guards of all wizards are

evaluated by the EWL interpreter. If the guard of a wizard is satisfied the title part is

evaluated (the EOL statement(s) are executed) and a string is returned. The string acts

as an identifier for the wizard and is added to the list of applicable and available wizards

34



2.12 Eclipse-based development tools for MDE

that is presented to the user in a pop-up menu. Filtering out irrelevant wizards reduces

confusion and enhances usability particularly as the list of available wizards increases in

size. Thus the user is only ever provided with the list of wizards that are applicable to

the current selection of elements. The user can select one from the list and the interpreter

executes the do part of the wizard to perform the intended transformation.

EWL successfully hides complexity from the software developer. Initially the engineer

is required to get to grips with the UML2 metamodel, but this is an expected requirement

for standardised model management languages. EWL is a very succinct language resulting

in simpler code that is easy to understand and maintain.

There is one issue that may be seen as a possible drawback to EWL. It may be argued

that currently EWL has low modularity and reusability as there is no easy way to combine

patterns other than copying and adapting the code of existing wizards [247]. This is

particularly restrictive in the context of refining and refactoring models where compound

patterns build upon and reuse core patterns. Although EWL does not currently support

reusability of wizards it does support reusability of operations which can be grouped into

external libraries, as it is built on top of the Epsilon Object Language (EOL) layer.

2.12.5.2 Epsilon Generation Language (EGL)

The Epsilon generation language (EGL) is a model-to-text transformation language [212].

It is a model-driven, template-based code generator. EGL uses a template to generate

text from an instance of an Ecore metamodel. Templates are constructed from sections.

The contents of static sections appear verbatim in the generated text. Dynamic sections

contain executable code used to control the generated text. In its dynamic sections EGL

reuses EOL’s mechanisms for program control flow, model inspection and navigation and

defining custom operations. EGL could be used to translate a state machine design to

a description of the model in a textual representation required by external systems. For

example an EGL template has been implemented (as part of the software development for

this thesis, see Chapter 6) to translate a state machine design into the STGA-like language

required by the model checker, the Heterogeneous Specification Tool (HST). This could

then be passed to the model checker for further processing.
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2.13 Contractual State Machines (CoSta)

This section introduces the Contractual State Machine language (CoSta), its key syntactic

constructs and an overview of the semantics (further details are given in Appendix B). The

focus is on presenting Contractual State Machines from the perspective of an engineer and

thus emphasises how the language is to be used rather than details of its semantics. The

formal framework and refinement theory for Contractual State Machines was developed

by other members of the group and remains unpublished. The formal foundations are not

a contribution of the thesis but are summarised for completeness as they set the context

for the research presented in this thesis.

CoSta’s refinement relation and the language of contracts1 is based on Lüttgen and

Voglers’ work on Logic LTS [157], which itself is derived from Ready Simulation [41].

It is a heterogeneous specification/design language to describe reactive systems in both

declarative and operational styles. Contractual State Machines (CoSta) is a simple hier-

archical state machine language that has been extended to incorporate a language based

on a restricted form of µ-calculus (contracts). CoSta is an open language with shared

variables.

It is envisaged that at the initial design stage before CoSta is used to specify open

contracts, a top-level contract that is based on closed reasoning (the variables of the

model are impervious to outside interference) and expresses model-wide properties may

be specified. A closed contract language has not yet been defined. It is intended that the

closed contract language will express properties in a temporal logic based on µ-calculus

extended with data parameters for describing events and state. Subsequent design stages

would implement the closed contract as a set of open CoSta contracts ensuring that the

parallel composition of their interpretation as processes satisfies the closed contract.

The CoSta contract language supports the specification of high-level properties in an

abstract and concise way. Contracts express very complex (highly nondeterministic) state

machines succinctly. The syntactic structure of CoSta State Machines is based on Lin’s

Symbolic Transition Graphs with Assignment (STGA) [71, 155]. STGA are LTS’s with

richer labels consisting of a guarded action with assignment. The semantics is currently

given as a “ground semantics” based on Labelled Transition Systems (LTS), where an LTS

1Full formal details of the refinement relation are not yet in the public domain; this thesis does not rely

on these formal details.
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is defined in the usual way for CCS-like languages as labelled directed graphs. Output

actions in CoSta are primed as in CCS. When channels do not involve data the distinction

between input and output actions is more intuitive. Actions which “report” information to

the environment are primed, and those which “request” information from the environment

are unprimed.

The notion of correctness preservation for CoSta is provided by a refinement relation,

shared variable ready simulation on STGA/LTS transition systems. It holds if the be-

haviours of two systems are identical except for the reduction of nondeterminism at every

step no matter what data state the environment places them in. It is compositional over

shared-variable (i.e. statecharts-like) parallel and hierarchy operators. State is included

up front in the language, and no refinement of the state will be conducted. There is no

primary notion of equivalence for CoSta only a notion of refinement ordering in which the

hidden actions are closed (effectively ignored). Two processes are equivalent when they

refine one another. Equivalent processes both satisfy the same contracts.

The CoSta contract language has a dual interpretation. Logics, such as the one em-

ployed for the CoSta contract language, are usually related to LTSs by a satisfaction

relation. However, following [157] contracts are also given a direct characterisation as

a single STGA (LTS), allowing mixed descriptive styles within the same heterogeneous

framework. The operators of the CoSta contract language are carefully chosen, so that

a maximal characterising STGA (maximal agent) can be constructed, whose refinements

are precisely those processes satisfying the formula, (any refinement of a process satis-

fying a contract also satisfies that contract). A maximal agent for each contract is the

nondeterministic choice over all the processes that satisfy it. It is the largest LTS with

least nondeterminism that the contract fully characterises (that satisfies the contract). It

is effectively the nondeterministic choice between all behaviours that satisfy the contract.

The Heterogeneous Specification Tool (HST) is a model checker under development

within the research group to provide automated refinement checks, and expand the con-

tract notation into its dual interpretation. The tool (HST) currently provides animation

facilities based on STGA agents and a data environment. It provides a predicate-style

interface to an SMT solver (Boolector [49]) for deciding conjectures.
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2.13.1 CoSta contract language

The CoSta contract language is based on a restricted form of µ-calculus (some µ-calculus

operators cannot be defined within the heterogeneous framework adopted).

Formula = “True” | “False” | BasicForm |

Formula “∨” Formula | Formula “∧” Formula

BasicForm = TotalisedEnable | Disable | ExclusivelyEnable

| IfAction | Always | Unless | BoundedEventually

TotalisedEnable = “〈[” EventExpr “]〉”

Disable = “〈” EventExpr “〉”

ExclusivelyEnable = “〈” EventExpr “〉”

IfAction = “[” EventExpr “]” Formula

Always = “�” Formula

Unless = Formula “y” Formula

BoundedEventually = “♦k” Formula

EventExpr = EventSet | EventSet “[” VariableUpdate “]”

EventSet = Eventlist | “-” Eventlist |

Eventlist = Event | Event “,” Eventlist

VariableUpdate = Assignment | Guarded Assignment

| Establish Assignment

Assignment = Varlist “=” Exprlist

Guarded Assignment = Predicate “=⇒” Assignment

Establish Assignment = Varlist “:” Predicate

The contract language has been extended with data (in a manner similar to Cleave-

land’s data-extended µ-calculus [64]), so that actions can have guards, and assignments

and nondeterministic choice for assignment is supported. The operators of the contract

language are based on those proposed by Lüttgen and Vogler [157].

• The totalisedenable operator specifies that one or more events in a set must be

available. When accompanied by a variable update the event is enabled from every

before state within the guard (or feasibility) of the assignment and must be capable

of a consistent update.

• The disable operator specifies that none of the events in a set are available. When

accompanied by a variable update the action is disabled for all the updates consistent

with the expression. It may still be enabled within its guard as long as its update is

not consistent.
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• The exclusivelyenable operator specifies that one of the events in a set is exclusively

available, whilst all other events are disabled. When accompanied by a variable

update the event is only exclusively enabled within the guard (or feasibility) of the

assignment and must be capable of a consistent update.

• The ifaction operator specifies constraints on the behaviour following a particular

set of events (whatever the values of the variables, and for all events in the set).

When accompanied by a variable update, the constraints need only apply from a

before state satisfying the guard (or feasibility) of the assignment, and following a

consistent update.

• The always operator specifies a constraint which must be true at all times, whichever

events are taken.

• The unless operator behaves similarly to the always operator: the left-hand formula

must be true at all times. However should the right-hand formula become true, the

left hand formula (at this point and thereafter) no longer need hold.

• The boundedeventually operator specifies a constraint which must be true within k

steps.

• The Assignment represents the simultaneous update of the variable on the left with

the expressions on the right. The Guarded Assignment carries an additional enabling

condition. The Establish Assignment is nondeterministic. It sets the variables in

such a way as to satisfy the predicate on the right of the “:”. The values of the

variables before and after the assignment are distinguished by unprimed and primed

variables respectively. The predicate can contain instances of any unprimed variable

but varlist can only contain instances of primed variables. If no assignment can

satisfy the predicate from a particular set of before-values then it is said to be

infeasible (from those values).

The CoSta contract language can describe properties that are required to hold on some

branch and properties that are required to hold on every branch. Conjunction (∧) specifies

that more than one property is required to hold. A choice of behaviours is expressed with

disjunction (∨), and the weakest process in these terms is True. Only processes inconsistent

from all states satisfy False.
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Many of the operators are defined by translation into more fundamental forms. For

example 〈e1 . . . en[A]〉 is defined as 〈e1[A]〉 ∨ . . . ∨ 〈en[A]〉, 〈e〉 is defined as 〈e[⇀x : True]〉,

〈a〉 is defined as [a]False, and �L is defined as Ly False.

2.13.2 Abstract syntax of Contractual State Machines

The Contractual State Machine language supports a common subset of statechart language

features. Its syntactic model (figure 2.3), which was designed during the implementation

of the Contractual State Machine design tool (described in Chapter 6), is included here

for clarity. The metamodels for the contract and transition label languages are discussed

further in Chapter 6. A full listing of the concrete syntax (described in an EBNF-based

language) and abstract syntax (described in Emfatic) for the CoSta contract language is

given in Appendix A.2 and for the transition label language in Appendix A.3.

 

Figure 2.3: Contractual State Machine syntactic model

Primitive diagrams, comprising OR states and transitions, are interpreted as pictorial

representations of STGAs. STGA does not allow nondeterministic assignment but CoSta

extends STGA with nondeterministic assignment, based on the Generalised Substitution

Language’s [7] unbounded choice. Hierarchy is captured by a semi-static “interrupt” op-

erator and captures the meaning of statecharts hierarchy, (composes the outer transitions

and their destinations with the inner transitions and their destinations).

State types signify how the substates of a superstate are treated: sequential (OR)

states and parallel (AND) states represent sequencing and orthogonality respectively. The

parallel operator is a shared-variable version of CCS’s two-way synchronising operator. It
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was provisionally chosen for simplicity, with a view to adding complexity later on. CCS’s

restriction operator was also adopted, in order to enforce internal (hidden) synchronisation.

The (shared-variable) CCS parallel operator was used in the case study, but at the top

level, before the patterns apply. The refinement relation (SVRS) was designed to be

compositional with respect to it.

Conjunction states are an addition and a new form of state decomposition required to

support the approach to the design process. Conjoined sub-states are orthogonal in the

same way as parallel states. Conjunction states represent the behaviour common to all

their substates, (the intersection of the behaviours). Its definition is derived from that

of [157]. They are not part of the target design notation2.

The conjunction operator is a solution to the problem of dealing with conjunctions in

the contract language, where the form of the conjuncts is critical in determining which

refinements are permissible. Providing patterns directly for each form would prove impos-

sible. A different approach is advocated where each conjunct is refined separately into a

Contractual State Machine using patterns. The aim is to refine each conjunct separately

to a behaviour common to both, i.e into the same Contractual State Machine, then merge

the identical conjunct states into one.

The heterogeneous design language mixes contracts and state machines in a restricted

and disciplined way. Contracts specify non-decomposed designs and can appear on any

node in the hierarchy. The syntactic structure presented above distinguishes two uses of

the contract notation associated with states, inner contracts and outer contracts. An inner

contract is the behaviour that hasn’t been decomposed yet and is potentially a succinct

way of describing a highly nondeterministic diagram within the state. It is the declarative

specification of the behaviour within a state and ignores the behaviour outside the state

such as outgoing transitions or composed states. An outer contract specifies behaviour of

a machine from that state onwards. It ignores behaviour outside the containing state but

includes the outgoing transitions of the state to which it is attached.

If a state has no outgoing transitions then its inner and outer contracts characterise

the same behaviour although the contracts may be at different levels of abstraction. The

inner contract could be equivalent to or a refinement of the outer contract. An inner

contract is not necessarily a refinement of an outer contract attached to the same state,

2The intention is that conjunction states will be eliminated before the final design is reached
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as the outer contract also characterises the outgoing behaviour of the state. However, the

inner and outer contracts must be consistent with one another. For example, an outer

contract must not say a particular action is disabled, whilst the inner contract says the

same action is enabled. Consistency is ensured by the patterns that manage the contracts.

Outer contracts do not specify behaviour in the same way as inner contracts; they keep

track of what contracts have already been satisfied and specify behaviour of a machine

from that state onwards. They should be viewed as labelling annotations rather than

specifications with a record of where the behaviour came from. They are important for

applying certain patterns, principally those to introduce cycles into the state machine.

Note that the syntax is slightly more liberal than is strictly required by the refinement

process (e.g. an arbitrary state need have neither an incoming nor outgoing transition).

This allows conventional use of the tool to construct models free-hand as well as via the

refinement process.

2.13.3 Transition syntax

Currently, the transition syntax is based, for simplicity, on that of the underlying semantic

objects, STGA. The intention is to extend/modify the syntax and its semantic interpreta-

tion in the future to capture recognisable dialects of statecharts. The transition syntax has

two elements: an event and an action. Actions represent operations on the data, (updates

on the variables). They correspond to relations, which are applied to the current data

state, choosing nondeterministically where there are multiple outcomes. Event reception

and emission are kept separate based on the choice of parallel operator, therefore events

are distinguished as either input events or output events (primed).

Label = Event “[” Action “]”

Event = EventName | “ ’ ” Eventname

Action = Assignment | Guarded Assignment

| Establish Assignment

Assignment = Varlist “=” Exprlist

Guarded Assignment = Predicate “=⇒” Assignment

Establish Assignment = Varlist “:” Predicate

The action part of the transition provides the enabling condition for the transition, (the

guard which is sometimes implicit) and the corresponding update on the variables, which

occurs when the transition is taken. The Action syntax is based on B’s generalised sub-
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stitution language [2], but restricted to the expressions and predicates. The language is

restricted to the constructs supported by HST, which in turn are determined by those

supported by the SMT solver (Boolector).

The Assignment represents the simultaneous update of the variable on the left with the

expressions on the right. Guarded Assignments carry an additional enabling condition, the

transition is disabled unless the current variable values make the condition true. Establish

Assignments are nondeterministic assignments. They set the variables in such a way as

to satisfy the predicate on the right of the “:”. The values of the variables before and

after the assignment are distinguished by unprimed and primed variables respectively.

The predicate can contain instances of any unprimed variable but varlist can only contain

instances of primed variables. If no assignment can satisfy the predicate from a particular

set of before-values then it is said to be infeasible (from those values) and the transition

is disabled. 3

2.13.4 Example CoSta model

To briefly summarise, CoSta is a simple hierarchical state machine language that incor-

porates a language based on a restricted form of µ-calculus (contracts). The contract

language has been extended with data so that actions can have guards and assignments

with nondeterministic choice. Primitive diagrams, comprising hierarchy, OR states and

transitions, are interpreted as pictorial representations of Contractual State Machines.

State types signify how the substates of a superstate are treated: sequential OR states

and parallel AND states represent sequencing and orthogonality respectively. Conjunction

states represent the behaviour common to all of their substates, (the intersection of the

behaviours). They are required to support the approach to the design process, and are

not part of the target design notation. The transition syntax has two elements, an event

and an action. The action part of the transition provides the enabling condition for the

transition (the guard which is sometimes implicit) and the corresponding update on the

variables, which occurs when the transition is taken.

3Predicates are constructed from True, False, &&, ||, !,==, ! =, >,>=, <=, <
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To illustrate some of the possible constructs of the language, figure 2.4 shows an

example CoSta model (partially designed). The model shows the different types of states

that may occur (e.g. substates, start states, composite states, conjunction states, states

with unelaborated inner contracts), transitions and contracts (inner and outer).

Figure 2.4: Example Contractual State Machine model

2.13.5 CoSta’s refinement relation

This section gives an overview of CoSta’s refinement relation. The purpose is to aid

understanding of the refinement and refactoring patterns that are presented later on in

Chapters 4 and 5, and clearly delineate the research contributions for this thesis from the

work of the group as a whole.

The notion of correctness preservation is provided by a compositional refinement relation.

The theory of refinement is based on logic LTS and its associated derived (tau-closed)

transition system [157], which itself is derived from Ready Simulation [41].
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Definition of Ready Simulation

E vrs F ⇔

(∀a.(E a−→⇒ F
a−→))∧

(∀a, F ′.(F a−→ F ′ ⇒ ∃E′.(E a−→ E′ ∧ E′ vrs F ′)))

Intuitively E and F have the same ready sets, (permissible actions), and if F performs

an a then there must be a consistent transition in E (leading to respective states which

are also ordered by Ready Simulation). Ready Simulation holds if the behaviours of two

systems are identical except for the reduction of nondeterminism at every step. Ready

Simulation preserves the availability of actions whilst reducing nondeterminism.

Shared Variable Ready Simulation (SVRS) extends Ready Simulation to incorporate

shared variables since ready simulation only deals with the reachable state space and fails

to deal with situations relevant to shared variable parallel composition. The notion of

ready simulation is generalised into an ordering which ensures monotonicity of shared

variable parallel composition (under any initialisation). The new ordering must consider

the unreachable parts of the state space of a component as well as the reachable. It must

take into consideration all variable states reachable or otherwise, as the environment we

place any component in parallel with, may interfere with the variable space in such a way

as to make such states relevant to the composition.

Definition of Shared Variable Ready Simulation

E vsvrs F ⇔

(∀a, σ.((σ,E)
a−→⇒ (σ, F )

a−→))∧

(∀a, F ′, σ, σ′.((σ, F )
a−→ (σ′, F ′)⇒ ∃E′.((σ,E)

a−→ (σ′, E′) ∧ E′ vsvrs F ′)))

Intuitively, a refinement under SVRS must ensure that for any variable state the ready sets

must be the same. For any transition from any variable state in the original model there

must be a consistent transition from the same variable state in the new model leading

to behavioural states that are also ordered by SVRS. The transition must be consistent

in that its variable update must be present in the original model (from the data state in

question). State is included up front in the language and no refinement of the state will

be conducted.

The CoSta contract language has a dual interpretation. Contracts are also given a

direct characterisation as a single STGA (LTS) allowing mixed descriptive styles within the

same heterogeneous framework. A maximal agent for each contract is the nondeterministic

choice over all the processes that satisfy it. Contracts can be expressed as maximal agents
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which can then be parallel composed with other agent expressions.

For example, the meaning of the contract 〈a〉 (a is enabled) in terms of an LTS is the

nondeterministic choice between all ready sets that include a, e.g.

(a.True�b.T rue�c.T rue) u (a.True�b.T rue) u (a.True�c.T rue) u (b.T rue�c.T rue) u ...

The above description uses CSP style notation rather than the more verbose CCS style

language the original work was set in. a.A�b.B and a.A u b.B in CSP correspond to

a.A + b.B and t.a.A + t.b.B in CCS respectively. The characterisations of contracts in

CoSta are tau-pure, meaning choices between observable and unobservable actions never

arise. Like Logic LTS, Costa LTSs are extended with distinct False transition systems

representing the empty choice of behaviours.

This section has given a short intuitive description of the refinement theory for Con-

tractual State Machines. Although the contract language and refinement orderings were

developed by other members of the group, the diagram syntax was developed jointly. The

syntax was adapted (e.g. introduction of AND states, outer contracts) as part of the work

on patterns, which forms the body of the thesis.

2.13.6 Design strategy

This section describes an exemplar design strategy for CoSta. The usual approach for

using µ-calculus and a process algebra is to create a design in CCS/CSP then define some

safety properties using µ-calculus and use a tool such as the Concurrency Workbench to

verify that the design satisfies the safety properties. The approach here is a top-down one

to firstly express the safety properties and refine this into a design.

This approach where the design is gradually elaborated in a top-down, step-wise fashion

as the result of incremental manipulation of the specification/design arguably reflects the

overall approach that systems engineers typically follow to design systems, by starting

with requirements and progressively adding further detail as design decisions are made

[73,98,113,150,171].

The design process has two stages, an initial stage and a main stage. The initial

stage of the process is to devise the top-level contract which is based on closed reasoning

and expresses model-wide properties. The closed contract language has not yet been

specified, this will require further work. It is intended that the closed contract language

will express high-level properties in a temporal logic based on µ-calculus extended with

data parameters for describing events and state. The variables of the model are impervious
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to outside interference. A closed contract is implemented by a set of open contracts if the

parallel composition of their interpretation as processes satisfies the closed contract.

The main stage of the design is based on open reasoning, which leads to expression of

properties of the subcomponents of the model, where variables are subject to interference

from the other subcomponents. Once the open contracts have been devised and shown

to imply the property of interest (top-level closed contract) then refinement can begin

on the open contracts through the application of the refinement and refactoring patterns

presented in Chapters 4 and 5. Refinement as opposed to satisfaction now proceeds based

on the required preorder (shared-variable ready simulation).

A contract is typically nondeterministic and can be implemented by different deter-

ministic state machines or refined to a less nondeterministic but behaviourally equivalent

contract. The finished design is a state machine without contracts. Outer contracts can

be removed at any time without affecting the behaviour. The same is not true of inner

contracts, the absence of an inner contract denotes no further transitions i.e. deadlock.

It is not permitted to remove an inner contract only refine it out (e.g. to deadlock or a

looping transition) using the patterns presented in Chapters 4 and 5.

2.13.7 Examples

2.13.7.1 Example 1 : Simple synchronising concurrent processes

A simple example is given next to demonstrate input and output separation of the synchro-

nisation channel. The example shows two concurrent agents C1 and C2 communicating

via actions ‘Pass and Pass. Processes communicate if they both have complimentary ac-

tions available. A pair of actions are complimentary if both have the same identifier but

one is primed and the other is not.

In the example system when C1 has communicated via In it will tell the other process

C2 that it has received a communication via its synchronising action ’Pass and then wait

for the next communication. Process C2 is then able to communicate via its synchro-

nising action Pass and will report the fact that process C1 received a communication

to the environment via ’Out and then return to waiting for C1 to inform it of the next

communication.

The two processes C1 and C2 may operate independently or if their actions permit

may operate concurrently and synchronise with one another. The Pass action is similar

to a restricted action in CCS. It is assumed that C2 only communicates via Pass with C1
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Figure 2.6: Synchronising concurrent processes

and with no other process in the environment. Thus C2 can perform no action at all until

it synchronises with C1 via the action Pass.

The top-level, closed contract is �〈 〉, it says that an observable action must be enabled

so it is not possible for the system to deadlock (as only internal actions can lead to

deadlock). The top-level contract expresses high-level properties such as deadlock freedom

and invariants. The open contracts express high-level design decisions, for example relating

to how actions synchronise or how to sequence the synchronising actions and permitted

updates to shared variables. The system is defined as the parallel composition of the two

agents C1 and C2. Different open contracts could be specified being more or less specific

about design details.

Version 1 (more constraining than Version 2 that follows)

Open contract for communicating agent C1 .

C1
def
= 〈[In]〉 ∧ 〈−In〉∧ �[In](〈[′Pass]〉 ∧ 〈−′Pass〉)∧

�[′Pass](〈[In]〉 ∧ 〈−In〉)

Open contract for communicating agent C2 .

C2
def
= 〈[Pass]〉 ∧ 〈−Pass〉∧ �[Pass](〈[′Out]〉 ∧ 〈−′Out〉)∧

�[′Out](〈[Pass]〉 ∧ 〈−Pass〉)
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Version 2 (less constraining than Version 1 above)

Open contract for communicating agent C1 .

C1
def
= (〈[−′Pass]〉 ∧ 〈′Pass〉)

y (〈−′Pass〉 ∧ 〈[′Pass]〉)∧

�[′Pass]((〈[−′Pass]〉 ∧ 〈′Pass〉)

y (〈−′Pass〉 ∧ 〈[′Pass]〉))

Open contract for communicating agent C2 .

C2
def
= 〈[Pass]〉 ∧ 〈−Pass〉 ∧�[Pass]((〈[−Pass]〉 ∧ 〈Pass〉)

y (〈−Pass〉 ∧ 〈[Pass]〉))

2.13.7.2 Example 2 : Mutual exclusion

This example describes a system which only allows one of two processes to perform certain

critical actions at a time. The two processes are unable to perform their critical actions in

parallel. One process Sem acts as a semaphore to control access to critical regions of the

processes’ behaviour. Processes P1 and P2 have critical actions c1 and c2 respectively.

P1 and P2 will only be allowed to perform their critical actions if they can gain control

of the semaphore. The semaphore is free if the next action Sem can perform is get and

similarly is occupied if the next action it can perform is put. Control of the semaphore

can be achieved by P1 or P2 successfully synchronising with Sem on the get action. After

gaining control of the semaphore a process can perform its critical action and on completion

it must relinquish control for future use. CoSta does not allow multiple synchronisations

on the same action. The parallel operator is a shared-variable version of CCS’s two-way

synchronising operator.
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The top-level, closed contract says that it must always be the case that an action is

enabled and the actions c1 and c2 cannot both be enabled at the same time.

�((〈−c1, c2〉 ∧ 〈c1, c2〉) ∨ (〈c1〉 ∧ 〈c2〉) ∨ (〈c2〉 ∧ 〈c1〉))

The system is defined as the parallel composition of the three agents P1, P2 and Sem.

Version 1 (more constraining than Version 2 that follows)

Open contract for P1 .

P1
def
= 〈[′get]〉 ∧ 〈−′get〉∧ �[′get](〈[c1]〉 ∧ 〈−c1〉)∧

�[c1](〈[′put]〉 ∧ 〈−′put〉)∧

�[′put](〈[′get]〉 ∧ 〈−′get〉)

Open contract for P2 .

P2
def
= 〈[′get]〉 ∧ 〈−′get〉∧ �[′get](〈[c2]〉 ∧ 〈−c2〉)∧

�[c2](〈[′put]〉 ∧ 〈−′put〉)∧

�[′put](〈[′get]〉 ∧ 〈−′get〉)
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Open contract for Sem .

Sem
def
= 〈[get]〉 ∧ 〈−get〉∧ �[get](〈[put]〉 ∧ (〈−put〉)∧

�[put](〈[get]〉 ∧ 〈−get〉)

Version 2 (less constraining than Version 1 above)

The open contract for Sem remains the same as above. The new open contracts for P1

and P2 are:

P1, P2
def
= ((〈[−′get,′ put, c1, c2]〉 ∧ 〈′get,′ put, c1, c2〉)

y (〈−′get〉 ∧ 〈[′get]〉))∧

�[′get]((〈[−′get,′ put]〉 ∧ 〈′get,′ put〉)

y (〈−′put〉 ∧ 〈[′put]〉))∧

�[′put]((〈[−′get,′ put, c1, c2]〉 ∧ 〈′get,′ put, c1, c2〉)

y (〈−′get〉 ∧ 〈[′get]〉))

2.14 Related work

This section will provide a thorough review and critical analysis of work already done in the

research area, covering the main contributions (strengths and weaknesses) and open issues.

The work that is most closely related to the research for this thesis is that of stepwise

refinement of concurrent systems [51]. Research by [87] introduces a refinement calculus

for state machines. Schmidt in his PhD thesis [218] defined a variant of state diagrams

with a precise operational semantics and provided refinement patterns that allow the

reduction of nondeterminism for the verifiable top-down development of state diagrams.

The approach did not consider contracts or data, the patterns were not phrased explicitly

as model transformations and tool support was not considered.

Paige et al [200] have considered refinement in the context of model-driven engineer-

ing (MDE). Refinement is a key practice and part of the OMG model-driven architecture

(MDA) initiative but it is loosely defined and overloaded. MDA’s languages are UML-

based and generally do not provide the level of formality required for refinement-based

design. Also the languages are multi-view, thus causing difficulty in maintaining consis-

tency during refinement between different model views. To improve this situation the

research concentrates on formulating a precise and lightweight definition of refinement in

terms of model consistency. Model consistency checks are categorised as structural, be-

havioural, cross-model (PIM-PSM), and domain specific (PSM-domain). Model refinement
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is achieved through verifying model consistency defined by consistency rules expressed in

OCL. A disadvantage with this approach is that soundness and completeness are an issue

due to there being no underlying formal theory.

Maraninchi has incorporated logical-time contracts with reactive embedded compo-

nents [162]. The contract language, however, is not a first-class citizen within the mixed

design notation. There are several strands of research concerned with extending OCL

with temporal logic. Ziemann et al [267] have extended OCL with temporal operators to

formulate temporal constraints. A set of refactorings for UML models using OCL pre and

postconditions was presented by Sunye et al [242]. There is no underlying formal theory

and no mechanism was described for automating the refactorings.

Research based on transforming semi-formal models such as UML statecharts into

formal notations such as Z and B is plentiful, for example [201, 229]. The motivation for

this approach is the ability to validate the formal specifications using stable and proven

tools. For example UML is combined with Object-Z in Fusion [40]. In very few cases is a

refinement calculus constructed to formalise the design process.

Lano et al [148] use the Z-based semantic model of Syntropy as the basis for a semantic

framework for UML and refinement transformations for state machines. Contracts and

patterns are not considered for this research.

Kempen et al [253] focus on refactorings for UML models. The method they use to

prove that a refactoring preserves the behaviour of the system is to map a statechart to

CSP and show that the behaviour of the processes before and after the refactoring are

identical. They define primitive pre-proven statechart refactoring operations, (e.g. for

combining and splitting states and transitions) as the basis for more complex refactorings.

This research concentrates on refactoring operations for state machines but refinements,

contracts and patterns are not considered.

Sun Meng et al [166] give a coalgebraic semantics to UML state machines and define

a notion of behavioural equivalence and refinement. Refinement laws are specified that

provide a syntax-based approach for constructing correct designs from intermediate state

machine designs. A set of elementary refinement steps were described, (e.g. to introduce

states and transitions) that can be combined to achieve more powerful refinements. This

research did not consider refinement for a heterogeneous language combining contracts

with statecharts, patterns or tool support.

Khriss et al [133] present a pattern-based approach to the stepwise refinement of UML
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models. They propose the use of refinement schemas that implement tradition design pat-

terns for designing UML models. The schemas are supported by tools for their application.

They also describe a number of smaller transformations called micro-refinements that can

be composed to produce new refinement schemas for other design patterns. A refinement

schema is parameterised by model elements instantiated by the designer. It takes an ab-

stract model and produces the corresponding detailed model. Patterns can be classified as

either structural or behavioural. Structural or equivalence patterns preserve meaning and

may thus be applied in both directions. They are refactoring patterns and may be used to

simplify structure for example. Behavioural patterns on the other hand refine behaviour.

Micro-refinements do not have a formal underpinning. This research focuses on the steps

to achieve the target design for a design pattern in UML, as oppose to patterns for this

thesis that refine a high-level, declarative contract to a concrete, operational state machine

design.

Frank and Eder [94] in their work on equivalence transformations for statecharts firstly

formalize the semantics of statecharts and give a definition of equivalence. Statecharts are

described using a logic language with pre/postconditions called TQL++. They describe

twenty-three equivalence preserving transformations for statecharts, complex transforma-

tions can be established from this basic set of transformations. This research did not

consider refinement from contracts to statecharts, patterns or tool support.

Scholz [221] specifies a formal semantics and refinement calculus for a dialect of stat-

echarts, (µ-Charts). This research is for a very restricted statechart language with only

three principal syntactical concepts, sequential automata, hiding and the composition op-

erator, to simplify the semantics. The calculus permits refinements to µ-Charts (e.g. add,

delete, modify transitions), providing they do not introduce additional nondeterminism.

This research does not consider contracts, patterns or tool support.

Research by Rumpe et al [216] provide a denotational and operational semantics and

a refinement calculus for total automata. Refinement corresponds to the reduction of

nondeterminism. Contracts, patterns or tool support are not considered.

Park et al [201] give a process algebraic semantics to IBM Rational’s Statemate stat-

echarts based on the Algebra of Communicating Shared Resources (ACSR). Statemate

statecharts are described in ACSR, a real-time process algebra with a well defined se-

mantics and a notion of equivalence based on bisimulation. VERSA is an interactive tool

that can be used to verify properties of ACSR specifications and determine behavioural

54



2.14 Related work

equivalence. Contracts and patterns were not considered for this research.

Schonborn et al consider refinement patterns for hierarchical UML state machines

[222]. This work gives a formal semantics to UML state machines and describes refinement

steps in terms of state machine to state machine syntactic transformations. Their aim is

for a tool-supported refinement theory. The refinement patterns are for state machines

only and the research did not consider contracts. This work makes explicit the notion of

a refinement pattern as a behaviour-preserving transformation and they do not consider

patterns that reduce nondeterminism.

Porres demonstrates an approach to expressing refactorings as a collection of transfor-

mation rules or guarded actions [206]. Each rule accepts one or more model elements as

parameters and performs a basic transformation action based on these parameters. The

transformations are not interactive or user-guided. The guarded action language may

not be expressive enough to capture complex applicability criteria based on several model

elements.

In [36–39] an EMF model transformation framework is presented. It supports EMF

model refactoring based on update transformations implemented using graph transforma-

tion techniques. Transformations are visually defined by rules on object patterns on EMF

models. The transformations are interpreted by the AGG graph transformation environ-

ment [245]. The transformation language lacks a full model query language and therefore

may prove to be inadequate for complex transformation scenarios. Also this framework

assumes that models must at all times comply with their metamodel during a refactoring

process. Justification for why this is necessary is missing. Arguably this is too inflexible

and makes it more difficult to support complicated (compound) refactorings.

Previous work by Lüttgen and Cleaveland [64] developed a logical process calculus that

supports heterogeneous system specifications, permitting both operational and declarative

styles and a behavioural preorder that allows formal, component-based refinement. The

work by Lüttgen and Cleaveland studied a combination of the process algebra CCS and the

Linear Temporal Logic (LTL) but based the refinement preorder on the theory of testing

rather than bisimulation. The mixed language CCS+LTL is targeted at concurrency

theoreticians as oppose to engineers. The semantics of the language is complex, and not

very engineer friendly, leading to difficulty in implementing tool support. No attempt at

axiomatising the refinement preorder or providing refinement patterns was made.

Previous work by Galloway and Toyn [123,249] have extended the MathWorks’ State-

55



Chapter 2: Research context

flow language to include an annotation language on states to define assumptions (pre-

conditions), which can capture information about differentials. Healthiness conditions are

formulated to check that the model conforms to the assumptions, and that the assumptions

are mutually consistent. Aspects of the statechart model and assumptions are translated

to Z which is used for formal validation. Failure to prove healthiness conditions reveals

mistakes such as inappropriate trigger conditions, missing transitions, and contradictory

and missing assumptions.

A drawback of the Practical Formal Specification language and the Simulink/Stateflow

Analyser (PFS/SSA) is that it is domain specific and not a general approach. It targets

specific kinds of control system and only covers a subset of Stateflow behaviour. For

example there is no support for events (only data conditions), no transition actions (only

a restricted form of actions to set outputs) and no And states. Moreover there is no

support for structural refinement at the chart level. The language can express only simple,

propositional assumptions and it is not equipped with a theory and tool support for

refinement checking.

In another line of research, Sowmya and Ramesh have extended statecharts with Lam-

port’s Temporal Logic of Actions TLA [146, 233]. They present an approach where two

independent specifications of a real-time system are created. Behaviour is described using

statecharts. A specification of system properties is given using FNLOG which is highly

abstract and verifiable through logical rules of deduction. Their approach to integrating

the two specification methods consists of specifying a semantic equivalence between stat-

echarts and FNLOG specifications and generating an “equivalent” FNLOG specification

from the statechart model (The trace semantics of statecharts is matched to the linear

temporal logic of FNLOG) and then verifying that the system properties hold. This re-

search does not focus on component-based refinement, nor do they propose refinement

patterns.

Stepney et al [235–237, 251], have conducted research into refactoring to design pat-

terns at the specification level. Here patterns provide steps for refactoring an unstructured

Z specification to the target Promotion structure. The set of patterns that collectively

represent the well-known Z structure, Promotion, is presented, then the process of us-

ing refactoring to take an unstructured Z specification in to a Promotion structure is

demonstrated. This research shows that refactoring can also be fruitfully applied at the

specification level and it is not just a programming technique. This research focuses on
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refactoring patterns to achieve a particular design pattern for a formal specification lan-

guage (Z), whereas the patterns for our research are for a mixed heterogeneous language

and are more general (not focused on achieving a particular design pattern).

The idea of design patterns for formal languages has also been considered by Abrial

et al [5, 121] for the Event-B language. Tool support is provided by the Rodin platform

which is an Eclipse-based development environment with support for refinement and math-

ematical proof [6]. Rodin has a library of patterns that transform an abstract Event-B

specification to a concrete design for common design patterns for safety-critical systems.

They include the Triple Modular Redundancy Pattern, the Recovery Block Pattern and

the N-version Programming Pattern. Event-B supports formal refinement patterns but

not in terms of state machines.

More distantly related research is on refinement calculi and tools, e.g. [54], which

attempted to provide support and a collection of strategies for refining specifications into

programs.

Woodcock et al [55, 56, 186–188, 217, 257] have developed Circus, a combined formal

language that focuses on both data and behavioural aspects of a system. Circus combines

Z and CSP with a refinement calculus to support development of reactive systems. The

language does not have a graphical concrete syntax and is thus not as intuitive as a

statechart language.

A key problem with expressing refinement patterns is the form used to describe them.

Clark et al. [61] proposed a component-based form of pattern description with parameters,

wherein missing units of functionality such as classes, objects or constraints are provided

as parameters. They are equivalent to preconditions on when the pattern can be applied

and are encapsulated within one UML-like component. A similar approach to this is used

for expressing patterns for CoSta.

Statecharts have been extended with temporal logic to express general liveness and

fairness properties [88]. Fecher et al have proposed top-down refinements of statecharts

based on under and over-approximations of execution traces. This research is less gen-

eral as it considers only contracts expressing safety and bounded liveness properties but

additionally focuses on refinement patterns and emphasises tool support.

Darimont and van Lamsweerde [70], conducted research into formal refinement patterns

for goal-driven requirements elaboration expressed in a real-time temporal logic (KAOS).

The aim is to provide constructive formal support for the refinement process whilst hiding
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the underlying mathematics.

The principle is to reuse generic refinement patterns from a library for guiding the re-

finement process. The patterns provide formal support for building goal refinement graphs

and are proved correct and complete. This research offers tactics to the requirements engi-

neer for grounding pattern selection on semantic criteria. The patterns are for a temporal

logic language but the research does not consider state machines.

2.15 Summary

This chapter has presented the research area which includes reactive and concurrent sys-

tems, statecharts, contracts, patterns, refinement, refactoring and model-driven engineer-

ing. For each, the state of the art tools and languages have been evaluated and the

significance of their advantages and shortcomings assessed. Contractual State Machines

were introduced along with an exemplar design strategy. The literature that was reviewed

identified approaches already taken in the field, and their strengths and weaknesses have

been analysed. This has enabled the identification of remaining open problems.

In conclusion, model-based formal languages (e.g Z and B) are not graphical and do

not have explicit support for concurrency. Process algebras are not rich enough for the

description of operations on data, they are not graphical but they do explicitly support

concurrency. Temporal logics have the advantage that they can be used in conjunction

with other approaches e.g process algebras. They are not graphical and not well suited to

express operations on data. Graphical approaches have several advantages one of which is

that their formal underpinnings can be based on process algebras, model-based formalisms

or temporal logic. They can potentially encompass the benefits of each approach and most

importantly they are graphical and intuitive.

In summary, for this previous related research, the languages of use are typically not

heterogeneous (integrating contracts with state machines) and did not consider data or

shared variables. Specifically they do not integrate contracts with state machines or the

contract language is not a first-class object in the mixed design language. Other draw-

backs included a lack of an underlying formal theory and refinement calculus. Refinement

patterns in terms of model transformations have not been considered. Additionally there

is an absence of tool support for pattern application and verification of refinement steps.

Remaining open research problems include the need for a graphical specification/design

language for safety-critical, concurrent, reactive systems with an underlying formal theory
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that supports stepwise refinement with techniques for abstraction and the ability to express

both functional behaviour and high-level properties. In addition, supported by a set of

refinement and refactoring patterns to assist a stepwise, calculational style of refinement

and software tools to automate the design process.

Hence this research focuses on providing a graphical concrete syntax for Contractual

State Machines and refinement and refactoring patterns for the heterogeneous language,

(a state machine dialect with contracts) as automated update-in-place model transforma-

tions where patterns resolve design choices or reduce nondeterminism and can take an

abstract contract to a concrete state machine design. There has been limited related work

encompassing all of these facets.
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Chapter 3

Analysis and hypothesis

3.1 Introduction

This chapter presents the research hypothesis, objectives and contributions for the thesis.

During the field review, in the previous chapter, a number of open issues for research

have been identified. These provide justification, context and motivation for the research

hypothesis and objectives presented in this chapter. Finally, this chapter discusses the

thesis contributions that will follow in the subsequent chapters.

Recall from Chapters 1 and 2 that although formal methods offer the rigorous verifica-

tion techniques demanded by safety-critical systems, on the whole a wider acceptance of

formal methods within industry has been hindered for many reasons, including usability

and scalability issues [3,4,35,45,46,63,95,96,108–111,152,154,163,241,261]. Semi-formal

languages are intuitive but generally lack support for a systematic refinement process.

Statecharts, for example, have no rigorous process for constructing models which support

abstraction and the systematic and stepwise introduction of detail.

Related research so far has considered the stepwise refinement of concurrent systems

[51–53, 228] and refinement calculi for formal languages for concurrent systems [18–21,

55–57, 187, 217, 257, 258, 262]. Previous research has considered pattern-based approaches

to refinement [121, 122, 133, 145, 222]. Research by [94, 206, 222, 242, 253] has concerned

refactorings for state machines. Refinement transformations for variants of state machines

have also been proposed [131,148,166,216,221]. In particular, research has been conducted

into a refinement calculus for state machines [87–89] and refinement patterns that allow

the reduction of nondeterminism and support verifiable top-down development of state

diagrams [218]. Research into system specification and refinement in temporal logic and
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hennessey-milner logic has been carried out [116,204].

Notably, in this previous related research,

• The languages of use have typically not been heterogeneous, with techniques for

abstraction as well as the ability to express functional behaviour; then also did not

consider data or shared variables. Specifically they do not integrate contracts with

state machines, or the contract language is not a first-class object in the mixed design

language, where contracts specify high-level properties and are potentially succinct

ways of describing highly nondeterministic state machines.

• Importantly, other drawbacks in all of this research included a lack of an underlying

formal theory and a refinement calculus to formalise the design process. Some pre-

vious research has proposed a formal refinement calculus [221] but refinement and

refactoring patterns in terms of model transformations have not been considered.

• Additionally there is an absence of tool support for automated pattern application

and verification of refinement steps.

Contractual State Machines support compositional refinement with techniques for ab-

straction and the ability to express both functional behaviour and high-level properties.

This thesis develops the methodology behind Contractual State Machines (developed by

Galloway et al) to address the above challenges. It does this by identifying, specifying

and providing tool support for a set of refinement and refactoring patterns. Refinement

and refactoring patterns, as discussed in the sequel, provide a systematic and structured

way of using Contractual State Machines for rigorous development. Consider the following

scenario: an engineer takes a specification and proposes a final design, but they want to

prove that the design satisfies the specification.

A model checker could potentially be used to prove this refinement, but a general

refinement check can be computationally intensive and may not succeed given time and

space constraints. By comparison, small, easily proved refinement and refactoring patterns

should be easier to validate, and also provide a systematic way to achieve a design from

a specification that breaks the refinement into simple steps. This enables the engineer to

see that the safety properties are preserved at each step or if this is not the case, to see

where the error lies in the new design as only a small change has been made. Whereas

if the engineer proposed the final design immediately and conducted the refinement in a
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single step, a model checker may only be able to report that the design is not a refinement

and the engineer would have no idea why.

From an engineering perspective, this provides a means to manage complexity via a

capability to manipulate manageable chunks of models. This thesis focuses on identifying,

specifying and implementing refinement and refactoring patterns for Contractual State

Machines (CoSta), along with tool support for their application. The implementations

and tool support are based on automated update-in-place transformations, where the

transformations apply the refinement and refactoring patterns to resolve design choices or

reduce non-determinism.

As discussed in Chapter 2, there has been limited related work encompassing all of

these facets. The challenge here is that the definition for refinement i.e. CoSta’s refinement

relation, does not lead directly to refinement and refactoring patterns. The refinement

theory specifies how to relate processes in a refinement relation, but it does not necessarily

help identify the required refinement steps, or express refinement and refactoring steps as

model transformations needed to capture them as patterns. The research presented in this

thesis addresses these challenges and the thesis hypothesis is described in more detail in

the next section.

3.2 Research hypothesis

This thesis proposes a tool supported, model-based approach to a systematic and step-

wise design process that supports refinement of Contractual State Machine designs from

abstract specification to concrete model through the application of refinement and refactor-

ing patterns. Such a process arguably reflects the overall approach that systems engineers

typically follow to design systems, by starting with requirements and progressively adding

further detail as design decisions are made [73,98,113,150,171].

However, current reactive systems engineering practice provides limited systematic

support for a process like this. One way of adding rigour to the process of introducing

design detail, and the one advocated by Model Driven Engineering (MDE), is the use of

model transformations to implement patterns that ensure consistency is maintained be-

tween models with regards to, for example, intent, quality and healthiness. One benefit of

being disciplined in design is that the traceability relationships from design to requirement

should be easier to identify and use.
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In this context and to address these needs, the hypothesis of this thesis is

stated as follows:

We can identify for Contractual State Machines, a comprehensive set of refinement

and refactoring patterns that ensure consistency between designs and enable the stepwise

refinement of an abstract contract (that specifies high-level properties) to a fully specified

concrete design (that preserves the high-level properties). Furthermore we can express each

refinement or refactoring step as a pattern, in terms of model transformations. The aim

is to ensure the completeness, correctness, utility and consistency of the patterns. We

can automate the systematic engineering process for Contractual State Machines by im-

plementing software with an emphasis on usability.

General aims for the pattern catalogue suggested in the hypothesis are for a com-

pact and extensible set of rules. The patterns themselves should encourage well-formed

designs (e.g. without disconnected states). The aim is for patterns that are of practical

utility to the engineer. This aim can be fulfilled in many ways, for example a pattern

for a frequently required refinement or refactoring step, or a pattern that is valuable in

terms of proof reduction. A pattern that simplifies a design (e.g. for combining states) or

simplifies the refinement process (e.g a pattern that combines refinement steps) is also of

practical utility. Each pattern should be justified over and above a full refinement check.

Pattern comprehensibility is another goal: to keep patterns as simple to understand

and apply as possible. Ideally the pattern catalogue will be a set of patterns that cover

specific cases, which require little by way of accompanying proof, with a few general pat-

terns in a supporting, rather than an essential role should the more specific patterns not

cover what is required.

The objectives of the thesis are:

1. Identify, for Contractual State Machines a comprehensive set of core refinement

and refactoring patterns for the common types of refinement or refactoring that are

frequently required during the top-down, stepwise design of a system. Where each

refinement or refactoring step preserves the functionality of the original specification

and elaborates the design as it proceeds to permit the gradual introduction of more

specific details about the behaviour of the system, by introducing design constructs,
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and reducing nondeterminism.

2. Specify a catalogue of patterns for the refinement and refactoring steps. A pattern

consists of a source model, a target model, and a logical description of a relationship

between them.

3. Implement software to support a repository of refinement and refactoring patterns

and their application (to validate side-conditions and perform model transforma-

tions) during the refinement of a design. The software will also include a graphical

editor for Contractual State Machines and a catalogue of patterns. The patterns are

implemented as update-in-place model transformations and integrated with model

checking technology (HST) for validating side-conditions. Side-conditions ensure

consistency is maintained between models and that the pattern is applicable to the

design in the circumstance it is selected.

4. Further validate the hypothesis by conducting a case study that refines an abstract

Contractual State Machine design (expressed as a contract) to a fully elaborated

state machine model using only the refinement and refactoring patterns (via the tool

support). The case study will gauge the practicality of the approach and suitability

of the patterns.

The following sections of this chapter describe the approach adopted to evaluate the thesis

hypothesis, the scope of the research and the overall contributions.

3.3 Approach

An exploratory approach was adopted to evaluate the validity of the hypothesis [184,230].

The exploratory approach was preceded by an initial evaluation of the contract language

followed by iterations of exploration and elaboration to identify patterns. Although the

contract language is suitable for expressing high-level properties of a design (e.g. safety

properties), as it is based on µ-calculus, it was informative to evaluate how expressive

the contract language is for characterising state machine designs or finding their strongest

abstractions, to inform the research on patterns. The purpose was to find out which

designs, nondeterministic or otherwise, could be completely characterised by the operators

of the contract language or if this was not possible what their strongest abstractions were,

or most constraining contract that captured the solution but not necessarily uniquely.
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It was important to follow a systematic method to identify patterns to help achieve a

complete set in terms of coverage of transformations, and ensure that the catalogue consists

of a comprehensive set of patterns for the common types of refinement or refactoring that

are frequently required during the stepwise design of a system.

There are three main stages to the approach. The first stage aims for completeness

of the set of patterns by ensuring operator coverage and consideration of refinement rules

for statecharts in the literature [94, 148, 166, 216, 221, 242, 253]. The second stage of the

approach concerns the specialisation and generalisation of patterns. Specialisation leads to

a simpler side-condition and generalisation to better coverage. For example a specialised

pattern will only be applicable in certain specific circumstances whereas a more general

pattern will be more widely applicable. The final stage of the approach was to verify the

integrity and utility of the proposed set of patterns through a case study.

Software tools were implemented to create a repository of patterns and support the

design process and pattern application. The patterns were used experimentally in the case

study. The purpose of the case study is to give us empirical confidence that the patterns are

correct. Implementing the software tools and conducting the case study enabled further

exploration of the patterns and design method which led to ideas for further research.

3.4 Research scope

The scope of this research was constrained in order to impose sensible boundaries. It was

limited to defining and implementing a minimal and complete set of core refinement and

refactoring patterns to ensure that any state machine design that is a valid refinement of

the abstract contract can be achieved through application of patterns from the catalogue.

The patterns that can be identified are constrained by the availability of realistic case

studies and examples which are restricted by the lack of access to proprietary material.

The patterns can be proven correct with respect to the refinement relation, but this was

considered beyond the scope of the work as the formal definitions of the refinement ordering

are not yet mature enough to support formal proof. Additionally the decision was made

to focus on MDD tool support to help to access practicality in the case study.
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3.5 Contributions

The contributions of this thesis include refinement and refactoring patterns to assist a

stepwise, calculational style of refinement. The patterns enable the verifiable top-down

development of a design from a nondeterministic contract to state machine implementa-

tion that is consistent with the original high-level specification. Contracts express formal

properties that describe the behaviour of the system under development and refinement

and refactoring patterns guarantee that the properties are satisfied as the system evolves.

Patterns reduce development effort over comparable approaches such as formal proof.

The vast majority of formal development in this domain (concurrency) is achieved with

model checkers, but it may be argued that mature model checkers (CWB, FDR, Spin etc.)

are not good with data-rich systems.

