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Abstract  

The objective of this research was to investigate the influence of selective exhaust 

gas recirculation (S-EGR) applied to gas-fired systems and determine if energy and 

economic savings can be realised.  

The gas turbine experimental campaigns evaluated the performance of a micro gas 

turbine (mGT) under S-EGR conditions, simulated by injecting CO2 into the 

compressor inlet. The mGT performance was affected under these conditions in 

terms of efficiency, compressor operation and emissions, however, this was more 

prominent at part loads. The flue gas CO2 concentrations increased by up to 6 times 

(up to 10.1 vol% at 60 kWe) with respect to the reference case without S-EGR, 

which can be beneficial to improve the downstream amine capture plant (ACP) 

performance, as demonstrated by subsequent experimental campaigns. The first 

assessed ACP performance with flue gas CO2 concentrations of 5.2-9.0 vol%. The 

results showed that the specific reboiler duty reduced by 21% and the liquid-to-gas 

ratio increased from 2.59 to 4.22 between the lowest and highest flue gas CO2 

concentrations tested. The plant performance was also analysed at varying reboiler 

temperatures (124-127°C), using a flue gas with 9.0 vol% CO2 concentration. The 

results indicated that the overall specific reboiler duty and CO2 capture efficiencies 

reduced at lower reboiler temperatures. Overall, the results indicate that S-EGR 

operation in the gas turbine could be beneficial since it can lead to reductions in 

overall energy costs. 

The economic analysis evaluated the application of two S-EGR configurations 

(parallel and hybrid) in combined cycle gas turbine (CCGT) power plants, with the 

cost of electricity ranging from $82-90 and $82-93 per MWhe, respectively. The cost 

of CO2 avoided for the parallel and hybrid schemes varied from $80-105 and $83-

119 per tonne of CO2 avoided. The sensitivity analysis performed also 

demonstrated the economic competitiveness of S-EGR against ACP and EGR.  
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1 Introduction  

1.1 Background  

The consequences of climate change on social, economic and environmental 

factors will largely depend on how mitigation strategies are implemented and 

adapted based on future climate change scenarios (Moss et al., 2010). Greenhouse 

gas (GHG) emissions reduction and mitigation is imperative to limit the effects of 

climate change. Carbon dioxide (CO2) is the most abundant anthropogenic GHG, 

where atmospheric concentrations since the pre-industrial era (280 parts per million 

(ppm) – c. 1750 to 1850) have significantly increased (IEA, 2017a). The rapid 

growth in CO2 emissions is evident from Figure 1.1, which illustrates that CO2 

emissions increased from 315.7 ppm in 1958 to 411.3 ppm in 2018, an average rise 

of 1.57 ppm per year.   

 

Figure 1.1. Globally averaged CO2 data from 1958 to 2018 

(NASA, 2018). 

This continued rapid rise of CO2 has and will continue to influence the climate and 

result in detrimental impacts, including sea level rise, extreme weather events (e.g. 

flooding and droughts), species extinction, and poor air quality. These impacts will 

have a global negative consequence on social, economic and environmental 

factors, hence, it is important to mitigate and reduce these emissions to abate 

climate change. Firstly, it is necessary to understand the trends in global CO2 

emissions to provide effective solutions to assist with climate change mitigation. In 
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2016, global CO2 emissions totalled ~36 Gt increasing by ~0.4 Gt/year from 1970 to 

2016. However, the annual increase in global CO2 emissions slowed from 2012 to 

2015. In the period 2012 to 2013, CO2 emissions increased by 1.8%, and in 2013 to 

2014 a rise of 0.8% was reported. Interestingly in the period 2014 to 2015, CO2 

emissions decreased by 0.2%, whereas, the 2015 to 2016 period reported a 0.5% 

increase in emissions (Janssens-Maenhout et al., 2017). These values indicate the 

annual increase of CO2 emissions compared to preceding years has slowed. This is 

likely due to changes in the energy mix, e.g. increased used of renewables, reduced 

use of fossil fuels for electricity production, improved efficiency and the impact of the 

financial crisis on the global economy. Karmellos et al. (2016) add that changes to 

China’s economic structure and improvements to how we use energy are the 

principle factors leading to this observed slowdown in CO2 emissions. As shown in 

Figure 1.2, coal, oil, and natural gas remain the dominant fuels for electricity 

generation. This is important, as these fuels are responsible for the greatest 

concentrations of CO2 due to their use for electricity, heat generation and 

transportation. Therefore, to reduce CO2 emissions, the development and 

implementation of low carbon technologies are required. 

 

Figure 1.2. World electricity generation by fuel from 1971 to 2015 

(IEA, 2017a). 

As shown in Table 1.1 (p.3), the progress of low carbon technologies is evident, 

indicated by the growth of renewable energy from 2014 to 2017. This 52% increase 
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demonstrates the growth of low carbon technologies (e.g. solar, wind, tidal and 

geothermal), compared to coal which decreased ~3%, with oil and natural gas 

consumption increasing ~5% and ~8%, respectively, during the same period.  As 

shown in Figure 1.2 (p.2), oil, coal and natural gas remain the dominant fuels for 

electricity generation. This is also reflected in Figure 1.3 with oil, coal and natural 

gas representing ~34%, ~28%, and ~23% of global primary energy share for 2017 

(BP, 2018).  

Table 1.1. Primary world fuel consumption 2014 and 2017 

Fuel Fuel consumption (Mtoe) 

 2014 2015 2016 2017 

Coal 3862 3765 3706 3732 

Natural gas 2922 2987 3073 3156 

Oil 4395 4476 4557 4622 

Nuclear energy 575 583 591 596 

Hydroelectricity 880 881 913 919 

Renewables 320 369 417 487 

(BP, 2018). 

 

Figure 1.3. Comparison of world primary energy share 2014 to 2017 

(BP, 2018). 

The increased use of low carbon technologies within the energy mix is promising as 

coal, oil and natural gas combustion account for the highest amount of CO2 

emissions compared to other fuel sources as indicated by Figure 1.4 (p. 4). 
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Figure 1.4. CO2 emissions share from fossil fuels from 1971 to 2015 

(IEA, 2017a). 

Nonetheless, electricity and heat generation remains one of the primary sources of 

global CO2 emissions (47% in 2015) (IEA, 2017a). In the 2040 energy future 

scenarios, natural gas demand from the power generation sector is expected to 

increase to 36% by 2040 becoming the main fossil fuel in the energy mix (IEA, 

2017b). Despite the increasing use of low carbon energy options for electricity 

generation, fossil fuels will still be used and CO2 emissions from these systems 

require mitigation 

Globally, nations are acting and working towards emissions reduction through 

international conventions. At the 21st United Nations Framework Convention on 

Climate Change (UNFCCC) Conference of the Parties (COP), member states 

agreed on a new climate change protocol including legislative mechanisms to 

maintain the rise in worldwide average temperatures “below 2°C above pre–

industrial levels and pursuing efforts to limit the temperature increase to 1.5°C 

above pre–industrial levels” (UNFCCC, 2015). This international agreement 

demonstrates that nations are taking climate change seriously. In the European 

Union, this is evident, with action areas to combat climate change including a 40% 

reduction in GHG emissions compared to 1990 levels, an increase of 27% in 

renewable energy and 27% improvement in energy efficiency by 2030 (EC, 2018). 

The EU have also published the Energy 2050 roadmap outlining scenarios to 

achieve energy decarbonisation and transition to a low carbon energy system by 

2050 (EC, 2012). These scenarios require collective action from all industries e.g. 

agriculture, power generation, forestry and transportation. In 2016, power 
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generation accounted for 54% of all EU GHG emissions (EEA 2018). Therefore, 

reducing GHG emissions, notably CO2 emissions from power generation is 

fundamental towards achieving climate change targets. This is of vital importance in 

the UK, where transport and power generation accounted for 27% and 24%, 

respectively, of total UK GHG emissions in 2017 (BEIS, 2019). To contribute 

towards achieving the EU emission targets, the UK government has set out its own 

targets via the implementation of legislative measures including the Climate Change 

Act 2008 (UKGov, 2019). The target outlined in the Climate Change Act is to ensure 

the net UK carbon account for the year 2050 is at least 80% lower than the 1990 

baseline (UKGov, 2019). To achieve this target, the power generation sector needs 

to reduce the carbon intensity to 50 gCO2/kWh by 2050 (CCC, 2015). To deliver a 

decarbonised low carbon energy system requires the implementation of low carbon 

power generation including biomass, wind, solar and fossil fuel combustion coupled 

with carbon capture and storage (CCS). In the European context, particularly in the 

UK and other Northern European countries e.g. Norway, CCS is recognised as a 

key enabling zero emission technology to assist in the reduction of CO2 emissions 

from large stationary combustion plants and other heavy industries e.g. steel and 

cement production. It is anticipated that without CCS, meeting the 2050 climate 

change targets set out by the UK government will significantly increase the 

abatement cost, as more expensive mitigation options would be required (ETI 2015; 

CCC 2016; Oxburgh, 2016). To enable CCS as a key UK climate change mitigation 

strategy will require investment in low carbon electricity (40 GW of new installed 

capacity) by 2030 (CCC, 2015). This new capacity is to facilitate the anticipated 

increase in electricity demand and to replace plants at the end of their life cycle. The 

UK governments’ electricity market reform delivery plan predicts that ~13 GW of this 

new capacity will come from power plants coupled with CCS (DECC, 2015). As the 

UK moves towards low carbon power generation, the shift from coal-fired power to 

natural-gas power generation is expected. By 2020, it is anticipated that up to 30 

GW of new combined-cycle gas turbine (CCGT) power plants will be installed in the 

UK (CCC, 2015). Increasing the use of natural gas in the energy mix, will provide 

flexibility to meet shortfalls in the demanded electricity, and compensate for gaps in 

renewable and nuclear power to the grid. Furthermore, using unabated natural gas 

instead of coal, provides further benefits, notably the lower carbon intensity which is 

~350-400 gCO2/kWh, that can assist with reducing CO2 emissions in the short term 

(IEAGHG, 2012a). However, to contribute toward CO2 emission targets and deliver 

low carbon electricity generation, CCS will require integration with CCGT power 

plants.  
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1.2   Carbon capture, utilisation and storage  

To mitigate emissions from power generation and industrial systems carbon 

capture, utilisation and storage (CCUS) is considered as a fundamental option to 

meet the 2°C or below Paris agreement emission target (IEA, 2017b). In CCS, the 

captured CO2 is pressurised to approximately 100 to 150 bar and transferred to a 

storage location, e.g. geological storage, where it can remain for millions of years 

(Boot-Handford et al., 2014). In CCU, the captured CO2 is utilised to add value to 

the power generation lifecycle by creating a commercial product from a waste gas. 

There is a range of applications for CCU such as enhanced oil and coal-bed 

methane recovery, conversion into chemicals and fuel, and mineral carbonation 

(Cuéllar-Franca and Azapagic, 2015). The options for CO2 capture include pre-

combustion, post-combustion and oxy-fuel combustion. Pre-combustion CO2 

capture involves the integrated gasification or reforming of a solid or gaseous fuel, 

respectively, where it is converted to synthesis gas (mainly comprises of hydrogen 

(H2) and CO although some CO2 can be present) at high temperature and pressure, 

in the presence of steam (H2O) and oxygen (O2) (see Figure 1.5). The syngas is 

then subject to the water gas shift reaction (Dimitriou et al., 2015), involving the 

oxidation of CO which produces CO2 and H2. Following this, the CO2 is captured 

and then processed for storage or use, and the H2 is used to generate electricity.  

 

Figure 1.5. Schematic of the process for pre–combustion capture. 

Oxy-fuel combustion (see Figure 1.6, p.7) requires the modification of the 

combustion process, where the fuel is burnt in the presence of a highly rich O2 

stream (> 95%) mixed with recycled CO2. The system will operate at typical 30-35 

vol% O2 in total within the combustor, although higher O2 concentrations are being 

explored (Arias et al., 2018; Black et al., 2013). This highly-concentrated O2 stream 

is usually supplied from a cryogenic air separation unit, where low-temperature 

condensation (< -182°C) splits the O2 from the nitrogen (N2). The combustion of the 

fuel within this highly enriched O2 stream results in much higher furnace 

temperatures, therefore, it is necessary to recycle the CO2-concentrated flue gas 
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(RFG) to act as a diluent and regulate flame temperature similar to conventional air 

firing (Wall et al., 2009). Following the combustion process, CO2 and water vapour 

are the main products in the exhaust gas stream. Condensation removes the water 

vapour and the CO2 stream is subject to purification and dehydration prior to being 

transported for storage or utilisation.  

 

Figure 1.6. Schematic of the process for oxy-fuel combustion capture. 

Post-combustion CO2 capture (PCC) captures CO2 in the flue gas generated after 

combustion, and then it is processed for compression, transportation and storage or 

use (see Figure 1.7). The most advanced PCC CO2 capture technology is amine 

absorption, which has already achieved commercial scale (NRG Energy, 2017; 

SaskPower, 2017). Post-combustion CO2 capture is the mostly widely used 

because it is the most developed option compared to pre-combustion and oxy-fuel 

CO2 capture. Wet scrubbing using monoethanolamine (MEA) is a developed 

technology used in gas sweetening and the chemical industry, which is the mostly 

widely used solvent for gas scrubbing technology.  

 

Figure 1.7. Schematic of the process for post-combustion capture. 

The CO2 is absorbed by a solvent (typically MEA) in an absorption column 

separating it from the remaining flue gases. Following this, CO2 is removed from the 

solvent in a stripper column and processed for storage or use. The solvent is 

recirculated within the system and reused. Other technologies proposed for PCC 

include the use of solid sorbents in high-temperature looping cycles, membranes, 

adsorption and cryogenic separation. These processes are at different phases of 

research and development, requiring further optimisation before being considered 

for commercial deployment (Boot-Handford et al., 2014; Mondal et al., 2012).  
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1.2.1 Current status of CCUS 

There are currently only two operational commercial-scale PCC plants that use 

amines. These include SaskPower Boundary Dam CCS project near Estevan, 

Saskatchewan, Canada and Petra Nova, Texas, USA. The Boundary Dam project 

was the world’s first full scale operational CCS plant where 1 million tonnes a year 

of CO2 can be captured (Stéphenne, 2014). This 139 MW thermal coal–fired power 

plant was retrofitted with an ACP and has a capture efficiency of 90% using the 

Shell Cansolv process (Stéphenne, 2014). Since January 2017, Petra Nova has 

become the largest operational CCS plant (NRG Energy, 2017). This facility 

captures up to 1.4 million tonnes a year of CO2 at a 90% capture efficiency, using 

the KS-1 amine solvent created by Mitsubishi Heavy Industries (NRG Energy, 

2017). The knowledge gained from the development of these two commercial scale 

CCS plants and early pilot and demonstration scale plants provide valuable 

information to reduce the uncertainty associated with cost, design, construction and 

operation of future CCS schemes. This will be important in building confidence with 

investors and stakeholders that CCS is a cost-effective zero emission technology 

that can be delivered at scale. It is anticipated that the lesson learnt from Boundary 

Dam alone will decrease CCS costs by ~30% (GCCSI, 2015).  However, a large 

proportion of CCS projects are focused on coal-fired power generation, not natural 

gas, principally because these plants produce higher CO2 emissions compared to 

CCGT’s. Nonetheless, CCS from commercial scale CCGT plants (gas-CCS) is also 

required to meet emission targets. The deployment of gas-CCS will also assist in 

reducing costs associated with CCS and make this technology a competitive 

mitigation option. In the UK, the CCS commercialisation programme was cancelled 

in 2015, which offered £1 billion of funding to develop CCS. This front end 

engineering and design (FEED) study proposed to apply CCS to a 385 MWe CCGT 

power plant located in Peterhead, Scotland (Herraiz, 2016). However, smaller pilot 

scale projects have continued to develop gas-CCS, including the CO2 Technology 

Centre Mongstad in Norway (Thimsen et al. 2014; Hamborg et al. 2014) and the 

Pilot-Scale Advanced Capture (PACT) facilities in the UK (Best et al. 2016). The 

application of gas-CCS poses challenges, notably due to the lower flue gas CO2 

and higher O2 concentrations compared to coal fired plants. Gas turbines also 

operate with high excess air, principally to control oxides of nitrogen (NOx) 

emissions and for cooling down the metallurgy, resulting in large volumetric flue gas 

flowrates. To treat these large flowrates requires larger absorber columns and 

auxiliary equipment, thus leading to greater costs for gas-CCS.   
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1.2.2 Challenges of combined cycle gas turbines coupled with PCC 

As noted previously, the use of natural gas for electricity generation is likely to rise 

in the coming decades as nations move towards cleaner energy production (IEA, 

2017b). Coal-fired plants have higher CO2 concentrations (~13 vol%) and lower O2 

levels of ~3 vol% compared to natural gas combustion. As the emission targets 

become stricter and nations move towards a carbon-free society, coal combustion is 

likely to decline. In addition, energy flexibility will become imperative to future 

energy scenarios. As gas turbine combustion systems can offer flexibility and lower 

CO2 emissions compared to coal, the use of natural gas for electricity generation 

purposes is expected to rise. This means CCS is essential to mitigate CO2 

emissions from CCGT power stations (IEA, 2017b).  Natural gas systems have the 

lowest flue gas CO2 concentrations compared to other fossil fuels, ~4 vol% CO2, 

which equates to ~300-400 kg CO2 per MWh in CCGT power stations (IEAGHG, 

2012a). Coupling CCS with natural gas combustion processes (gas-CCS) is difficult 

due to the high excess air requirements of the combustor leading to greater exhaust 

flowrates, higher remaining oxygen and lower CO2 concentrations (Bolland and 

Mathieu, 1998; Li et al., 2011a; Lugo-Leyte et al., 2010). The higher excess air is 

required to decrease the turbine inlet temperature to levels the turbine blades can 

tolerate due to limits in metallurgy, hence, safeguarding the turbomachinery 

(Martínez et al., 2011).  Furthermore, the high excess air in gas turbines is needed 

to control NOx emissions, by decreasing the flame temperature to limit NOx 

formation (Davis and Black, 2000). Modern heavy-duty gas turbines utilise lean pre-

mixed Dry Low NOx combustors, which have been designed to operate at low NOx 

concentrations. The air used in the combustor is controlled to ensure optimal air fuel 

ratios, where part of the outlet compressor air is mixed with the fuel and combusted 

(Davis and Black, 2000). The remaining air is used for flame quenching and 

combustor wall cooling which aids in the control of NOx formation, as the flame 

temperatures are reduced (Davis and Black, 2000). The higher air flowrates require 

the capture plant, especially the absorber columns to be greater in size to 

accommodate these flowrates (Akram et al., 2016; Biliyok and Yeung, 2013; Bolland 

and Sæther, 1992; Merkel et al., 2013).  

McGlade et al. (2016) also identify that using natural gas as a bridging fuel (instead 

of coal or oil) to develop a low carbon energy system is unsustainable beyond 2020 

without CCS technology in place. Therefore, the implementation of CCS is required 

today to create the low carbon economy of tomorrow. However, the technological 

and economic challenges noted above need to be resolved before governments will 
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consider deploying CCUS. In the UK, this is evident, with the government 

withdrawing £1 billion of funding to develop CCS (LSE, 2015). The recently 

published Clean Growth Strategy (BEIS, 2017) indicates that the UK government is 

willing to reconsider CCUS for our energy future. However, to deploy CCUS at 

scale, cost reductions are required. This combined with international collaboration 

e.g. Mission Innovation (Mission Innovation, 2017) and addressing issues such as 

liability, safety, and long-term CO2 storage will encourage nations to commit to the 

deployment of CCUS (Figueroa et al., 2008). By deploying this technology at scale, 

a 14% reduction in CO2 emissions is expected by the middle of the century (IEA, 

2013). Therefore, the optimisation of gas-CCS is required to ensure we can deliver 

a long-term and low-cost mitigation strategy for the future. Understanding the 

operational performance and costs of gas-CCS will be imperative in the 

development of this technology. This is already being undertaken, where 

researchers are developing techniques to increase the CO2 concentration in the 

exhaust gas from gas turbine systems (e.g. Akram et al., 2016; Best et al., 2016; 

Bolland and Mathieu, 1998; Li et al., 2011b) and proposing novel configurations 

(e.g. Merkel et al., 2013a, 2010) to develop CCS for commercial application. There 

are other strategies for increasing the CO2 concentrations in the flue gases of gas-

fired systems including humidified cycles, supplementary firing and exhaust gas 

recirculation (EGR) (Diego et al., 2017a), but this work will focus on selective 

exhaust gas recirculation (S-EGR). Merkel et al. (2013a, 2010) initially proposed S-

EGR to increase the CO2 content in the flue gases from gas fired power plants to 

make gas-CCS an attractive option. However, research has principally focused on 

modelling studies, with limited experience of investigating S-EGR experimentally, or 

developing appropriate costing methodologies to determine if this technology can be 

competitive compared to other proposed solutions, e,g EGR. Thus, this thesis will 

focus on these areas.  

1.3 Research hypothesis   

Selective exhaust gas recirculation will increase the CO2 flue gas concentration in 

CCGT power plants and reduce the costs associated with the downstream CO2 

capture plant.  

1.4 Research objectives  

As highlighted in the introductory section, gas-CCS is seen as a promising option to 

contribute towards reducing CO2 emissions. The deployment of gas-CCS requires 

the development of different CCS options to make it commercially attractive for 
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implementation in low carbon energy systems. Full-scale deployment of gas-CCS 

requires solutions to be developed to increase the flue gas CO2 concentration in 

CCGT’s whilst making the downstream CO2 capture plant cost effective. As briefly 

mentioned in the introduction, S-EGR is one of the proposed options to do this, 

however, no pilot-scale experimental work has investigated the impacts of S-EGR 

on gas turbine or CO2 capture plant performance. In addition, no works have 

developed suitable costing methodology to evaluate if this option is cost effective on 

a commercial scale. In this context, the purpose of this research project is to 

continue the development of S-EGR systems in CCGT power stations.   

To achieve this, the following objectives are identified:   

Experimental  

1. Assess how different S–EGR ratios influence CO2 concentrations in the 

exhaust gas stream of a Turbec T100 Series 3 micro gas turbine (mGT) at 

the PACT national research facilities. 

2. Analyse the behaviour of O2, NOx, CO and UHC under S–EGR conditions, 

following mGT combustion tests. 

3. Evaluate how various S–EGR ratios influence the mGT performance.   

4. Assess and evaluate how S–EGR influences the PACT ACP plant in terms 

of overall performance, CO2 capture rate and specific reboiler duty using a 

40wt% MEA solvent.  

Economics  

5. Perform an economic analysis of parallel and hybrid S-EGR configurations in 

commercial scale CCGT systems.  

1.5 Research novelty  

The research novelty of this thesis, which is considered as an original contribution to 

knowledge, includes:   

1. Pilot plant study investigating the performance of a micro gas turbine under 

S–EGR conditions. 

2. Pilot plant study investigating the performance of post-combustion CO2 

capture under S–EGR conditions. 

3. Economic analysis of parallel and hybrid S-EGR configurations implemented 

into CCGT power generation cycles.    
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1.6 Thesis overview  

This thesis comprises of seven chapters (including this one) where the contents of 

the subsequent six are outlined below.  

• Chapter 2 provides a comprehensive literature review that outlines the 

knowledge gaps associated with gas-CCS options. Notably, this chapter 

critically evaluates methods to increase CO2 exhaust gas concentrations in 

natural gas systems.  

• Chapter 3 initially outlines a technical overview of gas turbines. Following 

this, the thermodynamic cycles associated with gas turbines are explained.  

In addition, the fundamentals associated with membranes and amine 

chemistry are also presented.  

• Chapter 4 outlines the experimental methodology used for the mGT baseline 

and S-EGR CO2 enhancement experimental campaigns. The results are 

then presented with analysis, discussion and conclusions.     

• Chapter 5 outlines the experimental methodology used for the ACP 

experimental campaign with S-EGR. Subsequently, the results are 

presented with analysis, discussion and conclusions.     

• Chapter 6 presents the economic analysis of parallel and hybrid S-EGR 

configurations implemented into CCGT’s.  

• Chapter 7 presents the conclusions and recommendations for future work. 
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2 Literature review of gas-CCS  

2.1 Introduction  

As highlighted in section 1.2.2, the application of CCS to gas-fired systems requires 

economic and energy cost reductions before it is applied to commercial-scale CCGT 

power stations. To achieve this, increases in flue gas CO2 concentrations and 

optimisation of the downstream capture system is required. Studies that have 

investigated different approaches to augment the flue gas CO2 concentration from 

gas-fired systems include  

• humidified cycles (Heppenstall, 1998; Jonsson and Yan, 2005; Li et al., 

2011a);  

• supplementary firing (Biliyok and Yeung, 2013; González Díaz et al., 2016; 

Koornneef et al., 2012; Li et al., 2011a, 2012);  

• EGR (Akram et al., 2016; Ali et al., 2017; Best et al., 2016; Bolland and 

Sæther, 1992; Li et al., 2011a); and  

• S-EGR (Baker et al., 2017; Darabkhani et al., 2018; Diego et al., 2018, 

2017b; Herraiz et al., 2018; Merkel et al., 2013).  

This chapter critically analyses the above options, including recent developments of 

ACP for gas-fired systems.   

2.2 Humidified gas turbines 

Humidified gas turbine cycles are being investigated to optimise the electrical 

efficiency of CCGT’s by introducing moisture into the system (Chiesa, 2012; 

Heppenstall, 1998; Rao, 2014). This process works with a modified working fluid 

that comprises of up to 20 vol% H2O and the remaining fluid being air (Chiesa, 

2012; Gabrielsson and Torisson, 2003; Jonsson and Yan, 2005; Li et al., 2011a). 

These cycles are recuperative because available heat is recovered and utilised 

again to produce steam, thus, replacing a proportion of the excess air (Chiesa, 

2012; Heppenstall, 1998; Rao, 2014). The benefit of humidified cycles includes high 

efficiencies and lower economic costs compared to that of CCGT’s and open cycles 

(Jonsson and Yan, 2005). Because of the higher specific work output and thermal 

efficiency, humidified cycles offer greater performance than traditional gas turbine 

systems (Chiesa, 2012; Gabrielsson and Torisson, 2003; Jonsson and Yan, 2005; 

Li et al., 2011a). In addition, the benefit of using humidified cycles is that NOx 

emissions are lower because of decreased flame temperatures due to H2O addition 
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(Chiesa, 2012; Gabrielsson and Torisson, 2003; Jonsson and Yan, 2005; Li et al., 

2011a). Furthermore, the CO2 concentrations are increased as the flue gas volume 

is smaller when water vapour is removed from this stream. This is beneficial for the 

downstream CO2 capture plant as higher CO2 concentrations and reduced flue gas 

flowrates enable energy and cost savings to be realised (Gabrielsson and Torisson, 

2003; Jonsson and Yan, 2005; Li et al., 2011a; Wei and Zang, 2012). Additionally, 

humidified cycles offer improved operational flexibility in terms of part-load 

behaviour and varying ambient conditions (notably temperature and pressure) 

(Chiesa, 2012; Jonsson and Yan, 2005). However, technical issues, such as 

complex cycle configurations, high water consumption, water demineralisation to 

avoid deposition and corrosion and greater financial costs, are some of the 

associated challenges of these systems (Saravanamuttoo et al., 2009). Humidified 

gas turbines inject either water or steam into the cycle, with a range of methods and 

schemes proposed (Chiesa, 2012; Jonsson and Yan, 2005; Rao, 2014). The two 

configurations which are applicable to gas-CCS include humid air or steam injection 

turbines (Chiesa, 2012; Jonsson and Yan, 2005; Rao, 2014). Recuperative water 

injection and top humid air cycles are other configurations considered in the 

literature, however, due to the limited efficiency gains and increases in CO2 

concentrations, these cycles are not considered suitable for CCS (Chiesa, 2012; 

Traverso and Massardo, 2002). Therefore, these two configurations are not 

discussed herein.  

2.2.1 Humid air turbines  

Humid air turbine cycles, see Figure 2.1 (p. 15), encompass either a saturator or 

humidification column where intercoolers and economizers are used to recover 

thermal energy from the gas turbine compressor and flue gases (Abdallah and 

Harvey, 2001; Chiesa, 2012; Gabrielsson and Torisson, 2003; Poullikkas, 2005; 

Rao, 2014). This recovered energy is used to heat up and then evaporate water in 

the saturator or humidification column which imbues the exiting air from the 

compressor, thus leading to a single-phase working fluid (Jonsson and Yan, 2005). 

Because the working fluid flowrate passing through the cycle is higher and 

additional work increases (due to the extra turbine work), the overall system 

efficiencies increase (Chiesa, 2012; Gabrielsson and Torisson, 2003; Rao, 2014). A 

key drawback of humid air turbine cycles is the high water usage which increases 

the costs of these systems (Horlock, 2003). To negate these issues, the water in the 

system can be condensed and reused, however, water treatment is required to 

eliminate any contaminants or impurities (Jonsson and Yan, 2005). 
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Figure 2.1. Schematic of the humid air turbine process. 

Furthermore, incomplete combustion, leading to higher CO and UHC emissions, is 

more prominent at higher water fuel ratios (Saravanamuttoo et al., 2009). These 

systems are also at an early stage of development and the necessary technological 

advancements in turbomachinery are required to apply these cycles to commercial 

operations (Chiesa, 2012; Rao, 2014).  The majority of experimental studies centre 

on saturator and humidification column performance rather than the gas turbine or 

CO2 capture plant performance (Pedemonte et al., 2008a, 2008b; Traverso, 2010; 

Wang et al., 2007a, 2007b). Only limited works have evaluated the entire system or 

process optimisation to benefit gas-CCS (Li et al., 2011a; Wei and Zang, 2012). To 

attain the maximum efficiency and specific work, the humidity and compressor 

pressure ratios are typically higher in these systems (Wei and Zang, 2012). In 

humid air turbine cycles, the reported efficiencies are ~50% compared to simple gas 

turbine cycles with efficiencies of ~25-40% (Gallo, 1997; Manfrida, 1999). In the 

work by Li et al. (2009) they reported an electrical efficiency of ~52% at an optimal 

0.14 water-air ratio without CCS. These authors also identified that the electrical 

efficiency reduces to ~42% with a ~0.12 water-air ratio when coupling the cycle to a 

CO2 capture plant using MEA 30 wt% solvent (Li et al., 2009). The electrical 

efficiency in conventional CCGT systems is ~58% and with CCS ~48% indicating 

one of the drawbacks of humid air gas turbine cycles (Li et al., 2011a). In addition to 

this, CO2 concentrations of ~5 vol% are achievable compared to conventional 

CCGT’s (3-4 vol%), although the increased flue gas water content has the potential 

to diminish the solvent make up in the CO2 capture plant, which increases the 
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energy penalty (Li et al., 2011a). Thus, the application of humid air gas turbine 

cycles for commercial gas-CCS is generally accepted as being economically 

unsustainable at present (Parsons et al., 2002).     

2.2.2 Steam injection turbines  

In this cycle, steam is added directly into the combustor independently, instead of 

combined with the oxidant stream (Abdallah and Harvey, 2001; Chiesa, 2012; 

Jonsson and Yan, 2005; Penning and de Lange, 1996; Rao, 2014). As illustrated in 

Figure 2.2, the evaporation process occurring in the Heat Recovery Steam 

Generator (HRSG) arises as a result of the heat transfer from the flue gases exiting 

the turbine (Chiesa, 2012; Jonsson and Yan, 2005; Rao, 2014).  

