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“If you feel yourself hitting up against your limit,

remember for what cause you clench your fists.
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Abstract

We formulate a method of understanding the intrinsic piezoelectric properties

of a perovskite system on an atomistic level using a density functional theory

(DFT) methodology implemented into the electron density code CASTEP.

First we consider the basic unary perovskites; barium titanate, lead titanate

and potassium niobate. Geometry optimisation, elastic compliance, linear re-

sponse, and simulated strain calculations are performed and the polarisation

and piezoelectric coefficients are calculated. We then define the partial piezo-

electric coefficient (δkij) and demonstrate a way to generate the electron density

shift, two novel methods in the understanding of intrinsic piezoelectric prop-

erties.

We then study the binary piezoelectric lead titanate, performing the same

calculations and analysing the electron density shift and partial piezoelectric

coefficient in order to identify new features of binary systems, the equalisa-

tion between basic perovskite units and the “sawtooth” bonding asymmetry

between the different B-site ions.

Then the feasibility of these calculations is evaluated for bismuth ferrite, a

material showing multiferroic properties. The conversion of non-orthonormal

lattice axes to a cartesian coordinate system is addressed. We discuss the

phonon and electric field calculations, and evaluate what is and is not possi-

ble. We find that structural and electron calculations are possible and report

the optimised geometry, the elastic compliance, total electron density and spin

maps, and the electron density shifts. We identify the symmetry, non-locality,

and rotational modes in rhombohedral bismuth ferrite and suggest future re-

search based on these properties.
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Chapter 1

Introduction

1.1 Introduction to Piezoelectrics

1.1.1 What is a Piezoelectric?

A piezoelectric is a material that, through its atomic structure, is able to

convert between mechanical and electric energy, and vice versa. The direct

piezoelectric effect was discovered by Pierre and Jacques Curie in 1880[1, p. 1]

where they found that materials such as quartz and Rochelle salt both de-

veloped a current in response to mechanical stress. The inverse piezoelectric

effect is the generation of mechanical stress through the application of a volt-

age or electric field, which was proved to exist thermodynamically by Lippman

(1881)[2] and later experimentally observed by the Curies (1881)[3].

During the First World War the potential for piezoelectric devices was re-

alised when Paul Langevin used a quartz crystal between metal plates and a

hydrophone to build the first sonar system. The inverse piezoelectric effect

was used in order to generate an ultrasonic pulse by applying a voltage to the

1
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plates, and using the echo detected by the hydrophone as the pulse bounced

off a solid object, the distance could be ascertained[4].

Since then, the unique properties of piezoelectric materials have led to them

being developed in industry, with a drive to develop new materials and tech-

nology.

1.1.2 Applications of Piezoelectrics

Piezoelectric materials have become widely used due to their unique properties.

Many simple, everyday devices take advantage of the piezoelectric effect by

using a cheap piezoelectric element such as quartz. The most common and

well known uses are in timekeeping and in lighters.

In a quartz watch time is kept by a crystal oscillator, a piece of quartz crystal

attached to a battery that oscillates with a specific frequency due to the inverse

piezoelectric effect. Number of vibrations can be counted by an electronic chip,

which can then control either a mechanical analogue system or a display for

a digital system to ensure that these continue to tick at a stable 1Hz for the

lifetime of the battery. These have the advantage that they are much more

stable than mechanical timepieces which require springs that must be wound

regularly to prevent drift, and they are much cheaper, smaller and have much

lower power requirements than other methods that are far more precise than

is necessary for day to day use.

The electric or ‘hammer’ lighter is a common device used by many people in

situations where a handy source of fire is useful, for example when someone

may wish to light cigarettes, candles, fireworks, or stoves. This device utilises

a quartz crystal element and uses the direct piezoelectric effect to create an

electric spark that can be used to light the fuel. When the user pushes down
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Figure 1.1: Examples of common items that use the piezoelectric effect.

on the button force builds in a spring hammer mechanism, until such a point

that the mechanical release trips and the hammer is released onto the crystal.

This allows a far greater force to impact the crystal than would be possible

by a person. As the crystal is struck a mechanical stress is produced that is

converted through the piezoelectric effect into an electric charge. This is carried

as electric current through a simple wire mechanism to a spark gap, where the

spark ignites a stream of fuel in air to create a flame. This is preferable to a

flint mechanism, as the crystal is not worn down or damaged easily, and the

button mechanism is more comfortable to use.

Although these examples are simple, they demonstrate the piezoelectric and

inverse piezoelectric effects in a familiar way. Piezoelectrics are used for many

more technical applications that require specific materials to be formed in

certain ways. However, these more complex systems work using the same

effect that has been described.

The piezoelectric effect is utilised across many fields, with companies such as

Morgan Advanced Materials[5] specialising in different components for medical,
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Figure 1.2: A selection of piezoelectric transducer components available
from Morgan Advanced Materials[6].

industrial, aerospace, and marine applications, amongst others. Some of the

common applications of piezoelectric ceramics are listed below.

• Acoustic transducers can be created over a wide range of frequencies for

the detection (using the direct piezoelectric effect) or generation (using

the inverse piezoelectric effect) of high frequency vibrations, often at

ultrasonic frequencies. These can be utilised to create sonar systems

used in a variety of vehicles, from the sonar of a naval submarine to the

parking sensors on everyday cars. They can also be used for industrial

cleaning by generating ultrasonic waves through liquid that is capable of

removing dirt by mechanical force within industrial equipment. Finally

they may be used in medical applications for many things, from the

massaging of soft tissues to the cutting of bone[6]. Figure 1.2 shows

a number of piezoelectric components for transducer use as shown by

Morgan Advanced Materials[6].

• Piezoelectrics have also been considered for use as electric generators.

Currently most of the focus is on the use of ZnO nanorods on a substrate

to create a small amount of power for nanodevices[7]. However, there has

been interest in the use of ceramic based materials to harvest energy from

walking. In 2014, a proof of concept for an insole that could charge a

power bank using the mechanical energy from walking was submitted as
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part of the Google Science Fair[8]. Although the design does not output

enough power to be commercially viable, it brought wider attention to the

possibility of harnessing otherwise wasted energy. Designs have allowed

for either an element in the shoes, or by the use of tiles with piezoelectric

generators in them that generate energy as they are stepped on such as

ones developed by Pavegen Systems[9]. Although this technology shows

promise, in order to become more commercially viable materials capable

of converting more of the mechanical energy must be developed for a

higher power output.

1.1.3 Lead-Free Piezoelectrics

The most widely used piezoelectric ceramic is lead zirconate titanate, otherwise

known as PZT or by its chemical formula Pb(ZrxTi1−x)O3. An idealised form

of PZT where x = 0.5 is shown in figure 1.3. Lead atoms are coloured grey,

titanium is silver, zirconium is blue and oxygen is shown as red. In reality the

distribution of zirconium and titanium is random throughout the structure

leading to Ti and Zr rich areas, therefore for real PZT the repeating unit cell

representation cannot be used.

However, PZT is approximately 64% lead by weight. Due to EU directives

on the Restriction of Hazardous Substances (RoHS), lead may not be used in

electronic equipment due to its toxicity[11]. An exemption is provided for lead

used in piezoelectronic devices due to the lack of a low-toxicity replacement,

however this exemption must be renewed regularly and there is pressure to

find other materials that can be implemented instead.

In order to search for new materials efficiently, it is important to first under-

stand the principles behind the piezoelectric effect. A way to quickly calculate
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Figure 1.3: Idealised PZT unit cell based on data from Frantti et al. [10].
Grey - Pb, Red - O, Light Grey - Ti, Blue - Zr.

the intrinsic properties of the piezoelectric structure without the need to syn-

thesise it would allow the experiments and material development to be guided

in an intelligent and efficient manner.

1.2 Introduction to Computing

1.2.1 Advances in Computational Power

Since the introduction of the first electronic computer Colossus in 1944, com-

puters have been integrated into almost every aspect of life. Laptop and desk-

top computers are used daily for both work and hobbies, many mundane,

everyday items have some form of on board computer to control various func-

tions, and much of a normal daily routine is controlled by servers in secret

locations. Smartphones become ever more popular as people want more than

simple communication functions while on the move, with predictions that next

year a quarter of the world’s population will own one[12]. The massive increase

in computers is due in part to Moore’s law. Although strictly this predicts that
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Figure 1.4: The progression of Moore’s Law since 1971[14].

the number of transistors on an integrated circuit doubles approximately every

two years, this has a knock on effect to the miniaturisation of general com-

ponents and the overall affordability of computers for purpose[13]. Figure 1.4

shows the number of transistors on different chips since 1971, with a loga-

rithmic axis used to demonstrate the exponential increase in transistors[14].

Although the validity of the predictions made by this law are often questioned,

continued improvements by manufacturers has ensured that processing power

has increased while the costs of that power have decreased.



Chapter 1. Introduction 8

Figure 1.5: TITAN Supercomputer at Oak Ridge National Laboratory[15].

1.2.2 Introduction to Scientific Computation

Consumer devices focus on minimising the size of integrated circuits in order

to create more powerful devices that are more compact and efficient. For

scientific uses however, the increase in processing power and decrease in energy

consumption has led to the building of far larger and more powerful machines in

order to solve bigger and more complicated equations. A standard consumer

device will often have 4 processing cores contained on a single CPU chip,

which has become known as quad-core. In contrast, these high-performance

computers (HPCs) or supercomputers will have thousands of cores, or in the

case of Tianhe-2 several million. Figure 1.5 shows the first of six server racks

that house the TITAN supercomputer at Oak Ridge National Laboratory. It

is the tier 1 national machine for the USA, and ranks 2nd in the world with

almost 300,000 CPU cores and 18,688 GPU accelerators over 4,352 square

feet[15].

Although each individual processing core is no more powerful than a consumer

device, the combined power of components connected through a high speed

network allows programmers to take advantage of far more cores than would

ordinarily be available on a standalone computer. By utilising techniques such

as Message Passing Interface (MPI) and splitting up a large problem into many
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small ones, it is possible that splitting the calculations over a large number

of cores will vastly decrease the time taken. In doing so, calculations that

would ordinarily take far too long to be of use on a normal computer may be

solved much more quickly and efficiently. Most parallel applications will show

a marked speed up, however as communication times between all the cores

increases it can become less efficient. Depending on the particular program

and the calculation task, it may be efficient to use hundreds or even thousands

of cores, solving problems in a fraction of the time that would ordinarily be

possible.

Scientific computing is used for many purposes in many different fields to com-

pliment experimental work. Over time, experiments become more expensive

due to the increased requirements for new materials and equipment, or be-

cause it is simply not feasible to perform the desired experiments. Conversely

computational power has become cheaper as computers have become more

widespread, and there is far less concern for scale or safety of the simulated

system than there would be for the equivalent real system.

For instance, Pickard and Needs were able to model the crystalline structure

of ammonia under several hundred GPa of pressure, equivalent to the internal

pressure of a gas giant[16], predicting a new crystal phase at a given pressure

range. Six years later, Ninet et al. (2014) were able to confirm the existence of

the predicted phase experimentally using a high-pressure diamond-tipped anvil

to generate the required pressures[17]. Figure 1.6 from Pickard and Needs[16]

shows predictions for the structures of ammonia at 100, 300 and 450GPa.

At the time of publication such pressures were not possible to create in an

experimental setting.

This technique has been used to predict the structures of many new and exist-

ing materials under a range of conditions from studies ofNixInAs for electronic
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Figure 1.6: High pressure phases of ammonia predicted by
computation[16].

components[18], to modelling of CaCO3 and MgCO3 in the Earth’s mantle for

geophysical studies[19]. In all of these cases, computation has made predictions

to guide experimental studies to their goal.

1.3 Overview of the Project

It is the goal of this project to use computation in order to support the exper-

imental piezoelectrics group. Through the use of Density Functional Theory

(DFT) a variety of piezoelectric materials will be modelled in order to calculate

and understand the piezoelectric effect on an atomistic level. By understanding

and being able to quantify the piezoelectric effect and the industrially relevant

quantities associated with the materials in a first principles manner, we will be

able to develop a framework for fundamentally understanding how structure

and bonding affects the piezoelectric properties.

This understanding can be used in the future to develop new, tailored materials

that outperform currently used materials without the downsides of toxicity or

environmental damage.
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Scientific Information

2.1 The Science of Piezoelectrics

2.1.1 The Direct and Inverse Piezoelectric Effect

The piezoelectric effect, sometimes referred to as the direct piezoelectric effect,

is the ability of certain materials to generate an electric charge as a mechanical

stress is applied. The same materials also exhibit the reverse of this process

known as the inverse (or converse) piezoelectric effect, whereby an electric

charge in the material causes a spontaneous mechanical stress[20]. A schematic

view of this is shown in figure 2.1, with P being the direction of the axis of

asymmetry, commonly the axis of polarisation.

This effect is caused by a non-centrosymmetric crystal structure which may be

formed in 20 of the total 32 crystal classes, however not all of the materials

in those classes will exhibit a piezoelectric effect. This effect was first discov-

ered in 1880 by Jacques and Pierre Curie, who discovered that crystals such as

quartz, tourmaline, and Rochelle salt gave an observable electrification under

11
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Figure 2.1: A schematic illustration of the direct piezoelectric effect due
to strain parallel to the axis of polarisation[21].

stress[21]. Since then many new bulk piezoelectric materials have been dis-

covered, including perovskite materials such as barium titanate (BaTiO3) and

lead titanate (PbT iO3), and recently a piezoelectric effect in nanostructures

such as zinc oxide nanorods[7].

Table 2.1 shows the 32 classes and if they are able to exhibit the piezoelec-

tric, pyroelectric, or ferroelectric effect. This was formulated by studying the

matrices for equilibrium properties in Nye (1957)[22] and ferroelectric point

groups were taken from Mirman (1999)[23].

Figure 2.2 shows the unit cell crystal structure of barium titanate in its low

temperature rhombohedral phase. This structure has a clear asymmetry in the

[111] direction, producing a piezoelectric response.

Figure 2.3 is an SEM micrograph of a zinc oxide nanorod array produced by

Wang and Song for use as a piezoelectric nanogenerator that may be used to

produce electricity from ambient vibrations.
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Table 2.1: The 32 crystallographic point groups, and their electric prop-
erties from Nye (1957)[22] and Mirman (1999)[23].

Lattice Type Point Group Piezo- Pyro- Ferro-

Triclinic 1 • • •
1

Monoclinic 2 • • •
m • • •
2/m

Orthorhombic 222 •
mm2 • • •
mmm

Tetragonal 4 • • •
4 •
4/m
422 •
4mm • • •
42m •
4/mmm

Trigonal 3 • • •
3
32 •
3m • • •
3m

Hexagonal 6 • • •
6 •
6/m
6/mmm
622 •
6mm • • •
6m2 •

Cubic 23 •
43m •
m3
432
m3m
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Figure 2.2: The rhombohedral structure of barium titanate, as observed
experimentally below 180K.

Figure 2.3: An SEM image of a piezoelectric ZnO nanorod nanogenerator
created by Wang and Song[24].
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2.1.1.1 Piezoelectric or Ferroelectric?

Though the piezoelectric and ferroelectric effect are separate phenomena, they

often appear in materials such as BaTiO3 and PZT. These effects also have

the same Curie temperature and ultimately arise from the same asymmetric

properties, which leads to further confusion. The definitions for the two effects

in relation to ceramics are as follows[25].

• Piezoelectricity – The coupling of elastic and dielectric properties of a

solid exhibiting linear dependence of either a mechanical load generating

a charge (direct) or an electric field generating a deformation (inverse).

• Ferroelectricity – A non-linear crystal capable of being spontaneously

polarised, generally with a high level of permittivity, that exhibits hys-

teresis in the variation of dielectric polarisation as a function of electric

field strength, and has a temperature dependant permittivity.

It is important to distinguish these effects for many materials, as piezoelectric-

ity is supported by 20 crystal classes whereas ferroelectricity is only supported

by 10. This means that while many materials may be piezoelectric and fer-

roelectric, many such as quartz are solely piezoelectric. Overall, discussions

on favourable electrical properties are due to the ferroelectric effect, where

mechanical properties are due to the piezoelectric effect.

2.1.2 The Perovskite Group

The perovskite group of crystallographic structures is of particular interest to

this research. It is named after the mineral perovskite (CaTiO3) and refers
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Figure 2.4: The idealised perovskite cubic structure, shown as barium
titanate as observed above 400K.

to materials with the similar structures. Although these materials were origi-

nally believed to be cubic it was found that most of the structures are in fact

only pseudo-cubic, with perovskite itself found to be monoclinic and others

discovered to be tetragonal or orthorhombic[26].

In its idealised cubic structure, a perovskite has the generic formula ABX3

with the A-cation in the (0, 0, 0) position, B-cation in the (1
2
, 1

2
, 1

2
) position

and X-anions in the (1
2
, 1

2
, 0), (1

2
, 0, 1

2
), and (0, 1

2
, 1

2
) positions. This idealised

structure is shown in figure 2.4.

However, non-cubic phases generally do not have ions on symmetric posi-

tions. For instance, in the tetragonal form a piezoelectric such as lead titanate

(PbT iO3) the B-cation and all X-anions shift in the z-axis by a small amount,

leading to the necessary asymmetry. Similarly in a rhombohedral form such
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as barium titanate (BaTiO3) the atoms are shifted along the [111] direction,

creating the asymmetry. Convention dictates that the A-cation is always in

the (0,0,0) position, with the unit cell and all other atoms relative to this.

2.1.3 Intrinsic Piezoelectric Properties

The strength of the piezoelectric effect is dependent on a mix of intrinsic prop-

erties which deal with atomic interactions and bonds, and extrinsic properties

that are determined by larger scale effects such as crystal grains and domains.

As the extrinsic properties occur on scales far beyond DFT is capable of, the

intrinsic properties will be studied.

2.1.3.1 Piezoelectric Charge Constant

The piezoelectric charge constant, known as dij, is a matrix of elements that

determine how the piezoelectric behaves under electric field or stress. It is

defined as:

• The polarisation generated per unit of mechanical stress.

• The mechanical strain on the piezoelectric per unit of electric field ap-

plied.

These are equivalent, as can be seen by dimensional analysis of the constituent

parts in equation 2.1.
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Polarisation =
Coulombs

Meters2
=

C

m2

Stress =
Newtons

Meters2
=

N

m2

Strain = Dimensionless

E − Field =
Newtons

Coulomb
=
N

C

dij =
Polarisation

Stress

dij =
C
m2

N
m2

dij =
C

N

dij =
Strain

E − Field

dij =
1
N
C

dij =
C

N

(2.1)

The (i,j) components indicate elements of the matrix, which refer to the di-

rection of polarisation or the applied electric field for the first index, and the

direction of the applied stress or induced strain for the second. An index of

1, 2, or 3 denotes an axis direction of x, y, or z, whereas 4, 5, or 6 denote

a shear about the respective axis[27]. For a tetragonal material, there are 3

independent quantities in this matrix:

• d33 – An electric field in the z-axis giving rise to a displacement in the

same direction, or a displacement in the z-axis inducing polarisation in

that direction.
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Table 2.2: Example piezoelectric charge coefficients for barium
titanate[28], a PZT variant sold by Morgan Advanced Materials[29],
and a proprietary piezoelectric material created by Mide Technology

Corporation[30].

BaTiO3 PZT401 PZT402 CTS-3195HD

d33(×10−12C/N) 82 315 307 390
d31(×10−12C/N) -33 132 125 -190
d15(×10−12C/N) 150 511 495 585

• d31 – An electric field in the z-axis direction gives a strain in the x-axis,

or an induced polarisation in the z-axis direction due to a mechanical

stress in the x-axis.

• d15 - An electric field in the x-axis induces shear strain about the y-axis,

or shear stress applied around the y-axis induces a polarisation in the

x-axis.

Example values for these quantities are published by companies and are avail-

able as datasheets. A few examples are shown in table 2.2. BaTiO3 data is

taken from MatWeb[28], PZT data from Morgan Advanced Materials[29], and

CTS data is from Mide Technology Corportation[30].

2.1.3.2 Elastic Compliance

The elastic compliance (sij) of the piezoelectric is the ratio of the strain pro-

duced in the material to the mechanical stress applied to it. In the s11 and

s33 directions this is equal to 1
Y

where Y is the Young’s modulus, or modulus

of elasticity[27]. The indices (ij) are similar to those of the charge coefficient,

with the first being the direction of the induced strain, and the second the di-

rection of the applied stress. Only the (11) and (33) indices are usually listed.

There are 2 different types of the compliance:
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Table 2.3: Example elastic compliance of barium titanate[31], industrial
PZT produced by Morgan[29], and an industrial material created by Mide

Technology Corporation[30].

BaTiO3 PZT
Crystal Ceramic 401 402 CTS-3195HD

sE11(×10−12m2/N) 8.05 8.55 12.70 12.30 16.4
sE33(×10−12m2/N) 15.7 8.93 15.60 15.57 18.8
sD11(×10−12m2/N) 7.25 8.18 11.10 10.89 14.4
sD33(×10−12m2/N) 10.8 6.76 7.76 7.94 9.43

• sE – The compliance under constant electric field.

• sD - The compliance under constant electric displacement.

Examples of these quantities for the previous ceramics are given in table 2.3.

Again, PZT data was taken from Morgan Advanced Materials[29], and CTS

data is from Mide Technology Corportation[30]. BaTiO3 data was not given

in the original source, so has been taken from Berlincourt and Jaffe (1958)[31].

Berlincourt and Jaffe also give a mathematical expression for the compliance

that may be useful in later studies, shown in equation 2.2, where ρ is the

density and NR is the resonance frequency constant.

sE11 = 1/(4ρN2
R) (2.2)

Though this may not be of use in static calculations, it may become useful in

connecting ab-initio research with industrially important quantities.

2.1.3.3 Dielectric Permittivity

The dielectric permittivity of the piezoelectric is the dielectric displacement

per unit of electric field[27]. This quantity is ultimately a measure of how

the material reacts to an electric field and how good the material will be
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as a capacitor. As materials like barium titanate are both piezoelectric and

ferroelectric the permittivity is expected to be high, as ferroelectric ceramics

are commonly used in capacitors. It is represented by ε and may be given at

either a constant stress or constant strain. This is followed by an index (ij),

where the first is the dielectric displacement in the 1, 2, or 3 direction, and the

second is the direction of the electric field.

• εTij - The permittivity for a material under constant stress.

• εSij - The permittivity for a material under constant strain.

The dielectric permittivity can be related to several other quantities, and which

is most suitable may depend on what is being calculated or measured. The

relative dielectric constant K is frequently used, which is relative to the per-

mittivity of free space as shown in equation 2.3. This is the quantity usually

quoted in publications and data sheets so is most readily available.

K =
ε

ε0
(2.3)

The permittivity of free space is a constant with a value of ε0 = 8.85 ×

10−12Fm−1. This is related to a quantity known as the electric susceptibil-

ity χ as K = 1 + χ[32].

The relative dielectric constant of example materials is shown in table 2.4. PZT

data was not available from the Morgan data sheet so was taken from Jaffe

Piezoelectric Ceramics (1971)[1, p. 146]. CTS data is from Mide Technology

Corporation[30]. BaTiO3 data has been taken from Berlincourt and Jaffe

(1958)[31].
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Table 2.4: The relative dielectric constants single crystal and ceramic
barium titanate[31], PZT[1, p. 146], and an industrial material from Mide

Technology Corporation[30].

BaTiO3

Crystal Ceramic PZT CTS-3195HD

KS
11 2920 1436 612 916

KS
33 168 1680 399 830

KT
11 1970 1123 1180 1730

KT
33 109 1256 730 1700

2.1.3.4 Electromechanical Coupling Coefficient

The electromechanical coupling coefficient (k) is a measure of the piezoelectric

efficiency of the material and is described as the best measure of the piezoelec-

tric effect[1, p. 10]. The coupling coefficient is given by equation 2.4 and 2.5

for the direct and inverse piezoelectric effect respectively. As it is effectively a

ratio of energies, the overall quantity is dimensionless.

k2 =
Electric Energy Generated

Mechanical Energy Inputted
(2.4)

k2 =
Mechanical Energy Generated

Electric Energy Inputted
(2.5)

As we are dealing with a physical system, this energy transfer is limited by

physics to be incomplete due to energy conservation and thermodynamics and

as a result we know that k2 < 1 =⇒ k < 1. Generally speaking, higher

electromechanical coupling coefficients are desired for piezoelectrics. As piezo-

electrics tend to have different properties in different directions relative to the

axis of polarisation, the coupling factor is split into the same indices as the

piezoelectric charge constant in section 2.1.3.1. Table 2.5 shows the piezoelec-

tric coupling coefficient for some sample piezoelectric materials. PZT data was
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Table 2.5: A table showing the piezoelectric coupling constants of bar-
ium titanate[31], PZT from Morgan Advanced Materials[29], and the CTS

industrial material produced by Mide Technology Corporation[30].

BaTiO3 PZT
Crystal Ceramic 401 402 CTS-3195HD

k33 0.560 0.208 0.67 0.70 0.72
k31 0.315 0.494 0.35 0.33 0.36
k15 0.570 0.466 0.70 0.71 0.59

taken from Morgan Advanced Materials[29], and CTS data is from Mide Tech-

nology Corporation[30]. BaTiO3 has been taken from Berlincourt and Jaffe

(1958)[31].

2.1.4 Relations Between Piezoelectric Constants

Though all of the constants are important in their own right, they can also be

used to define a set of equations to quantify the piezoelectric effect. Equations

2.6 and 2.7 are fundamental to the piezoelectric process as they link the strain

(x) and dielectric displacement (D) to the applied stress (T) and electric field

(E) through the previously described properties[1, p. 9].

x = sET + dE (2.6)

D = dT + εTE (2.7)

We see that in both of these cases that the piezoelectric charge coefficient

influences both the mechanical and electric field quantities, which is due to

its broad nature discussed in section 2.1.3.1. Additionally we see that the

compliance associates with the mechanical quantities while the permittivity

is associated with the electric field and dielectric displacement. This gives

some insight into the nature of these quantities and how we may be able to
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calculate them, as we can isolate mechanical and electric field effects. The

electromechanical coupling coefficient can be linked to the other quantities

through equation 2.8[33].

k2 =
d2

sEεT
(2.8)

We see again that like the charge coefficient, the coupling coefficient has both

electric field and mechanical components as seen in the denominator, as we

would expect due to it being identical for both the direct and inverse piezo-

electric effect.

These properties are esential to the macroscale piezoelectric effect, and thus

understanding how they work is crucial to our fundamental model of piezo-

electricity.

2.1.5 Barium Titanate as a Sample Material

Barium titanate has been selected as the initial material of study due to its

industrial, structural, and historical interest. It shows both piezo- and ferro-

electricity at room temperature, has a perovskite structure, and in its solid

phase has 5 crystal phases that undergo thermal transitions. Figure 2.5 shows

a visualisation of the unit cell of the room temperature tetragonal phase.

Characterisation of the tetragonal phase was first performed by Megaw (1945)[35]

using copper Kα x-rays with a wavelength of 0.15418nm. It was found that

the lattice parameters of this phase were a = 3.9860Å and c = 4.0263Å, how-

ever none of the internal features of the cell that give rise to the piezo- and

ferroelectric properties were found.

Structural properties of the cubic, tetragonal, and rhombohedral are shown in

table 2.6. As not all properties are relevant to a given phase, some quantities
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Figure 2.5: Visualisation of the tetragonal phase of barium titanate as
observed at room temperature[34].

are intentionally omitted. Data for the cubic structure is taken from Edwards,

et al. (1951)[36], while data for the other phases is from Kwei, et al. (1993)[34].

The quantities ∆a and ∆c represent the difference in fractional coordinates

from the ideal cubic positions, with Ti = (1
2
, 1

2
, 1

2
), Oz = (1

2
, 1

2
, 0), and Oa =

(1
2
, 0, 1

2
). By symmetry, the position of Ob is identical to Oa with a rotation

about the z-axis in tetragonal and cubic phases, so is not required. In the

rhombohedral phase, all of the oxygen atoms are symmetrically identical and

therefore only one is required to be defined.

We will begin our research with barium titanate, along with two less common

but similar perovskites; lead titanate and potassium niobate.
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Table 2.6: Structural properties for the cubic, tetragonal, and rhombohe-
dral phases of barium titanate from Edwards, et al.[36] for cubic and Kwei,
et al.[34] for the others. ∆a and ∆c is the difference between the fractional

coordinate and the ideal cubic positions in the a- and c-axes.

Cubic Tetragonal Rhombohedral

a (Å) 4.0057 3.9925 4.0036
c (Å) - 4.0365 -
V (Å3) 64.274 64.406 64.172
α(◦) - - 89.939
∆aT i - - -0.0128
∆cT i - 0.0203 -
∆aOz - - 0.0109
∆cOz - -0.0258 0.0193
∆cOa - -0.0123 -
Curie Temp. (K) 400 270 -

2.2 Density Functional Theory

2.2.1 Ab-Initio Modelling Using DFT

Ab-initio modelling is a simulation technique based entirely on physical theory,

with no direct input from experimental data. It translates as “first principles”,

or literally “from the beginning”. DFT is one such method, using quantum

mechanics to determine ground state electronic structures by calculating the

electron density. In this way, DFT can be used to calculate the ionic, covalent,

and metallic bonding of materials[37, Ch. 6].

In a DFT calculations are based on the electron density function ~n, which maps

the full 3-dimensional space with the probability of an electron occupying each

infinitesimal volume element around the point (x,y,z)[38]. Figure 2.6 shows

a 2 dimensional cross section of the electron density for graphene, with red

representing a high probability of electron occupancy, and blue representing

low probability.
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Figure 2.6: An electron density plot for graphene, looking down the nor-
mal planar axis, calculated using CASTEP. Blue is low electron density, and

orange is high.

This means that, regardless of the number of electrons in the system, the

electron density function is only dependant on 3 variables, such as x, y, and

z in a Cartesian coordinate system. In comparison, a Hartree-Fock method is

dependent on 3 times the number of electrons in the system (3N)[39, Ch. 3].

Similarly in Schrödinger methods, the wavefunction ψ(~r1, ~r2, . . . , ~rN) is used,

which dependent on 3N variables. This reduction in the variable space can
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significantly reduce the computational load of the problem[40].

It is also important to consider the accuracy of DFT in terms of the exper-

imental systems we wish to simulate. As DFT requires a level of numerical

convergence in several calculation parameters, a researcher must balance the

precision required to represent a real system against the increasing resources

and time required for greater precision. This is discussed further in section

2.2.3.5. There is also the question of how accurately a DFT calculation of

arbitrary precision is capable of representing the physical system, which is

dependant on the exchange-correlation functional. This will be discussed in

section 2.2.3.3 and 3.1 as it depends on a number of factors that must be con-

sidered, such as the type of system and the calculations that are performed.

However, looking at literature for solids[41] and our previous research[42], the

PBE-WC functional accurately represents the perovskite system we are study-

ing.

The ab-initio nature of the DFT, the accuracy that can be attained, and the

advantage over other quantum methods make this methodology ideal for per-

forming many accurate calculations within a reasonable time in order to study

the desired piezoelectric systems.

2.2.2 The Schrödinger Equation and Electron Density

2.2.2.1 Schrödinger Quantum Mechanics

Electrons behave as quantum particles and are therefore governed by the

Schrödinger equation (shown in 2.9) where the first term is the kinetic en-

ergy of the system, V is the potential, and E is the total energy. In an atomic

system the potential V represents coulombic repulsions between each of the
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objects, and therefore grows exponentially to the number of objects in the

system.

−∇2 ~2

2m
ψ(~r) + V (~r)ψ(~r) = Eψ(~r) (2.9)

Or equivalently,

Ĥψ(~r) = Eψ(~r) (2.10)

In the second formulation the Hamiltonian Ĥ contains the kinetic and potential

energy operators acting on the wavefunction, and may be considered a matrix

in certain formulations of quantum physics.

By transforming the Schrödinger equation into radial coordinates it is possible

to solve for a hydrogen atom containing a single electron. The probability

density of an electron being in the infinitesimal region r = (δx, δy, δz) is given

as ρ(~r) = ψ∗(~r)ψ(~r) = |ψ(~r)|2 and the probability is the integral of this over

the region is given by equation 2.11.

P (~r) =

∫
(δx,δy,δz)

|ψ(~r)|2d~r (2.11)

This is normalised so that over all (x,y,z) the probability of finding an electron

is given by P =
∫
|ψ|2d~r = 1, i.e. the electron exists with certainty somewhere

in space. When a larger number of electrons are included however, the equation

becomes unsolvable analytically due to the interactions between electrons. In

order to deal with a larger system, a many-body wavefunction Ψ must be

introduced to take into account all of the electrons in the Schrödinger equation.

However, as electrons are charged fermions they must interact with each other.
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These interactions appear in the many body wavefunction as exchange and

correlation energy, making the wavefunction more complicated as each new

electron is added[37, Ch. 3]. This means that this wavefunction cannot be

represented as a combination of wavefunctions, i.e. Ψ 6= ψ1ψ2 . . . ψN . In a

many-body wavefunction, the probability of finding an electron in an arbitrary

infinitesimal region is given by equation 2.12.

P (~r) =

∫
(δx,δy,δz)

|Ψ(~r)|2d~r (2.12)

This equation is virtually identical, due to the fact that electrons are indis-

tinguishable particles. Therefore although this equation gives the probability

of finding an electron, it is impossible to discern individual probabilities for

each electron from the many-body wavefunction. Note that as electrons are

charged fermions it is not possible for more than one electron to occupy this

space, therefore the probability would be 0 ≤ P ≤ 1 as expected.

While this is not solvable exactly, numerical approximations can be made using

high power computing. Though this is accurate, it scales poorly due to the

complexity of interacting particles[43]. In order to study systems with many

electrons, we require a method that requires fewer variables and is able to be

scaled to much larger systems of electrons.

2.2.2.2 Born-Oppenheimer Approximation

Before continuing we must consider an important approximation to be made

in the formulation of quantum theories about electronic structure, the Born-

Oppenheimer (adiabatic) approximation. This is the approximation that the

nucleus of an atom is much heavier and much slower than the electrons. In
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the kinetic term of the Schrodinger equation, this makes 1
Mnucleus

negligible, as

this will be 10−4− 10−5 times smaller than the kinetic terms for the electrons.

Additionally as the nucleus moves, the electrons keep up with it as they are

coupled and it is moving so much more slowly, hence the name adiabatic.

This means that instead of treating the movements separately, the nucleus can

be effectively ignored as its movement is incorporated into electron paths[37,

Ch. 3].

2.2.2.3 What is a functional?

A functional is a relatively simple mathematical object used frequently in ap-

plications of variation calculus and perturbation theory. It is a function that

acts on a vector space, e.g. the electron density function, to map the space

to a real number[44]. It is usually denoted with a capital letter and square

brackets around the function it acts on. For example if you were to have a

vector space function t(~r) that mapped the thermal energy of each point in a

room, then a functional T [t(~r)] would return the temperature of the room as

a scalar number.

2.2.2.4 Electron Density, Hohenberg-Kohn Theorems, and Kohn-

Sham Equations

The principle of using an alternate form to the wavefunction was originally

introduced in 1928 by Fermi[45]. He defined the electron density function, or

the number of electrons per unit volume at ~r as shown in equation 2.13, where

p0(~r) is the maximum momentum in phase space.

n(~r) =
8π

3h3
p3

0(~r) (2.13)
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Defining the electron density in this way gives an obvious connection imme-

diately to the wavefunction. Over an infinitesimal element (δx, δy, δz) the

electron density actually gives the probability of finding an indistinguishable

electron in the region. Therefore we see that the two quantities can be related

through equation 2.14.

n(x, y, z) = P (x, y, z) =

∫
δx,δy,δz

|Ψ(~r)|2d~r (2.14)

Although the introduction of electron density was an important step in quan-

tum chemistry, Thomas-Fermi theory was fundamentally too inaccurate to be

usable as bonds were highly unstable and did not find equilibrium in even basic

examples[46]. An overview of Thomas-Fermi theory up to 1957 is provided by

March (1957)[47].

The formation of density functional theory began with Hohenberg and Kohn

in 1964[48]. In this, the Hamiltonian is broken down into a kinetic, external

potential, and coulomb potential term such that Ĥ = T̂ + V̂ + Û . Then the

ground state electron density is defined in terms of the ground state wavefunc-

tion as in equation 2.15, where Ψ is the total ground state wavefunction.

n(~r) = (Ψ, ψ∗(~r)ψ(~r)Ψ) (2.15)

The first of the two Hohenberg-Kohn theorems is proved, that the external

potential is a unique functional of the electron density function. That is, that

each ground state electron density corresponds to exactly one external potential

(plus a constant) and vice versa. The second Hohenberg-Kohn theorem is

then proved. There is an energy functional dependant solely on n(~r) that

gives the ground state energy when minimised, and at this minimum energy
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there is a unique ground state density n0(~r). This allowed the rewriting of

the Schrodinger equation shown in 2.9 into a functional based on the electron

density function as in equation 2.16.

E[n] =

∫
v(~r)n(~r)d~r +

1

2

∫
n(~r)n(~r‘)

|~r − ~r‘|
d~rd~r‘ +G[n] (2.16)

This expression can be broken down into its constituent terms. The first

integral is the effect of the external (nuclear) potential on the electron density.

The second is the coulomb repulsion between a pair of points ~r and ~r‘ for all

pairs of points, and the final term G[n] is a functional for the final components

of the energy, including kinetic terms and the exchange and correlation of the

electrons. This gives us an equation for energy based entirely on the electron

density function n(~r), two theorems as to the relation between the external

potential, the total ground state energy of the system, and the electron density

function, and an insight into the exchange-correlation functional.

