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Abstract 

The Myeloproliferative Neoplasms are a clinically heterogenous group of bone 

marrow haemopoietic disorders that result in the overproduction of myeloid blood 

cells.  The identification of recurrent gene mutations has aided positive identification 

of disease in a substantial proportion of patients, however, a significant number of 

individuals with classical MPNs do not have a detectable aberration.  The clinical 

and laboratory presentation of these disorders shows significant overlap with features 

associated with reactive conditions, which, in patients without detectable genetic 

mutations, can lead to ambiguity in their diagnosis.   

 

Traditionally, the decision to investigate an individual for a suspected classical MPN 

has been based upon thresholds in blood count parameters.  In this work, current 

working practices have been audited to ascertain the extent to which diagnostic 

guidelines are adhered toe.  We demonstrate that a significant proportion of referrals 

for the investigation of suspected classical MPNs do not meet these criteria.  

Furthermore, this work objectively assesses the diagnostic sensitivity and specificity 

of current guidelines in the identification of patients with classical MPNs. 

 

The use of predictive statistical modelling is a contemporary approach to the 

identification of individuals with increased likelihood of suffering from a classical 

MPN.  In this work, several predictive modelling methods were applied to a data set 

of laboratory and basic demographic information taken from a series of patients 

investigated for suspected classical MPNs.  This work shows that predictive 

statistical modelling can reproducibly identify those patients who are likely to have a 

classical MPN from those who do not.  These models offer increased specificity and 

sensitivity compared with the use of published investigatory and diagnostic 

guidelines.  Predictive statistical modelling also offers the ability to triage those 

patients who are likely to have classical MPNs prior to further investigation, 

resulting in potentially significant cost savings to both clinical and laboratory 

services. 
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1. Introduction 

 

1.1 What are myeloproliferative neoplasms? 

 

The term Myeloproliferative Neoplasm (MPN) is used to describe a group of cancers 

which affect certain blood cells, known as myeloid cells.  In human haematopoiesis 

(blood cell production), the cells can be broadly divided into two groups; myeloid 

and lymphoid cells.  Myeloid cells include populations known as granulocytes, 

erythrocytes and megakaryocytes (see 

 

Figure 1-1).  

 



19 

 

The World Health Organisation (WHO) recognises over 70 different forms of 

myeloid malignancy (cancer).  These are sub-categorised into acute myeloid 

leukaemias (AML), myelodysplastic syndromes (MDS) and the MPNs.  Current 

WHO 2016 diagnostic criteria categorise 7 entities as MPNs (Arber et al., 2016).  

These are: - chronic myeloid leukaemia (BCR-ABL1 positive), chronic neutrophilic 

leukaemia, chronic eosinophilic leukaemia (not otherwise specified), 

myeloproliferative neoplasms (unclassifiable), polycythaemia vera, essential 

thrombocythaemia and primary myelofibrosis.  The lattermost three are collectively 

known as the classical MPNs.



 

 

 
2
0
 

 

Figure 1-1 Schematic of human haematopoiesis, showing the shared ancestry of myeloid cells.    The common myeloid progenitor (CMP)  

gives rise to the myeloid cell lineages.  (reproduced from (Doulatov et al., 2012).  CD nomenclature indicates the immunophenotypic 

characteristics at each stage of development/differentiation.
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1.1.1 Essential Thrombocythaemia 

 

Essential Thrombocythaemia (ET) is the most frequently diagnosed of the classical 

MPNs, with a reported annual incidence ranging from 0.21 – 2.27 per 100,000 

(Titmarsh et al., 2014).  It is characterised by increased proliferation of 

megakaryocytes in the bone marrow, and consequently, an increased peripheral 

blood platelet count (>450 x 109/L) (Arber et al., 2016).  The incidence of ET 

increases with age, peaking at 71.5 years (Roman et al., 2016)  and it occurs more 

frequently in females than males (F/M ratio 2.6:1)  (Jensen et al., 2000).  The female 

bias in ET diagnoses is an uncommon feature in malignancies, where an excess 

diagnostic burden in males is well documented across the majority of cancers.  It is 

thought that hormonal, immunological and lifestyle difference contribute to a lower 

frequency of cancer diagnoses in women.  The increased frequency of female ET 

diagnoses may also be related to these differences.  It is reported that females have 

an increased platelet count in comparison to males, and that this may be related to 

hormonal differences associated with the female reproductive cycle.  Blood loss 

associated with menstruation and childbirth.    The prognosis of ET is generally 

good, with survival estimates close to those expected in comparable disease-free 

populations (Barbui et al., 2011b).  However, a small number of patients undergo 

disease progression with the risk of developing overt fibrosis or acute leukaemia 

reported to be between 1.4 and 3.9% (Passamonti et al., 2008; Wolanskyj et al., 

2006)   

 

1.1.2  Polycythaemia Vera 

 

Polycythaemia Vera (PV) primarily affects the production of erythrocytes and is 

characterised by an unregulated increase in the production of red blood cells.  Whilst 

the erythrocytosis is a defining feature of PV, it is often also accompanied by 

increased proliferation of both megakaryocytes and granulocytes (Arber et al., 2016).  

The annual incidence of PV is estimated to be between 0.01 and 2.8 per 100000 in 

European and North American populations (Mesa et al., 2012; Moulard et al., 2014; 
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Phekoo et al., 2006; Rollison et al., 2008; Roman et al., 2016).  Lower incidence 

rates are reported in Asian populations (Japan and Korea) (Byun et al., 2017; Kurita, 

1974).  The median age at diagnosis is similar to that seen in ET (Roman et al., 

2016).  In contrast to ET, PV is more commonly diagnosed in males than females, 

with an estimated male to female ratio of 1.2:1 ((Marchioli et al., 2005). 

 

PV has a poorer prognostic outcome than ET.  Without treatment, the median 

survival in PV is reported to be less than 2 years (McMullin et al., 2003).  Current 

therapeutic approaches, have significantly improved this with 10 year survival 

reaching levels comparable to the general population (Tefferi et al., 2018).  

Progression to overt fibrosis or acute leukaemia is more frequent in PV than in ET, 

with studies indicating a risk of progression of around 7%  (Marchioli et al., 2005; 

Tefferi et al., 2014a).  

 

1.1.3 Primary Myelofibrosis 

 

Primary Myelofibrosis (PMF) is the least common of the classical MPNs with an 

annual incidence estimated to be between 0.5 and 1.5 per 100000 (Arber et al., 

2016).  Characterised by the increased proliferation of both granulocytic and 

megakaryocytic cells alongside the deposition of fibrotic connective tissue within the 

bone marrow (Fujiwara, 2018; Koopmans et al., 2012).  With disease progression, 

bone marrow fibrosis increases and extramedullary haematopoiesis occurs (the 

formation of blood cells in tissues/organs outside of the bone marrow, such as the 

spleen and liver) with a  resultant leucoerythroblastic blood picture (Laszlo, 1975). 

 

Prognostically, PMF has the poorest prognosis of the classical MPNs, with an 

estimated median survival of 6 years (Tefferi et al., 2014a), and AML transformation 

frequency of approximately 14% (Mudireddy et al., 2018). 
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1.1.4 Gender bias in ET and PV 

 

Gender bias in cancer diagnoses is a well-documented phenomenon (Cook et al., 

2011; White et al., 2010).  An excess male burden is widely reported in the majority 

of (non-gynaecological/urological) malignancies, with the exception of thyroid 

cancer (2016; Cook et al., 2011).  This is thought to be, in part, related to differences 

in epigenetic, hormonal and immunological characteristics between the sexes 

(Edgren et al., 2012).  Lifestyle factors are also implicated, with higher intake of 

alcohol and tobacco and increased exposure to occupational hazards associated with 

males (Jaggers et al., 2009; Parkin et al., 2011).  The gender bias seen in PV is in 

keeping with this general observation. 

 

The increased frequency of ET in females is less typical and the reasons for this are 

not fully understood.  Studies have shown that from the onset of puberty, average 

platelet counts are higher in females than males (Biino et al., 2013; Segal and 

Moliterno, 2006; Stevens and Alexander, 1977).  It is postulated that this may be 

related to changes experienced during the female reproductive cycle.  The 

physiological requirement for platelets during blood loss, through menstruation 

and/or childbirth may contribute to an increase in platelet production (Balduini and 

Noris, 2014).  Studies in mouse models has shown oestrogen to promote 

megakaryocyte production (Nagata et al., 2003).  Additionally, the associated 

reduction in iron stores may promote platelet production (as seen in iron deficiency 

anaemia) (Kadikoylu et al., 2006).  One may postulate that chronic stimulation of 

platelet production may contribute to the increased frequency of ET in females or 

conversely, that a proportion of females categorised as ET may have physiologically 

increased platelet counts. 
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1.1.5 Overlap between ET, PV and PMF 

 

In their text-book forms, each of the classical MPNs appears easily distinguishable 

from one another.  However, in practice the distinction is less clear; the 

transformation/progression of ET and PV into fibrotic or blastic phase results in a 

clinical picture not dissimilar to that seen in PMF (Marchioli et al., 2005; Passamonti 

et al., 2004) .  Likewise, all three diseases can undergo transformation to AML 

(Mudireddy et al., 2018; Wolanskyj et al., 2006) .  This continuum of disease can 

cause blurring in the distinction between the three conditions. 

 

Overlapping features are not confined to late stage/aggressive disease.  In PV, the 

proliferation of erythroid cells is often accompanied by increases in the production of 

both granulocytes and megakaryocytes (Dameshek, 1951).  In the event that a patient 

with PV has concurrent iron deficiency, the production of erythrocytes is decreased 

and as a result polycythaemia is often masked (Shih and Lee, 1994).  In these cases, 

the presentation appears to be that of ET rather than PV (Barbui et al., 2014b).  

Furthermore, in early PMF, fibrotic changes in the bone marrow can be subtle 

(referred to as pre-fibrotic PMF), making the distinction between PMF and ET 

challenging (Giovanni Barosi 2012; Guglielmelli et al., 2017).   
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1.2 The biological basis of the classical MPNs 

 

Classical MPNs share a common biological ancestry, with the affected cell lineages 

arising from a common progenitor.  As shown in Figure 1-1, all human blood cells 

are derived from a multipotent haematopoietic stem cell (HSC).  HSCs can divide 

and differentiate into any of the mature haemopoietic cell forms according to the 

body’s requirements.   

 

Briefly, HSCs divide to produce multi-potent stem cells (MPP), which can 

differentiate into one of two committed progenitors - the common myeloid 

progenitor (CMP) or the multi-lymphoid progenitor (MLP) (which in turn gives rise 

to early thymic (ETP) and B/NK cell progenitors (B/NK)) (Tenen et al., 1997).  

CMPs then undergo further differentiation to form either granulocyte/macrophage 

progenitor (GMP) or megakaryocyte/erythroid progenitor (MEP) (Doulatov et al., 

2010; Doulatov et al., 2012).  Classical MPNs primarily affect the production of 

megakaryocytes and erythrocytes (as well as granulocytes to a lesser extent), 

indicating a potential common underlying pathobiological basis for all MPNs at 

either the MEP or GMP stage of differentiation. 

 

1.2.1 Determination of haematopoietic lineage fate 

 

Haematopoiesis is a dynamic process which responds to the requirements of the 

human body (Kaushansky, 2014).  Each type of mature blood cell has a different role 

within the body, as shown in Table 1-1, and their demand may be increased, for 

example during infection or following injury.  The bone marrow responds to this 

need by adjusting the proportion of cells which differentiate into a given mature cell 

form  (2014). 
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Cell type Role 

B lymphocyte Adaptive immune response, antibody production 

T lymphocyte Cell mediated immune response 

NK cell Direct killing of foreign cells 

Monocyte Antigen presentation, removal of damaged and dead cells 

Neutrophil Phagocytosis of bacteria 

Basophil Histamine reaction, vasodilation, anticoagulation 

Eosinophil Kill parasites, allergic reactions 

Erythrocyte Transportation of oxygen to tissues 

Platelet Formation of blood clots, attract cells to site of 

inflammation/damage 

Table 1-1. Basic function of mature blood cell types. 

 

Overlap in the presentation and transformation of the classical MPNs hints at a 

biological relationship between the conditions.  This is further supported by a 

shared/overlapping spectrum of molecular aberrations associated with the conditions.  

Mutations in one of 3 genes; JAK2, MPL and CALR, are found in the majority of 

patients presenting with classical MPNs.  The frequency with which they occur 

varies between diseases, however, significant overlap is seen (see Figure 1-2). 
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Figure 1-2. Frequency of mutations in JAK2 (V617F and Exon 12), CALR and 

MPL found in the classical MPNs alongside the proportion of patients with no 

mutation detected in the listed genes.  The data used to prepare these 

illustrations was obtained from (Nangalia and Green, 2014). 

 

The JAK2 V617F mutation has been reported to be present in more than 97% of 

patients with PV and in 50% of those patients with ET and PMF (Cross, 2011).  A 

further 65-70% of patients with JAK2 wild-type ET or PMF have been reported as 

having a CALR mutation (Klampfl et al., 2013b; Nangalia et al., 2013).  MPL 

mutations occur less frequently, with W515L/K/A/R mutations reported in 3-4% of 

patients with ET and approximately 7% of patients with PMF (Beer et al., 2008).   

 

1.2.2 JAK2 mutations 

 

The most frequently mutated gene in the classical MPNs is JAK2 (Janus Kinase 2).  

JAK2 is a non-receptor tyrosine kinase which is implicated in a wide variety of 

cellular processes, including cellular growth, development and differentiation 

(Gocek et al., 2014).  JAK2 has many potential binding partners, the most relevant to 

its role in the development of classical MPNs are the Erythropoietin Receptor 

(EpoR) and thrombopoietin receptor, commonly referred to as MPL (The UniProt, 

2014).   
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The most frequently identified JAK2 gene mutation in MPN patients has been 

characterised as a single amino acid substitution of valine for phenylalanine at codon 

617 of the protein (V617F). (Baxter et al., 2005; James et al., 2005; Jones et al., 

2005; Kralovics et al., 2005; Vainchenker and Constantinescu, 2005).  Mutated 

JAK2 kinase is constitutively activated, initiating the downstream STAT5 pathway 

which ultimately results in the uncontrolled proliferation of erythroid and 

megakaryocytic cells. (James et al., 2005) (Figure 1-3).   

 

Additional mutations have been identified within the exon 12 region of the JAK2 

gene (Butcher et al., 2008; Martinez-Aviles et al., 2007; Pietra et al., 2008).  In 

contrast to the V617F mutation, these mutations are diverse and include; deletions, 

substitutions and duplications, all of which affect the structure of JAK2 kinase.  

JAK2 exon 12 mutations have been identified in approximately two thirds of those 

cases of PV which lack the JAK2 V617F mutation (Scott et al., 2007).  

 

Figure 1-3. JAK-STAT signalling.  Normal activation of the JAK-STAT 

signalling pathway is initiated by the binding of a ligand to a receptor (for 

example, EPO binding to EPOR).  In the presence of the JAK2 V617F mutation 

signalling occurs independently of ligand binding (image reproduced from 

(Vainchenker and Constantinescu, 2012). 
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1.2.3 Calreticulin gene mutations 

 

In late 2013, two research groups reported the presence of somatic mutations within 

the calreticulin (CALR) gene in ET and PMF patients without JAK2 mutations 

(Klampfl et al., 2013; Nangalia et al., 2013).  CALR is a multifunctional chaperone 

protein, localised within the endoplasmic reticulum (ER) and is involved in the 

folding and localisation of cellular proteins, including the regulation of expression of 

cell surface receptors (Jiang et al., 2014).   

 

Mutations identified within CALR are restricted to the exon 9 region of the gene.  

Importantly, the mutations are varied, but all cause a net insertion or deletion which 

alters the reading frame.  This consistently results in the production of a truncated 

protein which is missing a sequence of 4 amino acids at the C terminal end.  The 

missing amino acid sequence has been found to form a KDEL motif (Klampfl et al., 

2013; Nangalia et al., 2013; (Chi et al., 2013).   

 

KDEL acts as a signal for the localisation of proteins to the lumen of the ER and is 

found at the extreme carboxyl terminus of a number of proteins including Bip, 

calreticulin and protein disulphide isomerase.  Loss of the KDEL motif results in the 

secretion of these proteins (Capitani and Sallese, 2009; Kraus et al., 2007).   

 

Initially, the mechanism by which the cellular secretion of mutated CALR would 

give rise to ET/PMF phenotype was unknown.  Studies have now shown that 

mutated CALR interacts directly with MPL by binding to the N-glycosylation sites 

on the extracellular domain of the receptor (Araki et al., 2016).  This is thought to 

induce a conformational change which brings the intracellular portions of the 

receptor into close proximity and stimulates activation of the JAK/STAT pathway 

independently of TPO (Araki et al., 2016; Chachoua et al., 2016; Marty et al., 2016) 

(Figure 1-4). 
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Figure 1-4 Ligand binding induces conformational changes in MPL, resulting in 

JAK2 phosphorylation and activation.  The somatic mutations W515A/K/L 

alter the shape of MPL, mirroring the effect of ligand binding, allowing JAK2 

phosphorylation to take place in the absence of ligand stimulation.  In the 

presence of a CALR exon 9 mutation, CALR is secreted by the affected cells.  It 

has been shown to specifically interact with MPL, mimicking TPO binding.  

(Chachoua et al., 2016; Lee et al., 2011; Mead and Mullally, 2017; Pecquet et 

al., 2010)     

 

The pattern of mutations occurring in CALR exon 9 is highly variable, with over 50 

different indels identified, the most frequently reported of these are a 52bp deletion 

and a 5bp insertion (Chi et al., 2013).  Analysis of the resulting amino acid structure 

shows that these mutations affect the overall charge of the protein, impairing its 

calcium-binding abilities to different degrees (Pietra et al., 2015).  Significantly, a 

difference in clinical behaviour has been observed in both mouse models and human 

patients carrying the two different mutations (Pietra et al., 2015).  A more aggressive 

form of ET, with significantly higher risk of transforming to PMF was documented 

in those carrying the 52bp deletion, in contrast to those with the 5bp insertion who 

displayed an ET phenotype with little progression or transformation (Marty et al., 

2016; Pietra et al., 2015).  This work demonstrates the value in both identifying 

CALR mutated MPNs and of the characterisation of the CALR mutation itself.  
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1.2.4 MPL gene mutations 

 

Mutations within the MPL gene have been identified in a small proportion of cases 

of JAK2 V617F wild-type/CALR wild-type ET or PMF, and have been reported to  

occur in the exon 10 region of the gene (Pardanani et al., 2006; Pikman et al., 2006).  

A number of these mutations affect codon 515 of the MPL gene, resulting in the 

substitution of the normal amino acid tryptophan (W) with either Leucine (L), 

Alanine (A), Arginine (R) or Lysine (K) .  The presence of a mutation induces a 

conformational change in MPL (Figure 1-4), which simulates the change which takes 

place following TPO binding (Mead and Mullally, 2017; Pecquet et al., 2010).  This 

results in ligand-independent activation of the JAK-STAT pathway, leading to 

cellular proliferation (Pikman et al., 2006) 

 

1.2.5 Unifying feature of MPN associated gene mutations 

 

The unifying feature of these different mutations is their activation of the JAK-STAT 

signalling pathway.  Each of the mutations initiates ligand-independent signalling, 

which ultimately results in cellular proliferation.  To further emphasise the key role 

of this pathway in the development of MPNs, mutations in genes which regulate 

JAK-STAT signalling (such as LNK, SOCS and c-CBL) have also been shown to 

induce an MPN phenotype (Grand et al., 2009; Oh et al., 2010; Sanada et al., 2009; 

Vainchenker et al., 2011). 

 

Whilst the presence of these JAK-STAT activating mutations is implicated in the 

development of MPNs, the mutation alone may not always be disease inducing.  

Low level somatic mutations in haematological malignancy associated genes, 

including JAK2 V617F mutations, have been reproducibly identified in otherwise 

healthy individuals (termed clonal haematopoiesis of indeterminant potential) 

(Genovese et al., 2014; Jaiswal et al., 2014; Steensma et al., 2015).  In these studies, 
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the presence of additional gene mutations is associated with an increased risk of 

developing a malignancy.  

Furthermore, several studies in Denmark have identified low level JAK2 V617F 

mutations in the general population, with longitudinal analysis showing progression 

to an MPN was frequent, but not universal (Nielsen et al., 2013; Nielsen et al., 2011; 

Nielsen et al., 2014).  This may suggest that the development of MPNs follows a 

multi-hit model, with additional mutational events required for the MPN phenotype 

to develop. 

 

1.2.6 Additional genetic mutation in MPNs 

 

Somatic mutations in epigenetic modulators are widely reported in myeloid 

malignancies, including MPNs (Bejar et al., 2011; Cross, 2011; Nangalia and Green, 

2014; Patel et al.; Shih et al., 2012).  These include mutations in genes involved in 

DNA methylation (such as TET2, DNMT3a and IDH1/2), chromatic structure 

(ASXL1 and EZH2) and mRNA splicing (SF3B1, U2AF1, SRSF2).  Within the 

MPNs, mutations in TET2, ASXL1 and DNMT3a are most frequently reported 

(Nangalia and Green, 2014) and are found in varying frequencies among the 

disorders, with PMF patients showing the highest frequency of additional mutations.  

The acquisition of additional mutations in MPNs is associated with transformation to 

acute leukaemia and an adverse prognosis (Abdel-Wahab et al., 2010).   

 

The order in which mutations are acquired has been shown to impact on disease 

behaviour.  Research has shown that a TET2 mutation acquired prior to JAK2 V617F 

mutation is associated with a MPN phenotype (Delhommeau et al., 2009; Ortmann et 

al., 2015), whereas a TET2 mutation acquired in an already JAK2 V617F mutated 

clone is associated with transformation to acute leukaemia (Abdel-Wahab et al., 

2010; Ortmann et al., 2015).   
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1.2.7 Disease heterogeneity within molecular subgroups 

 

The impact of JAK2/CALR/MPL mutations on the JAK-STAT pathway explains 

how the different mutations can give rise to the same disease phenotype, and the 

transitional entities seen in disease progression.  However, it does not explain how, 

conversely, the heterogeneity of disease phenotypes that can arise from each 

molecular subgroup.  For example, the JAK2 V617F mutation, is reported in all 3 

classical MPNs, each with a distinct clinical phenotype. 

 

Studies have identified that JAK2, CALR and MPL mutations are detectable in 

haemopoietic stem cells as well in differentiated cell populations (Chaligne et al., 

2007; Jamieson et al., 2006; Nangalia et al., 2013).  This may offer some explanation 

of the diverse nature of MPN phenotypes.  Whilst CALR and MPL mutations are 

detected in HSCs, the mutation specifically affects MPL, and its impact, therefore, is 

restricted to megakaryocytic cells.  JAK2 mutations are less specific in their target, 

and the development of heterogenous disease phenotypes in JAK2 V617F mutated 

MPNs is less well understood. 

 

There are a number of hypotheses as to how different disease phenotypes arise in 

JAK2 V617F mutated MPNs.  Firstly, PV has been shown to be associated with 

homozygous JAK2 V617F mutations suggesting that a higher allelic burden may 

influence clinical phenotype (Godfrey et al., 2012).  Quantitative differences in 

downstream signalling activation are also implicated, with increased STAT-1 

activity inducing megakaryocytic differentiation and reduced STAT-1 activity 

favouring erythroid development in cell culture experiments (Chen et al., 2010).  The 

acquisition of a TET2 mutation in a JAK2 V617F clone has been associated with a 

PV phenotype, suggesting additional mutations may influence clinical phenotype 

(Ortmann et al., 2015).   
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1.3 Clinical Presentation of classical MPNs 

 

The distinction between the various classical MPNs can be challenging, as 

highlighted by the continuum of disease and the transitional entities as described in 

1.1.5.  The dynamic nature of haematopoiesis described in 1.2, coupled with the 

varied, non-malignant causes of increased erythroid/megakaryocytic and fibroblast 

activity also contribute to the difficulties in the accurate diagnosis of classical MPNs. 

 

1.3.1 Essential thrombocythaemia 

 

A peripheral blood thrombocytosis is the sine qua non of ET with thrombocytosis 

defined as demonstrating a platelet count greater than 450 x 109/L in adults (Schafer, 

2004).  This increase in platelets may be classed as a primary thrombocytosis, due to 

an underlying abnormality in haematopoiesis processes, or as secondary (also 

referred to as ‘reactive’) thrombocytosis, when the increase can be attributed to an 

external cause (Buss et al., 1994). 

 

The body’s requirement for platelets can be increased under a range of 

circumstances, some examples of which are shown in Error! Reference source not f

ound..  This includes circumstances in which there is an increased requirement for 

platelets, for example during blood loss following injury or surgery.  Inflammatory 

mediators such as interleukin-6 can cause stimulate platelet production (Burmester et 

al., 2005; Kaser et al., 2001; Wolber et al., 2001), under circumstances where an 

increase in platelet production is not necessarily required (secondary increase).   

 

 

 

 



35 

 

Increased platelet requirement Secondary increase 

Tissue damage/vascular injury Infection 

Post-operative Inflammation 

Haemorrhage Iron deficiency 

 Malignancy 

 Therapy related 

Table 1-2. Causes of reactive thrombocytosis (Harrison et al., 2010). 

 

Thrombocytosis is often first identified as an incidental finding following a routine 

blood count.  The most common cause of a raised platelet count would be a reactive 

thrombocytosis which is typically transient in nature and resolves without causing 

clinical complications or requiring intervention (Griesshammer et al., 1999).  If 

platelet counts are assessed at only a single time point, it is impossible to determine 

whether the thrombocytosis was due to a reactive process.   

 

Primary thrombocytosis is rarer and is most frequently attributable to ET.  

Complications within this group are more prevalent, with data suggesting that 

approximately 20% of patients present have symptomatic disease, presenting with 

features such as headaches, visual disturbances or thromboembolytic events 

(Brodmann et al., 2000).   Differentiating between primary and secondary 

thrombocytosis has a significant impact on patient management.  The identification 

of underlying reactive causes should be pursued alongside the confirmation of 

persistence of thrombocytosis.  In cases where no reactive cause is identified, 

evidence of malignant causes should be sought (Harrison et al., 2010). 
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Symptomatically, ET can be difficult to diagnose.  The symptoms associated with 

ET are primarily related to vascular occlusive events, which can also occur as a 

result of many other conditions (Rumbaut and Thiagarajan, 2010).  Major thrombotic 

events affecting cerebrovascular, cardiac, pulmonary, hepatic or splenic circulation 

may be fatal (Sagripanti et al., 1996).  Vascular occlusions within the micro-vessels 

are also common, causing a wide range of symptoms including pain and 

discolouration of the fingers and toes, headaches and visual dysfunction, which 

occur as a result of the transient suspension of blood flow (Frewin and Dowson, 

2012). 

 

1.3.2 Polycythaemia Vera 

 

Polycythaemia is defined as an elevated haemoglobin (>185g/L in adult males and 

165g/L in adult females).  This may be classed as a true or apparent polycythaemia 

on the basis of whether the patient has an increased red cell mass (McMullin et al., 

2005).  Apparent polycythaemia occurs when plasma volume is decreased; this may 

be seen in individuals with increased alcohol intake (Biswas et al., 2003).  True 

polycythaemia can be further separated according to whether the cause is primary 

and secondary (see Figure 1-5).  Secondary polycythaemia occurs as a result of 

hypoxia or in some hereditary conditions (as shown in Table 1-3). 
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Congenital Acquired 

High oxygen-affinity haemoglobin 

variant 

Cardiac disease 

2,3-biphosphoglycerate mutase 

deficiency 

Chronic lung disease 

Erythropoietin receptor-mediated Carbon monoxide poisoning 

Chuvash erythrocytosis (vhl mutation) Smoker's erythrocytosis 

 End-stage renal disease 

 Hepatocellular carcinoma 

 Renal cell cancer 

Table 1-3. Example of causes of secondary polycythaemia (adapted from 

McMullin et al., 2005b). 
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Figure 1-5. Differential diagnosis of polycythaemia.  Patients presenting with increased haemoglobulin and/or haematocrit levels can be 

separated according to the presence or absence of increased red cell mass, allowing those with apparent polycythaemia to be identified.  

Where true polycythaemia is present, this can be further discriminated into primary polycythaemia (PV) and secondary polycythaemia. 
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EPO production is stimulated by low tissue oxygen levels.  Hypoxia can arise in a 

wide range of conditions, as shown in Table 1-3, giving rise to increased levels of 

EPO and subsequently an increase in red cell mass (Lee and Percy, 2011).  

Polycythaemia may be asymptomatic, and only be identified as an incidental finding 

following a routine blood count.  However, prolonged polycythaemia is associated 

with a range of symptoms including (Koopmans et al., 2012; Radia and Geyer, 

2015);  

 

o Fatigue 

o Pruritis (Itching) 

o Erythromelalgia (burning sensation in extremities) 

o Headaches 

o Dizziness 

o Reddening of skin 

o Splenomegaly 

o Thrombosis    

 

The symptoms associated with PV are primarily related to the thickening of 

peripheral blood and occlusive events which result from hyperviscosity (Emanuel et 

al., 2012; Geyer et al., 2014; Mesa et al., 2007).   Similarly to patients with ET, 

major thrombotic events affecting cerebrovascular, cardiac, pulmonary, hepatic 

(Budd-Chiari) or splenic circulation can occur and may be fatal. (Sagripanti et al., 

1996).  Complications arising from PV are common, with data suggesting that 

approximately 30-40% of patients present with symptomatic disease and 

splenomegaly (Geyer et al., 2014).   
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1.3.3 Primary myelofibrosis 

 

The presentation of PMF is highly variable, as PMF can arise as a de novo condition, 

or as a progression/transformation of an existing PV/ET (Bose and Verstovsek, 

2016).  Additionally, de novo PMF can present in both the prefibrotic stage of 

disease as well as in its overt form (Tefferi, 2018).  As a result of these varying 

aetiologies patients may present with features ranging from hyper-cellularity  

(polycythaemia, leucocytosis, thrombocytosis) through to pancytopenia (anaemia, 

leucopoenia, and thrombocytopenia) and hepato-splenomegaly attributable to 

extramedullary haematopoiesis (Guglielmelli et al., 2017).  Overt PMF is associated 

with a more severe clinical presentation than is reported in pre-fibrotic PMF (Rumi 

et al., 2018).  The severity of symptoms may be contributed to the increasing 

hepato/splenomegaly; and can include portal hypertension, pain, and splenic 

infarction, as well as progressive bone marrow failure due to the increasing areas of 

fibrosis within the marrow (Guglielmelli et al., 2017).   