 

Figure 2.2. Schematic of the steam injection turbine process. 

The gas turbine operability is maintained when adding steam straight into the 

combustor. This means that the system efficiency can be improved in comparison to 

cycles without this configuration due to the larger flowrate through the turbine and 

consistent compressor work (Chiesa, 2012; Jonsson and Yan, 2005; Rao, 2014). In 

terms of capital costs, this is often reduced compared to CCGTs typically <50MW 

as steam turbines are normally not required in steam injected cycles (Rao, 2014). 

However, the high water usage of these cycles often mean process losses and 

corrosion issues are problematic, and flowrate instabilities occur between the 

compressor and turbine because of this steam injection (Chiesa, 2012; Heppenstall, 

1998; Poullikkas, 2005; Rao, 2014). To overcome this, much greater compressor 

pressure ratios are needed which restricts the quantity of steam which can be 
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added to the system. In addition, the turbine performance may be hindered due to a 

modified working fluid and its different thermodynamic properties (Chiesa, 2012; 

Rao, 2014). The maximum rate of steam injection in these systems is ~19% of the 

air mass flowrate (to the compressor inlet), where efficiencies are higher than those 

of simple cycles ~38-48% (Carapellucci and Milazzo, 2007; Chiesa, 2012; 

Ghazikhani et al., 2011). The development of these systems has also demonstrated 

that in steam injected combined cycles the efficiencies can exceed 60% 

(Carapellucci and Milazzo, 2007; Ghazikhani et al., 2011). Commercially available 

steam injection cycles currently use turbines developed for conventional air firing 

which limits the maximum steam injection rate and reduces the efficiency to 37-41% 

(Rao, 2014). However, by introducing intercooled compression, the efficiency can 

be increased to ~50% (Chiesa, 2012; Rao, 2014). Coupling steam injection cycles 

with CCS is therefore not beneficial because of these lower efficiencies and the 

technical and economic limitations of combined cycle steam injection systems in 

comparison to CCGTs (Chiesa, 2012; Rao, 2014). 

2.3 Supplementary firing  

Supplementary firing, see Figure 2.3 (p. 18), involves the combustion of extra fuel in 

a secondary combustor located prior to/inside the HRSG (duct burner) to increase 

the power output from the CCGT. In this process the flue gas temperature is 

increased by burning additional fuel with the excess oxygen remaining in the flue 

gas (Biliyok et al., 2015; Biliyok and Yeung, 2013; Carapellucci et al., 2015; 

González Díaz et al., 2016; Li et al., 2011a, 2012). Because of this secondary 

combustor, the CO2 concentration in the flue gas stream can be increased, which 

aids the driving force in the absorber and reduces the stripper heat demand (Li et 

al., 2011a, 2012). Furthermore, the lower O2 content (11-12 vol%) curtails the rate 

of solvent degradation (Gouedard et al., 2014; Herraiz, 2016). In the work by Li et 

al. (2012) they identified that the use of supplementary firing results in decreased 

NOx emissions, which would be beneficial to meet emission regulations. 

Studies promoting biomass combustion, instead of fossil fuel combustion, in 

supplementary firing configurations would also be beneficial to mitigate CO2 

emissions. This is because of the lower carbon intensity of biomass compared to 

fossil fuels which might lead to zero or potentially net negative emissions if coupled 

with CCS (Bhattacharya and Datta, 2013; Datta et al., 2008; Gnanapragasam et al., 

2009). 



 

18 
 

 

Figure 2.3. Schematic of the supplementary firing process. 

The overall system efficiencies in supplementary firing cycles with ACP’s is ~43-

48% compared to ~50% efficiencies in CCGT power stations coupled with ACP’s  

(DOE/NETL, 2013b; González Díaz et al., 2016; Li et al., 2011b, 2012). The 

application of supercritical HRSG has also been considered to overcome these 

reduced efficiencies (González Díaz et al., 2016; Li et al., 2012). However, 

supercritical HRSG’s will lead to increased costs and limit operational flexibility with 

advancement also required to withstand higher flue gas temperatures >630°C (Li et 

al., 2012; Zhang et al., 2012). This means that the materials used, e.g. alloys,  need 

to be developed to accommodate such high temperature (Zhang et al., 2012). 

Despite this, supplementary firing systems are designed to operate with smaller flue 

gas flowrates compared to CCGT configurations (if supplementary firing is working 

continuously), which would be beneficial to decrease the economic costs associated 

with the downstream CO2 capture plant (González Díaz et al., 2016). The initial 

concept of supplementary firing configurations was suggested to provide extra 

power at peak electricity demand (Arrieta and Lora, 2005; Diego et al., 2017a). In 

addition, they can provide additional power when CCGT’s operate at higher ambient 

temperatures (Arrieta and Lora, 2005; Diego et al., 2017a). A number of technical 

issues arise when considering supplementary firing for CCGT’s with post-

combustion CO2 capture. These include the HRSG material constraints which limit 

the flue gas temperature to a maximum of ~800°C (Biliyok et al., 2015; González 

Díaz et al., 2016). If insulated casings or water-cooled furnaces are implemented, 
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the maximum temperature is limited to ~900-1300 (Ganapathy, 1996). This 

temperature limitation restricts the quantity of CO2 which can be augmented in the 

exhaust gases. Researchers have identified that the CO2 concentration can be 

increased up to 8.4 vol% with a ~1330°C combustion temperature (Li et al., 2011a, 

2012). In addition, it has been found that at firing temperatures of ~1970°C the CO2 

concentration increases to ~11 vol% at the stoichiometric oxygen limit (Li et al., 

2011a, 2012). To overcome the issues associated with the combustion temperature 

and to maintain high CO2 concentrations in the flue gases, sequential 

supplementary firing has been proposed in CCGT’s coupled with ACP’s. This 

process involves fuel combustion across a number of stages within the HRSG, thus 

allowing for increased supplementary fuel combustion with reasonable flue gas 

temperature increases to ~800-900°C (González Díaz et al., 2016). This removes 

the need for any HRSG modifications, and because of the lower temperature 

difference compared to conventional supplementary firing, the system efficiency is 

enhanced (González Díaz et al., 2016). In this advanced configuration, CO2 

concentrations increase to ~11 vol% where the HRSG temperature is ~820°C with 

up to ~60% of the fuel combusted (González Díaz et al., 2016). Although this is at 

the expense of reduced O2 concentrations of ~1 vol% in the final combustion stage 

of the process, where elevated combustion temperatures can overcome this issue 

(González Díaz et al., 2016; Li et al., 2011a). The effects mentioned above require 

further investigation before this advanced process is considered for application to 

commercial systems. Li et al. (2012) have also considered different supplementary 

firing options focusing on optimising system performance and efficiency in CCGT 

power stations. These include integrated supplementary firing systems with exhaust 

gas reheating, exhaust gas recirculation or an amalgamation of both with 

supercritical HRSG (Li et al., 2012). Other researchers have also considered 

advanced configurations with CCGT’s coupled with CO2 capture plants (e.g. Biliyok 

et al., 2015; Biliyok and Yeung, 2013b; Carapellucci et al., 2015). To apply these 

processes to CCGT’s will require further analysis due to the complexity and 

economic costs, thus, research investigating the techno-economic performance 

would assist in identifying the benefits compared to other options considered in this 

chapter. 

2.4 Exhaust gas recirculation  

Exhaust gas recirculation (EGR) was initially used as a method to decrease NOx 

concentrations, where thermal NOx formation was lower due to the reduced firing 

temperatures (lower fuel to air ratio) under EGR (Pavri and Moore, 2001). In 



 

20 
 

addition, to decrease NO, CO and or other minor species concentrations via the 

reburning mechanism in the combustor (Ditaranto et al. 2011).  

The principle of EGR, see Figure 2.4 (p. 21), is to recycle a certain amount of the 

CCGT flue gases to the compressor inlet which is combined with the oxidant 

stream, following the cooling and condensing stages (Bolland and Sæther, 1992). 

This EGR stream which enters the compressor inlet displaces a proportion of the 

combustion air that flows through the gas turbine cycle. This reduces the volumetric 

flowrate and increases the CO2 concentration of the flue gas stream sent to the 

downstream CO2 capture plant. The implementation of EGR to gas-fired systems 

will be beneficial to the economic and energy costs of the ACP, notably, lower 

specific reboiler duty and smaller equipment sizes (Akram et al., 2016; Ali et al., 

2017; Bolland and Sæther, 1992; ElKady et al., 2009; González-Salazar, 2015; Li et 

al., 2011b). The increased CO2 concentration can be determined by the EGR 

recirculation ratio. This is defined as the ratio (before cooling and condensing) 

between the recirculated flowrate and total flue gas flowrate. The application of EGR 

at commercial scale for gas-CCS is currently restricted by a number of technical 

challenges. The oxygen availability for combustion will reduce at higher EGR 

recirculation ratios. However, if the oxygen content is too low, then issues such as 

flame instability and incomplete combustion will occur resulting in the increase of 

gaseous emissions such as CO and UHC (Evulet et al., 2009). In gas-fired systems 

the working fluid in the combustor is subject to high flame velocities and lower 

residence times which will be affected under EGR operation (Li et al., 2011a). A 

number of studies have investigated the influence of EGR and its effects on O2 

concentration. Ditaranto et al. (2009) found that the O2 levels of ~14 vol% in the 

oxidizer allow for stable combustion under EGR, with elevated CO and UHC 

emission levels being reported. An experimental investigation of EGR using GE’s 

dry low NOx (DLN) system identified stable combustion with combustor outlet O2 

concentrations of ~4 vol% (ElKady et al., 2009). These authors also demonstrate 

that high CO and UHC levels are associated with O2 starvation and propose 

operating at a higher pressure to decrease these emissions (ElKady et al., 2009). 

The higher CO emission levels are due to inadequate O2 availability for the 

oxidation reaction to form CO2 (ElKady et al., 2009; Evulet et al., 2009; Li et al., 

2011b). Furthermore, because CO2 has a larger specific heat capacity, the working 

fluid properties change leading to lower flame temperatures and speeds (ElKady et 

al., 2009; Evulet et al., 2009; Li et al., 2011b). 
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Figure 2.4. Schematic of the exhaust gas recirculation process. 

In lean premixed combustors used in gas turbines, the flame velocity is dependent 

on the O2 concentration in the combustion air, where for example in EGR systems 

the O2 content reduces because of the changes in the working fluid properties  

(Pourkashanian et al., 1989). Røkke and Hustad (2005) investigated the impacts of 

EGR on the combustion performance of a 65 kW burner demonstrating lean flame 

blowout occurs below 14 vol% O2. However, the majority of studies agree that the 

minimum oxygen concentration (MOC) in the oxidizer required to ensure flame 

stability and good combustion performance under EGR is ~16 vol% (Akram et al., 

2016; Bolland and Mathieu, 1998; ElKady et al., 2009; Li et al., 2011a). This means 

that the EGR ratio is limited to ~40% with current combustors which results in a ~6.5 

vol% flue gas CO2 concentration (Li et al., 2011a). In order to achieve higher EGR 

ratios and accommodate lower O2 concentrations, combustor optimisation is 

required (ElKady et al., 2009; Li et al., 2011a, 2011b). To optimise current 

combustors, modifications such as: operating at higher pressures, changing flame 

premixedness and improvement of pilots, would be required to operate beyond the 

40% EGR ratio, adhering to emission regulations and to maintain lean blowout limits 

(ElKady et al., 2009). As mentioned previously in this section, the application of 

EGR promotes efficiency improvements of the downstream CO2 capture plant. This 

is because of the increased concentration of CO2 in the flue gas which decreases 

the energy penalties in contrast to CO2 capture plants without EGR. In the work 

conducted by the National Energy Technology Laboratory, the implementation of 

EGR has led to reported net efficiencies of ~51% (DOE/NETL, 2013b; Li et al., 

2011b). This equates to a net efficiency penalty of ~7% and ~0.5% in comparison to 
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a CCGT power station without and with a CO2 capture plant, respectively 

(DOE/NETL, 2013b; Li et al., 2011b). In addition, it was reported that the application 

of EGR, coupled with an ACP to CCGT power plants would provide the lowest 

financial and energy cost for gas-CCS systems (DOE/NETL, 2013b). This is in 

comparison to CCGT power plants coupled with only ACP. Ali et al. (2017) showed 

that the specific reboiler duty under EGR reduces by ~21% with a 55% EGR ratio, 

and a negligible impact on the mGT performance. It is important to note that the 

EGR ratio investigated by Ali et al. (2017) is specific for a mGT, hence this might be 

substantially different in a commercial gas turbine. In pilot scale experimental work, 

Best et al. (2016) demonstrated minimal impacts on the turbomachinery with 

increased CO2 concentrations of ~6.3 vol%. Mansouri Majoumerd et al. (2014) 

indicate at a 40% EGR, the CO2 content increases to ~3.4 vol% within minor 

impacts to the turbomachinery. These works, including other studies (e.g. Akram et 

al., 2016; Bolland and Sæther, 1992; ElKady et al., 2009; Li et al., 2011a) and 

patent applications (e.g. Finkenrath et al., 2011) highlight the advancement of EGR 

in terms of its application for CCS systems. However, the commercial application of 

EGR to gas-CCS remains a challenge. The development of EGR via demonstration 

plant studies and optimised combustor designs, can assist in addressing the issues 

with this process leading to the advancement of gas-CCS.  

2.5 Selective exhaust gas recirculation  

In the recent work by Merkel et al. (2013), S-EGR has been recommended as a 

different option to augment the flue gas CO2 concentration beyond those levels 

achieved in EGR whilst operating above the MOC for stable combustion. In this 

process, CO2 is removed from the flue gas stream via a selective membrane 

separator which favours CO2 permeation over N2 and O2 into an air sweep stream 

which returns to the compressor inlet of the gas turbine. As other gaseous species 

(e.g H2O and N2) are not recirculated as with the EGR process, the O2 in air is less 

diluted, with the MOC remaining above 16 vol% O2 (Merkel et al., 2013). This also 

means that the CO2 concentration in the oxidant stream is higher due to the 

negligible concentrations of N2 and H2O. Merkel et al. (2013) state that the CO2 

separation from the flue gas into the air sweep stream can be carried out at close to 

atmospheric pressure due to a greater partial pressure difference. As a result, 

compressors or vacuums are not required, as per conventional membrane systems, 

hence, only blowers to feed the sweep air+CO2 stream back to the compressor inlet 

are needed which is beneficial for decreasing energy consumption and costs. 

Merkel et al. (2013) proposed two separate S-EGR configurations, parallel and 
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series, as illustrated in Figures 2.5 (a) and (b) respectively. The parallel S-EGR 

configuration splits the flue gas stream into two separate flows after the HRSG. One 

stream is sent to the ACP and the subsequent stream is sent to the selective 

membrane. This leads to a reduction in the flue gas flowrate sent to the downstream 

CO2 capture plant which contains increased CO2 concentrations, and therefore 

means that the equipment size and processed costs can be reduced (Diego et al., 

2017a). However, to maintain an overall CO2 capture efficiency ~90%, a high CO2 

separation rate is required in both the selective membrane and post-combustion 

CO2 capture plant, typically ≥95% (Diego et al., 2017b; Herraiz et al., 2018; Merkel 

et al., 2013).  

 

Figure 2.5. Schematic of the (a) parallel and (b) series selective exhaust gas recirculation 

process. 

In the Series S-EGR configuration, the flue gas stream is initially treated in the CO2 

capture plant and thereafter processed in the selective membrane. In this scheme, 

only a proportion of the CO2 is separated in the capture plant. The remaining CO2 is 

separated via the selective membrane into the air sweep stream back to the 

compressor inlet. Merkel et al. (2013) highlights that this is advantageous as the 

selective membrane acts a pre-purification system for the CO2 which permeates 
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through into the air sweep stream. Furthermore, the CO2 capture rate in the ACP 

can be lower because the selective membranes separate any remaining CO2, thus, 

providing greater operational flexibility (Merkel et al., 2013). For example, Herraiz et 

al. (2018) found that the CO2 capture rate to be 30-58% in the S-EGR 

configurations investigated in their work. To quantify the S-EGR ratio, the flue gas 

flowrate sent to the selective membrane is divided by the total flue gas flowrate 

exiting the gas turbine prior to cooling and condensation. Merkel et al. (2013) use a 

Polaris membrane for both the parallel and series S-EGR configuration. In the 

parallel scheme, a 77% S-EGR ratio is used to maintain an overall 90% CO2 

capture efficiency (Merkel et al., 2013). This equates to a ~98% and ~97% CO2 

capture and separation efficiency in the ACP and selective membrane, respectively. 

In contrast, for the series S-EGR configuration these values are 30% and 96% for 

the ACP and selective membrane, resulting in an overall 91% CO2 capture 

efficiency (Merkel et al., 2013). 

These authors indicate that S-EGR has the potential to decrease the theoretical 

energy needed to liberate CO2 from the flue gas by up to ~40%, thus achieving CO2 

concentrations of ~14 vol% (series) and ~19 vol% (parallel) in the flue gas whilst 

ensuring the 16 vol% MOC at the inlet of the gas turbine combustor for stable 

combustion  (Akram et al., 2016; Bolland and Mathieu, 1998; ElKady et al., 2009; Li 

et al., 2011a; Merkel et al., 2013). Herraiz et al. (2018) recently investigated both S-

EGR configurations in CCGT systems with an ACP using 30 wt% MEA. In both 

configurations, the overall CO2 capture efficiency is 90%. In the parallel 

configuration, a 70% S-EGR ratio is used, with a 97% and 96% membrane 

separation and ACP CO2 capture efficiency (Herraiz et al., 2018). The results show 

a 46% and 5% decrease in packing volume and specific reboiler duty, respectively, 

compared to CCGT power stations coupled with ACP systems (Herraiz et al., 2018). 

However, in the series configuration, the packing volume and specific reboiler duty 

decreased by 64% and 7%, respectively (Herraiz et al., 2018). This is using a 95% 

and 32% ACP CO2 capture and membrane separation efficiency. Herraiz et al. 

(2018) also demonstrate the advantages of S-EGR compared to EGR in terms of 

packing volume and specific reboiler duty. These authors show that the packing 

volume decreases by 40 and 10%, and the specific reboiler duty reduces by 4 and 

2% for the series and parallel configurations, respectively, with respect to the 

corresponding EGR configuration (Herraiz et al., 2018). Herraiz (2016) has also 

proposed the use of a rotary wheel using physical absorption for CO2 selective 

separation instead of the selective membrane proposed by Merkel et al. (2013), 
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using 30 wt% MEA in the ACP. Two different solid sorbents were investigated for 

use in the rotary wheel including Zeolite X13 and Activated Carbon. Herraiz (2016) 

investigated one parallel configuration using a 70% S-EGR ratio, with a 97% (rotary 

wheel) and 96% (ACP) separation and CO2 capture efficiency, respectively. Two 

series configurations were also investigated with 95% (rotary wheel) and 31% 

(ACP), and 90% (rotary wheel) and 48% (ACP) separation and CO2 capture 

efficiencies, respectively. In these configurations, CO2 concentrations in the flue gas 

reached ~15 vol% (parallel 97/96%), ~10 vol% (series 95/31%) and ~5 vol% (series 

90/48%), respectively. Diego et al. (2017b) investigated the techno-economic 

performance of CCGT systems with parallel S-EGR using 30 wt% MEA in the ACP. 

The CO2 capture and separation efficiencies for the ACP and selective membrane 

were 95% to maintain an overall 90% capture efficiency. The results show a 

maximum 58% S-EGR ratio, with an 8 vol% flue gas CO2 concentration and ~20 

vol% O2 concentration at the combustor inlet (Diego et al., 2017b). Further, the 

economic performance of parallel S-EGR compared to CCGT power plants coupled 

with ACP or EGR is dependent on auxiliary consumption and selective membrane 

costs (Diego et al., 2017b). These same authors recently investigated the techno-

economic performance of a novel hybrid S-EGR configuration (Diego et al., 2018), 

combining the benefits of both parallel and series S-EGR configurations. In this 

novel scheme, see Figure 2.6 (p. 26), a proportion of the flue gas is treated in the 

ACP and the remaining flue gases are sent to the first stage selective membrane, 

operating with a CO2 lean air flow (Diego et al., 2018). This results in a CO2 rich air 

stream that is sent to the compressor inlet, whereas, the remaining flue gas stream 

contains a reduced CO2 concentration. The flue gas stream which leaves the first 

stage membrane is subsequently mixed with the flue gas stream exiting the 

absorber that still contains CO2 (Diego et al., 2018). To avert CO2 dilution, the flue 

gas streams contain equal CO2 concentrations mixing prior to entering the second 

stage selective membrane. This secondary stream is then sent to the second stage 

membrane where any remaining CO2 is separated into the air sweep stream, 

flowing through the first stage membrane back to the compressor inlet. Diego et al. 

(2018) show that this novel configuration augments the CO2 content to 18 vol% 

which results in a 6% and 77% reduction in specific reboiler duty and flue gas 

flowrate sent to the ACP. This novel scheme has the advantage that the absorber 

CO2 capture efficiency is lower than the parallel S-EGR configuration because the 

secondary membrane removes any remaining CO2 from the flue gas stream exiting 

the ACP (Diego et al., 2018). 
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Figure 2.6. Schematic of the hybrid selective exhaust gas recirculation process. 

In addition, the membrane area will be smaller compared to that of the series S-

EGR configuration operating at similar conditions, which would reduce the 

membrane system footprint, thus, lowering costs (Diego et al., 2018). As the first 

membrane removes only a proportion of the flue gas with higher CO2 content 

compared to the second membrane, the area needed for the membrane system 

reduces (Diego et al., 2018). These authors also identify that the membrane system 

significantly affects capital costs, and decreasing the membrane costs is essential to 

make S-EGR commercially attractive. Turi et al. (2017) and Merkel et al. (2013) 

have also investigated series S-EGR considering only CO2 selective membranes. 

These studies show that the CO2 concentrations can be increased to ~28  and ~22 

vol% at compressor inlet O2 concentrations of ~14 and ~16 vol%, respectively 

(Merkel et al., 2013; Turi et al., 2017). In addition, the economic evaluations show 

that there are cases where membrane only CO2 separation can be competitive in 

comparison to a CCGT power station coupled with an ACP (Merkel et al., 2013; Turi 

et al., 2017). Baker et al. (2017) investigated combined S-EGR and EGR 

configurations to assist in addressing the challenge of large membrane areas in 

conventional S-EGR schemes (parallel or series). These authors highlighted that an 

optimised integrated scheme which uses a 20% EGR ratio, flue gas pressure of 2 

bar and permeate pressure of 0.2 bar leads to a reduction of 93% in membrane 

area when compared to an S-EGR configuration without combined EGR (Baker et 

al., 2017). Despite the marginal increase in net power consumption from 335 to 347 

kWe per tonne of CO2 (4% increase) with operating costs equating to ~$44 per 
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tonne of CO2, this integrated design demonstrates the large saving which can be 

realised with S-EGR (Baker et al., 2017). However, this may require gas turbine 

modifications to accommodate these integrated systems for CO2 mitigation. Despite 

these process simulation and economic studies, limited work has investigated S-

EGR experimentally. Russo et al. (2018) investigated the permeability performance 

of a polydimethylsiloxane (PDMS) membrane system at bench scale for its use in S-

EGR. Their work considered CO2 concentrations up to 20 vol% in the retentate 

stream, and indicated good permeability across the membrane, although this is 

affected by the feed pressure used (Russo et al., 2018). Darabkhani et al. (2018) 

investigated the performance of a pilot scale 100 kW combustor using the PDMS 

membrane system in Russo et al. (2018) work. In their experimental work, CO2 

concentrations of ~7 vol% were achieved in initial combustion tests under S-EGR, 

with a ~11% membrane separation efficiency (Darabkhani et al., 2018). However, 

process simulation models indicate subsequent experimental tests can lead to 

increased flue gas CO2 concentrations of up to ~10 vol% with a ~13% membrane 

separation efficiency. The influence of S-EGR on gas turbine combustion 

performance has only been investigated in a few studies. Marsh et al. (2017, 2016) 

investigated the impact of S-EGR on the combustor performance of a swirl burner at 

up to 2.2 bara. The results identify that the flame temperature and combustion 

kinetics are reduced with increased CO2 concentrations in the oxidant stream 

(Marsh et al., 2017, 2016). As illustrated in the discussion, the development of S-

EGR for gas-CCS is ongoing. However, limited studies have experimentally 

investigated the effects of S-EGR on gas turbine performance in terms of 

turbomachinery and emissions. In addition, the effects of S-EGR on the downstream 

CO2 capture plant is also required. To address these gaps in the knowledge it is 

recommended pilot-scale studies investigating S-EGR are conducted with 

subsequent understanding of overall economic costs.     

2.6 Post-combustion CO2 capture processes  

There are a number of studies which have evaluated the application of post-

combustion CO2 processes coupled with coal-fired power stations, though these are 

less prominent for gas-fired systems. As noted in section 1.2.2, the use natural gas 

for electricity generation is anticipated to increase by 2040. This has led to a more 

recent focus of applying CCS to gas fired systems. CO2 capture using MEA has 

been the interest for many studies with attention also focusing on additional 

processes for gas-CCS (González-Salazar, 2015; IEAGHG, 2012a). These include 

the chilled ammonia process, calcium looping, molten carbonate fuel cells and 
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cryogenic separation (Chiesa et al., 2011; Hu and Ahn, 2017; IEAGHG, 2009a; 

Sreenivasulu et al., 2015). CO2 capture using amines is the most developed of all 

the above-mentioned processes, with this technology currently operating 

commercially (NRG Energy, 2017; Stéphenne, 2014). As amine scrubbing is the 

most widely applied, the following section evaluates the key issues which need to 

be addressed to apply this technology to commercial scale gas-CCS.  

2.6.1 Amine capture plant processes 

As mentioned above, post-combustion CO2 capture using amines (typically MEA 30 

wt%) is the most advanced process for removing CO2 from fossil fuel combustion 

flue gases. This process, see Figure 2.7, cools the flue gases via a direct contact 

cooler to ~40°C, where they enter the bottom of the absorption column and the 

aqueous–MEA solvent enters into the top of the absorption column (IPPC, 2005). 

The absorption column comprises of structured or random packing, whereby, the 

lean solvent stream flows downwards over the packing material and mixes counter–

currently with the flue gases. The packing material enhances mass transfer as there 

is a high surface area which maximises contact between the liquid and the gas.  

 

Figure 2.7. Schematic of the amine CO2 capture process. 

Once the aqueous–MEA solvent reaches the bottom of the absorption column, the 

stream is termed “rich” as it has absorbed CO2 from the gas phase. The treated flue 

gases (with a low CO2 concentration) exit the top of the absorption column and 

enters a wash column where entrained solvent droplets are removed. This is to 

ensure that the MEA is not discharged into the atmosphere because of the 

detrimental impact these emissions have on the environment. The CO2–rich solvent 

stream is pumped to the lean/rich heat exchanger and is heated before being sent 
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to the top of the stripper tower. The rich solvent flows downwards, contacting with 

the CO2/steam stream flowing vertically upwards from the reboiler. The reboiler 

heats the MEA–solvent to approximately 115°C to 120°C, thus, producing a vapour 

stream acting as a CO2 stripper (Akram et al., 2015). The vapour stream leaves the 

top of the stripper column, comprising predominantly of CO2, steam and small 

amounts of MEA–solvent. The entrained steam and MEA–solvent droplets are 

removed by a condenser and refluxed to the stripper column. The residual highly-

concentrated CO2 stream is further purified if necessary, compressed and 

transported for storage. The hot lean MEA–solvent exits the stripper column where 

it is pumped via the lean/rich heat exchanger for heat recovery and subject to 

additional cooling to ~40°C prior to entering the absorber column.  

The overall performance of CO2 capture plants which use MEA solvent is well 

known, however, the key limitation of this process for gas fired systems is the 

specific reboiler duty, which requires ~4 MJ/kg CO2 captured (Li et al., 2011a).  This 

results in a reduction in the CCGT power plant efficiency by ~11 percentage points 

(DOE/NETL, 2015). The reason why such a reduction occurs is due to the much 

greater flue gas flowrates that comprise of low CO2 concentrations ~4 vol%. 

Furthermore, because of the higher flue gas O2 concentrations in CCGT power 

plants, this can affect the energy penalty due to issues associated with oxidative 

solvent degradation. Thermal degradation is more prominent at temperatures above 

120°C or at elevated stripper pressures, when using MEA. However, depending on 

the process conditions, operating at higher temperature and pressures may be 

undesirable under S-EGR conditions.  

This oxidative and thermal degradation have the potential to lead to greater 

economic and energy costs when coupling CCS to gas-fired systems (DOE/NETL, 

2015). To overcome these issues, research is focused on optimising the post-

combustion CO2 capture plant performance. There are a number of pilot and 

demonstration plants and two full-scale plants globally which have investigated CO2 

capture mainly from coal fired systems. Boundary Dam, which is located in 

Saskatchewan, Canada, has the capacity to capture 1 Mt CO2/year from a 139 MW 

thermal coal fired power plant using the Shell Cansolv Process with a 90% capture 

efficiency (Stéphenne, 2014). More recently, Petra Nova in the USA became the 

largest operational CCS facility to capture 1.4 Mt CO2/year from a CO2 capture plant 

(90% capture efficiency) using an amine KS-1 solvent produced by Mitsubishi 

Heavy Industries (NRG Energy, 2017). The CO2 flue gas treated in Petra Nova is 

from a 240 MW thermal coal-fired power station (NRG Energy, 2017). The majority 
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of CO2 capture plants treats flue gases from coal fired power plants, although a 

small number of facilities that exist which treat flue gases from gas fired systems. In 

Norway, the CO2 Technology Centre Mongstad has the capability to capture 20 kt 

CO2 / year from the flue gas generated in a combined heat and power combustion 

facility (Brigman et al., 2014; de Cazenove et al., 2016) burning natural gas. 

Furthermore, Sulzer in Switzerland has developed a pilot scale plant which treats a 

flue gas up to ~4 vol% CO2 (150 kg/h flue gas flowrate) from a gas fired burner 

(Notz et al., 2012; Tait et al., 2016).  The SINTEF facility, situated in Norway, 

captures CO2 (flue gas CO2 concentration up to ~9 vol%) from a 380 kW propane 

combustor with a flue gas flowrate of up to 50 kg/h (SINTEF, 2018). In the UK, the 

PACT Research Centre incorporates an amine capture plant which has the capacity 

to capture up to 1 tonne of CO2 per day from flue gases produced from either 

natural gas, coal or biomass combustion (PACT, 2018). The Turbec T100 mGT at 

PACT produces flue gas CO2 concentrations of ~1.7 vol% at full load conditions 

when combusting natural gas. However, work by Best et al. (2016) has simulated 

EGR increasing the CO2 concentration to ~6.3 vol% by injecting CO2 into the micro 

gas turbine. In addition, an onsite synthetic gas mixing skid allows a range of CO2 

concentrations to be investigated by injection directly into the CO2 slip stream 

(Akram et al., 2016). Despite the advancement of post combustion CO2 capture 

plants, there are still requirements to optimise the process for gas-CCS. Notably, 

these include optimising plant performance under flexible operation, decreasing 

energy and financial costs, the advancement of novel solvents and making process 

improvements.  