The equations necessary for density functional theory come from Kohn and

Sham (1965)[49]. Beginning with equation 2.16, the G[n] functional is broken

down such that it is made up of the kinetic energy of a non-interacting system of

electrons with density n(~r) and the exchange-correlation energy as in equation

2.17. It should be noted that due to the Hohenberg-Kohn theorems this kinetic

energy is also unique to a density functional, and vice versa. Additionally, due

to the Born-Oppenheimer approximation the kinetic energy of the nuclei can

be safely ignored, leaving only the electron kinetic energy. In wavefunction

terms, the ground state wavefunction of the system of non-interacting particles

can now be represented as a product of the one-electron wavefunctions, i.e.

Ψ = ψ1ψ2 . . . ψN .

G[n] = Ts[n] + Exc[n] (2.17)
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There is no exact expression for Exc for an arbitrary n(~r), however if the

electron density varies slowly then the exchange-correlation energy can be ap-

proximated by equation 2.18.

Exc[n] =

∫
n(~r)εxc(n(~r)) (2.18)

In this equation, εxc represents the exchange-correlation energy of a single

electron in a homogeneous electron gas. This is effectively the first exchange-

correlation functional in DFT, the Local Density Approximation (LDA). This

is shown to be more accurate than the Thomas-Fermi method and better than

the Hartree-Fock method, another method of determining electronic structures

and energies.

By combining this method with Hartree-Fock, the Kohn-Sham equations are

formed, shown as equations 2.19 and 2.20. While based on the Hartree-Fock

equations[50], these take into account correlation effects of electrons, whereas

previous theories did not. The term µxc denotes the chemical potential of the

homogeneous electron gas.

E =
N∑
1

εi −
1

2

∫∫
n(~r)n(~r′)

|~r − ~r′|
d~rd~r′ +

∫
n(~r)[εxc(n(~r))− µxc(n(~r))]d~r (2.19)

E =
N∑
1

εi −
1

2

∫∫
n(~r)n(~r′)

|~r − ~r′|
d~rd~r′ +

1

2

∫∫
n1(~r, ~r′)n1(~r′, ~r)

|~r − ~r′|
d~rd~r′

+

∫
n(~r)[εxc(n(~r))− µxc(n(~r))]d~r

(2.20)

An accurate exchange-correlation functional allows the mapping of a non-

interacting system of electrons, which is an easy problem to solve, to a real

system of interacting electrons that we wish to study. Although estimating

the exchange-correlation energy can never be exact, this simplification allows
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much more complicated systems to be studied. Density functional theory has

continued to evolve around the principles of the Kohn-Sham equations. As

most of the terms in the equations are exactly solvable, most development has

gone towards better functionals to calculate the exchange-correlation energy.

2.2.3 Modern DFT and CASTEP

Although it is possible to find solutions to Kohn Sham equations for simple

systems, the practicality of doing so for more realistic, more complicated sys-

tems has led to the implementation of DFT codes to solve the equations in a

self-consistent manner. Many codes are available and have different strengths

and weaknesses that must be considered for the purposes of research. A few

examples are given below.

• All electron codes such as Wien2k[51] and Elk[52]. All electron codes

tend to be the most accurate as they take into account the full electronic

structure. However, in order to do so they must perform calculations for

every electron, making them expensive.

• Plane wave pseudopotential codes such as VASP[53] and CASTEP[54].

Core electrons have no direct effect on chemical properties, so instead a

pseudopotential is used that treats the nucleus and core electron as a sin-

gle ion acting on the outer electrons. This drastically reduces the number

of electrons that must be considered for larger atoms, and can be used to

simplify the coulomb potential and wavefunction that must be considered

within the atomic radius of the atom. Though much faster, the accuracy

of these methods depends on how accurately the pseudopotential models

the real potential at the distance required[55].
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• Linear scaling code such as ONETEP[56]. Most DFT codes scale such

that the time taken per calculation is proportional to the number of

electrons cubed, i.e. T = O(N3). This is not a requirement of the funda-

mental DFT however, and it is possible for calculations to be performed

where the time taken is linearly dependant on the number of electrons.

This approach makes large structures, such as bioparticles and nanopar-

ticles feasible to model. However linear scaling is new and codes are

generally untested and inefficient for small systems.

In this research the CASTEP code was used for its speed, reliability, and

support. This is a plane wave pseudopotential code developed by a team of

UK academics and distributed freely to academics in UK and Europe. It is

reported that CASTEP is used in hundreds of publications per year, with over

900 in 2013[57].

By using DFT, we can calculate a huge range of material properties such as[58]:

• Energies and enthalpies of electronic systems.

• Structural properties, such as lattice parameters and atomic positions.

• Vibrational and thermodynamic data.

• Polarisability and permittivity.

• Data for comparison with experimental techniques, e.g. SEM, TEM,

NMR, AFM, IR, and Raman.
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Figure 2.7: The .param and .cell files for a single point energy CASTEP
calculation of tetragonal barium titanate using the WC functional.

2.2.3.1 A CASTEP Calculation

The basic CASTEP calculation requires 2 files to input the necessary data, as

shown in figure 2.7. The .cell file contains information about the physical sys-

tem and includes material information such as atomic positions and symmetry,

any constraints or restrictions on the system, and the choice of pseudopoten-

tial to be used. The .param file contains the practical information on the

calculation such as the type of task to be performed, the numerical limits and

convergences, and the algorithms to be used. Although not true for all codes,

CASTEP has coded into it a set of default values for almost all of the param-

eters for the calculation. This means that a calculation can be run with very

little input from the user. The only quantities that must be specified are:

• Lattice parameters and atomic coordinates – Essentially the calculation

must be told what the material of interest is.

• Task – The type of calculation desired must be specified.
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• Exchange-Correlation (XC) Functional – As seen in section 2.2.2.4 the

exchange-correlation functional is pivotal to the Kohn-Sham equations,

therefore selecting the most suitable one is important as there is generally

no correct answer.

Although it can be run with default settings, it is highly recommended that

thought and testing is put into the relevant aspects of the calculation to ensure

that the results are precise enough to be useful. Although there are specific

parameters that must be tailored to individual tasks, in general there are four

that are central to the DFT calculation; the exchange-correlation functional,

the pseudopotentials, the plane wave energy cut off, and the Monkhorst-Pack

grid.

2.2.3.2 Bloch’s Theorem

Any measurable quantity of a material will contain a huge number of parti-

cles, with just a few grams being made up of ≈ 1022 atoms. To calculate the

properties of the material by considering all the electrons would be impossible.

Instead we apply crystallography, and the concept of periodicity. We know

that many materials, including the piezoelectrics we are considering such as

BTO, can be represented by a small unit cell repeated many times. What

Bloch’s theorem tells us is that for a periodically repeating system of atoms,

the electron density and wavefunction are also repeating with the same peri-

odicity. This allows the calculation to be reduced significantly and makes the

computational problem possible to solve. However, it removes any larger scale

effects such as grain or domain properties as the system is not large enough to

model these.
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2.2.3.3 The Exchange-Correlation Functional

As this is fundamental to the Kohn-Sham method, the exchange-correlation

(XC) functional must be chosen carefully. Each one has different advantages

and disadvantages depending on the type of system to be studied and picking

the most suitable is not always obvious. There are categories of XC-functional

which depend broadly on the complexity of the functional; LDA, GGA, meta-

GGA, and hybrid.

• The local density approximation (LDA) or local spin density approxima-

tion was the approximation made by Kohn and Sham in their original

paper[49]. Many simple solids can be considered close to a homogeneous

electron gas, therefore in the LDA the energy is the integral over the

volume for a homogeneous electron gas of the given density[37, Ch. 8].

This is shown in equation 2.21.

ELSDA
xc [n↑, n↓] =

∫
n(~r)εhomxc (n↑(~r), n↓(~r))d~r (2.21)

As the energy is based only on the density position (hence local) this is

the simplest. However, this functional is only suitable for simple materi-

als that can be approximated to the homogeneous electron gas. It is not

suitable for materials with rapidly varying electron density. It also can-

not take into account extra bonding such as hydrogen or van-der-waals.

It also tends to overbond materials, predicting lower bond lengths and

lattice parameters than expected.

• The generalised gradient approximation (GGA) was first suggested in

Kohn and Sham’s original paper, and expanded on further by Herman,

F. et al. (1969)[59]. In this method the XC-energy is based on both
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the electron density at a point and its spatial derivative. This allows for

corrections not previously possible, and preserves the desired properties.

The most widely used GGA is the Perdew-Burke-Ernzerhof (PBE) func-

tional, often used as it can provide good performance over a wide range

of calculations and materials[60]. They give the general equation for a

GGA as in equation 2.22, where f is a parametrised, analytic function.

EGGA
XC [n↑, n↓] =

∫
f(n↑, n↓,∇n↑,∇n↓)d~r (2.22)

Many GGAs have been proposed, and at least 5 are supported by the

CASTEP code. Although the PBE functional is broadly the most repre-

sentive across all types of material, each functional has a different spe-

cialisation that makes it more suitable for specific types of systems. For

instance, the exchange-correlation functional used in this work is the

WC functional created by Wu and Cohen (2006)[41], a modification of

the PBE functional with more accuracy for solid materials. In this paper

they demonstrate that their functional accurately predicts the properties

of many simple materials, as well as the tetragonal form of PTO and the

rhombohedral form of BTO. In addition to this, in our previous work we

have compared the PBE and WC functionals for predicting the phase

stability of BTO, with the results shown in figure 2.8. It was found that

the WC functional correctly reproduced the themal ordering of all five

phases, and was more reliable in finding identical minima for identical

structures[42].

GGAs strike an excellent balance between performance and accuracy,

and are therefore widely used. However in contrast to LDA they tend

to underbind materials, often making the bonds and lattice parameters

slightly longer. These GGAs are still localised as they now depend on
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Figure 2.8: A study on the relative lattice energy for the five phases of
barium titanate, using the PBE and WC functionals[42].

the function and it’s gradient at each point. As with most DFT methods,

they are unable to calculate the bandgap of materials accurately.

• Meta-GGAs are a class of functional that incorporate the kinetic energy

density of occupied Kohn-Sham orbitals into the GGA formulation. The

additional complexity of the functional makes it more accurate, with

the TPSS functional reported as being uniformly accurate across diverse

systems and properties[61].

• The final type of functional is the hybridised functional. These function-

als combine the orbital-dependent Hartree-Fock approach with density

functional theory to create highly accurate functionals[37, Ch. 8]. These

functionals are non-local due to Hartree-Fock contributions and gener-

ally require the most computational power. Additionally, they have been

criticised for their mixing proportions being chosen to suit experimental
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data[58], and that they often excel in only one area making them unfit

for general purpose[61].

Clearly then selecting a functional is not a trivial task, and thought and review

must be put into this choice. Literature searches and speaking with other

researchers in the field are generally the best way to select the most suitable

functional for the system.

2.2.3.4 Pseudopotentials

We know that only valence electrons take part in the bonding of molecules and

structures; however they are influenced by the potential from both the nucleus

and the surrounding core electrons. The core electrons create a wavefunction

that does not affect bonding but requires a higher energy cut-off, discussed in

section 2.2.3.5, and for DFT to have to consider a larger number of electrons.

In the ground state, there are no excited electrons and therefore electrons

below the valance level do not need to be considered, except to account for the

screening effect from the nuclear potential. Therefore, if the effects of the core

electrons and the nucleus can be combined into a form that does not contain

the complexity of the core states then the number of electrons that must be

calculated is reduced, and the energy cut-off is lowered[55].

For this purpose, Phillips and Kleinman (1959)[62] introduced the concept of a

pseudopotential. This method allowed the combination of the simplicity of the

previous tight binding approximation within the core electrons with the accu-

racy of plane waves for valance electrons. Figure 2.9 shows an approximation

of the wavefunction and potential for all electrons (AE) and the pseudopo-

tential (PS) as a function of distance from the nucleus to demonstrate the

differences[63].
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Figure 2.9: Illustrative differences between the actual wavefunction and
energy potential, and the pseudopotential approach as a function of dis-
tance from the centre of the atom. The value of rcut is the core radius of
the filled electron bands, and is different for every atom and core electron

configuration[63].

We see that the new potential is less steep and is not asymptotic, and the

wavefunction has been greatly simplified. This allows the atom to be described

using a much lower plane wave energy cut-off. However, at the core radius

the all-electron and pseudopotential converge, generating effectively the same

external potential on the valance electrons.

In reality some accuracy is lost in this approximation of the potential and

wavefunction. All electron codes, especially WIEN2k, are commonly used as a

baseline to test pseudopotentials against. The Center for Molecular Modeling

at Ghent University maintains a list of ∆−values that allows code performance

to be approximately compared[64]. Although this does not take many factors

into account such as the speed of the calculations, the numerical accuracies and

libraries of the system, and the improvements made by specific functionals to

certain types of material, this can be used as a rough guide to determine how

codes compare. On this list CASTEP has a ∆−value of 0.5meV/atom against
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WIEN2k, an acceptable deviation when the improvements to calculation speed

and resources required are considered.

Generally speaking, two types of pseudopotential are used in an ab-initio frame-

work; norm-conserving and ultrasoft. Norm-conserving pseudopotentials were

originally formulated by Hamann, et al. (1979)[65]. In this, Hamann stated 4

requirements for the pseudopotential:

1. The real and pseudo eigenvalues of the valance electrons should agree for

a given prototype atomic configuration.

2. The real and pseudo wavefunctions agree for a distance r greater than a

chosen core radius rc.

3. The integral from 0 to r of the real and pseudo charge density for each

valance electron should agree for any r > rc.

4. The logarithmic derivatives of the real and pseudo wavefunctions and

their first derivatives of energy agree for r > rc.

Property 1 and 2 are a basic requirement of any pseudopotential as shown

in figure 2.9. Property 3 is the norm-conservation requirement and can be

expressed mathematically as equation 2.23, with ρ(r) to represent the charge

density. ∫ r

0

ρ(r)AEdr =

∫ r

0

ρ(r)PSdr,∀r > rc (2.23)

Effectively what this means is that if we assume property 2 is held, then the

integral of the wavefunction and the pseudowavefunction up to the core radius

is equal. When subjected to the normalisation requirement that
∫
|ψ|2d~r = 1

across all space, the normalisation factor will be identical for both forms of

the wavefunction. Hence the pseudopotential is norm-conserving. These con-

ditions allow for the creation of pseudopotentials that may be used generically
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for a variety of chemical environments. Additionally in the CASTEP code we

are using, these pseudopotentials are required for the density functional pertur-

bation theory (DFPT) vibrational calculations. Though this method is limited

to specific material types and pseudopotentials, if it can be used it is a much

less resource intensive calculation as it does not require the superstructure of

an equivalent finite displacement calculation.

The ultrasoft pseudopotential was introduced by Vanderbilt (1990)[66] as a

way to further improve the transferability of the pseudopotentials between dif-

ferent chemical environments and further reduce the plane wave cut-off energy

required. The hardness of a pseudopotential is a measure of the gradient of the

pseudopotential in the core region, which increases the requirement for higher

energy cut-offs. Although norm-conserving pseudopotentials do alleviate some

of these requirements, the strict norm-conservation means that some orbitals

such as O 2p still require a wavefunction similar to the all electron form. If

the norm-conservation is discarded, the wavefunction may be simplified sig-

nificantly while still agreeing with an all electron method for r > rc. This

development allowed pseudopotentials to be created for lithium row elements

and scandium row transition metals to be developed that required significantly

lower plane wave cut offs for a reasonable precision.

The lowering of computational requirements, along with the development of

the generalised gradient functions later in the decade, significantly boosted the

popularity of DFT in fields such as materials science and quantum chemistry.

There is another type of pseudopotential used in certain studies, the projector

augmented-wave pseudopotential (PAW)[67]. In literature these are occasion-

ally referenced, however have not received widespread recognition as they are

only used with the VASP code. As they are not relevant to CASTEP, the soft-

ware we are using, we will not discuss them. However if they are used, they
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can be considered to be a different mathematical formulation of the ultrasoft

pseudopotential, and have the same advantages and disadvantages.

In cases where either type of pseudopotential may be used, the decrease in plane

wave cut-off makes ultrasoft pseudopotentials a better choice as this reduces

the calculation time required. CASTEP contains a function to generate new

pseudopotentials at the beginning of a calculation, developed by Cocula et al.

(2005)[68]. These “on the fly” pseudopotentials are the most up to date and

are recommended by the code developers.

2.2.3.5 Plane Wave Energy Cut-Off

The plane wave energy cut-off is one of the two most important numeric aspects

to the calculation. Along with the Monkhorst Pack grid, this must be carefully

selected to ensure that the computational system resembles the physical system

as closely as possible while using the minimum amount of computational power.

As we are dealing with pseudopotentials rather than dealing with an actual

wavefunction, the electrons are described instead by a pseudowavefunction

based on the wave vectors, and an expansion in a new vector called G-vectors

(~G). These G-vectors make up the basis set of the quantum equation. The

form of the pseudowavefunction is given in equation 2.24[39, p. 137].

φPS~k (~r) =
1√
Ω

∑
~G

c~k+ ~Gexp[i(
~k + ~G) · ~r] (2.24)

Where ~k is the wave vector, c is the weighting, and Ω is a normalisation. These

G-vectors are an infinite basis set, much like the harmonics of a string. Low

energy terms dominate with higher energy terms having a decreased weighting.

As it would be impossible to calculate the infinite set, we use the fact that low
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energies dominate in order to define a plane wave cut off. The energy cut off

is defined according to equation 2.25[39, p. 145].

Ecut = (
~2

2me

)G2
max (2.25)

The constant factor at the beginning of this term comes directly from the

kinetic energy in the Schrödinger equation, hence the proper name kinetic

energy cut-off, and G2
max is the square modulus of the maximum energy G-

vector.

This is purely a pseudopotentials requirement, as it determines how accurately

the pseudowavefunction fits the real wavefunction of the ions. The smoother

a pseudopotential is in its core region, the fewer plane waves are required to

describe it. Therefore in general different states of the same material have the

same energy cut-off requirement.

In practice this is done by converging to a value of Ecut to some quantity

known as the figure of merit. This is commonly energy differences between

structures, but other simple quantities that can be calculated using a single

point energy task would also be suitable such as convergence of forces. When

the difference in this figure of merit between successive values of the energy

cut-off, corresponding to the addition of higher energy plane waves, is below a

predetermined value the system is considered converged. This predetermined

value must be decided beforehand depending on the type of calculation. For

instance, if the difference in energy between two structures is expected to be a

few meV from thermodynamics, experimental data, etc., then the convergence

of this energy should be < 1meV to ensure that variations due to the precision

of the pseudowavefunction are not greater than the quantity that the user

wishes to study.



Chapter 2. Scientific Information 48

Figure 2.10: The scaling of time against the plane wave cut-off energy for
various phases of barium titanate. Each pair of lines for the different phases
is marked with the number of k-points and number of processing cores used

for each of the calculations.

From our previous work[42] we know that the scaling of the time taken for

increasing plane wave cut-off is of order O(E2
cut), however communications

between cores and other values may interfere with that. Figure 2.10 shows

the quadratic relation between the core time and the plane wave cut-off for

different phases of barium titanate corresponding to different fixed Monkhorst-

Pack grids.

While the cut-off is usually reported in electron-volts, publications may list it

in Rydbergs (13.6eV ) or Hartrees (27.2eV ) instead.

2.2.3.6 Monkhorst-Pack Grid

While we often consider the atomistic, real structure of materials, DFT calcula-

tions generally do not occur on this form. Instead, the structure is transformed

into reciprocal space using a fast-Fourier transform method (FFT). This recip-

rocal space is referred to as the Brillouin Zone (BZ). In general, the larger the



Chapter 2. Scientific Information 49

Figure 2.11: An image of the 3-dimensional Brillouin Zone for an FCC
material, showing the points of high symmetry.

real space cell is the smaller its BZ will be, as for a simple cell without symme-

try the lattice vectors are given by ~a∗ = 2π/~a. The shape of the Brillouin Zone

is affected by the symmetry of the structure, with unusual shapes being pro-

duced by otherwise regular crystal structures. For instance, figure 2.11 shows

the Brillouin zone for a face centred cubic material such as aluminium[69].

We see in the figure that several locations are marked with special designations.

These are known as points of high symmetry and those which are present

are unique to different lattice types. The centre point however, is the most

important. This is known as the gamma point (Γ − Point) and is located at

~k = (0, 0, 0). This is the point of highest symmetry and allows the symmetry

of the structure to be retained. This allows us to draw paths between the

other points of high symmetry and construct an irreducible Brillouin Zone,
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Figure 2.12: The scaling of time against the number of points on an axis
of the Monkhorst-Pack sampling grid for different phases of barium titanate.

which is smaller and therefore less computationally expensive to calculate.

The Γ− Point is unique as all optical phonon modes are real and positive.

While to get the ‘true’ energy of the system requires a continuous function over

the Brillouin zone, such a scheme is not possible analytically or numerically.

Instead it is sampled by a discrete mesh of points known as the Monkhorst-Pack

grid, with each discrete point known as a k-point. The scheme for selecting

points for this grid was first published by Monkhorst and Pack (1976)[70].

Using the points of high symmetry to determine the irreducible Brillouin zone

leads to a reduction in the number of k-points required, as symmetrically

identical k-points are combined into a single k-point with a higher weighting.

The time scaling for these points is of order O(n2
k), where nk is the number of

points in the irreducible Brillouin zone. This is shown in figure 2.12 from our

previous work[42].

We see that while the points are plotted in terms of the total sampling, all

structures follow a quadratic, with the high symmetry phases that require a
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smaller irreducible BZ having a much shallower gradient than the low sym-

metry ones. The scaling is less clear for this. This is due to the fact that

discrete k-points can be parallelised across for calculations, which allows the

calculation speed to be greatly increased. This is often done automatically,

depending on the code. However communication time between cores becomes

an issue, as between cycles every core will have to wait for the data from all

others, which in a highly distributed system can take a long time.

2.2.3.7 Phonons

A phonon is a quantisation of vibrational normal modes in a lattice[71, p. 287].

Phonons are one of the most important quantum mechanical properties of a

material. They act as a coupling phase between phonon and photon interac-

tion, such as in IR spectroscopy, couple the electric and vibrational properties

in the effective ionic charge, and are a determining factor in the phase change

of ferroelectric materials. This is only the basics of how we use phonons in

this study, in truth they are a driving force behind many common and eso-

teric properties of solids, from determining the thermal conductivity to the

formation of superconductive states.

Phonon dispersions are a property of any solid material with a periodic struc-

ture, as a basic property of the fact that atoms are non-static and vibrate in

their positions. These vibrations are considered as a moving wave through the

material carrying energy. Of course, due to the periodicity, mass, and bonding

of the displaced atoms, there are not a wide spectrum but instead discrete

modal frequencies for each lattice. Most important is the scattering capability

of these waves. The wide range of modes a lattice is capable of holding allows

us to make a distinction between acoustic (low-frequency) and optical (high
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frequency) phonon modes. This range of frequencies allows scattering inter-

actions across the spectrum with other phonons, electromagnetic waves, and

particles, providing they contain a matching harmonic/anharmonic mode. The

phonon dispersions and interactions are far too broad to cover in this work,

as we are only using them as a means to an end as a way to calculate other

properties. However, they are covered extensively in any solid state physics

text, such as Patterson and Bailey[72].

2.2.3.8 Effective Charges

The Born Effective Charge, or Effective Ionic Charge, is defined as the change

in polarisation relative to the displacement of an ion[73]. This is a 3×3 rank-2

tensor, as while it is obvious that a displacement in an axis direction will result

in a change in polarisation in that direction, it also accounts for a polarisation

change in other directions that occur. There is a distinction between the formal

charges on an ion, and the effective charge on the same ion. In formal charges

we consider electronic occupation of valence states or ionic sites. While this

provides a simple set of rules for chemical bonding, it is not possible to clearly

determine which electrons in a bond belong to which ion.

This is the nature of the covalent bond, as the valence states of the partner

ions overlap to share occupation of electrons. Under displacement, the formal

charge does not take into account how many of the valance electrons in bonds

change due to the movement of individual ions. The effective charge can be

seen as the sum of the formal charge, and the additional electronic charge due

to the surrounding electrons which do not formally “belong” to the ion but are

perturbed by its displacement regardless.
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The formal charge can be seen as a measure of covalency in a compound, which

does not provide a good indicator of the piezoelectric property we are studying.

By contrast, the Born Effective Charge can be seen as a measure of how the

covalency changes under ionic displacement, which is fundamentally what we

wish to calculate.

Born Effective Charge is implemented into all phonon capable DFT codes,

largely due to how it can be implemented. It can be seen as the coupling coeffi-

cient between the electronic perturbation and phononic perturbation modes[74].

When running a DFPT linear response or displacement calculation the elec-

tric and phonon perturbations are both calculated. This means that, while we

can control the output of the calculation to a file, the full set of properties is

calculated, or is at least possible to calculate quickly using the wavefunction

and density. Then it is obvious that the effective charge tensor is trivially

calculated as the coupling between the two.

As it is defined at ~q = 0 it can be calculated purely at the gamma point,

allowing for significant memory and CPU time savings in the calculations.

Through definition and study we have determined it is invariant of the k-points

and inverse path, provided that the gamma point is present.

Now we have discussed the core physics and computation, we must consider

how this has been used in the past, to further our understanding of the use,

capability, and drawbacks of these methods.
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Literature Review

3.1 The Wu-Cohen Functional

Our functional of choice has been selected as the GGA-PBE with Wu-Cohen

exchange, often abbreviated to WC functional. This was introduced in 2006

by Wu and Cohen as a generalised gradient approximation with a focus to

improve the performance of DFT for solid structures[41]. Although this makes

the functional less suitable for non-crystal systems, such as isolated molecules,

when compared to the more generic PBE, for our use this new formulation is

advantageous. This work builds on an earlier publication by Wu, Cohen, and

Singh[75] in which the LDA, GGA-PBE, and weighted density approximation

(WDA) functionals are compared in prediction of crystal structures for several

perovskites. Although each has advantages, no functional was able to predict

both structural and ferroelectric properties with sufficient accuracy.

In their introduction of the WC functional[41], the authors compare their new

functional with the LDA, GGA-PBE, and TPSS meta-GGA functionals along

with experimentally obtained structural data. Initial comparisons show that

55



Chapter 3. Literature Review 56

across 18 simple structures identified in a previous study by Staroverov et

al.[76], the WC functional performs well. The mean absolute relative error

is calculated as a difference from the experimental values and the WC func-

tional is found to produce an error much lower than the others in lattice con-

stant and bulk modulus, with percentage errors of 0.29 and 3.6 respectively.

When calculating the cohesive energy the functional is no worse than the PBE

and considerably better than the LDA. Although in the previous paper from

Staroverov et al.[76] the methodology for selecting the experimental values for

comparison is not given, in Wu and Cohen the use of these values from a single

source makes a selection bias in favour of the WC functional difficult.

The mathematical formulation of the functional by modification of the ex-

change energy in the GGA formulism is clear as it creates a diffuse tail around

the exchange-correlation hole which is representative of solids. Conversely in

other GGA functionals such as revPBE and RPBE, this tail has been sharp-

ened to give better results for isolated atoms and molecules at the expense

of accuracy for solid structures. As electrons are fermions they obey Pauli

exclusion, which is responsible for the existence of electron shells. Effectively

this means that where an electron is present there is an absence of electron

density around it due to this effect, reducing the electron density beyond the

classical coulombic repulsion[77]. In isolated atoms and molecules we expect

this effect to be sharp, however due to the bonding in solids allowing the effect

to be more diffuse greatly improves the accuracy of exchange energy for these

systems.

Wu and Cohen also focus on perovskite ferroelectrics in this paper and demon-

strate improvements in tetragonal PbT iO3 and rhombohedral BaTiO3 against

PBE and LDA calculations. In the prediction of unit cell properties and frac-

tional positions of non-symmetric atoms the WC functional outperforms the
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previous functionals. Data for barium titanate has been taken from a the single

source provided by Hewat (1974)[78] using neutron powder diffraction. As seen

in the previous work by Wu, Cohen, and Singh (2004)[75] the functionals were

unable to accurately provide both the lattice parameters and the fractional

coordinates responsible for ferroelectric properties, therefore testing the new

functional against a single data source shows little selection bias in comparing

their theoretical results.

In modern DFT it is possible to use the hybrid functionals, which combine the

local GGA functional for the exchange-correlation energy with an amount of

the non-local Hartree-Fock approach in order to create a new functional. With

these functionals available, we must consider if a hybrid functional is more

suitable for our calculations. As hybrid functionals contain both local and

non-local components, the computational cost for such calculations is greatly

increased from the equivalent GGA. Therefore, even if a hybrid functional is

more accurate it may not be worth the extra cost required in either the extra

time taken to perform the calculations, or the necessary reduction in precision,

in order to perform this type of calculation.

Table 3.1 shows a comparison between three computed values for structural

properties of the rhombohedral phase of barium titanate, and their percentage

difference from the experimental data. The WC data was taken from Wu and

Cohen (2006)[41], the PBE0 data was taken from Mahmoud et al. (2014)[79]

and Bandura and Evarstestov (2012)[80], and experimental data is from Kwei

et al. (1993)[34]. None of these studies used this source for their experimental

comparison, meaning that this data should not favour any of these functionals.

Each value is shown with a percentage difference from the experimental data.

It is obvious that the WC outperforms the PBE0 functional in representing the

structure accurately, with no greater than 10% deviation from experimental
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Table 3.1: Comparison of calculated volume, lattice angle, and atomic po-
sitions between the WC functional and PBE0 functionals for rhombohedral

barium titanate.

WC PBE0 2014 PBE0 2012 Expt.

V ol.(Å
3
) 64.04 (-0.20) 64.47 (0.47) 62.03 (-3.33) 64.17

α(◦) 89.86 (+0.02) 89.80 (-0.04) 89.72 (-0.13) 89.84
∆(Tiz) -0.0117 (-8.59) -0.0132 (3.12) -0.0151 (+17.97) -0.0128
∆(Ox) 0.0116 (+6.42) 0.0232 (+112.84) 0.0129 (+18.35) 0.0109
∆(Oz) 0.0184 (-4.66) 0.0124 (-35.75) 0.0242 (+25.39) 0.0193

values. This is because of the idea of a universal functional, in which the ideal

functional will be accurate regardless of the chemical environment. Whereas

the WC functional is tailored towards solid structures at the expense of iso-

lated molecules and atoms, there is a drive now to create functionals which

are equally accurate across all systems. This is also true of the GGA-PBE,

it is a generic functional that should maintain its accuracy across different

chemical environments. This means that there has been no development of a

solid-specific hybrid, as theorists designing functionals strive for greater gen-

eral accuracy. While in theory this is an important goal in the advancement of

DFT, in practice we see that for research in specific types of systems a greater

accuracy can be achieved with a less complicated and costly functional. Al-

though there may be need to rely on a functional such as PBE0 in the future if

certain calculations require it, structural data is best optimised using the WC

functional.

Additionally, it is important to note that the study for the WC functional was

performed before the PBE0 studies. It is possible that inaccuracy arises due

to the available computing power at the time. Due to Moore’s Law discussed

in chapter 1 we would expect that the computational power available would

be 8 times greater in 2012 at the time of the PBE0 study, which may improve

the result further due to the additional precision possible.
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3.2 Calculating Properties of Piezoelectrics Us-

ing DFT

3.2.1 Structural Properties of Piezoelectric Perovskites

We know that the piezoelectric properties are created by asymmetry in the

crystal structure, and that in perovskites this is also the cause of the dipole

giving rise to the ferroelectric spontaneous polarisation. Therefore it is im-

portant to consider the capability of DFT in producing the relevant structural

properties.

We would expect that the minimum energy state would correspond to the re-

laxed position, as a physical system will always attempt to take on its lowest

energy state. Therefore by finding the atomic positions and lattice parame-

ters corresponding to the lowest energy state should yield the correct ground

state geometry. Most commonly used in DFT is the quasi-Newtonian Broy-

den–Fletcher–Goldfarb–Shanno (BFGS) algorithm, originally implemented for

crystals by Pfrommer et al. (1996)[81]. As a quasi-Newtonian method it

utilises a Hessian matrix of forces acting on a vector in order to create a sim-

ulated force on both the lattice parameters and the atomic coordinates. By

using a gradient descent the force is minimised over many iterations until the

system is numerically converged to within the preset parameters of the cal-

culation. This method is able to preserve the symmetry of a system using

the construction of the Hessian matrix, so if a symmetry is set or found the

calculation will only use allowed symmetric deviations from this. Addition-

ally, this method has been implemented in a low memory form which shows

improvements for calculations on large systems.
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Structural properties have been calculated for perovskite structures using this

method in various papers. The most basic properties calculated are the lattice

parameters, which have been well characterised experimentally using x-ray

and neutron diffraction methods. These are calculated by allowing the BFGS

algorithm to act on both the cell and the atomic positions, which are generally

treated as separate quantities in the computation. It is possible to optimise the

atomic positions without the lattice parameters, or vice versa, but in doing so

there is the risk of poor ground state convergence as such constraints actually

serve to make the calculation more difficult.

In order to achieve numerical convergence for the structure, additional conver-

gence parameters must be set that are checked at the end of each BFGS cycle.

These parameters can be automatically set by CASTEP, or can be manually

entered into the .param file. These variables are as follows:

• Energy Tolerance (eV/atom) – The change in energy per atom of the

unit cell.

• Maximum Force Tolerance (eV/Å) – The maximum calculated force on

the atoms.

• Maximum Stress Tolerance (GPa) – The maximum calculated stress of

the unit cell.

• Maximum Displacement (Å) – The maximum displacement of the ions

by the optimisation force.

When all four of these criteria are met, i.e. when the code calculates that

these quantities are below the set parameters, the calculation is successful and

a “Final Geometry” is given. Unlike the plane wave cut-off and Monkhorst-

Pack grid, these parameters do not explicitly increase the calculation time,
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however generally the smaller these quantities the more cycles are required.

Additionally there is a risk that a system will not be able to converge to these

parameters, and they must be relaxed slightly in order to achieve the final

structure. Although this task is useful in itself for optimised structural prop-

erties, it is also a necessary precursor to various other tasks, and it is important

to ensure good convergence of the geometry of a cell before undertaking further

tasks to ensure good results.

As this type of task is easy to perform, it is widely used and published. We saw

in section 3.1 that the structural properties of the optimised cell can be used

to compare and evaluate different functionals. Additionally, it is a required

step in calculating the elastic and vibrational properties of the structure.

Materials showing piezoelectric and ferroelectric character, such as barium ti-

tanate, have a very fine tolerance to lattice parameters. Vanderbilt (1997)[82]

states that the ferroelectric instability in BaTiO3 is lost if the lattice parameter

is reduced by 2%, thus the inherent error in the LDA functional of around 1%

is not acceptable. We expect that our selection of the WC functional performs

better, as a difference in volume of -0.20% from the sample experimental value

should reflect accuracy in the lattice parameters of the computed system com-

pared to the experimental values. Tinte et al (1998)[83] used the structural

property calculations to perform modifications to the PBE functional in or-

der to find a functional that reproduced the experimentally predicted volume.

Equation 3.1 shows the form of the exchange energy for the PBE functional

originally proposed by Perdew et al (1996)[60].

Fx = 1 + κ− κ

(1 + µs2

κ
)

(3.1)

Tinte et al (1998) found that by varying the value of κ then the exchange
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Table 3.2: Functional, plane wave cutoff, Monkhorst-Pack grid, and lat-
tice parameters used in some computational studies on tetragonal barium
titanate by Zhao, et al.[84], Long, et al.[85], and Evarestov, et al.[86]. A
plane wave cutoff is not present for the Evarestov work due to a slightly

different DFT method being used.

Author Year Functional PW Cutoff (eV) MP Grid a (Å) c (Å)

Zhao 2011 PBE 350 63 3.99 4.03
Evarestov 2012 PBE - 123 4.01 4.19

PBE0 - 123 3.97 4.14
Long 2013 PBESol 500 73 3.98 3.98

correlation hole can be adjusted such that the functional is more suited to

the system. However, as the diffuseness of the exchange correlation hole is

system dependant, selecting the correct value for κ requires a semi-empiracle

approach.

Although this methodology is ultimately flawed from an ab-initio perspective,

it demonstrates that the exchange-correlation hole is system dependant and

that while the equilibrium structure is dependent on the way the functional

handles the hole localisation, the vibrational properties are not dependent on

this particular mathematical property. This lead Wu and Cohen (2006)[41]

to re-evaluate equation 3.1 from a theoretical standpoint. By leaving κ and

modifying the µs2 term instead the same effect could be reached in a way that

is more generic to solids, thus allowing the development of their solid-specific

functional in a first principles manner.

Table 3.2 shows the details of the paper published and the lattice parameters

computed.

We see that in Zhao et al. (2011)[84] and Long et al. (2013)[85] the stated

Monkhorst Pack grid is fairly in line with what would be expected for ultrasoft

pseudopotentials. However, as it is not clear what their convergence criteria is

these values may not be properly converged. Evarestov et al. (2012)[86] do not
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list a plane wave cut off as this calculation was performed with Gaussian basis

sets and therefore converged in a different way that is difficult to comment

on. However if we can assume that a similar convergence criterion was used

for the Monkhorst Pack grid, then we assume that the calculation is strictly

converged. As this optimisation is being used as a precursor to a vibrational

calculation, tight convergence parameters must be used to ensure the cost of

accuracy at the cost of computational power.

There are not a wide variety of sources for computed lattice structures of

barium titanate, which would at first indicate a lack of interest in the subject.

However for more advanced calculations it is a necessary initial step, therefore

although the structures are not explicitly given this type of calculation is widely

used and of great interest. We will now look at some of these more advanced

calculations.

3.2.2 Band Structure Calculations of Barium Titanate

The band structure of a material is one of the most important things that can

be calculated. It gives the energy of the bands in the Brillouin zone (BZ) and

can mark the points of high symmetry in the lattice. The Brillouin zone is

the reciprocal lattice of the primitive unit cell, and a first BZ can be defined

as a Weigner-Seitz cell of the reciprocal unit to be unique. For the simplest

example of a simple cubic unit cell with lattice length a, the reciprocal lattice is

a cubic cell with reciprocal lattice lengths 2π
a

. By integrating over the first BZ,

the energy of an electronic structure can be calculated[39, Ch. 4]. The band

structure for the cubic phase of barium titanate was published by Piskunov et

al (2003)[87] and is shown in figure 3.1.
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Figure 3.1: The band structure of cubic barium titanate as calculated by
Piskunov, et al.[87] using B3PW, and shows the points of high symmetry

for the cubic structure.