 

1.4 Laboratory diagnosis of classical MPNS 

 

Distinguishing between patients with classical MPNs and those with reactive 

conditions is essential for appropriate patient management.  A number of laboratory 

investigations can be used alongside clinical examinations to achieve this.   

 

1.4.1 Full blood count analysis 

 

Full blood count (FBC) analysis is probably the most accessible and rapid of the 

laboratory investigations employed in the diagnosis of MPNs.  Performed on a 

sample of peripheral blood, the FBC measures the major components of blood, with 

FBC reference values denoted in Table 1-4.   
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The white blood cell (leucocyte) populations (neutrophils, lymphocytes, monocytes, 

basophils and eosinophils) are quantified, along with erythrocytes (red blood cells) 

and platelets.  The amount of haemoglobin carried within the red blood cells is 

measured as both a total (haemoglobin level (Hb), and per cell (mean cellular 

haemoglobin (MCH)).  The size and shape characteristics of each cellular component 

is also measured. 

 

Adult reference ranges Male Female ET PV PMF 

Haemoglobin (g/l) 130-180 115-165 ↔ ↑ ↓ 

White cell count (x109/l) 4-11 4-11 ↑ ↑ ↑ 

Platelet count (x109/l) 150-450 150-450 ↑ ↑ ↑ 

Red cell count (x1012/l) 4.5-6.5 3.8-5.8 ↔ ↑ ↓ 

Mean cell volume (fl) 80-100 80-100 ↔ ↔ ↔ 

Haematocrit (%) 40-52 0.37-0.47 ↔ ↑ ↓ 

      

Table 1-4. Commonly measured full blood count parameters with their normal 

adult reference range alongside possible changes associated with classical 

MPNs. (↔ = within reference range, ↑ = increased, ↓ = decreased). (reference 

range from Leeds Teaching Hospitals NHS Trust, Leeds, UK). 

 

Patients presenting with classical MPNs may show abnormalities within their full 

blood count parameters (2009).  Increased haemoglobin and red cell counts are 

frequently associated with PV, and can be accompanied by an increased in both 

platelet and white cell counts (Arber et al., 2016).  In cases of PV with concurrent 

iron deficiency, haemoglobin levels may not appear raised, but evidence of iron 

deficiency (such as a low mean cell volume) may be documented (Barbui et al., 

2014a).   
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In ET, red blood cell associated parameters are typically within the expected range.  

Raised platelet counts are characteristically seen, along with increased white cell 

counts (Arber et al., 2016). The blood picture associated with PMF is more variable, 

with increased levels of platelets and white cells often present in early stages of 

disease, however, in patients with progressive disease, impaired bone marrow 

haematopoiesis can lead to reduced production of all blood cell types (pancytopenia) 

(Arber et al., 2016; Orazi et al., 2006). 

 

These changes are not restricted to the classical MPNs.  As described in 1.2, 

increased platelet counts and white cell counts commonly seen in patients with 

reactive conditions and raised haemoglobin and red cell parameters can be found in 

response to hypoxia. 

 

1.4.2 Peripheral blood morphology 

 

Morphological examination of peripheral blood and bone marrow cells can be 

valuable in the diagnosis of the classical MPNs.  The increased numbers of red blood 

cells and/or platelets associated with PV and ET are visible on examination of a 

peripheral blood smear, as shown in Figure 1-6.      
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Figure 1-6. Peripheral blood morphology showing typical changes associated with (A) ET (increased platelets and platelet clumping) 

and (B) PV (increased red blood cells) (images from Ash Image Bank). 

 

 



44 

 

 

 

In PMF, morphological changes to the red blood cells are visible.  The fibrous 

depositions in the bone marrow are thought to be the cause of damage to the 

membrane of red blood cells which alters their appearance (2009).  Tear-drop 

poikylocytes (also called dacrocytes) are a characteristic feature of PMF (Figure 

1-7), however, their presence is also documented in a wide range of other conditions 

including severe thalassaemia and haemolytic anaemia (Arber et al., 2016; Orazi et 

al., 2006; Zhao et al., 2009). 

 

 

Figure 1-7. Teardrop-shaped red blood cells (teardrop poikylocytes/dacrocytes) 

are a prominent feature of PMF (image from ASH image bank). 
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1.4.3 Bone marrow examination 

 

Bone marrow morphology is considered by many to be the gold standard method of 

diagnosing the classical MPNs (Schalling et al., 2017).  Characteristics features 

present in classical MPNs allow them to be distinguished from reactive conditions as 

well as discriminating between diagnoses in cases of classical MPNs with 

ambiguous features from other tests (such as ET vs Prefibrotic PMF) (Arber et al., 

2016; Orazi et al., 2006).  Figure 1-8 shows examples of bone marrow morphology 

associate with the 3 classical MPNs. 

 

1.4.4 Red cell mass 

 

Polycythaemia can be seen as a result of reduced plasma volume (hyperviscosity), 

this phenomenon is known as apparent or relative polycythaemia.  In these cases, full 

blood count analysis shows an increase in haematocrit (the proportion of the blood 

sample composed of red blood cells), however, the overall mass of red blood cells is 

not increased.  Both smoking and alcohol consumption are associated with 

hyperviscosity and therefore, can present with an apparent polycythaemia (Biswas et 

al., 2003).   

 

The measurement of red cell mass is performed using a radio-isotopic assay.  This 

requires the incubation of peripheral blood with a radio-nucleotide, such as 

chromium 51, followed by reinjection back into the patient.  Further blood samples 

are taken at 10, 20- and 40-minutes post reinjection.  The proportion of chromium 51 

labelled red cells is measured and used to determine overall red cell mass. 

Unfortunately, despite being a very useful assay in distinguishing between apparent 

and true polycythaemia, the complexity of this assay means it is not widely available 

in UK blood science or specialist pathology laboratories.   



 

 
4
6
 

 

 

Figure 1-8. Typical bone marrow morphology seen in classical MPNs.  Image A shows BM from a patient with ET, the predominant 

feature of which is the increased number of large megakaryocytes, with no associated increase in erythroid activity or fibrosis present.  

Image B shows the bone marrow of a patient with PV.  The characteristic features of this bone marrow are the erythroid hyperplasia, 

accompanied by an increase in large megakaryocytes (similar to those seen in ET).  Image C is an example of the morphology associated 

with overt PMF, with deposition of reticulin fibrosis throughout the biopsy. (All images obtained from the ASH image bank).   
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1.4.5 Serum Erythropoietin 

 

The quantification of serum EPO levels is a useful tool in distinguishing between 

primary and secondary causes of polycythaemia.  As shown in Table 1-3, secondary 

polycythaemia primary occurs as a result of hypoxia associated with a range of 

medical conditions and behavioural traits (such as smoking and high altitude 

training) (Biswas et al., 2003; Haase, 2013).  Hypoxic conditions stimulate the 

secretion of EPO from the renal cortex resulting in increased serum EPO levels.  In 

true polycythaemia, there is no increase in serum EPO levels (McMullin et al., 

2007).  

 

1.4.6 Molecular screening assays 

 

As described in Error! Reference source not found., the classical MPNs are f

requently associated with mutations in the JAK2, CALR and MPL genes, amongst 

others.  The frequency of each mutation in the classical MPNs is shown in Figure 

1-2.  Screening for these mutations is an essential aspect of the diagnosis of classical 

MPNs as the majority of patients will have one of these abnormalities.  However, 

although none of the mutations are restricted to a specific classical MPN, the 

presence of a mutation in combination with the results of the other tests detailed in 

this chapter allows for accurate diagnosis of disease. 
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1.5 Diagnostic guidelines in classical MPNs 

 

1.5.1 Historical aspects 

 

The concept of MPNs was first proposed in 1951 by William Dameshek, whereby he 

referred to them as myeloproliferative disorders (Dameshek, 1951).  In this work, 

Dameshek proposed that 5 conditions (chronic granulocytic leukaemia (CGL), 

polycythaemia vera (PV), idiopathic or angiogenic myeloid metaplasia of the spleen, 

megakaryocytic leukaemia and erythroleukaemia (including diGuglielmo 

syndrome)) should be considered as an interrelated family of conditions (Dameshek, 

1951).  Prior to this publication, each of these disorders had been described 

individually, in papers published as early as 1845 (see Figure 1-9). 

 

At the time of Dameshek’s publication there were no formally recognised guidelines 

for the diagnosis of haematological malignancies.  In the years which followed, there 

began to be a recognition that variation existed in not only the clinical and laboratory 

features of haematological malignancies, but also in their responsiveness to 

treatments and movement towards formal classification schemes began.   

 

In 1967 the International Polycythaemia Study Group (PVSG) was founded with the 

aim of undertaking a prospective study to assess the long-term effects of different 

treatment regimes in PV (Wasserman, 1971).  In order to undertake this, it was 

necessary to develop diagnostic criteria for the inclusion of patients into the study.  

The group published its first recommendations for the diagnosis and management of 

PV in 1971 (Wasserman, 1971).  The main features required for a diagnosis of PV 

are shown in Table 1-5. 
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Figure 1-9. Timeline of major events in the understanding of classical Myeloproliferative Neoplasms. (Koumas et al., 2013; Nangalia et 

al., 2013; Tefferi, 2008).
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Major criteria Elevated Red Cell Mass 

Normal Arterial O2 Saturation 

Splenomegaly 

Minor criteria* 

2 minor criteria must be met in 

absence of splenomegaly 

Leucocytosis >12000 

Thrombocytosis >400,000 

Leukocyte alkaline phosphatase >100 

Serum B12 >900 or B12 binding 

capacity >2200 

Table 1-5. 1971 PVSG diagnostic criteria for PV (Wasserman, 1971). 

 

Recommendations for the diagnosis of ET followed much later with interim 

guidelines for the diagnosis of ET published by the PVSG in 1986 (Murphy et al., 

1986) followed by definitive recommendations for the diagnosis and management of 

ET  in 1997 (Murphy et al., 1997).  Concurrently, the recently formed 

Thrombocythaemia Vera Study Group (TVSG) also published a set of diagnostic 

guidelines for ET (Michiels and Juvonen, 1997).  The two sets of guidelines differed 

mainly in the increased emphasis placed upon the bone marrow histology within the 

TVSG guidelines thereby allowing a lower platelet count threshold to be used in the 

diagnosis of ET.  A summary of the two is shown in Table 1-6. 
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PVSG TVSG 

Platelet count >600x109/l Platelet count >400x109/l 

No evidence of reactive 

causes 

No evidence of fever or infection 

Normal red cell mass and 

normal mcv 

Normal ESR 

Normal BM iron stores Normal bone marrow cellularity 

with an increase in megakaryocytes 

No evidence of fibrosis or 

dysplasia 

 

No bcr/abl  

 Table 1-6. 1997 PVSG and TVSG criteria for the diagnosis of ET. 

 

The first formal guidance for the diagnosis of Myeloid Metaplasia, more commonly 

referred to as PMF was published in 1975 by one of the founding members of the 

PVSG, John Laszlo.   The main criteria for diagnosis included; fibrosis involving 

more than a third  of the section of bone marrow examined, splenomegaly, 

leucoerythroblastic features on morphological assessment, no evidence of increased 

red cell mass and the absence of the Philadelphia chromosome (Laszlo, 1975). 

 

1.5.2 Current classification schemes 

 

Current classification of the classical MPNs has evolved from these original 

guidelines.  As our understanding of the underlying biology of these diseases has 

advanced, the guidelines have been adapted to accommodate this knowledge in order 

to refine and improve diagnostic processes.   
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There are two main publications currently in use for the diagnosis of MPNs in the 

UK.  The diagnostic criteria as defined within the World Health Organisation 

(WHO) Classification of Tumours of Haematopoietic and Lymphoid Tissues, most 

recently the revised 2016 classification (Arber et al., 2016) and the recommendations 

published by the British Committee for Standards in Haematology (BCSH) 

(Harrison et al., 2010; Harrison et al., 2014; McMullin et al., 2005; McMullin et al., 

2007; Reilly et al., 2012a; Reilly et al., 2014; Reilly et al., 2012b).   

 

The WHO classification scheme is intended to provide a detailed description of the 

features of disease and define criteria for their identification.  They are developed by 

leading experts within each clinical field and based upon both previous guidelines 

and published clinical and scientific evidence (Swerdlow et al., 2008).  However, the 

criteria for classification do not cover best practice approaches for the 

implementation of the diagnostic and clinical processes, nor do they necessarily 

reflect the practical challenges faced by different geographic regions in terms of 

clinical and laboratory resources.   

 

The BCSH publish guidelines which set the benchmark for the diagnosis and 

management of patients with Haematological Conditions in the UK and include, but 

are not restricted to, malignancy (BCSH, 2016; GRADE, 2016).  Each set of BCSH 

guidelines is developed by a panel of clinical and scientific professionals with expert 

knowledge of the disorder.  The panel use the recommendations of the Grading of 

Recommendations, Assessment, Development and Evaluation (GRADE) working 

group for the assessment of quality of published evidence to inform the guidelines 

(GRADE, 2016).   

 

There are subtle differences within the guidelines between the two groups which 

reflect the different evidence and opinion of the panel of experts authoring the 

guidelines as well as the difficulties in diagnosing these conditions from reactive 

processes and from each another. 
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1.5.2.1 WHO recommendations 

 

The current 2016 WHO classification scheme for MPNs is an update of the 

previously published 2008 WHO classification of myeloid neoplasms (Vardiman et 

al., 2009a) which, in turn, are based upon the original PVSG/TVSG 

recommendations in conjunction with more recent scientific and clinical findings.  

The Myeloproliferative Neoplasms category, within the WHO classification scheme, 

contains 9 different diagnostic entities, as shown in Table 1-7.  Similarly to 

Dameshek’s original proposal for the myeloproliferative disorders, the WHO 

grouping of these entities is based upon the shared feature of the increased 

proliferation of morphologically normal mature cells of myeloid lineage. 

 

The main revisions from the 2008 version of these guidelines are the inclusion of 

additional molecular markers and introduction of a new, lower, threshold for 

haemoglobin introduced (reduced from 185g/L to 165g/L in males and from 165g/L 

to 160g/L in females) (Barbui et al., 2015).  These reduced thresholds have been 

selected to minimise the risk of missing cases of PV with mildly elevated 

haemoglobin levels and to avoid confusing these cases with ET (Barbui et al., 2014a; 

Barbui et al., 2014b). 

 

These guidelines also see the separation of PMF into two distinct forms.  The first of 

these is Pre-fibrotic Myelofibrosis (PrePMF), in which the fibrotic changes 

associated with PMF have not yet occurred and which previously would have been 

classified as ET on the basis of their lack of fibrosis.  The inclusion of this 

subclassification is based on several studies by a group in Cologne, which have 

demonstrated that subtle changes are present and that patients displaying these Pre-

fibrotic characteristics have an inferior outcome to those without pre-fibrotic 

characteristics (true ET) (Barbui et al., 2011a; Barbui et al., 2015; Gisslinger et al., 

2016; Thiele et al., 2011).  The second class of PMF is named “overt PMF” and 

represents those cases which would have met the criteria for PMF in earlier iterations 

of the guidelines.  A summary of the WHO diagnostic criteria for each of the 

classical MPNs can be seen in Tables 1-8.   
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Myeloproliferative Neoplasms 

Chronic Myeloid Leukaemia (CML) BCR-ABL+ 

Chronic Neutrophilic Leukaemia (CNL) 

Polycythaemia Vera (PV) 

Primary Myelofibrosis (PMF) 

     PMF, prefibrotic/early stage 

     PMF, Overt fibrotic stage 

Essential Thrombocythemia (ET) 

Chronic Eosinophilic Leukaemia not otherwise specified 

(NOS) 

MPN, unclassifiable 

Table 1-7. 2016 WHO classification of MPNs with the classical MPNs shown in 

bold (Arber et al., 2016). 
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PV ET PrePMF Overt PMF 

Major 

criteria 

Haemoglobin >165g/dL (M), >160g/dL (F)                                  

or Haematocrit >49% (M), >48% (F)                                  

or Increase red cell mass (RCM) 

1. Platelet count ≥450 × 109/L 

1. Megakaryocytic proliferation and 

atypia, without reticulin fibrosis 

>grade 1, accompanied by increased 

age-adjusted BM cellularity, 

granulocytic proliferation, and often 

decreased erythropoiesis 

 1. Presence of megakaryocytic 

proliferation and atypia, 

accompanied by either reticulin 

and/or collagen fibrosis grades 2 

or 3 

2. BM biopsy showing hypercellularity for 

age with trilineage growth (panmyelosis) 

including prominent erythroid, 

granulocytic, and megakaryocytic 

proliferation with pleomorphic, mature 

megakaryocytes (differences in size) 

2. BM biopsy showing 

proliferation mainly of the 

megakaryocyte lineage with 

increased numbers of enlarged, 

mature megakaryocytes with 

hyperlobulated nuclei. No 

significant increase or left shift in 

neutrophil granulopoiesis or 

erythropoiesis and very rarely 

minor (grade 1) increase in 

reticulin fibers 

2. Not meeting the WHO criteria for BCR-ABL1+ CML, PV, ET, 

myelodysplastic syndromes, or other myeloid neoplasms 

3. Presence of JAK2V617F or JAK2 exon 

12 mutation 

 3. Not meeting WHO criteria 

for BCR-ABL1+ CML, PV, PMF, 

myelodysplastic syndromes, or 

other myeloid neoplasms 

 3. Presence of JAK2, CALR, or 

MPL mutation or in the absence of 

these mutations, presence of another 

clonal marker, or absence of minor 

reactive BM reticulin fibrosis 

 3. Presence of JAK2, CALR, or 

MPL mutation or in the absence of 

these mutations, presence of 

another clonal marker, or absence 

of reactive myelofibrosis 

  4. Presence of JAK2, CALR, or 

MPL mutation 
  

Minor 

criterion 
Subnormal serum erythropoietin level 

Presence of a clonal marker or 

absence of evidence for reactive 

thrombocytosis 

a. Anaemia not attributed to a comorbid condition                                         

b. Leucocytosis ≥11 × 109/L                                                                      

c. Palpable splenomegaly                                                                              

d. LDH increased to above upper normal limit of institutional reference 

range 

Table 1-8. Summary of the WHO classification criteria for the classical MPNs (Arber et al., 2016).
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1.5.2.2 BCSH recommendations 

 

The BCSH do not published a single document which encompasses all MPN’s.  

Separate guidelines are produced for PV, ET and PMF and include best practice 

recommendations for investigation and clinical management.  The guidelines for the 

investigation and management of PV were published in 2005 (McMullin et al., 2005) 

and updated in 2007 (McMullin et al., 2007) following the identification of a 

recurrent mutations with in the JAK2 gene (Baxter et al., 2005; James et al., 2005; 

Kralovics et al., 2005; Levine et al., 2005; Scott et al., 2007).  Diagnostic 

recommendations were amended to include molecular screening for these defects. 

 

Guidance for the investigation and management of ET were originally published in 

2010 (Harrison et al., 2010) and further modified in 2014 (Harrison et al., 2014) to 

include recommendations for additional mutational screening following the 

identification of mutations with the CALR gene (Klampfl et al., 2013a; Nangalia et 

al., 2013; Rotunno et al., 2013a). 

 

Recommendations for the investigation and management of PMF were published in 

2012 (Reilly et al., 2012b), with an amended version released in 2014 (Reilly et al., 

2014).  As in the case of ET, the updated recommendations include screening for 

CALR gene mutations alongside updated clinical recommendations.  A summary of 

the BCSH diagnostic guidelines for each of these disorders are shown in Table 1-9 to 

1-11.  
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JAK2-positive Polycythaemia Vera 

A1 High haematocrit (52 in men, 48 in women) or raised red cell mass 

(>25% above predicted) * 

A2 Mutation in JAK2 

*DIAGNOSIS REQUIRES BOTH CRITERIA TO BE PRESENT 

 

JAK2-negative Polycythaemia Vera 

A1 Raised red cell mass (>25% above 

predicted) or haematocrit >60 in 

men, >56 in women. 

A2 Absence of mutation in JAK2 

A3 No cause of secondary erythrocytosis 

A4 Palpable splenomegaly 

A5 Presence of an acquired genetic 

abnormality (excluding bcr-abl) in the 

haematopoietic cells 

B1 Thrombocytosis (platelet count 

>450 × 109/l) 

B2 Neutrophil leucocytosis (neutrophil 

count > 10 × 109/l in non-smokers; 

>12.5 × 109/l in smokers) 

B3 Radiological evidence of splenomegaly 

B4 Endogenous erythroid colonies or low 

serum erythropoietin 

*DIAGNOSIS REQUIRES A1 + A2 + A3 + EITHER ANOTHER A OR 

TWO B CRITERIA 

Table 1-9. BCSH diagnostic criteria for PV (McMullin et al., 2005). 
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A1 Sustained platelet count >450 × 109/l 

A2 Presence of an acquired pathogenetic mutation (e.g. in the JAK2, CALR 

or MPL genes) 

 

A3 

No other myeloid malignancy, especially PV, PMF, CML or MDS 

A4 No reactive cause for thrombocytosis and normal iron stores 

A5 Bone marrow aspirate and trephine biopsy showing increased 

megakaryocyte numbers displaying a spectrum of morphology with 

predominant large megakaryocytes with hyperlobated nuclei and 

abundant cytoplasm. Reticulin is generally not increased (grades 0–2/4 

or grade 0/3) 

*DIAGNOSIS REQUIRES A1–A3 OR A1 + A3–A5 

Table 1-10. BCSH diagnostic criteria for ET(Harrison et al., 2014). 

 

A1 Bone marrow fibrosis ≥3 (on 0–4 scale) 

A2 Pathogenetic mutation (e.g. in JAK2, CALR or MPL), or absence of 

both BCR-ABL1 and reactive causes of bone marrow fibrosis  

B1 Palpable splenomegaly 

B2 Unexplained anaemia 

B3 Leuco-erythroblastosis 

B4 Tear-drop red cells 

B5 Constitutional symptoms (drenching night sweats, weight loss >10% 

over 6 months, unexplained fever (>37·5°c) or diffuse bone pains). 

B6 Histological evidence of extramedullary haematopoiesis 

*DIAGNOSIS REQUIRES A1 + A2 AND ANY TWO B CRITERIA 

Table 1-11. BCSH diagnostic criteria for PMF (Reilly et al., 2014). 
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1.5.3 Differences between classification systems 

 

The most significant difference between the two groups is the emphasis placed upon 

bone marrow histology in the WHO classification (Arber et al., 2016).  The 

assessment of morphological features in the bone marrow is a major criterion in each 

of the classifications shown.  Within the BCSH guidelines, bone marrow histology is 

a major criterion in the diagnosis of PMF, however, in the diagnosis of PV and ET, it 

may not be clinically indicated (Harrison et al., 2014; McMullin et al., 2007; Reilly 

et al., 2012a). 

   

This difference, particularly in relation to the diagnosis of ET, has caused some 

controversy, as it does not allow for the diagnosis of so-called Pre-PMF, where all 

other features would mimic those seen in ET (Gisslinger et al., 2016).   A large 

independent cohort study had been able to identify morphological subgroup with the 

histological features said to indicate Pre-PMF, although longitudinal analysis did not 

show any evidence of increased fibrotic transformation within those patients and  the 

adverse clinical impact of the original finding could not be confirmed (Wilkins et al., 

2008).   

 

There are small differences in the full blood count thresholds set out by each group.  

Within the criteria for the diagnosis of PV, the WHO includes a raised haemoglobin, 

whereas it is not included in the BCSH guidelines (Arber et al., 2016; McMullin et 

al., 2007).  Differences are also present in the threshold level of haematocrit in the 

two sets of guidelines (Arber et al., 2016; McMullin et al., 2007).  Numerical 

thresholds are used within all of these guidelines; however, it should be noted that 

there is no reference within the guidelines as to the underlying statistical basis of 

these values. 
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1.5.4 The use of thresholds in diagnostic guidelines 

 

The use of thresholds is commonplace within diagnostic criteria and disease scoring 

schemes.  Within the wider diagnosis of myeloid malignancy, the use of arbitrary 

thresholds applied to parameters such as blast percentage can make the difference 

between a diagnosis of myelodysplastic syndrome (MDS) and acute myeloid 

leukaemia (AML), albeit, a demonstrable clinical and outcome differences between a 

patient presenting with 19% blasts (MDS with excess blasts) versus 21% blasts 

(AML) has not been established (Lichtman, 2013). 

 

Within the diagnosis of MPNs thresholds applied to laboratory parameters are 

equally vague.  For example, the use of a platelet count threshold of 450 x 109/L 

reflects the upper limit of the recognised reference range.  However, by definition, a 

reference range only encompasses 95% of the population and as such 2.5% of 

individuals will have a platelet count exceeding the upper value under normal 

circumstances.  To date there are no published studies within the field of MPNs 

which systematically assess the probability of diagnosing an MPN with increasing 

laboratory and clinical parameters to establish the most appropriate threshold to use 

in diagnostic guidelines. 
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1.6 Clinical outcomes in classical MPN 

 

Prognostic outcomes differ between the diseases, as well as showing variability 

within the disease itself.  To enable clinicians to give patient’s appropriate 

information about their prognosis, and make plans for their management, an accurate 

diagnosis is critical. 

 

1.6.1 Prognosis according to disease type 

 

The prognosis of patients diagnosed with PMF is significantly worse than in both ET 

and PV.  Data published by Price et al from a series of 3364 MPN patients diagnosed 

in the USA shows inferior overall survival in all three classical MPNs compared to a 

control population (Figure 1-10) (Price et al., 2014).  The most significant of which 

was associated with PMF, where median survival was 24 months (vs 106 months in 

the control group) (Price et al., 2014).    

 

Figure 1-10. Kaplan-Meier survival estimates by MPN subtype compared to a 

control population.  Figures reproduced from (Price et al., 2014). 
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1.6.2 Prognostic significance of genetic mutations 

 

The prognosis for patients with ET and PMF also varies according to the underlying 

genetic lesion.  As shown in Figure 1-11, ET patients with JAK2 V617F mutations 

have an inferior prognosis to those with CALR and MPL mutations (Price et al., 

2014).  Patients with ET, who do not have a detectable mutation in any of these three 

genes, are referred to as triple negative or wild type (WT), and are shown to have 

superior outcomes (Rotunno et al., 2013a; Tefferi et al., 2014c)  compared to those 

with a JAK2 V617F, CALR or MPL.   

 

Conversely, patients with triple negative PMF are shown to have a poorer prognosis 

than those with a mutation in either JAK2, MPL or CALR, with a median overall 

survival (OS) of 2.5 years (Tefferi et al., 2014b).  In contrast, in those patients with 

PMF, CALR mutations are associated with the longest OS (median 8.2 years), 

followed by JAK2 and MPL which have similar survivals (median OS 4.3 and 4.1 

years respectively) (Tefferi et al., 2014b).  
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Figure 1-11. Kaplan-Meier survival estimates in (A) ET and (B) PMF according 

to molecular subtype (Tefferi et al., 2014b; Tefferi et al., 2014c) 
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1.6.3    Importance of distinguishing between ET and Prefibrotic 

PMF 

    

As described in 1.5.2.1, the most recent revisions to the WHO classification of 

MPNs has separated PMF into two distinct entities – overt PMF and Prefibrotic PMF 

(Arber et al., 2016).  Historically, many cases of prefibrotic PMF would have been 

classified as ET due to their similar morphological appearances and failure to meet 

the previous criteria for diagnosis of PMF (Barbui et al., 2018; Gisslinger et al., 

2016; Thiele et al., 2011).  Studies of patient with pre-fibrotic PMF have 

reproducibly shown an inferior prognosis in this group (Figure 1-12) (Giovanni 

Barosi 2012; Guglielmelli et al., 2017). 

 

 

Figure 1-12. Overall (A) and leukaemia free (B) survival in ET vs Pre- and 

Overt-PMF (figure reproduced from (Guglielmelli et al., 2017).  This data 

shows superior outcomes for individuals with ET compared to those with pre- 

and overt-PMF. 
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1.7 The diagnostic challenge 

 

1.7.1 Understanding the practical limitations of investigating 

suspected classical MPNs 

 

The data presented in the previous section highlights the importance of making an 

accurate diagnosis.  This is particularly so in the case of those patients presenting 

with peripheral blood features consistent with ET where a mutation within 

JAK2/CALR or MPL is not detected.  This is made difficult due to the 

aforementioned significant overlap between the presentation features of classical 

MPNs with those of reactive conditions.  Whilst the presence of a raised platelet 

count could indicate that a patient has ET or Prefibrotic PMF, it is more likely to be 

the result of an underlying reactive process.  In these instances, the absence of a 

mutation in JAK2, CALR or MPL would not exclude a diagnosis of ET or Prefibrotic 

PMF.  In order to confirm or exclude these diagnostic entities, the patient would 

have to undergo a bone marrow biopsy for morphological assessment.  If this 

approach was taken in all cases of thrombocytosis, it would not only be costly, but 

would also result in a large number of non-diagnostic, invasive bone marrow aspirate 

procedures.  Which, whilst considered a relatively safe procedure is a cause of 

significant discomfort and distress to the patients undergoing investigation  

 

1.7.2 Managing patient expectations without giving false 

reassurance 

 

It is important to balance the practical implications of testing patients in whom 

clinical suspicion is low with the expectations of the patients and the reassurance that 

performing blood tests can offer.  It is widely perceived that patients expect blood 

tests to be performed during clinical investigations and consider active testing 

approaches to be an indicator of quality of care (Hartley et al., 1987; Prochazka et 

al., 2005; van Bokhoven et al., 2006).  However, there is also a perception that the 
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results of blood tests will be conclusive in the diagnosis or exclusion of disease (van 

der Weijden et al., 2002).  In the case of suspected MPNs, this would be an 

unrealistic expectation.  Clinicians may experience difficulties in conveying the 

limitations of performing JAK2 V617F and CALR mutational screening to patients 

who are anxious, and who may have a limited understanding of biology.  

Furthermore, there is also evidence that when a patient is given the ‘all clear’ 

following cancer-related investigations, they can become dismissive of new or 

worsening symptoms prolonging the time taken to seek medical advice  (Renzi et al., 

2015; Renzi et al., 2016).  This may occur in the investigation of suspected classical 

MPNs as peripheral blood screening alone is not capable of fully excluding the 

presence of disease.  If a JAK2 V617F wild-type/CALR wild-type result is conveyed 

as being an ‘all clear’ result, and no further investigations are performed, a patient 

who may have an MPN associated with another mutational profile (such as a 

mutation in the MPL gene or triple negative disease) may be falsely reassured and 

dismissive of symptoms which may indicate progressive disease.   