Breaking the formal proof into application of patterns achieves two things:

1.) Reduces the overall proof/automated checking process into a sequence of steps

requiring considerably less proof effort to discharge them. Refinement and refactoring

patterns should be contrasted to a general refinement check which demonstrates that

two models are related by a refinement relation. It checks the raw refinement ordering

and requires both source and target models to be supplied. Patterns deal with specific

applications of a refinement theory, and thus reduce the demonstration of correctness

to showing that a specific side-condition is valid rather than performing a full refinement

check. Reducing general applications of the theory to specific applications is made possible

by, amongst other things, compositionality in the underlying theory of refinement.

2.) Shifts the effort from development to up-front verification of patterns. A refinement

or refactoring pattern can be validated independently against CoSta’s refinement relation,

and this validation only needs to take place once. Patterns construct refinements and

refactorings in a very similar spirit to refinement calculi (e.g. Morgan’s). A refinement or

refactoring pattern consists of a source model, a target model, and a logical specification

of a relationship between them. The relationship, when implemented in an executable

language (see Chapter 6), can be used to automatically produce the target model from

the source model. Patterns take a model, run precondition checks (prioritised by easiest

first) and apply model transformations, when the preconditions are satisfied.

Tools have been provided for patterns and the engineering process via use of the

Epsilon toolset and model checking technology (HST). Automation reduces design and

proof effort over comparable approaches and thus improves usability. A tool suite is
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developed that supports verification for the refinement of abstract specifications to designs

based on pattern application. Refinement and refactoring patterns are expressed as model

transformations and the conditions under which patterns can be applied are defined. Tools

are implemented to automate pattern application, model transformation and the validation

of side-conditions.

The validity conditions for a pattern are checked to ensure the refinement or refactoring

is applicable. This may require conjectures supplied as predicates on the data variables

of a transformation to be proven using the model checker (HST) (e.g. to ensure that

the conditions associated with two transitions are disjoint). There is nothing in principle

restricting side-conditions to predicates on the data variables in the model. The work

therefore includes patterns with more general side-conditions, such as those that apply

refinement checks on substructures of the model.

To summarise, the contributions of the thesis are:

1. Refinement and refactoring patterns to assist a calculational style of refinement.

Patterns support a top-down, stepwise design process from a contract expressing

high-level properties of a design to a state machine that is guaranteed to preserve

the properties. Patterns reduce development and proof effort over comparable ap-

proaches such as formal proof.

2. A tool suite is developed that supports verification for the refinement of abstract

specifications to designs based on pattern application. Automation further reduces

development and proof effort over comparable approaches and thus improves usabil-

ity.

3. A case study is conducted to provide proof of concept.

The contributions include a rich set of patterns covering the different types of model

components, i.e contract to contract, contract to mixed design and mixed design to mixed

design. The patterns range from specific to general with side-conditions having different

levels of complexity. A specific pattern, with respect to a more general pattern, is a pattern

constrained for use in less situations, which usually requires less information from the user

or has a simpler side-condition. Pattern constraints range from simpler syntax-based

checks to more complex verification of side-conditions (e.g relating to conditions/actions

on data) that require the model checker (HST) to discharge them.
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The contribution of the case study is to provide proof of concept, identifying benefits

of the approach and areas for improvement. The case study evaluates the patterns and

demonstrates their viability.

3.6 Contrast with existing approaches

Through a comparison with related research and the existing literature this section sum-

marises what has been achieved so far and describes how this thesis builds on the state

of the art. Closely related research to-date has achieved refinement calculi for restricted

forms of state machines with an underlying formal theory [166,218,221]. The research in

this thesis is an incremental improvement on what has been achieved so far (i.e refinement

steps that maintain consistency between state machine designs) as it considers refinement

for a heterogeneous, data-rich (shared variable) language that combines contracts with

state machines.

Our approach provides the engineer with the ability (through contracts) to express

high-level properties of a design (e.g. safety properties) and abstract functional behaviour.

Patterns support a top-down, stepwise design process from a contract to a detailed oper-

ational design that is guaranteed to preserve the properties of the original specification.

This research provides refinement and refactoring steps from contracts to contracts and

contracts to mixed designs as well as refinement and refactoring steps between state ma-

chine designs for the data-rich, shared variable language.

In addition the research in this thesis is an evolution on research to-date by expressing

refinement and refactoring steps as patterns in terms of model transformations. Patterns

lead to the possibility of further reducing the development and proof effort through au-

tomating the model transformations and the discharge of side-conditions and integration

of the software with model checking technology.

In contrast to previous research, our approach is multi-faceted combining temporal

logic contracts, state machines, and shared variables. It offers refinement and refactor-

ing steps that maintain consistency between designs and preserve high-level properties.

Refinement and refactoring patterns stepwise refine contracts to state machine designs as

well as state machine designs to state machine designs, to better support top-down devel-

opment from an abstract specification to a concrete design. Refinement and refactoring

steps are expressed as patterns in terms of model transformations and automated. No

other method has all of these features.
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3.7 Summary

In this chapter we have proposed the key strands of work for this thesis, argued their

novelty and discussed their relevance to the outstanding open questions in the research

area. This chapter discussed the research challenges identified during the review of related

work in Chapter 2, established the research hypothesis and objectives and outlined the

contribution of the thesis.

In the following chapters we present the details of the contributions introduced in this

chapter. In particular, Chapters 4 and 5 present the proposed catalogue of refinement and

refactoring patterns for Contractual State Machines. Chapter 6 will address the imple-

mentation of the software. Chapter 7 describes the case study and Chapter 8 summarises

the conclusions of the thesis. The formal foundations for the refinement process are not

a contribution of the thesis as they were developed in conjunction with other members of

the research group. However the formal basis for the work is summarised in Chapter 2 in

Section 2.13 on Contractual State Machines, for completeness.
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Basic refinement and refactoring

patterns

4.1 Introduction

This chapter presents the first part of the proposed catalogue of refinement and refactor-

ing patterns for Contractual State Machines. Patterns form the basis of our disciplined

engineering process which proceeds in a step-wise manner from root states with contracts

to designs that implement them. The design process begins with a single state and a con-

tract that can be satisfied by many different designs. The top-level contracts, which can

express safety properties, are then refined to specify more detail about the behaviour of the

system, (in terms of sequencing and data constraints) and are structured into hierarchical

components.

A design is developed through successive refinement and refactoring via the application

of patterns. Chapter 3 described the utility of refinement and refactoring patterns when

compared to a full shared variable ready simulation check. The end design could be

proposed immediately and the model checker used to prove a refinement, but an automatic

proof may not be feasible [117]. A general refinement check can be computationally

intensive and may not succeed given time and space constraints1, whereas small easily

proved patterns are a systematic way to achieve a rigorous and justified design.

An advantage of the underlying compositional mathematical theory of the Contractual

1The refinement check for Contractual State Machines is not yet implemented in the CoSta project’s

model checker
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State Machine language is that parallel and composite states can be refined in isolation

without considering the model as a whole. This permits the engineer to elaborate the

design piecemeal by introducing new contracts and state machine diagrams composed

together using the operators of the language. The contracts are refined into mixed designs

with state machines and contracts. The design process typically continues by refining

the elements of the new model that are still abstract, such as nondeterministic diagram

fragments and contracts, until finally all the contracts have been refined into deterministic

designs that implement them. Alternatively the aim may be to achieve an abstract solution

(e.g. for reuse) where the final design is a nondeterministic model.

The reader is referred to Sections 2.13.1, 2.13.2 and 2.13.3 for a description of the

key syntactic constructs for the Contractual State Machine language. In particular a

definition of the modelling language in terms of its abstract syntax is given in Figure 2.3

in Section 2.13.2.

A brief intuitive explanation of the underlying refinement theory (ready simulation,

shared variable ready simulation and ready sets) is given in section 2.13.5 to aid under-

standing of the refinement and refactoring patterns (and the refinement relation that each

pattern must uphold) that follow in this and the next chapter.

As explained in section 2.13.5 the notion of correctness preservation is provided by a

compositional refinement relation. The theory of refinement is based on logic LTS and its

associated derived (tau-closed) transition system [157], which itself is derived from Ready

Simulation [41]. The aim is for a pattern to ensure consistency between designs so that

the refinement or refactoring step preserves meaning. Informally this has been checked for

each pattern by comparing the semantic interpretation of the target model with that of

the source model and ensuring that the ready sets (permissible actions) do not change for

every possible data state, and new nondeterminism is not introduced. State is included

up front in the language, and no refinement of the state will be conducted. The only

refinement requirement is not to increase nondeterminism, this is a feature of the language.

Reduction in nondeterminism is the means by which consistency is deemed correct. This

can be compared to CSP where refinement is expressed in terms of failures rather than

ready-simulation. A “full FDR” check corresponds to a “full ready-simulation” check.

Notably the patterns presented in chapters 4 and 5 are designed to avoid the need for

this. This is only necessary for the most general patterns (e.g. where the user “suggests”

a refinement). There are potential reasons for checking more than just nondeterminism,
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for example to prevent divergence and deadlock. Divergence is however a verification

issue at the top (closed) level, since this is where parallelism and hiding is introduced. It

therefore lies outside the scope of the work for this thesis. Deadlock is a kind of behaviour,

if it is a possible behaviour in the abstract model, it is also a possible behaviour in the

implementation. Although it is a kind of behaviour that we may like to identify and

prevent, reduction in nondeterminism is still the means by which consistency is deemed

correct whether deadlock is possible or not. The next section presents an example of the

process of designing a CoSta state machine from an open contract to demonstrate how

patterns are applied (see Section 2.13.6 for further details of the design process).

4.1.1 Example to illustrate pattern application

This section illustrates how patterns are applied to refine a CoSta contract to a state

machine design. It is based on the example presented in section 2.13.7.1. The contract

for the communicating agent C2 is refined to a state machine model through pattern

application.
 

 In 

`Pass 

Communicating Agent C1 Communicating Agent C2 

Pass 

 
 

`Out 

  

Figure 4.1: Simple synchronising concurrent processes

Open contract for communicating agent C2 .

C2
def
= 〈[Pass]〉 ∧ 〈−Pass〉 ∧�[Pass]((〈[−Pass]〉 ∧ 〈Pass〉)

y (〈−Pass〉 ∧ 〈[Pass]〉))
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1. The pattern Conjunction Introduction is applied to the state with contract A. In the

tool a state with the inner contract A needs to be created initially then selected and a

right-click on the state displays a list of applicable patterns. The pattern Conjunction

Introduction is selected. This pattern has one argument, a state with an inner contract

that is a conjunction operator expression. The selected model element, (i.e. the state with

inner contract A), is bound to this argument. When the pattern is applied it automatically

performs the model transformation to introduce two new conjunction states with contracts

A and B.

A. 〈[Pass]〉 ∧ 〈−Pass〉

B. �[Pass]((〈[−Pass]〉 ∧ 〈Pass〉)

y (〈−Pass〉 ∧ 〈[Pass]〉))

 

 

 

A    

                          

B                                        A                                         

Figure 4.2: Conjunction Introduction applied to create two conjunction states
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2. The pattern Conjunction Introduction is applied to the state with contract A to intro-

duce two new conjunction states with contracts A1 and A2.

 

A    

                          

B                                        A                                         

A             A                        

Figure 4.3: Conjunction Introduction applied to contract A
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3. The Enable pattern is applied to the state with contract A1 and the Disable pattern

is applied to the state with contract A2 to introduce the Pass transition. In the tool to

apply the Enable pattern to the state with contract A1 the state needs to be selected and

a right-click displays the list of applicable patterns. The Enable pattern is selected. This

pattern requires two arguments, a state with an inner contract that is an Enable operator

expression and a list of new transitions to be added, specifying for each, the event and

its data update expression. The selected state, (i.e. the state with inner contract A1 ), is

bound to the first argument and the user is prompted to input the required new transitions.

A call to the model checker may be required to determine if the transitions are permitted

by the contract and if so the pattern performs the model transformation and adds the new

transitions.

 

A    

                          

B                                        A                                         

A             A                        

Pass 

 

     True 

Pass 

 

     True 

Figure 4.4: Enable is applied to contract A1, Disable is applied to contract A2
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4. The Conjunction Elimination pattern is applied to state with contract A to eliminate

all but one of its identical substates.

 

                          

B                                        A                                         

A             

Pass 

 

     True 

A    

Figure 4.5: Pattern Conjunction Elimination is applied to state with contract A
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5. The Unfold Always pattern is applied to contract B.

 

                             

                                    

                           

B                                        A                                         

A             

Pass 

 

     True 

A    

Figure 4.6: Pattern Unfold Always is applied to contract B
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6. The Conjunction Introduction pattern is applied to contract B to introduce two new

conjunction states with contracts B1 and B2.

 

                             

                                    

                           

B                                        
A                                         

A             

Pass 

 

     True 

A    

    

                             

  

                          

   

            

                         

                          

Figure 4.7: Pattern Conjunction Introduction is applied to contract B
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7. The If pattern is applied to contracts B1 and B2 to introduce the new Pass transition.

 

                             

                                    

                           

B                                        
A                                         

A             

Pass 

 

     True 

A    

    

                             

  

                          

   

            

                         

                          

Pass 

 

                        

                         

     B3 

Pass 

 

         

                         

                          

     B4 

Figure 4.8: Pattern If is applied to contracts B1 and B2
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8. The Unfold Unless pattern is applied to contract B3.

 

                             

                                    

                           

B                                        
A                                         

A             

Pass 

 

     True 

A    

    

                             

  

                          

   

            

                         

                          

Pass 

 

                      

                            

                          

     B3 

Pass 

 

         

                         

                          

     B4 

Figure 4.9: Pattern Unfold Unless is applied to contract B3
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9. The Conjunction Introduction pattern is applied to contract B3.

 

                             

                                    

                           

B                                        
A                            

A             

Pass 

 

     True 

A    

    

                             

  

                          

   

 

Pass 

 

                                                                                      

                                                                        

                                                             

     B5                                              B6 

Pass 

 

     B4 

 

Figure 4.10: Pattern Conjunction Introduction is applied to contract B3
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10. The Conjunction Introduction pattern is applied to contract B5.

 

                             

                                    

                           

B                                        
A                            

A             

Pass 

 

     True 

A    

    

                             

  

                          

   

 

Pass 

 

      B7                          B8                                        B6 

 

 

Pass 

 

     B4 

 

Figure 4.11: Pattern Conjunction Introduction is applied to contract B5
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11. The Enable pattern is applied to contract B7, the Disable pattern is applied to contract

B8 and the If pattern is applied to contract B6 to introduce the ’Out transition.

 

                             

                                    

                           

B                                        
A                            

A             

Pass 

 

     True 

A    

    

                             

  

                          

   

 

Pass 

 

      B7                          B8                                        B6 

 

 

Pass 

 

     B4 

 

`Out 

 

  B9  True 

`Out 

 

 

 B10 True 

`Out 

 

 

        

                

                

         

  B11    

 

Figure 4.12: Enable, Disable and If are applied to introduce transition ’Out
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12. The pattern Strengthen Contract is applied to contracts B9 and B10.

 

                             

                                    

                           

B                                        
A                            

A             

Pass 

 

     True 

A    

    

                             

  

                          

   

 

Pass 

 

      B7                          B8                                        B6 

 

 

Pass 

 

     B4 

 

`Out 

 

        

                

                

         

  B9  

`Out 

 

 

        

                

                

         

 B10  

  

`Out 

 

 

        

                

                

         

  B11    

 

Figure 4.13: Pattern Strengthen Contract is applied to B9 and B10
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13. The pattern Conjunction Elimination is applied to B6, B7 and B8.

 

                             

                                    

                           

B                                        
A                            

A             

Pass 

 

     True 

A    

    

                             

  

                          

   

 

Pass 

 

      B7                                               

 

 

Pass 

 

     B4 

 

`Out 

 

        

                

                

         

  B9  

Figure 4.14: Pattern Conjunction elimination is applied to B6, B7 and B8
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14. The pattern Unfold Unless is applied to contract B9.

 

                             

                                    

                           

B                                        
A                            

A             

Pass 

 

     True 

A    

    

                             

  

                          

   

 

Pass 

 

      B7                                               

 

 

Pass 

 

     B4 

 

`Out 

 

                         

  B9  

Figure 4.15: Pattern Unfold Unless is applied to B9
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15. The pattern If is applied to contract B4 to introduce the ’Out transition.

 

                             

                                    

                           

B                                        
A                            

A             

Pass 

 

  A2 True 

A    

    

                             

  

                          

   

 

Pass 

 

      B7                                               

 

 

Pass 

 

     B4 

 

`Out 

 

                         

  B9  

`Out 

 

                

                

                

          

  B12  

 

Figure 4.16: Pattern If is applied to B4
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16. The pattern Strengthen Contract is applied to contract B9 and B12.

 

                             

                                    

                           

B                                        
A                            

A             

Pass 

 

  A2 True 

A    

    

                             

  

                          

   

 

Pass 

 

      B7                                               

 

 

Pass 

 

     B4 

 

`Out 

 

                          

                 

                

                          

  B9  

`Out 

 

                          

                

                

                          

  B12  

 

Figure 4.17: Pattern Strengthen Contract is applied to B9 and B12

89



Chapter 4: Basic refinement and refactoring patterns

17. The pattern Conjunction Elimination is applied to substates with contracts B1 and

B2.

 B  
A   

A             

Pass 

 

  A2 True 

A    

    

                             

  

                          

Pass 

 

      B7                                               

 

 

`Out 

 

                          

                 

                

                          

  B9  

Figure 4.18: Pattern Conjunction Elimination is applied to B1 and B2
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18. The pattern Flatten Hierarchy is applied to state with contract B7.

 B  
A   

A             

Pass 

 

  A2 True 

A    

    

                             

  

                          

Pass 

 

`Out 

 

                          

                 

                

                          

  B9  

Figure 4.19: Pattern Flatten Hierarchy is applied to B7
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19. Patterns are applied to the state with contract A2. A contract True can be elaborated

into any state machine model and in this instance it is refined to the same model as the

state with contract B1.

 B  
A   

A             

Pass 

 

   

A    

    

                             

  

                          

Pass 

 

`Out 

 

                          

                 

                

                          

  B9  

`Out 

                          

                 

                

                          

 

Figure 4.20: Contract A2 refined into same model as that for B1
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20. Pattern Conjunction Elimination is applied to substates with contracts A and B.

 A   

Pass 

 

   

A    

`Out 

                          

                 

                

                          

 

Figure 4.21: Pattern Conjunction Elimination is applied to A and B
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21. Pattern Flatten Hierarchy is applied to state with contract A.

 

Pass 

 

   

A    

`Out 

                          

                 

                

                          

 A3 

A    

Figure 4.22: Pattern Flatten Hierarchy is applied to state with contract A
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22. Pattern Reroute is applied to state with contract A3.

 

                          

                 

                

                          

 

Pass 

 

`Out 

 

Figure 4.23: Pattern Reroute is applied to state with contract A3

The next section discusses the systematic approach adopted to identify refinement and

refactoring patterns.

4.2 Systematic approach

In the remaining sections of this chapter a set of refinement and refactoring patterns that

are predominately structural in nature with no semantic side-conditions are presented.

This section firstly describes the method used for pattern discovery and the goals to be

achieved, which will later be used to judge success when evaluating the research outcomes.

Finally this section describes how the method for pattern discovery works in practice.

Inspired by the work of others, e.g. [180] the process of considering refinement and

refactoring steps was “inductive” in the sense that it is assumed that there are patterns

dealing with each new set of operators that may be introduced in a design step and it

is unnecessary to consider refinements beyond that point as they would be elaborated
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in due course. This effectively reduces an infinite number of possible refinements to a

finite number of applicable steps. For example it is not necessary to consider all possible

refinements of a contract A ∨ B, only the refinements for the current step (i.e A is a

refinement and B is a refinement) and assume there are refinement and refactoring patterns

to subsequently take A and B on to all of their possible refinements.

Contracts may have arbitrarily many conjuncts; this makes it difficult to establish

patterns for them. It is not possible to match against a subset of the conjuncts and rewrite

those because the conjuncts that have been disregarded might constrain the solution space

in a way that has not yet been anticipated. Patterns can be specified to deal with a few

cases but new patterns would be required for every new contract with an extra conjunct

that had not been previously considered.

Thus a better approach is required to establish patterns for contracts with conjuncts.

An effective solution for refining a contract with conjuncts is to compose the conjuncts

together using the diagrammatic conjunction operator (&) discussed in Chapter 2. A

conjunction state is introduced for each conjunct in the contract.

For example if the contract has the form L ∧M two new substates are introduced

one with inner contract L and the other with inner contract M . The new substates are

conjunction states. As described previously they are an addition to the state machine

language and a new form of state decomposition required to support the approach to the

design process. Conjoined substates are orthogonal in the same way as parallel states.

Conjunction states represent the behaviour common to all their substates.

 

& 

L M 

L  M 

L  M 

 “Conjunction introduction” 

 

Figure 4.24: Conjunction introduction
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Figure 4.25: Introduce conjunction states for each conjunct in the contract

The design process then proceeds by refining each conjunct separately to mutually

consistent (usually identical) designs and finally removing the conjunction operator and

identical conjuncts (apart from one). The composite conjunction state containing the

equivalent substates is replaced with one of the conjuncts and the copies are thrown away.

 

& 

L M 

α β 

L  M 

L 

α 

L  M 

 “Conjunction elimination” 

 

α,β equivalent 

Figure 4.26: Equal
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Figure 4.27: Conjuncts refined to equivalent designs representing the common behaviour

Figure 4.28: The duplicate conjunction states are eliminated
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If no common behaviour exists then the contract is infeasible and there is no fully

developed state machine (i.e containing no contracts) that implements it. It would be

desirable to check contracts for feasibility initially (e.g as an optional side-condition to the

conjunction pattern) otherwise the refinement may never succeed as a False contract is

unimplementable. True describes all behaviours, it can be refined into anything including

deadlock and is at the top of the refinement ordering. False describes no behaviours, it

refines everything and is at the bottom of the refinement ordering. False is the empty

set of behaviours, it is unimplementable and cannot be refined any further. (It excludes

deadlock as deadlock is a type of behaviour).

A systematic approach has been adopted to identify patterns. It was important to fol-

low a systematic method for pattern identification to help achieve a complete set in terms

of coverage of transformations, and ensure that the catalogue consists of a comprehensive

set of patterns for the common types of refinement or refactoring that are frequently re-

quired during the stepwise design of a system.

There are three main stages to the approach. The first stage aims for completeness

of the set of patterns by ensuring operator coverage and consideration of refinement and

refactoring rules for statecharts in the literature. The second stage of the approach con-

cerns the specialisation and generalisation of patterns. Specialisation leads to a simpler

side-condition and generalisation to better coverage. The final stage of the approach was

to verify the integrity and utility of the proposed set of patterns through a case study

which is presented in Chapter 7.

4.2.1 Aims

General aims for the pattern catalogue are for compactness, (maintaining a small catalogue

size), and pattern comprehensibility to ensure they are as simple as possible to understand

and apply. There is also a desire for patterns that encourage well-formed designs (e.g.

without disconnected states). Patterns must be of practical utility for the engineer. This

criterion can be fulfilled in many ways, for example a pattern for a frequently required

refinement or refactoring step, or a pattern that is valuable in terms of proof reduction.

A pattern that simplifies a design (e.g. by combining states) or simplifies the refinement

process (e.g a pattern that combines refinement/refactoring steps) is also of practical

utility.

Other important considerations were to keep to a minimum patterns for general cases
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where the reasoning would be computationally intensive, incomplete or unavailable. There

is a trade-off and a balance to be struck between having a few general patterns and many

specific patterns. Although specific patterns minimise proof burden and usually require

less information from the user, they can potentially lead to a multitude of patterns which

may be difficult for the engineer to navigate. General patterns, as stated above, may have

more complex side-conditions, which are potentially harder for the engineer to supply

information for, and for the model checker to discharge.

The aim is for a pattern catalogue that consists of a set of patterns that cover specific

cases, which require little by way of accompanying proof, with a few general patterns in a

supporting rather than an essential role should the more specific patterns not cover what

is required. The aim is to ensure the completeness, correctness and utility of the patterns.

The completeness criteria discussed here concerns coverage of transformations and ensures

that the catalogue consists of a comprehensive set of patterns for the common types of

refinement or refactoring that are frequently required during the stepwise design of a

system. A systematic approach to the discovery of patterns helps to fulfill the completeness

criteria.

The case study in Chapter 7 provides evidence of pattern utility. A strong argument

that the patterns are correct is that they have been inspected by peers, including those

with expertise internal to the department, collaborators, supervisors, and peer reviewers

of the publication. They have been used successfully on a case study, which gives us

confidence that they are correct. Correctness is also indicated by familiarity/similarity

with patterns from related research.

Further work can be carried out in the future to increase confidence that the patterns

are correct. For the patterns that have not been preproven, for example, the model checker

(HST) could compute the refinement relation, on a case by case basis for instances of a

pattern being applied in order to verify that it did indeed produce a correct refinement.

At the time of writing, the formal underpinning was not available in a stable, complete

form to attempt formal proof and the CoSta project’s model checker does not yet support

the refinement check.

The aim is for a pattern to ensure consistency between designs so that the refinement or

refactoring step preserves meaning. As explained above this has informally been checked

for each pattern by comparing the semantic interpretation of the target model with that

of the source model and ensuring that the ready sets do not change for every possible
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data state and new nondeterminism is not introduced. The discharge of side-conditions

will guarantee consistency is maintained by a refinement or a refactoring pattern and the

model checker (HST) will provide a mechanism for discharging such side-conditions, should

the pattern require it. Consistency of the design process ensures that only designs can be

achieved that preserve the original high-level properties of the contract. Consistency of

the design process is guaranteed by the fact that it is based solely on pattern application

and patterns ensure consistency.

4.2.2 Systematic approach Stage 1

As described above there are three main stages to the systematic approach to identify

patterns. The first stage, discussed in this section, aims for completeness of the set of

patterns by ensuring operator coverage and consideration of refinement and refactoring

rules for statecharts in the literature.

The identification of patterns was based, in the first instance, on an analysis of the

operators of the Contractual State Machine language and the applicable refinement and

refactoring steps were considered for each. Being systematic over the operators led to

identification of patterns covering all of the different possible types of source and target

models for a transformation (i.e contract to contract, contract to mixed design and mixed

design to mixed design).

The design process moves a design from a contract specification to a state machine

model by applying refinement and refactoring patterns that preserve meaning. The aim

was to identify model transformations to go from one syntax (for contracts) to another (for

state machines) or within a single language (for contracts or state machines) that preserve

meaning. One way this was achieved was by considering all of the operators of the contract

and state machine languages as possible sources or targets of transformations, to try to

establish the smallest permissable transformations that preserve meaning. Basing the

systematic discovery of patterns on the language syntax was a starting point for identifying

atomic, small granularity patterns. Compound patterns that combine the atomic patterns

could be considered later on and may be more meaningful for the engineer.

Basing the discovery of patterns on syntax and operator coverage was one of several

ways of ensuring completeness of the patterns (e.g. it is no use having a syntax con-

struction for which no patterns apply). However there were other methods used in the

discovery of patterns, discussed in this and the next section. They include the empirical
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practice of applying the patterns to a problem in the case study, and the specialisation

and generalisation of the patterns. Both strategies helped to decide the optimal set of

patterns (e.g. by removing two patterns and replacing them with a more general one, or

augmenting a general pattern with specific instances which were used often, easier to use

or had simpler side-conditions).

Pattern identification also began with broad research into the numerous formal lan-

guages with refinement calculi [17,22,23,58,70,107,112,126,180,224,255,256,260]. There

are common types of refinements and refactorings for statecharts described in the liter-

ature. Typically, the refinement process begins with an “underspecified” state machine

design. Underspecification in this context can mean partiality (missing diagram elements)

and abstraction (nondeterminism). Development proceeds by the application of refinement

and refactoring laws which enable the elaboration of a design (e.g to add new states and

transitions) provided new nondeterminism is not introduced. A list of the most common

refinements and refactorings for statecharts described in the literature is presented next.

The majority of them are equivalence laws. The refinement and refactoring laws vary for

each statechart variant as they are specific to the underlying semantics of the particular

language and refinement theory. Therefore the descriptions below are limited to details of

the kinds of transformations the rules apply.
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Refinements and refactorings for statecharts described in the literature.

Number Name Transformation

01 Introduce orthogonality Creates a set of orthogonal states [253] [94].

02 Remove orthogonality Removes a set of simple (empty) orthogonal

states [253] [94].

03 Create a composite su-

perstate

Groups states into a new composite state.

The transformation encloses a group of se-

lected states with a new superstate [242] [94].

04 Remove a composite su-

perstate

Removes a composite state which has no in-

coming or outgoing transitions that encloses

a group of substates [94].

05 Move target down An incoming transition to a composite state

has its target state changed from the com-

posite state to the default/initial state of the

composite [253] [166] [94].

06 Move target up Changes the target of an incoming transition

from the initial state of the composite to the

composite state [253] [94].

07 Move source up Replaces a set of identical outgoing transi-

tions, one from every substate of a compos-

ite, with a single transition from the compos-

ite [253] [166] [242] [94].

08 Move source down Replaces a single outgoing transition from a

composite state with a set of outgoing transi-

tions one from each substate of the compos-

ite [253] [242] [94].

Table 4.1
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09 Move state into

composite

Moves a state into one of its sibling states, (a state at the

same hierarchical level). The proviso is that the state

to be moved must not be a default/start state. It must

have no incoming or outgoing transitions. The sibling

state must not have outgoing transitions [242].

10 Move state out of

composite

Moves a state out of a composite state, so that it is con-

tained within the same parent state as the composite

state. It is no longer a substate of the composite, but at

the same hierarchical level as the composite state. The

proviso is that it must not be a default/start state. It

must have no incoming or outgoing transitions and the

composite must have no outgoing transitions [242].

11 Move action,

state to transition

This refactoring is applicable to statechart languages that

allow states to have entry and exit actions e.g. [248]. It

moves a state entry action from a state to its incoming

transitions. For example if the state entry action is to

increment a variable (entry : x := x + 1) this action is

removed from the state and added to the actions for each

incoming transition to the state. If the state has an ex-

isting incoming transition e1/y := 3, the transition label

becomes e1/y := 3;x := x + 1. Similarly this refactor-

ing moves a state exit action from a state to its outgoing

transitions. For example if the state exit action is to

increment a variable (exit : x := x + 1) this action is

removed from the state and added to the actions for each

outgoing transition from the state. If the state has an ex-

isting outgoing transition e2/y := 4, the transition label

becomes e2/x := x+ 1; y := 4 [242].

Table 4.1
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12 Move action, transi-

tion to state

This refactoring is applicable to statechart lan-

guages that allow states to have entry and exit ac-

tions e.g. [248]. It moves an identical action from

every incoming transition to a state to the state’s

entry action. For example for the incoming tran-

sition e1/y := 3;x := x + 1, if the identical action

is x := x + 1 this is removed from the transition

which now becomes e1/y := 3, and is added as a

state entry action (entry : x := x + 1). Similarly

this refactoring moves an identical action from ev-

ery outgoing transition from a state to the state’s

exit action. For example for the outgoing transi-

tion e2/x := x + 1; y := 4, if the identical action

is x := x + 1 this is removed from the transition

which now becomes e2/y := 4 and added as a state

exit action, (exit : x := x+ 1) [242].

13 Modify existing tran-

sitions

Permits changes to the guard and events of a tran-

sition provided no new nondeterminism is intro-

duced [221].

14 Combining and split-

ting transitions

Combines/splits transitions on guards and events

[253] [221] [94].

15 Remove a transition A transition is removed if an alternative transition

exists reducing nondeterminism [216] [166] [221].

16 Add a transition A transition is added if no corresponding transition

exists so that it is not introducing new nondeter-

minism [216] [166] [221].

17 Remove/add a tran-

sition

A transition is added that can never be fired, as it

is untriggerable due to a False guard [94] [148].

18 Add a new state A state is added, this usually means a state with no

incoming or outgoing transitions [216] [166] [221].

19 Replace a basic state A basic state is replaced with a composite state

(with substates) [216] [166].

Table 4.1
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20 Remove an unreach-

able state

An unreachable state is removed, this usually

means a state with no incoming or outgoing tran-

sitions [216] [166].

21 Introduce hierarchy Groups a set of basic states with identical outgoing

transitions (to the same target state and with the

same labels) into a new composite state. The refac-

toring replaces the identical outgoing transitions

from each substate with a single outgoing transi-

tion from the composite state [148].

22 Combine states Two states are combined, typically the states are

basic states and must belong to the same parent

state and they are replaced by a single basic state

[253] [94].

23 Split state A state is split, typically the state is a basic state

that is replaced by two new basic states. The com-

bined set of incoming and outgoing transitions from

the two new states must be equivalent to the set of

incoming and outgoing transitions from the original

state [253] [94].

Table 4.1: Refinements and refactorings for statecharts described in the literature

Although many of the refinements and refactorings for statecharts from the literature

were not applicable to CoSta, such as those relating to entry/exit actions, the study

provided a valuable check list on which to base the diagram to diagram patterns for this

thesis.

4.2.3 Systematic approach Stage 2

The last section described the first stage of the systematic approach to identify patterns,

which aims for completeness of the set of patterns by ensuring operator coverage and con-

sideration of refinement and refactoring rules for statecharts in the literature. The second

stage of the approach discussed in this section concerns the specialisation and generali-

sation of patterns. Specialisation leads to a simpler side-condition and generalisation to

better coverage.
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The two stages are illustrated together in what follows, starting with a specific pattern to

merge two transitions.

Version 1. If there are two transitions between the same states, with the same triggering

event and no guards or assignments, they can be combined and no other constraints need

to be validated.

A specific form of a pattern was considered initially followed by successively more general

versions. The specific and general versions were compared to identify any benefits of the

more specific version. The aim was to disregard the more specific version unless its presence

could be justified, for example, in terms of simplifying the proof burden or providing a

methodological benefit, being of practical use to an engineer.

For example, there is a methodological benefit when the more specific form of the

pattern is frequently needed during the design process and it requires less in terms of

information from the user than a more general version. Simplifying proof burden justifies

inclusion of the pattern in the catalogue, even though there is a model checker to automate

the evaluation, as it reduces the required levels of resources (time to compute, memory

requirements) and in the case of a refinement check the algorithm may not succeed (as

it requires too much memory or time to compute). In the software tool when diagram

components are analysed to enable and disable the applicable patterns, time constraints

apply, and it may not be practical to decide deeper semantic constraints. There is an

advantage to having the simpler forms of patterns, because they enable the software to

determine which patterns are applicable in real-time.

Version 2 (more general). If there are two transitions between the same states, with the

same events and assignments but possibly different guards, the transitions can be combined

by disjoining guards, and no other constraints need to be validated.

There is no benefit of version 1 over version 2 in terms of proof so it can be replaced by

version 2.

Version 3 (more general). If there are two transitions between the same states, with the

same events but possibly different guards and syntactically different assignments shown

to be semantically equivalent, the transitions can be combined by disjoining guards and

including the assignments from either transition.

A side-condition is required to prove that the syntactically different assignments are se-

mantically equivalent. This is more general but carries a proof burden so there is a benefit

of version 2 over version 3 in terms of proof and thus an argument to justify its presence
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in addition to the more general version.

The final stage of the systematic approach to pattern identification is to verify the

integrity and utility of the proposed set of patterns through a case study, this is presented

in Chapter 7. The systematic approach adopted for pattern discovery and the general

aims for the patterns have been discussed. The next section presents a set of patterns

for CoSta for the refinement and refactoring steps that are predominately structural in

nature with no semantic side-conditions. The more elaborate patterns are presented in

the next chapter. Typically these are transformations with side-conditions (e.g relating to

conditions/actions on data) that require the model checker (HST) to discharge them.

4.3 Basic patterns

The set of basic refinement and refactoring patterns for Contractual State Machines are

presented in this section. The strategy for pattern discovery was to consider the simpler

types of patterns first that are predominately structural in nature with no semantic side-

conditions. They do not refine the data and are thus potentially more straightforward

than the refinement and refactoring patterns that do (these are presented later on in the

next chapter) as they do not need to consider the permissible changes to the data that

preserve the refinement relation.

Conceptually a refinement or refactoring pattern corresponds to an elaboration of a

more abstract model that preserves the refinement relation (and in the case of a refactoring

the stronger equivalence relation). The aim is for a pattern to ensure consistency between

designs so that the refinement or refactoring step preserves meaning. Described in terms of

its implementation and use in practice a pattern expresses a refinement or refactoring step

as an update-in-place model transformation. A pattern is effectively a pair of abstract and

concrete templates, so that when a particular Contractual State Machine or part of one

under investigation matches the abstract template then it may be refined by the concrete

template.

Refinement and refactoring steps in the literature are classified as either refinement or

equivalence transformations (refactorings) [94, 221, 253]. It is useful to add some further

classifications for the refinement and refactoring patterns in this thesis. Patterns can be

classified based on the types of source and target models of the transformation, i.e contract

to contract, contract to mixed design and mixed design to mixed design. Other classifica-

tions are general or specific and syntactic or semantic. A specific pattern, with respect
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to a more general pattern, is a pattern constrained for use in fewer situations. Specific

patterns may require less information from the user or have simpler side-conditions. Syn-

tactic patterns are predominately structural in nature with no semantic side-conditions.

Whereas semantic patterns are transformations with side-conditions (e.g relating to con-

ditions/actions on data) that require the model checker (HST) to discharge them.

The primary classification for the patterns presented next is based on the types of

source and target models of the transformation (i.e contract to contract, contract to mixed

design and mixed design to mixed design). Additionally, the patterns are described as

being either refinement or refactoring. A refinement pattern is one that reduces nondeter-

minism in a specification and a refactoring pattern changes the structure of a specification

without affecting its behaviour. It is not always possible to classify some of the patterns

in the catalogue as exclusively refinement or refactoring.

The description for each pattern covers the following details:

1. The rationale for the pattern.

2. The pattern constraints restricting the situations in which it can be applied (e.g.

syntactic constraints and semantic side-conditions).

3. The parameters of the pattern.

4. The model transformation applied with a diagrammatic illustration.

A presentation of the refinement and refactoring patterns which are predominately

structural in nature with no semantic side-conditions follows. All of the patterns minimise

proof burden. The refinement and refactoring patterns encompass the necessary steps to

get from contracts to everywhere in the design space that implements them. Appendix D.1

has some additional patterns that are not in the core set as they are not critical or strictly

necessary to achieve a deterministic solution but may be preferable for stylistic reasons

offering the engineer different routes to the same solution.

4.3.1 Contract to contract patterns

Contract to contract refinement and refactoring patterns are presented in this section.

These are patterns where both the source and target models of the transformation are

contracts.
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4.3.1.1 Patterns for adding new parts to a CoSta contract

The pattern theme in this section is adding new parts to a contract expression.

Name: Strengthen contract, add conjunct

Type: Refinement

Rationale: The Conjunction operator (∧) specifies that more than one property is re-

quired to hold. This pattern permits the state’s inner contract to be strengthened by

adding another conjunct to the contract expression. The rationale for this pattern is that

an engineer may want to strengthen a contract to reduce nondeterminism or manipulate

the contract so that it is equivalent to another contract (e.g. to enable the Reroute pat-

tern to be applied). The pattern was identified by considering permissible changes to a

contract that would result in a refinement under SVRS. Strengthening the inner contract

of a state is a refinement under SVRS.

Constraints: An optional side-condition is that the new contract is feasible (is not equiv-

alent to the False contract) which could be verified using the model checker. The side-

condition is optional because it does not affect the correctness of the pattern application

but saves the user from trying to refine a pattern which has no implementation.

Parameters: The parameters are a state with inner contract C1 and the new contract

component C2 to be conjoined.

Transformation: This pattern refines the contract C1 to the contract C1 ∧C2, where C2

is provided as a parameter.

Diagram:
 

 
 

 C1 

C1  C2 

“Strengthen contract” 
  Add conjunct C2 

 

Figure 4.29: Strengthen contract
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4.3.1.2 Patterns for removing parts of a CoSta contract

The pattern theme in this section is removing parts of a contract expression.

Name: Strengthen contract, remove disjunct

Type: Refinement

Rationale: A choice of behaviours is expressed with the Disjunction (∨) operator. This

pattern permits the state’s inner contract to be strengthened by removing a disjunct from

the contract expression. The rationale for this pattern is that an engineer may want to

strengthen a contract to reduce nondeterminism or manipulate the contract so that it is

equivalent to another contract (e.g. to enable the Reroute pattern to be applied). The

pattern was identified by considering permissible changes to a contract that would result

in a refinement under SVRS.

Constraints: The pattern ensures that the inner contract is a Disjunction operator

expression of the form C1 ∨ C2.

Parameters: The parameters are a state with an inner contract that is a Disjunction

operator expression and the contract component to be removed, i.e. the left or right side

of the disjunction operator.

Transformation: This pattern refines the contract C1 ∨ C2 to the contract C1 or the

contract C2.

Name: Merge conjunct

Type: Refactoring (a refinement in its most general form).

Rationale: The Conjunction operator (∧) specifies that more than one property is re-

quired to hold. The purpose of the pattern is to simplify the design process by reducing

the number of conjuncts to be refined within a contract. The pattern merges conjuncts

to remove redundant behaviour (repetition), where the behaviours are the same. This

pattern could be accompanied by an inverse, but the inverse transformation (to add a

conjunct to a contract that is syntactically equivalent to an existing conjunct) may not be

a useful refactoring step when designing Contractual State Machines.

Constraints: The pattern ensures that the inner contract is a Conjunction operator ex-

pression of the form C1 ∧ C2. Additionally it verifies that the conjuncts, C1 and C2 are

syntactically equivalent. The pattern could be generalised to cover the situation where the

contracts are syntactically the same apart from the update expressions. The pattern con-
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straint could be extended to verify that in addition the corresponding update expressions

from both conjuncts are semantically equivalent. To determine the semantic equivalence of

two update expressions [x : P1] and [x : P2] the side-condition is ` P1 ⇔ P2. The pattern

constraint could be generalised further to check if a refinement relation holds between C1

and C2 and the weaker conjunct removed.

Parameters: The parameter is a state whose inner contract is a Conjunction operator

expression.

Transformation: This pattern refines the contract C1 ∧ C2 to the contract C1.

Diagram:
 

 
 

 C1  C2 
 

C1 

“Merge conjunct” 
  C1 and C2 are equivalent 

 

Figure 4.30: Merge conjunct

Name: Unit

Type: Refactoring

Rationale: The purpose of the pattern is to simplify a contract by reducing the number

of conjuncts. This pattern could be accompanied by an inverse, but the inverse trans-

formation (to add a conjunct True) may not be a useful refactoring step when designing

Contractual State Machines.

Constraints: The pattern ensures that the inner contract is a Conjunction operator

expression of the form C1 ∧ True.

Parameters: The parameter is a state whose inner contract is a Conjunction operator

expression.

Transformation: This pattern refines the contract C1 ∧ True to the contract C1.
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Name: If combine actions

Type: Refactoring

Rationale: The purpose of the pattern is to simplify the design process by reducing

the number of conjuncts to be refined within a contract. The pattern merges two If

operator conjuncts. The inverse of this pattern, (to split an If operator expression on its

set of actions into the conjunction of two If operators) is presented in Appendix D.1.

This inverse transformation however may not be a useful refactoring step for designing

Contractual State Machines.

Constraints: The pattern ensures that the contract is a Conjunction operator expression

of the form C1 ∧C2 where C1 and C2 are If operator expressions. The inner contract has

the form [a1, .., an[x : P1]]L1 ∧ [b1, .., bm[x : P2]]L2. The pattern checks that the update

expressions [x : P1] and [x : P2] and the continuation behaviours of the If expressions L1

and L2 are syntactically equal.

The pattern could be generalised to cover the situation where the update expressions

[x : P1] and [x : P2] are not syntactically equal. A side-condition could verify that the

update expressions are semantically equivalent ` P1 ⇔ P2. The side-condition could

be generalised further to cover the situation where the continuation behaviours of the

If expressions L1 and L2 are not syntactically equal. The side-condition check could be

extended to verify that L1 and L2 are equivalent. Another generalisation is to conjoin L1

and L2.

Parameters: The parameter is a state whose inner contract is a Conjunction operator

expression of the form C1 ∧ C2 where C1 and C2 are If operator expressions.

Transformation: This pattern combines two conjoined If operator expressions. The

transformation replaces the original contract [a1, .., an[x : P1]]L1 ∧ [b1, .., bm[x : P2]]L2

with a new contract [a1, .., an, b1, .., bm[x : P1]]L1 that combines the action groups.
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Diagram:
 

 
 

[a1,..,an[x:P1]]L1 [b1,..,bm[x:P2]]L2 

[a1,..,an, b1,..,bm[x:P1]]L1 
 

“If combine actions” 
 P1 and P2  are equivalent, L1 and L2 are equivalent 

 

Figure 4.31: If combine actions

4.3.1.3 Patterns for unfolding a CoSta contract

The pattern theme in this section is unfolding a contract expression.

Name: Unfold Always

Type: Refactoring

Rationale: This pattern enables the engineer to provide more specific details about a

design and the required behaviour of the intended process. It unfolds the Always operator

expression to separate out the description of the behaviour for the current step and the

ongoing subsequent behaviour of the process. This enables the engineer to be more precise

about and elaborate further on the behaviour for the current step separately to considering

the subsequent behaviour. This pattern was based on equivalences for the Always operator.

This pattern could be accompanied by an inverse transformation.

Constraints: The pattern ensures that the inner contract is an Always operator expres-

sion.

Parameters: The parameter is a state with a contract that is an Always operator ex-

pression.

Transformation: The Always operator specifies a constraint which must be true at all

times, whichever events are taken. The pattern unfolds an Always operator. Always L is

equivalent to L and “after any event, behave as Always L”.
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The inner contract �L is refined to L ∧ [ ]�L

Diagram:

 

 

□L 

L [_]□L 

“Unfold Always” 
 

Figure 4.32: Unfold Always

Name: Unfold Unless

Type: Refinement.

Rationale: This pattern enables the engineer to elaborate a design and provide more

details of the required behaviour. The pattern enables progress to be made with the

design as it allows the engineer to make a choice about the behaviour of the process at the

current step. It unfolds the Unless operator expression to separate out the description of

the behaviour for the current step and the ongoing subsequent behaviour of the process.

This enables the engineer to then elaborate further on these descriptions separately. This

pattern was based on equivalences for the Unless operator.

Constraints: The pattern ensures that the inner contract is an Unless operator expres-

sion.

Parameters: The parameter is a state with a contract that is an Unless operator expres-

sion.

Transformation: The Unless operator behaves similarly to the Always operator. The

left-hand formula must be true at all times. However should the right-hand formula

become true, the left hand formula (at this point and thereafter) no longer need hold.

The pattern unfolds an Unless operator. L Unless M is equivalent to (L and “ after any

event, behave as L Unless M ”) or “behave as M ”.
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1. The contract LyM can be refined to L∧ [ ](LyM) (see Figure 4.33 diagram 1).

2. The contract LyM can be refined to M (see Figure 4.33 diagram 2).

Diagram:

 

L↷M 

L[_](L↷M) 

1.  “Unfold Unless” 
 

L↷M 

2.  “Unless” 
 

M 

Figure 4.33: Unfold Unless

Name: Unfold Within k (BoundedEventually)

Type: Refinement

Rationale: This pattern enables progress to be made with the design as it allows the

engineer to make a choice about the behaviour of the process at the current step. The

choice is between satisfying the specified constraint at the current step or alternatively not

satisfying the constraint at the current step but subsequently satisfying it within the next

k − 1 steps. This pattern was based on equivalences for the Unfold Within k operator.

Constraints: The pattern ensures that the inner contract is an Unfold Within k operator

expression.

Parameters: The parameter is a state with a contract that is an Unfold Within k operator

expression.

Transformation: The Unfold Within k operator specifies a constraint which must be

true within k steps. The pattern unfolds an Unfold Within k operator.

Unfold within k L is equivalent to (“Any event is enabled” and “after any event, behave

as Unfold within k-1 L”) or “behave as L”. If L does not hold, something else must be
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enabled and the continuation behaviour specifies that within (k−1), L must hold for every

branch.

1. The contract ♦kL, k > 1 can be refined to 〈 〉 ∧ [ ](♦k−1L) (see Fig 4.34 diagram 1).

2. The contract ♦kL, k ≥ 1 can be refined to L (see Fig 4.34 diagram 2).

Diagram:

 

◊kL 

<_>[_](◊k-1L) 
 

1.  “Unfold Within K” 
 
k>1 ◊kL 

L 

K≥1 

2.  “Unfold Within K” 
 

Figure 4.34: Unfold Within k

4.3.1.4 Patterns for rewriting a CoSta contract

The pattern theme in this section is rewriting a contract expression in terms of an equiva-

lent contract expression. Each pattern in this section could be accompanied by its inverse

transformation.

Name: Disable

Type: Refactoring

Rationale: The Disable operator specifies that none of the events in a set are available.

The purpose of this pattern is to rewrite the Disable operator expression in terms of an If

operator. The approach here is to express a Disable operator in terms of an If operator

rather than introduce separate patterns for the Disable operator.

Constraints: The pattern ensures that the inner contract is a Disable operator expression.

Parameters: The parameter is a state with a contract that is a Disable operator expres-

sion.

Transformation: The pattern expresses the Disable operator contract as an equivalent

If operator expression. The inner contract expression 〈a1, .., an[x : P ]〉 is replaced by
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[a1, .., an[x : P ]]False

Diagram:
 

 

                                             

[a1,..,an[x:P]]False 
 

“Disable” 
 

Figure 4.35: Disable

Name: Commutativity

Type: Refactoring

Rationale: Other patterns require contracts to be equivalent (e.g in order to eliminate

a conjunction state or reroute). This pattern enables a contract to be expressed in an

equivalent but different form by swapping conjuncts around.

Constraints: The pattern ensures the inner contract is an ∧ operator expression.

Parameters: The parameter is a state with an inner contract of the form C1 ∧ C2.

Transformation: The inner contract C1 ∧ C2 is replaced by contract C2 ∧ C1.

Name: Associativity

Type: Refactoring

Rationale: Other patterns require contracts to be equivalent (e.g in order to eliminate

a conjunction state or reroute). This pattern enables a contract to be expressed in an

equivalent but different form by changing the bracketing of conjuncts.

Constraints: The pattern ensures the inner contract is an ∧ operator expression of the

form (C1 ∧ C2) ∧ C3.

Parameters: The parameter is a state with an inner contract that is an ∧ operator

expression.

Transformation: The inner contract (C1∧C2)∧C3 is replaced by contract C1∧(C2∧C3).
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4.3.2 Patterns for contracts to mixed designs

This section presents contract to mixed design refinement and refactoring patterns. For

these patterns the source model of the transformation is a contract and the target model

is a CoSta state machine with contracts.

4.3.2.1 Patterns for adding CoSta state machine constructs

The pattern theme in this section is adding new constructs to a design.

Name: Conjunction introduction

Type: Refactoring

Rationale: The pattern is required to support the approach to the design process and

the introduction of conjunction states to refine contracts with conjuncts. As described

above it was concluded that the best approach to refining these contracts would be to

separate them into conjunction states and refine the conjunctions independently to two

mutually consistent (usually identical) designs. The inverse transformation for this pattern

(Conjunction elimination) is presented below in Section 4.3.3.1.

Constraints: The pattern checks that the inner contract is a Conjunction operator ex-

pression.

Parameters: The parameter is a state with an inner contract that is a Conjunction

operator expression.