The most important property of the band structure is the band gap, which

defines the conductive properties of the material at absolute zero. The band

gap is the difference in the band structure between the highest valance band

and the lowest conduction band in the material. In a metal there is no band

gap, the bands are only partially filed and a current can be induced by the

application of an electric field. In an insulator however, the bands are fully

filled and there is a large gap in the band structure around the Fermi energy.

Filled bands do not generate a current under electric field, and therefore an

insulator cannot have an induced current. While this is true for the zero

temperature material, in reality thermal excitation occurs. In materials with

a small band gap of < 2eV the electrons can be excited from the valance to

conduction bands at room temperature and these materials are referred to as

semiconductors, such as silicon[39, Ch. 4].

DFT is well known to underestimate the band gap of materials. While it

can be said that it should not be possible for DFT as the band gap is an
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excited state property, some argue that the band gap is the difference between

two ground states and it is well within the purview of DFT to calculate such

properties[88]. Currently band gaps are calculated using the hybridised DFT

and Hartree-Fock functionals. Where DFT is known to underestimate the

property, Hartree-Fock is known to overestimate it. Therefore more accurate

band gaps should be achieved by a cancellation of errors. However this presents

a definite issue in the ab initio nature of the DFT calculations, as at best this

method is an approximation that can only hope to be accurate by a certain

amount of luck, and at worst the HF-DFT mixing is created in such a way as

to match experimental data on the band gap for already existing structures.

Neither of these options fit with our aim to create a broad methodology for

both experimentally characterised and unknown systems.

As barium titanate is an insulator its band structure is often not published,

however its band gap is calculated and reported by many publications. Table

3.3 shows published band gaps for different phases of barium titanate using a

variety of LDA, GGA, and hybridised functionals, with experimental data for

comparison. Data is from Evarstov and Bandura (2012)[86], Mahmoud, et al.

(2014)[79], Piskunov, et al. (2003)[87], and Wemple, et al. (1968)[89].

We see that the pure DFT functionals massively underestimate the band gap,

whereas the hybrid functionals are within 1eV. In particular, the B3LYP hybrid

functional calculates closest to the experimental value reported. This is to be

expected, as it is a hybrid functional constructed of energy terms from both

Hartree-Fock and LDA DFT for the prediction of band gaps.

It is not our intention to directly study the band structure of barium titanate;

however it will likely influence many other structural and electronic properties.

Therefore it is important to be aware of the issues caused by using DFT for
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Table 3.3: Published calculated band gaps, structural symmetry, and the
functional used in the calculation, for barium titanate from Evarstov, et
al.[86], Mahmoud, et al.[79], Piskunov, et al.[87], and Wemple, et al.[89].

Author Year Symmetry Functional Band Gap (eV)

Evarestov 2012 Cubic LDA 1.9
PBE 1.9
PBE0 4.0

Mahmoud 2014 Cubic PBE0 4.0
Tetragonal PBE0 4.2
Orthorhombic PBE0 4.6
Rhombohedral PBE0 4.8

Piskunov 2004 Cubic PBE 2.0
P3PW 3.6
B3LYP 3.5

Wemple 1968 Cubic Expt. 3.2
Tetragonal Expt. 3.4

the prediction of this property and, where necessary, use hybridised functionals

where our GGA approach is not suitable.

3.2.3 Vibrational Properties of Barium Titanate

The most published properties of barium titanate are the vibrational properties

of the lattice. In a solid structure the atomic positions are fixed, however they

can be perturbed by vibrational energy in the material. This gives rise to

phonons, a quantum mechanical object analogous to photons, though they

are made up of discrete packets of kinetic energy rather than electromagnetic.

The phonon energy is quantised by the frequency ν and the Planck constant

h = 6.626× 10−34 by equation 3.2[90].

Eν = hν(ν +
1

2
) (3.2)
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Figure 3.2: The phonon spectrum for the cubic phase of barium titanate
calculated by Ghosez, et al.[92]. The x-axis gives the points of high symme-

try in the reciprocal cell.

Calculating phonon frequencies is often published as the results can be read-

ily compared to Raman scattering experiments. This uses a monochromatic

visible light source, usually a laser, in order to excite phonon frequencies in

the sample. Light is scattered from the sample and can be analysed for the

change in frequency as photon energy is transferred to phonons. Infra-red

spectroscopy can also be used to probe vibrational frequencies, as in semi-

conductors and insulators it is lattice vibrations that contribute most to the

absorption of the incident light. It is due to the Born-Oppenheimer approxi-

mation discussed in section 2.2.2.2 that it is possible to decouple the electronic

degrees of freedom and the vibrational, making DFT an excellent method of

calculating phonons[91]. Figure 3.2 shows a calculated phonon spectrum pro-

duced by Ghosez, et al (1999)[92] for the cubic form of BaTiO3.

In CASTEP the vibrational properties can be calculated either by finite dis-

placement or density functional perturbation theory (DFPT). As barium ti-

tanate is a polar insulator it is preferable to use the DFPT method in order

to model vibrational properties of the system. The only drawbacks to this are
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that this method cannot be used with partial occupancy (metallic) systems

or ultrasoft pseudopotentials. In calculations requiring either of these a finite

displacement supercell must be used, which is computationally less efficient

and will be unable to produce Raman or IR spectra if we wish to compare our

results to experimental data for publication[93]. It will require study into the

differences produced by using norm-conserving or ultrasoft pseudopotentials,

and an evaluation into if the two results can be mixed or if a finite displace-

ment supercell must be used to maintain the identical properties of the system

already modelled.

Density functional theory is a method that uses the variation principle in per-

turbation theory to minimize energy. By analogy, density functional perturba-

tion theory uses the vibrational principle to solve equations when the external

potential is perturbed. This method defines a Born-Oppenheimer energy sur-

face from the eigenvalues and eigenvectors of the atomic Schrodinger equation,

and from that the lattice dynamics can be found as the second derivative of

this surface[91].

The finite displacement supercell method is much more straightforward. A

supercell is created by repeating several unit cells, and the atoms are displaced

from their equilibrium position by a small amount. The forces are calculated

on each atom using the standard single point energy calculation and a dynam-

ical matrix is calculated by using numerical differentiation to calculate force

constants. Although this method is reliable, easy to understand, and can be

used with a wide variety of systems, the necessary symmetry breaking and

large supercell mean this type of calculation is very computationally expensive

and should be avoided if possible[93].

Most of the published literature on DFT calculations of barium titanate is

for vibrational properties. This is due to the use of these calculations for
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obtaining dielectric properties of the system, which is of great interest due to

BTO’s ferroelectric properties. A method for such a calculation is presented by

Mahmoud et al (2014)[79], however the CASTEP task ‘EFIELD’ can be used

without modifications providing a phonon calculation has been successfully

performed to sufficient precision previously. If we wish to stay strictly within

our criteria of structural properties, the phonon calculation will still be used

to determine accurate material properties. However, we will need to make

approximations on other structural properties such as the fixed-ion polarisation

in order to calculate the full range of electric properties.

It is also because of the unstable phonon modes in barium titanate that give

rise to the ferroelectric instability in the material, therefore the study of these

modes can give information on its ferroelectric state as seen in Bousquet

and Ghosez (2006)[94]. These results were also found by Tinte et al (1998,

1999)[83, 95], who published that despite previous claims that functionals (in

particular LDA) were not accurate enough to preserve ferroelectric character

in the material, the LDA and GGA still show the unstable mode in barium

titanate. This is linked to the displacement chain of Ti-O bonds in the [001]

direction, which is the cause of piezoelectric properties in the tetragonal sys-

tem.

Phonon calculations can also be used to determine the thermodynamic prop-

erties of the system. This is achieved in CASTEP by taking the results of a

phonon calculation and using the task ‘THERMODYNAMICS’. While DFT is

in itself a zero-temperature method, using the calculated phonon frequencies

allows calculations for the temperature dependence of properties such as the

free energy and the entropy in the structure. These calculations were per-

formed by Bandura and Evarestov (2012)[80] who were able to calculate the

Helmholtz free energy of the system and from that calculate the dependence
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on temperature for the physical properties such as thermal expansion coeffi-

cients and the bulk modulus. Due to the low temperature required to reach

the rhombohedral state, calculating these physical properties experimentally

is prohibitively difficult. Therefore, we see that the use of computational tech-

niques is preferable in situations where experiments would not be possible.

Finally we are able to calculate the interatomic force constants from a phonon

calculation to determine the forces between pairs of atoms. An example of

this was published by Ghosez et al (1999)[92]. We expect the piezoelectric

properties of the material to depend on the forces between the displaced ions

in the system, where the displacement is in the [001] direction for a tetragonal

system.

We see that the vibrational properties of the lattice through DFT are of great

interest in publication, and that they provide a large framework for calculating

material properties. The issues with this type of study are that it is computa-

tionally expensive due to the high precision needed for the calculation. This is

further exacerbated if a finite displacement calculation must be performed, as

the required supercell will drastically increase the already large computation

time. Nevertheless, ensuring well converged phonon calculations are performed

early will allow the results to be used throughout the research. By continu-

ing from the binary checkpoint file rather than performing new calculations

every time, computational resources will be spared in the future if the initial

calculation is performed well.
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3.2.4 Piezoelectric Properties of Barium Titanate

We expect that DFT methods should be capable of predicting the piezoelectric

constants of materials. Baroni et al (2001)[91] suggests that the full piezoelec-

tric constant tensor γα,γδ could be formed as the derivative of the electric

polarisation with respect to strain as the field tends to zero. It is also possible

to define this tensor as the stress induced by a field at zero strain.

There are several issues with these definitions. Firstly is that the macroscopic

polarisation can be estimated by DFT using a fixed-ion displacement model.

However, the ‘true’ polarisation is actually obtained by Berry phase integration

as shown by Bernardini et al (1997)[96]. Secondly, the equation to create the

tensor elements requires the difference between two numerically similar terms,

requiring a high degree of both accuracy and precision to distinguish the two

that may not be possible due to inherent functional errors. Finally the full

piezoelectric tensor is a third order tensor which is usually reduced significantly

due to the number of terms that can be disregarded due to the symmetry of

the system. For example, in tetragonal barium titanate only three elements

are required (d13, d33, and d15). Treating these three quantities as independent

objects will be much simpler than having to calculate an entire third rank

tensor in order to extract them.

Calculation of piezoelectric components has been performed for III-V nitrides

and similar simple structures using a method developed by Vanderbilt (2000)[97]

and has been implemented in publications such as Bernardini et al (1997)[96]

and Zoroddu et al (2001)[98]. These are relatively simple structures and there-

fore could be calculated at the time of publication. A more recent study by

Furuta and Miura[99] used a similar technique along with in-plane compression

to calculate the piezoelectric constant for SrT iO3 and BaTiO3. This in-plane
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Figure 3.3: The change in tetragonality and polarisation induced by vary-
ing the a-axis lattice parameter in barium titanate (blue) and strontium

titanate (red) by Furuta and Miura (2010)[99].

compression method calculates many different properties under immense ma-

terial strain. We hope to use a method similar, but with more realistic strains

in order to determine piezoelectric properties. The results for their calculations

by varying lattice constant a are shown in figure 3.3.

We wish to determine if these piezoelectric properties can be calculated from a

simple framework with readily available tools. By using already implemented

methods in a widely distributed code, we can create an automated framework

to study existing piezoelectrics and attempt to find new ones with high coupling

factors. This is industrially relevant due to the attempts to find lead-free

systems to replace the commonly used lead zirconate titanate (PZT).

3.3 Sample Structures Review

We have discussed barium titanate as it is the starting point for this research,

as it is a historic material with a huge number of individual studies devoted

to it. However, we will briefly consider the other sample materials we will

be studying. These are, generally speaking, not as well published as barium

titanate, but are still well known materials in the piezoelectrics community,

and are no less important.
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3.3.1 Lead Titanate (PTO)

Lead titanate is an essential part of piezoelectric research, however it is rarely

considered as a pure material, especially in the case of a single crystal material.

It is noted in literature[100] that these crystals are particularly difficult to

grow. From speaking to experimentalists, we understand that this is due to the

particularly high tetragonality. Normally when a perovskite undergoes a phase

transition from the cubic state, the new state is highly pseudocubic, allowing

for the crystal to adiabatically change its shape as it cools. Single crystals of

lead titanate however, are prone to cracking due to the large internal stress

caused by the drastic change in shape. As such, lead titanate is mostly created

as a sintered powder ceramic, the macroscale properties of which can be quite

different to the single domain, single crystal that our calculations represent.

Table 3.4 shows a comparison of lattice parameters, tetragonality, and volume

of four experimental characterisations of tetragonal lead titanate, along with

the experimental temperature and the year published. We see that the basic

lattice parameters are well agreed upon, with little variation across the years. It

is important to ensure that there is good agreement before we begin comparing

our calculations, as comparing to a single experimental structure can allow

for the practice of cherry picking the closest value to artificially inflate the

meaningfulness of results. We also see the high tetragonality of ≈ 1.06, which is

sometimes referred to as a ferroelectric strain of 6%. This is significantly higher

than the 1% ferroelectric strain in barium titanate, and therefore supports

the idea that a single crystal would crack under the radical change of shape

associated with the phase transition.

Due to the difficulties inherent in experimental synthesis of a real equivalent

to our sample material, it is difficult to give a numerical value for comparison
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Table 3.4: The structural parameters of lead titanate from experimental
studies. We compare the two independent lattice parameters, tetragonality,
and cell volume. The temperature at which the material was characterised
and the year published is also shown. We see that the lattice parameters
are consistent across many decades, demonstrating good consensus on the

structure.

1[101] 2[102] 3[100] 4[103]

a (Å) 3.904 3.902 3.904 3.904
c (Å) 4.135 4.156 4.150 4.160
c/a 1.059 1.065 1.063 1.066
Vol (Å3) 63.022 63.278 63.251 63.403
T (K) 298 298 298 300
Year 2000 1985 1968 2001

of the dielectric permittivity, spontaneous polarisation, or piezoelectric coef-

ficient. However we can estimate the behaviours based on other structures.

We expect the lead titanate properties to be similar to those of the barium

titanate, but much greater numerically due to its highly exaggerated ferro-

electric strain. We expect a numerically large, positive d33 component, and a

smaller, negative d31. A higher spontaneous polarisation is also expected due

to the high ferroelectric strain.

Overall, studies of literature such as those above, along with further studies

by Bhide, et al.[104], Pavithra and Madhuri[105], and Yamada, et al.[106], this

prediction is well supported, however as these studies are all for composites,

multi-crystalline ceramics, and thin-films and are as such not representative

of the system we will be studying. In another paper Bhide, et al.[100] have

measured a spontaneous polarisation of 66µC/cm2, greater than that of barium

titanate, but acknowledged that their crystals suffered from the same cracking

that has been mentioned.

This demonstrates a potential strength of computational models, as limitations

that may not be immediately obvious in experimental studies are not a factor
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in computation. In order to cover the full range of possible materials in order

to gain a fundamental understanding of piezoelectric properties, it is essential

that computational and experimental techniques support each other. This

allows the weaknesses of each method to be mitigated by other approaches,

without dampening the strengths.

3.3.1.1 First Principles Calculations of Lead Titanate

Lead titanate is not often a candidate for calculations. We attribute this to

the lack of compatible experimental evidence for the reason noted above, and

also to the computational complexity. The electronic structure of lead has

historically made accurate pseudopotentials difficult to generate, ultimately

making other structures such as barium or strontium titanate more favourable

for computational efficiency and experimental comparison.

Lattice parameters of a = 3.99Åand c = 4.03Åwere calculated using a Hartree-

Fock method, which is often considered a precursor to DFT, by Stashans, et

al.[107]. We see that these parameters do not compare well to values in table

3.4, as it severely underestimates the tetragonality of the unit cell. This is

not surprising, as Hartree-Fock is not at all suitable for this type of material

for predicting lattice parameters. DFT studies have been performed which are

more suitable. Lebedev[108] calculated lattice parameters of a = 3.886Åand

c = 4.115Å, which are much more representative of the experimental values

above. Effective charges and elastic constants are also calculated for many

titanates, those relevant to this work are shown in table 3.5.

Lebedev’s work considers a total of 10 titanate perovskites, calculating phonon

dispersions for each structure. Structural parameters are a necessary part of
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Table 3.5: Lattice parameters and effective charges calculated by
Lebedev[108] for barium and lead titanate. These values are calculated
using the ABINIT and the LDA functional. We see the classic overbinding
of this functional leading to shorter lattice parameters than expected, but

this averages out to give an expected tetragonality.

BaTiO3 PbT iO3

a (Å) 3.965 3.889
c (Å) 4.007 4.115
c/a 1.011 1.058
Z∗A 2.738 3.931
Z∗T i 7.761 7.623
Z∗O,ax -6.128 -6.283
Z∗O,rad -2.186 -2.635

this calculation, and Born Effective Charges are a result of the phonon per-

turbations. However the author has not extended these results to the po-

larisation state, instead deferring to Berry phase methods by Vanderbilt and

Kingsmith[109, 110]. While a Berry phase calculation is the more accepted

method for calculation, its specialised, mathematical nature makes it concep-

tually and technically difficult to integrate into an existing research group. We

believe that an approach based on charges and structure using tools that are

standard and widely available is much more suitable to enhance the current

research output of existing groups.

Functionally, the work by Lebedev is consistent, but has several factors that

should be called into question. Firstly is the choice of functional. We have

described how we selected the WC functional for use in these calculations, and

that the LDA functional is not suitable for this type of material. A GGA based

functional is far more suitable, and should always be used as a minimum for

future perovskite calculations.

Secondly is the convergence of the calculations, which has not been made clear

as to what method was chosen in order to select the convergence criteria.



Chapter 3. Literature Review 77

The same convergence parameters were used across all structures, while we

will argue in chapter 5 that separate convergence is more suitable in these

comparative calculations. The convergence parameters are an energy cut-off

of 30Ha (816eV ) and a Monkhorst-Pack grid of 83, which are low compared to

our convergence study in chapter 5, and a self-consistent energy convergence of

10−10Ha (2.72× 10−9eV ). In CASTEP, a phonon calculation is recommended

to have a self-consistent energy convergence of 10−10eV at maximum in order

to give a suitable convergence for phononic properties.

Thirdly, it is unclear as to whether the calculation was based on norm-conserving

or ultrasoft pseudopotentials. While OPIUM[111] is used, as we would always

recommend for creating pseudopotentials, it is important to ensure that the

type of pseudopotential is clear.

Finally, there is inconsistency in the use of units, mixing Hartrees and Ryd-

bergs for energy. It is important for clarity that units are kept as consistent

as possible, and when reporting on external values that use different units the

conversion is given. We ensure that this research consistently uses standard SI,

except for lengths given in angstroms (1Å=10−10m) and energy given in elec-

tron volts (1eV = 1.609× 1019J), which are very commonly used in atomistic

research. For other units we have used metric prefixes for reading clarity[112,

Ch. 3].

Ultimately the research of Lebedev is the most comprehensive comparative

study on perovskites using DFT to date, and while there are issues listed

above that can be improved on, it ultimately provides an excellent framework

that can be drawn on in terms of essential quantities, order of calculations,

and throughput for a comparative study of perovskites.
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3.3.2 Potassium Niobate (KNO)

Potassium niobate has similar phase transitions to barium titanate. A high

temperature paraelectric phase, then tetragonal, orthorhombic, and finally

rhombohedral ferroelectric phases with decreasing temperature. However these

phase transitions occur at a much higher temperature. Due to this, the room

temperature state of potassium niobate is orthorhombic, with the phase tran-

sition to a tetragonal unit cell at around 500K[113].

It is because of this fact that most of the characterisation of this material is

based on the orthorhombic form. While the methodology we present is likely

to be useful in evaluation of the orthorhombic phase piezoelectric properties

in much the same way as it is applied to a rhombohedral structure in chapter

7. However several high temperature characterisations have been performed

to give the lattice structure of the tetragonal phase.

In one such study by Hewat[114], the concept of aristotype ionic positions and

the fixing of an atom to give relative displacements, although in this study it

was the Nb B-site that is fixed rather than the A-site K ion. These concepts are

the basis of our method described in section 5.3.2, with the aristotype positions

being referred to as totally symmetric coordinates. This is further supported

by Hewat in previous work[115], in which the relationship between displace-

ment, effective charge, and polarisation is discussed. However the method of

calculating the effective charge from the permittivity assumes a cubic structure.

While it is reasonable to assume these are largely identical for the tetragonal

phase of potassium niobate, which is highly pseudocubic, this is less likely to

apply to a material like lead titanate with considerably greater anisotropy, as

well as lower symmetry states where the non-diagonal terms of the effective

charge tensor are significant.
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Table 3.6: The unit cell parameters, tetragonality, and volume of the
three pure tetragonal potassium niobate perovskite structures on ICSD,
along with the temperature the experiment was performed at and the year
it was published. We see that despite there being far less structural data
than for barium titanate in this phase, there is good consensus on the lattice

parameters over 40 years.

1[116] 2[114] 3[115]

a (Å) 3.997 3.996 3.997
c (Å) 4.063 4.063 4.063
c/a 1.017 1.017 1.017
Vol (Å3) 64.911 64.878 64.975
T (K) 550 543 543
Year 2013 1973 1973

Table 3.6 shows the unit cell data for potassium niobate from three published

papers. These three give the only data on ICSD for KNbO3, which is likely due

to the requirements of specialist equipment in order to perform the synchrotron

and neutron diffraction experiments at elevated temperature. Despite this we

see that the differences between the three sets of structural parameters are very

small, and therefore we consider the structure to be well defined. Although

these temperatures are considerably higher, we will discuss alongside our own

calculated results in section 5.2.4 that the thermal coefficients for our sample

structures are so low that even this relatively high temperature does not cause

a significant expansion of the lattice parameters.

3.3.2.1 First Principles Calculations of Potassium Niobate

As noted by Shigemi and Wada[117], interest in potassium niobate is recent due

to efforts to reduce the use of lead in technology. As a result, many of the sim-

ulation studies are relatively recent and advanced, compared to basic studies

on structure that are present for many other materials. With more advanced

studies comes the use of better pseudopotentials and functionals, so the lack
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Table 3.7: Lattice parameters, tetragonality, and volume calculated by
prior simulation studies, the energy cut-off, Monkhorst-Pack grid, exchange-
correlation functional of the simulations, and the year published. We see
that only [118] has used both a GGA functional and norm-conserving pseu-
dopotentials. This study has calculated many properties of interest for
potassium niobate, however they have compared the same material between
phases, whereas we are interested in the single phase between different ma-
terials. *) Due to the particulars of this study they have only reported on
their supercell, this is the effective grid size to give that spacing in a single
unit cell. **) This value is simply not possible. It is likely that the author

means 35Ha (952eV).

1[117] 2[118] 3[119]

a (Å) 3.986 3.992 3.950
c (Å) 4.142 4.128 3.983
c/a 1.039 1.034 1.008
V (Å3) 65.809 65.784 62.145
Ecut(eV ) 600 1700 35∗∗

MP Grid 83∗ 83 83

Functional PBE PBE-WC LDA
Pseudopotential Ultrasoft Norm-Conserving Norm-Conserving
Year 2005 2012 2007

of studies when compared to systems such as barium titanate and strontium

titanate is balanced by a higher average quality of the results. Additionally we

see that Wan, et al.[118] also discuss the challenges of experimentally studying

these crystals, and indicate that a first-principles method is suitable in over-

coming these limitations in order to study the macroscale properties of the

material by their relation to the atomic scale properties.

Table 3.7 shows selected results and computational details from first-principles

studies on the tetragonal phase of potassium niobate. We see a common

Monkhorst-Pack grid of 83, indicating that this is a sufficient grid for other au-

thors. However it is always important to define a figure of merit and converge

the system manually, especially when authors have not stated their conver-

gence criteria. We see that number 1 has used a low cut-off that is indicative
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of their choice of ultrasoft pseudopotentials, which is suitable for the struc-

tural characteristics they are studying and especially beneficial for the larger

supercell they used, however makes this incompatible with our methodology.

Number 3 is fundamentally incompatible with our method due to the use of the

local-density approximation. We have already discussed how this is not suit-

able, and they give no reason for using it when a variety of other options were

available. Additionally, the nonsensical cut-off energy makes it very difficult

to comment on.

Study number 2 in the table by Wan, et al.[118] is very closely linked to our

own research. They have calculated a wide variety of material, electronic, and

piezoelectric properties of all phases of potassium niobate. While this is a

good indication that others have considered similar methods to the one we

will present in this thesis, they do not give the details of their calculations.

They note that despite good agreement with experiment in their structural

and elastic properties, their piezoelectric coefficient differs by 50%. Though

these authors question if there is an inherent flaw in the method that would

make it fundamentally unsuitable, it is important to remember that a factor

of 2 error between vastly different approaches to calculate a value is actually

very impressive. We may find that this is an error in their procedure, or a

weakness of the method itself, though that will be difficult to confirm as this

paper contains no details of how it was calculated.

We see the overall trends in their study that we can look for, such as the

much greater difference they report between classic and effective charges than

in the other two materials, for which it is likely that its I-V composition in the

classic charges of K and Nb ions is responsible. They also report a spontaneous

polarisation of 0.36C/m2, which after thermal effects are taken into account

is in good agreement with accepted experimental values[1]. Overall while this
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study lacks detail on their calculation method and is only concerned with

potassium niobate, it is an excellent source to draw from in our own research.

3.3.3 Lead Zirconate Titanate (PZT)

Lead zirconate titanate is likely the most important piezoelectric material. Un-

like the other materials we are studying, this binary perovskite is a combination

of lead titanate, which is described above as having fantastic piezoelectric prop-

erties, and the non-piezoelectric perovskite lead zirconate. The mix of these

two materials has produced a widely used and well studied material with a

massive amount of published literature behind it.

It is not possible to cover the entire breadth of literature on lead zirconate ti-

tanate, and much of the published material is not relevant to our studies. There

are however, many reviews available to cover and compare the published litera-

ture on the material. For instance, a review from Panda and Sahoo in 2015[120]

that covers the history of the material, fabrication of devices, and candidates

to replace it due to its high lead content and subsequent environmental danger.

Primarily, we are only focused on the equal mixing of the zirconate and ti-

tanate aspects, whereas published material covers the whole spectrum of com-

positions. Most importantly is the 52% zirconate, 48% titanate mix that is

extensively used and therefore most studied. Figure 3.4 shows the phase of

PZT under different temperatures and compositions[1, p. 136]. It is by study-

ing this that we can see why this particular composition is so important.

The morphotropic phase boundary at 52% zirconate that does not vary signif-

icantly with temperature is the key to the success of lead zirconate titanate.

Mixes at this boundary see greatly increased piezoelectric properties due to

the phase mixing that occurs, that persist across a wide temperature range,
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Figure 3.4: The temperature-composition phase diagram of lead zirconate
titanate taken from Jaffe[1, p. 136]. We see that between the tetragonal (FT )
and rhombohedral (FR) is a near-vertical line at 52% zirconate. This is the
morphotropic phase boundary, where the material properties are unusual
due to the phase mixing, and as a result the piezoelectric properties are
greatly increased. The steep gradient means that this feature is stable across

a wide temperature range.

allowing for the creation of reliable and efficient devices. We select our chosen

composition to be slightly to the right of this boundary in the tetragonal zone,

for reasons that we will discuss shortly.

We consider the structures on ICSD for the composition we are studying, for

which the lattice parameters, tetragonality, unit cell volume, and year are given

in table 3.8. This represents the high quality data for the composition we are

interested in marked as tetragonal. This is reduced from the large variety of

compositions and dopant structures also available. These experiments were all

performed under room temperature and pressure. We see that the studies have

reported the lattice parameters for a basic perovskite unit of 5 atoms. Further

investigation into the posted structures shows that these crystal structures are
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Table 3.8: Lattice parameters from experiments obtained from ICSD for
PZT with an equal mix of zirconate and titanate elements. We see that
these results are more varied than the other materials in this chapter. In
reality this is to do with the macroscopic mixing parameters of the ex-
perimental sample. While a sample may be on average a 50% mix of the
two components, it is likely that this is not evenly distributed through the
material, leading to random Ti and Zr-rich zones. Distribution and concen-
tration of these zones are generally random, and therefore different samples
will naturally give slightly varying results when it comes to characterisation.
Additionally, though this is a binary perovskite, these have been reported

by the original authors as if it were a basic, 5 atom unit cell.

1[121] 2[121] 3[122]

a (Å) 4.042 4.049 4.030
c (Å) 4.128 4.113 4.145
c/a 1.021 1.016 1.029
V (Å3) 67.442 67.430 67.319
Year 2006 2006 2000

reported based on a multiple occupancy B-site.

A multiple occupancy site is used where a crystal structure that seems to follow

a simple pattern is in fact disordered. In this example, the characteristic 5

atom unit cell is present, however there are a massive number of degenerate

and distinct energetic arrangements for the zirconate and titanate elements to

take. We can approximate a unit cell, for instance by saying that the nearest

neighbour to each basic perovskite cell will be the opposing atom. So for

instance if we have a zirconium ion on a B-site, then the repeating cell is set

up in such a way that the next B-site in either direction of the a-, b-, or c-

axes will be a titanium ion. This is called a perfect mixing approximation

and makes for a computationally feasible, approximate crystal structure. In

diffraction experiments, the results give an average over the sample. We know

instinctively that titanium and zirconium bond differently, despite sharing the

same classical valance of 4+, and therefore have different bonding properties.

We can guess, due to their different ionic radii and the fact that the unit
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cells of zirconia and titania are significantly different, that the oxygen bonding

properties of each type of basic cell will be slightly different to the other. In

diffraction however, the result is averaged between the two, with no way to

separate the differences on an atomic level, so the structure is reported as the

5-unit perovskite cell with a multiple occupancy B-site ion, that is a mixed

pseudoion of the titanium and zirconium ions, with the ionic position given by

the average position obtained by the experiment. In doing so we lose a lot of

fidelity on the atomistic details of the binary perovskite, such as the difference

in bonding for the Ti-O and Zr-O bonds causing the oxygen ions to be laterally

displaced.

As a result of these macroscale factors, it is unclear on how relevant the exper-

imental data available is to our first-principles study. While there is definite

interest in DFT simulations of PZT, the addition of the macroscale effect of

disordered arrangement in addition to the other approximations that we must

make will likely make it difficult to compare our simulation to experimental

data.

3.3.3.1 First Principles Calculations of Lead Zirconate Titanate

Above we have discussed the concept of multiple occupancy sites, and it is pos-

sible to replicate such ideas in a DFT methodology through the use of a Virtual

Crystal Approximation (VCA). The opposing method is the use of a supercell,

where a unit cell is created from a basic unit that has been explicitly repeated,

and atoms modified. For instance, we might create a supercell composed of a

lead titanate cell that is repeated in each direction once, for a total of 8 basic

unit cells, which would be referred to as a 2 × 2 × 2 supercell. We can then

change some of the titanium ions to zirconium in order to create a PZT unit

cell. This can preserve the local detail of the material, but is fundamentally
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always ordered, and computationally very expensive due to the cubic scaling

of DFT.

Overall the literature is split on the topic of the VCA in DFT, with papers such

as Bellaiche and Vanderbilt describing it as “adequate” and “efficient”[123],

and Ramer and Rappe commenting “This approach permits more complicated

structures to be studied while maintaining tractability”[124]. However in this

paper they note that the different methods for creating the pseudoion show

different results, so how to select the mixing scheme is brought into question.

Marton and Elsasser[125] comment that the VCA underestimates the tetrag-

onality of their PZT system, which in our research would likely have a large

effect on our polarisation calculations. Boykin, et al.[126] state that the VCA

“shows shortcomings” in aspects of their calculations when compared to the

supercell approach, but their work is based on semiconductors and as a result

these findings may not be applicable to the systems we are studying.

Marton and Elsasser[125] demonstrate in their work that the supercell method

they have used found a local structural effect shown in figure 3.5 that is not

present in the virtual crystal approximation. This shows that the oxygen

ions bond more closely to the titanium ions than the zirconium ions, creating

an interesting displacement from the symmetric positions, despite the overall

supercell maintaining a tetragonal lattice. As non-symmetric displacements of

ions form the basis of this research, this is a clear indication that the type of

local detail we are interested in is not present in the VCA, and as a result the

supercell approach is the best option for use to use.

Beyond considerations of the supercell or VCA approach, computational re-

search in PZT is focused on the simulation of different compositions, and com-

parisons of the rhombohedral and tetragonal states. While these are important

topics, we are not aware of any research related to our project that concerns
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Figure 3.5: The oxygen ion displacement observed by Marton and
Elsasser[125] in their ordered supercell calculations that is not replicated
in the virtual crystal approximation. As we are interested in local non-
symmetric displacements, this is a clear indication that a supercell approach

is more suitable for our work.

a comparison between the fundamental differences in the piezoelectric effect

in PZT in comparison to the unary perovskites we study in chapter 5, and

as a result while we will not have literature to compare with. This identifies

a gap in current knowledge, allowing us to calculate novel properties for this

important material.

3.3.4 Bismuth Ferrite (BFO)

The last of the sample materials we have chosen is the most difficult and

most physically interesting. While the materials we have reviewed so far are

interesting for their ferroelectric and piezoelectric properties, bismuth ferrite

has magnetic and conductive properties in addition to these. Materials show-

ing both ferroelectric and ferromagnetic character are known as multiferroics.

The perovskite form of this material belongs to the R3m space group, which

makes this structure most suitable for our research, however various forms of
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the structure have been published, most commonly a rhombohedral-hexagonal

state.

Interest in bismuth ferrite has come from the search for lead free materials

to replace PZT. Unlike other candidates, the spontaneous polarisation and

piezoelectric coefficient is comparable to that of the materials it must replace.

Lebeugle, et al.[127] were able to produce a high quality single crystal in order

to first measure the bulk polarisation, 0.60C/m2, and observed piezoelectric

behaviour in samples. The thin film behaviour is also excellent, these are easier

to make than bulk single crystals yet are measured to have good polarisation

properties. As the technology moves to smaller and more integrated devices, a

material able to perform similarly well in bulk and thin film is very useful. A

good, comprehensive review of the physics and applications of bismuth ferrite

is given by Catalan and Scott[128].

Table 3.9 shows the lattice parameters and volume of perovskite bismuth ferrite

and the year of its characterisation. All were performed at room temperature

and pressure. We see that there is some discrepancy between the third study

and the other two, but overall good consensus on this. While we could use

the well published rhombohedral-hexagonal form, there are two issues. Firstly,

as this research project is specifically focused on properties of the perovskite

structure, it would be disingenuous to use a different structure for one material.

Secondly, and more practically, bismuth ferrite is considerably more compu-

tationally difficult to perform calculations on than any of the other unary

perovskites, as we will see in chapter 7. As a result, the increased number

of atoms would only make the simulations even more costly, and would ul-

timately make this type of research untenable. While the hexagonal state is

theoretically reducible to a 5-atom unit cell on a structural basis, it is the pairs
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Table 3.9: Example structures of the rhombohedral perovskite form of
bismuth ferrite listed on ICSD. We see that the structure is generally well
agreed upon, and as a result we have a good starting point for our calcula-
tions. All experiments were performed at room temperature and pressure.

1[129] 2[130] 3[131]

a (Å) 3.962 3.962 3.952
α (◦) 89.40 89.52 89.60
V (Å3) 62.18 62.19 61.72
Year 1967 1963 1960

of unit cells that allow for spin cancellation, so in practice we would still have

non-zero spin and would not gain anything from this reduction.

In terms of its magnetic properties, rhombohedral bismuth ferrite has been

found to be G-type antiferromagnetic[132]. In analogy to our PZT having

perfect mixing as discussed earlier, G-type antiferromagnetism can be consid-

ered to be perfectly mixed in terms of spin polarisation. The iron ion is the

cause of the spin polarisation in the bismuth ferrite unit cell, so for G-type

behaviour every nearest neighbour has the opposite spin. So if we consider in

a real material a single unit cell with a positive spin on the B-site, then the

6 surrounding unit cell B-sites will have negative spin. Really, this behaviour

is analogous to the antiferroelectric effect, however we have not covered any

antiferroelectric materials in this research.

In addition to this behaviour, there are other factors to be aware of. For in-

stance, under certain conditions the material is known to show metallic prop-

erties. While it generally requires very high temperature and pressure to cause

this transition, the corrections required to account for magnetic behaviour may

inadvertently also bring to light this behaviour. A predicted phase diagram is

shown in figure 3.6 given by Catalan and Scott[128]. Though some boundaries

are speculative, it shows roughly the experimental phases and their ordering

with temperature and pressure.
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Figure 3.6: A phase diagram proposed by Catalan and Scott for the solid
phases of bismuth ferrite across temperature and pressure[128]. Although
they state that the lines are only a guide, it gives some insight into the
antiferromagnetic to paramagnetic phase transitions, and the insulator to

metallic transition.

Despite the fact that bismuth ferrite is relatively new to the field of piezo-

electrics due to its unusual properties and the difficulties inherent in creating

pure crystal samples, it has received a huge amount of attention as a material

that could be the basis of a lead-free future. While this will likely be a challenge

to study, it will also be of great interest and use to the larger community.

3.3.4.1 First Principles Calculations of Bismuth Ferrite

As will be discussed in chapter 7 in more detail, the magnetic character of

the spin polarised unit cell adds complications to the calculations that are not

a factor in the the similar structures in chapter 5. As a result the computa-

tional complexity makes this material less favourable for ab-initio calculations.