 

One possible solution would be to better identify those individuals within the 

population who should be investigated for a possible MPN.  Additionally, a tool 

capable of identifying those patients who would benefit from further testing when a 

definitive diagnosis cannot be made from peripheral blood screening would be 

valuable in addressing the challenges faced by clinicians. 
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2. Aims and objectives 

Although clinical guidelines exist for the referral of patients with a suspected 

classical MPN, the actual referral pathways are not prescriptive, and it is unclear 

how efficient these guidelines are in identifying classical MPN patients in a real-

world setting.  It is hypothesised that the referral of patients with suspected classical 

MPN represents an increasing proportion of the haematopathology laboratory 

workload without a concomitant increased proportion or absolute number of 

confirmed classical MPN diagnoses.  As any increase in samples referred for 

laboratory-based investigatory testing places a significant burden on laboratory and 

clinical resources, the overall aim of the study is to better develop methods to target 

patients with suspected MPNs for further investigation. 

 

To achieve this aim, this study will: 

• Develop, implement, and validate an assay for the detection of CALR 

mutations in patients referred for the investigation of a suspected MPN. 

• This assay will then be applied in conjunction with JAK2 V617F mutation 

screening to create an assay which is applicable in a routine, clinical laboratory-

based setting. 

•  Evaluate both the numbers of referred cases, and the existing clinical referral 

pathway, to examine the potential to offer better value and increase efficiency in 

testing. 

• Quantify the performance of current clinical guidelines and the extent to 

which they are followed in a real-world setting. 

• Develop, test and validate predictive statistical models to ascertain whether 

such an approach would offer a benefit over existing referral strategies. 

• Assess the potential impact a change in referral practise would have on an 

independent, real world cohort.  

• Develop an interactive user interface to enable the proposed predictive model 

to be accessed prospectively by the diagnostic community at large. 
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3. Materials and methods 

 

3.1 Rationale and introduction 

 

This chapter describes the setting in which this research has taken place along with 

the relationship between the populations included in the analyses.  The study 

population and methods of selection are discussed, along with the rationale for 

inclusion/exclusion criteria.  In depth protocols are provided for each of the 

laboratory methodologies used in this thesis, with details of their interpretation.  

Details of the study designs chosen, and statistical methods employed, along with 

their interpretation and levels of significance are also included. 

 

3.2 Setting 

 

The work described in this thesis was performed at the Haematological Malignancy 

Diagnostic Service (HMDS) laboratory based within St James’s Institute of 

Oncology; a part of Leeds Teaching Hospitals NHS Trust in the UK.  Established in 

1992, the department specialises in the diagnosis of haematological malignancies, 

including MPNs.  Today, HMDS provides a comprehensive, diagnostic service to a 

population of over 6 million people (Figure 3-1) and receives approximately 35,000 

patient referrals per annum, making it the largest department of its kind in the UK.   

 

The department brings together all the laboratory techniques required to diagnose 

haematological malignancies in a single, multidisciplinary centre and all the data 

generated by the HMDS laboratory is stored centrally in a purpose-designed 

laboratory database, HMDS Integrated Laboratory Information System, ‘HILIS’. 
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Figure 3-1. Map indicating the geographical regions containing hospitals which 

are served by HMDS, including those with the HMRN region. 

 

The UK 2007 Cancer Reform Strategy recognised that integrating these technologies 

into a single diagnostic service was the best way to ensure diagnostic accuracy and 

optimal treatment for patients with haematological malignancies (DOH, 2007)   

Since its inception this approach has been strengthened by the rapid development of 

diagnostic technology and is now regarded as the national standard of care by the 

National Institute for Health and Care Excellence (NICE, 2015).  

 

In 2004 The Haematological Malignancy Research Network (HMRN) was 

established, a collaboration between HMDS, a unified clinical network of 14 

hospitals (comprising the Yorkshire & Humber and Yorkshire Coast Cancer 

Networks) and the Epidemiology and Cancer Statistics Group (ECSG) at the 

University of York (Figure 3-2) (Smith et al., 2010).   
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Figure 3-2. The geographical area and 14 hospitals served by both HMDS and 

HMRN. 

 

The HMRN region covers a population of approximately 3.8 million people.  

Measures of the socio-demographic profile of individuals within the catchment 

region, as well as age and sex distribution are comparable to data collected from 

across the UK (Figure 3-3).  This enables researchers to extrapolate data findings 

from the HMRN region to the national population (Smith et al., 2010).   

 

 

 

Figure 3-3. The Age and Sex distribution of HMRN population vs UK average 

(Smith et al., 2018). 
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Specimens from any patient with a suspected haematological malignancy visiting a 

hospital within the HMRN are referred to HMDS for diagnostic investigations.  

HMRN then tracks all patients diagnosed with a haematological malignancy within 

this region; obtaining information from clinical and laboratory records and linking to 

nationally compiled administrative records (mortality, cancer registration and 

hospital episode statistics), as well as collecting self-reported information from 

patients (Smith et al., 2018). 

 

3.3 Clinical pathway for patients with suspected classical 

MPNs 

 

HMDS receives specimens from hospitals both within and outside of the 

geographical region forming HMRN, the majority of these are sent by 

haematologists working within haematology outpatient clinics.  An overview of the 

pathway a patient with a suspected MPN follows in Leeds Teaching Hospitals is 

shown below (Figure 3-4) with approximate timescales shown alongside each step.  

Discussion with clinical colleagues indicated that the same, or similar, approach was 

used throughout the HMRN region and beyond. 

 

The patient is initially referred to the haematology clinic by a health care 

professional, generally a general practitioner.  The first clinic appointment usually 

takes place within 14 days of this referral, at this visit, the patient is seen by a 

haematologist who takes a detailed medical history and performs a physical 

examination.  The clinician also reviews the most recent peripheral blood counts 

available on the hospital result service.  Following this consultation, the clinician 

requests the appropriate investigations to be undertaken and the patient is sent to the 

phlebotomist for venepuncture.  It is at this point that a JAK2/CALR mutation screen 

would be requested, along with any other blood tests indicated (full blood count, 

biochemical markers). 
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Figure 3-4. Clinical investigatory pathway followed by suspected MPN patients 

at Leeds Teaching Hospitals NHS Trust. 

 

The patient returns for a follow-up appointment around 2-4 weeks later where the 

results of these investigations are reviewed.  On the basis of these results, further 

tests may be arranged (such as bone marrow aspirates) and treatment may be 

initiated (if appropriate).  Patients are then seen at intervals depending their clinical 

need. 
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3.4 Laboratory processes in HMDS 

 

Upon their arrival at HMDS, specimens are prepared for morphological examination.  

A small volume of blood or bone marrow is spread onto a glass microscope slide and 

stained with cellular dyes (May-Grünwald Geimsa) before being viewed by light 

microscopy.  Further laboratory tests are requested based on clinical information 

provided alongside morphological features and peripheral blood count data (where 

available).  Details of each request are registered into HILIS and include the patients 

name, date of birth and NHS number as well as the referring hospital/clinician.  A 

record is made of any laboratory tests requested and performed, the results of which 

are added to HILIS as they become available.  If the patient has been investigated 

previously by HMDS, the computer records are linked to allow chronological 

monitoring. 

 

The department is arranged in sections according to laboratory techniques employed 

– flow cytometry/immunophenotyping, histopathology/immunohistochemistry, 

molecular diagnostics (including Fluorescent in situ hybridisation, PCR based 

assays, gene sequencing and SNP analysis).  Each section of the laboratory reports 

the results of its own tests and when every section has completed their tests, a single 

unified report is collated by specialist haematopathologists. 

 

3.4.1 Diagnostic workflow for suspected classical MPNs 

 

In HMDS, the diagnosis of a classical MPN is a multistep process, which may 

require the analysis of a second specimen in some patients.  The workflow process 

followed by the HMDS laboratory is shown in Figure 3-5, briefly, where a blood 

sample is received with a suspected diagnosis of a classical MPN, JAK2 V617F and 

CALR mutational screening is performed.  If a mutation is identified, a diagnosis of a 

classical MPN can be made, if clinical features support this.  If no mutations are 

detected, it is not possible to diagnose or exclude a classical MPN and a further 

sample (bone marrow) is requested for analysis.  If a bone marrow is received by 
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HMDS from such a patient, it is tested for the presence of rarer mutations (MPL 

and/or JAK2 Exon 12) and the bone marrow is morphologically assessed for features 

consistent with a classical MPN. 

 

HMDS introduced JAK2 V617F mutational screening in October 2005, and CALR 

mutational screening in February 2014.  The department currently receives 

approximately 2500 referrals per annum for the investigation of suspected MPNs.  

The laboratory data stored by HMDS offers an unparalleled resource for the analysis 

of data related to the investigation of suspected classical MPNs and provides an 

excellent framework for this research. 

 

  

Figure 3-5. HMDS laboratory workflow process for the investigation of a 

suspected classical MPN. 



75 

 

 

 

 

3.5 Sample groups 

 

Several groups of patient specimens have been analysed in this work.  These have 

been divided into “Experimental” specimens, that is those which underwent 

additional laboratory analysis in order to generate data presented in this work, and 

“Statistical” specimens, that is those where only stored data has been used to perform 

the statistical analyses presented in this work. 

 

3.5.1 Experimental specimens (Sample group 1)  

 

 

Figure 3-6. Summary of specimens used to develop CALR mutational screening 

assay. 

 

The identification of CALR mutations in JAK2 V617F wild type classical MPNs 

necessitated the development of a diagnostic assay capable of detecting these 

mutations for routine use in HMDS.  HMDS records were searched for bone marrow 

specimens with a diagnosis of ET (n=875).  Any specimen in which a JAK2 or MPL 

mutation had been detected was excluded from further analysis (n=507).  For 
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convenience and accessibility of stored DNA, specimens referred prior to 2012 were 

excluded (n=233).  The remaining referrals (n=135) were reviewed and excluded if a 

peripheral blood sample was not received at the same timepoint (n=39) or DNA was 

not stored (n=11) (Figure 3-6).    Paired PB and BM specimens from the remaining 

48 patients were used to validate the PCR assay.   

 

To comply with UKAS Medical Laboratory Accreditation (ISO 15189) standards, 

further external validation of the assay was performed through a mutual specimen 

exchange with Nottingham City Hospital’s molecular diagnostic laboratory.  

Following analysis in HMDS, 20 of the specimens which had been tested were sent 

to Nottingham and a further 20 samples were received by HMDS in exchange.  

Following testing by each respective laboratory, the samples were returned, and the 

test results compared.   

 

In addition to this reciprocal sample exchange, 30/48 of the HMDS patients included 

in this group had been analysed by the Wessex Regional Genetics Service as part of 

their Genome Wide Association Studies (GWAS) which led to the identification of 

CALR mutations.  The results of the CALR analysis performed on these samples 

were made available to us for comparison.    

 

3.5.2 Statistical Specimens (sample groups 2-6) 

 

3.5.2.1 Sample group 2: All suspected MPNs (2005-2014) 

 

Specimens received by HMDS for the investigation of a suspected MPN were 

identified from HILIS using structured query language searches.  All records 

received between the beginning 2005 and the end of 2014 (when the search was 

performed) were included.  The data collected included age, gender, molecular 

screening results and full blood count parameters (where available) as well as a 

unique patient identifier (NHS number) which was used to remove duplicate requests 
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on the same individual and to positively identify those patients who had a subsequent 

bone marrow examination to confirm or exclude a diagnosis of an MPN.  Where the 

final diagnosis was not given a specific MPN subtype, data was reviewed with a 

clinician (Dr C Cargo or Dr R Kelly) to determine the most appropriate diagnosis.  

These specimens (see Figure 3-7) form a core sample group from which two further 

subgroups of specimens have been generated (Sample groups 3 and 4). 

 

 

Figure 3-7. Summary of sample groups used in statistical analyses. 
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3.5.2.2 Sample group 3: Comparison of JAK2 and CALR mutated ET 

 

To compare the demographic and laboratory features associated with CALR mutation 

against those seen in JAK2 V6147F mutated counterparts, diagnoses of ET with a 

CALR mutation identified between January and December 2014 (n=88) was 

compared to the JAK2 V617F mutated ET diagnoses made during the same period 

(n=311).    

 

3.5.2.3 Sample group 4: Predictive model development 

 

This work aimed to develop a statistical model which could be used to aid in the 

investigation of suspected MPNs received by HMDS.  Statistical models were 

developed using data collected from all suspected MPN referrals which had 

undergone both JAK2 V617F and CALR mutational screening in HMDS with full 

blood count data available at the time of referral (n=2970). 

 

3.5.2.4 Sample group 5: Model validation 

 

Each of the statistical models developed using sample group 4, was then validated on 

a further dataset using samples received between January and March of 2015 

(n=515) (see Figure 3-8). 

 

3.5.2.5 Sample group 6: model assessment 

 

Finally, the best performing model, was then applied to a third dataset, containing all 

suspected MPN requests received between January and December 2016 (n=2174) 

(see Figure 3-8).   
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Figure 3-8. Overview of samples used in the validation and assessment of 

predictive modelling in the investigation of suspected MPNs. 

 

3.6 Laboratory investigations 

 

The laboratory methods described in this thesis were undertaken in the HMDS 

laboratory, Leeds, United Kingdom.  Development of the fluorescent PCR and 

fragment analysis assay used in the determination of JAK2 V617F and CALR 

mutations was undertaken by the author.  Following development, the assay has been 

incorporated in routine laboratory practice and the data used in this thesis has been 

collected by all members of the HMDS Molecular Diagnostics team, including the 

author.  Full details of reagents and protocols are available in the appendix. 
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3.6.1 Isolation of leucocytes 

 

Leucocytes were isolated by selectively removing erythrocytes by differential lysis 

with 0.86% ammonium chloride solution (NH4CL).  A 1mL aliquot of 

Ethylenediaminetetraacetic acid (EDTA) anticoagulated peripheral blood or bone 

marrow was incubated with 9mL of ammonium chloride solution in a 13mL Röhren 

tube, which was then incubated for 10 minutes at room temperature.  The suspension 

was then centrifuged for 4 minutes at a relative centrifugal force (RCF) of 470 and 

the supernatant discarded.  The resulting cell pellet was washed twice with 10mL 

volumes of FACSFlow containing 0.3% Bovine Serum Albumin (BSA), centrifuging 

at 470 RCF for 4 minutes and discarding supernatant between washes.  The washed 

cells were then re-suspended in 200µL of FACSFlow prior to genomic 

Deoxyribonucleic acid (DNA) extraction. 

 

3.6.2 Genomic DNA extraction 

 

Genomic DNA was extracted from the 200µL aliquot of leucocytes using the 

QIAamp DNA Mini Kit (QIAGEN Ltd, U.K.) according to the manufacturer’s 

instructions.  In this method, the aliquot of cells was added to a 1.5mL Eppendorf 

tube.  Twenty microlitres of proteinase K (activity of 600U/mg protein) and 200µl of 

lysis buffer (buffer AL) were added together and the mixture was then incubated in a 

water bath at 56°C for 10 minutes. Following incubation, the samples were briefly 

centrifuged to remove droplets from the inside of the lid and 200µL of ethanol (96-

100% concentration) was added and the sample mixed by pulse-vortex. The mixture 

was then applied to a QIAamp Spin Column and centrifuged for 1 minute at 6000 

RCF to bind the DNA to the silica-gel column membrane.  The supernatant was 

decanted and 500µL of wash buffer (AW1) applied to the column.  The column was 

then centrifuged for 1 minute at 6000 RCF and the effluent discarded.  A further 

500µL of wash buffer (AW2) was added to the column, which was then centrifuged 

for 3 minutes at 18,400 RCF. The QIAamp Spin Column was then transferred into a 

fresh collection tube and 200µL of elution buffer (buffer AE) added. The column 
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was left to stand for 2 minutes, prior to centrifugation for 1 minute at 6000 RCF to 

elute the extracted genomic DNA into the filtrate.  DNA was stored at room 

temperature prior to amplification.  

 

3.6.3 CALR / JAK2 V617F mutation screening 

 

For CALR mutational screening, amplification of exon 9 is performed using a 

fluorescently labelled forward primer and unlabelled reverse primer.  An allele 

specific oligonucleotide (ASO) polymerase chain reaction (PCR) assay is 

traditionally used for the detection of the JAK2 V617F mutation, in combination 

with agarose gel electrophoresis.  In this work, the ASO strategy has been modified 

by the author, to incorporate a fluorescent dye into the reverse primer.  The exon 14 

region of the gene was amplified using the fluorescently labelled reverse primer in 

combination with an unlabelled mutant specific forward primer and a consensus 

JAK2 wild type forward primer.  Full primer sequences and reagent mixes are shown 

in the appendix (Table 10-3Table 10-4).   This allows the simultaneous visualisation 

of the PCR products from both the CALR and JAK2 V617F assays using fragment 

analysis software.  Amplifications were performed in separate PCR reactions and the 

resulting products were combined in equal volumes for analysis. 

 

3.6.3.1 Thermal cycling conditions 

 

Both PCR reactions were performed simultaneously using a unified programme.  

Cycling Conditions for JAK2 V617F / CALR exon 9 PCR amplification are included 

in the appendix (Table 10-5). 
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3.6.4 Fluorescent fragment analysis 

 

A 1µL aliquot of each of the paired PCR products was added to a 96 well microtitre 

plate along with 10µL of Hi-Di formamide solution (Applied Biosystems) and 1µL 

of Rox-500 size standard (Life Technologies).  The microtitre plate was centrifuged 

briefly to ensure that samples were in the bottom of the well and then loaded onto the 

ABI PRISM 3130 Avant Genetic Analyser.  Results were analysed using the generic 

microsatellite analysis protocol (ABI, Warrington, U.K.).   

 

3.6.5 Expected results and interpretation 

 

Data was interpreted using Genemapper Analysis Software (v3.1) (Applied 

Biosystems).  Product peaks were measured in relation to the ROX-500 size 

standards to identify wild type and mutated PCR products.  The expected size of 

both wild type and mutated PCR products are shown in Table 3-1. 

 

Product Fragment size 

JAK2 wild type 362bp 

JAK2 V617F mutated 202bp 

CALR wild type  292bp 

CALR mutated  Various - most common 240bp (52bp 

del) and 297 (5bp ins) 

Table 3-1. Expected fragment sizes for JAK2 V617F and CALR PCR products. 
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Figure 3-9. Electrophoretogram examples of JAK2 and CALR mutational analysis.  Genemapper software allows visualisation of PCR 

products according to their relative size.     In this case the wild type JAK2 product is 362bp and V617F mutant is 202bp (shown as blue 

peaks); wild type CALR is 292bp and mutant products vary (the example shown is 240bp) (shown as green peaks).
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Figure 3-9 shows examples of the results of this PCR assay.  The top panel shows 

1results from a specimen with wild type JAK2 V617F and CALR amplification.  The 

green peak at 292bp corresponds to the wild type CALR product and the blue peak at 

362bp the wild type JAK2 product, no further peaks are present.  The middle plate 

shows a case with mutated JAK2 V617F showing blue peaks representing both the 

wild type product at 362bp and a second peak at 202bp, the mutated product. The 

CALR gene is normal in this case with only the 292bp green peak present.  The 

bottom plate shows a case with mutated CALR.  The wild-type 292bp PCR product 

can be seen in green alongside a mutant peak measuring 240bp – this represents a 

52bp gene deletion.  The JAK2 gene is normal in this case with only the 362bp peak 

present.  

 

3.7 Statistical modelling methodologies 

 

3.7.1 Basic analyses 

 

The demographic and laboratory features of CALR mutated classical MPNs were 

compared against JAK2 V617F mutated counterparts using standard statistical tests.  

Mann-Whitney U tests were used to establish whether statistically significant 

differences existed between groups.  A p value of <0.05 was used to indicate 

significance in these analyses.  The sensitivity and specificity of the current clinical 

guidelines were calculated using the metrics described below in 3.7.4 

 

3.7.2 Approach 

 

To determine which modelling approaches to test in this work a preliminary side by 

side comparison of a range of supervised predictive modelling methods was 

performed using the automated software, WEKA (Waikato Environment for 

Knowledge Analysis).  This software platform contains a collection of machine 
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learning classifiers/algorithms which can be applied to user imported data sets.  

Using default settings, a set of 8 different supervised classification methods was 

applied to sample group 4 (see 3.5.2.3).  Performance measures were compared 

between approaches and the three which gave the ‘best’ results were chosen for 

further development and tuning.  These were logistic regression, random forest 

analysis and gradient boosted analysis. 

 

3.7.3 Software 

 

Further, detailed statistical analysis was undertaken in R studio using R version 3.5.1 

(Team, 2018), using packages shown in Table 3-2. 

 

PACKAGE REFERENCE 

SURVIVAL (Therneau, 2015; Therneau and Grambsch, 2000) 

MASS (Venables and Ripley, 2002) 

FARAWAY (Faraway, 2014) 

RGL (Adler and Murdoch, 2015) 

CARET (Kuhn et al., 2015 ) 

GMODELS (Warnes et al., 2013) 

ROCR (Sing et al., 2005) 

RMS (Harrell Jnr, 2015) 

RANDOMFOREST (Liaw and Wiener, 2002) 

GBM (Ridgeway, 2015) 

SHINY (Chang et al., 2018) 

Table 3-2. Statistical Packages used in data analysis. 
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3.7.3.1   Logistic regression 

 

In this work, the specified outcome was a diagnosis of MPN, and the candidate 

explanatory variables were the following measured laboratory and demographic 

attributes: 

• Age (years) 

• Gender (male(M) or female(F)) 

• Platelet count (Plt) x109/L 

• Haemoglobin (Hb) g/L 

• Red cell count (RBC) x106/L 

• Haematocrit (HCT) % 

• Mean cell volume (MCV) fl 

• White cell count (WBC) x109/L 

• Neutrophils (Neutr) x109/L 

• Lymphocytes (Lymph) x109/L 

• Monocytes (Mono) x109/L 

• Mean cell haemoglobin (MCH) pg 

• Mean corpuscular haemoglobin concentration (MCHC) g/L 

 

The explanatory variables were evaluated for collinearity using paired distribution 

plots and where identified one variable of the pair was chosen to be excluded based 

on biological information and frequency of missing data.  The selected explanatory 

variables were also assessed for statistical significance using a Least Absolute 

Shrinkage and Selection Operator (LASSO) analysis.  LASSO regression performs 

attribute selection to enhance the predictive accuracy of the model by shrinkage.  

This involves penalising the absolute size of the regression coefficients, and in doing 

so, some of the coefficients were shrunk to zero, at which point they were removed 

from the model.    
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Overfitting may occur when a statistical model is too complicated, contains larger 

numbers of variables than necessary and is consequently too specific to the dataset 

used to develop it.  Whilst a model may perform exceptionally well during 

development, if overfitted to the data, it will perform poorly on unseen data 

(Hawkins 2004).  Cross validation was performed to estimate the effect of overfitting 

within the logistic regression model.  This approach, an example of a repeated 

holdout method, randomly divides the original dataset into a specified number of 

smaller datasets as shown in Figure 3-10 (Lantz 2013 page 319).   

 

 

Figure 3-10.  Schematic representation of cross-validation. 

 

In this case the data was randomly divided into 10 new datasets.  The regression 

analysis was repeated using 9 of the 10 data subsets to train the model and the 

remaining 1 used to validate the performance of the model.  The logistic regression 

model tested on each of the datasets in turn.  The statistical significance of each 

explanatory variable was measured for each sampling, and the overall effect of 

overfitting estimated. 
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3.7.3.2 Random forest analysis 

 

The random forest is an example of an ensemble technique.  It is based on the 

common decision tree method, where data is separated into branches depending upon 

how it responds to the set criteria (see example in Figure 3-11).  Random forest 

utilised a plethora of randomly selected decision trees and combines their output to 

provide an overall prediction of outcome.  Overfitting does not occur as the large 

number of decision trees provide better generalisation (Breiman 2001)   In this case, 

500 individual decision trees were created to build the random forest. 

 

 

Figure 3-11.  Random forest decision tree process. 

 

Decision trees are created which bifurcate samples using simple threshold values and 

yes/no responses relating to the predictor variables, for example; is the patient male? 

(yes/no), is the patient over 50 years old? (yes/no). 
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3.7.3.3 Gradient-boost 

 

Similarly to Random Forest analysis, Gradient Boost is an ensemble technique in 

which a series of weak classifiers, typically decision trees, are combined to produce 

an overall prediction.  In this approach, each observation is initially assigned an 

equal weighting.  When a model is applied to the data, misclassified observations 

gain weight and correct classifications lose weight.  With the addition of each 

subsequent classifier there is increased focus on misclassified observations, due to 

their increasing weighting (Schapire and Fruend 2012).  The overall effect is that 

each classifier contributes proportionally to the prediction based on its predictive 

accuracy. 

 

3.7.4 Model performance evaluation 

 

Each of the statistical models developed were then applied to the original dataset and 

the model’s performance was tested.  Several measurements were assessed to 

evaluate the model as shown in Table 3-3. 

 

 Predicted MPN Predicted no 

mutation 

Total 

Actual MPN True Positive (TP) False Negative 

(FN) 

TP+FN 

Actual no 

mutation 

False Positive (FP) True Negative 

(TN) 

FP+TN 

Total TP+FP FN+TN  

Table 3-3. Confusion Matrix. 
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Performance measurements are centred on measuring how often the model gets the 

correct answer.  The focus is not only on how many times a positive case is correctly 

identified, but also how often a negative case is mistakenly called positive and visa-

versa, a confusion matrix separates the predicted data into 4 categories when 

compared to the actual diagnostic status (Table 3-3).    Depending upon the intended 

use of the model, it may be desirable to weight the model towards one of these 

categories.  For example, if the consequences of missing a case were severe, there 

emphasis may be placed on minimising false negatives, which may have a 

consequential impact on the frequency of false positives predicted by the model.  

Using the categories, a series of metrics can be calculated which are reproducible 

between modelling approaches and allow different models to be directly compared.  

The performance measures and their calculations are shown in Table 3-4.  

 

3.7.5 Model validation 

 

Validation is a key step in the assessment of a statistical predictive model and 

essential prior to introduction into clinical practice.  Ideally, the model should be 

applied to a ‘new’ dataset, that is, data which did not form part of the original dataset 

on which the model is built.  This is especially important where a model has been 

built using a sample of data in which the proportion of ‘MPNs’ and ‘No mutations’ 

does not necessarily reflect the actual frequency of each group in the population to 

which the model will be applied.  For these reasons, each model was applied to a test 

dataset and the performance measures reassessed to determine the applicability to 

‘real world’ data (Figure 3-12).  
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Figure 3-12. Process of model development and validation. 
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Measure Description  Formula  

Accuracy  Degree of closeness to the actual results from the predicted results  = (TP + TN)/(TP+FP+FN+TN)  

Sensitivity  Proportion of actual cases predicted to be cases  = TP/(TP + FN)  

Specificity  Proportion of controls predicted to be controls = TN/(FP + TN)  

Kappa Statistic  Compares the accuracy of the classifier compared to the random 

accuracy of the classifier  

See (Cohen, 1960) 

F-measure  A measure of the test’s accuracy taking into account sensitivity and 

precision  

= 2 x TP/(2 x TP + FP + FN)  

Area under the Receiver 

Operating Curve (AUROC)  

Reduces the ROC performance (FN and FP for every cut-off) to a 

single value thereby allowing classifier comparison  

See (Fawcett, 2006) 

Table 3-4. Standard performance characteristics and their formulae. 
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4. Development and validation of a screening assay for 

the simultaneous detection of JAK2 V617F and CALR Exon 

9 mutations. 

 

4.1 Rationale and introduction 

 

Molecular screening for JAK2 V617F mutations was introduced into routine practice 

in HMDS shortly after it was described (Baxter et al., 2005), using an Allele-specific 

oligonucleotide (ASO) PCR technique based upon the method presented in the 

literature.  CALR mutations were later identified through whole exome sequencing 

experiments.  This technique is not suitable as a screening tool in routine diagnostic 

practice – due to the cost implications, processing and data analysis time.  To be able 

to identify CALR mutations for the diagnosis of suspected MPNs in HMDS an 

alternative laboratory approach was required.  To maximise sample processing 

efficiency, an approach which would be used to detect mutations both JAK2 V617F 

and CALR mutations simultaneously was most desirable. 

 

4.2 Current approach to detecting JAK2 V617F mutations 

 

At the outset of this work, JAK2 V617F mutations were detected using an ASO-PCR 

assay.  This technique utilised two different forwards primers, in conjunction with a 

consensus reverse primer as shown in Figure 4-1.  The first was a consensus forward 

primer (a) binds upstream of the mutation point and will amplify independently of 

the mutational status.  The second was a mutant specific forward primer (b), 

designed to terminate at the point of the mutation, this primer would only anneal and 

amplify in the presence of the mutant sequence.  A consensus reverse primer was 

used to amplify both products.  
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Figure 4-1.  Schematic showing ASO-PCR. 

 

Following amplification, the PCR products were visualised using agarose gel 

electrophoresis.  The wild-type JAK2 PCR product is 364bp in length, whereas the 

product produced by DNA carrying the JAK2 V617F mutation is 203bp in length.  

This difference in size allowed easy distinction between the wild type and mutant 

JAK2 PCR products. 

 

ASO-PCR followed by agarose gel electrophoresis was not deemed to be a suitable 

approach for the detection of CALR mutations.  Mutations within the exon 9 region 

of the CALR gene are varied and therefore a single mutant specific primer would not 

be applicable. The published data indicated that CALR mutations were always 

associated with a change in amplicon size, although the reported mutations varied in 

size and included compound mutations resulting in size changes of as little as 1bp 

(Chen et al., 2014; Klampfl et al., 2013; Nangalia et al., 2013).  The resolution of 

electrophoresis of a 2% agarose gel is widely accepted to be in the region of 20-

30bp.  This limitation excluded gel electrophoresis from being utilised in this setting 

as a method of product visualisation.  
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4.3 Fragment size analysis for the detection of CALR exon 

9 and JAK2 V617F mutations 

 

Both the existing approach to JAK2 V617F analysis and amplification of the CALR 

exon 9 region would result in PCR products which differ in size between wild type 

and mutant DNA.  For this reason, fragment size analysis was considered as a 

potentially suitable approach.  The technique had been used extensively in our 

laboratory across a wide range of assays and was sufficiently sensitive to detect 

single base pair size changes as would be required for CALR mutation screening.  

The technique can be used to analyse multiple products simultaneously, to allow for 

both JAK2 V617F and CALR mutations to be identified in a single assay.   