2.6.2 Process optimisation  

There are currently a range of options being considered to enhance the post-

combustion CO2 capture plant performance including absorber optimisation (e.g. 

rotating packing beds), heat integration and incorporating heat pumps into the 

process (Gao et al., 2016; Le Moullec et al., 2014; Yu et al., 2016). The use of 

rotating packed bed columns are suggested as a different option for CO2 scrubbing 

compared to that of traditional absorber columns (Gao et al., 2016; Joel et al., 

2014). In rotating packed beds, the centrifugal forces rotate the fluids inside at high 

velocities where the solvent and flue gas flow inwardly and outwardly, respectively, 

either in single or combined configurations (parallel or series) (Gao et al., 2016; Joel 

et al., 2014). In a recent study which investigated the performance of two rotating 

packed beds in series, the regeneration energy decreased by ~10% due to the 

augmented rich solvent loading, where the CO2 flue gas concentration was ~10 
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vol% (Yu et al., 2016). Furthermore, absorber intercooling is proposed as an option 

to reduce the energy requirements of this process by decreasing the liquid solvent 

temperature to aid the higher driving force needed for absorption and increasing the 

rich solvent loading (Amrollahi et al., 2011). To achieve this, single or multiple 

solvent cooling stages are applied to the absorber column where a fraction of the 

solvent is cooled and returned to the absorber. The results of Knudsen et al. (2011) 

indicate that the absorber intercooling in the bottom section of the absorber has a 

negligible impact for optimised post combustion CO2 capture systems using MEA. 

Interestingly, when using alternative solvents to MEA, the reboiler duty decreased 

from 3.10 MJ/kg CO2 at an intercooling temperature of 60°C to 2.90 MJ/kg CO2 at 

an intercooling temperature of 25°C. At the same intercooling temperature, the 

reboiler duty remained about 3.55 MJ/kg CO2 when using MEA as the solvent. 

Knudsen et al. (2011) note that the reboiler duty when using MEA solvent is 

independent to the applied intercooling temperature. The results of Li et al. (2016) 

illustrate very similar conclusions when using MEA, the reboiler duty decreased 

from 3.60 MJ/kg CO2 to 3.55 MJ/kg CO2 when using intercooling. Despite the 

negligible influence on reboiler duty, the absorber intercooling process resulted in 

the absorber column height decreasing by 25% (Li et al., 2016). This is because of 

the increased driving force at lower temperatures, and thus allowing for a reduced 

packing height (Le Moullec et al., 2014). Another process optimisation suggested is 

rich solvent recycling which involves removing a proportion of the solvent at the 

bottom of the absorber and reintroducing it at the top (Baburao and Schuber, 2011; 

Gal et al., 2008; Le Moullec et al., 2014). By doing this, the contact time between 

the CO2 and solvent is increased, hence, the CO2 loading is augmented with a small 

volume of solvent (Le Moullec et al., 2014).  To optimise the benefits of this process, 

multi staged introduction of the rich solvent is proposed to amplify the overall 

absorption capacity (Le Moullec et al., 2014). However, this is at the determent of 

larger absorber column heights and diameters (Le Moullec et al., 2014). Another 

option is to cool the solution and re-introduce it to the absorber top to promote acid 

gas removal and lower solvent emissions due to the lower temperature (Le Moullec 

et al., 2014). This process has been developed by Alstom for ammonia and this 

indicates a 5% reduction in the overall energy penalty and a 7% increase in rich 

solvent loading (Baburao and Schuber, 2011). Additional approaches for process 

optimisation include inter-heated absorbers (Aroonwilas and Veawab, 2007), split 

flow arrangements (Iijima et al., 2011), double loop absorber and stripper 

configurations (Towler et al., 1997) and flue gas compression and 

expansion (Kishimoto et al., 2011). In addition to the above mentioned absorption 
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enhancement options, heat integration between different process streams in the 

CO2 capture plant are suggested to further decrease the reboiler duty and limit the 

heat losses throughout the system (Le Moullec et al., 2014). These options include 

rich solvent splitting, preheating, and flashing, parallel economizer arrangement, 

inter heated and heat integrated strippers (Le Moullec et al., 2014). In the rich 

solvent splitting process, the rich solvent is split into two flows; one is preheated and 

the other is kept cool where the reboiler duty has been shown to decrease by up to 

~12% (Cousins et al., 2011a, 2011b; Le Moullec et al., 2014; Le Moullec and 

Kanniche, 2011; Oyenekan and Rochelle, 2007). The method of rich solvent 

preheating increases the rich solvent temperature to beyond that of the economizer 

via heat transfer between the hot (lean) and cold (rich) solvent, and this leads to an 

energy penalty saving of up to ~12% in terms of reboiler duty (Ahn et al., 2013; 

Iijima et al., 2011; Le Moullec et al., 2014). The application of rich solvent flashing 

flashes the rich solvent that promotes CO2 liberation and cooling of the remaining 

rich liquid solvent with small decreases in reboiler duty (~1.5%) (Iijima et al., 2011; 

Le Moullec et al., 2014; Le Moullec and Kanniche, 2011). The promotion of heat 

recovery between the incoming and outgoing stripper and reboiler streams is 

realised by rich or lean solvent splitting that flow through two or more heat 

exchangers in parallel economizer configurations. This could lead to large 

reductions in parasitic losses by up to ~18% for MEA systems (Cousins et al., 

2011b, 2011a; Gelowitz et al., 2008; Le Moullec et al., 2014). Inter heated stripper 

arrangements involve reheating using a heat exchanger of a partially lean solvent 

which is taken from the central stripper section and then re-introduced (Le Moullec 

et al., 2014). In this process, the reboiler duty is reported to reduce up to ~13% 

(Iijima et al., 2011; Le Moullec et al., 2014). However, the process simulation work 

by Oyenekan and Rochelle (2006) demonstrates heat integrated stripper 

arrangements can reduce stripper work by ~17% (Le Moullec et al., 2014).   

2.6.3 Solvent development 

The development of alternative solvents is another topic of focus in the literature. 

This is because MEA typically has high reboiler duties, low absorption capacity and 

poor thermal stability and corrosion issues (Damartzis et al., 2016; Diego et al., 

2017a; Øi and Kvam, 2014). The reboiler duty is these systems which use MEA for 

gas-CCS is ~3.5-4 MJ/kg CO2 for highly optimised plants (Øi and Kvam, 2014). At 

temperatures above 110°C thermal degradation of MEA increases, where, Davis 

and Rochelle (2009) highlight a 6% weekly degradation rate at reboiler temperature 

~135°C. Furthermore, flue gases with increased O2 content, such as those from 
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natural gas combustion, also promote oxidative degradation which further enhances 

operational costs (Supap et al., 2006). Overcoming these issues has led to the 

development of alternative solvents including cyclic, hindered and ether amines, 

and non-amine based solvents such as amino acids, phase change solvents and 

ionic liquids to optimise CO2 capture plant performance (Dowson et al., 2016; Du et 

al., 2016; Gurkan et al., 2010; Pinto et al., 2014). The encouraging findings of the 

application of new solvents in CO2 capture processes indicates that kinetics, 

solubility, mass transfer and regeneration energy can be optimised in comparison to 

MEA (Mandal and Bandyopadhyay, 2006; Samanta and Bandyopadhyay, 2009; 

Sema et al., 2012). Commercially available solvents such as the Cansolv amine, 

Praxair MEA‐MDEA and Fluor's Econamine have been suggested to provide 

advantages compared to the utilisation of MEA on its own (IEAGHG, 2009a; Reddy 

and Gilmartin, 2008). For example the Cansolv amine process which treats flues 

gas from either natural gas and coal requires ~40% less energy for solvent 

regeneration and the Praxair MEA‐MDEA process has illustrated reboiler duties of 

~3 MJ/kg CO2, whilst Fluor's Econamine FG process has been optimised for flue 

gases from gas fired combustion systems (IEAGHG, 2009a; Reddy and Gilmartin, 

2008). In work by Zhang et al. (2015) they identified dimethylaminoethanol (DMAE) 

and 2‐Amino‐2‐methyl‐1‐propanol (AMP) based solvents are potentially more 

suitable for gas-CCS because the cyclic CO2 capacity of these solvents is 

approximately two times greater than that of MEA.  

Even though there is significant research in solvent development for post 

combustion CO2 capture plants, there are limited solvents specifically designed for 

gas fired systems. Therefore, new solvents should consider the technical limitations 

of the flue gases from gas fired systems, notably, due to the concentrations of 

gaseous emission species such as O2, CO and NOx (Diego et al., 2017a; 

Zarogiannis et al., 2016). 

2.6.4 Operational flexibility  

A key challenge of integrating post-combustion CO2 capture plants with CCGT 

power stations is the ability to operate dynamically under flexible CCGT operation. 

This is to accommodate for the variation in electricity demand, hence load changes, 

as well as fuel flexibility (IEAGHG, 2012a). Recent studies have focused on flexible 

operating scenarios of capture plants coupled with CCGTs to help address these 

challenges (e.g. Burnard, 2017; Ceccarelli et al., 2014; Mechleri and Mac Dowell, 

2015; Sharifzadeh and Shah, 2018; Tait et al., 2018). In addition to the contribution 

of these studies, further understanding of post combustion CO2 capture plant 
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dynamic operation is required, especially optimisation. This is to decrease overall 

economic costs and maintain stable plant operation under these scenarios. A range 

of options have been proposed to augment the power output from CCGT power 

plants with ACP during peak demand periods (IEAGHG, 2012b). This includes 

partial operation (turning down) or shut down of the ACP for a specific time period to 

produce extra power (IEAGHG, 2012b). Also rich solvent storage has been 

proposed for subsequent regeneration during off-peak periods (IEAGHG, 2012b). 

The rich solvent storage process allows for a constant CO2 supply to the 

subsequent transport and storage processes, thus, avoiding irregularities in the CO2 

flowrates (IEAGHG, 2012b). During the peak load operating periods, integrated 

CCGT’s with ACP’s might also offer enhanced performance, because the ACP can 

be switched off or only partially operated (IEAGHG, 2012b). This would allow 

flexible operation during peak demand periods which would offer increased 

revenues for the power generator, but at the expense of increased CO2 emissions 

(IEAGHG, 2012b). To resolve this issue, it has been suggested that the installation 

of an additional boiler (auxiliary boiler) to provide steam for the desorber would 

assist in overcoming this problem (Ceccarelli et al., 2014). Furthermore, the 

implementation of state-of-the-art integrated options, such as flexible steam 

withdrawal using a low-pressure steam turbine during load following operation, 

would offer operational flexibility in CCGT+ACP systems. (Sanchez Fernandez et 

al., 2016). Another issue of coupling ACP’s to CCGTs is the quick start up sequence 

of the gas turbines compared to the steam generating units (e.g. steam turbine and 

HRSG) (IEAGHG, 2012b). This means that the CO2 from the flue gas can be 

absorbed, however, any steam from the other units will not be available quickly 

during start up (IEAGHG, 2012b). Not capturing the CO2 and discharging these 

emissions to the atmosphere would overcome this. The release of these emissions  

could be minimised by ACP plant modifications (Ceccarelli et al., 2014). As 

mentioned above, using an additional boiler to provide steam may alleviate the 

above-mentioned issue of incorporating solvent storage capabilities to the ACP. 

This implementation would only offer limited advantages at the expense of 

increasing economic and legislative costs (Dowell and Shah, 2014). The research 

and development for flexible operation are ongoing, where investigating real-time 

solvent loading measurements for dynamic operations would be beneficial (Tait et 

al., 2018, 2016). This includes modelling predictive control, as reported by Mechleri 

and Mac Dowell (2015). 
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2.6.5 Economics  

An economic analysis and performance of post-combustion CO2 capture plants is 

reliant on how these plants are operated, for example, solvent concentration, liquid 

to gas ratio, flue gas CO2 content, scale and stripper operating pressure, among 

other factors (Abu-Zahra et al., 2007). In this context, the widely reported 

parameters used for economic assessments is the COE and COA. CCGT’s coupled 

with amine based CO2 capture are estimated to have COE values of ~$70-84/MWh 

and COA values of $54-64 tonne of CO2 avoided in 2011 dollars depending on 

which turbine configuration is used (DOE/NETL, 2013b). Depending on the 

upstream combustion process and whether novel configurations such as S-EGR are 

used then the economic performance may improve and therefore this requires 

further investigation for gas-CCS applications. In terms of S-EGR, limited studies 

have investigated the full-scale economic performance of CCGT power plants 

coupled with this technology. Hence, developing an economic model investigating 

this to advance gas-CCS further is needed.   

2.7 Chapter conclusions  

This chapter has critically reviewed the literature associated with gas-CCS, 

specifically focusing on humidified gas turbines, supplementary firing, EGR, S-EGR 

and the advancement of amine-based CO2 capture processes. The likely benefits of 

CCS are widely acknowledged within the literature; however, decreasing the costs 

associated with this technology is essential. Furthermore, advancing the research 

and development into the proposed configurations evaluated in this chapter would 

make these options more developed and attractive for commercial deployment.  

In addition, the development of policies, reducing the risk to stakeholders, creating a 

CCS market based economy and sharing knowledge to make gas-CCS an attractive 

mitigation strategy is fundamental. In order to implement gas-CCS, increased flue 

gas CO2 concentrations are beneficial to make the post-combustion CO2 capture 

plant commercially attractive to operate. As evaluated in this chapter, a number of 

process configurations are proposed, however, the technological readiness levels 

(TRL) are at various stages for example S-EGR is at TRL6 to TRL7, which means at 

prototype development to pilot plant development. Therefore, more research is 

needed prior to scaling-up these options to demonstrate operational functionality 

and performance at the commercial scale (TRL9).  

The flexible operation of CCGT plants will likely be more prominent going forward 

and therefore, optimising the dynamic performance of the downstream CO2 capture 



 

36 
 

plant is critical. The process optimisation, solvent development and flexible 

operation of the ACP show the advances made on this topic, with this technology 

currently operating commercially. Knowledge transfer from and between these 

commercial sites and decreasing the financial constraints will be essential going 

forward. The various process configurations evaluated in this chapter aims to assist 

in reducing costs and optimising gas-CCS configurations. Humid air gas turbine 

configurations are not economically viable and the techno-economic limitations of 

steam-injected turbines make these options currently unattractive for gas-CCS. The 

application of supplementary firing for gas-CCS requires additional research in 

terms of the economics and flexibility. Both EGR and S-EGR provide promising 

options for integration into gas-CCS systems. There have been a number of works 

investigating the EGR process, where this has only been analysed experimentally at 

pilot scale. A number of modelling studies demonstrate the potential of this process 

for commercial systems, thus, conducting testing at both demonstration and 

commercial scale, with the potential modification of combustors for the lower oxygen 

concentration being also needed. S-EGR has only become more prominent recently 

with limited works investigating this configuration. A selection of modelling studies 

have shown that S-EGR may have the potential to be competitive with the above-

mentioned processes depending on the membrane costs and performance, 

however, further research is required. Specifically, this includes the experimental 

investigation of S-EGR on the performance of gas turbines and the post-combustion 

CO2 capture plant at pilot scale before being scaled-up to demonstration and 

commercial scales if promising results are predicted. This would require the 

understanding of the gas turbine compressor, turbine and combustion performance 

at part and full load operation. The need to evaluate the CO2 capture plant 

performance under S-EGR with detailed focus on the specific reboiler duty, 

absorber and stripper temperature profiles, solvent loadings and liquid-to-gas ratio, 

with an economic analysis of S-EGR integrated with a CCGT+PCC plant is 

required. Therefore, the subsequent chapters in this thesis will address these gaps 

in the knowledge to contribute towards the development of S-EGR in gas-CCS 

systems.  
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3 Theoretical overview of gas turbines, 

membranes and amine-based CO2 

capture  

3.1 Introduction  

This chapter presents a technical overview of gas turbines, followed by a review of 

the key thermodynamic equations related to simple and regenerative cycles. The 

chapter then outlines the key membrane principles associated with CO2 separation. 

This is included as it is important to understand the fundamentals associated with 

membranes which will assist in further understanding of S-EGR processes. 

Subsequently, a review of the chemistry associated with alkanolamines (amines) 

and the reaction kinetics in relation to their chemical reaction with CO2 are 

presented. This succinct theoretical chapter aims to inform the reader of the 

fundamentals associated with gas turbines, membranes and amines, respectively, 

in relation to CCS. This chapter forms the basis for understanding the subsequent 

experimental results chapters associated with simulated S-EGR in gas turbines and 

amine CO2 capture plants.  

3.2 Gas turbines   

3.2.1 Technical overview  

A number of gas turbines are currently available for use in a wide range of 

applications, broadly categorised by manufacturers as aero-derivative, heavy-duty, 

industrial, light–industrial and micro gas turbines (mGT’s) (Giampaolo, 2014). Aero-

derivative gas turbines evolved from the aviation industry, designed to be compact, 

light-weight, very efficient and provide high cycle flexibilities (Boyce, 2002). These 

turbines generally comprise a gas generator, free-power turbine, low pressure 

compressor and high pressure compressor with a power output of up to 100 MW, 

used in different industries, e.g. marine, oil and gas sectors (Boyce, 2002). Heavy-

duty gas turbines have been in use since the early 1950’s, designed specifically for 

land operation with high power outputs (>100 MW) and good electrical efficiency 

(>30%), which characteristically include multi–stage axial–flow compressors and are 

used for large–scale power generation (Giampaolo, 2014). Industrial and light-

industrial gas turbines have similar designs (split–shaft) to heavy–duty turbines with 

power outputs ranging from 0.50 MW to 15 MW and electrical efficiencies up to 38% 
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(Boyce, 2011). Micro gas turbines operate at high speed (up to 100,000 rpm) and 

are highly efficient machines (electrical efficiency ~30%) which can generate up to 

500 kW using similar design principles to conventional turbines (Giampaolo, 2014). 

The major components of a micro-gas turbine system include a compressor 

(centrifugal or axial), combustor and turbine. 

CCGT power plants utilise gas turbines as the topping cycle (Brayton Cycle) and 

steam turbines as the bottoming cycle (Rankine Cycle) to produce electrical power 

(Boyce, 2010). The waste heat from the gas turbine is used to produce steam in the 

Rankine Cycle. The isobaric processes occurring in both cycles accept and reject 

this heat (Boyce, 2010). A HRSG recovers heat from the flue gases of the gas 

turbine to produce steam which drives a steam turbine to create additional electrical 

power. Economisers, evaporators and superheaters are the main components of an 

HRSG, configured to different steam pressure levels, e.g. single, dual or triple 

pressure boilers (Boyce, 2011). The superheater increases the temperature of the 

wet saturated steam to generate dry saturated steam, which is used to drive a 

steam turbine to produce electrical power. The pinch point and approach point are 

two parameters that affect steam production in an HRSG. The pinch point can be 

defined as the temperature difference between the saturated steam and gas exiting 

the evaporator, usually in the range of 8-22°C (Boyce, 2010). The approach point is 

the difference between the saturation temperature of the steam and feed water inlet 

temperature to the evaporator, generally considered to be from 5.5-11°C (Boyce, 

2011; Ganapathy, 1996). These variables can affect the operational performance 

and size of an HRSG, for example, lower pinch points allow greater heat recovery, 

however, this increases the size of equipment required (Ganapathy, 1996). The 

combination of a gas and steam turbine results in higher electrical efficiencies of 

50% to 60% compared to open cycle gas turbine systems (35% to 40%) (Boyce, 

2010).   

3.2.2 Gas turbine cycles  

3.2.2.1 Simple cycle 

The principal operating cycle characteristics of a gas turbine is the Brayton Cycle. In 

its ideal form, the Brayton Cycle includes compression (isentropic), combustion 

(isobaric), expansion (isentropic) and heat rejection (isobaric) as illustrated in Figure 

3.1 (p. 39) (Boyce, 2010). Process 1 to 2 indicates compression, 2 to 3 denotes 

combustion, 3 to 4 represents the expansion and 4 to 1 signifies heat rejection.   
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Figure 3.1. Schematic of the air standard Brayton Cycle 

(Boyce, 2010). 

The first law of thermodynamics mathematically represents the operating principals 

of a gas turbine and is given by the following equations (the following relationships 

assume kinetic and potential energy are negligible and steady state exists) (Boyce, 

2011). The following equations which are fundamental to understanding the Brayton 

Cycle are provided to provide a basis of knowledge for how air fired GT systems 

work. The compressor work is determined from:  

𝑊𝑐 = 𝑚̇𝑎(ℎ2 − ℎ1) (3.1) 

where 𝑚̇𝑎 is the air mass flowrate and ℎ1 and ℎ2 is the enthalpy of the fluid between 

the compressor inlet ℎ1 and outlet ℎ2. The enthalpy change can be determined from 

the relationship of the specific heat capacity and the temperature difference across 

the compressor. The turbine work is determined by the following relationship:  

𝑊𝑡 = 𝑚̇𝑡(ℎ3 − ℎ4) (3.2) 

where 𝑚̇𝑡 is the total mass flowrate (air + fuel), and ℎ3 and ℎ4 are the turbine inlet 

and outlet enthalpies respectively. The heat added to the system is determined 

from: 

𝑄2,3 = 𝑚̇𝑓 . 𝐿𝐻𝑉𝑓𝑢𝑒𝑙 = (𝑚̇𝑎 + 𝑚̇𝑓). ℎ3 − 𝑚̇𝑎. ℎ2 (3.3) 
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where 𝑚̇𝑓 is fuel mass flowrate and 𝐿𝐻𝑉𝑓𝑢𝑒𝑙 is the lower heating value of the fuel, 

respectively. Hence, the system efficiency is determined from the relationship 

between output and input, thus, the power output and heat added to the combustor 

(input) is given by:  

𝜂 =
𝑊𝑡 −𝑊𝑐
𝑚̇𝑓 . 𝐿𝐻𝑉𝑓𝑢𝑒𝑙

=
𝑐𝑝(𝑇3 − 𝑇4) − 𝑐𝑝(𝑇2 − 𝑇1)

𝑐𝑝(𝑇3 − 𝑇2)
 (3.4) 

where 𝑇1 to 𝑇4 are the respective temperatures at compressor inlet, combustor inlet, 

turbine inlet and turbine outlet and 𝑐𝑝 is the specific heat capacity of the working 

fluid at constant pressure. The isentropic relationship for either the compressor or 

turbine can be determined from the pressure ratio and the isentropic coefficient 

(Boyce, 2002; Sonntag, 1998), which is determined from:  

𝑇2
𝑇1
=
𝑇3
𝑇4
= (
𝑃2
𝑃1
)

𝛾−1
𝛾

 (3.5) 

𝑟 =
𝑃2
𝑃1
=
𝑃3
𝑃4

 
(3.6) 

where 𝑃1to 𝑃4 is the pressure at the compressor inlet, combustor inlet, turbine inlet 

and turbine outlet, 𝑟 is the pressure ratio and 𝛾 is the isentropic coefficient. The 

isentropic coefficient is given by:  

𝛾 =
𝑐𝑝

𝑐𝑣
 (3.7) 

where 𝑐𝑝 and 𝑐𝑣 are the specific heats at constant pressure and volume, 

respectively. Implementing the above equations allows the cycle efficiency to be 

determined from equation 3.8. 

𝜂 = 1 − (
1

𝑟
)

𝛾−1
𝛾

 (3.8) 

The cycle efficiency will be dependent on the pressure ratio and the working fluid. 

Hence, as the isentropic coefficient increases, due to changes in the working fluid 

associated with the combustion kinetics, the cycle efficiency increases. This 

relationship is also the same at larger pressure ratios, hence, higher efficiency.  
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Therefore, to determine the specific power output of the cycle, the following non-

dimensional equation is used:  

𝑊

𝑐𝑝𝑇1
= 𝛼 (1−(

1

𝑟
)

𝛾−1
𝛾
) − (𝑟

𝛾−1
𝛾 − 1) (3.9) 

where 𝛼 is the ratio between the combustor outlet and inlet temperature. 

3.2.2.2 Regenerative cycle 

In a simple cycle, the exhaust gas temperature is higher than the air temperature 

leaving the compressor, usually lost to the atmosphere (Boyce, 2011). This heat 

loss is recovered using a recuperator or regenerator (heat exchanger) that uses the 

heat from the flue gas to pre-heat the compressed air prior to entering the 

combustion chamber, as illustrated in Figure 3.2 (Boyce, 2011).  The mGT used for 

the experimental campaigns in Chapter 4 and 5 is a combined heat and power unit, 

which is a regenerative cycle.  

 

Figure 3.2. Schematic of the regenerative gas turbine cycle 

(Boyce, 2011). 

As indicated by Boyce (2002) and Saravanamuttoo et al. (2009) the regenerative 

gas turbine cycle efficiency is determined from:  

𝜂 =
𝑐𝑝(𝑇4 − 𝑇5) − 𝑐𝑝(𝑇2 − 𝑇1)

𝑐𝑝(𝑇4 − 𝑇3)
 (3.10) 

where 𝑇1 to 𝑇5 is the cycle temperatures at the compressor inlet (𝑇1), compressor 

outlet (𝑇2), recuperator air-side outlet (𝑇3), combustor outlet (𝑇4) and turbine outlet 

(𝑇5). Assuming perfect heat transfer across the heat exchanger, it is considered that 
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the turbine and recuperator air-side outlet temperatures are equal. Therefore, 

incorporating the pressure and temperature isentropic relationship the cycle 

efficiency can be determined from: 

𝜂 = 1 − (
𝑟
𝛾−1
𝛾

𝛼
) (3.11) 

As shown in the above relationship the temperature ratio is associated with the 

cycle efficiency. In addition, as the pressure ratio reduces the cycle efficiency 

increases, hence, the cycle efficiency will increase with the maximum gas turbine 

temperature. The ideal Carnot efficiency can, therefore, be applied, expressed by: 

𝜂 = 1 − 1𝛼 (3.12) 

where the pressure ratio limiting value is 1 and the cycle efficiency is associated 

with the temperature ratio relationship (Saravanamuttoo et al., 2009). The 

recuperators used in these cycles are often designed with effectiveness above 0.9. 

However, this is dependent on the specific heat capacity of the working fluid on the 

air and flue gas sides of the heat exchanger, respectively. To determine the 

effectiveness (ε) the following relationship is used: 

𝜀 =
𝑇3 − 𝑇2
𝑇5 − 𝑇2

 (3.13) 

3.3 Membranes  

Membrane separation technologies are one of the alternatives being considered for 

CO2 capture. Research and development of semi-permeable membrane systems 

throughout the 1950’s, 1960’s and 1970’s led to the commercialisation of high-flux 

interfacial reverse osmosis membranes, patented by John Cadotte in 1979 (Seoane 

et al., 2015). In the 1980’s, Perma (Air Products) commercialised gas separation 

membranes, e.g. polysulfone hollow-fiber membrane, and subsidiaries of WR 

Grace, Honeywell UOP and Cameron developed one of the first membrane systems 

for the natural gas processing industry (Baker and Lokhandwala, 2008; Kao et al., 

1989; Qiu et al., 1989; Seoane et al., 2015). The “anisotropic cellulose acetate 

membrane” system was developed to separate CO2 from natural gas using the 

Loeb-Sourirajan method (Baker and Lokhandwala, 2008). Since 1998, membrane 

research has advanced with novel membrane systems, e.g. polyimide, 

perfluoropolymer and poly(4-methyl-1-pentene) membranes, being developed, 

resulting in greater membrane performance and competition for industrial gas 
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processing (Baker and Lokhandwala, 2008). This industry typically uses hollow–

fibre or flat sheet membranes with the increased use of composite membrane 

systems (Seoane et al., 2015). There are several membrane technologies currently 

available for this industry, however, the viability of using membranes for carbon 

capture technologies pose a number of technical challenges including membrane 

stability, wetting, material longevity and operability issues (González-Salazar, 2015). 

A number of researchers are investigating membranes for PCC systems, typically 

for coal-fired power stations with limited works investigating membranes for gas-

CCS (e.g. Merkel et al., 2013; Turi et al., 2017; Voleno et al., 2014). In Merkel et al. 

(2013) work, they use a Polaris membrane for S-EGR in gas fired systems, where 

research and development is ongoing to optimise this membrane for gas-CCS 

applications. This selective membrane accounts for the transfer of CO2, N2, H2O, O2 

and Ar, from the feed and the permeate streams, which is based on the membrane 

principles outlined in section 3.3.1. The expressions within section 3.3.1 are 

important because they provide the fundamental background to appreciate the 

mass transfer phenomena occurring in S-EGR systems (Diego et al., 2018; Merkel 

et al., 2013; Turi et al., 2017; Voleno et al., 2014). The subsequent research 

chapters in this thesis investigate S-EGR. The S-EGR process incorporates 

membrane technology, hence, as this research focuses on S-EGR, understanding 

how membranes work is important.  

3.3.1 Membrane principles  

Gas separation via membranes is traditionally a physical process where the feed 

stream containing different gas compounds flows along one side of the membrane. 

The permeating gas molecules, e.g. CO2 in this case, diffuse through the membrane 

barrier due to the concentration gradient and exits as the permeate stream 

(Incropera et al., 2007; Khalilpour et al., 2015). The remaining gas compounds exit 

as the retentate stream as illustrated in Figure 3.3 (Khalilpour et al., 2015).  

 

Figure 3.3. Schematic of the CO2 separation process using membranes 

(Khalilpour et al., 2015). 
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The permeation process, where diffusion occurs, depends on the membrane 

material used for the specific process, e.g. S-EGR. For example, the solution-

diffusion mechanism governs the transport principals in polymeric membranes, 

whereas, adsorption, diffusion, and molecular sieving govern the transport process 

in membranes with distinct pores, e.g. zeolites (Seoane et al., 2015). The 

membrane permeance and selectivity are also important parameters to consider 

when determining which membrane material to use (Khalilpour et al., 2015). A flux 

solution-diffusion mechanism, according to Fick’s first law of diffusion, represents 

the transport phenomena illustrated by Figure 3.3, which is expressed as follows 

(Incropera et al., 2007; Tyrrell, 1964): 

𝐽𝑖 = −𝐷𝑖
𝜕𝑐

𝜕𝓍
 (3.14) 

where 𝐽𝑖 is the gas flux through membrane (cm3 (STP) / cm2.s), 𝐷𝑖 is the diffusion 

coefficient (cm2/s), 𝜕𝑐 is the concentration gradient over the membrane (mol / cm3) 

and 𝜕𝓍 is the position represented by length (cm). The above equation can be 

applied to membranes, assuming the diffusion flow is at steady state conditions, 

where 𝜕𝓍 changes to 𝑙, and 𝜕𝑐 is represented by 𝑐𝑖,𝑓 and 𝑐𝑖,𝑝  expressed by as 

follows (George and Thomas, 2001): 

𝐽𝑖 = 
𝐷𝑖(𝑐𝑖,𝑓 − 𝑐𝑖,𝑝)

𝑙
 (3.15) 

where 𝑐𝑖,𝑓 is the feed concentration (mol / cm3), 𝑐𝑖,𝑝 is the permeate concentration 

(mol / cm3) and 𝑙 is the membrane thickness (cm). Henry’s law is a linear 

relationship of gas solubility in a liquid at equilibrium being directly proportional to 

the gas partial pressure, namely (Rosenberg and Peticolas, 2004):  

𝑐𝑖 = 𝑆𝑖 . 𝑝𝑖 (3.16) 

where 𝑐𝑖 is the concentration (mol / cm3), 𝑆𝑖 is the solubility coefficient (cm3 (STP) / 

cm3.cmHg) and 𝑝𝑖 is the partial pressure (mmHg). The combination of equations 

(3.16) and (3.17) allows the membrane permeability to be determined where the 

diffusion (𝐷𝑖) and solubility coefficient (𝑆𝑖) can be expressed by the permeability (𝑃𝑖), 

namely (Baker and Lokhandwala, 2008): 

𝐽𝑖 =
𝑃𝑖(𝑝𝑖,𝑓 − 𝑝𝑖,𝑝)

𝑙
 (3.17) 
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where 𝑃𝑖 is the permeability (cm3 (STP) . cm / cm2 . s . cmHg), 𝑝𝑖,𝑓 is the feed partial 

pressure (mmHg) and 𝑝𝑖,𝑝 is the permeate partial pressure (mmHg). The ratio of 𝑝𝑖,𝑓 

to 𝑝𝑖,𝑝 can be defined as the driving force (Seoane et al., 2015) and the membrane 

selectivity can be determined by the permeability ratio (𝛼𝑓,𝑝) defined as follows 

(Baker and Lokhandwala, 2008):  

𝛼𝑓,𝑝 = 
𝑝𝑖,𝑓

𝑝𝑖,𝑝
=
(𝐷𝑖,𝑓/𝐷𝑖,𝑝)

(𝑆𝑖,𝑓/𝑆𝑖,𝑝)
 (3.18) 

where 𝐷𝑖,𝑓/𝐷𝑖,𝑝 is the diffusion coefficient ratio at feed and permeate and 𝑆𝑖,𝑓/𝑆𝑖,𝑝 is 

the solubility coefficient ratio at the feed and permeate. 

