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Abstract 

 

The field of photovoltaics has seen a huge drive towards scalability and efficiency 

improvements over the last decade, manipulating organic and hybrid semiconducting 

materials in a number of different ways. In the following thesis, conjugated polymers 

and perovskite semiconductors are studied for the use in photovoltaic devices, including 

the photophysical properties and crystallographic analysis on a new low-dimensional 

perovskite material. A potential scale-up technique that utilises an ultrasonic spray-

coating mechanism was also employed with a precursor additive, significantly 

improving the overall crystalline qualities and optoelectronic properties.  

In Chapter 4, a series of organic semiconducting polymers are studied, having an 

electron-donating and an electron-accepting unit along a conjugated polymer backbone. 

This process allows for improved delocalisation of the π-conjugated electrons along the 

polymer chain. The optoelectronic properties of such polymers are evaluated, with the 

impact of the polymer:fullerene weight ratio on photovoltaic performance investigated 

and compared to a well referenced bulk heterojunction device. In Chapter 5, 

photovoltaic devices are studied that were fabricated using an organic-inorganic hybrid 

perovskite semiconductor that was deposited from a precursor ink composed of 

methylammonium iodide (MAI) and lead chloride (PbCl2) in a DMF solution. Here, the 

effect of the addition of hydroidic iodide (HI) to the precursor ink was explored. The 

results indicate a significant improvement across all of the device performance metrics 

after 1 vol% of HI was added to the precursor solution. 

In Chapter 6, the effect of non-stoichiometric excess of MAI in a MAI:PbCl2 perovskite 

precursor is shown to facilitate the creation of low-dimensional perovskite crystal 

structures. This is evidenced using X-ray diffraction analysis, with 2-dimensional (2D) 

perovskite crystals being shown to co-exist with a bulk 3D perovskite phase. Low-

temperature measurements suggest a complex energy-landscape exists within such 

disordered films. The photovoltaic characteristics of devices fabricated from such 

materials have low power conversion efficiency, with such reduced efficiency attributed 

to poor surface coverage and trap states in the film. 
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Chapter 1  

 

Introduction 

 

The world’s population is in constant need of energy. The overwhelming majority of 

humans on the planet have become accustom to the luxury of powered homes and 

workspaces, which creates a need for the production and storage of energy. China has 

used been using coal as an energy source for well over a thousand years 1, whereas until 

the 13th century, Europe regarded coal as an inferior fuel due to its by-product of smoke 

and soot 1. Wood was the fuel source of choice in western Europe before shortages in 

supply chains forced people to burn coal instead 1,2. In the 18th century, huge 

technological and population shifts driven by the steam engine and new methods of 

smelting and iron refinement depended on coal for mechanical power 3. However, the 

excessive use of coal was not without its pitfalls. For instance, a 2015 report on the 

mortality rate in England and Wales between 1851 and 1900 indicated a reduced life 

expectancy of 0.57 years combined with a higher mortality rate in urban areas 4. The 

health risks associated with the use of coal have been known since at least 1813; black 

matter on the bronchial glands was routinely found in people who had died prematurely 

of pulmonary consumption 5. There clearly needed to be a change in the way electricity 

was produced, however, coal was absolutely everywhere.  

Global energy consumption statistics in the year 2016, show that the total usage of non-

renewable fossil fuel sources, such as coal, reached 11,354 million tonnes (oil equivalent), 

a 1% increase from a 2006 usage study 6. Burning fossil fuels, such as natural gas and coal, 

produces greenhouse gases like carbon dioxide (CO2) and nitrous oxide (N2O), 

contributing to a warming effect on the atmosphere of the planet 7. It is worth noting 

that current studies suggest the atmosphere contained an amount of CO2 pre-industrial 
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revolution at around 280 ppm 8; estimates in 2016 propose our atmosphere contained 

over 400 ppm averaged across the year 9. Greenhouse gases act as a natural blanket by 

absorbing the re-emitted infrared radiation from the Earth’s surface. Without a 

greenhouse effect, the Earth’s effective surface temperature would drop from 

approximately 14 °C to -18 °C 10. Alternatively, too much greenhouse gas has a knock-on 

effect by enlarging the ‘atmospheric blanket’ and subsequently increasing the average 

global temperature. As a consequence of global warming, it has been estimated that the 

global sea level rose by 0.19 meters between 1901 and 2010 and the global sea 

temperature has risen 0.11 °C per decade between 1971 and 2010 11. Strides have been 

made to combat greenhouse gas emissions and reduce the carbon footprint in the 

energy sector. The National Grid (UK) announced in April 2018 that they successfully 

generated electricity lasting 76 hours and 10 minutes without any input from coal-

powered sources, which beat the record set in 1880 12. The USA-based research group, 

SEIA also made an announcement indicating that the U.S. installed 2.5 GWDC worth of 

photovoltaic (PV) systems in the first quarter of 2018; a 13% year-over-year increase 

which now provides 55% of the U.S. electrical capacity 13. In addition, the electricity cost 

for roof-top and utility scale PV systems has dropped by 54% and 64% respectively in the 

U.S. between 2008 and 2015 14,15. Globally there has been a substantial shift towards a 

renewable technological future in energy production; 2017 reports claim a substantial 

surge in the world’s global on and off-grid PV capacity, which increased by nearly 33% 

from 2016 16.  

An important sector of renewable energy research is photovoltaics. The photovoltaic 

effect, (originally discovered by Alexandre Becquerel in 1839), is the process in which 

electrical current and voltage is produced after illuminating a material with 

electromagnetic radiation, usually in the form of sunlight 17. Research progressed and in 

1888, Edward Weston filed and received two separate patents, US389124 and US389125, 

both titled “Solar Cell” 18. A breakthrough in PV development came from electrochemist 

and inventor Russell Ohl, who worked for AT&T’s Bell Labs in the 1930s. Together with 

his colleague Jack Scaff, they discovered the P-N junction (discussed further in Chapter 

2) between two doped slabs of multi-crystalline silicon (multi-Si). They later filed a 

patent on the discovery entitled “Light-sensitive electric device” 19. In a paper published 
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in 1954, Chapin et.al. discuss the limitations with their 6% silicon solar cell design, where 

they discovered a mismatch in material absorption within the incident solar spectrum 

20. The concept of a theoretical maximum efficiency for one-junction PV cells was later 

mathematically described by Shockley and Queisser in 1961, which states that an 

efficiency of 33.7% could be obtained for a material with a bandgap of 1.34 eV 21. In 1989, 

Blakers et.al. reported on a 22.8% monocrystalline silicon (mono-Si) device architecture, 

known as the PERL cell. It is based on a chemically-passivated top and rear surface, 

which reduces surface recombination and increases open-circuit voltage (Voc) 22. Due to 

recent advancements in mono and multi-Si solar cell technologies, the lab-record 

efficiencies are now at 26.6% for mono-Si and 22.3%  for multi-Si 23–25. Other inorganic 

semiconducting materials, such as the gallium arsenide (GaAs) cells, have seen 

efficiencies reach 27.6 % for a 1 cm2 thin-film cell 26. Although efficient, the compound 

GaAs solar cell is limited fundamentally through its toxicity to living organisms and its 

composition of the rare earth metal, gallium 27.  

Another class of PV cells, whose active layer comprises of organic-only components, 

have been studied since the photoelectric behaviour in Anthracene was discovered in 

1906 28. Tang et al. made great device improvements when he combined two organic 

materials in a planar junction (much like the silicon P-N junction) with different 

ionisation potentials and electron affinities in 1986 29. This step improved exciton 

dissociation at the material boundary, which is required in photovoltaic effect processes 

to allow the flow of electrical charge throughout the material 30. The ease at which 

conjugated electrons can be polarised gives organic semiconductors large absorption 

coefficients relative to inorganic structures, leading to the use of thinner material layers 

and thus cheaper material costs 31. However, severe limitations on the charge transport 

mechanisms within organic photovoltaic absorber layers lowers the overall power 

conversion efficiency (PCE) relative to their inorganic photovoltaic counterparts 32,33. 

One attractive aspect for using organic semiconductors is the ability to adjust the spectral 

absorbance by manipulating the delocalised electrons along a polymer chain 34,35. This 

can be done by attaching different electron-accepting and electron-donating units at 

various places along a polymer backbone 36,37. For instance, poly[N-9’-heptadecanyl-2,7-

carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole) (PCDTBT) has been well 
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studied for its use in a bulk heterojunction organic solar cells 38–40. The CDTBT 

monomer contains a benzothiadiazole (BTD) electron-accepting unit and a carbazole 

electron-donating unit, separated by thiophene units 32, giving PCDTBT an optical 

bandgap of ≈ 1.9 eV 41. 

One particular class of hybrid semiconducting materials, called perovskites are based on 

a mixture of organic and inorganic components and have been studied for their 

optoelectronic properties since the 1990s 42. When mixed with an appropriate solvent in 

a 1:1 molar ratio, methylammonium iodide (MAI) and lead iodide (PbI2) produce the 

MAPbI3 (MAPI) 3-dimensional (3D) perovskite crystal 43–45. The Pb2+ atoms coordinate 

with iodide atoms to form an octahedral cage, with MA+ cations positioned at the 8 

vertices of a MAPI cubic crystal structure for T > 330 K 46. The most common type of 

perovskite solar cell contains organic and inorganic precursors, and since the first 

introduction of hybrid perovskite solar cells in 2009 47, PCEs have risen to an astounding 

22% for laboratory-scale photovoltaic cells 48. Organic-inorganic perovskites feature a 

direct optical bandgap between 1.1 and 1.7 eV, making them ideal materials for use in 

light-absorbing devices 49. These hybrid semiconductors also have low effective charge 

carrier masses and high mobilities 50, which results in long carrier diffusion lengths of 

up to a micron 51. It has been shown that by introducing hydrophobic cations in to the 

precursor solution it is possible to drive crystallisation towards lower-dimensional 

crystals, such as 0D, 1D and 2D variants of a parent 3D structure 52,53. Mixed-phase 

perovskite devices with films containing 2D or quasi-2D and 3D phases have recently 

been used to fabricate photovoltaic devices with enhanced stability 54. 

 

1.1. Thesis summary and motivation 

 

The aim of this thesis is to investigate the optoelectronic properties of perovskite and 

new organic semiconductors with a key interest in photovoltaic applications. Initial work 

has concentrated on bulk heterojunctions fabricated from a polymer:fullerene matrix, 

which then broadened towards an exploration of organic-inorganic perovskites.  
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Chapter 2 presents a general background summary regarding the two classes of 

semiconductors, including a discussion of the current relevant literature. This is 

followed by a brief introduction to atomic bonding in organics, the P-N junction and 

techniques used in crystallography to image semiconducting thin-film samples. Chapter 

3 details the various experimental methods and techniques used in this work.  

The work presented in Chapter 4 regards a study done on a series of new donor:acceptor 

polymers for their use as donor materials in polymer:fullerene bulk heterojunctions. In 

total, 4 novel donor:acceptor polymers were studied with varying alkyl side chains and 

donor units. Density functional theory (DFT) calculations indicate a good electron 

delocalisation along the polymer chain in the ground state, with electron wavefunction 

overlap across donor and acceptor moieties. Different solution blend weight ratios of 

polymer:fullerene films were explored, with film topography imaged using an atomic 

force microscope (AFM). Photovoltaic devices were then fabricated based on the 

topographical analysis, with the performance of these photovoltaic cells compared to a 

PCDTBT:PCBM blend reference device. All of the experiments in this chapter were 

performed at the University of Sheffield. Polymers were synthesised and kindly 

provided by Ahmed Iraqi and his student, Ary Murad. Supporting DFT calculations were 

also performed by Natalia Martsinovich (Chemistry Department). PL measurements 

were undertaken with the help of Rahul Jayaprakash and AFM was conducted by Rachel 

Kilbride.  

In Chapter 5, a solution additive known as hydroidic acid (HI) is added to a perovskite 

precursor to improve the solubility of lead chloride (PbCl2). A study of the solution 

properties combined with dynamic light scattering (DLS) analysis shows precursor 

particulates become 3 orders of magnitude smaller after the addition of at least 1 vol% 

HI. Scanning electron microscopy (SEM) shows an improvement in the thin-film 

coverage on an ITO/PEDOT:PSS substrate, indicating greater light-absorbing potential 

when implemented in a photovoltaic device. X-ray diffraction (XRD) measurements on 

thin-films also indicated a higher order of crystallinity after HI addition. Finally, 

perovskite solar cells were fabricated using spin and spray-coating techniques, in which 

both sets of devices showed an improvement in overall performance after the addition 
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of HI to the precursor. In this chapter, the molar ratio of the precursor blends used to 

fabricate a MAPbI3-xClx perovskite film contained a small PbCl2-excess (2.9:1 for 

MAI:PbCl2). In these experiments, SEM was performed by Robert Masters (Materials 

Science and Engineering) and DLS was performed under the supervision of Sarah 

Canning (Chemistry department). David Mohamad assisted in experiments and 

performed spray-coating of perovskite films and Max Reinhardt (Ossila Ltd.) provided 

technical input in the solution study.  

Following this work, studies focused on non-stoichiometric mixtures of precursor 

materials. In Chapter 6, mixed-halide perovskites containing a non-stoichiometric 

excess of MAI were studied. Grazing incidence X-ray scattering (GIWAXS) is used to 

evidence the co-existence of low-dimensional perovskite phases with the bulk 3D 

perovskite, combined with SEM and energy-dispersive X-ray spectroscopy (EDX) 

analysis. PL spectroscopy performed at cryogenic temperatures indicates multiple 

excitonic peaks, which are attributed to emission from 2D or quasi-2D low dimensional 

perovskites (LDPs) at wavelengths between 510 nm and 605 nm together with emission 

from regions of bulk 3D perovskite CH3NH3PbI3-xClx around 770 nm. 

Photoluminescence excitation spectroscopy of the LDPs reveal energy transfer between 

LDPs, but not to the surrounding bulk 3D perovskite. Time-resolved 

photoluminescence measurements demonstrate that LDP excited-state lifetimes 

decrease as a function of increasing temperature; a process consistent with a thermally-

activated charge transfer process. By mapping the distribution of luminescence across 

the surface with submicron resolution, a close co-localisation of the low-dimensional 

emitting states and the bulk perovskite material is observed. This chapter involved a 

collaboration with Joel Smith who helped in the identification of the perovskite crystal 

structure. Giacomo Piana (University of Southampton) helped perform PL spectroscopy 

measurements, with other measurements performed by Jonathan Burns (AFM), Andrew 

Parnell (GIWAXS), Rachel Kilbride (early PL measurements, GIWAXS) and David Coles 

(photoluminescence excitation [PLE]). 
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Chapter 2  

 

Background Theory 

 

2.1 Introduction 

 

The following chapter details the various physical and electronic properties within 

perovskites and organic semiconductors. First, a brief introduction to the photovoltaic 

effect is given in Section 2.2, followed by a discussion on photovoltaic device 

characterisation in Section 2.3. Some background theory on atomic orbitals is covered 

in Section 2.4, with a review on perovskite and organic semiconductors in Sections 2.5 

and 2.6, respectively. The charge carrier dynamics in organic and hybrid perovskites are 

described in Section 2.7, followed by a brief introduction to the photophysics of organic 

and hybrid semiconductors in Section 2.8. 

 

2.2 The photovoltaic effect 

 

For over 4.6 billion years the Sun has been producing electromagnetic radiation, 

emitting its energy isotropically across the universe 1. A certain frequency range of 

photons emitted by the Sun, known as the visible region, possess a wavelength between 

300 nm and 700 nm, which humans (and some animals) observe as blue and red light, 

respectively 2,3 (Figure 2.1 (a)). Incident photons on a semiconductor material that fall 

within the visible-infrared window are able to excite electrons to higher energy levels or 

excited states, where they are then able to move freely in a conduction band. If, however, 
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the excited-state electron is extracted from this conduction band by some built-in 

asymmetry to an external circuit, a current is produced. This process is called the 

photovoltaic (PV) effect and was discovered by Alexandre Becquerel in 1839 4. The 

photovoltaic effect is rather similar to that of the photoelectric effect suggested by 

Einstein in 1905 5, whereby incident light with enough energy per photon is able to 

promote an electron from the surface of a metal to a vacuum state, effectively removing 

it from the solid.  

The theoretical maximum power conversion efficiency (PCE) of a single-junction solar 

cell under Air Mass 1.5 (AM1.5) illumination is known as the Shockley-Queisser limit 6. 

With an optimum material bandgap of 1.34 eV (925 nm) under 1000 Wm-2 illumination, 

the theoretical PCE maximum is 33.7%. For silicon (Eg = 1.14 eV, 1130 nm) the theoretical 

maximum PCE is around 32%. Other photovoltaic systems, such those based on organic 

semiconductors (OPVs) and hybrid organic-inorganic perovskites (PSCs) have now 

demonstrated PCEs of 17.3% and 22.7%, respectively 7,8 (Figure 2.1 (b)). When photons of 

energy E < Eg interact with a semiconductor they are not absorbed, and therefore do not 

induce a photocurrent which results in performance losses. For example, the 

CH3NH3PbI3 perovskite has an optical bandgap of around 1.6 eV (770 nm) and thus does 

not absorb any photons with E < 1.6 eV 9.  However, for photons with E > 1.6 eV, several 

other loss mechanisms can occur, such as thermalisation and transmission losses 10, 

resulting in a further reduction in PCE.  
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Figure 2.1 - (a) Solar spectrum as recorded outside Earth’s atmosphere (AM0 – black curve) and on 

the Earth’s surface at an angle of 41° (AM1.5 – red curve). (b) NREL research cell efficiency records 

between 1976 and 2018. Perovskite cells are shown as red and yellow circles, organic cells are shown 

as a solid red circle. 
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2.3 Characterising photovoltaic devices 

 

A solar cell situated in the dark behaves much like a diode. Minority carriers can drift 

across the device to become majority carriers, which in turn produce a very small, but 

measureable current known as the dark saturated current (Jdark). A current-voltage (J-V) 

measurement can be thought of as the superposition of the solar cell diode in the dark 

and under illumination 11. Illuminating the solar cell produces charge carriers in the 

material through the absorption of photons in the active layer. If these charges dissociate 

through the built-in electric field at a P-N junction, electrons will flow to the cathode 

and holes will flow toward the anode. This gives rise to a photocurrent in the opposite 

direction to the dark current, and applying a forward bias (V > 0 V) produces the same 

current flow as seen for a diode. When the voltage applied to an illuminated solar cell is 

zero, the current flowing in the device is known as the short-circuit current, Jsc, which 

acts like a reverse bias current, where Jsc >> Jdark. There are a number of factors that 

determine the value of Jsc, such as the incident solar spectrum, the optical properties of 

the material (reflection and absorption losses), as well as the area of the solar cell. In this 

thesis, the Jsc is described as a current density and is therefore written as the current per 

unit area (mA cm-2). Another factor that affects the short-circuit current is the power of 

the incident light, however, this effect is not detailed in this work. 

As the forward bias voltage increases, it begins to compensate for the reverse 

photocurrent produced by the incident light and at an applied voltage the current 

produced by the cell increases to zero. Note that the photocurrent is given a negative 

value to distinguish it from the current produced by the cell under forward bias. At this 

voltage, the device behaves much like it would under open circuit conditions. When the 

current produced by the illuminated cell is zero, the forward bias fully compensates for 

the reverse photocurrent, therefore, the applied bias at that value is considered to be the 

open-circuit voltage, Voc.  
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Figure 2.2 - The power output and corresponding current-voltage (J-V) sweep of a typical solar 

cell. The coloured grey box represents the fill factor of the device, which is clearly reduced 

compared to the ideal described by the Jsc and Voc. The operating parameters for the device shown 

above under AM1.5 conditions are: PCE = 12.3%, Voc = 0.91 V, Jsc = -19.0 mAcm-2 and FF = 70.7 %. 

The maximum power point bias is 0.72 V. 

 

Another useful parameter for characterising photovoltaics is the power output, a 

product of the voltage and current in the device. The maximum power (Pmax) available 

from a cell is calculated through the product of the maximum voltage, Vmax, and the 

maximum photocurrent Jmax. An ideal PV cell would yield a straight line photocurrent 

up to the Voc, after which it would fall to zero, as shown in Figure 2.2. This would suggest 

that for an ideal solar cell Pmax is equal to the product of Voc and Jsc. In reality, however, 
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the maximum power available is reduced from the ideal and describes an area shown by 

the grey box in Figure 2.2. The ratio of which the maximum power is reduced is called 

the fill factor (FF), and is calculated through the following relationship: 

 𝐹𝐹 =  
𝐽𝑚𝑎𝑥𝑉𝑚𝑎𝑥

𝐽𝑠𝑐𝑉𝑜𝑐
 (2.1) 

where the FF is equal to 100 % (or 1) for an ideal solar cell. The maximum power output 

for a solar cell can then be described as a function of the FF: 

 𝑃𝑚𝑎𝑥 = 𝐽𝑚𝑎𝑥  𝑉𝑚𝑎𝑥 = 𝑉𝑜𝑐 𝐽𝑠𝑐  𝐹𝐹 (2.2) 

The efficiency (η) can be written as the ratio of the power out to the power in, such that: 

 𝜂 (%) =  
𝑃𝑚𝑎𝑥

𝑃𝑖𝑛
  =  

𝑉𝑜𝑐𝐽𝑠𝑐𝐹𝐹

𝑃𝑖𝑛
 (2.3) 

where Pin is the power of the incident solar radiation. All of the above parameters can be 

taken from a simple J-V sweep of a device and therefore it is a useful measurement 

technique used to characterise solar cells. For the work in this thesis the value of Pin was 

calibrated to 100 mW cm-2 at 25ºC using a Newport 92251A-1000 solar simulator. 

A more quantitative approach is to describe the J-V characteristics using the Shockley 

diode equation 6, which is first described through the ideal diode equation: 

 𝐽𝐷(𝑉) = 𝐽𝑑𝑎𝑟𝑘 [exp (
𝑒𝑉

𝑘𝐵𝑇
) − 1] (2.4) 

where JD is the current through the diode, e is the electron charge, V is the diode voltage, 

kB is Boltzmann’s constant and T is the absolute temperature of the diode. Upon 

illumination, a photocurrent JSC is produced and the diode equation becomes 

 𝐽(𝑉) = 𝐽𝐷 − 𝐽𝑆𝐶 =  𝐽𝑑𝑎𝑟𝑘 [exp (
𝑒𝑉

𝑘𝐵𝑇
) − 1] − 𝐽𝑆𝐶 (2.5) 
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The negative sign for the photocurrent indicates that the JSC flows in an opposite 

direction to the dark saturation current, as seen in Figure 2.3 (a). However, Equation 2.5 

above does not account for the effect of parasitic resistance present in non-ideal solar 

cells. Power is lost from the cell through separate resistance pathways, which are named 

parasitic series and shunt resistances, respectively. Figure 2.3 (b) shows an equivalent 

circuit model for a non-ideal solar cell. 

 

 

 

Figure 2.3 - Equivalent solar cell circuits for (a) an ideal cell and (b) a non-ideal cell with the 

inclusion of series and shunt resistances. 

 

As a PV cell resistance will depend on its geometry and its active area, the series 

resistance can be derived by substituting for current density in Ohm’s law. This yields 

the units of the series resistance as Ω cm2.  The series resistance results from a number 

of factors, most notably the movement of charge through the p-(i)-n junction, the 

resistance between semiconductor and metal contact and the resistance of the metal 

contacts themselves. A large series resistance will lower the FF of the device. It is useful 

to include the series resistance in the diode equation by substituting in for V and 

including the ideality factor, n, in Equation 2.5: 

 𝐽(𝑉) = 𝐽𝐷 − 𝐽𝑆𝐶 =  𝐽𝑑𝑎𝑟𝑘 [exp (
𝑒(𝑉 + 𝐽𝑅𝑠)

𝑛𝑘𝐵𝑇
) − 1] − 𝐽𝑆𝐶  (2.6) 
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Here, the ideality factor, n, is a dimensionless constant, which indicates how close the 

diode behaves to that of an ideal diode. A value of n = 1 assumes that all recombination 

occurs via band to band transitions away from the junction and limited only by the 

minority carriers. Recombination limited by both types of carriers (minority and 

majority) increases the ideality factor to n = 2 12.  

 

 

 

Figure 2.4 – Graphical representation showing the effect of increasing series (Rs) and shunt (Rsh) 

resistances by comparing current-voltage (J-V) measurements on bulk-heterojunction organic 

solar cells. (a) indicates an increase in Rs (arrow) and the typical gradient measured to obtain a value 

for Rs (dashed line). (b) shows the effect of decreasing Rsh (arrow) on the J-V curve indicated by 

larger gradient (dashed line). 

 

Another source of resistive losses in a device comes from the shunt resistance, Rsh. As 

shown in Figure 2.3 (b), a low shunt resistance will provide an alternative current 

pathway for the photocurrent, lowering the current passing through the p-(i)-n junction 

and thus lowering the output voltage. At lower operating voltages the effect of Rsh is 

substantial because the effective resistance within the solar cell is high due to the parallel 

nature of the shunt resistance. A shunt resistance component can be included in the 

diode equation as shown in Equation 2.6 13  
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 𝐽(𝑉) = 𝐽𝐷 − 𝐽𝑆𝐶 =  𝐽𝑑𝑎𝑟𝑘 [exp (
𝑒(𝑉 + 𝐽𝑅𝑠)

𝑛𝑘𝐵𝑇
) − 1] +

𝑉 + 𝐽𝑅𝑠

𝑅𝑠ℎ
− 𝐽𝑆𝐶  (2.7) 

The values of Rs and Rsh can be estimated from the J-V graph as shown in Figure 2.4. 

The green and black curves are taken from bulk-heterojunction (BHJ) OPVs described 

in more detail in Chapter 4.  

Before moving on to discussing the properties of the semiconductors that are used in 

PV devices, the next session discusses general atomic orbital theory, and demonstrates 

how this simple framework can be applied to rationalise the structural and electronic 

properties of a range of PV device applicable materials. 

 

2.4 Atomic orbitals  

 

In the early 20th century, Niels Bohr proposed the idea of a coulumbic interaction 

between nuclei and orbiting electrons, which challenged J. J. Thompson’s original model 

of circular electron orbits of arbitrary radii around a positively-charged heavy nucleus. 

In his work published in 1913, Bohr related the spectral lines observed from Hydrogen 

atoms to a set of discrete energy levels within an atom. Each energy level is associated 

with an allowed electron orbital, labelled n=1,2,3…, where n increases with the radii of 

the allowed orbital. This model suggested that electrons can only ‘leap’ instantaneously 

between pre-specified orbital energies by absorbing or emitting quanta of fixed energy. 

Erwin Schrödinger applied his mathematical equations that described an electron as a 

wavefunction instead of a particle to the confines of the atom. Schrödinger formulated 

quantum mechanical wavefunctions to describe the probability of finding an electron in 

a particular location or orbital. These wavefunctions described the ‘state’ of a single 

electron within an atom. Plotting the distributions of such orbitals produces electron 

probability clouds and form the quantum mechanical model of the atom.  

The allowed energy levels in an atom can be described using the quantum numbers n 

(principle quantum number), l (azimuthal quantum number), ml (magnetic quantum 



28 
 

number) and ms (spin quantum number), which determine the size (n), shape (l) and 

orientation (ml, ms) of the orbitals. These values are summarised in Table 2.1 which 

indicates the formation of 3 atomic orbitals: 1s, 2s and 2p from a total of 10 electrons. 

 

 

 
 

 

Table 2.1 – A summary of the allowed quantum numbers n, l, ml and ms with corresponding orbital 

names and total number of electrons per orbital. Only the first two n quantum numbers are listed. 

 

The formation of the atomic orbital is a consequence of the allowed values each 

quantum number can take. As seen in Table 2.1, the 1s orbital is composed of integer 

quantum numbers n=1, l and ml = 0, except the spin (ms), which takes a half integer value 

of ± ½. The half integer values are a result of the Pauli Exclusion Principle, which states 

that no two or more identical fermions (particles that possess a spin ½) can occupy the 

same state within a system simultaneously. An n = 1 energy level has a corresponding 

azimuthal quantum number (l) of l = 0,1,2..(n-1) = 0. Accordingly, ml has a range of –l to 

+l at integer values and ms = -s, -s+1, -s+2,..,s-2, s-1, s. As the electrons in the orbitals are 

fermions, s = ½, and so ms = ± ½. The n=2 quantum number is made up of a 2s and a 2p 

orbital, whereby the 2p orbital has components along the x,y and z axis (px, py and pz), 
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as shown in Table 2.1. This is due to the l = 0, 1 quantum numbers, which account for 

the 2s (l = 0) and 2p (l = 1) shells with corresponding subshells px, py and pz. It is these 2p 

subshells that play an important role in organic chemistry by forming hybridised carbon 

bonds along polymer chains. For completeness, l = 2 forms 3s, 3p and 3d shells with a 

maximum of 10 electrons and l = 3 produces 4s, 4p, 4d and 4f with a maximum of 14 

electrons. In the following section, the fundamentals of hybridisation in carbon bonds is 

discussed.  

 

2.4.1 Hybridised carbon bonds 

 

Carbon has an electronic structure of 1s2 2s2 2p2 which allows for two covalent bonds to 

be formed from the two valence electrons. The s-orbitals occupy a spherical region of 

space with the nucleus at the centre, whereas p-orbitals arrange themselves in symmetric 

balloon-type regions reflected around the x, y and z planes. 2s2 2p2 represents the second 

energy level in carbon and consists of four orbitals, the 2s and three 2p orbitals: 2px, 2py 

and 2pz. In order to do this, the carbon atom must promote a lower energy s-orbital 

electron into an unoccupied p-orbital. This is shown through a simplified electron 

energy diagram in Figure 2.5 (a-c). Hybridisation occurs when the one remaining 

electron in the s-orbital (at the same energy level (i.e. 2s, 2p)) mixes with the three other 

p-orbital electrons, producing four identical electronic orbitals. Overall, the energy lost 

in forming the four C-H bonds in methane is much larger than the energy it takes to 

excite an electron from a 2s to a 2pz orbital and is therefore always an exothermic 

process. The carbon atom can covalently bond with four hydrogens through a sharing 

of an sp3 orbital for every 1s orbital in hydrogen. These bonds are formed end-to-end 

and are called sigma- (σ) bonds. Methane is the simplest example of hybridisation and 

σ-bonding. 
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Figure 2.5 - (a) Indicates the ground state of carbon, (b) is the excited state of carbon after 

promoting an electron from a 2s energy level to the 2pz orbital and (c) shows carbon after 

hybridisation. 

 

Another example of hybridisation is ethene, which consists of a double carbon bond. 

The same process occurs; an electron is promoted to the p-orbital from the s-orbital. 

However, this time only three of the orbitals are hybridised, leaving the 2pz electron 

unchanged. In doing so, each atom is able to make three bonds; two bonds to hydrogen 

and one bond to carbon.  

 

 

 

Figure 2.6 – Schematic of the sp2 hybridisation mechanism in carbon and the formation of π-

bonds. (a) displays images of the σ-bonds formed through the in-plane 2p2 – 2p2 overlap and in-

plane sp2-s (C-H) overlapping bonds, (b) the formation of a π-bond in the perpendicular plane to 

the σ-bonds and (c) the full electronic picture of ethene (C2H4) showing both σ- and π-bonds. 

Images are taken from reference 15. 
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These three hybridised sp2 electrons arrange themselves in the x-y plane, separated by 

an angle of 120°, leaving the 2pz electron in a p-orbital perpendicular to the plane of the 

hybridised electron orbits. As shown in Figure 2.6 (b), the π-bond forms above and 

below the plane of the σ-bond. Unlike the end-to-end bond formation in a σ-bond, 

which has highly localised electron densities, π-bonds are formed when overlapping 

side-on p-orbitals develop a delocalised electronic character 14. It is these delocalised π-

electrons that give many organic molecules their semiconducting properties.  

 

2.4.2 Antibonding and molecular orbitals 

 

As two atoms are brought closer together, their electron wavefunctions begin to overlap 

with either a constructive or destructive interference. The former provides the atoms 

with a lower-energy level bonding state (such as σ- and π-bonds). For every σ- and π-

bond there exists a corresponding antibonding orbital, denoted as σ* and π*, respectively. 

When a σ- or π-bond is formed, destructive interference of electron wavefunctions 

creates a region of very low electron density. This results in the creation of an 

antibonding state, at a higher energy level than the constituent states isolated in an atom. 

Typically, the antibonding energy state in a molecule is empty in the ground state, 

however, there are some exceptions such as He2, which is unstable due to the full 1sσ and 

antibonding 1sσ* orbitals.  

Much like the valence and conductions bands found in metals, organic molecules have 

energy bands through the bonding and antibonding π-orbitals. sp2 hybridised organic 

semiconducting materials have molecular orbitals which are either filled (π-band) or 

unfilled (π*-band) in the ground state. Further details on organic semiconductors can be 

found in Section 2.6 and Chapter 4. In a periodic potential, such as in a metal or crystal, 

the close packing of nuclei produces periodic wavefunctions described by Bloch 

functions where delocalised electrons are shared across neighbouring atoms. 
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Figure 2.7 – Visual representation of the σ- and σ*- bond formation in H2. (a) Shows isolated 

hydrogen atoms (H) with 1s electron probability clouds (red) before forming a covalent bond (H2). 

The σ-bond is shown in an orange colour and the σ*- anti-bond is shown in light blue. (b) 

Equivalent energy diagram for the bonding process in forming an H2 molecule. The isolated 

hydrogen atoms each have a lower energy than the σ*-anti-bonding state, however, it is more 

energetically favourable to form the σ-bonding state. 

 

The overlapping of electron wavefunctions leads to a splitting of the energy levels, 

consistent with the Pauli Exclusion Principle 15. In semiconductors, these delocalised 

electrons are the product of overlapping outer-electron orbitals due to the close-packing 

nature of the atoms arranged in a lattice. A free atom contains discrete energy levels 

formed from the electron orbitals as shown in Table 1. In a CH3NH3PbI3 (MAPI) 

perovskite, the valence band (VB) is formed from an [6s]-[5p] antibonding orbital, and 

the conduction band (CB) is a product of [6s]-[5p] antibonding between the lead and 

iodide atoms. Section 2.5.3 highlights the semiconducting properties of the perovskites 

studied in this thesis. 
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2.5 Perovskite semiconductors 

 

Perovskites are materials whose crystal structure is that of calcium titanium oxide 

(CaTiO3) with the general formula ABX3, where A and B correspond to cations of 

different sizes and where X is an anion. The discovery of CaTiO3 was made by Gustav 

Rose in Russia in 1839, from which the crystal structure was later named after Count Lev 

Aleksevich von Perovski, who was a famous Russian mineralogist at that time. The size 

of the cation ‘A’ plays a major role in the electronic properties of perovskite crystals 16,17. 