 

The approach utilised fluorescent markers which were incorporated into the 5’ end of 

one of the primers used to amplify the target DNA.  The products were mixed with a 

size standard and analysed using capillary electrophoresis.  Instrument software 

measured the size of the DNA fragments relative to the corresponding size standards 

and displayed this information for user interpretation. 

 

Validation of a JAK2 V617F / CALR mutation screening assay was critical.  As a 

new diagnostic technique, extensive validation was undertaken prior to the 

introduction of this assay into routine laboratory use.  Standards for the validation of 

new diagnostic techniques are outlined in the standards set out by ISO 15189 (BSI, 

30 November 2012).      
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4.4 Primer selection 

 

As the JAK2 V617F assay was already well established, the same primer sequences 

were used for the fluorescent fragment analysis, with the addition of a 6-

carboxyfluorescein (6-FAM) label at the 5’end of the consensus reverse primer.  

These primers retained a melting temperature (Tm) of 60˚C which allows the use of 

the existing thermal cycling conditions for amplification. 

 

The genomic sequences described in the supplementary information from the 

original manuscript by Nangalia et al. (Nangalia et al., 2013) were used to design 

primers for the amplification of CALR exon 9.  The appropriate genomic region was 

identified using the University of California Santa Cruz (UCSC) genome browser, 

BLAT search (http://genome.ucsc.edu/). Once identified the corresponding sequence 

information spanning the whole of exon 9 was retrieved and imported into the 

Primer 3 software package (http://simgene.com/Primer3).  Primers were designed to 

have a Tm of 60˚C to allow amplification in the same reaction as those for JAK2 

V617F.  A hexachlorofluorescein (HEX) label was incorporated into the 5’ end of 

the CALR forward primer to enable visualisation. 

 

Following design, the primers were checked to ensure suitability.  Firstly, the primer 

sequence was checked to ensure that they would not bind to any other region of 

DNA using the Basic Local Alignment Search Tool (BLAST) from the National 

Centre for Biotechnology Information (NCBI) 

https://blast.ncbi.nlm.nih.gov/Blast.cgi).  Neither the CALR not JAK2 V617F primers 

were found to be homologous to any other region of human genomic DNA.  The 

primer binding region of DNA was also checked to ensure that it did not contain a 

recognised single nucleotide polymorphism (SNP) site using the online SNPCheck 

database search facility (www.snpcheck.net/), which would potentially prevent 

binding.  Again, neither set of primers was found to bind over a reported SNP site. 

 

 

http://simgene.com/Primer3
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4.5 Confirming amplification of CALR exon 9 gene region 

 

Firstly, it was demonstrated that the primers worked satisfactorily under the selected 

PCR conditions, and furthermore, were amplifying the correct region of DNA. To 

determine this, 6 DNA samples were selected from archived material and analysed 

using the assay described.  Following amplification, the PCR products were 

visualised by agarose gel electrophoresis to determine the presence of the amplicon.  

Amplification was evident at a satisfactory level using the existing thermal cycling 

conditions and these were used for all subsequent work.  The PCR products were 

analysed by Sanger sequencing and the resulting data compared to the corresponding 

CALR exon 9 gene region as detailed in the UCSC genome browser, BLAT search.  

The primers were found to be amplifying the appropriate region of DNA and were 

validated as being suitable for use. 

 

4.6 Validating assay in JAK2 wild type ET/PMF samples 

 

4.6.1 Demographic details and diagnoses 

 

A critical aspect of validation was to confirm that the assay would discriminate 

mutant CALR products from wild type.  To achieve this, the assay needed to be 

performed on samples with varying CALR mutations.  As no suitable reference 

material was available, the published data was used to identify a group of samples 

which would be most likely to have mutations present.  The literature indicated that 

CALR mutations were found in a significant proportion of patients with JAK2 V617F 

wild-type ET or PMF (Nangalia et al., 2013) and so a group of patients with these 

diagnoses were identified from laboratory records.   

 

Sample group 1 (Figure 3-6 and section 3.5.1) was used to validate the assays ability 

to detect mutations in CALR.  As described in 3.5.1, this group consisted of a cohort 
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of 48 patients with a confirmed diagnosis of ET or PMF, but where no demonstrable 

mutation in JAK2 V617F or MPL had been identified.  In the absence of such a 

mutation, this diagnosis could only be made by morphological assessment of bone 

marrow and therefore, archived DNA from bone marrow was available for testing.  

In addition, all 48 cases also had DNA stored from a peripheral blood sample 

received alongside the bone marrow sample.  The patient characteristics are shown in 

Table 4-1 . 

 ET PMF 

Number 42 6 

Median age (years) 64.6 71 

Male 23 (52.3%) 5 (83.3%) 

Table 4-1. Summary of patients in sample group 1 - for the validation of CALR 

mutation screening assay. 

 

4.6.2 Identification of CALR mutations 

 

DNA from all samples was amplified with both CALR and JAK2 primers in a single 

PCR reaction.  The fluorescent PCR products were analysed using Genemapper 

fragment analysis software (ABI, ThermoFisher).  CALR mutations were identified 

in a total of 24 patients (50%).  The characteristics of these mutations are shown in 

Table 4-2, with corresponding electrophoretograms shown in Figure 4-2.  Of note, 

the most frequently seen mutation was the 52bp deletion, followed by the 5bp 

insertion – which is in keeping with published data (Chen et al., 2014; Klampfl et al., 

2013b; Nangalia et al., 2013).    

 

Complete concordance was seen between peripheral blood and bone marrow samples 

for the same patient.  The majority of referrals for the investigation of a suspected 

MPN are peripheral blood samples and JAK2 V617F screening has been routinely 

performed on peripheral blood since its introduction.  The ability to perform CALR 
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mutation screening on the same specimen was a key aspect of incorporating the 

assay into routine laboratory use.   

 

Figure 4-2 Results of fluorescent fragment analysis obtained during assay 

validation.  Each panel showing a distinct mutation, the wild-type CALR peak 

is shown in the highlighted box.  The second green peak shows the mutated 

CALR PCR product and its relative size (number identified shown in brackets).  
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(A) 5bp insertion (n=8), (B) 10bp deletion (n=1), (C) 20bp deletion (n=1), (D) 

22bp deletion (n=1), (E) 32bp deletion (n=1), (F) 52bp deletion (n=12). 

 

Mutation Number 

of cases 

Diagnosis Gender Median age  

(years) ET PMF M F 

5bp insertion 8 7 1 4 4 64.54 

10 bp deletion 1 1 0 1 0 64.30 

20 bp deletion 1 1 0 1 0 62.06 

22 bp deletion 1 0 1 1 0 63.02 

32 bp deletion 1 0 1 1 0 47.63 

52 bp deletion 12 11 0 8 4 67.78  

Table 4-2. Characteristics of CALR mutations in the validation group (sample 

group 1). 

  

 

4.6.3 Increased sensitivity of JAK2 V617F assay 

 

This innovative approach showed a higher level of sensitivity over the existing 

assay.  All samples used in the validation assay had been originally reported as JAK2 

wild type.  Following analysis using the fluorescent fragment analysis approach, one 

case showed the presence of a JAK2 V617F mutation in the DNA from both the 

peripheral blood and bone marrow sample.  The sensitivity of agarose gel 

electrophoresis had been previously estimated to be 2-3% allelic burden in our 

hands, whereas fluorescent fragment analysis is estimated to be capable of 

identifying a much lower level of mutated DNA, ~1% allelic burden.  The increased 

sensitivity of the fluorescent assay would account for this discordant result and as it 

was expected that clinicians would want existing patients to be investigated for 

CALR mutations, this would be taken into consideration when analysing and 

reporting assay results.  
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4.6.4 Inter-laboratory validation 

 

HMDS has long standing collaborations with several groups within the UK, 

including one with Professor N Cross of the Wessex Regional Genetics Service, 

Salisbury, UK.  A series of 322 DNA samples from JAK2 V617F wild type MPN 

patients diagnosed by HMDS had been provided by for Genome Wide Association 

Studies (GWAS) in Salisbury.  As the group performing this analysis had also 

characterised the CALR mutation (Nangalia et al., 2013) the samples provided by 

HMDS had also been analysed for the presence of CALR mutations.  This included 

30/48 patients selected for test validation.  The results of mutational screening in 

HMDS was 100% concordant with the findings from the GWAS. 

 

A sample exchange was requested by Dr I Carter from Nottingham City Hospital 

who was in the process of setting up an assay using the same CALR primers and a 

similar approach.  DNA samples from 20 patients were exchanged between our two 

centres.  Concordance was 97.5% (39/40 cases), with Dr Carter detecting a 5bp 

insertion in one sample which was not detected using the assay developed in this 

work.  Following discussions, it was found that there was a small difference between 

our techniques.  In Nottingham, the JAK2 V617F and CALR amplifications were 

being performed in two separate PCR reactions, whereas I had amplified both targets 

in a single multiplex reaction.  It was hypothesised that a multiplex approach may 

have a reduced sensitivity compared with single target amplification.  The mutation 

was detectable when the two targets were reamplified separately and mixed prior to 

fragment analysis and therefore, this approach was adopted for all future testing.     
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4.7 Discussion 

 

Following their identification, the importance of being able to screen for CALR exon 

9 mutations was considered a priority from a diagnostic point of view.  The varied 

mutations found within the CALR exon 9 gene region, restricted the type of approach 

that could be used to identify them in routine laboratory practice.  However, the 

consistent feature of altered PCR product size made it a model candidate for a 

fluorescent fragment analysis approach.  As the existing assay used to detect JAK2 

V617F mutation was also associated with a size change, there was opportunity to 

develop a technique for the simultaneous detection of both abnormalities.  This 

approach was appealing as it would maximise productivity, whilst minimising bench 

work and processing times/costs. 

 

Internal laboratory validation demonstrated that CALR exon 9 mutations are 

consistently detectable in both peripheral blood and bone marrow samples from 

affected individuals, this offers a minimally invasive approach for patients 

undergoing screening for suspected MPNs.  The fluorescent fragment analysis assay 

also offers an increased sensitivity over the existing assay for detecting JAK2 

V617F.  This presents the possibility that patients previously diagnosed as being 

JAK2 V617F wild type could be found to be mutated if rescreened using this 

approach.     

 

External validation demonstrated almost complete concordance between results from 

two independent sample exchanges.  DNA from one sample was found to have a 

demonstrable CALR exon 9 mutation when analysed in Nottingham, which was not 

identified in Leeds.  A comparison of assay protocol identified a single difference in 

approach, with the laboratory in Nottingham performing separate PCR reactions to 

amplify the JAK2 V617F and CALR exon 9 regions rather than the multiplex 

approach I had used.  When the assay was repeated using 2 separate PCR reactions 

as per the approach used in Nottingham, the mutation was detectable.   
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This discrepancy was thought likely to be due to a reduction in the sensitivity of the 

two assays by amplifying them together and as a result, separate assays were used 

from this point onwards.  This highlights the importance of performing thorough 

validation of an assay prior to its introduction into routine laboratory use.  
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5. Assessing current practice in the referral and 

diagnosis of suspected classical MPNs 

 

5.1 Rationale and overview 

 

The diagnosis of MPN can be made difficult by the significant overlap in clinical and 

laboratory features with other reactive conditions.  Current guidelines indicate that 

the clinical features should be confirmed as being persistent and reactive causes 

(such as infection or inflammation) excluded prior to investigation (Harrison et al., 

2010; McMullin et al., 2007; Reilly et al., 2012a).  There is no published data to 

indicate how strictly clinical guidelines are adhered to, nor the efficiency of the 

referral process as it occurs in current practice.  The high frequency of genetic 

aberrations in classical MPNs is a valuable indicator of disease where detected; 

however, the absence of a recognised mutation is not sufficient to exclude the 

presence of disease.  The impact that the availability of molecular screening assays 

has had on referral behaviour is currently unknown.   

 

The purpose of this chapter is to evaluate the investigation of suspected classical 

MPNs in a regional diagnostic setting.  Extensive SQL searches were performed 

using the HILIS database to investigate how efficient current practice is in the 

identification of patients with MPNs.  The laboratory parameters of each referral 

were compared against current guidelines to identify the proportion of referrals 

which met the criteria for investigation.  These data were used to analyse the affect 

that the introduction of molecular screening assays have had on both referral 

behaviour and frequency of diagnosis.   
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5.2 How many patients are referred to HMDS for the 

investigation of a suspected classical MPN per annum? 

 

The number of referrals for suspected classical MPN has increased annually over the 

past decade.  The JAK2 V617F mutation was identified in 2005 with the first 

publications available in July of that year.  Routine mutational screening was 

introduced by HMDS in late October 2005.  The total number of referrals for 

suspected classical MPNs are shown for a 10-year period commencing from 2005 

(Figure 5-1).   In 2005, a total of 356 referrals were received for the investigation of 

a suspected classical MPN, equating to 2.4% of the laboratory’s total workload. This 

has shown a continued yearly increase and, in 2014 (at the commencement of this 

analysis), this figure stood at a total of 2114 referrals, accounting for 7.2% of 

samples.   

 

This increased number of referrals has not been accompanied by a comparable 

increase in diagnoses.  Whilst, the number of referrals has increased almost 6-fold 

over the past decade, the number of confirmed diagnoses of classical MPN has 

remained consistent with an average of 314 new cases per annum.  This figure is in 

keeping with the estimate published by HMRN (Smith et al., 2010).  Prior to the 

introduction of JAK2 V61F screening, the proportion of referrals which resulted in a 

confirmed diagnosis of a classical MPN was 56% (201/356 cases received in 2005).  

Following the introduction of mutational screening for JAK2 V617F, this figure has 

declined with an average of 26.3% of referrals resulting in a confirmed diagnosis of 

a classical MPN per annum (range 20.2-37.9% per annum) in the period from 2006-

2013 inclusive. 
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The identification of CALR mutations and subsequent introduction of CALR 

mutational screening has led to a further increase in the number of referrals received.  

Following the routine implementation of CALR mutation screening in early 2014, 

there was a significant rise in the number of referrals for investigation, with a 32.8% 

increase over the previous year.  However, the total proportion of referrals which 

resulted in a confirmed diagnosis of MPN declined further, to 19.0%, the lowest 

value to date. (Figure 5-1).   

 

 

Figure 5-1. Annual number of referrals for suspect MPN received by HMDS 

2005-2014. 
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5.3 How frequently are bone marrow investigations 

performed on suspected classical MPNs when a JAK2 

V617F or CALR mutation is not been detected? 

 

JAK2 V617F and CALR mutations are shown to be present in a significant 

proportion of patients diagnosed with classical MPNs (Chen et al., 2014; Klampfl et 

al., 2013b; Nangalia et al., 2013).  However, the absence of these mutations cannot 

be used to exclude the presence of disease.  In both the WHO and BCSH 

recommendations, morphological assessment of a bone marrow aspirate is required 

to conclusively diagnose or exclude disease in patients where clonal markers are not 

detected (Arber et al., 2016; Harrison et al., 2010; McMullin et al., 2007; Reilly et 

al., 2012a).  Using sample group 2, which consisted of all referrals of suspected 

classical MPNs received by HMDS between 2005 and the end of 2014 (see 3.5.2.1 

for further details), it was possible to identify patients who had undergone bone 

marrow assessment following receipt of a blood sample which did not have a 

detectable JAK2 V617F or CALR mutation.  On average 178 bone marrow samples 

are received annually on patients with suspected classical MPNs, where a peripheral 

blood sample did not show a mutation (range 119-239). 

 

As a proportion of the peripheral bloods received which do not have a detectable 

JAK2 V617F or CALR mutation reported each year this represents an average of 

19.01%.  However, as Figure 5-2 illustrates there is ongoing divergence of the two 

groups and this proportion has declined annually from 31.82% in 2006, to 10.86% 

by the end of 2014. 
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Figure 5-2 Number of bone marrow aspirates received following a peripheral 

blood sample with no detectable JAK2 V617F or CALR mutation, compared 

with the total number of non-diagnostic blood samples referred annually from 

patients with suspected classical MPNs. 

 

BM sampling was performed most frequently in cases of suspected ET (69.39%) 

with suspected PV and PMF accounting for 8.16% and 3.06% of BM referrals 

respectively.  The suspected diagnosis was not clear in the remaining 19.39% of BM 

samples received.  Haemoglobin and platelet counts were compared between JAK2 

V617F/CALR exon 9 wild-type referrals, separated into 2 groups on the basis of 

whether a follow-up BM sample was received.  There were statistically significant 

differences in both parameters between the two groups (boxplots are shown in Figure 

5-3), with patients who underwent subsequent bone marrow sampling have a lower 

haemoglobin (mean 134g/L in vs 155g/L in PB only group) and higher platelet 

counts (mean 666 x109/L vs 329 x109/L in PB only group).  p values were reported 

as <0.001 in both analyses. 
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Figure 5-3. Significant differences in haemoglobin and platelet count were 

observed between JAK2 V617F/CALR exon 9 wild type referrals which 

underwent subsequent bone marrow investigations versus those with peripheral 

blood screening only. 
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5.4 What proportion of referrals for investigation meet 

laboratory criteria set out in clinical guidelines for 

investigation? 

 

The low proportion of referrals which result in a confirmed diagnosis of MPN would 

indicate that there are inefficiencies somewhere within the referral process, although 

this has not been formally audited to identify where or why.  One potential cause 

could be that referrals are made which do not meet the recommendations set out in 

clinical guidelines.  To ascertain whether this is the case, full blood count parameters 

and clinical details were compared to the recommendations set out both in the BCSH 

guidelines as well as in the WHO recommendations in place at the time of referral.  

This analysis was performed on 4576 referrals received during three consecutive 

years (2012-2014 inclusive) selected from sample group 2.  This time-frame reflects 

the introduction of routine recording of full blood count data into the HILIS 

database.  Prior to this time, electronic records were not available for the full blood 

count performed in HMDS.     

 

5.4.1 BCSH guidelines 

 

Each sample was categorised as either meeting or failing to meet the laboratory 

elements of the BCSH recommendations (Harrison et al., 2014; McMullin et al., 

2007; Reilly et al., 2012) on the basis of meeting one of the following 3 criteria: 

• Haematocrit >48 in females, >52 in males 

• Platelet count >450x109/L 

• Clinical suspicion of PMF 
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Figure 5-4. Proportion of referrals for suspected MPN received by HMDS 

during 2012-2014 which meet / fail to meet BCSH recommended laboratory 

criteria for investigation. 

 

The proportion of referrals with full blood count indices and/or clinical details which 

would support investigation according to BCSH published guidelines averages at 

57.48% of annual referrals (range 56.34-58.08%) over the 3-year period 2012-2014 

(Figure 5-4).  

 

5.4.2 WHO criteria 

 

Full blood count indices and clinical details were then compared to the 2008 WHO 

recommendations (Barbui et al., 2015; Vardiman et al., 2009b) and each referral 

categorised as either meeting or failing to meet the criteria on the basis of the 

following parameters: 

• Haemoglobin >165g/L 

• Haemoglobin >185g/L 

• Platelet count ≥450x109/L 

• Clinical suspicion of PMF 
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Figure 5-5. Proportion of referrals for suspected MPN received by HMDS 

during 2012-2014 which meet / fail to meet WHO recommended laboratory 

criteria for investigation. 

 

The proportion of referrals meeting the laboratory criteria published by the WHO 

was consistently lower than that meeting the BCSH criteria.  On average 51.15% of 

referrals had features which would support investigation for a suspected classical 

MPN (range 50.67.-52.52%) as show in Figure 5-5. 

 

5.5 Are reactive causes excluded and symptoms 

demonstrated to be persistent at the time of referral? 

 

A cohort of the first 50 consecutive referrals from Leeds Teaching Hospitals NHS 

Trust (LTHT) made in 2014 were selected from sample group 2 and clinical records 

audited to ascertain whether reactive and secondary causes of symptoms had been 

excluded prior to molecular investigation, as per the recommendations set out by the 

BCSH and WHO.   
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Twenty three of these 50 referrals had abnormal blood count results on at least 2 

consecutive samples prior to referral, thus meeting the recommended criteria for 

investigation.  In the remaining 27 referrals, abnormal results were only recorded on 

1 sample prior to investigation.  Eight out of the 50 referrals were found to have an 

MPN (6/8 with a JAK2 mutation, 1/8 with a CALR mutation and 1/8 with no 

identifiable genetic abnormality) of which 7/8 had abnormal blood count results 

prior to referral. 

 

A reactive or secondary cause for their laboratory features was noted in the clinical 

history in 35/40 patients who did not have a detectable mutation.  These included a 

pre-existing medical condition (cardiovascular disease (n=6), liver disease (n=3), 

surgery (n=3), carcinoma (n=1) and rheumatoid disorder (n=1)) or elevated 

inflammatory markers (n=21).  Of these 40 patients only one subsequently had a 

bone marrow which excluded the diagnosis of an MPN.   

 

In patients with raised inflammatory markers, this test had been performed prior to 

being seen in haematology in 13/21 patients, indicating that this information was 

available at the time of clinical assessment.  In the remaining 8 patients, tests for the 

presence of inflammatory markers were requested alongside or after the request for 

molecular screening. 
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5.6 How sensitive and specific are the current diagnostic 

guidelines in the identification of classical MPNs? 

 

A significant proportion of referrals did not meet any of the laboratory criteria set out 

in the published guidelines at the time of referral, however, it is important to 

establish how effective the current guidelines themselves are in positively identifying 

patients with classical MPNs.  To ascertain this, 4576 specimens received between 

January 2012 and December 2014 (taken from sample group 2) were divided into 

four groups based on whether they a) met the criteria set for investigation/diagnosis 

and b) whether they were diagnosed with a classical MPN on the basis of peripheral 

blood analysis (that is, having a JAK2 V617F or CALR mutation). The data is 

presented in 2 confusion matrices shown below (Table 5-1 and Table 5-2). 

 

The platelet count used in the diagnosis of ET has remained unchanged between the 

2008 and 2016 revisions of the WHO diagnostic criteria, however, the thresholds 

used to diagnose PV have been modified.  The upper threshold for haemoglobin 

levels has been reduced to 160g/dL in females and 165g/dL in males.  An upper limit 

has also been introduced for haematocrit levels, 48 in females and 49 in males.  In 

this analysis the thresholds in use at the time of referral have been used (WHO 

2008).  

 

Using the calculations detailed in Table 3-4, the performance of each set of 

guidelines was calculated.  When the laboratory thresholds detailed in the BCSH 

guidelines are applied to the data set, the criteria have an average sensitivity of 

86.96% compared with 88.07% when the WHO guidelines are applied.  The 

specificity of the BCSH guidelines is 49.55% compared with 33.65% with the WHO 

guidelines. 
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 Met BCSH criteria Did not meet BCSH criteria 

MPN  780 117 

No mutation 1856 1823 

Table 5-1 Confusion matrix of referrals according to BCSH guidelines. 

 

 Met WHO criteria Did not meet WHO criteria 

MPN  790 107 

No mutation 2441 1238 

Table 5-2. Confusion matrix of referrals according to WHO criteria. 

 

5.7 Can we identify other markers that discriminate 

patients with classical MPN from those without? 

 

5.7.1 Basic Demographic features 

 

It is well documented that the frequency of the classical MPNs increases with age 

and shows a slight bias toward female subjects (Roman et al., 2016; Smith et al., 

2010; Visser et al., 2012).  However, neither age nor gender are included in 

published guidelines.  Age is widely used to inform malignancy screening in a 

number of diseases including breast, bowel and cervical cancer (England, 2016).  

These two features were recorded for all referrals and compared between those with 

a confirmed diagnosis of MPN and those with non-diagnostic results. 

 

5.7.1.1  Age of patients at time of referral 
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Sample group 2 contains a total of 12187 specimens referred to HMDS for the 

investigation of a suspected classical MPN, received between January 2005 and 

December 2014.  The sample group was separated into two categories on the basis of 

diagnostic outcome – those in which a mutation of JAK2 V617F or CALR was found, 

and those in which no mutation of JAK2 V617F or CALR was detected.  Age 

distribution was plotted as a histogram with the two groups highlighted in different 

colours in order to visualise any overlap (Figure 5-6).  Full details of R script used is 

shown in appendix section 10.2 .  A difference in the referral ages was evident 

between the two categories.  A T-test was performed to confirm that this difference 

was statistically significant (Table 5-3). 

 

 

Figure 5-6 Comparison of age distribution between referrals with a diagnostic 

outcome of MPN and those without. 

 

Category N Mean age 

(years) 

T DF Significance 

(p) 



117 

 

 

MPN 
2976 69.49 

36.857 5776.3 <0.001 

No mutation 
9211 58.05 

Table 5-3. Statistical comparison of Age between diagnostic categories. 

 

5.7.1.2 Red cell indices 

 

In addition to haemoglobin (Hb) and haematocrit (HCT), full blood count analysers 

also commonly measure the total red cell count (RBC) and mean red cell volume 

(MCV) amongst others.  Using the cohort of referrals described in section 5.4, these 

indices were compared between samples with a mutation in either JAK2 V617F or 

CALR (referred to as “MPN” in the following analyses) and those with no detectable 

mutation in these two targets (referred to as “No mutation” for analytical purposes) 

 

The box plots in Figure 5-7 show that there is overlap in the range of values seen 

between the MPN and No mutation groups.  Significance testing by Wilcoxon rank 

sum test demonstrated a statistically significant difference between the two groups 

for all but one parameter.  In our data set haematocrit was not shown to be 

significantly different between MPN and No mutation (Table 5-5). 



 

 

 

1
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Figure 5-7. Comparison of red cell indices between referrals with a mutation of JAK2 V617F or CALR (MPN) and those without (No 

mutation). 
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5.7.1.3 Gender of referred patients 

 

A total of 6468 females and 5719 males were investigated for suspected classical 

MPN.  The gender distribution of cases is shown in Table 5-4. 

 

Diagnostic group Males (n) Females (n) Ratio 

MPN 1423 1583 0.90 

No mutation 4296 4885 0.88 

Combined 5719 6468 0.89 

Table 5-4. Gender distribution of referred cases according to diagnostic 

outcome. 

 

The gender distribution both overall and for referrals resulting in a diagnosis of a 

classical MPN are comparable and in keeping with published values (Roman et al., 

2016). 

 

5.7.2 Other blood count features 

 

Data analysed in section 5.4 shows that the majority of referrals meet the minimum 

blood count criteria set out by either the BCSH and WHO (Barbui et al., 2015; 

Harrison et al., 2014; McMullin et al., 2007; Reilly et al., 2012b).  However, only 

three laboratory parameters are included in the criteria – Platelet count, Haematocrit 

and Haemoglobin.  Even the most basic full blood analysers produce a much wider 

range of indices, which may conceivably be of value in discriminating between 

specimens from patients with classical MPNs and those without.   
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5.7.2.1 Leucocyte parameters 

 

White blood cell features are not used as a primary criterion in the diagnosis of 

classical MPN according to either BCSH or WHO publications.  The full blood 

count analyser used in HMDS measures the total white cell count (WBC), 

lymphocyte count (Lymph) and neutrophil count (Neutr) and monocyte count 

(Mono).  In this dataset (sample group 2), all leucocyte parameters were shown to 

have a statistically significant difference between the two groups, with white cell 

count, neutrophil and monocyte counts having a higher mean value in patients with a 

classical MPN compared with those who do not.  For lymphocyte counts, the inverse 

pattern was seen.  A comparison can be seen in Figure 5-9. 

 

5.7.2.2 Platelet count 

 

A comparison of platelet count between groups showed a significant increase in the 

mean platelet count associated with classical MPNs versus those with no mutation 

detected (Figure 5-8). 

 

Figure 5-8. Comparison of platelet count between referrals with a mutation 

detected (MPN) and those without (No mutation). 
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Figure 5-9. Comparison of leucocyte indices between referrals with a detectable mutation (MPN) and those without (No mutation). 
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Parameter MPN No mutation Significance (p) 

Hb (g/l) 147.71 151.10 <0.001 

HCT (%) 45.36 44.80 0.7267 

RBC (X1012/l) 5.16 4.88 <0.001 

MCV (fl) 89.45 92.02 <0.001 

WBC (x109/l) 11.49 9.04 <0.001 

Lymph (x109/l) 1.85 2.21 <0.001 

Neutr (x109/l) 8.27 5.79 <0.001 

Mono (x109/l) 1.29 1.01 <0.001 

Plt (x109/l) 649.62 338.50 <0.001 

 

Table 5-5. Comparison of mean red cell indices values between MPN and No 

mutation groups with significance level. 

5.8 Discussion 

 

The data presented in this chapter highlights the significant burden that molecular 

screening for suspected MPNs places upon diagnostic laboratory resources.  The 

disproportionate increase in requests over the past decade shows no indication of 

slowing which, when paired with the modest increase in the number of diagnoses of 

MPN, suggests that referrals are not being made in a systematic or efficient way.  

The small proportion of patients who undergo bone marrow examination following a 

non-diagnostic result from peripheral blood assessment would also indicate over-

requesting, which may suggest that there is either a lack of understanding of the 

limitations of JAK2 and CALR screening in the diagnosis of MPNs or that the test is 

being requested in patients with low clinical suspicion of disease.   
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Between 30-40% of referrals received for investigation of suspected MPN do not 

meet the diagnostic criteria outlined by the either WHO or BCSH recommendations.  

In both sets of guidelines, the presence of abnormally high blood parameters is a 

central feature of the diagnostic criteria.  Therefore, screening patients who do not 

meet these criteria could not result in the diagnosis of an MPN without the 

assessment of bone marrow morphology. 

 

The exclusion of reactive/secondary causes for symptoms and laboratory features is 

also a key feature of the diagnostic guidelines.  The audit of local referrals 

undertaken in section 5.5 demonstrates that alternative reasons for the abnormalities 

seen were identified by the clinician in 70% (35/50) referrals.  However, molecular 

investigations were requested regardless of patient history.  In those where a reactive 

or secondary cause was not identified from patient history, and inflammatory 

markers had not been assessed prior to clinical assessment, molecular screening was 

not delayed until a later time point.  Molecular screening was deferred in only one of 

the audited cases and was requested at the patient’s second clinic appointment when 

the blood counts had normalised.  The patient notes indicated that it was been 

performed for completeness not because a clinical suspicion remained. 

 

Part of this can be accounted for by the clinical pathway process described in Figure 

3-4.  During the first clinic visit, patients are seen by a haematologist who takes a 

detailed medical history and performs a physical examination.  The clinician also 

reviews the most recent peripheral blood counts available on the hospital result 

service.  Following this consultation, the clinician requests the appropriate 

investigations to be undertaken and the patient is sent to the phlebotomist for 

venepuncture.  In all the cases audited, it is at this point that a JAK2 mutation screen 

is requested, along with a full blood count and other basic blood tests for chemical 

pathology. 