Transformation: The contract has the form “L ∧M”. The pattern introduces two new

substates, one with inner contract “L” and the other with inner contract “M”. The new

substates are conjunction states. As described previously they are an addition to the

state machine language and a new form of state decomposition required to support the

approach to the design process. Conjoined substates are orthogonal in the same way as

parallel states. Conjunction states represent the behaviour common to all their substates.
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Diagram:

 

& 

L M 

L  M 

L  M 

 “Conjunction introduction” 

 

Figure 4.36: Conjunction introduction

Name: Expand

Type: Refactoring

Rationale: This pattern constructs the maximal agent for a contract, i.e. a state machine

which represents the disjunction (nondeterministic choice) between all the state machines

that satisfy the contract. The rationale behind the more general patterns such as this one

is that they are available in a supporting role, should a more specific patterns not cover

what is required.

The semantic theory of duals, which transforms contracts to LTS/STGA is one-way.

Investigating an inverse would be an important theoretical issue, as would investigating

the completeness of the inverse. For now, the only possible inverse one could supply is

based on a complex side condition and involves additional effort from the user/engineer.

For a state machine describing the behaviour of (and encapsulated by) a non-leaf state,
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one could ask the user/engineer to supply a contract. If the model-checker confirms the

contract is semantically equivalent to the state machine then the state machine could be

replaced by an inner contract on the state whose behaviour it defines.

Constraints: This pattern is applicable to a state with an inner contract.

Parameters: The parameter is a state with an inner contract.

Transformation: The pattern introduces a state machine model for an inner contract. It

recursively looks at each operator in the contract, expanding its operands and combining

the resulting state machines using a construction corresponding to the operator. As con-

tracts are potentially succinct ways of describing highly nondeterministic state machines,

applying the Expand pattern may produce very complex state machines. Note that the

functionality required to support this pattern is not currently supported by the model

checker.

4.3.3 Patterns for mixed designs

This section presents refinement and refactoring patterns for mixed designs. These pat-

terns transform a CoSta state machine design (with contracts) into another CoSta state

machine design (with contracts). They are important for several reasons, for example,

some of them are essential such as the Reroute pattern that introduces cycles into the

design (and thus satisfies Always contracts); and some are important for convenience as a

resulting state machine model may not be what is required and rather than the engineer

having to backtrack and refine again from a more abstract design, patterns can be applied

directly to the Contractual State Machine model to achieve the desired result.

4.3.3.1 Patterns for removing CoSta state machine constructs

The pattern theme in this section is removing CoSta constructs from a design.

Name: Remove a composite superstate/Redundant hierarchy

Type: Refactoring

Rationale: The pattern eliminates a redundant level of hierarchy. During the design

process components are refined independently. Initially behaviour of a component is sum-

marised by a state with a contract. The engineer may then design a state machine model

for the behaviour within the state and this may result subsequently in the containing state

no longer being required. This pattern provides a means of removing it. The inverse of

this pattern (Create a composite superstate) is presented below in Section 4.3.3.2.
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Constraints: The pattern ensures it is applied to a composite state with substates and

the composite state is not the source or target of transitions.

Parameters: The parameter is a composite state.

Transformation: The pattern removes a composite state but retains its substates. If the

composite state is itself a substate and a start state, the inner contract of its parent state

is assigned to the outer contract of its start state. This transformation is the final step

in the sequence of transformations to flatten hierarchy which is common in the research

literature for refactoring of state machine designs. In figure 4.37 the dotted transition

and cloud convey that only the root state is affected by the pattern, there may be further

structure reachable from the root state, but it is unaffected by the transformation. The

important thing to note about this pattern is that the root state may optionally inherit

the inner contract of its new encapsulating state as an outer contract. These are used in

rerouting transitions e.g. to introduce a cycle.

Diagram:

 

L 
M 

N 

L 

N 

L 

M 

“Remove redundant hierarchy” 

 

Figure 4.37: Remove a composite superstate
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Name: Combine transitions

Type: Refactoring

Rationale: This pattern combines two transitions. The purpose of the pattern is to

simplify a state machine design. The inverse of this pattern (Split transition) is presented

in Chapter 5, section 5.2.3.3.

Constraints: The pattern is applicable to two transitions a[x : P1] and a[x : P2] between

the same source and target states with the same events. The pattern replaces the transi-

tions with a single transition whose update expression is formed from the disjunction of

the update expressions of the original transitions.

Parameters: The parameters are two transitions.

Transformation: The pattern combines two transitions a[x : P1] and a[x : P2] into a

single transition a[x : P1 ∨ P2] between the same source and target states.

Diagram:

 

“Combine transitions” 

 

L 

 N 

a[x:P1] 

 

M 

 

a[x:P2] 

 

L 

 
N 

M 

 

a[x:P1 ⋁ P2] 

 

Figure 4.38: Combine transitions

Name: Combine states

Type: Refactoring (a refinement in its most general form).

Rationale: This pattern combines two basic states. Combining two states having the

same inner contracts which the engineer wishes to refine into the same behaviour will
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simplify the design and reduce the number of design steps if the states are combined

first before their behaviour is specified in more detail. This pattern was identified when

considering ways of reducing the number of design steps during the design process. The

inverse of this pattern, Split state, is presented in Appendix D.1.

Constraints: The pattern is applicable to two states with inner contracts that have not

yet been refined into CoSta state machines. The states to be combined must belong to the

same parent state. Additionally the side-condition verifies that their inner contracts are

syntactically equivalent. The pattern could be generalised to cover the situation where the

contracts are syntactically the same apart from the update expressions. A side-condition

could verify that all the corresponding update expressions from both contracts are seman-

tically equivalent. To check if two update expressions, [x : P1] and [x : P2] are equivalent,

the side-condition is ` P1 ⇔ P2. The side-condition could be generalised further to check

if a refinement relation holds between the two contracts of the states to be combined and

the resulting state is assigned the stronger contract.

Parameters: The parameters are two states with unelaborated inner contracts, (not yet

refined into CoSta state machines).

Transformation: The two states to be combined are replaced by a new state with incom-

ing transitions consisting of the set of all the incoming transitions to both original states.

Either of the original contracts can be selected as the contract for the new combined state.

Diagram:

 

“Combine states” 
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Figure 4.39: Combine states
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Name: Remove an unreachable state

Type: Refactoring

Rationale: The purpose of the pattern is to simplify a design and remove redundant

states. This pattern could be accompanied by an inverse transformation, to add an un-

reachable state, but it would not be useful during the design process as the state would

remain unreachable because it is not a permitted refinement under SVRS to add further

connecting transitions to the new state.

Constraints: The test for unreachability is trivially satisfied in this pattern which is

applicable to a state that has no incoming transitions to itself or any of its substates from

states other than the selected state or any of its substates. Additionally the selected state

must not be a start state.

Parameters: The parameter is a state.

Transformation: The transformation removes an unreachable state and all of its outgo-

ing transitions. If it is a composite state its substates and their transitions are removed

as well.

Name: Conjunction elimination/Equal

Type: Refactoring

Rationale: This pattern is applicable to a conjunction of states and its purpose is to

eliminate the conjunction. As described above, this pattern is required to support the

approach to the design process based on the separate refinement of conjunction states. It

is applied to remove the conjunction operator and syntactically equivalent conjuncts. The

inverse of this pattern, (Conjunction introduction) is presented above in Section 4.3.2.1.

Constraints: This pattern is applicable to a conjunction of states that are consistent

with one another. The processes within every conjunction state must be syntactically the

same. The diagrams must have the same structure (state connectivity, transition triggers).

This pattern is based on syntactic equivalence. It could be generalised to cover the

situation where the diagrams have the same structure and the transition events are syn-

tactically the same but not the update expressions. A side-condition could verify that the

update expressions [x : P1] and [x : P2] from the transitions are semantically equivalent.

The side-condition is ` P1 ⇔ P2. There are other ways to check for equivalence and the

side-condition could be generalised further to a full SVRS-equivalence check between the

conjuncts.
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Parameters: The parameter is a composite conjunction state containing syntactically

equivalent substates.

Transformation: The pattern replaces the composite conjunction state containing the

equivalent substates with one of the conjuncts and the copies are thrown away.

Diagram:

 

& 

L M 

α β 

L  M 

L 

α 

L  M 

 “Conjunction elimination” 

 

α,β equivalent 

Figure 4.40: Equal

Name: Conjunction

Type: Refinement

Rationale: This is a potentially a more general pattern than the Conjunction Elim/Equal

pattern that is available should it not be possible for the design to be progressed further

with the specific pattern that relies on syntactic equivalence.

Constraints: This pattern is applicable to a composite conjunction state and constructs

the behavioural intersection of its conjuncts. The pattern is a generalisation of the Con-

junction Elim/Equal pattern which instead does not rely on the conjuncts being syn-

tactically equivalent. Initially this pattern checks for a refinement relation between the

conjuncts and if so selects the strongest conjunct. If a refinement relation does not hold
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the conjuncts are refined into nondeterministic Contractual State Machines and their be-

havioural intersection computed. Note that the functionality required to support this

pattern is not currently supported by the model checker.

Parameters: The parameter is a composite conjunction state.

Transformation: The pattern replaces the composite conjunction state with the be-

havioural intersection of its conjuncts.

Name: Reroute

Type: Refactoring (in its most general form it is a refinement).

Rationale: This pattern is important as it permits the introduction of a looping transition

into a state machine design by rerouting a state’s incoming transitions to a new target

state, whose behaviour is a refinement/refactoring of the old target and has already been

expanded (specified in terms of a state machine design). The refactoring version of this

pattern could be accompanied by an inverse transformation but it may not be useful as a

refactoring step when designing Contractual State Machines.

Constraints: This pattern is applicable to two states, one with an inner contract that

has not yet been refined to a state machine and another (the new target state for the

looping transition) with an associated outer contract that refines the inner contract. The

pattern ensures that the unelaborated inner contract and the associated outer contract are

syntactically equivalent. The pattern could be generalised to cover the situation where the

contracts are syntactically the same apart from the update expressions. In this instance a

side-condition could verify that the corresponding update expressions from both contracts

are semantically equivalent. To determine the semantic equivalence of two update expres-

sions [x : P1] and [x : P2] the side-condition is ` P1 ⇔ P2. The side-condition could be

generalised further to check if a refinement relation holds between the unelaborated inner

contract and the associated outer contract.

Parameters: The parameters are two states.

Transformation: The transformation removes the unelaborated state and its incoming

transitions are redirected to the state with the associated outer contract.
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Diagram:
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Figure 4.41: Reroute

4.3.3.2 Patterns for adding CoSta state machine constructs

The pattern theme in this section is adding CoSta design constructs.

Name: Create a composite superstate

Type: Refactoring

Rationale: This transformation is the first step in the sequence of transformations to in-

troduce hierarchy which is common in the research literature for refactoring state machine

designs. The inverse of this pattern (Remove a composite superstate/Redundant hierarchy)

is presented above in Section 4.3.3.1.

Constraints: The pattern is applicable to a set of states that belong to the same parent

state.

Parameters: The parameters are a set of states.

Transformation: The pattern introduces a composite state having the selected set of

states as substates.
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4.3.3.3 Patterns for modifying a CoSta state machine design

The pattern theme in this section is modifying a CoSta model.

Name: Move target down

Type: Refactoring

Rationale: This transformation is one of a sequence of transformations to flatten hierar-

chy which is common in the research literature for refactoring state machine designs. The

inverse of this pattern (Move target up) is presented below in this section.

Constraints: The pattern is applicable to a composite state with incoming transitions.

Parameters: The parameter is a composite state with substates.

Transformation: The transformation shifts the target state of the incoming transitions

to the composite state down from the composite state to the default/initial substate of

the composite.

Diagram:

 

 “Move target down” 
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Figure 4.42: Move target down
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Name: Move target up

Type: Refactoring

Rationale: This transformation is one of a sequence of transformations to introduce

hierarchy which is common in the research literature for refactoring state machine designs.

The inverse of this pattern (Move target down) is presented above in this section.

Constraints: The pattern is applicable to a composite state with incoming inter-level

transitions whose target state is the start state within a composite state and whose source

state is not a substate of the composite state.

Parameters: The parameter is a composite state with substates.

Transformation: The incoming transitions to the default/initial state of a composite

state have their target state shifted up to the parent composite state.

Diagram:
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Figure 4.43: Move target up
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Name: Move source down

Type: Refactoring

Rationale: This transformation is one of a sequence of transformations to flatten hierar-

chy which is common in the research literature for refactoring state machine designs. The

inverse of this transformation (Move source up) is presented below in this section.

Constraints: The pattern is applicable to a composite state with outgoing transitions.

Parameters: The parameter is a composite state with substates.

Transformation: The transformation replaces each outgoing transition from the com-

posite state with a set of identical outgoing transitions one from each of the substates of

the composite.

Diagram:
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Figure 4.44: Move source down
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Name: Move source up

Type: Refactoring

Rationale: This transformation is one of a sequence of transformations to introduce

hierarchy which is common in the research literature for refactoring state machine designs.

The inverse of this transformation (Move source down) is presented above in this section.

Constraints: The pattern is applicable to a composite state where each of its substates

has an identical outgoing inter-level transition. The set of identical transitions, one for

each substate of the composite have the same events, guards, assignments and target

states where the target state is outside the composite state. The pattern checks that the

transitions have the same events and syntactically equivalent update expressions. The

pattern could be generalised to cover the situation where the events are the same but the

update expressions are not syntactically equivalent but may be semantically equivalent.

In this instance the side-condition verifies that the update expressions [x : P1] and [x : P2]

are semantically equivalent, the side-condition is ` P1 ⇔ P2.

Parameters: The parameter is a composite state with substates.

Transformation: The set of identical outgoing transitions one from each substate of the

composite are replaced by a single outgoing transition leaving the composite with the same

events, update expressions and target state.
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Diagram:
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Figure 4.45: Move source up

4.4 Conclusions

The simpler types of refinement and refactoring patterns that in their most specific form

are predominantly structural in nature and which do not refine data have been presented

in this chapter. The next chapter presents the more elaborate refinement and refactor-

ing patterns for transformations based on semantic side-conditions that require a model

checker (or theorem prover) to discharge them.
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Chapter 5

Further refinement and refactoring

patterns

5.1 Introduction

Chapter 4 presented the refinement and refactoring patterns that are predominantly struc-

tural in nature with no semantic side-conditions. This chapter presents the more general

refinement and refactoring patterns that focus on transformations with side-conditions

(e.g relating to conditions/actions on data) which in the implementation (discussed in

Chapter 6) will require a model-checker to discharge them.

5.1.1 Context

As described in Section 2.13.5, the refinement of Contractual State Machines with shared

variables may make behaviour more deterministic but must ensure that enabled actions

(ready sets) do not change for each data state. Refinement ensures the permissible enabled

actions (ready sets) are consistent as well as the behaviours each action in these ready sets

leads to. This requires specific and careful attention to how guards and variable values

change in a refinement step.

Contracts are usually highly non-deterministic, so the permissible ready-sets are im-

plicitly defined. However at the state machine level, within a shared variable environment,

for each data state the enabled actions are explicit and must be maintained subject to

the reduction of non-determinism. Changes to data updates must remain consistent (the

update still lies within that of the contract) as it is impossible to know what effect the

change may have on other processes in the environment by changing the variables in a
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new way.

A pattern expects an update expression to be in the form [x : P ]. The Contractual

State Machine language however supports other forms of update expressions in contracts

and transitions, therefore the contract update expressions are converted before pattern

application. The following describes how update expressions are converted from the con-

crete forms (e.g. [G ==> x := e]) to the [x : P ] form. The [x : P ] form is not considered

part of the syntax for CoSta State Machine designs, therefore there are corresponding

transformations (not included here) from the [x : P ] form to the concrete forms.

x and x′ generalise to vectors of variables and e to a vector of expressions:

1. No update expression specified (allows all variables to change arbitrarily) becomes

[x : true].

2. An update expression [x = e] becomes [x : x′ = e].

3. An update expression [skip] becomes [x : x′ = x].

4. An update expression [P ⇒ x = e] becomes [x : P ∧ x′ = e].

5. An update expression [P ⇒ skip] becomes [x : P ∧ x′ = x].

Similarly the transition update expressions are converted before pattern application as

follows, where x and x′ generalise to vectors of variables and e to a vector of expressions:

1. No update expression specified (no variables allowed to change) becomes [x : x′ = x].

2. An update expression [x = e] becomes [x : x′ = e].

3. An update expression [skip] becomes [x : x′ = x].

4. An update expression [P ] becomes [x : P ∧ x′ = x]. P does not contain any primed

variables.

5. An update expression [P ⇒ x = e] becomes [x : P ∧ x′ = e].

6. An update expression [P ⇒ skip] becomes [x : P ∧ x′ = x].

5.2 Further patterns

The following sections present the more general refinement and refactoring patterns that

focus on transformations with side-conditions. The patterns minimise proof burden as the
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side-condition is a simpler proof than a full refinement check on the source and target

models. The patterns are presented following the same template that was used in Chapter

4.

5.2.1 Contract to contract patterns

This section presents the contract to contract refinement and refactoring patterns where

both the source and target models of the transformation are contracts.

5.2.1.1 Patterns for removing parts of a CoSta contract

The pattern theme in this section is removing parts of a contract expression.

Name: Frame contraction

Type: Refactoring

Rationale: The purpose of the pattern is to enable the engineer to be more succinct about

permitted updates to variables within a contract. If a variable skips this can be explicitly

specified by removing the variable from the frame. This pattern could be accompanied by

an inverse transformation.

Constraints: This pattern is applicable to an update expression within a contract. The

frame for the update expression [x1, x2, ..xn : P ] can be contracted by removing xi, 1 ≤

i ≤ n. The side-condition checks that all the updates consistent with P do not change the

value of the variable to be excluded, ` P ⇒ x′i = xi.

Parameters: The parameters are an update expression from a contract and the variable

to be excluded from the frame.

Transformation: The variable to be excluded from the frame is removed from the update

expression.
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Diagram:

 

 
 

[a[x1, x2,..,xn:P]]L 

[a[x2,..,xn:P]]L 
 

“Contract frame” 
 If x1 skips, remove from frame 

 

Figure 5.1: Contract frame

5.2.1.2 Patterns for modifying a CoSta contract

The pattern theme in this section is modifying parts of a contract expression.

Name: TotEnable refine update

Type: Refinement

Rationale: The purpose of the pattern is to allow the update within a Totalised Enable

operator expression to be refined. The original update expression is [x : P ] and [x : P ′]

is the refinement. 〈[a[x : P ]]〉 expresses that a is enabled from everywhere within the

(implicit) guard of P, with an update consistent with P (the update still lies within that

of P). The guard can be weakened and the update can be strengthened within the guard

making it no less deterministic.

Constraints: This pattern is applicable to a Totalised Enable operator expression within

a contract. For the Totalised Enable operator the guard cannot be strengthened or the

update weakened as this would weaken the contract and not preserve contractual properties

for the Totalised Enable operator. Weakening the update may lead to undesired effects on

other processes in the shared variable environment.

The pattern permits the following refinements.

(i) The guard can be weakened, introducing new states which the event can be enabled

from. Thus enabling the actions in more situations than is required (but keeping the

behaviour within the old guard the same).

The side-condition is ((∃x′.P )⇒ (∃x′.P ′)) ∧ ((∃x′.P ) ∧ P ′ ⇔ P )

(ii) P can be strengthened keeping the guard the same, thus strengthening the update
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within the guard making it no less deterministic.

The side-condition is ` ((∃x′.P )⇔ (∃x′.P ′)) ∧ ((∃x′.P ) ∧ P ′ ⇒ P ).

The pattern captures both side-conditions within a single rule. The side-condition to be

verified is ` ((∃x′.P )⇒ (∃x′.P ′)) ∧ ((∃x′.P ) ∧ P ′ ⇒ P )

Parameters: The parameters are a Totalised Enable operator expression within a con-

tract and the new update expression that is a refinement of the original.

Transformation: The original update expression within the Totalised Enable operator

expression is replaced by its refinement.

Diagram:
 

 
 

<[a[x:P]]> 

<[a[x:P’]]> 
 

“TotalisedEnable refine update” 
 x:P replaced by its refinement x:P’ 

 

Figure 5.2: TotEnable refine update

Name: If refine update

Type: Refinement

Rationale: The purpose of the pattern is to refine the update within an If operator

expression. [a[x : P ]]L expresses that an a action with an update consistent with x : P

(i.e from the domain of P and with an effect on the variables permitted by P ) must behave

like L.

Constraints: This pattern is applicable to an If operator expression [a[x : P ]]L within a

contract. It is not permitted to strengthen P as this weakens the contract and does not

preserve contractual properties. P can be weakened to P ′. The side-condition is ` P ⇒ P ′

Parameters: The parameters are an If operator expression within a contract and the

new update expression that is a refinement of the original.

Transformation: The transformation replaces the original If operator update expression

[x : P ] with the new one [x : P ′].
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Diagram:

 

 
 

[a[x:P]]L 

[a[x:P’]]L 
 

“If refine update” 
 x:P replaced by its refinement x:P’ 

 

Figure 5.3: If refine update

5.2.2 Patterns for contracts to mixed designs

This section presents refinement and refactoring patterns for contracts to mixed designs

(where a mixed design incorporates state machines and contracts). A contract to a mixed

design pattern is one where the source model of the transformation is a contract and the

target model is a CoSta state machine with contracts.

5.2.2.1 Patterns for adding CoSta state machine constructs

The pattern theme in this section is adding CoSta design constructs.

Name: If

Type: Refinement

Rationale: This pattern enables the engineer to elaborate on the required operational

behaviour for an If operator contract. If contracts are expanded into designs with mixed

content. The If operator specifies constraints on the behaviour following a particular set of

events (for all events in the set). When accompanied by a variable update, the constraints

need only apply from a before state satisfying the guard of the assignment, and following

a consistent update. [a[x : P ]]L expresses that an a action with an update consistent with

x : P must behave like L.

Constraints: The pattern is applicable to a state whose inner contract is an If operator

expression. The pattern refines the contract [a[x : P ]]L to a state machine model consisting

of a start state with outgoing transitions (specified as parameters) that each target a new
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state with either the inner contract L (if the transition’s update lies within that of the

contract) or inner contract True otherwise. The action a in the contract [a[x : P ]]L can

be generalised to a set of actions, a negated set of actions or the underscore.

If no update is specified in the contract, transitions with any update from any source

data state have a consistent update and must behave like L if the event is in the eventlist.

If an update expression [x : P ] is specified in the contract, transitions with an update

[x : P ′] consistent with and from a source state satisfying [x : P ] (lying within that of the

contract) must also behave according to L if the event is in the eventlist.

If the contract specifies a list of events, transitions with some event from the set must

behave like L if the updates are consistent or True otherwise. If the contract specifies a

negated list of events, transitions with some event not in the set must behave like L if the

updates are consistent or True otherwise. If the contract specifies an underscore for the

event, transitions with any event must behave like L if the updates are consistent or True

otherwise.

The pattern permits a transition to be added with any action and update behaving

subsequently as L. This is because a transition which behaves consistently with the contract

[a[x : P ]]L has to behave like L but a transition that does not behave consistently with

the contract can behave in any way as the continuation behaviour is True which can be

refined to anything including L.

A transition can be added with a different action to those specified in the contract or

an update P ′ with a side-condition ` P ′ ⇒ ¬P , behaving subsequently as True. When

introducing transitions that do not behave like L, (with subsequent behaviour True) it is

necessary to ensure that assuming the event is the same their updates are not consistent

with the contract and there must be no overlap. A permitted refinement is to weaken the

update expression. If the update expression for the contract is [x : P ] and the update

expression for the transition is [x : P ′] the proof obligation ` P ⇒ P ′ must hold.

Parameters: The parameters are a state with a contract that is an If operator expression.

Additionally, this pattern requires the set of new transitions (possibly empty) that are to

be introduced by the user.

Transformation: The pattern refines the contract [a[x : P ]]L to a state machine model

consisting of a start state with outgoing transitions (supplied as parameters) that each

target a new state with an inner contract of either L (where L is the constraint associated

with the If operator) or True. When there are no transitions specified If is trivially refined
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to deadlock (a state with no outgoing transitions).

Diagram:

 

[a1,..,an[x:P]]L 

“If” 

 
User supplies transition set  {b1[x:P’1],..,bm[x:P’m]}, 

If  bi[x:P’i] satisfies the contract [a1,..,an[x:P]]L 

then Ci is L else Ci is True 

 

[a1,..,an[x:P]]L 

 

b1[x:P’1] 

 

 

bi[x:P’i] 

 

bm[x:P’m] 

 C1 Ci 

 

Cm 

 

Figure 5.4: If

Name: TotEnable

Type: Refinement

Rationale: This pattern enables the engineer to elaborate on the required operational

behaviour for a TotEnable operator contract. TotEnable contracts are expanded into

designs with mixed content. The TotEnable operator specifies that one or more events in

a set must be available. When accompanied by a variable update the event is enabled from

142



5.2 Further patterns

every before-state within the guard of the assignment and must be capable of a consistent

update. For 〈[a[x : P ]]〉, a is enabled over the entire guard of P , but only for some change

in variables allowed by P .

Constraints: The pattern is applicable to a state whose inner contract is a TotEnable

operator expression. The set of new transitions (outgoing transitions from the start state)

are provided as parameters to the pattern. If the contract specifies a list of events, tran-

sitions with some event from the set are possible. If the contract specifies a negated list

of events, transitions with some event not in the set are possible. If the contract has an

underscore for the event list, transitions with any event are possible.

The set of events and update expressions for the new transitions and the set of enabled

events and update expressions in the contract must not be disjoint. The side-condition

checks that there is at least one instance where the transition parameters satisfy the

TotEnable contract. Permitted refinements to the update expression are to weaken the

guard or strengthen the update within the guard. To determine whether there is at

least one instance where the transition parameters satisfy the TotEnable contract, all

transitions for the same event are considered together and treated as a single transition

with an update expression that is the disjunction of their separate update expressions.

This makes it possible to split a transition on its guard or update with this pattern.

If no update expression is specified in the contract, new transitions with some update

from some source data state satisfy the contract. If an update expression [x : P ] is specified

in the contract, transitions with an update [x : P ′] consistent with and from a source state

satisfying [x : P ] satisfy the contract. To ensure that the update expressions are consistent

the following side-condition is required ` ((∃x′.P )⇒ (∃x′.P ′)) ∧ ((∃x′.P ) ∧ P ′ ⇒ P ).

Parameters: The parameters are a state with a contract that is a TotEnable operator

expression. Additionally, this pattern requires the set of new transitions.

Transformation: The pattern refines the TotEnable contract to a state machine model

consisting of a start state with outgoing transitions (supplied as parameters) that each

target a new state with the inner contract True.
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Diagram:

 

<[a1,..,an[x:P]]> 

 “TotalisedEnable” 

 

<[a1,..,an[x:P]]> 

 

b1[x:P’1] bi[x:P’i] 

 

bm[x:P’m] 

 True True True 

User supplies transition set  {b1[x:P’1],..,bm[x:P’m], m>0}, 

 At least one transition must satisfy the contract <[a1,..,an[x:P]]> 

Figure 5.5: Totalised Enable

5.2.3 Patterns for mixed designs

This section presents refinement and refactoring patterns where both the source and tar-

get models are mixed designs, where a mixed design incorporates state machines with

contracts.

5.2.3.1 Patterns for removing CoSta state machine constructs

The pattern theme in this section is removing CoSta design constructs.

Name: Frame contraction
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Type: Refactoring

Rationale: The purpose of the pattern is to enable the engineer to be more succinct about

permitted updates to variables for a transition. If a variable skips this can be explicitly

specified by excluding the variable from the frame. This pattern could be accompanied

by an inverse transformation.

Constraints: This pattern is applicable to a transition and supports frame contraction

within the update expression. The frame can be contracted for the update expression

[x1, x2, ..xn : P ], by removing xi, 1 ≤ i ≤ n and the side-condition checks that all the

updates consistent with P do not change the value of the variable to be excluded.

` P ⇒ x′i = xi.

Parameters: The parameters are a transition and the variable to be excluded from the

frame.

Transformation: The variable to be excluded from the frame is removed from the tran-

sition’s update expression.

Diagram:

 

“Contract frame” 

If x1 skips, remove from frame 

 

 

L 

 

M 

 

L 

 

M 

 

a[x1, x2,..,xn:P] 

 

a[x2,..,xn:P] 

 

Figure 5.6: Contract frame

Name: Remove transition with a False guard

Type: Refactoring

Rationale: The purpose of the pattern is to remove a transition that can never trigger

and simplify the design. This pattern could be accompanied by an inverse transformation
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but it would not be a useful refactoring step when designing Contractual State Machines.

Constraints: This pattern is applicable to a transition a[x : P ] where the guard of the

transition is semantically equivalent to False. The side-condition verifies ` ¬P .

Parameters: The parameter is a transition.

Transformation: The pattern removes the transition.

Diagram:

 

“Remove transition with False guard” 

Guard of transition a[x:P1] is equivalent to False 

 

 L 

 

M 

 

b[x:P2] 

 

L 

 

a[x:P1] 

 

M 

 

b[x:P2] 

 

Figure 5.7: Remove transition with a False guard

5.2.3.2 Patterns for modifying a CoSta state machine design

The pattern theme in this section is modifying CoSta design constructs.

Name: Transition refine update

Type: Refinement

Rationale: The purpose of the pattern is to specify behaviour for a transition more

precisely.

Constraints: This pattern is applicable to a transition a[x : P ] and supports refinement

of the update expression. The update expression can be refined to a stronger expression

but the guard must remain the same. P can be strengthened within the guard to P ′.

The side-condition is ` ((∃x′.P )⇔ (∃x′.P ′)) ∧ ((∃x′.P ) ∧ P ′ ⇒ P ).

Parameters: The parameters are a transition and a new update expression for the tran-

sition that is a refinement of the original.

Transformation: The pattern replaces the original update expression with the new one.
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Diagram:

 

“Transition refine update” 

x:P replaced by its refinement x:P’ 

 
L 

 

M 

 

L 

 

M 

 

a[x:P] 

 

a[x:P’] 

 

Figure 5.8: Transition refine update

Name: Strengthen guard

Type: Refinement

Rationale: The pattern strengthens the guard of a transition. Strengthening or weaken-

ing the guard of a transition may change the enabled actions. It is a permitted refinement

however to strengthen a guard (to remove/reduce nondeterminism) within an overlap be-

tween guards for transitions from the same source state with the same actions.

Constraints: This pattern is applicable to two transitions a[x : P1] and a[x : P2] with the

same events from the same source state that can have different target states and updates.

The guards of the transitions must not be disjoint. The pattern permits the strengthening

of the guard of P1 to P ′1 within the overlap of the guards of P1 and P2. The side-condition

is ` (P ′1 ⇒ P1) ∧ (((∃x′.P1) ∧ ¬(∃x′.P2))⇔ ((∃x′.P ′1) ∧ ¬(∃x′.P2))).

Parameters: The parameters are two transitions a[x : P1] and a[x : P2] and a new update

expression [x : P ′1] for transition a[x : P1].

Transformation: The pattern replaces the original update expression [x : P1] with the

new update expression [x : P ′1].
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Diagram:

 

“Strengthen guard” 

Guard of x:P1  strengthened to x:P’1  within the overlap of the guards of x:P1  and x:P2 

L 

 

a[x:P1] 

 

M 

 

a[x:P2] 

 

N 

 

L 

 

a[x:P’1] 

 

M 

 

a[x:P2] 

 

N 

 

Figure 5.9: Strengthen guard

5.2.3.3 Patterns for adding CoSta state machine constructs

The pattern theme in this section is adding CoSta design constructs.

Name: Split transition

Type: Refactoring

Rationale: This pattern splits a transition on its update expression into two transitions.

Splitting a transition along its guard or update enables different parts of the original

update expression (and the continuation behaviour for each of the new transitions if the

state is split as well) to be refined in different ways. The inverse of this pattern (Combine

transitions) is presented in Chapter 4, section 4.3.3.1.

Constraints: This pattern is applicable to a transition a[x : P ]. The transition is split

into two transitions a[x : P ′] and a[x : P ′′].

The side-condition verifies ` P ⇔ (P ′ ∨ P ′′)

Parameters: The parameters are the transition to be split on its update expression

a[x : P ] and the two new update expressions that split the original [x : P ′], [x : P ′′].

Transformation: The pattern replaces the original transition a[x : P ] by two new tran-

sitions a[x : P ′] and a[x : P ′′] between the same source and target states.
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Diagram:

 

“Split transitions” 

P’ ⋁ P’’ is equivalent to P 

 

L 

 

a[x:P’] 

 

M 

 

a[x:P’’] 

 

L 

 

M 

 

a[x:P] 

 

Figure 5.10: Split transition

5.3 General patterns

This section discusses the most general patterns in the catalogue.

Name: Refinement check

Type: Refinement

Rationale: If a required refinement is very specific to the application under consideration

it may not be predefined. A general refinement pattern permits refinements to be proposed

and checked by the engineer. The engineer manually constructs a refinement of a given

system, without applying patterns and applies the Refinement check pattern to prove that

the proposed refinement is correct. The engineer proposes a refinement for a component

of the overall model. The proof burden is lessened considerably by the compositionality

of the underlying theory.

Constraints: The pattern is applicable to models expressed as contracts, state machine

diagrams or mixed designs. The source model is a selected component of the current

design. The target model is a parameter and the potential component to replace the

source component, if the refinement is valid. The side-condition verifies a refinement

relation holds between the source and target models.

Parameters: The parameters are the source and target models.

Transformation: The target model replaces the source model.
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The general equivalence pattern is an extension of this pattern where the side-condition

checks the refinement holds in both directions. This could be implemented as a compound

pattern that applies the Refinement check pattern twice, the second time swapping the

source and target models around. Compound patterns are a research area to be considered

for further work and will be discussed later in the last chapter of the thesis.

The general patterns could be applied, for example, to check if removing a transition

results in a refinement or an equivalence of the original model. Refinement is the same

as equivalence for deterministic models as it is not possible to refine deterministic models

any further. If a deterministic model has a transition removed but the new model is equiv-

alent or a refinement of the former model there are two possibilities, either the removed

transition is infeasible, its guard (possibly implicit) is equivalent to False (i.e. it can never

be triggered) or the removed transition is partially feasible (its guard is not False) but the

source state is unreachable. For a nondeterministic model, equivalence, when a transition

is removed, can mean either the branch was redundant and the behaviour was included

elsewhere or the branch was unreachable. If the new model is a refinement and not an

equivalence, the transition is not unreachable but instead a nondeterministic branch (the

actions and guard are included on another branch) has been removed.

5.4 Omitted patterns

This section discusses why certain patterns do not feature in the catalogue. Some patterns

common in the literature are not included in the catalogue as although they may not

violate Shared Variable Ready Simulation (SVRS) directly, they are not useful during the

design process or they may encourage bad designs. For example, although Introducing

a new state (a common refinement in the literature) does not violate SVRS, patterns

for Contractual State Machines permit states to be introduced only when contracts are

refined to mixed designs (e.g the TotalisedEnable and If patterns). It is not useful to

introduce states on other occasions as further transitions cannot be added and the states

will remain disconnected. Similarly, refactorings to Introduce a transition with a false

guard or Remove/add an outgoing transition from an unreachable state are described in

the literature but are not useful for refining Contractual State Machines.

Additionally there were other refinements and refactorings common in the literature

that are not applicable to Contractual State Machines as they are based upon syntactic

features of statecharts that Contractual State Machines do not support. For example the
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refinement to Strengthen/weaken an event constraint where the syntax allows multiple

events joined with conjunction and disjunction operators; or the refactoring to Move an

action from a transition to a state entry or exit action where the syntax allows states to

have actions associated with them.

Some refinements/refactorings common in the research literature for state machines

have not been included as they would violate SVRS refinement rules. For example, com-

mon refinement steps in the literature are to Remove a transition, Create a transition or

Weaken the guard of a transition. Under SVRS these transformations to a state machine

model are not permitted as they change the enabled actions in a way that may no longer

satisfy the contract.

Some refinements/refactorings common in the literature are permitted for Contractual

State Machines but with different side-conditions to prevent violation of SVRS refinement

rules. For example a common refinement in the literature is to Modify a transition. Under

SVRS, transitions can be modified but in a restricted way. For example, Strengthening a

guard under SVRS is only permitted when there is an overlap with the guards of other

transitions between the same source and target states and Strengthening the update expres-

sion is only permitted within the guard of the transition. Removing a state is a common

refinement in the literature, this is not always a permitted refinement under SVRS. If the

state has incoming transitions this transformation may change the enabled actions which

no longer guarantees that the design satisfies the contract. A state is only permitted to

be removed if it is unreachable or redundant.

A pattern for Contractual State Machines that removes transitions to a state with a

False contract on initial consideration appears to be something the designer should be

permitted to do. However this is not the case, for example if a contract 〈[a]〉 is refined to

a design with a start state having an a transition to a target state with the contract True,

and the contract True is then strengthened to False. It is not a permitted refinement to

remove the a transition whose target state now has a contract False, as the original con-

tract 〈[a]〉 is no longer satisfied. As explained in Chapter 4, it is intended that the CoSta

refinement pattern to Strengthen a contract will prevent contracts being strengthened to

False by a side-condition that checks for feasibility of the new contract.
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5.5 Summary

A catalogue of refinement and refactoring patterns for Contractual State Machines has

been presented in this and the previous chapter. The approach to pattern discovery has

been systematic which gives us some confidence in their completeness. Although formal

proof is not possible yet as the theoretical research is too immature and a case by case

analysis of the patterns cannot be conducted until the model checker (HST) supports a

refinement check, the case study, presented in Chapter 7, offers some defense towards the

argument that the patterns are valid.
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Chapter 6

Tool support and implementation

This chapter is a precursor to evaluation discussed in the next chapter. It will address the

implementation of a design tool to support Contractual State Machines (CoSta) and the

application of refinement and refactoring patterns. In this chapter we describe summarised

examples of the software developed for this thesis. The appendix contains more detailed

examples of the code for the design tool and patterns for CoSta.1 The design tool for

CoSta supports formal verification techniques for refinement/refactoring of designs based

on the application of patterns from an integrated library of refinement and refactoring

patterns. The prototype graphical editor for CoSta has been implemented using the Eclipse

Modelling Framework (EMF) [77] and Graphical Modelling Framework (GMF) [75]. The

CoSta contract language and the expressions on transition labels were encoded using the

EMFText tool [185]. The refinement and refactoring patterns were implemented as a set

of wizards, using the Epsilon Wizard Language (EWL) [140], for update-in-place model

transformation. The toolset has been integrated with a model checker (HST) to allow

a richer set of (semantic) side-conditions for patterns to be checked. After the user has

selected the part of the model they wish to refine and the pattern to be applied, some

patterns require further input from the user. For example, the If or Enable patterns that

refine a state with an unelaborated inner contract (selected by the user) to a state machine

model, additionally require the user to input details for the new transitions to be added.

The pattern may call HST to verify a conjecture, 2 for example, to ensure that there is no

overlap between the update expression in the contract and the update expression for the

1The software for this thesis can be found at https://svn.cs.york.ac.uk/extsvn/sosym/

costa-wizards, access credentials may be obtained from the author or supervisor.
2The refinement check for Contractual State Machines is not yet implemented in HST.
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new transition.

6.1 Introduction

A tool suite has been developed that integrates a modelling tool for CoSta with a pattern

application tool so that patterns can be applied during the design process. The decision

was made not to tightly integrate the new design tool with an existing tool suite such

as Mathworks’ MATLAB [248]; this approach was taken for example in the PFS/SSA

project [250]. We now justify our decision.

An important aim of the research is to achieve a model-driven approach to the engi-

neering process based on the application of refinement and refactoring patterns for CoSta.

With this aim in mind, Eclipse [78] was chosen for development over a customisation

approach as it is ideally suited for developing graphical editors with support for model

transformation, in contrast to the MATLAB environment, for example.

Customising an existing tool set would have required considerably more resources in

terms of time and effort because anecdotal evidence from the PFS/SSA project [249]

suggests that modifying the MATLAB/Stateflow user interface is really challenging. Cus-

tomising an existing tool also would not have provided benefits such as being able to

directly use the existing editing and animation/simulation tools as they are not suitable.

One reason for this is because the semantics of CoSta (based on STGA) is different, be-

ing a simplified form of statecharts modified to make them amenable to formal analysis,

e.g. permitting nondeterminism and with a restricted form of parallelism. Additionally,

contracts are the focus of the approach, and existing tools such as Statemate [120] for

example, would have required a great deal of work to accommodate them.

Developing a new system avoids any tie-in to proprietary software and possible prob-

lems with maintenance and obsolescence in the future. Therefore there were not many

benefits to customising existing tools, but there were potentially a lot of pitfalls. It was

felt that a greenfield approach would avoid any negative constraints imposed by prior work

and permit experimentation with different possibilities with regards to the semantics of

the language and the architectural and design decisions for the software. Direct reuse

was rejected as it compromised control of the software architecture and semantics of the

language.

Patterns are required to refine an abstract contract into a concrete design. They rely

on other model management tasks, primarily model transformation. There are a variety
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of approaches to model transformation, (i.e direct manipulation, structure-driven, oper-

ational, template-based, relational, graph transformation-based, hybrid) and important

differences in their features were compared in [69]. Interactive, in-place, horizontal and

vertical endogenous model transformation will support refinement and refactoring pat-

terns.

Methods for applying patterns and implementing the pattern application tool were

compared. Pattern application could be implemented with model transformation tools

or graph transformation tools [36, 38, 140]. Refinement and refactoring patterns for stat-

echarts could be formalised as graph transformations [39, 132, 167, 168, 246, 252], e.g., as

supported by approaches like VIATRA2 [79] and AGG [245]. An advantage of using graph

transformation techniques is that they provide a formal basis for model transformation

supporting analysis of conflicts and dependencies [106, 213]. Graph transformations are

particularly suitable for precisely describing and implementing refactoring transformations

on arbitrary graphs. Model transformation tools may be considered more mature and flex-

ible, with the ability to implement some types of pattern that graph transformation tools

are not particularly suited to.

The structural transformations for the refinement and refactoring patterns tend to

be fairly simple. The patterns already have an underlying formal semantics therefore

it makes little sense to recast this as an alternative formalism, (i.e. graphs) in order

to express some of the more complex structural rewrites in an arguably nicer way. In

addition it is not possible to express or map some transformations into graphs. The pattern

transformations heavily involve text with decision procedures based on LTS/STGA and

bit-vector arithmetic (SMT) and transformations from temporal logic to state machines.

Therefore a very flexible approach to the implementation of the patterns is needed to

satisfy all of these requirements.

Graph transformation supports powerful pattern matching, by matching wildcards to

subgraphs, complex transformations can be expressed very succinctly. As the CoSta lan-

guage supports a compositional refinement theory SVRS, the pattern matching for the

model transformations does not need to be so elaborate, it can match element for element

and the context does not affect the validity of the transformation. Thus the refinement

and refactoring patterns do not require complex transformations mapping across global

structures and this in turn reduces the need for the use of graph transformation to help to

control such complexity. For all of the aforementioned reasons model transformation tools
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instead of graph transformation tools are used to implement refinement and refactoring

patterns.

The choice of software for implementing the design tool for CoSta was between Eclipse

GMF/EMF [75,77] and the Generic Modelling Environment (GME) [90]. Eclipse is suited

to developing “industrial strength” editors. It is multi-platform, open source and Java-

based. It is the most popular framework of its kind with a large number of plug-ins

available and seamless integration with other modelling and programming tools. GME

on the other hand is not in such widespread use and not as well supported. A drawback

to GME is that metamodels can be low-cohesive (difficult to maintain, test, reuse and

understand) [13]. There are alternative technologies based on different standards with

similar approaches, (e.g. Microsoft Domain Specific Languages framework [174], Meta-

case MetaEdit+ [170], Xactium XMF-Mosaic [263]) but they tend not to be as powerful

or flexible as the Eclipse platform. Those that are as powerful are proprietary, leading to

the same concerns expressed above for MathWorks MATLAB/Stateflow/Simulink.

It was noted above that update-in-place can support refinement and refactoring pat-

terns. Many languages of different styles have been proposed for mapping transformations.

Some mapping transformation languages have been shown to be of use for update transfor-

mations in the large. By contrast update-in-place transformations are largely unsupported

by model transformation frameworks. Existing languages for mapping transformations

such as QVT [189] and ATL [128, 129] cannot be used in their current form for this pur-

pose as they are intended to operate in a batch style where everything is defined before the

transformation begins with no user interaction during the model transformation process.

This is not sympathetic to the task of model refinement and refactoring which is inherently

user-driven with overriding requirements for fine-grained user control.

The Eclipse-based, Epsilon Wizard Language (EWL) [140] is however suitable for user-

driven, in-place model transformation. Update-in-place model transformations automat-

ically create, update or delete model elements based on a selection of existing elements

in the model and possibly user input in a user-driven fashion. A number of different

model management tasks were required by the toolset such as model-to-text transforma-

tion and update-in-place model transformation. There would have been challenging issues

with reuse, interoperability, integration and consistency to resolve if separate task specific

model management languages were used as they are generally inconsistent with each other.

Epsilon supports a wider range of model management tasks than comparable platforms
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and provides better integration due to the common infrastructure on which the languages

have been built.

In summary, Eclipse and Epsilon provide software tailored specifically to the tasks of

developing modelling and model management tools (most importantly in-place transfor-

mations) and they offer maximum flexibility by being open source and based on the MDA

standard. After careful consideration it was concluded that Eclipse meta-tools would be

the most suitable choice for prototyping the software. In particular EMF/GMF for the

graphical editor and Epsilon EWL for the refinement and refactoring patterns.

6.2 Prototyping the modelling tool

This section discusses how the software for the tool support was prototyped. A general

iterative, incremental lifecycle was adopted. The design process began with an initial

analysis phase followed by several design, implementation and testing iterations. Follow-

ing the analysis phase a conceptual architecture was proposed. This was refined into a

technical design and then implemented. Throughout the design and implementation iter-

ations, testing has been conducted to assess the correctness, quality and utility of the new

features. Errors and omissions identified during testing iterations were fed back to further

design and implementation cycles.

 

Design tool for Contractual State Machines 

EMFText Graphical  Modelling 

Framework (GMF) 

Epsilon Wizard 

Language 

Eclipse Modelling 

Framework (EMF) 

Epsilon 

Eclipse Platform 

Model Checker (HST)  

Figure 6.1: Conceptual architecture of tool environment
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Figure 6.1 shows the conceptual architecture of the tool environment. The editor for

CoSta and the pattern application software are loosely coupled. Patterns (EWL wizards)

interface with the model checker (HST) to check side-conditions.

Although a set of refinement and refactoring patterns have been established and im-

plemented for single refinement and refactoring steps it is anticipated that the discovery

of new compound/derived refinement and refactoring patterns will be ongoing. With this

in mind it was considered that the most important quality attributes for the prototype

software were, modifiability, extensibility, usability and performance.

6.2.1 CoSta design tool

This section discusses the design and implementation of the CoSta design tool. The

metamodel/abstract syntax for the CoSta graphical state machine modelling language

(see Section 2.13.2, figure 2.3) is expressed in Ecore for EMF. Emfatic is a language

designed to represent EMF Ecore models in a textual form and was used to describe the

metamodels for this toolset [11]. Emfatic provides tools to convert between the Emfatic

source and the corresponding Ecore model. It was chosen in preference to the graphical

Ecore editor provided by EMF as it represents models in a human-readable syntax rather

than metamodelling based on EMF’s tree views.

The Emfatic metamodel for the CoSta graphical state machine modelling language

was defined and extended with EuGENia annotations [83], (see Appendix A.1). EuGENia

was used as a front-end to GMF because it automatically generates all of the files needed

to implement a GMF editor, (.gmfgraph, .gmftool and .gmfmap) from a single annotated

Ecore file. The annotations relate to the graphical appearance of domain model elements,

their concrete syntax, such as shapes and lines and their properties and define the com-

mands for the editor toolbar. An advantage of using EuGENia is that it reduces all of the

steps in a typical GMF workflow to a single step and thus saves times and effort.

The syntactic model (figure 2.3) presented in Chapter 2 describes the graphical state

machine modelling language. It does not elaborate on the abstract syntax for the text-

based CoSta contract language or the text-based language for transition labels. It sum-

marises contracts as being of type ContractFormula and transition labels of type Event-

GuardActions. A full listing of the concrete syntax (described in an EBNF-based language)

and abstract syntax (described in Emfatic) for the CoSta contract language is given in

Appendix A.2 and for the transition label language in Appendix A.3.
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EMFText [185] was used to develop the editors and parsers for the CoSta contract

language and the language for transition labels. The editors and parsers for these text-

based languages were integrated within the graphical modelling tool for Contractual State

Machines to parse a state’s inner and outer contract and transition labels. For the Eclipse

platform there are two open source tools, Xtext [80] and EMFText for developing textual

domain specific languages. Both tools support the definition of a textual language and

produce an eclipse-based editor for the language that provides features such as syntax

highlighting, parsing with errors/warnings, auto-completion and outlining. They both use

EMF for their abstract syntax and rely on ANTLR for parsing the concrete syntax [12].

Both tools can be integrated with any of the transformation frameworks available

in Eclipse but Xtext provides automatic configuration for the Xpand/Xtend framework.

A drawback to this is that although other transformation frameworks can be used with

Xtext, (which is the requirement for this development as the transformation framework is

Epsilon), extra effort is required to deconfigure and reconfigure the project. By contrast

EMFText does not include a transformation framework by default, but offers the choice of

whichever toolset is preferable. This flexibility made it the best option for implementing

the parsers as it was not necessary to “deconfigure” the project initially.

A language specification for EMFText consists of an Ecore language metamodel and a

concrete syntax specification. The Emfatic description required by EMFText of the Ecore

metamodel for the abstract syntax of the CoSta contract language (see Section 2.13.1) is

given in Appendix A.2. Additionally EMFText requires a concrete syntax for each abstract

syntax describing the textual representation of all metamodel concepts. EMFText provides

the cs-language for concrete syntax specification, with syntax specification rules derived

from the EBNF language. The concrete syntax definition required by EMFtext for the

CoSta contract language is given in Appendix A.2.

Appendix A.3 contains listings of the abstract and concrete syntax descriptions re-

quired by EMFtext for transition labels (see Section 2.13.3). EMFtext was used to gener-

ate a textual editor, parser and printer for each language from their abstract and concrete

syntax definitions. The parser parses language expressions to EMF models and the printer

prints EMF models to language expressions. EMFtext generates independent code in the

form of plugins.

Customisations of the code generated by EuGENia, EMF and GMF were required for

non-standard functionality. Parts of the editor were non-standard, for example, default
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transitions are implemented as a node with an image instead of the standard GMF shapes

(rectangle, ellipse etc.). This customisation required the creation of a plugin for the custom

figure, which was then associated with the node for the default transition.

Customisations were also required to integrate the EMFtext parsers for the inner and

outer contracts and transition labels within the CoSta editor. It was necessary to adapt

the Emfatic metamodel for the CoSta language to import the Ecore specifications for the

language metamodels (representing the abstract syntax) for contracts and transition labels,

and include new derived fields for the parsed inner and outer contracts and transition

labels. Additionally new Java code was added to instantiate the derived fields by invoking

the EMFtext parsers to parse the strings (for the inner and outer contracts and transition

labels) and return the Ecore models for the parse trees and assign them to the derived

fields. These derived fields were then accessible from the EWL wizards.
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Figure 6.2 demonstrates the parser for the contract language parsing an expression (top

pane) to the parse tree represented as an EMF model (bottom pane).

Figure 6.2: Parsed contract
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Figure 6.3 demonstrates the parser for the transition syntax parsing an expression (top

pane) to the parse tree represented as an EMF model (bottom pane).

Figure 6.3: Parsed transition expression
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Figure 6.4 and figure 6.5 illustrate use of the prototype editor for designing CoSta models.