One of the most researched perovskite crystal structures used in photovoltaics is 

methylammonium (MA+) lead tri-iodide (MAPI), shown in Figure 2.8. Here, the crystal 

structure contains both organic (MA+) and inorganic (Pb2+) components, of which the 

inorganic component is covalently bound to iodide ions forming a polyhedral network. 

At first glance, the ABX3 formula suggests any charge-neutral combination would form 

a perovskite crystal. However, as described later extensive research has gone into 

understanding the crystal structure of perovskites.  

In the following section, an overview of the crystal properties of hybrid perovskites is 

given, including an outline of perovskite photovoltaic device research. 

 

2.5.1 Crystallographic nature of perovskites 

 

An empirical method used to determine the stability and intrinsic distortion of a 

perovskite crystal structure was developed by V. M. Goldschmidt in 1926 who studied 

the crystallography of perovskites 18. Materials that form an ABX3 structure are arranged 

in a variety of different crystal space groups depending on the interaction between the 

small cation ‘A’ and the BX6 octahedra. The formulation of what is now known as the 

Goldschmidt tolerance factor (t) is based on the ionic radii (r) of the A, B and X 

components and predicts the formability of a perovskite crystal structure using the 

following relationship: 
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 𝑡 =  
𝑟𝐴 + 𝑟𝑋

√2 (𝑟𝐵 + 𝑟𝑋)
 (2.8) 

Here, rA,B,X is the ionic radii for cations A, B and anion X respectively. In general, crystals 

that have a tolerance factor between 0.9 – 1.0 will form a cubic structure, as shown in 

Figure 2.8 (a) for MAPI. A tolerance factor between 0.71 – 0.90 results in a tilting of the 

BX6 octahedra relative to the cubic perovskite structure. Organic-inorganic 3D 

perovskites typically have a tolerance factor in the range of 0.89 – 1.0 for a cubic 

structure 19,20. Slightly lower t values give rise to tetragonal and orthorhombic crystal 

structures 20. However, thermal effects and the motion of the MA+ organic cation greatly 

affects the resultant crystal structure. For instance, a perovskite crystal can undergo 

phase-transitions at certain temperatures and is thus categorised by the high 

temperature α-phase, the intermediate temperature β-phase, and the low temperature 

γ- phase 21.  

In the case of MAPI or the mixed-halide CH3NH3PbI3-xClx (MAPIC) perovskites, these 

phase transitions occur due to the random motion of the organic MA+ cation within the 

lead-halide octahedral cage 22. Previous theoretical models predicted that these MA+ 

cations have a total of 24 degrees of freedom 23. The thermal energy gained by the crystal 

reduces as the temperature of the sample is lowered with the seemingly random motion 

of the cation undergoing local ordering by reducing the number of disordered states. 

At room temperature, both the MAPI and MAPIC perovskites adopt a tetragonal 

structure in the β-phase as shown in Figure 2.8 (b). All other tolerance factors that lie 

outside of this range, i.e. t < 0.70 and t > 1.0, will not form 3-dimensional (3D) perovskite-

like structures 24. Introducing larger organic cations forces t > 1 and thus does not form 

a stable 3D structure, instead forming 2D perovskite structures 25. The lattice parameters 

for the MAPI perovskite in the cubic phase is a = b = c ≈ 6.3 Å 26,27. 

 



35 
 

 

 

Figure 2.8 - The crystal structure of CH3NH3PbI3 (MAPI) in (a) the cubic phase, (b) tetragonal phase 

and (c) orthorhombic phase. The lead-iodide bonds (grey and purple spheres respectively) exist in 

a polyhedral arrangement, and form a cage around the methylammonium (MA) molecule (blue 

and brown spheres indicating carbon and nitrogen, respectively). (a) and (b) are shown along the c-

axis omitting hydrogen atoms, (c) is shown along the a-axis with the inclusion of hydrogen atoms 

(white) on the MA molecule. Crystallographic information files (CIFs) taken from references (a) 28, 

(b) 29 and (c) 30.  

 

The ‘cubic’ nomenclature indicates that the perovskite crystal has a, b and c unit cell 

parameters that are all equal. It is well understood that the cubic phase is a result of a 

fully disordered MA+ cation within the lead-octahedral cage 28. On lowering the 

temperature of the crystal to around 300 K, the lattice parameters change due to the 

ordering of the MA cation 31, consequently tilting the octahedral units shifting the unit 

cell in to a tetragonal (a = b ≠ c) space group as shown in Figure 2.8 (b). In this crystal 

orientation at room temperature, the MAPI and MAPIC perovskites form a unit cell with 

lattice parameter: a = b ≈ 8.9 Å and c ≈ 12.7 Å. In Chapters 5 and 6, the MAPIC mixed 

halide perovskite is subject to crystallographic experiments at room temperature (c.a. 

20°C) and is thus likely to exist in a tetragonal space group. Further lowering of the 

temperature to below 140-150 K produces a fully ordered MA+ cation, stabilising the 

crystal in to an orthorhombic space group 32,33 as shown in Figure 2.8 (c). Here, the 



36 
 

orthorhombic crystal lattice parameters for the MAPI/MAPIC perovskites have been 

determined as: a = 8.8 Å, b = 12.6 Å and c = 8.6 Å 22.  

 

2.5.2 2D and quasi-2D perovskites 

 

Non-ideal perovskite structures, (where the Goldschmidt tolerance factor lies outside 

the range for stable 3D structures) have been studied since the 1950’s 34. Two papers 

published by Ruddlesden and Popper describe the crystal structures of non-ideal 

perovskites Sr3Ti2O7 35, Sr2TiO4, Ca2MnO4 and SrLaAlO4 36. Metal-oxide sheets [MX6]4- 

of different thicknesses (n = 1 for Sr2TiO4 and n = 2 for Sr3Ti2O7) placed between two 

spacer cation interlayers give rise to natural quantum wells 37, in which the metal-oxide 

slabs act as potential wells between the cation potential barriers. The next metal-oxide 

layer is shifted in the ab-plane through a (½, ½, 0) translation. Replacing the metallic 

cations (Sr, Ga etc.) with large organic cations, such as aromatic 2-

phenylethylammonium (PEA), forms a class of organic-inorganic hybrid Ruddlesden-

Popper perovskites (RPPs). 2D RPP based on [PbI6]4- octahedral slabs and PEA spacer 

cation, are described by the general formula (PEA)2An−1PbnI3n+1 where A is a monovalent 

cation such as MA+. For the pure 2D (n = 1) case, the general formula is PEA2PbI4 which 

is analogous to the Sr2TiO4 structure discussed earlier. Increasing the ‘n’ value enlarges 

the number of stacked [PbI6]4- octahedral slabs, with the small monovalent cation MA+ 

sitting inside iodide-sharing lead-octahedra in a 3D (n = ∞) structure (Figure 2.9). 

Excitons (a bound state of an electron and a hole) created within these 2D perovskites 

are confined to the octahedral slabs due to the low dielectric field created by the organic 

interlayers 38,39. This natural quantum well effect gives rise to larger exciton binding 

energies than their 3D counterparts 40,41. 
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Figure 2.9 – Crystal structures of an n=3 RPP (1) (PEA)2(MA)2(Pb3I10) made by intercalating 2-

phenylethylammonium (PEA) cations. The 3D (n = ∞) perovskite MAPbI3 (2) is shown in the top 

left. The repeating octahedral sheets are off-set by a translation of (½, ½, 0). Image taken from 

reference 41. 

 

Greater n-values give rise to so-called quasi-2D RPPs, such as the n = 3 (PEA)2(MA)2Pb3I10 

shown in Figure 2.9. Quasi-2D perovskites are an interesting class of semiconductors 

which display the photophysical properties of 2D perovskite materials but with a 

tuneable quantum-well width formed from the octahedral block thickness. An example 

of a quasi-2D perovskite quantum-well energy diagram is shown in Figure 2.10 below. 

Tuning the well-width (or the octahedral slab thickness) is achieved by the incorporation 

of large hydrophobic cations in the precursor solution at different concentrations. For 

instance, Smith et al. studied a perovskite solution containing a (PEA)I:(MA)I : PbI2 

precursor ratio of 2 : 2 : 3 which formed the (PEA)2(MA)2Pb3I10 (n = 3) RPP 42. Considering 

these form the class of (PEA)2(MA)n-1[PbnI3n+1] RPPs, creating a fully 2D (PEA)2[PbI4] (n = 
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1) perovskite would require the precursor ratio of (PEA)I : (MA)I : PbI2 to be 2 : 0 : 1. Upon 

increasing the octahedral layer thickness (n) and thus approaching the bulk 3D crystal (n 

→ ∞), the molar ratio of the organic-cations shift towards increased MAI, whereby a 

(PEA)I : (MA)I : PbI2 of 0 : 1 : 1 would create a 3D MAPI perovskite.  

 

 

 

Figure 2.10 – Crystal structures and resulting quantum-well energy diagrams for (a) n = 1, (b) n = 2 

and (c) n = 3 low-dimensional perovskites. The green ovals represent organic cations within the 

spacer layer. Note as ‘n’ increases the well width also increases and the bandgap decreases, resulting 

in a red-shift in emission wavelength. 

 

Another type of 2D and quasi-2D perovskite, where the adjacent octahedral slabs are 

shifted along the ab-plane by (½,0) or (0,0), are termed Dion-Jacobson perovskites (DJPs) 

43,44. In contrast to RPP phases, DJPs contain only one cation in the spacer layer, and are 

described by the general formula (R-NH3)(MA)n-1PbnI3n+1. Until recently, studies on DJPs 

have mainly focused on inorganic-only constituents (such as KCa2Nb3O10) 45. Most 

notably, work published by Mao et al. indicated the formation of a DJP phase using MA+ 

and 3-(aminomethyl)piperidinium (3AMP) as the small and large organic cations, 

respectively 46. Interestingly, these hybrid DJPs exhibit wider electronic bandgaps 

compared to their RPP relatives for a given ‘n’ octahedral thickness 47. Soe et al. published 

work on the first alternating-cation interlayer DJP/RPP hybrid material (ACI) in 2017, in 

which lead-iodide octahedral slabs were intercalated with alternating cations of 
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guanidinium (GA+) and MA+ 48. This new hybrid perovskite structure has a general 

formula of (GA)(MA)nPbnI3n+1; similar to that of the DJP class of 2D perovskites with an 

additional small cation (MA) within the spacer layer. Likewise, for a given ‘n’ sized 

perovskite structure, the authors found a red-shift in the bandgap absorption and 

emission wavelengths relative to the RPP comparable materials. In Chapter 6, the 

crystallographic and optoelectronic properties of a new type of perovskite using only 

MA+ as a spacer cation is presented, suggesting a similar behaviour to the ACI class of 

hybrid structures.  

Imaging thin-film perovskites using XRD and GIWAXS is described in Section 3.8.5. 

One way to describe the periodicity of a crystal plane is through the use of Miller indices. 

A unit crystal cell can be described in terms of a coordinate system defined by an a, b 

and c axis as shown in Figure 2.8 and Figure 2.11. From this, the miller indices of a given 

plane can be calculated through several steps; the first is to determine the plane-

intercepts along the a, b and c axis and finally taking the reciprocal of these values (to the 

smallest integer) produces the Miller indices. For example, the well characterised (110) 

plane is shown in Figure 2.11 drawn on to the tetragonal-phase MAPI perovskite.  

As indicated in Figure 2.11, the planes shown in red intersect both the a- and b-axis of 

the unit cell at exactly 1 unit in length. Thus, the plane is said to intersect the unit cell at 

(a, b, ∞). Here, infinity indicates that this plane does not cross the c-axis. Dividing the 

intersecting coordinates by the respective cell-dimensions, i.e. (a/a, b/b, ∞/c) and then 

finding the reciprocal produces a plane with the miller indices of (110). This technique 

can also be used for fractional axis-intercepts such as the (002) plane. The (110) plane of 

the MAPI/MAPIC perovskite is a useful measure for XRD experiments as it defines the 

lead-to-lead distance within a perovskite unit cell. 
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Figure 2.11 - Representation of the (110) planes (red) within the tetragonal-MAPI perovskite unit 

cell with a characteristic d-spacing of ≈ 6.3 Å. The MA+ cations (blue-brown) are shown without 

hydrogen atoms for clarity, lead atoms (centre of octahedra) are shown in grey and the iodide ions 

are shown in purple. The unit cell for the I4/mcm tetragonal space group has been draw in black. 

 

Typical XRD scans of crystalline MAPI/MAPIC thin films produce a reflection signal 

around 14.2° (2θ) 22,49,50, indicating a interplanar distance (d-spacing) of ≈ 6.3 Å using 

Bragg’s law: 

 𝑛𝜆 =  2𝑑𝑠𝑖𝑛(𝜃) (2.9) 

Here, n is the plane order, λ is the X-ray wavelength, d is the interplanar distance and θ 

is the incident angle. 

Lead iodide (PbI2) (which is both a perovskite precursor compound and a degradation 

product), crystallises in such a way that its (001) plane has a d-spacing of ≈ 6.8 Å for the 

2H-polytype and can therefore be identified in X-ray diffraction patterns 51. In Chapter 

5, XRD is used to show improved crystallisation upon a solution additive in the 

perovskite precursor through an increase in reflection intensity and a reduction in 

impurities. In Chapter 6, more complex multi-dimensional (2D/3D) perovskite films are 
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studied and are shown to be characterised by larger d-spacing values relative to the 3D 

perovskites studied in Chapter 5. 

 

2.5.3 Semiconducting properties of organic-inorganic 

perovskites 

 

Perovskites are crystals with a corresponding valence and conduction band (CB) much 

like conventional inorganic semiconductors. For convenience, MAPbI3 will be used as 

an example in this section. The electronic structure of MAPbI3 is determined primarily 

through the large metal cation (Pb2+) and the halide ion (I-) with corresponding atomic 

orbitals of [Xe] 4f14 5d10 6s2 6p0 and [Kr] 4d10 5s2 5p6, respectively. The valence band (VB) 

is formed from a σ*-antibonding orbital from a hybridised bond between the Pb [6s] - I 

[5p] orbitals (which forms a [PbI6]4− unit). Similarly, the CB is determined by the Pb [6p] 

- I [5p] π*-antibonding and Pb [6p] - I [5s] σ*-antibonding orbitals. Although dynamic 

in motion, the MA+ cation does not contribute significantly to the overall density of 

states, well below the valence band maximum (VBM) energy within an MAPbI3 crystal. 

The semiconducting properties of MAPbI3 arise from the occupied 6p shell which lies 

below the VBM. As a result, the band structure forms a direct-gap semiconductor 

although its electronic properties are different to that of the direct-gap semiconductor 

Gallium Arsenide (GaAs). The orientation of the MA+ cation can shift the band alignment 

forming an indirect bandgap, which is positioned slightly below the direct bandgap 

energy by ≈ 25 meV 52. The transition between VB and CB is formed of contributions 

from Pb [s] and I [p] to Pb [p] orbitals, with a relatively high transition probability 

compared to GaAs giving the MAPbI3 greater optical absorption qualities.  

The band formation in lead-halide perovskites following the APbX3 formula has a 

profound impact on the positioning of defect-sites within the energy bands. A 

comparison of possible defect or trap sites formed in direct bandgap semiconductors is 

shown in Figure 2.12. As the bandgap is formed between bonding and antibonding states 

in GaAs (or CdSe), ionic vacancies will lead to a weak bonding orbital within the bandgap 
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53. In contrast, APbX3 perovskites possess a bandgap which is formed from two 

antibonding orbitals, and thus any vacancy will result in a trap state residing in or close 

to the surface of the VB or CB 54.  

 

 

 

Figure 2.12 – A schematic representation of the formation of defect trap states within direct 

bandgap semiconductors CdSe, GaAs (left) and hybrid organic-inorganic perovskites (right). The 

blue lines represent molecular orbitals and the red lines signify trap states. VB and CB indicate the 

valence and conduction bands, respectively. For the APbX3 diagram, A is the A-site cation and X is 

a halide (such as iodine or chlorine). Image taken from reference 54. 

 

2.5.4 Perovskite photovoltaics 

 

The first use of a perovskite in a photovoltaic device came in 2006, when a molecular 

dye sensitizer layer in a dye-sensitized solar cell was replaced by a methylammonium 

lead bromide (MAPbBr3) perovskite, achieving a power conversion efficiency (PCE) of 

2.2% 55,56. A few years later Kojima et al. improved the efficiency of this type of device by 

including the iodide perovskite MAPbI3 as the sensitizer layer, which increased the PCE 
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to 3.8% 57. This efficiency was further improved with work published by Im et al. in 2011, 

implementing MAPbI3 quantum-dots in a dye-sensitized cell with an efficiency of 6.6% 

demonstrated under Air Mass 1.5 (AM1.5) sun intensity 58. One major drawback for such 

dye-sensitized cells was the poor stability due to the polar iodide electrolyte solution 

that was used, which attacked and dissolved the perovskite layer 59. Pioneering work by 

the research groups of Murikami and Snaith demonstrated a solid-state perovskite solar 

cell based on a non-conducting alumina (Al2O3) mesoporous scaffold layer that was 

coated with a mixed halide MAPbI2Cl perovskite film 60. Here, the electrolyte contact 

was replaced using an organic hole-conducting layer called spiro-MeOTAD (2,2, 7,7-

tetrakis (N,N-di-p-methoxyphenamine)-9,9-spirobiflourene) (see Figure 2.13 (a)). This 

film structure proved to be a much more stable architecture and was able to withstand 

irradiation for over 1000 hours and achieved a champion PCE of 10.9%. Not only did 

this remove the need for a liquid electrolyte, it was shown that perovskites possess 

ambipolar transporting qualities; a conclusion reached by replacing the mesoporous 

scaffold from n-type TiO2 to insulating Al2O3. In mid 2013, Snaith et al. submitted two 

papers reporting planar n-i-p architecture devices without the need for a mesoporous 

architecture 61,62, achieving 15% and 11% PCEs for vapour and solution processed devices, 

respectively. The planar n-i-p device architecture is shown in Figure 2.13 (b). Recent 

advancements, including the introduction of mixed-cation mixed-halide perovskites 

such as Cs0.10FA0.90Pb(I0.83Br0.17)3 (Cs = caesium, FA = formamidinium),  have seen 

efficiencies increase to above 20% PCE 63. 

The majority of the research to this point was done on architectures based on an n-i-p 

junction, whereby the light first enters a glass substrate that is coated in an n-type 

semiconductor and the perovskite layer, with the perovskite then coated by a p-type 

semiconductor. For convenience, the n-i-p device structure is generally referred to as a 

‘normal’ architecture device. Work published in 2013 by Jeng et al. showed that it was 

possible to form a planar architecture device whilst also reversing the polarity to p-i-n 

(or inverted architecture), by coating the substrate with a thin layer of the p-type organic 

semiconductor poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) 

(Figure 2.13 (c)) 64. PEDOT:PSS has been widely used in organic photovoltaics due to its 

optical transmittance in the visible range combined with a tuneable conductivity and 
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high work function (5.2 eV). An energy diagram for a p-i-n inverted architecture 

perovskite device using a MAPI active layer is shown in Figure 2.13 (d). In Chapter 4, the 

effect of solution additives on a MAPbI3-xClx precursor and its effect on device 

performance is characterised using current-voltage (J-V) measurements. By 

incorporating a mixed-perovskite system such as (FA0.95PbI2.95)0.85(MAPbBr3)0.15, devices 

have now reached 20+% PCE in p-i-n based solar cells 65 using 10 nm of poly[bis(4-

phenyl)(2,4,6-trimethylphenyl) amine] (PTAA) as a hole-conducting layer.  

 

 

 

 

Figure 2.13 - Schematic of the various architectures used in lead halide perovskite solar cells. (a) 

mesoporous n-i-p, (b) planar n-i-p and (c) planar p-i-n. Part (d) indicates the energy band 

alignment for a common p-i-n device with the MAPbI3 perovskite in the absorber layer. The 

photovoltaic devices presented in Chapters 5 and 6 of this thesis follow the architecture shown in 

part (c). Image taken from reference 65. 
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There has been a recent surge in the potential perovskite PV scale-up due to the low 

temperature processing routes used to process such materials. One such advancement 

is utilising spray-coating to fabricate perovskite solar cells. This processing technique 

has been used for OPV solar cells since 2007 66. This large-area processing method has 

recently been used to fabricate fully-sprayed inverted-architecture perovskite solar cells 

reaching efficiencies of 9.9% 67. PEDOT:PSS was used for the p-type layer in every device 

fabricated in this thesis due to its ease of fabrication, low-temperature annealing and its 

potential for scale-up.  

 

2.6 Organic semiconductors 

 

2.6.1 Semiconducting properties of organic semiconductors 

 

Organic semiconductors are widely used in this thesis. They are both included in 

perovskite devices as charge extraction layers, and are used in fully organic devices 

discussed in Chapter 4. 

The outer-most energetic electrons in an organic semiconductor can be found in the 

highest occupied molecular orbital (HOMO) where the top of the HOMO level is also 

referred to as the ionisation potential of the molecule 68,69. The next allowed electron 

energy state above the HOMO level is the lowest unoccupied molecular orbital (LUMO), 

which is analogous to the CB in an inorganic semiconductor. The LUMO level 

corresponds to the antibonding π* orbital energy and is also referred to as the excited 

state of the molecule. The difference between the HOMO and LUMO levels for a given 

system is termed the material bandgap (Eg). A commonly used polymer, named 

polyethylene (C2H4)n, contains only C-C single bonds with a spare pz electron on each 

carbon atom. As the C-C bonds appear identical in this case, the π-electrons can 

theoretically delocalise along an entire polymer chain. This leads to an apparent 

indistinguishability between the π and π* orbitals and therefore the absence of a 
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bandgap. If this scenario was indeed true, polymers with a similar backbone to 

polyethylene would behave like metals due to the partially filled LUMO level 70. Peierls’ 

instability law suggests that identical single C-C bonds along a 1D polymer chain will 

undergo bond length alterations caused by the coupling of phonons and electrons 71,72. 

Phonons are periodic vibrations from a collection of atoms in a crystal lattice and can 

exchange energy with the electrons, forming the basis of Peierls instability 73. The 

commonly studied polymers polyethylene and polystyrene are shown in Figure 2.14 (a) 

and (b), respectively. It can be seen that these polymers are formed from a single carbon-

carbon σ-bond backbone, producing highly localised electrons with such polymers 

acting as insulators 76. The properties of non-conjugated (saturated) polymers, such as 

polyethylene (bottles, plastic bags) and polystyrene (food packaging, surfboards) 77 make 

them useful for purposes that require insulating qualities. However, in the field of 

optoelectronics it is a requirement that a polymer can transport electrical charge along 

its backbone, and it thus requires alternating C-C and C=C bonds permitting the 

delocalisation of charge through π-electron orbitals. 

Conjugated polymers are molecules that exhibit alternating single and double (or triple) 

carbon bonds. Alternating single-double bonds between carbon atoms result in the 

formation of a rigid molecular. As shown earlier, a double carbon bond is formed from 

a σ-bond and a π-bond. As the bonds in conjugated polymers are not symmetric (1.36 Å 

and 1.44 Å for single and double bonds in polyacetylene, respectively) 74, regions of lower 

electron density lead to the formation of an energy gap across sections of a polymer 

chain. This then separates the π and π* orbitals, with preferential filling of the lower 

energy π-bonding orbital resulting in HOMO and LUMO levels. Delocalised π-electrons 

are confined to a few units along a polymer chain, rather than the entire chain itself. It 

is this feature in polyacetylene (Figure 2.14 (c)) that gives rise to its semiconducting 

behaviour with a bandgap of around 1.4 eV 73,75.  

A benzene ring is another example of conjugation and is composed of six carbons that 

alternate between single and double bonds. The benzene (C6H6) aromatic structure 

consists of six sp2 hybridised carbons, each contributing a single valence electron to the 

π–orbital whilst C-C and C-H are bonded through σ-bonds. It is these π–orbitals that are 
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delocalised and exist above and below the molecular plane. As with carbons sp2 

hybridisation, the reason for benzenes hexagonal structure is due to the sp2 orbitals, 

forming a 6-carbon ring with a bond angle of 120°.  

 

 

 

Figure 2.14 - Representative diagrams of non-conjugative polymers (a) polyethylene and (b) 

polystyrene alongside conjugated polymers (c) polyacetylene and (d) polyphenylene vinylene 

(PPV). 

 

Conjugated polymers behave like a semiconductor with a narrow HOMO-LUMO 

energy bandgap; however, the overall band structure can be modified by doping the 

polymer chains with p-type (electron donors) or n-type (electron acceptors). The effect 

of conjugation on the energy gap in organic semiconductors is substantial. Some 

examples of this are saturated polymers polyethylene and polystyrene (Figure 2.14 (a) 

and (b)) with an Eg = 7 eV and 4.4 eV, respectively 76, whereas, conjugated polymers 

polyacetylene and PPV (Figure 2.14 (c) and (d)) have bandgaps of 1.4 - 1.9 eV 78 and 2.4 

eV 79, respectively. By adding electron-donor or electron-accepting units along a 

monomer structure, for example thiophene (C4H4S) (donor) and 2,1,3-benzothiadiazole 
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(C6H4N2S) (acceptor) subunits, the push-pull behaviour towards delocalised π-electrons 

can be exploited which is discussed in more detail in Chapter 4. 

 

2.6.2 Organic photovoltaics 

 

Whilst perovskite photovoltaics have seen remarkable gains in both efficiency and 

stability over the last decade, it is worth noting the most efficient mixed inorganic-

organic systems utilise a lead-halide precursor material. One major disadvantage to 

these devices is the intrinsic toxicity of water soluble lead-based compounds, which in 

principle creates a problem for scalable technologies 80,81. Photovoltaics based around 

inorganic compounds, such as monolithic cadmium telluride (CdTe) have now reached 

a PCE of 19% for cells with an active area of 7040 cm2 and similarly 24% for crystalline 

Silicon (c-Si) with an active area of 13177 cm2 8. However, despite the excellent 

photovoltaic performance of CdTe based cells, current research suggests a major 

limiting factor for large-scale CdTe production is the relative abundance of the rare-

earth element tellurium 82.  

An alternative PV technology is that of organic-semiconductor photovoltaics (OPVs). 

OPVs have been studied for a number of years; for example photoconductivity 

measurements were first performed on anthracene crystals in 1906 83 and later the 

photovoltaic effect was first reported in 1959 in anthracene crystals placed between two 

sodium-chloride (NaCl) solutions 84. Several other organic-based photovoltaic systems 

were studied during the 1960s 85,86, however, a major breakthrough was the development 

of the OPV solar cell architecture. Initially, OPVs were designed using a single-layer 

architecture, also called a Schottky diode, whereby photo absorption occurred in an 

organic film (or crystal) placed between two electrodes 68,87 (see Figure 2.15 (a)).  
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Figure 2.15 - The progression in organic photovoltaic (OPV) device architecture from (a) single-

junction, (b) bilayer architecture and (c) bulk heterojunction, where the acceptor material (blue) is 

phase separated from the donor material (pink). The device stack shown in (b) is modelled on the 

influential bilayer architecture reported by Tang et al. 88, where CuPc stands for copper 

phthalocyanine and PV is a perylene tetracarboxylic derivative. 

 

The built-in electric field caused by the difference in electrode work functions is 

typically not high enough to successfully dissociate the photo-generated exciton in 

conjugated polymers. As both charge carriers diffuse through the same material, charge-

carrier recombination becomes a dominant loss mechanism. Therefore, this type of 

device does not yield many free charge-carriers and generates very little photocurrent.  

Tang et al. reported the first bilayer photovoltaic cell made by depositing a 50 nm layer 

of a perylene tetracarboxylic derivative (PV) on top of 30 nm of copper phthalocyanine 

(CuPc), using a vacuum evaporation technique with this bi-layer sandwiched between 

ITO and silver electrodes 88 (see Figure 2.15 (b)). This system allowed exciton dissociation 

to occur at the interface between the layers, with holes being transported in the CuPc 

layer towards the ITO interface and electrons through the PV layer to the silver 

electrode. In this early device, a PCE of 0.95 % was recorded under AM2 conditions. Such 

devices were hindered by exciton diffusion lengths, which are typically around 10 nm 

in conjugated polymers 89–91. Therefore, in a bilayer OPV only excitons photo-generated 

within a diffusion-limited distance of the heterojunction are likely to dissociate into free 

carriers, a process that ultimately lowers the PCE of the device 
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For photovoltaic applications, such excitons need to be broken apart in order to produce 

mobile free charge carriers and thus create an electrical current. Due to the large binding 

energy of organic semiconductors (300 – 500 meV) excitons are not able to thermally 

dissociate. Excitons are intrinsically short lived quasiparticles that typically exist on the 

order of nanoseconds 92,93. Figure 2.16 (a-c) indicates the charge transfer mechanism at 

a donor (D)-acceptor (A) interface. The energetic requirement for such a dissociation of 

charges is that both the HOMO and LUMO levels of the acceptor molecule must be 

lower-lying than the donor molecule. If the LUMO level of the acceptor exists at a higher 

energy than the donor, there is no thermodynamic process to drive electron-transfer. 

Issues in photovoltaic cell performance can arise when the electron and hole recombine, 

which happens either in the donor polymer or at the donor-acceptor interface.  

 

 

 

Figure 2.16 - (a) The electron (red) and hole (blue) coulombically-bound pair (exciton) at the 

interface between a donor (D) material and an acceptor (A) material. (b) The exciton is still bound, 

however, the electron has transitioned across the interface to the LUMO level of the acceptor unit. 

(c) Both the electron and hole have sufficient energy to exceed the Coulomb potential and are 

considered free carriers. The various recombination pathways shown for an electron and hole 

across a LUMO-HOMO D-A interface are: (d) Geminate recombination, (e) geminate 

recombination in the charge transfer state and (f) non-geminate recombination. 
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Figure 2.16 (b) illustrates the concept of a charge-transfer (CT) state whereby the exciton 

is still coulombically bound, however, the electron has transferred to an acceptor 

molecule. This CT state has been measured in a poly(3-hexylthiophene) (P3HT):PCBM 

(1:2) BHJ system with a lifetime of 500 ps 94. Providing the exciton does not recombine, 

the condition for successful CT exciton dissociation into free charge carriers is given by 

the following relationship: 

 𝛥𝐸𝐻𝑂𝑀𝑂  𝑜𝑟 𝛥𝐸𝐿𝑈𝑀𝑂  ≥  𝐸𝐵 (2.10) 

where the difference in HOMO and LUMO energies of the two materials are given by 

ΔEHOMO and ΔELUMO, respectively. The various ways in which an exciton can recombine 

across a donor-acceptor system is shown in Figure 2.16 (d-f). Exciton recombination is 

the most likely cause of a reduction in photo-generated charge carriers and thus the 

most prominent process that contributes to a loss of photocurrent 95. If electron-hole 

recombination happens in the same material shortly after the exciton was dissociated, it 

is called geminate recombination (Figure 2.16 (d)). 

Another major breakthrough was the use of Buckminsterfullerene (C60) and its more 

soluble derivative [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) as the p-type 

semiconducting layer 96. PCBM has a low-lying LUMO level 97,98 and thus possesses a 

high electron affinity making it an excellent electron-accepting material for 

photovoltaic applications. Another important discovery was that fast (picosecond [ps]) 

intermolecular electron charge transfer (ICT) occurred between PCBM and a conjugated 

polymer in a bilayer configuration 99. PCBM has better solubility in common organic 

solvents than C60 (45 mg/ml and 6.5 mg/ml in chlorobenzene, respectively 100), making 

it ideal for solution-processable photovoltaics 101. The idea of introducing organic 

molecules in a heterojunction with different ionisation potentials and electron affinities 

inspired the development of a BHJ architecture (Figure 2.15 (c)) 96. A major efficiency 

improvement for BHJ organic cells was shown by Yu et al. in 1995, who engineered a 

blend of poly(2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene) (MEH-PPV) 

and PCBM at a 1:4 weight ratio, achieving a PCE of 2.9% 102. Since this discovery, work 

has been focused on morphological studies using processing additives in BHJ blends that 
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incorporate donor:acceptor polymers 103, reaching efficiencies above 11% for a 1 cm2 cell 

8. Non-fullerene acceptors within a BHJ have also shown promise as hole-selective 

materials in the absorber layer of a solar cell 104. A more detailed discussion on the BHJ 

in organic photovoltaics can be found in the introduction to Chapter 4. 

 

2.7 Charge transport in organic and hybrid 
semiconductors 

 

Organic molecules can be excited through the resonant absorption of photons of energy 

E, greater than or equal to the material bandgap, Eg. Conjugated organic semiconductors 

typically have HOMO to LUMO (excitation) energies in the visible range and can 

therefore be considered as optically active. In the case of E > Eg or E = Eg, where Eg is the 

material bandgap, an electron is able to absorb the incident photon’s energy and become 

promoted to an excited state. This leaves a positively charged vacancy (a hole) in the 

HOMO level that exerts an attractive Coulomb force on the photo excited electron. The 

promoted electron and its hole counterpart are thus coulombically bound (as an exciton) 

and in a PV device, must be separated to produce a current flow in an external circuit (as 

shown in Figure 2.16). All types of semiconductors and insulators are able to support 

excitons, which in condensed matter theory are considered an elementary particle 105,106. 

The extent to which the two charges are bound is called the exciton binding energy; its 

strength is governed by the dielectric constant, εr, within the material itself. The 

dielectric constant, also known as the relative permittivity, is the measure of the charge-

screening properties of a material relative to vacuum 107. For example, the dielectric field 

strength in the vacuum has a value of 1, whereas in water εr is equal to 88 at 0°C 108. It is 

known that the dielectric constant has a great effect on the behaviour of excitons in 

organic and inorganic semiconductors.  

Organic semiconductors, which have relatively small εr values, produce tightly bound 

excitons with length scales around 10 Å and binding energies in the range of 0.1-1 eV 109. 

Such short-range excitons are termed Frenkel excitons, and are usually the size of a 
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crystal’s unit cell 110. In contrast, inorganic semiconductors, such as GaAs, possess 

relatively large εr values, allowing a larger separation of excitons through electric field 

screening coupled with small exciton binding energies 111. Relatively long range excited 

states are termed Wannier-Mott excitons and typically have binding energies on the 

order of a few meV, which means that at room temperature (kT ≈ 25.7 meV) most 

excitons undergo spontaneous dissociation. The Bohr radius is defined as the distance 

between an electron-hole pair. Perovskite semiconductors, such as CH3NH3PbI3, have 

been shown to have exciton binding energies between 50 meV 112 and 37 meV 113, with 

respective Bohr radii of 22 Å and 28 Å. A quantum-dot is a semiconductor which 

occupies such a small space that the Bohr radius of the exciton generated is on the same 

order as the quantum dot unit cell. 