 

The main problem with this approach is that the full blood count results, on which 

the clinician bases their further investigations, can be several weeks old.  Platelet 

counts, for example, can be increased during acute phase responses (during infection, 
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following surgery or blood-loss) and it is not uncommon to see an anomalous raised 

result.  A sustained increase in platelet count would be indicative of an underlying 

pathology, however, there was often no history/evidence of this.   

 

Ideally, a repeat full blood count would be performed prior to consultation to assess 

whether the results continue to be abnormal.  Performing venepuncture in clinic prior 

to seeing the consultant as well as afterwards, would be impractical.  It would cause 

additional time delays and discomfort to the patient.  Therefore, requesting the 

molecular screening assays upfront is the most practical approach for the 

patient/clinician. 

 

In addition to establishing current referral practice, this chapter also aimed to assess 

how useful the current clinical guidelines were in positively identifying patients with 

MPNs.  Despite evidence that many referrals for JAK2/CALR screening are not 

clinically indicated, there is still a large proportion of referrals which do meet the 

laboratory criteria set out by the WHO and BCSH.  However, the low number of 

diagnoses would suggest that the criteria are not specific in identifying potential 

MPNs. 

 

Comparisons of diagnostic outcomes in patients according to whether they met one 

of the two guidelines showed that whilst the sensitivity of these criteria is high 

(86.96% for BCSH and 88.07% for WHO guidelines), the specificity is much lower 

(49.55% for the BCSH guidelines and 33.65% for the WHO).  The data 

demonstrates that the guidelines have a very high negative predictive value.  This 

clearly shows that there is minimal benefit to investigating patients who do meet the 

guidelines in terms of laboratory features.  However, the low specificity of the 

guidelines does mean that a significant proportion of patients in whom testing would 

be indicated (according to blood parameters) would not be diagnosed with an MPN.   

 

Both sets of guidelines use a minimal number of parameters in their diagnostic 

criteria.  This does have the benefit of being easy to interpret by clinicians however; 
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the guidelines use arbitrary thresholds for these variables.  Research in other 

haematological malignancies has shown that risk of disease increases on a linear 

scale and the use of such thresholds is of little significance in patients around the cut-

off value ((Lichtman, 2013)).  For example, a patient with a platelet count of 

449x109/L would not be investigated whereas a patient with a platelet count of 

451x109/L would be although the actual difference in risk of disease would be 

negligible.  

 

There are also many other demographic and laboratory variables which are readily 

available to clinicians at the point of consultation.  Statistical analyses can be 

performed to assess whether other information could be of value in the positive 

identification of patients with MPNs.  Patient age and gender are well reported in 

MPNs and it is known that the risk of MPN increases with age.  There was a 

statistically significant difference in the age of patients diagnosed with an MPN 

versus those with non-diagnostic results in our referral population.  It would also be 

possible to attach a higher risk to male referrals as they too are known to have an 

increased incidence of MPN.  Additional laboratory parameters including additional 

red blood cell indices such as MCV were found to show significant differences 

between MPN and non-diagnostic referrals, as were white cell parameters. 

 

The wide range of variables that could potentially be used to guide suspected MPN 

referrals may be too complex to include in a simple algorithm, especially when there 

may be interaction between variables that can affect the overall risk.  This suggests a 

potential role for predictive statistical model which can calculate an individual’s risk 

of disease on the basis of a wide range of variables.  It is anticipated that such a 

model would be capable of identifying MPN patients with at least the same level of 

sensitivity as the current guidelines but with an improved level of specificity.  

Implementation of such a model could reduce the total number of referrals for 

investigation, without impacting on patient safety. 
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6. Features of CALR mutations in prospective cohort 

 

6.1 Rationale and context 

 

Clinical data suggests that CALR mutated ET has distinct clinical and laboratory 

features compared to their JAK2 V617F mutated counterparts, with JAK2 V617F and 

CALR mutated ET presenting at a younger median age, and having a higher platelet 

count and lower haemoglobin than JAK2 V617F ET  (Chen et al., 2014; Rotunno et 

al., 2013b; Rumi et al., 2013).  However, these studies have focussed on cases which 

had an existing diagnosis of ET according to the WHO criteria.  In the absence of a 

JAK2 V617F or MPL mutation, this would have required a bone marrow to be 

assessed.  Data shown in 5.3 shows that in our setting BM sampling is performed 

infrequently, compared with the number of blood samples received for JAK2 V617F 

and CALR mutational screening.  Furthermore, bone marrow sampling was found to 

be biased towards younger patients with higher platelet counts and lower 

haemoglobin levels.  If a similar bias was present in the cohort of patients examined 

in the published studies, this could contribute towards the documented differences 

between the JAK2 V617F and CALR mutated subgroups.   

 

At the time of analysis, no published data had assessed the features of CALR mutated 

ET in the context of a diagnostic setting, nor in prospectively tested patients.  The 

aim of this chapter was to determine if the features of CALR mutated ET diagnosed 

prospectively in the population referred to a clinical laboratory setting are 

comparable to those identified through the retrospective testing performed in the 

literature.  To achieve this, the clinical and laboratory features associated with CALR 

mutated ET have been compared to their JAK2 V617F mutated counterparts which 

have been identified in HMDS through routine investigations.   
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6.2 Data overview and comparability of selected cohorts 

 

The data set used in this analysis is taken from sample group 3 (shown in Figure 

3-7).  Briefly, this comprised all the cases of ET with a demonstrable CALR mutation 

identified prospectively in 2014 following assay introduction, alongside a group of 

JAK2 V617F mutated ET’s identified during the same time period.  Briefly, this 

group consists of a total of 88 patients who were found to have a CALR mutation 

during this period, along with 311 patients with the JAK2 V617F mutation.  

 

6.3 Do the laboratory or demographic features of CALR 

and JAK2 V617F mutated MPNs differ? 

 

6.3.1 Laboratory features 

 

The mean values of the full blood count indices were compared between the groups 

and tested for significance (Table 6-1).  Statistically significant differences were seen 

in nine of the 11 parameters assessed.  As reported in the literature (Rumi et al., 

2013) CALR mutated ET presented with a significantly lower mean hb and wbc 

compared with JAK2 V617F mutated cases.  The observed mean plt count was 

higher in the CALR mutated cohort but this was not statistically significant as was 

indicated in the published data. 

6.3.2 Demographic features of patients with CALR mutated ET  

 

Age at presentation was significantly lower in the CALR mutated group with a mean 

of 63.61 years group compared to 71.66 years in the JAK2 V617F mutated patients 

(p=<0.01).  This is in keeping with the findings of Rumi et al (Rumi et al., 2014). 
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Parameter CALR mutated JAK2 V617F mutated P 

Plt (x109/l) 716 655 0.38 

Hb (g/l) 127.3 152.9 <0.01  

RBC (x106/µl) 3.93 5.43 <0.01 

HCT (%) 38.00 46.96 <0.01 

MCV (fl) 98.25 88.11 <0.01 

WBC (x109/l) 7.90 11.48 <0.01 

Neutr (x109/l) 5.74 8.67 <0.01 

Lymph (x109/l) 1.81 1.79 0.68 

Mono (x109/l) 1.07 1.32 0.01 

MCH (pg)  33.01 28.85 <0.01 

MCHC (g/dl) 33.52 32.64 <0.01 

Table 6-1. Comparison of mean full blood count indices between CALR and 

JAK2 mutated referrals.  

6.4 Discussion 

 

The identification of CALR mutations in patients with JAK2 wild-type ET and PMF 

had significant implications from a diagnostic standpoint.  However, understanding 

the clinical relevancy of these mutations is a key consideration for clinicians.  CALR 

mutations were first identified in patients with a previously confirmed diagnosis of 

JAK2 /MPL wild-type ET which had been made according to the criteria set out by 

the WHO.  As discussed in section 1.5.2.1, in the absence of a recognised genetic 

lesion, a diagnosis of ET cannot be made without the examination of bone marrow 

morphology. 

 

In our setting, bone marrow assessment is infrequently performed on patients 

following inconclusive peripheral blood investigations for suspected classical MPNs.  

Data presented in 5.3 shows that in our experience, bone marrow testing is 

performed on patients with more abnormal blood features than seen in those who 

have peripheral blood screening alone (lower haemoglobin and higher platelet 
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counts).  In routine clinical practice, it is not always feasible to perform a bone 

marrow assessment.  Patients may decline invasive tests or may have existing 

comorbidities which would outweigh the benefits of confirming a diagnosis of a 

classical MPN.  Taking these factors into account it is possible that the group of 

patients in whom CALR mutation were originally identified may not be 

representative of those who would be identified through prospective peripheral blood 

screening.  At the outset of this work, there were no publications which assessed the 

impact of CALR mutations in a prospective cohort nor in the population of patients 

referred in routine clinical practice. 

 

An assessment of the laboratory and clinical features associated with CALR mutated 

ET diagnosed in routine clinical practice were found to be in keeping with those 

described in the literature.  In a routine diagnostic setting CALR mutations were 

associated with lower haemoglobin and white cell counts and higher platelet counts 

than JAK2 V617F mutated counterparts.  Age at presentation was significantly lower 

in the CALR mutated ET cohort compared to the JAK2 V617F mutated counterparts 

in keeping with the published data.   

 

Overall, this data would suggest that the data presented in this work should be 

applicable to diagnostic practise on a wider scale.  Routine diagnostic laboratories 

see a wide range of patients at various stages of disease development and the ability 

to generalise the findings of this work is encouraging.  In addition, this data indicates 

that prognostic findings from large scale retrospective studies can be applied to 

patients in routine clinical practise which is of immense value to both patients and 

clinicians.   
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7. Selection and design of a predictive statistical model  

 

7.1 Rationale and overview 

 

The limited specificity of diagnostic guidelines in the positive identification of 

patients with classical MPNs combined with the potential value of additional 

biological and demographic variables discussed in 5.7 would suggest that classical 

MPN diagnosis would be an ideal candidate for the development of a predictive 

statistical model.  The aim of this chapter is to identify suitable statistical modelling 

approaches for the data available and the intended research outcome.   

 

Selecting the most appropriate methodology to apply to the data is of key importance 

in the development of a statistically sound model.  There is a vast range of statistical 

approaches available for the interpretation of complex data.  The research question 

provides the best indication as to which methodological approaches are suitable.  

The aim of this thesis is not to further the understanding of the biological basis of 

classical MPNs, nor to disclose previous unidentified relationships between 

biological variables.  The primary purpose of the statistical model is in its ability to 

predict an outcome on the basis of diagnostic measurements.  For this reason, 

predictive statistical models are the most appropriate choice. 

 

Predictive modelling approaches can be broadly divided into supervised and 

unsupervised techniques depending upon whether the class of data is known or 

unknown.  As the statistical model will be developed using a case control data set, 

with the class (MPN or no Mutation) known from the outset, this work focusses on 

supervised, predictive modelling techniques. 
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The aim of the statistical model will be to predict whether an individual referral with 

suspected classical MPN is more likely to have a JAK2 V617F or CALR mutation 

(MPN) or not (No mutation) based on the presentation full blood count data in 

combination with demographical information, such as age and gender.  The 

classification produced by the statistical model is used to inform downstream 

investigations. 

 

7.2 Selection of supervised modelling approach 

 

A large scale comparison of supervised, predictive modelling approaches was 

performed using Waikato Environment for Knowledge Analysis (WEKA) version 

3.8, an open source suite of software developed specifically for the purpose of data 

mining (Frank et al., 2016).  The analyses were performed on sample group 4, which 

was comprised of 2970 referrals which underwent both JAK2 V617F and CALR 

mutational screening in HMDS with full blood count data available at the time of 

referral (see 3.5.2.3 and Figure 7-2). 

 

7.2.1 Classifier comparison 

 

A set of eight different supervised classifier approaches were assessed during this 

initial analysis.   

• Naïve Bayes 

• J48 Decision Trees 

• Random Forest 

• Logitboost 

• AdaboostM1 

• SMO (sequential minimal optimisation/support vector classifier) 

• Multilayer Perceptron (neural network) 

• Logistic Regression 
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The classifiers were all run using the default settings in WEKA.  The following 

performance characteristics were assessed to compare and evaluate classifier 

performance: Accuracy, sensitivity, specificity, precision and F-measure.  Sensitivity 

and specificity measure the proportion of true positive classical MPNs identified 

correctly and the proportion of true negative referrals which were correctly 

identified, respectively. Precision (also referred to as positive predictive value) 

assesses the likelihood of a false positive, whilst the F-measure is the mean of both 

precision and sensitivity (see Table 3-4 for details of their calculation).  

 

Figure 7-1. Comparison of supervised classifier approaches using WEKA. 

  

7.2.2  Classifier selection 

 

The primary aim of the predictive model was to improve on the specificity achieved 

using guidelines alone (as described in section 5.6), without reducing the sensitivity, 

therefore modelling approaches which showed high levels of both characteristics 

were determined to be most desirable.  In this general comparison Logistic 
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Regression, Random Forest and Boosted analysis showed the best balance between 

sensitivity and specificity and were selected as the modelling approaches to develop 

further in this work.  Details of the principles of each approach are described in 

section 3.7.3.   

7.3 Development of predictive statistical model in R 

software 

 

Standard methods from predictive modelling were used to design, optimise and 

validate the predictive models as outlined in section 3.7.3.  This was performed in 

RStudio using R statistical software version 3.3.2 and the packages listed in Table 

3-2.  The data scripts used to perform the analyses described within this chapter are 

available in the appendix (section 10.2). 

 

7.3.1  Data preparation 

 

A data set comprising all referrals of suspected classical MPN received by HMDS 

was extracted from HILIS as described in section 3.5.2.3.  This data set was initially 

comprised of 12499 individual referrals made between the beginning of 2005 and the 

end of 2014.  Prior to further analysis the data was subjected to a series of ‘clean-up’ 

procedures as shown in Figure 7-2. 

 

Missing or empty values were identified and replaced with a missing data indicator 

(‘NA’) to prevent interference with statistical analysis.  The data was then read into 

the R software and summary statistics were displayed to identify potentially 

erroneous data such as typographical or transcription errors or changes in units of 

measurements.  Data points which appeared to be outliers were identified, reviewed 

and corrected if appropriate. 
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Figure 7-2. Data 'clean up' process undertaken prior to statistical modelling. 

 

Following data clean-up, a data set containing only referrals received during the year 

2014 was selected and these data was used for the development of the statistical 

models.  The dataset (sample group 4) contained 2970 referrals, of which 42.63% 

(n=1266) were confirmed classical MPN (JAK2 V617F mutated n=1122, CALR 

mutated n=131 and concurrent JAK2 V617F/CALR n=2) and the remaining 57.37% 

(n=1704) did not have a detectable mutation for comparison. 

 

7.3.2 Data comparison group 

 

The laboratory process for investigating suspected classical MPNs in HMDS has 

been described in 3.4.1, briefly, following receipt of a peripheral blood sample the 

laboratory performs a full blood count and morphological assessment followed by 

screening the specimen for JAK2 V617F and CALR mutations.  If no mutation is 
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detected, the report suggests that a repeat specimen is sent (preferably a bone 

marrow) to exclude the presence of disease.  If received, the bone marrow sample is 

tested for the presence of MPL and/or JAK2 Exon12 mutations.  The proportion of 

patients with no JAK2 V617F or CALR mutation who are referred with a subsequent 

sample is low, at approximately 10%, as shown in 5.3.  Consequently, the number of 

specimens in which an MPN is conclusively excluded is insufficient for use in 

statistical modelling.   

 

Primarily, this issue relates to ET/PMF patients where approximately 25% of cases 

will not have a mutation in JAK2 V617F or CALR.  The number of potentially 

undiagnosed MPNs (ET/PMF) has been calculated using the published frequencies 

of gene mutations to give an approximate CALR:MPL ratio of 6:1 and CALR:Triple 

Negative ratio of 3:1.  The data set used for statistical modelling contained 133 

CALR mutated specimens, therefore the expected number of MPL mutated 

specimens is calculated to be 22 and triple negative ET/PMF to be approximately 44.  

The comparison group contains 1704 specimens, therefore undiagnosed MPNs may 

represent 3.9% of this group.     

  

7.3.3 Data normalisation 

 

Prior to logistic regression analysis each variable was normalised.  This was 

performed by visualisation of a quantile-quantile (QQ) plots which compare the data 

distribution seen in each variable with theoretical values were the data distributed 

normally.   Where significant skewing occurred transformations (logarithmic or 

square root) were applied and QQ plots redrawn as shown in Figure 7-3 .  Red cell 

parameters (Hb, RBC, HCT, MCV and MCH) were unchanged following QQ plot 

visualisation.  The platelet count required a square-root transformation, whilst the 

white cell parameters (WBC, Lymph, Neutr and Mono) required a logarithmic 

transformation. 
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Figure 7-3. Examples of normal Q-Q plots and data transformations required 

for normalisation and further statistical analysis. 

 

7.3.4 General analysis of data relationships 

 

Using the pairs function, a series of scatter plots was displayed which plotted each of 

the variables against one another to visualise trends between attributes which may 

impact on later analysis.  Linear relationships were visible between Hb and HCT, 

WBC and Neutr, MCH and MCHC.  A linear relationship is indicated by the data 

points forming a diagonal line rather than a cloud; an example of each is shown in 

Figure 7-4.  These relationships are easily explained as one of the linear parameters 

Normal Q-Q plot
Age

Normal Q-Q plot
Platelet count

Normal Q-Q plot
sqrt(Platelet count)

Normal Q-Q plot
Neutrophil count

Normal Q-Q plot
Log(Neutrophil count)
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in each pair is a derivative of the other.  For example, neutrophils are the largest 

subpopulation of white blood cells, and it was expected that in the majority of cases 

as the white cell count increases, the neutrophil count would follow suit.  It was 

anticipated that it would be necessary to correct for multicollinearity in the models.  

 

 

Figure 7-4. Example of full blood count parameters which show collinear (A) 

and non-linear (B) relationships. 

 

7.3.5 Setting a base performance against which to evaluate model 

performance 

 

The performance of the current clinical guidelines was calculated in section 5.6 

using the data obtained from all suspected MPN referrals received over a 3-year 

period (2012-2014).  This sets the base performance level against which the 

statistical models developed in this chapter will be assessed.  For the model to be 

deemed successful, it should outperform the guidelines in terms of these metrics as 

shown in Table 7-1. 

 

 Sensitivity (%) Specificity (%) 

BCSH 86.96 49.55 

WHO 88.07 33.65 

Table 7-1. Performance metrics associated with current clinical guidelines. 
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7.4 Logistic regression model development 

 

A basic overview of the premise of logistic regression is described in 3.7.3.1.  One 

possible advantage of logistic regression, from the point of the end user, is that the 

weighting of each variable is quantified, and it is possible to present the user with a 

formula that can be interpreted.  The ability to understand and compare how different 

biological and demographic variables contribute to the probability of disease may 

make this approach more readily acceptable in clinical practice. 

 

7.4.1  The logistic regression equation 

 

Logistic regression gives each explanatory variable a coefficient that measures the 

weight of its contribution to the outcome (dependent variable).  Overall the output of 

the logistic regression equation is the odds of belonging to one of the categories of 

dependent variable – in this case the probability of having an MPN. 

 

The equation takes the following form: 

 

𝑙𝑜𝑔𝑖𝑡(𝑝(𝑥)) = log (
𝑝

1 − 𝑝
) = 𝑎 + 𝑏1𝑥1 + 𝑏2𝑥2+ . .. 

 

Where 𝑙𝑜𝑔𝑖𝑡(𝑝(𝑥)) is the log-odds of patient 𝑥 having an MPN and is equal to the 

sum of the intercept ‘a’ plus the value of each explanatory variable ‘𝑥𝑛’ multiplied 

by its regression coefficient ‘𝑏𝑛’.  A larger regression coefficient indicates a greater 

the contribution of the associated explanatory variable to the overall probability of 

disease.  A positive value indicates that the variable increases the probability, 

whereas a negative coefficient subtracts from it. 
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7.4.2 Initial variable selection and model design 

 

The first step in the development of the logistic regression model was the selection 

of the explanatory variables that would be used in the analysis.  Initially the model 

included all variables collected – Age, Gender, Hb, RBC, HCT, MCV, MCH, 

MCHC, WBC, Neutr, Lymph, Mono and Plt. 

 

Analysis was performed using the core R function ‘glm’ with data family set to 

“binomial” in order to link to logistic regression analysis.  The output of the initial 

regression analysis (shown in Table 7-2) identifies highly significant weightings for 

Age, Hb, RBC, Lymph and Plt.  With statistically significant weightings also seen in 

MCV, Gender, MCHC and HCT.  

 

 Estimate PR(>|Z|) 

(Intercept) 112.86 <0.01 

Age  -0.03 <0.01 

Gender (male) -0.31 0.02 

Hb  0.18 <0.01 

RBC  -4.90 <0.01 

MCV -0.27 0.01 

MCH 2.33 0.82 

MCHC -19.93 0.05 

WBC -0.23 0.84 

Lymph 1.12 <0.01 

Neutr -0.62 0.43 

Mono -0.02 0.93 

Plt  -0.23 <0.01 

HCT -5.34 0.02 

Table 7-2. Results of logistic regression analysis showing weighting and 

significance of each explanatory variable. 
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7.4.3 Assessment of multicollinearity within model 

 

Paired plots indicated linear relationships between some of the explanatory variables.  

Collinearity can occur when explanatory variables are not independent, for example 

where two variables are closely related and are effectively measuring the same 

effect.  This can result in a statistical model which is unstable and can reduce the 

statistical power of the model and make it difficult to interpret.  To assess the level 

of collinearity within this logistic regression model, the variance inflation factor 

(VIF) for each explanatory variable was calculated.  

 

Variance inflation factors are computationally defined as the reciprocal of tolerance 

(Marquaridt, 1970) and can be denoted as:  

𝑉𝐼𝐹𝑖 =
1

1 − 𝑅𝑖
2 

Where ‘𝑖’ is the explanatory variable and ‘𝑅𝑖
2’ is the coefficient of determination (the 

square of the correlation between predicted and actual scores). 

 VIF 

Age 1.07 

Gender 1.21 

Hb 121.51 

HCT 56.04 

MCV 168.36 

MCH 358.83 

MCHC 62.43 

WBC 50.28 

Neutr 38.12 

Lymph 4.06 

Mono 2.56 

Plt 1.53 

Table 7-3. Size of VIF associated with each explanatory variable from logistic 

regression analysis. 
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The size of VIF is an estimate of the magnitude by which standard errors are inflated 

than would be case if the variables were unrelated.  Acceptable levels of VIF have 

been recommended in the literature, with a maximum of 10, which corresponds to a 

tolerance of 0.1, commonly indicated (Mansfield and Helms, 1982; Marquaridt, 

1970).  The size of the VIF associated with each of the explanatory variables is 

shown in Table 7-3. 

 

It was evident that a high level of multicollinearity exists within the model in its 

current form.  This level of multicollinearity was likely to affect the validity of our 

statistical model and needed to be addressed. 

 

7.4.4 Rationale behind removal of attributes causing collinearity 

 

Prior to further analysis it was necessary to reduce the level of multicollinearity 

within the model.  To achieve this, a number of explanatory variables needed to be 

removed from the model.  Linear relationships were present between WBC, Neutr 

and Mono variables.  As neutrophils and monocytes are both subpopulations of 

leucocytes (WBC) this was expected.  The decision was made to remove WBC from 

the analysis and it did not represent a specific cellular population.  Examination of 

the data showed that mono counts were not always reported by the full blood count 

analyser and for this reason, it was also removed from the analysis.      

 

Linear relationships were also identified between MCV and MCH as well as Hb, 

RBC and HCT.  The parameters are all measures relating to erythrocytes.  Of these 

parameters, HCT and MCH were not directly measured by our instrument and were 

instead derived from other measured parameters.  The decision was made to remove 

these from the analysis as they represented duplicated information.  The logistic 

regression model was rerun with the more restricted range of explanatory variables.  

All variables now show statistically significant weightings (Table 7-4). 
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             Estimate PR(>|Z|) VIF 

(Intercept) 81.14 <0.01 - 

Age  -0.03 <0.01 1.06 

Gender(male) -0.30 0.02 1.14 

Hb 0.15 <0.01 66.58 

RBC  -5.12 <0.01 68.46 

MCV -0.26 <0.01 11.21 

MCHC -13.28 <0.01 4.62 

Neutr -0.74 <0.01 1.14 

Lymph 1.01 <0.01 1.15 

Plt -0.23 <0.01 1.48 

Table 7-4. Results of revised logistic regression analysis showing weighting and 

significance of refined set of explanatory variables and corresponding VIF 

values. 

Re-evaluation of the VIF shows that there was still significant collinearity.  The 

highest VIF values were associated with Hb, RBC and MCV.  These three variables 

are all measurements associated with the red blood cells and therefore biologically 

related.   

 

Using a series of regression analyses, excluding each of these variables in turn the 

VIF and √VIF were calculated.  The lowest VIF values were obtained when RBC 

was removed from the analysis (Table 7-5). These variables were selected for 

inclusion in the final logistic regression analysis. 
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 VIF 

Age 1.04 

Gender 1.15 

Hb 1.62 

MCV 1.23 

MCHC 1.39 

Neutr 1.13 

Lymph 1.15 

Plt 1.51 

Table 7-5. Size of VIF associated with final selection of explanatory variables 

chosen for logistic regression model. 

 

7.4.5 Attribute selection 

 

Following the removal of variables contributing to the multicollinearity in the model, 

attribute selection was performed using the least absolute shrinkage and selection 

operator (LASSO) method.  LASSO regression performs attribute selection to 

enhance the predictive accuracy of the model by shrinkage.  This involves penalising 

the absolute size of the regression coefficients, and in doing so, some of the 

coefficients will be shrunk to zero, at which point they are removed.   

 

When the variables selected in section 7.4.4 were analysed using LASSO regression, 

and the ‘best’ model selected, none of the variables were ‘shrunk’ away by the 

analysis, confirming that these variables share similar weightings within the model 

and should be included in the logistic regression analysis. 
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7.4.6 Cross validation of logistic regression model 

 

The explanatory variables selected were incorporated into a final logistic regression 

model.  For this analysis the “lrm” function from the package ‘rms’ was used as this 

provides a series of performance metrics that can be used to assess the model (Table 

7-6). 

 

  Discrimination indexes Rank discrimination indexes 

Observations 2298 R2 0.55 C 0.89 

Case 1033 Brier 0.13 Dxy 0.78 

Control 1265     

 Coefficient Pr(>|Z|) 

Intercept -29.99 <0.01 

Age -0.03 <0.01 

Gender (male) -0.29 0.02 

Hb -0.02 <0.01 

MCV -0.01 0.16 

MCHC 11.89 <0.01 

Neutr -0.60 <0.01 

Lymph 1.09 <0.01 

Plt  -0.24 <0.01 

Table 7-6. Performance metrics of final logistic regression model. 

 

The highlighted ‘C’ denotes the ‘c’ index’, which represent the area under the 

receiver operating characteristic (ROC) curve.  ‘Dxy’ denotes the Somers’ Dxy rank 

correlation between the predicted probabilities and the observed responses.  There is 

a simple relationship between ‘C’ and ‘Dxy’ (Somers, 1962): 
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𝐷𝑥𝑦 = 2(𝐶 − 0.5) 

Again, a Dxy of 1 denotes perfect discrimination of observations by the model.  In 

this case the ‘C’ index is 0.887, indicating a strong predictive model. 

 

Following analysis, cross validation of the model was performed using the 

“validation” function from within the “rms” package selecting the cross-validation 

method. 

 

 Original Training Test Optimism Corrected 

DXY 0.7747 0.7748 0.7704 0.0044 0.7703 

R2 0.5470 0.5471 0.5582 -0.111 0.5581 

C index 0.88735 0.8874 0.8852 0.0022 0.8852 

Table 7-7. Cross-validation performance metrics of logistic regression analysis. 

 

The cross-validation process described in 3.7.3.1 is intended to detect overfitting and 

estimate the extent to which it is affecting the model.  Whilst it is desirable to 

maximise the performance of the model on the training data set, the performance of 

the model on unseen data will determine its success.  Cross validation of this logistic 

regression model results in slight reductions in the performance metrics (Table 7-7).     

  

7.4.7 Model evaluation  

 

To determine the performance of the model on the training set, the metrics described 

in Table 3-4 were assessed.  As the model returns the likelihood of disease as a 

probability, it was necessary to choose a threshold level of probability at which the 

model would classify each sample as either MPN or No mutation. 
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7.4.7.1 Identifying the threshold giving best model performance 

 

Optimisation of the threshold was performed in two ways; the first was to identify 

the threshold of probability which yielded the highest sensitivity plus specificity.  

This was achieved using features of the ROCR package, Figure 7-5 shows sensitivity 

vs specificity with increasing thresholds of probability in ROCR in the form of a 

graph.  A threshold of 0.56 was calculated as returning the greatest sensitivity plus 

specificity, achieving a combined value of 1.65.      

 

Figure 7-5. Graphical representation of yielded sensitivity vs specificity with 

increasing threshold of probability in ROCR. 

 

This threshold was applied to the model and performance measured using the 

confusionMatrix function from the CARET statistical package. 
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 Actual MPN Actual no mutation 

Predicted MPN 848 215 

Predicted no mutation 185 1050 

Table 7-8. Performance of logistic regression model at optimal prediction 

threshold calculated by ROCR analysis. 

 

Using a threshold of 0.56 to determine class returned the predictions shown in Table 

7-8.  This gave a sensitivity of 0.82 and specificity of 0.83.  Whilst this represents a 

substantial increase in specificity over that achieved using the clinical guidelines 

(which has been determined to be 49.55% at best), the sensitivity of the model falls 

below the 86.96% minimum the guidelines achieved with 185/1033 actual MPNs 

predicted to have no mutation. 

 

Maintaining the level of sensitivity achieved by the guidelines and minimising the 

number of false negatives produced by the model was more important that achieving 

maximum levels of specificity.  Therefore, a second approach was taken to optimise 

the threshold of probability within the model. 

 

7.4.7.2 Optimising the threshold to give the best model for purpose 

 

To determine the threshold which would give maximum specificity whilst 

maintaining sensitivity above that achieved by the clinical guidelines was determined 

by assessing the sensitivity and specificity of the model across a range of thresholds 

(Table 7-9). 