3.4 Amine scrubbing  

Chemical absorption is a well–known process used in many industries where amine 

absorption has been used for CO2 removal since the 1930’s (MacDowell et al., 

2010). There are three classifications of amines including primary, e.g. 

monoethanolamine (MEA), secondary, e.g. diethanolamine (DEA) and tertiary, e.g. 

methyldiethanolamine (MDEA), which are widely investigated in the literature for 

CCS systems (Kohl and Nielsen, 1997). These basic organic compounds which are 

derived from ammonia are categorised as primary, secondary or tertiary amines, 

depending on the quantity of hydrogen atoms attached to the nitrogen atoms, are 

typically represented by RNH2, R2NH and R3N, where R can be the alkyl or aryl 

group (Morrison, 1992). The primary and secondary amines form carbamate from 

the quick chemical reaction with CO2, which are sterically hindered compounds 

(primary amine fixed to tertiary carbon atom or secondary amine fixed on secondary 

or tertiary carbon atom) (Morrison, 1992). Primary and secondary amines are 

governed by the formation of carbamate and bicarbonate expressed in equations 

(3.19) and (3.21), respectively: 

 
(3.19) 

 

(3.20) 

Tertiary amines catalyse the hydration of CO2 instead of directly reacting with this 

species expressed as:  

 

(3.21) 
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This leads to increased carbamate production related to the heat of absorption from 

this reaction, hence, greater solvent regeneration penalties (Vaidya and Kenig, 

2007). However, in tertiary amines (non-sterically hindered compounds) the 

absence of H2, combined to N2, prevents the carbamate reaction occurring (Vaidya 

and Kenig, 2007). Tertiary amines form bicarbonate from the CO2 hydrolysis 

reaction (see section 3.4.1.3) where the heat of absorption in this reaction is smaller 

than the carbamate reaction in primary and secondary amines (Vaidya and Kenig, 

2007). Sterically and non-sterically hindered compounds influence the chemical 

bonds associated with the hydrolysis reaction, whereby, at higher CO2 

concentrations in the liquid phase this reaction becomes crucial for non-sterically 

hindered compounds (Chakma et al., 1995; Nielsen et al., 2012).  

The methyl group which exists with sterically hindered compounds weakens the 

carbamate chemical bond and favours bicarbonate formation, thus, influencing the 

CO2/amine loading capacity (Nielsen et al., 2012). The bulky alkyl attached to the 

amino group, which is associated with hindered compounds, affects the stability of 

the carbamate. The stability of carbamate (equations 3.19 and 3.20) is dependent 

on whether the amines are hindered or non-hindered e.g. bulky or not bulky. Non–

hindered amines are not bulky favouring carbamate formation (equation 3.20), 

which means the theoretical capacity is 0.5 moles of CO2 per one mole of amine 

(Gouedard et al., 2014; Nielsen et al., 2012). However, in tertiary amines (equation 

3.21) this reaction involves non-hindered amines that lead to unstable carbamate 

formation. This carbamate instability affects the reaction with CO2, thus allowing a 

theoretical capacity of one mole of CO2 to be absorbed per one mole of amine. The 

stable carbamate formation reaction (equation 3.19) in primary and secondary 

amines is a thermodynamic limitation for CO2 absorption and desorption, as the 

capacity of this hindered amine is lower than the non-hindered amines (equation 

3.21), e.g. tertiary amines (Nielsen et al., 2012). Sterically hindered compounds can 

also influence amine thermal stability in CO2 capture systems, whereas, tertiary 

amines are often combined with primary or secondary amines to decrease solvent 

regeneration costs due to the lower heat of reaction during bicarbonate formation 

(Gouedard et al., 2014, 2012).  

The typical MEA concentration used in post-combustion CO2 capture systems is 30 

wt% MEA and 70 wt% H2O. However, this concentration will vary depending on the 

operating requirements of the plant. For example, higher concentrations of MEA are 

suggested to optimise the CO2 absorption capacity and decrease the solvent 

flowrate which has possible economic and energy benefits, however, corrosion 
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issues might be more prominent (Abu-Zahra et al., 2007; Fytianos et al., 2016). 

Chapter 5 of this thesis evaluates the experimental performance of a pilot scale CO2 

capture plant using a 40 wt% MEA concentration.  

3.4.1 Amine chemistry  

The degree at which electrolytes dissociate is dictated by chemical equilibrium, 

where, partial electrolyte dissociation is associated with weak species such as CO2 

(acid) and MEA (organic base) (Austgen et al., 1989). In aqueous solutions the 

partial ionisation or dissociation of CO2 and MEA occurs, where the acid gas, e.g. 

CO2, is absorbed in the aqueous solution, e.g. MEA represented by RNH2 below. 

The ionisation reaction of water and dissociation of CO2 dissolved via carbonic acid 

is governed by (Aboudheir et al., 2003):  

𝐶𝑂2 + 𝐻2𝑂
𝑘1
↔𝑂𝐻− + 𝐻− 

(3.22) 

𝐶𝑂2 + 𝐻2𝑂
𝑘𝐻2𝑂,𝑘2
↔    𝐻𝐶𝑂3

− +𝐻+ 
(3.23) 

The formation and dissociation of bicarbonate is given by (Aboudheir et al., 2003): 

𝐶𝑂2 + 𝑂𝐻
−
𝑘𝑂𝐻−
↔  𝐻𝐶𝑂3

− 
(3.24) 

𝐻𝐶𝑂3
− + 𝐻2𝑂

𝑘𝐻𝐶𝑂3
− ,𝑘3

↔     𝐶𝑂3
− + 𝐻3𝑂

+ 
(3.25) 

The carbamate reaction and the reversible hydrolysis reaction to form bicarbonate is 

expressed from (Aboudheir et al., 2003): 

𝐶𝑂2 + 𝑅𝑁𝐻2 + 𝐵
𝑘4,𝑘−4,𝑘4
↔     𝑅𝑁𝐻2

+𝐶𝑂𝑂− + 𝐵𝐻+ 
(3.26) 

𝑅𝑁𝐻𝐶𝑂𝑂− +𝐻2𝑂
𝑘6
↔𝑅𝑁𝐻2 + 𝐻𝐶𝑂3

− 
(3.27) 

where 𝑅𝑁𝐻2
+𝐶𝑂𝑂− is MEA and 𝐵 is the base usually represented by 

𝐻2𝑂, 𝑅𝑁𝐻2 𝑜𝑟 𝑂𝐻
−. The following equation represents the pronation reaction of MEA 

given by (Aboudheir et al., 2003): 

𝑅𝑁𝐻2 + 𝐻3𝑂
+
𝑘𝑅𝐻𝑁
"

2
,𝑘9,𝑘5

↔        𝑅𝑁𝐻3
+ + 𝐻2𝑂 

(3.28) 

3.4.1.1 Zwitterion mechanism  

The Zwitterion mechanism is a two-step process initially suggested by Caplow 

(1968) and subsequently reinvestigated by Danckwerts (1979) where the reversible 
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reaction of CO2 with either primary or secondary amines forms Zwitterion that is 

unstable as expressed by: 

𝐶𝑂2 + 𝑅𝑁𝐻2
𝑘1,𝑘−1
↔   𝑅𝑁𝐻2

+𝐶𝑂𝑂− 
(3.29) 

The reversible reaction allows Zwitterion to revert to CO2 and amine, or de-

pronation occurs by a base which exists allowing carbamate formation given by 

(Caplow, 1968; Crooks and Donnellan, 1989; Danckwerts, 1979; Glasscock et al., 

1991):  

𝑅𝑁𝐻2
+𝐶𝑂𝑂− + 𝐵

𝑘𝐵,𝑘−𝐵
↔    𝐵𝐻+ + 𝑅𝑁𝐻𝐶𝑂𝑂− 

(3.30) 

The combination of the above chemical reactions leads to the carbamate formation 

as shown in equation 3.26. 

3.4.1.2 Termolecular mechanism  

The termolecular mechanism was initially suggested by Crooks and Donnellan, 

(1989) which infers the CO2/MEA reaction occurs concurrently in a single-step 

reaction, where the initial product is a loosely bound encounter complex instead of a 

Zwitterion, determined from:  

𝑅𝑁𝐻2…𝐵 + 𝐶𝑂2↔𝑅𝑁𝐻𝐶𝑂𝑂
− + 𝐵𝐻+ (3.31) 

The loosely bound encounter complex is broken down forming the initial reactants, 

e.g. CO2, MEA and the base, however, a partial amount reacts with H2O and MEA 

which leads to the formation of ionic products (Vaidya and Kenig, 2007).   

3.4.1.3 Base-catalysed hydration mechanism  

The mechanism was first devised by Donaldson and Nguyen, (1980) who noted that 

tertiary amines (represented by R3H) are unable to react with CO2 directly. Hence, 

tertiary amines are associated with base-catalysed hydration mechanism, which is 

given by:  

𝑅3𝐻 +𝐻2𝑂 + 𝐶𝑂2
𝑘′

→ 𝑅3𝑁
+𝐻 + 𝐻𝐶𝑂3

− 
(3.32) 

Chapter 5 investigates the performance of a pilot scale CO2 capture plant using 

amines under S-EGR conditions. The above mechanisms are of fundamental 

importance to understand the principal chemical reactions occurring under these 

conditions.  
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3.5 Chapter conclusions  

The chapter initially evaluates the technical background associated with gas 

turbines, where the principle thermodynamic equations are also discussed. These 

thermodynamic principles associated with the simple and regenerative cycle are of 

fundamental importance in the understanding of the micro gas turbine (mGT) cycle 

and its performance. The subsequent chapter of this thesis assesses the 

experimental performance of the Turbec T100 mGT under S-EGR conditions. The 

membrane principles presented here define the governing equations for the 

diffusion mechanism, which is important in the understanding of the basis of S-EGR 

configurations, which is evaluated in this thesis. The final section of this chapter 

presents an overview of amine scrubbing with the subsections discussing the 

theoretical reaction mechanisms associated with primary, secondary and tertiary 

amines. In chapter 5 of this thesis the influence of S-EGR on the performance of a 

pilot scale post-combustion CO2 capture plant using 40 wt% MEA is evaluated. The 

fundamental chemical reactions presented in this chapter provides essential 

knowledge to understand the reaction kinetics associated with the CO2 capture 

process. Chapter 4 and 5 investigate the performance of the mGT and post-

combustion CO2 capture plant (using amines) under S-EGR conditions at pilot-

scale. Therefore, the principles covered in this chapter form the basis of 

understanding for S-EGR configurations in the combustion and the CO2 capture 

phase of the process.  
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4 Experimental investigation of the 

impacts of selective exhaust gas 

recirculation on a micro gas turbine  

4.1 Introduction  

This work evaluates the influence of selective CO2 recirculation conditions on the 

performance of a Turbec T100 Series 3 mGT at the Pilot-scale Advanced CO2 

Capture Technology (PACT) core facilities located in Sheffield, UK (PACT, 2018). 

CO2-enhanced conditions characteristic of S-EGR processes are simulated in the 

mGT by injecting CO2 into the compressor inlet and mixing with the combustion air. 

Several experimental tests have been performed over the 60-100 kWe operating 

envelope to compare baseline conditions to CO2 injection rates of up to 300 kg/h 

(up to 9.4 vol% CO2 in the oxidiser stream) to mimic a range of S-EGR scenarios. 

Flue gas CO2 concentrations up to 10.1 vol.% have been tested, which represent 

more than a six times increase in the CO2 content of the flue gas, similar to what is 

expected in S-EGR systems (e.g. Diego et al., 2018, 2017b; Herraiz et al., 2018; 

Merkel et al., 2013). Impacts on the operational performance of the mGT have been 

analysed, together with the resulting CO, UHC and NOx emission trends under S-

EGR simulated conditions. The novelty of this work includes the appraisal of mGT 

performance in terms of compressor, turbine and combustion performance at part 

and full load operation under these S-EGR conditions. 

4.2 Experimental methodology  

4.2.1 Turbec T100 micro gas turbine system   

The PACT facilities located in Sheffield, UK are a national centre for research and 

development into carbon capture and clean power generation (PACT, 2018). 

Several core facilities are available, including two Turbec T100 combined power and 

heat mGT’s, Series 1 and 3 models. The Series 3 model that is used for the 

baseline and simulated S-EGR experimental campaigns in this work has a 

maximum 100 kWe electrical power output and 165 kWth thermal power output. The 

electrical and overall efficiencies are 30% and 80%, respectively, with a recuperator 

and exhaust gas heat exchanger increasing the total efficiency of the system 

(Turbec, 2009). The mGT scheme, illustrated in Figure 4.1 (p.51), shows the 

electrical generator, the radial centrifugal compressor and the radial turbine are 
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mounted on a single shaft, with a maximum turbine speed of 70,000 rpm (Turbec, 

2009). The ambient air entering the mGT passes through a coarse pre-filter and 

internal fine filter before separating into two flows, the primary flow (combustion air) 

and secondary flow (ventilation air). The combustion air entering the compressor, is 

compressed to a maximum pressure ratio of ~4.5:1 at nominal conditions. 

Subsequently, the pressurised air enters the recuperator and is pre-heated with hot 

exhaust gases prior to entering the combustion chamber. The pre-heated 

combustion air is mixed with the natural gas which is burnt in the combustion 

chamber. The flame is swirl-stabilised, with a non-premixed pilot flame used to 

further enhance flame stability. The fuel-lean pre-mixed combustion chamber 

ensures low CO, NOx and UHC emissions (Turbec, 2009).  

 

Figure 4.1. Schematic of the key turbine components and the instrumentation locations for the 

Turbec T100 Series 3 mGT. 

The exhaust gases leave the combustion chamber at ~950C (turbine inlet 

temperature at nominal conditions) and expand through the turbine, driving the 

compressor and generator (Turbec, 2009). The mGT control system keeps the 

turbine outlet temperature (TOT) constant at ~645C thus changing the air and fuel 

flowrate depending on the set power output and ambient conditions in each test. 

The exhaust gases leaving the turbine are used to pre-heat the combustion air in 

the recuperator, which works with an effectiveness close to 90% (Hohloch et al., 
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2010). The remaining thermal energy contained in the gas stream entering the 

exhaust gas heat exchanger (at ~270C at nominal conditions) can be used to heat 

up a water stream. The exhaust gases leaving the exhaust gas heat exchanger at 

~70C (nominal conditions) are then discharged either to the onsite capture plant 

(see Chapter 5) or to the atmosphere.  

4.2.2 mGT data collection and monitoring  

The mGT uses the Turbec remote monitor and control (RMC) system to monitor 

various operational parameters of the turbine, for example, the rotational speed. 

The RMC system uses a web browser, e.g. Internet Explorer, that allows the mGT 

operator to start, stop and control various parameters of the mGT (Turbec, 2006). 

The mGT uses the FPserver and FirstOp software supplied by the manufacturer to 

display and record parameters defined by the operator. The parameters recorded 

during the baseline and CO2 enhancement tests and the calculated maximum 

standard deviation error for each parameter are shown in Table 4.1. The data 

presented in Table 4.1 has been collected from baseline and CO2 enhancement 

tests. Each test was conducted for a minimum period of 15 minutes and recording 

data every second. In total, a minimum of seven baseline tests were performed per 

condition (40-100 kWe) and a minimum of two tests per condition for the CO2 tests 

(60-100 kWe). For each test the calculated standard deviation and standard error 

was calculated.   

Table 4.1. mGT standard deviation errors. 

  Maximum standard deviation 

Parameter Unit Baseline (±) CO2 enhancement (±) 

Air inlet temperature  °C 0.15 0.48 

Turbine outlet temperature °C 0.19 1.24 

Turbine shaft rotational speed rpm 60.56 102.42 

Exhaust gas outlet temperature °C 2.02 2.13 

Actual active power kWe 0.30 0.72 

Appendix A.5 provides the standard error values for the experimental results.  

4.2.3 LabVIEW and additional instrumentation  

The mGT has been fitted with additional instrumentation to complement existing 

parameters measured by the RMC system. The thermocouples and pressure 

transmitters were calibrated on site, in addition to the manufacturer’s own calibration 
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certificates. A multiple channel National Instruments data acquisition system 

receives the electrical signals from each device and transfers this information to the 

LabVIEW software. The LabVIEW software processes the signal data from the data 

acquisition system and automatically records the data measurements every second. 

Figure 4.1, see section 4.2.1 (p. 51), illustrates the additional instrumentation 

locations for the mGT. The additional instrumentation installed measures the 

temperature, pressure and flowrate as identified in Table 4.2. These parameters 

were selected because they allowed for the most comprehensive data collection 

within the limits of the system to analyse the performance of S-EGR at pilot scale in 

gas turbines. The calculated maximum standard deviation for each parameter 

measured in Table 4.2 is shown in Table 4.3 for the baseline and CO2 enhancement 

tests. The accuracy of each instrument is as per the manufacturer’s guidance, which 

is quoted as a percentage of the reading error. 

Table 4.2  Additional instrumentation accuracy. 

ID number Parameter Type Unit Accuracy 

S3–TC2 Compressor outlet 
temperature 

RTD PT100 °C ±0.03°C at 0°C to  
±0.08°C at 100°C 

S3–TC9 Compressor / CO2 
inlet temperature  

K-type thermocouple °C ±2.2°C from -40°C to 
333°C 

S3–PT1 Air inlet pressure Rosemount 2051T bar(g) ±0.065% 

S3–PT2 Compressor outlet 
pressure  

Rosemount 2051T bar(g) ±0.065% 

S3–PT4 FG diffusion zone 
pressure 

Rosemount 2051T bar(g) ±0.065% 

S3–FR3 Fuel inlet flowrate  Common S.A. 
Quantometer CPT-0 

m3/h ±0.36% at 40m3/h - 
±0.63% at 25 m3/h 

 

Table 4.3. Additional instrumentation standard deviation errors. 

  Maximum standard deviation 

Parameter Unit Baseline (±) CO2 enhancement (±) 

Compressor / CO2 inlet temperature  °C 0.130 0.370 

Compressor outlet temperature °C 0.990 1.290 

Air inlet pressure bar(g) 0.002 0.007 

Compressor outlet pressure bar(g) 0.010 0.050 

FG diffusion zone pressure bar(g) 0.005 0.005 
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As indicated in Table 4.2 the fuel flowrate is measured by a Quantometer flow 

meter. The natural gas flowrate readings are taken manually and therefore this 

introduces human error in addition to the accuracy variations outlined in Table 4.2. 

Hence, the data for the fuel flowrate values will vary slightly. The fuel flowmeter 

records the volumetric flowrate at every 0.1 m3 to two decimal places. The fuel mass 

flowrate is a function of the fuel density where the fuel temperature and pressure 

are assumed to be at standard conditions as stated by National Grid (2017), which 

is 15°C and 101325 Pa. The equation which identifies how the density of the fuel is 

determined from the ideal gas law equation, is given by: 

𝜌
𝑓
=
𝑀𝑊. 𝑃

𝑅. 𝑇
 

(4.1) 

where 𝜌𝑓 is the density of the fuel (kg/m3), 𝑀𝑊 is the molecular weight (kg/mol), 𝑃 is 

pressure (Pa), 𝑅 is the ideal gas constant (8.314 m3 Pa K-1 mol-1) and 𝑇 is the 

temperature (K). To determine the moles of O2, CO2 and H2O consumed/produced 

per mole of fuel burnt, stoichiometric calculations are performed considering the 

natural gas composition and assuming complete combustion. The air inlet mass 

flowrate can be calculated by performing a CO2 balance using the CO2 contained in 

the flue gas (see Appendix A.1). This is calculated assuming complete combustion 

of the natural gas (see Table 4.5, p. 60) for the test conditions investigated and the 

experimental measurements of the CO2, O2 and H2O concentrations in the exhaust 

gas which are measured using Fourier Transform Infrared (FTIR) spectroscopy and 

the Servomex gas analysers; gas analysis is discussed further in section 4.2.5.  

4.2.4 CO2 injection system  

The mGT was modified to incorporate a CO2 injection system into the compressor 

inlet to simulate S-EGR processes. Figures 4.2 and 4.3 (p. 55) illustrate the CO2 

injection system within the compressor inlet, which was designed to supply CO2 

from an external cryogenic storage tank supplied by BOC. The CO2 flows through 

an external evaporator and trim heater to ensure that the CO2 enters the gas mixing 

skid at a temperature above 10°C. The gas mixing skid that is located inside the 

PACT facility controls the CO2 flowrate via two supply lines using Siemens Coriolis 

mass flow meters and pneumatically actuated flow control valves. The flowrate is 

measured and recorded at the skid via the Supervisory Control and Data Acquisition 

(SCADA) system. The CO2 distribution system to the mGT from the gas mixing skid 

was designed by the author of this thesis, in accordance with Pressure Systems 

Safety Regulations 2000 (HSE, 2014). 
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Figure 4.2. Design of the CO2 injection system inside the compressor inlet. 

 

Figure 4.3. The installed CO2 injection system inside the compressor inlet. 
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The system pressure was checked at regular intervals to establish any leaks. This 

was to ensure the safe delivery of CO2 downstream of the gas mixing skid into the 

mGT compressor inlet. The two CO2 supply lines are each designed to deliver a 

flowrate of 150 kg/h, thus allowing a maximum CO2 flowrate of 300 kg/h into the 

system. The CO2 injection system inside the compressor inlet was designed and 

modelled to ensure an equal distribution of CO2 and mixing with the combustion air.  

To record temperature variation at the point of CO2 delivery, a K-type thermocouple 

was installed as illustrated in Figure 4.3 (p. 55), see the green wire in the second 

photograph, and shown in Table 4.3 (p. 53). The calculated maximum standard 

deviation for the CO2 flowrate during the CO2 enhancement experimental campaign 

was ±2.21 kg/h. The standard deviation was calculated for each CO2 test and the 

maximum standard deviation determined as the maximum deviation of all tests 

collectively.   

4.2.5 Gas analysers  

The Gasmet® FTIR DX4000 uses Fourier Transform Infrared (FTIR) spectroscopy to 

measure the infrared absorption spectra of different gas compounds. As each gas 

species absorbs different quantities of infrared radiation at different wavelengths, 

the Gasmet® FTIR DX4000 can simultaneously analyse up to 50 different gas 

species within a short response time (<120 seconds) (Gasmet, 2016). The 

technique of infrared spectroscopy investigates how molecular vibrations interact 

with electromagnetic fields along an infrared spectrum (Gasmet, 2010). This method 

sends infrared radiation through a molecule at a certain frequency and establishes 

what proportion of the incident radiation is absorbed at a particular energy, thus, 

allowing an infrared spectrum to be determined (Gasmet, 2010). The frequency 

shown in an infrared spectrum corresponds to the photon energy relationship with 

the molecular vibrations of a molecule. The infrared regions along an 

electromagnetic spectrum are categorised as near infrared (12500 to 4000 cm-1), 

mid infrared (4500 to 400 cm-1) and far infrared (400 to 12.5 cm-1) (Gasmet, 2010).     

FTIR spectroscopy emits a light source e.g. infrared radiation, through a Michelson 

interferometer and a beamsplitter as illustrated by  Figure 4.4 (p. 57) (Gasmet, 

2010). The beamsplitter reflects half the infrared beam to the moving mirror and the 

other half reflects from a stationary mirror. These infrared beams reflect back to the 

beamsplitter, and then are transferred via a parabolic mirror to the detector. The 

detector determines the interferogram from the interference pattern, where this 



 

57 
 

information is sent to the computer generating the spectrum via the manufacturers 

software e.g. Calcmet (Gasmet, 2010).  

 

Figure 4.4. Schematic of the FTIR spectroscopy process. 

Gasmet heated sampling lines transfer flue gas samples into a portable gas 

conditioning system and into the Gasmet FTIR DX4000. The heated filter and valve 

located within the sampling cell are heated to 180ºC, ensuring that the Gasmet 

portable sampling unit can measure wet, corrosive and undiluted gas streams prior 

to automatically transferring the gas sample to the Gasmet FTIR DX4000. The 

heated sampling lines that are operated at 180ºC have an important role by 

ensuring the gas samples remain in the gas phase and inhibit condensation from 

water soluble gas species e.g. SO2. Calcmet is the software used in conjunction with 

the Gasmet gas analysers that records, collects and analyses the FTIR spectra and 

concentrations of the sample gas composition.  

Prior to recording data, system calibration is required each time before measuring 

commences which is fed with zero grade N2 for ~30 minutes during warm up. The 

operator purges the unit for 60 seconds with N2 (zero grade) supplied by BOC, 

which flows from a gas cylinder via a BOC regulator and polytetrafluoroethylene 

(PTFE) tubing. Once purged the unit measures and displays the background 

spectrum, scanning 10 times per second for a period of three minutes, providing the 

operator with background values, which are checked against previous readings to 

ensure consistency. Once the background measurements are complete, the 

operator performs a zero check, recording the values and checking these readings 
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are at or near zero (Gasmet, 2010). If the new background and zero check values 

are significantly different (±0.2%) to previous readings, the operator can complete a 

secondary background and zero check. Before the start of each test, the 

background and zero checks are performed to ensure consistency. During FTIR 

operation the unit records the residual value, which specifies the maximum residual 

value in the absorbance spectra that remains. The closer this value is to zero the 

greater the accuracy of the result (Gasmet, 2010). The maximum standard deviation 

for each gas species considered in the results section recorded during both 

experimental campaigns is highlighted in Table 4.4.  

Table 4.4. Emission standard deviation errors. 

  Maximum standard deviation 

Species Unit Baseline  (±) CO2 enhancement  (±) 

CO2   vol%. 0.014 0.074 

H2O vol%. 0.153 0.039 

CO ppm 3.746 20.485 

NOx ppm 1.266 1.496 

CH4 ppm 1.811 7.157 

C2H6 ppm 1.222 0.687 

During the CO2 enhancement tests, the CO2 concentrations reported by the FTIR 

were checked against known CO2 concentrations supplied from a BOC gas cylinder. 

These certified values were 4.835 and 14.85 vol%. It was found that the CO2 

readings had drifted from its calibration values. The reported CO2 concentrations 

presented in this work are corrected to account for the drift values reported by the 

FTIR. The correction equation for the FITR is given by:  

𝑥 − 0.00157

1.1192
 

(4.2) 

where 𝑥 is the original reported CO2 concentration in vol% (wet basis).  

Two Servomex 5200 gas analysers are used for measuring O2 and CO2 

concentrations in the exhaust gas and ventilation air outlet. These analysers use 

paramagnetic transducers which generate a strong magnetic field. They contain two 

suspended rotating glass spheres filled with N2, diverged by a fixed mirror. A light 

beam reflects from the mirror onto two photocells, whereby, the O2 attracted to the 

magnetic field displaces the suspended spheres, leading to rotation that generates 
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a signal. As the O2 concentration increases, sphere displacement becomes greater. 

The feedback system detecting the generated signal creates a current that is 

passed through a wire fixed to the suspension. This leads to the motor effect that 

keeps the suspension in place. Converting the current creates an O2 measurement 

due to its direct proportionality to the sample gas O2 concentration. Figure 4.5 

illustrates the paramagnetic process. 

 

Figure 4.5. Schematic of the paramagnetic process. 

Infrared transducers focus an infrared light source through a sample cell where CO2 

flows continuously and the concentration is measured. Two optical filters attached to 

a rotating disc allow the alternative transmission of infrared light. This single double 

wave beam process allows CO2 molecules and atoms to absorb infrared light at a 

specific wavelength via the measuring filter, whereas, the reference filter, has 

infrared light transmitted through it at a wavelength unaffected by inert gases e.g. 

N2. An infrared detector providing a gas concentration measurement, measures the 

difference in the absorbance variance, recorded by the operator 

The Servomex analysers require calibration prior to measuring sample gases to limit 

measurement errors. One analyser measures the exhaust gas O2 concentration and 

CO2 and the second analyser is used to monitor O2 and CO2 concentrations in the 

ventilation outlet. The Servomex has an accuracy of ±0.1% and ±2.0% for O2 and 

CO2 reading, respectively (Servomex, 2008). To be consistent with industrial 

standards all the flue gas emissions values from the mGT experiments are reported 

in dry concentration as per ISO11042 (ISO, 1996) determined from: 

𝜑𝑖,𝑑𝑟𝑦 = 𝜑𝑖,𝑤𝑒𝑡 . (
100

100 − 𝑣𝑜𝑙 %.𝐻2𝑂
) 

(4.3) 

where 𝜑𝑖,𝑤𝑒𝑡 is the wet gas species concentration and 𝑣𝑜𝑙 %.𝐻2𝑂 is the water vapour 

content recorded in the flue gas. Moreover, NOx emissions are usually reported 
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corrected to 15% O2. However, ElKady et al. (2009) suggests reporting mass 

specific NOx emissions based on net power output under CO2-enhanced conditions. 

These authors suggest that representing NOx emission values corrected to 15% O2 

under CO2-enhanced conditions may be misleading, as the oxygen content at 

combustor outlet is naturally reduced (potentially the inlet O2 concentration could be 

as low as ~16 vol%) in these cases due to the partial replacement of the 

combustion air with the recirculated stream. As a result, correcting emissions to 

15% O2 could lead to an artificial reduction in the values of NOx emission (ElKady et 

al., 2009). Therefore, NOx emissions reported here are presented using the NOx 

emissions index, based on grams per kilowatt hour.  

The NOx emission index is determined from: 

𝐸𝐼𝑁𝑂𝑥 =
𝑁𝑂𝑥. 10

−6. 𝑀𝑊. 𝑛𝐹𝐺 . 3600

𝑃𝑒
 

(4.4) 

where 𝐸𝐼𝑁𝑂𝑥 is the NOx emissions index in g/kWh, 𝑁𝑂𝑥 is the reported volumetric 

FTIR concentration in ppmv on a dry basis, 𝑀𝑊 is the molecular weight in g/mol, 

𝑛𝐹𝐺 is the molar flue gas flowrate in mol/s and 𝑃𝑒 is the net power output in kW. The 

gas samples were collected using the FTIR as described in the gas analyser section 

above.  