The movement of a free electron along a polymer or lattice will attract positive ions and 

repel negative ions. In doing so, it causes local distortions, and the local distortions that 

follow the excited charges give rise to an elementary excitation called a polaron. 

Polarons can be described as either lattice distortions in the HOMO level with a hole, or 

lattice distortions in the LUMO level accompanied by an electron. These distortions and 

consequential band energy decrease, causing new states to be formed within the band 

gap of the material. The population of polarons can be increased by doping a polymer 

system 114. In organic materials, mobile carriers are usually classified as a hole in the 

HOMO level or an electron occupying the LUMO level. When an electron is promoted 

into the LUMO level, it occupies space within a π*-bond. Along with an electronic 

excitation, the monomer skeleton often undergoes a structural relaxation around a 

charge, causing a shift in bond lengths or bond angles. An “aromatic” or “benzoid” 

structure is formed from confined π-electrons in the polymer’s ground state and is a 

more energetically favoured system to its counterpart, namely a “quinoid” structure. 

Quinoidal structures are formed from π* antibonding when the polymer is in the excited 

state 115,116. An example of a transition between a benzoidal to a quinoidal structure is 

illustrated in Figure 2.17 for a PEDOT monomer. The quinoidal structure of PEDOT 

demonstrates the movement of the C=C bonds, aligning preferentially along the 

polymer backbone. By doing so, bond length variations are reduced and a narrowing of 

the bandgap, Eg, is expected 117.  
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Figure 2.17 – The benzoid and quinoidal structure of poly(3,4-ethylenedioxythiophene) (PEDOT). 

Note the re-ordering of the C=C bonds in the quinoidal system. Image taken from reference 118. 

 

Charge transport within a MAPbI3 crystal begins with a photogenerated charge. Unlike 

in organic polymers, whereby the charge must transport itself by hopping between and 

along a polymer chain, charge carriers in perovskites can transport through delocalised 

energy bands. This ultimately leads to better charge carrier mobilities in the MAPbI3 

perovskite (10 – 150 cm2V-1s-1) 118,119 compared to typical conjugated polymers (10-4-10-2 

cm2V-1s-1) 120. As a consequence, long carrier diffusion lengths are possible in perovskite 

films with low monomolecular recombination rates. The diffusion length of a charge 

carrier can be calculated using the following relationship 121: 

 𝐿𝐷 = √𝐷𝑛𝜏𝑛 (2.11) 

where LD is the diffusion length, Dn and τn are the diffusion constant and charge carrier 

lifetime, respectively. Measuring the charge carrier lifetimes is discussed in more detail 

in Section 2.8, Chapter 5 and Chapter 6. The diffusion lengths of charge carriers in 

perovskites have been measured at over 1000 nm for electrons and holes in thin films 

122 and up to 100 microns in single crystals 123, distances that are much longer than the 

exciton diffusion lengths that are found in a typical organic semiconductor (1-10 nm) 

124,125.  
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2.7.1 The P-N junction 

 

For an exciton to successfully dissociate into separate positive and negative charges, it 

must first diffuse to a point of energetic asymmetry within a material system. One 

example of such a material asymmetry is that of the P-N junction, discovered in 1940 by 

Russell Ohl. Undoped Silicon (Si) is an intrinsic semiconductor, and thus the holes 

already present in the material are caused by thermally excited electrons promoted to 

the CB. Doping this material with a group III element, such as Boron, increases the hole 

concentration and therefore the material is deemed to be a p-type (positive) 

semiconductor. If the same intrinsic semiconductor is instead doped with a group V 

element, such as phosphorous, the electron concentration is increased, and thus the 

material is considered to be an n-type (negative) semiconductor. When n- and p-type 

semiconductors are brought into contact they form a so-called P-N junction. Here, an 

imbalance in work functions between the p-type and n-type materials cause a built-in 

electric field to occur at the P-N junction, which forms a favourable path for electrons 

to flow from the p-type to the n-type and vice-versa for holes, as seen in Figure 2.18. 

This flow of charge creates a charge depletion zone around the P-N junction, causing a 

high resistance barrier for majority carriers and a low resistance path for minority 

carriers. When an electron (or hole) finds itself within a p-type (or n-type) material it 

becomes a minority charge carrier. These minority carriers are meta-stable and so will 

recombine with an opposite charge in a timescale known as the minority carrier lifetime.  

Figure 2.18 (a) and (b) indicates the cross-sectional device architecture of post-fabricated 

OPV and perovskite solar cell devices, respectively, with parts (c) and (d) representing 

the energetic landscape of such devices. The band energy bending has been enhanced 

(relative to the size of the layer) for easier viewing. Applying a forward bias to these 

devices reduces the depletion region (indicated as sloped energy levels in Figure 2.18 (c) 

and (d)), increasing the diffusion current acting in the opposite direction to the drift 

current.  
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Figure 2.18 – Representative device architectures for (a) typical planar P-N Silicon solar cell and 

(b) n-i-p perovskite planar solar cell. (c-d) Schematics of the charge separation process within a 

solar cells shown in (a-b). The degree of band-bending has been enhanced to indicate the built-in 

electric field promoting charge separation. 

 

In reverse bias, where the polarity across the device is switched, the depletion region 

increases in size restricting the flow of the diffusion current. Within the depletion 

region, mobile ions exist in Debye layers (≈ 10 nm), where the decrease in electric 

potential by a factor of ‘1/e’ is known as the Debye length. The perovskite device 

heterojunctions that are explored in this thesis are based on a p-i-n structure, whereby 

the intrinsic semiconductor is a perovskite absorber layer sandwiched between p- and 

n-type charge-selective semiconductors. Charge separation in hybrid perovskite crystals 

occurs rapidly following illumination under typical device operating conditions 126, with 

photogenerated carriers having long carrier diffusion lengths 127. The role of the p- and 

n-type semiconductors in a perovskite solar cell device are to selectively transport 

mobile carriers out of the perovskite layer. Unlike organic semiconductors, the low-trap 

densities and large carrier diffusion lengths allow charges to be extracted at a planar 

interface in a perovskite solar cell 128.  
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2.8 Photophysics of organic and hybrid 
semiconductors 

 

In Chapters 4, 5 and 6 of this thesis, the absorption and photoluminescence spectra of 

organic and perovskite semiconductors is studied. In the following section, the 

absorption and emission processes involved in organic and hybrid semiconductors is 

discussed.   

 

2.8.1 Absorption of electromagnetic radiation 

 

The absorption of electromagnetic radiation can be defined as the process of 

transferring the energy of a photon to an electron, promoting it to a higher energy state. 

The lower-energy states which are filled in the ground state of a semiconductor at 0 K 

form the VB, whilst the vacant higher-energy states form the CB. From the parabolic 

approximation of the quantised electronic energy around the centre of the Brillouin 

zone, there exists an energy range in which electronic states are forbidden. The parabolic 

approximation holds well for wide bandgap semiconductors (such as those studied in 

this thesis), however, this approximation fails to account for any interaction between the 

VB and CB, and thus fails for narrower bandgap semiconductors. The energy required 

to excite the electron from the top of the VB to the bottom of the CB in a direct-gap 

semiconductor is called the bandgap energy (Eg) (see Figure 2.19 (a)). For direct-gap 

semiconductors all excitation mechanisms exist as perpendicular transitions in 

wavevector (k)-space. In organic semiconductors, the bandgap energy is defined as the 

energy difference between the HOMO and LUMO levels (π → π* transition, for 

example), which are analogous to the VB and CB, respectively. Some materials such as 

crystalline silicon (c-Si) have indirect bandgaps, whereby the top of the VB and the 

bottom of the CB are displaced in k-space, and require a phonon to supply the additional 

momentum for a complete transition (Figure 2.19 (b)). 
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Figure 2.19 – The energy (E) vs wavevector (k) schematics shown as a parabolic approximation for 

(a) a direct-gap semiconductor and (b) an indirect-gap semiconductor. (c) Indicates the absorption 

coefficients at room temperature for crystalline-silicon (blue), amorphous-silicon (orange), 

gallium-arsenide (green) and methylammonium lead-iodide (red) as a function of wavelength. Part 

(c) was taken from reference 131. 

 

As light enters a material, the intensity of the light as a function of the distance travelled 

(x) can be described by Beer’s law: 

 I(x) =  𝐼0𝑒
−𝛼𝑥 (2.12) 

where I0 is the light intensity at x = 0 and α is the absorption coefficient with units of 

inverse length (x-1).  
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The absorption coefficient of a material is strongly dependant on the frequency (or 

wavelength) of the light that enters the medium. The ratio of the light intensity at a depth 

of x to the intensity at x = 0 is known as the transmittance, T(λ). In some experiments 

the absorbance A(λ) of a material is measured which is related to the transmittance 

through the relationship: 

𝐼(𝑥)

𝐼0
= 𝑒−𝛼𝑥 = 𝑇(𝜆) (2.13) 

𝐴(𝜆) =  − log10 𝑇(𝜆)  (2.14) 

Figure 2.19 (c) plots the absorption coefficients of direct-gap semiconductors MAPbI3, 

GaAs and amorphous silicon (a-Si) together with the indirect-gap c-Si. The sharp 

increase in absorption coefficient at the absorption edge in direct-gap semiconductors 

make them excellent thin-film solar cell materials. For most visible wavelengths, the 

absorption coefficient of the MAPbI3 (MAPI) perovskite is almost 10 times that of c-Si. 

For example, at 600 nm the absorption coefficient for MAPI and c-Si are 4 x 104 cm-1 

and 6 x 103 cm-1, respectively 129. A direct consequence of using materials with large 

absorption coefficients in a device is the ability to use thinner absorber layers, thereby 

permitting cheaper fabrication processes to be implemented. 

The electronic spectra of organic molecules are arranged in order of increasing energy 

on a similar basis to that of atomic energy levels. As mentioned earlier, in a conjugated 

molecule the π-electrons first arrange themselves in orbitals with the higher-energy 

electrons occupying the HOMO level. The next available energy state is the LUMO level, 

and the energy required to jump between the top of the HOMO and the bottom of the 

LUMO levels is the molecular bandgap. As a conjugated molecule gains energy in this 

transition, the LUMO state is therefore referred to as being an excited state of the 

molecule and any electrons occupying the LUMO band are termed π*- electrons. The 

lowest energy process then involves promoting an electron from the HOMO to the 

LUMO, which is written as the π → π* transition. Due to the highly localised nature of σ-

bonds, the σ → σ* transition requires a much higher energy to break the initial σ-bond. 

As discussed in Section 2.5.2, the VBM in organic lead tri-halide perovskites such as 
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MAPI is mainly formed from the [5p] orbitals of iodine, and the CBM is mainly from 

the [6p] orbitals of the lead cation.  

The accepted direct gap transition energy for the MAPI perovskite is ≈ 1.6 eV 130,131, which 

blue-shifts as the halide anions become more electronegative (such as Br- and Cl-). A 3 : 

1 molar solution of MAI:PbCl2 produces a perovskite with small amounts of Cl- (most of 

the chloride escapes during the anneal stage as MACl), which is denoted by MAPbI3-xClx 

(MAPIC). Small doping levels of chloride in a MAPIC perovskite have been shown to 

have no measurable impact on the bandgap 132. At room temperature in the tetragonal 

space group, MAPI (MAPIC) has an emission peak at ≈ 1.61 eV, as well as a higher-energy 

peak (≈ 1.55 eV) at room temperature which disappears at higher excitation power 

densities 133. In the orthorhombic phase at 4 K (or above 400 GPa 133), the MAPIC bandgap 

widens to ≈ 1.68 eV.  

Atoms arranged within a molecule vibrate around their bonds, which alongside the 

electronic energy, adds to the overall energy in the system. Once in an excited state, the 

periodic arrangement of atoms can also change its vibrational state through various 

vibrational modes. It is important to note that the frequency at which atoms vibrate in a 

molecule is in the range of 1013 - 1014 Hz, with electronic transitions occurring in the 1015 

Hz range 134,135. This indicates that a molecule is likely to be found in its ground state 

before absorption, as the vibrational modes have energies in the range of 0.04 – 0.4 eV, 

whilst the energy provided via thermal background, kBT, is ≈ 0.025 eV at room 

temperature. The Born-Oppenheimer approximation states that the atomic and 

electronic transitions in a crystal or molecule act independently to one another as the 

atoms in molecules are much heavier than the electrons involved in electronic 

transitions. To first promote an electron from the ground state to an excited state, a 

molecule must first absorb some additional energy. In the ground state, the additional 

vibrational energy is denoted as (n1 + ½)ħΩ1, where n is the number of quanta excited 

(with selection rules only allowing Δn ± 1), and Ω is the angular frequency. This gives 

quantised energy levels above the immediate ground state energy level, S0 with 

corresponding energy E1. When n1 quanta of states of frequency Ω1 are excited, the 

energy of a molecule in the ground state can be written as E = E1 + (n1 + ½)ħΩ1. In the case 
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of a ground state to excited state transition, the singlet excited state (with energy E2) will 

also couple to vibrational modes of a molecule with the energy of such levels given by 

(n2 + ½)ħΩ2. Assuming the electron is in the lowest energy level in the ground state (and 

n1 = n2 = 0), the minimum energy for successful absorption of a photon is 134: 

 Eph = (E2 +
1

2
ħΩ2) − (E1 +

1

2
ħΩ1) (2.15) 

where Eph is the minimum incident photon energy required to instigate the S0 → S1 

transition. There is a high probability that a photon will carry more energy than is 

required for this transition, leaving the system in an excited state with excess vibrational 

energy. Before the system relaxes to the bottom of the CB (LUMO), where the electron 

can then reduce back into the VB (HOMO), the excess vibrational energy is lost in a 

radiationless process as heat energy is transferred into the solid.  

The filled bands in a molecular ground state configuration are formed of paired 

electrons with anti-parallel spins and a quantum number, S, which represents the overall 

spin of that state is equal to zero (S = 0). The letter ‘S’ used here is for the total spin 

quantum number, and is to be distinguished from the ground and multiple excited 

singlet states (S0,1,2..). In exciting the molecule by promoting an electron from the HOMO 

to the LUMO (or VB to CB), one unpaired electron is left in the LUMO (CB) and one 

unpaired electron is left in the HOMO (VB). The addition rules for angular momentum 

quantum numbers states that the excited state can have an overall spin quantum number 

S = 0 or 1, due to the multiplicity rule that suggests there are (2S + 1) degenerate levels 134. 

This gives rise to a triplet state, where S = 1 is produced from a state where the electrons 

have parallel spin vectors (see Figure 2.20 (a)). The triplet states in general have a lower 

energy value than their equivalent singlet states. Incident photons carry a spin of zero; 

therefore, only spin-allowed transitions between states of the same spin value can occur. 

For example, the singlet to triplet S0 → T1 transition is forbidden as it violates quantum 

number conservation (S = 0 → 1); however in the transition between singlet-singlet S0 → 

S1 (S = 0 → 0), the first singlet excited state (also called the absorption edge) is allowed 

and tends to dominate the absorption spectrum.  
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Figure 2.20 - (a) Visual representation of the ground state (S0), first excited singlet state (S1) and 

first excited triplet state (T1). Singlet states can be recognised through electrons (green) with anti-

parallel spins (shown by arrows). (b) Jablonski diagram for a given singlet-triplet system. The 

absorption of a photon (dark blue) promotes an electron into the first excited state (S1), producing 

an excited singlet state. Thermal relaxation (red) occurs before the electron reaches the bottom of 

the LUMO (CB), then relaxing to the ground state via an S1 → S0 transition with an emission of a 

photon (green). A small proportion of the electrons in the excited S1 state can transfer to the triplet 

(T1) state nonradiatively (dashed blue). Electrons in the T1 triplet state can transition to the S0 

ground state producing phosphorescence (pink).  

 

These same rules apply to the relaxation of electrons and the emission of photons. The 

relative lifetimes of singlet and triplet states are substantially different and lead to both 

fluorescence and phosphorescence (Figure 2.20 (b)) emission processes. As the 

transition between singlet states is dipole-allowed, it creates a favoured relaxation 

pathway with a decay lifetime of the order of a few nanoseconds 136. On the other hand, 

with a triplet-singlet transition, the lower probability (due to the spin-forbidden 

mechanism) is indicative of a process with a much longer lifetime. These dipole-

forbidden pathways typically have lifetimes on the order of milliseconds (ms), with 

experimental values for the anthracene (C14H10) at upwards of 20 ms 137,138. The process 
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of photoluminescence is the emission of electromagnetic radiation following the 

absorption of a higher energy photon, shown as a green arrow in Figure 2.20 (b) (S1 → 

S0 transition). Experiments performed in Chapters 4, 5 and 6 detected the 

photoluminescence produced from semiconductor samples.  

 

 

 

Figure 2.21 - The Franck-Condon principle applied to a two-level system including the ground 

state (S0) and the first excited singlet state (S1), including vibrational energy levels (n=0,1,2,3..) 

shown for each of the two energy states. The blue arrows indicate absorption and subsequent 

promotion of an electron to the S1 excited state, the red arrows indicate non-radiative relaxation 

and the dotted green arrows show fluorescence from the lowest vibrational state in the S1 to the 

ground state. 
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The difference in energy between the peak absorption feature and emission energy (S0 

→ S1 and S1 → S0 respectively), is called the Stokes shift 139. The probability that a 

transition from a vibrational –electronic energy level to another within a crystal or 

molecule is proportional to the degree of overlap for the vibronic wavefunctions, as 

shown in Figure 2.21. This is known as the Franck-Condon principle which describes the 

intensity of each possible transition for both absorption and emission of light. Such 

transitions are more likely to occur if the electronic wavefunctions overlap. 

Mathematically it can be described by the Franck-Condon factor using the square of the 

vibrational overlap integral, whereby the largest numerical values expressed are also the 

more likely transitions and thus produce the most intense features in a measured 

absorption/emission spectrum.  

 

2.8.2 Charge carrier lifetimes 

 

After optical excitation, a singlet energy state can be excited through the S0 → S1 

transition and relax again following the S1 → S0 transition as shown in Figure 2.20, 

emitting a photon. Assuming a non-interacting environment, the fluorescence decay 

rate can be written as 

 
𝑑𝑁

𝑑𝑡
= −𝐶𝑁 (2.16) 

where N is the total number of electrons excited following excitation and C is the decay 

constant. Solving the above equation yields the solution 

 𝑁(𝑡) = 𝑁(0)𝑒−𝑘𝑡  (2.17) 

where N(t) describes the decrease in excited electrons, N(0) is the number of excited 

electrons at t=0, k is the rate constant and t is the measured time. Assuming N(t) is 

proportional to the fluorescence intensity at time t, the emission intensity (I) can be 

expressed using 
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 𝐼(𝑡) = 𝐼(0)𝑒−𝑘𝑡  (2.18) 

This allows the decay constant to be directly measured from fluorescence lifetime 

measurements 140,141. The characteristic lifetime of a sample, τ, is equal to k-1 when the 

number of excited electrons in the sample is equal to 1/e (or 36.8%) of N(0). However, 

not all processes can be fitted with a singular exponential term, and require instead a 

multi-exponential series to describe the decay process. The decay constant, k, is a total 

sum over all of the possible radiative and non-radiative pathways. An example of a non-

radiative process is the transfer of energy to another system or a reaction that takes place 

in the excited state. This allows Equation 2.18 to be written as 

 𝐼(𝑡) = 𝐼(0)∑𝐴𝑖

𝑖

𝑒
−

𝑡
𝜏𝑖  

(2.19) 

where Ai is the amplitude of the exponential term. It is common to find a multi-

exponential fitting on organic-inorganic perovskites fluorescence lifetime 

measurements 142,143. Multiple exponential fits are used to describe a system that has 

independent emitters which decay by different decay processes.  
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Chapter 3  

 

Experimental methods 

 

This chapter details the experimental procedures and apparatus used throughout this 

thesis, with specific interest paid to photoluminescence (PL) spectroscopy, x-ray 

diffraction and photovoltaic characterisation. The first section details the materials, 

solutions and sample preparation commonly used. The second section describes a brief 

background to the physics behind the apparatus used in the characterisation of the 

samples. The general idea behind the following chapter is to give the reader a working 

knowledge of the environment used throughout the experiments presented in this 

thesis. Unless stated otherwise, all experimental work was performed at the Department 

of Physics & Astronomy or the Department of Chemistry, University of Sheffield, U.K. 

 

3.1 Materials 

  

All solvents, solutes and general materials were used as obtained and additional 

information such as product codes are shown in parenthesises. Dry components 

methylammonium iodide (MAI) (99.9% - M271), lead-chloride (PbCl2) (99.999% - M281) 

and [6,6]-phenyl-C60(or C70)-butyric acid methyl ester (PC60BM or PC70BM) (95% - 

M113) were purchased from Ossila Ltd. Solution additive hydriodic acid (HI) was 

purchased from Sigma Aldrich. The widely used p-type semiconductor poly(3,4-

ethylenedioxythiophene) (PEDOT) doped with poly(styrene sulfonate) (PSS) anions 

(PEDOT:PSS) (1:6) (Heraeus CleviosTM, Al 4083) was purchased from Ossila Ltd. Polymer 

donor systems for the use in OPV devices were provided by Dr. Ahmed Iraqi, University 
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of Sheffield, Chemistry Department, U.K. Solvents other than de-ionised (DI) water used 

throughout this thesis include N,N-dimethylformamide (DMF) (99.8%, anhydrous), 

chlorobenzene (CB) (99.8%, anhydrous), 1,2-dichlorobenzene (1,2-DCB) (99%, 

anhydrous), toluene (99.8%, anhydrous), isopropanol (IPA), chloroform (CF) and 

Hellmenex concentrate were all purchased from Sigma Aldrich. Indium tin-oxide (ITO) 

patterned quartz and quartz coated float glass substrates were also purchased from 

Ossila Ltd. All substrates throughout this thesis were cleaned in an identical manner 

unless stated otherwise, as per Section 3.2. Poly(methyl methacrylate) (PMMA) was 

purchased from Sigma-Aldrich and used to encapsulate moisture-unstable films in 

Chapter 6. 

 

 

 

Figure 3.1 - Representative structures of (a) PEDOT:PSS (dashed lines indicate coulomb 

interaction), (b) PC60BM and (c) PCPDTDTBTDI where R1,2 represent separate functional groups 

discussed in Chapter 4. 
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3.2 Substrate cleaning procedure  

 

Substrates were cleaned in boiling DI water that was added to a Pyrex dish containing 

Hellmanex (Z805939, 5 vol %) solution. The substrates contained within a substrate rack 

were then immersed in to the boiling DI - Hellmanex solution and sonicated for 10 

minutes. After this step, substrates were transferred to a new Pyrex dish containing 

boiling DI water to remove any excess Hellmanex from the substrates and sonicated 

again for 10 minutes. Once finished, the substrates were placed in to a third Pyrex dish 

containing IPA at room temperature and sonicated for a further 10 minutes. Then, 

substrates were dried using a nitrogen gun followed by solution deposition. UV-Ozone 

treatment of the quartz/ITO substrate was used for PV experiments only. This 

fabrication step has been previously shown to improve the contact between interfaces 

by removing excess carbon from the surface and increasing the ITO work function 1,2. 

UV-Ozone was not used in some circumstances because the solution cleaning procedure 

was sufficient to allow a thin-film to be deposited for non-PV experiments. When used, 

clean ITO substrates were treated with UV-Ozone for 20 minutes before solution 

deposition.  

 

3.3 Solution preparation and deposition 

 

To prepare solutions, dry precursor materials were first weighed in air and added to 

amber vials before the addition of a solvent system. Studies involving solutions where 

the solvents DMF, CB and DCB are used were mixed decanted inside a glovebox from 

larger storage bottles to form the solution. In all circumstances other than PEDOT:PSS, 

solutions were heated to 70°C for one hour to allow the solute to completely dissolve. In 

some cases, magnetic stir bars were used to further promote solubility by stirring the 

heated solution.  
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3.3.1 Perovskite solution preparation 

 

For perovskite solutions, MAI and PbCl2 were first weighed sequentially in to an amber 

vial. The molar ratio in which these compounds were mixed varies throughout this 

work, however a reference molar ratio of 3:1 (MAI:PbCl2) was used and described in 

more detail in Chapters 5 and 6. The final solution concentration for all perovskite 

mixtures was held at a value of 500 mg/ml unless otherwise stated. After weighing both 

compounds, the amber vial was transferred to a N2 glovebox together with a HI solution. 

DMF and HI were then sequentially decanted in to the vial at (100-X) vol% and X vol%, 

respectively. The ‘X’ value here represents a known concentration of HI in solution 

discussed in more detail in Chapter 5. The solution was then vortex mixed for 

approximately 30 seconds and transferred to a hot plate at 70°C. This heating step was 

performed either in a N2 glovebox or in the air depending on casting and annealing 

conditions chosen for that experiment. Typically, perovskite solutions were left for no 

longer than one hour on a hotplate before deposition.  

This time-limited heating step was implemented to reduce any DMF degradation effects 

whereby DMF can degrade to formic acid and dimethylamine over time 3. For 

perovskite PV devices, solutions were first cooled to room temperature before filtering 

through a 0.45 μm polytetrafluoroethylene (PTFE) filter. This was only performed in PV 

experiments to further reduce the chances of aggregates forming in the film after 

deposition. Solutions were then vortex mixed once more after approximately 15 minutes 

on the hot plate (at 70°C) to fully dissolve any remnant particles in the solution. After 

this second vortex mixing step, solutions were left for another 45 minutes before 

deposition of the perovskite active layer.  
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Figure 3.2 - Photograph of a 500 mg/ml solution of 3:1 (MAI:PbCl2) containing 99 vol% DMF and 

1 vol% HI. The vial used here was transparent so show the reader the colour of the solution. Note 

the solution is free of aggregates due to the addition of HI and further vortex mixing. During the 

experimental section of this thesis, amber vials were used to remove any potential light-

degradation effects 4. 

 

3.3.2 Organic solution preparation 

 

Preparing solutions for use in OPV cells followed the same procedure as described with 

the perovskite solutions in Section 3.3.1. First, a dry donor polymer was weighed 

followed by PC60BM or PC70BM in an appropriate weight ratio with the donor polymer 

(typically 1:3 for donor:acceptor blends) and is described in more detail in Chapter 4. 

Once weighed, the vial was transferred to the glovebox and a chosen solvent, typically 

CB or CB:DCB blend was decanted to make up a final solution concentration of 20 

mg/ml. After adding the solvent, the vial was vortex mixed and a magnetic stir bar was 

added before heating at 60°C overnight. Stirring the OPV solutions overnight helped the 
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mixture dissolve into solution as some solutions contained aggregates that could be 

dispersed on the thin-film surface post-spin coating. Once dissolved, solutions were first 

cooled before using a 0.45 μm PTFE filter system to remove any large aggregates. Unless 

stated, all OPV device active layers were deposited at room temperature on to room 

temperature substrates and deposited via spin coating. Active layer thicknesses varied 

depending on the polymer chosen due to a variation in polymer molecular weights. 

 

3.3.3 Spin-coating 

 

Before solution deposition, ITO substrates were cleaned as described in Section 3.2. 

Unless stated otherwise, solutions were deposited using a ‘one-step’ dynamic-casting 

method whereby a solution was deposited from a pipette in one smooth motion on to a 

spinning substrate. The final film thickness can be calculated by the following 

relationship, 

𝑇 ∝
𝑐 𝜂

√𝜔
 (3.1) 

where T is the thickness of the final film, c is the solution concentration, η is the solution 

viscosity and ω is the spin speed. As the solution is deposited on to a fast (> 1000 rpm) 

spinning substrate there is substantial expulsion of material due to the rotational forces 

exerted on the top surface of the fluid. Eventually, the thickness of the fluid layer 

becomes thin enough to co-rotate with the spinning substrate. At this point, when the 

substrate has reached its final rpm, the rotational acceleration balances the viscous sheer 

drag of the fluid layer 5. From here, the film is thin enough such that the viscous forces 

of the fluid control the film thinning rate and any remaining thickness variations is 

controlled via the post-spin annealing step. For most thin-film applications it is useful 

to fine tune the film thickness, T, by simply adjusting the spin speed which follows the 

following relationship 

𝜔 = 𝜔𝑅 (
𝑇𝑅

𝑇
)
2

 (3.2) 
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where 𝜔𝑅  and 𝑇𝑅  are the spin speed and sample thickness of the reference sample, 

respectively. Although spin-coating has been shown to achieve highly uniform films 

with good thickness control 6,7, it comes with some drawbacks. Firstly, there is a large 

percentage of waste material through this deposition technique, estimated to be between 

95-98% of initial solution 5,8. Secondly as the substrate area increases, the forces on the 

edge of the substrate also increases, leading to  the possible fracture of large-area 

substrates.  

 

3.3.4 Spray-coating 

 

Spin-coating was the preferred choice for solution deposition as the substrates and final 

pixel areas were relatively small. However, even though spin-coating produced highly 

uniform films there is currently no potential scale-up technique which utilises this 

deposition method. Spray-coating was then explored using a USI prism 300. Here, the 

ultra-sonic tip was held at 40 mm above the substrate surface and vibrated at 35 kHz 

while fluid from a coating reservoir above was fed to the tip. The ink droplets created 

were directed to the surface using a carrier gas whose pressure was set to 10 psi giving a 

wide spray pattern (c.a. 50 mm). At the same time, the spray head was scanned a distance 

of 150 mm over ITO device substrates in a single pass. It was found that multiple pass 

spray-routines created poor quality films as they tend to re-dissolve the underlying 

films. Unlike airbrush techniques in which droplets contain very little solvent when they 

reach the surface, ultrasonic spray-cast films consist of droplets that coalesce to form a 

fully wet film before drying 31. Note that the width of the spray-pattern is significantly 

larger than that of the individual device pixels (each having a size (2 x 2) mm2), and thus 

significant heterogeneity across the spray-mist pattern at the sample surface is not 

anticipated. Substrates were mounted on a hotplate to ensure stable elevated 

temperatures in order to control the wet film drying rate. 
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3.4 Sample architecture 

 

All devices described in this thesis were based on a planar architecture 9. Both organic 

and perovskite devices were fabricated using an “inverted” (or p-i-n junction) 

architecture, where the incident light enters through the transparent anode side first. 

Processing temperatures did not exceed 120 °C which is favourable for potential scale-

up applications and large-scale production by minimising the energy used.  

 

3.5 Sample preparation 

 

All photovoltaic devices were fabricated on to 20 mm x 15 mm float glass coated with a 

100 nm pre patterned fully oxidized ITO layer, as shown in Figure 3.3. The ITO surface 

roughness was measured at approximately 1 nm RMS with a resistance of 20 Ω per 

square 10. Before solution deposition, substrates were cleaned as described in Section 3.2. 

When used, a sample of PEDOT:PSS solution was decanted from the storage container 

situated in the fridge and warmed slowly to room temperature. If the solution was not 

first warmed before deposition a visible reduction in surface coverage was noticed, as 

well as the appearance of small comets of material. PEDOT:PSS was chosen for its ease 

of use and low processing temperatures 11,12 and was filtered through a 0.45 μm 

polyvinylidene fluoride (PVDF) filter before deposition. While still at room 

temperature, PEDOT:PSS was then spin coated forming a typical layer thickness in the 

range of 30 – 35 nm and subsequently annealed for 15 minutes at 120 °C. PEDOT:PSS 

was first spin coated and annealed in air (30 RH%) with some experiments utilising an 

identical secondary annealing step inside the glovebox to ensure a moisture-free film 13.  
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Figure 3.3 - Schematic representation of a typical PV device fabrication routine used with both 

perovskites and OPVs. The individual arrows are a guide to the 5 stages of fabrication and images 

(a-e) have been shown after solvent swabbing of excess material to expose the ITO contact. (a) The 

quartz/ITO substrate after cleaning. (b) After spin-coating of PEDOT:PSS layer in air (c.a. 30 nm). 

(c) Deposition of active layer via spin or spray coating in air or under nitrogen (70 – 500 nm). (d) 

Spin-coated layer of PCBM under nitrogen (70 – 150 nm). (e) Post-thermal evaporation of top 

contacts using LiF (3-5 nm) or BCP (5 nm) and Al or Ag (100 nm) under high vacuum (<10-7 mBar) 

and encapsulated with an epoxy resin/glass slide combination for increased moisture stability. (f) 

Active area slice from the device shown in (e) indicating one side of the pixel area (≈ 0.025 cm2). 

Green arrows have been added to indicate the direction of incident simulated AM1.5 light. During 

OPV fabrication parts (c) and (d) are combined with the active layer deposited from a bulk 

heterojunction precursor solution. 
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Variations in the film thickness could be caused by several factors, including insufficient 

filtering and solution warming as well as temperature and humidity fluctuations. Once 

annealed, the active area was deposited either in air or in a N2 glovebox. PCBM was then 

solution processed via spin coating completing the n-i-p junction. Electrical contact 

between the p-type semiconductor and ITO was done by thermal evaporation under 

high vacuum (see Figure 3.3 (e)). To deposit cathode contacts, substrates were first 

transferred to the glovebox and loaded on to an evaporation mask. The evaporation 

mask used to fabricate photovoltaic devices was designed to deposit 6 or 8 contacts 

depending on the ITO substrate, each creating a pixel having an active area of 2.5 mm2. 

The loaded mask was then inserted in to a thermal evaporation chamber and evacuated 

to a pressure of approximately 10-7 mbar. Evaporated films of Lithium fluoride (LiF), 

bathocuproine (BCP), Silver (Ag) and Aluminium (Al) were used throughout this thesis. 

LiF and BCP were deposited at a rate of 0.1 Å/s to form a layer of approximately 3 nm 

and Al or Ag at a rate of 1 Å/s forming a 100 nm thick layer.  

 

3.5.1 Perovskite and organic photovoltaic device fabrication 

 

To deposit the perovskite active layer, ITO / PEDOT:PSS substrates were typically spun 

at 3000 rpm for 30 seconds whilst dynamically depositing 60 μL of perovskite solution. 