The modelling tool is for the design process once the top-level open contracts have been

defined and does not deal with specification of the closed contract. Using the design

tool the modelling process begins with the creation of a single state whose inner contract

is defined as the initial/top-level open contract for the system. Patterns are repeatedly

applied by the user until the required final design is achieved. To apply a pattern within

the design tool, the user selects the part of the model to be refined and the tool displays

a list of the available/applicable patterns from which the user selects. The tool performs

the model transformation for the selected pattern and the user can then continue to apply

further patterns to the refined model until the design is complete.

Figure 6.4 shows an example CoSta model and figure 6.5 shows the EMF model rep-

resenting the parse tree for the example CoSta design.

Figure 6.4: Example CoSta model
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Figure 6.5: EMF model for example CoSta design

6.2.2 Patterns

This section describes the implementation of the pattern application tool to enable pat-

terns to be applied during the design process. A catalogue of patterns were implemented

as a set of EWL wizards. The wizards and the EWL interpreter are loosely coupled with

the GMF editor for CoSta. The EWL interpreter controls the user-driven selection and

application of patterns. Pattern application instantiates a pattern by matching wildcards

in the pattern to syntactic and diagrammatic structures in the design.

An example pattern implemented as an EWL wizard is discussed, further EWL wizards

can be found in Appendix A.4. Customisations were required to integrate the EMFtext

parsers and printers with the EWL wizards. The EMFtext parsers for the contract and

transition languages are invoked when the derived fields for a CoSta model (parsedin-

nercontract, parsedoutercontract, parsedtransition) are accessed within a wizard. They

generate EMF models for the parse trees for the contract and transition expressions. In

an EWL wizard the EMF model for a parsed expressions can be accessed by declaring

a variable and assigning the derived field to it. The example wizard, which is presented

later on in this section, demonstrates how an inner contract is parsed and its parse tree

accessed.
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To implement non-standard functionality, Epsilon supports the Tool concept. A tool

is a normal Java class which can be instantiated and accessed from the context of an

EWL program. An Epsilon Tool was created to invoke the EMFtext generated printers

for the CoSta contract language and transition expressions which are used to derive the

corresponding textual expressions from the EMF models representing their parse trees

from within a wizard.

A plugin was created with two classes, one for contracts and one for transition expres-

sions. Each class takes the Ecore model for the parsed expression, invokes the relevant

EMFtext printer and returns the corresponding textual expression. The plugin was de-

clared as an Epsilon tool to enable any routine within the class to be invoked within an

EWL wizard. The example wizard (presented later on in this section), demonstrates how

the classes from the Epsilon tool, printlanguageTool, are called from within a wizard to

generate the textual representation of a parsed inner contract. Customisations were also

required to enable the wizards to interface with the model checker (HST) and this will be

discussed in the next subsection.

Several patterns were presented in Chapters 4 and 5 which had complex side-conditions

such as checks for feasibility, refinement and behavioural intersection. However, the

functionality required to implement these patterns fully was not available via the model

checker. The model checker (HST) supports evaluation of quantifier-free conjectures on

data. For more complex side-conditions inspection is used as a temporary alternative,

where the user is prompted to confirm side-conditions hold. The use of these patterns is

not advisable without the checks being conducted by the model checker (HST).

A description of the implementation of a pattern as an EWL wizard follows. A more

detailed, precise description of the refinement/refactoring patterns as opposed to how they

have been implemented is given in Chapters 4 and 5. The If pattern refines a contract

to a CoSta model. The wizard is applicable if the user selected component is a state.

The side-condition checks that the state’s inner contract is an If operator expression,

(i.e. of the form “If eventFormula φ” or “If eventFormula [updateExpression] φ”). The

If operator specifies constraints on the behaviour following a particular set of events

(whatever the values of the variables, and for all events in the set). When accompanied

by a variable update, the constraints need only apply from a before state satisfying the

guard (or feasibility) of the assignment, and following a consistent update. [a[x : P ]]φ

expresses that an a action with an update consistent with x : P , (i.e. from the domain of
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P) must behave like φ. The action a in the contract [a[x : P ]]φ can be generalised to a

set of actions, a negated set of actions or the underscore. If no update is specified in the

contract, transitions with any update from any source data state have a consistent update

and must behave like φ if the transition event is in the contract eventlist. If an update

expression [x : P ] is specified in the contract, transitions with an update [x : P ′] consistent

with and from a source state satisfying [x : P ] (i.e. lies within that of the contract) must

also behave according to φ if the transition’s event is in the contract’s eventlist.

If the contract specifies a list of events, transitions with some event from the set must

behave like φ if the updates are consistent or True otherwise. If the contract specifies a

negated list of events, transitions with some event not in the set must behave like φ if the

updates are consistent or True otherwise. If the contract specifies an underscore for the

event, transitions with any event must behave like φ if the updates are consistent or True

otherwise.

A transition can be added with any action and update behaving subsequently as φ. A

transition can be added with a different action or an update Q where Q⇒ ¬P , behaving

subsequently as True. It is possible to refine a[x : P ] to any event and update to a state

that behaves like φ. A transition which behaves consistently with a[x : P ] has to behave

like φ but a transition that does not behave consistently with a[x : P ] can behave in any

way as the continuation behaviour is True which can then be refined to anything including

φ. When introducing transitions that do not behave like φ, (with subsequent behaviour

True) it is necessary to ensure that assuming the event is the same their updates are not

consistent with [x : P ] and there must be no overlap.

The state’s inner contract is parsed to an EMF model by the EMFtext parser for the

contract language. Similarly the transition expressions that are input by the user are

parsed to EMF models by the EMFtext parser for the transition language. The parse

trees permit easier manipulation and comparison of the contract and transition labels.

To check if transition parameters input by the user are consistent with the contract, the

model checker (HST) may be invoked to decide conjectures for side-conditions. These are

described below.

The wizard refines the contract If to a state machine model. The wizard prompts the

user for the new transitions. The wizard introduces a set of substates for the selected

component consisting of a start state with outgoing transitions which are input by the

user. The transitions each target a new state whose inner contract is either set to φ or
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otherwise True. A transition targets a new state with an inner contract φ if it has an event

which is one of the events specified in the contract as well as an update consistent with

the update expression in the contract. A permitted refinement is to weaken the update

expression.

The wizard prompts the user, firstly, for the transitions with subsequent behaviour

True. For each of them the side-condition checks that either the event is not in the contract

eventlist (or it is in the the negated contract eventlist) or the update expression for the

transition input by the user is not consistent with the contract update expression, (the

update expressions are disjoint and there is no overlap). The model checker (HST) may

be called to verify this. Then the user is prompted for the transitions with subsequent

behaviour φ. It is not necessary to perform any checks for these transitions as if the

conditions for the subsequent behaviour φ do not hold, then the subsequent behaviour is

True and φ is a refinement of True.

A pattern is instantiated by user-guided matching against the abstract syntax of the

model. The pattern application process involves the following steps: The EWL interpreter

offers a list of possible patterns where the pattern constraints are satisfied, (the selected

model component is well-formed and an instance of the abstract template of the pattern).

The user selects the required pattern and supplies parameters. EWL then performs the

transformation. The body of the wizard is executed and the highlighted component is

replaced with an instance of the concrete template.
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Figures 6.6, 6.7, 6.8 illustrate the steps in this process.

Figure 6.6: Selected state with If contract
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Figure 6.7: Selected wizard - Refine contract If to a CoSta state machine
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Figure 6.8: The If contract refined to a CoSta State Machine

Excerpts of the EWL code for the If wizard follow. The wizard refines the If operator

to a state machine. The code excerpt declares variables which include a reference to the

Epsilon tool, printlanguageTool, with routines that invoke an EMFtext printer to derive

the corresponding textual expression from an EMF model representing the parse tree.

This part of the wizard also prompts the user to confirm that they wish to refine the inner

If contract of the selected state to a CoSta state machine.

1 wizard wizIf {

2 guard : self.isKindOf(State)

3 and (self.parsedinnercontract.isTypeOf(If))

4 title : "Refine contract If to a CoSta State Machine"

5 do {

6 --declare a reference to the Epsilon tool printlanguageTool

7 var printlanguageTool : new Native("printlanguage.printlanguageTool");

8 ...

9 ...

10 --Variables for contract expressions parsed to EMF models

11 var pc1:Formula;

12 var pc2:Formula;

13 --Variable for transition expression parsed to an EMF model

14 var te:TransitionExpression;
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15 ....

16 ....

17 if (UserInput.confirm(’Refine contract If to a CoSta State Machine’ + ’ ?’, true))

18 {

Listing 6.1: Declare variables

The next code excerpt from the If wizard invokes the EMFtext parser to parse the

inner contract for the selected state. The code inspects the EMF model (parse tree for the

contract expression) to determine if there is an eventlist and its type. The code extracts

the set of events and prompts the user to enter the new transitions with subsequent be-

haviour True. For each of the transitions it is checked that either the event is not in the

contract eventlist or it is in the negated contract eventlist or the update expression for

the transition (updateExpr2) is not consistent with the contract update expression (up-

dateExpr1). The model checker (HST) is invoked to determine if the update expressions

are disjoint. Finally if the checks are successful the new transitions having subsequent

behaviour True are added to the CoSta model that will replace the contract.

1 --Invokes the EMFtext parser to parse contract expression

2 pc1 := self.parsedinnercontract;

3 while (pc1.isTypeOf(ConNested))

4 pc1 := pc1.body;

5 if (pc1.eventsanddata.eventformula.isTypeOf(EventList) or

6 pc1.eventsanddata.eventformula.isTypeOf(NegatedEventList))

7 {

8 --get the list of events

9 }

10 --prompts user for transitions with subsequent behaviour True

11 s1 := UserInput.prompt(’Enter required transitions with subsequent behaviour

True’);

12 --Create bag of parameters

13 ....

14 --calls acceptProofObligation to invoke HST to check the

15 --update expressions are disjoint.

16

17 if ((pc1.eventsanddata.eventformula.isTypeOf(EventList) and

18 (events.excludes(e1.strip().ev()) or

19 (events.includes(e1.strip().ev()) and acceptProofObligation(updateExpr2

,updateExpr1)))) or

20 (pc1.eventsanddata.eventformula.isTypeOf(NegatedEventList) and

21 (events.includes(e1.strip().ev()) or

22 (events.excludes(e1.strip().ev()) and acceptProofObligation(

updateExpr2,updateExpr1)))) or

23 (pc1.eventsanddata.eventformula.isTypeOf(Underscore) and

acceptProofObligation(updateExpr2,updateExpr1)))

24 {

25 ....

26 --add a new start state.

27 self.substates.add(substate1);

28 for (t in transitionParameters)
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29 {

30 ....

31 --transition expression is parsed to an EMF model

32 te := t.parseTransitionExpression();

33 ....

34 --add the new transition from the start state to a new target

35 --state with contract True

36 self.substates.add(substate2);

37 substate2.innercontract := "TRUE";

38 transition := Transition.createInstance();

39 transition.source := substate1;

40 transition.target := substate2;

41 transition.label := t.toString();

42 sm.transitions.add(transition);

43 }

44 }

Listing 6.2: Add transitions to CSM design

The next code excerpt from the If wizard calls the EMFtext printer for contracts to

generate a textual representation of the parsed inner contract from its parse tree (EMF

model). It prompts the user for transitions with subsequent behaviour φ where the If

contract is of the form [a]φ. The new transitions are added to the CoSta model that will

replace the contract.

1 ....

2 pc2 := pc1.body;

3 ....

4 --calls the EMFtext printer for contracts

5 s3 := printlanguageTool.printcp(pc2);

6 ....

7 --prompts the user for transitions with

8 --subsequent behaviour Phi

9 s1 := UserInput.prompt(’Enter required transitions with subsequent behaviour ’

+ s3);

10 --Create bag of parameters

11 ....

12 if (transitionParameters.size() > 0)

13 {

14 ....

15 for (t in transitionParameters)

16 {

17 ....

18 --transition expression is parsed to EMF model.

19 te := t.parseTransitionExpression();

20 ....

21 --Create a new transition for the parameter from the start

22 --state to a new target state with contract Phi

23 ....

24 substate2 := State.createInstance();

25 self.substates.add(substate2);

26 substate2.innercontract := s3;

27 transition := Transition.createInstance();

28 transition.source := substate1;
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29 transition.target := substate2;

30 transition.label := t.toString();

31 sm.transitions.add(transition);

32 }

33 }

34 forceRefresh();

35 ....

36 }

37 }

Listing 6.3: Add transitions to CSM design

The final code excerpt from the If wizard below shows the routine that invokes the

EMFtext parser to parse a transition expression.

1 operation String parseTransitionExpression():TransitionExpression

2 {

3 var transition:Transition;

4 var tp:TransitionExpression;

5 transition := Transition.createInstance();

6 transition.label := self;

7 --Invokes the EMFtext parser to parse the transition expression.

8 tp := transition.parsedtransition;

9 delete transition;

10 return tp;

11 }

Listing 6.4: Routine that invokes the EMFtext parser

6.2.2.1 Integration with model checking technology

This section describes how the pattern application tool integrates model transformation

and model checking technology (HST). HST is used to check the validity of application

of refinement and refactoring patterns with complex side-conditions. The Heterogeneous

Specification Tool (HST) is currently under development in the research group and can

be used for simulating/animating an STGA-like language and deciding quantifier free

conjectures on data. Conjectures are decided by an SMT solver (Boolector). Preorder/re-

finement checking algorithms are not yet implemented. HST is in the process of being

extended to support refinement and interpretation of temporal contracts by their charac-

teristic LTS/STGAs.

Patterns use HST to compare arithmetic and Boolean expressions, to determine, for

example, if two arbitrary expressions are disjoint or semantically equivalent. HST can

determine tautologies. For example to check whether P and Q are disjoint HST can be

invoked to decide if (P ∧Q⇒ False) is a tautology.
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EWL does not inherently support the ability to interface with HST, therefore cus-

tomisation is required to implement the non-standard functionality using the Epsilon Tool

concept (in the same manner as described above for integrating the EMFtext printers with

the EWL wizards). A plugin is created to start and stop HST, pass commands from the

wizard to HST for execution and return the results from HST to the wizard. The plugin

is declared as an Epsilon tool to enable any routine within the class to be invoked within

an EWL wizard. Here is an example of the routines from the Epsilon tool, (hstTool)

being invoked from an operation (acceptProofObligation) within a wizard to evaluate the

side-condition for a pattern.

1 operation acceptProofObligation(Q,P):Boolean

2 {

3 --HST will check whether P and Q are disjoint,

4 --declare a reference to the Epsilon tool, hstTool,

5 var hstTool : new Native("hst.hstTool");

6 ....

7 --calls the routine from the Epsilon tool to start HST

8 hstTool.startHst();

9 ....

10 --calls the routine from the Epsilon tool to pass a

11 --command to HST for execution,

12 --the command sets HST in STGA mode.

13 hstTool.writeBuffer(hstTool.getBw(),"c stga\n");

14 ....

15 --HST will decide if !(Q && P) is tautological

16 line := vars + ":int16|!(" + Q + " && " + P + ")\n";

17 --calls the routine from the Epsilon tool to pass a

18 --command to HST for execution, the conjecture to

19 --be evaluated (line).

20 hstTool.writeBuffer(hstTool.getBw(),line);

21 ....

22 while (not end and not error)

23 {

24 ....

25 --calls the routine from the Epsilon tool to retrieve

26 --the output from HST

27 line:= hstTool.readBuffer(hstTool.getBr());

28 if ("Added Declaration".isSubstringOf(line)) end:=true;

29 else if ("Command not recognised".isSubstringOf(line)) error:=true;

30 ....

31 }

32 if (error) UserInput.Inform("Invalid HST command - unable to determine tautology

");

33 else

34 {

35 --If a valid conjecture has been input, calls the routine

36 --from the Epsilon tool to pass a command to HST for

37 --execution, the command is to decide the tautology.

38 hstTool.writeBuffer(hstTool.getBw(),"d\n");

39 ....

40 while (not end)
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41 {

42 line:= hstTool.readBuffer(hstTool.getBr());

43 ....

44 if (("theorem".isSubstringOf(line)) or ("Theorem".isSubstringOf(line))) end

:=true;

45 if ("Not a theorem".isSubstringOf(line)) theorem:=false;

46 ....

47 }

48 ....

49 if (theorem) UserInput.Inform("HST has determined that the tautology is a

theorem");

50 else UserInput.Inform("HST has determined that the tautology is not a theorem

");

51 ....

52 }

53 ....

54 --calls the routine from the Epsilon tool to stop HST

55 hstTool.stopHst();

56 ....

57 accept := UserInput.confirm("Do you agree the proof obligation holds : " + Q + "

=> ˜" + P, true);

58 }

Listing 6.5: Routine that calls HST to evaluate the side-condition for a pattern

An Epsilon Generation Language (EGL) template [212] has been defined to translate a

state machine design into the STGA-like language required by HST. This transformation

could be part of a sequence of steps that allows the CoSta design tool to interface with

the simulation capability of HST to determine the next set of possible transitions which

could be used to provide model simulation facilities within the CoSta design tool.

6.3 Summary

This chapter presented a prototype implementation of the software that enables the design

of CoSta models supported by a rigorous design process through the application of refine-

ment and refactoring patterns. The software is developed with Eclipse and Epsilon which

are based on open standards. This enables it to be integrated with other software used

in the engineering process with minimal effort or easily extended to support additional

constructs and concepts.

A drawback with Epsilon EWL is that it does not permit patterns to be combined to

form more complex transformations [247]. One way to achieve this is copy and adapt the

code of existing wizards. EWL however does support reusability of operations which can be

grouped into external libraries, as it is built on top of the Epsilon Object Language (EOL)

layer. The same effect of combining wizards to form more complex transformations could

175



Chapter 6: Tool support and implementation

be achieved by capturing the model transformation performed by a wizard as a reusable

operation in a library and then combining the operations within a wizard.

The next chapter evaluates the validity of the hypothesis through a case study realised

using the prototype software implementation described in this chapter.
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Validation and evaluation

7.1 Introduction

The research hypothesis in Chapter 3 proposed a tool supported, model-based approach

to a systematic and stepwise design process that supports refinement of Contractual State

Machine designs from abstract specification to concrete model through the application

of refinement and refactoring patterns. This chapter evaluates the research hypothesis

by applying the proposals to a case study. Sections 7.2 to 7.5 present the case study,

Section 7.6 evaluates the results and Section 7.7 describes the overall conclusions. The

purpose of the case study is to demonstrate the utility of the refinement and refactoring

patterns, (presented in Chapters 4 and 5) and their supporting tools, (described in Chapter

6), for the design of Contractual State Machines. The aim is to evaluate the practicality of

the proposed design process and its engineering qualities and identify the main strengths

and weaknesses of the approach.

7.2 The case study

This section presents the case study, which demonstrates the refinement of a design from

an abstract specification of the system to a parallel concrete one. The refinement process

is based on a disciplined and systematic application of patterns: the patterns provide a

systematic basis for gradually introducing detail as design decisions are made.

The design process starts with a closed contract. This top-level contract expresses high-

level properties such as deadlock freedom and invariants. From the closed contract further

design decisions are made and abstract open contracts are specified. The open contracts
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express high-level design decisions, for example relating to how actions synchronise or

how to sequence the synchronising actions and permitted updates to shared variables.

From the open contract the design process proceeds with the application of refinement

and refactoring patterns until the completed state machine design is achieved. Patterns

to support formal refinement and refactoring for Contractual State Machines have been

catalogued and implemented as described in Chapters 4, 5 and 6; as such, we demonstrate

use of a number of patterns and as such illustrate the engineering potential of the approach.

An aim of the case study is to provide further proof of concept and illustrate the approach

which is supported by automated tools.

7.3 The docking system

This section discusses the docking system example presented in the paper [220] that the

case study is loosely based on. The example described in the paper focuses on a system

for docking ships in a port. The system tracks the entering of ships into the port and

maintains a queue of ships waiting to dock. It docks ships at quays and allows ships

to leave a quay and the port. A record of which ships are docked at which quays is

maintained. Only one ship can be docked at each quay. The system prevents the double

allocation of ships to quays. The same ship cannot be docked at more than one quay and

a ship cannot be both waiting in the queue and be docked at the same time.

7.3.1 Differences between this case study and the CSP||B development

The case study in this thesis does not replicate the original case study in [220] in every de-

tail but is based loosely upon it, because the aims of Contractual State Machines (CoSta)

are different to those of CSP||B. CoSta is temporal logic and statechart specific with less

emphasis on data abstraction. The CSP||B example uses divergence-freedom as a health-

iness criterion, where computation preconditions are used to police invariant properties.

Here, a symmetric approach is taken with the use of guarding conditions to police invari-

ants, with deadlock-freedom as the corresponding system-wide healthiness criterion. In

addition the CSP||B example does not have shared variables, but instead uses parameter

passing. Data abstraction is not a primary driver for CoSta. Furthermore, the model

checkers under development for CoSta will restrict data to finite concrete representations.

The case study in the thesis therefore works with a simplified abstraction of the data.
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For example, a single sequence is used to represent quays in the docking system and the

sequence is modelled as a set of variables.

There are numerous reasons for the differences between the CSP||B example and this

case study. An aim of the CSP||B example was integration of existing formal methods.

CoSta and the research for this thesis focuses on support for a rigorous design process

from temporal logic contracts to statecharts. There are differences in the languages; for

example, CoSta’s chief means of abstraction is through the use of temporal contracts.

With CSP||B the focus is more towards abstract processes operating on abstract data rep-

resentations. They both support communication and concurrency but different styles of

process algebra synchronisations. CSP’s is multiway whereas CoSta’s parallel operator is

a shared-variable version of CCS’s two-way synchronising operator. The (shared-variable)

CCS parallel operator was used in this case study, but at the top level, before the patterns

apply. The refinement relation (SVRS) was designed to be compositional with respect to

it.

One of the goals of the CSP||B study is to show that the global behaviour of the

system upholds the “preconditions” stated within the concurrent components of the sys-

tem. In [220] these preconditions were given as conditions outside which the component

diverges. In comparison, CoSta contracts were not designed with divergence foremost in

mind. They were designed to allow the dual interpretation of logical formula as labelled

transition systems and it is not possible to describe divergence scenarios in the same way.

However, one can express the conditions under which the system deadlocks, and it is

therefore possible to perform a related form of analysis based on deadlock freedom. This is

achieved by stipulating deadlock freedom as a global property of the system, and then pro-

viding deadlock scenarios, rather than divergence scenarios, in the concurrent components

of the system. Showing the system as a whole refines the deadlock freedom requirement

is not quite the same as showing that the individual components do not deadlock, since

one component might deadlock while the other continues to communicate with the en-

vironment. This may be perceived as a weakness in the contract language and a clear

justification for completing the theory in respect of divergence. However, for the purposes

of this case study, the weaker property will be sufficient.
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7.4 Design of the docking system version 1

Two main versions of the case study were conducted; the first version does not consider the

data (there are no variable or data updates), whereas the second version does. The first

version (without data) is less complex and its main purpose is to illustrate the approach.

The first version refines contracts into a CoSta state machine design using patterns all

of which do not refer to data. This version is thus not contingent on patterns with

complex side-condition checks. This is an advantage as some of the side-condition checks

are not implemented in the model checker (e.g. STGA refinement or predicates involving

quantifiers). This means it is possible with this version to road test the theory without

relying on human inspection of side-conditions. This is important to the validation process.

This section presents the simplest version of the case study to illustrate the approach

which refines an abstract open contract to a state machine design through pattern applica-

tion. The example is based on the docking system which implements a service, notionally

to allocate quays to ships as they enter a harbour. The ship requests a quay and the sys-

tem responds with an available (i.e. empty) quay then the ship proceeds to dock. Other

services include the vacating of a quay etc, although they are omitted in the following

example. There is a single top-level requirement that each request must be met with

a response. The following example concentrates solely on deadlock freedom and defers

consideration of the data.

The case study follows the design strategy described in Chapter 2. The initial stage

of the process is to devise the top-level contract which is based on closed reasoning,

(the variables of the model are impervious to outside interference) and expresses model-

wide properties. The main stage of the design is based on open reasoning and expresses

properties of the sub-components of the model, where variables are subject to interference

from the other sub-components. Closed contracts are expressed in a classical temporal

logic style whereas open contracts are based on the operators described in Chapter 2.

The basis for the development was the closed contract �〈 〉, which is included here for

completeness. The closed contract says that an observable action must be enabled so it is

not possible for the system to deadlock (as only internal actions can lead to deadlock).

Figure 7.1 shows the architecture of the system which is based on two parallel compo-

nents. The first ShipReq acts as an interface component, communicating with the ships;

the second Quay handles requests for quays, relayed from the first component and main-

tains the state of the system. The components are shown along with the direction in which
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events are produced and consumed. The dock (respectively docked) event is produced (re-

spectively consumed) outside the system.

 

ShipReq Quay 

done 

dockquay 
dock 

docked 

Figure 7.1: Architecture of system version 1

The open contracts for each component specify a minimal condition needed for the

system as a whole to avoid deadlock and they describe the correct sequencing of the

internally synchronising events.

For ShipReq we have three conjuncts:

A (〈′dockquay, done〉 ∧ 〈[−′dockquay, done]〉)

y (〈−′dockquay〉 ∧ 〈[′dockquay]〉)

B �[′dockquay]((〈′dockquay, done〉 ∧ 〈[−′dockquay, done]〉)

y (〈−done〉 ∧ 〈[done]〉))

C �[done]((〈′dockquay, done〉 ∧ 〈[−′dockquay, done]〉)

y (〈−′dockquay〉 ∧ 〈[′dockquay]〉))

There are three ways deadlock can occur. The first is if both components deadlock. The

second is if the components offer incompatible internal actions exclusively so that the inter-

nal events dockquay and done are not synchronised and thirdly if one component deadlocks

and the other offers an internal action that can never proceed. The open contracts must

prevent these scenarios from occurring. They need to ensure the correct sequencing of

internal actions and make sure that in between those actions there is always an external

action enabled so neither component can deadlock.

The first conjunct for the ShipReq component says that (from the start of operation)

both internal synchronising events (dockquay and done) must remain disabled, and some

other event (e.g dock, docked) must remain enabled, until the dockquay event is ready to be

produced. The condition stipulates this must be an exclusive event, i.e all other events are
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disabled. There is a complementary conjunct in the contract for Quay that says internal

events (dockquay and done) are disabled until dockquay is ready to be consumed (which

we omit here). The second conjunct says that after a dockquay event has been produced,

the internal events are disabled with some external event enabled (e.g docked) until the

done event is (exclusively) enabled. Again there is a complementary conjunct in the Quay

open contract. The final conjunct stipulates what happens after the done event, i.e. that

internal events (dockquay and done) are disabled and external events (e.g docked) are

enabled until the dockquay event becomes (exclusively) enabled again.

The design of the ShipReq component is developed through successive refinement via

the application of patterns to refine the open contract to a CoSta state machine and

transform the component into a (scaled down but) functionally correct design which is

guaranteed to satisfy its open contract. Contracts are refined by keeping the same patterns

of interactions but reducing nondeterminism. The design steps detailed below are for part

of the ShipReq component that handles requests for the docking of a ship in a quay. For

this fragment of the design there are over one hundred refinement/refactoring steps each

one requiring a pattern application. Therefore a summary only of the larger refinement

process is described.

A high-level overview of the refinement process can be given. The first design step

transforms the open contract above into a hierarchy of conjoined contracts; we call the

conjuncts of the contract A, B and C, respectively. In Step 2 the contracts A and C

are transformed into CoSta state machines, with the introduction of dock and dockquay

transitions. The conjunction is eliminated in Step 3 for the state with the contract A∧C

and a redundant level of hierarchy is removed. These first three steps are depicted in

figure 7.2, this diagram summarises the first part of the larger refinement process. Figures

7.2 and 7.3 show a high-level summary of the steps and do not give a complete picture of

the whole refinement decomposition.

Step 4 extends the CoSta state machine with contract A ∧ C by adding the done and

docked transitions. We require the docked transition to loop back to the start state, the

Reroute pattern can be applied as the docked transition’s target state has inner contract

A ∧ C, equal to the outer contract on the start state. The Reroute pattern removes the

docked transition’s target state and loops the transition back up to the start state. Step 5

transforms the contract B to a CoSta state machine with dock, dockquay, done and docked

transitions. The docked transition is rerouted to the start state to implement a loop; this
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Figure 7.2: Summary of steps in the first stage of the refinement of ShipReq
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Figure 7.3: Summary of steps in the second stage of the refinement of ShipReq
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step is complicated, and involves application of several patterns, i.e. Unfold Always and

Conjunction introduction, as well as If. In Step 6 the conjunction is eliminated for the

state with the contract A ∧ C ∧ B and two levels of redundant hierarchy are removed.

These last four steps are depicted in figure 7.3 and are a summary of the last part of the

refinement process.

Step 5, which creates the CoSta state machine for the contract B, is now described in

more detail. A summary of the refinement steps are depicted in figure 7.4.
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Figure 7.4: Summary of the refinement process for step 5

Step 5.1 shows the introduction of the dock transition and the patterns required are

Unfold Always and Conjunction introduction followed by If applied to both of the new

conjuncts. Then the application of the Conjunction elimination pattern to eliminate

the conjunction of states is followed by applying the Redundant hierarchy pattern. The

Redundant hierarchy pattern assigns the inner contract from the parent state to the outer

contract of the start substate.

Step 5.2 is a refinement of the leaf state with contract B from Step 5.1. It introduces
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the dockquay transition. The patterns applied are Unfold Always to refine contract B to

B1∧B2, then Conjunction introduction followed by If applied to both conjuncts. Before

eliminating the conjunction, the leaf states with contracts B3 and B are further refined

and done transitions are introduced, this is achieved in Step 5.3.

Step 5.3 refines the contract B3 to introduce the done transition. The patterns Unless

and Conjunction introduction are applied first then the TotEnable pattern is applied to

both conjuncts, followed by Conjunction elimination and Redundant hierarchy. To refine

the leaf state with contract B for the conjunct with contract B2 in order to introduce

the done transition, the patterns Unfold Always and Conjunction introduction are applied

first, then the If pattern is applied to both of the new conjuncts. The application of the

Conjunction elimination pattern is followed by Redundant hierarchy.

Step 5.4 applies Conjunction elimination and Redundant hierarchy to remove the con-

junction. This step then introduces the docked transition. To achieve this Unfold Always

and Conjunction introduction are applied, followed by the If pattern to both new con-

juncts. The conjunction is eliminated and redundant hierarchy flattened with the appli-

cation of patterns Conjunction elimination and Redundant hierarchy.

Step 5.5 applies the Reroute pattern to the docked transition to loop it back to the

start state. The Reroute pattern can be applied to a leaf state with an inner contract

where there exists another state with an associated outer contract that is syntactically

equal to1 the inner contract of the leaf state. The transformation removes the leaf state

and its incoming transitions are redirected to the state with the associated outer contract.

7.5 Design of the docking system version 2

This section presents the second and more complex version of the case study for the

docking system. The purpose of the second case study is to apply some of the data-

extended refinement and refactoring patterns (described in Chapter 5) to a design that

incorporates shared variables and data updates.

For the second version, the main challenges were to firstly extend the top-level contract

with new requirements relating to the data. For example, an invariant is needed to prevent

the double allocation of quays. The invariant ensures that a ship can only be docked at

1more generally it can be a check for semantic equivalence or a refinement check and requires a model-

checking side-condition
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a quay if it has not been docked already and the quay is empty. The next challenge

was to specify new open contracts that respect the top-level contract. They are based

on open reasoning and express properties of the sub-components of the model, where

variables are subject to interference from the other sub-components. Once specification

of the closed contract has been achieved, the overall aim is to express the open contracts,

that still respect the closed contract and support the required behaviour of the docking

system which implements a service to allocate quays to ships as they enter a harbour. If a

ship requests a quay, the system responds with an available berth where the ship will be

docked. The system has two parallel components, ShipReq acts as an interface component,

communicating with the ships; and Quay that handles requests for quays, relayed from

the first component and maintains the state of the system. The open contracts express

properties of these parallel subcomponents and describe a sequential pattern of requesting

a dock and then performing the internal events, dockquay and done. The scope is limited

to docking a ship in a quay. No discussion of a ship leaving a quay or the port is given,

and neither is the interleaving of more than one ship considered.

Once the open contracts had been devised, the final challenge was to then apply

refinement and refactoring patterns to refine the open contracts to a Contractual State

Machine design. There are two top-level requirements, one is that an invariant on the

ships and quays is maintained (so as not to double allocate a ship to more than one quay),

another is that each request must be met with a response. The model checkers under

development for CoSta will restrict data to finite concrete representations. The case study

therefore works with a simplified abstraction of the data. The variables of the system are

s representing the ship to be docked and two quays q1 and q2.

The contracts for the second version of the case study are not scalable for large num-

bers of quays as they have been written specifically for a system with two quays only.

For example, the invariant is expressed as a guard on the dockquay event, the quays are

limited to two and they are specifically referred to as q1 and q2 in the contracts to en-

force the invariant. A more general version of the invariant would be scalable. Being

succinct for larger structures requires either a quantifier or since we are restricted to finite

data structures, an indexed conjunction/disjunction. The SMT-solver used by the model

checker does not support quantifiers however, so using quantifiers in the modelling lan-

guage would produce predicates that the model checker could not deal with. In the case

of the simpler case study (version 1) this is not a problem. Longer term it is expected that
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the model checker will provide support for indexed conjunctions/disjunctions as a finite

alternative to quantifiers. Once in place the modelling language could be augmented to

take advantage of the additional constructs.

The top-level contract is:

�〈 〉 ∧�〈 [q1, q2 : (q1 = q2 ⇒ q1 = 0)⇒ ¬(q′1 = q′2 ⇒ q′1 = 0)]〉

The closed contract says that an observable action must be enabled so it is not possible

for the system to deadlock (as only internal actions can lead to deadlock) and that any

action must be disabled that would result in a ship being docked in more than one quay

at the same time.

Figure 7.5 shows the top-level architecture of the system updated to include variables.

The architecture is based on two parallel components. The events shown are either those

produced/consumed outside the system or the internal synchronising actions between the

two parallel components, (for example the click event is of no significance to any other

component and is purely part of the Quay component’s internal processing so it does not

appear in figure 7.5 for the top-level architecture). The dock events update the variable

s to contain the ship that needs to be docked. The docked event is consumed outside

the system and is produced by the ShipReq component once a ship has been docked in a

quay. The dockquay event signals to the Quay component that a ship needs to be docked

(which is not currently docked) and there is space available in the quays. The done event

is produced by the Quay component once a ship has been docked in a quay. CoSta’s

shared variable environment allows all variables, including the variable s for example,

that represents the ship to be docked, to be accessible by both the ShipReq and Quay

components and it does not need to be passed as a parameter on any of their actions.

In order to give the parallel operator a simple semantics, updates on synchronising

actions were syntactically restricted to skip. The open contracts are defined so as to

abstract the design and guarantee the closed contract. For each component, (ShipReq,

Quay) the open contracts must sequence the synchronising actions to prevent deadlock,

with minimal restrictions on how the data is updated, ensuring that synchronising actions

skip and the invariant is maintained. It is necessary to have state in order to express the

open contract, this point was initially made in Section 2.13.

When the full system (with data) was considered, one of the challenges for the data-

extended version of the case study was to specify open contracts that preserve the invariant

and prevent deadlock. The design had to satisfy additional requirements on the data and
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Figure 7.5: Architecture of system version 2

these requirements needed to be specified as properties in the contracts and preserved

by the development 2. Uncontrolled updates to the data will not satisfy the top-level

properties. The solution is to specify more precisely in the open contracts which actions

update data and what update is required. Simply adding a conjunct to the open contracts

of both components (ShipReq, Quay) to disable any action which breaks the invariant

does not guarantee deadlock freedom when the components are composed. For example,

an update to the quays could be allowed to happen more than once, the first update

occurring at the wrong time which nevertheless does not break the invariant but creates

the problem that when the update to the quays occurs at the right time, a ship is already

docked and thus breaks the invariant and so the system deadlocks. This problem is solved

by sequencing the update to the quays at the correct time and insisting that at other times

all actions skip.

7.5.1 Open contract for the ShipReq component

This section discusses the open contract for the ShipReq component. The ShipReq process

accepts a request from an approaching ship to dock, dock and sends back a response,

docked (indicating success when the precondition is True) or deny (if the precondition of

dock is False). The precondition is that there is a vacant quay and the ship is not already

2It would be interesting future work to determine whether the two versions of the case study could be

linked by refinement, i.e. whether it would be possible to start with the dataless contract and strengthen

it to include data during the design process.
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docked. If the precondition is True, the ShipReq process synchronises with Quay.

The approach adopted for specifying the open contracts is to separate out the be-

havioural conjuncts and the data conjuncts where possible, i.e where actions behave con-

sistently with respect to the data throughout their behaviour. For example in the ShipReq

contract all conjuncts apart from the final one are quite loose about updating the data this

allows them to focus on the properties of interest. The final conjunct however constrains

the contract further to prevent the quays being updated.

The invariant for the ShipReq component is: (q1 = q2)⇒ (q1 = 0).

The open contract for ShipReq has five conjuncts, these will be described in turn.

R
def
= (q1 = 0 ∨ q2 = 0) ∧ (q1! = s ∧ q2! = s)

R ensures there is an empty quay available and prevents the double allocation of ships to

quays (preserves the invariant). In order to maintain the invariant stipulated in the open

contracts, any update from any action has to preserve the invariant so that all actions are

disabled where the invariant is not respected.

The system is based on two parallel components, ShipReq and Quay. ShipReq is the

interface component, communicating with the ships. Quay handles requests for quays

relayed from ShipReq and maintains the state of the system. The ShipReq component has

the following actions:

• dock is a request from an approaching ship to dock in a quay. It updates the ship

variable s with the identifier of the ship requesting to dock. In the open contract

presented below it is enabled from the start of operation (it could occur multiple

times at this point to request for different ships to dock and each time the ship

variable s would be overwritten with the ship’s identifier for the latest request) until

the internal synchronising event ’dockquay and the action to indicate failure ’deny are

enabled. If the same ship tries to dock twice the value of the variable s representing

the ship to dock will remain unchanged. The dock event is enabled again after a

’deny or a done action has occurred. It cannot occur between ’dockquay and done

in the form where it updates the ship variable s with the identifier of a new ship to

be docked, as it is not permitted to update the ship variable s with a different value

until the done event has occurred and the original ship has been docked. The dock

action could occur between ’dockquay and done to dock the same ship twice but

the value of the variable s representing the ship to dock would remain unchanged

so there would be no adverse effect on the behaviour of the system. The aim for
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the open contracts is to specify the minimal restrictions needed to maintain the

invariant and prevent the system as a whole from deadlocking. The open contract

could be strengthened further however, to reduce the availability of the dock event,

and outlaw the same ship being able to request a dock twice.

• ’dockquay is the request to dock a ship relayed to the Quay component. It is an

internal synchronising action to enable ShipReq to synchronise with the Quay com-

ponent.

• ’deny is the response from the ShipReq component indicating failure.

• done is an internal synchronising event to enable Quay to synchronise with the

ShipReq component. It indicates that a ship has been docked by the Quay compo-

nent.

• ’docked is the response from the ShipReq component indicating success.

The first conjunct is:

((〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉)

y (〈−′dockquay,′ deny〉 ∧ 〈[′dockquay[: R]]〉∧

〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉 ∧ 〈[′deny[q1, q2, s : ¬R]]〉∧

〈′deny[: R]〉))∧

The first conjunct for the ShipReq component says that (from the start of operation)

both internal synchronising events (dockquay and done) and the deny action must remain

disabled, and some other event (e.g dock, docked) must remain enabled, until the dockquay

or deny events are ready to be produced. The condition stipulates this must be an exclusive

event, i.e all other events are disabled. Throughout the ShipReq open contract whenever

the dockquay or deny actions appear, the synchronising action dockquay must skip and

is enabled from every before state within the guard of R, and disabled from every before

state within the guard of ¬R. The deny event is the complement of this and enabled from

every before state within the guard of ¬R and disabled from every before state within the

guard of R.

The open contract for the ShipReq component ensures that it only synchs with Quay in

the situation where the invariant will be preserved. There is a complementary conjunct in

the contract for Quay, (which is presented later) with respect to the synchronising actions
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that says internal events (dockquay and done) are disabled until dockquay is ready to be

consumed.

The second conjunct is:

�[′dockquay]((〈′dockquay,′ deny, done〉∧〈[−′dockquay,′ deny, done]〉)∧〈 [q1, q2, s : s′! = s]〉

y (〈−done〉 ∧ 〈[done[skip]]〉 ∧ 〈done[¬skip]〉))∧

The second conjunct says that after a dockquay event has been produced, the internal

synchronising events (dockquay and done) and the deny action are disabled with some

external event enabled (e.g docked). Additionally all events are disabled that update s

until the done event is (exclusively) enabled. The done event is enabled with an update

consistent with skip and disabled otherwise. Again there is a complementary conjunct for

the synchronising actions in the Quay open contract.

The open contract for the ShipReq component must ensure that the synchronising

actions skip and the dockquay event is only enabled if one of the quays is empty and s is

not already docked. The ShipReq component must also ensure that actions preserve the

invariant between the dockquay and done events and do not alter the quays or s in a way

that will force the system as a whole not to satisfy the top-level properties.

If s is put in the quays or the quays are filled this will not necessarily break the

invariant directly but will force the update in the Quay component to behave in a way

that does not satisfy the top-level property (either because it deadlocks as there is no

space in the quays or it breaks the invariant if s is already in a quay). This problem is

solved by insisting that all actions skip between dockquay and done.

The third conjunct is:

�[done]((〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉)

y (〈−′dockquay,′ deny〉 ∧ 〈[′dockquay[: R]]〉∧

〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉 ∧ 〈[′deny[q1, q2, s : ¬R]]〉∧

〈′deny[: R]〉))∧

The third conjunct stipulates what happens after the done event, i.e. that internal events

(dockquay and done) and the deny action are disabled and external events (e.g docked)

are enabled until the dockquay and deny events become (exclusively) enabled again.

The fourth conjunct is:

�[′deny]((〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉)

y (〈−′dockquay,′ deny〉 ∧ 〈[′dockquay[: R]]〉∧

〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉 ∧ 〈[′deny[q1, q2, s : ¬R]]〉∧
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〈′deny[: R]〉))∧

The fourth conjunct stipulates what happens after the deny event, i.e. that internal events

(dockquay and done) and the deny action are disabled and external events (e.g docked)

are enabled until the dockquay and deny events become (exclusively) enabled again.

The fifth conjunct is:

�〈 [q1, q2, s : (q
′
1! = q1) ∨ (q

′
2! = q2)]〉

The fifth conjunct stipulates that any action is disabled that updates the quays. It is

important to ensure either that conjuncts are mutually exclusive and at no time will

more than one of them hold; or if it is possible for more than one conjunct to hold at

the same time, to ensure their combined subsequent behaviour is what is required. For

example if the fourth and second conjuncts were permitted to hold simultaneously the

subsequent behaviour could only be refined into something which never again offered a

synchronising action (dockquay, done) since to do so would either contradict the second

conjunct or contradict the fourth conjunct because they offer the possibility of different

internal actions.

The dockquay and done actions are carefully sequenced and the conjuncts of the

ShipReq contract are mutually exclusive so that not more than one of them will hold

at a time given that a dockquay or done event is enabled.

The complete open contract for the ShipReq component is:

R
def
= (q1 = 0 ∨ q2 = 0) ∧ (q1! = s ∧ q2! = s)

((〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉)

y (〈−′dockquay,′ deny〉 ∧ 〈[′dockquay[: R]]〉∧

〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉 ∧ 〈[′deny[q1, q2, s : ¬R]]〉∧

〈′deny[: R]〉))∧

�[′dockquay]((〈′dockquay,′ deny, done〉∧〈[−′dockquay,′ deny, done]〉)∧〈 [q1, q2, s : s′! = s]〉

y (〈−done〉 ∧ 〈[done[skip]]〉 ∧ 〈done[¬skip]〉))∧

�[done]((〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉)

y (〈−′dockquay,′ deny〉 ∧ 〈[′dockquay[: R]]〉∧

〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉 ∧ 〈[′deny[q1, q2, s : ¬R]]〉∧

〈′deny[: R]〉))∧

�[′deny]((〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉)

y (〈−′dockquay,′ deny〉 ∧ 〈[′dockquay[: R]]〉∧
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〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉 ∧ 〈[′deny[q1, q2, s : ¬R]]〉∧

〈′deny[: R]〉))∧

�〈 [q1, q2, s : (q
′
1! = q1) ∨ (q

′
2! = q2)]〉

7.5.2 Open contract for the Quay component

This section discusses the open contract for the Quay component. The Quay process

assigns a ship to a quay. The precondition is that there is a vacant quay and the ship is

not already docked.3 It waits for synchs from ShipReq (dockquay); when received the click

event docks a ship, and the ship is stored in the quay variable. There are no hidden actions

in the modelling language, so a “dummy” visible event (click) is used to accompany the

internal change of state. It could be hidden (renamed tau) at the architectural level4.

Finally the Quay process synchronises with ShipReq on the done event. Another service is

to vacate a quay; the Quay component accepts a request from a docked ship to vacate the

quay. The precondition is that the ship is assigned to the quay. If the precondition holds

the quay is set to zero (meaning empty). If the precondition is False, “error” is returned.

This service is omitted in the following example to simplify it further.

As described above the system is based on two parallel components, ShipReq and

Quay. ShipReq is the interface component, communicating with the ships. Quay handles

requests for quays relayed from ShipReq and maintains the state of the system. The Quay

component has the following actions:

• dockquay is the request to dock a ship relayed from the ShipReq component. It is

an internal synchronising action to enable ShipReq to synchronise with the Quay

component.

• ’done is an internal synchronising event to enable Quay to synchronise with the

ShipReq component. It indicates that a ship has been docked by the Quay compo-

nent.

• click docks a ship, the ship is stored in the quay variable. In the open contracts

3Preconditions are specified as guards. The process deadlocks if the precondition is not True, and the

aim is to show that the system as a whole does not deadlock.
4In CoSta, tau serves a special purpose in the theory of duals and therefore the refinement ordering (it

acts as disjunction). The refinement ordering does not at present allow taus to carry data updates as this

would interfere with its special status.
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presented below there are several occassions when some other action apart from

dockquay, ’done or click is enabled. For example, at the start of operation until the

dockquay event is enabled or between the dockquay and click events. The click event

however is the only action that is permitted to update the data.

Two versions of the open contracts for the Quay component are presented. The first

version for Quay rules out updates of any kind by any action other than click. Although

this achieves the objective to carefully control when the quays can be updated and the

kinds of data updates permitted, it could be made less restrictive. The second version

of the open contracts for the Quay component improves on the first by relaxing the

restrictions on updates made by actions other than click. It permits updates weaker

than skip on actions other than click. The reason for presenting the two versions is to

exemplify the kind of validatory reasoning involved in constructing the open contracts.

The invariant for the Quay component is: (q1 = q2)⇒ (q1 = 0).

M
def
= (q1 = 0) ∨ (q2 = 0), M ensures there is an empty quay.

N
def
= ((q1 = 0) ∧ (q

′
1 = s)) ∨ ((q2 = 0 ∧ (q

′
2 = s)) ∧ (q

′
1! = q

′
2), N allocates s to the empty

quay.

The open contract for Quay has six conjuncts, these will be described in turn.

The first conjunct:

((〈dockquay,′ done, click〉 ∧ 〈[−dockquay,′ done, click]〉)

y (〈−dockquay〉 ∧ 〈[dockquay]〉))∧

The first conjunct for the Quay component says that (from the start of operation) both

internal synchronising events (dockquay and done) and the click action must remain dis-

abled, and some other event (e.g dock) must remain enabled, until the dockquay event is

ready to be produced. The condition stipulates this must be an exclusive event, i.e all

other events are disabled.

The second conjunct:

�[dockquay]((〈dockquay,′ done, click〉 ∧ 〈[−′done, dockquay, click]〉)

y (〈−click〉 ∧ 〈[click[q1, q2, s : M ]]〉))∧

The second conjunct says that after a dockquay event has been produced, the internal

events (dockquay and done) and the click action are disabled with some external event

enabled (e.g docked) until the click event is (exclusively) enabled. The click event is

enabled from every before state within the guard of M which ensures there is an empty
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quay.

Before the Quay component allocates a ship to a quay there must be an available quay

and no ship equal to s already docked as the first situation would cause deadlock and

the second would break the invariant. The open contract for the Quay component must

introduce an additional event click to carry out the state update as the synchronising

actions must skip. The click event is sequenced between dockquay and done and disabled

at any other time. All other actions skip or weaker (skip on s and preserve the invariant).

The Quay design on its own can deadlock, the way it interacts with the ShipReq

component however prevents this occurring. ShipReq’s sequencing ensures that it only

synchronises with Quay in the situation where the invariant is preserved and a ship is

not already docked. Therefore it is only necessary in the Quay component to check that

there is an available berth before the update to allocate a ship to a quay, between the

synchronising actions.

The updates need to be sequenced so that until the ship has been allocated to a quay

any other updates to the quays or s must wait. If the updates are not sequenced the

contract would allow a ship to be docked or the quays filled, which may not necessarily

violate the invariant directly but force the click update to behave in a way that does not

satisfy the top level property either because it deadlocks if M is False or because it breaks

the invariant because s is already in a quay. The open contract for Quay must ensure

that it cannot update q1 or q2 during the sequencing of the actions except in one place in

between dockquay and done.

The third conjunct:

�[click]((〈dockquay,′ done, click〉 ∧ 〈[−′done, dockquay, click]〉)

y (〈−′done〉 ∧ 〈[′done]〉))∧

The third conjunct for the Quay component says that after a click event has been pro-

duced, both internal synchronising events (dockquay and done) and the click action must

remain disabled, and some other event (e.g dock) must remain enabled, until the done

event is ready to be produced. The condition stipulates this must be an exclusive event,

i.e all other events are disabled.

The fourth conjunct:

�[′done]((〈dockquay,′ done, click〉 ∧ 〈[−′done, dockquay, click]〉)

y (〈−dockquay〉 ∧ 〈[dockquay]〉))∧

The fourth conjunct stipulates what happens after the done event, i.e. that internal events
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(dockquay and done) and the click action are disabled and external events (e.g docked)

are enabled until the dockquay event becomes (exclusively) enabled again.

The fifth conjunct:

�〈−click[q1, q2, s : ¬skip]〉∧

The fifth conjunct, in addition, stipulates that actions other than click must skip.

The sixth conjunct:

�〈click[q1, q2, s : ¬N ]〉

The sixth conjunct ensures that at all times the click action is disabled from every before

state within the guard of ¬N .

The complete open contract for the Quay component is:

((〈dockquay,′ done, click〉 ∧ 〈[−dockquay,′ done, click]〉)

y (〈−dockquay〉 ∧ 〈[dockquay]〉))∧

�[dockquay]((〈dockquay,′ done, click〉 ∧ 〈[−′done, dockquay, click]〉)

y (〈−click〉 ∧ 〈[click[q1, q2, s : M ]]〉))∧

�[click]((〈dockquay,′ done, click〉 ∧ 〈[−′done, dockquay, click]〉)

y (〈−′done〉 ∧ 〈[′done]〉))∧

�[′done]((〈dockquay,′ done, click〉 ∧ 〈[−′done, dockquay, click]〉)

y (〈−dockquay〉 ∧ 〈[dockquay]〉))∧

�〈−click[q1, q2, s : ¬skip]〉∧

�〈click[q1, q2, s : ¬N ]〉

The next version of the contract for the Quay component permits updates weaker than

skip on actions other than click but insists that actions other than click do not update s,

do not insert s into a quay, preserve the invariant and do not fill the quays.