4.2.6 Natural gas composition and performance calculations  

The natural gas composition of the fuel was requested from National Grid at the end 

of each test day, as the experimental facilities do not have the capabilities to 

perform on-site natural gas composition measurements. The dry higher heating 

value (HHV) of the fuel supplied by National Grid to the UK ranges from 37.5 MJ/m3 

to 43.0 MJ/m3 at standard conditions (National Grid, 2017). The normalised natural 

gas composition of the fuel supplied to the experimental facilities during the baseline 

and CO2 testing campaigns are provided in Table 4.5. 

Table 4.5. Average natural gas composition and higher heating value. 

 Natural gas composition – normalised (mol. %) HHV  

Test campaign N2 CO2 CH4 C2H6 C3H8 C4H10 C5H12 C6H14 (MJ/m3) 

Baseline 1.08 1.31 90.76 5.04 1.26 0.39 0.09 0.06 39.56 

CO2 

enhancement 0.94 1.46 91.09 4.74 1.18 0.40 0.10 0.08 
39.46 

% diff. 13.0 11.5 0.4 6.0 6.3 2.6 11.1 33.3 0.25 
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The mGT electrical efficiency is determined as a function of net electrical power 

output and fuel heat consumption as: 

𝜂𝑒𝑙 = 
𝑘𝑊𝑒
𝑄𝑓1

  . 100 
(4.5) 

where 𝜂𝑒𝑙 is the electrical efficiency (%), 𝑘𝑊𝑒 is the net electrical power output, 𝑄𝑓1 

is the thermal input associated with fuel combustion (kWth). 

4.2.7 Experimental campaigns  

Standard operating procedures (SOPs) for the experimental campaigns were 

developed to ensure each test followed the same method. This included the 

development of two separate SOPs, for normal mGT operation and S-EGR mGT 

operation. This ensured the correct procedure was followed for each test allowing 

for consistency between tests conducted over multiple testing days.  Prior to starting 

any tests, it was ensured that the mGT was at steady state conditions and the 

turbine outlet temperature (TOT) was ~645C, with the actual power output reaching 

the user-defined set point, the exhaust gas emission levels constant and the CO2 

flowrate stable. The start-up sequence for the mGT is typically ~2 hours. In this 

time, the mGT operator (author of this thesis) calibrated all analysers, monitored all 

the parameters and troubleshooted any technical errors during start up and 

throughout the experiments. This root-cause analysis and problem solving required 

the author of this thesis to find solutions which we not immediately identified, which 

led to delays in completing testing. All experiments were conducted for a minimum 

of 15 minutes per test as per ISO gas turbine acceptance tests (ISO, 2009).  

A preliminary reference test campaign (40-100 kWe) without CO2 injection was 

conducted prior to any mGT modifications (additional instrumentation + CO2 

injection system). This was used to confirm that these changes did not affect the 

normal functioning and performance of the mGT. The author of this thesis 

researched, procured and tested the best available instrumentation (within the limits 

of the mGT) for investigation S-EGR at pilot scale. Subsequently, the performance 

of the mGT through a 60-100 kWe operating envelope was initially assessed without 

CO2 injection (baseline conditions) to provide a reference for comparison and 

characterise the performance of the mGT as a function of the ambient temperature 

conditions. Then, CO2-enhancement experiments were carried out by injecting 

different quantities of CO2 (up to 300 kg/h, corresponding to up to 10.1 vol% in the 

flue gas) into the compressor inlet, thus replacing some of the combustion air, to 

simulate a range of S-EGR scenarios at power outputs of 60-100 kWe. Tests at 
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power outputs below 60 kWe were not considered as the mGT is far from its design 

conditions and its steady-state performance was compromised due to the high 

emission levels of CO and UHC, and the TOT not achieving 645°C (see Appendix 

A.2).  

The mGT can operate as low as 40 kWe, however, the performance is significantly 

inhibited. At the lower power outputs (<60 kWe) the limits of the FTIR analyser 

readings for CO and UHC were at maximum. This means that testing at power 

outputs below 60 kWe for the S-EGR tests would provide inaccurate readings as CO 

and UHC emissions are anticipated to increase beyond the maximum analyser 

value, hence the residual error value would also become greater. Moreover, 

experiments at 90 kWe with a CO2 injection rate of 300 kg/h are omitted in the test 

matrix in Table 4.6 due to a malfunctioning of the fuel booster which prevented 

further tests. The test conditions for the baseline and CO2 enhancement 

experiments are summarised in Table 4.6. 

Table 4.6. Test conditions investigated for the baseline and CO2 enhancement experiments. 

 Set power output (kW) 

CO2 injection rate (kg/h)  60  70  80  90   100 

0 ❖  ❖  ❖  ❖  ❖  

100 ❖  ❖  ❖  ❖  ❖  

150 ❖  ❖  ❖  ❖  ❖  

200 ❖  ❖  ❖  ❖  ❖  

250 ❖  ❖  ❖  ❖  ❖  

300 ❖  ❖  ❖   ❖  

 

4.3 Results and discussion  

The CO2 concentrations recorded in the flue gas throughout the baseline and S-

EGR tests are presented in Figure 4.6 (p. 63). For the baseline, the reference flue 

gas concentration of CO2 increases from 1.4 to 1.7 vol% when increasing the power 

output from 60 to 100 kWe. This is associated with the amount of excess air and the 

air-fuel ratio, which are higher at part load conditions (see figures in Appendix A.3). 

The simulated S-EGR conditions tested in this work augmented the CO2 

concentrations in the flue gas from 1.7 to 8.4 vol% (0-300 kg/h CO2) at 100 kWe and 

from 1.4 to 10.1 vol% (0-300 kg/h CO2) at 60 kWe. This represents a ~400% and 

~600% increase at 100 and 60 kWe, respectively, at maximum CO2 addition 

compared to the baseline conditions. These are in the range of the expected 

changes in S-EGR systems based on the literature review, which suggested CO2 
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concentrations in the flue gas ~18-26 vol% (depending on which S-EGR 

configuration is used) in CCGT plants. The key objective of this study is to 

investigate the effects of these S-EGR conditions on the mGT performance. For this 

purpose, the impacts on electrical efficiency, turbine rotational speed and 

compressor discharge temperature are analysed, as well as the NOx, CO and UHC 

emissions. Standard error bars are displayed on all the figures, however, as the 

standard error is relatively small, these are not always visible on the graphs. 

Appendix A.5 provides tables with the standard error information.  

 

Figure 4.6. Flue gas CO2 concentrations for the baseline and S-EGR CO2 injection cases across 

the 60-100 kWe operating envelope. 

4.3.1 Influence of S-EGR on the mGT performance  

Figure 4.7 (a)-(e) illustrates the effects of S-EGR on the mGT electrical efficiency 

and rotational speed at power outputs of 60-100 kWe for all cases, showing the air 

temperature at the compressor inlet for each test. This is compared to the baseline 

values calculated at the average air temperature in the S-EGR cases using the 

baseline results obtained, which characterise the mGT performance at different air 

inlet temperatures for each power output. Lower values of the electrical efficiency 

are obtained at decreasing power outputs, as expected (Turbec, 2009). The 

electrical efficiency of the mGT slightly decreases with CO2 injection, which has a 

higher heat capacity than air for the mGT cycle temperatures. This causes a 

decrease in the gas temperature at the combustor outlet and thus, at the turbine 

inlet, leading to a reduction in the power output (Best et al., 2016; Nikpey et al., 
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2014). Throughout the tests the power output remained stable and the heat capacity 

of CO2 leads to the abovementioned effects. This performance is seen for all power 

outputs, with reductions in the electrical efficiency of between ~4 and 8% when 

compared with the reference case with no CO2 injection. 
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(e) 

Figure 4.7. Influence of different S-EGR CO2 injection rates on the compressor inlet 

temperature, electrical efficiency and rotational speed at (a) 100 kWe, (b) 90 kWe, (c) 80 kWe, (d) 

70 kWe and (e) 60 kWe. 

The impacts of S-EGR conditions on the rotational speed of the mGT are also 

illustrated in Figure 4.7 (a)-(e). As expected, this variable decreases with reducing 

electrical power output, as it is a function of the volumetric gas flowrates required at 

each condition. Focusing on the CO2 injection cases, the turbine rotational speed 

shows a decreasing trend when the CO2 injection rate increases, with values 

ranging from 650 to 1400 rpm lower for the baseline compared to the higher CO2 

injection rates at power outputs of 60 and 100 kWe respectively (see Figure 4.7 (a) 

and (e)). This is a result of a change in the properties of the working fluid due to the 

addition of CO2, which is denser than the air. The mGT adjusts the amount of fuel 

and air required to achieve the desired power output under each set of experimental 

conditions. As discussed above, a fraction of the air flow is replaced by CO2 in the 

S-EGR tests. Therefore, a similar mass flowrate passing through the turbine is 

equivalent to a lower volumetric air+CO2 flowrate to deliver the desired power 

output, thus reducing the turbine rotational speed. This trend is seen for all power 

outputs, with greater speed reductions observed with increasing CO2 injection rates. 

Similar trends have been reported by Mansouri Majoumerd et al. (2014) and Best et 

al. (2016), who both indicate rotational speed reduces with increasing CO2 content 

in the oxidiser when testing lower CO2 enhancement levels typical of EGR.  
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Small deviations from this trend are usually due to changes in the air temperature 

during the experiments, as seen in the 100 kWe case with a CO2 injection rate of 

300 kg/h. The air density decreases when the temperature rises, and therefore the 

compressor rotates at higher speeds to maintain a similar mass flow of air through 

the turbine and thus deliver the same power output. This leads to an increase in the 

compressor work to generate the required electrical power output, which in turn 

leads to a slightly higher heat input and air demand. This is associated with 

increased rotational speeds in the mGT that offset the expected speed reductions 

due to the S-EGR conditions in this case. The mGT has not been programmed to 

operate under S-EGR conditions. Due to the changes in working fluid properties, the 

compressor and turbine maps would require reprogramming to account for these 

changes and therefore this is also a possible reason why these small variations are 

observed. 

Throughout the baseline and simulated S-EGR tests, the compressor discharge 

pressure seldom changed for a specified power output; with the values ranging from 

3.4-4.3 bara at 60-100 kWe, respectively. Similar unchanged performance is 

reported by the modelling study of Herraiz et al. (2018), who found that the pressure 

ratio is not significantly affected under S-EGR operation. Moreover, the effect of S-

EGR conditions on the compressor discharge temperature is shown in Figure 4.8 (p. 

68) for the different CO2 injection rates. As can be observed, this temperature 

increases with the power output, due to the higher-pressure ratios achieved. The 

addition of CO2 which is mixed with the combustion air, changes the working fluid 

entering the compressor which has a lower specific heat capacity ratio due to the 

effect of CO2. This results in a narrower temperature change for compression at a 

given pressure ratio (Best et al., 2016; Herraiz et al., 2018; Sander et al., 2011). 

Therefore, it is expected that the compressor outlet temperature decreases with 

increasing CO2 injection rates for the same power output. However, the expected 

variation in the heat capacity ratio under S-EGR conditions is small, reducing by 

around 1-2% at the compressor inlet (Herraiz, 2016; Herraiz et al., 2018). Therefore, 

large changes in the compressor discharge temperature due to this effect were not 

expected in the CO2 injection tests, as seen in Figure 4.8 (p. 68). 
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Figure 4.8. Influence of different S-EGR CO2 injection rates on the compressor discharge 

temperature across the 60-100 kWe operating envelope. 

This figure shows there is a slight decrease in the temperature at the outlet of the 

compressor when increasing the CO2 injection rate at 80 and 90 kWe power outputs, 

as expected (7 and 6°C, respectively, between the minimum and the maximum CO2 

injection rate). However, no clear trend is seen for the other power outputs. This is 

because the compressor outlet temperature is more influenced by the air inlet 

temperature, which varies slightly between experiments, thus concealing the effect 

of a marginal reduction in the heat capacity ratio.  

4.3.2 Influence of S-EGR on emission performance: NOx, CO and UHC 

As discussed above, S-EGR operation changes the properties of the working fluid 

and reduces the O2 concentration in the oxidiser that enters the combustor, which is 

affecting combustion efficiency and emissions performance (ElKady et al., 2009; 

Marsh et al., 2017, 2016). The calculated O2 concentration at the compressor inlet 

for the tests included in this work is shown in Figure 4.9 (p. 69) across the 60-100 

kWe operating envelope. As can be seen, the O2 concentration of the air+CO2 

mixture at the compressor inlet and at the inlet of the combustion chamber, ranged 

from 19.2 to 19.8 vol% for the maximum CO2 injection rates tested in the mGT 
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across all power outputs which is an acceptable MOC. The reduced O2 

concentrations in the oxidiser together with the increased CO2 content, impact the 

combustion performance. As discussed in section 2.5 of the literature review, 

reductions in the laminar flame speed and changes in the velocity field have been 

reported under CO2-enhanced conditions because CO2 dilutes the combustion 

mixture and the specific heat capacity changes due to this, thereby decreasing the 

flame temperature and the burning velocity (De Santis et al., 2016; Hinton and 

Stone, 2014). As a result, combustion efficiency reduces and the emission 

performance of the mGT is modified as depicted in Figures 4.10 to 4.12.  

 

Figure 4.9. Influence of different S-EGR CO2 injection rates on the compressor discharge 

temperature across the 60-100 kWe operating envelope. 

 

The measured NOx emissions in the baseline and S-EGR cases are shown in 

Figure 4.10, given by the emission index as per equation (4.4) (p.60) (ElKady et al. 

2009). In general, as the net electrical power output decreases, the NOx emissions 

also decrease for both baseline and S-EGR conditions. This can be explained on 

the basis that the mGT operates under lean premixed combustion conditions where 

the formation of thermal NOx is associated with the Zeldovich mechanism (Seliger 

et al., 2015). The mGT NOx emissions are then mainly related to the combustion 

temperature which decreases at part load due to the higher air-fuel ratio (see 

Appendix A.3) in these cases and lead to lower thermal NOx values (De Santis et 

al., 2016; Seliger et al., 2015). 
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Figure 4.10. Influence of the different S-EGR CO2 injection rates on flue gas NOx concentrations 

across the 60-100 kWe operating envelope. 

This represents ~61% reduction from 0.31 (100 kWe) to 0.12 (60 kWe) g/kWh for the 

baseline tests. Despite some dispersion in Figure 4.10, the influence of S-EGR on 

NOx emissions also demonstrates an overall reduction with increasing CO2 injection 

rate compared to the baseline tests across the operating envelope tested. Similarly 

to the baseline cases, the reason for NOx emissions reductions with increasing CO2 

injection rates is due to slower flame speeds and greater radiative heat losses (De 

Santis et al., 2016; Lee et al., 2013; Marsh et al., 2017). This is caused by the 

change in the properties of the working fluid under CO2-enhanced conditions, which 

lead to a reduction in the flame temperature and therefore lower thermal NOx 

production (De Santis et al., 2016; Lee et al., 2013; Marsh et al., 2017). It could 

therefore be expected that NOx emissions reduce with increasing CO2 injection 

rates, however, there is no clear trend for the S-EGR cases shown in Figure 4.10. A 

possible reason why there is no obvious trend is likely due to the very lean flame 

conditions under normal operation without enhance CO2 conditions. In Figure 4.10 

the NOx concentrations are not corrected to 15% O2 as the NOx emission index 

calculation (Eq. 4.4, p. 60) is used to calculate NOx emissions. Correcting NOx 

emissions to 15% O2 could lead to an artificial reduction in the values of NOx 

emissions. 
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Measured CO and UHC emissions are illustrated in Figures 4.11 and 4.12 across all 

power outputs tested. As can be seen in Figure 4.11, CO emissions for the baseline 

tests increase from 2 ppmv at nominal conditions (100 kWe) to 96 ppmv at lower 

loads (60 kWe). CO concentrations in the flue gas increased from 2 ppmv (baseline) 

to 24 ppmv when injecting 300 kg/h CO2 at 100 kWe, and from 96 ppmv (baseline) 

to 516 ppmv at 60 kWe with a 300 kg/h CO2 injection rate.  

 

Figure 4.11. Influence of the different S-EGR CO2 injection rates on flue gas CO concentrations 

across the 60-100 kWe operating envelope. 

Similarly, UHC emissions (CH4 and C2H6) also experience a sharp increase when 

the mGT is operated at low power outputs, being close to zero at 100 kWe and rising 

to 7 ppmv at 60 kWe for the baseline (Figure 4.12, p. 71). Other UHC’s recorded 

during the experiments included hexane, propane and ethylene, however, these 

emissions were negligible and within the FTIR error uncertainty. The increase in the 

recorded CO and UHC emissions at part load conditions can be associated with 

incomplete combustion due to poor fuel and air mixing, insufficient flame stability 

and lower combustion temperatures (Lefebvre and Ballal, 2010; Seliger et al., 

2015). The 𝐶𝑂 + 𝑂𝐻 → 𝐶𝑂2 +𝐻 reaction rate is thus reduced which leads to 

increased CO emissions (Seliger et al., 2015). 
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Figure 4.12. Influence of the different S-EGR CO2 injection rates on flue gas UHC 

concentrations across the 60-100 kWe operating envelope. 

CO2 thermal dissociation might also be considered as a possible reason for the 

increases in CO emissions outlined above. This typically occurs at flame 

temperatures above 1500°C (Evulet et al., 2009). De Santis et al. (2016) calculated 

that the maximum adiabatic flame temperature in a Turbec T100 combustor under 

EGR to be 2200°C which suggests that CO2 thermal dissociation could potentially 

be occurring under simulated S-EGR. This might be unlikely as Marsh et al. (2017) 

indicated that increased CO emissions are likely to be associated with incomplete 

combustion instead of CO2 dissociation, due to the reduction in temperatures, 

mixing and flame speeds as considered above. At part load operation, higher 

residence times of the exhaust gases inside the combustor would be required to 

ensure complete combustion and minimise CO emissions, as shown in the study by 

Zanger et al. (2013) using a Turbec T100 mGT.  

These effects become more prominent with increasing CO2 injections at each power 

output as discussed above, especially at lower power outputs, leading to increased 

emissions as shown in Figures 4.11 and 4.12. The reported levels of UHC 

presented in Figure 4.12 also follow a similar trend, supporting the incomplete 

combustion effects mentioned above. The UHC emissions remain at values lower 
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than 2-3 ppmv for all CO2 injection cases when the nominal power output (100 kWe) 

is set. However, they substantially increase under S-EGR conditions at lower power 

outputs, rising from 7 ppmv (baseline) to 104 ppmv (300 kg/h CO2 injection rate) at 

60 kWe. These results show the emissions performance of the mGT varies slightly 

under S-EGR simulated conditions when it operates at the designed nominal power 

output (100 kWe) with limited changes at nearby power outputs such as 80-90 kWe. 

This is affected by increases in the CO2 content of the oxidiser at lower power 

outputs. These large increases in emissions at the lowest power outputs, are 

substantially higher than those reported under EGR conditions (Best et al., 2016), 

indicate that the compressor and turbine maps require reprogramming to operate 

under S-EGR conditions. Reprogramming the engine to operate under S-EGR will 

allow the gas turbine to maintain enough heat throughput  for gas turbines 

operating under S-EGR scenarios to ensure appropriate full and part-load emission 

performance.  

4.4 Chapter conclusions  

A pilot-scale experimental study investigating the performance of a Turbec T100 

Series 3 mGT under simulated S-EGR conditions has been conducted. The mGT 

has been modified to incorporate a CO2 delivery system to investigate a range of 

conditions characteristic of S-EGR. The conditions tested led to a maximum 

increase in the flue gas CO2 concentrations of ~400% and ~600% at 100 and 60 

kWe, respectively, similar to what is expected in S-EGR systems. The experimental 

results indicate that the electrical efficiency marginally decreases by ~8 to 4% under 

S-EGR conditions compared to the baseline values without CO2 injection, due to the 

modified heat capacity of the working fluid which leads to reductions in the turbine 

inlet temperature. The mGT rotational speed decreased by 650 to 1400 rpm under 

S-EGR conditions compared to the baseline. This is attributed to the higher density 

of the working fluid. However, variations in compressor discharge pressure were 

negligible throughout the CO2 enhancement tests. The compressor discharge 

temperature showed a slightly decreasing trend in the S-EGR scenarios.  

The O2 concentration decreased with increasing CO2 injection rates, impacting the 

mGT combustion and emission performance. The NOx emissions show a generally 

decreasing trend under the simulated S-EGR conditions due to the effect that the 

lower associated combustion temperatures have on thermal NOx formation. The 

emissions of CO and UHC increased under S-EGR conditions due to incomplete 

combustion mostly at lower power outputs. Nonetheless, the increases in such 
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emissions at higher power outputs are limited. The experimental results 

demonstrate a stable mGT operation across the operating envelope considered.  

The increased CO2 concentrations reported here could offer potential economic and 

energy savings for the downstream CO2 capture plant. The emission performance 

results indicate that modifications to the design of the combustion chamber might be 

needed for gas turbines operating under S-EGR scenarios to ensure appropriate 

emission performance especially at part loads. 
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5 Experimental investigation of the 

impacts of selective exhaust gas 

recirculation on an amine CO2 capture 

plant 

5.1 Introduction  

This work evaluates the influence of selective CO2 recirculation conditions on the 

performance of a solvent based CO2 capture plant (herein referred to as the (ACP) 

at the PACT core facilities located in Sheffield, UK (PACT, 2018). This chapter 

evaluates two experimental campaigns under S-EGR conditions using flue gas CO2 

concentrations representing those recorded in the mGT at 80 kWe in the preceding 

chapter. The flue gas CO2 concentration at this power output for CO2 injection rates 

of 150-300 kg/h is ~5.3-9.2 vol% (dry basis), respectively. To the author’s 

knowledge, no works have experimentally investigated the influence of S-EGR on 

amine CO2 capture plant performance using 40 wt% MEA at pilot scale. This is 

important because it will provide key information about operating the ACP under S-

EGR which can be used to assist in the development of gas-CCS and for 

knowledge transfer. Akram et al. (2016) investigated the performance for EGR at 

CO2 concentrations up to ~10 vol% using 30 wt% MEA solvent. In addition, recent 

modelling studies have investigated commercial scale CCGT’s coupled with parallel, 

series or hybrid S-EGR configurations (Diego et al., 2018, 2017b; Herraiz et al., 

2018). Therefore, this work aims to analyse the ACP performance under conditions 

representing S-EGR.  

5.2 Experimental methodology  

5.2.1 Amine capture plant 

The ACP illustrated in Figure 5.1 (p. 76) and 5.2 (p. 78), is designed to capture 1 

tonne per day of CO2 using 30 wt% MEA solvent, based on coal combustion (Akram 

et al., 2016). This study uses 40 wt% MEA solvent with Sulzer Mellapak CC3 

structured packing in the absorber and desorber. The 40 wt% MEA solvent was 

chosen because of the limited number of studies which use this concentration and 

the potential reductions in the energy penalty it could lead to. This packing is used 

as it has been specifically designed for post-combustion CO2 capture processes 
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(Menon and Duss, 2010). Structured packing is also used due to the lower 

economic costs and ease of installation compared to random packing (Rousseau, 

1987). The packing height and diameter are 6.5 m and 0.3 m in both columns, 

respectively. The ACP has the capability to treat flue gases from a range of 

combustion processes including the Turbec T100 S3 mGT. The flue gas flowrate 

exiting the mGT system is typically 0.80 kg/s at ISO conditions (100 kWe) (Turbec, 

2009). The ACP (Figure 5.1) is designed to operate at lower flue gas flowrates 

(~250 Nm3/h / ~320 kg/h).  

 

Figure 5.1. Photograph of the pilot-scale post-combustion CO2 capture plant. 

This means that the combined operation (mGT+ACP) requires a proportion of the 

mGT flue gas to be taken from a slipstream. Typically, under ISO conditions the 

CO2 concentration of the mGT flue gas is ~1.7 vol% (dry basis) at full load. In order 

for successful ACP operation, the flue gas stream entering the absorber should be 

at least 4-5 vol%. To augment the CO2 flue gas concentration a synthetic gas-

mixing skid is used. This system mixes ambient air and CO2 from a cryogenic tank 

to achieve the desired CO2 concentration to represent the conditions to be 

investigated. The gas mixing controls the flow of synthetic gas via Siemens Coriolis 

mass flow meters and pneumatically actuated flow control valves. The flowrate is 

measured and recorded at the skid via the SCADA system. Operating under 

synthetic flue gas conditions is limiting because the flue gas contains a negligible 

water vapour or emission species such as CO and UHC similar to the flue gas 

conditions under mGT+S-EGR operation. The mGT has been modified to 

investigate a range of conditions characterising S-EGR as illustrated in chapter 4. 

Due to a technical fault associated with a damaged fuel booster, combining 

experiments sequentially (mGT+ACP) was not possible. Therefore, the ACP 

experiments were conducted using the synthetic gas-mixing skid to represent S-
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EGR conditions investigated in the previous chapter at part load operation, thus 

mixing CO2 and air. The mGT flue gas CO2 concentrations at 80 kWe and the 

synthetic gas skid concentrations are presented in Table 5.1.  

Table 5.1. CO2 concentrations. 

 CO2 concentration (vol%, dry) 

mGT 5.3 6.6 7.9 9.2 

Synthetic skid 5.2 6.5 7.5 9.0 

As illustrated in Figure 5.2 (p. 78), the booster fan drives the synthetic flue gas 

stream into the absorber which flows upwards and comes into contact with the 

counter-current lean liquid solvent flowing downwards. The ACP investigated here is 

a scaled down version of a commercial scale ACP. The CO2 free flue gas exits the 

absorber entering the water wash column which eradicates entrained solvent 

droplets prior to being discharged to the atmosphere (Akram et al., 2016). However, 

small MEA concentrations might also be discharged to the atmosphere. The water 

used in the water wash column is recirculated to continue the process. In addition, 

water losses are experienced due to the lower synthetic flue gas water content 

which subsequently increases MEA concentration by 2-3 wt% per day, hence, the 

water levels are topped up (Tait et al., 2018). The rich solvent stream descends 

through the desorber contacting with the rising CO2+H2O stream exiting the reboiler. 

The rich solvent stream is heated up by the pressurised hot water which promotes 

CO2 liberation. The gaseous CO2 rich+H2O stream flowing out of the desorber is 

condensed to eliminate entrained water and MEA droplets. Subsequently, excess 

condensate is removed via a reflux drum into the desorber and the gaseous CO2 

rich stream is released to the atmosphere. The lean solvent stream leaves the 

reboiler, flowing through the lean solvent pump, cooler and activated carbon filter 

prior to re-entering the absorber column. The cooler lowers the temperature of the 

lean solvent flowrate temperature and the activated carbon filter removes solvent 

degradation products (Akram et al., 2016). The thermal input to the reboiler at PACT 

is supplied using pressurised hot water instead of steam. To allow for 

comprehensive data collection, the ACP has been modified with instrumentation, 

including thermocouples, pressure transmitters and flow meters. These devices 

were installed prior to conducting the experiments in this chapter for previous 

experimental research. As these devices were installed prior to conducting this 

research, it was not possible to determine the instrument error as per the 

manufacturer’s guidance. Therefore, the standard error has been used to determine 

the error and accuracy of the results presented (see Appendix A.5).  



 

78 
 

 

Figure 5.2. Schematic of the ACP.
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5.2.1.1 Test campaign 1: Varying the CO2 concentration  

In this experimental campaign, conditions characteristic of simulated S-EGR are 

investigated to determine the impact on ACP performance. The synthetic flue gas 

CO2 concentrations ranged from 5.2-9.0 vol% (dry basis). These concentrations 

were selected to represent part load operation (80 kWe) of the mGT under S-EGR 

conditions, investigated in the previous chapter. The reason why S-EGR conditions 

at 80 kWe were selected is because flexible part load gas turbine and ACP 

operation is anticipated to become more important in the future energy scenarios. 

Hence, it is important to understand the behaviour of the ACP under S-EGR 

conditions under part load mGT operation (see Chapter 4 for mGT performance).   

Depending on which S-EGR configuration is used, the S-EGR ratio, the 

CO2 concentration sent to the ACP, the CO2 capture efficiency and selective 

membrane CO2 transfer efficiency will vary. As no membrane system was used in 

this work, this is difficult to quantify the solvent flowrate was changed to achieve 

~90% CO2 capture efficiency in each experiment and the pressurised hot water inlet 

temperature was fixed at ~126°C and pressure of 1.5 bara. The pressurised hot 

water is used to in the reboiler main body to transfer heat to the rich solvent to strip 

CO2. The experimental parameters for test campaign 1, including the calculated 

maximum standard deviation for the results are presented in Table 5.2.  The rich 

solvent flowrate was varied to control the absorber and desorber levels to ensure 

stable ACP operation. Appendix A.5 presents the standard error values for the 

experimental tests.  

Table 5.2. Test campaign 1 experimental conditions. 

Parameter  Unit Max. STDev (±) Test 1 Test 2 Test 3 Test 4 

Synthetic CO2 conc. (dry basis) vol% 0.9 5.2 6.5 7.6 9.0 

Synthetic flue gas flowrate Nm3/h 7.2 170.1 171.8 171.0 173.2 

Flue gas inlet temperature  °C 0.5 41.7 39.3 39.6 39.6 

Flue gas outlet temperature °C 0.6 48.1 49.2 42.5 41.2 

Flue gas inlet pressure bara 0 1.04 1.04 1.05 1.05 

Flue gas outlet pressure bara 0 1.04 1.04 1.05 1.05 

Lean solvent flowrate kg/h 59.1 476.5 578.8 859.2 990.9 

Lean solvent temperature  °C 0.6 40.2 40.1 39.9 39.9 

Rich solvent flowrate kg/h 114. 480.9 601.8 898.6 1020.7 

PHW flowrate m3/h 0.3 11.4 11.4 11.4 11.3 

PHW inlet temperature  °C 1.7 125.7 125.6 125.6 125.6 

PHW outlet temperature °C 0.8 122.7 122.4 121.5 121.3 

Cold approach temperature °C - 26.6 27.4 27.4 26.9 

Hot approach temperature  °C - 26.0 27.0 27.1 26.6 
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5.2.1.2 Test campaign 2: Varying the hot water inlet temperature  

In this experimental campaign, the influence of a fixed solvent flowrate and varied 

pressurised hot water inlet temperatures (124-127°C) on the ACP performance 

under simulated S-EGR was investigated.  The reason for investigating varying hot 

water inlet temperature was to determine if there is an optimal reboiler temperature 

using 40 wt% MEA and fixed ~9.0 vol% (dry basis) flue gas CO2 concentration. The 

highest CO2 concentration was selected to represent the augmented CO2 flue gas 

streams expected in S-EGR configurations. Operating at different reboiler 

temperatures might be beneficial depending on which process configuration and 

solvent concentration are used for amine-based CO2 capture. The experimental 

parameters for test campaign 2 including the calculated maximum standard 

deviation are presented in Table 5.3. Test 4 from test campaign 1 was used as the 

baseline where the solvent flowrate is fixed at ~990 kg/h. This fixed flowrate is used 

because for the baseline test, this represents a 90% CO2 capture efficiency. As the 

reboiler temperature varies at a fixed solvent flowrate, the CO2 capture efficiency 

will change.  