For most experiments, the solution was maintained at 70°C with substrates heated to 

90°C before deposition. This process is known as “hot-casting” and has been shown to 

cause preferential orientation of perovskite crystal structures. Immediately following 

spin coating, ‘wet’ perovskite films were annealed at a temperature of 90°C for a typical 

time of 90 minutes, either in air or inside a N2 glovebox. Film thicknesses and surface 

roughness were determined post-annealing using a Dektak surface profiler. In cases 

where the perovskite active layer was annealed inside a N2 glovebox, degradation could 

occur between first air-exposure and final profilometry measurement. However, no 

visible film degradation was observed before or after determining the thickness and 

roughness properties, thus the values quoted throughout this thesis are representative 

of the final films used within photovoltaic devices. Once annealed, perovskite samples 
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were then cooled to room temperature before a final film of PC70BM was dynamically 

deposited on top of the active layer creating a film thickness of approximately 100-150 

nm. After spin coating PC70BM samples were then placed inside a thermal evaporation 

chamber ready for cathode deposition, as described in Section 3.5. For OPVs, the 

preparation of the ITO / PEDOT:PSS substrate, polymer:PCBM and cathode layers is 

identical to that of the perovskite devices mentioned above and shown in Figure 3.3. 

Once cooled to a normal N2 glovebox operating temperature (23°C), ITO/PEDOT:PSS 

substrates were typically spun at 1000 rpm during solution deposition. After spin 

coating, films were annealed at 60°C for 5 minutes to remove any excess solvent left in 

the films forming an approximate 70 nm active layer film. 

 

3.6 Processing Conditions 

 

When processing solutions and thin-films in air the temperature of the laboratory was 

fixed at 22°C, with humidity controlled over a range of 30±5 RH%. This humidity control 

was especially crucial when depositing perovskite solutions and hot-plate annealing the 

resultant ‘wet’ films. Processing under nitrogen was done using a glovebox system. The 

average H2O and O2 sensor readings were in the range of 0.1 – 0.9 ppm. To thermally 

evaporate a top contact onto a device, substrates were placed inside an evaporation 

chamber situated within the glovebox. This greatly improved the ease of fabrication and 

reduced processing times. By eliminating the exposure of samples to the ambient 

atmosphere, it ensured samples were more phase-pure and stable before the 

evaporation process.  
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3.7 Thin-film characterisation  

 

The work presented in this thesis was carried out on thin-film semiconductors. In 

Chapters 4, 5 and 6, characterisation of specific thin-films was undertaken to understand 

the crystal structures and photoluminescence properties of organic and perovskite thin-

films. In this section, a brief overview of the characterisation techniques used is 

discussed. 

 

3.7.1 Surface profilometry 

 

Atomic force microscopy (AFM) is a topographical mapping technique that relies on a 

small tip (several nm in size) at the end of a cantilever that moves across the surface of a 

sample. A technique known as tapping mode, oscillates the cantilever close to its 

resonant frequency and records the tip making contact with the sample surface at 

maximum displacement. Variations in the frequency of the cantilever are recorded by a 

reflected laser beam focused on to a 4 quadrant photodiode (see Figure 3.4). A feedback 

loop established between the photodiode and the cantilever housing maintains a 

constant amplitude by changing the height of the tip. These changes in position are 

recorded at each predetermined interval and then used to build a topographical profile 

of the sample surface. In Chapters 4 and 6 an AFM was used to map the surface of a 

sample in 3D by taking multiple line-profiles of the surface within a designated area 

using a raster-scan system.  

A Veeco Dektak surface profiler which measures the vertical displacement of a stylus in 

contact with a surface was used for all film thickness and surface roughness 

measurements. The line profiles are then used to accurately determine the depth and 

surface contour to enable effective planarization in a device stack. Before Dektak 

measurements, samples were first scored in straight lines across the film. After 

scratching, the films were then blown using a nitrogen gun to remove any excess 

material from the surface.  
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Figure 3.4 - Schematic representation of the atomic force microscope (AFM). The cantilever is 

attached to a rigid body on the machine housing and scanned in straight lines across a film. Small 

variations in the amplitude of the cantilever-tip is detected through a displacement of the laser 

spot on a photodiode. 

 

A minimum of 3 profiles was taken per sample and the values quoted throughout this 

thesis are the mean scratch depth and standard deviations from those line profiles. For 

surface roughness measurements, the same line profiles were used except a root-mean-

square (RMS) value was determined between scratched regions of the film. Again, the 

RMS values quoted in this thesis have been calculated from a minimum of 3 line profiles. 

The importance of determining film thickness and roughness was critical in optimising 

solar cell performance. Planarising films could only be done once a pre-layer roughness 

was determined. If a thin-film had an RMS roughness of, say, 40 nm, the next layers 

(typically electron-blocking) would have to be thicker than 40 nm to effectively planarise 

it and reduce the chances of forming a Schottky junction 14. 

Scanning electron microscopy (SEM) is an imaging technique in which high-energy 

electrons are focused on to a small area of a target sample. Electrons are first produced 
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inside an electron gun, usually from a tungsten wire or lanthanum hexaboride (LaB6) 

crystal source 15 and are then allowed to exit through a small slit in the housing. Below 

this slit is positioned an anode which attracts the electrons away from the filament. This 

is combined with a lens that allows the electron beam to be focused down on to the 

sample. The electron beam energy used throughout this thesis was between 1 and 5 keV 

and the gun chamber was held at a pressure of around <10-9 mBar. The sample chamber 

was pumped down to at least 10-6 mBar before imaging. High vacuum is required 

because gas particles within the chamber are able to scatter the incident electron beam. 

SEM images and energy-dispersive X-ray spectroscopy (EDX) analysis were collected 

using an FEI Nova NanoSEM 450, FEI Inspect F50 or a JEOL SEM.   

Once focused, the electrons interact with the sample surface in a multitude of ways, 

creating products such as backscattered electrons (BSE), secondary electrons (SE) and 

characteristic X-rays used for EDX. SEs are produced as an ionisation product after the 

primary electron beam interacts with the sample and are used mainly for topographical 

information. BSEs are produced when electrons are scattered off atoms in the material, 

allowing for a deeper penetration depth and increased sensitivity to the atomic mass of 

the scattered nuclei. For EDX, the primary electron beam ionises the target atom leaving 

a vacancy or ‘hole’ on the core shell. An electron from the outer shell of the target atom 

then fills in the vacancy, releasing excess energy by emitting a characteristic photon of 

known energy. In Chapter 6, EDX is used to determine the chloride content within 

perovskite thin-films containing a non-stoichiometric excess of MAI. 

 

3.8 Spectroscopy 

 

This thesis reports on two specific semiconductor systems; conjugated-polymers and 

perovskites. A variety of spectroscopic techniques are employed such as optical 

absorption and photoluminescence in both steady-state and time-resolved 

configurations (SSPL and TRPL, respectively). All UV-Visible absorption measurements 

presented in this thesis were taken in The Department of Physics & Astronomy, The 
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University of Sheffield. Photoluminescence experiments were also performed in 

Sheffield with the exception of data presented in Chapters 5 & 6, whereby low-

dimensional perovskite thin-films required a more sophisticated setup with fluence and 

temperature controls provided by the Department of Physics & Astronomy, The 

University of Southampton.  

 

3.8.1 UV-Visible Absorbance 

 

The light absorption mechanism of perovskite and polymer:fullerene thin-films is 

covered in Section 2.8.1. UV to visible (UV-Vis) spectra were determined through the 

change in transmission of light from a deuterium/tungsten-halogen lamp (Ocean Optics 

– DH-2000-BAL), using collection fibre-optic cables (Ocean Optics) in series with a 

spectrometer (Ocean Optics – HR2000+ES). For all measurements, samples were placed 

in an Oxford Instruments Drystat, with temperature being controlled between room 

temperature and 4 K in typical intervals of 10 K. All measurements were performed 

under low-vacuum (<10-3 mBar). A reference was obtained for the sample by first 

measuring a UV-Vis spectrum of the substrate (and appropriate base layers), as well as a 

reference spectrum obtained from the light source represented as I0 in Equations 2.12 

and 2.13. In Figure 3.5, the UV-Vis light source is shown as a bright white column, 

focused towards the sample using an array of lenses. The transmitted beam (blue) is first 

collimated and then focused onto a collection fibre-optic cable that is connected to a 

spectrometer.  
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Figure 3.5 - Schematic of the temperature-dependant absorption setup. The transmission from 

the sample is marked in blue. The reference spectrum is produced from a deuterium/tungsten-

halogen lamp that can be seen at the rear to the left. Light produced from this lamp is then sent 

down a fibre-optic cable (seen to the left of the figure). 

 

3.8.2 Steady-state and time-resolved photoluminescence  

 

Both SSPL and TPRL are processes that involve illuminating a sample with a laser having 

an energy greater than the material bandgap. The luminescence produced from the 

sample is then collected and directed to a detector. SSPL and TRPL are routine tools in 

the characterisation of semiconducting films, giving insights in to quenching effects and 

charge carrier lifetimes, respectively 16,17.  

In Chapters 4, 5 and 6, where SSPL was performed at The University of Sheffield, the 

emission of perovskite films were characterised as a function of temperature using a 405 

nm laser-diode (power ≈ 1 mW). The experimental setup is detailed in Figure 3.6, which 

shows a similar experimental geometry to the UV-Vis apparatus. This was designed to 
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be able to collect information regarding the transmission and emission properties of the 

sample at a given temperature on the same sample. In practice, absorption and SSPL 

measurements are performed independently at the same temperature using the same 

focusing lenses and spectrometer. Luminescence was collected using a fibre-optic cable 

and transmitted to an Ocean Optics CCD spectrometer. As with absorption 

measurements, samples were placed in an Oxford Instruments Drystat with temperature 

controlled between 300 K and 4 K. In Chapter 6, SSPL measurements of mixed-phase 

low dimensional perovskite films were taken at the Department of Physics and 

Astronomy, University of Southampton using the experimental setup shown in Figure 

3.7. The excitation repetition rate was set to 800 kHz using a power between 0.4 and 200 

µW. 

 

 

 

Figure 3.6 – The apparatus used for temperature-dependant steady-state photoluminescence 

(SSPL) measurements. Typically, SSPL data was taken in parallel with the absorption data from the 

same sample. As shown above, the UV-Vis light source is off (using a shutter) to allow the PL 

emission (shown in red) to be sent to the spectrometer on a different collection channel.  
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In TRPL, a sample is excited with a short laser light pulse, with the resultant emission 

spectrum recorded as a function of time. TRPL was performed at the Department of 

Physics and Astronomy, University of Southampton, U.K., using a time-correlated single 

photon counting (TCSPC) technique on a home-made setup shown in Figure 3.7. Here, 

samples were placed in an APD Cryogenics DMX helium cryostat, with 405 nm laser 

pulses (having width of 140 fs at a repetition rate of 4 MHz and fluences from 0.75 nJ cm-

2 to 377 nJ cm-2) provided by a Coherent Chameleon Ultra Ti-Sapphire laser system used 

to excite the film. The emitted PL was first monochromated using a Bentham M300 

single monochromator and then detected using a single photon counter APD detector. 

The estimated temporal resolution of the TCSPC system is ≈ 300 ps. For both SSPL and 

TRPL performed at the University of Southampton the diameter of the laser spot on the 

surface of the sample was approximately 130 µm. 

 

 

 

Figure 3.7 - Schematic of the apparatus used at the Department of Physics & Astronomy, 

University of Southampton. Image courtesy of Giacomo Piana.  
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3.8.3 Photoluminescence excitation  

 

To investigate energy-transfer processes within the perovskite thin-films in Chapter 6, 

PL emission intensity over the spectral-range 520-800 nm was recorded while the 

excitation wavelength was scanned between 455 and 705 nm in 2 nm increments. Here, 

the excitation was provided by light from a Fiannium supercontinuum laser that was 

filtered using a SPEX monochromator (FWHM = 1.5 nm). Emission was then recorded 

using an Andor 303i CCD spectrometer, with samples being mounted in a cold-finger 

nitrogen cryostat. The sample chamber was evacuated to a pressure of at least 10-3 mBar 

before measurements began. A spectrum was then obtained at 77 K and room 

temperature. 

 

3.8.4       Dynamic light scattering 

 

In Chapter 5, the particulate size in a perovskite precursor was measured as a function 

of the concentration of hydroidic acid (HI) as a solution additive. By performing 

dynamic light scattering (DLS), the average diameter of the particles in solution could 

be examined with varying HI concentration, shedding light on the solubility issues for 

the perovskite precursor material PbCl2. In DLS, a sample solution was exposed to a 

continuous laser beam where the fluctuations of the laser signal are measured at a known 

angle (θ) by a photon detector behind the sample. For the experiments performed in 

Chapter 5, a fixed angle θ was used to determine the mean particle size. This technique 

measures the diffusion of particles moving under Brownian motion, and converts this a 

size distribution using the Stokes-Einstein relationship: 

𝐷ℎ = 
𝑘𝐵𝑇

6𝜋𝜇𝐷𝑡
 (3.3) 

where Dh is the hydrodynamic diameter, kB is Boltmann’s constant, T is the sample 

temperature, µ is the dynamic viscosity and Dt is the translational diffusion coefficient. 

Equation 3.3 above assumes a liquid with a low Reynolds number. The velocity at which 
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particles move in solution due to Brownian motion is defined by the translational 

diffusion coefficient (m2s-1). Comparing the light intensity between small time intervals, 

a solution of larger particles will result in the correlation of the signal taking longer to 

decay than that of a solution of smaller particles 18, as smaller particles move more 

rapidly in the same solvent. This is known as the photon auto-correlation function and 

describes the velocity of Brownian motion for particles in solution (Dt), the measured 

parameter in DLS. Perovskite precursor ink solutions were prepared under 

representative conditions discussed in Section 3.3.1 above and analysed using a Malvern 

Zetasizer NanoZS instrument. The collected data was averaged over three consecutive 

measurements of ten runs each at a temperature of 25°C. 

 

3.8.5 X-ray diffraction 

 

X-ray diffraction (XRD) experiments have been widely used to characterise the crystal 

properties of a range of semiconducting thin-films and solution blends including those 

used in photovoltaics 19–24. The elastic scattering of X-rays from periodic crystal planes 

allows measurements to be made with length-scale resolutions of Angstroms to several 

nanometers. As shown in Figure 3.8, incident X-rays of energy E0 interact with a sample 

in a given volume of material. Several interactions can occur between the X-rays and the 

crystal lattice of atoms.  The first and most crucial is that of coherent scattering, also 

known as Thompson scattering 25. Here, incident photons of energy E0, which is 

relatively small compared to the ionisation energy of the target atom, elastically scatter 

with atomic electrons with no phase change or energy loss. This causes a simple 

scattering of the photons direction that remain at an energy E0 and in phase. Another 

mechanism, in which the electron absorbs some of the energy E0 but still scatter the 

incident photons is called incoherent or Compton scattering 26. In this case, the photon 

is able to partially transfer energy to the electron, however in doing so reduces its final 

energy, E1, such that E1 < E0 and also induces a phase change. Fluorescence from the 

sample can occur when incident energy E0 is able to eject a K-shell electron, leaving a 

‘hole’ that is then filled by a cascading electron from an outer shell. In doing so, the 
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excess energy is released as a characteristic photon. Energy transfer can also arise 

between inner and outer shell electrons, after which the outer shell electron is promoted 

to a vacuum level and ejected as an Auger electron.  

In Chapters 5 and 6, perovskite thin-films were subject to experiments designed to 

probe the crystallographic properties of post-annealed films. Two main experiments 

were used, that of 1D X-ray diffraction (XRD) and glancing-incidence wide-angle X-ray 

scattering (GIWAXS). The former, which involves a 1D detector to measure the scattered 

X-ray counts as a function of angle subtended from the sample, is used to detect small 

changes in the unit cell parameters of the perovskite crystal.  

 

 

 

Figure 3.8 – Representation of the different scattering products obtained from X-ray diffraction 

experiments. The incident beam with energy E0 scatters off the material within a characteristic 

penetration depth, producing non-elastic products (Compton scattering (E1) and fluorescence (E3)) 

and coherent Thompson scattering (E2 = E0). 

 

For XRD measurements performed in Chapter 5, the θ-2θ geometry was used whereby 

a sample is positioned such that the surface is facing perpendicular to the direction of 
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the incoming X-ray beam. The incident X-rays scatter off periodic crystal planes 

according to the Bragg diffraction law as follows 27: 

2𝑑𝑠𝑖𝑛(𝜃) =  𝑛𝜆 (3.4) 

where d is the distance between repeating crystal planes, θ is the scattering angle, n is a 

positive integer and λ is the wavelength of the incident light.  

The sample is then rotated slowly, changing the angle (θ) to the direction of the beam, 

where θ = 90° corresponds to the sample surface being perpendicular to the beam as 

shown in Figure 3.9 (b).  

 

 

 

Figure 3.9 – (a) An illustration of Bragg’s law displaying parallel X-rays scattering off a crystal 

lattice. (b) Visual representation of the XRD apparatus used in Chapter 5. The sample on the 

vacuum mount changes the angle of incidence (θ) and the detector maintains the angle 2θ. The X-

ray source with attenuator and slits is fixed in place during the experiment. The scattered X-ray 

intensity is measured as a function of the angle 2θ.   
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The coherent X-rays are then collected in a detector as it scans across the angle 2θ. The 

detector runs moves around angle 2θ in typical steps of 0.02° with an integration time 

of 0.2 s per step. The scan range for the XRD measurements were usually made between 

5 and 40° (2θ) with the exception of the LDP perovskites (Chapter 6), which require 

smaller angle detection due to the large d-space values.  

GIWAXS uses the same diffraction mechanism as 1D XRD but instead measures the 

scattered X-rays across a 2D detector. By using a 2D detector, the scattering vector of the 

coherent X-rays, Qi, can be determined in the x,y and z directions. GIWAXS was 

performed in a similar geometry to that of XRD with the addition of a secondary 

dimension for detecting the angular dependence of the scattered X-rays. This additional 

dimension, allows information to be gathered about the orientation of the repeating 

crystals relative to the plane of the substrate. Figure 3.10 (a-c) demonstrates the 

scattering of X-rays with initial wavevector ki incident on a sample such that k = 2𝜋/λ.  

The X-ray scatters off the sample at a certain angle (2θ) with a resulting wavevector k0. 

The momentum transfer Q⃗⃗ , is defined as the change in k, such that 

Q⃗⃗ =  𝑘0
⃗⃗⃗⃗ − 𝑘𝑖

⃗⃗  ⃗ (3.5) 

where Q⃗⃗  is a vector in reciprocal-space and both 𝑄⃗  and 𝑘⃗  have units of inverse distance. 

The maximum Q⃗⃗  is the elastic condition where ki = k0 = 2𝜋/λ, and hence the locus of 

possible scattering vectors in 3 dimensions is defined as the surface of a sphere (termed 

the Ewald sphere) with a diameter Q⃗⃗  = 4𝜋/λ. The detector records all signals where the 

reciprocal-space and the Ewald sphere intercept such that 

Q⃗⃗ =  Q =
4π

λ
sin𝜃 (3.6) 

The reciprocal-space is the Fourier transform of a real-space structure, and the peaks 

observed in reciprocal-space correspond to a repeat spacing in real-space. Q is related 

to the real-space spacing (d) such that Q = 2𝜋/d. This is shown in Figure 3.10 (d), where 

Q  is displayed on a detector in Q-space which is directly related to the interplanar-

spacing, d.  
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Figure 3.10 - (a-c) Schematic showing the formulation of a Ewald sphere (seen in 2D) which 

demonstrates the relationship between the diffraction angle (2θ), the wavevector for the incident 

(ki) and diffracted (k0) X-rays and the reciprocal lattice of the crystal vector (Q). In reality, Q has 

components in all x-, y-and z- axis. (d) 3-dimensional (3D) representation of the Ewald sphere 

applied to a crystalline sample with a representative detector image. The Qx axis is directed in to 

the page. The red and blue arrows in part (d) represent the initial and final wavevectors and Q, 

respectively.  

 

Scattering features on the detector which lie in the Qz plane only indicate repeated-

planes growing preferentially out of the plane of the substrate. Likewise, scattering 

detected in the Qxy planes are a result of crystal planes grown perpendicular to the 

substrate. A summation of identical crystal planes grown with no preferred orientation 

will appear as a semi-circle on a 2-dimensional (2D) detector, as shown in Figure 3.10 

(d). For GIWAXS measurements presented in this thesis, a sample was placed inside a 
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Kapton-sealed chamber that was pumped down to a pressure < 10-3 mBar. Here, scattered 

X-rays with a wavelength λ = 1.34114 Å were imaged on to a 2D detector (Pilatus 1M) in 

both Qxy and Qz. For perovskite measurements, the sample was angled at 0.3° below the 

horizon, creating an X-ray penetration depth of approximately 150 nm 28. In Chapter 4, 

polymer samples were subject to the same experimental conditions at an incident angle 

of 0.16° below the horizon to ensure a good penetration depth. Measurement integration 

times were set to 5 minutes and no visible beam damage was present after collecting 

data. Unless stated otherwise, samples imaged under GIWAXS have been encapsulated 

using PMMA from a solution in toluene (50 mg/ml).  

 
  

 
 

Figure 3.11 – Photographs of the experimental apparatus used for glancing-incidence wide-angle 

X-ray scattering (GIWAXS) in the Department of Chemistry, University of Sheffield. (a) X-rays are 

produced and sent down a collimation tube towards the sample chamber (white arrow indicates X-

ray direction of travel). (b) The narrow X-ray beam enters the low-pressure chamber incident on 

a sample that is mounted on a heated tilt stage at a pre-determined angle below the horizon. The 

scattered X-rays are collected on a 2-dimensional (2D) detector at a sample-to-detector distance of 

approximately 309 mm.  
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The sample-to-detector distance was chosen to be 309 mm and gives a corresponding 

‘Q-space’ detection range of approximately 0.1 – 2.5 Å-1 (63 Å – 2.5 Å in d-space). 

 

3.9 Photovoltaic device characterisation 

 

The method for characterising encapsulated PV devices was the same for both 

perovskites and OPVs. Following the fabrication routine described in Sections 3.3 and 

3.5, devices were removed from the glovebox into the ambient atmosphere of the 

cleanroom. Devices were then placed in to a push-fit test board that was designed to 

operate with the pre-patterned 8-pixel ITO substrates. Before any J-V measurement, a 

shadow mask was placed on top of the glass-facing side of the device to effectively create 

8 – 0.025 cm2 pixels. A Newport 92251A-1000 solar simulator was used to produce a 

simulated AM1.5 solar spectrum which was calibrated using an NREL certified silicon 

reference cell (100 mWcm-2 at 25 °C). PCEs were determined for a cell initially held at -

0.2 V, swept to +1.2 V and back to – 0.2 V a rate of 0.2 V s-1. 
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Chapter 4  
 

CPDT/DBS-based donor:acceptor 
copolymers for photovoltaic 
applications 
 

In this chapter, the optoelectronic properties of a number of new conjugated organic 

polymers are studied for their use in photovoltaic (PV) devices. These donor:acceptor 

(D-A) materials are based on the electron-donating cyclopentadithiophene (CPDT) and  

dibenzosilol (DBS) moieties together with a 2,1,3-benzothiadiazole-5,6-dicarboxylic 

imide (BTDI) electron-accepting unit. Devices were developed using conjugated 

polymers in a polymer:PCBM bulk heterojunction (BHJ) system. These BH devices were 

compared with those based on the well documented poly[N-9'-heptadecanyl-2,7-

carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-enzothiadiazole)] (PCDTBT) system. Two sets 

of polymers were studied, CPDT/BTDI polymers which have a narrower bandgap than 

that of PCDTBT, and DBS/BTDI polymers which have a wider bandgap relative to 

PCDTBT. Theoretical modelling of the CPDT/BTDI polymers indicate a degree of 

delocalisation of the HOMO level along the donor units. Both CPDT and DBS-

containing polymers showed a reduced absorption coefficient compared with films of 

PCDTBT having similar thickness. X-ray scattering studies on polymer:PCBM (1:3 by 

weight) blends indicate the presence of an amorphous mixture of polymer:PCBM with 

no preferred in- or out-of-plane molecular orientation.  

 

4.1. Introduction 

 

Organic semiconductors have been a hot-topic in photovoltaic research since the 

discovery of the BHJ made by Yu et al in 1995. Here, the authors fabricated a photo-
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active layer comprised of a p-phenylene-vinylene (PPV) derivative mixed with the 

fullerene PCBM, that were spin-cast from the same solution 1. The incorporation of an 

electron-accepting molecule within the polymer solution resulted in efficient exciton 

dissociation. This proved an important step due to the short exciton diffusion lengths in 

polymers and relatively high exciton binding energies 2. Previous approaches, such as 

bilayer organic junction solar cells 3,4, utilised an electron-donating/electron-accepting 

polymer bilayer structure positioned between an ITO anode and a metal cathode, and 

initially achieved a PCE of around 1% under AM2 conditions 5. The use of a BH requires 

some form of charge-selection to reduce the chances of recombination of separated 

holes and electrons at the interfaces. An efficient way to create a hole-selective contact 

is to coat a thin-layer of hole-conducting polymer poly(3,4-ethylenedioxythiophene)-

polystyrenesulfonate (PEDOT:PSS) onto an ITO electrode; this simultaneously acts as 

an electron-blocking layer and reduces the roughness of the ITO conducting surface 6,7. 

In a standard architecture device, the BH active layer is coated on top of the 

ITO/PEDOT:PSS bilayer, followed by sequential thermal evaporation of a hole-

blocking layer and a low work-function cathode. 

  

A widely explored organic polymer for PV applications is poly(3-hexylthiophene-2,5-

diyl) (P3HT). This material is comprised of repeating thiophene units (see Figure 4.1 (a)) 

having hexyl (C6H13) side chains, and when blended with PCBM can reach a PCE in 

excess of 4% 8,9. However, P3HT has an absorption onset of ≈1.9 eV (≈650 nm) 10 and 

consequently is not well matched to the visible solar spectrum. Significant steps have 

been made to optimise the HOMO and LUMO levels in polymers in order to better 

match the solar spectrum; one common approach is the development of donor-acceptor 

(D-A) copolymers 11,12. Such molecular architectures permit greater electron 

delocalisation along the conjugated polymer backbone through a push-pull mechanism 

between D and A moieties. Such D-A copolymers also allow for systematic tuning of the 

energetic-bandgap through a difference in electron densities between the donor and 

acceptor units along the polymer backbone. By combining high-lying HOMO levels and 

low-lying LUMO levels, a narrowing of the bandgap can be achieved. The tuneable 
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nature of D-A polymers make them an attractive system for research in photovoltaic 

and light-emitting applications.  

Another well explored D-A polymer is the material PCDTBT 13–16. This has an absorption 

onset at around 1.9 eV 17 (see Table 4.1), with PCDTBT:PCBM BH solar cells having 

efficiencies reported in excess of 7% PCE 18. The structure of PCDTBT is shown in Figure 

4.1 (g) and comprises a 2,1,3-benzothiadiazole (BTD) electron-donor and carbazole 

electron-acceptor units, separated by thiophene monomers. The carbazole moiety has 

additional aliphatic side chains, which have been shown to improve solubility 19. The 

BTD unit possesses excellent aromaticity through the 5 pairs of π-electrons 20 which act 

to planarise the molecular structure 21.  

 

 

 

Figure 4.1 - Structures of donor and acceptor units used throughout this chapter. Here, part (a) is a 

thiophene unit, with (b), (c) and (d) being carbazole, cyclopentadithiophene (CDPT) and 

dibenzosilole (DBS), respectively. Parts (e) and (f) show 2,1,3-benzothiadiazole (BTD) and 2,1,3-

benzothiadiazole-5,6-dicarboxylic imide (BTDI), respectively. Part (g) shows the donor-acceptor 

(D-A) repeating structure of PCDTBT. 
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In this chapter, four new D-A polymers are studied with the molecular structures shown 

in Figure 4.2. Polymers PCPDTDTBTDI-8,DMO and PCPDTDTBTDI-8,8 (named P1 

and P2, respectively) are shown in Figure 4.2 (a) and (b), where both P1 and P2 share the 

same octyl side chain attached to the CDPT electron-donor unit. The CDPT unit has 

been well documented in literature 22–26, with its derivatives resulting in reduced 

HOMO-LUMO energies and stronger intermolecular interactions 27,28. The polymers 

PDBSDTBTDI-DMO and PDBSDTBTDI-8 (P3 and P4, respectively) are shown in Figure 

4.2 (c) and (d). These materials were synthesised to incorporate the DBS electron-

donating moiety - another well studied donor unit 29–31. The DBS unit has previously 

demonstrated improved thermal stability compared to their polyfluorene analogues 

31,32. The electron-accepting unit in all novel D-A polymers explored was chosen to be 

BTDI; a strong acceptor moiety 33–35. Here, the additional side chains were modified, 

with polymers P1 and P3 incorporating a 3,7-dimethyloctyl (DMO) branched alkyl chain, 

whereas P2 and P4 contained an octyl side chain attached to the acceptor unit. 

 

The donor polymers used in the following study were synthesised by Ary Murad 

(Chemistry Department, University of Sheffield). 4,4-dioctyl-2,6-

dibromocyclopenta[2,1-b:3,4-b']dithiophene was copolymerised using direct arylation 

with 4,7-di(thien-2-yl)-2,1,3-benzothiadiazole-5,6-N-(3,7-dimethyloctyl)dicarboxylic 

and 4,7-di(thien-2-yl)-2,1,3-benzothiadiazole-5,6-dicarboxylic anhydride to produce the 

D-A polymers P1 and P2, respectively. This was performed using a 

tris(dibenzylideneacetone)dipalladium(0)-chloroform-adduct/tris(2-methoxyphenyl) 

(Pd2(dba)3.CHCl3/P(o-MeOPh)3) catalyst, caesium carbonate (Cs2CO3) base and pivalic 

acid (C5H10O2) in anhydrous toluene with n,n-dimethylformamide (DMF) as a co-

solvent. The P3 and P4 copolymers were synthesised via Suzuki polymerisation between 

bis-boronate esters and dibromides. The polymerisations were performed using a 

diacetatobis(tri‐o‐tolylphosphine)palladium(II) (Pd{P(o-tol)3}2(OAc)2) catalyst and a 

sodium bicarbonate (NaHCO3) base in anhydrous tetrahydrofuran (THF).  

 

HOMO and LUMO electron density calculations on PCDTBT, P1 and P2 were 

undertaken using density functional theory (DFT) using the B3LYP hybrid functional 
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on monomers and dimers. To simplify the calculations, alkyl side chains were replaced 

by methyl groups. The calculations were performed by Natalia Martsinovich (Chemistry 

Department, University of Sheffield).  

 

 

 

Figure 4.2 - Chemical structures of the D-A polymers used in this chapter. The letter R represents 

a side chain. The chemical structures for the copolymers are shown for (a) P1, (b) P2, (c) P3 and (d) 

P4. The average molecular weight (g mol-1) of each polymer is indicated in each diagram. Note the 

Mw for PCDTBT used in this chapter was 34,900. 

 

4.2. Electronic, optical and topographic 
properties 

 

Before introducing experimental data, the results of theoretical modelling of the 

electronic properties of the materials will first be discussed. Here, quantum mechanical 

calculations were performed using DFT on PCDTBT, P1 and P2 only. The alkyl side 

chains used in both PCDTBT, P1 and P2 were substituted for methyl groups before 

running simulations. The resulting molecular orbitals determined are shown in  
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Figure 4.3. In both the monomer and dimer models for polymers PCDTBT, P1 and P2, 

the distribution of the HOMO and LUMO levels overlap with the BTD (PCDTBT) or the 

BTDI (P1, P2) acceptor unit, signifying a photo-induced electron-transfer pathway 

between electron donor and acceptor subunits 36. It is worth noting that the calculations 

suggest that the HOMO is distributed along the polymer backbone, with partial 

localisation on the donor unit; a result more apparent in the calculations performed on 

the dimers (Figure 4.3 (c) and (d)). This result provides some evidence for the efficient 

push-pull characteristics of the D-A polymers and their application as a donor material 

37.  

 

 

 

 

Figure 4.3 – HOMO and LUMO electron density calculations on (a), (c) PCDTBT and (b), (d) P1 

and P2 provided by Natalia Martsinovich, Chemistry Department, University of Sheffield. 

Calculations were made using density functional theory (DFT) using the B3LYP hybrid functional 

on (a), (b) monomers and (c), (d) dimers. To simplify the calculations, alkyl side chains were 

replaced by methyl groups. 
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The DFT calculations suggest a LUMO density mostly confined on to the acceptor 

moiety for P1 and P2, which is similar to the PCDTBT orbital densities shown in Figure 

4.3 (a). Calculations were not performed on polymers P3 and P4, however these 

polymers are expected to be similar to P1 and P2 as the electron-donating unit (DBS) 

used in P3 and P4 results in similar electron orbital densities to those shown in Figure 

4.3 (b) and (d) 29,38. However, as P3 and P4 include a weaker donating moiety relative to 

P1 and P2, the HOMO and LUMO levels are likely to be more localised on the 

corresponding acceptor and donor units (due to the reduced push-pull ability), thereby 

increasing the electronic bandgap of the polymer 39.  

To characterise D-A polymers, thin-film samples were spin-coated from a 20 mg/ml 1:1 

solution of 1,2-dichlorobenzene:chlorobenzene (DCB:CB) 40 onto quartz glass to create 

films having a thickness of approximately 80 nm. Such films were then characterised 

using cyclic voltammetry, UV-Visible transmission, DekTak surface profilometry and 

steady-state photoluminescence (SSPL). The measured HOMO and LUMO levels are 

presented in Table 4.1 were measured by Ary Murad, Chemistry Department, University 

of Sheffield, where the onsets of oxidation were determined from cyclic 

voltammograms on drop cast polymer films on platinum (Pt) as the working electrode 

in Bu4NClO4/CH3CN (0.1 M) vs Ag/Ag+ reference electrode. For more details please see 

reference 41. 41 

The absorbance of all polymers when cast into thin-film, including PCDTBT and the 

fullerene-acceptor PC60BM, are shown in Figure 4.4. Each sample was spin-coated from 

a room-temperature solution onto quartz substrates. After coating, films were then 

annealed for 5 minutes at 60°C to remove any residual solvent. The absorbance was 

calculated from transmission data using the following relationship: 

 𝐴 = 2 − log10(%𝑇) (4.1) 

where A is the absorbance of the film and T is the transmission measured as a percentage 

(%). The optical properties, including relative HOMO and LUMO levels are summarised 

in Table 4.1. All polymers are characterised by two absorption peaks at both short and 

longer wavelengths, and cover the majority of the visible spectrum. The higher-energy 

peak observed in all polymers is attributed to a π-π* transition 33,43, with the lower-energy 

peak associated with intramolecular charge transfer (ICT) between donor and acceptor 

units 33,44.  
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Table 4.1 - Complete list of D-A polymers including thin film absorbance data. λmax and λonset refer 

to the optical absorbance maximum intensity and absorption onset at longer wavelengths, 

respectively. Egop is the optical bandgap calculated from the low-energy absorption onset. EpeakAbs 

and EpeakPL are the peak absorption and peak photoluminescence (PL) energies, respectively. Egelec 

is the energy difference between the HOMO and LUMO levels. The HOMO and LUMO values for 

PCDTBT are taken from reference 48 42.  