Further to this, composites such as lead palladium titanate[133] and bismuth
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Table 3.10: The energy cutoff and Monkhorst-Pack Grid used for three
selected DFT studies of bismuth ferrite. We also show the number of atoms
in the unit cell, functional and pseudopotential used, and the year pub-
lished. Two of the calculations used PAW pseudopotentials, which allows
them to use a lower energy cutoff, as these are very similar to ultrasoft
potentials. All simulations are performed on several perovskite unit cells,
which is possible due to approximations made. Additionally, two have used
a Hubbard potential (U) to modify their functional. *) Effective grid for the
same spacing on a single perovskite cell. **) The paper does not explicitly

discuss the pseudopotential, but based on the details this is assumed.

1[136] 2[137] 3[138]

Energy Cutoff (eV) 1360 600 550
MP Grid 123* 143* 10× 10× 8*
Number of Atoms 40 40 120
Functional LSDA GGA+U LSDA+U
Pseudopotential Norm-Conserving** PAW PAW
Year 2007 2016 2009

ferrite lead titanate[134, 135] become extremely difficult due to the the mag-

netic features compounding with the difficulties in the composite binary lead

titanate discussed above.

Table 3.10 shows the computational details of several first principles studies

on bismuth ferrite. We see that in two of these studies, projector-augmented

wave pseudopotentials are used, due to the author’s use of the VASP code.

Additionally, these are all performed on unit cells greater than our five-atom

unit cell, despite the difficulty of calculation. This is enabled by the use of a

frozen band approximation that we will discuss.

The functional used in each of the cases is either a local spin density approxi-

mation, or involves a Hubbard potential. We have discussed the L(S)DA and

why we do not use it. The Hubbard potential is rarely used for inorganic crys-

tals, as it covers extra energetic terms not included in the exchange-correlation

energy. It is therefore usually seen in simulations of organic molecules in order
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to account for Van-Der-Waal forces or hydrogen bonding. It is generally cal-

culated by comparing a structure to experimental data for varying Hubbard

parameters, a method which we find to be too reliant on empirical data to be

truly considered ab-initio. In this case it appears to be making a correction

for the antiferromagnetic coupling present in the structures, which may be

required due to the frozen bands approximation.

In DFT an unconstrained, non-zero spin causes significant challenges to the

calculation. This is because in a non-spin system the electron bands can be

considered to have two energetically degenerate electrons of opposite spins. As

the electron energy is the main feature of these calculations, the presence of

pairs of electrons of equal energy creates a simpler problem as the band energy

only needs to be calculated once. However in a spin-polarised system the

same assumption cannot be made, increasing the complexity of the calculation.

Additionally, the electrons have an extra degree of freedom in minimisation

which needs to be addressed by the opening of empty bands above the valance

level.

To combat this, calculations featuring spin often use what is known as a frozen-

band approximation. This is based on the concept of frozen gaussians[139],

where a dynamic quantum mechanical parameter such as electronic spin is

replaced by a static, classical probability function. In DFT this is used and is

well supported in many cases, such as in a bulk homogeneous system such as

iron, where spin states in each atom are generally fixed. This approximation

may be what allows the use of a linear response type perturbation theory to

calculate phonon modes in these papers, though it seems unlikely that phonon

modes are invariant of dynamic spin in the material. Also, by using even

numbers of perovskite cells, the antiferromagnetic properties are used, allowing



Chapter 3. Literature Review 93

for the total spin of the system to be zero due to the spin cancellation of pairs

of cells.

However in the bismuth ferrite system there is evidence of magneto-electric

coupling[132], which suggests that the magnetic and electric properties are

not separate phenomena but interdependent. Then in a material with a spin

polarized centre, we may expect an induced spin to be created on the other

ions, despite not being classically ferromagnetic themselves. This coupling

makes the magnetic properties inseparable from the electrical properties we

wish to study, and as a result we do not believe this approximation is suitable

for our research.

It is important to consider that the frozen band approximation allows the com-

putational complexity to be significantly reduced, which makes the large unit

cells in these calculations viable. However, as the computers available become

more powerful, and the software becomes more robust and efficient, we hope

to see the ability to calculate fully implemented spin on a supercell showing an

ordered G-type antiferromagnetism, which would be a great step forward to

understanding the fundamentals of multiferroics through first principles meth-

ods.

3.4 Summary

While properties of piezoelectric materials are calculated and readily available

through literature, the manipulation of these properties to produce industri-

ally relevant properties such as the piezoelectric coupling coefficient or charge

constant is not performed. DFT is widely used and published in the study of

these types of materials, making it an excellent choice to use as a trusted and

reliable method. However while computational data is published it is not in a
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format that is readily comparable to experimentalists, in particular those who

wish to develop piezoelectrics for industrial purposes. While domain effects

can be used to modify the piezoelectric effect in the material, a more funda-

mental understanding of these intrinsic effects in an effective single-crystal,

single-domain simulated system will provide a new perspective and may be

used with domain engineering to generate novel materials that may be used as

lead free alternatives.

3.5 Research Aims

We wish to create a simple framework to understand piezoelectric properties in

perovskite structures using properties that can be ascertained reliably through

easily available DFT methods. Using this framework, we hope to expand it to

a larger, binary system to identify how similar this is to the most basic unit, as

well as identify and understand differences introduced by the added complexity.

Finally, we will consider the multiferroic bismuth ferrite, to ascertain how

much information our method is able to obtain with the added complication

of ferromagnetic characteristics, which is known to cause issues in DFT. Our

thesis questions are:

• Can intrinsic piezoelectric properties be predicted by creating a frame-

work from readily available DFT tools?

• Can this framework identify overall similarities and differences in a more

complicated binary material?

• How does the inclusion of ferromagnetism affect the capability of the

framework to predict properties?
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Computational Equipment and

Techniques

4.1 The CASTEP Code

4.1.1 Local Implementation

Multiple software packages are used locally to prepare and analyse results. Cre-

ation of input files is performed manually using Notepad++ with a user defined

language containing all of the syntax and keywords. VESTA3 is used for visu-

alisation of the 3D unit-cell structures and electron density shifts. MobaXTerm

is used for a Unix-like environment for scripting and shell components.

The local computer is a Dell Precision T1700 Workstation with the following

specifications:

• Intel Xeon CPU E3-1240 v3 @ 3,40GHz (8 cores)

• 16.0GB RAM

95



Chapter 4. Methods 96

• Nvidia Quadro K2000 graphics card with 4095MB card memory.

• Windows 7 Enterprise Sevice Pack 1 64-Bit

Additionally, a personal laptop running GalliumOS[140] was used for portable

shell access to resources.

4.1.2 HPC Implementation

CASTEP was compiled after discussions with Dr. P. Hasnip to use optimised

compilers and libraries. Compilations are kept consistent through each chapter,

and updated to a newer version upon a new project. The specifics of each

compilation system are given below, however as a rule of thumb Intel was used

to match the Intel x86 64 hardware.

Submission is handled using bash scripts that submit an mpirun request to

the system job queue to be executed on the requested number of compute

nodes based on a priority allocation system. Priority is allocated based on

the user’s use, along with the number of nodes and time requested up to a

maximum 48 hours. Multiple job requests with similar parameters such as

convergence testing is submitted as a single job containing multiple mpirun

requests through standard shell ‘IF’ looping.

4.2 ARC HPC Facilities

The ARC facilities are a group of HPC systems located at the University

of Leeds and are made centrally available to staff and students across the

university, with access to on site support. Researchers can log in via ssh using
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Figure 4.1: A submission script to execute an MPI-parallel version of the
castep.mpi program on the files BTOTet.cell and BTOTet.param. The job
parameters are to execute this calculation in the current working directory
and with the current environment variables at the time of submission, to
use the basic shell to issue the commands, request two nodes and execute
eight MPI processes on each node (implicitly requesting each process use
two physical cores on a 16 core per node system), run for a maximum of ten

hours, and email the user at the beginning and end of the calculation.

freely available software and submit jobs to the intelligent queueing system

through two login nodes by specifying the amount of time and compute nodes

required. Jobs are executed on compute nodes when the queue system dictates,

these nodes are not generally accessible by the user so the program commands

must be able to run in a standalone manner. As we are based on a linux system,

there is native command support for all types of scripting or job automation

using bash, python, ruby, or other suitable scripting systems. This is largely

personal preference, although there are limitations in all automation languages.

Tasks are submitted to the queue using a submission system based on shell

scripts. This requests the system resources for the user and executes jobs on

the nodes. An example script is shown in figure fig:subscr.

This script informs the queue that the user wishes to execute the castep.mpi

program in the current directory on seed BTOTet (with corresponding BTOTet.cell

and .param) on 2 nodes, executing 8 castep processes on each node for 10 hours.

It will inform the user when the job starts and finishes by email. Nodes have

2GB per core, however this memory limit can be exceeded by tasking the node
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to only execute a certain number of processes. In this example it is also possi-

ble by using Symmetric Multiprocessing (SMP) parallelisation integrated into

the CASTEP program for each process to be executed across 2 cores, mean-

ing that there are no idle cores in the node. As a user’s priority is based on

how many cores have been requested and not how many cores are active, it

is most efficient priority-wise to use as much of a node’s resources as possible.

However, depending on system specifics it may be more efficient to leave a

few cores idle to exploit inherent parallelism in the system than attempting

to use a brute force method with as many cores as possible. In general, it is

not recommended that more than 128 processes are used in a single CASTEP

calculation as communication between the cores becomes prohibitively large

and parallel efficiency is decreased. Combining both MPI and SMP is known

as hybrid parallelism and can be used to efficiently increase calculation speeds

on suitable hardware. Without a radical change in either computing hardware,

such as a movement to a viable quantum processing method, or an analytical

solution to arbitrarily large quantum systems, all that can be achieved is a

minimisation of the “big iron” required. As a result of this, numerical meth-

ods will always be limited by the computational resources available, and the

speed at which a large system is able to communicate between its individual

components.

4.2.1 ARC1

ARC1 was the first large scale centralised HPC system at the University of

Leeds. While it required many bugfixes, patches, and various home grown

solutions to issues, it was a well used and user friendly machine. Chapter 5

was largely performed on ARC1 as we had access to private blades. This did

not use a node syntax, instead nodes were allocated by a number of cores and
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memory per core. While conceptually simple, it placed a heavy burden on the

queuing system to efficiently allocate resources. This system should not be

used on the more modern systems, and older scripts will likely be in need of

updates.

The hardware specifications were as follows[141]:

• CentOS 5 based operating system

• 118 Sun X6725 Blade Server Compute Nodes with 2 servers per blade

– 2× Quad-Core Intel X5560 2.8 GHz per server, 1888 cores total

– 12 GB DDR3 Memory per server, 2.8TB total

• 4 AMD SMP Server Compute Nodes

– 4× Quad-Core AMD 8384 2.7 GHz per server, 64 cores total

– 128 GB DDR2 Memory per server, 512 GB total

– 780 GB scratch RAID hard disk

• 8 HP Blade Server compute nodes with 2 servers per blade

– 2× hex-core Intel 2.66 GHz per server, 192 cores total

– 24 GB DDR3 memory per server, 384 GB total

– 120 GB hard disk per server, 1.9 TB total

• 100 TB Lustre file system

• M2-72 IB Infiniband network connecting blades and file system

CASTEP-16.11 was compiled using the Intel 13.1.3.192 ifort compiler with

IntelMPI 4.1.3 for parallel executable. MKL 10.3.2 and FFTW 3.3.3 were

used as external math libraries. All were precompiled on the computer and

linked to the CASTEP executable.
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4.2.2 ARC2

ARC2 is the second and currently oldest running HPC system at the Univer-

sity of Leeds. It is far more standardised than its predecessor due in part to

experience, and also being similar in design to the tier-2 system N8 Polaris.

This is the first machine to allow for entire nodes to be allocated and con-

trolled, giving a more versatile and flexible system that could be used in pure

SMP, MPI, or hybrid modes for incremental improvements to computational

efficiency.

The system statistics for ARC2 are as follows[142]:

• CentOS 6 based operating system

• 190 Blade server compute nodes.

• 2× 8-core Intel Sandy Bridge E5-2670 2.6GHz processors per node (3040

total).

• 32GB DDR3 1600MHz RAM per node (6TB Total)

• 170TB scratch memory storage

• InfiniBand high speed network between nodes

CASTEP-18.0 was compiled using Intel 16.0.2 ifort compiler with IntelMPI

5.1.0 for parallel execution. External libraries used were MKL 11.3u2 and

FFTW 3.3.4, which were precompiled and linked as usual. Due to technical

issues, at time of writing the ifort16 compiler in even numbered updates is

highly recommended above newer versions.
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4.2.3 ARC3

ARC3 is the newest and most versatile of the Leeds based HPC systems. While

its core computing capability is a significant improvement over ARC2, it also

contains a host of new hardware features for different types of computation.

Most notable are the high power graphics processing units, which are opti-

mised for physics and rendering, though generally less favourable for numeric

computation than a CPU. There are also two nodes of Intel Xeon-Phi MCA

processors, addressed in section 4.2.4. For the main work presented here how-

ever, it was the standard CPU power that was utilised for computation.

The hardware in the ARC3 system is shown below[143]:

• CentOS 7 based operating system

• 2× Intel Xeon E5-2650v4 2.2 GHz/1.8 GHz AVX on all except the Xeon

Phi nodes

– 252 nodes of 24 cores, 128 GB DDR4 memory, 100 GB SSD storage

– 4 nodes of 24 cores, 768 GB DDR4 memory, 800 GB storage

– 2 nodes of 24 cores, 128 GB DDR4 memory, 2 nVidia K80 GPUs,

800 GB storage

– 6 nodes of 24 cores, 256 GB DDR4 memory, 4 nVidia P100 GPUs,

800 GB storage

– 2 nodes of a Xeon Phi 7230 64 core CPU, 96 GB DDR4 memory,

16 GB high speed MCDRAM, 800 GB storage

• 836 TB storage in a Lustre file system

• High-speed Infiniband network at 56 GBit/s
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Figure 4.2: A simple schematic of a NUMA system showing how memory
and cache blocks are allocated on a multi-CPU system, and shared through

a NUMA bridge.

4.2.4 Hybrid Parallelism, Many Core Architecture, and

Effective Utilisation of New Technology

Over the lifetime of this project, some interesting technologies have come to

the forefront of computing. While simple ideals such as Moore’s law discussed

in chapter 2 provide a simple view of the increase in capability, the inevitable

breakdown due to the simple limitations of size manufacturing requires that

alternative methods are necessary to maintain progression.

The first that is important to note is hybrid parallelism, which has been men-

tioned previously as a way to reduce idling, but has come to the forefront in

recent years as an important tool in its own right. First it is important to

understand how a multiprocessor node is laid out. Figure 4.2 shows a simple

schematic of how components are connected.
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The only major difference from a familiar computer is the NUMA bridge,

a proprietary technology that allows two regular CPUs and their individual

memory allocations to communicate over a high-speed bus. Each CPU has

its own cache and a number of cores, such as in ARC3 and ARCHER where

each CPU is 12-core, giving a total of 24 cores per blade. Each blade is then

connected through the Infiniband networking, another proprietary technology

that allows high speed and high bandwidth but is ultimately a more pow-

erful version of wired connections over ethernet. Understanding parallelism

mechanisms is then about understanding how each shares its resources.

In order to facilitate the high speeds of modern processors with the limitations

of the memory, there is an intermediate called the cache. This small, high speed

memory acts as a buffer for the CPU and is shared by all cores. Information

is moved between cache and memory by the processor automatically to have

the most relevant data for the CPU ready for the current process.

In MPI we have processes, this is composed of a self contained block of memory

containing all the information needed for a CPU core to calculate its designated

share of the problem. In OpenMP we have threads, where multiple CPU cores

are connected to the same block of memory and work together on the single

problem. Thus the issues are clear. In MPI there is a lot of redundancy in the

data, with RAM potentially containing many copies of the same information

that must be regularly checked for errors among all processes in the standard

“majority rules” method, and can cause issues in the cache due to each core

requiring data that may be redundant.

The issue with OpenMP is the collaboration of CPU cores. While removing

the redundancy of information as each core is working on the same memory

set, and allowing cache to be used a lot more effectively, any delays in one

core immediately affects the others, meaning that slower methods of access to



Chapter 4. Methods 104

data can cause massive communication halts that the MPI redundancy elimi-

nates. For instance, an OpenMP system can make very effective use of its own

memory allocation and efficient cache management. However having to cross

a communication bridge slower than the inter-core connections on the CPU

and the cache, introduces large idle times, so even over a relatively fast con-

nection such as the NUMA bridge if CPU0 has to access data in MEMORY1

for instance, the CPU will spend large gaps of time waiting. For a single CPU

and memory allocation, MPI processes need to store some information in as

many copies as there are processes, reducing the effective amount of memory

per process that is available as well as the bandwidth of the cache per pro-

cess. However, the communication between each process occurs infrequently,

in many cases only at the beginning and end of calculations, reducing waiting

time in the instances that there is a delay in access.

Recently, processor manufacturers have significantly improved the parallel han-

dling of tasks, allowing sensible configurations to be handled automatically by

the processor with little overhead, simplifying the process to a few simple

rules. Most obviously, OpenMP threading should never be used beyond a sin-

gle CPU and it’s associated resources, so should always be a factor of the total

core count. For instance, on a 24 core NUMA node containing two 12-core

CPUs each process should use 2, 3, 4, 6, or 12 cores. 8-cores should not be

used, as that would require sharing across the NUMA bridge.

The number of MPI processes should then match a parallelism scheme to allow

each process to work as independently as possible, so for instance a system of

12 kpoints could have should have up to 12 processes, or a factor of this, e.g.

4 or 6. While the exact configuration can depend on many factors down to

manufacturing of the individual CPU, it is often not practical to benchmark

simple systems for each possible configuration. Therefore a good rule of thumb



Chapter 4. Methods 105

for the current technology in ARC2 and ARC3, and by extension Polaris and

ARCHER, is to use OpenMP and MPI in such a manner that each MPI process

is threaded 4-ways through OpenMP. So if an example task on ARC3 were

to have 24 k-points, then we could guess a good configuration would use 4

nodes, each with 6 MPI processes, using 4 threads per process. This would be

requested in the submission script with the following line with the processes

per node (ppn) and threads per process (tpp) flags.

#$ -l nodes=4,ppn=6,tpp=4

It is possible to use a wide variety of configurations that are likely to be very

efficient, and also likely will take longer to benchmark than would be saved,

however this represents a good rule of thumb.

Many-Core architecture is an extreme form of parallelism that is the conclu-

sion of trends in the processor market for some time. In 2005, Intel changed

the world when it brought the dual core processor to the market[144]. A single

CPU that carried two discrete processor cores allowed for simultaneous code

execution. In current technology Intel, AMD, and ARM microprocessors are

built into virtually all devices, with common devices such as mobile phones

carrying 6 or 8-core CPUs. In many systems, especially in devices that suffer

from thermal throttling, the power of the cores are not as important as the

efficiency at which software can be loaded evenly across a CPU. Another mas-

sively important technology was developed by Intel, that of hyperthreading.

While developed decades ago, it became a staple of home computing in 2008.

This allowed for simultaneous execution through the same processor core by

executing other tasks while the CPU idled, for instance while waiting for infor-

mation to be accessed in memory. This allows a single physical core to act as

two virtual cores, with only a small overhead. These technologies changed the
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way that personal computing operated, allowing for improvements across the

board for work or personal use. In 2007 no matter the clock speed of the CPU,

it was limited by the single core architecture, however now it is not unusual to

see PCs with 8 virtual cores allowing for previously unimaginable productivity

and multitasking on desktop computers.

Fuelled by the massive changes brought about by the introduction of multicore

developments, Intel experimented with several ideas of how core increases could

be used to streamline numerical simulations, linear algebra, and large scale

matrix manipulation. In 2016 these efforts culminated in the Intel Xeon Phi

Processor, a powerhouse of processing sporting 64 physical cores on chip, with

4-way hyperthreading for a total of 256 virtual cores per CPU. The tradeoff

for such a high count is in the clock speeds, with a base of 1.30GHz compared

to the 2.20GHz on the CPUs that make up the bulk of ARC3.

Benchmarking was performed based on the linear response calculation of bar-

ium titanate in chapter 5. Using parallel CASTEP-17.2 with ifort16, IMPI-

2017, MKL 2017, and FFTW-3.3.6, identical linear response tasks were per-

formed on a NUMA based Intel Xeon CPU E5-2650 v4 x2[145] node and an

Intel Xeon Phi CPU 7230[146] with identical compile options with the excep-

tion of host optimisation for Xeon, and ”-xMIC-AVX512” cross compilation

for Xeon Phi for enhanced vectorisation. A transparent cache configuration

is used, where a super-high speed MCDRAM bridge between the regular sys-

tem memory and the onboard CPU cache is used as a high capacity cache

to enable many MPI processes to continually move information from and to

system memory without interference. Depending on the memory profile and

requirements, this is entirely flexible between cache and system memory.

Figure 4.3 shows the individual perturbation cycling times for the phonon

calculation on the Xeon Phi, the Xeon E5, and the doubled time for the E5.
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Figure 4.3: Cycle times per perturbation for Xeon Phi, NUMA Xeon and
hypothetical single Xeon (2*Xeon) CPUs. For this benchmark we used a
linear response calculation for tetragonal barium titanate, with identical

parameters used to the same calculation in chapter 5.

The reason for this is that the Xeon E5 NUMA configuration is a high speed

connection between two processors. Thus assuming an ideal world, halving the

CPUs to work out the single CPU performance doubles the time taken. This

is obviously not true, but gives an ideal value.

Looking at these timings, we see that our hypothetical single CPU Xeon is

almost identical to the Xeon Phi, although there are a few notable spikes.

This could be due to mismatching seeds, or how the CASTEP code implements

the Gamma-point calculation, and starting the path at a different place could

have altered the timings. The pattern settles to an almost identical profile

for the rest of the calculation. So we can say that given the price point and

availability of the Xeon E5 there is no reason to be using the Xeon Phi. This

is certainly true in the present, however it is definitely something to keep an

eye on. While we expect that the enhanced vectorisation of the Xeon Phi

is built into modern MKL and IMPI subroutines, it is unlikely to have been

fully adopted in CASTEP or other dependant libraries. As these many-core
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architectures become more refined and commonplace then development may

shift to full integration of the features.

This leads to the second point, which is that the Xeon E5 second generation is

a venerable beast of high performance computing, with the UK national HPC

ARCHER and two of the top 10 world supercomputers (Piz Daint, Switzerland

and Tianhe-2A, China[147] as of June 2018) being built on some variation of

the platform. This means that testing, bug fixing, and improvements are likely

to have been made on this specific platform, if not on the same model number.

In contrast, the Xeon Phi represents the first in what could become a long

dynasty of many-core processors, with each generation making incremental

upgrades. Finally, our test is a classic case of CPU bound numerics, whereas

many other applications have different hardware requirements.

Thus our results being equivalent shows the potential of this technology for its

disruptive capability. The Xeon-Phi performing equivalently to its immediate

rival in a test that overwhelmingly favours the Xeon E5 platform shows that

for tasks where distribution is more important than CPU power this is already

likely to perform better, along with programs which are optimised specifically

for the new and powerful feature set. Not only that, but as this technology

develops we will likely see larger incremental improvement from the newcomer

than the long standing and well refined CPU. While it will not completely

supplant the need for the traditional Xeon platform, there is likely to be a

branching of the two technologies, where each evolves to fill a particular niche in

the computing ecology. Thus it is essential that those in the high performance

computing space are knowledgeable and prepared to ensure that the facilities

and programs we use are tailored to take full advantage of the most suitable

branch.
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4.3 Methods and Algorithms Used in CASTEP

Calculations

4.3.1 General Methods

At the core of every CASTEP calculation is the single point energy calculation.

This is the self-consistent field (SCF) minimization to find the ground state by

altering the electron density and solving for the energy. When the change of en-

ergy is within a set convergence value for consecutive minimizations the energy

is determined to be converged to the ground state. As a general assumption,

100 cycles of this calculation were used as this number is usually sufficient for

convergence, with more indicating issues with the calculation. Flags were set

to treat the system as a non-metallic, non-spin polarised material in order to

reduce the complexity of the calculation and save time.

During the SCF cycles the electron density undergoes a process called density

mixing, where the new electron density requires a portion of the previous

density to be mixed in order to create a stable calculation. The recommended

scheme of Pulay density mixing was used for these calculations, which is a fast

and generally suitable to most systems. For unusual systems with unstable

electronic structures such as molecular ribbon monolayers, density mixing is

unsuitable and instead the slower Ensemble DFT (EDFT) scheme must be

employed. Initially, as we are dealing with a bulk insulator, this would simply

increase the compute time considerably. For the same reason we have neglected

to add empty bands into the structure and fixed the band occupancy in our

initial work, as this is only required for unusual systems or specific calculations

where the minimization benefits from being able to move electrons into higher
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bands. For calculations involving bismuth ferrite however, extra bands and

partial occupancy had to be employed for the calculations to work.

CASTEP’s inbuilt speed optimisation was selected for the calculations. RAM

is the fastest form of memory available to developers, as the system can read

and write to it much faster than hard disk or flash memory, yet it is made

directly available to a program. In order to increase the speed of a calculation

CASTEP can be instructed to perform the entire calculation in RAM, only

stopping to back up calculation data at set times. CASTEP can also be in-

structed to reduce the amount of RAM required by only storing SCF data in

memory and read/writing all other steps to hard disk. This slows the calcula-

tion significantly, however can significantly reduce memory requirements.

In order to reduce the calculation time, the inbuilt symmetry finder for CASTEP

was activated via the .cell parameter ‘SYMMETRY GENERATE’. At the cost

of containing the system to a set symmetry, the Brillouin zone can be reduced

to an irreducible form, significantly cutting down the number of k-points re-

quired as only k-points in the irreducible part are required for the calculations.

The calculation is then mirrored to symmetrically identical parts of the Bril-

louin zone, with k-points weighted by the number of mirrored points.

4.3.2 Geometry Optimisation Methods

For geometry optimisation the recommended scheme is the low memory imple-

mentation of the BFGS algorithm (LBFGS). This method is identical to the

BFGS method in chapter 3.2.1, however requires less RAM in its calculation.

This method is recommended due to its lower system requirements, however

for unusual systems there are many other schemes that can be used if LBFGS

is found to be unsuitable for unusual systems.
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The default bulk modulus estimation of 500GPa was used for all structures as

they are ‘hard’ material. This can be optimised slightly by inputting a more

accurate value for the bulk modulus; however this improvement is small as the

algorithm automatically updates the bulk modulus used in the Hessian matrix

with its own estimate as the optimisation is performed.

As the size and dimensions of the unit cell change, the finite plane-wave basis

is altered. In order to account for this, CASTEP performs a stress calculation

at the beginning of the optimisation in order to calculate the finite basis set

correction. The default setting of 3 SCF calculations with different plane wave

cut off energies was used to determine the dependence of the total energy on

the logarithm of the cut off energy, i.e. dEtot

dlog(Ecut)
. Using this quantity the finite

basis correction can be made during the optimisation.

4.3.3 Phonon Methods

The phonon calculations were performed using CASTEP DFTP linear response[148]

in chapters 5 and 6. Due to the requirement for a much more precise SCF cycle

convergence the electron energy tolerance was lowered to 1 × 10−10eV . This

method is based on minimisation of second derivatives of energy by band calcu-

lation in reciprocal space. This is a fast and well implemented method in many

popular DFT codes, however different implementations have different restric-

tions. In CASTEP, it is limited to finite band insulators with fixed electronic

occupancy, and requires norm-conserving pseudopotentials.

For other materials, such as the bismuth ferrite in chapter 7 which has anti-

ferromagnetic properties, the calculation requires empty bands and a variable

occupancy unsuitable for the linear response calculation. For this, a more

physical implementation is required for the calculation of phonon frequencies.
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This is the finite displacement method of phonon calculation, based on real

space ionic perturbations that make up the basis of phononic interactions.

While this does not give electronic properties like the linear response calcula-

tion, including our effective ionic charges, it calculates the energy differentials

through a robust method with very few limitations, however due to differences

in how DFT handles unit cell boundaries and interatomic forces then a super-

cell approach is required to explicitly factor longer range cross-cell forces. This

supercell can be created automatically in CASTEP by adding the ’SUPER-

CELL MATRIX’ block to the cell file to copy the unit cell in each direction a

given number of times.

It is essential that different phonon methods are understood to ensure the best

is used for a given system. Forethought into the calculations beforehand and

studying the different mechanisms and outputs can ensure that these calcula-

tions, which are intensive and time consuming, allows the efficient allocation

of resources.

Using these methods, which are basic functions in widely available DFT pro-

grams such as CASTEP, VASP, Ab-Init, or Quantum Espresso, we will build

a framework to understand piezoelectrics on an atomistic scale.



Chapter 5

Piezoelectric Properties of

Unary Perovskites

5.1 Introduction to Research on Unary Per-

ovskites

In order to develop and test a methodology that will be applicable to all

piezoelectric perovskite structures, it is important to select simple cases that

cover a variety of the different formations of the material. To that end, three

structures were selected.

The first, barium titanate (BaTiO3), is a historic material in the field. First

characterised by Megaw in 1945[35], the ferroelectric phase changes and easily

recognisable structure has become emblematic of the field. Though it is gen-

erally not used in electronic applications due to its mediocre properties as a

piezoelectric in comparison to its lead based counterparts, the long history of

113



Chapter 5. Unary Perovskites 114

the material has led to a wealth of information being available from countless

studies.

The second, lead titanate (PbT iO3), is an essential component of industrial

piezoelectrics. The majority of piezoelectric materials used today are lead

zirconate titanate (PZT), with more modern materials being fusions of this

initial material with another piezoelectric, such as bismuth ferrite (BiFeO3).

The other component of PZT, lead zirconate (PbZrO3), is a perovskite, how-

ever does not show piezoelectric or ferroelectric behaviour in its pure form, so

is unsuitable for this study.

The third and final structure is potassium niobate (KNbO3). Unlike the other

structures which follow the II-IV valence model for perovskites, this material

is based on I-V valances, where the A-site carries a charge of +1 and the B-

site a charge of +5 in the classical model. It will be shown that while this

is not the case, the effective ionic charges and overall electronic distribution

are markedly different from the case of the II-IV materials. Though these

materials are comparatively new in comparison to the other structures, they

have gained in popularity due to their favourability over traditional lead based

materials.

Notably absent from this list is the multiferroic material bismuth ferrite (BiFeO3).

While being able to model and compare the fundamental mechanisms behind

its piezoelectric nature would be favourable, the methodology being used is not

suitable for materials with the ferromagnetic characteristics present. While un-

derstanding this material can, and should, be explored, it is not feasible in the

methodology presented in this chapter. It is instead studied as a separate

system in chapter 7.

The compute configuration used is the ARC1 system setup detailed in section

4.2.1.
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5.2 Performing the Calculations

5.2.1 Ground State Calculations

Two of the structures we are using can be thought of as non-ground state

materials. That is, both barium titanate and lead titanate are not tetragonal

at low temperatures, undergoing a phase transition to orthorhombic and finally

rhombohedral as they approach absolute zero. Then under DFT it can be

argued that the tetragonal structure is not the ground state, and therefore

calculations involving them are invalid.

Realistically, DFT would not have become so widely used if it were only valid

for true ground states at 0K temperature. Instead what we need to think of

is the stability of of positions on a potential energy surface (PES), or as it

is sometimes referred, free energy landscape. The potential energy surface is

formed by calculating the continuous energy function across a set of structural,

thermal, or conformational variables. Once we have a defined energy function

it is possible to find the minima of the functions, and across the entire free

energy landscape there will be a single minimum point with a lower energy

than all others. This is the global minimum, or what we might consider the

true ground-state.

Normally it is the Gibbs free energy considered in this type of system. The

Gibbs free energy is given by equation 5.1[149, p. 70], with H being enthalpy,

S being entropy, and T being temperature.

∆G = ∆H −∆TS (5.1)
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The Gibbs free energy drives phase changes as it is a representation of the

how the enthalpy, the thermodynamic property concerned with the energy of

structure, is affected by thermal effects and entropy, two of the most impor-

tant quantities in the physics of dynamical systems. As we do not take into

account the thermal effects this can be reduced to the Gibbs free energy be-

ing equivalent to the enthalpy. Further, at zero pressure the enthalpy and

free energy is reduced to the internal energy of the structure, which represents

the total energy of the combined ionic and electronic energy. Then the mini-

mum free energy defines the ground state across pressure and temperature, as

well as many other possible phase parameters, defining the most energetically

favourable state.

Figure 5.1 shows a simplified free energy function along a thermodynamic

pathway X with two minima corresponding to phase 1 and 2. For illustrative

purposes, we leave the pathway ambiguous. This is because this method is

incredibly broad, as it is directly derived from the principle of least action.

The thermodynamic pathway is a linear simplification of the multi-variate

energy function. The Gibbs free energy is used in biophysics determining the

free energy landscape from the arrangement of atoms in large molecules, and

a reduced pathway may represent an average interatomic distance in order

to determine the lowest energy arrangement of a folded protein. Similarly in

magnetic or superconductive systems the free energy landscape may be based

on spin ordering or coupling, and the pathway could be chosen to be a series

of states of interest. It is even used in chemical reactions, to determine the

activation energy and overall energetic favourability of the reaction.

So far so simple, but the difference in free energy between two structures is

not the only factor in determining the phase. Consider carbon, which can

be seen under normal conditions in the form of graphite, graphene, diamond,
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Figure 5.1: A simple free energy curve for a two state system 1 and 2
along a thermodynamic path X, with a Gibbs free energy difference of ∆GP

and energy barrier of ∆GB.

nanotubes, and fullerenes. Note that none of these are compounds, each is a

structurally distinct form of pure carbon. If the only consideration was the

minimum free energy then the only form of carbon would be graphite, and

once the other forms were taken out of the pressure and thermal conditions

that created them, they would instantly transform into graphite. Instead,

we have a second quantity to consider, the free energy barrier. This is the

energetic barrier to overcome in a phase transition and determines the rate of

transition, or in other systems the rate of reaction by the relation shown in

equation 5.2[150].

k = Ae−S∆GB (5.2)

In our carbon example we know that graphite is the true ground state, or
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stable state. Each of the others is a meta-stable state, and does undergo

the transition to graphite, as the change in free energy is negative, therefore

energetically favourable. However, given the large barrier for the transition, it

may take millions of years for a regular piece of jewellery to fully convert.[151]

This is broadly applicable to any physical system, however now we must con-

sider our specific system. The actual phase transition in multi-phase ferro-

electrics such as barium titanate is based on the phonon properties, when the

ferroelectric mode frequency drops to zero there is a spontaneous transition

to a new state that becomes more energetically favourable. This is largely

equivalent to expressing the phase change through a temperature dependant

free energy pathway. However, each phase still exists across the free energy

surface, especially when we remove the electric field and phonon behaviour and

focus purely on the structural pathway. In DFT we consider a static snapshot

of the system we are studying, with a defined free energy landscape for the

material. Although there is one global ground state in the system, our method

of geometry optimisation finds the nearest energy minimum for the structure.

All states exist, and while it is important to consider the relative energy of

each structure and the parameters of the minimisation algorithm, we know

from the history of DFT that we are exploring the isolated energy well. This

is the advantage to using the data collected from other studies as a starting

point. We know that the structure will already be located in the region of the

energy landscape that is associated with that particular state, and we are able

to optimise to find the local ground state, which we are able to concentrate

our studies on.

Applying DFT to a global landscape, rather than the local state that exists

within a subspace of the landscape, is famously a weakness of DFT, as it is

impossible to explore the continuous energy surface. While this is advantageous
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for the study of a specific state, the AIRSS methodology attempts to populate

a much larger space within the global landscape, and optimises to find all

stable local minima. Though in practice it would take an infinite number of

random structures to completely populate the energy landscape, this method

has had great success in identifying interesting ground states, and the relative

energy difference between them[152].

While the local ground state method does cause some problems, as we will see

in subsection 5.2.6 due to the destabilisation of phonon modes associated with

the changing phase, the use of the geometry optimisation method to find the

local optimised structure is a core part of DFT studies, and we understand

that despite some shortcomings in material properties, this is a well accepted

and understood limitation.

5.2.2 Sample Structures

Crystallographic Information Files (CIF) were downloaded for the sample sys-

tems from ICSD[153]. After investigating potential structures, and viewing

the structure through the visualisation program VESTA[154], a starting struc-

ture was chosen for barium titanate[34], lead titanate[101], and potassium

niobate[116].

Some details of these database entries are as follows. BTO characterisation

was performed at 290K, and the structure has the collection code 73643. PTO

characterisation was performed at 293K, and the structure has the collection

code 90693. KNO characterisation was performed at 550K, and the structure

has the collection code 190921.
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Figure 5.2: Sample structures for BaTiO3 (left)[34] ICSD: 73643, PbT iO3

(middle)[101] ICSD: 90693, and KNbO3 (right)[116] ICSD: 190921, visu-
alised using VESTA. Green – Ba, Blue – Ti, Red – O, Black – Pb, Purple

– K, Sea Green – Nb.

The visualisation of the three unit cells is shown in figure 5.2. Note that in

the original file for lead titanate, the c-axis direction was anti-parallel to the

direction of polarisation. This was reversed for consistency.

It is obvious that these materials are very similar in structure. Each one ex-

hibits the classic perovskite structure of ABO3. Each is a tetragonal structure

with a space group of P4mm. This allows reduction of the polarisation to a

single lattice axis giving a single element to focus on, as well as significantly

reducing the number of piezoelectric coefficient elements. For lattices such as

rhombohedral, different directional components will form matrix elements for

lattice displacements, polarisation, and other properties.

5.2.3 Convergence Parameters

As with many numerical methods, there is a balance to be found between the

precision of the calculation, and the amount of computing time and resources

required. This is to do with the iterative nature of solving equations with no

analytic solution. When we iterate, providing we are converging on a stable
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solution, each iteration takes us closer to what we may consider as the “actual

answer”, however each iteration generally provides diminishing returns as the

distance between successive iterative solutions lessens with each step. Conver-

gence simply defines the level at which point the distance between each step,

and therefore the distance to the solution, becomes insignificant to the task,

and the iteration is complete.