((〈dockquay,′ done, click〉 ∧ 〈[−dockquay,′ done, click]〉)

y (〈−dockquay〉 ∧ 〈[dockquay[skip]]〉∧

〈dockquay[¬skip]〉))∧

�[dockquay]((〈dockquay,′ done, click〉 ∧ 〈[−′done, dockquay, click]〉)

y (〈−click〉 ∧ 〈[click[q1, q2, s : M ]]〉))∧

�[click]((〈dockquay,′ done, click〉 ∧ 〈[−′done, dockquay, click]〉)

y (〈−′done〉 ∧ 〈[′done[skip]]〉 ∧ 〈′done[¬skip]〉))∧

�[′done]((〈dockquay,′ done, click〉 ∧ 〈[−′done, dockquay, click]〉)
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y (〈−dockquay〉 ∧ 〈[dockquay[skip]]〉 ∧ 〈dockquay[¬skip]〉))∧

�〈−click[q1, q2, s : (q
′
1! = 0) ∧ (q

′
2! = 0)∨

(q
′
1 = s) ∨ (q

′
2 = s) ∨ (s′! = s) ∨ (q

′
1 = q

′
2) ∧ (q

′
2! = 0)]〉∧

�〈click[q1, q2, s : ¬N ]〉

The N update could be strengthened to check that a ship is not already docked.

N2
def
= ((q1 = 0) ∧ (q2! = s) ∧ (q

′
1 = s)) ∨ ((q2 = 0) ∧ (q1! = s) ∧ (q

′
2 = s))∧

(q
′
1! = q

′
2) ∧ (s′ = s)]

This is probably unnecessarily strong as this constraint is checked by the ShipReq compo-

nent just before it synchronises with Quay.

7.5.3 Refinement of the ShipReq component

This design of the ShipReq component is developed through successive refinement via the

application of patterns to refine the open contract to a CoSta state machine which is

guaranteed to satisfy it. The design steps detailed below are for the ShipReq component

that handles requests for the docking of a ship in a quay. The following patterns from

Chapters 4 and 5 are applied:

• Conjunction Introduction.

• Unfold Unless.

• Disable.

• Combine States.

• Totalised Enable.

• Conjunction Elimination.

• Redundant Hierarchy.

• Move Target Down.

• Unfold Always.

• Commutativity.

• If.

• Strengthen Contract.
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• Reroute.

This section demonstrates the first stage of the refinement process, the full refinement

is given in Appendix C.

The contract for the ShipReq component has five conjuncts A∧B∧C∧D∧E (Conjunction

is left-associative).

R
def
= (q1 = 0 ∨ q2 = 0) ∧ (q1! = s ∧ q2! = s)

A = ((〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉)

y (〈−′dockquay,′ deny〉 ∧ 〈[′dockquay[: R]]〉∧

〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉 ∧ 〈[′deny[q1, q2, s : ¬R]]〉∧

〈′deny[: R]〉))

B = �[done]((〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉)

y (〈−′dockquay,′ deny〉 ∧ 〈[′dockquay[: R]]〉∧

〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉 ∧ 〈[′deny[q1, q2, s : ¬R]]〉∧

〈′deny[: R]〉))

C = �[′deny]((〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉)

y (〈−′dockquay,′ deny〉 ∧ 〈[′dockquay[: R]]〉∧

〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉 ∧ 〈[′deny[q1, q2, s : ¬R]]〉∧

〈′deny[: R]〉))

D = �[′dockquay]((〈′dockquay,′ deny, done〉∧〈[−′dockquay,′ deny, done]〉)∧〈 [q1, q2, s : s′! = s]〉

y (〈−done〉 ∧ 〈[done[skip]]〉 ∧ 〈done[¬skip]〉))

E = �〈 [q1, q2, s : (q
′
1! = q1) ∨ (q

′
2! = q2)]〉

The model checker (HST) supports evaluation of quantifier-free conjectures on data. Pat-

terns with more complex side-conditions (e.g TotEnable’s side-condition may require eval-

uation of a conjecture with quantifiers) rely on inspection for verification as the function-

ality required to implement these patterns fully was not available via the model checker.

Though when the model checker (HST) is extended, the approach in this thesis will nat-

urally extend.

7.5.3.1 Refinement stage 1

The overall high-level process of stage 1 refines the conjunct with contract A to introduce

the dock1 and dock2 transitions.

1. Apply the Conjunction introduction pattern four times.
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The Conjunction introduction pattern is applicable if the selected component is a state

whose inner contract is an And operator expression. The pattern checks that the contract

for the selected state has the form “φ And ψ”. The pattern introduces two new substates,

one with inner contract “φ” and the other with inner contract “ψ”. The contract is:

A ∧ B ∧ C ∧ D ∧ E, Conjunction introduction is applied for the first time, two new

states are created one with contract φ = A ∧ B ∧ C ∧D the other with contract ψ = E.

Conjunction introduction is then applied for the second time to the state with contract

A ∧B ∧C ∧D. Two new states are introduced one with contract φ = A ∧B ∧C and the

other with contract ψ = D.

Conjunction introduction is applied for the third time to the state with contract A ∧

B∧C. Two new states are introduced one with contract φ = A∧B the other with contract

ψ = C. Conjunction introduction is finally applied for the fourth time to the state with

contract A ∧ B. Two new states are introduced one with contract φ = A the other with

contract ψ = B (see Figure 7.6).

Figure 7.6: Conjunction introduction pattern applied four times
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2. Refine the state with contract A.

R
def
= (q1 = 0 ∨ q2 = 0) ∧ (q1! = s ∧ q2! = s)

A = ((〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉)

y (〈−′dockquay,′ deny〉 ∧ 〈[′dockquay[: R]]〉∧

〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉 ∧ 〈[′deny[q1, q2, s : ¬R]]〉∧

〈′deny[: R]〉))

Apply the Unfold Unless pattern. The Unfold Unless pattern is applicable if the selected

component is a state whose inner contract is an Unless operator expression. The pattern

checks that the contract for the selected state has the form “φ Unless ψ” and the pattern

unfolds the contract to “φ And (If (φ Unless ψ))”.

φ is (〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉)

ψ is (〈−′dockquay,′ deny〉 ∧ 〈[′dockquay[: R]]〉∧

〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉 ∧ 〈[′deny[q1, q2, s : ¬R]]〉∧

〈′deny[: R]〉)

A1 = φ

A2 = (If (φ Unless ψ)).

The pattern unfolds the contract A to A1 ∧A2

A1 = 〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉

A2 = [ ]((〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉)

y (〈−′dockquay,′ deny〉 ∧ 〈[′dockquay[: R]]〉∧

〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉 ∧ 〈[′deny[q1, q2, s : ¬R]]〉∧

〈′deny[: R]〉))

3. Apply the Conjunction introduction pattern to the state with contract A1 ∧ A2. Two

new states are introduced, one with contract A1 and the other with contract A2.

4. Apply the Conjunction introduction pattern to state with contract A1 (see Figure 7.7.

The contract A1 = A9∧A10. The pattern creates two new substates one with contract

A9 and the other with contract A10.

A1 = 〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉

A9 = 〈′dockquay,′ deny, done〉

A10 = 〈[−′dockquay,′ deny, done]〉
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Figure 7.7: Conjunction introduction pattern applied to contract A1

5. Apply the Disable pattern to the state with contract A9 to introduce two new transitions

dock1 and dock2. The Disable operator specifies that none of the events in a set are

available. When accompanied by a variable update the action is disabled for all the

updates consistent with the expression. It may still be enabled within its guard as long as

its update is not consistent. The Disable operator contract 〈a1, .., an[x : P ]〉 is expressed

as an equivalent If operator expression [a1, .., an[x : P ]]False, i.e If one of the events

a1, .., an[x : P ] is enabled then subsequently behave as False.

The If pattern is applied it does not permit the introduction of transitions with sub-

sequent behaviour False so in this instance transitions are introduced with subsequent

behaviour True. The pattern checks that the action is not in the contract eventlist (or it

is in the the negated contract eventlist) or if this is not the case or there is no eventlist, the

model checker (HST) is used to verify that the update expression for a transition input

by the user (updateExpr2) is not consistent with the contract update expression (upda-

teExpr1), i.e. the update expressions are disjoint and there is no overlap. The model

checker (HST) is invoked to decide if ¬(updateExpr2 ∧ updateExpr1) is tautological.

A9 = 〈′dockquay,′ deny, done〉

The Disable pattern is applied, A9 is rewritten as an If operator expression

A9 = [′dockquay,′ deny, done]False.

The two new transitions required are dock1[s = 1] and dock2[s = 2].

The pattern checks firstly whether the transition event is in the contract eventlist and if it
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is then a further check is conducted invoking the model checker (HST) to ensure that the

transition update expression and the contract update expression are disjoint and there is

no overlap. The first transition is dock1[s = 1] whose event is not included in the contract

eventlist so the transition is added with subsequent behaviour True and no further check

is required. Similarly the second transition is dock2[s = 2] whose event is not included in

the contract eventlist so the transition is added with subsequent behaviour True and no

further check is required (see Figure 7.8).

Figure 7.8: Disable pattern applied to contract A9

6. Apply the Combine states pattern to combine the substates of A9 with the inner

contract True. The Combine states pattern is applicable to two states. The pattern

checks that the states to be combined have the same parent state and no substates or

outgoing transitions. It also checks that their inner contracts are syntactically equivalent.

The inner contract is True for both states (see Figure 7.9).
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Figure 7.9: Combine states pattern applied to state with contract A9

7. Apply the TotEnable pattern to the state with contract A10 to introduce two new

transitions dock1 and dock2. The TotEnable pattern refines a TotEnable contract to a

state machine model. The TotEnable pattern is applicable if the selected component

is a state. The pattern checks that the state’s inner contract has the form TotEnable

eventFormula or TotEnable eventFormula [updateExpression]. EventFormula can be a set

of events, a negated set of events or the underscore character. The pattern checks that at

least one of the transition parameters satisfies the TotEnable contract.

Checks based on syntax are performed initially. To determine if the transition satisfies

the contract the transition event must be included in the contract’s eventlist. If the

eventFormula in the contract is a list of events, transitions with some event from the set

are possible. If the eventFormula in the contract is a negated list of events, transitions with

some event not in the set are possible. If the eventFormula is an underscore transitions

with any event are possible.

If the contract is of the form 〈[eventlist]〉 it is satisfied by transitions of the form

event, event[assignmentlist], event[skip]. If the contract is of the form 〈[eventlist[G]]〉,

where G is a guard and refers only to before values for the variables, it is satisfied by

transitions of the form event[G], event[G =⇒ assignmentlist], event[G =⇒ skip] (it is

a permitted refinement to strengthen the update within the guard). If the contract has
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the form 〈[eventlist[skip]]〉 or 〈[eventlist[G =⇒ skip]]〉 it is satisfied by transitions of the

form event, event[skip]. Otherwise a more detailed check is performed to determine if the

transition satisfies the contract. To ensure that the update expressions are consistent the

following check is required.

The side-condition is ` ((∃x′ : P )⇒ (∃x′ : P ′)) ∧ ((∃x′ : P ) ∧ P ′ ⇒ P ).

It permits the guard to be weakened and the update strengthened within the guard.

Currently this check is verified by inspection as it requires the evaluation of a conjecture

with quantifiers on data and this functionality is not yet supported by the model checker

(HST). The current refinement step (as well as all other refinement steps in this case study

that apply the TotEnable pattern) does not need the more detailed check to be performed

as the simpler checks are sufficient to determine that the transition satisfies the contract

(as shown below).

The contract is A10 = 〈[−′dockquay,′ deny, done]〉

The two new transitions required are dock1[s = 1] and dock2[s = 2]

The pattern checks that at least one of the transition parameters satisfies the TotEnable

contract. Checks based on syntax are performed initially. If the transition event is not in

the contract’s negated list of events and if the contract is of the form 〈[eventlist]〉 it is satis-

fied by a transition of the form event[assignmentlist]. For the first transition dock1[s = 1],

dock1 is not in the negated list of events for the contract 〈[−′dockquay,′ deny, done]〉 also

the contract is of the form 〈[eventlist]〉 and the transition is of the form, event[assignmentlist].

Therefore it is concluded that the transition satisfies the contract and the contract is re-

placed by a state machine with both new transitions dock1[s = 1] and dock2[s = 2] with

subsequent behaviour True (see Figure 7.10).

Although for this refinement step the simpler checks based on syntax suffice to de-

termine that the new transition satisfies the contract, the instantiated form of the above

side-condition, that needs to be verified by inspection for the more detailed check would

be :

` ((∃s, q1, q2 : true)⇒ (∃s, q1, q2 : (s′ == 1) ∧ (q′1 == q1) ∧ (q′2 == q2)))∧

((∃s, q1, q2 : true) ∧ (s : s′ == 1)⇒ (s, q1, q2 : true))
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Figure 7.10: TotEnable pattern applied to contract A10

8. Apply the Combine states pattern to combine the substates of A10 with contract True.

9. Apply the Conjunction elimination pattern to the state with contract A1. The Con-

junction elimination pattern is applicable if the selected component is a state of type con-

junction. This pattern can be applied to the conjunction of like diagrams and throws away

the copies. The pattern relies on inspection to determine equivalence (see Figure 7.11).

10. Apply pattern Redundant hierarchy ; the inner contract A1 is assigned to the outer

contract of the start state. The Redundant hierarchy pattern is applicable if the selected

component is a state. The pattern checks that the state has substates and no outgoing/in-

coming transitions. The pattern flattens the level of hierarchy by removing the selected

component but retaining its substates. If the selected component is a substate and a start

state, the pattern assigns the inner contract of its parent state to the outer contract of its

start state. The pattern verifies that the state has substates and no outgoing or incoming

transitions, it is itself a substate and a start state so the pattern removes the selected

component, (the redundant level of hierarchy), retains its substates and assigns the inner

contract of its parent state to the outer contract of its start state (see Figure 7.12).

205



Chapter 7: Validation and evaluation

Figure 7.11: Conjunction elimination pattern applied to state with contract A1

Figure 7.12: Redundant hierarchy pattern applied to state with contract A10
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11. Apply the If pattern to state with contract A2 to introduce two new transitions dock1

and dock2. The If pattern is applicable if the selected component is a state. The pattern

checks that the inner contract of the state is an If operator expression. The contract has

the form If eventFormula φ or If eventFormula [updateExpression] φ. EventFormula can

be a set of events, a negated set of events or the underscore character.

For each of the transitions with subsequent behaviour True, the pattern checks that

the transition event is not in the contract eventlist (or it is in the the negated contract

eventlist) or if this is not the case or there is no eventlist the side-condition verifies that

the update expression for the transition (updateExpr2) is not consistent with the contract

update expression (updateExpr1), i.e. they are disjoint and there is no overlap. The model

checker (HST) is invoked to decide if ¬(updateExpr2 ∧ updateExpr1) is tautological.

It is not necessary to perform any checks for transitions with subsequent behaviour

“φ” as if the conditions for the subsequent behaviour “φ” do not hold, then the subsequent

behaviour is True which can then be refined to “φ”. The If pattern does not permit the

introduction of transitions with subsequent behaviour False. A permitted refinement is to

weaken the update expression. If the contract is [a[x : P ]]φ, and the transition is a[x : P ′]

the proof obligation ` P ⇒ P ′ must hold for the transition to subsequently behave as φ.

We do not need to add this to the side-condition check for transitions with subsequent

behaviour of φ, as explained above, it is not necessary to perform any checks for these

transitions.

The contract is: A2 = [ ]((〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉)

y (〈−′dockquay,′ deny〉 ∧ 〈[′dockquay[: R]]〉∧

〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉 ∧ 〈[′deny[q1, q2, s : ¬R]]〉∧

〈′deny[: R]〉))

The two new transitions required are dock1[s = 1] and dock2[s = 2]

The contract A2 has the form [ ]φ, which states that all enabled transitions subsequently

behave like φ.

φ = (〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉)

y (〈−′dockquay,′ deny〉 ∧ 〈[′dockquay[: R]]〉∧

〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉 ∧ 〈[′deny[q1, q2, s : ¬R]]〉∧

〈′deny[: R]〉)

The contract is replaced by a state machine with the new transitions dock1[s = 1] and

dock2[s = 2] each with subsequent behaviour φ (see Figure 7.13).
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Figure 7.13: If pattern applied to contract A2

12. Apply the Combine states pattern to the new substates which both have contract A.

13. Apply Conjunction elimination pattern to the state with contract A1 ∧A2.

14. Apply Redundant hierarchy pattern, the inner contract is assigned to the outer contract

of the start state.

15. Apply Redundant hierarchy pattern, inner contract A is assigned to the outer contract

of the start state.

7.5.3.2 Refinement stage 2

The overall high-level process of stage 2 further refines the conjunct with contract A, in

particular the target state of the dock1 and dock2 transitions. The refinement process

introduces the ’dockquay and ’deny transitions.

16. Further refine the substate with contract A. Apply the Unfold Unless pattern. The

Unfold Unless pattern is applicable if the selected component is a state whose inner con-

tract is an Unless operator expression. The pattern checks that the contract for the

selected state has the form “φ Unless ψ” and the pattern refines the contract to “ψ” in

this instance (see Figure 7.14).

A = ((〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉)
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y (〈−′dockquay,′ deny〉 ∧ 〈[′dockquay[: R]]〉∧

〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉 ∧ 〈[′deny[q1, q2, s : ¬R]]〉∧

〈′deny[: R]〉))

φ = ((〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉)

ψ = 〈−′dockquay,′ deny〉 ∧ 〈[′dockquay[: R]]〉∧

〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉 ∧ 〈[′deny[q1, q2, s : ¬R]]〉∧

〈′deny[: R]〉

Apply the Unfold Unless pattern, contract A becomes A3.

A3 = 〈−′dockquay,′ deny〉 ∧ 〈[′dockquay[: R]]〉∧

〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉 ∧ 〈[′deny[q1, q2, s : ¬R]]〉∧

〈′deny[: R]〉

Figure 7.14: Unfold Unless pattern applied to contract A

17. Apply the Conjunction introduction pattern to the state with contract A3. This

introduces two new states one with contract A4 ∧ A5 ∧ A6 ∧ A7 and the other with

contract A8.

A4 = 〈−′dockquay,′ deny〉

A5 = 〈[′dockquay[: R]]〉

A6 = 〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉

A7 = 〈[′deny[q1, q2, s : ¬R]]〉
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A8 = 〈′deny[: R]〉

18. Apply the Conjunction introduction pattern to the state with contract A4∧A5∧A6∧

A7. This introduces two new states one with contract A4 ∧ A5 ∧ A6 and the other with

contract A7.

19. Apply the Conjunction introduction pattern to the state with contract A4∧A5∧A6.

This introduces two new states one with contracts A4 ∧ A5 and the other with contract

A6.

20. Apply the Conjunction introduction pattern to the state with contract A4∧A5. This

introduces two new states one with contract A4 and the other with contract A5.

21. Refine state with contract A4, apply the Disable pattern to introduce two new tran-

sitions ‘dockquay and ‘deny. The Disable operator 〈a1, .., an[x : P ]〉 is expressed in terms

of the If operator [a1, .., an[x : P ]]False and the If pattern is applied.

A4 = 〈−′dockquay,′ deny〉

The If pattern does not permit the introduction of transitions with subsequent behaviour

False so in this instance transitions are only introduced with subsequent behaviour True.

The pattern checks that the transition event is not in the contract eventlist (or it is in the

the negated contract eventlist) or if this is not the case or there is no eventlist, the model

checker (HST) is used to verify that the update expression for the transition input by the

user (updateExpr2) is not consistent with the contract update expression (updateExpr1).

The required new transitions are: ′dockquay[R =⇒ skip] and ′deny[!R =⇒ skip]. The

pattern confirms that the transition events are in the negated contract eventlist. The

contract is replaced by a state machine with the new transitions each with subsequent

behaviour True (see Figure 7.15).
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Figure 7.15: Disable pattern applied to contract A4

22. Refine state with contract A5, apply the TotEnable pattern to introduce two new

transitions ‘dockquay and ‘deny. The pattern checks that at least one of the transition pa-

rameters satisfies the TotEnable contract. Checks based on syntax are performed initially.

To determine if the transition satisfies the contract the transition event must be an event

included in the contract’s eventlist. If the eventFormula in the contract is a list of events,

transitions with some event from the set are possible. If the eventFormula in the contract

is a negated list of events, transitions with some event not in the set are possible. If the

eventFormula is an underscore, transitions with any event are possible. If the transition’s

event is in the contract’s eventlist and the transition’s update expression is equivalent to

the contract’s update expression then the transition satisfies the contract.

The contract is A5 = 〈[′dockquay[: R]]〉.

The required new transitions are: ′dockquay[R =⇒ skip] and ′deny[!R =⇒ skip].

The pattern checks that at least one of the transition parameters satisfies the TotEnable

contract. The first transition ′dockquay[R =⇒ skip] satisfies the TotEnable contract as
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‘dockquay is in the contract eventlist and the transition update expression is equivalent

to the contract update expression. The inner contract is replaced by a state machine

with both new transitions ′dockquay[R =⇒ skip] and ′deny[!R =⇒ skip] with subsequent

behaviour True (see Figure 7.16).

Figure 7.16: TotEnable pattern applied to contract A5

23. Apply the Conjunction elimination pattern to the state with contract A4 ∧A5.

24. Apply the Redundant hierarchy pattern to the state with contract A5. Inner contract

A4 ∧A5 is assigned to the outer contract of the start state.

25. Refine state with contract A6, apply the Disable pattern to introduce two new tran-

sitions ‘dockquay and ‘deny. The Disable operator 〈a1, .., an[x : P ]〉 is expressed in terms

of the If operator [a1, .., an[x : P ]]False and the If pattern is applied.

A6 = 〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉

The If pattern does not permit the introduction of transitions with subsequent behaviour

False so in this instance transitions are only introduced with subsequent behaviour True.

The pattern checks that the transition event is not in the contract eventlist (or it is in
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the negated contract eventlist) or if this is not the case or there is no eventlist, the model

checker (HST) is used to verify that the update expression for the transition input by the

user (updateExpr2) is not consistent with the contract update expression (updateExpr1),

i.e. the expressions are disjoint and there is no overlap. The model checker (HST) is

invoked to decide if ¬(updateExpr2 ∧ updateExpr1) is tautological.

The required new transitions are: ′dockquay[R =⇒ skip] and ′deny[!R =⇒ skip].

For the first transition ′dockquay[R =⇒ skip] the event is in the contract eventlist so

the model checker (HST) is called to verify that the update expression for the transition

[R =⇒ skip] is not consistent with the contract update expression [q1, q2, s : ¬(R∧ skip)].

The model checker (HST) confirms that ¬((R∧ skip)∧ (¬(R∧ skip))) is tautological. The

transition is added with subsequent behaviour True.

For the second transition ‘deny[!R =⇒ skip] the pattern checks and confirms that the

transition event ‘deny is not in the contract eventlist so the transition is added with

subsequent behaviour True and no further checks are required (see Figure 7.17).

Figure 7.17: Disable pattern applied to contract A6
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26. Apply the Conjunction elimination pattern to the state with contract A4 ∧A5 ∧A6.

27. Apply the Redundant hierarchy pattern to the state with contract A6. Inner contract

A4 ∧A5 ∧A6 is assigned to the outer contract of the start state.

28. Refine state with contract A7, apply the TotEnable pattern to introduce two new

transitions ‘dockquay and ‘deny. The pattern checks that at least one of the transition pa-

rameters satisfies the TotEnable contract. Checks based on syntax are performed initially.

To determine if the transition satisfies the contract the event must be an event included

in the contract’s eventlist.

If the eventFormula in the contract is a list of events, transitions with some event

from the set are possible. If the eventFormula in the contract is a negated list of events,

transitions with some event not in the set are possible. If the eventFormula is an under-

score, transitions with any event are possible. If the transition’s event is in the contract’s

eventlist and the transition’s update expression is consistent with the contract’s update

expression then the transition satisfies the contract.

It is a permitted refinement when introducing a transition to strengthen the contract’s

update expression within the guard. If the update expression in the contract places no

restrictions on the possible after values of variables so that they could be updated in

any way and the contract is of the form 〈[eventlist[G]]〉 where G is a guard and refers

only to before values for variables, it is satisfied by transitions of the form event[G],

event[G =⇒ assignmentlist], event[G =⇒ skip].

A7 = 〈[′deny[q1, q2, s : ¬R]]〉

The required new transitions are: ′dockquay[R =⇒ skip] and ′deny[!R =⇒ skip].

The pattern checks that at least one of the transition parameters satisfies the TotEnable

contract. For the second transition ′deny[!R =⇒ skip], ‘deny is in the contract eventlist.

The contract A7 says ′deny is enabled when ¬R holds and the variables can be updated in

any way. The transition says that a ′deny action is enabled when ¬R holds and the variable

values remain the same. The transition’s update expression strengthens the contract’s up-

date expression within the guard which is a permitted refinement. The transition satisfies

the contract and the contract is replaced by a state machine with both new transitions

(see Figure 7.18).
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Figure 7.18: TotEnable pattern applied to contract A7

29. Apply the Conjunction elimination pattern to the state with contract A4∧A5∧A6∧A7.

30. Apply the Redundant hierarchy pattern to the state with contract A7. Inner contract

A4 ∧A5 ∧A6 ∧A7 is assigned to the outer contract of the start state.

31. Refine state with contract A8, apply the Disable pattern to introduce two new tran-

sitions ‘dockquay and ‘deny. The Disable operator 〈a1, .., an[x : P ]〉 is expressed in terms

of the If operator [a1, .., an[x : P ]]False and the If pattern is applied.

A8 = 〈′deny[: R]〉 rewritten in terms of the If operator A8 = [′deny[: R]]False.

The If pattern does not permit the introduction of transitions with subsequent behaviour

False so in this instance transitions are only introduced with subsequent behaviour True.

The pattern checks that the transition event is not in the contract eventlist (or it is in the

the negated contract eventlist) or if this is not the case or there is no eventlist, the model

checker (HST) is used to verify that the update expression for the transition input by the

user (updateExpr2) is not consistent with the contract update expression (updateExpr1),

i.e. the update expressions are disjoint and there is no overlap. The model checker (HST)
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is invoked to decide if ¬(updateExpr2 ∧ updateExpr1) is tautological.

The required new transitions are: ′dockquay[R =⇒ skip] and ′deny[!R =⇒ skip].

For the first transition ′dockquay[R =⇒ skip] the pattern checks and confirms that the

transition event ‘dockquay is not in the contract eventlist so no further checks are required

and the transition to a state with contract True is added.

For the second transition ′deny[!R =⇒ skip], the event is in the contract eventlist so the

model checker (HST) is called to verify that the update expression for the transition is

not consistent with the contract update expression. The model checker (HST) confirms

that ¬((R ∧ skip) ∧ (¬R ∧ skip)) is tautological. The transition ′deny[!R =⇒ skip] to a

state with contract True is added (see Figure 7.19).

Figure 7.19: Disable pattern applied to contract A8

32. Apply the Conjunction elimination pattern to the state with contract A.

33. Apply the Redundant hierarchy pattern. The inner contract is assigned to the outer

contract of the start state.

34. Apply the Redundant hierarchy pattern. Inner contract A is assigned to the outer

contract of the start state (see Figure 7.20).
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Figure 7.20: Redundant hierarchy pattern applied to state with contract A3

35. Apply the Move target down and the Redundant hierarchy patterns to the state

with contract A. The Move target down pattern shifts the target state of the incoming

transition to the composite state down from the composite state to the default/initial state

of the composite. The Redundant hierarchy pattern is applicable if the selected component

is a state. The pattern checks that the state has substates and no incoming/outgoing

transitions. The pattern flattens the level of hierarchy by removing the selected component

but retaining its substates (see Figure 7.21).
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Figure 7.21: Move target down and Redundant hierarchy applied to contract A
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The overall design for the ShipReq component is shown in Figure 7.22.

Figure 7.22: The ShipReq component
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7.5.3.3 Refinement stage 3

The overall high-level process of stage 3 refines the conjunct with contract B to introduce

the dock1 and dock2 transitions.

36. Refine the conjunction state with contract B. Apply the Unfold Always pattern.

The Unfold Always pattern is applicable if the selected component is a state whose inner

contract is an Always operator expression. The pattern checks that the contract for the

selected state has the form “Always φ” and the pattern unfolds the contract to “φ And

(If ( Always φ))”.

B = �[done]((〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉)

y (〈−′dockquay,′ deny〉 ∧ 〈[′dockquay[: R]]〉∧

〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉 ∧ 〈[′deny[q1, q2, s : ¬R]]〉∧

〈′deny[: R]〉))

B becomes B1 ∧B2

B1 = [done]((〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉)

y (〈−′dockquay,′ deny〉 ∧ 〈[′dockquay[: R]]〉∧

〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉 ∧ 〈[′deny[q1, q2, s : ¬R]]〉∧

〈′deny[: R]〉))

B2 = [ ]�[done]((〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉)

y (〈−′dockquay,′ deny〉 ∧ 〈[′dockquay[: R]]〉∧

〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉 ∧ 〈[′deny[q1, q2, s : ¬R]]〉∧

〈′deny[: R]〉))

37. Apply the Conjunction introduction pattern to the state with contract B1 ∧B2.

38. Apply the If pattern to the state with contract B1 to introduce two new transitions

dock1 and dock2. The If pattern is applicable if the selected component is a state. The

pattern checks that the inner contract of the state is an If operator expression. The

contract has the form “If eventFormula φ” or “If eventFormula [updateExpression] φ”.

EventFormula can be a set of events, a negated set of events or the underscore character.

For each of the transitions with subsequent behaviour True, the pattern checks that

the transition event is not in the contract eventlist (or it is in the the negated contract

eventlist) or if this is not the case or there is no eventlist the side-condition verifies that

the update expression for the transition (updateExpr2) is not consistent with the contract

update expression (updateExpr1).
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B1 = [done]((〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉)

y (〈−′dockquay,′ deny〉 ∧ 〈[′dockquay[: R]]〉∧

〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉 ∧ 〈[′deny[q1, q2, s : ¬R]]〉∧

〈′deny[: R]〉))

The two new transitions required are: dock1[s = 1] and dock2[s = 2]. Their subsequent

behaviour will be True. The pattern checks and confirms that the event for each transition

is not in the contract eventlist. The contract is replaced by a state machine with the two

new transitions dock1[s = 1] and dock2[s = 2] (see Figure 7.23).

Figure 7.23: If pattern applied to introduce dock1 and dock2

39. Apply the If pattern to the state with contract B2 to introduce two new transitions

dock1 and dock2. The If pattern is applicable if the selected component is a state. The

pattern checks that the inner contract of the state is an If operator expression. The

contract has the form “If eventFormula φ” or “If eventFormula [updateExpression] φ”.

EventFormula can be a set of events, a negated set of events or the underscore character.

The contract is:

B2 = [ ]�[done]((〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉)

y (〈−′dockquay,′ deny〉 ∧ 〈[′dockquay[: R]]〉∧
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〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉 ∧ 〈[′deny[q1, q2, s : ¬R]]〉∧

〈′deny[: R]〉))

The two new transitions required are, dock1[s = 1] and dock2[s = 2]. The contract B2

has the form [ ]φ, all enabled transitions subsequently behave like φ.

φ = �[done]((〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉)

y (〈−′dockquay,′ deny〉 ∧ 〈[′dockquay[: R]]〉∧

〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉 ∧ 〈[′deny[q1, q2, s : ¬R]]〉∧

〈′deny[: R]〉))

The contract is replaced by a state machine with the two new transitions dock1[s = 1]

and dock2[s = 2] that subsequently behave like φ (see Figure 7.24).

Figure 7.24: If pattern applied to contract B2

40. Apply the Combine states pattern to the new substates of B1 with the same contracts.

41. Apply the Combine states pattern to the new substates of B2 with the same contracts.

42. Apply the Conjunction elimination pattern to the state with contract B1 ∧B2.

43. Apply the Redundant hierarchy pattern twice. Assigns the inner contract B of the

parent state to the outer contract of the start state.
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7.5.3.4 Refinement stage 4

The overall high-level process of stage 4 further refines the conjunct with contract B, in

particular the target state of the dock1 and dock2 transitions. The refinement process

introduces the ’dockquay and ’deny transitions. The conjunction is eliminated for the

state with contract A ∧B as the A and B conjuncts are equivalent.

44. Further refine the substate with contract B. Apply the Unfold Always pattern,

contract B becomes B1 ∧B2.

45. Apply the Conjunction introduction pattern to the state with contract B1 ∧B2.

46. Apply the If pattern to the state with contract B1 to introduce two new transitions

dockquay and deny. The If pattern is applicable if the selected component is a state. The

pattern checks that the inner contract of the state is an If operator expression. For each

of the transitions with subsequent behaviour True, the pattern checks that the transition

event is not in the contract eventlist.

B1 = [done]((〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉)

y (〈−′dockquay,′ deny〉 ∧ 〈[′dockquay[: R]]〉∧

〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉 ∧ 〈[′deny[q1, q2, s : ¬R]]〉∧

〈′deny[: R]〉))

The required new transitions are: ′dockquay[R =⇒ skip] and ′deny[!R =⇒ skip].

Their subsequent behaviour will be True. The pattern checks and confirms that the event

for each transition is not in the contract eventlist (see Figure 7.25).
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Figure 7.25: If pattern applied to contract B1

47. Apply the If pattern to the state with contract B2 to introduce two new transitions

dockquay and deny. The If pattern is applicable if the selected component is a state. The

pattern checks that the inner contract of the state is an If operator expression.

The contract is:

B2 = [ ]�[done]((〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉)

y (〈−′dockquay,′ deny〉 ∧ 〈[′dockquay[: R]]〉∧

〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉 ∧ 〈[′deny[q1, q2, s : ¬R]]〉∧

〈′deny[: R]〉))

The required new transitions are: ′dockquay[R =⇒ skip] and ′deny[!R =⇒ skip].

The contract B2 has the form [ ]φ, all enabled transitions subsequently behave like φ.

φ = �[done]((〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉)

y (〈−′dockquay,′ deny〉 ∧ 〈[′dockquay[: R]]〉∧

〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉 ∧ 〈[′deny[q1, q2, s : ¬R]]〉∧

〈′deny[: R]〉))
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The contract is replaced by a state machine with the transitions ′dockquay[R =⇒ skip]

and ′deny[!R =⇒ skip] that subsequently behave like φ (see Figure 7.26).

Figure 7.26: If pattern applied to introduce dockquay and deny

48. Apply the Conjunction elimination pattern to the state with contract B1 ∧B2.

49. Apply the Redundant hierarchy pattern. Assigns the inner contract of the parent state

to the outer contract of the start state.

50. Apply the Redundant hierarchy pattern. Assigns the inner contract B of the parent

state to the outer contract of the start state (see Figure 7.27).
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Figure 7.27: Redundant hierarchy pattern applied to state with contract B1

51. Apply the Move target down and the Redundant hierarchy patterns to the state with

contract B.
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The overall design for the ShipReq component at this stage is (see Figure 7.28):

Figure 7.28: The ShipReq component

52. Apply the Conjunction elimination pattern to the state with contract A ∧B.

53. Apply the Redundant hierarchy pattern. Assigns the inner contract A ∧ B of the

parent state to the outer contract of the start state (see Figure 7.29).
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Figure 7.29: Conjunction elimination followed by Redundant hierarchy

7.5.3.5 Refinement stage 5

The overall high-level process of stage 5 further refines the state with contract A ∧ B, in

particular the target state of the ’dockquay transition. The refinement process introduces

the done and ’docked transitions. The ’docked transition is rerouted to loop back up to

the start state.

54. Substate with contract B and incoming transition ‘dockquay is further refined. Apply

the Unfold Always pattern, B becomes B1 ∧B2

55. Apply the Conjunction introduction pattern to the state with contract B1 ∧B2.

56. Apply the If pattern to the state with contract B1 to introduce a new transition,

done.

57. Apply the If pattern to the state with contract B2 to introduce a new transition done.

58. Further refine the substate of B1 with contract A. Apply the Unfold Unless pattern.

Contract A becomes A1 ∧A2.
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59. Apply the Conjunction introduction pattern to the state with contract A1 ∧A2.

60. Apply the Conjunction introduction pattern to the state with contract A1. Introduces

two new states with contracts A9 and A10.

61. Apply the Disable pattern to the state with contract A9 to introduce the docked

transition.

62. Apply the TotEnable pattern to the state with contract A10 to introduce the docked

transition.

63. Apply the Conjunction elimination pattern to the state with contract A1.

64. Apply pattern Redundant hierarchy, inner contract A1 is assigned to the outer contract

of the start state.

65. Apply the If pattern to state with contract A2 to introduce the docked transition.

66. Apply the Conjunction elimination pattern to the state with contract A1 ∧A2.

67. Apply the Redundant hierarchy pattern. Assigns the inner contract of the parent state

to the outer contract of the start state.

68. Apply the Redundant hierarchy pattern. Assigns the inner contract A of the parent

state to the outer contract of the start state.

69. Further refine the substate of B2 that is the target of the done transition with contract

B. Apply the Unfold Always pattern, contract B becomes B1 ∧B2.

70. Apply the Conjunction introduction pattern to the state with contract B1 ∧B2.

71. Apply the If pattern to the state with contract B1 to introduce the docked transition.

72. Apply the If pattern to the state with contract B2 to introduce the docked transition.

73. Apply the Conjunction elimination pattern to the state with contractB1∧B2 retaining

substate with contract B2.

74. Apply the Redundant hierarchy pattern. Assigns the inner contract of the parent state

to the outer contract of the start state.

75. Apply the Redundant hierarchy pattern. Assigns the inner contract B of the parent

state to the outer contract of the start state.

76. Apply the Move target down and the Redundant hierarchy patterns to both the target

states of the done transitions.

77. Apply the Conjunction elimination pattern to the state with contract B1 ∧B2.

78. Apply the Redundant hierarchy pattern. Assigns the inner contract of the parent state

to the outer contract of the start state.

79. Apply the Redundant hierarchy pattern. Assigns the inner contract B of the parent
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state to the outer contract of the start state.

80. Apply the Move target down and the Redundant hierarchy patterns to the target state

of the dockquay transition (see Figure 7.30).

Figure 7.30: Move target down and the Redundant hierarchy patterns applied

81. Apply the Reroute pattern to the target of the docked transition. This reroutes the

docked transition to the start state which has the same contract.
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The Reroute pattern is applicable if the selected component is a state. The pattern

checks that the state has incoming transitions but no outgoing transitions or substates.

The pattern removes the selected state and reroutes its incoming transitions to another

state, chosen by the user, whose outer contract is equivalent to the inner contract of

the selected state. The pattern checks the contracts are syntactically equivalent (see

Figure 7.31).

Figure 7.31: Reroute pattern applied to target of docked transition
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Figure 7.32 shows the required final design for the parallel components ShipReq and Quay.
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`docked[skip] 

ShipReq 
Quay 

dockquay[skip] 

`done[skip] 

 

 

 

 

 

`deny[!R==>skip] 

 

dock2[s=2] 

click1[(q1==0)==>q1=s] 

 

click2[((q1!=0) && (q2==0))==>q2=s] 

Figure 7.32: Required design of the parallel components

7.5.4 Summary of patterns applied to refine the ShipReq component

This section presents a summary of the patterns applied to refine the open contract for

ShipReq to a CoSta state machine design. The first part of the design process for the

ShipReq component has been described above. The refinement of the ShipReq component

took more than two hundred steps in total. Appendix C gives details of the full refinement.

1 A AND B AND C AND D AND E

2 A AND B AND C AND D AND E Conjunction Introduction

3 A AND B AND C AND D Conjunction Introduction

4 A AND B AND C Conjunction Introduction

5 A AND B Conjunction Introduction

6 A Unfold Unless

7 A Conjunction Introduction

8 A1 Conjunction Introduction
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9 A9 Disable //Introduce dock1 & dock2

10 A9 Combine States

11 A10 TotEnable //Introduce dock1 & dock2

12 A10 Combine States

13 A1 Conjunction Elimination

14 A1 Redundant Hierarchy

15 A2 If //Introduce dock1 & dock2

16 A2 Combine States

17 A Conjunction Elimination

18 A Redundant Hierarchy

19 A Redundant Hierarchy

20 A-leaf

21 A Unfold Unless

22 A3

23 A4 AND A5 AND A6 AND A7 AND A8 Conjunction Introduction

24 A4 AND A5 AND A6 AND A7 Conjunction Introduction

25 A4 AND A5 AND A6 Conjunction Introduction

26 A4 AND A5 Conjunction Introduction

27 A4 Disable //Introduce ‘dockquay & ‘deny

28 A5 TotEnable //Introduce ‘dockquay & ‘deny

29 A4 AND A5 Conjunction Elimination

30 A4 AND A5 Redundant Hierarchy

31 A6 Disable //Introduce ‘dockquay & ‘deny

32 A4 AND A5 AND A6 Conjunction Elimination

33 A4 AND A5 AND A6 Redundant Hierarchy

34 A7 TotEnable //Introduce ‘dockquay & ‘deny

35 A4 AND A5 AND A6 AND A7 Conjunction Elimination

36 A4 AND A5 AND A6 AND A7 Redundant Hierarchy

37 A8 Disable //Introduce ‘dockquay & ‘deny

38 A Conjunction Elimination

39 A Redundant Hierarchy

40 A Redundant Hierarchy

41 A-leaf Move Target Down & Redundant Hierarchy

42 B Always Unfold

43 B Conjunction Introduction

44 B1 If //Introduce dock1 & dock2

45 B1 Combine States

46 B2 If //Introduce dock1 & dock2

47 B2 Combine States

48 B Conjunction Elimination

49 B Redundant Hierarchy

50 B Redundant Hierarchy

51 B-leaf

52 B Always Unfold

53 B Conjunction Introduction

54 B1 If //Introduce ‘dockquay & ‘deny

55 B2 If //Introduce ‘dockquay & ‘deny

56 B Conjunction Elimination

57 B Redundant Hierarchy

58 B Redundant Hierarchy

59 B-leaf Move Target Down & Redundant Hierarchy

60 A AND B Conjunction Elimination

61 A AND B Redundant Hierarchy

62 A AND B-leaf //‘dockquay

63 B Always Unfold

64 B Conjunction Introduction

65 B1 If //Introduce done transition

66 B1-leaf

67 A Unfold Unless
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68 A Conjunction Introduction

69 A1 Conjunction Introduction

70 A9 Disable //Introduce ‘docked

71 A10 TotEnable //Introduce ‘docked

72 A1 Conjunction Elimination

73 A1 Redundant Hierarchy

74 A2 If //Introduce ‘docked

75 A Conjunction Elimination

76 A Redundant Hierarchy

77 A Redundant Hierarchy

78 B1-leaf Move Target Down & Redundant Hierarchy

79 B2 If //Introduce done transition

80 B2-leaf

81 B Always Unfold

82 B Conjunction Introduction

83 B1 If //Introduce ‘docked

84 B2 If //Introduce ‘docked

85 B Conjunction Elimination

86 B Redundant Hierarchy

87 B Redundant Hierarchy

88 B2-leaf Move Target Down & Redundant Hierarchy

89 B Conjunction Elimination

90 B Redundant Hierarchy

91 B Redundant Hierarchy

92 A AND B-leaf Move Target Down & Redundant Hierarchy

93 A AND B Reroute

94 C Always Unfold

95 C Conjunction Introduction

96 C1 If //Introduce dock1 & dock2

97 C1 Combine States

98 C2 If //Introduce dock1 & dock2

99 C2 Combine States

100 C Conjunction Elimination

101 C Redundant Hierarchy

102 C Redundant Hierarchy

103 C-leaf

104 C Always Unfold

105 C Conjunction Introduction

106 C1 If //Introduce ‘dockquay & ‘deny

107 C2 If //Introduce ‘dockquay & ‘deny

108 C Conjunction Elimination

109 C Redundant Hierarchy

110 C Redundant Hierarchy

111 C-leaf Move Target Down & Redundant Hierarchy

112 C-leaf //‘dockquay

113 C Always Unfold

114 C Conjunction Introduction

115 C1 If //Introduce done

116 C2 If //Introduce done

117 C Conjunction Elimination

118 C Redundant Hierarchy

119 C Redundant Hierarchy

120 C-leaf Move Target Down & Redundant Hierarchy

121 C-leaf //done

122 C Always Unfold

123 C Conjunction Introduction

124 C1 If //Introduce ‘docked

125 C2 If //Introduce ‘docked

126 C Conjunction Elimination
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127 C Redundant Hierarchy

128 C Redundant Hierarchy

129 C-leaf Move Target Down & Redundant Hierarchy

130 C Reroute

131 A AND B AND C Conjunction Elimination

132 A AND B AND C Redundant Hierarchy

133 D Always Unfold

134 D Conjunction Introduction

135 D1 If //Introduce dock1 & dock2

136 D1 Combine States

137 D2 If //Introduce dock1 & dock2

138 D2 Combine States

139 D Conjunction Elimination

140 D Redundant Hierarchy

141 D Redundant Hierarchy

142 D-leaf

143 D Always Unfold

144 D Conjunction Introduction

145 D1 If //Introduce ‘dockquay ‘deny

146 D1-leaf (‘dockquay)

147 D3 Unfold Unless

148 D4

149 D5 AND D6 AND D7 Conjunction Introduction

150 D5 AND D6 Conjunction Introduction

151 D5 Disable //Introduce done

152 D6 TotEnable //Introduce done

153 D5 AND D6 Conjunction Elimination

154 D5 AND D6 Redundant Hierarchy

155 D7 Disable //Introduce done

156 D3 Conjunction Elimination

157 D3 Redundant Hierarchy

158 D3 Redundant Hierarchy

159 D1-leaf Move Target Down & Redundant Hierarchy

160 D2 If //Introduce ‘dockquay & ‘deny

161 D2-leaf

162 D Always Unfold

163 D Conjunction Introduction

164 D1 If //Introduce done

165 D2 If //Introduce done

166 D Conjunction Elimination

167 D Redundant Hierarchy

168 D Redundant Hierarchy

169 D2-leaf Move Target Down & Redundant Hierarhy

170 D Conjunction Elimination

171 D Redundant Hierarchy

172 D Redundant Hierarchy

173 D-leaf Move Target Down & Redundant Hierarchy

174 D-leaf (done)

175 D Always Unfold

176 D Conjunction Introduction

177 D1 If //Introduce ‘docked

178 D2 If //Introduce ‘docked

179 D Conjunction Elimination

180 D Redundant Hierarchy

181 D Redundant Hierarchy

182 D-leaf Move Target Down & Redundant Hierarchy

183 D Reroute

184 A AND B AND C AND D Conjunction Elimination

185 A AND B AND C AND D Redundant Hierarchy
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186 E Always Unfold

187 E Conjunction Introduction

188 E1 Disable //Introduce dock1 & dock2

189 E1 Combine States

190 E2 If //Introduce dock1 & dock2

191 E2 Combine States

192 E Conjunction Elimination

193 E Redundant Hierarchy

194 E Redundant Hierarchy

195 E-leaf

196 E Always Unfold

197 E Conjunction Introduction

198 E1 Disable //Introduce ‘dockquay & ‘deny

199 E2 If //Introduce ‘dockquay & ‘deny

200 E Conjunction Elimination

201 E Redundant Hierarchy

202 E Redundant Hierarchy

203 E-leaf Move Target Down & Redundant Hierarchy

204 E-leaf (‘dockquay)

205 E Always Unfold

206 E Conjunction Introduction

207 E1 Disable //Introduce done

208 E2 If //Introduce done

209 E Conjunction Elimination

210 E Redundant Hierarchy

211 E Redundant Hierarchy

212 E-leaf Move Target Down & Redundant Hierarchy

213 E-leaf (done)

214 E Always Unfold

215 E Conjunction Introduction

216 E1 Disable //Introduce ‘docked

217 E2 If //Introduce ‘docked

218 E Conjunction Elimination

219 E Redundant Hierarchy

220 E Redundant Hierarchy

221 E-leaf Move Target Down & Redundant Hierarchy

222 E Reroute

223 A AND B AND C AND D AND E Conjunction Elimination

224 A AND B AND C AND D AND E Redundant Hierarchy

225 A AND B AND C AND D AND E (deny) Reroute

Listing 7.1: Patterns applied to refine the ShipReq contract to a design

7.6 Evaluation of results

This section evaluates the results of the case study to indicate the strengths and weaknesses

of the patterns and the design process. The purpose of the case study is to gauge the

viability and methodological usefulness of the refinement and refactoring patterns and

design method for Contractual State Machines. Overall aims of the research are for a

rigorous design process for statecharts to enable construction of models which support

abstraction and the systematic and stepwise introduction of detail.
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Each refinement or refactoring step has been expressed as a pattern in terms of model

transformations. Software tools have been implemented to automate the design process

with an emphasis on usability. The case study illustrates an application of the refinement

and refactoring patterns to give us empirical confidence that the patterns are correct and

applicable to the design of a system. The case study determines the practicality of the

approach and suitability of the patterns. The criteria for evaluating the patterns and

design strategy include utility, coverage, completeness, correctness and consistency.

7.6.1 Utility

The utility criteria concerns the utility of the patterns themselves, utility of the pattern

catalogue as a whole, and practicality and effectiveness of the tool support and design

strategy. Patterns were defined in Chapters 4 and 5 where arguments were presented

to show why each pattern is valuable in terms of proof reduction and/or methodological

utility. The case study demonstrates that patterns and the design strategy support the

top-down, stepwise, component-based design of a program from a contract to a detailed

operational design that is guaranteed to preserve the properties of the original specification.

The case study develops the design through pattern application where each step permits

the gradual introduction of more specific details about the behaviour of the system, by

introducing design constructs and reducing nondeterminism.

Patterns reduce the overall proof/automated checking process into a sequence of steps

requiring considerably less proof effort to discharge them. Patterns deal with specific

applications of a refinement theory, and thus reduce the demonstration of correctness to

showing that a specific side-condition is valid rather than performing a full refinement

check. Simplifying proof burden reduces the required levels of resources (time to compute,

memory requirements). In the case of a refinement check the algorithm may not succeed

(as it requires too much memory or time to compute). More practically, when diagram

components are analysed to enable and disable the applicable patterns, time constraints

apply and it may not be practical to decide deeper semantic constraints.

The pattern catalogue is compact and succinct. The catalogue has a core set of spe-

cific patterns. A specific pattern, with respect to a more general pattern, is a pattern

constrained for use in less situations, usually with a simpler side-condition which reduces

the proof burden. These patterns perform simple refinement and refactoring steps and

are thus easy to understand and apply. The specific patterns are augmented with some
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general rules that are there in a supporting rather than an essential role should the spe-

cific patterns not cover what is required. As the size of the pattern catalogue increases it

will become more important to explore ways in which it could be structured to assist the

engineer in finding patterns to use.

The case study achieved the final design through application of the core patterns only,

(the most complex side-conditions involved verifying conjectures supplied as predicates on

the data variables to be proven using HST), the general rules (that perform full refinement

checks) were not required. Applying fine-grained patterns however in full detail could be

expensive. Compound patterns may be effective in reducing the number of design steps

required. For example a compound pattern could be created to remove a redundant

transition as an alternative transition exists and thus simplify a design. The compound

pattern could consist of the sequential composition of a pattern to Strengthen a transition

guard to false followed by a pattern to Remove a transition with a false guard. Compound

patterns are discussed further in Chapter 8, section 8.3.2.

The catalogue is succinct and avoids an excessive choice of patterns that can be applied

to substructures of a model to achieve a particular result. At each step in the refinement

process it was obvious which pattern to apply to achieve the desired model, as typically

only one pattern was applicable to the part of the system selected for the type of trans-

formation required. After the engineer has chosen part of the design to elaborate further,

if more than one pattern is applicable the engineer selects the pattern to perform the

required model transformation (such as introducing transitions or flattening hierarchy).