 

Using a threshold of 0.7 to determine class membership gave a sensitivity marginally 

higher that that achieved using the guidelines alone, alongside an increase in 

specificity (72.73% compared with 49.55% achieved by guidelines).  When a 

threshold of 0.7 was applied to the dataset, the confusion matrix gave the results 

shown in Table 7-10.  This threshold has been applied to all further analyses.   



148 

 

 

 

Threshold Sensitivity Specificity 

0.05 0.17 1.00 

0.10 0.29 0.98 

0.15 0.38 0.97 

0.20 0.47 0.96 

0.25 0.54 0.94 

0.30 0.61 0.92 

0.35 0.66 0.91 

0.40 0.72 0.90 

0.45 0.74 0.88 

0.50 0.77 0.86 

0.55 0.82 0.84 

0.60 0.84 0.81 

0.65 0.87 0.77 

0.70 0.89 0.73 

0.75 0.92 0.66 

0.80 0.94 0.58 

0.85 0.94 0.48 

0.90 0.97 0.33 

0.95 0.98 0.12 

Table 7-9. Logistic regression model performance over a range of increasing 

thresholds of probability. 

 

 Actual MPN Actual no mutation 

Predicted MPN 920 345 

Predicted no mutation 113 920 

Table 7-10 Predictive performance of logistic regression model with a threshold 

of 0.7. 

 

7.4.8 Validating the logistic regression model on a test dataset 
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The logistic regression model was built using data cohort containing a ratio of 

MPNs:No mutation of 0.74.  Data presented in 5.2 shows that the actual frequency of 

MPNs is much lower than this (in the region of 0.2:1).  In addition to this difference 

in MPN representation, there is the inherent issue of overfitting, whereby the model 

has been optimised for its performance on a specific data set which may not be 

applicable to ‘real world’ data.  To accurately assess the suitability of the model in 

clinical practice it needs to be validated using a ‘test’ data set – this is a set of data 

that has not been ‘seen’ by the model. 

 

7.4.8.1 The test data set 

 

A data set of 515 referrals received for the investigation of a suspected MPN was 

identified through the SQL searches performed on the HILIS database.  These 

referrals were received during the first calendar quarter of the year 2015 and 

comprised 112 JAK2 V617F or CALR mutated classical MPNs and 403 samples in 

which no mutation in JAK2 V617F or CALR was identified.  This data set was 

completely independent of that used to build to model and therefore suitable for 

model validation.   

 

7.4.8.2 Model performance on test data 

 

The logistic regression model described in 7.4.6 was applied to the test data set and 

performance characteristics determined using the probability threshold of 0.7 as 

determined to be optimal in 7.4.7.2.  The model performance is shown in Table 7-11. 

 

 

 

 Actual MPN Actual no mutation 

Predicted MPN 70 82 
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Predicted no mutation 6 203 

Table 7-11. Performance of logistic regression model on test dataset. 

 

The model gave a sensitivity of 92% and specificity of 71%, compared with 89% 

sensitivity and 72% specificity achieved using the model-build data-set.  

 

7.4.9 Analysis of misclassified data 

 

7.4.9.1 Analysis of false negative classifications 

 

When the logistic regression model was applied to the test data set, 6 referrals which 

were found to carry either a JAK2 V617F or CALR mutation (‘MPN’) were 

incorrectly predicted to have ‘No mutation’ by the model, these can be referred to as 

false negatives.  Each of these referrals was reviewed to establish whether they had 

additional clinical features that would have indicated the presence of disease.  In two 

instances, the patient had previously been diagnosed with an MPN and was on 

treatment at the time of investigation and consequently had normal full blood count 

indices on the referred sample.  One of the referrals was from a patient who had a 

previously diagnosed, co-existing plasma cell neoplasm, this may have resulted in 

impaired haematopoiesis which would account for the normal full blood count at the 

time of referral.   

 

 

 

A further sample was from a patient who had been recently received chemotherapy 

for a non-haematological malignancy and one referral had normal full blood count 

indices.  In these two specimens, the JAK2 V617F mutations was reported as being 

present at a low level (estimated to be <10% allelic burden based on area under 

peak).    The final misclassified ‘MPN’ did have an isolated increased platelet count 
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of 569x109/L, at the time of writing the patient had not undergone any further 

investigations and no further clinical information was available. 

 

Of the 6 false negatives, only 4 were determined to be genuine referral for the 

investigation of a suspected MPN.  Three of the 4 may have been misclassified due 

to the lack of abnormal blood count parameters.  In 2/3 of these, impaired 

haematopoiesis attributable to another malignancy may have masked the underlying 

MPN and this information was not recorded on the request form, highlighting the 

importance of providing relevant clinical details to enable appropriate processing of 

specimens.  Only one sample that had a clearly abnormal full blood count would 

have been misclassified by this model.   

 

7.4.9.2 Analysis of false positive classifications 

 

Analysis of the test data set also identified 82 samples with ‘No mutation’ that were 

misclassified as being ‘MPN’ by the model, herein referred to as false positives.  

Due to limitations in access to clinical data, only those referrals from within the 

Leeds Teaching Hospitals could be reviewed further (n=12).  Of the patients 

reviewed, the majority (n=10) were described as having an underlying reactive cause 

which accounted for deranged full blood count results.  In 3/10 referrals, an acute 

episode of illness coincided with investigation and the full blood count parameters 

returned to normal following recovery.  A chronic reactive process was identified as 

the probable cause in 7/10 referrals; with chronic iron deficiency stemming from 

chronic blood loss in 4 of these, active rheumatoid arthritis present in 2 and anaemia 

of chronic disease in one other.   

 

Hypoxia secondary to smoking and pulmonary disease was determined to be the 

cause of polycythaemia in one of the 2 remaining specimens which did not have 

reactive conditions.  The final ‘false positive’ referral was followed up by bone 

marrow investigations which confirmed a diagnosis of ET. 
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If this data is representative of the false positives classified, it would indicate that an 

alternative cause for the abnormal blood features can be identified in the majority of 

referrals with no mutation detected and that, in a large proportion, the features begin 

to normalise shortly after investigation.  If reactive causes were excluded prior to 

referral for JAK2 V617F and CALR mutational screening, these specimens would not 

have been received for investigations. 

 

7.5 Random forest model development 

 

The premise of Random Forest analysis is described in 3.7.3.1.  This modelling 

approach is sometimes referred to as ‘black box’ method as it is not visible to the 

user how the outcome is determined and the weighting of the variables in relation to 

the outcome is difficult to visualise.  Random Forest analysis, by its nature, applies 

arbitrary thresholds to the data in order to form the branches of decision trees.  This 

approach is similar to the way in which clinical guidelines have been set out, albeit 

on a much larger and more complex scale. 

 

7.5.1 Random forest analysis 

 

Using the data set created in 7.3.1, a Random Forest model was built using the 

randomForest statistical package, selecting to perform 10-fold cross validation on a 

set of 500 distinct decision trees as part of the model training process.  The initial 

step of the model training process calculated the optimal number of branches per 

tree, in this analysis the model accuracy was highest when decision trees of no more 

than 7 branches were used (Table 7-12).   

Table 7-12. Performance of optimised Random Forest model on training data. 

 Actual MPN Actual no mutation 

Predicted MPN 873 158 

Predicted no mutation 165 1100 
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When this optimised model was applied to the data (Table 7-12), it produced a 

sensitivity of 84.10% and specificity of 87.44% on the training data set.   

 

7.5.2 Testing the model on an unseen data set 

 

Using the same test data set as described in 7.4.8.1, the Random Forest model was 

reapplied (Table 7-13) and performance characteristics calculated.  The model 

sensitivity was 97.37% and specificity was 15.09%. 

 

 Actual MPN Actual no mutation 

Predicted MPN 74 242 

Predicted no mutation 2 43 

Table 7-13. Performance of optimised Random Forest model on test dataset. 

 

 

 

 

 

 

7.5.3 Analysis of misclassified data 

 

7.5.3.1 False negatives 
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In this analysis only 2 MPNs were predicted to have no mutation when the random 

forest model was applied to the test data.  One of these had also been misclassified 

by the Logistic Regression model and was found to be from a patient with an 

existing diagnosis of ET, who was on treatment at the time of referral.  The other 

false negative produced by this model was a referral with an isolated thrombocytosis 

of 1087x109/L; unfortunately, no additional clinical information or follow up was 

available. 

 

7.5.3.2 False positives 

 

The random forest analysis incorrectly classified 242 samples with no mutation as an 

MPNs.  Thirty-three of these false positives had been referred from within Leeds 

Teaching Hospitals and clinical records were reviewed.    

 

Sixteen of these 33 referrals were due to features of suspected polycythaemia.  Ten 

were attributable to smoking and/or alcohol intake – with full blood count indices 

resolving to within reference ranges at following reduced intake.  Therapy related 

polycythaemia was diagnosed in a further 2 - both of which were due to testosterone 

replacement.  The remaining 4/16 were without obvious cause, but all resolved 

shortly after investigation.  Of the remaining 17 referrals, 1 referral had pancytopenia 

and was found to have a pre-exiting diagnosis of Refractory Cytopenia with Multi-

lineage Dysplasia and Fibrosis.  Four referrals were from patients suffering from 

thrombotic events and 12 from patients with an isolated thrombocytosis.  In the 12 

patients with thrombocytosis, 4 were attributed to iron deficiency, a further 4 to 

chronic reactive conditions and one was following splenectomy, no underlying cause 

could be identified in the final 3.   

Bone marrow investigations were performed in the 3 instances where an underlying 

cause was not documented, a diagnosis of ET was made in one specimen, systemic 

mastocytosis in the second and the final bone marrow showed a reactive picture.   
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7.6 Gradient-boosted modelling 

 

The final statistical modelling approach applied to the data set was gradient boosting.  

The basic premise of this technique is described in section 3.7.3.3.  Like Random 

Forest modelling, this is a ‘black box’ analysis and is also an ensemble technique 

combining multiple different decision tress classifiers.  Gradient-boosting differs 

from Random Forest analysis, in that the vote produced by each classifier within the 

ensemble is given a weighting depending upon the overall performance of that 

classifier.  The final classification is based upon ‘proportional representation’ rather 

than each classifier making an equal contribution to the overall decision. 

 

7.6.1 Development of gradient boosted model 

 

The gradient boosted model was built using features from the ‘caret’ and ‘gbm’ 

packages in RStudio and the data-set described in section 7.3.1.  Repeated cross-

validation was performed with 10 samples, repeating the process 10 times.  The 

process was run in triplicate, with increasing interaction depths (set at 1, 3 and 5).  

Each iteration was also run in duplicate, with increasing numbers of decision trees 

(ranging from 50 to 1500, in increasing increments of 30), over 3 different shrinkage 

thresholds (0.1, 0.01 and 0.001) with a minimum of 20 observations per node. 

 

The ‘best’ model was determined according to the overall model accuracy, this was 

achieved when the 1300 trees were used, with an interaction depth of 5 and 

shrinkage of 0.01.  A comparison of the models produced during the training process 

is shown in 
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Figure 7-6. 

Figure 7-6. Graphical representation showing Gradient boosted model 

performance during training. 
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The relative influence of each of the explanatory variables can also be visualised (see 

Figure 7-7), and shows that Platelet count (relative influence = 43.52), Haemoglobin 

(relative influence = 16.19) and MCHC (relative influence = 12.06) are the most 

influential measurements when using this modelling approach. 

 

Figure 7-7 Relative influence of each explanatory variable determined by 

gradient boosted regression analysis. 

 

The performance of the optimised gradient boosted model is shown in Table 7-14.  

The ‘best’ gradient boosted model achieved a sensitivity of 90.81% and specificity 

of 91.99%. 

 

 Actual MPN Actual no mutation 

Predicted MPN 929 102 

Predicted no mutation 94 1171 
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Table 7-14. Performance of optimised Gradient Boosted model on training 

dataset. 

 

 

7.6.2 Application of gradient boosted model to test data 

 

The optimised gradient boosted model was applied to the test data set described in 

7.4.8.1, and performance characteristics calculated.  The results of this analysis are 

shown in Table 7-15. 

 

 Actual MPN Actual no mutation 

Predicted MPN 63 37 

Predicted no mutation 13 248 

Table 7-15. Performance of optimised Gradient Boosted model on test dataset. 

 

The model sensitivity was 63.00% and specificity was 95.02%. 

 

7.6.3 Misclassified Data 

 

Gradient boosted modelling produced the highest number of false negatives of all 

three approaches when applied to the test data with 13 misclassifications versus 6 

produced by the logistic regression model and 2 by the random forest analysis.  This 

is the equivalent of 37.00% of referrals with a JAK2 V617F or CALR mutation 

failing to be predicted as such by the model.  This is a significantly lower level of 

sensitivity than achieved by the previous two modelling approaches and suboptimal 

when compared to the use of clinical guidelines alone.  For this reason, no further 

investigation of the misclassified data was performed. 
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7.7 Discussion 

 

Within the field of haematological malignancies, the reporting of statistical analyses 

in publications is commonplace.  The majority of clinical and biological journal 

articles contain some form of statistical analysis to indicate the significance of the 

data within.  However, the application of a predictive statistical model in clinical or 

diagnostic practice has not been previously reported in the diagnosis of MPNs.  The 

aim of this chapter was to investigate the utility of predictive statistical modelling as 

an alternative or adjunct to existing clinical and diagnostic guidelines. 

   

The current clinical guidelines are skewed towards a high sensitivity for the 

detection of MPN’s.  However; this comes at the expense of specificity, with over 

half of referrals that meet the criteria not having a diagnosable disease.  In addition 

to this, data presented in 5.2, shows that, in practice, the frequency of diagnosis of 

classical MPNs in the group of patients referred for investigation is very low, at 

19%.  Follow-up investigations are performed infrequently, with only 10.86% of 

patients who test wild type for JAK2 V617F and CALR 9 mutations undergoing a 

bone marrow biopsy.  For these reasons, it was felt that this was an area where 

improved efficiency in diagnostic processes could have significant benefits for both 

health care providers and patients.   

 

Selecting a suitable classifier approach for the data is a subjective process.  There are 

a vast range of predictive statistical modelling methods available that could, in 

theory, be applied to the data.  Initially, a comparison of eight different supervised 

classifiers was performed using WEKA.  Whilst this approach has not been reported 

in the context of either classical MPN diagnosis or indeed clinical referral practice in 

general, it has been applied within the diagnosis of other haematological 

malignancies, including the analysis of gene expression data in Diffuse Large B-cell 

Lymphoma (Care et al., 2013; Sha et al., 2015)    
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The concept of choosing the ‘best classifier’ is entirely dependent upon the overall 

goal of the model.  In this case, success would be measured against the metrics of the 

existing clinical/diagnostic guidelines, aiming to maintain sensitivity at the level 

achieved by the guidelines as a minimum, whilst achieving the maximum specificity 

possible.  This would ensure that the model ‘misses’ a minimal number of MPNs, 

whilst minimising the number of patients that would undergo investigation.  The 

general comparison performed in WEKA indicated that logistic regression, random 

forest and gradient boosted analysis were selected for further development. 

 

The first step of model development was the selection of a suitable data set.  The 

identification of ‘cases’ for inclusion did not pose any issues and was comprised of 

data from 1266 referrals which were received by HMDS for the investigation of a 

suspected MPN and which had a diagnosis confirming this.  The selection of a 

suitable comparison population was less simple.  The statistical model was intended 

to be used primarily within the clinical laboratory setting, with a view to acting as a 

form of triage to determine which referrals would undergo molecular screening.  It 

was not intended to discriminate between ‘normal’ individuals from the general 

population and those with an MPN, but rather to try and identify true MPN’s from 

within the population of patients referred with suspected disease.  On this basis, it 

was decided that a comparison group of ‘normal’ individuals would not be suitable 

and instead the control group should consist of patients referred for the investigation 

of a suspected MPN, who were not confirmed as having the disease. 

 

It was recognised that the use of this comparison population has some drawbacks.  

Samples referred for the investigation of a suspected MPN currently undergo 

screening for JAK2 V617F and CALR exon 9 mutations, alongside morphological 

assessment.  However, it is well reported that these two mutations are not present in 

all cases of MPN, a small proportion will carry a mutation in JAK2 exon 12 (1-2% of 

PV cases) or MPL exon 10 (3-5% of ET and 5-10% of PMF) and a proportion of 

MPN patients will not have a demonstrable mutation requiring diagnosis by bone 

marrow morphology.  The low frequency of Exon 12 and MPL mutations makes it 
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economically impractical to perform screening for these mutations on all JAK2 

V617F and CALR exon 9 wild type samples in routine practice.  Unfortunately, as 

the data shown in section 5.3 demonstrates, following initial molecular screening, the 

majority of patients with a non-diagnostic peripheral blood screen do not receive a 

follow-up bone marrow referral (89.14% of cases) and therefore the presence of an 

MPN cannot be fully excluded in the majority of cases.  The number of patients in 

which disease has been fully excluded is both small, and as the data demonstrates, 

the group of patients in which this is achieved are not representative of the referred 

population as a whole, having significantly different blood count parameters 

compared to those who were not followed up (Figure 5-3).  It is estimated that 

undiagnosed MPNs account for less than 5% of the comparison group, as this was 

the most representative sample group available, the decision was made to use it in 

model development.  

 

A total of 13 explanatory variables were selected for potential inclusion in a 

statistical model.  These were age, gender, haemoglobin, red cell count, haematocrit, 

mean cell volume, mean cell haemoglobin, mean corpuscular haemoglobin 

concentration, white cell count, neutrophil count, lymphocyte count, monocyte count 

and platelet count.  The first modelling approach used was logistic regression 

analysis, prior to model development, was to ensure that the data was in the 

appropriate form for analysis.  Q-Q plots were used to identify variables which 

required transformation and where necessary this was performed.  In addition to 

these data transformations, a matrix of plots showing each of the variables paired 

against each other to look for evidence of collinearity between variables.  

Collinearity occurs where two (or more) variables are measuring the same effect and 

are therefore not independent of one another. 

 

The initial logistic regression analysis included all the explanatory variables, the 

model showed statistically significant weightings for all but 4 of the variables.   

However, the presence of linear relationships as indicated by the paired data plots, 

would suggest that using all the variables would not produce a robust statistical 

model.  To confirm the presence and magnitude of collinearity in the model, the size 
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of variance inflation factors associated with each attribute were calculated.  This 

showed prominent levels of multicollinearity between red cell associated variables 

and between those deriving from white blood cell populations.  As stated, 

multicollinearity occurs when variables are not independent of one another, and as 

such it was expected as the majority of variables included in the model are related – 

Hb, RBC, MCV, MCH, MCHC and HCT are all measurements related to the same 

cell population (erythrocytes) and WBC is a cumulative measure of the neutrophil, 

lymphocyte and monocyte populations. 

 

To address the collinearity involving white cell parameters, it was decided to remove 

WBC from the analysis.  The rationale for this was that it did not represent a single 

cellular population and was to some extent a duplication of data contributed by the 

other WBC related parameters.  The decision was also made to remove monocyte 

count from the analysis as a review of the full blood count data showed that it was 

not consistently reported by the analyser and was therefore a less reliable variable.  

The linear relationships seen between the red blood cell related parameters was 

addressed by removing MCH and HCT from the analysis – the rationale for this was 

that these parameters were not directly measured by our full blood count analyser 

and were instead derived from other measured parameters.   

 

The logistic regression analysis was reperformed using the smaller selection of 

variables and the variance inflation factors were recalculated.  Multicollinearity was 

still present involving Haemoglobin, RBC and MCV.  To determine which of these 

variables should be excluded from the analysis, each was removed in turn and 

logistic regression analysis performed.  Removing RBC from the model resulted in 

the sufficiently low VIF values and the best predictive power. 

 

Once the issues of collinearity had been addressed, attribute selection was performed 

using LASSO regression.  This technique restricts the absolute size of regression 

coefficients, with the effect of shrinking those with the lowest values towards zero. 

In doing so, the variables with the least influence can be removed with the benefit of 
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creating a simplified model.  The ‘best’ model as determined by LASSO regression 

did not result in the shrinkage of any of the included variables.  

 

The final model selection would include; Age, Gender, Haemoglobin, MCV, 

MCHC, Neutrophil, Lymphocyte and Platelet counts as its explanatory variables.  

Performance metrics were determined for the model and a c index of 0.887 indicated 

that the model had strong predictive value. 

 

The logistic regression model calculates the likelihood of the outcome (in this model, 

the likelihood of having a classical MPN or not) as log odds, set on a scale between 

0 and 1.  The threshold at which the model categorises a sample as a probable 

classical MPN or not can make a significant difference to the performance of the 

model in practice.  To optimise the performance of the model, the most suitable 

threshold needed to be determined.  There are several considerations to take into 

account when selecting the optimal threshold for class determination.  Firstly, the 

threshold which gives the ‘best’ model performance was determined, that is, the 

threshold which resulted in the highest level of sensitivity and specificity combined 

– thus resulting in the most ‘accurate’ model overall.  A threshold of 0.56 was 

calculated as achieving this, and further analysis of the performance metrics showed 

that using this threshold would achieve a sensitivity of 0.82 and specificity of 0.83. 

 

However, this model was intended to improve upon the performance of the current 

clinical guidelines that have a sensitivity of 0.87, which is superior to that achieved 

by the logistic regression model using the 0.56 threshold.  The reduced sensitivity of 

the model would result in an increase in the number of ‘cases’ missed which would 

have negative implications for patients.  In this case the ‘best’ model in statistical 

terms was not the ‘best’ model for the intended purpose.  Instead, a threshold which 

would give the maximum specificity whilst achieving a minimum sensitivity of 0.87 

would be optimal.  Performance characteristics were calculated across a wide range 

of thresholds to manually determine if this was possible.  A threshold of 0.7 was able 

to achieve a higher sensitivity than the guidelines (0.89) whilst achieving an 

improved specificity (0.73 vs 0.50 achieved by guidelines). 
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The performance of the model on the case control data set does not necessarily 

reflect the performance of the model in ‘real life’.  The data set was selected to have 

approximately even proportions of MPNs:No mutation samples with a ratio of 

0.74:1, this was not reflective of the true incidence of classical MPNs in our referral 

population where the ratio is approximately 0.2:1.  To determine how effective the 

model would be in practice, it was applied to a separate cohort of 361 suspected 

MPN referrals was used as a validation data set and performance characteristics 

measured.  The model performance was comparable on the validation data to the 

training data, achieving sensitivity of 0.92 and specificity of 0.71.      

 

Referrals which were misclassified by the model were identified.  Only 6 samples 

with a classical MPN were misclassified by the logistic regression model, of which 2 

were actually known classical MPN patients who were on treatment at the time of 

investigation and a further 2 had low allelic burden of JAK2 V617F (<10%), a 

further case had another coexisting haematological neoplasm which may affect the 

predictive capabilities of the model.  The final classical MPN missed by this model 

had an isolated thrombocytosis with a platelet count of 569x109/L, well above the 

upper limits of the normal range.  Excluding the two known classical MPN patients 

would increase the sensitivity of the model slightly to 0.95.  

 

As expected by the lower specificity of the model compared to its sensitivity, the 

model misclassified a larger number of referrals as MPNs, with a total of 82.  

Clinical records were reviewed in the 12/82 cases referred from Leeds Teaching 

Hospitals.  The majority (10/12) of these had an underlying reactive condition which 

would account for the abnormal blood count parameters, and in all cases blood 

counts did return to normal levels following investigation.  Two of the referrals did 

not have underlying reactive conditions, 1 was deemed to be due to smoking related 

hypoxia and the final referral had a bone marrow performed which confirmed a 

diagnosis of triple negative ET. 
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The development of a random forest model was in many ways easier than logistic 

regression.  The software package used incorporated cross-validation processes as 

well as optimisation of tree size.  In addition to this, random forest analysis is a 

‘black box’ technique, in which the processes taking place between data input and 

output are hidden from the user.  The ‘best’ model produced using random forest 

analysis produced a sensitivity of 0.84 and specificity of 0.87.  Application of the 

model to the validation data set produced a higher level of sensitivity (0.97) 

however, but the specificity was very low at 0.15.  Analysis of the MPNs missed by 

the model (n=2) revealed that whilst 1 of the referrals was from a known ET on 

treatment (with normal full blood count parameters), however, the second was a 

referral with an isolated thrombocytosis of 1087x109/L. 

 

A larger number of samples with no mutations were misclassified as MPNs by the 

random forest analysis (n=242).  Thirty-three of these were from Leeds Teaching 

Hospitals and clinical documents were reviewed in all cases.  Suspected 

polycythaemia was indicated in 16/33, 10 of these were attributed to smoking and/or 

alcohol use, and 2 were thought to be a side effect of testosterone therapy.  The 

remaining 4 referrals with suspected polycythaemia were without identifiable cause, 

all of which resolved following investigation.  In the 17 non-polycythaemic false 

positives, 4 were thought to be due to iron deficiency related thrombocytosis, 4 were 

due to chronic reactive conditions including rheumatoid arthritis, 4 following 

thrombotic events, 1 due to prior splenectomy and 1 was in a patient who had been 

previously diagnosed with refractory cytopenia with multi-lineage dysplasia and 

fibrosis.  The remaining 3 had no identifiable cause for investigation and underwent 

bone marrow analysis.  ET was diagnosed in one case, systemic mastocytosis was 

found in a further individual and the final case showed reactive changes only.      

 

Gradient boosted modelling initially appeared to offer the best levels of specificity 

(89.82%) and sensitivity (91.21%) with both exceeding that achieved by the use of 

current clinical guidelines alone (best sensitivity 88.07% (WHO), best specificity of 

49.55%(BCSH)).  Model optimisation was the most complex of the three techniques 

and required the longest computational processing time.  However, when applied to 
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the test data set, the model performance deteriorated significantly and had much 

poorer predictive power than either logistic regression or random forest analysis.    

 

In summary, the logistic regression model performed better than both the random 

forest analysis and gradient boosted model in the classification of suspected MPN 

referrals.  The overall performance was superior to that achieved using the clinical 

guidelines alone and if used, may reduce significantly the number of patients 

undergoing investigation for suspect MPNs.  In addition, the use of logistic 

regression has the added benefit of weighting each variable allowing for some 

evaluation of how different biological parameters contribute to the probability of 

disease.  The data within this chapter would indicate that MCHC and lymphocyte 

count have the biggest weighting within the model, both in an additive way.  In real 

terms, higher MCHC and lymphocyte counts increase the likelihood that a referral 

will not have a mutation of JAK2 or CALR detected.  There are no publications that 

specifically identify lymphocyte counts as being of significance in MPN diagnosis.  

However, reduced B cell progenitors are a frequent finding in myelodysplastic 

syndrome (Jacobs et al.) and it could be hypothesised that lymphocyte count may be 

an indicator of overall haematopoietic function.  Likewise, MCHC may be a general 

indicator of effective haematopoiesis.   Increased values for the other scalar 

explanatory variables or male gender act in a subtractive manner and increase the 

probability that a referral will be classified as a case. 

 

The comparable performance of the model on both the test and validation cohorts is 

a good indicator that the model is robust and fit for purpose.  To assess the impact 

that the implementation of this model would have in practice, a further data set of 

referrals of suspected MPNs will be analysed using the model in the next chapter. 
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8. Assessing the impact of utilising a predictive statistical 

model in routine diagnostic practice 

 

The development and validation of the predictive logistic regression model for the 

diagnosis of MPNs demonstrates a clear statistical improvement over the use of 

clinical guidelines alone.  However, the use of such models in clinical and/or 

laboratory practice has not been reported in this field and the acceptance of such an 

approach by clinicians and patients may be challenging.  It requires a change in 

approach and will contradict both current diagnostic guidelines as well as modifying 

current clinical practice.   

 

Demonstrating that the model performance is superior to current methods goes 

partway towards justifying its use.  In addition to this, it must also be shown that it 

does not compromise patient safety, and that implementation would not have a 

detrimental effect on workload, resources and in the case of HMDS, income 

generation.  In this chapter, the impact of utilising the predictive logistic regression 

model will be examined in more detail. 

 

8.1 The data used to assess impact 

 

As detailed in 3.5.2.5, all referrals received by HMDS for the investigation of 

suspected MPNs during the 2016 calendar year were selected for assessment of the 

model in ‘real life’.  Sample group 6 was initially composed of 2174 referrals, with 

438 confirmed diagnoses of MPN and 1740 with no mutation detected.  Following 

removal of duplicate patient referrals and exclusion of those in which clinical details 

did not indicate a suspected MPN (therefore were not screened for JAK2 V617F or 

CALR mutations) or where peripheral blood was not received for full blood count 

analysis, the data set was reduced to 1581 referrals (see Figure 8-1).  

 



168 

 

 

The data set contained; 801 male and 780 female referrals (ratio 1.03:1) aged 

between 16 and 94 years of age (median age – 61 years).  A diagnosis of MPN was 

confirmed in 305/1581 referrals with the remaining 1276/1581 referrals having no 

mutation in JAK2 or CALR detected. 

 

Figure 8-1. Selection of referrals for analysis of model impact in routine 

diagnostic practice. 
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8.2 How would the model be used in practice? 

 

This model relies upon accurate full blood count data, and as described in 3.3, it is 

not practical to perform full blood count analysis prior to consultation at the patient’s 

initial visit to clinic.  Therefore, in the first instance, the predictive model has been 

designed to be used within HMDS (or a similar laboratory) as a form of sample 

triage, although it could also be used in a clinical setting if desired.  The statistical 

model is intended to guide and support existing practice rather than replace it and so 

it was envisioned that the prediction produced by the model would be used alongside 

morphological assessment to indicate whether a specimen underwent further 

investigations following full blood count assessment. 

 

Using the optimised threshold of 0.7 (as described in 7.4.7.2) referrals which were 

classified as an MPN by the model (predicted risk <0.7) would undergo molecular 

screening for JAK2 V617F and CALR exon 9 mutations.  Those which returned a 

predicted risk of >=0.7 would be predicted to not be an MPN and would not be 

investigated any further.  An exception to this, would be where there were clinical 

features recorded (such as splenomegaly or unexplained thrombotic events) or 

morphological features (for example, the presence of tear drop poikylocytes) were 

indicative of an underlying pathological process.   

 



170 

 

 

 

Figure 8-2. Proposed workflow diagram incorporating predictive modelling. 
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8.3 How would the application of predictive logistic 

regression model have impacted on workload in 2016? 

 

The logistic regression model developed in chapter 7 was applied to the data set 

described in 8.1.  Referrals were categorised as ‘MPN’ and ‘not MPN’ based on the 

model’s prediction.  This resulted in 37.13% (n=587) referrals being categorised as 

‘MPN’ and the remaining 62.87% (n=994) referrals being classed as ‘not MPN’ by 

the model. 