In Density Functional Theory (DFT) calculations, this is almost universally

reduced to two quantities, the kinetic energy cut off (Ecut), and the Monkhorst-

Pack (MP ) grid. There are no strict rules for the selection of convergence

parameters, however it is important that it is both conclusive and sensible.

Well-converged calculations can give new and unique insights into a system,

while poorly converged calculations can give answers that lack any relation to

physical behaviour.

The ferroelectric displacement of the material is highly sensitive to the forces

applied on the atoms. As a result, it would be pertinent to select the forces

calculated on the atoms as a figure of merit. This is calculated directly from

the electron density as part of the self-consistent field (SCF) calculation, the

most basic type of calculation available. This allows for convergence testing to

be performed rapidly and reliably using automated scripting methods.

As later calculations would be based on the differences between the material

at rest and under strain, this provided a basis for convergence testing, the

difference in force calculations in the c-axis of the axial oxygen atom between a

relaxed and strained structure. A rough calculation showed that the difference

in force between the relaxed and expanded structure would be in the magnitude

of 0.01− 0.1eV/Å, so the calculation should be converged to less.

It was decided that the convergence parameters would be consistent across

strain patterns, as these were the structures being directly compared, but not
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across different chemical compositions. The structure and chemical composi-

tion defines the MP grid and cut off, respectively, therefore different materials

should be converged separately and only indirectly compared.

5.2.3.1 Kinetic Energy Cut-Off

Every pseudopotential used was an OPIUM[111] generated, GGA, norm-conserving

pseudopotential rated for a ‘FINE’ cut off of 680eV. Norm-conservation was

required due using the linear response type phonon calculation later, therefore

a higher energy cut-off than used in studies with ultrasoft potentials was ex-

pected. Single-point energy calculations were performed on a 43 MP grid for

each material in a relaxed and strained state. The cut off energy was raised in-

crementally by 50eV every cycle from 400eV. The force on the target atom was

extracted, and the change between successive cut off energies was calculated,

known as the energy delta (∆). The difference between these quantities for the

two structures was calculated, which we name the diff, this was plotted against

cut off energy. This is shown in figure 5.3. For readability, some extraneous

points are omitted.

To ensure there are no convergence issues, and to ensure we are able to precisely

optimise the geometry, we will define a kinetic energy cut off as converged when

three successive points are < 10−4eV/Å. We believe that this methodology,

which we refer to a del-diff or ∆–diff, takes into account the successive changes

in plane waves from the computational aspect, and the changes in the physical

system we are considering, is suitable for this project.

From figure 5.3, the cut off is selected as 900eV for BTO, 850eV for PTO, and

1000eV for KNO. These figures are higher than the ‘FINE’ value given, which

is expected, and well within the sensible capability of modern computation.
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Figure 5.3: Plane wave convergence for the unary structures, showing how
the force ∆-diff varies with increasing plane wave cut off for barium titanate

(BTO), lead titanate (PTO), and potassium niobate (KNO).

5.2.3.2 MP-Grid

It is essential that the Monkhorst-Pack is suitably converged. In compuata-

tional terms, this acts as the sampling of grid elements in the reciprocal lattice,

with a higher number meaning a greater density of grid points on which to cal-

culate the electronic behaviour. As this must be an integer value, there is

less freedom in terms of the values this can take. The number of points rises

quickly in a three dimensional grid, leading to issues with the computing power

available around 203. Additionally, there is the issue of diminishing returns as

the grid becomes more dense. Consider the reciprocal lattice vector c∗ = 2π
c

,

which for barium titanate would be 1.54Å
−1

. Then 4 k-ponts in this axis give a
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spacing of 0.39Å
−1

, and 10 k-points gives a spacing of 0.15Å
−1

. However, if we

consider the difference in spacing, or how much tighter our spacing becomes if

we increase it by 1, then from 4 to 5 points decreases the spacing by 0.08Å
−1

,

whereas from 10 to 11 points only gives 0.01Å
−1

. Thus while we are increasing

the resources required polynomially, the amount by which we are tightening

the spacing is decreasing exponentially.

In table 3.2 we see that previous studies have used a variety of grid densities,

however we expect to see convergence at around the same 123 grid used by

Evarestov.

If we were only considering the d33 element, we could apply a time saving

measure by assuming that all electronic activity is occuring in the 3-direction,

thus we could only converge the c-axis k-points. However, this would be an

approximation, as we expect to see interesting behaviour in the 1,2-directions.

Additionally, precision in these directions is necessary for studying the d31

piezoelectric coefficient. As such, all three axes are converged simultaneously

and linearly with each other. This allows us to be agnostic to the features of

the particular lattice symmetry, which is essential if we wish to observe, say,

the piezoelectricity of a rhombohedral structure. We will, however, appeal to

symmetry within CASTEP in order to find the irreducible Brillouin zone of

the tetragonal structure, as this can drastically reduce the number of k-points

actually required.

Ultimately, it may not be possible to see the same smooth, low tolerance

convergence present in the plane waves. The same ∆ − diff method is used,

however in this case we simply seek a two-point plateau region in the plot.

As the two convergences are independent of each other, we simply require

both convergences to be “good”, rather than equal. It is arguable that the

convergence of both quantities is only as good as the weakest, however in
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Figure 5.4: Force ∆-diff variation with Monkhorst-Pack grid for the unary
structures seperated by odd and even values of the grid density for barium

titanate (BTO), lead titanate (PTO), and potassium niobate(KNO).

cases of truly independent quantities, it can also be argued that a hypothetical

“total convergence” is some linear product. In this case, it would mean that the

tight convergence of the plane waves makes up for a weaker Monkhorst-Pack

convergence. Realistically, the different arguments are not clear cut, while

there is merit to slightly different convergence levels, returns quickly become

greatly diminished with larger differences between the two tolerances. On the

advice of Dr. Hasnip, the number of k-points in the grid is sorted into odd and

even values and these are treated independently. Figure 5.4 shows the odd and

even Monkhorst-Pack grid using the ∆− diff method.

We see immediately that convergence is less obvious for the materials. However

there are some plateaus occuring that we can select for our convergence. For
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Table 5.1: Convergence criteria for future calculations.

BTO PTO KNO

Energy Cut-off (eV) 900 850 1000
k-point Grid 153 103 133

k-point Spacing (Å
−1

) 0.0167 0.0256 0.0193

BTO this occurs at 13-15, for PTO 8-10, and for KNO at 11-13. Thus we will

use grids of 153, 103, and 133 for BTO, PTO, and KNO respectively. These are

reasonable for our calculation. While it may appear that these convergences

are significantly less tight, it is important to remember that there are 3 axes

each contributing to the precision. Converging each axis seperately would likely

show that each one gives a precision equatable to our plane wave convergence,

however performing such calculations are generally seen to be wasting resources

due to the greatly increased number of calculations required, and the time

taken to process them.

We have selected the convergence parameters for our system, as shown in table

5.1, and are now comfortable that future calculations will be physically relevant

and computationally efficient.

5.2.4 Structural Optimisation

Once the convergence criteria have been met, it is essential to perform a geom-

etry optimisation of the atomic structures to obtain the correct ground state in

relation to our calculation parameters. From perturbation theory we know this

will be above the true ground state of the actual system. We know that the

actual ground state is far too complicated to solve, and the properly converged

system is a “close enough” approximation for our purposes. Therefore, any

further mention of the ground state will be in reference to our approximate

ground state. Future computer systems may be able to calculate the actual
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ground state, however such technology is firmly in the realm of science fiction

at time of writing, as far as we know.

The calculation used the LBFGS scheme built into CASTEP. This is a low

memory implementation of the BFGS algorithm, which is widely used for

structural optimisation. Cell parameters and atomic positions were allowed

to vary within the tetragonal coordinate system, reducing the MP-Grid to an

irreducible symmetric zone, and reducing the number of free dimensions for

the algorithm to search. This is a normal and widely used optimisation for

this type of calculation.

As the research will be mainly focused on variance with stress, we will allow this

property to freely vary during the optimisation of this and future structures,

and the optimisation will use the force, energy, and displacement tolerances.

This can be achieved by effectively setting the flag ‘geom stress tol’ to a value

that is arbitrarily large, such that the calculation will always be within this

value. These tolerances were set to an energy tolerance of 2 × 10−8eV , force

tolerance of 1 × 10−4eV/Å, and displacement tolerance of 5 × 10−6Å. These

are tight tolerances, in order to fully capture the positional and force depen-

dences of the ferroelectric displacement. The number of cycles required was

higher than usual due to this tight tolerance, but was easily remedied by in-

creasing this number from 100 to 300. The non-symmetric lattice parameters

and atomic positions are given in table 5.2.

These values agree with our experimental data, with slight deviations which

is expected from both the approximations inherent to numerical methods, and

the well-known under-binding of the GGA functionals.

Additionally, the temperature effects can be discussed in order to explain some

deviation, especially in the case of the high value of the c-parameter in PTO.
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Table 5.2: Lattice parameters, tetragonality, volume, and fractional po-
sitions of the original .cif files and the optimised structures. We list the
temperature of the experimental data and collection code from ICSD. Ex-
perimental data is based on the following references. BTO - [34], PTO -

[101], KNO - [116].

BTO PTO KNO
Expt. Calc. Expt. Calc. Expt. Calc.

a (Å) 3.9925 3.9940 3.9039 3.8934 3.9979 3.9929
c (Å) 4.0365 4.0738 4.1348 4.3060 4.0645 4.1187
c/a 1.0110 1.0200 1.0591 1.1060 1.0167 1.0315

Vol (Å
3
) 64.342 64.984 63.016 65.273 64.963 65.666

PosB 0.5215 0.5143 0.4719 0.4584 0.5171 0.5147
PosOaxial 0.9747 0.9721 0.8661 0.8723 0.9740 0.9665
PosOradial 0.4895 0.4808 0.3870 0.3664 0.4791 0.4691
ICSD Code - 73643 - 90693 - 190921
Temp. (K) 0 290 0 293 0 550

DFT is well known to be strongly temperature-agnostic, and as such the op-

timised structure is referred to as ‘extrapolated to 0K’. That is, even if the

material does not exist at absolute zero due to phase changes, the results are

interpreted as if a snapshot of the material was cooled until no heat energy re-

mained. What this is actually based on is that the ions are static. On an atomic

level, heat is considered to be representative of a magnitude of vibration. Low

vibrational energy means the ions require less space, higher vibrations force

ions to move more, which creates familiar effects on the macroscale such as

thermal expansion of most metals. Although we see that there is a significant

difference between the experimental temperature and our absolute zero state,

thermal coefficients are numerically small and therefore we accept this as a

noticeable but unavoidable weakness in our method.

For an approximate idea of the total thermal expansion effect, we can make

some calculations. The thermal expansion coefficient of barium titanate at

room temperature is in the order of α = 10−5K−1[155]. We know that for a

material, the change in length due to temperature is given by ∆L = LαL∆T ,
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where L is the initial length, αL is the coefficient of expansion in that direction,

and ∆T is the change in temperature, then the change in length over a 300K

difference is ∆L ≈ 1.2 × 10−2Å, or 1.2pm. In reality the thermal expansion

coefficient tends to decrease with decreasing temperature, so the actual value

is likely to be less. Then accounting for thermal expansion would give an

increase of ¡1% of our lattice parameters, which we consider to be a small

procedural error of the methodology which we are aware of, but can consider

to be unimportant.

In these tetragonal structures, it behaves slightly differently due to the im-

balance in the c-axis and the a,b-axis. This can be seen in figure 5.5, where

the c-axis increases greatly in PTO, while the a-axis, and consequently b-axis,

contract with decreasing temperature.

While this is most prominent in lead titanate, it happens to a lesser degree in

the other two materials. Though the gradient becomes shallower approaching

zero Celsius, the lattice parameter theoretically should continue increasing

as we extrapolate down to 0K, accounting for larger c-parameter values and

higher tetragonality. The tetragonal symmetry of the system is preserved so

symmetric coordinates are omitted.

5.2.5 Linear Response Phonon Calculation

Linear response calculations were performed to calculate the Born effective

charges, or effective ionic charges. This is easily performed by using the

CASTEP task ‘Phonon+Efield’ which enables the DFPT package[148]. Though

these tasks can be performed separately, the amount of crossover between the

“big iron” computations involved makes it extremely efficient to perform both,
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Figure 5.5: Thermal effect on lattice parameters for lead titanate (PTO)[1,
p. 116].

rather than running one and having to perform the other later. This is fol-

lowed directly from the geometry optimisation step using the ‘reuse’ flag in

the param file, which automatically imports the relaxed structure to machine

precision, as well as data on forces, stress, and the full electron density.

We discovered that the effective charge matrices are invariant across the Bril-

louin zone, therefore for optimisation we only consider the Γ–Point. Only

considering one point significantly reduces the number of perturbations that

must be calculated. In addition, the phonon frequencies are all real at the

gamma point, whereas imaginary frequencies may occur elsewhere. CASTEP

cleverly contains a subroutine that makes all frequencies numerically real if
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only the Γ–Point is specified. Since Fortran handles complex numbers as two

real numbers with the imaginary constant i =
√
−1 (the famous z = x + iy

representation of complex numbers), this significantly reduces memory and

compute time by only calculating the real portion, safe in the knowledge that

the computed imaginary part would yield zero.

The Born effective charge tensor is a symmetric, 3×3, rank-2 tensor. However,

in this symmetry all elements of the tensor such that for i 6= j, the elements

are equal to zero. As such we can represent the charge matrix as a vector of

the diagonal elements without loss of information. These charge vectors are

shown in table 5.3.

We see that the charges are wildly different from the classical valance model,

both in value and the fact they are not spherical, but instead produce elliptical

geometry. The A and B site atoms act as electron donors to the oxygen atoms.

We see in the case of the Pb and Nb ions, that the difference between the

classical valance (+2 and +5 respectively) and the actual effective charge is

significant. This justifies our rejection of the LDA functional, as it does not

take into account gradients of the electron density function, which appear

significant.

5.2.6 Dielectric Permittivity

The dielectric permittivity tensor is calculated as part of our electric field

perturbation, with the results shown in table 5.4. This is generally calculated

by the software, however in the case of barium titanate and potassium niobate,

there is an ionic instability that causes a failure. This is due to the fact that

these structures do not exist at 0K, both undergo phase transformations to

the orthorhombic state, with a rhombohedral state at low temperature. This
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Table 5.4: Incorrectly calculated dielectric permittivity tensor (Perm.) el-
ements and ferroelectric mode frequencies for the sample materials. This
shows the unstable phonon mode extrapolated to negative frequencies in
the BTO and KNO and resulting incorrect anisotropy in the permittivity
tensor. For reference, PTO does not undergo this phase change and shows
the expected behaviour of a larger permittivity perpendicular to the direc-
tion of polarisation than parallel to it. This occurs because the ferroelectric
mode is responsible for the overall permittivity behaviour in ferroelectric
materials, however the calculation of the dielectric tensor forces negative

modes to be suppressed, removing them from the calculation.

BTO PTO KNO
11 33 11 33 11 33

Perm., ε 9.892 23.213 44.917 13.627 11.170 16.956
Perm., εε0(×10−10F/m) 0.876 2.055 3.977 1.207 0.989 1.501
FEMode, (cm−1) -116.157 91.895 -134.906

is circumvented by effectively ignoring unstable modes. Normally the first 3

modes would be ignored, however in these cases the first 5 have been removed.

As temperature decreases, the ferroelectric mode frequency tends to zero. This

drives the phase change to the orthorhombic state. However, in our calculations

we have retained the tetragonal state to absolute zero, extrapolating this mode

to negative wavelengths. In lead titanate, which does not undergo a phase

change, this mode remains positive.

The necessity to ignore this ferroelectric mode in order to make the calculation

means that the primary electrical behaviour of the ferroelectric is discarded.

Therefore these results are given only for completeness, and this should act

only as a cautionary tale that simply because a calculation can produce a

result, it should be considered with a critical view and not implicitly trusted.
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5.2.7 Elastic Constants

The elastic constants matrix was calculated using Andrew Walker’s elastic con-

stants scripts packaged with CASTEP and with updated versions on GitHub[156].

This analysis tool takes an optimised structure, generates a series of strain pat-

terns, calculates the stress formed by these strains, and analyses them in order

to generate the 6 × 6, rank-2 elastics tensor. This follows the usual material

tensor form, indices 1-3 are based on directional stresses, and 4-6 are rotations

around the 1-3 axes. Through symmetry, many of the matrix elements of the

tetragonal structure are either equal, or zero. Two strain patterns are neces-

sary for our systems, and 6 steps of 0.25% maximum strain were selected, for

consistency with our own strained calculations. One of the full elastic tensors

is shown in matrix 5.3.



0.00441 −0.00108 −0.00171 0.00000 0.00000 0.00000

−0.00108 0.00441 −0.00171 0.00000 0.00000 0.00000

−0.00171 −0.00171 0.00715 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.01055 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000 0.01055 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000 0.00857


(5.3)

Given the size of the tensor, it is helpful to reduce it to its unique components.

These are the diagonal components; s11 = s22, s33, s44 = s55, and s66, and the

off diagonal components; s12 = s21, and s31 = s32 = s13 = s23. Table 5.5 gives

the unique elements of the elastic tensors for the unary perovskite structures,

with the units changed to inverse terapascals rather than gigapascals for read-

ability. Table 5.5 also includes the calculated Young’s modulus in the 1 and 3

(a- and c-axis) for reference.
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Table 5.5: Calculated unique elastic constants and Young’s modulus for
BTO, PTO, and KNO.

BTO PTO KNO

s11(TPa−1) 4.410 8.504 3.883
s33(TPa−1) 7.146 54.036 6.854
s44(TPa−1) 10.554 19.953 15.033
s66(TPa−1) 8.568 10.945 11.599
s12(TPa−1) -1.083 0.213 -0.929
s13(TPa−1) -1.711 -12.347 -1.321
Y1(GPa) 226.76 117.59 257.54
Y3(GPa) 139.94 18.51 145.91

We see that mechanically, barium titanate and potassium niobate are very sim-

ilar. Despite their vastly different ionic composition, the bulk elastic constants

are numerically close in all axes. Lead titanate by comparison, is hugely differ-

ent in the 3-axis, the direction of polarisation. When it comes to the changes

in polarisation due to mechanical strain, we would expect this elasticity to

contribute to a significantly larger piezoelectric constant.

5.2.8 Strain Behaviour

In order to examine the strain behaviour, we select two strain patterns with

two strains each. Other effects may require many more data points, but piezo-

electricity being a linear effect, this should be sufficient. We select a 0.25%

expansive and -0.25% compressive strain uniaxially in the 3-axis and biaxi-

ally in the 1,2-axis in order to study the change in polarisation in the 3-axis,

allowing us to calculate the d33 and d31 elements of the piezoelectric tensor.

We take the lattice parameters from the optimised structure and write four

new cell files, two for the 3-axis expansion and compression, and two for the

1,2-axis expansion and compression. This is easy to do manually; simply have

the geometry optimisation output a cell file, manually calculate the strained
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lattice parameters, and add constraints to the relevant axis. This allows a

geometry optimisation to be performed on the atomic positions and other

lattice parameters. It is important to add the constraints, as otherwise the

minimisation of force, stress, and energy will simply return to the optimised,

relaxed structure. Unfortunately, the current linux shells are incapable of

maths with floating point numbers, so automating this would require a more

advanced language, such as python or ruby.

Optimising these cells give us new lattice parameters and ionic positions that

represent how the material relaxes under mechanical stress, an interesting view-

point for the study of piezoelectric materials. This approach does assume that

the composite ions (and electrons) in a material have sufficient time to relax

under stress, however as even the most punishing ultra-sonic frequencies have

cycles in the order of ≈ 0.1µs, this is a reasonable assumption.

Table 5.6 gives lattice parameters and z-components of fractional positions

for the relaxed cell and the strained cell, along with the z-component of the

symmetrised stress tensor. We include for a more complete picture the lengths

of the axial bonds between oxygen and the B-site ion separated into Bond-S

(B-S) for the short length and Bond-L (B-L) for the longer length. The axial

asymmetry is a distinguishing feature of this type of material, and we will

need to consider the ratio of the bond lengths at a later time. Additionally,

for comparison, we give a percentage difference from the relaxed structure for

the lattice parameters and ionic positions.

We see that under strain, we do not see a linear repositioning as we might ex-

pect from a regular material. That is, the movements of ions are not linearly

proportionate to the strain applied, with relatively large shifts observed par-

ticularly in the positions of radial oxygen ions. This, at its heart, may be the

driving force behind the piezoelectric effect. In lead titanate the movement of
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Table 5.6: Structural parameters of the unary perovskites under strain. C
represents compression and E expansion. 33 is a strain in the c-axis and 31
are strains in the a,b-axes. The percentage is the difference from the rest
state. Down the table are the independent lattice parameters, tetragonality,
volume, fractional ionic position, short and long bond lengths for the Ti-O

bonds, and the stress on the material in the direction of strain.

BTO Strains
Rest C33 %δ E33 %δ C31 %δ E31 %δ

a (Å) 3.994 3.996 0.05 3.992 -0.05 3.984 -0.25 4.004 0.25
c (Å) 4.074 4.064 -0.25 4.084 0.25 4.086 0.30 4.062 -0.29
c/a 1.020 1.017 -0.30 1.023 0.30 1.026 0.56 1.015 -0.54

Vol (Å
3
) 64.98 64.89 -0.14 65.08 0.14 64.86 -0.20 65.12 0.21

Frac Ti 0.514 0.514 -0.07 0.515 0.06 0.515 0.08 0.514 -0.09
Frac Oax 0.972 0.974 0.15 0.971 -0.15 0.971 -0.15 0.974 0.14
Frac Orad 0.481 0.482 0.18 0.480 -0.18 0.480 -0.22 0.482 0.21
B-S (Å) 1.865 1.868 0.14 1.863 -0.13 1.863 -0.11 1.867 0.11
B-L (Å) 2.209 2.196 -0.58 2.221 0.57 2.223 0.65 2.195 -0.63
T (GPa) 0.000 -0.279 - 0.266 - -0.748 - 0.740 -

PTO Strains

a (Å) 3.893 3.896 0.05 3.891 -0.06 3.884 -0.25 3.903 0.25
c (Å) 4.306 4.295 -0.25 4.317 0.25 4.341 0.81 4.273 -0.78
c/a 1.106 1.103 -0.30 1.109 0.31 1.118 1.06 1.095 -1.02

Vol (Å
3
) 65.27 65.18 -0.14 65.36 0.14 65.47 0.30 65.09 -0.28

Frac Ti 0.458 0.459 0.05 0.458 -0.05 0.458 -0.05 0.459 0.04
Frac Oax 0.872 0.874 0.17 0.871 -0.16 0.868 -0.46 0.876 0.45
Frac Orad 0.366 0.368 0.28 0.365 -0.28 0.364 -0.78 0.369 0.77
B-S (Å) 1.782 1.783 0.05 1.782 -0.04 1.780 -0.11 1.784 0.12
B-L (Å) 2.524 2.512 -0.46 2.535 0.46 2.560 1.45 2.488 -1.41
T (GPa) 0.000 -0.034 - 0.037 - -0.245 - 0.270 -

KNO Strains

a (Å) 3.993 3.995 0.04 3.991 -0.04 3.983 -0.25 4.003 0.25
c (Å) 4.119 4.108 -0.25 4.129 0.25 4.130 0.28 4.108 -0.26
c/a 1.032 1.029 -0.29 1.035 0.29 1.037 0.53 1.026 -0.51

Vol (Å
3
) 65.67 65.56 -0.16 65.77 0.16 65.52 -0.22 65.82 0.24

Frac Ti 0.515 0.515 -0.04 0.515 0.03 0.515 0.07 0.514 -0.08
Frac Oax 0.967 0.968 0.15 0.965 -0.15 0.965 -0.15 0.968 0.14
Frac Orad 0.469 0.470 0.21 0.468 -0.20 0.468 -0.34 0.471 0.32
B-S (Å) 1.861 1.863 0.10 1.859 -0.10 1.858 -0.12 1.863 0.12
B-L (Å) 2.258 2.246 -0.54 2.270 0.54 2.272 0.62 2.245 -0.58
T (GPa) 0.000 -0.291 - 0.270 - -0.863 - 0.869 -
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the radial oxygen ions is significant in comparison to the other materials. This

calls into question some of the simplified models, in which the central chain of

O-B-O is considered to contain the piezoelectric behaviour. The non-linearity

is also present in the changes in bond length, with the longer of the bonds

undergoing a far greater change than the shorter. We must consider how, if

any, this structural feature is related to the overall properties of the material.

We know that in amorphous structures of lead titanate the non-linearity of

the Ti-O bonds is scientifically interesting, as it is responsible for the photolu-

minescent effect in this material at room temperature[157]. This would be an

interesting system to study, however DFT is highly unsuitable for macroscale

amorphous materials due to the infinitely repeating unit cell discussed in sec-

tion 2.2.3.2.

Under DFT, we know that an ionic movement is simply part of an electronic

movement, where changing patterns of electron density encapsulate both elec-

tronic and ionic movement. It may be interpreted in molecular methods as

the ionic movement driving electronic movement, the two are undeniably in-

tertwined. However, there seems to be a distinct splitting in this between

the ions affected most drastically by the electronic charge component of the

Born effective charge, and the movement caused by mechanical strain. Alter-

natively, it could signal the opposite, as if the massive electronic charge acts

as a mechanical stabiliser, and the radial oxygen movement is due to much of

the electronic structure having been brought into the central O-B-O chain.

5.3 Analysis of Results

Once the calculations have been performed, we must consider the results of our

simulations in a larger context. The quantities that we find most interesting
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are the polarisation, and the piezoelectric coefficient, so we must consider how

our results can give us access to these. We must also consider convention, to

ensure our results can be fairly used and compared.

5.3.1 A note on the calculation of d31

It was decided that the for the d31 component, the symmetry would be retained

through the biaxial straining in the symmetric axis. While efficient, this raises

the question of what our results will represent. As in a tetragonal structure we

know that d31 = d32, do we interpret the two stresses independently such that

dtotal = d31 +d32 = 2d31, or that the strains occur as a result of pressure applied

through the [110] direction, such that dtotal =
√
d2

31 + d2
32 =

√
2d2

31 =
√

2d31.

Ultimately, we decided that as our method was based on the combination of

two uniaxial strains, it should be considered as such, thus we use the first

approach. The factor of
√

2 between the two approaches is not significant for

our aims, however does indicate that our bidirectional strain does not translate

directly to a strain of the same quantity in a single direction, and changing

from a clean 0.25% value to an irrational factor is undesirable.

5.3.2 Derivation of an Equation for the Calculation of

Electric Polarisation

The polarisation and effective charges are strongly linked, however it is impor-

tant to ensure that this is well defined for our method. That way, we can be

transparent and unambiguous in our methodology. We begin with the equation

for the Born Effective Charge[158].
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Z∗k,ij =
Ω

|e|
∂P i

∂rkj
(5.4)

First we must define our model. We will use a structural polarisation, fixed-ion

approximation; that is, the polarisation is purely a result of ionic positions in

the static structure. This can be expressed as ~P = ~P (~r).

Then we can replace the partial differential with a total differential, as ∂ ~P
∂~r

= d~P
d~r

.

Z∗k,ij =
Ω

|e|
dP i

drkj
(5.5)

We can then rearrange the equation and create an integral problem to be

solved.

∫
dP i = Z∗k,ij

|e|
Ω

∫
drkj (5.6)

We must define a boundary condition in order to properly evaluate the indefi-

nite integrals. We define a zero polarisation state ~P0 = 0 by appealing to the

symmetry breaking of the system. In the paraelectric cubic system, there is

no polarisation as ions are at totally symmetric coordinates in the structure.

If we define a constant ~rsymm to be the absolute displacement of the ion at the

totally symmetric fractional position, then we can define a displacement from

the zero polarisation ~r′ = ~r − ~rsymm. Thus we have the condition that at ~P0,

~r′ = 0. It is trivial to perform a change of integration variable as d~r = d~r′.

This gives us the following.

∫
dP i = Z∗k,ij

|e|
Ω

∫
dr′kj (5.7)
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P i − P i
0 = Z∗k,ij

|e|
Ω

(r′kj − r′kj,0) (5.8)

Then by our boundary condition we know that ~P0, ~r′0 = 0. So we see the

following.

P k
i =

Z∗k,ijr
k
j |e|

Ω
(5.9)

Then, by applying our knowledge of the tetragonal symmetry that i=1,2 are

symmetric, so polarisation only occurs in the i=3 direction, and that the total

polarisation is the sum of the ionic polarisations, we find the following.

PTot =
∑
k

Z∗33r
′
3|e|

Ω
(5.10)

This gives us our equation for the polarisation, based on the effective charge

and position of the ions.

5.3.3 Spontaneous Polarisations of Sample Structures

The spontaneous polarisation is a defining feature of ferroelectric materials,

and such we must be able to calculate this value. Table 5.7 shows our calcu-

lated values using equation 5.10 in comparison to literature values from Jaffe,

1971[1].

Again, we see a general agreement with experimental results. We know that

due to the increase in c-axis and decrease in a-axis with decreasing temper-

ature, the spontaneous polarisation is increased. We see that our values are

consistently overestimating, which is in line with this increase, and further
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Table 5.7: Calculated spontaneous polarisation of barium titanate (BTO),
lead titanate (PTO), and potassium niobate (KNO) alongside experimental
values from Jaffe[1]. Taking into account thermal effects, where the spon-
taneous polarisation is reduced under increasing temperature, these values
show excellent agreement with the experimental values. Also of interesting
note is that our calculated value for KNO is identical to the one calculated
by Wan, et al[118], indicating that we may have used similar methods to

calculate the polarisations.

BTO PTO KNO
Calc. Expt. Calc. Expt. Calc. Expt.

PS(C/m2) 0.30 0.26 0.95 0.81 0.36 0.30

semi-empirical models could potentially take this value and make adjustments

based on thermal behaviour if such steps were needed.

5.3.4 Piezoelectric Coefficients of Sample Structures

The piezoelectric coefficient (dij) is arguably the single most important mea-

sure of a piezoelectric material, as it is the measure of the amount of current

released by a piezoelectric upon deformation, or alternatively the magnitude

of deformation that may be achieved under an electric field. This is the cor-

nerstone of many piezoelectric applications.

In order to calculate these components, we take the strain geometry from

section 5.2.8 and use equation 5.10 to calculate the new polarisation of the

structure. For the Born effective charge, we have a choice on whether to

recalculate the Born effective charges for the new structure or continue to use

the values previously calculated.

It was chosen that these new polarisations would be calculated using the previ-

ous effective charges for two reasons. Firstly, we look at the definition given by

Gonze and Lee[158], “The proportionality coefficient relating, at linear order,
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the polarization per unit cell, created along the direction β, and the displace-

ment along the direction α of the atoms belonging to the sublattice κ, under

the condition of a zero electric field”. We can take that the Born effective

charge is effectively the gradient of a linear function, and as such should re-

main constant under atomic displacements, whereas using new values would

give a non-linear (or closely linear) curve which goes against such definitions.

Secondly, the phonon calculation is a computationally intensive task which,

for the changes in geometry we observe, gives very little change to effective

charges. As such we would question the necessity of using resources in such a

manner. However, we accept that some may make equally valid arguments for

recalculation.

The dij component is a the change in polarisation in direction i due to a stress

in direction j, so we can simply plot the calculated polarisation in the c-axis

due to the strain in the c-axis for d33 and a,b-axes for d31, and apply a linear

fit of y = mx+c. The piezoelectric coefficient is the gradient m, and the y-axis

intercept c is our spontaneous polarisation. As we have previously calculated

the intercept, we can subtract this in order to show a direct comparison between

the three materials. Figure 5.6 shows this comparison.

Table 5.8 gives the calculated piezoelectric coefficients for the structures.

We see that while our predictions of polarisation were well in line with the

experimental data available, there is a significant difference in our predictions

and the measured quantities for the piezoelectric coefficient. In the publication

by Wan, et al.[118] that we have discussed in chapter 3, they also reported an

error of roughly factor 2. While this is disheartening, given the comparisons

of the spontaneous polarisation, it does confirm that the fundamental issue

is with the DFT method used to study it, and as a result there may be a

clear procedural reason if we were to break down the DFT codes to their
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Figure 5.6: Changes in polarisation against stress for BTO, PTO, and
KNO with linear fittings and linear equation.

Table 5.8: The calculated piezoelectric coefficients of barium titanate
(BTO), lead titanate (PTO), and potassium niobate (KNO), with experi-
mental values for comparison. We see that despite the positive results for the
spontaneous polarisation, there are large numerical differences between our
calculated piezoelectric coefficients and the experimentally reported ones,
similar to the differences found by Wan, et al.[118]. However, the values for
KNO are in good agreement with their calculated results, indicating they
also used a similar method to us to calculate these values. While the numer-
ical values are considerably different, the overall trends have been preserved,
so it seems that our simulations are still representative of the patterns in

the real system, just not to a precise degree.

BTO PTO KNO
Calc. Expt.[31] Calc. Expt.[159] Calc. Expt.[160]

d33, pC/N 47 86 310 193 41 30
d31, pC/N -20 -35 -133 -25 -19 -22
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bare essentials. Ultimately though this is a fairly large error numerically, it

does demonstrate the trends present in experimental comparisons of these two

piezoelectric modes, which indicates that the computational system is still

representative of the real system, though it would be ideal if this was more

precise.

5.3.5 Electron Density Mapping

DFT is inherently based on the energy functional mapping the electron density

field to the scalar value of energy. Therefore a natural part of the any task

is the calculation of this electron density field. This is fundamentally a rep-

resentation of electronic probability, much like the radial probability densities

that can be found using traditional quantum mechanics of atomic electronic

states by calculating solutions to Legendre polynomials. The full derivation

of this is available in any good undergraduate textbook, such as Dunningham

and Vedral[161], but the end result is the familiar electronic structure nota-

tion, e.g. C = 1s22s22p2. While this approach is exactly solvable for hydrogen,

larger atoms and even simple diatomic molecules rapidly require extraordinary

computational power to calculate a numerical solution. As we have already

discussed, this is where the strength of DFT lies, by mapping this large inter-

acting problem to a simpler non-interacting model. In fact, a great advantage

of DFT is that while there is a clear connection between the real electron

density field and the non-physical wavefunction, we can discard this level of

unnecessary abstraction in favour of a more real quantity, that of the static

charge distribution.

Philosophical considerations aside, in reality quantum probability and static

distribution are two sides of the same coin. It should be understood that

the classical interpretation of the electron density field, i.e. where electrons
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Table 5.9: Core and valance electron structures for each element, based
on information within the norm conserving pseduopotential.

Ion Core Valance

Ba 1s22s22p63s23p63d104s24p64d10 5s25p66s2

Pb 1s22s22p63s23p63d104s24p64d104f 145s25p6 5d106s26p2

K 1s22s22p6 3s23p64s1

Ti 1s22s22p6 3s23p63d24s2

Nb 1s22s22p63s23p63d10 4s24p64d45s1

O 1s2 2s22p4

are, is equivalent to the quantum interpretation, i.e. the probability of a

wavefunction collapsing to a certain outcome on measurement based on its

probability density.

First we generate the charge density file for the rest and strained structures,

either at runtime for the geometry optimisation task, or using the method

outlined in section 5.3.5.1. Figure 5.7 shows the visualisation of the total

static charge density for each structure at rest.

For consistency we have selected a saturation of 150 units, with a binding iso-

surface of 15 units. This allows for a clearer image as it discards the high

density of core electrons within pseudopotentials, as well as removing the

insignificant regions of low electron density that are hard to discern due to

colouration.

We see immediately that the electron density is highly localised around each

ion. We know that a certain number of the electrons are bound in core states

within the pseudopotential, and should be considered immobile. Table 5.9

shows the core (pseudo) and valance (explicit) electrons for each ion.

As expected, many of the total number of electrons are in the core region and

therefore are locked in the pseudopotential. This is a great boon in terms of

the efficiency of the calculation. If we assume, as is common, that only the
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valance states are involved in the material structure, then we are saving a huge

amount of computation time in comparison to an all-electron code like Wien2k.

Though the downside is that if core electrons are involved, this detail is lost.

5.3.5.1 A Note on Software Compatibility

The electron density field is automatically calculated and stored in a binary

file as a natural part of any CASTEP calculation. However, to visualise this

takes a few extra steps. Firstly, the .param file for the CASTEP task must

have the flag ’WRITE FORMATTED DENSITY’ set to TRUE. This outputs

a highly verbose .den fmt file. If the calculation has already been performed,

this file can be generated at negligible cost from the binary output by using

the REUSE flag on the binary file with the same .param, with the addition of

the above flag. CASTEP will load the results of the previous calculation, and

output a new set of output files with virtually no new calculation necessary.

The file contains a header and 4 columns. The first three are positions on

the FFT grid the calculation used, and the fourth is the “charge”, a positive

number (despite electronic charge being negative by convention) that gives the

number of electrons at the listed grid point, multiplied by the total number

of grid points. There are two modifications that must be made for compat-

ibility with VESTA. Firstly, the extension must be changed from .den fmt

to .charg frm in order for VESTA to recognise the file. Second, the header

must be deleted and replaced with a single string of the form X Y Z ‘‘a b

c charge’’ where X, Y, and Z are the dimensions of the FFT grid. This is

given in the original header, in the .castep output file, or by looking at the last

line of the density/charge file to see how the final point is labelled. Note the

double quotes in the string.
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This file contains only data on the charge distribution. If you want to overlay

this information on a crystallographic model, a .cell file must be present in the

same directory as the .charg frm with the same name, e.g. barium-titanate.cell

and barium-titanate.charg frm in the same directory.

5.3.6 Electron Density Shift

In order to calculate the movement of electrons under strain, we subtract the

static charge distribution at rest from that under strain. This effectively gives

us the numeric difference at any point in the structure, with a positive number

indicating electrons moving into a region, and a negative number indicating a

movement away from a region. As should be expected, the number of electrons

is conserved between the two calculations, so all increases should be balanced

by decreases over the whole grid.