Software tools have been developed that include a graphical editor for Contractual

State Machines and support for the repository of refinement and refactoring patterns

and their application. The software tools further reduce the development and proof ef-

fort during the refinement of a design through automating the model transformations

and the discharge of side-conditions and integration of the software with model checking

technology. Automation and patterns greatly reduced development and proof effort over

comparable approaches such as formal proof and thus improved usability. The case study

demonstrated that the tools are practical and they have the advantage of speed and ac-

curacy when compared to proof by hand. The time and effort required to work through

the pilot versions of the case study by hand, (while the tool was still being developed)

was approximately reduced by half, once the software was available. Although familiarity

with the languages and refinement relations had an impact, a speed up of 50% using the
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tools is significant. Development by hand was slower in some places (due to it being con-

ducted manually) but maybe faster in others as it was possible to miss out some steps by

informally grouping them into compound patterns intuitively.

7.6.2 Completeness

The research presented in this thesis is concerned with the practicability of refinement

rather than its completeness. The thesis does not seek a completeness result and it has

been acknowledged that the refinement and refactoring patterns are not complete. The

formal underpinning of the language is not yet mature enough to achieve a formal proof

of completeness. The completeness criteria discussed here concerns coverage of transfor-

mations and ensures that the catalogue consists of a comprehensive set of patterns for

the common types of refinement or refactoring that are frequently required during the

stepwise design of a system. General patterns are also included in the catalogue should

the specific patterns not cover what is required.

The case study demonstrated that a contract could express high-level properties of

a design (e.g. safety properties) and abstract functional behaviour, and patterns could

support a top-down design process from a contract to a detailed operational design. The

case study showed that the final design could be achieved through application of the

core patterns only. The general patterns, that conduct a full refinement check, were not

required. Patterns cover all operators of the language and there were no instances of

missing patterns during the case study for transformations that were not covered by the

existing core patterns within the catalogue. No additional patterns needed to be added to

the catalogue. As yet no patterns have been removed from the catalogue but some patterns

were not required in the case study, (such as Remove transition with a false guard, and

Move source up). The case study also demonstrated applicability of the patterns to the

design problem. The coverage of required transformations by the core patterns went some

way towards showing that the patterns are a complete and minimal set. Complete, as

all required refinements and refactorings to achieve the required design were covered by

the specific patterns; and minimal in the sense that there was no ambiguity as to which

pattern to apply to the design at a particular step to obtain the desired model.
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7.6.3 Soundness

An essential check is to ensure that the refinement method is sound, i.e. that it doesn’t

result in programs that are not compliant with their specifications. Refinement steps must

be correct and result only in consistent designs that are valid with respect to the semantics.

The soundness check establishes the feasibility of applying the proposed refinement and

refactoring patterns.

Ideally a fully formal argument of correctness for the patterns would be provided.

However, priorities (the patterns themselves) and the practical difficulties of concurrent

research meant this was not possible. An alternative approach would have been to provide

an empirical argument, e.g. use the model checker (HST) to show each instance of applying

a pattern was correct. Unfortunately this was not possible either as implementation of

the model checking algorithms was not complete.

A strong argument that the patterns are correct is that they have been inspected by

peers, including supervisors, those with expertise internal to the department, collaborators

and peer reviewers of the publication. They have been used experimentally in the case

study, which gives us empirical confidence that they are correct. Use of the patterns on

the case study did not produce false positives (a proven but bad design, by misapplication

of the rules) or false negatives (correct designs that are not provable). There is further

work required to formally prove the soundness and completeness of the refinement and

refactoring steps.

7.6.4 Weaknesses

The case study demonstrated the patterns and method were viable for achieving a suc-

cessful result, (the patterns were complete enough to get from a specification to a design)

and that the tools worked well. Refinement is a relatively complex process, the excessive

number of models involved during the design of a system may be considered a weakness.

It can be seen from the case study that applying patterns to transform contracts/designs

at the primitive level i.e. using only the simplest (axiomatic) patterns may result in many

design steps.

It may be argued that patterns are not very practical for designing systems as they

are at a relatively low level and perform only simple refinement and refactoring steps.

To reduce the number of design steps required and improve practicality of the approach a

possible solution is to define patterns for larger design steps, e.g compound patterns which
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would have more engineering value. This provides an important agenda for extending the

work. It can be observed from the case study that the application of patterns was also to

some extent repetitive. Commonly occurring pattern structures were evident during the

case study. It would save effort to find a way of automating them, this is discussed in

Chapter 8. Further case studies of larger scope will be required to test the scalability of

the approach as the language and pattern catalogue develops.

Open contracts provide the engineer with the ability to express high-level properties

of a design (e.g. safety properties) or to abstract functional behaviour which must be

preserved by the development. Patterns support a top-down design process from an open

contract to a detailed operational design that is guaranteed to preserve the properties of

the original specification. It may be argued however that even for a fairly simple system

it is difficult to express high-level properties and abstract functional behaviour with the

contract language in a clear and uncomplicated manner where it is easy to see that the

contracts are obviously correct.

7.7 Conclusions

The case study demonstrated that a contract could express high-level properties of a

design (e.g. safety properties) and abstract functional behaviour. Patterns supported a

practical top-down design process from a contract to a detailed operational design that

maintained consistency between designs. The case study illustrated that the effective tool

support/method can be the basis of an automated refinement process providing rigour but

not potentially at the cost of practicality.

In this chapter the refinement and refactoring patterns are successfully applied in

practice to a design example. The case study provided some evidence that the patterns

were applicable to the problem and complete enough to refine an abstract specification

of a system into a concrete design. The tools were effective and practical and reduced

design time when compared to proof by hand. The case study was also used to analyse

the expressiveness of the language and thus supported the work of the group as a whole.

Drawbacks were the verbosity of the languages, and the fastidiousness of having to

apply many steps. Compound patterns may be a possible solution to reduce the number

of design steps. The case study has shown proof of concept of the use of patterns/MDE in

the formal development of visual design languages. The case study has identified the need

for further work, such as compound patterns and some further research for the languages
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and their formal underpinning and the tool support.
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Chapter 8

Conclusions and further work

8.1 Introduction

This chapter will summarise the conclusions of the research and make proposals for further

work. The extent to which the research objectives (presented in chapter 3) have been met

and the thesis hypothesis addressed is discussed. Finally the chapter concludes with a

discussion of possible future work to improve or complement this research.

The thesis has presented a rigorous, model-based and tool supported approach for

building reactive systems. The approach is based on an extension to state machines, al-

lowing mixed declarative and operational specifications. The engineering process involves

application of refinement and refactoring patterns, a catalogue of which has been devel-

oped, and implemented using update-in-place transformation technology. The process and

use of the extended language was thoroughly demonstrated in the case study.

The rest of this chapter is organised as follows: Section 8.2 assesses how well the

thesis objectives and hypothesis have been addressed. Section 8.3 explores new research

challenges which lead on from the work presented in this thesis. Section 8.4 summarises

conclusions and the contribution of the thesis.

8.2 Review findings

This section summarises the ways in which the research for this thesis has contributed

to the research field and the extent to which the hypothesis/aims of the thesis have been

fulfilled. The motivation and rationale behind the thesis proposition were discussed in

Chapters 1 and 2. Chapter 2 gave an overview of the research area, discussing the current
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state of practice and an analysis of closely related research for this thesis leading to an

identification of the remaining open problems for the research area.

Recall from chapters 1 and 2 that a wider acceptance of formal methods within industry

has been hindered for many reasons; these include usability and scalability issues [3,

4, 35, 46, 95]. Semi-formal languages are considered to be intuitive but generally lack

support for a systematic refinement process. Statecharts, for example, have no rigorous

process for constructing models which support abstraction and the systematic and stepwise

introduction of detail.

Related research so far has considered the stepwise refinement of concurrent systems

[51] and refinement calculi for formal languages for concurrent systems [217]. Research

by [94] [242] [222] [206] and [253] has concerned refactorings for state machines. Refinement

transformations for variants of state machines have also been proposed [148] [166] [221]

[216]. Previous research has considered pattern-based approaches to state machine design

[133] [222] [121]. Research has been conducted into a refinement calculus for state machines

[87–89] and refinement patterns that allow the reduction of nondeterminism and support

verifiable top-down development of state diagrams [218].

Notably, in previous research, the languages of use have typically not been heteroge-

neous, and did not consider data or shared variables. Specifically they did not integrate

contracts with state machines, and also did not provide refinement steps to refine a high-

level abstract contract to an operational state machine design. Although some previous

research has proposed a formal refinement calculus [221], refinement/refactoring patterns

in terms of model transformations have not been considered. Additionally there is an

absence of tool support for pattern application and verification of refinement/refactoring

steps.

Chapter 2 identified a number of open problems. They included the importance of

a graphical specification/design language for safety-critical, concurrent, reactive systems

with an underlying formal theory that supports refinement with techniques for abstraction

and the ability to express both functional behaviour and high-level properties. In addi-

tion, supported by a set of refinement and refactoring patterns that enable designs to be

correctly constructed in a stepwise fashion with software tools to automate the design pro-

cess. The research hypothesis proposed in Chapter 3 (and restated below) incrementally

improves on the state-of-the-art by addressing the above open research problems.
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Research hypothesis

We can identify for Contractual State Machines, a comprehensive set of refinement and

refactoring patterns that ensure consistency between designs and enable the refinement of

an abstract contract (that specifies high-level properties) to a fully specified concrete design

(that preserves the high-level properties). The aim is to ensure the completeness, correct-

ness, utility and consistency of the patterns. Furthermore we can express each refinement

or refactoring step as a pattern, in terms of model transformations. We can automate the

systematic engineering process for Contractual State Machines by implementing software

with an emphasis on usability.

Current reactive systems engineering practice provides limited systematic support for

an approach like that proposed in the thesis hypothesis and objectives, to refine an abstract

specification to a concrete state machine model. With reference to the thesis proposition

and aims, the ways in which this research meets the objectives will be discussed next. The

objectives of the thesis are summarised in the table below.

Number Objective

01 Identify a comprehensive set of refinement and refactoring patterns for

CoSta to support the top-down, stepwise design of a system and preserve

the functionality of the original specification.

02 Specify the refinement and refactoring steps as update-in-place model

transformations (patterns).

03 Implement software to support a repository of refinement and refactoring

patterns and their application (to validate side-conditions and perform

model transformations) during the refinement of a design.

04 Further validate the hypothesis by conducting a case study.

Table 8.1: Thesis objectives

Chapters 4 and 5 address objectives 01 and 02. They present a set of refinement and

refactoring patterns expressed as model transformations for Contractual State Machines

that resolve design choices or reduce nondeterminism to support a top-down design process

from a contract to a CoSta state machine design. Chapter 6 addresses objectives 02 and

03. Software has been implemented to support a repository of patterns (expressed as

update-in-place model transformations) and their application to validate side-conditions

and perform model transformations. The case study in Chapter 7 addresses objective 04
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to further validate the hypothesis.

An aim of objective 01 is to ensure the completeness of the patterns which concerns

coverage of transformations for the common types of refinement or refactoring that are

frequently required during the stepwise design of a system. The thesis addresses this as

follows.

The case study in Chapter 7 demonstrated applicability of the patterns to the design

problem. An abstract contract was refined to a fully elaborated state machine model using

only the refinement and refactoring patterns in the catalogue (via the tool support). The

coverage of required transformations by the core patterns went some way towards showing

that the patterns are a complete and minimal set. They are complete in the sense that

all necessary refinements/refactorings to achieve the required design were covered by the

patterns; and minimal in the sense that there was no ambiguity as to which pattern to

apply to the design at a particular step to obtain the desired model.

An aim of objectives 01, 02 and 03 was for the refinement and refactoring patterns

to ensure consistency between designs and preserve the functionality of the original spec-

ification. Contracts express formal properties that describe the behaviour of the system

under development and refinement and refactoring patterns guarantee that the properties

are satisfied as the system evolves. This is achieved by adding rigour to the process of in-

troducing design detail, through the use of model transformations to implement patterns.

The patterns presented in Chapters 4 and 5 are implemented as update-in-place model

transformations (in Chapter 6) that preserve correctness of the models that are produced

throughout the development process to prevent the inadvertent introduction of mistakes

and omissions. Additionally the patterns maintain desired properties between designs by

validating constraints. These range from simpler syntax-based checks to more complex

side-conditions (e.g relating to conditions/actions on data) that require the model checker

(HST) to discharge them.

A strong argument that the patterns are correct is that they have been inspected by

peers and used experimentally on a case study, which gives us empirical confidence that

they are correct. Correctness is also indicated by familiarity/similarity with patterns from

related research. Informally it has been checked for each pattern that the refinement or

refactoring step preserves meaning by comparing the semantic interpretation of the target

model with that of the source model and ensuring that the ready sets do not change and

new non-determinism is not introduced. Of course formal proofs would be helpful; this is
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future work.

The research for this thesis has successfully addressed and demonstrated the viability

of the proposals in the thesis hypothesis. An important outcome from the case study was

the identification of existing limitations and how these might be addressed. Although the

case study showed that the concept worked (and the hypothesis is viable), it highlighted

the fact that a design process based only on the application of basic patterns is not very

tractable for the engineer as it requires too many design steps to be manageable.

The work presented in this thesis has gone a considerable way towards demonstrating

proof of concept for the proposed method. However, further development will be necessary

before the approach can be applied to a full scale safety-critical software project. Refine-

ment and refactoring patterns successfully embody and capture the strengths of a rigorous

model-driven approach for the design of concurrent, reactive systems; but some improve-

ment is needed in order to scale the method to large and complex software systems. The

next section gives suggestions for further work that is now appropriate.

8.3 Further work

This section discusses future work to improve or complement the research in this thesis.

Although this thesis has gone a considerable way to providing proof of concept, much

remains to be done and an interesting agenda of research can be envisaged. There are

several potential courses for furthering the research presented in this thesis, some of which

are discussed in this section. Making progress in the areas outlined below will produce a

combined approach which is more efficient and complete.

8.3.1 Extend the pattern catalogue

Further research could be conducted to extend the pattern catalogue. This could be

achieved in several ways, for instance, by identifying more patterns for parallel states

and hierarchy. There are three main approaches that could be adopted for patterns for

hierarchy. A new hierarchy operator could be introduced into the contract language. With

the current contract notation it is not possible to design an outer level of hierarchy with

transitions and then design inner substates. To support this a richer contract notation

could be specified to describe behaviour within nested levels of hierarchy.

Another approach could be to define state machine to state machine patterns for
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hierarchy, e.g. Introduce hierarchy and Flatten hierarchy patterns. With this approach

hierarchy is only permitted in designs at the state machine level when all contracts have

been fully refined. This however will lead to large state spaces, rendering designs difficult to

understand and use during the part of the design process that does not permit hierarchical

abstraction. An alternative approach is to modify the existing patterns for hierarchy. The

continuation behaviour of a composite state would be specified by a contract that is the

conjunction of all the contracts from the substates within the composite whose behaviour

has not yet been specified.

Patterns for parallel composition could also be defined, for example, to introduce (or

remove) orthogonality by replacing a sequential (or orthogonal) design with an orthogonal

(or non-orthogonal) equivalent. The pattern catalogue could be extended in other ways

for example by systematically investigating different refinement choices for the existing

patterns and deriving new patterns based on these. Additionally, certain types of patterns

could be researched, such as general patterns that integrate behavioural model checking

further into the pattern technology by having very general side-conditions, for example,

based on a refinement check. These patterns might be invoked to eliminate certain forms

of redundancy.

There may also be potential in exploiting the duality of contracts, by interpreting

contracts as their characteristic processes (rather than the temporal specification they

characterise). It would then be possible to offer multi-target transformations, where the

user chooses one of several valid refinements satisfying a contract, i.e. Contractual State

Machines that are a mixture of diagramming elements and further contracts. The user

would supply the number of transitions into the future they wish to go and the tool would

offer them a selection of viable targets.

There is a trade-off to negotiate here. An increase in the number of transitions taken

into account when proposing potential targets will make more progress with the design in

a single step. This may help to reduce the overall number of design steps required and

thus streamline the design process. On the other hand it could lead to greater complexity

for the design step, with more potential targets being possible, that the user will have

to navigate and select from, in order to proceed. Further work is required to investigate

practical solutions to manage this trade-off.
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8.3.2 Compound patterns

The case study demonstrated that the concept of refinement and refactoring patterns to

embody and capture the strengths of a rigorous model-driven approach for the design of

concurrent, reactive systems was successful. A conclusion of the case study however was

that a refinement process that is based on the application of only primitive, core patterns

can become prohibitive for the engineer as it may require too many steps. There are

several complementary directions that could be developed to improve practicability such

as compound patterns and these are discussed next.

The purpose of compound patterns is to make the design process more structured

and reduce the need for an excessive number of fine-grained refinement/refactoring steps.

Compound patterns permit more control over the size of the refinement/refactoring steps

and can be used to simplify the development. Compound patterns could be constructed by

sequencing primitive patterns. There are instances where the same sequences of patterns

are repeatedly required during the design process. These are candidates for compound

patterns which capture frequently used large steps in terms of trusted atomic steps, leading

to fewer design steps and enabling their reuse to make the design process more tractable

for the engineer.

Examples of potential compound patterns for Contractual State Machines.

Name: Flatten hierarchy

Type: Refactoring

Rationale: The purpose of this pattern is to remove a level of hierarchy.

Constraints: The pattern is applicable to a composite state with substates.

Parameters: A composite state.

Transformation: This is a compound pattern consisting of the sequential composition

of the following patterns, Move source down, Move target down, Remove a composite

superstate. The composite parent state is removed to flatten a level of hierarchy leaving

the set of substates that were grouped within it.

Name: Introduce hierarchy

Type: Refactoring

Rationale: The purpose of this pattern is to cluster states and aggregate state transitions

having the same labels and target states.
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Constraints: The applicability constraint restricts application to a group of states having

the same parent state and an identical set of outgoing transitions, (the transitions have

the same labels and the same target state).

Parameters: A set of states.

Transformation: This is a compound pattern consisting of the sequential composition

of the following patterns, Create composite superstate, Move source up, Move target up.

The set of states are grouped together into a superstate.

Diagram:
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Figure 8.1: Introduce hierarchy
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Name: Remove redundant transition, as an alternative transition exists.

Type: Refinement.

Rationale: The purpose of the pattern is to simplify a design by removing transitions

that are redundant.

Constraints: It must be possible to strengthen the guard of the transition to False.

Parameters: A transition.

Transformation: This is a compound pattern consisting of the sequential composition

of the following patterns, Strengthen guard to False followed by Remove transition with a

False guard. The transition is removed from the model.

Introduce hierarchy and Remove hierarchy are compound refactoring steps for state

machines found in the literature. A common sequence of patterns to be applied during the

case study is the application of an Unfold pattern that creates a contract with conjuncts,

followed by the Conjunction introduction pattern, then the If or TotEnable patterns are

applied to the conjuncts. This is then followed by the Conjunction elimination and Re-

dundant hierarchy patterns. A more generic sequence of patterns evident in the case study

consists of applying repetitions of Unfold Always terminating with the application of the

Reroute pattern.

Further research could be conducted to identify candidates for new compound pat-

terns. The aim also would be for the user to specify their own compound patterns. The

correctness of a compound pattern is guaranteed subject to the correctness of its com-

ponent patterns. However, the number of sequences of patterns increases exponentially

with the length of the sequence. This may lead to an unmanageably large number of

compound patterns. Therefore further research is required to explore different ways of

defining and invoking compound patterns and establishing more appropriate ways of us-

ing the compound pattern concept to reduce the number of compound patterns that need

to be defined.

One promising approach, which reflects a common usage scenario as evidenced in the

case study, is to partition compound patterns into a preprocessing step, a post-processing

step and an intermediate step, which is where another sequence of patterns or compound

pattern is applied. This structure supports a nesting of patterns where the outer nest-

ings (preprocessing and post-processing steps) are predefined sequences of patterns. The

intermediate step allows the user to select the next sequence of patterns.
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A common scenario in the case study was to introduce a conjunction of states (pre-

processing step), refine each into designs (intermediate step), then at the end the process

is wrapped up by recombining the conjunction states (post-processing step).

The post-processing step may consist of a sequence of patterns that finalise the initial

sequence of compounds in reverse order one by one until the transformation is complete.

The user could guide the finalisation steps by confirming each one has completed suc-

cessfully. User interaction could be incorporated into compound patterns in a number of

different ways. For example, compounds could have an optional post-process which the

user needs to confirm or a set of alternative processes from which the user selects.

8.3.3 Prove correctness of patterns

There is further work required to prove the correctness of patterns and validate them

against their formal semantics. Proving the correctness of a pattern is not the only way

of ensuring it is safe to use however. For example, the model checker could verify the

patterns on each application in lieu of a single, upfront, correctness proof.

8.3.4 Structuring the pattern space

An interesting related area of research concerns novel approaches to structuring the pattern

space in a more intuitive and navigable way, to aid engineers when querying the pattern

catalogue during the design process. For example to support pattern matching on the

patterns in the catalogue, to answer questions such as:

1. Which patterns transform a model like model1 ?

2. Which patterns transform any model into a model like model1 ?

3. Which patterns transform a model like model1 into a model like model2 ?

8.3.5 Tactics

Further research could be conducted to investigate automating pattern application in a

way akin to tactics in theorem provers. Tactics are strategies used in proof, they decide the

order to apply inference rules to discharge a proof obligation based on its structure [186].

In a similar vein a tactic for designing Contractual State Machines could suggest which

patterns would be most appropriate to apply given the form of the contract and form

of the required Contractual State Machine design. The intention is that by identifying
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these strategies, documenting them as tactics and using them as single transformation

rules would reduce the time and effort required during the design process. Tactics could

prioritise the order in which patterns are considered applicable, building a goal-oriented

layer on top of the existing pattern technology. An automated design engine which ap-

plies patterns repeatedly to a contract in order to produce a design based on up front

information provided by the user would greatly reduce effort.

8.3.6 Extend software tools

Another possible direction for further work would be to improve scalability of the approach.

One of the scalability issues is to allow the kinds of composite patterns discussed in the

previous section to be implemented. The ability to combine existing transformations into

new composite ones would be essential to support real developments. Future work would

therefore include providing the infrastructure to enable the user to compose arbitrary

patterns in this way and also devising an initial catalogue of composite patterns based on

experience with the case study.

The software developed for this research could be extended in a number of other ways

with additional functionality to implement new tools, most importantly for simulation.

New tools could also be added to offer more control over the engineering process and

support features such as versioning and differencing of models. More elaborate support

for undo and redo transformations as part of the pattern application tool would permit

different development paths to be explored. Other features that could also be included

in the future are support for traceability and change propagation, to maintain an explicit

link between source and target models, and a history of transformations. One benefit of

being disciplined in design is that the traceability relationships from design to requirement

should be easier to identify and use.

8.4 Summary

The thesis has demonstrated that a model-based approach to refinement of designs for

reactive systems is feasible in practice. Closely related research to-date has achieved

refinement calculi for restricted forms of state machines with an underlying formal the-

ory [166,218,221]. The research in this thesis is an incremental improvement on what has

been achieved so far as it considers refinement for a heterogeneous, data-rich language
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that combines contracts with state machines. Our approach provides the engineer with

the ability, (through contracts), to express high-level properties of a design (e.g. safety

properties) and abstract functional behaviour. Patterns support a top-down design pro-

cess from a contract to a detailed operational design that is guaranteed to preserve the

properties of the original specification. This research provides refinement and refactoring

patterns from contracts to contracts and contracts to mixed designs as well as between

state machine designs for the data-rich, shared variable language.

The research in this thesis is an evolution on research to-date by expressing refinemen-

t/refactoring steps as patterns in terms of model transformations. Patterns lead to the

possibility of further reducing the development and proof effort through automating the

model transformations and the discharge of side-conditions and integration of the software

with model checking technology.
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Implementation

This appendix contains examples of the code for the software developed for this thesis

and described in chapter 6 to implement the tool support for patterns and the design of

Contractual State Machines. The full set of code for the design tool and wizards can be

found at https://svn.cs.york.ac.uk/extsvn/sosym/costa-wizards.

A.1 Contractual State Machine metamodel

The Emfatic metamodel description for the contractual state machine language extended

with Eugenia annotations.

1 @namespace(uri="sm1", prefix="sm1")

2 @gmf(foo="bar")

3 package sm1;

4 import "platform:/resource/sm1/model/tp.ecore";

5 import "platform:/resource/sm1/model/cp.ecore";

6 enum StateType {

7 sequentialState;

8 parallelState;

9 conjState;

10 }

11 @gmf.diagram(foo="bar")

12 class Statemachine {

13 !ordered val State[*] states;

14 !ordered val Transition[*] transitions;

15 }

16 @gmf.node(border.style = "dash")

17 class conjState extends State {

18 }

19 @gmf.node(label = "name, innercontract", label.pattern = "{0}:{1}",

20 label.icon = "false")

21 class State {

22 attr String name;

23 attr StateType type;

24 attr String innercontract;

25 derived volatile transient ref cp.Formula parsedinnercontract;
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26 @gmf.affixed(foo="bar")

27 !ordered val Outercontract outercontract;

28 @gmf.affixed(foo="bar")

29 !ordered val DefaultTransition[*] defaulttransitions;

30 !ordered ref Transition[*]#source outgoing;

31 !ordered ref Transition[*]#target incoming;

32 @gmf.compartment(foo="bar")

33 !ordered val State[*]#parent substates;

34 !ordered ref State#substates parent;

35 }

36 @gmf.node(size="50,29", label="contract", label.icon="false")

37 class Outercontract {

38 attr String contract;

39 derived volatile transient ref cp.Formula parsedoutercontract;

40 @gmf.affixed(foo="bar")

41 !ordered val DefaultTransition[*] defaulttransitions;

42 }

43 @gmf.node(figure="sm1.figures.ArrowFigure", size="20,20", label.icon="false",

44 label="label", label.placement="external")

45 class DefaultTransition {

46 attr String label;

47 }

48 @gmf.link(label="label", source="source", target="target",

49 target.decoration="arrow", width = "1", color = "0,0,255")

50 class Transition {

51 attr String label;

52 derived volatile transient ref tp.TransitionExpression parsedtransition;

53 !ordered ref State#outgoing source;

54 !ordered ref State#incoming target;

55 }

Listing A.1: Metamodel specification in Emfatic with Eugenia annotations - file sm1.emf

A.2 EMFtext parser for the contract language

The Emfatic description required by EMFText of the Ecore metamodel for the abstract

syntax of the CoSta contract language.

1 @namespace(uri="cp", prefix="cp")

2 package cp;

3 abstract class Formula {

4 }

5 class Constant extends Predicate {

6 attr Constants value;

7 }

8 class ConConstant extends Formula {

9 attr Constants value;

10 }

11 class ConAnd extends Formula {

12 val Formula[+] children;

13 }

14 class ConOr extends Formula {

15 val Formula[+] children;

16 }

17 class Unless extends Formula {

18 val Formula[+] children;
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19 }

20 class Always extends Formula {

21 val Formula[1] body;

22 }

23 class If extends Formula {

24 val EventsAndData[1] eventsanddata;

25 val Formula[1] body;

26 }

27 class TotEnable extends Formula {

28 val EventsAndData[1] eventsanddata;

29 }

30 class ExEnable extends Formula {

31 val EventsAndData[1] eventsanddata;

32 }

33 class Disable extends Formula {

34 val EventsAndData[1] eventsanddata;

35 }

36 class ConNested extends Formula {

37 val Formula[1] body;

38 }

39 class Diamond extends Formula {

40 attr Integer k;

41 val Formula[1] body;

42 }

43 abstract class EventsAndData {

44 }

45 class EventFormula {

46 }

47 class NegatedEventList extends EventFormula {

48 val Event[*] events;

49 }

50 class Underscore extends EventFormula {

51 }

52 class EventList extends EventFormula {

53 val Event[*] events;

54 }

55 class Event {

56 }

57 class UnPrimedEvent extends Event {

58 attr String name;

59 }

60 class PrimedEvent extends Event {

61 attr String name;

62 }

63 class EventsAndDataAssignment extends EventsAndData {

64 val EventFormula[1] eventformula;

65 val AssignmentList[1] assignmentlist;

66 }

67 class EventsAndDataEvents extends EventsAndData {

68 val EventFormula[1] eventformula;

69 }

70 class EventsAndDataPredicateAssignment extends EventsAndData {

71 val EventFormula[1] eventformula;

72 val Predicate[1] predicate;

73 val AssignmentList[1] assignmentlist;

74 }

75 class EventsAndDataPredicate extends EventsAndData {

76 val EventFormula[1] eventformula;

77 val Predicate[1] predicate;

257



Appendix A: Implementation

78 }

79 class EventsAndDataPredicateVars extends EventsAndData {

80 val EventFormula[1] eventformula;

81 val VariableList[1] variablelist;

82 val Predicate[1] predicate;

83 }

84 class VariableList {

85 val Variable[*] variables;

86 }

87 abstract class Expression {

88 }

89 class Additive extends Expression {

90 val Expression[1] left;

91 attr String operator;

92 val Expression[1] right;

93 }

94 class Multiplicative extends Expression {

95 val Expression[1] left;

96 attr String operator;

97 val Expression[1] right;

98 }

99 class Negation extends Expression {

100 attr String[1] operator;

101 val Expression[1] body;

102 }

103 class IntegerLiteralExp extends Expression {

104 attr int intValue;

105 }

106 class RealLiteralExp extends Expression {

107 attr float floatValue;

108 }

109 class BracketExp extends Expression {

110 val Expression body;

111 }

112 class ExpVariable extends Expression {

113 }

114 class Variable {

115 }

116 class PrimedVariable extends Variable {

117 attr String name;

118 }

119 class UnPrimedVariable extends Variable {

120 attr String name;

121 }

122 class PrimedExpVariable extends ExpVariable {

123 attr String name;

124 }

125 class UnPrimedExpVariable extends ExpVariable {

126 attr String name;

127 }

128 class Assignment {

129 val Variable[1] variable;

130 val Expression[1] expression;

131 }

132 class AssignmentList {

133 }

134 class Assignments extends AssignmentList {

135 val Assignment[*] assignments;

136 }
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137 class Skip extends AssignmentList {

138 }

139 enum Constants {

140 TRUE;

141 FALSE;

142 }

143 abstract class Predicate {

144 }

145 class And extends Predicate {

146 val Predicate[+] children;

147 }

148 class Or extends Predicate {

149 val Predicate[+] children;

150 }

151 class Nested extends Predicate {

152 val Predicate[1] body;

153 }

154 class PredNegation extends Predicate {

155 val Predicate[1] body;

156 }

157 class Relation extends Predicate {

158 val Expression[1] left;

159 val Expression[1] right;

160 attr String operator;

161 }

Listing A.2: EMFtext Emfatic specification for abstract syntax of CoSta contract language

- file cp.emf

The concrete syntax specification required by EMFtext for the CoSta contract lan-

guage.

1 SYNTAXDEF cp

2 FOR <cp>

3 START Formula

4

5 OPTIONS {

6 forceEOF = "true";

7 reloadGeneratorModel = "true";

8 generateCodeFromGeneratorModel = "true";

9 tokenspace = "1";

10 usePredefinedTokens = "false";

11 }

12

13 TOKENS {

14 DEFINE CHAR $(’a’..’z’)(’a’..’z’|’0’..’9’)*$;

15 DEFINE CAP $(’A’..’Z’)(’A’..’Z’)*$;

16 DEFINE ADDITIVE_OPERATOR $ ’+’ | ’-’$;

17 DEFINE MULTIPLICATIVE_OPERATOR $ ’*’ | ’/’ $;

18 DEFINE REL_OP $(’<’|’<=’|’==’|’!=’|’>’|’>=’)$;

19 DEFINE INTEGER_LITERAL $(’1’..’9’) (’0’..’9’)* | ’0’$;

20 DEFINE REAL_LITERAL $ ((’1’..’9’) (’0’..’9’)* | ’0’) ’.’ (’0’..’9’)+ ((’e’|’E’) (’

+’|’-’)? (’0’..’9’)*)?$;

21 DEFINE WHITESPACE $(’ ’|’\t’|’\f’)$;

22 DEFINE LINEBREAKS $(’\r\n’|’\r’|’\n’)$;

23 }

24

25 RULES {
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26 @Operator(type="binary_left_associative",weight="2", superclass="Formula")

27 ConAnd ::= children "And" children;

28

29 @Operator(type="binary_left_associative",weight="1", superclass="Formula")

30 ConOr ::= children "Or" children;

31

32 @Operator(type="binary_left_associative",weight="1", superclass="Formula")

33 Unless ::= children "Unless" children;

34

35 @Operator(type="unary_prefix", weight="3", superclass="Formula")

36 If ::= "If" eventsanddata body;

37

38 @Operator(type="primitive", weight="5", superclass="Formula")

39 ConNested ::= "(" body ")";

40

41 @Operator(type="unary_prefix", weight="4", superclass="Formula")

42 Always ::= "Always" body;

43

44 @Operator(type="unary_prefix", weight="3", superclass="Formula")

45 Diamond ::= "Diamond" k[INTEGER_LITERAL] body;

46

47 @Operator(type="primitive", weight="5", superclass="Formula")

48 TotEnable ::= "TotEnable" eventsanddata;

49

50 @Operator(type="primitive", weight="5", superclass="Formula")

51 ExEnable ::= "Ex" eventsanddata;

52

53 @Operator(type="primitive", weight="5", superclass="Formula")

54 Disable ::= "Dis" eventsanddata;

55

56 @Operator(type="primitive", weight="5", superclass="Formula")

57 ConConstant ::= value[CAP];

58

59 EventsAndDataPredicate ::= eventformula "[" predicate "]";

60 EventsAndDataPredicateVars ::= eventformula "[" variablelist ":" predicate "]";

61 EventsAndDataPredicateAssignment ::= eventformula "[" predicate "==>"

assignmentlist "]";

62 EventsAndDataAssignment ::= eventformula "[" assignmentlist "]";

63 EventsAndDataEvents ::= eventformula;

64 NegatedEventList ::= ""events ("," events)*;

65 Underscore ::= "_";

66 EventList ::= events ("," events)*;

67 UnPrimedEvent ::= name[CHAR];

68 PrimedEvent ::= "’"name[CHAR];

69

70 @Operator(type="binary_left_associative",weight="2", superclass="Predicate")

71 And ::= children "&&" children;

72

73 @Operator(type="binary_left_associative",weight="1", superclass="Predicate")

74 Or ::= children "||" children;

75

76 @Operator(type="unary_prefix", weight="3", superclass="Predicate")

77 PredNegation ::= "!" body;

78

79 @Operator(type="primitive", weight="4", superclass="Predicate")

80 Nested ::= "(" body ")";

81

82 @Operator(type="primitive", weight="4", superclass="Predicate")

83 Constant ::= value[CAP];
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84

85 @Operator(type="primitive", weight="4", superclass="Predicate")

86 Relation ::= left operator[REL_OP] right;

87

88 VariableList ::= (variables)? ("," variables)*;

89 Skip ::= "skip";

90 Assignments ::= assignments ("," assignments)*;

91 Assignment ::= variable "=" expression;

92

93 @Operator(type="binary_left_associative", weight="1", superclass="Expression")

94 Additive ::= left (operator[ADDITIVE_OPERATOR]) right;

95

96 @Operator(type="binary_left_associative", weight="2", superclass="Expression")

97 Multiplicative ::= left operator[MULTIPLICATIVE_OPERATOR] right;

98

99 @Operator(type="unary_prefix", weight="3", superclass="Expression")

100 Negation ::= operator[ADDITIVE_OPERATOR] body;

101

102 @Operator(type="primitive", weight="4", superclass="Expression")

103 BracketExp ::= "(" body ")";

104

105 @Operator(type="primitive", weight="4", superclass="Expression")

106 IntegerLiteralExp ::= intValue[INTEGER_LITERAL];

107

108 @Operator(type="primitive", weight="4", superclass="Expression")

109 RealLiteralExp ::= floatValue[REAL_LITERAL];

110

111 @Operator(type="primitive", weight="4", superclass="Expression")

112 UnPrimedExpVariable ::= name[CHAR];

113

114 @Operator(type="primitive", weight="4", superclass="Expression")

115 PrimedExpVariable ::= name[CHAR]"’";

116

117 PrimedVariable ::= name[CHAR]"’";

118 UnPrimedVariable ::= name[CHAR];

119 }

Listing A.3: EMFtext CS specification for the concrete syntax description of the CoSta

contract language - file cp.cs

A.3 EMFtext parser for the transition label language

The concrete syntax definition in EMFtext for the CoSta transition label language.

1 SYNTAXDEF tp

2 FOR <tp>

3 START TransitionExpression

4

5 OPTIONS {

6 forceEOF = "true";

7 reloadGeneratorModel = "true";

8 generateCodeFromGeneratorModel = "true";

9 tokenspace = "1";

10 usePredefinedTokens = "false";

11 }

12
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13 TOKENS {

14 DEFINE CHAR $(’a’..’z’)(’a’..’z’|’0’..’9’)*$;

15 DEFINE CAP $(’A’..’Z’)(’A’..’Z’)*$;

16 DEFINE ADDITIVE_OPERATOR $ ’+’ | ’-’$;

17 DEFINE MULTIPLICATIVE_OPERATOR $ ’*’ | ’/’ $;

18 DEFINE REL_OP $(’<’|’<=’|’==’|’!=’|’>’|’>=’)$;

19 DEFINE INTEGER_LITERAL $(’1’..’9’) (’0’..’9’)* | ’0’$;

20 DEFINE REAL_LITERAL $ ((’1’..’9’) (’0’..’9’)* | ’0’) ’.’ (’0’..’9’)+ ((’e’|’E’) (’

+’|’-’)? (’0’..’9’)*)?$;

21 DEFINE WHITESPACE $(’ ’|’\t’|’\f’)$;

22 DEFINE LINEBREAKS $(’\r\n’|’\r’|’\n’)$;

23 }

24

25 RULES {

26 TransitionExprPredicate ::= action "[" predicate "]";

27 TransitionExprPredicateVars ::= action "[" variablelist ":" predicate "]";

28 TransitionExprPredicateAssignment ::= action "[" predicate "==>" assignmentlist

"]";

29 TransitionExprAssignment ::= action "[" assignmentlist "]";

30 TransitionExpression ::= action;

31 UnPrimedAction ::= name[CHAR];

32 PrimedAction ::= "’"name[CHAR];

33 TauAction ::= "tau";

34

35 @Operator(type="binary_left_associative",weight="2", superclass="TPredicate")t

36 TAnd ::= children "&&" children;

37

38 @Operator(type="binary_left_associative",weight="1", superclass="TPredicate")

39 TOr ::= children "||" children;

40

41 @Operator(type="unary_prefix", weight="3", superclass="TPredicate")

42 TPredNegation ::= "!" body;

43

44 @Operator(type="primitive", weight="4", superclass="TPredicate")

45 TNested ::= "(" body ")";

46

47 @Operator(type="primitive", weight="4", superclass="TPredicate")

48 TConstant ::= value[CAP];

49

50 @Operator(type="primitive", weight="4", superclass="TPredicate")

51 TRelation ::= left operator[REL_OP] right;

52

53 TVariableList ::= (variables)? ("," variables)*;

54 TSkip ::= "skip";

55 TAssignments ::= assignments ("," assignments)*;

56 TAssignment ::= variable "=" expression;

57

58 @Operator(type="binary_left_associative", weight="1", superclass="TExpression")

59 TAdditive ::= left (operator[ADDITIVE_OPERATOR]) right;

60

61 @Operator(type="binary_left_associative", weight="2", superclass="TExpression")

62 TMultiplicative ::= left operator[MULTIPLICATIVE_OPERATOR] right;

63

64 @Operator(type="unary_prefix", weight="3", superclass="TExpression")

65 TNegation ::= operator[ADDITIVE_OPERATOR] body;

66

67 @Operator(type="primitive", weight="4", superclass="TExpression")

68 TBracketExp ::= "(" body ")";

69
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70 @Operator(type="primitive", weight="4", superclass="TExpression")

71 TIntegerLiteralExp ::= intValue[INTEGER_LITERAL];

72

73 @Operator(type="primitive", weight="4", superclass="TExpression")

74 TRealLiteralExp ::= floatValue[REAL_LITERAL];

75

76 @Operator(type="primitive", weight="4", superclass="TExpression")

77 TUnPrimedExpVariable ::= name[CHAR];

78

79 @Operator(type="primitive", weight="4", superclass="TExpression")

80 TPrimedExpVariable ::= name[CHAR]"’";

81

82 TPrimedVariable ::= name[CHAR]"’";

83 TUnPrimedVariable ::= name[CHAR];

84

85 }

Listing A.4: EMFtext CS specification for the transition label language - file tp.cs

The Emfatic abstract syntax description required by EMFtext for the CoSta transition

label language.

1 @namespace(uri="tp", prefix="tp")

2 package tp;

3 class TransitionExpression {

4 val Action[1] action;

5 }

6 class Action {

7 }

8 class UnPrimedAction extends Action {

9 attr String name;

10 }

11 class PrimedAction extends Action {

12 attr String name;

13 }

14 class TauAction extends Action {

15 }

16 class TransitionExprAssignment extends TransitionExpression {

17 val TAssignmentList[1] assignmentlist;

18 }

19 class TransitionExprPredicateAssignment extends TransitionExpression {

20 val TAssignmentList[1] assignmentlist;

21 val TPredicate[1] predicate;

22 }

23 class TransitionExprPredicate extends TransitionExpression {

24 val TPredicate[1] predicate;

25 }

26 class TransitionExprPredicateVars extends TransitionExpression {

27 val TPredicate[1] predicate;

28 val TVariableList[1] variablelist;

29 }

30 class TVariableList {

31 val TVariable[*] variables;

32 }

33 abstract class TExpression {

34 }

35 class TAdditive extends TExpression {

36 val TExpression[1] left;
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37 attr String operator;

38 val TExpression[1] right;

39 }

40 class TMultiplicative extends TExpression {

41 val TExpression[1] left;

42 attr String operator;

43 val TExpression[1] right;

44 }

45 class TNegation extends TExpression {

46 attr String[1] operator;

47 val TExpression[1] body;

48 }

49 class TIntegerLiteralExp extends TExpression {

50 attr int intValue;

51 }

52 class TRealLiteralExp extends TExpression {

53 attr float floatValue;

54 }

55 class TBracketExp extends TExpression {

56 val TExpression body;

57 }

58 class TExpVariable extends TExpression {

59 }

60 class TVariable {

61 }

62 class TPrimedVariable extends TVariable {

63 attr String name;

64 }

65 class TUnPrimedVariable extends TVariable {

66 attr String name;

67 }

68 class TPrimedExpVariable extends TExpVariable {

69 attr String name;

70 }

71 class TUnPrimedExpVariable extends TExpVariable {

72 attr String name;

73 }

74 class TAssignment {

75 val TVariable[1] variable;

76 val TExpression[1] expression;

77 }

78 class TAssignmentList {

79 }

80 class TAssignments extends TAssignmentList {

81 val TAssignment[*] assignments;

82 }

83 class TSkip extends TAssignmentList {

84 }

85 enum TConstants {

86 TRUE;

87 FALSE;

88 }

89 class TConstant extends TPredicate {

90 attr TConstants value;

91 }

92 abstract class TPredicate {

93 }

94 class TAnd extends TPredicate {

95 val TPredicate[+] children;
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96 }

97 class TOr extends TPredicate {

98 val TPredicate[+] children;

99 }

100 class TNested extends TPredicate {

101 val TPredicate[1] body;

102 }

103 class TPredNegation extends TPredicate {

104 val TPredicate[1] body;

105 }

106 class TRelation extends TPredicate {

107 val TExpression[1] left;

108 val TExpression[1] right;

109 attr String operator;

110 }

Listing A.5: EMFtext Emfatic specification for the CoSta transition label language - file

tp.emf
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A.4 EWL wizards for refinement patterns

This appendix contains some examples of the EWL wizards that implement the refinement

and refactoring patterns presented in Chapters 4 and 5. The model checker supports eval-

uation of quantifier-free conjectures on data. Patterns with more complex side-conditions

(e.g the TotEnable pattern may require a conjecture with quantifiers to be verified) may

rely on inspection for verification as the functionality required to implement these patterns

fully was not available via the model-checker.

A.4.1 UnfoldAlways wizard

The UnfoldAlways wizard is applicable if the selected component is a state whose inner

contract is an Always operator expression. The pattern checks that the contract for the

selected state has the form “Always φ” and the wizard unfolds the contract to “φ And (If

(Always φ))”. The EMFtext generated parser is invoked and parses the inner contract to

an EMF model. Relevant parts of the EMF model are converted to a textual representation

using the EMFtext generated printer for the contract language and used to construct a

new contract of the required form. A new substate is created and the new contract is

assigned to its inner contract.

1 wizard wizUnfoldAlways {

2 guard : self.isKindOf(State)

3 and (self.parsedinnercontract.isTypeOf(Always)

4 or (self.parsedinnercontract.isTypeOf(ConNested) and self.parsedinnercontract.body.

isTypeOf(Always)))

5 title : "Unfold always"

6 do {

7 --declare a reference to the Epsilon tool, printlanguageTool, then can call any of

its routines.

8 var printlanguageTool : new Native("printlanguage.printlanguageTool");

9 var newContract:String;

10 var pc1:Formula;

11 var pc2:Formula;

12 var substate:State;

13 if (UserInput.confirm(’Unfold always’ + ’ ?’, true))

14 {

15 pc1 := self.parsedinnercontract;

16 while (pc1.isTypeOf(ConNested))

17 pc1 := pc1.body;

18 pc2 := pc1.body;

19 while (pc2.isTypeOf(ConNested))

20 pc2 := pc2.body;

21 --calls the routine from the Epsilon tool to generate a textual representation of

the

22 --contract language from its EMF model

23 newContract:="(".concat(printlanguageTool.printcp(pc2));

24 newContract:=
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25 newContract.concat(") And (If _ (").concat(printlanguageTool.printcp(pc1).

concat("))"));

26 substate := State.createInstance();

27 substate.innercontract := newContract;

28 self.substates.add(substate);

29 forceRefresh();

30 }

31 }

32 }

33 operation forceRefresh() {

34 var s : new State;

35 Statemachine.all.first.states.add(s);

36 delete s;

37 }

Listing A.6: Wizard to unfold the Always operator

A.4.2 TotEnable wizard

The TotEnable wizard refines a TotEnable contract to a state machine model. The TotEn-

able wizard is applicable if the selected component is a state. The pattern checks that the

state’s inner contract has the form “TotEnable eventFormula” or “TotEnable eventFor-

mula [updateExpression]”. EventFormula can be a set of events, a negated set of events

or the underscore character.

The wizard introduces a set of substates for the selected component consisting of a

start state with outgoing transitions created by the user that each target a new state

with the inner contract True. The wizard prompts the user for the new transitions. The

pattern checks that the set of events provided as parameters and the set of enabled events

in the contract are not disjoint.

The state’s inner contract is parsed to an EMF model. Similarly the transition labels

that are input by the user are parsed to EMF models by the EMFtext generated parser

for the transition language. The parse trees permit easier manipulation and comparison

of the contract and transition labels.

Permitted refinements to the update expression are to weaken the guard or strengthen

the update within the guard. If no update expression is specified in the contract, new

transitions with some update from some source data state are possible. If the update is

defined as skip for the contract, transitions must ensure values remain the same and no

update is possible. If an update expression [x : P ] is specified in the contract, transitions

with an update [x : P ′] consistent with and from a source state satisfying [x : P ] are

possible. The pattern checks that at least one of the transition parameters satisfies the

TotEnable contract.
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Checks based on syntax are performed initially. To determine if the transition satisfies

the contract the event must be an event included in the contract’s eventlist. If the event-

Formula in the contract is a list of events, transitions with some event from the set are

possible. If the eventFormula in the contract is a negated list of events, transitions with

some event not in the set are possible. If the eventFormula is an underscore transitions

with any event are possible. If the transition’s event is in the contract’s eventlist and the

transition’s update expression is syntactically equivalent to the contract’s update expres-

sion then the transition satisfies the contract. If the contract is of the form 〈[eventlist]〉

it is satisfied by transitions of the form event, event[assignmentlist], event[skip]. If the

contract has the form 〈[eventlist[skip]]〉 or 〈[eventlist[G =⇒ skip]]〉 it is satisfied by tran-

sitions of the form event, event[skip]. Otherwise a more detailed check is required to

determine if the transition satisfies the contract. To ensure that the update expressions

are consistent the following check is required.

The side-condition is ` ((∃x′ : P )⇒ (∃x′ : P ′)) ∧ ((∃x′ : P ) ∧ P ′ ⇒ P )

Currently this check is verified by inspection as it requires the evaluation of a conjecture

with quantifiers on data and this functionality is not yet supported by HST.