 

8.3.1 Model performance 

 

Using the performance metrics detailed in previous chapters, the logistic regression 

model showed a sensitivity of 0.88 and specificity of 0.75. 

 

 Actual MPN Actual no mutation 

Predicted MPN 267 320 

Predicted no mutation 38 956 

Figure 8-3. Performance of predictive model on suspected MPN referrals 

received during 2016. 

 

8.3.2 Would the genuine MPN referrals have been missed in 

practice? 

 

When the data was analysed further, 38 of the referrals which were predicted as not 

being MPNs, which were subsequently found to have an MPN.  As in section 

7.4.9.1, the request data, and where possible, clinical records were reviewed.  Upon 

further investigation 14/38 false negatives were found to have a previously 
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diagnosed MPN and were on treatment at the time of referral, accounting for the 

normal full blood count data. 

 

Of the remaining 24, 5 had been referred due to unexplained thrombotic events, 

clinical features which have been prompted investigation according to the workflow 

diagram outlined (Figure 8-2).  Two referrals were concurrently undergoing 

investigation for other possible haematological malignancies.  In one case, a patient 

was suspected as having MDS or PMF due to worsening cytopenia and the clinical 

details supported investigation.  In the second case, the patient was referred with 

clinical details of suspected PMF and/or a lymphoproliferative disorder and 

morphological features supported the suspicion of PMF which would have resulted 

in investigations proceeding, despite the prediction of the statistical model.     

 

One of the remaining false negatives did not demonstrate JAK2 V617F or CALR 

exon 9 mutations in the specimen used in this analysis and was initially reported as 

non-diagnostic, however, morphological examination of the peripheral blood had 

evidence of tear drop poikylocytes which would have prompted investigation.  A 

subsequent bone marrow received on this patient confirmed the diagnosis of an 

MPN.   

 

A further 3, presented with elevated haemoglobin and haematocrit but no additional 

clinical information was available to indicate whether this was persistent or whether 

other causes had been excluded.  As JAK2 mutations are found in >95% of cases of 

PV, it is likely that these would have been investigated despite the model 

classification as the exclusion value of an unmutated result is very high. 

 

An isolated mild thrombocytosis was present in a further 6 referrals, this was 

documented as being persistent by the referring clinician in 2/6 of these, the other 4 

referrals would not have been investigated any further. 
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The final 7 referrals in this group had normal full blood count indices and, without 

exception, these referrals were received with no additional clinical information and 

would not have undergone further investigation as a result of the model prediction.   

 

Overall, a total of 11 individuals with a demonstrable mutation would have been 

rejected by the laboratory on the basis of the prediction provided by the statistical 

model combined with the absence of clinical and morphological evidence to support 

further investigation. 

 

Removal of the known MPNs on treatment and reclassification of those which would 

have undergone investigation on the basis of clinical and morphological assessment 

adjusted the performance to a sensitivity of 0.96 and specificity of 0.75. 

8.3.3 False positives 

 

The predictive logistic regression model misclassified 320 non-diagnostic referrals 

as an MPN.  Request data and clinical records were examined in the 24/320 referrals 

received from Leeds Teaching Hospitals.  Subsequent bone marrow assessment was 

performed in only 5/24 of these referrals; an MPN was not confirmed in any of these 

instances.  Another haematological malignancy was found in 2/24 individuals 

(multiple myeloma n=1 and hairy cell leukaemia n=1).  Reactive causes were 

diagnosed in 11/24 referrals with a further 3/24 thought to be caused by lifestyle 

choices (smoking and alcohol related).  In the remaining 3 referrals, no identifiable 

cause was found and at the time of writing, no further investigations had been 

performed.  

 

8.4 What would the practical impact of using the model 

have been? 

 

8.4.1 Cost burden analysis 
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To establish the impact that adopting a predictive model would have had financially 

over this time period a cost-burden analysis was performed.  This is achieved by 

considering each of the steps undertaken in the laboratory during the process of 

investigating a suspected MPN and calculating the associated costs.  Full details of 

the cost breakdown are included in the appendix (Figure 10-1 through Figure 10-6).  

The total cost of processing a suspected MPN referral in the laboratory was 

calculated to be £33.97p. 

 

During 2016, the 1581 referrals included in this analysis were processed at a total 

cost of £53,706.57p to the laboratory.  The implementation of the predictive model 

developed in this work would have resulted in only 601 referrals of these referrals 

being investigated, at a total cost of £20,415.97p to the laboratory.  This would have 

resulted in an overall cost saving of £33,290.60p.  With estimated savings of around 

£170,000 over a 5-year period. 

 

8.4.2 Impact on income generation 

 

The cost savings described in 8.4.1 represent the expenditure within the laboratory, 

however, this is only part of the picture.  Every referral processed by HMDS for 

investigation of a suspected MPN currently incurs a charge for the referring hospital 

of £200.  It is proposed that, following implementation of the statistical model, 

referrals that did not meet criteria for full investigation would incur a reduced charge 

of £100.  Based on the 2016 referral figures, 960 referrals would have been invoiced 

at the lower charge, which would result in a reduction in income of £96000. 

8.4.3 Impact on staff time 

 

Reducing the number of specimens undergoing laboratory investigations would 

decrease the amount of staff time required to provide this service.  Cost burden 

analyses estimate that each referral requires approximately 1hr of staff time to 
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process and report.  A reduction of 960 specimens would free 18.85 hours of staff 

time on average per week in HMDS. 

 

8.4.4 Equipment availability 

 

In addition to the staff time that could be released, a reduction in workload would 

also decrease the amount of equipment time requirement.  As shown in Table 8-1, 

this would free over 290 hours of equipment time annually. 

   

Equipment Requirement/sample(s) Saving/annum (based 

on 960 fewer referrals) 

Automated DNA 

extraction 

40 minutes / 12 samples 53 hours and 20 minutes 

PCR protocol 2 hours / 24 samples 80 hours 

Fragment analysis 40 minutes / 4 samples 160 hours 

Table 8-1. Potential equipment usage savings associated with reduced referral 

numbers. 

 

 

 

 

 

8.4.5 Clinical savings 

 

In addition to the financial and time savings that can be made in the laboratory, there 

are also potentially significant savings for clinical departments.  Implementing the 

use of predictive modelling tools in the haematology clinic setting, prior to referral to 



176 

 

 

HMDS, would have allowed 960 patients to be discharged to primary care following 

their initial visit.  At a cost of £109 per appointment (2017/18 NHS National Tariff), 

this would have saved £104,640.     

 

8.5 Developing a user interface 

 

The wider implementation of this predictive model requires some form of user 

interface.  To this end, I have developed a web-based application into which a 

clinician or scientist can input the relevant values from patient details and full blood 

count results.  The application then uses the model developed in this work to 

calculate the likelihood of the patient having an MPN and displays this to the user 

alongside a statement indicating whether the result meets the criteria for further 

laboratory testing.  The model can be access through the following web address: 

 https://classicalmpnpredictor.shinyapps.io/MPNpredictor/   

Screenshots follow which show the user interface prior to the input of new data 

(Figure 8-4), along with examples of the output when the model predicts a high 

likelihood of the patient having an MPN (Figure 8-5) as well as a low likelihood 

prediction (Figure 8-6). 

https://classicalmpnpredictor.shinyapps.io/MPNpredictor/
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Figure 8-4 Screenshot (1) User interface prior to input of new patient data 
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Figure 8-5 Screenshot (2) User interface output when prediction is high likelihood of MPN 
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Figure 8-6 Screenshot (3) User interface when prediction is low likelihood of MPN 
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8.6 Discussion/summary 

 

During the 2016 calendar year, 1518 referrals were made which were suitable for 

analysis by the model.  Whilst that does not represent the total number of referrals 

that underwent JAK2 V617F and CALR exon 9 mutation screening, it does comprise 

the total of referrals which were recorded as being made solely for the investigation 

of a suspected MPN.  

 

The initial model performance is comparable with that reported during both its 

development and validation.  With both sensitivity and specificity exceeding the 

level achieved using the criteria set out by current published guidelines alone. 

Furthermore, during the investigation of false negative predictions, it was found that 

a significant proportion of misclassified referrals were either known MPN’s on 

active therapy or had clinical/morphological features which would have indicated 

that mutational screening was justified.  Removal or reclassification of these referrals 

from the analysis further improved the sensitivity of the model. 

 

In analysing the false negative predictions, 7/11 of the cases would have been 

rejected under the proposed system had normal full blood count parameters.  The 

finding of a mutation alone, would not have been sufficient to meet current 

diagnostic criteria and therefore the diagnosis of an MPN could not have been made.  

It could also be argued that these referrals would not have been made in the first 

instance, were the referring clinician following current recommended guidelines.  It 

is also recognised that mutations including JAK2 V617F and those found in CALR 

exon 9 are found in both normal individuals (Jaiswal et al., 2014), and that whilst 

uncommon, can also be found in disorders outside of the classical MPNs (Linda M. 

Scott, 2014; Scott et al., 2005).  This would suggest that in isolation, the presence of 

a mutation should be treated with caution.  
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Statistically, the predictive model has consistently demonstrated a higher level of 

sensitivity than the use of the clinical guidelines, which indicates that the number of 

false negatives produced by the model is lower than expected using the guidelines 

alone.  Whilst, there may be differences in the specific individuals who would have 

been missed by each approach, the overall impact is lower when the statistical model 

is used.  As such, there is no evidence that there would be a negative impact on 

patient safety. 

 

The utilisation of the proposed predictive statistical model would have had a 

significant financial impact.  Considering laboratory and clinical costings, the use of 

predictive modelling would have had an estimated overall cost saving of 

£52,490.60p during the 2016 period, with projected savings in excess of £262,000 

over a 5-year period.  In addition to the financial savings, 960 clinic appointments 

could have been made available and HMDS could have reallocated 290 hours of 

equipment resources and a 0.5 whole time equivalent member of staff to alternative 

service requirements. 
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9. General Discussion 

9.1 Overview 

 

This thesis is the first reported example of predictive statistical modelling being used 

to determine the appropriateness of investigations in suspected myeloproliferative 

neoplasms.  The clinical laboratory setting in which this work has taken place 

allowed access to an unparalleled dataset reflecting a wide population of patients 

undergoing such investigations.  The methods used in this work demonstrate that 

current referral behaviour could potentially be improved and that adherence to 

published guidelines is often impractical in a clinic setting.  Furthermore, this work 

has objectively quantified the efficiency of clinical guidelines and highlights the 

potential opportunity to re-evaluating the current scheme.  The data presented 

proposes an alternative approach to the identification of patients with probable 

classical MPNs by applying statistical modelling to biological variables, some of 

whose utility is previously unreported in the context of classical MPNs.  

 

9.2 Molecular screening for classical MPNs 

 

The MPNs are a heterogenous group of disorders classified together under a single 

term.  They exhibit a range of molecular defects, but none of these are disease 

defining.  Whilst upwards of 99% of confirmed cases of PV have a demonstrable 

JAK2 (V617F or Exon 12) mutations, prior to the identification of mutations in the 

Calreticulin gene, mutations of JAK2 V617F and MPL were identifiable in little 

more than half of those individuals with confirmed ET or PMF.  It is estimated that 

CALR mutations increase the proportion of ET and PMF diagnoses with a 

demonstrable mutation to over two thirds, this still leaves a significant proportion of 
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cases without an identified molecular aberration.  These patients would require bone 

marrow assessment to confirm the presence of disease. 

 

At the outset of this work, mutations in the CALR gene had not been identified and 

the discovery of mutations in this gene in 2012 altered the course of this research. 

The omission of such a high frequency mutation from statistical analysis would have 

significantly limited the impact of this work therefore the development and 

validation of a diagnostic assay for identifying mutations in this gene was critical, 

not only for the meaningful completion of this thesis, but also for routine clinical 

laboratory use.  Data presented within this thesis highlights the significant work that 

is required for the development and validation of a new assay for use in a diagnostic 

laboratory.  Mutations as significant, or with as high frequency, as CALR are rarely 

identified, and this work also offers a unique insight into the impact of introducing 

new molecular assays on referral behaviour 

 

There was very limited information about the clinical and laboratory features of 

CALR mutations at the time that this work was undertaken.  The only published data 

available on the features of CALR mutations had been derived from patients with a 

WHO confirmed diagnoses of ET in whom bone marrow morphology was a 

prerequisite.  As, from our data, bone marrow aspiration is performed on younger 

patients with higher platelet counts than seen in the overall population referred for 

investigation of suspected MPN, it was hypothesised that the published data may 

have been naturally biased towards this cohort of patients.  This could potentially 

account for the published features associated with CALR mutations (younger age, 

higher platelet count).   

 

This work set out to determine whether the clinical and laboratory findings from the 

publications were also seen in the population of patients referred to a diagnostic 

laboratory.  Data presented in this work demonstrates that both the clinical and 

laboratory features of CALR mutated patients described in the literature were 

consistent with those found in a routine diagnostic laboratory.  Having confirmed 
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that our population of MPN patients are comparable to those identified in other 

centres, I am confident that conclusions drawn from this work will be applicable on a 

wider scale.   

 

9.3 Clinical practice - guidelines vs reality 

 

The identification of molecular markers of disease should, in theory, improve the 

efficiency of diagnostic practice.  This does not, however, appear to be the case in 

the diagnosis of the myeloproliferative neoplasms.  The data presented in this thesis 

show that the introduction of molecular screening tests has been accompanied by 

significant increases in referral numbers but has had negligible impact on the number 

of confirmed diagnoses.   

 

It was hypothesised that the increasing disparity between referrals and diagnoses 

may be reflective of high numbers of inappropriate referrals.  The auditing of clinical 

practice showed that, for logistical reasons, JAK2 V617F and CALR mutational 

screening is being requested without first confirming the reported abnormal blood 

counts.  In patients where the clinical suspicion is low, the results appear to be 

treated as a test of exclusion, rather than as a support tool to restrict investigations to 

those patients in whom true clinical suspicion is present and who demonstrate 

persistently abnormal blood counts.  Indeed, published data indicates that a third of 

ET and PMF patients will not demonstrate a mutation of JAK2 V617F or CALR, 

however in our cohort less than 10% of referrals with no evidence of a JAK2 V617F 

or CALR mutation in the peripheral blood screens were investigated further.  

  

9.4 Predictive modelling 
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Clinical guidelines for the investigation of suspected myeloproliferative disorders 

have evolved over the past 50 years.  However, during this time there has not been a 

critical appraisal of their performance.  Amendments to the guidelines have largely 

been driven by either the addition of genetic markers or adjustments in FBC 

parameter thresholds and the basic structure of the criteria have remained unchanged.  

Furthermore, it is unclear how the original diagnostic variables and thresholds used 

in the criteria were originally identified.     

HMRN has demonstrated that the socio-demographic profile of the population 

HMDS serves is comparable to the national average.  Furthermore, the HILIS 

database contains biological and demographic data on each referral.  Given that, 

from 2005 to 2017, HMDS investigated over 18,000 cases for suspected classical 

MPNs, the data used within this thesis offers an unparalleled data set for the 

development of a predictive statistical model.  Indeed, using logistic regression 

analysis of full blood count parameters in conjunction with demographic 

information, it is possible to correctly classify over 95% of referrals who will 

demonstrate the presence of a JAK2 V617F or CALR mutation.  In contrast to current 

referral practice whereby >80% of referrals do not have a JAK2 V617F or CALR 

mutation, the classifier would remove cases from further referral and reduce this 

figure to <30%. 

9.5 Implementing changes in clinical practice 

 

Initially, it is intended that the predictive model developed in this work, will be used 

as an adjunct to current screening protocols in the diagnostic laboratory.  Full blood 

count and demographic information from suspected classical MPN referrals will be 

inputted into the app and the classified as having a either a high or low likelihood of 

having a classical MPN.  Those classified as having a low likelihood will not be 

investigated unless clinical or morphological evidence indicates otherwise (such as 

thrombotic complications, hepatosplenomegaly or morphological abnormalities 

(tear-drop poikylocytes or leucoerythroblastic features).  Samples classified as 

having a high likelihood of being an MPN, will undergo screening for JAK2 and 

CALR mutations.  Those in which a JAK2 V617F or CALR mutation is detected will 
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be reported as per current protocols.  Whereas those in which neither mutation is 

identified without would be reported as having no mutation in JAK2 V617F/CALR 

with a comment to indicate that if there is no reactive cause for clinical/laboratory 

features, a bone marrow would be indicated.    

 

 

Adopting such an approach during 2016 would have a significant impact in HMDS, 

saving over 290 hours of equipment time and the equivalent of a 0.5 whole-time 

equivalent staff member time each year.  The reduction in workload associated with 

adopting this predictive model would reduce the departmental income by 

approximately £96000 per annum.  However, the staff time and equipment made 

available would allow other areas of the service to expand and recoup lost income.  

Furthermore, all patients with suspected classical MPNs are seen in clinic on a 

minimum of 2 occasions.  If the use of this model could be incorporated into clinical 

practice and used by clinicians prior to referral to the laboratory, it would have 

reduced this to a single clinic appointment in over 60% of referrals received in 2016.  

Using the figures stated in chapter 7, this could have potentially saved 994 clinic 

appointments in 2016, at a cost of £120 per appointment (according to the NHS 

national tariff 2016/17) this could have saved an additional £119,280, as well as 

decreasing pressure on clinical services and reducing patient anxiety.  Taking both 

laboratory and clinical costings into account there are potential overall savings for 

the NHS in the region of £52,000 per annum.  

 

The integration of predictive statistical modelling into routine clinical practice is the 

ultimate endpoint of this work.  In doing so, it would offer greater benefits, in terms 

of financial savings (both laboratory and clinical) and patient pathway efficiency 

(reduced waiting times and appointment requirements) than restricting it’s use to the 

diagnostic laboratory.  The app developed in this work offers a simple, accessible 

way for clinicians to quickly establish the appropriateness of testing in their patients.  

However, successful implementation would require some modifications to current 

working practices to ensure that the data inputted was up to date and accurate.  This 
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would require clinician engagement and a willingness to alter the way in which 

patients are seen in clinic.  Demonstrating the value of using this model in a 

prospective cohort will build clinician trust and it is hoped that this will lead to 

adoption of this model in the diagnostic pathway for patients with suspected classical 

MPNs.  

 

 

9.6 Impact on patient experience 

 

It is acknowledged that many patients respond positively to an active investigatory 

approach.  However, this does not necessarily mean that JAK2 V617F and CALR 

exon 9 mutational screening should be seen as a preliminary investigation.  Data 

from the clinical audit presented in section 5.5 showed that in more than half of 

referrals audited, persistent abnormal blood count parameters were demonstrated 

prior to requesting JAK2 V617F and CALR exon 9 mutational screening.  In these 

patients, an active testing approach could be employed without the inclusion of 

mutational screening. 

   

One can appreciate that requesting JAK2 V617F and CALR mutational screening 

during the initial clinic consultation may save time.  Hospital services are under 

mounting pressure to reduce waiting times and reduce costs.  These pressures may 

contribute to the premature requesting of JAK2 V617F and CALR mutational 

screening.  The proposed implementation of the model during the lab following 

consultation and for the haematology laboratory to then use the modelling app to 

determine whether the specimen be referred onwards for JAK2 V617F and CALR 

exon 9 mutational screening.  Alternatively, if point of care testing were available in 

the haematology outpatient clinic, it may be feasible to perform the full blood count 

prior to consultation and for the clinician to use the app to determine the 

appropriateness of further investigation themselves. 
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9.7 Further work 

 

The data used to develop this model is taken from a restricted geographical 

population.  HMRN publications show that this population is comparable to that of 

the national population but demonstrating the performance of this model on an 

independent geographical cohort would be valuable.  As such, it is intended that the 

model will be applied to a series of independent referrals, possibly in a different 

geographical location to confirm its suitability.   

 

The inclusion of MPL and JAK2 Exon 12 mutations in this work was restricted by 

the low frequency of bone marrow aspirates received.  As a pilot study, a recent 

HILIS database search identified a total of 27 MPL exon 10 or JAK2 exon 12 

mutated MPNs which were suitable for assessment using the predictive model app.  

The model predicted the correct class membership in 24/27 cases (sensitivity = 

88.89%).  Whilst encouraging, the sample size is insufficient to draw any meaningful 

conclusions.  Further validation is planned to be performed on a dataset tested for all 

4 mutations (JAK2 V617F, JAK2 exon 12, MPL and CALR) thereby helping to 

establish the value of this model in the identification of patients who would benefit 

from upfront JAK2 exon 12 and/or MPL mutation analysis. 

 

The investigation of suspected classical MPNs is one of many potential applications 

of predictive statistical modelling in a haematological setting.  This could potentially 

include a similar approach utilising FBC parameters in conjunction with patient 
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demographics in a range of conditions.  For example, to better target the population 

referred for screening in suspected Paroxysmal Nocturnal Haemoglobinuria (PNH), 

or the identification of a reactive eosinophilia or monocytosis from their malignant 

counterparts.  Furthermore, given the diagnostic challenge in the identification of 

MDS from other non-clonal cytopenias, or clonal haematopoiesis of indeterminate 

potential, full blood count data could be supplemented with additional laboratory 

data (for example immunophenotypic characteristics).  Following completion of this 

work, it is anticipated that further research could be undertaken in these areas.  

 

In conclusion, predictive statistical modelling has the potential to beneficially alter 

the way in which samples are referred for laboratory investigations in suspected 

malignant conditions.   This work provides potential evidence of the positive impact 

this approach would have in the investigation of suspected classical MPNs. 

Demonstrating that better targeting the population for investigation would reduce 

both laboratory and clinical workloads, decrease clinic waiting times and would 

result in significant financial savings.  Furthermore, this would allow resources to be 

directed towards those clinically appropriate investigations which would ultimately 

improve patient care. 

 

 

 

 

 

 

 

 

 

 



190 

 

 

 

10. Appendices 
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10.1 Materials 

 

Description Catalogue/Product 

number 

Manufacturer 

Albumin, Bovine A-3059 Sigma Chemical 

Company 

Ammonium Chloride 55 Vickers Laboratory 

Ltd 

AmpliTaq Gold DNA polymerase 

kit 

4311816 Applied Biosystems 

Ethanol  P20809 VWR International 

Facsflow 342003 Becton Dickinson 

Genescan 500 Rox dye Size 

Standard 

4310361 Life Technologies 

Hi-Di Formamide solution 43311320 Applied Biosystems 

QIAamp DNA Mini Kit  5136 Qiagen Ltd 

UltraPURE, DNAse, RNAse free 

Water 

10977-035 Invitrogen 

Primers custom product Sigma-Genosys 

100mM dNTP mix  39026 Bioline 

Molecular biology grade water  10977-035 Gibco 

Table 10-1 Details of reagents used in fluorescent fragment analysis experiments 
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Target Sequence 

JAK2 COMMON REVERSE 56-FAMN/CTG AAT AGT CCT ACA 

GTG TTT TCA GTT TCA 

JAK2 WILD TYPE SPECIFIC 

FORWARD 

ATC TAT AGT CAT GCT GAA AGT 

AGG AGA AAG 

JAK2 MUTANT SPECIFIC 

FORWARD 

AGC ATT TGG TTT TAA ATT ATG 

GAG TAT ATT 

CALR EXON 9 REVERSE AGA CAT TAT TTG GCG CGG 

CALR EXON 9 FORWARD 5HEX/TGA GGT GTG TGC TCT 

GCC T 

Table 10-2 Primer sequences for amplification and fluorescent fragment analysis of 

JAK V617F and CALR exon 9 mutations 

 

REAGENT CONCENTRATION VOLUME/40 TESTS 

 Ultrapure H2O  829 μL 

ABI 10x gold buffer 1x 100 μL 

JAK2 fluorescent reverse 

primer 

5pmol final concentration 2 μL 

JAK2 wild type forward 

primer 

5pmol final concentration 2 μL 

JAK2 mutant forward 

primer 

5pmol final concentration 2 μL 

DNTP 125µM final concentration 5 μL 

MgCl2 1.5mM final concentration 60 μL 

Taq polymerase 0.5 Units 0.1µL 

DNA   

Table 10-3 Reagent list for JAK2 V617F mutations screen PCR reaction 
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REAGENT CONCENTRATION VOLUME/40 TESTS 

Ultrapure H2O  831 μL 

ABI 10x gold buffer 1x 100 μL 

CALR fluorescent forward 

primer 

5pmol 2 μL 

CALR reverse primer 5pmol 2 μL 

DNTP 125µM final concentration 5 μL 

MgCl2 1.5mM final concentration 60 μL 

Taq polymerase 0.5 Units 0.1µL 

DNA   

Table 10-4 Reagent list for CALR exon 9 mutation screen PCR reaction 

 

STEP TEMPERATURE TIME 

Pre-activation 95˚C 10 minutes 

35 cycles as follows:   

Denaturation 95°C 30 seconds 

Annealing 58°C 30 seconds 

Extension 72°C 30 seconds 

Followed by:   

Final step   

Extension 72°C 7 minutes 

Hold 4°C ∞ 

Table 10-5 Thermal cycle settings for combined JAK2/CALR PCR. 
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10.2 R Scripts for Statistical Model Development, Testing and 

Validation 

 

10.2.1  Data preparation 

 

# LIBRARIES REQUIRED TO PERFORM ANALYSIS # 

library(MASS) 

library(faraway) 

library(rgl) 

library(caret) 

library(gmodels) 

library(ROCR) 

library(rms) 

 

#READ IN DATA# 

dfr <- read.csv("modelling_data_v1.csv", header=T)  

 

#CHECK DATA STRUCTURE, LEVELS OF FACTORS# 

str(dfr)  

 

#OVERVIEW SUMMARY OF ALL DATA# 

summary(dfr)  
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#SELECT COHORT OF SAMPLES WITH FULL MOLECULAR ANALYSIS AND 

COMPLETE FULL BLOOOD COUNT DATA# 

complete <- dfr[dfr$molecular!='JAK2_NEG',] 

summary(complete) 

idx1 <- is.na(complete$hct) 

complete <- complete[idx1==FALSE,] 

idx2 <- is.na(complete$plt) 

complete <- complete[idx2==FALSE,] 

summary(complete) 

str(complete) 

 

#CLASS PERFORMANCE 

#IF WE PREDICTED THAT EACH REFERRAL WAS A CASE IRRESPECTIVE OF THE 

DATA WHAT WOULD BE #THE SUCCESS OF THE PREDICTOR - THIS GIVES A 

BASELINE AGAINST WHICH TO EVALUATE THE #PERFORMANCE OF A 

CLASSIFIER 

 

base_performance <- 1266/2970 #NUMBER OF CASES/TOTAL NUMBER OF 

REFERRALS# 

base_performance 

 

#IN THIS DATASET THE BASE PERFORMANCE IS 0.4263 - A CLASSIFIER WOULD 

NEED TO EXCEED THIS TO BE MORE SUCCESSFUL THAN THE BASELINE# 

 

#QQ PLOTS OF EACH VARIABLE# 
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qqnorm(complete$age) 

qqnorm(complete$plt)  

qqnorm(log(complete$plt)) 

qqnorm(sqrt(complete$plt))  

qqnorm(complete$hb)  

qqnorm(complete$wbc) 

qqnorm(log(complete$wbc)) 

qqnorm(sqrt(complete$wbc))  

qqnorm(complete$rbc)  

qqnorm(complete$mcv)  

qqnorm(complete$lymph)  

qqnorm(log(complete$lymph))  

qqnorm(complete$neutr) 

qqnorm(log(complete$neutr)) 

qqnorm(complete$mono)  

qqnorm(log(complete$mono)) 

qqnorm(complete$hct)  

qqnorm(complete$mch) 

qqnorm(log(complete$mch)) 

qqnorm(complete$mchc) 

qqnorm(log(complete$mchc)) 

qqnorm(sqrt(complete$mchc)) 

 

 

#ALTER FUNCTIONAL FORM OF VARIABLES AS INDICATED BY QQ PLOTS# 
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complete$wbc <- (log(complete$wbc)) 

complete$plt <- (sqrt(complete$plt)) 

complete$hct <- (log(complete$hct)) 

complete$lymph <- (log(complete$lymph)) 

complete$neutr <- (log(complete$neutr)) 

complete$mono <- (log(complete$mono)) 

complete$mch <- (log(complete$mch)) 

complete$mchc <- (log(complete$mchc)) 

 

str(complete) 

 

###### PLOTTING PAIRS ###### 

pairs_data <- data.frame(with(complete, cbind(age, hb, lymph, neutr, mono, plt, mchc, mch, 

hct, wbc))) 

pairs(pairs_data) 

 

10.2.2  Logistic regression model 

 

#INCLUDE ALL VARIABLES IN MODEL TO BEGIN WITH# 

model1 <- glm(case_control ~ age + gender + hb + rbc + hct + mcv + mch + mchc + wbc + 

lymph + neutr + mono + plt, family=binomial, data=complete) 

summary(model1) 

plot(model1) 

 

#ASSESS COLINEARITY IN MODEL# 
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vif(model1) 

sqrt(vif(model1)) 

 

#THERE IS MULTICOLINEARITY IN THE MODEL AS INDICATED BY THE PAIRS 

PLOTS# 

#REMOVAL OF VARIABLES WITH LEAST STATISTICALLY SIGNIFICANT 

WEIGHTINGS# 

#MCH, WBC, MONO AND HCT REMOVED# 

 

model2 <- glm(case_control ~ age + gender + hb + rbc + mcv + mchc + lymph + neutr + plt, 

family=binomial, data=complete) 

summary(model2) 

vif(model2) 

 

#LASSO REGRESSION FOR ATTRIBUTE SELECTION# 

 

#CREATING A DATASET FOR PENALISED MODELLING# 

 

pen_data <- data.frame(with(complete, 

cbind(case_control,age,gender,hb,rbc,mcv,mchc,lymph,neutr,plt))) 

x <- as.matrix(pen_data[,2:10]) 

y <- as.matrix(pen_data[,1]) 

 

grid <- seq(0, 100000, by=10)/100000 

mod.lasso <- glmnet(x, y, alpha=1, family="binomial", lambda=grid) 

plot(mod.lasso, xvar="lambda", label=T, lwd=1) 
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grid <- seq(0, 100000, by=10)/100000 

cv.out=cv.glmnet(x,y,alpha=1, lambda=grid, family="binomial", nfolds=10) 

plot(cv.out) 

 

bestlam=cv.out$lambda.min 

lasso_coef <- as.matrix(coef(mod.lasso, s=bestlam)) 

chosen_variables_max <- rownames(lasso_coef)[lasso_coef!=0] 

chosen_variables_max <- chosen_variables_max[-1] 

rownames(lasso_coef)[lasso_coef!=0] 