As FFT grids are necessarily dense, it is inadvisable to attempt this manually,

and virtually any language should be able to automate the process of calculat-

ing the difference at each point. To keep it simple, we accept a slight change

in the volume of each grid element to retain the same number of elements, so

there is a one-to-one mapping between grid elements and a simple subtraction

is all that is required, albiet some half-million times.

A prototype command using bash/awk to obtain the change in static charge

for the expansion-33 (E33) strain pattern for suitably named barium titanate

charge files would be the following:

join BTO_E33.charg_frm BTO_Rest.charg_frm |

awk ’{ print $1,$2,$3,$4-$7 }’ >

BTO_E33_Difference.charg_frm
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This adds the columns of the rest file to the right of the columns in the strained

file, then deducts the charge at each grid point and outputs the charge differ-

ence at each point to a new file. It is important to ensure the line numbers

for each point match before performing this command, so it can be worth

removing the header entirely and creating a new one after this process.

The electron density maps for each strain pattern are shown across the (100)

and (110) plane in figures 5.8, 5.9, 5.10, and 5.11.

This forms the crux of the new research in this thesis. The view of the piezo-

electric effect purely as an intrinsic property, on the atomic level. A novel way

of understanding the fundamentals of the piezoelectric effect from the smallest

scale possible is important to our overall view of the phenomenon. Understand-

ing the electronic response of the ions is key to designs of future materials, as

if we know the interaction of that atom explicitly, it is easier to replace.

Beginning with what might be considered the primary piezoelectric mode, the

figures 5.8 and 5.9 show the static charge difference of the d33 piezoelectric

coefficient in action. We see that each lobe of electron movement is localised

to an individual atom. It is possible to identify a zone in which the vast

majority of the charge movement is unambiguously tied to a single atom in

the structure.

In terms of fundamental understanding, this is highly advantageous for an

interest in the effects of different elements in the similar structures. In sec-

tion 5.3.7 we discuss the idea of a partial piezoelectric coefficient, in which we

consider the polarisation components by individual atom, and how the contri-

bution is broken down.

Most obvious between expansive and compressive modes is the fact that they

mirror each other completely. This confirms the linearity of the piezoelectric
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effect with strains and thus stresses on the material. This is indicative of the

macroscale effect where an alternating current causes oscillations in mechanical

perturbation, or the converse equivalent, by a reverse of the electron movement

happening depending on the direction of the oscillation.

It is also important to consider the shape of the charge differences. In this

d33 component we see that there is a high degree of directionality. This is

to be expected, as the the polarisation change and stress are parallel in the

c-axis. This leads the lobes of the charge movement to be mainly focused

in that direction. Most notable is the central O-B-O chain, in which there

is a recurring pattern of short and long bonds along an alternating pattern

of closely connected lobes of density movements. We recall from table 5.6

that the longer of these bonds changes significantly more than the shorter. In

these density maps we see that both appear to have equal, although opposite,

changes in charge density.

Comparing the different species of atoms within the structure, there is little to

see between the initial d33 figures. In the O-B-O chain, the density lobes are

more localised in the PTO structure, whereas in other structures the electron

movements are more dispersed among the length of the bonds. In regards to

the A-site, there is much greater involvement in the PTO and KNO structures,

whereas the barium ion does not appear to induce much of a charge difference

in BTO. These effects may suggest that the O-B-O chain largely defines the

piezoelectric behaviour, and while we know that the A-site atom modifies be-

haviour this may not be direct, but an indirect effect on the electron sharing

in the central chain. This would explain similarities in BTO and KNO, with

differences in PTO, based on the figures we have created.

Turning to figures 5.10 and 5.11, the change in static charge density occurs

across much more of the unit cell volume. While still localised, the overlap is
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more prominent in the bonds, in particular in the PTO structure, where both

bonds in the O-B-O chain show significant electron activity. All atoms show

far greater effects in the density change lobes for PTO, whereas in BTO and

KNO they seem equivalent. In KNO the radial oxygen ions are more involved,

as are the density changes around the A-site in comparison to BTO. In BTO

the axial oxygen atoms carry greater change, and although the A-site is less

directly involved it can be seen in the (110) plane that there is a significant

connection between the radial oxygen ion and the barium ion.

Again the compressive and expansive modes appear to be direct opposites,

showing further the inherent linearity in properties relating to piezoelectricity,

in addition to the piezoelectric effect itself. There is much greater lateral

involvement, obviously as part of the a,b-axis components, and surrounding

the radial oxygen ions particularly we see an interesting distribution. The lobes

protruding anti-parallel to the polarisation appear broken and much more flat

than the parallel lobes. These regions seem more symmetric in the a-axis than

the prior figures that seemed symmetric around the ions in the c-axis. Figures

showing the d33 component show symmetry in the direction perpendicular

to polarisation and, excepting the ferroelectric deformation, symmetry in the

parallel direction. However in the d31 figures the symmetry is restricted purely

to the perpendicular direction, with a clear bias in the direction of polarisation.

In the O-B-O chain, we see roughly the same behaviour, however it is in the

A-site and radial oxygen ions differ.

This suggests that there are components to the different piezoelectric mode. A

singular, identical mechanism in the central chain, and an independent com-

ponent which distinguishes the separate modes. In order to further consider

this core mechanism, we plot the charge difference along the c-axis through

the centre of the B-site atom. This charge difference is plotted against the
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Figure 5.12: Electron density shift along the central O-B-O column for
expansive strain patterns for barium titanate (BTO), lead titanate (PTO),
and potassium niobate (KNO). Positive numbers are an increase in electron
density at that site, and negative numbers are a decrease in electron density

at that site.

fractional coordinate, rather than the absolute coordinate, to allow for slightly

different cell geometry. Figure 5.12 shows the charge difference for expansive

modes. As we have seen, compressive modes are simply a change of sign, so

removing them adds clarity.
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There is a definite similarity in the behaviour of the oxygen ions in the BTO and

KNO in figure 5.12, however it differs significantly in the central region where

we expect to see the B-site ion. Therefore while the previous figures showed

the two as similar, there are numerical differences arising from the different

bonding of the B-site ions. This shows that while it may be insignificant to

the overall, there are aspects of difference between the II-IV and I-V models.

We can see from figure 5.12 that the behaviour of both modes are very similar,

in that the stationary points are at the same points but the sign is reversed.

However the d31 mode shows a larger difference than the d33 mode. While

this could be due to the way we forced a preservation of symmetry during the

calculations, the proportional difference in the two modes is different for PTO

against KNO and BTO. Numerically in PTO, the d31 mode is greater than

twice the absolute value of the d33 mode for every point. For KNO and BTO

however, the charge difference of the d31 mode is only slightly larger in absolute

value.

This would suggest that the difference in these values is due to structural dif-

ferences rather than chemical. BTO and KNO have similar elastic properties,

whereas PTO has an elastic matrix that differs by 8-10 times. However, the

ratio of the s33 to s31 is similar in all three structures, so the elastic asymmetry

is not the cause. The effective charges of the ions are also not the root cause,

as they would not account for the similar behaviour of the BTO and KNO

structures. Instead of considering the total polarisation of each structure, we

will consider it as a component system. Equation 5.10 gives independent com-

ponents of the polarisation from the direction, but also contains a summation

of the individual ions. Not only can we consider the individual polarisations,

but also the change in polarisation under total stress, studying the piezoelectric

effect on an atom-by-atom level.
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Figure 5.13: Change in ionic polarisation for each ion in BTO compared
to the unstrained rest state, against the axial stress on the unit cell in the
direction of polarisation, with a linear fitting and the linear function shown.
The gradient of the linear fit gives the partial piezoelectric coefficient of the

ion.

5.3.7 The Partial Piezoelectric Coefficient

We define the partial piezoelectric coefficient (δkij) as the change in polarisation

in direction i of a single ion k due to mechanical stress applied across the cell

in direction j. As polarisation of the k-th ion is naturally calculated as part of

equation 5.10 then it is obvious how the change in polarisation per ion is found,

which can then be plotted against the cell stress as in figure 5.13. This relation

is linear as we may expect for a piezoelectric, giving the partial piezoelectric

coefficient as the gradient.

We have defined this across a total stress per unit cell, as stress is effectively

a force evenly distributed across an area. However we could attempt to define

a pseudo-stress on the individual ions, assigning these properties would be

difficult as there would need to be a system to split the cross section of a
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material plane across a 3D space while remaining agnostic to specific physical

properties of the material.

Table 5.10 shows the full table of the changes in polarisation and partial piezo-

electric coefficient for each ion across the sample structures. Note that the

value given for radial oxygen is per ion. As before, we have chosen to define

the A-site as zero polarisation for all patterns. This is arbitrary and while it

is necessary to define a zero point, depending on what is of interest any point

can be selected.

Attempts to calculate polarisation are consistently plagued by the necessity for

an arbitrary relativeness of the calculation. In this system we have defined a

zero point and coordinate system for simplicity, but there is no reason beyond

convenience for these choices. While this allows our system considerable free-

dom to generalise to many systems of interest with very different geometries

and real-world implementations. Though this is an interesting aspect of the

fundamental theory of polarisation, it may be that a more holistic approach

is more enlightening. It may be beneficial to reconsider these as boundary

conditions relevant to the physicality of the system, as in the wave and heat

equations. However in the current context it is sufficient to understand this

so that we understand the necessity of the selecting a system, and that our

results will differ based on selection of a system, although conclusions we draw

should be valid across all selections in order to be meaningful.

In all of the sample structures, the axial oxygen has the largest partial piezo-

electric coefficient by a significant margin. This is curious in KNO, as it is

proportionally larger than in BTO. We would expect the B-site, which in the

case of Nb has a larger valance and effective charge, so it may be expected that

it would represent the majority of the piezoelectric coefficient. However, this

is not the case, and we can see that the electronic component of the effective
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charge follows the opposite trend, being larger for the oxygen in KNO, while

larger for the B-site in BTO. Could it be then, that these electron movements

are based on the electrons shared more than the valance of the components.

Then manufacture would be based on increasing the amount of electron sharing

and the bonding of this axial oxygen.

There is little difference between the d33 and d31 modes. The δ of the axial

oxygen is a lower proportion of the total piezoelectric coefficient in the d31

mode, however it is still the majority in both modes across all structures.

What is most interesting, however, is the B-site Ti in PTO. Despite having the

overall highest piezoelectric coefficients, the polarisation and δ is consistently

of the opposite sign to the other structures. We understand why our polarisa-

tion calculation has the opposite sign, it is because unlike in BTO and KNO,

the B-site is below the symmetric point in the axis of polarisation defined in

subsection 5.3.2. However, the δ implies that this is not a result of our se-

lection of symmetric points, but a fundamental difference in the piezoelectric

effect, as the B-site is moving against the piezoelectric coefficient’s primary

effect. Looking at the differences between sample structures, this seems the

most significant. Therefore when considering new materials on a fundamental

level, it may not be a case of simply attempting to stack high δ coefficients of

ions to create a highly piezoelectric material. Instead, perhaps we should seek

to create these seemingly adversarial relationships in larger systems in order

to maximize the overall piezoelectric coefficient.

5.4 Conclusions

In this chapter we have established a framework for calculating essential prop-

erties of the piezoelectric. Initially we have calculated structural properties,
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phonon and electric field response, dielectric tensors, elastic matrices, and

strain geometries using CASTEP. The results of these calculations have been

discussed, differences between these results and previous values have been ad-

dressed, and with the exception of the dielectric tensors which has been ad-

dressed, these values have been deemed acceptable.

We have developed a new way to consider the intrinsic properties of simple

piezoelectric materials using a DFT approach. Observing the electric changes

of a material relaxed under stress has allowed us to calculate numerically and

visually represent the properties of interest in these materials. By providing a

fundamental tool set with clear, concise, instructions we have provided a novel

way of considering atomic scale stress/strain behaviour of idealised materials

in terms of electronic charge movement. Additionally, this metric of the partial

piezoelectric coefficient has demonstrated that the simple chemical make-up of

the structure seems to have little bearing on the overall piezoelectric prop-

erty. Instead, the overall effect is caused by a combination of structural and

electronic properties that we are able to determine.

Now that we have discussed the individual calculations and their methodology,

we must move on in order to consider more realistic structures that may be

larger and feature more complicated interactions behind the overall identical

mechanics. For the first of these we will consider a binary structure of lead

zirconate titanate in equal parts, with the chemical formula PbT i0.5Zr0.5O3,

and often referred to by the shortened form PZT.





Chapter 6

Piezoelectric Properties of

Binary Perovskites: Lead

Zirconate Titanate

6.1 Introduction to the Sample Material

When considering the binary structure to calculate properties for, the obvious

choice is lead zirconate titanate (PZT), a binary solution of lead titanate that

was studied in chapter 5, and the perovskite lead zirconate with the unit cell

formula PbZr1−xTixO3 with 0 ≤ x ≤ 1. Initially discovered in 1952[162],

it has been an essential material in core components of all electronics. As a

binary solution, there are interesting properties of the phase diagram that are

not present in the unary materials, arising from the composition. Figure 6.1

shows the compositional and temperature phase diagram[1, p. 136].

Most interesting about this is the sharp vertical line between rhombohedral and

tetragonal occurring at x ≈ 0.48. This morphotropic phase boundary (MPB)

165
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Figure 6.1: Temperature and composition phase diagram for lead zir-
conate titanate. Composition is given by the mixing percentage of lead
titanate, with 0% corresponding to pure lead zirconate, and 100% corre-
sponding to pure lead titanate. The phases are labelled as paraelectric (P),
ferroelectric (F), and antiferroelectric (A), with the subscript being the crys-
tal category cubic (C), rhombohedral (R), tetragonal (T), and orthorhombic

(O).

is often used in devices as there is an increase in the properties associated with

piezo- and ferroelectricity that persists over a wide range of temperatures.

These calculations are performed close to this mark on the tetragonal side,

where x = 0.5. The sample structure is constructed using a supercell method

with 8 perovskite cells in a 23 configuration, giving a compositional resolution

of 12.5% . While calculations of this sort across the MPB would be interesting,

the size of the supercell required to achieve the resolution of 4% necessary would

be made up of 25 perovskite cells, and this can only be broken into a 5×5×1,

it is impossible to create a well mixed cell. Using 50 perovskite cells would

mediate this issue, however this would give a unit cell of 250 atoms. Even if an

interested researcher had the resources for such a task, there are undoubtedly

better uses for them.
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It is well known that using a virtual crystal approximation is unreliable for

PZT, as while some compositions agree well with a supercell method, these

are the exception more than the rule. However this is generally where a single

perovskite cell is used to replicate much larger structures. Rather than putting

the entire burden on a thoroughly disproved method, it may be that using a

hybrid of these two ideas could produce a viable solution. For instance, an 8

perovskite cell in a 2× 2× 2 configuration is well sized for fast calculations on

reasonable HPC hardware, and can likely host dozens of non-degenerate con-

formations. In pure supercell as we have performed it, there is a compositional

resolution of 12.5%, meaning that for our binary structure we could only use

mixes of x = 0.125, 0.25, 0.375, or 0.5. However if we assigned a single ion as

the virtual ion, then theoretically we have a continuous spectrum of composi-

tions that may be explored, without relying entirely on the virtual crystal that

we know is unreliable.

While this method is not relevant to this work, it would be interesting to see

how a virtual ion performs in a 23 or 33 supercell to calculate properties of a

material for which creating the full structure would be unfeasible.

Once again this system is heavily idealised for the DFT methodology. Here,

in addition to the previous assumptions of perfect single crystal, we assume

perfect mixing of the B-site ions. That is, throughout the crystal for each B

site (Ti, Zr) ion, the nearest B-site neighbour along the a-, b-, and c-axes are

non-matching. This is not a realistic structure on a macroscale, as either due

to the energetics of ion migration or simply limitations in fabrication, crystals

of our 50-50 composition show Ti and Zr rich regions on scales too large to

investigate using DFT. The distribution of these would be far more suited to

a phase field method[163], especially due to the composition profile crossing
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the phase boundary, causing the single crystal to show a tetragonal structure

in the Ti rich regions and rhombohedral in the Zr rich regions.

That said, the atomistic calculations performed on an idealised structure are

no different to the limitations of any other calculation or study. While it is

important to acknowledge, these are not factors that invalidate our method.

These investigations were performed using the ARC2 configuration shown in

section 4.2.2.

6.1.1 Building the Unit Cell

Rather than attempt to find a suitable unit cell on ICSD, a supercell was built

based on the lead titanate cell used in the previous study for the base per-

ovskite unit. This cell was doubled in all axes and populated with equivalent

atoms for each unit. It is essential to keep track of which atoms are where in

order to calculate their asymmetric displacement, so each group of five atoms

were grouped into a unit, and units were distinguished by 0 or 1 in each direc-

tion, giving each cell a designation of the form (000). So the cell containing the

origin was 000, surrounded in a, b, and c by 100, 010, 001 respectively. While

it is possible to become confused between this and planar notation, it was ul-

timately simple and versatile. While the method by which you determine the

positions of atoms in the supercell does not matter, it is highly recommended

that a clear nomenclature is used. Each atom was given an approximate ferro-

electric fractional coordinate displacement of 0.01, in line with the structure of

a deformed perovskite. Fundamentally it is only important to build as far as it

being visibly recognisable, as a geometry optimisation to minimise the energy

will be required to settle the final cell to something more representative of the

real structure.
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Figure 6.2 shows the constructed unit cell. While missing various minor fea-

tures relevant to the crystal structure that are discussed later in the chapter,

this represents a viable perovskite initial structure that can be used as a start-

ing point for a calculation. Practically any unit cell that is physically possible

can be used for calculations, so there is no need to wait for experimental data

and any hypothetical scenario can be created, such as an ultra-high pressure

phase. Any unit cell where atoms do not overlap can be input into a calcu-

lation, but there are other factors as to if the state is one observed in reality.

This is why it is common to use experimental data as a starting point, or to

use a visualiser and personal knowledge of how a similar cell might behave in

order to build a system representative of the real life case.

In order to keep parity with the previous calculations, the pseudopotentials for

lead titanate were reused, with the addition of the zircoium pseudopotential

from the same library.

6.2 Performing the Calculations

6.2.1 Convergence

Convergence is the first consideration of any project, which in the space of

pseudopotential based DFT is the kinetic energy cut-off and the Monkhorst-

Pack grid. The cut-off is based entirely on the pseudopotentials used. The

Monkhorst-Pack grid is based more on the relative positions of pseudopoten-

tials, particularly the interatomic distance. Therefore, rather than convergence

of the full unit cell, we instead can perform calculations on lead zirconate and

take the established convergence parameters of lead titanate from chapter 5.

Then we simply take the largest cut-off energy and the smallest k-point spacing
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Figure 6.2: A VESTA visualisation of the initial PZT cell we have con-
structed. Black - Pb, Blue - Ti, Green - Zr, Red - O.

for converged values. This method is well known and particularly for larger

cells can be an excellent cost cutting measure for the initial convergence.

The same method as in section 5.2.3 is used, with a del-diff method with three

successive points within 10−4eV/Å for energy cut off and a two point plateau

for the Monkhorst-Pack grid. These were practically identical to the results for

lead titanate, which is not surprising. Both titanium and zirconium are simple

transition metal elements, so do not require particularly strenuous calculations.

However lead and oxygen pseudopotentials are well known to be particularly

hard, requiring significant convergence parameters. Thus it is expected that
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the identical pseudopotentials would be the deciding factor in the numerical

convergence.

Overall, the calculations were found to be converged to a sufficient force reso-

lution with a cut-off energy of 850eV and an MP grid of 53. As the axes are

made up of 2 basic cell lengths, the reciprocal lattice vector is halved, therefore

half as many k-points are needed along each axis for the same density.

6.2.2 Unit Cell Geometry

We employ the full unit cell for the initial geometry optimisation. This is

of course necessary for the resting state to compare the electron density of

perturbed structures to, and is essential as a precursor the the linear response

calculation. It can also show interesting features of the geometry, as seen

before where lead titanate was found to have a a B-site ion with negative

partial polarisation.

This geometry calculation was set to the same parameters of an energy toler-

ance of 2× 108eV , force tolerance of 1× 104eV/Å, and displacement tolerance

of 5× 106Å. However, by the non-symmetric structure with significantly more

atoms, the calculation took longer than the unary optimisations combined. It

is important to remember that supercell type constructions rarely fall into a

point group due to the large cells and arrangements of atoms compared to their

simpler counterparts. While individual ionic constraints and cell constraints

can be applied as a time saving measure, it can be much more interesting to

simply leave symmetry out of the calculation and observe how the superstruc-

ture differs in geometry from the individual cells it is made up of. Therefore

the initial geometry optimisation, and the subsequent perturbed optimisations

are left with P1 symmetry and no constraints other than the perturbed strain.
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Table 6.1: Lattice parameters, tetragonality, and unit cell volume of the
PZT full cell and reduced perovskite unit, with lead titanate (PTO) and

lead zirconate (PZO) values for comparison.

PZT Single Unit PTO PZO

a (Å) 8.050 4.025 3.893 4.160
c (Å) 8.425 4.212 4.306 4.160
c/a 1.047 1.047 1.106 1.000

Vol. (Å
3
) 545.995 68.249 65.273 72.007

The results of the lattice parameters for an unperturbed geometry are shown

in table 6.1. The single unit is half of each lattice parameter, giving a 5 atom

cell with an eighth the volume of the full cell. The values for tetragonal PTO

from chapter 5 and a geometry optimisation of cubic PZO are also given for

comparison.

Without any forced geometry the unit cell was found to optimise to a semi-

tetragonal structure. While the internal ionic coordinates do not fit the basic

P4mm perovskite symmetry, due to the way symmetry is defined, the lattice

parameters are found to fit the basic conditions of a = b 6= c and α = β = γ =

90◦ to approximately five decimal places, which we can consider a numerical

error. There may be some merit to creating lattice constraints around this fact

as a time saving measure, but gains are likely to be small and the reduction of

minimisation directions may actually lead to longer geometry calculations.

Overall the PZT appears to fit between the two extremes, an average between

the large physical strain of the lead titanate and the simple symmetry of the

cubic material lead zirconate. In terms of its piezoelectric potential, while

there are other factors to consider in a real use case, the lower tetragonality

may inhibit the piezoelectric properties but in doing so allow the material to

be reliably created without defects and cracking as is common in PTO due to

the high ferroelectric strain.
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Table 6.2: Real space displacement from symmetric positions of ions in
PZT in the direction parallel and perpendicular to the axis of polarisation,

which aligns with the c-axis in our cell.

Displacement
Ion Parallel Perp.

Pb (Å) 0.0000 0.0000
Ti (Å) -0.2311 0.0000
Zr (Å) -0.2104 0.0000
Oax(Ti)(Å) -0.5065 0.0000
Oax(Zr)(Å) -0.3757 0.0000
Orad(Ti)(Å) -0.5524 0.0535
Orad(Zr)(Å) -0.5523 -0.0534

As part of the overall calculation we consider the displacement from a hy-

pothetical set of symmetric fractional positions. On a single perovskite unit

level, these are identical to the previous positions, however these have been ex-

panded to the further set by first defining the origin unit with 0 ≤ x, y, z ≤ 0.5

fractional positions, then adding 0.5 for each of the relevant expansion units.

This gives a total set of the necessary zero polarisation symmetry that we can

calculate a polarisation from. Important to note is that these are again cor-

rected to the origin Pb ion, so this site has a displacement and polarisation

of zero by convention. Table 6.2 shows the displacement of ions parallel and

perpendicular to the direction of polarisation along the c-axis.

We must consider how in the previous structures, it was important to have a

cubic-like set of fractional coordinates to act as symmetric points to calculate

relative displacements. In the binary structure, these are expanded by a factor

of two, as there are two simple perovskite cells in the axis of polarisation.

Then the fractional symmetric coordinates are expanded to (0.25, 0.75) for B-

site ions, and (0.0, 0.5) for the oxygen ions. We can calculate our polarisation

as a relative real-space displacement of ions from these positions.
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In order to make classification of the oxygen ions easier, in addition to our pre-

vious axial and radial ions we now consider them to be owned by a perovskite

cell identified by the B-site ion. There is no distinction to be made further

as oxygen ions in an axial and radial configuration linked to the same B-site

ion are identical. From the previous notation, in each axis the first oxygen

ions belong to the 0 unit, and the second to the 1. There is no difference in

the c-axis displacement of radial oxygen ions, which is unsurprising given the

weak interaction to the overall piezoelectric movement seen in chapter 5. The

displacement of Ti and Zr are very similar, though Ti does displace slightly

more. However there is a disproportionate displacement of axial oxygen ions

to the titanium B-site. This suggests that while the ionic properties of the

two B-sites are superficially similar, there is asymmetry in the B-axial oxy-

gen bonding. Our example of a perfectly mixed cell distributes this difference

evenly, but altering the arrangement or composition to a non-degenerate state

to observe how this coupling reacts may be of interest in further studies. All

c-axis displacements of the B-site ions are below the symmetric point relative

to the A-site, which may correspond to an adversarial element of the piezo-

electric coefficient. It is unclear what causes this effect, though the lead ion

is certainly a factor. Whether it be its sheer size or electronic coupling, it is

definitely worth looking into similar geometries if a replacement is to be found

for lead based materials.

Most noticeable in these results however is the lateral movement of radial

oxygen ions. The coupling above remains present as the ions are drawn toward

the titanium site and away from the zirconium. Though under classical models

the valance charge of these two ions is the same, it is likely that we see a

more positive effective charge of the Ti, giving an overall greater attraction to

the negative oxygen ions and allowing them to bond more closely against the

weaker electrostatic attraction of the Zr ion.
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Figure 6.3: A VESTA visualisation of the PZT cell rest-state, following
the calculation of optimised ionic positions and lattice parameters.

Given our perfect mixing this feature can be seen as either a sawtooth config-

uration of atoms, or a rotational mode that is cancelled over large volumes. It

is hard to tell what to expect the result of this, or how it would change under

different proportions and arrangements. However simple spring models may

suggest that under pressure a scissoring action may occur, which could account

for a more elastic material than those in rigidly ordered lines. Alternatively, it

may give more compliance to rotational modes, or perhaps a combination of

the two effects to create a more durable material than its unary counterparts.

Figure 6.4 shows the sawtooth pattern arising from the asymmetry between

oxygen ions and their bonded B-site. The view is down the polarisation axis,



Chapter 6. Binary Perovskites 176

with the oxygen saw pattern running in the a-axis. VESTA calculated the

angle formed by three neighbouring oxygen ions to be 177.0◦, translating to a

skew angle of 1.5◦. While this does not seem to be a large difference in itself,

this demonstrates a quantitative difference in the Zr and Ti B-site. In section

6.2.5 we will consider the angle of displacement and examine how it differs

under stress.

6.2.3 Linear Response

Calculations were performed using the DFPT Linear Response package for

CASTEP[148] in the same way as in chapter 5. All parameters were the same,

with a task of ”Phonon+Efield”, electron energy tolerance of 1 × 10−10eV ,

phonon and electric field tolerences of 1× 10−5eV/Å
2

and Å
3

respectively, and

max cycles increased to 200. The phonon calculation is limited to the gamma

point once again in order to reduce the amount of computation that must be

performed.

Once again the dielectric tensor is not able to be calculated due to the projected

negative phonon mode in the tetragonal state. This could indicate that when

real PZT in this composition is cooled, it undergoes a phase transition to a

pseudo-rhombohedral state. Referring back to figure 6.1, we see that despite

the often touted thermal stability of the MPB, there is still a gradient. It is

possible that somewhere between the lowest point of this graph at 0◦C and

the projection to absolute zero that the line crosses the 50% composition,

which would explain why the ferroelectric mode has become unstable in this

calculation.

Effective charge tensors have been calculated for each ion. Unlike the prior

unary perovskite cells, there are off-diagonal components of these tensors.
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Figure 6.4: Distance from the unit cell boundary and the skew angle,
the angle formed between the ionic plane parallel to the unit cell boundary
that passes through the centre of the oxygen ion, and the centre of the
neighbouring oxygen ion. This shows an oxygen ion on the edge of the a-
axis bound to a Ti B-site ion. The neighbouring oxygen ion bound to the
Zr site has an equal skew angle and distance, but is on the opposite side of
the unit cell boundary to represet the longer bond between the oxygen and

zirconium ions.
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Given the unusual perpendicular offset, it should be expected that there is

more freedom of directionality when ions are perturbed, leading to changes

in polarisation in other directions. These elements demonstrate that, unlike

in the unary systems, there is explicit coupling between the change in polar-

isation and ionic movements in a different axis. Secondly it is not symmetric

around the diagonal as we expect from other matrices such as stress tensors,

as Zyz 6= Zzy, or even the full rank 3 piezoelectric tensor. So despite the lin-

ear properties of the piezoelectric effect that allow its total reversibility, the

properties behind it are not symmetric. It is possible to classify the effective

charges of each ion by the B-site ion within the single perovskite cell, as cells

with differing B-sites are distinct from each other, while cells with the same

B-site have identical charge tensors. As in any case, the lack of applied sym-

metry introduces slight numeric errors, however these are only evident from

the 5th decimal place. Tables 6.3 and 6.4 show the full effective charge tensors

of each ion in a Ti based unit and a Zr based unit respectively.

For our sawtooth effect, we see that our initial belief that this was due to

the charge of the B-site ion was wrong, with Zr having a higher charge across

all diagonal elements. Instead, the radial oxygen ions themselves carry equal

off-diagonal charges in the direction that they are shifted in. In the zirconium

based cell they carry a positive charge, which will repel against the positive

charge of the Zr ion and extend the bond distance. In titanium however, they

carry a negative charge which should cause attraction to the central ion and

shorten the distance. This fits with the observation, though it cannot be said

for certain what the root cause of this is. Though it is evident that the off-

diagonal elements of the effective charge will not make a large difference over

the much stronger bonding forces, the small 3.0◦ shift, or effectively 1.5◦ for

each atom from the cell border is significant in terms of understanding the

binary structure.
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Table 6.3: The effective charge tensors of ions in a Ti centred cell cal-
culated using linear response. These show the change of polarisation in

direction Y caused by ionic displacement in direction X.

Ion Effective Charge XY (e)

Pb
3.876 0.221 0.000
0.221 3.876 0.000
0.000 0.000 3.150

Ti
6.009 0.000 0.000
0.000 6.009 0.000
0.000 0.000 5.609

Oaxial

-2.090 0.000 0.000
0.000 -2.090 0.000
0.000 0.000 -4.928

Oradial,1

-2.711 0.000 0.000
0.000 -5.024 -0.045
0.000 -0.055 -2.107

Oradial,2

-5.024 0.000 -0.045
0.000 -2.711 0.000

-0.055 0.000 -2.107

Table 6.4: The effective charge tensors of ions in a Zr centred cell cal-
culated using linear response. These show the change of polarisation in

direction Y caused by ionic displacement in direction X.

Ion Effective Charge XY (e)

Pb
3.876 -0.221 0.000

-0.221 3.876 0.000
0.000 0.000 3.150

Zr
6.150 0.000 0.000
0.000 6.150 0.000
0.000 0.000 6.016

Oaxial

-2.352 0.000 0.000
0.000 -2.352 0.000
0.000 0.000 -4.569

Oradial,1

-2.711 0.000 0.000
0.000 -5.024 0.045
0.000 0.055 -2.107

Oradial,2

-5.024 0.000 0.045
0.000 -2.711 0.000
0.055 0.000 -2.107
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Diagonal elements once again show a large movement of charge from the A-

and B-site ion to the oxygen ions, and a high degree of charge asymmetry in

different axes. We expect that this will again lead to the oxygen ions bearing

the largest partial piezoelectric coefficient.

6.2.4 Elastic Constants

Due to the size of the unit cell and lack of symmetry, it was decided that the

elastic compliance tensor is far too expensive to compute given the time and

resources available. It requires six completely unsymmetrised patterns which

are calculated over six steps by default, leading to a total of 36 geometry

optimisations, each being a significant task in itself. As a result this was

determined to be an inefficient use of the shared resources.

6.2.5 Piezoelectric Perturbations

We continue the same strain patterns of the uniaxial ±0.25% in the c-axis for

the d33 mode, and the biaxial ±0.25% in the a- and b-axes. This is kept for

consistency, although in this case is not necessary to preserve any symmetry.

Geometry optimisations are performed using the same parameters in section

6.2.2 for consistency. Table 6.5 shows the unit cell parameters and relevant

stress tensor components for each of the 4 strain patterns. Once again E and C

refer to expansion and compression strain patterns, with 33 indicating a strain

in the c-axis and 31 indicating a- and b-axis strain. As the rest structure

ideally has no stress due to the full structural optimisation, the percentage

difference is not a meaningful quantity and is left out.
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In comparison to table 5.6 not a great deal has changed, with the percentage

changes in parameters being largely similar to the PTO results previously. The

percentage increase is slightly larger, but it is expected that the more noticeable

differences will be in the ionic movement, especially given the lateral movement

of ions in addition to the overall change in polarisation.

Comparing these two quantities is not immediately simple. In the previous

chapter the comparison between the three structures with different lattice pa-

rameters it made sense to consider the fractional positions, whereas in this

case the binary system is more natural to consider the real space displacement

between the two components, as the lattice parameter is identical and with

very similar ionic charges it allows a more direct consideration of the change in

polarisation being a result of ionic movement. The largest difference is simply

that these results automatically take account of the change in unit cell size,

as we know the change is uniform across PZT, whereas in the unary samples

the axial length changes were not equal, therefore adding an extra variable to

be considered when comparing. Therefore we may address general trends, but

not directly compare the numerics.

Table 6.6 shows displacements of the ions in the strained structures, and the

percentage difference of their displacement from the unstrained structure.

In dealing with the real space displacement and changes in this quantity, it

makes considerations of the partial polarisation and piezoelectric coefficient

easy to predict. Pb ions do not play a part in either, despite only the origin

ion being fixed. This is likely a result of the mixing of the cell, which gives a di-

agonalised symmetry that would mean each ion is held symmetrically by equal

forces applied along diagonal lines through the cell. Choosing a non-degenerate

conformation would likely cause an imbalance that creates movements in the
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non-origin Pb ions, which could represent an elementally rich or poorly mixed

region.

B-site ions show little movement, as seen previously, however this is made up in

a small part by a high effective charge. Displacements of Zr and Ti appear to

be opposing signs however, which likely means that while the partial polarisa-

tions will be negative, they will have opposing signs in the partial piezoelectric

coefficient. This indicates that the addition of the lead zirconate does create a

stabilisation effect for the lead titanate, sacrificing some piezoelectric perfor-

mance for a system that is easier to fabricate and integrate into systems. Axial

oxygen ions show the largest percentage change in displacement across both

units, with radial oxygen ions showing a large movement in the c-axis, but

much smaller effects in their lateral movements in the a- and b-axes. This fits

to the identified non-diagonal charge contribution in the effective charge tensor

that was previously seen. Though it was an unusual feature to be present, it is

very small numerically compared to the main axis quantities, and as such any

effects as a result of these elements are likely to be very small in comparison.

We consider the sawtooth angle for the oxygen ions as a function of the strain in

the perpendicular and parallel direction. These are considered by two angles,

the splay angle is directly measurable from within the visualisation software

by calculating the angle formed by three consecutive ions, and the skew angle,

which is the angle formed by the splay against an even flat line parallel to the

unit cell axis but through the centre of the central ion which we will refer to

as the ionic plane, representing the angle off the plane towards the next ion in

the chain. This is shown figuratively in figure 6.5.

The splay and skew angles for radial (R) and axial (A) oxygen ions are shown

in table 6.7. While the skew angles themselves are significant, it seems that the

magnitude is an emergent property of the composition and mixing of the unit
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Figure 6.5: Geometric demonstration of the splay and skew angles in PZT
as in figure 6.4, but showing a larger cross section of the material with three
oxygen ions. There is less clarity of the angles involved due to their small
values, however the angles and positions are identical to the previous figure.

Table 6.7: The splay and skew angles for radial (R) and axial (A) oxygen
ions in each strain pattern.

Rest C33 E33 C31 E31

R− Splay(◦) 176.9582 176.9565 176.9595 176.9468 176.9712
R− Skew(◦) 1.5209 1.5218 1.5203 1.5266 1.5144
A− Splay(◦) 176.2796 176.3034 176.2570 176.2545 176.3000
A− Skew(◦) 1.8602 1.8483 1.8715 1.8728 1.8500

cell. Even under our relatively large material strain the skew only varies in the

hundredth of a degree for the axial oxygen, and as small as the thousandth

of a degree in the radial ions. In older notation, this means that the change

in axial skew is less than one minute at its highest, and for the radial ion less

than half of that. So while comparing skews in different compositions and

using different elements would be a valid measure, the differences over strain

pattern are negligible at best and likely to be clouded by numerical convergence

precision.
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6.3 Analysis of Results

Once all the calculations are complete, the results as a whole can be analysed

to calculate the desired properties. Using the same methods as in chapter

5 on a larger scale, we can calculate the total polarisation and piezoelectric

coefficients, as well as their partial variants, and the electron density shifts.

6.3.1 Polarisation

6.3.1.1 Partial Ionic Polarisation

The polarisation is calculated using the equation 5.9, which is the generalised

version of the prior equation. It is repeated below as equation 6.1 for reference.