Table 5.3. Test campaign 2 experimental conditions. 

Parameter  Unit Max. STDev 
(±) 

Baseline Test 2 Test 3 Test 4 

PHW inlet temperature  °C 1.6 125.6 126.8 124.7 123.7 

Synthetic CO2 conc. (dry 
basis) 

vol% 0.5 9.0 9.0 9.0 9.0 

Synthetic flue gas flowrate Nm3/h 17.9 173.2 169.7 170.0 166.6 

Flue gas inlet temperature  °C 0.6 39.6 40.9 40.6 40.8 

Flue gas outlet 
temperature 

°C 0.6 41.2 41.4 41.8 41.6 

Flue gas inlet pressure bara 0 1.05 1.04 1.05 1.05 

Flue gas outlet pressure bara 0 1.05 1.04 1.05 1.05 

Lean solvent flowrate kg/h 59.4 990.9 947.6 981.9 985.8 

Lean solvent temperature  °C 0.6 39.9 40.0 40.1 40.1 

Rich solvent flowrate kg/h 114.0 1020.7 1011.7 1001.6 1021.9 

PHW flowrate m3/h 0.3 11.3 11.1 11.1 11.1 

PHW outlet temperature °C 0.8 121.3 122.2 120.5 119.5 

Cold approach 
temperature 

°C - 26.9 26.9 26.7 27.1 

Hot approach temperature  °C - 26.6 26.5 26.3 26.7 
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5.2.2 Data collection and system monitoring  

The ACP uses the Programmable Logic Controller (PLC) system to monitor and 

control various operational parameters, for example, solvent flowrate and desorber 

pressure. The PLC system allows the plant operator to start, stop and control 

several parameters of the ACP. The desorber pressure was set at 0.5 ±0.02 barg 

(~1.5 bara) throughout the experiments using the proportional integral derivative 

(PID) control. The rich and lean solvent flowrates are also controlled via the PLC 

using the control valves to achieve the desired flowrate for each experiment. In 

addition to the PLC system, additional instrumentation has been installed onto the 

ACP. This includes monitoring for temperatures, pressures and flowrates which are 

recorded through LabVIEW. Tables 5.2 and 5.3 illustrate the recorded parameters 

and calculated maximum standard deviation. The PLC data is recorded every 20 

seconds and LabVIEW data is recorded every second. The absorber and desorber 

have been instrumented to allow for the temperature profile across the columns to 

be determined as shown in Tables 5.4 and 5.5, respectively. The thermocouple 

numbers are located from the bottom to the top of the columns with the first 

measurement points at the absorber flue gas entry point and desorber bottom, 

respectively. Appendix A.5 provides the standard error data for the absorber and 

desorber thermocouples of each experiment. 

Table 5.4. Absorber thermocouple locations and maximum standard error. 

No. Height (m) at 
flue gas entry to 

the absorber  

TC no. Test campaign 1 Test campaign 2 

Max. Standard Error (±°C) 

1 0.6 T121 0.022 0.013 

2 1.2 T124 0.032 0.018 

3 1.9 T127 0.040 0.018 

4 2.6 T130 0.042 0.021 

5 3.3 T133 - - 

6 4.0 T136 0.034 0.026 

7 4.7 T139 0.034 0.034 

8 5.4 T142 - - 

9 6.0 T145 0.030 0.041 

10 6.7 T148 0.065 0.035 
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Table 5.5. Desorber thermocouple locations and maximum standard error. 

No. Height (m) at the 
bottom of the 

desorber 

TC no. Test campaign 1 Test campaign 2 

Max. Standard Error (±°C) 

1 0.4 T308 0.058 0.036 

2 1.3 T317 0.051 0.056 

3 2.2 T316 0.057 0.032 

4 3.0 T321 - - 

5 3.9 T309 - - 

6 4.8 T312 0.055 0.020 

7 5.7 T311 - - 

8 7.1 T310 - - 

9 7.6 T307 0.088 0.020 

5.2.3 Gas analysers  

The gaseous emissions are recorded online using a Gasmet FTIR DX4000 gas 

analyser over four different locations: the absorber inlet, absorber outlet, water wash 

column outlet and desorber outlet, as illustrated in Figure 5.2 (p. 78). Sampling 

across each of the FTIR locations was performed throughout the experiments with 

average measurement times of: absorber inlet and outlet ~30 minutes, water wash 

outlet ~4 minutes and desorber outlet ~5 minutes. Due to a technical issue 

recording at the wash column and desorber outlet, it was not possible to assess the 

data for Test 1 (5.2 vol% CO2) in the first experimental campaign at these locations.  

5.2.4 Solvent sampling and titration  

The solvent loading is the ratio between the moles of CO2 and moles of MEA. Lean 

solvent loading is defined when the MEA solvent is desorbed of CO2 (typically when 

exiting the stripper and entering the top of the absorber). The rich solvent loading is 

when the MEA solvent is loaded with CO2 after exiting the absorber.  Rich and lean 

solvent samples were taken manually at the end of each test (see sampling point 

locations in Figure 5.2) for each experiment to determine rich and lean loadings. 

Water wash samples were also taken to monitor MEA levels transferred to the wash 

column from the flue gas. The samples were analysed using a Mettler Toledo T90 

automatic titrator. To determine the CO2 loading of the samples, 50 ml of methanol 

is loaded into the analyser port of the titrator where the pH level is increased to 

~11.2 by adding 0.5M sodium hydroxide (NaOH) from the titrator pumps. A pipette 
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is used to add ~1 ml of the collected solvent sample into the methanol and titrated 

with NaOH to a pH of ~11.2. MEA concentrations are determined by adding ~50 ml 

of deionised water into a beaker and ~1 ml of the collected sample and titrating this 

with 0.2M hydrochloric acid (HCL) to a ~4.8 pH. Tait et al. (2018) identified that the 

measurement uncertainty for this procedure to be ±3.2%.  

5.2.5 Iron measurements  

A HACH Pocket Colorimeter II was used to measure the iron content of the solvent 

samples at the end of each test day. This was to determine the rate of solvent 

degradation due to the effects of oxidative degradation. To determine the iron 

content the sample cell is filled with 10 ml of rich solvent taken from the sampling 

point on the ACP, see Figure 5.2, which is mixed with FerroVer Iron Reagent 

Powder Pillow for a period of three minutes (HACH, 2014). During the mixing 

period, a blank sample is also prepared, where 10 ml of solvent is added to a vile. 

Once the three minute period expires the blank sample cell is cleaned and added to 

the HACH Pocket Colorimeter II cell holder and zeroed. Subsequently, the sample 

mixed with the reagent powder is measured using the colorimeter to determine the 

iron content in mg/L.   

5.2.6 ACP performance calculations  

The ACP performance is determined in terms of CO2 capture rate and specific 

reboiler duty. The CO2 capture rate (𝐶𝑂2,𝐶𝑅) is determined from (Akram et al., 

2016): 

𝐶𝑂2,𝐶𝑅 (𝑘𝑔 ℎ⁄ ) = (𝑛𝐶𝑂2𝐴𝑏𝑠𝑖𝑛 − 𝑛𝐶𝑂2𝐴𝑏𝑠𝑜𝑢𝑡).𝑀𝑊𝐶𝑂2/1000 (5.1) 

where 𝑛𝐶𝑂2𝐴𝑏𝑠𝑖𝑛 and 𝑛𝐶𝑂2𝐴𝑏𝑠𝑜𝑢𝑡  is the CO2 molar flowrate entering and leaving the 

absorber in mol/h and 𝑀𝑊𝐶𝑂2 is the CO2 molecular weight.  

The reboiler duty (𝑅𝐷) is calculated from (Akram et al., 2016): 

𝑅𝐷 (𝑘𝐽 ℎ⁄ ) = 𝑃𝐻𝑊𝑓. 𝑐𝑝. (Δ𝑇) (5.2) 

where 𝑃𝐻𝑊𝑓 is the pressurised hot water flowrate in kg/h, 𝑐𝑝 is the specific heat 

capacity of water in kJ/kg K and Δ𝑇 is the temperature difference between the 

pressurised hot water inlet and outlet temperature in K. The specific reboiler duty is 

calculated from  (Akram et al., 2016): 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑟𝑒𝑏𝑜𝑖𝑙𝑒𝑟 𝑑𝑢𝑡𝑦 (𝑀𝐽 𝑘𝑔⁄ ) = (
𝑅𝐷

𝐶𝑂2,𝐶𝑅
)/1000 

(5.3) 
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5.3 Results and discussion  

The experimental results from both experimental campaigns are summarised in 

Appendix A.4. In both experimental campaigns, the solvent concentration was 

thought to be 40 wt% MEA, however, the measured concentrations were up to 6.8 

and 9% lower for experimental campaigns 1 and 2, respectively.  

In the work by Akram et al. (2016) they identified that the rich and lean solvent 

concentrations varied above or below the 30 wt% MEA investigated. These authors 

also attribute this to either evaporation losses or solvent degradation. Experimental 

work by Tait et al. (2018) at the PACT facilities used a 30 wt% MEA concentration 

and also observed varying amine concentration of 28-35%. These authors note that 

the synthetic flue gas mixture is unsaturated which means that the H2O content is 

~1 vol%, leading to water losses in the absorber flue gas outlet stream (Tait et al., 

2018).  

In addition to the water losses resulting in varying solvent concentration, solvent 

degradation is a possible reason for the lower solvent concentrations reported in the 

results presented in Appendix A.4. In the literature, thermal and oxidative 

degradation of MEA in CO2 capture plants is widely reported (e.g. Bedell, 2009; Chi 

and Rochelle, 2002; Davis and Rochelle, 2009; Du et al., 2016; Fredriksen and 

Jens, 2013; Gouedard et al., 2012; Sexton and Rochelle, 2011). Oxidative 

degradation typically occurs in the absorber where the flue gas O2 concentration is 

the greatest. For example, in CCGT’s with ACP the flue gas O2 concentrations are 

~12 vol% (IEAGHG, 2012a). However, this concentration is likely to reduce under 

S-EGR operation as shown in the following modelling studies. Diego et al. (2018, 

2017b) investigated parallel and hybrid S-EGR configurations at commercial scale, 

where the flue gas O2 concentration reduced to 11.3 and 7.1 vol%, respectively. 

Herraiz et al. (2018) also showed O2 concentrations in the flue gas stream varied 

from ~10-11 vol% and 9 vol% for series and parallel S-EGR, respectively. The flue 

gas O2 concentrations at 80 kWe under S-EGR for the mGT experiments ranged 

from 16.7-17.4 vol% (dry basis) and ~19 vol% under standard operation. The higher 

O2 concentrations in the mGT experiments are because of the much higher excess 

air requirements than in commercial scale gas turbines, but still shows reduced O2 

concentrations sent to the ACP under S-EGR. The synthetic flue gas O2 

concentration sent to the absorber remained around 17 vol% throughout the 

experimental campaigns, representing similar concentrations to the mGT tests.  
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Oxidative degradation occurs due to MEA solvent disintegration which is catalysed 

in the presence of dissolved metal ions such as iron via electron abstraction 

mechanisms (Bedell, 2009; Chi and Rochelle, 2002; Fredriksen and Jens, 2013; 

Goff and Rochelle, 2004; Gouedard et al., 2012; Sexton and Rochelle, 2011). The 

electron abstraction mechanism uses a free radical, for example Fe3+, which 

eradicates an electron from N2 in the amine group (Goff and Rochelle, 2004; 

Gouedard et al., 2012). The resulting amine radical is transferred (de-protonated) to 

form an imine radical, which leads to aldehyde and ammonia formation due to its 

reaction with H2O (Goff and Rochelle, 2004; Gouedard et al., 2012). The main MEA 

degradation product is NH3, with subsequent degradation products being aldehydes 

(Goff and Rochelle, 2004; Gouedard et al., 2012). In the presence of O2, these 

products will form carboxylic acids due to the oxidization mechanism. The 

production of these acids leads to corrosion and fouling issues, which ultimately 

leads to increased operating costs. Furthermore, NH3 formation is greater at higher 

MEA concentrations and the rate of degradation is linked to the solvent temperature 

and metal ion concentrations (Chi and Rochelle, 2002; Goff and Rochelle, 2004). As 

the lean solvent temperature remained at ~40°C for all the experiments, the effect of 

temperature on oxidative degradation will be the same, thus, oxidative degradation 

is likely due to the metal ion concentrations. The iron content was measured at the 

end of each test day, where the iron concentration increased from 9.16 mg/L (test 

day 1), 14.4 mg/L (test day 2) to 15.64 mg/L (test day 3), representing a 71% 

increase over the three day testing campaign. As noted above, the presence of 

dissolved metal ions leads to oxidative solvent degradation, hence, it is likely that 

this has contributed to lower solvent concentrations. Chi and Rochelle (2002) also 

noted that NH3 formation increases with increasing O2 concentration. The O2 and 

NH3 concentrations reported in Tables 5.6 and 5.7 show this trend which also 

supports that oxidative solvent degradation has led to reduced solvent 

concentrations.  

Thermal solvent degradation typically occurs in the stripper and reboiler due to 

higher temperatures (Davis and Rochelle, 2009). Thermal degradation is also 

caused by operating at elevated stripper pressures, although this has been shown 

to reduce stripper energy requirements (Oyenekan and Rochelle, 2007, 2006). 

However, operating at higher stripper temperatures and pressures promotes 

thermal solvent degradation which is associated with carbamate polymerization 

(Davis and Rochelle, 2009; Polderman et al., 1955; Yazvikova, 1975). The thermal 

degradation products formed from carbamate polymerization include 2-oxazolidone, 
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dihydroxyethylurea, 1-(2-hydroxyethyl)-2-imidazolidone (HEIA) and N-(2-

hydroxyethyl)-ethylenediamine (HEEDA) (Davis and Rochelle, 2009). The formation 

of these four species is associated with the stripper temperature, CO2 loading and 

solvent concentration (Davis and Rochelle, 2009). In this work, the reboiler pressure 

remained constant for all the experiments at ~1.5 bara whereas the pressurised hot 

water inlet temperature was kept either constant (126°C) or varied (124-127°C). As 

the solvent concentration used was 40 wt% MEA, this means that the boiling point is 

higher compared to using a 30 wt% MEA solvent, as well as the reboiler 

temperature which will augment the rate of thermal degradation. Davis and 

Rochelle's (2009) also indicated this and demonstrated that ~67% of thermal 

degradation arises in the reboiler sump and ~33% develops in the stripper packing. 

These authors also show that the loss of MEA solvent increases by up to 7 times 

with a 20°C rise in stripper temperature from 108-128°C (Davis and Rochelle, 

2009). Furthermore, the higher CO2 concentrations considered here will lead to 

increased CO2 loadings. This has also been shown to increase the thermal 

degradation rate (Davis and Rochelle, 2009). Hence, due to the elevated 

pressurised hot water temperatures considered in this work, thermal degradation 

can also be attributed to the lower solvent concentrations reported in Appendix A.4. 

In optimised S-EGR configerations, thermal degdration in the downstream capture 

plant is not anticpated to be of major concern. The results presented here idicates 

that operating the stripper at lower temperature reduces the rate of thermal 

degdradation. Hence, for optimised S-EGR systems, the reboiler duty will be lower 

~3-4 MJ/kg and the stripper temperature will be operating at the optimal 

temperature for amine based scrubbing ~120°C. 

5.3.1 Influence of S-EGR on the solvent loadings 

The impact of increased flue gas CO2 concentrations on the rich and lean CO2 

loadings is presented in Figure 5.3 (p. 87); as the CO2 concentration increases both 

the lean and rich loadings also increase. The rich loadings increased from 0.378 to 

0.399 mol CO2/mol MEA and lean loadings increased from 0.262 to 0.319 mol 

CO2/mol MEA at CO2 concentrations in the absorber inlet gas of 5.2 and 9.0 vol%, 

respectively. This represents a 5.6 and 21.8% increase for the rich and lean 

loadings. As noted in chapter 3, the theoretical maximum of CO2 loading is 0.5 mol 

CO2/mol MEA (Gouedard et al., 2014; Nielsen et al., 2012). Thus, the cyclic 

capacity is important to understand the solvent loading characteristics. This can be 

defined as the difference between the CO2 loading for the gas to liquid equilibrium 

for absorption and regeneration (Fan et al., 2016). The mass transfer of CO2 from 
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the gas to liquid phase is related to the interfacial area, mass transfer coefficients 

and the driving force in the absorber column (Notz et al., 2012). The driving force in 

the absorber is linked to the distance between the operating and equilibrium lines 

and the CO2 mass transfer profile which is influenced by the absorption reaction 

kinetics (Notz et al., 2012). 

 

Figure 5.3. Influence of increasing CO2 concentration on rich and lean solvent loading. 

At higher CO2 concentrations, the driving force increases at a constant interfacial 

area and the reaction rate of bicarbonate and carbamate formation is faster (Notz et 

al., 2012). The mass transfer coefficients (gas phase driving force and mass 

transfer) also increases with higher CO2 concentrations (Wu et al., 2017). 

Furthermore, higher MEA concentrations will have more molecules available to 

react with CO2, leading to improved mass transfer (Wu et al., 2017). Abu-Zahra et 

al. (2007) process modelling and economic study investigated the influence of 

different MEA concentrations including 40 wt% MEA from coal-fired power 

generation with ~13 vol% CO2 (wet basis). The results from this study indicate that 

the optimal lean and rich solvent loading for 40 wt% MEA is ~0.30 and 

~0.47 mol CO2/mol MEA. Brigman et al. (2014) experimental study investigated the 

ACP performance using of 30 and 40 wt% MEA when treating flue gases from a 

combined heat and power plant with typical CO2 flue gas concentrations of ~3.5 

vol%. Their finding suggests that lean solvent loading ranged from ~0.2-0.30 

mol CO2/mol MEA. Akram et al. (2016) also investigated 30 wt% MEA under similar 

operating conditions considered in this work. These authors also highlighted that 

both rich and lean solvent loadings increased with higher CO2 concentrations. They 
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reported lean and rich solvent loadings of 0.163-0.204 and 0.388-0.443 

mol CO2/mol MEA at flue gas CO2 concentrations of 5.5-9.9 vol%. The difference in 

the results presented here and those of Akram et al. (2016) are attributed to the 

variances in the liquid to gas ratio, MEA concentration and also the stripper 

operating conditions. Despite this, the solvent rich and lean loadings presented in 

this work at varying CO2 concentrations are in reasonable agreement with published 

work. The impact of varying the reboiler temperature at 9.0 vol% CO2 concentration 

is shown in Figure 5.4. The results demonstrate that both rich and lean solvent 

loadings increased with decreasing pressurised hot water inlet temperature. The 

lean and rich solvent loadings were 0.277 and 0.373 mol CO2/mol MEA at a 

pressurised hot water inlet temperature of ~127°C. However, by reducing the 

pressurised hot water inlet temperature to ~124°C, the lean and rich solvent 

loadings increase by 24 and 11%, respectively, to 0.344 and 0.414 

mol CO2/mol MEA. This is because at higher reboiler temperature the regeneration 

of the solvent increases with increasing temperature as shown in Figure 5.4. At a 

lower reboiler temperature, lower solvent regeneration is expected which leads to 

higher rich and lean loadings.   

  

Figure 5.4. Influence of increasing pressurised hot water inlet temperature on rich and lean 

solvent loading at constant CO2 concentration of 9.0 vol%. 
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5.3.2 Influence of S-EGR on liquid to gas ratio 

As shown in results presented in Appendix A.4, the liquid to gas ratio increases with 

higher flue gas CO2 concentrations, with this increasing by ~100% from 2.12 kg/kg 

at 5.2 vol% CO2 to 4.25 kg/kg at 9.0 vol% CO2. This large increase is due to the 

quantity of solvent needed to captured the CO2 at higher concentrations to maintain 

a 90% CO2 capture efficiency. The lean solvent flowrate increased from 477 kg/h 

(5.2 vol% CO2) to 991 kg/h (9.0 vol% CO2) which equates to a 108% increase. 

Hence, to achieve the desired CO2 capture efficiency, the solvent flowrate is 

changed, which means changes in the rich and lean loadings. As the CO2 

concentration increases, the difference between the rich and lean solvent loading is 

reduced as indicated in the results (Appendix A.4). The liquid to gas ratio for the 

second experimental campaign remained ~4.3 kg/kg for all the tests as the solvent 

and flue gas flowrates were kept constant. 

5.3.3 Influence of S-EGR on absorber and desorber performance  

Figures 5.5 and 5.6 present the temperature profile across the absorber for both 

experimental campaigns. The overall trend presented in Figure 5.5 indicates that as 

the flue gas CO2 concentration increases the temperature profile increases. As the 

MEA / CO2 reaction is exothermic then this is what is expected (Akram et al., 2016).  

 

 

Figure 5.5. Influence of increasing the CO2 concentration on the absorber temperature profile. 
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The results indicate for all the varying CO2 concentrations considered in Figure 5.5, 

the maximum reaction point occurs at 4.7 m which suggests that most of the CO2 

absorption is occurring in the upper section of the absorber column. Akram et al. 

(2016) also demonstrate this trend, suggesting that the maximum driving force is 

within the top section of the absorber and this promotes optimal mass transfer. The 

reaction kinetics occurring in the liquid phase promotes CO2 mass transfer, hence, 

greater bicarbonate and carbamate production occurring in the liquid phase with 

higher CO2 concentrations (Notz et al., 2012). Furthermore, this increased CO2 

concentration and higher temperature will lead to an increase the kinetics of the 

reaction mechanisms, promoting this mass transfer (Notz et al., 2012). Herraiz et 

al.'s (2018) modelling work investigating both series and parallel S-EGR 

configurations also indicates that the temperature bulge at its maximum point occurs 

within the top section of the absorber. At this maximum temperature point, the 

absorption enthalpy released for the rate of CO2 absorption decreases because the 

equilibrium curve moves toward the reagents (Akram et al., 2016). As shown in 

Figure 5.5, the temperature profile for the 7.6 and 9.0 vol% CO2 concentration, 

demonstrates a lower overall temperature profile compared to the other CO2 

concentrations. The reason for this is likely associated with the different CO2 mass 

transfer profiles and the rate of flue gas cooling for these concentrations. The 

maximum temperature point remains at a height of 4.7 m as per the other CO2 

concentrations considered in experimental campaign 1. In Figure 5.6 (p. 91), the 

trend clearly indicates that the temperature profile decreases with lower pressurised 

hot water inlet temperatures where the maximum temperature point is at a height of 

4 m. At lower CO2 inlet concentrations with the same CO2 capture efficiency, 

smaller amounts of CO2 are captured because less heat is released due to 

absorption and the lower temperature inlet in the absorber. As indicated in the 

results (see Appendix A.4), the lean loadings decrease with the increasing 

pressurised hot water inlet temperature. This means there is more solvent available 

to react with CO2 in the flue gas. The temperature profile is also proportional to the 

difference in solvent loadings, with a greater difference in loading leading to an 

increase in the temperature profile due to the rate of the exothermic reaction 

occurring in the absorber (Heischkamp et al., 2011).  
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Figure 5.6. Influence of increasing the pressurised hot water inlet temperature on absorber 

temperature profile at constant CO2 concentration of 9.0 vol%. 

Figures 5.7 and 5.8 present the temperature profile across the desorber for both 

experimental campaigns. As shown in these figures, the temperatures decrease 

with increasing CO2 concentrations and decreasing pressurised hot water inlet 

temperatures, respectively. In both of the temperature profile figures, the maximum 

temperature point is at the first measurement point at a height of ~0.4 m. This 

suggests that the rich solvent stream receives the largest proportion of steam 

energy at the bottom of the desorber column where the desorption enthalpy and 

sensible heat is the greatest (Notz et al., 2012). The vapour stream provides the 

energy required for CO2 desorption, and heats up the solvent for this to occur. At a 

higher solvent flowrate the energy needed to heat up the solvent will also increase 

(Notz et al., 2012). Reducing the pressurised hot water inlet temperature from 

127°C to 124°C lowers the maximum measured temperature point (0.4 m) by ~7% 

from 119°C to 111°C. Theoretically, the specific reboiler duty should decrease 

because of the lower energy input, however, as shown in Appendix A.4, this is not 

the case and is discussed in the subsequent section. The desorption enthalpy and 

energy required to generate steam are the two key factors which influence the 

overall energy requirement for solvent regeneration in the stripper (Notz et al., 

2012).  
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Figure 5.7. Influence of increasing the CO2 concentration on the desorber temperature profile. 

 

 

Figure 5.8. Influence of increasing the pressurised hot water inlet temperature on desorber 

temperature profile at constant CO2 concentration of 9.0 vol%. 
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accommodate for S-EGR would improve the absorber performance. This plant was 

originally designed for coal-fired flue gases, hence, flue gas CO2 concentrations of 

12-13 vol%. To optimise the ACP, the new plant would need to consider the CO2 

concentrations in full scale S-EGR systems for gas-CCS. In recent modelling 

studies, depending on the S-EGR configurations used, the flue gas flowrate is 

greatly reduced which means that the size of the absorber column could be smaller.  

5.3.4 Influence of S-EGR on specific reboiler duty  

The specific reboiler duty decreased by ~18% from 8.9 to 7.3 MJ/kg CO2 with 

increasing CO2 concentration of 5.2 to 9.0 vol%. Akram et al. (2016) showed that 

the specific reboiler duty reduced by ~25% from 7.1 to 5.3 MJ/kg with CO2 

concentration increasing from 5.5 to 9.9 vol%. The reason for the differences in 

Akram et al.'s (2016) work compared to this study is due to the different MEA 

concentrations used (40 wt% instead of 30 wt%). This means that the boiling point 

is higher for the 40 wt% MEA considered here, and more energy is required to 

liberate CO2 at a 90% capture efficiency. The pressurised hot water inlet 

temperatures for experimental campaign 1 was ~126°C as opposed to ~121°C used 

in the study by Akram et al. (2016). In addition, the pressurised hot water flowrate 

used in this study is 50-53% higher than that of Akram et al. (2016), which is also 

due to the higher MEA concentration, and the boiling point being higher with 

increased MEA concentration. 

As shown in Appendix A.4 the specific reboiler duty increases from 7.6 MJ/kg CO2 

(6.5 vol%) to 8.2 MJ/kg CO2 (7.6 vol%). This is also the case for experimental 

campaign 2 (Appendix A.4), where the specific reboiler duty increases from 7.3 to 8 

MJ/kg CO2 at pressurised hot water inlet temperature of 125 and 124 °C, 

respectively. This is due to the lower MEA solvent concentrations at these test 

conditions indicating higher water content and increased solvent degradation, which 

means the energy requirement for solvent regeneration is greater. Akram et al. 

(2016) also demonstrates this and note that the specific heat capacity of water is 

greater than MEA, and more energy is required to heat up the solvent to desorb 

CO2. The results indicate that overall, the specific reboiler duty tends to fall with 

larger solvent loadings, however, the influence of the pressurised hot water inlet 

temperature demonstrates a similar trend for specific reboiler duty. This is except for 

the 124°C test because of the reasons mentioned above regarding solvent 

concentration, though, the differences in the loadings increases with reduced 

temperature. This indicates that operating at lower temperatures at a constant liquid 

to gas ratio and CO2 concentration would be beneficial for reduced specific reboiler 
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duty, albeit at the expense of a lower overall CO2 capture efficiency. Nevertheless, 

depending on which S-EGR configuration is used the CO2 capture efficiency is 

typically lower for series S-EGR by ~30-58% (Herraiz et al., 2018; Merkel et al., 

2013).  

Li et al. (2013) has shown that if the energy input to the reboiler is lower, less 

solvent is regenerated which leads to higher loadings at increased solvent flowrates 

at the same CO2 capture efficiency. Furthermore, at lower liquid to gas ratios the 

residence times increase influencing the specific reboiler duty (Akram et al., 2016). 

The degree of regeneration is a function of the percentage difference between the 

lean and rich solvent loadings. The thermal decomposition of carbamate and 

bicarbonate liberates CO2 from the rich solvent, hence, the amount of CO2 which is 

stripped in the desorber (Akram et al., 2016; Fan et al., 2016). In Appendix A.4, the 

degree of regeneration reduces from ~31 to ~20% with increasing CO2 

concentrations. The increases in solvent loadings with higher CO2 concentrations 

influences the regeneration energy. A higher lean loadings indicates less solvent 

has been regenerated which consumes less energy. Since the lean loading is 

higher, more solvent is required to capture the same amount of CO2, which 

increases the reboiler demand to heat up the solvent. Therefore, as the lean loading 

increases a smaller quantity of steam is required which means that the specific 

reboiler reduces (Akram et al., 2016). The degree of regeneration also reduces 

(~26-17%) as the pressurised hot water inlet temperature is decreased (Appendix 

A.4).  

The degree of regeneration for all the tests considered in this work is relatively low 

in comparison to other authors who have conducted experimental investigations at 

the PACT facilitates (e.g. Akram et al., 2016; Tait et al., 2018). These lower 

regeneration ratios are likely because of the higher energy demand requirements 

(desorption and evaporation) for using 40 wt% MEA instead of 30 wt% MEA. Fan et 

al. (2016) also indicates that at lower regeneration ratios only partial carbamate 

decomposition is occurring, which mean selecting the optimal solvent concentration 

is important for effective CO2 capture that is also applicable to S-EGR.  

5.4 Chapter conclusions  

This study has investigated the ACP performance under S-EGR conditions at pilot-

scale. Two experimental campaigns were conducted at the PACT Research Centre, 

which evaluated the influence of increasing CO2 concentrations (~5.2-9.0 vol%) and 



 

95 
 

varying pressurised hot water inlet temperatures (124-127°C) on the ACP 

performance under S-EGR conditions.  

The results indicate that the solvent concentrations in both experimental campaigns 

were up to 7 and 9% lower than the 40 wt% MEA expected due to solvent 

degradation. This leads to a reduction in the CO2 capture efficiency from 91 to 78% 

at pressurised hot water inlet temperatures of 127 and 124°C, respectively. This is 

possibly due to evaporative losses, however, thermal and oxidative degradation is 

more likely. Throughout the experimental campaigns, the flue gas O2 concentration 

remained ~17 vol%. At higher O2 concentrations, oxidative degradation is more 

prominent due to the higher ion concentrations. In this work, the ion concentrations 

increase by 71% from 9.16 to 15.64 mg/L due to oxidative degradation. 

Furthermore, NH3 is the principal MEA degradation product that increases with 

higher O2 concentration, which is also demonstrated in the results. However, in 

commercial CCGT plants coupled with S-EGR configurations, the O2 concentrations 

will be lower (~7-11 vol% O2) and oxidative degradation should be less problematic 

(Diego et al., 2018, 2017b; Herraiz et al., 2018).  

The 40 wt% MEA which is used in this work, means that the reboiler temperature is 

higher for CO2 dissociation. Thermal degradation is also suggested as a reason for 

lower solvent concentrations. The lean and rich solvent loadings increased by 5.6 

and 21.8% under S-EGR with higher CO2 concentrations. The impact of decreasing 

the pressurised hot water inlet temperature showed that the lean and rich solvent 

loadings increase by 24 and 11%, respectively. To maintain a 90% CO2 capture 

efficiency in experimental campaign 1, the liquid to gas ratio increased from 2.12 

kg/kg to 4.42 kg/kg with higher CO2 concentrations.  