  

It is immediately clear the absorption peaks corresponding to π-π* transitions occur at 

higher energies in polymers P3, P4 and PCDTBT than P1 and P2. The peaks associated 

with π-π* transitions have energies of 2.69 eV (P1 and P2) and 3.19 eV (P3 and P4). A 

noticeable broadening of the π-π* transition peak can also be seen in Figure 4.4 when 

the DBS donor unit is used (P1 and P2). A broad absorption spectrum is important in 

photovoltaic applications as it will create a larger absorbing window for the incoming 

solar radiation. The overall absorption spectra for the polymers P1, P2, P3 and P4 shown 

in Figure 4.4 are very similar with the exception of an overall red-shift seen for P1 and 

P2. This red-shift is likely explained by an increase in π-electron delocalisation caused 

by the stronger electron-donating qualities of the CPDT moiety used in polymers P1 and 

P2 45. A greater π-electron delocalisation will also improve the electron-wavefunction 

overlap between the CPDT (donor) and BTDI (acceptor) monomers, which has 

previously been observed to induce a red-shift in the steady-state absorption between 

4,7-di(thien-2-yl)-2,1,3-benzothiadiazole (DTBT) and CDTBT (PCDTBT oligomers) 46,47.  

λmax λonset Eg
op Epeak

Abs Epeak
PL HOMO LUMO Eg

elec

(nm) (nm) (eV) (eV) (eV) (eV) (eV) (eV)

PCDTBT 393 654 1.89 2.23 1.81 -5.50 -3.60 1.90

P1 PCPDTDTBTDI-8,DMO 737 942 1.32 1.69 1.32 -5.20 -3.47 1.73

P2 PCPDTDTBTDI-8,8 725 930 1.33 1.70 1.32 -5.10 -3.44 1.66

P3 PBDSDTBTDI-DMO 387 713 1.74 2.13 1.54 -5.58 -3.46 2.12

P4 PBDSDTBTDI-8 388 705 1.76 2.13 1.81 -5.58 -3.42 2.16

Name
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Figure 4.4 – Attenuation coefficient from polymer films (≈ 70 nm) cast from a 1:1 (CB:DCB) solvent 

(top) and steady-state photoluminescence (SSPL) (bottom) spectra of P1 (black), P2 (red), P3 (blue), 

P4 (cyan), PCDTBT (gold) and PC60BM (magenta). All samples shown here were spin-cast onto 

quartz glass. The excitation wavelength used to generate PL was 475 nm.  
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The absorption coefficient observed for the PCDTBT film is much higher than those of 

the new polymer films, perhaps due to a reduction in optical density for the new 

polymers studied here. One possible explanation could be due to molecular distortions 

occurring along the polymer chains for copolymers P1 – 4. It has previously been shown 

that the oscillator strength, and thus absorption coefficient, can be negatively affected 

due to oligomer curvature 48. Thus, it can be speculated that the observed reduction in 

absorption coefficient may be due to PCDTBT presenting a more rigid, planar 

conformation than the polymers studied in this chapter. 

 

The steady-state photoluminescence (SSPL) spectra for all polymers and PC60BM thin-

film samples were recorded as shown in Figure 4.4 (b). Samples were measured under 

ambient conditions with an excitation wavelength of 475 nm. Again, all precursor 

solutions were made from the same 1:1 DCB:CB solvent system (at 20 mg/ml), spin-cast 

at 1000 rpm and annealed under nitrogen for 5 minutes at 60°C (70-80 nm thickness). 

For all polymers, a single broad peak was observed at the following wavelengths: 943 nm 

(P1), 942 nm (P2), 806 nm (P3) and 799 nm (P4). The PC60BM film was also characterised 

by an emission at a peak at 743 nm, with a broad shoulder at around 825 nm; a result 

similar to previous reports 49,50. Much like the ICT peak observed in absorption, 

polymers P3 and P4 have a blue-shifted peak emission wavelength relative to emission 

from P1 and P2. Indeed, a bathochromic shift in PL emission of 0.23 eV is observed 

between polymers P1/P2 and P3/P4. This energy-shift is around 50% of that seen for the 

ICT peak energy observed in absorption (0.43 eV).   

It has previously been reported that bathochromic effects are induced through a 

simultaneous destabilisation of the HOMO level (via σ-π conjugation) and stabilisation 

of the LUMO level (via σ*-π* conjugation) 25.  

 

Interestingly, there is a difference in energy between the peak in absorption associated 

with ICT and PL peak emission for the D-A polymers. P1 and P2 show a Stokes shift of 

≈ 0.38 eV, whereas P3 and P4 have a Stokes shift of ≈ 0.58 eV. For reference, the PCDTBT 

thin-film had a Stokes shift of 0.42 eV between ICT maxima and PL peak intensities. 

The enhanced Stokes shift for the DBS-containing polymers P3 and P4 is indicative of 
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an ICT-type electronic reorganisation following excitation 51. The total reorganisation 

energy immediately following excitation can be thought of as a sum of the change in 

equilibrium geometries on the donor unit and acceptor unit, following the oxidation of 

the donor and reduction of the acceptor units, respectively 52. The reduction in Stokes 

shift for polymers P1 and P2 relative to P3 and P4 can likely be explained by geometry 

relaxation. Here, the polymer geometry difference between the energy-minimised S0 

ground state and energy-minimised S1 state is greater for DBS-containing polymers P3 

and P4 than it is for CDPT-containing polymers P1 and P2. The consequence of a higher 

reorganization energy due to polymer geometry distortion is an enlarged Stokes shift 53. 

Along with reorganizational energies, other factors such as the solubility and aggregation 

properties of each polymer will also affect the Stokes shift 53–55.  

 

To probe the PL quenching ability and thus charge-transfer capabilities of the 

polymer:PCBM blends, SSPL was used on films of representative thickness to those used 

in PV devices. Here, each sample was exposed to a continuous-wave (CW) laser at 405 

nm with an incident power of 1 mW. As shown in Figure 4.5, the emission from samples 

utilising a 1:1 polymer:PCBM weight ratio exhibit increased PL emission relative to 

samples made from a 1:3 blend. This result suggests a more efficient exciton quenching 

mechanism for the higher PCBM concentration films, a result consistent with previous 

reports based on similar polymer:PCBM films 56,57. Interestingly, polymer:PCBM blends 

containing P3 and P4 produced a peak PL emission count much larger than those 

observed in P1 and P2-containg blends. For example, the 1:1 blend of P3 produced a peak 

PL count 250x brighter than a 1:1 blend containing P1. 
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Figure 4.5 - The PL quenching abilities of the polymer:PCBM blends using weight ratios of (1:1) 

and (1:3) (polymer:PCBM). Inset: PL emission spectra of P1 and P2 blends with PCBM. Note that all 

spectra were accumulated over a 5 second integration period.  

 

One possible explanation for this behaviour is poor mixing of polymer chains with 

domains of PCBM, thus resulting in poor exciton-quenching due to a reduced interfacial 

area between polymer and PCBM. This would directly impact the performance of the 

solar cells by reducing the short-circuit current, as the photogenerated excitons are not 

able to dissociate before recombining and therefore do not contribute to the 

photocurrent of the solar cell. 

 

Figure 4.6 and Figure 4.7 show 3-dimensional (3D) and 2D data files taken using a 

DekTak surface profilometer (500 x 500 nm area) for blends of the different polymers 
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with PCBM. Here, blends were prepared at 1:1 and 1:3 by weight with PCBM. All films 

were cast in the same way using a solution made from a 1:1 mixture of CB:DCB and 

annealed at 60°C for 5 minutes, replicating the device fabrication protocol discussed 

later. Topographic images of polymer:fullerene blends incorporating polymers P1 and 

P2 are shown in Figure 4.6. It can be seen that the film for polymer P1 appears to be 

structured at a length-scale of ≈ 8 nm, with the features observed most likely 

corresponding to fullerene domains. Indeed, it is found that increasing the fullerene 

concentration from 1:1 (a,b) to 1:3 (c,d) appears to increase the size of such surface 

features from approximately 8 nm to 19 nm. This increase in PCBM concentration is 

also accompanied by a reduction in film root-mean square (RMS) roughness. P1 (1:1) has 

an RMS roughness of 1.1 nm, whilst the 1:3 films had an average RMS roughness of 0.8 

nm.  

 

 

 

Table 4.2 – Root mean square (RMS) surface roughness and the average domain size for 

polymer:PCBM blends made from (1:1) and (1:3) (w/w) solutions. The RMS values were obtained 

from a minimum of 5 line profiles and the average domain size was evaluated from a minimum 

of 12 domains per sample.  

 

There is a clear difference in overall film quality shown between 1:1 and 1:3 weight ratios 

using polymer P2, as shown in Figure 4.6 (e-h).  
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Figure 4.6 - Atomic force microscopy (AFM) images of polymer:PCBM samples P1 (a-d) and P2 (e-

h) using polymer:PCBM ratios of 1:1 (a,b,e,f) and 1:3 (c,d,g,h) across a 0.5 µm2 area. 3-dimensional 

(3D) renders are shown in the left-hand column and 2D plots are shown on the right hand side. 

Each image has been individually normalised to highlight topographical features. Each film was 

cast from a solution containing a 1:1 mixture of CB:DCB. 
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Figure 4.7 - Atomic force microscopy (AFM) images of polymer:PCBM samples P3 (a-d) and P4 (e-

h) using polymer:PCBM ratios of 1:1 (a,b,e,f) and 1:3 (c,d,g,h). 3-dimensional (3D) renders are shown 

in the left-hand column and 2D plots are shown on the right. Each image has been individually 

normalised to highlight topographical features. Each film was cast from a solution containing a 1:1 

mixture of CB:DCB. 
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It is found that increasing the weight ratio to 1:3 reduces the density of domains whilst 

simultaneously lowering the overall surface roughness from 2.2 nm (1:1) to 1.2 nm (1:3). 

P3 and P4 blend films had an RMS surface roughness of approximately 2 nm. There 

seems to be no immediate impact on the topography by varying the donor unit from 

CDPT (P1 and P2) to DBS (P3 and P4). Replacing the octyl side chain (P1, P3) with a DMO 

alkyl chain (P2, P4) on the acceptor moiety also does not seem to affect the overall film 

surface post annealing. The dark blue areas observed in Figures 4.6 and 4.7 indicate low 

height levels and are likely linked to poor substrate surface coverage post-annealing. 

Further work on such copolymer:fullerene thin-film topographies in photovoltaic 

applications should focus on improving surface coverage to develop the absorbing 

potential and short-circuit current of the BHJ absorber layer.  

  

4.3. X-ray diffraction 
 

To study the structural properties of the polymers, glancing-incidence wide-angle X-ray 

scattering (GIWAXS) was used to characterise polymer films and polymer:PCBM blends 

cast from a 1:1 (CB:DCB) solvent mixture. Figure 4.8 (a) and (b) displays GIWAXS 

detector images of polymers P1 and P3 cast onto quartz glass. Due to limitations on 

available material, only neat films of polymers P1 and P3 were studied using GIWAXS. 

For measurement, each sample was positioned above the critical angle (0.16°) to ensure 

a full penetration of the X-rays into the sample. In both images, a clear ring can be seen 

at Q ≈ 0.4 Å-1 with diffuse diffraction rings at Q ≈ 1.7 Å-1 and 2.2 Å-1. Similar GIWAXS 

spectra have been obtained from a pure-PCDTBT film with diffraction scattering 

features observed at Q ≈ 0.35 Å-1 and 1.42 Å-1 (d-spacing of 18 Å and 4.42 Å). These 

reflections have been assigned to the polymer layer spacing (or lamella packing distance) 

and (010) π-π stacking distance, respectively 58,59.  

For polymer P1, the bright diffraction rings seen at Q ≈ 0.34 Å-1 and 1.76 Å-1 have a 

corresponding d-spacing of 18.5 Å and 3.6 Å, respectively. Here, the 18.5 Å reflection is 

assigned to the lamella packing distance, which is the distance between stacked polymer 

chains grown perpendicular to the substrate surface. Similarly, polymer P3 has strong 
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reflections observed at Q ≈ 0.30 Å-1 and 1.71 Å-1 (20.9 Å and 3.7 Å, respectively). The larger 

spacing value determined (20.9 Å) is again attributed to lamella packing, suggesting that 

polymer P1 undergoes a more compact stacking in the Qz direction.  

 

 

Figure 4.8 – Glancing-incidence wide-angle X-ray scattering (GIWAXS) detector images of (a) raw 

polymer P1 without high-temperature annealing and (b) raw polymer P3 without high-

temperature annealing. (c) Normalised radial integration plots of raw polymers P1 and P3 before 

and after anneal. Each sample was exposed to 5 minutes of X-ray beam without any sign of beam 

damage. (d) A representation of the perpendicular stacking and repeating unit cell (red polygon). 

dl and dπ represent the lamella packing and π-π stacking distance, respectively. Image (d) was taken 

from reference 53. 
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As P1 and P3 possess the same alkyl side chains, the overall reduction in lamella packing 

distance for P1 relative to P3 could be due to the DBS moiety on P3 causing a reduction 

in interdigitated side chains, an effect that has been observed in P3HT polymorphs 60.  

The azimuthally integrated radial profile plots of neat P1 and P3 are observed in Figure 

4.8 (c) indicate a shoulder at Q ≈ 1.53 Å-1 (4.1 Å), which is ≈ 0.4 Å larger (in d-space) than 

the peak reflection detected at Q ≈ 1.7 Å-1. The lateral offset between the parallel polymer 

layers (shown in red in Figure 4.8 (d)) could be displaced by ≈ 3.6 Å (P1) and 3.7 Å (P3), 

leading to a similar π-π stacking distance of 4.1 Å for both P1 and P3. It is currently 

unclear which reflection corresponds to the π-π stacking distance, however, reports on 

the PCDTBT unit cell have shown a parallelogram-like structure shown Figure 4.8 (d) in 

red 58.  

 

To attempt to identify the glass transition properties of P1 and P3, each sample was 

exposed to a high-temperature anneal (180°C) for 90 minutes, which is slightly above 

the glass transition temperature (Tg) of PCDTBT 13. Figure 4.8 (c) displays radial 

integration plots of polymers P1 and P3 before and after high-temperature annealing. 

For polymer P1, the observed diffraction peak at low Q shifts from ≈ 0.34 Å-1 to 0.33 Å-1 

with a corresponding shift in the peak diffraction ring from ≈ 1.76 Å-1 to 1.79 Å-1. The latter 

could be explained from a reduction in the π-π stacking distance when the polymer film 

is annealed above Tg, an effect observed in neat PCDTBT films 61. The change in lamella 

packing for P1 after the high-temperature annealing cycle is small (18.5 Å to 19 Å), and is 

most likely caused by a lattice expansion through a straightening of the polymer 

backbone in the crystalline phase. Similar effects are also observed for P3 with the 

reflection at Q ≈ 1.71 Å-1 shifting to 1.78 Å-1, however, the Q ≈ 0.30 Å-1 peak appears to 

remain stable after high-temperature annealing. This suggests the unit cell formed from 

the lamella packing of P3 is identical in both the amorphous and crystalline phase, with 

the π-π stacking distance narrowing by 0.14 Å to 3.53 Å. 

Polymer:fullerene blends were also studied using GIWAXS. Such blends were prepared 

as detailed in Section 3.3.2, and were spin-cast from a 1:1 (CB:DCB) solvent under 

identical conditions. For all polymers, the weight ratio was maintained at 1:3 

(polymer:PCBM).  
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Figure 4.9 – GIWAXS detector images of 1:3 (polymer:PCBM) blends for (a) P1 and (b) P2. Parts (c) 

and (d) indicate radially integrated spectra across Q of blends without and with high-temperature 

annealing (A) for P1:PCBM and P2:PCBM, respectively.  

 

Figure 4.9 (a) and (b) present GIWAXS images for polymer blends of P1 and P2 with 

PCBM before thermal annealing. Here, diffraction rings can be seen for the P1:PCBM 

blend around Q ≈ 0.70 Å-1, 1.42 Å-1 and 1.50 Å-1 along with additional peaks seen at Q ≈ 

0.36 Å-1 and 2.00 Å-1 shown more clearly in the radial integration spectra presented in 

Figure 4.9 (c). In the pre-annealed P1:PCBM film, scattering features observed at Q ≈ 

0.36 Å-1 and 1.50 Å-1 can be assigned to the polymer layer spacing and π-π stacking 

distance as they are similar to those shown in Figure 4.9 (c). The additional peaks at Q ≈ 

0.70 Å-1 and 2.00 Å-1 have previously been ascribed to amorphous domains of PCBM 13. 

It is worth noting that broad peaks have also been observed centred around Q ≈ 1.38 Å-1 
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for spin-cast and doctor-bladed PCBM 62,63. One possible explanation for the double 

peak around Q ≈ 1.50 Å-1 is the intercalation of PCBM within the polymer π-π stacking 

direction, enlarging the average π-π stacking distance by 0.6 Å (3.7 Å to 4.3 Å).  

 

 

 

Figure 4.10 - GIWAXS detector images of 1:3 (polymer:PCBM) blends for (a) P3 and (b) P4. Parts 

(c) and (d) indicate radially integrated spectra across Q of blends with and without high-

temperature annealing for P3:PCBM and P4:PCBM, respectively. 

 

Upon annealing beyond Tg, the P1:PCBM film loses all scattering features at low-Q whilst 

maintaining a shoulder at Q ≈ 1.50 Å-1 and a broad peak centred at Q ≈ 2.00 Å-1. This 

broadening of the Q ≈ 2.00 Å-1 (PCBM) peak is likely caused by increased disorder in the 

film and a clear reduction in long-range order as compared to the as-cast (60°C, 5 mins) 
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film. When comparing GIWAXS spectra obtained from a radial integration for P2:PCBM 

(Figure 4.9 (b)), a seemingly unchanged amorphous spectrum persists regardless of a 

high-temperature annealing stage. Returning to the AFM images shown in Figure 4.6, it 

suggests P2:PCBM blends are characterised by small, well dispersed amorphous 

domains. Previous studies of low molecular weight polymers have indicated finer, 

nanoscale domains from spin-cast (D-A) polymer:PCBM films, ascribed to a 

combination of polymer chain conformation and inter-chain interactions 64.  

 

Polymers P3 and P4, which contain a DBS and BTDI (D-A) backbone-structure, have 

similar GIWAXS patterns to as-prepared films blended with PCBM. In both blends, the 

reflections seen at Q ≈ 0.70 Å-1 and 2.00 Å-1 can be assigned to PCBM. One interesting 

feature is the reflection around Q ≈ 1.46 Å-1, which is seen for P3:PCBM before high-

temperature annealing and P4:PCBM before and after annealing. After annealing at 

high-temperature, the Q ≈ 1.46 Å-1 diffraction peak disappears in the P3:PCBM blend, 

most likely caused by a lack of crystallised domains in the amorphous film. 

After studying the electronic, topographical and crystallographic properties of the new 

polymers, photovoltaic devices were fabricated to test the operating performance of 

polymer:PCBM blends. A relatively short π-π stacking distance was shown for neat films 

of polymers P1 and P3, suggesting that efficient charge transport should occur between 

adjacent polymer chains.  

 

4.4. Photovoltaic performance  

 

An energy level diagram depicting the measured HOMO and LUMO levels for the 

polymers used in this study is shown in Figure 4.11. A dotted box is drawn around the 

D-A polymers used within the bulk heterojunction, along with the electron-accepting 

molecule PC60BM. The LUMO level of all D-A polymers is significantly lower than that 

of PEDOT:PSS, making it a suitable electron-blocking transport layer. A series of devices 

were fabricated in an inverted p-i-n architecture, in which light enters the device 

through the ITO anode. Devices were fabricated as outlined in Chapter 3 Section 3.5.1. 
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In all cases, the PEDOT:PSS and active layer thicknesses were measured at 

approximately 35 nm and 70-80 nm, respectively. Following active layer deposition, wet 

films were dried at 60 °C for 5 minutes to remove any residual solvent. The top cathode 

contact was fabricated through a sequential thermal deposition of bathocuproine (BCP) 

and aluminium, with layer thicknesses of 3 nm and 100 nm, respectively.  

 

 

 

Figure 4.11 - Energy band diagram indicating the relative HOMO and LUMO levels of the donor-

acceptor (D-A) polymers (P1-P4) used in this chapter, along with PCDTBT 42, electron-blocking 

PEDOT:PSS 65, fullerene-acceptor PC60BM (measured by Ossila Ltd.), including the ITO 65 and 

LiF/Al 66 electrodes. HOMO and LUMO levels for the different D-A polymers were measured by 

Ary Murad, Chemistry Department, University of Sheffield. Data correct to one decimal point.  

 

Due to the limited amount of each polymer available, only weight ratios of 1:1 and 1:3 

(polymer:PCBM) were studied in photovoltaic devices using the solvent system DCB:CB 

(1:1) for all blends. Blends based on P1 and P2 were also cast using a CB solvent-only 

precursor.  
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Table 4.3  - Device photovoltaic performance summary indicating the following: the solvent 

system used, weight ratio for polymer:PC60BM, layer thickness as determined via DekTak, power 

conversion efficiency (PCE), fill factor (FF), short-circuit current (Jsc) and Voc. The champion cell is 

indicated in bold for each polymer used in the active layer (bulk heterojunction). The data 

presented is taken from the average measured value with the error equal to the standard deviation 

(stdev) from 99 (P1), 99 (P2), 50 (P3), 50 (P4) and 28 (PCDTBT) individual pixels. a – The solvent 

system used for that batch of devices. b – Blend ratio for weight:weight (w:w) of polymer:PCBM. c 

– The champion cell was identified in a 1:3 batch of solar cells for all polymers with an active layer 

thickness around 71-75 nm, using a 1:1 solvent mixture of CB:DCB. 

 

P1 CB:DCB 1:1 75 ± 5 0.43 ± 0.17 29 ± 6 -3.51 ± 0.83 0.43 ± 0.18

1:3 74 ± 4 0.63 ± 0.15 36 ± 5 -4.87 ± 0.70 1.27 ± 0.44

Champion c 0.72 36 6.9 1.77

1:3 120 ± 8 0.57 ± 0.12 31 ± 4 -3.02 ± 1.11 0.39 ± 0.18

CB 1:3 73 ± 3 0.31 ± 0.16 30 ± 2 -3.41 ± 0.96 0.78 ± 0.39

P2 CB:DCB 1:1 72 ± 4 0.48 ± 0.16 30 ± 3 -2.06 ± 0.66 0.46 ± 0.28

1:3 75 ± 4 0.53 ± 0.16 34 ± 5 -2.84 ± 0.96 0.58 ± 0.10

Champion 0.64 31 -4.64 0.92

1:3 123 ± 6 0.49 ± 0.24 32 ± 5 -1.40 ± 0.53 0.23 ± 0.13

CB 1:3 70 ± 4 0.36 ± 0.22 32 ± 4 -2.22 ± 0.51 0.49 ± 0.34

P3 CB:DCB 1:1 75 ± 3 0.57 ± 0.32 28 ± 2 -0.84 ± 0.28 0.19 ± 0.08

1:3 71 ± 5 0.75 ± 0.18 29 ± 3 -1.04 ± 0.46 0.26 ± 0.09

Champion 0.92 27 -1.66 0.41

1:3 116 ± 5 0.73 ± 0.23 28 ± 3 -0.61 ± 0.39 0.18 ± 0.02

P4 CB:DCB 1:1 71 ± 6 0.36 ± 0.23 27 ± 2 -0.32 ± 0.3 0.11 ± 0.04

1:3 73 ± 4 0.63 ± 0.33 30 ± 4 -0.91 ± 0.61 0.16 ± 0.08

Champion 0.86 27 -1.67 0.38

1:3 121 ± 9 0.62 ± 0.27 29 ± 3 -0.70 ± 0.10 0.15 ± 0.06

PCDTBT CB:DCB 1:1 71 ± 6 0.65 ± 0.15 48 ± 9 -5.95 ± 1.92 3.38 ± 0.67

1:3 73 ± 4 0.72 ± 0.28 52 ± 11 -6.45 ± 1.68 3.98 ± 0.96

Champion 0.89 63 -7.48 4.38

FF (%) Jsc (mAcm-2)Voc (V)Polymer Solvent a Blend ratio b
Active layer 

thickness 
(nm)

PCE (%)
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The 1:1 DCB:CB solvent system was chosen based on reported improvements in the 

efficiency of PBDTTT-C:PCBM solar cells through an improvement in surface 

morphology by a reduction in surface roughness thought to ameliorate carrier transport 

and reduce series resistance 40. 

Table 4.3 shows a summary of device metrics determined as a result of a series of 

optimisation experiments. The best performing solvent system was found to be a 1:1 

mixture of solvents CB and DCB with an active layer thickness between 71 and 75 nm. 

The best performing polymer:PCBM blend ratio for all polymers used was 1:3. For each 

measured quantity, the average value is stated with the error equal to the standard 

deviation. Champion devices are shown in bold for each experimental condition. A 

PCDTBT reference device was fabricated using a CB:DCB solvent system 67–69. Here, the 

PCDTBT films achieved an average PCE of 4% (1:3 weight ratio) although the standard 

deviation is relatively high. This relatively lower PCE for PCDTBT:PCBM devices 

compared to previous literature values could be due to the PC60BM fullerene used in 

this experiment, which produces BH devices approximately 20% lower in efficiency than 

blends made with PC70BM 70. 

A clear trend in device PCE can be seen for the new D-A polymers, with P1 producing 

more efficient devices, having an average PCE of 1.27% and a champion PCE of 1.77%. 

However, the standard deviation (relative to the mean) is fairly large for all the polymers 

used in this study, highlighting the complex processes and film quality variations 

involved in the fabrication routine. A similar trend is also seen for the fill factor (FF) and 

short-circuit current (Jsc) values, which are explained in more detail later. It is understood 

from literature that the Voc measured from an OPV cell depends linearly on the energy 

difference between the HOMO level of the D-A polymer and the LUMO level of the 

electron acceptor 71,72. This is an ideal picture, with other factors including active layer 

thickness, interface recombination and degree of phase-separation also being important. 

On the basis of LUMO-HOMO separation, one could expect the Voc obtained from cells 

made using polymers P1 and P2 to have a lower Voc than those based on P3 and P4. As is 

shown in Table 4.3, this is indeed the case, with P3 exhibiting the largest champion Voc 

of 0.92 V at an average of 0.75 V across 50 pixels. The reference films made from 
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PCDTBT had an average Voc of 0.72 V with a peak Voc of 0.89 V. For the D-A polymers, 

the lowest average Voc was achieved using polymer P2 (0.53 V). This result is consistent 

with data shown schematically in Figure 4.11, whereby the wider bandgap polymers (P3, 

P4) have lower-lying HOMO levels and thus have a larger HOMO (polymer) to LUMO 

(PCBM) energy separation.  

 

 
 

Figure 4.12 - Device PCE statistics for all novel D-A polymers without light-soaking (LS) at AM1.5 

solar flux. (a) Raw device data from P1:PCBM ratios at 1:1 (black) and 1:3 (red). (b) Raw device data 

from P2:PCBM ratios at 1:1 (black) and 1:3 (red). (c) Raw device data from P3:PCBM ratios at 1:1 

(black) and 1:3 (red). (d) Raw device data from P4:PCBM ratios at 1:1 (black) and 1:3 (red). P1 and P2 

statistics are from 99 - 0.025 cm2 pixels, P3 and P4 statistics are from 50 – 0.025 cm2 pixels. The 

y-axis represents the number of pixels measured at a given PCE (%). The solid line represents a 

Gaussian fit. 
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The relatively poor PCE of blends based on P3 and P4 relative to P1 and P2 however 

results from low values of fill factor (FF) and Jsc, despite the clear improvements in Voc 

obtained using wider bandgap polymers. The low Jsc is likely due to a combination of 

reduced optical density relative to the PCDTBT films as observed in Figure 4.4. 

Specifically, polymers P3 and P4 obtain champion Jsc values of -1.66 and -1.67 mAcm-2, 

respectively. P3 performed better on average than P4, with an average Jsc value of -1.04 

mAcm-2 achieved compared to -0.91 mAcm-2.  Notably polymers P1 and P2 achieved a 

higher average Jsc value of -4.87 mAcm-2 and -2.84 mAcm-2 when used in a 1:3 (w:w) and 

1:1 (CB:DCB) blend. The replacement of the donor unit from CDPT (P1 and P2) to DBS 

(P3 and P4) induced a hypsochromic shift on the overall absorption spectrum as shown 

in Figure 4.4; a result consistent with the reduced Jsc exhibited by P3 and P4, as these 

DBS-containing polymer blends have reduced absorption overlap with the AM1.5 

spectrum.  

 

Since the semiconducting properties of these polymers arise from the extended π-

orbitals due to the unhybridised pz orbital along the backbone, it is necessary to arrange 

polymer chains co-facially to increase the likelihood of π-orbital interactions 73. The 

stacking of polymer chains in such a way causes the mobility of free carriers to be largely 

anisotropic. Significant efforts have been made to improve π-π stacking, which can 

ultimately be used to increase charge carrier mobility 74. It is likely the charge transport 

properties of P3 and P4 are significantly worse than P1, P2 and PCDTBT, most probably 

due to insufficient intermolecular interactions and increased trap states within the 

material bandgap 75. However, the results from the GIWAXS study indicated the π-π 

stacking distance in P1 (CPDT) and P3 (DBS) neat-polymer films appear relatively 

similar (4 Å), suggesting mobility issues could arise from defect states in the polymer. It 

is apparent that the FF is poor for the novel D-A polymers studied compared to the 

reference PCDTBT devices, a result that most likely results from reduced charge carrier 

mobilities that reduce the photocurrent and enhance non-geminate recombination.  

 

Figure 4.12 shows data for all devices tested, from a series of 298 individual pixels (99 

from P1 and P2, 50 from P3 and P4), where the number of pixels is plotted as a function 
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of the measured PCE. The solid lines in each figure represents a Gaussian distribution 

function. As is shown in Table 4.3, for all polymer:PCBM blends the PCE appears to 

increase as the PCBM concentration is increased from 1:1 to 1:3. This is clearly evident 

from the plots shown in Figure 4.12, in which it can be seen that mean PCE shifts towards 

higher values for devices having a 1:3 blend-ratio in all cases. The peak position of the 

Gaussian function is a good approximation to the statistical mean within each data set. 

A larger improvement in PCE was observed for polymers P1 and P2 over P3 and P4 as 

the blend ratio increased from 1:1 to 1:3. However, this is accompanied by an increase in 

statistical deviation from the mean value. A direct consequence of the overall 

improvement in PCE for all polymer:PCBM systems is an increase in the standard 

deviation; a trend also apparent in Table 4.3.  

 

 

 

Figure 4.13 - Current-voltage (J-V) data for champion photovoltaic pixels made using a 1:3 blend 

ratio of P1:PCBM (black), P2:PCBM (red), P3:PCBM (blue), P4:PCBM (magenta) and 

PCDTBT:PCBM reference (green) under AM1.5 illumination. Each pixel has an area of 0.025 cm2. 



130 
 

Figure 4.13 plots J-V sweeps of champion devices measured for all polymer:PCBM 

mixtures, with the individual pixel metrics displayed in bold in Table 4.3. The champion 

PCDTBT device (green) behaves similarly to previously reported devices made using a 

similar solvent system at 1:3 (w/w) with PCBM 17, highlighting that the fabrication routine 

is sufficient to produce literature-matching PCE values for PCDTBT. Efficient PV 

devices have a small series resistance (Rs) combined with a large shunt resistance (Rsh) 

component 40. Here, the Rs values for each polymer:PCBM system were calculated from 

the J-V plots shown in Figure 4.13 and found to be 34 Ω cm2, 57 Ω cm2, 235 Ω cm2 and 

305 Ω cm2 for P1, P2, P3 and P4, respectively. The calculated series resistance for the 

champion PCDTBT pixel was determined as Rs = 4.1 Ω cm2. The general trend of 

increasing series resistance from P1 to P4 is possibly related to the morphological 

structure of the post-annealed films 40. As the same weight ratio was used in all high 

performing polymer:PCBM devices, a possible variation in percolation path length 

could also explain the sudden increase in Rs 76. It is difficult to fully determine the origin 

of the series resistance as it can be caused by a number of processes including a 

combination of material junction resistances (ITO/PEDOT interface), charge carrier 

mobility and high resistivity materials used within the device stack 77,78.  

 

The Rsh was measured to be ≈ 710 Ω cm2 for the PCDTBT champion cell, whereas P1 and 

P2 had an Rsh of 209 Ω cm2 and 200 Ω cm2, respectively. The reduction of Rsh in 

polymer blends based on P1 and P2 relative to PCDTBT can be caused by several effects 

such as defects near the heterojunction allowing an alternative current pathway away 

from the load 79. P3 and P4 champion cells had an Rsh value of 587 Ω cm2 and 551 Ω cm2, 

respectively, comparable to other shunt-resistances measured in similar BHJ solar cells 

with PCBM 80. 

 

4.5. Conclusions    

 

A series of new D-A polymers utilising a similar conjugated backbone to that of PCDTBT 

were studied for their potential use in photovoltaic applications. DFT calculations 
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suggest a promising delocalisation of the HOMO level overlapping well with the LUMO 

level of the acceptor moieties in D-A polymers that utilise the CDPT donor unit. 

Although no DFT was performed on the DBS-containing polymers P3 and P4, it is 

speculated that as the DBS moiety is a weaker donor unit (and thus a reduction in the 

delocalisation of the HOMO level), this would result in a widening of the electronic 

bandgap. Thin film absorption and PL analysis suggests that, in accordance with the DFT 

results, a delocalisation of the HOMO level causes a bathochromic shift of the ICT 

absorbance peak and PL emission for polymers P1 and P2 relative to P3 and P4. A larger 

Stokes shift present in polymers P3 and P4 relative to P1 and P2 is reminiscent of a 

greater reorganizational energy following excitation. AFM images suggest a small 

enlargement of domains when using a 1:3 (polymer:PCBM) weight ratio. GIWAXS 

analysis performed on polymer films of P1 and P3 indicated a similar π-π stacking 

distance of 4 Å which reduces as the films were heated beyond the glass-transition 

temperature. Further GIWAXS experiments made on polymer:PCBM (1:3) films 

suggested a disordered, amorphous phase present in the as-prepared films, with 

P2:PCBM indicating no structural change after high-temperature heating. Photovoltaic 

devices made from D-A polymers mixed in a 1:3 blend with PCBM spun-cast from a 1:1 

(DCB:CB) solvent system produced the best devices, with champion pixels having a PCE 

of 1.77 %, 0.92 %, 0.41 % and 0.38 % for polymers P1, P2, P3 and P4, respectively. A 

combination of high series resistance and a low shunt resistance can be attributed to the 

reduction in performance relative to the reference PCDTBT device. It was speculated 

that poor mixing of polymer with fullerene when spinning and annealing the film may 

play an important role in reducing the efficiency of devices made from these polymers. 
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Chapter 5  
 

Solution engineering to improve the 
efficiency of perovskite solar cells 
 

5.1 Introduction 

 

Organic-inorganic halide perovskites are fascinating materials with great implications 

for optoelectronics. Their combination of high charge-carrier mobility, efficient light 

absorption and compatibility with low-temperature solution-based processes make 

them particularly suited to photovoltaic applications in perovskite solar cells (PSCs). 