P k
i =

Z∗k,ijr
k
j |e|

Ω
(6.1)

Unlike in chapter 5, the influence of the lateral elements in the displacement

vector and the off-diagonal components of the Born effective charge tensor

means that, for at least some of the ions, this is no longer a simple product

but a matrix operation. For a given ion k, we see that index analysis over

i,j is consistent with a matrix-vector multiplication, with implicit summation

over the j index. We will consider a generic matrix multiplication explicitly, to

demonstrate. We use the partial polarisation for a single ion px,y,zC/m
2 with

a given charge matrix Zxx,xy,...,zz at a displacement from symmetric positions

of r′x,y,zm. V represents a conversion factor of |e|/Ω. Where e is the electron

charge in coulombs, and Ω is the unit cell volume in m3. If the calculation is

performed in angstroms and cubic angstroms, there is a 10−20 factor included

in the denominator for the conversion. This is usually most convenient given
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the form of the normal output files of electronic structure codes. As the volume

is different for each unit cell, this should be recalculated for each strain pattern.


px

py

pz

 = V


Zxx Zxy Zxz

Zyx Zyy Zyz

Zzx Zzy Zzz



r′x

r′y

r′z

 (6.2)

Then the matrix multiplication is the set of linear equations shown in equation

6.3.

px = Zxxr
′
x + Zxyr

′
y + Zxzr

′
z

py = Zyxr
′
x + Zyyr

′
y + Zyzr

′
z

pz = Zzxr
′
x + Zzyr

′
y + Zzzr

′
z

(6.3)

We can take the first radial oxygen ion in a Ti cell in the rest structure,

for which we have a calculated Born effective charge tensor and displacement

vector. Then we can simply fill in the linear equations above.

px = V × [(−2.711 ∗ 0.0000) + (0.000 ∗ 0.0535) + (0.000 ∗ −0.5524)]

py = V × [(0.000 ∗ 0.0000) + (−5.024 ∗ 0.0535) + (−0.045 ∗ −0.5524)]

pz = V × [(0.000 ∗ 0.0000) + (−0.055 ∗ 0.0535) + (−2.107 ∗ −0.5524)]

(6.4)

We can calculate V for the unit cell from the volume and basic constants to

have a value of 0.0293C/m2. Therefore our final polarisation vector is given in

equation 6.5.
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p~r =


0.0000

−0.0072

0.0341

C/m2 (6.5)

This calculation was initially repeated for each ion, however it was found that,

like the geometry, these can be classified as Ti-centred and Zr-centred units,

substantially reducing the number of calculations that need to be performed.

Table 6.8 shows the partial polarisations of each ion for the two standard units.

Radial oxygen ions are unique in that they have a non-zero lateral component,

with our convention set such that ”radial 1” (rad1) has a b-axis component,

and ”radial 2” (rad2) has an a-axis component. This is just a result of how

the CASTEP code output the results, which is presumably determined by

how the initial cell was constructed. Most important is to ensure that the

nomenclature remains consistent over multiple calculations, providing that is

true the convention is not important.

If we consider that the the polarisation is a measure of the dipole moment per

unit volume, then considering the partial polarisation can be thought of as a

comparison of relative dipole moments. Of course, we could simply consider it

as a charge*distance, but this would not account for differences or changes in

volume.

Overall we see that the partial polarisation in the lateral direction cancels out,

allowing for a small rounding error, in all structures. The other ions have zero

partial polarisation in perpendicular directions, so we see that although there

are laterally polarised ions, this is cancelled in the macrostructure. This shows

that not only does the unit cell retain a tetragonal-like axis system, but also

that the elongated access is parallel to the overall direction of polarisation. So
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Table 6.8: Partial ionic polarisation of each ion, sorted by Ti and Zr cen-
tred units. Subscripts a, b, and c are the lattice direction of the partial ionic
polarisation. Oxygen and B-site values that equal zero are omitted. Lead
ions are included to demonstrate that all A-site ions have zero polarisation

despite only one of the ions being fixed.

Ti Cell Rest C33 E33 C31 E31

Pbc(C/m
2) 0.0000 0.0000 0.0000 0.0000 0.0000

Tic(C/m
2) -0.0380 -0.0380 -0.0381 -0.0375 -0.0386

Oax,c(C/m
2) 0.0732 0.0723 0.0742 0.0742 0.0725

Orad1,c(C/m
2) 0.0341 0.0337 0.0344 0.0345 0.0337

Orad1,b(C/m
2) -0.0072 -0.0072 -0.0071 -0.0072 -0.0071

Orad2,c(C/m
2) 0.0341 0.0337 0.0344 0.0345 0.0337

Orad2,a(C/m
2) -0.0072 -0.0072 -0.0071 -0.0072 -0.0071

Zr Cell Rest C33 E33 C31 E31

Pbc(C/m
2) 0.0000 0.0000 0.0000 0.0000 0.0000

Zrc(C/m
2) -0.0371 -0.0372 -0.0371 -0.0364 -0.0379

Oax,c(C/m
2) 0.0504 0.0496 0.0511 0.0512 0.0497

Orad1,c(C/m
2) 0.0341 0.0337 0.0344 0.0345 0.0337

Orad1,b(C/m
2) 0.0071 0.0072 0.0071 0.0072 0.0071

Orad2,c(C/m
2) 0.0341 0.0337 0.0344 0.0345 0.0337

Orad2,a(C/m
2) 0.0071 0.0072 0.0071 0.0072 0.0071

while the PZT structure is visually very different from the unary perovskites

of the previous chapter, the key piezoelectric features are identical.

The negative B-site partial polarisation also shows as a feature of the structure

as in lead titanate, however this feature is also apparent in the lead zirconate

based units despite not being a feature of the pure material. So we expect to

see this feature in the electron density shift between both the Ti sites and the

Zr sites. This could be due to the equalisation of the unit cells, as we have dis-

cussed the stabilisation effect that the zirconate unit has against the pure lead

titanate, however obviously the features of the titanate cell have been intro-

duced to the larger PZT units. This is common in composite systems, though

it is not guaranteed behaviour. This type of composite relies on the ability to

create a system averaging between its composite parts, allowing a particular
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poor quality to be mediated at the expense of reducing desirable properties.

Of course, many composite crystals and alloys are utilised due unexpected be-

haviour, such as in BTO doped with strontium to give an unexpectedly high

dielectric constant.

The axial oxygen ions once again have the highest polarisation, however the

radial ions are much more involved, with the two accounting for approximately

as much of the polarisation as the axial oxygen ion. The z-axis charges are

lower, which could be a result of greater lateral charge elements. In the previ-

ous study the homogeneous perovskite composition symmetrically suppresses

lateral considerations, whereas the lateral elements in this material seem to

carry significant charge. This may be due to the composition scheme used,

where all neighbouring cells are opposing. Then it may be that in this system,

made up of two dissimilar base materials, effectively requires a large electronic

charge component (recalling that this is the effective charge minus the classical

valance charge) to create the previously discussed equalisation effect.

If that is the case, then of interest would be the lateral partial polarisations in

multiple composite materials for different degrees of mismatch, a measure that

could be broken down to how well matched structural or piezoelectric proper-

ties are. Of particular interest would be the mixture of the multiferroic bismuth

ferrite, and our lead titanate sample. Both show high piezoelectric properties

and very large tetragonality, and how they equalise between individual units

to form the larger pseudotetragonal structure.

In this system however, we see that the greatest difference between the two

flavours of perovskite unit is in the difference in the polarisation of the axial

oxygen, with the titanium centred cell showing 50% greater polarisation for

this ion than the zirconate counterpart. Neither the effective charge nor the

displacement differences are this large, indicating that this is a combination
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effect. This would indicate stronger hybridisation in the short bond between

the B-site and oxygen. While this effect is seen in the sawtoothing discussed

above, this axial effect seems much larger. Then looking at the geometry we

consider the effect of the relative positioning of the lead ions. In the basic

perovskite unit’s cubic form there is no distinction in the axial and radial ions,

this is only clear in the tetragonal form. While we broadly define it in terms

of the axis of polarisation and B-site it is also important to recognise that,

especially in lead titanate, we must consider the position relative to the A-site.

While this is not as significant in the unary samples, with lead it is visually

much further displaced. Then what we see is a result of a blocking effect,

or electronic shielding as a longer range effect of the lead ion, allowing much

greater differences in the axis of polarisation between our two flavours of units.

As discussed earlier, the binary system allows the stabilisation of lead titanate

to something more industrially useful, however this shielding may be respon-

sible for allowing the Ti-O system that was identified as important in chapter

5 to maintain strong piezoelectric properties, allowing PZT to be used as suc-

cessfully as it has.

6.3.1.2 Total Material Polarisation

The total polarisation is calculated by the sum of the partial polarisations.

The definition of partial polarisation we have given includes the volume of

the unit cell in its calculation, so this is consistent with the standard unit

of measurement. In the unary systems we can consider the partial (ionic)

polarisation, a volume normalised dipole moment of each ion, and the total cell

polarisation, and there was no reason to consider a middle ground. However, as

this cell is made up of a number of perovskite units, it is possible to look at the

polarisation of these component pieces in comparison to the overall structure.
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Not only that, we can consider a hypothetical material made up entirely of

these individual units, and how this compares to a known base structure. For

instance, we can compare the lead titanate and lead zirconate composites to

real lead titanate and zirconate polarisations.

There are many different ways to arrive at this quantity, which we will refer

to as the theoretical sublattice polarisation (TSP). As polarisation is simply

the dipole moment per unit volume, we could define a subset of ions within

a given volume, such as the single perovskite unit, and calculate the partial

polarisations with the new volume correction factor V. These can be summed

across all the dipoles contained in the selected volume, although it is obviously

possible to arbitrarily define a volume element such that the resulting polari-

sation is zero, or infinite, or anything between, so it is important to state the

selected volume element and the reason why it is selected. The most obvious

is to select a single perovskite unit of 5 atoms centred on one of the B-site ions,

then calculate the TSP of the perovskite unit volume.

Of course, since we know that the volume of one of these units is one-eighth of

the total volume, we can add our partial polarisation and divide by the volume

fraction (effectively multiplying by 8). This is the simplest method for taking

sublattices of the total cell, but lacks versatility for more complicated shapes,

such as if there was a need to consider a lagrangian surface.

Table 6.9 shows the total spontaneous polarisation of the PZT structure, the

TSP of the lead zirconate and lead titanate units, and the calculated sponta-

neous polarisation of lead titanate from chapter 5 for comparison.

Overall, we see that the pure PTO has the highest polarisation, followed by the

PTO-TSP within the PZT. Obviously this is due to the equalisation between

the two subcells lowering the effective properties of the PTO. PZT is averaged

between the TSP of PTO and that of PZO, which sits at the bottom. Pure
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Table 6.9: Total Polarisation of lead zirconate titanate (PZT) and lead
titanate (PTO), and Theoretical Sublattice Polarisation (TSP) of lead zir-
conate (PZO) and and lead titanate (PTO). This is the polarisation of a
single Zr or Ti centred perovskite unit in the PZT unit. Pure lead zir-
conate is not shown as it does not have spontaneous polarisation and is not

ferroelectric or piezoelectric.

Polarisation

PZT (C/m2) 0.739
PZO-TSP (C/m2) 0.651
PTO-TSP (C/m2) 0.827
PTO (C/m2) 0.948

PZO is not shown due to its symmetric structure causing no spontaneous

polarisation.

The total polarisation is not split evenly between the two sublattices, with 56%

being contributed by the PTO, and 44% coming from PZO. This is likely due

to the lead shielding in the c-axis allowing the Ti − Oax region to support a

much larger polarisation without interference from the neighbouring Zr B-site.

There are considerations to be made when comparing to real values. While the

extrapolation to absolute zero is always an issue for temperature dependent

effects, the proximity to a finite gradient morphotropic phase boundary raises

questions as to the validity of considering the composition of real materials.

There are also considerations of how a crystal is formed, with the usual factors

of purity and domain structure being added to by mixing and local concen-

tration. All in all it is possible to find many literature results across many

values. For instance, Jaffe et al. gives a value of ≈ 0.27C/m2 for 50% PZO-

PTO[1, p. 147], well below our calculated value, whereas the MPB composition

of a thin film sample given by Damjanovic gives a spontaneous polarisation

of ≈ 0.60C/m2[164, p. 351], which accounting for the usual DFT effects is

much more representative of the calculated value. As a result, we believe the

0.74C/m2 is representative of the system presented, with a wealth of literature
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Figure 6.6: The change in polarisation against axial stress in PZT for
strains in the c-axis (d33) and a- and b-axes (d31), and linear fit. The

piezoelectric coefficient is given by the gradient of the linear equation.

values that can reasonably given to support or argue against the accuracy to

real values.

6.3.2 Piezoelectric Coefficient

The piezoelectric coefficient of the structure is calculated as the linear gradi-

ent of the polarisation as a function of material stress as calculated by the

perturbed geometry optimisation in section 6.2.5. This is shown in figure 6.6,

where the d33 mode is due to strain in the c-axis, and d31 is due to strain in the

a- and b-axes. Note that as this is a biaxial strain, so this gradient actually

represents d31 + d32, which are identical and therefore is 2× d31.

We see that the piezoelectric coefficients are d33 = 74.66pC/N and 2 × d31 =

−37.39pC/N , therefore d31 = −18.69pC/N . Again there are a wide range of

values to compare to due to material considerations, and it is not possible to
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know exactly where we are at absolute zero with regards to the phase bound-

ary. Many reported quantities are altered by the studies in mixing ratios and

dopants, however if we compare to a literature value of d33 = 125pC/N and

d31 = −60pC/N reported by Park et al.[165]. This value was chosen for our

reference as the strain loading experimental method most closely matches our

strain simulation method.

There is approximately a factor-two numeric error as in our other results,

however this has been discussed previously. A similar numeric error in such a

different system may lend further evidence to the idea of a systematic issue,

the polarisation values are well matched, but a factor two error in the imple-

mentation of the material stress seems responsible. It may be worth looking

into the physicality of stress implementation in calculations in the code, or

performing a full elastic constants calculation with many steps and a high pre-

cision in order to compare the stress from the geometry optimisation against

other methods of calculation. However, given these are based on the CASTEP

geometry optimisation, they may also carry this inaccuracy. We also see that

the basic relations between the coefficients remain, continuing our belief that

this methodology is suitable for comparative considerations. To further under-

stand the binary nature of the material, we must now break down these values

into the ionic contributions.

6.3.3 Partial Piezoelectric Coefficient

The partial piezoelectric coefficients for every ion are calculated by taking the

gradient of the ionic polarisation against the cell stress. This is the same

method used prior, however in order to reduce the number of points that need

to be plotted, which would be 40 series of 3 points for a total 120 points on a

very crowded graph, an average gradient method is used. This is a standard
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Table 6.10: Partial piezoelectric coefficients (δij) of the ions in lead zir-
conate titanate in the two primary piezoelectric modes (d33 and d31), sepa-

rated by Ti and Zr centred perovskite unit.

δ33 δ31

Ti-Unit Zr-Unit Ti-Unit Zr-Unit

A− site(pC/N) 0.00 0.00 0.00 0.00
B − site(pC/N) -0.28 0.44 -1.18 -1.57
Oaxial(pC/N) 5.67 4.78 -1.78 -1.48
Oradial(pC/N) 2.02 2.02 -0.84 -0.84

method for creating linear fits in software, where the gradient of every pair

of points is calculated using m = ∆y/∆x, and the arithmetic mean is taken

of the gradients. While there are more advanced algorithms, these provide

little to no improvement on a data set of this type, and are better suited to

more points per series, and systems that undergo a transition from linear to

some other function. Table 6.10 shows the partial piezoelectric coefficients of

the constituent ions of the unit cell. This has been separated by Ti and Zr

centred units again, as these are found to match to a rounding error in the

third decimal place. This does not seem physically relevant, and is carried

through from the precision of effective charges and ionic positions. Reporting

to 10fC/N is more than sufficient.

Additionally we have calculated δ11 = 0.02pC/N and δ13 = 0.16pC/N , and

δ11 = −0.02pC/N and δ13 = −0.16pC/N for the lateral oxygen atoms in the

Ti and Zr based unit respectively. These have not been included in the above

table as it is difficult to consider how they should be included. These elements

do not exist in the overall piezoelectric coefficient. However it is not simply a

case of our model, these elements cannot exist in any of tetragonal classes, so

we know that they always cancel out. Therefore, there are considerations to

be made for the physicality of these values.

Are local charges generated on local scales only to be immediately cancelled?
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Or does the necessity of material strain taking time mean that the charges

can equilibrate adiabatically, thus the charge is never generated? If that is so

then what would happen under a strain at relativistic speeds, and how does the

piezoelectric effect alter under relativistic conditions? If charges are generated,

is this measurable with a sufficiently precise timescale in measurements of

dielectric properties? We cite the tetragonal structure of the cell, but it is only

tetragonal in lattice parameters, not in ionic positions. But then, literature

would suggest that no piezoelectric is truly anything other than monoclinic. To

an arbitrary position no material fits a crystal class. Ultimately, the question

of “Do crystals exist?” is beyond the scope of this project, and likely beyond

any project.

It is essential to consider all of these values, not just the ones that seem non-

physical, as the result of a model that is based on assumptions, and equations

that are derived from that model. So as a result these are calculated and

reported as the result of our established equations, though it is up to a reader

to decide if these are relevant to their research in a broader scope.

We have not considered the SMP in these systems, as the selection of a sub-

lattice and the unit cell stress is unclear. In the direction of applied stress it

does not change, as the stress is per unit area, meaning that a smaller area of

the sublattice is subjected to the same amount of stress. Other directions may

apply a similar rule, or it may be dependant on symmetric properties.

In the 31-component, the zirconate unit B-site ion has a slightly larger contri-

bution. In the 33-component the Zr ion is seen to behave as seen in barium

titanate and potassium niobate, with a positive partial piezoelectric coeffi-

cient. This is despite the negative partial polarisation, which is shared by the

Ti ion, though the Ti retains its negative partial piezoelectric coefficient. This

means that under a positive stress, the polarisation decreases in the Ti ion and
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increases in the the Zr ion. This difference, rather than both in average, is be-

cause of the lead shielding between units. In seeking lead-free alternatives it is

essential to ensure the physical displacement and shielding effect is accounted

for, in addition to chemical effects. Of course, the effective ionic radius of lead

is not abnormal compared to equivalent A-site ions such as bismuth or barium.

So there must be an underlying electronic cause of the physical difference, and

understanding how to recreate it in other materials is essential.

In all other units the axial oxygen ion is the primary contributor, as seen in

the unary structures. So despite the properties discussed we still see many of

the previous features of the unary perovskite. Clearly the fundamental effect

is the same, as we would expect, but there are many smaller features which

can be characterised to give the complete effect.

In the 33-mode, the oxygen ions take almost the entirety of the burden for

the piezoelectric effect, with the zirconium and titanium ions taking almost no

part in the overall effect. This is more evenly split in the 31-mode, in addition

to being entirely like the barium titanate, in that all contribute to the overall

effect, unlike the countering effect of the titanium in lead titanate and the

33-mode.

Numerically we expect the contributions in the 31-mode to be much lower

as the overall piezoelectric coefficient is smaller, however the change in the

ionic components is surprising, as while the overall coefficient is lower for the

31-mode, the B-site ions actually give a higher partial coefficient. It may be

expected that, as a linear effect, the components would show a linear relation,

where the ratio of partial coefficients is always the same and is simply multi-

plied to scale. This is not the case, as previously seen in the unary structures.

However the distribution is very different from previous results. This may be

as a result of the equalisation effect on the lateral unit borders, which is not
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present in the axial polarisation direction due to the A-site shielding. What

may be of interest is the boundary, without such a large physical displacement

from the A-site. For instance, how does the solid solution of potassium niobate

and barium titanate behave. While being more physically similar, there is no

electronic shielding effect, leading to a more hydrostatic equalisation effect.

If we consider the overall unit, contributions to the overall piezoelectric coeffi-

cients are much more balanced than the polarisation, which seems likely due to

the adversarial nature of the titanate ion causing a negative partial coefficient

in the 33-mode and a reduced coefficient in the 31-mode. In the 33-mode the Ti

and Zr units contribute 50.6% and 49.4% respectively to the total piezoelectric

coefficient, whereas in the 31 mode these proportions are reversed. The equal

proportions may be significant, though could equally be a coincidental quirk of

precision and numerical errors around an equal splitting. Of more interest is if

this behaviour is prevalent across other solid solutions. Confirming if this is a

general effect of solutions would be an interesting study in itself, as the result

of different independent components evenly contributing to the piezoelectric

effect in solution is an unusual and interesting result in itself.

In order to further understand the electronic effects we can consider the elec-

tron density shift. While the partial piezoelectric coefficient is a powerful tool

to understand how the piezoelectric effect acts, this gives a more visual inter-

pretation of the system.

6.3.4 Electron Density Shift

We calculate the electron density shift by using the same method as in sec-

tion 5.3.6, where the formatted electron density file for the rest structure is

subtracted from the perturbed ones, with this superimposed over the unit cell.



Chapter 6. Binary Perovskites 200

Since CASTEP does not directly allow the user to choose an FFT grid to use,

there are issues with geometry optimisations of a certain size, as the basis cor-

rection it performs may alter the dimensions of the grid based on the energy

derivative for a changing cell. This means that for sufficiently large volume

changes, the number of grid elements can change and make the simple method

of evaluating the change significantly harder. It can be done with some expe-

rience in NumPy or MATLAB to plot a continuous three-dimensional function

that is defined at all points, meaning that the difference is also defined at all

points regardless of the initial grid. In our system, the grid changed for the

modes that included a compressed c-axis, which would be the C33 and E31

mode. Fortunately we know that these are mirrored forms of the E33 and C31

mode from the previous chapter, and therefore these can be presented alone

without the need for complicated manipulation.

Figure 6.7 shows the electron density in the E33 perturbation in the 100 plane

at a distance of 0.25×d (2.01Å) from the origin. The saturation and scaling has

been set identically to the previous details, though it is important to remember

that the units used are arbitrary so this is for consistency and clarity rather

than necessity.

To discuss rendering, this structure is far more demanding than the previous

structures. While not at the level where the images need to be pre-rendered,

though this would be an option given the GPU capacity of ARC3, this size

of cell and number of charge points is a strain on certain types of hardware

and can cause significant heating, stalling, and memory issues on less powerful

devices such as the average laptop. It is advisable for usability that a desktop

machine is used with some dedicated physics or render device. For unit cells

of this size any dedicated GPU is likely to provide a good experience, though

as systems get larger then the issue of visualisation may become an issue in
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Figure 6.7: A cross section of the electron density shift of PZT caused by
an expansive strain in the c-axis of 0.25%, in the 100 plane at 0.25d from

the origin.

itself. Fortunately, the technology is already in place in the form of high-end

render units, and for more numeric tasks such as the grid manipulation to

obtain the difference, the many core architecture system discussed in chapter

4 can be used to break up the many simple problems into an embarrassingly

parallel problem that can scale linearly to the number of cores available. For

a structure of this size, a consumer grade GTX 970 was used, which is not a

specialist piece of hardware and is relatively common.

Considering the figure, the most obvious feature is that while we are in the 33

mode the density shift lobes appear to have a greater lateral element than the

unary structures, especially around the radial oxygen ions. This demonstrates

the effect we have discussed throughout this chapter about the equalisation

effect. There is a lower overall piezoelectric capacity due to electron density
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being held up to equalise the two independent systems into a viable single

material. This causes the lateral boundaries to hold electron density, which is

then perturbed as an electron density shift under the strain. We can investigate

this further in the next figures.

Also important is to see that the patterns between A-site and axial oxygen ion

seem more KNO- or BTO-like than PTO-like. This is evidenced by a far less

clear delineation in the “long bond” lobes which have a reasonable crossover,

whereas these were visually separate in the unary PTO. Then the idea that

the equalisation with a non-piezoelectric causes a stabilisation effect may be

evidenced here, where the mixing of PZO allows a more stable material along

the lines of its counterparts than pure PTO, that is known for breaking due

to its own strain in crystal fabrication.

We see the sawtoothing effect in the oxygen ions with the slight misalignment,

but our assertion that these do not change significantly under piezoelectric

behaviour is shown by the fact that their density shift appears identical to the

oxygen ions in the other perovskite units, and to those in the unary structures.

Figure 6.8 shows the same perturbation with a distance of 0.5d from the origin,

crossing the A-site and lateral oxygen ions.

These are included for completeness but largely do not show anything par-

ticularly interesting. The lead ions do seem to be mirroring the oxygen ions,

with a large, flat increase in electron density and a more rounded decrease.

The opposing direction is consistent with the positive effective charge of the

lead ion as opposed to the negative effective charge of the oxygen ions. This

demonstrates that, while our choice of using the A-site as a boundary condition

of the method, there would be much to be gained by reconsidering the same

method but analysing lead shifts. However as we were initially interested in
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Figure 6.8: A cross section of the electron density shift of PZT caused by
an expansive strain in the c-axis of 0.25%, in the 100 plane at 0.5d from the

origin.

the B-site and oxygen effects then our choice to use the A-site as a reference

point was still a valid choice.

Figure 6.9 shows the 110 plane at 1× d (5.75Å) from the origin.

While this observation is interesting, it does preclude features we may have

expected from this view. With this being a lead based material, we may have

hoped to see extra covalent effects coupling the lead ions to B-site and axial

oxygen ions. The A-site ions are noticeably more active than the A-sites of

BTO and KNO in the previous chapter, though the central axial column retains

the features most similar to the KNO structure. This may well be a result of

the zirconate contribution, as the stabilisation takes effect by altering the initial

lead titanate to be more like its weaker counterparts. Then it may be that if
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Figure 6.9: A cross section of the electron density shift of PZT caused by
an expansive strain in the c-axis of 0.25%, in the 110 plane at 1d from the

origin.

we were to observe the effects of mixing with another powerful piezoelectric,

we would see a different picture. We may expect to see much more localised

lobes along bonds, or an electronic coupling occurring spatially between the

A-site and other ions, though it is unclear if these two seemingly opposing

effects would cancel out using this method of visualisation.

We will now consider the C31 perturbation electron density shift. There will

be a focus on how this compares to the unary system and significant changes

between the E33 and C31 modes, however we expect it to share many features

above which need not be repeated. Figure 6.10 shows the electron density shift

in the 100 plane at a distance of 0.25d from the origin.

This shows the same behaviour change as in the unary structures, with the

similar behaviour in the direction of polarisation, but extended perpendicu-

larly along the cell. In this form it is most similar to the PTO shift, where

the electron density shift lobes largely retain their directionality and do not
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Figure 6.10: A cross section of the electron density shift of PZT caused
by a compressive strain in the a,b-axes of 0.25%, in the 100 plane at 0.25d

from the origin.

split entirely as in the other structures we performed calculations for. With

the exception of a slightly more diffuse axial bond in the zirconate based cell

causing the lobes to join, there is no marked difference between the different

flavours of unit.

The whole system retains a marked degree of directionality in this electronic

density movement, and although there is some notable interaction between

radial oxygen ions and the B-site, ultimately this seems more coincidental to

the strain direction, whereas the direction of polarisation is showing the most

relevant shifts. That said, there is a slight imbalance in the positive lobes of the

radial oxygen ions, showing a clear preference towards the titanium ions. This

demonstrates at its heart the fundamental meaning behind the piezoelectric

coefficient and the piezoelectric effect itself as a movement of charge. These

are the movements of charge as calculated in our values for δO−rad11 and δO−rad13
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Figure 6.11: A cross section of the electron density shift of PZT caused
by a compressive strain in the a,b-axes of 0.25%, in the 100 plane at 0.5d

from the origin.

elements, which can be seen to cancel over the cell. Likewise, the much larger

shifts show a clear preference in direction, corresponding to a charge differential

and overall generation of current.

Considering the same mode, figure 6.11 shows the 100 plane at a distance of

0.5d from the origin.

It is in this mode that the most interesting and surprising feature appears, the

split lobes of the lead ion is a feature not apparent in the unary structures.

The lead ions do carry an off-diagonal charge in the Born Effective Charge

elements which appear to oppose the radial oxygen ions, which is part of the

overall unit equalisation theory. The wide lobes in both modes cover a large

volume around the A-site, which may result in the shielding we have seen in

the axis of polarisation.
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Figure 6.12: A cross section of the electron density shift of PZT caused by
a compressive strain in the a,b-axes of 0.25%, in the 110 plane at 1d from

the origin.

Figure 6.12 shows the C31 perturbation in the 110 plane at a distance of 1d

from the origin.

We can definitely see that in this plane there is no imbalance laterally in

the axial oxygen ion between B-sites, as in this plane the lateral B-sites are

identical. This geometry may mean that if the density shift of those ions were

rotated then the overall shape would be more elliptic, with the longer axis

running between the Ti centres. However as these are the axial oxygen ions,

this effect may simply be due to the proximity to the lead A-sites.

There is no visible coupling in this mode between the A-site and the polyhe-

dron, however the distance between the A-site and axial oxygen lobes are short,

which may indicate that on a lower density shift level these zones are connected.

We are confident that there is a coupling between these two ions causing what

we have referred to as a shielding effect, which leads to an asymmetry between

the two flavours of unit along the axis of polarisation. Additionally the lobe
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Figure 6.13: A cross section of the total electron density of the unstrained
PZT structure in the 110 plane at a distance of 1d from the origin.

anti-parallel to the polarisation is much more disperse than the others. This

may be responsible for the huge shift of the central polyhedra when compared

with the displacement in other piezoelectric structures. It is important to re-

member that this is not an absolute charge, but a relative charge difference,

therefore it is not a case of repulsion or attraction. In fact, it can be tied back to

the Born-Oppenheimer approximation that is so fundamental to our method.

Due to the massive size of the ions and their slow speeds, their movement is

a perturbation based on the movement of electrons, which is represented as a

change in density. Then the changes in the ionic displacement are incidental

to the perturbation of the overall electron density, which is the driving factor

behind this physical mechanism.

If we consider figure 6.13, which shows the total electron density of the un-

strained structure we can see the large scale density function at work in a low

level coupling between the A-site lead and both the B-site and axial oxygen.

The total electron density is hard to interpret due to the arbitrary units used
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and the large maximum densities within the pseudopotential conflating the

issue, however for comparison the lowest total electron density between these

is ≈ 80 arbitrary units. The shorter B-site to axial oxygen bond has a lowest

density of ≈ 500 units, and the longer has a lowest density of ≈ 175 units.

Overall then this area of electron density has a far weaker bonding effect than

the polyhedral bonds, but is definitely a physically meaningful feature that

could explain the large displacement of the B-site and axial ions. Comparing

other supercells to consider the magnitude of these bonds and their compara-

tive ratios may be a good project, however if this is considered the covalency

of the A-polyhedron system, then we would need to consider how the ionic

contribution plays a part. While the Born Effective Charge might be a good

indicator, the total is a measure of the ionic-like behaviour, which is not nec-

essarily separate from the covalent system. However the same linear response

methodology, with a k-point path to take the geometry into account, would

be an important project for determining the covalent-ionic behaviour of the

system.

6.4 Conclusions and Further Work

Using our method from the previous chapter, we have ascertained that the

workflow can be used on more complicated and larger structures. We have

performed calculations for geometry, linear response, and strain perturbation

of a PZT cell, and we have processed these calculations to calculate the po-

larisation, piezoelectric coefficient, set of partial piezoelectric coefficients, and

generated visually interesting and informative electron density shifts.

Throughout this chapter we have confirmed that this methodology retains

the same accuracy and issues regardless of size and number of dimensions.
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We have also brought attention to interesting features of the structure, such

as the oxygen sawtoothing, equalisation density, and the relation between the

polarisation and piezoelectric coefficient for the full unit and, more importantly,

for subcells of this unit.

We have also proposed the lead shielding effect, dampening the axial equal-

isation, and discussed the ways in which the electron density shift and total

electron density can be used to identify the essential features and mechanisms

of the interactions that are responsible for the physical features of the PZT

system and perovskite piezoelectrics in general.

While this research has shown interesting results as a proof of concept, the

computational time necessary to push through the full project has meant that

the results are too shallow to draw broader trends from. Further work in this

project would be based on performing similar calculations on PZT systems

with different mixing and composition, as well as looking at other binary sys-

tems such as NaxK1−xNbO3 which we already have basic concepts from due

to our KNO calculations in chapter 5. By determining and comparing our de-

rived properties we can build a clearer picture of how multicomponent crystals

act, by finding similarities and differences it will be possible to see how mix-

ing, doping, and proportions work in the material on an atomic scale, giving

greater insight into designing and optimising new piezoelectric materials for

real applications.



Chapter 7

Multiferroic Materials

7.1 Introduction to Bismuth Ferrite

In this chapter we aim to evaluate the feasibility of the previous methods

in chapters 5 and 6 on a material with esoteric properties. Multiferroics are

defined as “materials that inherently exhibit both magnetic and electric polar-

izations” by Schirber[166]. Of the few materials that demonstrate this property

we have selected bismuth ferrite, a rhombohedral (R3m) perovskite with the

chemical formula BiFeO3. In keeping with our previous system, we will use

the shorthand BFO to refer to this material. This was initially characterised

by Zaslavskii in 1960[131], however due to concerns with the structure listed on

ICSD[153] we have instead opted to use data from a later characterisation by

Tomashpolskii[129] as ICSD lists it as “high quality”, though what designates

high or low quality data is not made explicit. This unit cell is shown in figure

7.1, with a = 3.962Å and α = 89.40◦. The structure was characterised using

x-ray diffraction at room temperature and pressure, and has ICSD collection

code 28027.

211
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Figure 7.1: VESTA visualisation of the rhombohedral bismuth ferrite cif
structure. This unit cell was characterised by Tomashpolskii[129], using
x-ray diffraction at room temperature and pressure. ICSD code: 28027.

Purple - Bismuth, Rust - Iron, Red - Oxygen.

Initially the cell appears cubic, as with many perovskites. However in actuality

this structure is slightly rhombohedral, fitting the the conditions a = b = c

and α = β = γ 6= 90◦. This can be viewed as a cubic structure that has been

skewed in the (111) direction. This is a commonly seen ferroelectric phase, out

of the four materials used in chapters 5 and 6 barium titanate and potassium

niobate have a temperature dependant rhombohedral phase, and lead zirconate

titanate has a compositional rhombohedral phase. This leads the material to

have a polarisation in the [111] direction, giving eight polar directions in a

regular multi-domain system. As we lack the resources to perform simulations

on a multi-domain level, our sample is considered to be a single-domain, single-

crystal polarised in the (111) direction.
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The reason that bismuth ferrite is incompatible with our methodology is due to

the magnetic characteristics emergent from the iron ion at the B-site. This is

not an insurmountable issue for DFT methods, which have been used to charac-

terise the G-type anti-ferromagnetic coupling[132]. This type of arrangement

is based on an oppositional spin polarisation in the ferromagnetic electron

structure. We are all familiar with the method by which spins align to create

a ferromagnet, however in analogy to the anti-ferroelectric property an anti-

ferromagnet is formed when neighbouring magnetic ions have an opposing spin

polarisation that cancels out the magnetic effect on a very short scale. There

are 3 main groups of anti-ferromagnetic ordering, in A and C-type there is

magnetic ordering within a plane, say the [100] or [110] planes, which is can-

celled by the neighbouring plane having an opposite spin polarisation. G-type

can be considered to be fully mixed, as in our arrangement of the B-site ions

in chapter 6, so for every B-site iron ion, the nearest neighbours along every

axis have an opposing spin polarisation[167]. This is separate from the elec-

tronic polarisation, which is parallel in unit cells along the (111) axis. We

can think of these two phenomenon as a polarisation of different properties of

electrons. Ferromagnetism is a polarisation of spin, whereas ferroelectricity is

polarisation of charge.

Under DFT, the electric polarisation is simply represented as a non-centrosymmetric

centre of charge in the electron density function. The spin however is an ex-

plicit property that must be taken into account in the electronic minimisation.

There are several factors that cause issues that will be explained as they be-

come relevant in section 7.2. Briefly however, they are largely represented by

the following list.

• The explicit spin polarisation

• The inclusion of empty bands
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• Density cycle method

• A suitable pseudopotential

• The phonon implementation

• Structural effects of magnetic properties

7.2 Performing the Calculations, and Evaluat-

ing Which are Feasible

7.2.1 Convergence

Calculations were performed on ARC3, the hardware configuration of which

can be found in section 4.2.3. Due to our requirements, the standard 24-core

compute was used.

First it is essential to select the pseudopotentials and converge the Monkhorst-

Pack grid and kinetic energy cut-off as previously. There are several different

suitable methods to select pseudopotentials, as we are able to use ultrasoft

pseudopotentials due to the lack of linear response in the phonon calcula-

tion. We considered ultrasoft potentials, modified electron string potentials,

and norm-conserving potentials using the newly implemented norm-conserving

pseudopotential generator in CASTEP, NCP18.

Some basic test cases using the bismuth ferrite structure showed that we needed

to enable special flags in the CASTEP calculations. Firstly, the ‘spin polarized’

flag was set true, as expected, and ‘nextra bands’ was set to 17 to add 17 extra

bands into the band structure. This increases the computational complexity
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but allows for spin, and the extra bands give the minimiser more freedom in

electronic states.

Though the advantages to ultrasoft potentials should be faster calculations due

to a lower cut-off energy, in practice it was found that they were far too unstable

for reliable calculations. Under the density mixing scheme for metals method

the SCF minimisation failed to converge often, sticking in false minima until

the calculation timed out. By contrast, the norm-conserving potentials were

found to be much more reliable under density mixing. This is likely due to

the tendency for NCPs to contain more valance electrons and relying less on

a pseudoion, as well as generally creating a smaller pseudoion. While we

could have altered the electronic strings in the ultrasoft pseudopotentials, there

is very little information on how to modify these strings, which could have

required a significant time investment with no guaranteed reward.

Instead of density mixing, we could change the metals method to EDFT. This

technique is much more robust and reliable at the cost of much greater CPU re-

quirements, virtually guaranteeing SCF convergence. This is usually required

for materials with very unusual conductivity properties, such as the edges

of nano-ribbons. Given that the use of this method will require much greater

computational resources, it was instead decided that the norm-conserving pseu-

dopotentials would be more worthwhile to use despite the likelihood of greater

kinetic energy cut off.

For our convergence technique, we use the initial del-diff methodology from

section 5.2.3 to calculate the force differences, and plot the changes in these

differences over increasing convergence parameters. The Monkhorst-Pack grid

size was kept equal along all three axes and increased by one each cycle, and the

kinetic energy cut-off was calculated between 400 and 1500eV in increments of

50eV. Figures 7.2 and 7.3 show the plotted convergence data.