The absorber temperature profile increased with increasing CO2 concentrations, 

with most CO2 absorption occurring within the top section of the absorber. This has 

also been shown in modelling studies investigating parallel and series S-EGR 

configurations (Herraiz et al., 2018). To decrease temperatures in the and favour 

CO2 capture in the reactor, absorber intercooling could be investigated in S-EGR 

systems. As the pressurised hot water inlet temperature is reduced, the absorber 

temperature profile follows the same trend associated with the differences in solvent 

loadings. The desorber temperature profile reduces with increasing CO2 

concentrations and decreasing pressurised hot water inlet temperatures, 

respectively. In terms of the specific reboiler duty, this decreased by 21% as the 

CO2 concentration increases, though reducing the pressurised hot water inlet 

temperature (i.e., decreasing the reboiler temperature) indicated similar specific 
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reboiler duties. Hence, operating at lower temperatures in the reboiler with 

consistent liquid to gas ratios and CO2 concentrations would be more cost-effective, 

but at the detriment of a reduced CO2 capture efficiency. Operating under S-EGR 

conditions is beneficial in terms of lowering reboiler duty and improving loadings. In 

a highly optimised plant specifically designed for S-EGR, the packing height for the 

absorber would reduce, further decreasing costs. However, more work is required to 

consider solvents tolerant to high O2 concentrations. This combined with developing 

a demonstration plant specifically for S-EGR is required. 
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6 Economic analysis of selective exhaust 

gas recirculation in CCGT power plants 

6.1 Introduction  

This chapter evaluates the economic performance of parallel and hybrid S-EGR 

configurations of CCGT power plants coupled with an ACP. The parallel S-EGR 

economic study investigates four cases which includes a CCGT power plant with an 

ACP (reference plant case (a)), with an ACP (validated ACP case (b)), with an ACP 

and EGR (EGR case (c)) and with an ACP and parallel S-EGR (parallel case (d)). 

The hybrid S-EGR economic study investigates five cases which includes a CCGT 

power plant with an ACP (ACP case (e)), with an ACP and EGR (EGR case (d)), 

with an ACP and hybrid S-EGR (S-EGR 2200, with a membrane CO2 permeance of 

2200 gpu (g)). The remaining two cases consider greater membrane CO2 

permeances of 5000 gpu (S-EGR 5000 (h)) and 10000 gpu (S-EGR 10000 (i)). The 

economic studies use the capital cost scaling methodology developed the US 

Department of Energy (DOE) and National Energy Technology Laboratory (NETL) 

to scale the costs associated with the configurations investigated in relation to a 

reference plant (DOE/NETL, 2013c). The reference plant is an CCGT power plant 

that includes two GE 7FA.05 gas turbines, two HRSG and a steam turbine and ACP 

(DOE/NETL, 2013b). The CCGT power plants in all the cases investigated in both 

the economic studies incorporate the same gas turbines, HRSG and steam turbine 

as the reference plant. The scaling parameters which are used to perform the 

economic studies have been taken from the modelling results presented in the 

published work associated with this chapter (Diego et al., 2018, 2017b). Following 

the economic analysis of both S-EGR configurations, a sensitivity analysis is 

performed to identify economic opportunities associated with these schemes.  

6.2 Economic analysis methodology   

The economic studies use the capital cost scaling methodology developed by 

DOE/NETL (2013b) to investigate the economic performance of the cases b-d (first 

economic study including parallel S-EGR) and cases e-i (second economic study 

including hybrid S-EGR). The process schematics and descriptions for the parallel 

and hybrid S-EGR configurations are presented previously, in section 2.5 (Figures 

2.5 and 2.6), and are not reproduced here. The capital costs for the reference ACP 

are taken from the values reported by DOE / NETL in Case 1B 7FA.05 (DOE/NETL, 
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2013b). The capital costs for the EGR system are obtained from Case 1C 7FA.05 in 

the DOE/NETL report to scale the costs for the S-EGR schemes (DOE/NETL, 

2013b). Figure 6.1 illustrates how the economic model works.  

 

Figure 6.1. Schematic of the economic model. 

The methodology adopted in this study uses the cost of electricity (COE) and cost of 

CO2 avoided (COA) to determine the economic performance of cases a-d (first 

economic study including parallel S-EGR) and cases e-i (second economic study 

including hybrid S-EGR) The COE ($/MWh) is determined by (DOE/NETL, 2013b; 

IPPC, 2005): 

𝐶𝑂𝐸 =  
𝑇𝑂𝐶. 𝐶𝐶𝐹 + 𝐹𝑂𝑀

𝐶𝐹. 8760.𝑀𝑊
+ 𝑉𝑂𝑀 + 𝐻𝑅. 𝐹𝐶 + 𝑇&𝑆𝐶 

(6.1) 

where 𝑇𝑂𝐶 is the total overnight costs in US$, fixed (𝐹𝑂𝑀) and variable (𝑉𝑂𝑀) 

operating and maintenance costs are expressed in $/yr and $/MWh. The capital 

charge factor and capacity factor are represented by 𝐶𝐶𝐹 and 𝐶𝐹, respectively. The 

net power output (𝑀𝑊), heat rate of the plant (𝐻𝑅) and fuel cost (𝐹𝐶) are reported in 

MWe, MJ/MWh and $/MJ. The transport and storage costs (𝑇&𝑆𝐶) are expressed in 

$/tonne CO2.  The COA ($/tonne CO2 avoided) can be expressed by (DOE/NETL, 

2013b; IPPC, 2005): 

Scaling parameters 
and exponents for 
each process area

Economic 
assumptions 

Reference plant 
costs

Economic model calculations 

Total plant costs
Total operating and 
maintenance costs 

CO2 transport and 
storage costs

Cost of electricity 

Cost of CO2 avoided
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COA =  (𝐶𝑂𝐸𝐶𝐶𝑆 − 𝐶𝑂𝐸𝑅𝐸𝐹) / (𝐸𝑀𝑆𝑅𝐸𝐹 − 𝐸𝑀𝑆𝐶𝐶𝑆) (6.2) 

where 𝐶𝑂𝐸𝐶𝐶𝑆, 𝐶𝑂𝐸𝑅𝐸𝐹, 𝐸𝑀𝑆𝑅𝐸𝐹 and 𝐸𝑀𝑆𝐶𝐶𝑆 are the cost of electricity with and 

without CO2 capture, and the CO2 emission rate in kg CO2/MWhe with and without 

CO2 capture, respectively.  

The total overnight costs in equation (6.1) include the total plant costs and other 

overnight costs.  Cases a-d (first economic study including parallel S-EGR) uses the 

total plant cost for each process area to scale costs for the configurations 

considered. These include the reference, ACP, EGR and parallel configurations. 

However, the second economic study was conducted subsequently, and it was 

decided to create a more robust economic approach when determining the TOC. 

The scaled costs for the configuration investigated in the cases e-i (second 

economic study including hybrid S-EGR), are from the bare erected costs (BEC), 

the engineering, procurement and construction (EPC) services cost and the process 

and project contingencies (DOE/NETL, 2015, 2013b, 2013c, 2010).  

The fixed and variable operating and maintenance costs used in equation (6.1) 

include the costs for annual operating and maintenance labour, administrative and 

support labour, taxes and insurance, maintenance materials, membrane 

replacement and consumables. The membrane module costs over a five-year 

lifetime period is assumed to be $50 per m2 as reported in the published literature 

(Baker et al., 2017; Ho et al., 2008; Merkel et al., 2013; Turi et al., 2017; Voleno et 

al., 2014; Zhai and Rubin, 2013). The value for membrane replacement costs is 

widely reported ($10 m2 per year), however, it is important to note that membrane 

systems for gas-CCS are still currently under research and development, which 

means that this cost is still uncertain. The scaling parameters and exponents which 

are used in this work to determine the scaled costs for the corresponding process 

areas for the configurations investigated (cases b-i), are presented in Table 6.1 (p. 

100). The economic studies use the scaled costs (SC) equation to determine the 

variations in scale associated with each configuration investigated. This is 

calculated from (DOE/NETL, 2013c): 

SC =  RC. (𝑆𝑃 𝑅𝑃⁄ )𝐸𝑋𝑃 (6.3) 

where RC, 𝑆𝑃, 𝑅𝑃 and 𝐸𝑋𝑃 are the reference cost, scaling parameter, reference 

parameter and scaling exponent, respectively.  
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Table 6.1. Scaling parameter and exponents. 

Process area Scaling parameter Scaling exponent 

Feed water system High pressure water 
flowrate 

0.72 

Natural gas pipeline Fuel gas flowrate 0.07 

Natural gas misc. Fuel gas flowrate 0.76 

EGR system EGR flowrate 0.70 

Amine capture plant 
(absorption) 

Flue gas flowrate 0.61 

Amine capture plant 
(desorber) 

Rich solvent flowrate 0.61 

CO2 compression and 
drying 

CO2 flowrate 0.77 

HRSG and additional 
components 

HRSG duty 0.70 

Steam turbine Steam turbine power 0.80 

Cooling water system Cooling tower duty 0.71 

The scaling parameters and exponents are taken from the quality guidelines 

developed by DOE/NETL (2013b). The absorption and desorption scaling 

parameters are taken to be the flue gas and rich solvent flowrates. The ACP cost is 

split into absorber and desorber costs. This is to take into account that the absorber 

changes size with S-EGR, whereas the desorber remains approximately the same. 

This means that the absorption process area includes the costs for the direct 

contact cooler, blower and absorber column. The desorption process area 

incorporates the costs of the circulation pumps, heat exchangers, desorber column 

and reboiler. To determine the split of the ACP costs the IECM V9.2.1 software was 

used to determine this (Carnegie Mellon University, 2017). The absorption and 

desorption sections represent 65% and 35% of the reference costs for these 

process areas, respectively. As both the S-EGR configurations will have a reduced 

absorber size due to a lower flue gas flowrate compared to the other configurations 

investigated in this work, this approach makes the results more accurate. In respect 

of the desorption section, a negligible effect on the column size is anticipated due to 

the same amount of CO2 captured and thus, released in the desorber, as in the 

reference plant.   

6.2.1 Economic assumptions for the first economic study   

The economic assumptions used to perform the first economic study are presented 

in Table 6.2 (p. 101). In order to determine the membrane costs, the area has been 

estimated using a similar methodology as outlined by Voleno et al. (2014). This 

approach splits the membrane into 10 sections of the same size where perfect 
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separation of CO2 is assumed with a CO2 permeance of 2200 gpu (Merkel et al., 

2013; Voleno et al., 2014). To calculate the membrane cost the following expression 

is used (Merkel et al., 2013; Zhai and Rubin, 2013): 

Membrane area =  𝐴𝑀. 𝐶𝑆𝐾𝐼𝐷 (6.4) 

where 𝐴𝑀 and 𝐶𝑆𝐾𝐼𝐷  are the membrane area and skid cost ($50 per m2 in this case) 

(Merkel et al., 2013; Zhai and Rubin, 2013). 

Table 6.2. Economic assumptions for the first economic study. 

Capacity factor (CF) (a) 85.0 % 

Capital charge factor (CCF) with CCS (a) 0.11  

COEREF 
(a) 57.1 $/MWhe 

EMSREF 
(a) 354 kg CO2/MWhe 

CO2 transport and storage over 100 km (a) 10 $/tonne 

Natural gas price (a) 5.8 $/GJ 

Plant operating period (a) 30 Years 

Membrane installed skid cost (b) 50 $/m2 

Membrane module lifetime (c) 5 Years  

Total as spent cost (TASC) multiplier (a) 1.078 

Cost year (a) 2011 

Labour rate (a)  51.6 $/h 

Labour per shift (a) 6.3 

Shifts per day (a) 3 

Preproduction costs (a) 6 months operating labour  

1 month maintenance materials cost   

1 month non-fuel consumables  

25% of 1 month fuel cost 

2% of total plant cost (TPC) 

Inventory capital (a) 2 months  non-fuel consumables   

Spare parts (0.5% TPC) 

Other (a) Initial cost for chemicals  (0.002% TPC) (b) 

Land  

Other owners costs (15%TPC) 

Financing costs (2.7% TPC) 

Fixed O&M costs (a) Annual operating labour (AOL)  

Annual maintenance labour (AMC) (40% of Variable 
O&M costs)(d)  

Administrative and support labour (25% of AOL+AMC) 

Tax and insurance (2% TPC) 

Variable O&M costs Maintenance material cost (1.1% TPC) (a) 

Non-fuel consumables cost (0.6% TPC) (a) 

Membrane replacement cost (10 $/m2yr) 
(a) Economic assumptions from reference (DOE/NETL, 2013b). 
(b) Membrane skid cost from references (Merkel et al., 2013; Zhai and Rubin, 2013). 
(c) Membrane lifetime from reference (Zhai and Rubin, 2013). 
(d) Economic assumption from reference (IEAGHG, 2009b). 
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6.2.2 Economic assumptions for the second economic study   

The economic assumptions used to perform the economic analysis for the hybrid S-

EGR configuration are presented in Table 6.3. In the process simulation work 

related to this study (Diego et al., 2018), a programming code was developed to 

model the hybrid membrane system where the membrane included 20 sections of 

equal area using a similar approach to Voleno et al. (2014). 

Table 6.3. Economic assumptions for the second economic study. 

 Capital charge factor with CCS(a) 0.111 

 Capacity factor – CF (%) 85 

 Financial cost year 2011 

 Fuel cost ($/GJ) (a) 5.8 

 Transport and storage cost ($/tCO2)
 (a) 10 

TPC Cost of installed membrane skid ($/m2) (b) 50 

 Cost of accessory electric plant, instrumentation and control, 
improvements to site and buildings and structures (% of process 
equipment BEC) (c) 

20 

 EPC cost (% of BEC) (c) 8 

 Project contingency (% of TPC)(d) 13 

 Process contingency (e)  

 Amine capture plant (% of BECACP)(f) 20 

 CO2 selective membrane (% of BECmb)
 (f) 20 

 Pre-production costs(a)  

 No. of months of all labour 6 

 No. of months of maintenance materials costs at 100%CF 1 

 No. of months of non-fuel consumables at 100%CF 1 

 Percentage of 1 month fuel cost at 100% CF (%) 25 

 Miscellaneous (% of TPC) 2 

 Inventory capital costs(a)  

 No. of days of consumables at 100% CF 60 

 Spare parts (% of TPC) 0.5 

 Others(a)  

 Initial cost for chemicals ($/kW) 2.5 

 Land costs (M$) 0.3 

 Other owner’s costs (% of TPC) 15 

 Financing costs (% of TPC) 2.7 

FOM(a) Cost of labour ($/h) 51.6 

 No. of shifts per day 3 

 No. of operators per shift (operating and maintenance) 6.3 

 Administrative and support labour costs (% of O&M labour costs) 25 

 Taxes and insurance (% of TPC) 2 

VOM Maintenance material cost (% of TPC) (c)  1.1 

 Membrane lifetime (yr) (g) 5 

 Membrane replacement cost ($/m2) (g) 10 

 Consumables cost ($/kW) (c) 0.001 

 (a) Economic assumptions from reference (DOE/NETL, 2013b). 
(b) Economic assumptions from references (Baker et al., 2017; Ho et al., 2008; Merkel et al., 2013; Turi et al., 2017; 
Voleno et al., 2014; Zhai and Rubin, 2013). 
(c) Calculated values from reference (DOE/NETL, 2013b). 
(d) Economic assumption from reference (DOE/NETL, 2015). 
(f) Economic assumption from reference (Zhai and Rubin, 2013). 
(g) Economic assumption from reference (DOE/NETL, 2013c). 
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6.2.3 Uncertainty of the capital cost scaling methodology     

This high-level cost evaluation uses can represent up to 30% uncertainty in the 

results presented (DOE/NETL, 2015, 2013b, 2013c). In order to ensure the results 

are accurate and representative, the methodology used (DOE/NETL, 2013c) has 

been validated against the CCGT configurations evaluated by DOE/NETL (2013b). 

Consequently, the calculation procedure used to performance the economic 

analysis is this work is determined to be accurate and repeatable. 

In the first economic study, the validation of the ACP against the reference plant is 

shown in the results, which demonstrates a 1% difference in the total overnight 

costs. However, the variation in the COE and COA between these two cases can be 

attributed to the 94 MWe difference in the net power output shown in the modelling 

results by Diego et al. (2017). The reason for the difference in the COE and COA 

values is because of the type of solvent used in the CO2 capture plant. In the 

reference plant an advanced solvent is used and in the ACP case 30 wt% MEA is 

used which leads to a greater energy penalty (DOE/NETL, 2013b). The second 

economic study has also been validated against the CCGT plant with an ACP. The 

results presented for the total overnight costs, COE and COA represent up to 2% 

difference. 

6.3 Results and discussion  

6.3.1 Results of the first economic study 

The results of the high-level cost evaluation conducted for the first economic study 

is presented in Table 6.4 (p. 103), where the costs are confined to the respective 

process areas as per the reference case (DOE/NETL, 2013b). As shown in Table 

6.4, the results indicate that for the EGR and S-EGR configurations considered, the 

total overnight  costs decrease and increase by 4% and 2%, respectively, compared 

to the ACP case. The reason for these variations is due to S-EGR membrane costs 

and the reduced capital costs associated with the CO2 amine capture system in the 

EGR and S-EGR configurations. The capital costs of the amine capture plant 

demonstrate a decrease of 16% and 22% for the EGR and S-EGR cases in 

comparison to the ACP case. These large reductions are mainly associated with the 

decreased costs of the absorber, direct contact cooler and blower in the EGR and 

S-EGR cases because of the reduced flue gas flowrates treated in the ACP. 

However, the costs associated with the heat exchangers, circulation pumps, stripper 

and reboiler remain similar for all cases despite a slight reduction in the stripper 

column size. As a fraction of the flue gases is returned to the compressor inlet in 
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both the EGR and S-EGR cases, the quantity of flue gases treated in the absorber 

reduce, hence, the absorber size decreases which lowers the capital costs of this 

unit. 

Table 6.4. Results of the first economic study 

  Reference 
plant (a) 

ACP EGR  Parallel S-
EGR 

 Process area   $M  

1 Feed water system and natural gas pipeline 55.8 56.0 56.7 57.3 

2 EGR system (b) - - 21.5 26.5 

3 CO2 removal system(c) 313.1 311.2 260.0 242.4 

4 Gas turbine system 134.0 134.0 134.0 134.0 

5 HRSG system 55.5 54.9 55.5 56.1 

6 Steam turbine system 66.9 63.6 65.6 66.7 

7 Cooling water system 26.2 20.9 21.9 22.2 

8 Parallel membrane system - - - 49.9 

9 Accessory electric plant, instrumentation & 
control, improvements to site, buildings & 
structures (14% TPC) 

107.1 105.3 101.2 107.7 

 Total plant cost (TPC) 758.7 746.0 716.5 762.9 

10 Preproduction costs  26.4 25.9 25.3 26.2 

11 Inventory capital and initial chemical cost  5.8 5.9 5.6 6.0 

12 Land costs 0.3 0.3 0.3 0.3 

13 Other owners cost (15% TPC) 113.8 111.9 107.5 114.4 

14 Financing costs (2.7% TPC) 20.5 20.1 19.3 20.6 

 Total overnight cost (TOC) 925.5 910.1 874.5 930.4 

 Total as spent cost (TASC) 997.7 981.0 942.7 1003.0 

15 Total FOM  25.7 22.6 21.8 27.7 

16 Total VOM  12.9 12.7 12.2 22.4 

17 Total fuel cost 190.5 190.5 190.5 190.5 

 Total O&M cost 229.1 225.8 224.5 240.5 

 CO2 transport and storage cost ($/MWh) 3.7 3.7 3.7 3.8 

 (a) Values from reference (DOE/NETL, 2013b). 
(b) This includes the EGR blowers, cooler and cooler pumps (DOE/NETL, 2013b). 
(c) This includes the cost of the amine capture plant and of the CO2 compression and drying 
system (DOE/NETL, 2013b). 

In the economic methodology, the scaling parameter for the CO2 removal system 

absorption section is the flue gas flowrate which is used to determine these costs. 

Despite these benefits for this S-EGR case, the membrane system used for the 

parallel S-EGR configuration increases the total plant costs by 6% from M$716 

(EGR) to M$763 (S-EGR). Due to the higher total plant costs and frequency of 

replacing the membrane in the S-EGR configuration, the operating and 
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maintenance costs also demonstrate a 7% increase. The COE and COA for the 

cases considered here are presented in Figure 6.2.  

 

Figure 6.2. COE and COA for the reference ACP, ACP, EGR and parallel S-EGR configurations. 

As shown in Figure 6.2, the COE for the EGR case decreases by 3% from $85 to 

$82.4 per MWh in comparison to the ACP case. In the S-EGR case, the COE 

increases by 6% to $90.0 per MWh. The COA for the EGR case also reduces by 

10% in comparison to the ACP case to $80.4 per tonne CO2 avoided, whereas, for 

the S-EGR configuration this increases by 18% to $105.1 per tonne CO2 avoided. 

These increases are due to the higher capital, fixed and operating costs associated 

with the S-EGR membrane system.  

6.3.1.1 Sensitivity analysis for the first economic study 

The use of membranes for post-combustion CO2 capture are still in their infancy and 

the technical and economic performance associated with these systems can be 

improved. Currently, a membrane module reference cost of $50/m2 is widely 

reported in the literature (Ho et al., 2008; Merkel et al., 2013; Voleno et al., 2014; 

Zhai and Rubin, 2013). Despite the higher economic costs for the parallel S-EGR 

system compared to the ACP and EGR cases, the anticipated technical 

improvements to membrane systems will be beneficial for optimising the parallel S-

EGR configuration. Furthermore, the pressure drop across the membrane, which is 

0.1 bar (~ 10%) in this work, is associated with the auxiliary energy consumption. 

This leads to a reduction in the total net power output leading to higher COE and 

COA for the parallel S-EGR configuration evaluated here. As discussed previously, 

the lower flue gas flowrate and enhanced CO2 concentration in S-EGR 
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configurations will be beneficial in reducing the costs associated with the amine 

capture plant. Assessing the benefit of enhanced CO2 flue gas streams is difficult to 

determine in an economic evaluation.  

Therefore, to quantify the effects of improved membrane performance in terms of 

COE and COA, a sensitivity analysis is performed. This sensitivity analysis 

considers seven scenarios (1-7) that evaluate different membrane pressure drops 

and the costs associated with the membrane and CO2 removal systems, as shown 

in Table 6.5.  

Table 6.5. Sensitivity analysis scenarios. 

Parameter  Scenario 

1 2 3 4 5 6 7 

Membrane  (Fraction)  1 0.5 0.25 1 1 0.5 0.25 

ACP S-EGR  (Fraction) 1 1 1 0.8 0.8 0.8 0.8 

Pressure drop across the membrane (bar) 0.1 0.1 0.1 0.1 0.05 0.05 0.05 

The scenarios consider a membrane which is a fraction of the cost considered with 

respect to that of the membrane cost illustrated in Table 6.4 (i.e., 0.25 means the 

membrane cost is assumed to be 25% of $50 m2). The amine capture plant cost 

also consider costs between 100 and 80% of the reference cost to account for the 

reduced absorber size expected in S-EGR systems. In addition, membrane 

pressure drops of 0.1 to 0.05 bar (10-5% DP) are also considered, which only 

influence the auxiliary energy consumption of the plant and thus, the COE and 

COA. In Figures 6.3(a) and (b), the influence of varying membrane cost, pressure 

difference and CO2 removal system cost are presented in relation to the COE and 

COA compared to the ACP and EGR cases. As illustrated in Figures 6.3(a) for 

scenario 7, a reduction in the COE by up to 3.4% and 0.3% in comparison to the 

ACP and EGR cases may be possible the most favourable scenario. Furthermore, 

in Figure 6.3(b) the COA also reduces for scenario 7 by 10.4% and 0.8% in 

comparison to the ACP and EGR cases. The sensitivity analysis results show that a 

combined decrease in the pressure difference, membrane cost and CO2 removal 

system influences the COE and COA where scenario 6 and 7 would make S-EGR 

competitive with the ACP. This sensitivity analysis demonstrates that any 

improvements to the parallel S-EGR configuration would be beneficial to make this 

system more competitive to both ACP and EGR in gas-CCS applications.   
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(a) 

 

(b) 

Figure 6.3. Sensitivity analysis on the (a) COE and (b) COA for different sensitivity analysis 

scenarios. 
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6.3.2 Results of the second economic study 

The results of the economic evaluation for the three different hybrid S-EGR 

configurations are presented in Table 6.6. These three cases consider membrane 

CO2 permeances of 2200, 5000 and 10000 gpu with a pressure drop across the 

membrane of 5%. These three cases are compared against the ACP and EGR 

cases. The results demonstrate that the amine capture plant capital costs decrease 

due to the smaller flue gas flowrate being treated, hence, the absorber size is more 

compact. A reduction of up to 40% and 27% in absorber size, is realised with the 

hybrid S-EGR configuration compared to the ACP and EGR cases. However, due to 

the size and associated equipment (e.g. blowers) of the membrane system, the 

capital costs of the hybrid S-EGR system increases the total overnight costs 

compared to the ACP and EGR scenarios by up to 26% and 30%, respectively. 

Table 6.6. Results of the second economic analysis. 

 Unit S-EGR ACP EGR 

Membrane CO2 permeance gpu 2200 5000 10000   

Equipment area M$ 

Feed water unit and natural gas 
pipeline 

 
47.9 47.9 47.9 44.7 45.3 

Gas turbine system   112.4 112.4 112.4 112.4 112.4 

Stream turbine system   59.6 59.6 59.6 52.9 54.9 

HRSG system   48.7 48.7 48.7 45.8 46.5 

Cooling water system  23.6 23.6 23.6 18.4 20.4 

Amine capture plant  105.5 105.5 105.5 176.7 144.3 

Membrane system   145.2 63.9 31.9 - - 

S-EGR equipment   31.0 31.0 31.0 -  

EGR equipment  - - - - 16.5 

CO2 compression and drying  28.4 28.4 28.4 28.4 28.4 

Accessory electric plant etc.  120.4 104.2 97.8 95.8 93.7 

BEC M$ 722.7 625.1 586.8 575.0 562.3 

EPC  M$ 57.8 50.0 46.9 46.0 45.0 

Project and process contingency  M$ 174.3 139.8 126.3 133.4 123.9 

TPC M$ 954.7 814.9 760.0 754.4 731.2 

TOC M$ 1161.4 993.2 927.2 920.4 892.5 

By considering increasing membrane CO2 permeances, the membrane area 

decreases, hence the total overnight costs reduce. Increasing the permeance from 

2200 to either 5000 or 10000 gpu decreases the total overnight costs by 14% and 

20%, respectively. As with the parallel S-EGR configuration discussed previously, 

the COE and COA are the economic indicators used to compare these 
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configurations. The COE and COA for all the scenarios considered in Table 6.6 are 

presented in Figure 6.4. The key factors that influence the COE are the total 

overnight costss. The equipment costs influencing the total overnight costs largely 

incorporates variable operating and maintenance costs as shown in Table 6.3 (p. 

102). The fixed operating and maintenance cost also contribute to the total 

overnight costs. The total operating and maintenance costs per year ranged from 

$50m (for a 2200 gpu membrane) to $40m (for 10000 gpu), whereas for the ACP 

and EGR configurations these costs reduced to M$39 and M$38. The values for the 

ACP and EGR cases are lower because no membrane system is required as per 

the hybrid S-EGR cases. 

 

Figure 6.4. COE and COA for the reference, ACP, EGR and hybrid S-EGR configurations. 

As illustrated in Figure 6.4, the COE and COA for the ACP and EGR configurations 

are $84.7 and $82.7 per MWh and $92.1 and $85.1 per tonne of CO2 avoided, 

respectively. In comparison, the COE for the S-EGR cases with CO2 permeances of 

2200, 5000 and 10,000 gpu decrease from $93.0, $86.8 and $84.3 per MWh, 

representing a 9.3% reduction overall. Considering the same S-EGR cases, the 

COA also reduces by 23.7% from $118.6 (2200 gpu) to $90.5 (10000 gpu) per 

tonne of CO2 avoided. These economic savings demonstrate the effect of 

membrane permeance on the COE and COA, which suggests that the advancement 

of membrane technology to accommodate higher permeances is required to 

develop the hybrid S-EGR configuration for gas-CCS. 
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6.3.2.1 Sensitivity analysis for the second economic study 

The research and development of membranes for CCS and S-EGR configurations is 

ongoing, hence, it is expected that the economic performance of S-EGR 

configurations is likely to improve whilst uncertainties are investigated. For example, 

the majority of studies use the membrane skid cost of $50 per m2 where the 

membrane operates under pressure/vacuum conditions (Baker et al., 2017; Diego et 

al., 2018, 2017b; Ho et al., 2008; Merkel et al., 2013; Turi et al., 2017; Voleno et al., 

2014; Zhai and Rubin, 2013). The advancement of membrane technology would 

likely reduce the costs associated with the skid costs. The sensitivity analysis 

presented here considers the influence of varying the membrane skid cost ($10-50 

per m2) and the pressure drop across the membrane (2.5, 5.0 and 10%) for the 

three hybrid S-EGR configurations at membrane CO2 permeances of 2200, 5000 

and 10000 gpu, respectively. These are compared to the ACP and EGR cases in 

terms of COE and COA as shown in Figures 6.5-6.7. 

Membrane ΔP of 2.5 % 
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(b) 

Figure 6.5. (a) COE and (b) COA for the ACP, EGR and hybrid S-EGR configurations at a 
pressure drop of 2.5%. 

Membrane ΔP of 5 % 
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(b) 

Figure 6.6. (a) COE and (b) COA for the ACP, EGR and hybrid S-EGR configurations at a 
pressure drop of 5%. 
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(b) 

Figure 6.7. (a) COE and (b) COA for the ACP, EGR and hybrid S-EGR configurations at a 
pressure drop of 10%. 

The application of S-EGR does not seem to be competitive with the reference 

values considered against  the ACP and EGR case. To make the hybrid S-EGR 

configuration an attractive option for gas-CCS applications, increases in the 

permeance and reduction in the membrane cost are needed to make it competitive. 

The results shown in Figures 6.5 to 6.7 illustrate the large cost savings which could 

be achieved for hybrid S-EGR configurations if continued efforts are made to lower 

membrane skid costs. In all the figures, the COE and COA is the lowest when 

considering the 10000 gpu membrane CO2 permeance, as expected. For example, 

in Figure 6.6, where the pressure drop across the membrane is 5%, the COE and 

COA is consistently lower than the ACP configuration when varying membrane skid 

costs between $10-50 per m2. However, to make the hybrid S-EGR configuration 

competitive with respect to EGR, further improvements would be required. This is 

shown in Figure 6.5, where the pressure drop and membrane skid costs are 

reduced to 2.5% and $20 per m2, respectively, for a 10000 gpu membrane CO2 

permeance. The COE and COA when considering this scenario decreases to $82.4 

per MWh and $84.1 per tonne of CO2 avoided. This is a reduction of 0.4% and 1.2% 

compared to the COE and COA for the EGR case at $82.6 per MWh and $85.1 per 

tonne of CO2 avoided, respectively. The results presented in Figures 6.5 and 6.7, 

demonstrate the potential cost reduction targets when considering improvements to 
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the hybrid S-EGR configuration with respect to ACP or EGR, thus, making it 

competitive for gas-CCS.  