1 wizard wizEnable {

2 guard : self.isKindOf(State)

3 and (self.parsedinnercontract.isTypeOf(TotEnable)

4 or (self.parsedinnercontract.isTypeOf(ConNested) and self.parsedinnercontract.body.

isTypeOf(TotEnable)))

5 title : "Refine contract TotEnable to state machine"

6 do {

7 var s1:String;

8 var parameters:Bag;

9 var events:Bag;

10 var pc:Formula;

11 var te:TransitionExpression;

12 var len1:Integer;

13 var i:Integer;

14 var j:Integer;

15 var found:Boolean;

16 var inupdate:Boolean;

17 var event:String;

18 var intersect:Boolean;

19 var substate1 : new State;

20 var substate2 : State;

21 var defaulttransition : new DefaultTransition;

22 var transition : Transition;

23 var sm : Statemachine;

24 var updateExpr1 : String;

25 var updateExpr2 : String;

26 var allvars:Bag;

27 if (UserInput.confirm(’Refine contract Enable to stga’ + ’ ?’, true))

28 {

29 pc := self.parsedinnercontract;

30 while (pc.isTypeOf(ConNested))
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31 pc := pc.body;

32 if (pc.eventsanddata.eventformula.isTypeOf(EventList) or

33 pc.eventsanddata.eventformula.isTypeOf(NegatedEventList))

34 {

35 for (e1 in pc.eventsanddata.eventformula.events)

36 {

37 if (e1.isTypeOf(PrimedEvent)) events.add(’\’’+e1.name);

38 else events.add(e1.name);

39 }

40 }

41 s1 := UserInput.prompt(’Enter required transitions’);

42 --Create bag of parameters

43 --length gives the number of characters

44 len1 := s1.length();

45 i := 0;

46 j:= 0;

47 --strings are indexed from 0 to length-1

48 while (i < len1)

49 {

50 found:=false;

51 inupdate:=false;

52 while ((j < len1) and not found)

53 {

54 if ((s1.charAt(j).toString == ",") and (not inupdate)) found := true;

55 if (s1.charAt(j).toString == "[") inupdate := true;

56 if (s1.charAt(j).toString == "]") inupdate := false;

57 if (not found) j := j + 1;

58 }

59 --substring(i,j) will give characters from and including i to j-1

60 if (j==len1) event := s1.substring(i).remBlanks();

61 else event := s1.substring(i,j).remBlanks();

62 if (found) j := j+1;

63 i := j;

64 parameters.add(event);

65 }

66 if (parameters.size() > 0)

67 {

68 updateExpr1 := pc.eventsanddata.data2String().strip();

69 updateExpr1 := updateExpr1.contract2CommonFormat(allvars, pc);

70 updateExpr1 := "(".concat(updateExpr1.substring(1,updateExpr1.length()-1)).

concat(")");

71 --Check the intersection of events and pararameters is not the empty list

72 intersect := false;

73 for (e1 in parameters)

74 {

75 updateExpr2 := e1.updexp().strip();

76 te := e1.parseTransitionExpression();

77 updateExpr2 := updateExpr2.parameter2CommonFormat(allvars, te);

78 updateExpr2 := "(".concat(updateExpr2.substring(1,updateExpr2.length()-1)).

concat(")");

79 if (pc.eventsanddata.eventformula.isTypeOf(Underscore))

80 {

81 if ((updateExpr2 == updateExpr1) or

82 (pc.eventsanddata.isTypeOf(EventsAndDataEvents) and

83 (te.isTypeOf(TransitionExpression) or

84 (te.isTypeOf(TransitionExprAssignment) and te.assignmentlist.isTypeOf(

TAssignments)) or

85 (te.isTypeOf(TransitionExprAssignment) and te.assignmentlist.isTypeOf(

TSkip)))) or
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86 ((pc.eventsanddata.isTypeOf(EventsAndDataAssignment) and pc.eventsanddata

.assignmentlist.isTypeOf(Skip)) and

87 (te.isTypeOf(TransitionExpression) or

88 (te.isTypeOf(TransitionExprAssignment) and te.assignmentlist.isTypeOf(

TSkip)))) or

89 ((pc.eventsanddata.isTypeOf(EventsAndDataPredicateAssignment) and pc.

eventsanddata.assignmentlist.isTypeOf(Skip)) and

90 (te.isTypeOf(TransitionExpression) or

91 (te.isTypeOf(TransitionExprAssignment) and te.assignmentlist.isTypeOf(

TSkip)))) or

92 acceptProofObligation(updateExpr1.implicitGuard(allvars),updateExpr2.

implicitGuard(allvars),updateExpr1,updateExpr2))

93 {

94 intersect := true;

95 }

96 }

97 for (e2 in events)

98 {

99 if ((pc.eventsanddata.eventformula.isTypeOf(EventList) and (e1.strip().ev()

== e2)) or

100 (pc.eventsanddata.eventformula.isTypeOf(NegatedEventList) and (e1.strip()

.ev() <> e2)))

101 {

102 if ((updateExpr2 == updateExpr1) or

103 (pc.eventsanddata.isTypeOf(EventsAndDataEvents) and

104 (te.isTypeOf(TransitionExpression) or

105 (te.isTypeOf(TransitionExprAssignment) and te.assignmentlist.isTypeOf(

TAssignments)) or

106 (te.isTypeOf(TransitionExprAssignment) and te.assignmentlist.isTypeOf(

TSkip)))) or

107 ((pc.eventsanddata.isTypeOf(EventsAndDataAssignment) and pc.eventsanddata

.assignmentlist.isTypeOf(Skip)) and

108 (te.isTypeOf(TransitionExpression) or

109 (te.isTypeOf(TransitionExprAssignment) and te.assignmentlist.isTypeOf(

TSkip)))) or

110 ((pc.eventsanddata.isTypeOf(EventsAndDataPredicateAssignment) and pc.

eventsanddata.assignmentlist.isTypeOf(Skip)) and

111 (te.isTypeOf(TransitionExpression) or

112 (te.isTypeOf(TransitionExprAssignment) and te.assignmentlist.isTypeOf(

TSkip)))) or

113 acceptProofObligation(updateExpr1.implicitGuard(allvars),updateExpr2.

implicitGuard(allvars),updateExpr1,updateExpr2))

114 {

115 intersect := true;

116 break;

117 }

118 }

119 }

120 if (intersect) break;

121 }

122 if (intersect)

123 {

124 sm := Statemachine.allInstances().first;

125 self.substates.add(substate1);

126 defaulttransition.label := " ";

127 substate1.defaulttransitions.add(defaulttransition);

128 for (e3 in parameters)

129 {

130 substate2 := State.createInstance();

270



A.4 EWL wizards for refinement patterns

131 substate2.innercontract := "TRUE";

132 self.substates.add(substate2);

133 transition := Transition.createInstance();

134 transition.source := substate1;

135 transition.target := substate2;

136 transition.label := e3.toString();

137 sm.transitions.add(transition);

138 }

139 forceRefresh();

140 }

141 else UserInput.inform("Parameters must contain at least one event from the

Enable contract");

142 }

143 }

144 }

145 }

146 operation TExpression texpression2String():String

147 {

148 if (self.isTypeOf(TIntegerLiteralExp)) return(self.intValue.toString());

149 else if (self.isTypeOf(TRealLiteralExp)) return(self.floatValue.toString());

150 else if (self.isKindOf(TExpVariable)) return(self.texpvariable2String());

151 else if (self.isTypeOf(TAdditive) or self.isTypeOf(TMultiplicative))

152 return(self.left.texpression2String().concat(self.operator).concat(self.right.

texpression2String()));

153 else if (self.isTypeOf(TNegation)) return(self.operator.concat(self.body.

texpression2String()));

154 else if (self.isTypeOf(TBracketExp)) return(’(’.concat(self.body.

texpression2String().concat(’)’)));

155 else return("");

156 }

157 operation TVariable tvariable2String():String

158 {

159 if (self.isTypeOf(TPrimedVariable))

160 return(self.name.concat(’\’’));

161 else if (self.isTypeOf(TUnPrimedVariable)) return(self.name);

162 else return("");

163 }

164 operation String updexp():String

165 {

166 var s1:String;

167 var i:Integer;

168 var found:Boolean;

169 i:=0;

170 found:=false;

171 while ((i < self.length()) and (not found))

172 {

173 if (self.charAt(i).toString == "[") found:=true;

174 if (not found) i:=i+1;

175 }

176 if (found) s1 := self.substring(i);

177 else s1 := "";

178 return s1;

179 }

180 operation String implicitGuard(allvars):String

181 {

182 var len1:Integer;

183 var i:Integer;

184 var j:Integer;

185 var variable:String;
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186 var vars:Bag;

187 var found:Boolean;

188 var end:Boolean;

189 var s1:String;

190 var s2:String;

191 var first:Boolean;

192 --Create bag of variables

193 --length gives the number of characters

194 len1 := self.length();

195 i := 1;

196 j:= 1;

197 end:=false;

198 --strings are indexed from 0 to length-1

199 while ((i < len1) and (not end))

200 {

201 found:=false;

202 while ((j < len1) and not found and not end)

203 {

204 if (self.charAt(j).toString == ":") end := true;

205 else if (self.charAt(j).toString == ",") found := true;

206 if (not found and not end) j := j + 1;

207 }

208 --substring(i,j) will give characters from and including i to j-1

209 if (j==len1) variable := self.substring(i).remBlanks();

210 else variable := self.substring(i,j).remBlanks();

211 if (found) j := j+1;

212 i := j;

213 vars.add(variable);

214 }

215 s1 := self.substring(0,j).remBlanks();

216 s2 := self.substring(j,len1-1).remBlanks();

217 first:=true;

218 for (v in allvars)

219 {

220 if (vars.excludes(v))

221 {

222 if (first)

223 {

224 if (s1 == "(")

225 {

226 s1:=s1.concat(v);

227 }

228 else s1:=s1.concat(",").concat(v);

229 first:=false;

230 }

231 else s1:=s1.concat(",").concat(v);

232 s2:=s2.concat("&&").concat(v).concat("’==").concat(v);

233 }

234 }

235 return("(".concat("2203".toUnicode()).concat(s1.substring(1).concat(s2).concat

(")")));

236 }

237 operation String toUnicode() {

238 var unicode = Native("java.lang.Integer").parseInt(self, 16);

239 var chars = Native("java.lang.Character").toChars(unicode);

240 return Native("java.util.Arrays").toString(chars).substring(1,2);

241 }

242 operation TAssignmentList tassignmentListConvert2Predicate(allvars:Bag, p:String):

String

272



A.4 EWL wizards for refinement patterns

243 {

244 var s1:String;

245 var s2:String;

246 var first:Boolean;

247 s2:="";

248 s1:="[";

249 first:=true;

250 if (self.isTypeOf(TAssignments))

251 {

252 for (a in self.assignments)

253 {

254 if (not first)

255 {

256 s1:=s1.concat(",");

257 s2:=s2.concat("&&");

258 }

259 s1:=s1.concat(a.variable.name);

260 s2:=s2.concat(a.variable.name);

261 s2:=s2.concat("’==");

262 s2:=s2.concat(a.expression.texpression2String());

263 if (first) first:=false;

264 }

265 }

266 else if (self.isTypeOf(TSkip))

267 {

268 first:=true;

269 for (v in allvars)

270 {

271 if (first) first:=false;

272 else

273 {

274 s1 := s1.concat(",");

275 s2 := s2.concat("&&");

276 }

277 s1 := s1.concat(v);

278 s2 := s2.concat(v);

279 s2:=s2.concat("’==");

280 s2 := s2.concat(v);

281 }

282 }

283 if (p <> "") s1:=s1.concat(":").concat(p).concat("&&").concat(s2).concat("]");

284 else s1:=s1.concat(":").concat(s2).concat("]");

285 return(s1);

286 }

287 operation String parameter2CommonFormat(allvars:Bag, tp:TransitionExpression):

String

288 {

289 var tu:String;

290 var first:Boolean;

291 tu:="";

292 if (self == "")

293 {

294 tu:="[";

295 first:=true;

296 for (v in allvars)

297 {

298 if (first) first:=false;

299 else tu := tu.concat(",");

300 tu := tu.concat(v);
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301 }

302 tu:=tu.concat(":");

303 first:=true;

304 for (v in allvars)

305 {

306 if (first) first:=false;

307 else tu := tu.concat("&&");

308 tu := tu.concat(v);

309 tu:=tu.concat("’==");

310 tu := tu.concat(v);

311 }

312 tu:=tu.concat("]");

313 }

314 else if (tp.isTypeOf(TransitionExprPredicate))

315 {

316 tu:="[";

317 first:=true;

318 for (v in allvars)

319 {

320 if (first) first:=false;

321 else tu := tu.concat(",");

322 tu := tu.concat(v);

323 }

324 tu:=tu.concat(":");

325 tu:=tu.concat(self.substring(1,self.length()-1));

326 tu:=tu.concat("&&");

327 first:=true;

328 for (v in allvars)

329 {

330 if (first) first:=false;

331 else tu := tu.concat("&&");

332 tu := tu.concat(v);

333 tu:=tu.concat("’==");

334 tu := tu.concat(v);

335 }

336 tu:=tu.concat("]");

337 }

338 else if (tp.isTypeOf(TransitionExprAssignment))

339 {

340 tu:=tp.assignmentlist.tassignmentListConvert2Predicate(allvars,"");

341 }

342 else if (tp.isTypeOf(TransitionExprPredicateAssignment))

343 {

344 tu:=tp.assignmentlist.tassignmentListConvert2Predicate(allvars,tp.predicate.

tpredicate2String());

345 }

346 else tu:=self;

347 return(tu);

348 }

349 operation TExpVariable texpvariable2String():String

350 {

351 if (self.isTypeOf(TPrimedExpVariable))

352 return(self.name.concat(’\’’));

353 else if (self.isTypeOf(TUnPrimedExpVariable)) return(self.name);

354 else return("");

355 }

356 operation TPredicate tpredicate2String():String

357 {

358 if (self.isTypeOf(TConstant)) return(self.value.toString());
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359 else if (self.isTypeOf(TNested)) return(’(’.concat(self.body.tpredicate2String().

concat(’)’)));

360 else if (self.isTypeOf(TAnd))

361 return(self.children.first().tpredicate2String().concat(’ && ’).concat(self.

children.last().tpredicate2String()));

362 else if (self.isTypeOf(TOr))

363 return(self.children.first().tpredicate2String().concat(’ || ’).concat(self.

children.last().tpredicate2String()));

364 else if (self.isTypeOf(TRelation))

365 return(self.left.texpression2String().concat(self.operator).concat(self.right.

texpression2String()));

366 else if (self.isTypeOf(TPredNegation)) return(’!’.concat(self.body.

tpredicate2String()));

367 else return "";

368 }

369 operation String contract2CommonFormat(allvars:Bag, pc:Formula):String

370 {

371 var cu:String;

372 var first:Boolean;

373 cu:="";

374 if (self == "")

375 {

376 cu:="[";

377 first:=true;

378 for (v in allvars)

379 {

380 if (first) first:=false;

381 else cu := cu.concat(",");

382 cu := cu.concat(v);

383 }

384 cu:=cu.concat(":TRUE]");

385 }

386 else if (pc.eventsanddata.isTypeOf(EventsAndDataPredicate))

387 {

388 cu:="[";

389 first:=true;

390 for (v in allvars)

391 {

392 if (first) first:=false;

393 else cu := cu.concat(",");

394 cu := cu.concat(v);

395 }

396 cu:=cu.concat(":");

397 cu:=cu.concat(self.substring(1,self.length()));

398 }

399 else if (pc.eventsanddata.isTypeOf(EventsAndDataAssignment))

400 {

401 cu:=pc.eventsanddata.assignmentlist.assignmentListConvert2Predicate(allvars,"");

402 }

403 else if (pc.eventsanddata.isTypeOf(EventsAndDataPredicateAssignment))

404 {

405 cu:=pc.eventsanddata.assignmentlist.assignmentListConvert2Predicate(allvars,pc.

eventsanddata.predicate.predicate2String());

406 }

407 else cu:=self;

408 return cu;

409 }

410 operation AssignmentList assignmentListConvert2Predicate(allvars:Bag, p:String):

String

275



Appendix A: Implementation

411 {

412 var s1:String;

413 var s2:String;

414 var first:Boolean;

415 s2:="";

416 s1:="[";

417 first:=true;

418 if (self.isTypeOf(Assignments))

419 {

420 for (a in self.assignments)

421 {

422 if (not first)

423 {

424 s1:=s1.concat(",");

425 s2:=s2.concat("&&");

426 }

427 s1:=s1.concat(a.variable.name);

428 s2:=s2.concat(a.variable.name);

429 s2:=s2.concat("’==");

430 s2:=s2.concat(a.expression.expression2String());

431 if (first) first:=false;

432 }

433 }

434 else if (self.isTypeOf(Skip))

435 {

436 first:=true;

437 for (v in allvars)

438 {

439 if (first) first:=false;

440 else

441 {

442 s1 := s1.concat(",");

443 s2 := s2.concat("&&");

444 }

445 s1 := s1.concat(v);

446 s2 := s2.concat(v);

447 s2:=s2.concat("’==");

448 s2 := s2.concat(v);

449 }

450 }

451 if (p <> "") s1:=s1.concat(":").concat(p).concat("&&").concat(s2).concat("]");

452 else s1:=s1.concat(":").concat(s2).concat("]");

453 return(s1);

454 }

455 operation Predicate predicate2String():String

456 {

457 if (self.isTypeOf(Constant)) return(self.value.toString());

458 else if (self.isTypeOf(Nested)) return(’(’.concat(self.body.predicate2String().

concat(’)’)));

459 else if (self.isTypeOf(And))

460 return(self.children.first().predicate2String().concat(’ && ’).concat(self.

children.last().predicate2String()));

461 else if (self.isTypeOf(Or))

462 return(self.children.first().predicate2String().concat(’ || ’).concat(self.

children.last().predicate2String()));

463 else if (self.isTypeOf(Relation))

464 return(self.left.expression2String().concat(self.operator).concat(self.right.

expression2String()));

465 else if (self.isTypeOf(PredNegation)) return(’!’.concat(self.body.predicate2String
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()));

466 else return "";

467 }

468 operation VariableList variablelist2String():String

469 {

470 var s:String;

471 s:="";

472 for (v in self.variables)

473 {

474 if (s == "") s := v.variable2String();

475 else s := s.concat(’,’).concat(v.variable2String());

476 }

477 return(s);

478 }

479 operation Variable variable2String():String

480 {

481 if (self.isTypeOf(PrimedVariable))

482 return(self.name.concat(’\’’));

483 else if (self.isTypeOf(UnPrimedVariable)) return(self.name);

484 else return("");

485 }

486 operation ExpVariable expvariable2String():String

487 {

488 if (self.isTypeOf(PrimedExpVariable))

489 return(self.name.concat(’\’’));

490 else if (self.isTypeOf(UnPrimedExpVariable)) return(self.name);

491 else return("");

492 }

493 operation Expression expression2String():String

494 {

495 if (self.isTypeOf(IntegerLiteralExp)) return(self.intValue.toString());

496 else if (self.isTypeOf(RealLiteralExp)) return(self.floatValue.toString());

497 else if (self.isKindOf(ExpVariable)) return(self.expvariable2String());

498 else if (self.isTypeOf(Additive) or self.isTypeOf(Multiplicative))

499 return(self.left.expression2String().concat(self.operator).concat(self.right.

expression2String()));

500 else if (self.isTypeOf(Negation)) return(self.operator.concat(self.body.

expression2String()));

501 else if (self.isTypeOf(BracketExp)) return(’(’.concat(self.body.expression2String

().concat(’)’)));

502 else return("");

503 }

504 operation EventsAndData data2String():String

505 {

506 if (self.isTypeOf(EventsAndDataAssignment))

507 return("[".concat(self.assignmentlist.assignmentList2String()).concat("]"));

508 else if (self.isTypeOf(EventsAndDataPredicateAssignment))

509 return("[".concat(self.predicate.predicate2String()).concat("==>").concat(self.

assignmentlist.assignmentList2String()).concat("]"));

510 else if (self.isTypeOf(EventsAndDataPredicate))

511 return("[".concat(self.predicate.predicate2String()).concat("]"));

512 else if (self.isTypeOf(EventsAndDataPredicateVars))

513 {

514 if (self.variablelist == null)

515 return("[".concat(":").concat(self.predicate.predicate2String()).concat("]"))

;

516 else

517 return("[".concat(self.variablelist.variablelist2String()).concat(":").concat

(self.predicate.predicate2String()).concat("]"));
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518 }

519 else if (self.isTypeOf(EventsAndDataEvents)) return("");

520 }

521 operation AssignmentList assignmentList2String():String

522 {

523 if (self.isTypeOf(Skip)) return("skip");

524 else return(self.assignments2String());

525 }

526 operation Assignments assignments2String():String

527 {

528 var s:String;

529 s:="";

530 for (a in self.assignments)

531 {

532 if (s == "") s := a.assignment2String();

533 else s := s.concat(’,’).concat(a.assignment2String());

534 }

535 return(s);

536 }

537 operation Assignment assignment2String():String

538 {

539 return(self.variable.variable2String().concat("=").concat(self.expression.

expression2String()));

540 }

541 operation acceptProofObligation(oldGuard, newGuard, oldPost, newPost):Boolean

542 {

543 var accept:Boolean;

544 accept := UserInput.confirm("Do you agree the proof obligation holds : " +

oldGuard + " => " + newGuard + " && (" + oldGuard + " && " + newPost + " => "

+ oldPost + ")", true);

545 return(accept);

546 }

547 operation String parseTransitionExpression():TransitionExpression

548 {

549 var transition:Transition;

550 var tp:TransitionExpression;

551 transition := Transition.createInstance();

552 transition.label := self;

553 tp := transition.parsedtransition;

554 delete transition;

555 return tp;

556 }

557 operation String remBlanks():String

558 {

559 var s1:String;

560 var i:Integer;

561 var pos:Integer;

562 var found:Boolean;

563 s1:=self;

564 found := false;

565 i:=0;

566 while ((i < s1.length()) and not found)

567 {

568 if (s1.charAt(i).toString <> " ")

569 {

570 pos:=i;

571 found:=true;

572 }

573 i:=i+1;
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574 }

575 if (not found) return "";

576 else return s1.substring(pos);

577 }

578 operation String strip():String

579 {

580 var s1:String;

581 var i:Integer;

582 var j:Integer;

583 i:=0;

584 s1:="";

585 while (i < self.length())

586 {

587 if (self.charAt(i).toString <> " ")

588 {

589 s1:=s1.concat(self.charAt(i).toString);

590 }

591 i:=i+1;

592 }

593 return s1;

594 }

595 operation String ev():String

596 {

597 var s1:String;

598 var i:Integer;

599 var found:Boolean;

600 i:=0;

601 found:=false;

602 while ((i < self.length()) and (not found))

603 {

604 if (self.charAt(i).toString == "[") found:=true;

605 if (not found) i:=i+1;

606 }

607 if (found) s1 := self.substring(0,i);

608 else s1 := self;

609 return s1;

610 }

611 operation forceRefresh() {

612 var s : new State;

613 Statemachine.all.first.states.add(s);

614 delete s;

615 }

Listing A.7: Wizard to refine the TotEnable operator to a state machine
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CoSta contract language

This appendix presents a summary of the contract operators for Contractual State Ma-

chines.

B.1 Summary of contract operators

The following section presents summary tables of the satisfaction relation (ground se-

mantics) for the core (and derived) operators of the contract language. For the derived

operators there is additionally a definition in terms of the core operators. The purpose of

the derived operators is to:

• Provide specific short forms for the more general operators (and logical constructions

thereof)

• Provide direct simplified definitions for certain forms (rather than computing con-

junctions over more complex definitions)

Note that the theory provided only pertains to the shared variable (rather than stan-

dard encapsulated) setting. That is, it is based on a stronger satisfaction relation. Ac-

cordingly, the notion of refinement is shared variable ready simulation.

The operators described form the mathematical core of the language. In order to

express useful contracts succinctly a further set of derived operators are required. This

set is dependent on the embedding of statecharts into STGA/LTS and will entail further

developments of the theory as will also be required for expressing notions such as data

constraints across multiple transitions.
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Satisfaction relation (ground semantics)

The following tables provide the conditions necessary for a process to satisfy a given

operator. That is, they provide definitions for:

E |= φ

to hold, for each process E and each formula φ.

Each process is characterised by an LLTS 〈V, V al, S,Act, Proc, T, F,E0〉, where V is a

(finite) set of variables, V al is a (finite) set of values, S = V → V al is the set of valuation

functions (data states), Act is the set of observable actions (where τ /∈ Act) which we

extend to Actτ = Act ∪ {τ}, Proc is the set of process expressions (behaviour states),

T ⊆ ((S × Proc)× (Actτ )× (S × Proc)) is the transition relation, F ⊆ (S × Proc) is the

set of data state/process expression pairs deemed inconsistent (the False states), E0 is

the initial process expression (initial behavioural state). We write (σ,E)
α−→ (σ′, E′) for

((σ,E), α, (σ′, E′)) ∈ T .

We insist (for this version of the theory) that:

(σ,E)
τ−→ (σ′, E′)⇒ σ = σ′

The transition relation
α−→ is closed to form

ε
=⇒ and

a
=⇒ (a ∈ Act) in the usual way:

(σ,E)
ε

=⇒ (σ′, E′)⇔ (σ,E)
τ−→
∗

(σ′, E′)

(σ,E)
a

=⇒ (σ′′′, E′′′)⇔

∃E′, E′′, σ′, σ′′ • (σ,E)
ε

=⇒ (σ′, E′) ∧ (σ′, E′)
a−→ (σ′′, E′′)∧

(σ′′, E′′)
ε

=⇒ (σ′′′, E′′′)

i.e. (σ,E)
ε

=⇒ (σ′, E′) iff E = E′ ∧ σ = σ′ or some sequence of τ transitions take you

from (σ,E) to (σ′, E′); (σ,E)
a

=⇒ (σ′, E′), for a non-tau action a iff a (possibly empty)

sequence of τ actions, followed by an a action, followed by a (possibly empty) sequence of

τ actions, takes you from (σ,E) to (σ′, E′).

We also restrict
a−→,

ε
=⇒ and

a
=⇒ to

a−→F ,
ε

=⇒F and
a

=⇒F respectively as follows:
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(σ,E)
α−→F (σ′, E′)⇔ (σ,E)

α−→ (σ′, E′) ∧ (σ,E) /∈ F ∧ (σ′, E′) /∈ F

(σ,E)
ε

=⇒F (σ′, E′)⇔ (σ,E)
τ−→
∗
F (σ′, E′)

(σ,E)
a

=⇒F (σ′′′, E′′′)⇔

∃E′, E′′, σ′, σ′′ • (σ,E)
ε

=⇒F (σ′, E′) ∧ (σ′, E′)
a−→F (σ′′, E′′)∧

(σ′′, E′′)
ε

=⇒F (σ′′′, E′′′)

We define the Ready Set of a process E and state σ, I(E, σ), as the set of actions it may

immediately perform from that state:

I(σ,E) = {α ∈ Actτ |(σ,E)
α−→}

A process E is stable from state σ iff τ /∈ I(σ,E).

We further restrict
ε

=⇒F and
a

=⇒F to
ε

=⇒| and
a

=⇒| respectively as follows:

(σ,E)
ε

=⇒| (σ′, E′) iff (σ,E)
ε

=⇒F (σ′, E′) and E′ is stable from state σ′

(σ,E)
a

=⇒| (σ′, E′) iff (σ,E)
a

=⇒F (σ′, E′) and E′ is stable from state σ′

A process E can stabilise1. from state σ iff ∃E′, σ′ • (σ,E)
ε

=⇒| (σ′, E′).

The various transition definitions are lifted to sets of actions in the usual way. E.g.:

(σ,E)
A

=⇒| (σ′, E′)⇔ (σ,E)
a

=⇒| (σ′, E′) ∧ a ∈ A

1Conversely, process E cannot stabilise from state σ iff ¬∃E′, σ′ • (σ,E)
ε

=⇒| (σ′, E′)
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We now formalise the constraints for LLTS:

• The LLTS must be τ -pure

∀E, σ • I(σ,E) = {τ} ∨ τ /∈ I(σ,E)

• Process/state pairs which cannot stabilise must be in F

E cannot stabilise from state σ ⇒ (σ,E) ∈ F

• False processes backtrack

(∃α • α ∈ I(σ,E)∧

∀E′, σ′ • (σ,E)
α−→ (σ′, E′)⇒ (σ′, E′) ∈ F ))

⇒ (σ,E) ∈ F

We assume that the SOS rules (and LLTS operators) preserve the LLTS constraints. These

are omitted.
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The satisfaction relation for the core operators is defined by the following table:

E |= φ Condition Notes

E |= True True Every process satisfies True

E |= False ∀σ • (σ,E) ∈ F Only processes inconsistent from all

states satisfy False

E |= [a[x : Px′ ]φ ∀E′, σ, σ′•

((σ,E)
a

=⇒| (σ′, E′)

∧(σ, σ′) |= Px′)

⇒ E′ |= φ

E satisfies [a[x : Px′ ]φ iff all pro-

cesses reachable by a from E (from

any state) with an update consistent

with Px′ (from ∃x′ • Px′) satisfy φ.

We refer to this as the if operator.

E |= 〈a[x : Px′ ]〉 ∃E′, σ, σ′ • (σ,E)
a

=⇒| (σ′, E′)∧

(σ, σ′) |= Px′

E satisfies 〈a[x : Px′ ]〉 iff it is possi-

ble to take an a transition which is

consistent with Px′ (from ∃x′ •Px′).

We refer to this as the enable oper-

ator.

E |= 〈[a[x : Px′ ]]〉 ∀σ • σ |= (∃x′ • Px′)⇒

∃E′, σ′ • (σ,E)
a

=⇒| (σ′, E′)∧

(σ, σ′) |= Px′

E satisfies 〈[a[x : Px′ ]]〉 iff it is possi-

ble to take an a transition which is

consistent with Px′ from every state

in ∃x′ • Px′ . We refer to this as the

totalised enable operator.

E0 |= φy ψ
[
∀σ1, σ

′
1, . . . , σn, σ

′
n,

E1, . . . , En•

(σ1, E0)
Act
=⇒| (σ′1, E1) ∧ . . .∧

(σn, En−1)
Act
=⇒| (σ′n, En)⇒

]
En |= φ or

∃i|i ≤ n • Ei |= ψ

Must hold for all n ≥ 0

E0 satisfies φ y ψ if every pro-

cess reachable from E0 satisfies φ,

unless the process satisfies ψ, at

which point, and subsequently, it is

no longer required to satisfy φ. A

process En is reachable from E0 if

it is E0 itself, or if some sequence

of source data states exist enabling

transitions from E0 through all Ei

to En. NB. The source data state of

each transition need not be the same

as the target of the previous transi-

tion. We refer to this as the unless

operator.

E |= φ ∧ ψ E |= φ and E |= ψ E satisfies φ ∧ ψ if it satisfies both

φ and ψ

E |= φ ∨ ψ E |= φ or E |= ψ E satisfies φ ∧ ψ if either it satisfies

φ or it satisfies ψ

Where x, x′ generalise to vectors of variables, and e to a vector of expressions.
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Given the core operators, we now extend the language by providing more convenient forms

for common constructs. First, we define the iterator µkX:

Formula Equivalent Notes

µ0X.φ False The 0th iterator is defined False

µkX.φ

(where k > 0)

φ[X/(µk−1X.φ)] The kth iterator holds if φ with all

occurrences of X replaced with the

(k − 1)th iterator holds.

The next set of derived operators provide specific forms of the [. . .], 〈. . .〉 and 〈[. . .]〉 oper-

ators. They are defined by interpretation in the other (more general) operators, plus we

give a direct characterisation for completeness. Their definitions are:

Formula Equivalent Notes

[a]φ [a[x : true]]φ All processes reachable by a, from

any source data state, with any up-

date, must behave according to φ

[a[x = e]]φ [a[x : x′ = e]]φ All processes reachable by a, from

any source data state, with an up-

date setting x to e, must behave ac-

cording to φ

[a[skip]]φ [a[x : x′ = x]]φ All processes reachable by a, from

any source data state, with no

update (values remain unchanged),

must behave according to φ

[a[P =⇒ x = e]]φ [a[x : P ∧ x′ = e]]φ All processes reachable by a, from a

source data state satisfying P, with

an update setting x to e, must be-

have according to φ

[a[P =⇒ skip]]φ [a[x : P ∧ x′ = x]]φ All processes reachable by a, from a

source data state satisfying P, with

no update (values remain the same),

must behave according to φ

[a[P ]]φ [a[x : P ]]φ All processes reachable by a, from a

source data state satisfying P, with

any update, must behave according

to φ
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Formula Equivalent Notes

〈a〉 〈a[x : true]〉 An a transition with some update

is possible from some source data

state.

〈a[x = e]〉 〈a[x : x′ = e]〉 An a transition with the update x =

e is possible from some source data

state.

〈a[skip]〉 〈a[x : x′ = x]〉 An a transition with no update (val-

ues remain the same) is possible

from some source data state.

〈a[P =⇒ x = e]〉 〈a[x : P ∧ x′ = e]〉 An a transition with update x = e

is possible from a source data state

satisfying P .

〈a[P =⇒ skip]〉 〈a[x : P ∧ x′ = x]〉 An a transition with no update (val-

ues remain the same) is possible

from a source data state satisfying

P .

〈a[P ]〉 〈a[x : P ]〉 An a transition with some update

is possible from a source data state

satisfying P .

Formula Equivalent Notes

〈[a]〉 〈[a[x : true]]〉 An a transition with some update is

possible from all source data states.

〈[a[x = e]]〉 〈[a[x : x′ = e]]〉 An a transition with the update x =

e is possible from all source data

states.

〈[a[skip]]〉 〈[a[x : x′ = x]]〉 An a transition with no update (val-

ues remain the same) is possible

from all source data states.

〈[a[P =⇒ x = e]]〉 〈[a[x : P ∧ x′ = e]]〉 An a transition with the update x =

e is possible from all source data

states satisfying P .

〈[a[P =⇒ skip]]〉 〈[a[x : P ∧ x′ = x]]〉 An a transition with no update (val-

ues remain the same) is possible

from all source data states satisfy-

ing P .

〈[a[P ]]〉 〈[a[x : P ]]〉 An a transition with some update is

possible from all source data states

satisfying P .
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Here is the direct characterisation of the above operators.

E |= φ Condition Notes

E |= [a]φ ∀E′, σ, σ′•

(σ,E)
a

=⇒| (σ′, E′)

⇒ E′ |= φ

All processes reachable by a, from

any source data state, with any up-

date, must behave according to φ

E |= [a[x = e]]φ ∀E′, σ, σ′•

((σ,E)
a

=⇒| (σ′, E′)

∧σ′ = σ{e/x})

⇒ E′ |= φ

All processes reachable by a, from

any source data state, with an up-

date setting x to e, must behave ac-

cording to φ

E |= [a[skip]]φ ∀E′, σ, σ′•

((σ,E)
a

=⇒| (σ′, E′)

∧σ′ = σ)

⇒ E′ |= φ

All processes reachable by a, from

any source data state, with no

update (values remain unchanged),

must behave according to φ

E |= [a[P =⇒ x = e]]φ ∀E′, σ, σ′•

((σ,E)
a

=⇒| (σ′, E′)

∧σ′ = σ{e/x}

∧σ |= P )

⇒ E′ |= φ

All processes reachable by a, from a

source data state satisfying P, with

an update setting x to e, must be-

have according to φ

E |= [a[P =⇒ skip]]φ ∀E′, σ, σ′•

((σ,E)
a

=⇒| (σ′, E′)

∧σ′ = σ

∧σ |= P )

⇒ E′ |= φ

All processes reachable by a, from a

source data state satisfying P, with

no update (values remain the same),

must behave according to φ

E |= [a[P ]]φ ∀E′, σ, σ′•

((σ,E)
a

=⇒| (σ′, E′)

∧σ |= P )

⇒ E′ |= φ

All processes reachable by a, from a

source data state satisfying P, with

any update, must behave according

to φ

In the above table, σ{e/x} denotes the data valuation function σ with the value of x

replaced with the value of e evaluated in σ:
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E |= φ Condition Notes

E |= 〈a〉 ∃E′, σ, σ′•

(σ,E)
a

=⇒| (σ′, E′)

An a transition with some update

is possible from some source data

state.

E |= 〈a[x = e]〉 ∃E′, σ, σ′•

(σ,E)
a

=⇒| (σ′, E′)∧

σ′ = σ{e/x}

An a transition with the update x =

e is possible from some source data

state.

E |= 〈a[skip]〉 ∃E′, σ, σ′•

(σ,E)
a

=⇒| (σ′, E′)∧

σ′ = σ

An a transition with no update (val-

ues remain the same) is possible

from some source data state.

E |= 〈a[P =⇒ x = e]〉 ∃E′, σ, σ′•

(σ,E)
a

=⇒| (σ′, E′)∧

σ′ = σ{e/x}∧

σ |= P

An a transition with update x = e

is possible from a source data state

satisfying P .

E |= 〈a[P =⇒ skip]〉 ∃E′, σ, σ′•

(σ,E)
a

=⇒| (σ′, E′)∧

σ′ = σ∧

σ |= P

An a transition with no update (val-

ues remain the same) is possible

from a source data state satisfying

P .

E |= 〈a[P ]〉 ∃E′, σ, σ′•

(σ,E)
a

=⇒| (σ′, E′)∧

σ |= P

An a transition with some update

is possible from a source data state

satisfying P .
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E |= φ Condition Notes

E |= 〈[a]〉 ∀σ•

∃E′, σ′•

(σ,E)
a

=⇒| (σ′, E′)

An a transition with some up-

date is possible from all source

data states.

E |= 〈[a[x = e]]〉 ∀σ•

∃E′, σ′•

(σ,E)
a

=⇒| (σ′, E′)∧

σ′ = σ{e/x}

An a transition with the update

x = e is possible from all source

data states.

E |= 〈[a[skip]]〉 ∀σ•

∃E′, σ′•

(σ,E)
a

=⇒| (σ′, E′)∧

σ′ = σ

An a transition with no update

(values remain the same) is pos-

sible from all source data states.

E |= 〈[a[P =⇒ x = e]]〉 ∀σ • σ |= P ⇒

∃E′, σ′•

(σ,E)
a

=⇒| (σ′, E′)∧

σ′ = σ{e/x}

An a transition with the update

x = e is possible from all source

data states satisfying P .

E |= 〈[a[P =⇒ skip]]〉 ∀σ • σ |= P ⇒

∃E′, σ′•

(σ,E)
a

=⇒| (σ′, E′)∧

σ′ = σ

An a transition with no update

(values remain the same) is pos-

sible from all source data states

satisfying P .

E |= 〈[a[P ]]〉 ∀σ • σ |= P ⇒

∃E′, σ′•

(σ,E)
a

=⇒| (σ′, E′)

An a transition with some up-

date is possible from all source

data states satisfying P .
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The next set of derived operators lift the action operators to sets of actions.

Formula Equivalent Notes

[a1 . . . an]φ

∧
b∈{a1,...,an}

[b]φ All processes reachable by some

ak, from any source data state,

with any update, must behave

according to φ

[a1 . . . an[γ]]φ

∧
b∈{a1,...,an}

[b[γ]]φ All processes reachable by some

ak, with an update consistent

with γ (from a source data state

satisfying γ), must behave ac-

cording to φ

[−a1 . . . an]φ

∧
b∈Act\{a1,...,an}

[b]φ All processes reachable by some

b not in {a1, . . . an}, from any

source data state, with any up-

date, must behave according to

φ

[−a1 . . . an[γ]]φ

∧
b∈Act\{a1,...,an}

[b[γ]]φ All processes reachable by some

b not in {a1 . . . an}, with an up-

date consistent with γ (from a

source data state satisfying γ),

must behave according to φ

[ ]φ

∧
b∈Act

[b]φ All processes reachable by some

action, from any source data

state, with any update, must be-

have according to φ

[ [γ]]φ

∧
b∈Act

[b[γ]]φ All processes reachable by some

action, with an update consis-

tent with γ (from a source data

state satisfying γ), must behave

according to φ

We omit the direct characterisation of the operators.
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Formula Equivalent Notes

〈a1 . . . an〉
∨

b∈{a1,...,an}
〈b〉 It is possible to take some tran-

sition ak, from some source data

state, with some update.

〈a1 . . . an[γ]〉
∨

b∈{a1,...,an}
〈b[γ]〉 It is possible to take some tran-

sition ak, with an update consis-

tent with γ (from a source state

satisfying γ).

〈−a1 . . . an〉
∨

b∈Act\{a1,...,an}
〈b〉 It is possible to take some tran-

sition b not in {a1, . . . , an}, from

some source data state, with

some update.

〈−a1 . . . an[γ]〉
∨

b∈Act\{a1,...,an}
〈b[γ]〉 It is possible to take some tran-

sition b not in {a1, . . . , an}, with

an update consistent with γ

(from a source state satisfying

γ).

〈 〉
∨
b∈Act

〈b〉 It is possible to take some tran-

sition, from some source data

state, with some update.

〈 [γ]〉
∨
b∈Act

〈b[γ]〉 It is possible to take some tran-

sition, with an update consistent

with γ (from a source state sat-

isfying γ).
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Formula Equivalent Notes

〈[a1 . . . an]〉
∨

b∈{a1,...,an}
〈[b]〉 One of the actions ak is available

as a transition from every source

data state, with some update.

〈[a1 . . . an[γ]]〉
∨

b∈{a1,...,an}
〈[b[γ]]〉 One of the actions ak is available

as a transition from every source

state satisfying γ, with an up-

date consistent with γ.

〈[−a1 . . . an]〉
∨

b∈Act\{a1,...,an}
〈[b]〉 One of the actions b not in

{a1, . . . , an} is available as a

transition from every source

data state, with some update.

〈[−a1 . . . an[γ]]〉
∨

b∈Act\{a1,...,an}
〈[b[γ]]〉 One of the actions b not in

{a1, . . . , an} is available as a

transition from every source

state satisfying γ, with an up-

date consistent with γ.

〈[ ]〉
∨
b∈Act

〈[b]〉 There is some action available

as a transition from every source

data state, with some update.

〈[ [γ]]〉
∨
b∈Act

〈[b[γ]]〉 There is some action available

as a transition from every source

state satisfying γ, with an up-

date consistent with γ.
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The next set of derived operators are for disabled and exclusively enabled actions.

Formula Equivalent Notes

〈a1, . . . , an〉
∧

b∈{a1,...,an}
[b]False

{a1, . . . , an} are disabled. I.e.

No actions {a1, . . . , an} are en-

abled.

〈a1, . . . , an[γ]〉
∧

b∈{a1,...,an}
[b[γ]]False

{a1, . . . , an} are disabled for up-

dates consistent with γ. I.e. ac-

tions {a1, . . . , an} are only en-

abled for updates inconsistent

with γ (i.e. from source data

states not satisfying γ, or from

source states satisfying γ whose

updates are not admitted by γ).

〈−a1, . . . , an〉
∧

b∈Act\{a1,...,an}
[b]False

All actions except {a1, . . . , an}

are disabled. I.e. No actions

other than {a1, . . . , an} are en-

abled.

〈−a1, . . . , an[γ]〉
∧

b∈Act\{a1,...,an}
[b[γ]]False

All actions other than

{a1, . . . , an} are disabled for

updates consistent with γ. I.e.

actions other than {a1, . . . , an}

are only enabled for updates

inconsistent with γ (i.e. from

source data states not satisfying

γ, or from source states satis-

fying γ whose updates are not

admitted by γ).

〈 〉
∧
b∈Act

[b]False
All actions are disabled. I.e. No

actions are enabled.

〈 [γ]〉
∧
b∈Act

[b[γ]]False
All actions are disabled for up-

dates consistent with γ. I.e. ac-

tions are only enabled for up-

dates inconsistent with γ (i.e.

from source data states not sat-

isfying γ, or from source states

satisfying γ whose updates are

not admitted by γ).

NB. 〈−a1, . . . , an〉 is not the same as 〈a1, . . . , an〉. E.g. A deadlocked process satisfies

〈−a〉 but does not satisfy 〈a〉.
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Formula Equivalent Notes

〈a1, . . . , an〉
∨

b∈{a1,...,an}
(〈b〉 ∧ 〈−b〉) One of the actions {a1, . . . , an}

is exclusively enabled. I.e. One

of the actions ak is enabled

whilst all other actions (not ak)

are disabled.

〈a1, . . . , an[γ]〉
∨

b∈{a1,...,an}
(〈b[γ]〉 ∧ 〈−b[γ]〉) One of the actions {a1, . . . , an}

is exclusively enabled for update

γ. I.e. One of the actions ak

can perform an update consis-

tent with γ whilst all other ac-

tions (not ak) cannot.

〈−a1, . . . , an〉
∨

b∈Act\{a1,...,an}
(〈b〉 ∧ 〈−b〉) One of the actions not in

{a1, . . . , an} is exclusively en-

abled. I.e. An actions b not

in {a1, . . . , an} is enabled whilst

all other actions (not b) are dis-

abled.

〈−a1, . . . , an[γ]〉
∨

b∈Act\{a1,...,an}
(〈b[γ]〉 ∧ 〈−b[γ]〉) One of the actions not in

{a1, . . . , an} is exclusively en-

abled for update γ. I.e. One of

the actions b not in {a1, . . . , an}

can perform an update consis-

tent with γ whilst all other ac-

tions (not ak) cannot.

〈 〉
∨
b∈Act

(〈b〉 ∧ 〈−b〉) Some action is exclusively en-

abled. I.e. Some action b is

enabled whilst all other actions

(not b) are disabled.

〈 [γ]〉
∨
b∈Act

(〈b[γ]〉 ∧ 〈−b[γ]〉) Some action is exclusively en-

abled for update γ. I.e. Some

actions b can perform an update

consistent with γ whilst all other

actions (not b) cannot.

An example of the use of 〈a[γ]〉 is 〈a[P ]〉 meaning a is exclusively enabled from all source

data states satisfying P .

The direct characterisation of the above operators is omitted.
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Formula Equivalent Notes

�φ φy False “Always φ” is defined as φ un-

less false. Satisfied by both

the (immediately) False process

and processes which always sat-

isfy φ.

♦kφ µkX.(φ ∨ (〈 〉 ∧ [ ]X)) “φ within k” is satisfied by pro-

cesses that make φ true within k

steps.

Direct characterisation of the above operators is omitted.
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Appendix C

Case study - the docking system

This appendix describes in detail all of the steps performed to refine the ShipReq compo-

nent in the case study.

C.1 Refinement of the ShipReq component

The contract for the ShipReq component is specified as: (((A ∧B) ∧ C) ∧D) ∧ E

R = (q1 == 0 ∨ q2 == 0) ∧ (q1! = s ∧ q2! = s)

A = ((〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉)

y (〈−′dockquay,′ deny〉 ∧ 〈[′dockquay[: R]]〉∧

〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉 ∧ 〈[′deny[q1, q2, s : ¬R]]〉∧

〈′deny[: R]〉))

B = �[done]((〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉)

y (〈−′dockquay,′ deny〉 ∧ 〈[′dockquay[: R]]〉∧

〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉 ∧ 〈[′deny[q1, q2, s : ¬R]]〉∧

〈′deny[: R]〉))

C = �[′deny]((〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉)

noindent y (〈−′dockquay,′ deny〉 ∧ 〈[′dockquay[: R]]〉∧

〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉 ∧ 〈[′deny[q1, q2, s : ¬R]]〉∧

〈′deny[: R]〉))

D = �[′dockquay]((〈′dockquay,′ deny, done〉∧〈[−′dockquay,′ deny, done]〉)∧〈 [s : s! = s′]〉

y (〈−done〉 ∧ 〈[done[skip]]〉 ∧ 〈done[¬skip]〉))

E = �〈 [q1, q2 : (q
′
1! = q1) ∨ (q

′
2! = q2)]〉
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1. Apply the Conjunction introduction pattern four times. The Conjunction introduction

pattern is applicable if the selected component is a state whose inner contract is an And

operator expression. The pattern checks that the contract for the selected state has the

form “φ And ψ”. The pattern introduces two new substates, one with inner contract “φ”

and the other with inner contract “ψ” (see Figure C.1).

Figure C.1: Conjunction introduction pattern applied four times

2. Refine the state with contract A.

R = (q1 == 0 ∨ q2 == 0) ∧ (q1! = s ∧ q2! = s)

A = ((〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉)

y (〈−′dockquay,′ deny〉 ∧ 〈[′dockquay[: R]]〉∧

〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉 ∧ 〈[′deny[q1, q2, s : ¬R]]〉∧

〈′deny[: R]〉))

Apply the Unfold unless pattern. The Unfold unless pattern is applicable if the selected

component is a state whose inner contract is an Unless operator expression. The pattern

checks that the contract for the selected state has the form “φ Unless ψ” and the pattern
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unfolds the contract to “φ And (If (φ Unless ψ))”.

φ is (〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉)

ψ is (〈−′dockquay,′ deny〉 ∧ 〈[′dockquay[: R]]〉∧

〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉 ∧ 〈[′deny[q1, q2, s : ¬R]]〉∧

〈′deny[: R]〉)

A1 = φ

A2 = (If (φ Unless ψ)).

The pattern unfolds the Contract A to A1 ∧A2

A1 = 〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉

A2 = [ ]((〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉)

y (〈−′dockquay,′ deny〉 ∧ 〈[′dockquay[: R]]〉∧

〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉 ∧ 〈[′deny[q1, q2, s : ¬R]]〉∧

〈′deny[: R]〉))

3. Apply the Conjunction introduction pattern to the state with contract A1 ∧ A2. Two

new states are introduced, one with contract A1 and the other with contract A2.

4. Apply the Conjunction introduction pattern to the state with contract A1. The contract

is A1 = A9 ∧ A10. The pattern creates two new substates one with contract A9 and the

other with contract A10 (see Figure C.2).

Figure C.2: Conjunction introduction pattern applied to contract A1

A1 = 〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉

A9 = 〈′dockquay,′ deny, done〉
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A10 = 〈[−′dockquay,′ deny, done]〉

5. Apply the Disable pattern to the state with contract A9 to introduce two new transitions

dock1 and dock2. The Disable operator specifies that none of the events in a set are

available. When accompanied by a variable update the action is disabled for all the

updates consistent with the expression. It may still be enabled within its guard as long

as its update is not consistent.

The Disable operator contract 〈a1, .., an[x : P ]〉 is expressed as an equivalent If oper-

ator expression [a1, .., an[x : P ]]False and the If pattern is applied.

The If pattern does not permit the introduction of transitions with subsequent be-

haviour False. To introduce transitions with subsequent behaviour True, the pattern

checks that the transition event is not in the contract eventlist (or it is in the the negated

contract eventlist) or if this is not the case or there is no eventlist, HST is used to verify

that the update expression for the transition input by the user (updateExpr2) is not con-

sistent with the contract update expression (updateExpr1), i.e. they are disjoint and there

is no overlap. HST is invoked to decide if !(updateExpr2 && updateExpr1) is tautological.

A9 = 〈′dockquay,′ deny, done〉 is rewritten as an If operator expression.

A9 = [′dockquay,′ deny, done]False.

The two new transitions required are, dock1[s = 1] and dock2[s = 2]. The pattern checks

firstly whether the transition event is in the contract eventlist and if it is then a further

check is conducted invoking HST to ensure that the transition update expression and the

contract update expression are disjoint and there is no overlap. The first transition is

dock1[s = 1] whose event is not included in the contract eventlist so the transition is

added with subsequent behaviour True and no further check is required. Similarly the

second transition is dock2[s = 2] whose event is not included in the contract eventlist so

the transition is added with subsequent behaviour True and no further check is required

(see Figure C.3).

6. Apply the Combine states pattern to combine the substates of A9 with contract True.

The Combine states pattern is applicable to two states. The pattern checks that the states

to be combined have the same parent state and no substates or outgoing transitions. It

also checks that their inner contracts are syntactically equivalent. The states both have

inner contracts of True (see Figure C.4).
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Figure C.3: Disable pattern applied to contract A9

Figure C.4: Combine states pattern applied to state with contract A9
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7. Apply the TotEnable pattern to the state with contract A10 to introduce two new

transitions dock1 and dock2. The TotEnable pattern refines a TotEnable contract to a

state machine model. The TotEnable pattern is applicable if the selected component

is a state. The pattern checks that the state’s inner contract has the form “TotEnable

eventFormula” or “TotEnable eventFormula [updateExpression]”. EventFormula can be a

set of events, a negated set of events or the underscore character. The pattern checks that

at least one of the transition parameters satisfies the TotEnable contract.

Checks based on syntax are performed initially. To determine if the transition satisfies

the contract the transition event must be an event included in the contract’s eventlist.

If the eventFormula in the contract is a list of events, transitions with some event from

the set are possible. If the eventFormula in the contract is a negated list of events,

transitions with some event not in the set are possible. If the eventFormula is an under-

score transitions with any event are possible. If the transition’s event is in the contract’s

eventlist and the contract’s update expression is syntactically equivalent to the transi-

tion’s update expression then the transition satisfies the contract. If the contract is of

the form 〈[eventlist]〉 it is satisfied by transitions of the form event, event[assignmentlist],

event[skip]. If the contract has the form 〈[eventlist[skip]]〉 or 〈[eventlist[G =⇒ skip]]〉

it is satisfied by transitions of the form event, event[skip]. Otherwise a more detailed

check is required to determine if the transition satisfies the contract. To ensure that the

update expressions are consistent the following check is required. The side-condition is

` ((∃x′ : P ) ⇒ (∃x′ : P ′)) ∧ ((∃x′ : P ) ∧ P ′ ⇒ P ). Currently this check is verified by

inspection as it requires the evaluation of a conjecture with quantifiers on data and this

functionality is not yet supported by HST.

The contract is, A10 = 〈[−′dockquay,′ deny, done]〉.

The two new transitions required are, dock1[s = 1] and dock2[s = 2].

The pattern checks that at least one of the transition parameters satisfies the TotEnable

contract, and conducts syntactic checks initially to establish this. If the transition event

is not in the contract’s negated list of events and if the contract is of the form 〈[eventlist]〉

it is satisfied by a transition of the form event[assignmentlist].

For the first transition dock1[s = 1], dock1 is not in the negated list of events in the

contract 〈[−′dockquay,′ deny, done]〉 also the contract is of the form 〈[eventlist]〉 and the

transition is of the form, event[assignmentlist] so the pattern concludes that the transition

satisfies the contract and the contract is replaced by a state machine with both new
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transitions (see Figure C.5).

Figure C.5: TotEnable pattern applied to contract A10

8. Apply the Combine states pattern to combine the substates of A10 with contract True.

9. Apply the Conjunction elimination pattern to the state with contract A1. The Con-

junction elimination pattern is applicable if the selected component is a state of type

conjunction. It eliminates a conjunction of states. This pattern can be applied to the

conjunction of like diagrams and throws away the copies. The pattern relies on inspection

to determine equivalence (see Figure C.6).