Chapter 7. Multiferroics 216

Figure 7.2: Force difference changes on the axial oxygen ion in bismuth
ferrite using the δ-diff method from chapter 5, against single axis Monkhorst-

Pack grid size.

Figure 7.3: Force difference changes on the axial oxygen ion in bismuth
ferrite using the δ-diff method from chapter 5, against the kinetic energy

cut-off.
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Figure 7.2 shows that in the Monkhorst-Pack grid we see that the force differ-

ence is almost identical between 143 and 153, therefore we select a value of 153

as the converged grid. This corresponds to a spacing of 0.017Å
−1

in the initial

cell along each axis. As for the cut-off energy, the set of 3 points from 1300

to 1400eV shows almost no variation, so the value of 1400eV is selected. If we

read the headers of the pseudopotential files in a text editor we see that the

highest projected cut-off is in the iron ion, with a fine rating of 1170eV and an

extreme rating of 1872eV . As we require precise ionic positions, then this level

of precision is reasonable. For consistency we use an SCF energy tolerance of

1× 10−10eV .

The requirement of a high cut off energy is likely due to the magnetic properties

of iron. Comparing to a titanium pseudopotential from the same library, the

listed extreme cut-off is 827eV. This is despite the pseudoion having the same

core electron structure. The third energy level is considered valance in both

cases and is explicitly calculated, along with the 4s2 orbital. We know that the

3d electron orbital is what creates the overall magnetic moment, and by reading

the pseudopotential report we see that the Ti pseudoion with the extra 3 and

4 levels converges to around -1576eV, whereas the Fe pseudoion converges to a

total energy of -3336eV. Ordinarily we would not expect to see such a drastic

difference between such similar ions with only 4 valence electrons difference,

demonstrating how this extra spin is a costly inclusion.

The structure has been successfully converged, and we already see how the

differences begin to stack making the task more computationally expensive.

The activation of the ‘spin polarization’ flag immediately doubles the calcula-

tion time, as the spin pair electrons that are normally degenerate must now

be independently calculated. While we have avoided having to use the EDFT

method, the high cut-off energy does significantly increase time, as time scales
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by the square of the cut off energy. So if we take the barium titanate example,

the plane wave cut-off used was 900eV, with the 1400eV for bismuth ferrite,

then we are using ≈ 156% of the energy cut-off, which means that the time

taken is 1.562 ≈ 2.4 times the amount of time of the equivalent BTO calcu-

lation purely from the increased energy cut off. In addition, the extra bands

added for the calculation give a total of 37 non-pseudoised bands, whereas

the BTO calculation contained 20. Though we do not know the behaviour of

CASTEP under increasing bands, the most optimistic prediction would be an-

other factor of two. The Monkhorst-Pack grid has the same number of points

pre-symmetry, however we recall that the grid for BTO was significantly more

dense than the other materials. There are also considerations as to the symme-

try, the rhombohedral structure has six symmetry operations compared to the

eight for tetragonal, increasing the proportion of the reciprocal cell that is irre-

ducible. That said this is a consideration of the structure, not the properties of

the ions, and as such this would be the case with any rhombohedral structure,

such as the low temperature states of barium titanate and potassium niobate.

Overall then, while there is some randomisation involved in the code imple-

mentation, we expect that despite its similar perovskite structure, the single

unit of BFO could take computation times an order of magnitude higher than

the unary perovskites in chapter 5. While this is not a problem in itself, given

the newer and more powerful hardware available to us to mitigate this, it

demonstrates that not all of these systems are equal in this type of simula-

tion, and this extra time would need to be factored in to consider the bismuth

ferrite-lead titanate binary, for instance.

A key method to counteract this is to optimise the calculation for speed using

the parameter flag ‘opt strategy : Speed’. By containing the entire calcula-

tion in RAM, this speeds up the overall calculation by drastically reducing



Chapter 7. Multiferroics 219

the amount of time wasted reading and writing to a slower storage medium.

On modern hardware, the memory per core and capacity for hybrid-parallel

calculations makes this feasible for all but the most memory intensive tasks.

Now we are aware of how our simulations already differ from those we saw

beforehand, these parameters can be used in calculations to determine physical

properties of the structure.

7.2.2 Geometry Optimisation

The geometry optimisation is performed with the same tolerances as in previ-

ous chapters as shown below.

• Energy change per ion of 2× 10−8eV

• Maximum ionic force of 1× 10−4eV/Å

• Maximum ionic displacement of 5× 10−6Å

Stress is left as a free parameter by setting it to 0.1GPa, well above what

would we expect to be a binding tolerance, so as to not interfere with the

calculation. The LBFGS algorithm is used as before as it is efficient and fast,

and requires no extra configuration for the multiferroic system beyond those

that have already been addressed.

Table 7.1 shows the geometry optimisation results, both directly from the

calculation (abs.) and relative (rel.) to the A-site bismuth being positioned at

(0,0,0) in the cell, as it is usually defined. Experimental comparison is taken

from the original .cif file used above[129].
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Table 7.1: Optimised lattice parameters, volume, and fractional coordi-
nates of bismuth ferrite with experimental comparison. Absolute (Abs.) are
the values directly from the output file and .cif file. Relative (Rel.) values
are the fractional coordinates relative to the A-site bismuth ion being set
at the origin of the unit cell. Major and minor oxygen coordinates are the
displacement parallel and perpendicular respectively to the face of the unit

cell.

Calc. Expt.[129]
Abs. Rel. Abs. Rel

a (Å) 3.903 - 3.962 -
α(◦) 88.61 - 89.40 -

Vol. (Å
3
) 59.39 - 62.18 -

Frac-Bi -0.066 0.000 0.050 0.000
Frac-Fe 0.498 0.564 0.500 0.450
Frac-Omaj 0.520 0.586 0.500 0.450
Frac-Omin 0.006 0.072 -0.021 -0.071

We see that the lattice parameters are in good agreement with the experimental

data for a rhombohedral structure extrapolated to absolute zero. We know that

in the hexagonal-rhombohedral form the a- and c-lattice parameters decrease

with decreasing temperature[168], which we can interpret in the primitive cell

as a reduction in a and α.

The atomic positions are unusual. The cell initially uses a centred Fe ion as

the reference point, but we have converted to a Bi relative cell as with our

own simulation results. What is most interesting is the relative positions of

the iron and oxygen ions with regards to a central symmetry point. We would

generally say that for a positive polarisation the positively charged ions need a

positive displacement to generate a positive dipole moment, and the negatively

charged ions must be negatively displaced. While we have seen in lead titanate

that this is not necessarily the case, the fact that our calculation seems to be

in an opposing symmetry is unusual.
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In reality there are many considerations, the first is that there is simply a tem-

perature effect causing the switch somewhere between the room temperature

result and absolute zero. The next is the possibility that these are different

states. A known weakness of the BFGS algorithm is that it struggles with

energetically degenerate or metastable states with a small free energy barrier.

Depending on the parameters of the minimisation and the free energy land-

scape of the system, it is possible for the minimisation step to pass through

a weak barrier and form another state. This is not a great concern as these

low barriers of activation typically cause these states to appear unstable as

thermal perturbations can push the real material into a different state, so such

materials can only exist in the state for a short time. The other is to do with

our understanding of the material. We have used a perovskite view of BFO,

but it could be that this geometry is more consistent with the R3c hexagonal

type group, which many BFO structures are listed as. Due to the size of the

cell and its non-perovskite nature, we have not considered it, but despite it

hosting the same equivalent positions and lattice symmetry, this may be the

more technically correct structure.

The final option, of course, is that we are simply not viewing the symmetry in

the correct way. The direction of polarisation is non-axial, so it may not be rel-

evant to compare the axial values and instead we should consider the symmetry

in the direction of polarisation. It may be the case that symmetric positions

defined in this system are different to how they were considered previously,

and that these lattice vectors and fractional positions are misleading.

We note that while this type of calculation can take variable amounts of time

due to the unpredictable number of LBFGS steps, this calculation took 4-5

times as long as the equivalent optimisations in chapter 5. While this is not
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as slow as we predicted, we are using much more powerful hardware than

previously, which would offset the extra calculation complexity.

7.2.2.1 Symmetry of the Rhombohedral Cell

We will discuss the rhombohedral symmetry, to understand how our symmetric

reduction works. If we think of the unit cell as a pseudocubic shape with

faces and corners then the A-site and B-site, which in this case is Bi and Fe

but is applicable to all such structures, lie on the corners and in the centre,

respectively. These ions are free to move in the (111) direction following the

polarisation, meaning that the positions can be represented as FracBi = (0.0+

∆Bi, 0.0 + ∆Bi, 0.0 + ∆Bi) and FracFe = (0.5 + ∆Fe, 0.5 + ∆Fe, 0.5 + ∆Fe)

where each ∆k is equal across axes.

In our relative positions above, we have defined ∆Bi = 0. The three oxygen

ions occupy the faces, so we have defined a major displacement in the plane of

the face and a minor displacement perpendicular to the face. Then the posi-

tions for the oxygen ions can be represented as FracO = (0.5 + ∆O−maj, 0.5 +

∆O−maj, 0.0 + ∆O−min) for the first, with linear rotations of elements for the

other two positions. As the Bi and Fe positions are all equal, we have only

listed one of the 3 elements, and in the oxygen ion positions we give one of the

two major coordinates and the minor. Of course, it would be equally valid to

only list the ∆k values as a fractional displacement, as these are equivalent.

Thus through symmetry the whole structural parameter set can be uniquely

identified in this manner.
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7.2.2.2 Cartesian Vectors

The first thing to note about fractional positions in this type of material as a

whole is that they are in terms of the lattice vectors, not cartesian vectors. In

the tetragonal structures previously, these were equivalent and it was implicit

that the lattice vectors were trivially mapped to an (x, y, z) axis base as

the (a, b, c) set was orthogonal and easily normalised. This, along with the

fact that the axis of polarisation was parallel to a lattice vector meant that

coordinate selection was obvious. The rhombohedral vectors however, do not

form an orthonormal basis set, and the axis of polarisation is not along any

single vector, then being aware of this mismatch is essential.

For an approximation, we could simply assume that the axes are cubic, which

would allow the same method to be used as before. This is the most basic

method, which is less accurate but easiest to apply. While we still have to

consider a 3-dimensional problem, so many displacements are identical.

We can solve differences in the structures by performing the calculations on

structures relative to each other. This is convenient when performing dij cal-

culations, as it can be considered simply using the difference in distance from

the fixed A-site, or even from the hypothetical maximum symmetry state of

zero polarisation. This method is easy to perform on small scales, but can

become cumbersome if it must be repeatedly applied.

The next method is to create a transformation matrix. Effectively a map-

ping between the (a, b, c) vector and the (x, y, z) by means of simple matrix

multiplication. The difficulty in this approach comes from forming the trans-

formation matrices, as the operations themselves are simple enough. While

these should be generic, finding suitable transformations to match the specific

orientation of the given problem, and forming them manually is not as trivial
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as it initially sounds. Such prototype transformations have been calculated

elsewhere[169], but applying them without instruction can be difficult.

In order to calculate a transformation matrix using the given equations[169],

we used values of a = 3.902Å, α = 88.602◦ = 1.547rad. Equation 7.1 shows the

transform matrix formed by indexing horizontally across the 3-vector notation.

Though it is not clear entirely what basis this forms, multiplication with the

fractional coordinates have successfully measured the interatomic distances as

measured by VESTA[154] to a rounding error. This demonstrates that this

method is reliable, though can give confusing results indicating an unexpected

change of basis. All elements are multiplied by the lattice parameter, so we

have given both the real space transform and the coordinate transform. The

determinate of the coordinate transform matrix is ≈ 1 which can be attributed

to rounding error, so is easily invertible and does not affect the length of vectors

it multiplies.

T =


2.793 2.793 0.132

−2.726 2.726 0.000

0.000 0.000 3.900

 = a×


0.716 −0.698 0.000

0.716 0.698 0.000

0.034 0.000 0.999

 (7.1)

Then we can calculate the absolute cartesian displacements from fractional

positions using the basic matrix operation xi = Tija
∗
j where a∗j is the fractional

position vector relative to (a, b, c).

The final and most general method would be to simply do away with the lat-

tice vectors and define the cartesian axes in relation to the polarisation. As

axis positioning is arbitrary, eliminating the polarisation states from two of the

axes greatly simplifies the problem, though it is complicated slightly by locat-

ing the symmetric positions and geometrically calculating the displacements.
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Issues also arise due to the necessity to convert all properties with directional

components to the new axes.

Each approach is justifiable, however it should be made clear which is being

used, and the same method should be applied consistently. We will be applying

the matrix transform method, due to a personal preference of solving matrix

equations.

7.2.3 Phonon Calculation

The phonon calculation is where our method has the most issues, and is the

main break-point in what we are capable of calculating for bismuth ferrite. We

must run the SCF minimisation as a spin polarised calculation, which means

that the electronic structure must be calculated with variable electronic states.

This type of calculation, referred to by CASTEP as a “partial occupancy” cal-

culation or a “metallic” system. While in other calculation types this just ex-

tends the calculation, it makes it incompatible with the linear response phonon

calculation.

Many avenues of the electric field calculation become impossible due to this

issue, in our calculations the Born Effective Charge, LO/TO splitting, and

electric field response are disabled. Not only are these not possible in CASTEP,

but from discussions with the developers we find that these quantities simply do

not exist for materials that are spin polarised. In recent work, these quantities

are reported in by using a supercell method in other codes, that allows them to

fix the spins to cancel out, creating an overall non-spin polarised structure[137].

However, this approach is disingenuous, as the electronic states of the material

are not likely to alter the electronic states sufficiently to make these techniques

relevant. In our own output files we can see that while the spin of the iron
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ion is the largest, the other ions in the system gain an induced spin, which the

minimisation method is able to account for in our calculations due to the extra

bands.

We also recognise the unusual conduction properties that have been observed

experimentally in BFO[170]. Freezing bands is a good method in insulators as

it simplifies calculations significantly, but in conductors and semi-conductors

it can remove band interactions that are crucial to understand the electronic

structure and properties of the material.

This raises the issue touched on about the dielectric permittivity in chapter 5,

that simply because a value can be generated from a simulation, it does not

mean it is physically relevant. Other research papers, such as Wei, et al.[137],

all use VASP as their DFT code, so it may be that a different implementation

of the phonon calculation is used that does allow for electric field calculations of

structures without fixed occupation. On the other hand it may be that VASP

does not have as many warnings for unrealistic calculations as CASTEP does.

It is worth noting that VASP supports different types of pseudopotential and

has a slightly different set of tasks it is able to perform, which may give it an

advantage in this rare type of case. However it does not have an implementa-

tion of linear response, so finite displacement methods must always be used,

requiring a supercell to be built. Overall it is definitely worth investigating

which of the available codes best suits a particular project.

7.2.4 Elastic Compliance

The elastic compliance tensor was calculated using the elastic constants frame-

work by Andrew Walker[156]. This calculation was performed as before, using

two strains patterns, each with six strains between -0.25% and 0.25%. The first
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strain was along the x-axis, while the second was a non-linear strain represented

by the strain tensor (εij) in equation 7.2, where x is a number corresponding

to our overall magnitude of strain.

εij =


0.0 0.0 0.0

0.0 0.0 x

0.0 x 2x

 (7.2)

These are the minimal set of independent perturbations on the lattice, which

are needed to calculate the elastic compliance tensor. Once completed, we

were able to generate the entire elastic compliance tensor, which shows the

following symmetry in non-zero elements shown in equation 7.3.

s11 = s22

s12 = s21

s13 = s23 = s31 = s32

2× s14 = −2× s24 = 2× s41 = −2× s42 = s56 = s65

s44 = s55

(7.3)

Additionally the s33 and s66 elements are unique, non-zero elements. This is

consistent with the tables shown in Nye[22]. Table 7.2 shows the unique elastic

compliance elements.

We see a high compliance in the diagonal elements, with low negative compli-

ance in off diagonal elements. This suggests that the material is highly elastic,

generating large strains in the direction of the relatively small stresses applied

and leading to large piezoelectric coefficients due to high linear displacements

for ionic charges. However, it is resistant to stress in the perpendicular direc-

tions. For mechanical applications this is ideal. In comparison to table 5.5,
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Table 7.2: The unique elastic tensor elements (sij) of bismuth ferrite
calculated using the elastic compliance calculation method.

Compliance BFO

s11(TPa−1) 14.96
s12(TPa−1) -5.14
s13(TPa−1) -5.37
s14(TPa−1) -1.79
s33(TPa−1) 15.44
s44(TPa−1) 26.43
s56(TPa−1) -3.59
s66(TPa−1) 40.19

we see that this behaviour is similar to the direction of polarisation for lead

titanate. This leads us to believe that we would have piezoelectric coefficients

around the magnitude of PTO. Of interest is that the largest elements are the

rotational elements, rather than the axial ones. If so then the material may be

more suited to rotational type mechanisms for its piezoelectric properties.

Elastic constant calculations were more difficult to perform than the basic

geometry optimisation. Whether due to the rhombohedral symmetry or the

free movement of the spin polarisation axis, minimiser errors occurred and the

LBFGS algorithm would regularly fall into false energy minima. While this

can easily be fixed automatically in software by reverting to a previous state

and allowing the minimisation algorithm to undergo different random steps, it

does raise questions as to the reliability of these calculations implemented in

an automated system.

If we consider the goal of creating an automated pipeline to perform calcula-

tions, this would be simple to perform on the unary, and most tasks would

apply trivially to the binary systems, although time limits imposed by servers

would need to be considered to ensure calculations were actually complete

before moving to the next step.
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In a multiferroic however, it is clear that manual intervention on calculations

may be necessary regularly. Therefore, if we were to attempt to classify large

groups of piezoelectric materials using the framework we have described, then

any multiferroic materials either previously known or discovered due to warn-

ings in the calculation should be removed from the data set and kept separate,

in order to not hold up the less computationally difficult materials and to be

given the special attention necessary to ensure smooth running.

7.2.5 Strain Perturbations

In order to improve our efficiency given the long calculation times of the ma-

terial, we did not perform perturbations on the material. Instead, we reused

strained structures from the elastic constants calculation which fit our crite-

ria. We wanted one strain from each pattern with an FFT grid that matched

that of our initial geometry optimisation. Grid information is printed in the

CASTEP output file at a higher verbosity level, which required setting “iprint

: 2” in the .param file. The final structure of each of the strains after the op-

timisation step was taken using the ‘castep2cell’ post-processing tool installed

with CASTEP, and each was dryrun to calculate the grid. It was found that

the 963 grid we required was used in the 4th step in both strain patterns.

In order to generate the electron density without repeating the calculation,

the “CONTINUATION” flag in the .param file was set to the binary .check

file, the task was set to perform a single point energy calculation, and the

“WRITE FORMATTED DENSITY” flag was set true. This allowed CASTEP

to read the binary file, extract the previously calculated electron energy min-

imisation data, and output the final electron density as a formatted, readable

file. These are used to generate electron density shifts shown in section 7.3.3.
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Figure 7.4: VESTA visualisation of the electron density of bismuth ferrite
in a cross section of the (100) plane at 0.5d from the origin.

7.3 Analysis

7.3.1 Total Electron Density Map

The total electron density map is created by taking the .den fmt file from the

geometry optimisation and converting it to a VESTA compatible .charg frm.

It can then be superimposed over the output .cell file and displayed as 3D

volumetric data or 2D cross sections.

Figures 7.4 and 7.5 show the total electron density in the BTO cell in the (100)

plane at 0.5d from the origin, and the (110) through the origin.
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Figure 7.5: VESTA visualisation of the electron density of bismuth ferrite
in a cross section of the (110) plane through the origin. The direction of
the polarisation vector in this view passes from the bottom right bismuth

ion to the top left.

Both figures have been standardised to the settings used for PTO in figure 5.7

as it is the most suitable direct comparison. In the (100) plane the overall

form is similar, though slightly more diffuse than the the previous structures.

Bonds are formed in the oxygen polyhedron to the central B-ion, and electron

density is mostly clustered around the ions.

The interesting behaviour occurs in the (110) plane. At first glance this may

seem an esoteric choice, however if we consider the direction of polarisation

in the rhombohedral structure, the (111) vector passes from the bottom right

to top left of the figure from the perspective shown. We see that the ions

are displaced in that direction, with electronic coupling between oxygen ions

and the nearest A-site bismuth ion. This demonstrates the polarisation of

the rhombohedral phase. In the tetragonal structure, we would expect to see

this type of coupling in the c-axis, though it is much weaker in the previous,

non-magnetic materials and as a result does not show in their density maps.
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We have established two planes of interest and observed the ferroelectric dis-

placement, however the difference between this material and the previous is

more likely to be in the density shift rather than the total. First however, we

must consider the greatest difference.

7.3.2 Total Electron Spin Density Map

The electron spin density is similar to the electron density, however this tracks

the spin at each point of the FFT grid rather than the charge. In the previous

structures spin was cancelled within orbitals by degenerate electrons, however

the free spin in bismuth ferrite leads to the magnetic behaviour.

Figures 7.6 and 7.7 show the spin density in the (100) plane at 0.5d from the

origin and (110) at the origin. We have an isosurface of 0.25, with a saturation

of -50 to 2.

The first thing to notice is that, as in this system the spin is negative, the

colours are reversed, as red represents a more positive (but magnitudally lower)

spin and blue more negative (but with a higher magnitude). Then the highest

concentration of negative spin is in the blue area around the iron ion. This is

unsurprising as it is the core magnetic component of the system. If we were

to place a second cell neighbouring the first, we would expect to see a positive

spin due to the G-type antiferromagnetism.

More interesting is the small but significant induced spin around the oxygen

ions evident in both planes. This demonstrates that, while iron is the key

magnetic component in the multiferroic material, the spin causing this effect is

induced around the bonding ions and shared through the structure. Reading

the Mulliken analysis performed by CASTEP, we see that while the iron is the

main contributor with a spin of −3.26~/2, the oxygen ions develop a spin of
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Figure 7.6: VESTA visualisation of the spin density of bismuth ferrite on
a cross section of the (100) plane at 0.5d from the origin. The central iron
ion shows a high negative spin at that site, with lower spin values induced
in surrounding oxygen ions and bonds. The oxygen ions have a negative

induced spin, and the bonds have a positive induced spin.

Figure 7.7: VESTA visualisation of the spin density of bismuth ferrite
on a cross section of the (110) plane through the origin.The central iron
ion shows a high negative spin at that site, with lower spin values induced
in surrounding oxygen ions and bonds. The oxygen ions have a negative

induced spin, and the bonds have a positive induced spin.
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−0.11~/2 each, and the bonds between the iron and oxygen ions carrys a spin

of 0.10~/2. While for the most part we have a spin highly localised to the

central ion, this induction and propogation may be enough to cause significant

differences to the electric polarisation.

In the (110) plane we see a distinct directionality in the spin pattern, evident

in the lobes around the oxygen ions and the induced spin on the bismuth ion

prominent in the direction of polarisation. While it is not definitive, it suggests

that the magnetic and electric properties within the mutliferroic are coupled

to some extent. If spin were entirely localised to the iron ion, it may suggest

that the two effects are not intrinsically linked. Given that we have seen in

previous materials that the oxygen ions are the main driving force behind

the piezoelectric effect, it would not be unreasonable to assume that in the

multiferroic the magnetic and electric properties were decoupled. This bias in

the spin field, which is the driver for magnetic properties, in the direction of

the electric polarisation as seen in the charge field, the driver of the piezo- and

ferroelectric effects, suggests that these two properties are linked. That said, it

remains beyond our capability to understand whether or not these two effects

are complimentary or counter to each other.

7.3.3 Electron Density Shift

The electron density shifts were calculated by subtracting the charge of the

formatted electron density of the unstrained structure from that of the strained

structure at every point in the FFT grid. This can then be plotted over a cell

file in VESTA show the electron density shift of the structure. Saturation and

isosurface level are kept consistent with our other calculations.
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Figure 7.8: VESTA visualisation cross section of the electron density shift
of the first strain pattern for bismuth ferrite in the (100) plane at a distance

of 0.5d from the origin.

7.3.3.1 Strain Pattern 1

The first strain pattern is given by the matrix in equation 7.4 with the mag-

nitude of strain x = −0.167%.

εij = x×


1 0 0

0 0 0

0 0 0

 (7.4)

Figures 7.8, 7.9, and 7.10 show the electron density shift over three planes of

interest, the (100), (110), and (211) respectively. Each is set to pass through

the mid point of the cell, giving a distance from the origin of 0.5d, 0, and 2d

respectively, where d is the interplanar spacing for each plane.



Chapter 7. Multiferroics 236

Figure 7.9: VESTA visualisation cross section of the electron density shift
of the first strain pattern for bismuth ferrite in the (110) plane through the

origin.

Figure 7.10: VESTA visualisation cross section of the electron density
shift of the first strain pattern for bismuth ferrite in the (211) plane at a

distance of 2d from the origin.
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Immediately we see that the electron density shift in bismuth ferrite is con-

siderably less localised than in the other materials. While those could be fea-

sibly be divided into ionic properties that allowed us to construct our partial

piezoelectric coefficient and discuss the partial polarisation, in the multiferroic

material the density change is much more disperse. This emphasises the con-

cept in section 7.2.3 that the partial occupancy is not simply representative

of the the spin polarisation, and just because the overall spin is cancelled, it

does not mean the occupancy can be fixed. We can see how the Born Effective

Charge is not physically meaningful, as in previous calculations the movement

of electrons could clearly be tied to the movement of ions with little ambiguity,

whereas in these electron density shifts we see that the electronic movement is

far more diffuse.

In the (211) plane we have the most clear indication of directionality as the

strain appears to cause a shift along the lines between the furthest A-site ions,

which we expect as the direction of polarisation. Thus the polarisation is

changing in the known rhombohedral manner due to the material strain.

The other planes seem to show coherence, but it is not clear on how exactly

the directionality is applied. For instance, in the (100) plane we see that there

is definitely a symmetry in the distortied (111) diagonal, however much of the

density shift is more lateral, though the lateral elements of the structure would

cancel. Thus if we were to break this down into a set of partial piezoelectric

coefficients, we would expect numerically large quantities that cancel out when

considered from the axis of polarisation. If so, then we could strive towards a

method through dopants or the application of electromagnetic forces to desym-

metrise the system, allowing the crystal to present the full density changes on

the macroscale.
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The (110) plane is the least obvious to interpret, as it appears to be entirely

delocalised. In this view we see how it may be possible to divide some of the

electronic charge and shift to individual ions. Bismuth and oxygen ions seem

to demonstrate the behaviour seen previously with directional lobes, however

unlike before where the isosurface level clears up much of the cross sectional

area, this cross section is significantly active at every point. There may also

be issues with the visualisation, as the circular area around the bismuth ions

in this structure may be indicative of a very large pseudopotential core radius.

If this is the case, then unlike the small and localised A-site shifts in the unary

and binary materials so far, the electron density shift of bismuth is the most

significant aspect of this bonding. In a classical valence model the Bi and Fe

ions would both carry a +3 charge, so it could be that between the classical

and electronic charge, the A-site is far more active in the piezoelectric system.

While this shift does seem to show a directionality, it does not appear to

correlate strongly with the direction of polarisation in the material. However

it is impossible to conclude if this is a stronger or weaker mode due to the wide

spread of shift throughout the cell. It appears that there is a large amount

of piezoelectric activity, but there is a lot of cancellation across different non-

polar directions until only the directions associated with this mode remain.

Again this implies that if there were a way to alter the directionality of the

shift, or the piezoelectric system in general, then it may be possible to tune

the material to a state where losses are minimised. However, it may also be

that losses are consistent across different geometries and effects.

Meanwhile in the same plane, the iron seems to lack any direction. We have

seen small lobes of directional density shift in the other planes so this may

simply be a quirk of this particular plane. Or the coherence of vertical positive

shift and horizontal negative could be indicative of an incompatibility in certain
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axes between the electronic and spin polarisation systems. We would expect

a coupling between the electric and magnetic dipole moment of the iron ion,

and as such a proper 3D analysis may demonstrate directions in which the two

moments enhance or oppose each other as in the previous chapters.

We must now consider the second strain pattern, to ascertain which of these

features repeat in an example of the overall piezoelectric behaviour, and which

are mode specific.

7.3.3.2 Strain Pattern 2

The second strain pattern is non-linear unlike all strain patterns so far. It is

represented by the matrix shown in equation 7.5. The total magnitude of the

strain is -0.167% as was previously the case, however the fact that we do not

have a simple linear strain means that the coefficient x is a more complicated

form. Overall it is only important that the magnitude of strain is the same.

εij =
x

2
×


0 0 0

0 0 1

0 1 2

 (7.5)

Immediately we expect problems with our method of viewing this. The non-

linear strains likely mean a 3D analysis is more suitable, as the flat cross

sections we take are not likely to show the skew strain taking place. However

given a lack of alternatives, we will demonstrate what electron density shift

features can be seen in the cross sections.

Figures 7.11, 7.12, and 7.13 show the electron density shift over three planes of

interest, the (001), (110), and (112) respectively. Each is set to pass through
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Figure 7.11: VESTA visualisation cross section of the electron density
shift of the second strain pattern for bismuth ferrite in the (001) plane at a

distance of 0.5d from the origin.

Figure 7.12: VESTA visualisation cross section of the electron density
shift of the first strain pattern for bismuth ferrite in the (110) plane through

the origin.

the mid point of the cell, giving a distance from the origin of 0.5d, 0, and 2d

respectively, where d is the interplanar spacing for each plane.

The first thing to note about the overall structure is that the axial planes in

the (100) and (001) directions in the different strains are highly similar. This
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Figure 7.13: VESTA visualisation cross section of the electron density
shift of the first strain pattern for bismuth ferrite in the (112) plane at 2d

from the origin.

is likely due to this type of shift being generic to all piezoelectric modes. It

shows the same symmetry and lateral shifting, which ideally would be altered

to prevent inefficiencies due to dipole moment cancellation.

The other two planes are largely identical to the previous strain pattern, both

show coherence and some directionality, and they are heavily delocalised. How-

ever we do see asymmetric characteristics. The reason for this is due to the off

diagonal elements creating a rotation effect in the electronic density shift. This

was seen in the elastic compliance tensor due to the rotation stress directions

being large. This feature, while likely cancelling on the macroscale, will be

an interesting feature of the partial piezoelectric coefficient matrix, and even

further would be to perform this type of strain over many steps, and calculate
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a rate of rotational shift. Though the utility of this quantity may not be im-

mediately obvious, this and the indicated rotational compliance elements are

essential to the development of rotary piezoelectric devices.

For the more general features of the density shift we can refer to section 7.3.3.1,

as we expected many of the features are generic to the different modes. There-

fore the electronic shift density has been fully evaluated as much as is possible

in a 2D space.

7.4 Conclusions and Further Work

In this section we have performed calculations on the multiferroic structure

bismuth ferrite in the rhombohedral form. We have presented optimised geom-

etry for the structure, and calculated the elastic compliance tensor. Methods

of mapping the rhombohedral axes to the cartesian polarisation have been dis-

cussed. The difficulties inherent in performing calculations on a multiferroic

material have been addressed, and if it is still desirable the tweaks to the calcu-

lation parameters required to make it work. We have used the electron density

shift to discuss how the delocalisation of the electron density movements under

stress provide a fundamentally different picture of the piezoelectric effect in the

system to that of the classical unary perovskites in chapter 5.

We have also identified features in the spin and charge density fields to indicate

a coupling between the two prominent effects.

There are several avenues to continue in this line of work. Firstly, though it

does not seem that the VASP calculations used by others are physically mean-

ingful due to the static occupancy model used, discussions with the developers

or obtaining a license to test the validity of the calculations would be sensible.
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Due to the differing implementations of the methods, it may be that even if

those particular results are found to be unphysical there are other interesting

features made apparent by looking at the system differently.

Interest in the rotational strain patterns we discussed in section 7.3.3.2 may

lead to the development of better methods to consider the off-diagonal strain

elements. The use of curved cut-off planes or different methods of 3D rendering

may make this line of enquiry easier to interpret, and the calculation of rotation

angles due to stress and strain is important when considering applications.

As DFT codes develop, it may be that newer methods become available that

allow us to overcome the limitations of the current systems, so keeping an eye

on new methods available year on year will allow us to stay current on research

into this class of materials.

In the future, we should consider binary supercells of bismuth ferrite with, for

example, lead titanate. This mix, known as BFPT, shows excellent potential

as an industrial piezoelectric, and as such it would be interesting to see how the

two materials mix on an atomic scale. How will the two different perovskite

units equalise? Will the inclusion of the PTO force the BFO units to become

more localised, or given the magnetic character of the superstructure will the

delocalisation spread throughout the cell. Also, how will the mixing of A- and

B-sites affect the energetic states? Will Bi and Fe preferentially match in units,

or will we actually see a quaternary BFO-PTO-BiTO-PFO system? BiTO is

used to distinguish this unit from barium titanate.

Overall, multiferroics show great properties for piezoelectric applications, and

despite the difficulties inherent in performing calculations it is still well worth

the time and effort required to understand them.





Chapter 8

Conclusions and Further Work

8.1 Conclusions

Over this project we have performed many calculations and considered many

physical and theoretical effects in relation to the overall piezoelectric properties

of the material. First, we must revisit the initial questions from section 3.5

shown below.

• Can intrinsic piezoelectric properties be predicted by creating a frame-

work from readily available DFT tools?

• Can we use this framework to identify overall similarities and differences

in a more complicated binary material?

• How does the inclusion of ferromagnetism affect the capability of the

framework to predict properties?

245
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Beginning with the first question. In chapter 5 we demonstrated through the

use of single point energy calculations, geometry optimisations, and linear re-

sponse calculations that we can calculate the polarisation and change in polar-

isation under stress, i.e. the piezoelectric coefficient, to a reasonable numerical

accuracy given the assumptions we have set out. These calculations were per-

formed on barium titanate, lead titanate, and potassium niobate, which covers

a variety of common types of piezoelectric pervoskite structures. Furthermore,

we created a novel way to consider how these properties are broken down on

an atomistic scale by defining and demonstrating the partial piezoelectric co-

efficient (δkij), a mathematical breakdown of how the piezoelectric coefficient is

broken down to an individual ion scale. We also demonstrated a new method

of visualising the piezoelectric effect through the Electron Density Shift (EDS)

allowing us to use widely available free software for the visualisation of how

the electron density moves under the type of stress that we associate with

piezoelectricity.

For the second question we have performed the calculations on lead zirconate

titanate in chapter 6. We have broken down the binary structure into its

components using our derived calculation of the polarisation, and studied it

through the use of our electron density shift and partial piezoelectric coef-

ficient. This has allowed us to identify the way different materials combine

into binary structures through an effective equalisation across the boundaries

of simple units, the sawtooth effect produced due to slightly different bond-

ing properties and consequently the partial piezoelectric constants that do not

exist in the bulk material. Despite the differences in the polarisation contri-

butions from different units, their partial piezoelectric contributions are equal.

We have identified a region in the electron density of a weak coupling be-

tween the A- and B-sites and the axial oxygen ions which has allowed us to

explain the radial/axial asymmetry through the idea of an effective shielding



Chapter 8. Conclusions 247

caused by the A-site coupling. These are all of interest in themselves, and as a

whole demonstrate a far bigger picture of the interactions of binary materials

and how they mix, which is essential when designing new materials through

combinations of previous materials of interest.

Finally, we have performed calculations on the multiferroic material bismuth

ferrite in chapter 7, known for its G-type antiferromagentic and ferroelectric

properties. We have determined what information we are able to ascertain

using the previous methods, and what is beyond the reach of current software.

The physical properties of the system inhibit our ability to use this framework

to calculate the same properties, largely due to the fact that the software

is unable to calculate the electric field response of the lattice. The program

states that the Born Effective Charge and the LO/TO phonon splitting is not

meaningful for a system with empty bands, so whether this is a weakness of

the code or a fundamental block in the understanding of the material remains

to be seen. However, we have outlined the changes that can be made to the

calculations to incorporate the exotic properties and have been able to calculate

a reduced set of parameters for this material of interest. We have also tacitly

used this chapter to expand our understanding of the low symmetry states, by

discussing general purpose issues with lattice alignment and pros and cons of

different steps to overcome them.

Thus we conclude that we have successfully answered the three major questions

laid out at the beginning of this project. While there is still much to be done in

the field of computational piezoelectrics, we have introduced a series of tools

that will widen the field by allowing researchers to perform computational

tasks and interpret results supporting their experimental work. This can be

done without having to spend time getting to grips with deeper theories of
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electronic movement and polarisation, and is appealing as it can be done in

the background in an safe and time-efficient manner.

8.2 Further Work

Though we have discussed what further work should occur in detail in the

relevant chapters, we will now summarise the key points here.

From chapter 5, we identified the following further work for unary perovskites.

• The inclusion of dielectric tensors into the framework in order to calculate

the crucial electric field coupling in ferroelectric materials.

• Evaluating where a potential factor 2 procedural error occurs in the

piezoelectric coefficient calculations due to the application of stress in

the simulations.

From chapter 6 we identified the following further work for binary perovskites.

• Calculations on different binary perovskites, to ascertain whether the

properties such as equalisation and sawtoothing are unique to the bond-

ing in PZT or general features of binary structures.

• How mixing and composition affect the intrinsic properties we have cal-

culated for the binary PZT system.

• If the trends we have identified are present when applied to solid solutions

of tertiary mixes and beyond.

From chapter 7 we identified the following further work for multiferroic mate-

rials.
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• Can different codes with different implementations of DFT features give

different insights into the piezoelectric properties of these traditionally

difficult materials.

• Can we discover novel properties of the non-local electronic system and

rhombohedral symmetry by considering linear steps in the perturbation

modes.

• How does the multiferroic material behave in a binary system with other

multiferroics and more traditional ferroelectrics?

Each of these points would be a valid step in developing a new understanding

of the piezoelectric effect from an atomistic scale. Overall we have taken a

fundamental step in novel ways of discussing piezoelectric materials, and this

can now be built upon in further research across the field.
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