6.4 Chapter conclusions  

This chapter evaluates the economic performance of parallel and hybrid S-EGR 

configurations coupled to CCGT power plants. The results of the first economic 

study illustrates that the total overnight cost for the parallel S-EGR case increases 

by 2% to M$930, compared to the ACP case where these costs are M$910. In the 

EGR case the total overnight costs reduce by 4% to M$875 and the capital costs for 

both the EGR and parallel S-EGR configurations reduce by 16% and 22%, 

respectively compared to the ACP case. Despite the benefits of the reduced 

absorber capital costs for the parallel S-EGR configuration, the total plant cost 

increases by 6% to M$763 compared to the EGR case where the total plant cost is 

M$716. Operating and maintenance costs increased by 7% in the parallel S-EGR 

configuration because of higher membrane replacement and total plant costs. The 

COE and COA for the parallel S-EGR configuration are $90 per MWh and $105 per 

tonne of CO2 avoided, respectively. This represents a 6% and 18% increase 

compared to the ACP case which is attributed to the high costs associated with the 

parallel S-EGR system. The sensitivity analysis of the parallel S-EGR configuration 

illustrates that the COE and COA can be decreased to $82 per MWh and $80 per 

tonne of CO2 avoided, with a combined reduction in the cost of the membrane and 

CO2 capture system, and operating at a smaller pressure difference.  

The results of the second economic study demonstrates that the capital costs of the 

CO2 capture amine system, when considering hybrid S-EGR, decreases by 40% 

and 27% from M$177 and M$144 for the ACP and EGR cases to M$106 for hybrid 

S-EGR. However, the large membrane areas for the three hybrid S-EGR 

configurations considered, with CO2 permeances of 2200, 5000 and 10000 gpu, 

lead to greater total overnight costs compared to the EGR and ACP cases. The total 

overnight costs increase by 26, 8 and 1% compared to the ACP case, whereas, 

these costs rise further by 30, 11 and 4% compared to EGR case. The COE and 

COA for the three hybrid S-EGR cases ranged from $93-84 per MWh and $91-119 

per tonne of CO2 avoided at CO2 permeances of 10000, 5000 and 2200 gpu. These 

reductions demonstrated that the hybrid S-EGR configuration may be competitive 

with the ACP or EGR cases. Although this is dependent on the permeance, 

pressure drop and membrane cost. The sensitivity analysis of the hybrid S-EGR 

configurations illustrates that the COE and COA could decreased to $82 per MWh 
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and $83 per tonne of CO2 avoided, with a combined reduction in the cost of the 

membrane, increased CO2 permeance and operating with a membrane system that 

lead to a smaller pressure difference.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

116 
 

7 Conclusions, recommendations and 

future work  

7.1 Introduction  

S-EGR has been proposed to overcome the issues associated with EGR where 

parallel, series and hybrid configurations are currently being investigated. Initial 

work identifies that the CO2 concentration can be increased up to ~26% operating at 

14 vol% O2 concentrations, although combustor modifications would be required 

(Turi et al., 2017). Limited experimental work has been conducted at bench scale, 

with pilot scale experimental work investigating gas turbine and CO2 capture plant 

performance lacking in the literature. The optimisation of amine based CO2 capture 

is the focus of many studies to decrease the economic and energy costs associated 

with these systems. The key issue for gas-CCS is flexible operation, increasing CO2 

concentrations and operating at pilot and demonstration scale to facilitate 

knowledge transfer and reduce the risks for all stakeholders. 

 

7.2 Pilot-scale operation of gas turbines with S-EGR 

Operating the mGT under conditions representative of S-EGR significantly 

increased the flue gas CO2 concentration to 8.4 vol% and 10.1 vol% at 60 and 100 

kWe, representing a ~400 and 600% increase compared to the baseline. In CCGT 

plants with S-EGR, CO2 concentrations have been increased to ~18-26 vol% from 

~4 vol%, representing a ~350-550% increase (Diego et al., 2018; Herraiz et al., 

2018; Merkel et al., 2013). The results presented in this work are within a similar 

range to that of S-EGR systems investigated in the literature. The increase in CO2 

concentrations is associated with the changes to the working fluid properties which 

influences the excess air and air fuel ratio. The excess air decreased and the air 

fuel ratio increased with increasing CO2 injection rate. Under the S-EGR conditions 

investigated a marginal decrease in the O2 concentration at the compressor inlet 

from 21.0 to 19.2 vol% was observed. This is expected because of the modified 

working fluid due to the CO2 injection. The reduced O2 values at the compressor 

inlet are similar to those reported in the literature investigating commercial scale S-

EGR systems (16-20 vol% O2 depending on which S-EGR configuration is used). 

This would indicate that operating under S-EGR is beneficial compared to EGR, 

where at the maximum EGR ratio, O2 levels are 16 vol% and the maximum CO2 
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concentration ~6.5 vol%. Hence, the implementation of S-EGR for gas-CCS would 

maintain the O2 levels at the MOC whilst significantly increasing the flue gas CO2 

concentration. Furthermore, implementing S-EGR will reduce the volumetric flue 

gas flowrate (with high CO2 concentrations) treated in the downstream CO2 capture 

system which will be beneficial in terms of cost and energy penalty savings. The 

mGT operational performance under conditions characteristic of S-EGR indicate 

that the efficiency and rotational speed are impacted with increasing CO2 injection 

rates. The electrical efficiency decreased by ~4-8% with increasing CO2 injection 

rate compared to the baseline with no CO2 injection. The reason for this reduction is 

due to the larger heat capacity of CO2, which leads to a marginal decrease in the 

power output, hence the mGT increases the amount of fuel required which leads to 

a decrease in the electrical efficiency. The rotational speed decreased by 650-1400 

rpm with increasing CO2 injection rate. This was caused by the addition of CO2 to 

the working fluid which replaced a proportion of the ambient air; because CO2 is 

denser than air, the rotational speed reduced though the mass flowrate remained 

the same. At higher ambient air temperatures the density of air reduces, which 

means the compressor will rotate faster to deliver a similar air flowrate to provide 

the desired electrical power output. Due to the variation in ambient air temperatures 

throughout the experiments this will also influence any deviations illustrated in the 

S-EGR tests. The compressor inlet temperature remained at a similar temperature 

for all tests, however, depending the ambient air temperature, this will have a 

marginal impact on the rotational speed and efficiency. The compressor outlet 

pressure is not significantly affected operating the mGT under S-EGR. This is also 

demonstrated in work by Herraiz et al. (2018). The compressor outlet temperature 

showed slight reductions with CO2 injection at 80 and 90 kWe, however, at the other 

power outputs, no clear trend was seen, although a slight decrease is attributed to 

the varying ambient air temperature rather than the CO2 injection rate. This is 

because the heat capacity ratio under S-EGR conditions reduces by ~1-2% at the 

compressor inlet, therefore, significant reductions are not expected. The NOx 

emissions for S-EGR tests investigated showed an overall decrease with increasing 

CO2 injection rates due to lower flame temperatures. This is a key benefit of 

operating under S-ERG, because as emission regulations become stricter, 

operators will need to adhere to these. The application of S-EGR will help mitigate 

these emissions and meeting emission targets whilst the deployment of gas-CCS 

can be realised. Emissions of CO and UHC increased due to the reduction of O2 

and incomplete combustion under S-EGR. However, this is more prevalent at part 

loads and operating at 80-100% load, these emission levels are at acceptable 
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levels. The results presented indicate the effectiveness of applying S-EGR to mGT 

configurations at part and full load operation. Further investigation on larger turbines 

is needed to determine what modifications are required for commercial applications 

implementing S-EGR. 

7.2.1 Novelty and original contribution to knowledge 

The novelty and original contribution to knowledge of chapter 4 includes: 

• The influence of S-EGR on the mGT performance at pilot scale, which 

includes: 

o  the effect on the mGT rotational speed, electrical efficiency, and 

compressor performance at 60-100 kWe at CO2 injection rates up to 

300 kg/h which equates to CO2 enriched air up to 9.4 vol% CO2 and 

19.2 vol% O2 in the oxidiser stream; and 

o the effect on the mGT emission performance in terms of NOx, CO, 

UHC, CO2 and O2.  

7.2.2 Recommendations and future work 

The system used in this work was designed to mimic a range of conditions which 

represented S-EGR. To further advance the development of S-EGR at pilot scale 

the following recommendations and future work should be considered:  

 

• Modify the current system to include a membrane which can be tested at 

pilot scale. This would require the modification of the turbine exhaust system 

where a slip-steam of the exhaust is diverted through a membrane system. 

Depending on the resources available a number of options could be 

investigated including:  

 

o Install a membrane system at PACT where a slip steam of the 

exhaust gases under S-EGR operation with CO2 injection are sent 

through the membrane and the membrane performance is evaluated.  

o Complete redesign of the entire system to represent actual S-EGR 

configurations.   

o Modify the mGT combustor to include thermocouples and a high-

resolution camera to allow for flame temperature measurements and 

flame profiles to be investigated under S-EGR at pilot scale.   
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In addition to the above, the following should also be investigated:  

   

o Development of process simulation models which incorporate 

modified compressor and turbine maps under S-EGR for the full 

operational range of the turbine. This would allow for the validation 

and optimisation of process models and further understating of the 

turbine performance; and 

o Combustor modelling of the Turbec T100 and commercial 

combustors under S-EGR conditions using CFD and CHEMKIN. 

Developing combustor models will allow for an in depth 

understanding of what modifications are required to deploy S-EGR 

commercially.  

Modifying the mGT to incorporate an exhaust gas flowmeter and new fuel flow 

meter would also improve the accuracy of the results further. A SKI SDF Flow 

Sensor was purchased after significant research, which allows for accurate readings 

of the flue gas flowrate, temperature, and pressure. However, due to time 

constraints this was not installed during the experimental work. To accommodate 

this flowmeter, new fabricated exhaust ducting would be required. The design for 

the new flue gas ducting is shown in Figure 7.1, which has been integrated into 

ANSYS® R17.2 Academic computational fluid dynamics (CFD) software. This was to 

determine any issues associated with total pressure, temperature, and velocity 

along the new ducting. The CFD analysis showed no issues associated with this 

design.  

 

Figure 7.1. Design for new flue gas ducting at PACT. 
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7.3 Pilot-scale operation of ACP with S-EGR 

The results indicate that solvent degradation reduces the solvent concentration, 

which reduces the CO2 capture efficiency under conditions characteristic of S-EGR. 

This is evident when the pressurised hot water temperature was reduced to from 

127-124°C where the CO2 capture efficiency decreased from 91 to 78% at a flue 

gas CO2 concentration of 9.0 vol%. Thermal and oxidative degradation are the 

reason why the solvent concentration decreased by up to 9%. Operating with higher 

O2 concentrations will promote the rate of oxidative degradation and this is 

demonstrated by the 71% increase in iron concentrations over the S-EGR 

experimental campaign. In full scale S-EGR, the O2 concentration in the flue gases 

treated by the CO2 capture plant will be lower, typically ~7-11 vol%, which means, 

oxidative degradation should be less problematic (Diego et al., 2018, 2017b; Herraiz 

et al., 2018). Operating the ACP with higher MEA concentrations (40 wt% instead of 

30 wt%) means that the reboiler temperature was higher to free the CO2. The 

results suggest that the rate of thermal degradation increases because of the higher 

temperature, thus lower solvent concentrations. Increasing the concentration of CO2 

in the flue gas under S-EGR, illustrated that both lean and rich loading increased up 

to 6% and 22%. Furthermore, operating at lower reboiler temperatures promoted 

this increase further by 24% and 11% for the lean and rich loadings at 124°C. The 

liquid to gas ratio increased with higher CO2 concentrations by ~100%, however, in 

commercial S-EGR systems, this will be dependent on the S-EGR configuration 

used. Optimising S-EGR systems to minimise the increase in liquid to gas ratio with 

higher CO2 concentrations will be important to curtail any increase in economic and 

energy costs. The S-EGR experiments illustrated that CO2 absorption occurred 

within the top section of the absorber column, and the temperature profile increased 

at higher CO2 concentrations. In commercial S-EGR systems this has also been 

shown, e.g. Herraiz et al., 2018. To overcome this, optimising the ACP to 

accommodate intercooling would be advantageous and would further advance S-

EGR for gas-CCS. The results demonstrate that operating the ACP under S-EGR at 

lower reboiler temperatures also decreased the absorber temperature profile, 

therefore, selecting the correct solvent and concentration for S-EGR systems is 

important. The stripper temperature profile showed that it is beneficial to operate at 

higher CO2 concentrations and lower pressurised hot water temperatures, as the 

temperature profile decreased. This suggests that the energy required to separate 

CO2 decreases under these conditions which will be more cost effective, however, 

the CO2 capture efficiency may also reduce. Depending on which S-EGR system is 
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used, the CO2 capture efficiency is lower ~30-58% (Herraiz et al., 2018; Merkel et 

al., 2013), therefore, this will be specific to each S-EGR system.  

7.3.1 Novelty and original contribution to knowledge 

The novelty and original contribution to knowledge of chapter 5 includes: 

• The influence of S-EGR on the ACP performance at pilot scale, which 

includes: 

o  the impact on specific reboiler duty, absorber and desorber 

performance, CO2 capture efficiency, rich and lean solvent loadings, 

liquid to gas ratio,  and thermal and oxidative degradation.  

7.3.2 Recommendations and future work 

The experimental campaigns evaluated in chapter 5 investigated the ACP 

performance under S-EGR conditions. However, to further advance the 

development of S-EGR at pilot scale the following recommendations and future 

work should be considered:  

 

o Operate the mGT sequentially with the ACP under S-EGR to 

investigate the performance with specific attention focusing on 

degradation products and amine emissions.  

o Validation of process simulation models representing the S-EGR 

experimental results at 40 wt% MEA considered in this work. This will 

allow for different scenarios to be investigated including using 30 

wt% MEA.  

o Investigate the dynamic performance of the ACP under S-EGR. This 

would include operating the mGT at 100 kWe with a CO2 injection 

rate of 300 kg/h aiming for a capture rate of 90% until steady state 

has been achieved. At steady state, progressively decreasing the 

flue gas flowrate, solvent recirculation rate and hot water flowrate 

over 4 hours. After 4 hours return the plant to initial operating 

conditions until steady state has been achieved. This experimental 

campaign would be to represent load following at times of peak 

electricity demand.  
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In addition to the above, the following should also be considered to optimise and 

improve the ACP:  

o Redesign of the absorber to include absorber intercooling; 

o Testing alternative solvents specifically designed for gas-CCS; and 

o Redesign of the plant to incorporate the gas turbine, a CO2 selective 

membrane system, and ACP to represent S-EGR.  

7.4 Economics  

The parallel S-EGR configurations demonstrates that the COE ranged from $82.1 to 

$90.0 per MWh and the COA from $79.1 to $105.1 per tonne of CO2 avoided, 

depending on the improvements to membrane performance (e.g. varying pressure 

drop and skid cost) and reduction in amine capture plant costs.  

The hybrid S-EGR configuration, which applies the benefits of both the parallel and 

series S-EGR schemes, has also been evaluated in terms of its economic 

performance. The results indicate that a balance between the lower amine capture 

plant costs and net efficiency with the higher operating and maintenance costs of 

the hybrid membrane system needs to be considered.  

A number of scenarios were considered by appraising different skid costs, 

membrane permeances and pressure drops across the membrane. The COE and 

COA ranged $81.9–93.9/MWh and $82.7–121.9 per tonne of CO2 avoided, 

respectively. The S-EGR scenario with a CO2 membrane permeance of 2200 gpu 

and selectivity of 50 was shown to have a greater COE and COA than the ACP and 

EGR cases due to the large membrane system costs. The sensitivity analysis 

demonstrated that the hybrid S-EGR configuration has the potential to be 

competitive with respect to the ACP and EGR configurations.   

The results of both economic studies illustrate that continued research and 

development of membrane systems for gas-CCS is required. This should focus on 

improving membrane CO2 permeance, decreasing the pressure drop across the 

membrane and reducing the membrane skid costs. The overall analysis indicates 

that S-EGR configurations offer economic advantages, which would make them 

attractive for gas-CCS, however, further development is needed before these 

systems can be operated at commercial scale.  
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7.4.1 Novelty and original contribution to knowledge 

The novelty and original contribution to knowledge of chapter 6 includes: 

• Economic and sensitivity analysis of parallel and hybrid S-EGR 

configurations in CCGT power plants. 

7.4.2 Recommendations and future work 

The parallel and hybrid economic studies presented in chapter 6 identify that further 

research and development on reducing membrane costs and improving 

performance is required to make S-EGR more attractive for gas-CCS. Therefore, 

the following recommendations and future work should be considered:  

o Perform a techno-economic study which considers the flexible 

operation of CCGT plants which incorporates hybrid, parallel or 

series S-EGR configurations. 

o The development of costing methodology for S-EGR systems. This 

could include the development of a detailed economic model which 

allows the user to consider a range of future energy scenarios and 

perform sensitivity analysis for a number of options.   

o The development of S-EGR membranes which can accommodate 

higher CO2 permeances, reduced pressure ratios and consider 

different materials which maybe more cost effective for gas-CCS.  

 

7.5 Overall conclusions and the future of gas-CCS  

The thesis has experimentally analysed the performance of a gas turbine and ACP 

under conditions characteristic of S-EGR at pilot scale. Furthermore, the economic 

evaluation of parallel and hybrid S-EGR configurations coupled to CCGT power 

plants has been performed. The novelty and original contribution to knowledge of 

the work conducted as part of this thesis has added to the development of gas-

CCS. This is evident through knowledge transfer by the findings of this work being 

published in peer review journal papers and presented at conferences.  

This research demonstrates that the application of S-EGR at pilot-scale works 

effectively by increasing the CO2 concentration in the flue gas. Furthermore, that 

economic costs of the downstream capture plant are significantly reduced by the 

application of S-EGR. However, the development and commercial deployment of 

gas-CCS is dependent on the correct conditions being established to facilitate and 

drive the commercial deployment at the correct pace, in which our climate change 
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targets and future energy scenarios can be achieved. The barriers, which are 

limiting the development and deployment of gas-CCS, include policy, legal and 

regulatory frameworks, and establishing specific sites for storage. The continue 

determination to mitigate the impacts of climate change is evident such as the Paris 

Agreement. However, the predicated increase of natural gas in our energy systems 

going forward means that fossil fuels will continue to have a role in our energy mix. 

In the future, gas-CCS will be needed to mitigate the CO2 emissions from CCGT 

power plants. The policy, legal and regulatory frameworks, which are needed to 

create a CCS market-based economy and de-risk the investment of this mitigation 

option, are lacking from nations climate change mitigation strategies. The 

development of these frameworks, in addition to stakeholder and public consultation 

is required. Furthermore, educating society about CCS, emphasising the 

importance, and why it is required to protect the future of our climate is essential to 

developing the social acceptance of this mitigation strategy. The deployment of gas-

CCS is of critical important for countries that are heavily reliant on fossil fuels such 

as the UK, China and Brazil. Therefore, energy decarbonisation and the 

implementation of gas-CCS will be essential to limit the potential negative 

consequences of climate change on the economic, environmental and social 

prosperity of nations around the world. To do this, nations who are leaders in gas-

CCS, e.g. the UK, US, Canada, Norway and Australia, must lead by example, in 

actually developing, deploying and operating gas-CCS. This will promote gas-CCS, 

and de-risk the CCS model which will contribute to establishing a CCS market 

based economy. Despite the knowledge growing significantly, the actual 

deployment of CCS is decelerating and we all need to play a pivotal part in reducing 

emissions and ensure real investments are made to make gas-CCS a reality.   
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9 Appendices  

9.1 Appendix A.1  

To determine the moles of O2, CO2, H2O per mole of fuel, the stoichiometric 

reactions presented Table 9.1 and the mole fraction of the gas species in the fuel 

composition have been used.  

Table 9.1. Stoichiometric reaction of different natural gas species. 

Species Stoichiometric reaction 

Methane (CH4) CH4 + 2O2 → CO2 + 2H2O 

Ethane (C2H6) C2H6 + 3.5O2 → 2CO2 + 3H2O 

Propane (C3H8) C3H8 + 5O2 → 3CO2 + 4H2O 

Butane (C4H10) C4H10 + 6.5O2 → 4CO2 + 5H2O 

Pentane (C5H12) C5H12 + 8O2 → 5CO2 + 6H2O 

Hexane (C6H14) C6H14 + 9.5O2 → 6CO2 +7H2O 

The following equation is used to calculate the number of moles of O2 required and, 

CO2 and H2O produced per mole of fuel, which assumes complete combustion. 

𝑛 = (𝑖1. 𝑋1) + (𝑖2. 𝑋2) + (𝑖3. 𝑋3) + (𝑖4. 4) + (𝑖5. 𝑋5) + (𝑖6. 𝑋6)+ . .. (9.1) 

e.g. 𝑛𝑂2 = (2𝑂2. 𝑋𝐶𝐻4) + (3.5𝑂2. 𝑋𝐶2𝐻6) + (5𝑂2. 𝑋𝐶3𝐻8) + (6.5𝑂2. 𝑋𝐶4𝐻10) +

(8𝑂
2
. 𝑋𝐶5𝐻12) + (9.5𝑂2. 𝑋𝐶6𝐻14) 

(9.2) 

𝑛 = Number mole of species per mole of fuel (g/mol). 

𝑖1 = Number of moles.  

𝑋1 = Mole fraction of the gas composition.  

The flue gas flowrate (mol/s) is determined from:  

𝑛𝑓𝑔,𝐶𝑂2 = 𝑛𝑓𝑢𝑒𝑙. 𝑛𝐶𝑂2 (9.3) 
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𝑛𝑓𝑔 = 𝑛𝑓𝑔,𝐶𝑂2 (
𝑣𝑜𝑙.%𝐶𝑂2

100
)⁄  (9.4) 

Where 𝑛𝑓𝑔,𝐶𝑂2 is the CO2 flowrate in the flue gas (mol/s), 𝑛𝑓𝑢𝑒𝑙 is the fuel flowrate 

(mol/s), 𝑛𝐶𝑂2 is the mole of CO2 per mole of fuel (g/mol), 𝑣𝑜𝑙.%𝐶𝑂2 is the CO2 

concentration in the FTIR on a dry basis in vol%, and 𝑛𝑓𝑔 is the flue gas flowrate 

(mol/s). To determine the molar flowrate of O2 and H2O in the flue gas, the total flue 

gas flowrate is divided by the measured concentrations of O2 and H2O in the FTIR. 

The N2 is determined from subtracting the CO2, O2 and H2O from the total flue gas 

flowrate. The air flowrate is then determined by dividing the N2 in mol/s by 0.79 

(which corresponds to air containing 79% N2.  
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9.2 Appendix A.2  

The average TOT, CO and UHC for the 40 and 50 kWe baseline tests are 

presented in Table 9.2. 

Table 9.2. Average TOT, CO and UHC data for the 40 and 50 kWe baseline tests. 

Electrical power 

output (kWe) 

TOT (°C) CO (ppmv, dry) UHC (ppmv, dry) 

40 618 827 398 

50 645 233 19 
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9.3 Appendix A.3  

Figure 9.1 (a) and (b) presents the air fuel ratio and excess air requirement against 

increasing CO2 injection rate across the 60-100 kWe electrical power output.  

 

(a) 

 

(b) 

Figure 9.1. Influence of increasing CO2 injection rates on (a) the air fuel ratio and (b) excess air 
at electrical power output of 60-100 kWe. 
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9.4 Appendix A.4  

Table 9.3. Summary of results for the ACP experimental test campaign 1. 

Parameter  Unit Test 1 Test 2 Test 3 Test 4 

CO2 conc. vol% 5.2 6.5 7.6 9.0 

CO2 flowrate 
absorber inlet 

mol/h 391.9 496.6 577.5 697.2 

CO2 flowrate 
absorber outlet 

mol/h 44.5 53.8 64.8 82.0 

CO2 captured kg/h 15.3 19.5 22.6 27.1 

CO2 capture 
efficiency  

% 89 89 89 88 

Lean MEA conc. wt.% 38.4 38.9 38.3 37.3 

Rich MEA conc. wt.% 38.4 39.0 38.6 37.4 

Lean loading molCO2/molMEA 0.262 0.267 0.304 0.319 

Rich loading  molCO2/molMEA 0.378 0.379 0.392 0.399 

Degree of 
regeneration  

% 30.7 

 

29.6 22.4 20.1 

Lean solvent 
flowrate 

kg/h 476.5 578.8 859.2 990.9 

Flue gas flowrate   kg/h 224.5 228.3 228.5 233.0 

Flue gas 
temperature at 
booster fan 

°C 24.4 24.9 21.5 20.7 

Flue gas 
temperature at 
absorber inlet 

°C 41.7 39.3 39.6 39.6 

Flue gas 
temperature at 
wash column 
outlet 

°C 44.1 44.7 38.8 36.3 

L/G ratio kg/kg 2.12 2.54 3.76 4.25 

Specific reboiler 
duty  

MJ/kg CO2 8.9 7.6 8.2 7.3 

Flue gas exit out of the absorber  

H2O vol% 9.2 9.7 6.9 6.7 

O2  vol% 16.9 16.7 16.7 17.2 

MEA ppmv 40 33 23 28 

NH3 ppmv 99 86 89 107 
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Table 9.4. Summary of results for the ACP experimental test campaign 2. 

Parameter  Unit Baseline Test 2 Test 3 Test 4 

PHW temperature °C 125.6 126.8 124.7 123.7 

CO2 conc. vol% 9.0 9.0 9.0 9.0 

CO2 flowrate absorber 
inlet 

mol/h 697.2 683.1 684.2 670.4 

CO2 flowrate absorber 
outlet 

mol/h 82.0 59.3 110.8 148.8 

CO2 captured kg/h 27.1 27.5 25.2 23.0 

CO2 capture efficiency  % 88 91 84 78 

Lean MEA conc. wt.% 37.3 38.0 36.4 36.8 

Rich MEA conc. wt.% 37.4 37.3 36.6 36.9 

Lean loading molCO2/molMEA 0.319 0.277 0.328 0.344 

Rich loading  molCO2/molMEA 0.399 0.373 0.419 0.414 

Degree of regeneration  % 20.1 25.7 21.7 16.9 

Lean solvent flowrate kg/h 990.9 947.6 981.9 985.8 

Flue gas flowrate   kg/h 233.0 228.2 228.6 224.0 

Flue gas temperature 
at booster fan 

°C 20.7 24.3 23.6 23.9 

Flue gas temperature 
at absorber inlet 

°C 39.6 40.9 40.6 40.8 

Flue gas temperature 
at wash column outlet 

°C 36.3 35.9 37.9 38.1 

L/G ratio kg/kg 4.25 4.27 4.30 4.30 

Specific reboiler duty  MJ/kg CO2 7.3 7.4 7.3 8.0 

Flue gas exit out of the absorber  

H2O vol% 6.7 6.7 6.8 6.8 

O2  vol% 17.2 16.8 16.7 16.6 

MEA ppmv 28 20 16 12 

NH3 ppmv 107 89 77 65 
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9.5 Appendix A.5  

Table 9.5. Standard errors for the mGT experimental tests. 

 

 

Electrical power output (kWe) Actual CO2 flowrate (kg/h) CO2 (±vol%) Compressor inlet temperature (±°C) Turbine speed (±rpm) Compressor discharge temperature (±°C) NOx (±g/kWh) CO (±ppmv) CH4 + C2H6 (±ppmv)

100 0 0.002 0.002 1.321 0.032 0.006 0.018 0.022

100 100 0.003 0.009 2.026 0.035 0.014 0.036 0.024

100 150 0.005 0.002 1.456 0.031 0.009 0.022 0.025

100 200 0.011 0.002 1.418 0.031 0.010 0.046 0.026

100 250 0.017 0.002 1.535 0.030 0.040 0.118 0.024

100 300 0.012 0.007 2.164 0.036 0.007 0.215 0.030

90 0 0.003 0.008 1.731 0.032 0.041 0.083 0.041

90 100 0.004 0.006 1.844 0.034 0.015 0.038 0.022

90 150 0.005 0.013 2.708 0.043 0.010 0.151 0.164

90 200 0.004 0.015 2.376 0.036 0.014 0.149 0.025

90 250 0.007 0.001 1.544 0.032 0.012 0.237 0.069

80 0 0.003 0.006 1.631 0.033 0.013 0.037 0.027

80 200 0.007 0.009 2.358 0.036 0.016 0.122 0.027

80 100 0.003 0.007 1.598 0.032 0.011 0.167 0.046

80 150 0.005 0.004 1.518 0.034 0.015 0.129 0.028

80 250 0.010 0.002 1.385 0.031 0.027 0.366 0.055

80 300 0.009 0.005 2.239 0.033 0.076 4.137 0.686

70 0 0.004 0.003 1.269 0.032 0.016 0.278 0.032

70 100 0.004 0.015 2.281 0.038 0.008 0.796 0.195

70 150 0.005 0.013 1.928 0.035 0.009 0.297 0.041

70 200 0.007 0.007 1.440 0.033 0.012 0.369 0.064

70 250 0.009 0.002 1.529 0.033 0.014 0.484 0.134

70 300 0.018 0.007 1.742 0.032 0.026 0.786 0.216

60 0 0.002 0.003 1.393 0.032 0.013 0.503 0.086

60 100 0.005 0.008 2.020 0.034 0.009 0.796 0.195

60 150 0.007 0.004 1.640 0.033 0.018 0.476 0.127

60 200 0.009 0.005 1.257 0.032 0.012 0.660 0.211

60 250 0.007 0.007 1.394 0.031 0.006 0.856 0.328

61 300 0.015 0.004 1.331 0.031 0.028 4.822 1.986
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Table 9.6. Standard errors for the absorber and desorber temperature profiles. 

 

 

 

 

 

 

5.2 6.5 7.6 9 126 127 125 124

1 0.6 T121 0.022 0.010 0.004 0.013 0.013 0.004 0.007 0.013

2 1.2 T124 0.032 0.016 0.016 0.018 0.018 0.016 0.018 0.017

3 1.9 T127 0.040 0.017 0.008 0.018 0.018 0.007 0.012 0.014

4 2.6 T130 0.042 0.017 0.009 0.021 0.021 0.006 0.010 0.011

5 3.3 T133 - - - - - - - -

6 4.0 T136 0.034 0.020 0.005 0.026 0.026 0.006 0.008 0.009

7 4.7 T139 0.026 0.021 0.007 0.034 0.034 0.008 0.008 0.013

8 5.4 T142 - - - - - - - -

9 6.0 T145 0.020 0.016 0.026 0.030 0.030 0.020 0.014 0.041

10 6.7 T148 0.042 0.065 0.019 0.027 0.027 0.020 0.025 0.035

1 0.4 T308 0.021 0.058 0.030 0.015 0.015 0.012 0.014 0.036

2 1.3 T317 0.014 0.051 0.040 0.044 0.044 0.015 0.045 0.056

3 2.2 T316 0.017 0.057 0.042 0.032 0.032 0.016 0.026 0.020

4 3.0 T321 - - - - - - - -

5 3.9 T309 - - - - - - - -

6 4.8 T312 0.021 0.055 0.028 0.014 0.014 0.012 0.012 0.020

7 5.7 T311 - - - - - - - -

8 7.1 T310 - - - - - - - -

9 7.6 T307 0.075 0.088 0.040 0.019 0.019 0.017 0.018 0.020

±°C

±°C

Absorber

Desorber 

Experimental test 1 Experimental test 2