 

bestlam=cv.out$lambda.1se 

lasso_coef <- as.matrix(coef(mod.lasso, s=bestlam)) 

chosen_variables_min <- rownames(lasso_coef)[lasso_coef!=0] 

chosen_variables_min <- chosen_variables_min[-1] 

rownames(lasso_coef)[lasso_coef!=0] 

 

 

# CALCULATE RELAXED LASSO MODELS BASED ON LASSO SELECTION. 

NOTICE "BEST" LASSO # 

# MODEL DOES NOT SHRINK AWAY ANY VARIABLES # 

 

 

mod_max <- glm(as.formula(paste("case_control ~ ", paste(chosen_variables_max, 

collapse="+"))), data=pen_data) 

summary(mod_max) 
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mod_min <- glm(as.formula(paste("case_control ~ ", paste(chosen_variables_min, 

collapse="+"))), data=pen_data) 

summary(mod_min) 

 

#MODEL PERFORMANCE USING USING THE LRM FUNCTION RATHER THAT 

GLM# 

 

lrm_model <- lrm(case_control ~ age + gender + hb + rbc + mcv + mchc + lymph + neutr + 

plt, data=complete, x=TRUE, y=TRUE) 

lrm_model 

 

#CORRELATIONSTATISTICS SHOWN ARE: # 

#C - C INDEX = AUC # 

#DXY - SOMERS' D = (NC-ND)/(NC+ND) - DOES NOT INCLUDE 1/2 TIES # 

#DXY CAN ALSO BE CALCULATED FROM C USING =2(C-1/2) # 

#GAMMA - GOODMAN AND KRUSKAL'S GAMMA = (NC-ND)/(NC+ND) # 

#TAU-A - KENDALL RANK COEFFICIENT = NC-ND/N(N-1)/2 - DOES NOT INCLUDE 

ADJUSTMENTS FOR TIES # 

 

validate(lrm_model, method="cross") 

 

#MODEL EVALUATION AND VALIDATION# 

 

#SETTING CLASS VALUES FOR ACTUAL AND PREDICTED OUTCOMES# 
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actual_outcome <- as.factor(complete$case_control) 

predicted_probability <- as.numeric(predict(model2, complete, type='response')) 

predicted_outcome <- as.factor(ifelse(predicted_probability<='0.70', 'case','control')) 

 

 

#SHOW A SIMPLE 2X2 TABLE OF THESE TWO CLASSES# 

 

table(actual_outcome, predicted_outcome) 

 

#CROSSTABLE FUNCTION ADDS A FEW EXTRA DETAILS TO THE TABLE (FROM 

GMODELS PACKAGE) # 

 

CrossTable(actual_outcome, predicted_outcome) 

 

#using caret package to create a confusion matrix with performance measures# 

 

confusionMatrix(predicted_outcome, actual_outcome, positive="case") 

 

#KAPPA STATISTIC - ADJUSTS THE ACCURACY OF THE MODEL BY TAKING 

INTO ACCOUNT THE POSSIBILITY OF A CORRECT PREDICTION BASED ON 

CHANCE ALONE # 

#<0.2=POOR AGREEMENT, >0.8=VERY GOOD AGREEMENT # 

 

#MODEL SENSITIVITY - THIS IS THE MEASURE OF TRUE POSITIVES/(TRUE 

POSITIVES + # 

#FALSE NEGATIVES) # 



202 

 

 

 

 

rec <- sensitivity(predicted_outcome, actual_outcome, positive="case") 

rec 

 

#MODEL SPECIFICITY - THIS IS THE MEASURE OF TRUE NEGATIVES/(TRUE 

NEGATIVES + # 

# FALSE POSITIVES) # 

 

spec <- specificity(predicted_outcome, actual_outcome, positive="case") 

spec 

 

#MODEL PRECISION - LIKELYHOOD OF MODEL CORRECTLY CLASSIFYING A 

POSITIVE (ALSO CALLED # 

# POSITIVE PREDICTIVE VALUE) # 

 

prec <- posPredValue(predicted_outcome, actual_outcome, positive="case") 

prec 

 

#F MEASURE - COMBINATION OF PRECISION AND RECALL INTO A SINGLE 

VALUE # 

 

f <- (2*prec*rec)/(prec+rec) 

f 

 

 

#VISUALISING PERFORMANCE USING ROCR# 
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pred <- prediction(predictions=predicted_probability, labels=actual_outcome) 

 

perf <- performance(pred, measure = "sens", x.measure = "spec") 

plot(perf) 

 

perf.auc <- performance(pred, measure="auc") 

unlist(perf.auc@y.values) 

 

perf@alpha.values[[1]][which.max(perf@x.values[[1]]+perf@y.values[[1]])] 

max(perf@x.values[[1]]+perf@y.values[[1]]) 

 

########################################################################### 

#EXAMPLE SCRIPT FOR MANUAL THRESHOLD SELECTION# 

#REPEATED AT MULTIPLE VALUES OF PREDICTED_PROBABILITY# 

 

actual_outcome <- as.factor(complete$case_control) 

predicted_probability <- as.numeric(predict(model4, complete, type='response')) 

predicted_outcome <- as.factor(ifelse(predicted_probability<='0.05', 'case','control')) 

confusionMatrix(predicted_outcome, actual_outcome, positive="case") 

 

###########################################################################

# 

 

#TESTING LOGISTIC REGRESSION MODEL ON NEW DATA DATASET# 
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#MODEL VALIDATION ON A NEW DATA SET - SCRIPT IS LARGELY REPEATED# 

 

test_data <- read.csv("2015qmnrequests.csv", header=T) #READ IN NEWDATA# 

str(test_data) 

 

 

#MAKE ADJUSTMENTS TO VARIABLE TYPES AND FUNCTIONAL FORMS TO 

MATCH ORIGINAL# #DATASET# 

 

test_data$smoker <- as.factor(test_data$smoker) 

test_data$thrombosis <- as.factor(test_data$thrombosis) 

test_data$bp <- as.factor(test_data$bp) 

test_data$dm <- as.factor(test_data$dm) 

test_data$treatment <- as.factor(test_data$treatment) 

test_data$dead <- as.factor(test_data$dead) 

test_data$status <- as.factor(test_data$status) 

test_data$cause.of.death <- as.factor(test_data$cause.of.death) 

test_data$time <- as.factor(test_data$time) 

 

str(test_data) 

 

idx1 <- is.na(test_data$hct) 

complete_test <- test_data[idx1==FALSE,] 

idx2 <- is.na(complete_test$plt) 
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complete_test <- complete_test[idx2==FALSE,] 

summary(complete_test) 

 

complete_test$wbc <- (log(complete_test$wbc)) 

complete_test$plt <- (sqrt(complete_test$plt)) 

complete_test$hct <- (log(complete_test$hct)) 

complete_test$lymph <- (log(complete_test$lymph)) 

complete_test$neutr <- (log(complete_test$neutr)) 

complete_test$mono <- (log(complete_test$mono)) 

complete_test$mch <- (log(complete_test$mch)) 

complete_test$mchc <- (log(complete_test$mchc)) 

 

#MODEL EVALUATION AND VALIDATION# 

 

#SETTING CLASS VALUES FOR ACTUAL AND PREDICTED OUTCOMES# 

test_outcome <- as.factor(complete_test$case_control) 

test_probability <- as.numeric(predict(model2, complete_test, type='response')) 

test_predicted_outcome <- as.factor(ifelse(test_probability <='0.70', 'case','control')) 

 

print(test_probability) 

print(test_predicted_outcome) 

print(test_outcome) 

 

#SHOW A SIMPLE 2X2 TABLE OF THESE TWO CLASSES# 
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table(test_outcome, test_predicted_outcome) 

 

 

#CROSSTABLE FUNCTION ADDS A FEW EXTRA DETAILS TO THE TABLE (FROM 

GMODELS PACKAGE) # 

 

CrossTable(test_outcome, test_predicted_outcome) 

 

#USING CARET PACKAGE TO CREATE A CONFUSION MATRIX WITH 

PERFORMANCE MEASURES# 

 

confusionMatrix(test_predicted_outcome, test_outcome, positive="case") 

 

rec <- sensitivity(test_predicted_outcome, test_outcome, positive="case") 

rec 

 

spec <- specificity(test_predicted_outcome, test_outcome, positive="case") 

spec 

 

prec <- posPredValue(test_predicted_outcome, test_outcome, positive="case") 

prec 

 

negprec <- negPredValue(test_predicted_outcome, test_outcome, positive="case") 

negprec 

 

f <- (2*prec*rec)/(prec+rec) 
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f 

 

#VISUALISING PERFORMANCE USING ROCR# 

 

 

pred2 <- prediction(predictions = test_probability, labels=test_outcome) 

 

perf2 <- performance(pred2, measure = "tpr", x.measure = "fpr") 

plot(perf2) 

 

perf.auc <- performance(pred, measure="auc") 

unlist(perf.auc@y.values) 

 

 

#EXTRACTING MISMATCHES FROM LOGISTIC REGRESSION FOR 

INVESTIGATION# 

 

#MISMATCHES FROM TRAINING SET# 

 

complete$predicted <- predicted_outcome 

lrm_mismatches <- complete[complete$case_control!=complete$predicted,] 

lrm_mismatches 

 

 

#WRITE DATA TO FILE# 
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write.csv(lrm_mismatches, "lrm_mismatches.csv") 

 

#MISMATCHES IN TEST SET# 

 

complete_test$probability <- test_probability 

complete_test$predicted <- test_predicted_outcome 

lrm_test_mismatches <- 

complete_test[complete_test$case_control!=complete_test$predicted,] 

 

#WRITE DATA TO FILE# 

write.csv(lrm_test_mismatches, "lrm_test_mismatches2.csv") 

 

 

 

 

 

 

10.2.3  Random forest analysis 

 

 

#RANDOMFOREST CLASSIFICATION# 

#TO BE RUN IN CONJUNCTION WITH LOGISTIC REGRESSION SCRIPT AS 

VARIABLES AND DATASETS #HAVE BEEN CREATED/MODIFIED USING SCRIPT 

FROM PREVIOUS ANALYSIS 

 

library(randomForest) 
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#SELECT DATA FOR RANDOM FOREST ANALYSIS - REMOVING ALL CASES 

WITH NA VALUES IN # 

#BOTH TRAINING AND TEST SETS - REQUIRES TEST_DATA FROM LOGISTIC 

REGRESSION SCRIPT # 

 

rf_data <- complete[,c("request_number", "year","case_control","age","hb", 

"rbc","wbc","lymph","plt","hct", "gender", "mchc", "mch", "neutr", "mono", "mcv")] 

rfidx1 <- is.na(rf_data$lymph) 

rf_data <- rf_data[rfidx1==FALSE,] 

rfidx2 <- is.na(rf_data$neutr) 

rf_data <- rf_data[rfidx2==FALSE,] 

rfidx3 <- is.na(rf_data$mono) 

rf_data <- rf_data[rfidx3==FALSE,] 

summary(rf_data) 

 

rf_test <- test_data[,c("request_number", "year", "source_type" , "case_control","age","hb", 

"rbc","wbc","lymph","plt","hct", "mcv", "gender", "mchc", "mch", "neutr", "mono")] 

rftidx1 <- is.na(rf_test$lymph) 

rf_test <- rf_test[rftidx1==FALSE,] 

rftidx2 <- is.na(rf_test$neutr) 

rf_test <- rf_test[rftidx2==FALSE,] 

rftidx3 <- is.na(rf_test$mono) 

rf_test <- rf_test[rftidx3==FALSE,] 

summary(rf_test) 
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#RANDOM FOREST MODEL INCLUDES ALL EXPLANATORY VARIABLES# 

 

rf_model<-train(case_control ~ age + gender + hb + rbc + wbc + neutr + lymph + mono + plt 

+ hct + mchc + mch + mcv, data=rf_data, method="rf", na.action=na.exclude, 

                trControl=trainControl(method="cv", number=10), 

                prox=TRUE,allowParallel=TRUE) 

 

 

print(rf_model) 

 

print(rf_model$finalModel)   

 

saveRDS(rf_model, "my-fitted-rf.rds") 

 

fit <- readRDS("my-fitted-rf.rds") 

 

fit <- rf_model 

 

#USING RANDOM FOREST MODEL TO PREDICT OUTCOME ON BOTH TEST SET 

AND TRAINING SET# 

 

predict(fit, rf_data) 

predict(fit, rf_test) 

 

rf_test_outcome <- as.factor(rf_data$case_control) 

rf_predicted_outcome <- (predict(rf_model,rf_data)) 
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summary(rf_test_outcome) 

summary(rf_predicted_outcome) 

 

rf_test_outcome2 <- as.factor(rf_test$case_control) 

rf_predicted_outcome2 <- (predict(fit,rf_test)) 

CrossTable(rf_test_outcome, rf_predicted_outcome) 

table(rf_test_outcome, rf_predicted_outcome) 

 

CrossTable(rf_test_outcome2, rf_predicted_outcome2) 

table(rf_test_outcome2, rf_predicted_outcome2) 

ConfusionMatrix(rf_test_outcome2, rf_predicted_outcome2) 

 

#PLOT THE ACCURACY OF THE CROSS VALIDATION WITH INCREASING 

NUMBERS OF # 

#RANDOMLY SELECT VARIABLES# 

 

plot(rf_model) 

 

#EXTRACTING THE MISMATCHES FROM THE MODEL FOR FURTHER 

INVESTIGATION# 

 

rf_data$predicted <- predict(fit, rf_data) 

rf_test$predicted <- predict(fit, rf_test) 

 

rf_mismatches <- rf_data[rf_data$case_control!=rf_data$predicted,] 
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write.csv(rf_mismatches, "random_forest_mismatches.csv") 

 

rftest_mismatches <- rf_test[rf_test$case_control!=rf_test$predicted,] 

write.csv(rftest_mismatches, "random_forest_test_mismatches.csv") 

10.2.4  Gradient boosted model 

 

#GRADIENT BOOSTING# 

#USING CARET AND GBM PACKAGES# 

 

#CREATE DATASET FOR ANALYSIS - USING DATASETS DEFINED IN THE 

LOGISTIC REGRESSION ANALYSIS SCRIPT# 

 

idxc1 <- is.na(complete$neutr) 

gbm_data <- complete[idxc1==FALSE,] 

idxc2 <- is.na(gbm_data$lymph) 

gbm_data <- gbm_data[idxc2==FALSE,] 

idxc3 <- is.na(gbm_data$mono) 

gbm_data <- gbm_data[idxc3==FALSE,] 

 

fitControl <- trainControl( 

  method = "cv", 

  number = 10) 

 

fitControl <- trainControl( 

  method = "repeatedcv", 
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  number = 10, 

  repeats = 10) 

 

 

gbmGrid <-  expand.grid(interaction.depth = c(1, 3, 5), 

                        n.trees = (1:30)*50, 

                        shrinkage = c(0.1, 0.01, 0.001), 

                        n.minobsinnode = 20 

) 

 

 

gbmmodel<-train(case_control ~ age + gender + hb + mcv + mchc + neutr + lymph + plt,  

                data=gbm_data,  

                method="gbm",  

                distribution="bernoulli", 

                trControl=fitControl, 

                tuneGrid=gbmGrid, 

                verbose=FALSE) 

 

 

 

gbm_fit <- gbmmodel 

gbm_fit 

summary(gbm_fit, las=2, cex.names=0.7) 

ggplot(gbm_fit) 
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trellis.par.set(caretTheme()) 

plot(gbm_fit)  

 

#CREATE DATASETS WITH BOTH ACTUAL AND PREDICTED OUTCOMES# 

 

gbm_outcome <- as.factor(gbm_data$case_control) 

gbm_predicted_outcome <- (predict(gbm_fit,gbm_data)) 

 

#DISPLAY ACTUAL AND PREDICTED OUTCOMES AS MATRIX# 

 

CrossTable(gbm_outcome, gbm_predicted_outcome) 

table(gbm_outcome, gbm_predicted_outcome) 

confusionMatrix(gbm_outcome, gbm_predicted_outcome, positive='case') 

 

#PLOT MODEL# 

plot(gbmmodel) 

 

#SUMMARY OF PERFORMANCE# 

 

gbmrec <- sensitivity(gbm_predicted_outcome, gbm_test_outcome, positive="case") 

gbmrec 

 

#MODEL SPECIFICITY - THIS IS THE MEASURE OF TRUE NEGATIVES/(TRUE 

NEGATIVES +# 
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#FALSE POSITIVES) # 

 

gbmspec <- specificity(gbm_predicted_outcome, gbm_test_outcome, positive="case") 

gbmspec 

 

#MODEL PRECISION - LIKELYHOOD OF MODEL CORRECTLY CLASSIFYING A 

POSITIVE #  

# (ALSO CALLED POSITIVE PREDICTIVE VALUE) # 

 

gbmprec <- posPredValue(gbm_predicted_outcome, gbm_test_outcome, positive="case") 

gbmprec 

 

gbmnegprec <- negPredValue(gbm_predicted_outcome, gbm_test_outcome, positive="case") 

gbmnegprec 

 

#F MEASURE - COMBINATION OF PRECISION AND RECALL INTO A SINGLE 

VALUE# 

 

gbmf <- (2*gbmprec*gbmrec)/(gbmprec+gbmrec) 

gbmf 

 

 

 

#READ IN MODEL VALIDATION DATA# 

 

gmb_2015 <- read.csv("2015qmnrequests.csv", header=T) 
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#ALTER FUNCTIONAL FORMS OF EACH VARIABLE AS PER TEST MODEL# 

 

gmb_2015$wbc <- (log(gmb_2015$wbc)) 

gmb_2015$plt <- (sqrt(gmb_2015$plt)) 

gmb_2015$hct <- (log(gmb_2015$hct)) 

gmb_2015$lymph <- (log(gmb_2015$lymph)) 

gmb_2015$neutr <- (log(gmb_2015$neutr)) 

gmb_2015$mono <- (log(gmb_2015$mixed)) 

 

idxc1 <- is.na(gmb_2015$neutr) 

gmb_2015a <- gmb_2015[idxc1==FALSE,] 

idxc2 <- is.na(gmb_2015a$lymph) 

gmb_2015a <- gmb_2015a[idxc2==FALSE,] 

idxc3 <- is.na(gmb_2015a$mono) 

gmb_2015a <- gmb_2015a[idxc3==FALSE,] 

 

#PREDICT FIT OF MODEL ON VALIDATION DATASET# 

 

gbm_test <- predict(gbm_fit, newdata=gmb_2015a) 

 

gbm_test_outcome <- as.factor(gmb_2015a$case_control) 

gbm__test_predicted_outcome <- (predict(gbm_fit, gmb_2015a)) 

 

#VIEW ACTUAL AND PREDICTED OUTCOMES IN MATRIX# 
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CrossTable(gbm_test_outcome, gbm__test_predicted_outcome) 

table(gbm_test_outcome, gbm__test_predicted_outcome) 

confusionMatrix(gbm_test_outcome, gbm__test_predicted_outcome, positive='case') 

 

#WRITE MISMATCHED DATA TO FILE FOR INVESTIGATIONS# 

 

gmb_2015a$predicted <- gbm__test_predicted_outcome 

gbm_test_mismatches <- gmb_2015a[gmb_2015a$case_control!=gmb_2015a$predicted,] 

write.csv(gbm_test_mismatches, "gbm_test_mismatches.csv") 

 

10.2.5  Logistic regression model impact assessment 

 

#Model impact on 2016 data - script is largely repeated to evaluate model on # 

#new dataset # 

########################################################################### 

#READ IN NEW DATA# 

 

test16_data <- read.csv("2016_qmpns.csv", header=T)  

str(test16_data) 

 

 

#MAKE ADJUSTMENTS TO VARIABLE TYPES AND FUNCTIONAL FORMS TO 

MATCH ORIGINAL# #DATASET# 
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test_data$smoker <- as.factor(test_data$smoker) 

test_data$thrombosis <- as.factor(test_data$thrombosis) 

test_data$bp <- as.factor(test_data$bp) 

test_data$dm <- as.factor(test_data$dm) 

test_data$treatment <- as.factor(test_data$treatment) 

test_data$dead <- as.factor(test_data$dead) 

test_data$status <- as.factor(test_data$status) 

test_data$cause.of.death <- as.factor(test_data$cause.of.death) 

test_data$time <- as.factor(test_data$time) 

 

str(test_data) 

 

#REMOVE INCOMPLETE RECORDS# 

 

idx1 <- is.na(test16_data$hct) 

complete_test16 <- test16_data[idx1==FALSE,] 

idx2 <- is.na(complete_test16$plt) 

complete_test16 <- complete_test16[idx2==FALSE,] 

summary(complete_test) 

idx3 <- is.na(complete_test16$lymph) 

complete_test16 <- complete_test16[idx3==FALSE,] 

idx4 <- is.na(complete_test16$neutr) 

summary(complete_test16) 

complete_test16 <- complete_test16[idx4==FALSE,] 
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complete_test16$wbc <- (log(complete_test16$wbc)) 

complete_test16$plt <- (sqrt(complete_test16$plt)) 

complete_test16$hct <- (log(complete_test16$hct)) 

complete_test16$lymph <- (log(complete_test16$lymph)) 

complete_test16$neutr <- (log(complete_test16$neutr)) 

complete_test16$mixed <- (log(complete_test16$mixed)) 

 

str(complete_test16) 

complete_test16$mcv <- as.numeric(complete_test16$mcv) 

 

#MODEL EVALUATION AND VALIDATION# 

 

#SETTING CLASS VALUES FOR ACTUAL AND PREDICTED OUTCOMES# 

 

test16_outcome <- as.factor(complete_test16$case_control) 

test16_probability <- as.numeric(predict(model2, complete_test16, type='response')) 

test16_predicted_outcome <- as.factor(ifelse(test16_probability <= 0.7, 'case','control')) 

 

test16_probability 

 

#SHOW A SIMPLE 2X2 TABLE OF THESE TWO CLASSES# 

 

table(test16_outcome, test16_predicted_outcome) 
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#CROSSTABLE FUNCTION ADDS A FEW EXTRA DETAILS TO THE TABLE (FROM 

GMODELS PACKAGE) # 

 

CrossTable(test16_outcome, test16_predicted_outcome) 

 

#USING CARET PACKAGE TO CREATE A CONFUSION MATRIX WITH 

PERFORMANCE MEASURES# 

 

confusionMatrix(test16_predicted_outcome, test16_outcome, positive="case") 

 

rec16 <- sensitivity(test16_predicted_outcome, test16_outcome, positive="case") 

rec16 

 

spec16 <- specificity(test16_predicted_outcome, test16_outcome, positive="case") 

spec16 

 

prec16 <- posPredValue(test16_predicted_outcome, test16_outcome, positive="case") 

prec16 

 

negprec16 <- negPredValue(test16_predicted_outcome, test16_outcome, positive="case") 

negprec16 

 

f16 <- (2*prec16*rec16)/(prec16+rec16) 

f16 

 

#VISUALISING PERFORMANCE USING ROCR# 



221 

 

 

 

 

pred2 <- prediction(predictions = test_probability, labels=test_outcome) 

 

perf2 <- performance(pred2, measure = "tpr", x.measure = "fpr") 

plot(perf2) 

 

perf.auc <- performance(pred, measure="auc") 

unlist(perf.auc@y.values) 

 

 

#EXTRACTING MISMATCHES FROM LOGISTIC REGRESSION FOR 

INVESTIGATION# 

 

 

#MISMATCHES IN TEST16 SET# 

complete_test16$predicted <- test16_predicted_outcome 

lrm_test16_mismatches <- 

complete_test16[complete_test16$case_control!=complete_test16$predicted,] 

write.csv(lrm_test16_mismatches, "lrm_test16_mismatches.csv") 

 

#SUMMARY DATA FOR CHAPTER 7# 

summary(test16_data) 

summary(complete_test16) 

summary(test16_predicted_outcome=='control') 
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10.3 Cost Burden Analysis
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Figure 10-1 Summary of Cost Burden Analysis for Fluorescent PCR detection of JAK2 V617F and CALR mutations. 
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Figure 10-2. Cost Burden Analysis (sample receipt) - detailed breakdown of costings for sample receipt, full blood count analysis, 

morphological preparation, registration and screening. 
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Figure 10-3. Cost Burden Analysis (DNA extraction) - detailed breakdown of costings for DNA extraction process. 
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Figure 10-4. Cost Burden Analysis (PCR) - detailed breakdown of costings for PCR amplification process. 
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Figure 10-5. Cost Burden Analysis (Fragment Analysis) - detailed breakdown of costings for fluorescent fragment analysis of PCR 

products. 
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Figure 10-6. Cost Burden Analysis (Data transfer, analysis and reporting) - detailed breakdown of costings for the interpretation and 

reporting of JAK2 V617F and CALR mutation analysis. 
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ABBREVIATIONS 

 

A ALANINE 

ABL ABELSON 

AML ACUTE MYELOID LEUKAEMIA 

ASO ALLELE SPECIFIC OLIGONUCLEOTIDE 

ATP ADENOSINE TRIPHOSPHATE 

AUROC AREA UNDER RECEIVER OPERATOR CURVE 

B/NK B/NK CELL PROGENITOR 

BCR BREAKPOINT CLUSTER REGION 

BCSH BRITISH COMMITTEE FOR STANDARDS IN HAEMATOLOGY 

BLAST BASIC LOCAL ALIGNMENT SEARCH TOOL 

BM BONE MARROW 

BP BASE PAIRS 

BSA BOVINE SERUM ALBUMIN 

C/EBPα CCAAT/ENHANCER-BINDING PROTEIN ALPHA 

CAD COMPUTER AIDED DESIGN 

CALR CALRETICULIN 

CD CLUSTER OF DIFFERENTIATION 

CGL CHRONIC GRANULOCYTIC LEUKAEMIA 

CMP COMMON MYELOID PROGENITOR 

DNA DEOXYRIBONUCLEIC ACID 

DOH DEPARTMENT OF HEALTH 

ECMP EUROPEAN CLINIAL AND MOLECULAR PATHOLOGY 

EDTA ETHYLENEDIAMINETETRAACETIC ACID 

EPO ERYTHROPOIETIN 

EPOR ERYTHROPOIETIN RECEPTOR 

ER ENDOPLASMIC RETICULUM 

ESR ERYTHROCYTE SEDIMENTATION RATE 

ET ESSENTIAL THROMBOCYTHAEMIA 

ETP EARLY THYMIC PROGENITOR 

F PHENYLALANINE 

F  FEMALE 
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FAB FRENCH-AMERICAN-BRITISH 

FAM FAM FLUOROPHORE 

FBC FULL BLOOD COUNT 

FN FALSE NEGATIVE 

FP FALSE POSITIVE 

GATA-1 ERYTHROID TRANSCRIPTION FACTOR (GATA-BINDING 

FACTOR 1) 

GMP GRANULOCYTE MACROPHAGE PROGENITOR 

GRADE GRADING OF RECOMMENDATIONS, ASSESSMENT, 

DEVELOPMENT AND EVALUATION 

GWAS GENOME WIDE ASSOCIATION STUDIES 

HB HAEMOGLOBIN 

HCT HAEMATOCRIT 

HEX HEX FLUOROPHORE 

HILIS HMDS INTERGRATED LABORATORY INFORMATION 

SYSTEM 

HMDS HAEMATOLOGICAL MALIGNANCY DIAGNOSTIC SERVICE 

HMRN HAEMATOLOGICAL MALIGNANCY RESEARCH NETWORK 

HSC HAEMATOPOIETIC STEM CELL 

ICD  INTERNATIONAL CLASSIFICATION OF DISEASE 

ICD-O INTERNATIONAL CLASSIFICATION OF DISEASE – 

ONCOLOGY 

IL-6 INTERLEUKIN-6 

ITP IDIOPATHIC THROMBOCYOPENIA PURPURA 

JAK2 JANUS KINASE 2 

K LYSINE 

KDEL LYSINE, ASPARTIC ACID, GLUTAMIC, LEUCINE 

L LEUCINE 

LASSO LEAST ABSOLUTE SHRINKAGE AND SELECTION OPERATOR 

LYMPH LYMPHOCYTE 

M MALE 

MCH MEAN CELL HAEMOGLOBIN 

MCHC MEAN CORPUSCULAR HAEMOGLOBIN CONCENTRATION 
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MCV MEAN CELL VOLUME 

MDS MYELODYSPLASTIC SYNDROME 

MEP MEGAKARYOCYTIC ERYTHROID PROGENITOR 

MEP MEGAKARYOCYTIC/ERYTHROID PROGENITOR 

MLP MULTI-LYMPHOID PROGENITOR 

MONO MONOCYTE 

MPD MYELOPROLIFERATIVE DISORDER 

MPL MYELOPROLIFERATIVE LEUKAEMIA PROTEIN 

MPN MYELOPROLIFERATIVE NEOPLASM 

MPP  MULTI-POTENT STEM CELL 

MPS MYELOPROLIFERATIVE SYNDROME 

MPV MEDICAL PRACTICE VARIATION 

NCBI NATIONAL CENTER FOR BIOTECHNOLOGY INFORMATION 

NEUTR NEUTROPHIL 

NH4CL AMMONIUM CHLORIDE 

NHS NATIONAL HEALTH SERVICE 

NICE NATIONAL INSTITUTE FOR CLINICAL EXCELLENCE 

PCR POLYMERASE CHAIN REACTION 

PNH PAROXYSMAL NOCTURNAL HAEMOGLOBINURIA 

PI3K PHOSPHOINOSITIDE 3-KINASE 

PLT PLATELET 

PMF PRIMARY MYELOFIBROSIS 

PV POLYCYTHAEMIA VERA 

PVSG POLYCYTHAEMIA VERA STUDY GROUP 

R ARGININE 

RBC RED BLOOD CELL 

ROC RECEIVER OPERATOR CURVE 

RCF RELATIVE CENTRIFUGAL FORCE 

SNP SINGLE NUCLEOTIDE POLYMORPHISM 

SQL STRUCTURED QUERY LANGUAGE 

STAT5 SIGNAL TRANSDUCER AND ACTIVATOR OF 

TRANSCRIPTION 5 

TM MELTING TEMPERATURE 
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TN TRUE NEGATIVE 

TP TRUE POSITIVE 

TPO THROMBOPOIETIN 

TVSG THROMBOCYTHAEMIA VERA STUDY GROUP 

UCSC UNIVERISTY OF CALIFORNIA, SANTA CRUZ 

UKAS UNITED KINGDOM ACCREDITATION SERVICE 

V VALINE 

W  TRYPTOPHAN 

WBC WHITE BLOOD CELL 

WHO WORLD HEALTH ORGANISATION 
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