Since the early work of Kojima et al. 1, recent research efforts have seen their power 

conversion efficiencies (PCEs) rise from 3.8% to 22.1% 2 in state-of-the art devices. 

Conventionally, PSC active layers are deposited from a precursor solution of which is 

most commonly composed of a blend of lead halides and methylammonium halides. 

After casting the precursor solution to create a wet thin-film, thermal annealing leads to 

the formation of a polycrystalline perovskite crystal film. Managing this process is key 

to producing high-efficiency PSCs, as their performance is very sensitive to active layer 

microstructure and crystal purity 3–5. To address this issue, solution additives including 

water 6,7, hydrogen iodide (HI) 8–10, alkyl halides 11,12 and chloronaphthalene 13 (when 

added in the correct concentration), have all been shown to enhance PSC device 

efficiency by controlling the perovskite crystallisation kinetics. This can be done 

through the modulation of lead salt solubility and solvent drying rate 14–16. Rather than 

the rapid perovskite crystal formation during film casting typical of single halide 

systems, mixed halide ink systems rely on extended thermal treatments to convert the 

precursor to the final perovskite form 17,18. In such systems, the crystal formation 
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dynamics are distinctly different and thus require another set of processing conditions 

for the fabrication of efficient PSCs.  

In this chapter, the well characterised MAI:PbCl2 precursor ink formulation is used in 

the single-step deposition of MAPbI3-xClx perovskite thin-films in planar PSC device 

architectures 19,20. Two different techniques to deposit the MAI:PbCl2 precursor are 

employed: spin-coating and spray-coating. While spin-coating has been the method of 

choice to fabricate PSCs, there is growing interest in the use of spray-coating 21–24, as it 

presents a ready means for possible manufacture scale-up 25. Through careful 

optimisation of PSC fabrication conditions, the addition of acidic hydriodic acid (HI) to 

the perovskite precursor solution is shown to have a marked positive effect on device 

behaviour; an observation that applies to PSCs prepared both by spin-casting and spray-

casting.  

 

5.2 Hydriodic acid solution study using 
dynamic light scattering 

 

Hydrogen iodide exists as gas at room temperature, which when dissolved in H2O forms 

an hydriodic acid (HI) solution. For this study, a 57 wt. % solution of hydrogen iodide in 

H2O was utilized. HI forms a pale yellow solution and is used primarily in industry as a 

reducing agent 26. At 57 wt% in H2O, HI has a density of 1.7 g/ml and a boiling point of 

127°C, making it suitable for the processing temperatures used in this study. Previous 

work by Heo et al. demonstrated that adding HI at 9.1 vol% to a 1:1 MAI:PbI2 precursor 

ink facilitates single-step deposition of a continuous MAPbI3 film without pinholes or 

impurities, leading to standard-architecture devices having a remarkably high PCE 

(17.2% average) 9. These authors attributed such effects to the enhanced solubility of 

MAPbI3 that favours the growth of a continuous perovskite crystal during the film 

formation process. Furthermore, it was suggested that the HI facilitated a recovery of 

decomposed MAI, resulting in the formation of a pure perovskite crystal. In the 

following chapter, HI was incorporated into the perovskite precursor between 1 and 4 
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vol% before vortex mixing and solution heating, and its effects on PSC device efficiency 

is studied in detail.  

 

 

 

Figure 5.1 - Solution study of precursor materials mixed with N,N-dimethylformamide (DMF) 

with and without HI solution. Note that the vials shown here are clear for the purpose of 

visualisation. In the actual experiments amber vials were used to reduce any UV-degradation 

effects. A stop clock is included to record the timescale of the solution study. (a) An image of MAI 

and PbCl2 powders in separate vials without solvent. (b) The same MAI and PbCl2 vials after the 

addition of 1.5 ml of DMF. (c) After vortex mixing for 30 seconds. (d) 500mg/ml solution of 2.9:1 

(MAI:PbCl2) after adding DMF. (e) The same 500 mg/ml solution after vortex mixing for 30 

seconds and (f) after addition of 1 vol% HI and a further 30 seconds vortex mixing of the 500 mg/ml 

solution.  

 

The effect of HI in the context of solution engineering is presented in Figure 5.1. It can 

be seen in Figure 5.1 (a) to (c), that by simply adding pure DMF to separate vials of MAI 

and PbCl2 it is not possible to fully dissolve the lead-halide precursor, however the 

opposite is found for the organic MAI. After ink preparation, it is observed that the 
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perovskite precursor ink appears turbid, indicating the presence of unsolvated precursor 

materials. As shown in Figure 5.1 (d) to (f), by adding small quantities of HI these 

suspended particles are effectively eliminated, leading to the formation of a clear 

solution. This observation is supported by the dramatic reduction in particulate size 

utilising the method of dynamic light scattering (DLS) after HI addition, as shown in 

Figure 5.2. This measurement confirms that on addition of HI, there is (i) a large 

reduction in solution turbidity, and (ii) a change in the average particle size. Without the 

presence of HI, the solution contains a significant population of micron-sized crystallites 

(1370 ± 480 nm). On addition of 1 vol% HI, these are apparently absent and replaced by 

a population of nanoparticles having a diameter of 1.7 ± 0.4 nm. Williams et al. 27 have 

also detected the presence of 40 nm diameter aggregates in this precursor ink 

formulation. Note that owing to difficulties associated with effectively separating the 

aggregates from their parent solutions, without significantly altering them, this 

investigation was limited to comparative studies of precursors in solution. 

Mixing the precursors leads to a large increase in PbCl2 solubility and gives the ink a 

yellow appearance implying the formation of a lead polyhalide-based soft coordination 

complex with corresponding red-shifted excitonic absorption 28. This process alone does 

not appear to be sufficient to fully disrupt the cohesive forces within the PbCl2 precursor, 

and some material remains undissolved in the ink without the presence of the HI 

additive. It is therefore clear that the HI additive has a marked effect on the PbCl2 

solubility. This can be evidenced in Figure 5.1 (e) to (f), where addition of 1 vol% HI to a 

PbCl2 solution just above its solubility limit in DMF (40 mg/ml), appears to solvate all 

the previously undissolved PbCl2 solid. This solvation process is accompanied by a 

colour change of the solution from colourless to yellow, indicative of the presence of a 

mixed lead-halide coordination compound 29. 
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Figure 5.2 - Size distribution of chloride-based aggregates measured by dynamic light scattering 

from precursor solutions, which shows a decrease in particle size as the large aggregates that are 

initially present become dispersed and solvated as more HI is added. 

 

5.3 Thin film characterisation  

 

From Figure 5.2, it is clear the addition of hydriodic acid in to the perovskite precursor 

decreases the particulate size in solution. Before solar cell devices were fabricated, 

perovskite thin-film samples were prepared from precursor solutions from a range of 

hydriodic acid concentrations. These samples were used to study the crystallographic 

properties of the perovskite crystals before and after the addition of HI. The importance 

of optimising crystallinity in perovskite solar cells is well reported, leading to greater 

charge carrier mobilities and improved solar cell device performance 30,31. 
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5.3.1  Scanning electron and white light reflection microscopy  

 

To explore the role of the HI precursor additive on modifying perovskite film-structure, 

scanning electron microscopy (SEM) was first used to explore MAPbI3-xClx/PEDOT:PSS 

films at high resolution, as shown in Figure 5.3. Here, spin-cast films from solutions 

without (Figure 5.3 (a), (c) and (e)) and with a 1% HI additive (Figure 5.3 (b), (d), (f)) are 

measured at comparable thicknesses (see Table 5.1).  

 

 
 
 

Table 5.1 - Post annealed film thickness of MAPbI3-xClx films spray-coated and spin-coated from 

precursor solutions containing different HI vol% onto ITO/PEDOT measured at five different 

locations by profilometry. Note the standard deviation in thickness is much higher for spray-

coated samples. 

 

In all SEM figures presented, the darkest areas correspond to gaps in the film that are 

most clearly identified in the back-scattered electron (BSE) images, as shown in Figure 

5.3 (a) and (b). From the latter, it is immediately clear that the film cast from the 

precursor containing the 1 vol% HI additive forms a more continuous layer and has a 

HI 
concentration

(vol%) Spin-coated Spray-coated

0 397 ± 15 311 ± 70

1 394 ± 11 330 ± 60

2 433 ± 12 331 ± 60

3 418 ± 13 572 ± 80

4 503 ± 25 459 ± 25

Perovskite film thickness 
(nm)
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significantly increased surface coverage, being 93.8% (without HI additive) and 99.7% 

with 1 vol% HI additive. 

The secondary electron (SE) images (see Figure 5.3 (c) to (f)) reveal the individual grains 

wherein the average size of the crystallites in films cast from additive-free precursor 

inks are ≈ 40% smaller than films cast with the HI additive (530 ± 20 and 390 ± 20 nm 

respectively). These findings are in agreement with morphological studies of such 

samples 14,32,33. From the lower magnification SE images (see Figure 5.3 (c) and (d)) it is 

apparent that films cast from the precursor containing the HI additive show strong local 

morphology variations and contain two distinctly different morphologies: (1) rounded 

and (2) elongated crystallites.  The latter is absent in the film cast from the precursor 

without the HI additive. This could be explained by an increase in the solubility of PbCl2 

when HI is added, where perovskite crystals are more likely to grow slowly and along 

the substrate surface producing larger crystal grains 34. In the higher magnification 

images of both materials (Figure 5.3 (e) and (f)) it becomes clear that smaller grains are 

located on top of rather larger grains.  

All of the above observations are consistent with a model proposed by Williams et al. 24, 

which explains the morphological variations in MAPbI3-xClx films are a result of 

templated topotactic self-assembly in the presence of chloride. In this model, the larger 

rectangular structures in Figure 5.3 (d) and (f) are suggested to result from the rapid 

growth of MAPbCl3, present only in films cast from fresh solutions containing PbCl2, 

which is linked to subtle variations in chloride concentration due to aggregation in the 

solution 24. It is worth noting that the absence of such rectangular features in films cast 

from solutions without the HI additive (Figure 5.3 (c) and (e)) can be related to the nature 

of PbCl2 aggregates in the additive-free solutions. Thus, the addition of HI to the 

precursor solution has a strong influence on the perovskite crystallisation dynamics and 

subsequently the resultant morphology of the converted perovskite thin-film.  
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Figure 5.3 - SEM images of ITO/PEDOT:PSS/MAPbI3-xClx thin-films spin-cast from additive free 

(parts (a), (c), (e)) and additive-containing at 1 vol% (parts (b), (d), (f)) precursor solutions imaged 

with different detectors and at different magnifications, respectively: (a) and (b) are backscattered 

electron (BSE) images, with (c) to (f) being secondary electron (SE) images. A 1 µm scale-bar is 

shown as the inset.  
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White light reflection microscopy was also used to characterise PEDOT:PSS/MAPbI3-

xClx thin-films (post anneal) that were cast using different initial concentrations of HI 

(see Figure 5.4 (a) to (d)). Here, it can be seen that films containing 0 vol % and 1 vol % of 

HI appear relatively compact, however as the HI concentration is increased, the film is 

increasingly characterised by large, disconnected crystallites having poor surface 

coverage. It will be apparent later that the addition of 1 vol% HI to the precursor solution 

enhances the performance of devices and emphasises the importance of this finding as 

a transferrable method for controlling perovskite crystallisation dynamics and 

promoting high PCE. 

 

 

 

Figure 5.4 - White light microscope images taken in reflection mode showing the development of 

PEDOT:PSS/MAPbI3-xClx thin-film microstructure upon increasing precursor ink HI vol% from 0 

% (part (a)) up to 4 % (part (d)). A 1 µm scale bar is shown as the inset in part (a). 
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5.3.2 Absorption and photoluminescence 

 

The optical absorption spectra of spin-cast perovskite films cast with and without the HI 

additive (1 vol%) deposited onto a glass substrate are shown in Figure 5.5 (a). It is found 

that there is a clear increase in optical density (by 6 %) for 1 and 2 vol% across the entire 

spectrum resulting from the addition of HI to the precursor solution. Given that these 

films are of comparable thicknesses (except 4 vol%), this increase in absorption may be 

accounted for by an increase in surface coverage across the active layer; a fact that is 

supported by SEM images shown in Figure 5.5 (a) and (b). However, since this disparity 

lies within the error of the profilometry measurement, it cannot be ruled out that a 

change in thickness between samples is responsible for the observed increase in optical 

density. Interestingly, the absorption onset is also red-shifted by 13 meV in the 1 vol% 

additive-containing films, as can be seen in Figure 5.5 (a). This red-shift in absorption 

onset is accompanied by a similar red-shift in PL emission, as is also shown in Figure 5.5 

(b), which is believed to result from enhanced perovskite crystal growth 9. Similar red-

shift behaviour has been seen for perovskites with larger crystallites relative to a 

reference film 35. An enhancement in crystallinity causes an overall increase in 

absorption across a wide spectral range producing a larger PL intensity. This is also due 

to a decrease in bandgap energy and longer carrier lifetimes in larger crystal domains, 

indicative of a reduction in biomolecular recombination and defect density. As discussed 

later, a reduction in lattice strain can also indicate a small change in the perovskite lattice 

parameters, aiding in the formation of larger crystallites and thus inducing a red-shift 

36.  

The inset to Figure 5.5 (b) presents SSPL spectra for perovskite films on quartz glass 

containing, 0, 1, 2 and 3 vol% HI in the precursor. It is clear the emission from the 1 and 

2 vol% samples is enhanced relative to the reference (0 vol%) films most likely due to the 

improved crystallinity (see XRD analysis later). The PL emission peaks show a 

progressive red-shift with increasing HI concentration, with peaks at 761, 768, 774 and 

781 nm for 0, 1, 2 and 3 vol% films, respectively. This appears to contradict the blue-shift 

observed in higher HI concentrations (3 and 4 vol%).  
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Figure 5.5 - Optical spectroscopy of spin-cast ITO/ MAPbI3-xClx thin-films prepared from 

precursor solutions with (red line) a 1 vol% HI-additive and without (black line). Part (a) plots optical 

absorption spectra using a HI concentration between 0 and 4 vol%. Part (b) shows normalised 

steady-state PL spectra for 0 and 1 vol% HI concentration (black and red lines respectively). The 

inset in (b)  shows steady-state PL spectra for varying HI concentration without a PEDOT:PSS layer. 
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One possible explanation for this red-shift behaviour is that higher concentrations of 

iodide in the precursor (in the form of acidic HI) could drive the perovskite formation 

dynamics in the drying film to produce more ‘phase-pure’ MAPbI3 grains, instead of a 

mixed-halide system which incorporates chloride ions (MAPbI3-xClx). Introducing more 

electronegative halides into a pure-iodide perovskite precursor will blue-shift the peak 

emission from the sample 37,38. Thus, it can be speculated that higher concentrations of 

iodine in the precursor reduces the chloride content in the resultant perovskite film. 

To understand the free carrier and exciton kinetics of 0 vol% and 1 vol% HI-additive 

perovskite films on p-type PEDOT:PSS, time-resolved photoluminescence (TRPL) was 

performed at a range of fluencies at 290 K. For more information on the experimental 

setup used, please see Section 3.8.2. As shown in Figure 5.6, the PL decay characteristics 

show similar trends for both samples as a function of laser fluence, comparable to other 

fluence-dependant measurements performed on related perovskite materials 39,40. The 

extracted fitting parameters from a bi-exponential fit 43,44 are shown in Table 5.2. Here, 

the fast decay component (τ1) is attributed to non-radiative recombination pathways 

(charge extraction, traps and surface effects) 45 and the slow component (τ2) is related to 

the radiative combination within the bulk of the perovskite 46,47. 

The fast decay component (τ1), associated with nonradiative charge recombination and 

charge transfer to the PEDOT:PSS layer, is largely unchanged with increasing fluence. 

However, it is worth noting that these perovskite films were prepared to replicate device 

conditions and as such the film thicknesses are in the order of 400 nm (see Table 5.1), 

with each sample being illuminated at the top perovskite surface (side away from the 

glass substrate). At an excitation wavelength of 405 nm, the expected penetration depth 

of MAPbI3 is < 100 nm 48,49 and as such the true charge-extraction properties of these 

films is unclear. Previous bi-layer perovskite film studies have seen an increase in the τ1 

decay component when probing the interface side directly 50. Future experiments 

studying the charge-extraction properties of solution additive perovskite films should 

take this effect in to consideration, with measurements being taken at the air/perovskite 

and PEDOT:PSS/perovskite interface.  
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Figure 5.6 – Time-resolved photoluminescence (TRPL) spectra at 3 laser fluencies for (a) 0 vol % 

and (b) 1 vol% HI resultant films. (c) A schematic representation of the fluence-dependant 

recombination mechanism in perovskites. Image (c) was adapted from reference 41. 

 

Across the range of laser fluencies, the HI additive (1 vol%) sample produced longer τ2 

lifetimes, indicative of a lower defect density (reduced levels of nonradiative 

recombination) and greater electron transport qualities in the bulk of the material 51. 

This improved carrier lifetime in the bulk would also correlate with a longer charge 

diffusion length, which has been shown to significantly improve the performance of 

planar architecture perovskite solar cells 51,52. At low fluence (5.8 nJ/cm2), the inclusion 

of 1 vol% HI lengthens the radiative recombination lifetime from 52.8 ns to 101.2 ns, an 

increase of over 90%. Upon increasing the laser fluence, both samples displayed a 

reduced τ2 lifetime. The decrease in PL lifetime as a function of laser fluence can be 

explained by a relationship between photoinduced electrons, trap states and the 

photodoped hole concentration. The term ‘photodoped’ here describes the large 

concentration of holes that exist due to filled electronic trap states in the steady-state 41. 
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Table 5.2 – A summary of the extracted parameters from a bi-exponential fit of the TRPL traces. 

Ax and τx represent the amplitude and the decay lifetime of each exponential, respectively and <τ> 

is the amplitude-weighted average lifetime. 

 

Even at low laser fluencies, the concentration of photoinduced electrons is much lower 

than the total hole concentration, as the trap-assisted recombination lifetime for 

electrons is quite slow in the MAPbI3 perovskite (microsecond timescale) 42. Therefore, 

the level of photoexcitation at low fluence does not significantly change the hole 

concentration, which in turn will produce a near-monoexponential recombination 

mechanism. Moreover, by increasing the concentration of photoexcited electrons and 

holes to the point at which they becomes equal to the photodoped hole concentration, a 

bimolecular recombination mechanism is expected (Figure 5.6 (c)). As the free electron 

concentration decreases, the favoured pathway shifts to monomolecular recombination. 

This fluence-dependency trend has previously been observed in hybrid perovskites 53,54, 

attributed to fast second-order recombination with increasing charge carrier 

concentration.  

After the observation of improved charge-carrier lifetimes in the HI-additive films, X-

ray diffraction patterns were then taken from films cast from a range of HI-additive 

concentrations. The following section discusses results from such experiments, 

performed at the Department of Materials Science and Engineering, University of 

Sheffield. 

Power density A1 τ1 A2 τ2 <τ>

(nJ.cm-2) (%) (ns) (%) (ns) (ns)

5.8 23.8 7.3 62.2 52.8 40.2
23.7 38.3 11.2 58.9 42.1 29.9
94.2 41.2 7.0 56.0 28.3 20.5

5.8 15.0 9.0 67.1 101.2 84.4
23.7 27.6 7.6 68.5 49.1 37.2
94.2 25.1 6.2 71.3 45.9 35.6

HI conc.

0 vol%

1 vol%
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5.3.3  X-ray diffraction 

 

XRD patterns were recorded from films cast from precursor solutions both with and 

without a selection of HI additives onto a quartz glass surface, as shown in Figure 5.7. 

Peaks associated with the MAPbI3 perovskite are located at 14.3 and 28.6 

(tetragonal I4/mcm (β) phase) 57 corresponding to the (110) and (220) planes, respectively. 

The small reflection at 23.4º has been assigned to the (111) plane of the mixed halide 

MAPbI3-xClx perovskite cubic Pm3m phase 58. All of these peaks are more intense and 

shifted to smaller angles (larger d-spacing) in films cast using the HI additive. This result 

suggests that the perovskite lattice spacing increases from 6.29 to 6.32 Å in response to 

the addition of 1 vol% HI to the precursor ink; a result also consistent with red-shifted 

absorption and PL onsets, shown in Figure 5.5. A change in composition, possibly due 

to differences in chlorine concentration, may explain this effect in terms of lattice 

distortion 59. 

In Section 5.2 it was shown that by adding small quantities of HI, suspended particles 

were effectively eliminated leading to the formation of a clear solution containing 

particulates approximately one nanometre in size. This is supported by the peaks 

associated with increasing HI concentration beyond 1 vol%, where strong reflections are 

observed at 12.2º and 15.8º. These new peaks can be assigned to the (001) plane of PbI2 

57,60
 and the (100) plane of the MAPbCl3 perovskite, respectively 61,62. These reflections 

are not observed in the 0 vol% and 1 vol% samples. This further indicates that HI helps 

dissolve PbCl2 particulates up to 1 vol%, as MAPbCl3 and other chloride-based 

intermediates are not present in the final thin-films containing 0 and 1 vol% of HI 

additive. These extra I¯ ions could assist in the removal of excess chloride in the form of 

CH3NH3Cl gas 59,63. However, at concentrations greater than 2 vol% HI, the resultant film 

contains PbI2 and MAPbCl3 impurities which could be formed from the incomplete 

conversion of precursor materials into 3-dimensional (3D) MAPbI3. 
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Figure 5.7 –X-ray diffractograms of representative quartz/MAPbI3-xClx thin-films spin-casted 

from a precursor solution containing 0 vol% (black), 1 vol% (red). 2 vol% (blue), 3 vol% (magenta) and 

4 vol% (green). (a) Indicates the full measured spectrum of the thin-film samples, (b) a close up of 

the (110)/(002) reflection and (c) a close-up version of the (220) and the emergence of the (004) 

plane. The XRD apparatus was first calibrated using a reference sample before running the above 

measurements. 

 

 

Figure 5.7 (c) indicates the appearance of an additional peak at lower angles for higher 

HI concentrations as well as the (220) plane. The more intense peak for 0 – 3 vol% 

samples is assigned to the (220) plane, however, a shoulder appears around 28° for 

increasing HI concentrations. One possible explanation is that higher volumes of HI 

partially disrupt the growth of the MAPbI3 resulting in perovskite crystal domains grown 
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with different orientations relative to the substrate. Previous reports suggest that the 

(00l) plane preferentially orientates parallel to the substrate for perovskite films cast 

from iodide-only precursors 66, from which the (004) plane is expected at 28°. Therefore, 

at higher HI concentrations, an increase in disordered crystal growth direction is 

observed through the appearance of the (004) plane. The introduction of crystal grains 

at different orientations would also present an increase in the number of grain 

boundaries. Therefore, films cast from relatively high HI concentrations (2 - 4 vol%) may 

have a greater potential for trap-assisted recombination and thus a reduction in short-

circuit current.  

 

5.4 Solar cell characterisation 

 

A series of devices based on the inverted-structure ITO/PEDOT:PSS/ MAPbI3-

xClx/LiF/Al were fabricated, where the active perovskite film was deposited from a 

MAI:PbCl2 precursor solution in DMF with HI additive between 0 and 4 vol%. As two 

methods of deposition were used, namely spin and spray-coating, optimisation required 

several stages to create the best devices for study. First, a basic planar device architecture 

was developed and used in both deposition routines. The deposition of the PEDOT:PSS 

layer is described elsewhere in Section 3.5 and was consistent throughout the following 

study. For the active layer, a solution made from a molar ratio of 2.9:1 (MAI:PbCl2) was 

used containing DMF with varying amounts of HI solution. The precursor was held at a 

temperature of 70 ºC before spin coating and the ITO/PEDOT:PSS films were held at 

90ºC or 70ºC prior to perovskite deposition for spin and spray-cast techniques, 

respectively. The perovskite precursor solution was deposited at ambient temperature 

for spray-coating, with the substrates held at 70°C. Immediately after spin- or spray-

coating, the ITO/PEDOT:PSS/MAPbI3-xClx (wet) films were annealed at 90 ºC for 90 

minutes in air (30-32 RH%).  

The perovskite films were coated via spin-coating with a PC70BM electron-extraction 

layer. Spin-cast films of PC70BM were deposited in a nitrogen-filled glove-box. PC70BM 
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solutions for spin-casting were prepared at 50 mg ml-1 or 70 mg ml-1 in chlorobenzene, 

creating 150 and 200 nm thick films respectively. Prior to deposition, PC70BM solutions 

were heated to 70 ºC for 1 hour, allowed to cool and then filtered through a 0.45 µm 

PTFE syringe filter. A cathode of LiF and aluminium was thermally evaporated at 2 nm 

at 0.1 Å s-1 and 100 nm at 1 Å s-1 respectively within a vacuum chamber held at ca 10-6 

mbar. Devices were encapsulated using a UV-treated epoxy and encapsulation glass slide 

before testing. All pixel current-voltage (J-V) characteristic measurements underwent 

light-soaking (LS) to establish a stabilised power output. LS has been shown to improve 

device performance over several minutes due to the passivation of surface trap states at 

material interfaces 67,68.  

 

 

 

Table 5.3 - Performance metrics of PSC devices measured under 1 Sun simulated AM1.5G 

irradiation after 10 minutes light soaking (LS). LS is where a device is held under continuous 

illumination before a given measurement. Average values are expressed in bold. The spread in 

metrics is represented by the standard deviation. 

0 vol% 1 vol% 0 vol% 1 vol%

6.7 (7.7) 12.5 (13.8) 6.1 (8.7) 10.0 (11.4)

± 0.9 ± 0.9 ± 1.5 ± 1.2

58 (66) 71 (77) 65 (68) 67 (70)

± 8.8 ± 3.6 ± 2.2 ± 3.3

14.1 (17.2) 19.3 (22.6) 12.8 (14.6) 17.0 (17.4)

± 1.3 ± 1.4 ± 1.3 ± 0.8

0.82 (0.88) 0.91 (0.97) 0.73 (0.88) 0.88 (0.93)

± 0.07 ± 0.03 ± 0.10 ± 0.06
Voc (V)

Spin-cast
Metric

Spray-cast

PCE (%)

FF (%)

Jsc (mAcm-2)
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Firstly, inverted perovskite devices were studied using the reference mixture (0 vol% HI) 

and a low concentration of HI additive at 1 vol% for spray and spin-coated devices. It is 

worth noting here that the active layer thicknesses between 0 and 1 vol% samples were 

very similar for both spray and spin coated layer, respectively. This implies that any 

device performance effects produced by the addition of HI should be associated with 

improved crystallinity or surface coverage and not simply a change in active layer 

thickness.  

Without the addition of HI (0 vol%), devices had an average PCE of 6.1±1.5 % and 6.7±0.9 

% for spray and spin coated active layers, respectively, after light soaking for 10 minutes. 

Champion PCEs for 0 vol% HI devices reached 8.7 % and 7.7 % for spray and spin coated 

devices, respectively. These values are lower than previous studies on spin-coated mixed 

iodide-chloride single cation inverted perovskite devices 69. One possible reason for this 

reduced performance is incomplete solution mixing leaving undissolved material. 

Although the solution was left for an hour at 70 ºC, particulates at micron size can still 

be detected as seen in Figure 5.1.  However, after incorporating HI into the precursor at 

1 vol%, a marked improvement in PCE is seen for both deposition routes. Average PCEs 

measured for spray-coated samples increases from 6.1±1.5 % (0 vol%) to 10.0±1.2 % (1 

vol%); an overall improvement in PCE by 64% together with a small reduction in the 

deviation of pixel PCE from the mean. Enhancements in both Voc and Jsc can be 

attributed to this significant change in device performance, discussed in more detail 

later. The same can be seen for devices with a spin-coated active layer, whereby the 

addition of 1 vol% HI improves the PCE from 6.7±0.9 % to 12.5±0.9 %; an improvement 

of 87 %. 

Increasing the HI concentration above 1 vol% does not result in further PCE gains. At 2 

vol%, the average PCE falls to around 10 % (3 %) for spin- (spray-) cast devices. However, 

this figure still exceeds that of the average reference 0 vol% devices created using the 

spin-cast route. At 2 vol% in spray-cast devices, the PCE decreases significantly whereby 

the average device performed worse than the reference devices as shown in Figure 5.5 

(b) and (d). It is likely doubling the HI concentration from the optimum alters the wet 

film drying dynamics such that the resultant perovskite film quality is reduced. 
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Although the average PCE improves slightly between 3 and 4 vol% (spin only), the 

standard deviation (represented by error bars in Figure 5.8 (b)) also increases. By 4 vol% 

in spray-coated devices, the average PCE had dropped below 1 %. It is likely the observed 

drop in PCE for larger HI concentrations is a result of introducing more grain 

boundaries in the annealed films as discussed earlier.   

 

 

 

Figure 5.8 - Device PCE statistics from varying HI precursor concentration with and without light-

soaking (LS) at AM1.5. (a) Raw device data from spin coated samples at 0 vol% and 1 vol% measured 

from 39 and 28 0.025 cm2 pixels, respectively. The solid line represents a Gaussian fit. (b) HI 

additive tuning for spin-coated devices (c) Raw device data from spray-coated samples at 0 vol% 

and 1 vol% measured from 24 pixels in both cases. (d) HI additive tuning for spray-coated devices. 

The y-axis in (a) and (c) represent the number of pixels measured at a given PCE (%). 
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The average Jsc for spray cast reference devices was 12.8±1.3 mAcm-2 and 14.1±1.3 mAcm-

2 for spin cast reference devices. The improved Jsc shown for spin coated samples could 

be explained by a discrepancy in final film surface coverage after annealing. Due to the 

mechanism in which films are coated via spray-coating deposition and droplet 

coalescence, surface coverage can be reduced when compared to films made via spin-

coating as some droplets may not coalesce sufficiently leaving pin-holes. Another 

possible mechanism for the disparity between the two values could be that a rougher 

film is produced when spraying the perovskite films (Table 5.1), changing the reflective 

properties of the film and thus affecting Jsc. Upon the addition of HI, both deposition 

routes indicate an increase in Jsc. These values increase to 17.0±0.8 mAcm-2 and 19.3±1.4 

mAcm-2 for spray and spin-coated devices respectively, indicating an overall 

improvement in film quality. This increase in film coverage is partially responsible for 

the observed increase in PSC photocurrent due to the enhanced optical absorption in 

these films, as presented in Figure 5.3 (a) and (b). The TRPL results also indicate a longer 

τ2 lifetime in films cast from 1 vol% HI precursor solutions, a result consistent with a 

reduction in non-radiative recombination pathways and increased Jsc. 

The average Voc for reference devices was measured at 0.73±0.10 V for spray coated and 

0.82±0.07 V for spin-cast devices. After HI addition, these values increased to 0.88±0.06 

V and 0.91±0.03 V, respectively. However, it is also likely that in devices processed 

without the HI additive, uncovered regions of PEDOT:PSS could form a Schottky 

junction with the overlying PCBM leading to an overall reduction in cell Voc
  70. As both 

deposition routines show a similar trend in improved Voc, it is possible that HI helps 

reduce recombination in the device and thus reducing the dark saturation current 

independent of the deposition route 71,72. This is consistent with SEM images and 

absorption profiles (see Figure 5.3 and Figure 5.5, respectively), showing both domain 

size increase and improved spectral absorbance after adding HI at 1 vol%. Comparing the 

FF achieved by both deposition techniques, it appears that the spray-coated reference 

devices have a higher FF than the spin-coated reference devices. This improved FF 

relative to spin-coated devices (65±2 vs 58±9 %) could be explained by the reduction in 

series resistance and other parasitic losses present in the active layer via spray-coating. 

The FF also improves for both deposition routes after HI addition, increasing from 65±2 
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and 58±9 % to 67±3 and 71±4 % for spray and spin cast, respectively. When spinning the 

solution there is a significant enhancement in the FF after adding HI by 22 %. It is not 

surprising that an improvement in FF is observed, as the FF depends strongly on the Voc 

and Jsc due to the relationship discussed in Section 2.3. 

 

 

 

Figure 5.9 – Forward and reverse J-V sweeps shown for the champion pixels of (a) spin-coated at 

HI concentrations of 0 vol% (black line), 1 vol% (red line) and 2 vol% (blue line) and (b) spray-coated 

pixels at HI concentrations of 0 vol% (black line), 0.5 vol% (red line) and 1 vol% (blue line). 



159 
 

Finally, as indicated in Figure 5.8 (b) and (d), higher concentrations of HI were used to 

fabricate devices using the spin- and spray-coating methods, with the J-V sweep for a 

champion 2 vol% device shown in Figure 5.9 (a). The inclusion of 1 vol% was found to be 

the optimum for device performance, with 2 vol% still benefiting from improved device 

statistics over the reference spin-coated devices. The champion 2 vol% device produced 

a PCE of 11 %, a FF of 65 %, with Voc and Jsc values measured at 0.98 V and 18 ma/cm2, 

respectively. For completeness, 3 and 4 vol% spin-coated devices gave an average Voc 

measurement of 0.81 and 0.35 V, respectively. The reduction in Jsc is likely due to a loss 

in bulk uniformity and surface coverage, coupled with the introduction of new 

perovskite domain growth directions as discussed in Section 5.3.3. It can be seen that 

spray-coating devices with an HI-additive above the optimum 1 vol% also performed 

worse than the reference control. This effect is likely caused by the differing deposition 

technique, which relies on small coalescing droplets forming a continuous film. 

Producing uniform films via spray-coating is a well-researched topic in photovoltaic 

research, and is likely the cause of the reduced photovoltaic performance for higher HI 

concentration precursors 73.  

 

5.5 Conclusions 

 

The effects of adding varying concentrations of acidic HI (57wt% hydrogen iodide in 

H2O) into a perovskite precursor solution were explored. It was shown that after the 

inclusion of HI at small concentrations, such as 1 vol%, causes an improvement in PL 

intensity and absorbance strength. A reduction in bimolecular recombination could 

explain these improvements, as the HI facilitates the dissolution of PbCl2, as shown with 

DLS. A 5% overall increase in absorbance across the visible spectrum was accompanied 

by better surface coverage imaged using SEM compared to films without the additive. 