10. Apply pattern Redundant hierarchy, inner contract A1 is assigned to the outer contract

of the start state. The Redundant hierarchy pattern is applicable if the selected component

is a state. The pattern checks that the state has substates and no incoming/outgoing

transitions. The pattern flattens the level of hierarchy by removing the selected component

but retaining its substates. If the selected component is a substate and a start state, the

pattern assigns the inner contract of its parent state to the outer contract of its start state.

The pattern verifies that the state has substates and no outgoing or incoming transitions,

it is itself a substate so the pattern removes the selected component, (the redundant level

of hierarchy), retains its substates and assigns the inner contract of its parent state, A1

to the outer contract of its start state (see Figure C.7).
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Figure C.6: Conjunction elimination pattern applied to state with contract A1

Figure C.7: Redundant hierarchy pattern applied to state with contract A10
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11. Apply the If pattern to state with contract A2 to introduce two new transitions dock1

and dock2. The If pattern is applicable if the selected component is a state. The pattern

checks that the inner contract of the state is an If operator expression. The contract has

the form “If eventFormula φ” or “If eventFormula [updateExpression] φ”. EventFormula

can be a set of events, a negated set of events or the underscore character.

For each of the transitions with subsequent behaviour True, the pattern checks that the

transition event is not in the contract eventlist (or it is in the the negated contract eventlist)

or if this is not the case or there is no eventlist the side-condition verifies that the update

expression for the transition (updateExpr2) is not consistent with the contract update

expression (updateExpr1), i.e. they are disjoint and there is no overlap. HST is invoked

to decide if !(updateExpr2 && updateExpr1) is tautological.

It is not necessary to perform any checks for transitions with subsequent behaviour “φ”

as if the conditions for the subsequent behaviour “φ” do not hold, then the subsequent

behaviour is True and this contract can then be refined to “φ”. The If pattern does

not permit the introduction of transitions with subsequent behaviour False. A permitted

refinement is to weaken the update expression. If the update expression for the contract is

[x:P] and the update expression for the transition is [x:P’], the proof obligation ` P ⇒ P ′

must hold for the transition to subsequently behave as φ. We do not need to add this

to the side-condition check for transitions with subsequent behaviour of φ, as explained

above it is not necessary to perform any checks for these transitions.

The contract is: A2 = [ ]((〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉)

y (〈−′dockquay,′ deny〉 ∧ 〈[′dockquay[: R]]〉∧

〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉 ∧ 〈[′deny[q1, q2, s : ¬R]]〉∧

〈′deny[: R]〉))

The two new transitions required are, dock1[s = 1] and dock2[s = 2]

The contract A2 has the form [ ]φ, if any event is enabled the transition subsequently

behaves like φ.

φ = (〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉)

y (〈−′dockquay,′ deny〉 ∧ 〈[′dockquay[: R]]〉∧

〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉 ∧ 〈[′deny[q1, q2, s : ¬R]]〉∧

〈′deny[: R]〉)

The contract states that all enabled transitions subsequently behave like φ. The contract

is replaced by a state machine with the transitions dock1[s = 1] and dock2[s = 2] that
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subsequently behave like φ (see Figure C.8).

Figure C.8: If pattern applied to contract A2

12. Apply Combine states pattern to the new substates which both have contract A.

13. Apply the Conjunction elimination pattern to the state with contract A1 ∧A2.

14. Apply the Redundant hierarchy pattern, the inner contract is assigned to the outer

contract of the start state.

15. Apply Redundant hierarchy pattern, the inner contract A is assigned to the outer

contract of the start state.

16. Further refine the substate with contract A. Apply the Unless pattern. The Unless

pattern is applicable if the selected component is a state whose inner contract is an Unless

operator expression. The pattern checks that the contract for the selected state has the

form “φ Unless ψ” and in this instance the pattern refines the contract to “ψ” (see

Figure C.9).

A = ((〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉)

y (〈−′dockquay,′ deny〉 ∧ 〈[′dockquay[: R]]〉∧

〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉 ∧ 〈[′deny[q1, q2, s : ¬R]]〉∧

〈′deny[: R]〉))

φ = ((〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉)
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ψ = 〈−′dockquay,′ deny〉 ∧ 〈[′dockquay[: R]]〉∧

〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉 ∧ 〈[′deny[q1, q2, s : ¬R]]〉∧

〈′deny[: R]〉

Apply the Unless pattern, contract A becomes A3.

A3 = 〈−′dockquay,′ deny〉 ∧ 〈[′dockquay[: R]]〉∧

〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉 ∧ 〈[′deny[q1, q2, s : ¬R]]〉∧

〈′deny[: R]〉

Figure C.9: Unfold Unless pattern applied to contract A

17. Apply the Conjunction introduction pattern to the state with contract A. This

introduces two new states one with contract (((A4 ∧ A5) ∧ A6) ∧ A7) and the other with

contract A8.

A4 = 〈−′dockquay,′ deny〉

A5 = 〈[′dockquay[: R]]〉

A6 = 〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉

A7 = 〈[′deny[q1, q2, s : ¬R]]〉

A8 = 〈′deny[: R]〉

18. Apply the Conjunction introduction pattern to the state with contract ((A4 ∧ A5) ∧

A6) ∧ A7. This introduces two new states one with contract ((A4 ∧ A5) ∧ A6) and the

other with contract A7.
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19. Apply the Conjunction introduction pattern to the state with contract (A4∧A5)∧A6.

This introduces two new states one with contract (A4 ∧ A5) and the other with contract

A6.

20. Apply the Conjunction introduction pattern to the state with contract A4∧A5. This

introduces two new states with contracts A4 and A5.

21. Refine state with contract A4, apply the Disable pattern to introduce two new tran-

sitions ‘dockquay and ‘deny. The Disable operator 〈a1, .., an[x : P ]〉 is expressed in terms

of the If operator [a1, .., an[x : P ]]False and the If pattern is applied.

Figure C.10: Disable pattern applied to contract A4

A4 = 〈−′dockquay,′ deny〉

The If pattern does not permit the introduction of transitions with subsequent behaviour

False. To introduce transitions with subsequent behaviour True, the pattern checks that

the transition event is not in the contract eventlist (or it is in the the negated contract

eventlist) or if this is not the case or there is no eventlist, HST is used to verify that the

update expression for the transition input by the user (updateExpr2) is not consistent
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with the contract update expression (updateExpr1), i.e. they are disjoint and there is no

overlap. HST is invoked to decide if !(updateExpr2 && updateExpr1) is tautological.

The required new transitions are: ‘dockquay[R =⇒ skip] and ‘deny[!R =⇒ skip]. The

pattern confirms that the transition events are in the negated contract eventlist thus no

further checks are required. The contract is replaced by a state machine with the new

transitions each with subsequent behaviour True (see Figure C.10).

22. Refine state with contract A5, apply the TotEnable pattern to introduce two new

transitions ‘dockquay and ‘deny. The TotEnable pattern refines a contract to a state ma-

chine model. The TotEnable pattern is applicable if the selected component is a state.

The side-condition checks that the state’s inner contract has the form “TotEnable event-

Formula” or “TotEnable eventFormula [updateExpression]”. EventFormula can be a set

of events, a negated set of events or the underscore character. The side-condition checks

that at least one of the transition parameters satisfies the TotEnable contract.

Figure C.11: TotEnable pattern applied to contract A5

Checks based on syntax are performed initially. To determine if the transition satisfies
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the contract the transition event must be included in the contract’s eventlist. If the event-

Formula in the contract is a list of events, transitions with some event from the set are

possible. If the eventFormula in the contract is a negated list of events, transitions with

some event not in the set are possible. If the eventFormula is an underscore transitions

with any event are possible. If the transition’s event is in the contract’s eventlist and the

contract’s update expression is syntactically equivalent to the transition’s update expres-

sion then the transition satisfies the contract.

The contract is A5 = 〈[′dockquay[: R]]〉

The required new transitions are: ‘dockquay[R =⇒ skip] and ‘deny[!R =⇒ skip]

The side-condition checks that at least one of the transition parameters satisfies the TotEn-

able contract. For the first transition ‘dockquay[R =⇒ skip], ‘dockquay is in the contract

eventlist and the transition update expression is syntactically equivalent to the contract

update expression. The pattern concludes that the transition satisfies the contract and

the contract is replaced by a state machine with both new transitions (see Figure C.11).

23. Apply the Conjunction elimination pattern to the state with contract A4 ∧A5.

24. Apply the Redundant hierarchy pattern to the state with contract A5. Inner contract

A4 ∧A5 is assigned to the outer contract of the start state.

25. Refine state with contract A6, apply the Disable pattern to introduce two new tran-

sitions ‘dockquay and ‘deny. The Disable operator 〈a1, .., an[x : P ]〉 is expressed in terms

of the If operator [a1, .., an[x : P ]]False and the If pattern is applied.

A6 = 〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉

The If pattern does not permit the introduction of transitions with subsequent behaviour

False. To introduce transitions with subsequent behaviour True the pattern checks that

the transition’s event is not in the contract eventlist (or it is in the the negated contract

eventlist) or if this is not the case or there is no eventlist, HST is used to verify that the

update expression for the transition input by the user (updateExpr2) is not consistent

with the contract update expression (updateExpr1), i.e. they are disjoint and there is no

overlap. HST is invoked to decide if !(updateExpr2 && updateExpr1) is tautological.

The required new transitions are: ‘dockquay[R =⇒ skip] and ‘deny[!R =⇒ skip]. For

the first transition ‘dockquay[R =⇒ skip] the event is in the contract eventlist so HST

is called to verify that the update expressions for the transition [R =⇒ skip] is not

consistent with the contract update expression [q1, q2, s : ¬(R∧ skip)]. HST confirms that

¬((R ∧ skip) ∧ (¬(R ∧ skip))) is tautological.
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The transition is added with subsequent behaviour True. For the second transition

‘deny[!R =⇒ skip] the pattern checks and confirms that the transition event ‘deny is not

in the contract eventlist so no further checks are required (see Figure C.12).

Figure C.12: Disable pattern applied to contract A6

26. Apply the Conjunction elimination pattern to the state with contract (A4∧A5)∧A6.

27. Apply the Redundant hierarchy pattern to the state with contract A6. Inner contract

(A4 ∧A5) ∧A6 is assigned to the outer contract of the start state.

28. Refine state with contract A7, apply the TotEnable pattern to introduce two new

transitions ‘dockquay and ‘deny. The pattern checks that at least one of the transition pa-

rameters satisfies the TotEnable contract. Checks based on syntax are performed initially.

To determine if the transition satisfies the contract the event must be an event included

in the contract’s eventlist.
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If the eventFormula in the contract is a list of events, transitions with some event from the

set are possible. If the eventFormula in the contract is a negated list of events, transitions

with some event not in the set are possible. If the eventFormula is an underscore transitions

with any event are possible. If the transition’s event is in the contract’s eventlist and the

transition’s update expression is consistent with the contract’s update expression then the

transition satisfies the contract.

Figure C.13: TotEnable pattern applied to contract A7

It is a permitted refinement when introducing a transition to strengthen the contract’s

update expression within the guard. If the update expression in the contract places no

restrictions on the possible after values of variables so that they could be updated in

any way and the contract is of the form 〈[eventlist[G]]〉 where G is a guard and refers

only to before values for variables, it is satisfied by transitions of the form event[G],

event[G =⇒ assignmentlist], event[G =⇒ skip].

A7 = 〈[′deny[q1, q2, s : ¬R]]〉

The required new transitions are: ‘dockquay[R =⇒ skip] and ‘deny[!R =⇒ skip]. The
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pattern checks that at least one of the transition parameters satisfies the TotEnable con-

tract. For the second transition ′deny[!R =⇒ skip], ‘deny is in the contract eventlist. The

contract A7 says ′deny is enabled when ¬R holds and the variables can be updated in any

way. The transition says that a ′deny action is possible when ¬R holds but the variable

values remain the same. The transition’s update expression strengthens the contract’s up-

date expression within the guard which is a permitted refinement. The transition satisfies

the contract and the contract is replaced by a state machine with both new transitions

(see Figure C.13).

29. Apply the Conjunction elimination pattern to the state with contract ((A4 ∧ A5) ∧

A6) ∧A7.

30. Apply the Redundant hierarchy pattern to the state with contract A7. Inner contract

((A4 ∧A5) ∧A6) ∧A7 is assigned to the outer contract of the start state.

31. Refine state with contract A8, apply the Disable pattern to introduce two new tran-

sitions ‘dockquay and ‘deny. The Disable operator 〈a1, .., an[x : P ]〉 is expressed in terms

of the If operator [a1, .., an[x : P ]]False and the If pattern is applied.

Figure C.14: Disable pattern applied to contract A8
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A8 = 〈′deny[: R]〉 = [′deny[: R]]False

The If pattern does not permit the introduction of transitions with subsequent behaviour

False. To introduce transitions with subsequent behaviour True the pattern checks that

the transition’s event is not in the contract eventlist (or it is in the negated contract

eventlist) or if this is not the case or there is no eventlist, HST is used to verify that the

update expression for the transition input by the user (updateExpr2) is not consistent

with the contract update expression (updateExpr1), i.e. they are disjoint and there is no

overlap. HST is invoked to decide if !(updateExpr2 && updateExpr1) is tautological.

The required new transitions are: ‘dockquay[R =⇒ skip] and ‘deny[!R =⇒ skip]. For the

first transition ‘dockquay[R =⇒ skip] the pattern checks and confirms that the transition

event ‘dockquay is not in the contract eventlist so no further checks are required. For the

second transition ‘deny[!R =⇒ skip] the event is in the contract eventlist so HST is called

to verify that the update expression for the transition [!R =⇒ skip] is not consistent with

the contract update expression [: R]. HST confirms that ¬((R∧skip)∧(¬R∧skip)) is tauto-

logical. The contract is replaced by a state machine with both transitions ‘dockquay[R =⇒

skip] and ‘deny[!R =⇒ skip] to states with contract True (see Figure C.14).

32. Apply the Conjunction elimination pattern to the state with contract A.

33. Apply the Redundant hierarchy pattern. The inner contract is assigned to the outer

contract of the start state.

34. Apply the Redundant hierarchy pattern. Inner contract A is assigned to the outer

contract of the start state (see Figure C.15).

35. Apply the Move target down and the Redundant hierarchy patterns to the state

with contract A. The Move target down pattern shifts the target state of the incoming

transition to the composite state down from the composite state to the default/initial state

of the composite. The Redundant hierarchy pattern is applicable if the selected component

is a state. The pattern checks that the state has substates and no incoming/outgoing

transitions. The pattern flattens the level of hierarchy by removing the selected component

but retaining its substates (see Figure C.16).

The overall design for the ShipReq component at this stage (see Figure C.17):
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Figure C.15: Redundant hierarchy pattern applied to state with contract A3

Figure C.16: Move target down and Redundant hierarchy applied to contract A
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Figure C.17: The ShipReq component
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36. Refine the conjunction state with contract B. Apply the Unfold Always pattern.

The Unfold Always pattern is applicable if the selected component is a state whose inner

contract is an Always operator expression. The pattern checks that the contract for the

selected state has the form “Always φ” and the pattern unfolds the contract to “φ And

(If (Always φ))”.

B = �[done]((〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉)

y (〈−′dockquay,′ deny〉 ∧ 〈[′dockquay[: R]]〉∧

〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉 ∧ 〈[′deny[q1, q2, s : ¬R]]〉∧

〈′deny[: R]〉))

B becomes B1 ∧B2

B1 = [done]((〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉)

y (〈−′dockquay,′ deny〉 ∧ 〈[′dockquay[: R]]〉∧

〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉 ∧ 〈[′deny[q1, q2, s : ¬R]]〉∧

〈′deny[: R]〉))

B2 = [ ](�[done]((〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉)

y (〈−′dockquay,′ deny〉 ∧ 〈[′dockquay[: R]]〉∧

〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉 ∧ 〈[′deny[q1, q2, s : ¬R]]〉∧

〈′deny[: R]〉)))

37. Apply the Conjunction introduction pattern to the state with contract B1 ∧B2.

38. Apply the If pattern to the state with contract B1 to introduce two new transitions

dock1 and dock2. The If pattern is applicable if the selected component is a state. The

pattern checks that the inner contract of the state is an If operator expression. The

contract has the form “If eventFormula φ” or “If eventFormula [updateExpression] φ”.

EventFormula can be a set of events, a negated set of events or the underscore charac-

ter. For each of the transitions with subsequent behaviour True, the pattern checks that

the transition event is not in the contract eventlist (or it is in the the negated contract

eventlist) or if this is not the case or there is no eventlist the side-condition verifies that

the update expression for the transition (updateExpr2) is not consistent with the contract

update expression (updateExpr1). The side-condition checks that the update expressions

are disjoint and there is no overlap. HST is invoked to decide if !(updateExpr2 && upda-

teExpr1) is tautological. The If pattern does not permit the introduction of transitions

with subsequent behaviour False.

It is not necessary to perform any checks for transitions with subsequent behaviour “φ”,
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as if the conditions for the subsequent behaviour “φ” do not hold, then the subsequent

behaviour is True and this contract can then be refined to “φ”. A permitted refinement

is to weaken the update expression.

B1 = [done]((〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉)

y (〈−′dockquay,′ deny〉 ∧ 〈[′dockquay[: R]]〉∧

〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉 ∧ 〈[′deny[q1, q2, s : ¬R]]〉∧

〈′deny[: R]〉))

The two new transitions required are: dock1[s = 1] and dock2[s = 2], their subsequent

behaviour will be True. The pattern checks and confirms that the action for each transition

is not in the contract eventlist (see Figure C.18).

Figure C.18: If pattern applied to introduce dock1 and dock2

39. Apply the If pattern to the state with contract B2 to introduce two new transitions

dock1 and dock2. The If pattern is applicable if the selected component is a state. The

pattern checks that the inner contract of the state is an If operator expression. The

contract has the form “If eventFormula φ” or “If eventFormula [updateExpression] φ”.

EventFormula can be a set of events, a negated set of events or the underscore character.

For each of the transitions with subsequent behaviour True, the pattern checks that the
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transition event is not in the contract eventlist (or it is in the the negated contract eventlist)

or if this is not the case or there is no eventlist the side-condition verifies that the update

expression for the transition (updateExpr2) is not consistent with the contract update

expression (updateExpr1). The side-condition checks that the update expressions are dis-

joint and there is no overlap. HST is invoked to decide if !(updateExpr2 && updateExpr1)

is tautological (see Figure C.19).

The contract is: B2 = [ ]�[done]((〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉)

y (〈−′dockquay,′ deny〉 ∧ 〈[′dockquay[: R]]〉∧

〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉 ∧ 〈[′deny[q1, q2, s : ¬R]]〉∧

〈′deny[: R]〉))

The two new transitions required are, dock1[s = 1] and dock2[s = 2].

The contract B2 has the form [ ]φ, all enabled transitions subsequently behave like φ.

φ = �[done]((〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉)

y (〈−′dockquay,′ deny〉 ∧ 〈[′dockquay[: R]]〉∧

〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉 ∧ 〈[′deny[q1, q2, s : ¬R]]〉∧

〈′deny[: R]〉))

The contract states that all enabled transitions subsequently behave like φ. The con-

tract is replaced by a state machine with transitions dock1[s = 1] and dock2[s = 2] that

subsequently behave like φ.

40. Apply the Combine states pattern to the new substates of B1 with the same contracts.

41. Apply the Combine states pattern to the new substates of B2 with the same contracts.

42. Apply the Conjunction elimination pattern to the state with contract B1 ∧B2.

43. Apply the Redundant hierarchy pattern twice. Assigns the inner contract B of the

parent state to the outer contract of the start state (see Figure C.20).
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Figure C.19: If pattern applied to contract B2

Figure C.20: Redundant hierarchy pattern applied twice
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44. Further refine the substate with contract B. Apply the Unfold Always pattern,

contract B becomes B1 ∧B2.

45. Apply the Conjunction introduction pattern to the state with contract B1 ∧B2.

46. Apply the If pattern to the state with contract B1 to introduce two new transitions

dockquay and deny. The If pattern is applicable if the selected component is a state. The

pattern checks that the inner contract of the state is an If operator expression. For each

of the transitions with subsequent behaviour True, the pattern checks that the transition

event is not in the contract eventlist.

B1 = [done]((〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉)

y (〈−′dockquay,′ deny〉 ∧ 〈[′dockquay[: R]]〉∧

〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉 ∧ 〈[′deny[q1, q2, s : ¬R]]〉∧

〈′deny[: R]〉))

The required new transitions are: ′dockquay[R =⇒ skip] and ′deny[!R =⇒ skip], their

subsequent behaviour will be True. The pattern checks and confirms that the event for

each transition is not in the contract eventlist (see Figure C.21).

47. Apply the If pattern to the state with contract B2 to introduce two new transitions

’dockquay and ’deny. The If pattern is applicable if the selected component is a state.

The pattern checks that the inner contract of the state is an If operator expression.

The contract is: B2 = [ ]�[done]((〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉)

y (〈−′dockquay,′ deny〉 ∧ 〈[′dockquay[: R]]〉∧

〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉 ∧ 〈[′deny[q1, q2, s : ¬R]]〉∧

〈′deny[: R]〉))

The required new transitions are: ′dockquay[R =⇒ skip] and ′deny[!R =⇒ skip].

The contract B2 has the form [ ]φ, all enabled transitions subsequently behave like φ.

φ = �[done]((〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉)

y (〈−′dockquay,′ deny〉 ∧ 〈[′dockquay[: R]]〉∧

〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉 ∧ 〈[′deny[q1, q2, s : ¬R]]〉∧

〈′deny[: R]〉))

The contract is replaced by a state machine with the transitions ′dockquay[R =⇒ skip]

and ′deny[!R =⇒ skip] that subsequently behave like φ (see Figure C.22).

48. Apply the Conjunction elimination pattern to the state with contract B1 ∧B2.

49. Apply the Redundant hierarchy pattern. Assigns the inner contract of the parent state

to the outer contract of the start state.
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Figure C.21: If pattern applied to contract B1
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Figure C.22: If pattern applied to introduce dockquay and deny
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50. Apply the Redundant hierarchy pattern. Assigns the inner contract B of the parent

state to the outer contract of the start state (see Figure C.23).

Figure C.23: Redundant hierarchy pattern applied to state with contract B1

51. Apply the Move target down and the Redundant hierarchy patterns to the state

with contract B. The Move target down pattern shifts the target state of the incoming

transition to the composite state down from the composite state to the default/initial state

of the composite. The Redundant hierarchy pattern is applicable if the selected component

is a state. The pattern checks that the state has substates and no incoming/outgoing

transitions. The pattern flattens the level of hierarchy by removing the selected component

but retaining its substates (see Figure C.24).
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Figure C.24: Move target down and Redundant hierarchy patterns applied

The overall design for the ShipReq component at this stage (see Figure C.25):

52. Apply the Conjunction elimination pattern to the state with contract A ∧B.

53. Apply the Redundant hierarchy pattern. Assigns the inner contract A ∧ B of the

parent state to the outer contract of the start state (see Figure C.26).

54. Substate with contract B and incoming transition ‘dockquay is further refined. Apply

the Unfold Always pattern, B becomes B1 ∧B2

55. Apply the Conjunction introduction pattern to the state with contract B1 ∧B2.

56. Apply the If pattern to the state with contract B1 to introduce a new transition,

done.

57. Apply the If pattern to the state with contract B2 to introduce a new transition done.

58. Further refine the substate of B1 with contract A. Apply the Unfold Unless pattern.

Contract A becomes A1 ∧A2.

59. Apply the Conjunction introduction pattern to the state with contract A1 ∧A2.
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Figure C.25: The ShipReq component
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Figure C.26: Conjunction elimination and Redundant hierarchy patterns applied
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60. Apply the Conjunction introduction pattern to the state with contract A1. Introduces

two new states with contracts A9 and A10.

61. Apply the Disable pattern to the state with contract A9 to introduce the docked

transition.

62. Apply the TotEnable pattern to the state with contract A10 to introduce the docked

transition.

63. Apply the Conjunction elimination pattern to the state with contract A1.

64. Apply pattern Redundant hierarchy, inner contract A1 is assigned to outer contract

of start state.

65. Apply the If pattern to state with contract A2 to introduce the docked transition.

66. Apply the Conjunction elimination pattern to the state with contract A1 ∧A2.

67. Apply the Redundant hierarchy pattern. Assigns the inner contract of the parent state

to the outer contract of the start state.

68. Apply the Redundant hierarchy pattern. Assigns the inner contract A of the parent

state to the outer contract of the start state.

69. Further refine the substate of B2 that is the target of the done transition with contract

B. Apply the Unfold Always pattern, contract B becomes B1 ∧B2.

70. Apply the Conjunction introduction pattern to the state with contract B1 ∧B2.

71. Apply the If pattern to the state with contract B1 to introduce the docked transition.

72. Apply the If pattern to the state with contract B2 to introduce the docked transition.

73. Apply the Conjunction elimination pattern to the state with contract B1 ∧B2.

74. Apply the Redundant hierarchy pattern. Assigns the inner contract of the parent state

to the outer contract of the start state.

75. Apply the Redundant hierarchy pattern. Assigns the inner contract B of the parent

state to the outer contract of the start state.

76. Apply the Move target down and the Redundant hierarchy patterns to both the target

states of the done transitions.

77. Apply the Conjunction elimination pattern to the state with contract B1 ∧B2.

78. Apply the Redundant hierarchy pattern. Assigns the inner contract of the parent state

to the outer contract of the start state.

79. Apply the Redundant hierarchy pattern. Assigns the inner contract B of the parent

state to the outer contract of the start state (see Figure C.27).
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Figure C.27: Conjunction elimination followed by Redundant hierarchy
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80. Apply the Move target down and the Redundant hierarchy patterns to the target state

of the dockquay transition (see Figure C.28).

Figure C.28: Move target down and the Redundant hierarchy patterns applied

81. Apply the Reroute pattern to the target of the docked transition. This reroutes the

docked transition to the start state which has the same contract. The Reroute pattern

is applicable if the selected component is a state. The pattern checks that the state has

incoming transitions but no outgoing transitions or substates. The pattern removes the

selected state and reroutes its incoming transitions to another state, chosen by the user,

whose outer contract is equivalent to the inner contract of the selected state. The pattern

performs a syntactic check to determine if the contracts are equivalent (see Figure C.29).
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Figure C.29: Reroute pattern applied to target of docked transition
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82. Refine state with contract C. Apply pattern Unfold Always, contract C becomes

C1 ∧ C2.

C = �[′deny]((〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉)

y (〈−′dockquay,′ deny〉 ∧ 〈[′dockquay[: R]]〉∧

〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉 ∧ 〈[′deny[q1, q2, s : ¬R]]〉∧

〈′deny[: R]〉))

C1 = [′deny]((〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉)

y (〈−′dockquay,′ deny〉 ∧ 〈[′dockquay[: R]]〉∧

〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉 ∧ 〈[′deny[q1, q2, s : ¬R]]〉∧

〈′deny[: R]〉))

C2 = [ ]�[′deny]((〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉)

y (〈−′dockquay,′ deny〉 ∧ 〈[′dockquay[: R]]〉∧

〈′dockquay[q1, q2, s : ¬(R ∧ skip)]〉 ∧ 〈[′deny[q1, q2, s : ¬R]]〉∧

〈′deny[: R]〉))

83. Apply the Conjunction introduction pattern to state with contract C1 ∧ C2. Creates

two new substates one with contract C1 and the other with contract C2.

84. Apply the If pattern to the state with contract C1 to introduce two new transitions

dock1 and dock2.

85. Apply the Combine states pattern to combine the substates of C1 with contract True.

86. Apply the If pattern to the state with contract C2 to introduce two new transitions

dock1 and dock2.

87. Apply the Combine states pattern to combine the substates of C2 with contract True.

88. Apply the Conjunction elimination pattern to the state with contract C1 ∧ C2.

89. Apply pattern Redundant hierarchy twice, inner contract C is assigned to the outer

contract of the start state.

90. Further refine the substate of C with contract C. Apply the Unfold Always pattern,

contract C becomes C1 ∧ C2.

91. Apply the Conjunction introduction pattern to the state with contract C1 ∧ C2.

Introduces two new states with contracts C1 and C2.

92. Apply the If pattern to the state with contract C1 to introduce two new transitions

dockquay and deny.

93. Apply the If pattern to the state with contract C2 to introduce two new transitions

dockquay and deny.
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94. Apply the Conjunction elimination pattern to the state with contract C1 ∧ C2.

95. Apply the Redundant hierarchy pattern twice. Assigns the inner contract C of the

parent state to the outer contract of the start state.

96. Apply the Move target down and the Redundant hierarchy patterns to the target of

the dock1 transition.

97. Further refine the target state of the dockquay transition with contract C. Apply the

Unfold Always pattern, contract C becomes C1 ∧ C2.

98. Apply the Conjunction introduction pattern to state with contract C1 ∧ C2. Creates

two new substates one with contract C1 and the other with contract C2.

99. Apply the If pattern to the state with contract C1 to introduce the transition done.

100. Apply the If pattern to the state with contract C2 to introduce the transition done.

101. Apply the Conjunction elimination pattern to the state with contract C1 ∧ C2.

102. Apply the Redundant hierarchy pattern twice. Assigns the inner contract C of the

parent state to the outer contract of the start state.

103. Apply the Move target down and the Redundant hierarchy patterns to the target of

the dockquay transition.

104. Further refine the target state of the done transition with contract C. Apply the

Unfold Always pattern, contract C becomes C1 ∧ C2.

105. Apply the Conjunction introduction pattern to state with contract C1∧C2. Creates

two new substates one with contract C1 and the other with contract C2.

106. Apply the If pattern to the state with contract C1 to introduce the transition docked.

107. Apply the If pattern to the state with contract C2 to introduce the transition docked.

108. Apply the Conjunction elimination pattern to the state with contract C1 ∧ C2.

109. Apply the Redundant hierarchy pattern twice. Assigns the inner contract C of the

parent state to the outer contract of the start state.

110. Apply the Move target down and the Redundant hierarchy patterns to the target of

the done transition.

111. Apply the Reroute pattern to the target of the docked transition. This reroutes the

docked transition to the start state which has the same contract (see Figure C.30).

112. Apply the Conjunction elimination pattern to the state with contract A ∧ B ∧ C

and Redundant hierarchy. Assigns the inner contract A∧B ∧C of the parent state to the

outer contract of the start state (see Figure C.31).

113. Refine state with contract D. Apply pattern Unfold Always, contract D becomes
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Figure C.30: Reroute pattern applied

Figure C.31: Conjunction elimination and Redundant hierarchy patterns applied
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D1 ∧D2.

D = �[′dockquay]((〈′dockquay,′ deny, done〉∧〈[−′dockquay,′ deny, done]〉)∧〈 [s : s! = s′]〉

y (〈−done〉 ∧ 〈[done[skip]]〉 ∧ 〈done[¬skip]〉))

D1 = [′dockquay]((〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉)∧ 〈 [s : s! = s′]〉

y (〈−done〉 ∧ 〈[done[skip]]〉 ∧ 〈done[¬skip]〉))

D2 = [ ]�[′dockquay]((〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉)

∧〈 [s : s! = s′]〉y (〈−done〉 ∧ 〈[done[skip]]〉 ∧ 〈done[¬skip]〉))

114. Apply the Conjunction introduction pattern to state with contract D1∧D2. Creates

two new substates one with contract D1 and the other with contract D2.

115. Apply the If pattern to the state with contract D1 to introduce two new transitions

dock1 and dock2.

116. Apply the Combine states pattern to combine the substates of D1 with contract

True.

117. Apply the If pattern to the state with contract D2 to introduce two new transitions

dock1 and dock2.

118. Apply the Combine states pattern to combine the substates of D2 with contract D.

119. Apply the Conjunction elimination pattern to the state with contract D1 ∧D2.

120. Apply the Redundant hierarchy pattern twice. Assigns the inner contract D of the

parent state to the outer contract of the start state.

121. Further refine the target state of the dock1 transition with contract D. Apply the

Unfold Always pattern, contract D becomes D1 ∧D2.

122. Apply the Conjunction introduction pattern to state with contract D1∧D2. Creates

two new substates one with contract D1 and the other with contract D2.

123. Apply the If pattern to the state with contract D1 to introduce two new transitions

dockquay and deny.

124. Apply the If pattern to the state with contract D2 to introduce two new transitions

dockquay and deny.

125. Further refine the substate of D1 that is the target of the dockquay transition with

contract D3. Apply the Unless pattern. Contract D3 is refined to D4.

D3 = ((〈′dockquay,′ deny, done〉 ∧ 〈[−′dockquay,′ deny, done]〉) ∧ 〈 [s : s! = s′]〉

y (〈−done〉 ∧ 〈[done[skip]]〉 ∧ 〈done[¬skip]〉))

D4 = (〈−done〉 ∧ 〈[done[skip]]〉 ∧ 〈done[¬skip]〉)
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126. Apply the Conjunction introduction pattern to the state with contract D4. This

creates two new substates one with contract D5 ∧D6 and the other with contract D7.

D5 = 〈−done〉

D6 = 〈[done[skip]]〉

D7 = 〈done[¬skip]〉

127. Apply the Conjunction introduction pattern to the state with contract D5 ∧ D6.

This creates two new substates one with contract D5 and the other with contract D6.

128. Apply the Disable pattern to the state with contract D5 to introduce transition done.

129. Apply the TotEnable pattern to the state with contract D6 to introduce transition

done.

130. Apply the Conjunction elimination pattern to the state with contract D5 ∧D6.

131. Apply Redundant hierarchy to the state with contract D6.

132. Apply the Disable operator to the state with contract D7 to introduce transition

done.

133. Apply the Conjunction elimination pattern to the state with contract D4.

134. Apply the Redundant hierarchy pattern twice, the inner contract D3 is assigned to

the outer contract of the start state.

135. Apply the Move target down and the Redundant hierarchy patterns to the target of

the dockquay transition.

136. Further refine the substate of D2 that is the target of the dockquay transition with

contract D. Apply the Unfold Always pattern, contract D becomes D1 ∧D2.

137. Apply the Conjunction introduction pattern to state with contract D1∧D2. Creates

two new substates one with contract D1 and the other with contract D2.

138. Apply the If pattern to the state with contract D1 to introduce the transition done.

139. Apply the If pattern to the state with contract C2 to introduce the transition done.

140. Apply the Conjunction elimination pattern to the state with contract D1 ∧D2.

141. Apply the Redundant hierarchy pattern twice. Assigns the inner contract D of the

parent state to the outer contract of the start state.

142. Apply the Move target down and the Redundant hierarchy patterns to the target of

the dockquay transition.

143. Apply the Conjunction elimination pattern to the state with contract D1 ∧D2.

144. Apply the Redundant hierarchy pattern twice. Assigns the inner contract D of the

parent state to the outer contract of the start state.
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145. Apply the Move target down and the Redundant hierarchy patterns to the target of

the dock1 transition.

146. Further refine the target state of the done transition with contract D. Apply the

Unfold Always pattern, contract D becomes D1 ∧D2.

147. Apply the Conjunction introduction pattern to state with contract D1∧D2. Creates

two new substates one with contract D1 and the other with contract D2.

148. Apply the If pattern to the state with contract D1 to introduce the transition docked.

149. Apply the If pattern to the state with contract C2 to introduce the transition docked.

150. Apply the Conjunction elimination pattern to the state with contract D1 ∧D2.

151. Apply the Redundant hierarchy pattern twice. Assigns the inner contract D of the

parent state to the outer contract of the start state.

152. Apply the Move target down and the Redundant hierarchy patterns to the target of

the done transition.

153. Apply the Reroute pattern to the target of the docked transition. This reroutes the

docked transition to the start state which has the same contract.

154. Apply the Conjunction elimination pattern to the state with contract A∧B∧C ∧D.

155. Apply the Redundant hierarchy pattern (see Figure C.32).

Figure C.32: Conjunction elimination followed by Redundant hierarchy
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156. Refine state with contract E. Apply pattern Unfold Always, contract E becomes

E1 ∧ E2.

E = �〈 [q1, q2 : (q
′
1! = q1)||(q

′
2! = q2)]〉

E1 = 〈 [q1, q2 : (q
′
1! = q1)||(q

′
2! = q2)]〉

E2 = [ ]�〈 [q1, q2 : (q
′
1! = q1)||(q

′
2! = q2)]〉

157. Apply the Conjunction introduction pattern to state with contract E1∧E2. Creates

two new substates one with contract E1 and the other with contract E2.

158. Apply the Disable pattern to the state with contract E1 to introduce two new

transitions dock1 and dock2.

159. Apply the Combine states pattern to combine the substates of E1 with contract

True.

160. Apply the If pattern to the state with contract E2 to introduce two new transitions

dock1 and dock2 (see Figure C.33).

Figure C.33: If pattern applied to the state with contract E2

161. Apply the Combine states pattern to combine the substates of E2 with contract E.

162. Apply the Conjunction elimination pattern to the state with contract E1 ∧ E2.

163. Apply the Redundant hierarchy pattern twice. Assigns the inner contract E of the

parent state to the outer contract of the start state.
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164. Further refine the target of the dock1 transition with contract E. Apply pattern

Unfold Always, contract E becomes E1 ∧ E2.

165. Apply the Conjunction introduction pattern to state with contract E1∧E2. Creates

two new substates one with contract E1 and the other with contract E2.

166. Apply the Disable pattern to the state with contract E1 to introduce two new

transitions dockquay and deny (see Figure C.34).

Figure C.34: Disable pattern applied to the state with contract E1

167. Apply the If pattern to the state with contract E2 to introduce two new transitions

dockquay and deny.

168. Apply the Conjunction elimination pattern to the state with contract E1 ∧ E2.

169. Apply the Redundant hierarchy pattern twice. Assigns the inner contract E of the

parent state to the outer contract of the start state.

170. Apply the Move target down and the Redundant hierarchy patterns to the target of

the dock1 transition (see Figure C.35).

171. Further refine the target state of the dockquay transition with contract E. Apply the

Unfold Always pattern, contract E becomes E1 ∧ E2.

172. Apply the Conjunction introduction pattern to state with contract E1∧E2. Creates

two new substates one with contract E1 and the other with contract E2.

173. Apply the Disable pattern to the state with contract E1 to introduce the transition
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Figure C.35: Move target down and the Redundant hierarchy patterns applied

done.

174. Apply the If pattern to the state with contract E2 to introduce the transition done

(see Figure C.36).

175. Apply the Conjunction elimination pattern to the state with contract E1 ∧ E2.

176. Apply the Redundant hierarchy pattern twice. Assigns the inner contract E of the

parent state to the outer contract of the start state.

177. Apply the Move target down and the Redundant hierarchy patterns to the target of

the dockquay transition.

178. Further refine the target state of the done transition with contract E. Apply the

Unfold Always pattern, contract E becomes E1 ∧ E2.

179. Apply the Conjunction introduction pattern to state with contract E1∧E2. Creates

two new substates one with contract E1 and the other with contract E2.

180. Apply the Disable pattern to the state with contract E1 to introduce the transition

docked.

181. Apply the If pattern to the state with contract E2 to introduce the transition docked

(see Figure C.37).

182. Apply the Conjunction elimination pattern to the state with contract E1 ∧ E2.

183. Apply the Redundant hierarchy pattern twice. Assigns the inner contract E of the
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Figure C.36: If pattern applied to introduce done transition

parent state to the outer contract of the start state.

184. Apply the Move target down and the Redundant hierarchy patterns to the target of

the done transition (see Figure C.38).

185. Apply the Reroute pattern to the target of the docked transition. This reroutes the

docked transition to the start state which has the same contract.

186. Apply the Conjunction elimination pattern to the state with contract A∧B∧C∧D∧E

(see Figure C.39).

187. Apply the Redundant hierarchy pattern. Assigns the inner contract A∧B∧C∧D∧E

of the parent state to the outer contract of the start state (see Figure C.40).

188. Apply the Reroute pattern to the target of the deny transition. This reroutes the

deny transition to the start state which has the same contract (see Figure C.41).
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Appendix C: Case study - the docking system

Figure C.37: If pattern applied to introduce docked transition
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C.1 Refinement of the ShipReq component

Figure C.38: Move target down and the Redundant hierarchy patterns applied
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Appendix C: Case study - the docking system

Figure C.39: Conjunction elimination pattern applied
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C.1 Refinement of the ShipReq component

Figure C.40: Redundant hierarchy pattern applied

345



Appendix C: Case study - the docking system

Figure C.41: Reroute pattern applied to the target of the deny transition
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Appendix D

Additional patterns

This appendix describes patterns that are not in the core set as they are not critical or

strictly necessary to achieve a deterministic solution but may be preferable for stylistic

reasons offering the engineer different routes to the same solution.

D.1 Patterns for CoSta contracts

Name: TotEnable combine actions

Type: Refactoring

Rationale: This pattern combines two disjoined Totalised enable operator expressions.

The inverse for this transformation TotEnable split actions is presented below in this

section.

Constraints: The pattern constraint ensures the inner contract is a Disjunction operator

expression of the form C1∨C2 where C1 and C2 are Totalised enable operator expressions.

The inner contract has the form 〈[a1, .., an[x : P1]]〉 ∨ 〈[b1, .., bm[x : P2]]〉. This pattern

combines the sets of events together for the Totalised enable operator expressions. The

pattern checks that the update expressions P1 and P2 are syntactically equivalent. The

pattern could be generalised for the situation where the update expressions [x : P1] and

[x : P2] are not syntactically equal. In this instance the side-condition check could be

extended to verify that they are semantically equivalent ` P1 ⇔ P2.

Parameters: The parameter is a state whose inner contract is the disjunction of two

Totalised enable operator expressions.

Transformation: This pattern replaces the original contract

〈[a1, .., an[x : P1]]〉 ∨ 〈[b1, .., bm[x : P2]]〉 with the new contract 〈[a1, .., an, b1, .., bm[x : P1]]〉
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Appendix D: Additional patterns

Diagram:

 

 
 

<[a1,..,an[x:P1]]> ∨ <[b1,..,bm[x:P2]]> 

<[a1,..,an, b1,..,bm[x:P1]]> 
 

“TotalisedEnable combine actions” 
 P1 is equivalent to P2 

 

Figure D.1: TotEnable combine actions

Name: TotEnable split actions

Type: Refactoring

Rationale: This pattern splits a Totalised enable operator expression on its set of actions

into the disjunction of two Totalised enable operator expressions. The inverse for this

transformation TotEnable combine actions is presented above in this section.

Constraints: The pattern constraint ensures the contract is a Totalised enable operator

expression.

Parameters: The parameters are a state whose inner contract is a Totalised enable

operator expression and its set of actions split into two groups.

Transformation: A Totalised enable contract 〈[a1, .., ak, ak+1, .., an[x : P ]]〉 is split into

〈[a1, .., ak[x : P ]]〉 ∨ 〈[ak+1, .., an[x : P ]]〉.
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D.1 Patterns for CoSta contracts

Diagram:

 

 
 

<[a1,..,ak[x:P]]> ∨ <[ak+1,..,an[x:P]]>  

“TotalisedEnable split actions” 
 

<[a1,..,ak ,ak+1,..,an[x:P]]> 
 

Figure D.2: TotEnable split actions

Name: If split actions

Type: Refactoring

Rationale: This pattern splits an If operator expression into the conjunction of two If

operators. The inverse transformation for this pattern If combine actions is presented in

Chapter 4, section 4.3.1.2.

Constraints: The pattern is applicable to a state with an inner contract that is an If

operator expression.

Parameters: The parameters are a state whose inner contract is an If operator expression

and its set of actions split into two groups.

Transformation: An If contract [a1, .., ak, ak+1, .., an[x : P ]]L is split into

[a1, .., ak[x : P ]]L ∧ [ak+1, .., an[x : P ]]L.
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Diagram:

 

 
 

[a1,..,ak[x:P]]L ∧ [ak+1,..,an[x:P]]L  

“If split actions” 
 

[a1,..,ak, ak+1,..,an[x:P]]L 
 

Figure D.3: If split actions

D.2 Patterns for mixed designs

Name: Split state

Type: Refactoring

Rationale: This pattern splits a single state into two, this then permits each of the

states to be refined differently. This pattern may be needed, for example, when splitting

a transition along its guard or update and refining each branch differently. (It is possible

to split a transition along its guard or update and then refine each branch differently

with the TotalisedEnable and If patterns). The inverse of this pattern, Combine states, is

presented in Chapter 4, section 4.3.3.1.

Constraints: The pattern is applicable to a state with an unelaborated inner contract.

Parameter: A basic state.

Transformation: This pattern replaces a state with two new states. The new states are

given the same contract as the original state and belong to the same parent state as the

original state. The incoming transitions to the original state are split between the new

states.
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D.2 Patterns for mixed designs

Diagram:

 

“Split state” 

 

L 

 

N 

M 

 

a[x:P1] 

 

b[x:P2] 

 

L 

 

N 

M 

 

a[x:P1] 

 

b[x:P2] 

 

M 

 

Figure D.4: Split state
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Abbreviations

ACP Algebra of Communicating Processes

ACSR Algebra of Communicating Shared Resources

ATL Atlas Transformation Language

CCS Calculus of Communicating Systems

CoSta Contractual State Machines

CSP Communicating Sequential Processes

CWB Edinburgh Concurrency Workbench

ECL Epsilon Comparison Language

EGL Epsilon Generation Language

EMF Eclipse Modelling Framework

EML Epsilon Merging Language

EOL Epsilon Object Language

Epsilon Extensible Platform of Integrated Languages for Model Management

ETL Epsilon Transformation Language

EVL Epsilon Validation Language

EWL Epsilon Wizard Language

FDR Failures-Divergence Refinement
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FSM Finite State Machine

GEF Graphical Editor Framework

GME Generic Modeling Environment

GMF Graphical Modelling Framework

HML Hennessey-Milner Logic

HST Heterogeneous Specification Tool

JML Java Modelling Language

LTL Linear Temporal Logic

LTS Labelled Transition System

MDA Model-Driven Architecture

MDD Model-Driven Development

MDE Model-Driven Engineering

MOF Meta-Object Facility

oAW Open ArchitectureWare

OCL Object Constraint Language

OCLE Object Constraint Language Environment

OMG Object Management Group

PFS Practical Formal Specification

PIM Platform Independent Model

PSM Platform Specific Model

QVT Queries/Views/Transformations

RCP Rich Client Platform

SSA Simulink/Stateflow Analyser

SSM Safe State Machine
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STGA Symbolic Transition Graph with Assignment

SVRS Shared Variable Ready Simulation

TCOZ Timed Communicating Object-Z

UML Unified Modelling Language

VHDL VHSIC Hardware Description Language

XMI XML Metadata Interchange

XML eXtensible Markup Language

XP eXtreme Programming
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[89] Harald Fecher, Jens Schönborn, Marcel Kyas, and Willem P. de Roever. 29 New

Unclarities in the Semantics of UML 2.0 State Machines. In ICFEM, pages 52–65,

2005.

[90] Institute for Software Integrated Systems. Generic modelling Environment

(GME) [online]. [Accessed 08 October 2009] Available at: http://www.isis.

vanderbilt.edu/Projects/gme/, 2008.

[91] The Eclipse Foundation. Epsilon Validation Language [online]. [Accessed 09 Decem-

ber 2010] Available at: http://www.eclipse.org/gmt/epsilon/doc/evl/,

2011.

[92] Martin Fowler. Analysis Patterns: Reusable Object Models (Addison-Wesley Series

in Object-Oriented Software Engineering). Addison-Wesley Longman, Amsterdam,

1996.

[93] Martin Fowler. Refactoring: Improving the Design of Existing Code. In XP/Agile

Universe, page 256, 2002.

[94] Heinz Frank and Johann Eder. Equivalence Transformations on Statecharts. In

Proc. 12th International Conf. on Software and Knowledge Eng., pages 150–158,

2000.

[95] Andy Galloway, J Cockram, and John Mcdermid. Experiences with the application

of discrete formal methods to the development of engine control software. IFAC

Workshop on Distributed Computer Control Systems. (15th 1998 Como, Italy).,

1999.

[96] Andy Galloway, Frantz Iwu, John Mcdermid, and Ian Toyn. Verified Software:

Theories, Tools, Experiments. chapter On the Formal Development of Safety-Critical

Software, pages 362–373. Springer-Verlag, Berlin, Heidelberg, 2008.

[97] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:

elements of reusable object-oriented software. Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA, 1995.

[98] Hassan Gomaa. Designing concurrent, distributed, and real-time applications with

UML. In Proceedings of the 28th international conference on Software engineering,

ICSE ’06, pages 1059–1060, New York, NY, USA, 2006. ACM.

365

http://www.isis.vanderbilt.edu/Projects/gme/
http://www.isis.vanderbilt.edu/Projects/gme/
http://www.eclipse.org/gmt/epsilon/doc/evl/


Bibliography

[99] Gr’egoire Hamon and John Rushby. An operational semantics for Stateflow. Inter-

national Journal on Software Tools for Technology Transfer (STTT), 9(5):447–456,

October 2007.

[100] Lishan Harbird, Andy Galloway, and Richard F. Paige. Towards a Model-Based

Refinement Process for Contractual State Machines. In Proceedings of the 2010 13th

IEEE International Symposium on Object/Component/Service-Oriented Real-Time

Distributed Computing Workshops, ISORCW ’10, pages 108–115, Washington, DC,

USA, 2010. IEEE Computer Society.

[101] D. Harel and A. Pnueli. On the development of reactive systems, pages 477–498.

Springer-Verlag New York, Inc., New York, NY, USA, 1985.

[102] David Harel. Statecharts: A visual formalism for complex systems. Sci. Comput.

Program., 8:231–274, June 1987.

[103] David Harel and Amnon Naamad. The STATEMATE semantics of statecharts.

ACM Trans. Softw. Eng. Methodol., 5:293–333, October 1996.

[104] David Harel, Amir Pnueli, Jeanette P. Schmidt, and Rivi Sherman. On the Formal

Semantics of Statecharts (Extended Abstract). In LICS, pages 54–64, 1987.

[105] David Harel and Michal Politi. Modeling Reactive Systems with Statecharts: The

Statemate Approach. McGraw-Hill, Inc., New York, NY, USA, 1st edition, 1998.

[106] Reiko Heckel. Tutorial Introduction to Graph Transformation. In Hartmut Ehrig,

Reiko Heckel, Grzegorz Rozenberg, and Gabriele Taentzer, editors, Graph Transfor-

mations, volume 5214 of Lecture Notes in Computer Science, pages 458–459. Springer

Berlin / Heidelberg, 2008.

[107] Eric C.R. Hehner. The logic of programming. Prentice-Hall, Inc., Upper Saddle

River, NJ, USA, 1984.

[108] Constance L. Heitmeyer. On the Need for Practical Formal Methods. In FTRTFT,

pages 18–26, 1998.

[109] Constance L. Heitmeyer. On the Utility of Formal Methods in the Development and

Certification of Software. In TPHOLs, pages 1–2, 2007.

366



Bibliography

[110] Constance L. Heitmeyer. On the Role of Formal Methods in Software Certification:

An Experience Report. Electr. Notes Theor. Comput. Sci., 238(4):3–9, 2009.

[111] Constance L. Heitmeyer and Nancy A. Lynch. The Generalized Railroad Crossing:

A Case Study in Formal Verification of Real-Time Systems. In IEEE Real-Time

Systems Symposium, pages 120–131, 1994.

[112] Matthew Hennessy and Robin Milner. Algebraic Laws for Nondeterminism and

Concurrency. J. ACM, 32(1):137–161, 1985.

[113] Michael G. Hinchey and J. P. Bowen. High-Integrity System Specification and Design.

Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1st edition, 1999.

[114] Michael G. Hinchey and Stephen A. Jarvis. Concurrent Systems: Formal Develop-

ment in CSP. McGraw-Hill, Inc., New York, NY, USA, 1st edition, 1995.

[115] C. A. R. Hoare. Communicating Sequential Processes. Commun. ACM, 21(8):666–

677, 1978.
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