Adding the HI to the precursor assists in a full conversion to a pure perovskite phase, as 

evidenced by enhanced reflections seen for the (110) plane of the MAPbI3-xClx perovskite. 

Without the additive, reflections associated with PbI2 and MAPbCl3 based intermediates 

were detected, and reference films without HI did not fully convert to MAPbI3-xClx after 
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annealing. Enhancement in the crystallinity of the 1 vol% additive films is observed 

through an improved XRD scattering signal off the characteristic (110) plane. This 

enhancement, along with a shift to lower angles, shows that the perovskite unit lattice 

expands slightly. Photovoltaic performance of devices incorporating perovskites from 

such precursors was studied by first varying the additive concentration via spin and 

spray-coating the active layer. For spin-coated active layer devices, an average PCE was 

shown to increase from 6.5 % to 12.5 % after 1 vol% HI addition. A small yet similar effect 

was also seen for spray-casted active layers, whereby the PCE improved from 6.1 % to 

10.0 % after 1 vol% HI addition. Other additive concentrations of HI were also 

incorporated into precursor solutions at 0.5 vol% and 2 vol% for spray- and spin-coated 

layers, respectively. Although these other concentrations showed full dissolution of 

PbCl2 in solution, photovoltaic performance was significantly reduced for both 

deposition routes as a function of increasing additive concentration.  
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Chapter 6   
 

Low-dimensional emissive states in 
non-stoichiometric 
methylammonium lead halide 
perovskites 
 

 

6.1. Introduction 

 

The ease by which hybrid organic-inorganic perovskites can be fabricated make them 

an attractive material for a variety of applications, including solar cells 1, light emitting 

diodes 2 and photodetectors 3. However, certain perovskite materials are known to 

undergo degradation when exposed to combinations of moisture, ultraviolet light, 

oxygen and heat 4–7. 2D and quasi-2D perovskite structures can be formed by partially 

or completely substituting the small amphiphile cation methylammonium (MA+ = 

CH3NH3
+) with larger organic cations, such as butylammonium (BA = CH3(CH2)3NH3

+) 

and phenethylammonium (PEA = C8H9NH3
+), into the perovskite precursor 8,9. 

Introducing any hydrophobic cation into a system that exceeds Goldschmidt’s tolerance 

factor (see Section 2.5.1) will result in a non-pure 3D crystal,  as these ions are too large 

to become stable within an APbX3 network 10,11. The crystal structure of these low 

dimensional perovskites (LDPs) can be thought of as slicing a 3D-parent ABX3 structure 

(such as MAPbI3) along the crystallographic plane, where the large cations then form 

spacer layers breaking apart the 3D lattice along a c-axis 12.  

 

Work by Mitzi et.al in 2001 then highlighted the various ways in which LDPs can form 

from a parent structure of ABX3, and showed that two crystal planes could be 
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intercalated by long-chained amphiphilic cations along the (100) and (110) directions 13. 

The spatial separation of PbI4
2- octahedra along the (100) direction is shown in Figure 

6.1. Stoumpos et al. controlled the spatial separation of [PbI6]4- ions by adjusting 

precursor ratios of the spacer and small organic cations 14. Here, the authors showed that 

a crystal structure based on a MAPbI3 perovskite parent structure could be sliced along 

the (110) plane and terminated with BA cations, with the resulting compound described 

by (BA)2(MA)n−1PbnI3n+1. Here, n defines the number of stacked octahedral layers 

separated by amphiphilic cations where n → ∞ would produce a 3D bulk perovskite 

crystal. The class of perovskites that are described by the formula (BA)2(MA)n−1PbnI3n+1 

are called Ruddlesden-Popper perovskites (RPPs). 

 

One way in which a parent 3D structure can be broken up into different n-sized 

octahedral layers by intercalated hydrophobic cations is shown in Figure 6.1.  For n = 1 

RPPs, only the larger cationic molecule ‘R-NH3
+’ is present in the mixture, and therefore 

a pure 2D structure is formed. When n = 2, the solution contains 2 moles of the 

hydrophobic cation R-NH3
+ to 1 mole of molecule ‘A’, where for example ‘A’ is MA+ 10. 

For n > 2, this process is repeated by increasing the concentration of small molecule ‘A’, 

as shown in Figure 6.1 (b). When the concentration of the cationic amphiphile (R-NH3
+) 

in the solution is zero, the favoured crystal structure is the 3D (n = ∞) crystal, where only 

the smaller of the two cations (e.g. MA+) can fit in between adjacent lead-halide octahedra 

(PbX3
-) as a result of Goldschmidt’s tolerance factor.  

 

Pure 2D (n = 1) crystals have the widest electronic band gap 14. This bandgap energy 

reduces as a function of increasing n in a quasi-2D structure; a process attributed to a 

reduction in quantum confinement 15,16. The term quasi-2D describes a perovskite 

crystal structure that forms a structure where n is greater than 1 (pure 2D) but much less 

than ∞. 2D RPPs form natural quantum wells with cations acting as insulating barrier 

layers 9,17. This permits stable excitons to form, having binding energies in the region of 

200 meV 18,19. These quasi-2D RPPs have improved moisture tolerance and stability 

when incorporated in a mixed quasi-2D/3D photovoltaic device 20. Using this approach, 

pioneering work by Grancini et al. have incorporated 2D layers into 3D perovskite 
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materials to create solar cells that retain efficient performance after a year of operation 

21–23. It is also possible to form lower dimensional perovskite-like materials, such as 0D 

and 1D crystals, which have larger bandgaps compared to their 2D and 3D counterparts 

14,24.  

 

 

 

Figure 6.1 - (100) orientated crystal structures for n = 1 (2D), 2, 3 (quasi-2D) and ∞ (3D) perovskites 

made from a parent structure of ABX3. Note the staggered lattice for n < ∞, which is present along 

both the a- and b-axis. For the system used in this chapter, BX42- = PbI42-, R = CH3 and A+ = CH3NH3+. 

Image taken from reference 14. 

 

Dion−Jacobson perovskites (DJPs) have similar 2D and quasi-2D phases that can be 

considered as being a (100) slice through a 3D perovskite crystal 25. Again such DJPs have 
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the general formula B(MA)n-1PbnX3n+1, with MA being the smaller of the two cations. Such 

phases are formed where only one organic spacer cation (B) lies in the insulating region. 

 

 

 

Figure 6.2 - Representative crystal structures for low-dimensional perovskites (LDPs) (a) hybrid 

Dion-Jacobson perovskite (DJP) with the large spacer cation as 3-(aminomethyl)piperidinium 

(3AMP) 25, and (b) alternating cation interlayer (ACI) perovskite shown with guanidinium (C(NH2)3, 

GA)+ and MA+ as the spacer cations. The above figures were taken from the CIF files provided in 

references 26 and 27 for (a) and (b), respectively. CIF files were then modelled using the VESTA 

crystallographic software 26. 

 

A hybrid DJP structure is shown in Figure 6.2 (a), having the formula A′MAn−1PbnI3n+1, in 

which A’ (3-(aminomethyl)piperidinium) in this case is a large cation 25. Interestingly, 

work by Soe et al. has shown that a mixture of cations in the interlayer also produces a 

low-dimensional perovskite, such as the n = 3 crystal structure shown in Figure 6.2 (b) 

27. These alternating cation interlayer (ACI) perovskites display a translation of (1/2,0) 

along the ab-plane for adjacent lead-iodide octrahedral layers, characteristic of a type II 

DJP 28. This differs from RPPs which typically have a (1/2, 1/2) translation along the ab-
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plane. DJPs generally have lower bandgaps for a given n-value than their RPP equivalent 

25.  

In the following chapter, the photophysics of mixed quasi-2D/3D perovskite films 

formed by adding an excess of MAI into a MAPbI3-xClx (MAPIC) perovskite precursor 

blend is described. This study was based around previous work on non-stoichiometric 

perovskite films and its benefit towards solar cell performance and stability. During the 

initial experiments, it was found that excess-MAI films produced similar PL emission to 

other work on LDPs, which then lead to an investigation into the crystallographic 

properties of these films. Adding a small excess of PbI2 into a stoichiometric mixture of 

MAI and PbI2 has been shown to improve the device performance through a grain 

boundary passivation effect 29,30. Similar experiments on the impact of 5 mol% excess of 

MAI in an otherwise stoichiometric precursor have revealed enhancements in the Jsc of 

solar cells 31. A previous report by Song et al. indicated the formation of a variety of LDP 

structures and other phases in non-stoichiometric MAI:PbI2 blends 32. Small MAI excess 

in MAI:PbI2 (1.05:1) has also been shown to benefit the performance of PV devices after 

exposure to moisture 33.  

 

In a MAI:PbCl2 3:1 stoichiometric mixture, the MA molecule occupies the A-site within 

a ABX3 3D perovskite crystal structure (tetragonal space group I4/mcm at room 

temperature) 34–36. However, by using excess organic halide material (up to 1/3rd above a 

stoichiometric mixture), the MAI:PbCl2 material system additionally forms a layered 

structure with MAI inducing the formation of sheets of lead-halide octahedra. The 

formation of low dimensional structures is unexpected, as the MA organic cation used 

here is relatively small compared to longer chain cations typically observed to form 2D 

RPPs 37. To characterise such non-stoichiometric 2D/3D materials, a range of 

spectroscopic techniques are used including steady-state and time-resolved 

spectroscopy photoluminescence emission (SSPL and TRPL), along with 

photoluminescence excitation (PLE) and optical absorption. The structural properties of 

the materials are also studied by grazing incidence wide-angle X-ray-scattering 

(GIWAXS).  
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6.2. Thin film topography and X-ray 
diffraction analysis 

 

A number of samples were prepared and are referred to on the basis of their 

corresponding dry-ingredient precursor molar ratio of MAI and PbCl2. For example, the 

stoichiometric (MAI:PbCl2), which produces a MAPIC perovskite film 38,39 is called a 3:1 

perovskite. SEM images for films made from a molar ratio 2.5:1, 3:1 and 3.5:1 of 

MAI:PbCl2 on a PEDOT:PSS/ITO substrate are shown in Figure 6.3 (a), (b) and (c). Here, 

each film was made using a hot-cast technique, whereby the precursor solution was held 

at 70°C with the substrate warmed to 90°C before deposition 40. It can be seen that the 

perovskite films formed are highly polycrystalline in nature. The 2.5:1 film shown in 

Figure 6.3 (a) has the lowest film coverage of all 3 samples. It is also clear that the 2.5:1 

film exhibits the highest number of pin-holes as evidenced by the dark regions that are 

visible. One explanation for the reduced film coverage may be related to the non-

stoichiometric nature of the precursor material. At a solution molar ratio of 2.5:1, there 

is an insufficient quantity of starting materials to produce the MAPbI3-xClx crystal, which 

is likely to leave unreacted precursor within the film. Here, such a lead-excess film would 

be characterised by large defect regions resulting from a locally reduced MA+ 

concentration, with the lead-halide octahedra being unable to crystallise into a 3-

dimensional (3D) MAPbI3-xClx lattice. Such excess lead compounds are instead likely to 

crystallise into PbI2 containing domains 41,42. 

The overall appearance of the 3:1 film shown in Figure 6.3 (b) is qualitatively similar to 

previous measurements on this system 43,44, with the film being characterised by features 

having a range of sizes up to around 1-2 µm. This film was considered to be a reference 

as it has been well studied throughout the perovskite literature 39,45,46. It can be seen that 

relative to the 2.5:1 film shown in Figure 6.3 (a), there is a noticeable improvement in 

surface coverage and crystallite growth in the 3:1 film. This suggests a more complete 

conversion to bulk MAPbI3-xClx perovskite with fewer defect regions caused as a result 

of unreacted lead-halide materials.  
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Figure 6.3 - Scanning electron microscope (SEM) images of (a) 2.5:1, (b) 3:1 and (c), (d) 3.5:1, using a 

secondary electron (SE) detector. The SEM images presented in parts (a), (b) and (c) are at a 

magnification of 40,000 x and part (d) is at a magnification of 80,000 x for sample 3.5:1 only. All 

samples were exposed to an electron beam energy of 1 kV. The white scale bar in (a), (b) and (c) 

represents a length of 3 µm and in (d) the scale bar represents a length of 1 µm. 

 

It can be seen that further increasing the MA+ concentration to 3.5:1 (17% stoichiometric 

excess of MAI) larger, seemingly flatter crystal zones at around 1 µm in length are created 

(see Figure 6.3 (c)). Such flatter crystal regions appear larger than in films cast from a 

lower MAI concentration. Large dark regions are also visible in this film, which in 

contrast to the dark regions observed in Figure 6.3 (a) and (b), appear to result from 

reduced surface coverage, but are instead related to film structure. It is likely that these 

are regions containing a high fraction of organic material and thus have increased 

transparency to the imaging electrons. Areas that appear lighter in colour (such as the 

whiter grain boundaries in Figure 6.3 (d)) are also likely to contain a higher fraction of 

unreacted metal compounds, for example, PbI2 or PbCl2 
47. Such regions are often found 
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around the circumference of the darker areas. This effect is apparent in the higher 

magnification image of the 3.5:1 film, shown in Figure 6.3 (d).  

 

 
 
 

Table 6.1 - Typical sample thickness on different substrates for samples cast using warm (70°C) 

precursor inks onto hot (90°C) substrates. Samples were spun at 3000 rpm for 30 seconds and 

subsequently annealed at 90°C for 90 minutes. The annealing environment explored was air and 

a nitrogen filled glovebox (GB). 

 

Atomic force microscope (AFM) images of 2.5:1, 3:1 and 3.5:1 films deposited on 

ITO/PEDOT:PSS (IP) substrates are shown in Figure 6.4. It can be seen that there is a 

clear trend in film roughness which increases with increasing MAI concentration, with 

the 3.5:1 film having a total height range of over 700 nm, whilst the 2.5:1 film has a 

thickness range of approximately 260 nm.  

MAI:PbCl2
Typical sample 

thickness on quartz
Typical sample thickness 

on ITO/PEDOT:PSS

(nm) (nm)

3:1 

(air annealed)

3.5:1 

(air annealed)

3.5:1 

(GB annealed)
480 ± 32

310 ± 21 350 ± 10

615 ± 115

460 ± 20

550 ± 73
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Figure 6.4 - Atomic force microscopy (AFM) images across a 10 x 10 µm2 section of samples 2.5:1 

(a) and (b), 3:1 (c) and (d) and 3.5:1 (e) and (f) hot-cast on to ITO/PEDOT:PSS substrates. Images (a), 

(c) and (e) on the left-hand column are 3-dimensional representations of the 2D images shown on 

the right-hand column in (b), (d) and (f). Methylammonium iodide (MAI) concentration increases 

down the column, i.e. (a) is 2.5:1 and (e) represents 3.5:1. Each sample was individually normalised 

to highlight particular surface features and the measurement was performed on different samples 

to those under SEM in Figure 6.3. 
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Comparing Figure 6.4 (b) and (d) (2.5:1 and 3:1), it is clear that the lead-excess 2.5:1 sample 

is characterised by small crystal domains. On increasing the MAI concentration to 3:1 

domain size increases, as shown in Figure 6.4 (c) and (d). This denotes a more efficient 

growth of perovskite crystals during the sample annealing stage. Within the 2.5:1 mixture 

(or any lead-excess perovskite solution), some MA+ cations are able to sublime from the 

film during annealing by bonding with a Cl- ion to form MACl gas, much like it would 

in a stoichiometric film 48–50. If this is indeed the case, 3D crystal domain growth is 

expected to be supressed in lead-excess perovskite films. Due to limited concentration 

of MA+ cations in a 2.5:1 film, unreacted lead-based compounds are expected to remain 

after annealing as some MA+ will be lost in the sublimation of MACl gas. A further 

increase to a MAI-excess 3.5:1, shown in Figure 6.4 (e) and (f), creates films having 

reduced uniformity, with relatively tall, flat domains dominating the scan area. These 

features match the large flat domains seen in the SEM images of sample 3.5:1.  

 

SEM and AFM analysis techniques are excellent ways to characterise surface 

morphology. However, such techniques can only provide information relating to the 

surface of the sample. It is also useful to characterise semiconducting thin-films through 

a variety of crystallographic techniques to determine both crystal structures and purity. 

The following section describes the X-ray techniques and analysis used to determine the 

crystal structures within thin-film samples. GIWAXS was performed on a range of 

stoichiometries, with the following section describing stoichiometric (3:1) and 3.5:1 

mixtures of MAI:PbCl2. As described in Section 3.8.5, GIWAXS is a crystallographic 

analysis technique that is capable of probing the various crystal lattices and atomic 

distances within a thin-film sample. By using a large-area detector (≈ 300 cm2), wide-

angle scattering, which corresponds to the X-rays in- and out-of-plane relative to the 

sample surface, can be collected. Unless otherwise stated, the angle of incidence used for 

GIWAXS measurements was 0.3° with a corresponding penetration depth of ≈ 150 nm 

51,52. A typical sample to detector distance of ≈ 33 cm gave an equivalent Q-space range 

of 0.05 → 2.5 Å−1 with incident X-rays of the wavelength λ ≈ 0.134 nm. 
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Figure 6.5 - (a) GIWAXS detector patterns for an air annealed sample spun from a 3:1 precursor 

and (b) radial integrations of scattering images shown for reference 3:1 in air (blue line), 3.5:1 

annealed in air (black line) and 3.5:1 annealed under nitrogen (red). The dotted lines are a guide for 

the appropriate scattering features, including the well cited MAPbI3 (002)/(110) as a reference. 
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Figure 6.5 (a) shows a typical 2D scattering pattern from a reference 3:1 film annealed in 

air on an IP substrate. Figure 6.5 (b) plots a radial integration from 3:1 (blue), 3.5:1 air 

anneal (black) and 3.5:1 glovebox anneal (red) films, respectively. In part (a), the 

characteristic (002)/(110) reflection at a scattering vector (Q) of ≈ 1.04 Å−1 indicates the 

presence of a 3D MAPbI3 or MAPbI3-xClx perovskite phase 53–55. In films also annealed 

under ambient air conditions but containing an excess of MAI (scattering pattern shown 

in Figure 6.6 (a) and radial line integration shown in Figure 6.5 (b) [black line]), a series 

of additional scattering features are detected at Q ≈ 0.29 Å−1, 0.58 Å−1, 0.88 Å−1 and 1.16 

Å−1. The peak at Q ≈ 0.29 Å−1 likely results from a self-organised structure within the film 

that has a repeating lattice spacing of 21 Å, based on the relationship Q = 2π/d, where Q 

is the scattering vector and d is the distance between repeating planes. This also suggests 

that the peak at 0.58 Å−1 is a second order reflection for the same structure with peaks at 

0.88 Å−1 and 1.16 Å−1, which would be indicative of third and fourth order reflections, 

respectively. As discussed below, such new scattering peaks are associated with low 

dimensional perovskites when forming in non-stoichiometric MAI:PbCl2 films. 

Previous simulations of a MA2PbI4 (2D) perovskite indicate a unit cell geometry with a 

(100) d-spacing of 19.5 Å (Q ≈ 0.32 Å−1), but this plane is not expected to strongly reflect 

for the Pnm21 space group 56. 

 

In the reference 3:1 film, small unexpected Q reflections can be seen at Q ≈ 0.27 Å−1 and 

Q ≈ 0.88 Å−1 (Figure 6.5 (a) and (b)). The origin of the reflection for Q ≈ 0.27 Å−1 is unclear, 

however, there is a possibility that this feature could be caused by LDPs formed by an 

error in the weighing out of materials. Any excess of MAI over 3:1, such as 3.05:1, would 

increase the probability for LDP structures to form due to the higher concentration of 

MA+ in the film after spin-casting 32. This process would further allow the infiltration of 

MA+ cations within lead-halide octahedral sheets, blocking the growth of a 3D bulk 

phase, giving rise to LDP peaks 32. A reflection of Q ≈ 0.27 Å−1 gives an approximate d-

spacing of 23 Å. 
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Figure 6.6 - GIWAXS detector patterns of films made from an excess MAI 3.5:1 precursor and 

annealed under (a) ambient conditions in air and (b) inside a nitrogen glovebox where the average 

H2O and O2 sensor readings were in the range of 0.1 – 0.9 ppm. 
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To explore the effect of atmosphere during thin-film annealing, a 3.5:1 film was 

thermally-annealed either in air or inside a nitrogen-filled glovebox. The GIWAXS 

detector image for 3.5:1 annealed under N2 is shown in Figure 6.6 (b) with the radial 

integration profile in Figure 6.5 (b) (red line). Monohydrate and dihydrate perovskites 

have been formed in similar materials exposed to high humidity due to the hygroscopic 

nature of amine salts 57–60. These amine salts form 1D and 0D structures respectively 58,61–

64, with the (100) plane of monohydrate MAPbI3•H2O expected at 0.61 Å−1 60, which is 

close to the experimentally observed peak at 0.58 Å−1. It is worth noting that the (010) 

plane of the dihydrate perovskite MA4PbI6•2H2O is expected at 0.55 Å−1 64. This reflection 

coincides with the proposed (200) reflection that likely originates from an LDP phase.  

The annealing temperature used here (90C) is expected to largely preclude the presence 

of significant hydrate phases in these films. 1D perovskite-like structures, such as 

(MA)2(DMF)PbI5, have been reported when an excess of MAI is used in the precursor 

solution 65, forming a DMF-complex with coordinating lead-iodide octahedra. However, 

the same study found that annealing at 70C was sufficient to remove all DMF from their 

films. 

 

 

 

 

Figure 6.7 - Azimuthal integrations around Q = 1.04 Å-1 for 3.5:1 annealed in air (black) and in the 

glovebox (red) with the Qz axis (perpendicular to the beam path) marked in a dashed line. 
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The 3.5:1 films annealed under a nitrogen atmosphere are characterised by the same 

reflections as seen in the air-annealed sample, which confirms that hydrated phases are 

not present in either case. The solutions for 3.5:1 annealed under nitrogen were never 

exposed to air, and the dry powders being mixed with DMF inside the glovebox. 

Notably, the reflection at 0.29 Å−1 appears significantly more intense in the glovebox 

annealed sample (Figure 6.5 (b)). It can be seen that crystalline planes in the 3.5:1 

perovskite film annealed in air (Figure 6.6 (a)) have some partial orientation, however, 

there appears to be preferential alignment in the same film annealed under nitrogen, 

where there is a strong modulation in the azimuthal reflection intensity. Other studies 

on RPPs have observed similar orientation effects in films containing the larger cations 

BA and PEA that were hot-cast 8,66,67. The glovebox-annealed film clearly has an 

increased state of order in the out-of-plane direction (Qz), with some larger Q peaks 

oriented in plane (Qxy). This is shown in Figure 6.7, where an azimuthal integration of 

the Q ≈ 1.04 Å−1 scattering feature (expected reflection for the (110) plane of the MAPbI3-

xClx perovskite) shows orientation and partial splitting of the primary reflection. These 

observations suggest a more phase-pure and preferentially oriented system in the glove-

box annealed samples. 

 

Returning to Figure 6.6 (a), the origin of some of the additional peaks observed in the 

non-stoichiometric samples will now be considered. It is possible that the 1.16 Å−1 

reflection observed in the 3.5:1 film may coincide with that of the (100) plane of MAPbCl3 

68, expected at Q ≈ 1.10 Å−1. To investigate this, energy-dispersive X-ray spectroscopy 

(EDX) was performed on 2.5:1. 3:1 and 3.5:1 samples annealed in air, with the results 

summarised in Table 6.2. A small amount of chloride can be seen in the 2.5:1 sample, an 

observation that indicates that insufficient iodide was present in the precursor to 

displace chloride, allowing the sublimation of MACl. No chloride trace was detected for 

both the stoichiometric 3:1 and the excess MAI 3.5:1 samples; suggesting complete 

sublimation of methylammonium chloride (MACl) during film formation. The 1.16 Å−1 

reflection is thus attributed to the presence of LDPs. 
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Table 6.2 - Energy-dispersive X-ray spectroscopy (EDX) analysis summary for thin-film samples 

made from 2.5:1, 3:1 and 3.5:1 solutions annealed in air. Each value expressed in the table above is 

an average from 5 different regions on the sample.  

 

To understand the origin of the additional peaks seen in the non-stoichiometric films, a 

careful search of relevant literature on LDPs was performed. Here, a report by Soe et al. 

described the synthesis of a family of DJP/RPP-like materials, which they term 

alternating cation in the interlayer space (ACI) perovskites 27. Using mixtures of 

guanidinium (C(NH2)3
+ or GA+) and MA+ it was shown that a material family 

GA(MA)nPbnI3n+1 was formed. Comparing simulated powder XRD patterns 26 from their 

crystallographic information files for the n = 3 variant with the radially integrated 

GIWAXS for a 3.5:1 GB annealed sample data, a strong correlation in reflected peak 

positions is observed (see Figure 6.8 (a)). From the simulated data, a reflection 

corresponding to the (002) plane of the GA(MA)3Pb3I10 ACI-perovskite is found to locate 

at Q ≈ 0.29 Å−1 (d-spacing ≈ 22 Å−1). Additional features corresponding to (004) and (006) 

planes are found at Q ≈ 0.57 and 0.86 Å−1, followed by stronger reflections from the (101) 

Precursor 
molar ratio

Element Formula Mass Atom

[MAI:PbCl2] (%) (%)

C 41.2 89.2 0.2
Cl 0.3 0.2 0.2
I 40.0 8.3 2.2

Pb 18.5 2.3 1.1

C 4.1 37.7 0.0
Cl 0.0 0.0 0.0
I 74.3 53.3 0.3

Pb 20.7 9.1 0.1

C 6.4 44.0 0.0
Cl 0.0 0.0 0.0
I 74.6 48.4 0.4

Pb 19.0 7.6 0.2

2.5:1 

3:1 

3.5:1
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and (020) planes at Q ≈ 0.99 and 1.01 Å−1 (d-spacing ≈ 6.30 and 6.20 Å−1), respectively. 

This suggests that the thin-films fabricated consist of a crystal structure similar in nature 

to the DJ/RPP hybrid class of perovskites with MA+ cations located in the spacer layer, 

forming a multiple quantum well structure. The lattice parameters for the study by Soe 

et al. on GA(MA)3Pb3I10 single crystals were determined as approximately a = 6.35 Å, b = 

12.44 Å, c = 43.97 Å and a volume of 3473.85 Å3 in an orthorhombic centrosymmetric 

Imma space group 27. Structurally, the ACI perovskite exhibits a type II DJP structure 28 

with a lateral offset between adjacent octahedral layers in the a-plane but not in the b-

plane (semi-eclipsed configuration), as opposed to an RPP perovskite which would be 

offset in both a and b (staggered configuration). 

 

If the formation of a MA4Pb3I10 structure is possible in the 3.5:1 films, MA+ would fully 

replace the GA+ cation in the spacer layer, rather than the mixed GA/MA ACI structure. 

To confirm the presence of an n = 3 MA4Pb3I10 perovskite, simulations by means of 

density functional theory (DFT) using the VV (Vydrov - Van Voorhis) van der Waals-

corrected functional (using CP2K software) were performed at 0K, containing MA+ only 

(replacing GA+) from the coordinates provided by the CIF file in the Soe et al. study. The 

simulated powder-XRD results of the MA4Pb3I10 crystal are displayed in Figure 6.8 (b), 

together with the GIWAXS radial integration from a 3.5:1 glovebox-annealed sample. 

The n = 3 (MA)4Pb3I10 perovskite adopts a triclinic P1 space group with unit cell 

parameters of  a = 6.47 Å, b = 12.56 Å and c = 23.23 Å and a unit cell volume of 1804.51 Å3. 

It is worth noting that the nearest Pb-Pb distance across the interlayer increases when 

MA+ replaces GA+ (9.8 Å to 10.1 Å) as shown in Figure 6.9 (b).  

 

From the simulated powder-XRD diffraction pattern shown in Figure 6.8 (b), there 

appears to be some similarities between the simulated and experimental diffraction 

patters. The peak observed in the experimental data (red line) at Q ≈ 0.29 Å−1 (d-spacing 

≈ 22 Å−1) corresponds to the (001) plane of the (MA)4Pb3I10 crystal. Moreover, the second 

and third order reflections for this plane (the (002) and (003) planes) are expected at Q 

≈ 0.57 Å−1 and Q ≈ 0.85 Å−1, respectively. A small shift (0.2 Å in d-space) to smaller angles 

is observed in the experimental data relative to the calculated structure, again for the 
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peaks around Q ≈ 0.58 Å−1 and Q ≈ 0.89 Å−1. The calculated structure was performed on 

a 0K system, whereas the experimental data was taken from a sample held at 290 K. 

Another consideration to make is that the error value between expected reflection (black 

line) and measured value (red line) for the (001) peak is likely to be enhanced by the 

(003) reflection. Therefore, larger errors between theoretical and experimental are 

expected for higher-order reflections of the same plane assuming a non-perfect match 

in reflection values.  

 

 

 

Figure 6.8 - (a) Radially integrated GIWAXS pattern from a 3.5:1 GB annealed sample (red line) 

plotted together with a powder-XRD simulation using the CIF file for an n=3 ACI perovskite (black 

lines) provided in reference 27. (b) Radially integrated GIWAXS pattern from a 3.5:1 GB annealed 

sample (red line) plotted together with a powder-XRD simulation of a MA4Pb3I10 crystal (black line).  
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Figure 6.9 - Crystal representations of the (a) GA(MA)3Pb3I10 and (b) (MA)4Pb3I10 perovskites. Both 

crystal models indicate a 1/2 translation along the b-axis. The axis label underneath parts (b) and 

(c) represent the vectors along the a-axis (red), b-axis (green) and c-axis (blue).  

 
 

The contraction in the unit cell coupled with an increased interlayer distance possibly 

leads to reduced phase stability compared to the mixed cation ACI perovskite, consistent 

with an observation of a metastable phase described below.  

Experimentally, a transition between the 2D layered structure and the bulk 3D 

perovskite can be observed through the exposure of the non-stoichiometric films to 

moisture. During exposure, LDP containing films rapidly lose their dark-red colour 

when exposed to high humidity (> 40 RH %) air and convert to a dark-brown perovskite 

(see Figure 6.10). GIWAXS images of a 33% MAI excess (4:1) film annealed in ambient 

(air) conditions before and after high humidity exposure are shown in Figure 6.10, along 

with radial integrations for a large X-ray angle of incidence. The angle of incidence 

between the sample and incident X-rays was increased from 0.3° to 1°, which 

progressively probes a greater depth of the sample. Firstly, it is apparent that texturing 

(in-plane/out-of-plane) does not substantially change as a result of moisture exposure.  
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Before exposure, LDP peaks can be seen at Q ≈ 0.29 Å−1, 0.58 Å−1, 0.87 Å−1 and 1.14 Å−1 for 

angles of incidence up to 0.52°, similar to those seen in 3.5:1. However, when the angle is 

increased to 1°, additional scattering features corresponding to values at Q ≈ 0.69 Å−1 and 

0.71 Å−1 (9.1 Å and 8.9 Å, respectively) which can be seen more clearly in Figure 6.10 (c).  

 

 
 

Figure 6.10 - GIWAXS detector images and radial integrations across Q-space for a 4:1 post-

annealed film before and after moisture exposure (> 40 RH %). (a) Indicates a detector image before 

exposure and a photograph of the 4:1 film. (b) Presents a detector image after exposure to moisture 

with a photograph of the converted film (right, shown with an arrow) next to a 3:1 reference film 

(left). (c) Radial integrated profiles for a 4:1 film before (black line) and after (red line) moisture 

exposure at a grazing incidence of 1°. Note the detector images presented in parts (a) and (b) were 

taken at a grazing incidence of 0.3°.    
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These reflections (0.69 Å−1 and 0.71 Å−1) closely match those seen in excess MAI 

fabrication routes with a reported value of Q ≈ 0.70 Å−1 and have been assigned to 

crystallised MAI in the film 69,70. Due to the high concentration of MAI for a 4:1 precursor 

sample, it is expected that excess MAI will crystallise before reacting to form LDPs or a 

bulk 3D perovskite phase. It is found that exposing the 4:1 sample to moisture produces 

a dark film, reminiscent of a bulk 3D perovskite phase (as shown in Figure 6.10 (b)). This 

reaction appears to be humidity dependant, with lower humidity values (< 30 RH%) 

taking longer to convert the film. However, in high MAI excess films (e.g. 4:1), this 

reaction happens on a much faster timescale. For example, samples made from a 3.5:1 

film appeared to be stable under ambient conditions at a relative humidity of ≈ 30%. 

Furthermore, increasing the MAI excess from ≈ 17% to 33% (3.5:1 to 4:1) lowers the stability 

of the films when exposed to moisture, a result likely caused by excess crystallised MAI 

contained within the film. MAI molecules are known to be highly soluble in water, with 

exposure to humidity likely to produce mobile ions within the film 71–73. There is clearly 

a complex crystallisation process during the annealing stage for films containing an off-

stoichiometric excess of MAI. This effect suggests the presence of moisture allows the 

excess MA to escape, allowing the LDP to collapse to a more energetically favourable 3D 

perovskite structure 74,75. 

 

6.3. Optical absorption and temperature-
dependant steady-state photoluminescence 

 

To investigate the co-existence of the LDPs and 3D MAPbI3-xClx phases, steady-state 

photoluminescence (SSPL) and optical absorption were recorded as a function of 

temperature.  

Figure 6.11 (a) plots the normalised absorption (red line) and PL emission from a 

stoichiometric 3:1 perovskite film at 290 K (black line) and 12 K (dashed line). It can be 

seen that the film absorption (at 290K) is relatively featureless and is characterised by a 

band-edge at 758 nm. The PL emission from this film is dominated by a peak centred at 
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763 nm, which is expected from the charge carrier recombination within MAPbI3-xClx 
53. 

A second, less intense peak is detected at 740 nm, which has previously been ascribed to 

the presence of MAPbI3 nanocrystals 76. The dominant peak at 763 nm red shifts to 772 

nm at 12 K, which is similar to a previous measurement made on a MAPbI3-xClx 

perovskite film on glass 77. Emission from such nanocrystals become weaker as the 

temperature is reduced, with the low energy-region of the spectrum becoming 

dominated by an emission-peak centred at 770 nm. corresponding the tetragonal phase 

of the perovskite 53,78.  

 

In Figure 6.11 (b) and (c), the normalised absorption and PL emission spectra is plotted 

for a 3.5:1 air-annealed perovskite film at 290 K and 11 K, respectively. In contrast to the 

3:1 film, a more complex absorption spectrum at 290 K is characterised by a broad 

unresolved band centred on 550 nm, together with a weak band edge at 760 nm. As the 

temperature is reduced, both the absorption and emission evolve into the spectra shown 

in Figure 6.11 (c), indicative of a complex energy landscape seen in mixed quasi-2D/3D 

perovskites 12. It can be seen that as the temperature is reduced, the absorption band 

between 500 and 590 nm splits into peaks at 500, 515, 542, 562 and 582 nm, with the 

lower energy band-edge blue-shifting slightly to 750 nm. The overall appearance of the 

absorption profile shown in Figure 6.11 (c) resembles that of a quasi-2D perovskite thin-

films based on larger cation spacers than MA+ 79–81. 

Through an analysis of the complete temperature-dependent absorption spectral-series, 

the broad absorption peaks observed at 547 and 567 nm undergo a blue-shift of 5 nm as 

the temperature is reduced from 290 K to 12 K. Similar features have been observed in 

quasi-2D perovskite films at room temperature 66,82,83 and have been ascribed to 

excitonic absorption and emission by n-dimensional perovskite crystals, including RPPs 

and ACIs 14,37,62,84. Consequently, absorption peaks at shorter wavelengths were assigned 

to perovskite structures having reduced dimensionality. The PL is similarly structured 

in the 3.5:1 sample, with strong emission peaks observed at 546, 566, 586, 606, 641 and 

803 nm at 12 K, with a weaker emission peak observed at 512 nm (see Figure 6.11 (c) 

inset). Note that the inset spectrum was recorded using the PL mapping system – vide 

infra.  
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Figure 6.11 - (a) Steady-state photoluminescence (SSPL) at 290 K (black), 12 K (dashed black) and 

absorption at 290 K (red) of a 3:1 perovskite film. (b,c) Typical SSPL (black) and absorption (red) of 

3.5:1 at (b) 290 K and (c) 12 K. All samples here were prepared on clean quartz. The inset in part (c) 

was taken from the laser-mapping setup described in Section 6.6 and features a small peak centred 

on 512 nm. The laser fluence used in this figure was approximately 47 nJ/cm2 at an excitation 

wavelength of 405 nm.  
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There seems to be an almost one-to-one correspondence between peaks observed in the 

emission spectrum at 512, 546, 566 and 586 nm than to the peaks observed in absorption 

at 505, 542, 562 and 582 nm. This observation suggests a series of independent and 

localised excitonic states. 

 

A full temperature series of PL emission for the 3.5:1 perovskite is plotted in Figure 6.12 

on two different substrates; quartz and ITO/PEDOT:PSS (IP). When the 3.5:1 solution is 

cast on to quartz as seen in Figure 6.12 (a), the broad band-edge PL emission at 763 nm 

at 290 K (presumably from the 3D bulk perovskite phase) undergoes a small red-shift of 

24 nm to 787 nm as the film is cooled to 160 K. This peak then blue shifts to 776 nm at 85 

K, a temperature below the tetragonal to orthorhombic transition 85 and then broadens 

considerably as the film is cooled to 12 K. This broadening at a low temperature can be 

attributed to a distribution of sub band-gap states 86. A different behaviour is observed 

in Figure 6.12 (b), for a 3.5:1 perovskite solution cast on to an IP substrate. At room 

temperature (290 K) low-energy emission can be seen at ≈ 762 nm, which is likely due to 

the fully-crystallised 3D MAPbI3-xClx phase; a result consistent with the same film cast 

onto a quartz substrate at this temperature. However, the emission peak observed from 

the quartz cast film is much broader and is located at similar wavelengths (700 - 785 nm).  

 

A second, slightly less intense peak is observed at 734 nm at room temperature on the 

IP-cast film. This is likely part of the broad emission band seen from the quartz-cast film 

at 290 K. The origin of this higher-energy peak is uncertain, although lowering the 

dimensionality of bulk 3D perovskites to nanorods to 20 nm-sized dots induces a 

progressive blue-shift in PL emission 15,76,87. This blue-shift behaviour is due to a charge 

confinement effect, which raises the overall energy of the system as the confinement 

energy, E, is inversely proportional to the square of the particle radius 88. Thus, the 

second phase present within the 3.5:1 film cast on IP, which produces PL emission 

around 734 nm, is likely caused by small regions of 3D perovskite, which are unable to 

crystallise into larger, more bulk-like 3D crystals. Similar blue-shifted PL emission has 

been observed in PEA2(CH3NH3)n−1PbnI3n+1 perovskites when the lead-iodide sheet layers 

(〈n〉) are reduced from bulk 3D (〈n〉 = ∞) to 〈n〉 ≤ 10 89.  
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Figure 6.12 - Temperature-dependant normalised steady-state photoluminescence (SSPL) from a 

3.5:1 perovskite film spin-casted on to (a) quartz and (b) ITO/PEDOT:PSS (IP). The samples used 

in both (a) and (b) were fabricated using the hot-cast technique (70°C ink, 90°C substrate) and 

subsequently annealed in air for 90 minutes. Note the slight difference in sample temperature for 

each substrate. Each sample was under low pressure (≈10-5 mBar) and excited at 405 nm with a laser 

fluence of 47 nJ/cm2.  

 

Interestingly, as the sample is cooled, the emission from this phase appears to remain 

relatively stationary and fluctuates by less than 2 nm between 290 K and 12 K, contrary 

to the similar emission observed from the sample coated directly on to quartz. 
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The following section will consider the origin and behaviour of emission peaks observed 

around 500 nm to 700 nm. Here, films cast with both types of substrate have a complex 

emission spectrum that emerges as the samples are cooled below ≈ 200 K.  

 

As each spectra is individually normalised, it can be seen that the emission from the 

higher-energy peaks dominate the spectrum of the quartz-cast film (Figure 6.12 (a)), 

whereas emission from the film cast on an IP substrate is dominated by bulk-3D phases 

until the film is cooled below 100 K. The strong temperature dependence of PL emission 

intensity demonstrates the existence of a thermally activated process that results in the 

dissociation of excitons localised on LDPs. A strong PL peak is observed at 641 nm that 

is broader than the narrower excitonic peaks observed at higher-energies. Currently the 

origin of this feature is not clear, but the result may occur from charge transfer states 

that exist at the interface between the LDP and 3D material. This speculation is based on 

the peak being relatively supressed in the glovebox-annealed 3.5:1 film which has 

relatively enhanced phase-purity. Low-temperature photoluminescence of 3.5:1 (GB 

and air annealed) and 4:1 (air annealed) excess MAI perovskite films is shown in Figure 

6.13. Emission spectra of encapsulated films are shown deposited on IP substrates and 

annealed in air (red + blue lines) or in the glovebox (black). The glovebox annealed 

sample has reduced emission at around 640 nm and more defined emissive peaks are 

detected at 605 and 625 nm.  

It has been previously speculated that MAI (or its ionic constituents) becomes more 

mobile in the presence of water vapour 71. This increase in MAI mobility could perhaps 

help to facilitate full 3D perovskite conversion, whereas under nitrogen it is favourable 

to first crystallise the LDP phases, consuming the surrounding MA+ cations as they are 

less mobile under nitrogen. The reduced movement of MA+ cations in a sample annealed 

under nitrogen could induce regions of higher MA+ concentration, likely leading to the 

formation of LDP states. From the normalised PL shown between 3.5:1 air and GB 

annealed samples (red and black lines, respectively), the air annealed sample shows 

broad PL centred around 630 nm, with the GB annealed sample having reduced 

emission between 650 – 750 nm. 3D emission associated with the lower-energy emission 

(> 740 nm) is much more intense in the air annealed sample, which could be a 
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consequence of increased mobility for the MAI molecule in the presence of moisture. 

The GIWAXS images of air and GB annealed samples with a 3.5:1 stoichiometry shows 

that a more phase-pure sample is created when annealed under nitrogen. This implies 

the formation of LDP phases is preferred over larger-sized quasi-2D or perhaps 3D 

perovskite crystals. Enhanced emission at 605 nm and 625 nm for the GB annealed 3.5:1 

sample may be further proof of the preferred crystallisation of lower-dimensional 

crystals over lower-bandgap, 3D perovskite phases when the presence of moisture is 

removed. 

 

 

 

Figure 6.13 - Normalised SSPL at 4K for thin samples of 3.5:1 glovebox (GB) anneal (black line), 

3.5:1 air anneal (red line) and 4:1 air anneal (blue line). Each sample was under low pressure (≈ 10-5 

mBar) and excited at 405 nm with a laser fluence of 47 nJ/cm2. 

 

For the 4:1 (blue line in Figure 6.13) sample, 3D emission is barely detectable with only 

weak emission around 700 – 750 nm. There is also a small red-shift observed for the 
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LDP emission peaks. The reduction in PL intensity of features occurring at lower-energy 

indicates that a higher MAI concentration somewhat suppresses the formation of the 

bulk perovskite phases. If 3D regions were indeed present in the 4:1 sample, some 

emission might be expected from the 3D regions as a result of an energy transfer 

process. However, the suppression of features at lower-energy may arise from a 

competition between 3D perovskite growth and LDP formation. Although the formation 

energy for LDPs is higher than that for 3D perovskites 90–92, Figure 6.13 seems to suggest 

changing the stoichiometry from 3.5:1 to 4:1 supresses any emission from the 3D 

perovskite crystals. As the MAI concentration is increased, the film tends towards a 

2D/quasi-2D formation due to the excess MA+ cations supressing the formation of a 3D 

perovskite crystal.  

At present, it is difficult to provide a quantitative description of the low-dimensional 

states that have been observed. However, previous reports indicate that certain n = 1 

RPPs; namely (PMA)2PbI4 (PMA = C8H9NH3) and (PEA)2PbI4, exhibit PL emission over 

the wavelength-range 520 to 530 nm 84. Significant red-shifts in PL intensity (optical 

band-gap) have been observed as a function of increasing number (<n>) of octrahedral 

layers in RRPs; an effect that is accompanied by reduced exciton-binding energy 16. 

Therefore, the films may contain some fraction of quasi-2D lead-halide octahedra 

layers, separated by MA insulator layers and so emission is expected from states to occur 

at a similar wavelength to that of quasi-2D states in (PMA)2PbI4 and (PEA)2PbI4. 

 

6.4. Temperature-dependant 
photoluminescence excitation 
spectroscopy 

 

To understand the origins of the various states and possible energy-transfer routes 

within the film, 2D temperature-dependant photoluminescence excitation (PLE) was 

performed. Typical PLE spectra are plotted in Figure 6.14 (a) and (b) for a non-

stoichiometric 3.5:1 sample recorded at a temperature of 295 and 77 K, respectively. Here 
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the scatter from the excitation laser appears as a diagonal band across the image (note 

that the emission spectra are only plotted for wavelengths > 450 nm due to the limited 

operational range of the spectrometer grating used to detect emission). It can be seen 

that at all temperatures the excitation of the sample up to approximately 550 nm results 

in strong band-edge perovskite emission around 750 nm.  

 

 

 

Figure 6.14 - Photoluminescence excitation (PLE) contour plots shown for a 3.5:1 sample glovebox 

annealed sample on quartz at (a) 295 K and (b) 77 K. (c) Horizontal slices of the plot in (b) at given 

emission wavelengths 588 nm (black) and 777 nm (red). The shaded section indicates scattered 

signal from the excitation source around 588 nm.  
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However, at 77 K, excitation at wavelengths up to 550 nm also results in additional 

emission from the LDPs over the wavelength-range 575 - 650 nm. In Figure 6.14 (c), a 

horizontal cross-section is plotted through Figure 6.14 (b) (location shown using a dotted 

line), at wavelengths of 588 nm and 777 nm, corresponding to a PLE spectrum of one of 

the excitonic emission peaks and emission around the perovskite band-edge, 

respectively. 

 

Interestingly, the PLE spectrum of the excitonic emission at 588 nm indicates weak 

excitation resonances at 542 and 562 nm, signifying some excitonic energy transfer 

(most likely by dipole-dipole coupling) between the different LDP states. This has been 

observed previously in RPP systems with excitonic energy transfer from a wider 

bandgap, lower n-dimensional regions to a narrower bandgap, high n-dimensional and 

3D regions 89. However, in this system such resonance features appear relatively 

suppressed in the PLE of the bulk emission, with the PLE spectrum at 777 nm being 

comparatively featureless. This observation indicates that direct energy transfer 

between the LDP states and the co-existing bulk perovskite phase is a relatively 

inefficient process. 

 

6.5. Time-resolved photoluminescence 
spectroscopy  

 

To further understand the photophysics of such LDP states, time-resolved luminescence 

(TRPL) as a function of wavelength was measured at a temperature of 12 K and 185 K. 

Here, the emission from the various features is described using a stretched exponential 

function approach 93,94. The inclusion of a stretched decay, where the decay rate itself is 

dependent on time modifies Equation 2.16 such that: 

 𝑑𝑁

𝑑𝑡
= −𝐶

𝑁

𝑡𝛾
 

(6.1) 

where γ is a characteristic constant. Amending the decay rate and assuming the rate 

constant is a sum over only radiative and non-radiative process yields: 
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 𝐼(𝑡)

𝐼(0)
= 𝐴1𝑒

−(
𝑡
𝜏1

)
𝛽1

+ 𝐴2𝑒
−(

𝑡
𝜏2

)
𝛽2

 (6.2) 

where I(t) is the photoluminescence intensity at time ‘t’, A and B are amplitude constants, 

t is the time, τ1 and τ2 are the characteristic lifetimes and β1 and β2 are the stretching 

factors where β = (1-γ) 93. The emission wavelength of mixed-phase perovskites was first 

monochromated to resolve the lifetime of each peak feature shown in Figure 6.11 (c). 

Measuring the intensity of the emission and fitting the resulting decay curves to 

Equation 6.2 yielded two decay lifetimes.  

 

 

 

Figure 6.15 - Time resolved photoluminescence spectroscopy for 3.5:1 film air annealed on quartz 

at (a) 185 K and (b) 12 K shown with fitting (solid lines). The coloured lines represent isolated 

wavelengths of 780 nm (black), 640 nm (red), 605 nm (blue), 585 nm (cyan), 565 nm (magenta) and 

545 nm (gold). (c) First (τ1) and (d) second (τ2) time constant parameters of double stretched 

exponential fits to the decay transients for the emissive peaks plotted against their emission 

wavelength. The sample was exposed to a laser fluence of 3.8 nJ/cm2. 
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It has been suggested that in certain perovskites, the decay dynamics of I(t) is comprised 

of both a slow and a fast component. Here, the fast decay component (τ1) is due to non-

radiative recombination in the film, likely from surface effects and trap sites 95. In 

contrast, the slower decay (τ2) is due to bulk properties, revealing the bimolecular 

radiative-recombination lifetime of carriers within the bulk of the material 96. Figure 

6.15 (a) and (b) plot the (normalised) PL decay lifetime corresponding to the emissive 

peaks observed at 546, 566, 586, 646 and 770 nm. To quantify the transient behaviour, 

these were then fitted to double stretched exponentials of the form shown in Equation 

6.2. The PL decay lifetime in relation to the fast and slow PL decay transients extracted 

from the fits are displayed in Figure 6.15 (c) and (d). 

It can be clearly seen that decay lifetimes increase as a function of detection wavelength; 

an observation consistent with an increase in PL intensity from the LDP states as a 

function of increasing wavelength. The increase in decay lifetime of LDP emission at 

longer wavelengths is consistent with a reduced radiative rate as a result of reduced 

electron-hole confinement 97,98. Notably, a clear effect of temperature on the τ2 (slow 

transient) emission lifetime of the LDP states (detection wavelengths <610 nm) increases 

as the temperature is reduced. PLE measurements indicate that direct energy transfer 

between the LDPs and bulk perovskite is a relatively inefficient process, and thus the 

excitons on isolated LDPs are able to undergo dissociation at temperatures >200 K by 

either the electron or hole undergoing thermally assisted tunnelling into the 

surrounding bulk perovskite. 

 

6.6.  Photoluminescence mapping 

 

The observation of energy transfer between LDP states and charge-carrier tunnelling 

from LDP states into the bulk perovskite suggests that such phases must be relatively 

mixed. To understand the length-scales of this mixing, PL mapping performed at 4K has 

been used to characterise the distribution of emission from the various emissive states 

from a 3.5:1 film.  
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This is shown in Figure 6.16 (a), (b), (c) and (d), where the integrated-distribution of 

luminescence is plotted centred around 510, 546, 566 (LDP emission) and 760 nm (bulk 

perovskite), respectively. The emission spectrum was integrated around the centre 

wavelengths with limits λ ± 5 nm. Significantly, the distribution of emission from the 

LDPs and the bulk perovskite are remarkably similar. Any discrepancies in emission 

distribution from the different states most likely result from changes in self-absorption, 

which would be attributed to thickness fluctuations in the film.  

 

 
 

Figure 6.16 - Contour plots of the PL emission from LDP and bulk perovskite states integrated 

around (a) 510 nm, (b) 546 nm, (c) 566 nm and (d) 760 nm. The z-axis here is the integrated total 

PL intensity under the spectrum with limits ± 5 nm around the centre wavelength. Each plot has 

individual z-axis limits between its maximum and minimum value and are therefore not 

normalised to one another. The sample above was fabricated on to quartz glass only and regions 

of very low intensity are without any material. 
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The similarity between the different images suggests that LDP and bulk perovskite are 

mixed at a length-scale that is finer than the spatial resolution of our PL mapping setup 

(around 1.3 µm); a result consistent with facile energy and charge transfer between the 

different states. Figure 6.16 also suggests that processed films cast from a 3.5:1 solution 

on to quartz glass are rather discontinuous. Regions of little to no material present a 

significant reduction in PL intensity indicated by a light-blue/green colour. As shown in 

the AFM images in Figure 6.4, these same 3.5:1 solutions cast on to an IP substrate also 

produce regions of reduced material and therefore result in a non-ideal surface 

coverage; albeit an improvement in coverage can be seen compared to the quartz 

substrate samples.  

In the following section, 3.5:1 [MAI:PbCl2] solutions are cast into thin-films for use as 

the absorber layer in an inverted-architecture solar cell device. 

 

6.7. Photovoltaic performance  

 

The apparent complexity of these thin-films suggests they may have interesting 

optoelectronic properties. Mixed-phase perovskite films, similar to the ones studied in 

this chapter, have been studied using a PEA2(CH3NH3)n−1PbnI3n+1 blend to form energy-

funnels for light-emitting diodes 89. In this study, Yuan et al. reported on lower <n> value 

(octahedral thickness) layers funnelling energy to a lower bandgap material across a 

complex energy landscape, whereby the fluorescence is produced from a lower energy-

gap phase. Photovoltaic devices using an n=4 RPP 2D (BA)2(MA)3Pb4I13 perovskite have 

shown an excellent short-circuit currents (Jsc), over 1 V open-circuit voltages (Voc) and a 

power conversion efficiency (PCE) over 12% 9.  

 

In the following section, inverted architecture devices were fabricated using the 3.5:1 

solution, which was hot-cast and annealed under a nitrogen atmosphere. The active 

layer was coated on to an ITO/PEDOT:PSS substrate using the same deposition routine 

as used to prepare thin-film samples discussed previously. Once annealed for 90 
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minutes at 90 °C, some devices were removed from the glovebox and exposed to high 

humidity (> 40% RH) for 30 seconds which was shown in Figure 6.10 to collapse the LDP 

structures, forming a mostly 3D perovskite material. The moisture-treated (MT) films 

were then returned to the glovebox and annealed for a further 5 minutes at 90°C to 

remove any excess moisture in the film. Once cooled, both sets of perovskite films were 

then coated with PCBM to effectively planarise the rough mixed-phase perovskite 

surface and complete the p-i-n junction. The ITO / PEDOT:PSS / Perovskite / PCBM 

films were then annealed at 60°C for 5 minutes to remove any excess solvent. 

 

 
 
 

Table 6.3 – A summary of the measured device metrics for 3.5:1 devices with and without moisture 

treatment (MT) under AM1.5 for forward and reverse bias. The R s and Rsh values have been 

estimated using the gradient of the J-V curve close to the Voc and Jsc values, respectively.  

 

Following this annealing step, sequential thermal evaporation of lithium fluoride (LiF) 

and aluminium (Al) top contacts completed the devices. The approximate layer 

thickness for each step is as follows: ITO / PEDOT:PSS (30 nm) / Perovskite (450 nm) / 

PCBM (80 nm) / LiF (4 nm) / Al (100 nm). The device metrics determined under AM1.5 

solar irradiation is shown under forward and reverse bias in Table 6.3. It is clear from 

Table 6.3 that such excess organic 3.5:1 devices produce a high Voc that is close to 1 V in 

both forward and reverse bias conditions. The large Voc in mixed-phase perovskites is 

Sample Voc Jsc FF PCE Rs Rsh

(V) (mAcm-2) (%) (%) (Ωcm2) (Ωcm2)

3.5:1 - Forward

3.5:1 - Reverse

3.5:1 - Forward

(MT)

3.5:1 - Reverse
(MT)

33.9

1.03

0.98 -1.72 14131120.6438.0

1.02

1558680.8350.4-1.60

0.95 -1.94

34131150.9450.9-1.81

11252230.62
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likely due to the wider bandgaps of the LDP absorbers within the film 8,20,99, which 

absorb strongly at ≈ 2.2 eV relative to the 3D perovskite band-edge at ≈ 1.6 eV. The 

increase in Voc shown for both cells under reverse bias is likely the product of passivated 

defect sites, lowering the probability of charge recombination at the interface 100,101. The 

low Jsc values measured for both cells can be explained by a combination of poor surface 

coverage and a large number of charge recombination sites 102. From the PL mapping 

images shown in Figure 6.16, there appear to be large gaps (≈ 10 µm) between photo-

active grains. Photo-generated charge carriers near to these grain boundaries are likely 

to recombine before successfully migrating through the film to the external circuit, 

resulting in a loss of measured photocurrent. It has been previously reported that a 

reduction of charge recombination at interfaces leads to an increase of the fill factor (FF) 

103,104.  

 

 

 

Figure 6.17 – Forward and reverse bias J-V plots of inverted 3.5:1 devices without (black) and with 

(red) moisture treatment (MT).  
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During J-V measurements (shown in Figure 6.17), devices were swept under forward bias 

from -0.2 V to 1.1 V and immediately returned to -0.2 V under reverse bias at a rate of 

0.2 Vs-1, consistent with other studies on inverted perovskite solar cells 105–107. What is 

clear from Table 6.3 is an improvement in both series resistance (Rs) and shunt 

resistance (Rsh) under reverse bias conditions. One possible explanation for this 

behaviour is the idea of charge-trap filling during the forward bias sweep, caused by the 

movement of mobile charges guided by the applied bias 108. It is highly likely these 

excess-MAI (3.5:1) films contain a large number of defects which could be in the form of 

mobile halide interstitials (anions) or iodide vacancies (cations). Previous first-principle 

simulations have suggested under excess-iodine conditions, surplus iodine atoms will 

act as trap sites for charge carriers at grain boundaries 109. As is apparent from the 

topographical analysis, the large number of grains suggests the excess iodide from the 

solution is concentrated towards the boundaries after annealing, acting as charge 

trapping sites for mobile cations 110. When the device is then swept under reverse bias, 

an improvement in both Rs and Rsh is likely linked to a reduction in trap states in the 

bulk and at the grain surfaces. Other hysteresis mechanisms in perovskites have been 

ascribed to the capacitive effect 111 and intrinsic ferroelectric domains 112.  

 

6.8.   Conclusions 

 

In summary, the structure and photophysics of mixed-halide perovskites containing a 

non-stoichiometric (3.5:1) excess of methylammonium (MA) has been explored. Using 

optical and electron microscopy, the thin-films created using a hot-cast technique are 

highly polycrystalline. Grazing incidence X-ray scattering reveals the presence of new 

scattering features at Q = 0.29, 0.58, 0.89 and 1.16 Å-1, which co-exist with the bulk (3D) 

perovskite phase as shown in the emission spectra. On comparing the radially integrated 

scattering patterns of a 3.5:1 film to the simulated scattering patterns from work 

published by Soe et al., as well as the simulated structure of an n = 3 (MA)4Pb3I10 

perovskite, a distinct correlation in reflected planes can be seen indicative of a type II 

DJP. It is speculated that the reflections produced from crystal planes in a 3.5:1 film are 



202 
 

of a similar nature to those shown from the ACI perovskite, although no conclusive 

evidence can be drawn from this work. It was found that the simulated n = 3 (MA)4Pb3I10 

perovskite adopts a triclinic P1 space group with unit cell parameters of  a = 6.47 Å, b = 

12.56 Å and c = 23.23 Å and a unit cell volume of 1804.51 Å3. 

When such films are annealed in a glove-box under low-moisture conditions, the 

crystalline phase-purity improves, with a highly oriented film being formed. Optical 

spectroscopy performed on films as a function of temperature reveals the presence of 

excitonic-like features in both emission and absorption at temperatures <200 K; an 

observation consistent with the presence of a series of different low-dimensional states. 

Using photoluminescence excitation spectroscopy and time-resolved emission, the 

excitonic states are shown to have reduced lifetime at elevated temperature; however, 

this reduced lifetime most likely results from exciton dissociation caused by thermally 

assisted tunnelling of charge-carriers into regions of bulk (3D) perovskite. 

Photoluminescence mapping of the emission from the bulk perovskite and the low-

dimensional emitters performed with a spatial resolution of ≈ 1.3 µm indicates strong 

co-localisation of states; a result consistent with facile energy and charge transfer. The 

measurements indicate a significant degree in energetic inhomogeneity in a perovskite 

film in which the organic cation is in excess. The local electronic properties of non-

stoichiometric films are at present unknown, however, such films cannot be used to 

fabricate efficient photovoltaic devices. It is therefore likely that such structures and the 

interface between LDP and the 3D perovskite are associated with a range of charge-trap 

states that are related to a series of recombination pathways. This structural 

inhomogeneity may well be common in a range of related perovskite systems, and 

indeed may well be present at lower levels in films prepared much closer to their 

stoichiometric-ratio. The relatively poor surface coverage and associated defect density 

is likely the cause of a reduced photovoltaic performance of the devices, however, the 

excellent open-circuit voltage can be linked to the lower-dimensional phases present in 

these films. 
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Chapter 7  
 

Conclusions and further work 
 

The use of solution-processed materials has seen a rapid progression in the field of 

photovoltaics (PV) and opens up the potential for large-scale, roll-to-roll applications. 

To challenge pre-existing technologies such as Silicon-based PV, new materials are being 

synthesised and implemented in a cost-effective, low-temperature fabrication protocol. 

In the last few decades, interest in organic-photovoltaics (OPVs) has explored the 

potential for solution-processible PV devices through the synthesis of new copolymer 

donor materials, with devices efficiencies upwards of 14% demonstrated. Organic-

inorganic hybrid perovskites have also been shown to have power conversion 

efficiencies (PCEs) in excess of 20%, challenging the current leading PV technologies. 

The ease by which organic and hybrid perovskites can be processed make them an 

attractive method to generate renewable solar energy. However, gains in device 

efficiency can still be expected through engineering the nanoscale composition and 

structure of the active semiconductor layer.  

In this thesis, the crystallographic and photophysical nature of new solution-processible 

semiconducting systems have been studied for use in photovoltaic applications. This 

includes solution-additive engineering of a perovskite precursor and its impact on 

spray-coated PV devices. In order to optimise these photovoltaic materials, each chapter 

consists of an investigation into the structure and optoelectronic properties of thin-film 

samples, which were then used in photovoltaic devices. 

In Chapter 4, a series of new D-A polymers utilising a similar conjugated backbone to 

that of PCDTBT were studied for their potential use in photovoltaic applications. 

Copolymers P1 and P2 were synthesised with a cyclopentadithiophene (CPDT) electron-

donating unit, whilst P3 and P4 were synthesised with a dibenzosilole (DBS) donor unit. 
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Thin film absorption and PL analysis suggests that, in accordance with DFT calculations, 

a bathochromic shift of the intramolecular charge transfer (ICT) absorbance peak and 

photoluminescence (PL) emission for polymers P1 and P2 relative to P3 and P4 occurs 

as a result of a delocalisation of the HOMO level. The emission produced from 

polymer:PCBM blends indicated a significant quenching for the CPDT-containing 

polymers, which is linked to efficient charge carrier transfer across the donor:acceptor 

interface. In contrast, DBS-based polymers P3 and P4 showed poor quenching abilities 

possibly caused by insufficient mixing of the polymer molecules with PCBM. Glancing-

incidence wide-angle X-ray scattering (GIWAXS) performed on polymer films of P1 

(CPDT) and P3 (DBS) indicated a similar π-π stacking distance to that of PCDTBT (4 Å). 

The best PV devices were fabricated from the CPDT-containing polymer P1 in a 1:3 ratio 

with PCBM, producing a champion PCE of 1.77 %. Polymers P2, P3 and P4 were 

fabricated in an identical device architecture to P1, producing champion PCEs of 0.92 %, 

0.41 % and 0.38 %, respectively. A combination of a high series resistance and a low shunt 

resistance can be attributed to the reduction in performance relative to the reference 

PCDTBT devices. It is speculated that poor mixing of polymer with fullerene in the as-

cast films significantly reduces the Jsc in related devices, a result confirmed by the PL 

quenching capabilities of the blends.  

The effects of adding varying concentrations of acidic hydriodic acid (HI) into a 3:1 

molar ratio of methylammonium iodide (MAI):lead chloride (PbCl2) perovskite 

precursor solution was explored in Chapter 5. Dynamic light scattering (DLS) confirms 

the presence of HI reduces the density of particulates (thought to be PbCl2 aggregates) 

in solution from 1µm to just over 1 nm. At a concentration of 1 vol%, HI increases the 

crystallinity of the perovskite thin films, causes a red-shift of the absorption edge and 

increases the PL emission intensity of the perovskite film compared to films cast without 

such an additive.. It was then shown that the addition of 1 vol% of HI improved the 

relative efficiency of spin- and spay-cast PV devices by 90 % and 60 %, respectively. 

Champion devices measured under AM1.5 solar irradiance achieved PCEs of 13.8 % and 

11.4 % for spin- and spray-cast deposition techniques, respectively. Higher 

concentrations of HI additive were incorporated into precursor solutions that also 

showed full dissolution of PbCl2 in solution, however, photovoltaic performance was 
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significantly reduced for both deposition routes. It is speculated that a reduced surface 

coverage coupled with a poor interface between perovskite and fullerene could cause 

such a drop in efficiency. 

In Chapter 6, non-stoichiometric perovskite precursors were studied for their potential 

use in PV devices. Upon adding a 17% molar excess of MAI to an otherwise stoichiometric 

perovskite precursor blend (3:1 to 3.5:1 [MAI:PbCl2]), additional scattering features are 

observed for films measured using grazing incidence X-ray scattering (GIWAXS). Fitting 

the radial profiles of these scattering patterns revealed a similarity between measured 

GIWAXS data and a simulated quasi-2D type II Dion-Jacobson perovskite (DJP). The 

results of theoretical calculations suggest the presence of an n = 3 DJP (MA)4Pb3I10 

perovskite, which adopts a triclinic P1 space group with unit cell parameters of  a = 6.47 

Å, b = 12.56 Å and c = 23.23 Å and a unit cell volume of 1804.51 Å3. However, this 

calculation assumed a temperature of 0 K, and as such the experimental GIWAXS is 

likely to be imaging this same material in a different space group at 290 K. Measuring 

the PL emission from these non-stoichiometric films revealed a complex PL emission 

spectrum below 200 K. Transient spectroscopy (TRPL) revealed PL lifetimes decreased 

as a function of increasing temperature, with expected LDP emission having a lifetime 

of less than one nanosecond. Low-temperature PL mapping of non-stoichiometric films 

also showed a close packing of emitting states between 510 – 780 nm, consistent with a 

cascade-like energy-transfer process from large- to smaller-bandgap perovskite phases. 

The relatively low-performing photovoltaic devices is likely a product of a large defect 

density and poor surface coverage, although the high open-circuit voltage can be 

attributed to lower-dimensional perovskite absorbers in the film.  

 

7.1. Further work 

 

An extension to the work undertaken in Chapter 4 would be to investigate the phase 

separation of the polymer:fullerene matrix. It was found that when blended with PCBM, 
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the quenching of PL was incomplete. A thorough investigation into the causes of such 

PL quenching effects may help increasing the overall efficiency of these devices. 

Unfortunately due to material quantity limitations, a wider range of weight ratios with 

PCBM (i.e. 1:1, 1:3) was not explored. A clear extension to this work would also be to 

investigate the X-ray diffraction patterns of a full range of polymer:PCBM blends, which 

may help to explain the mixing capabilities of these donor-acceptor  copolymers. 

Combining X-ray diffraction data with the PL quenching efficiency of a range of donor 

polymer:PCBM blends should allow a better picture of film structure to be developed.  

Work performed in Chapter 5 could be developed by exploring the effect of the HI-

additive effect in ‘standard architecture’ devices. In this thesis, devices were fabricated 

in an inverted architecture, however, perovskite devices have also been shown to 

perform well in standard device architectures. A full temperature-dependant SSPL and 

TRPL study could also be performed as a function of increasing HI concentration to 

probe the charge carrier dynamics in post-annealed films. From the TRPL data in 

Chapter 5, it appears as though 1 vol% HI in the precursor provides a longer carrier 

diffusion length relative to films made from a 0 vol% solution. Further work could probe 

this parameter space, with a temperature and HI concentration series performed to fully 

understand the charge-carrier dynamics in films cast from small or large amounts of the 

HI additive. In addition, other alkyl halides such as 1,4-dichlorobutane (1,4-DClB) and 

1,8-diiodooctane (1,8-DIO) have been shown to improve the crystallinity of perovskite 

thin-films 1,2. However, these studies have not explored the temperature-dependant 

charge-carrier dynamics under steady-state and time-resolved conditions.  

The new quasi-2D perovskite described in Chapter 6 is the first material reported that 

comprises of MA+ cations in the insulating interlayer between lead-halide octahedral 

slabs. Further work based on this framework could explore the potential use of larger 

organic-halides as the cation species in the precursor, such as formamadinium (FA+) or 

ethylammonium (EA+) iodide, in a simple 2-component precursor. Alternatively, a 

GIWAXS study on the temperature-dependant behaviour of the (MA)4Pb3I10-containing 

films could explore possible phase-transitions that may occur between 4 K and 290 K. 

This would complement the temperature-dependent spectroscopy work performed in 
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Chapter 6. These mixed-phase 2D/3D perovskite thin-films are of growing interest as 

they have previously shown interesting charge-transfer characteristics, as well as 

prolonged device stability when incorporating hydrophobic cations in the precursor 3–

5.  
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