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Abstract
Many conditions exist for which we still do not know the cause, often due to their complexity and rarity. Without knowledge of their underlying mechanisms, development of effective drugs and personalised approaches to treatment of these diseases will never be possible. Consequently, we have a responsibility to develop novel, systematic, and objective analytical approaches which can produce reliable predictions of causative mechanisms as rapidly as possible. The recent trend for such analyses has been to generate extraordinarily large datasets, however these datasets are time consuming to produce, costly, and only accessible by a small percentage of the scientific community. There instead exists a vast quantity of publicly available, modestly sized datasets; alone, these datasets are unreliable - too underpowered to sufficiently support the hypotheses they are associated with - yet the quantity of these small datasets suggests untapped potential for analysis when used in combination. 

In this thesis we present a novel approach built to harness the potential of small datasets. We have taken advantage of the inherent variability of tissue types, platforms, and genetic backgrounds to produce gene expression signatures shared by groups of patients exhibiting a common phenotype. We demonstrate application of the pipeline to three diseases phenotypes and show how each signature consistently enriches with genes and pathways associated with the shared phenotype as well as containing known upstream drivers. We also show significant enrichment of snp-associated GWAS genes in our autoimmune arthritis signature, as well as demonstrating preliminary in silico validation of one known and 2 novel upstream drivers of TDP-43 pathology and neurodegeneration through perturbation in an iPSC model. We believe the value of our approach is not only to reveal previously unknown upstream drivers of rare and complex conditions, but do so with a fraction of the resources conventionally devoted to this process.
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1 [bookmark: _Toc3211304]Chapter 1: Introduction
The predominant focus of disease-orientated scientific research is to identify core mechanisms and viable treatments as quickly as possible, and with as much reliability and effectiveness as can be achieved. Up until the second half of the 20th Century, progress in disease discovery was slow, likely due to laboured communication practices and primitive technologies. As we passed the centurial mid-point, huge technological revolutions began to take place – inventions such as plastics, computer chips, and the internet led to vast leaps forward in our ability to build new technologies and communicate them around the world. These technological advancements have resulted in ground-breaking discoveries and advances in medicine. However, with each discovery, one factor has become ever more apparent; human biology is seemingly infinitely complex, and we require a vast quantity of resources to understand it – resources we do not yet have. Despite the technological revolution of the late 20th Century, the scientific community is still battling to find effective treatments for many conditions. 

In this thesis we describe the barriers to understanding complex disease phenotypes and demonstrate how we can exploit pre-existing datasets to investigate their dysfunctional mechanisms. In short, we as a scientific community fundamentally do not understand the causes of many common and costly medical conditions. At the same time, we are producing data for these conditions at an inexplicable rate; not necessarily large datasets, but hundreds of thousands of much smaller, underpowered experiments. We show that through application of our multi-omic methodological pipeline to this untapped goldmine of small datasets, we can identify known and novel upstream drivers of disease phenotypes in a fraction of the time.


[bookmark: _Toc3211305]Inadequate Treatments for Complex Diseases
A significant limitation in healthcare research is simply the lack of knowledge surrounding complex diseases. A condition like iron deficiency anaemia is easy to treat because the root cause is clear - a lack of iron in the body - subsequently a simple treatment of iron supplements can be administered with almost immediate relief. However, if the cause of a condition is not known, any treatment, let alone personalised treatment, is not possible. There are still a great number of diseases which are considered ‘incurable’. Many neurodegenerative diseases still have no viable medication options, whilst others such as rheumatological conditions have medications that treat symptoms, but not the cause 1,2. These are not rare conditions either; it is estimated that as many as 24 million people worldwide suffer from dementia, and approximately 1% of the human population (approximately 77 million as of November 2018) are living with a diagnosis of rheumatoid arthritis 3,4. 
The management of conditions such as these not only costs nations huge amounts in both healthcare and productivity, but it costs the individual sufferers their quality of life. Subsequently, for any given condition we need methodologies that consistently and reliably isolate the mechanisms leading to disease symptoms, identify core contributors, and produce successful therapeutics. 
[bookmark: _Toc527800517][bookmark: _Toc3211306]Long Journeys
Finding the known from the unknown is not easy. In 1968 a 15-year-old African-American boy, Robert R., was admitted to St Louis City Hospital with a condition that would baffle his doctors until his death in 1969. A simple laboratory test performed nearly twenty years later would reveal this boy likely died from complications resulting from his HIV-positive status - the first known case in the United States 5. From the date of Robert R.’s death, it would take forty-two years of research until in 2011, a patient named Timothy Ray Brown would be cleared of HIV infection after hematopoietic stem cell transplantation 6,7. 
Despite the admirable contributions of thousands of doctors and scientists in that time, our challenge is to turn the treatment discovery timeline from decades into months, weeks, or even days. Rapid discovery has been accelerated via the birth of the field of bioinformatics and the computational modelling of disease systems. The ability to manipulate and perform calculations on huge quantities of data means that not only can we attempt to answer the unanswered questions, but do so in a fraction of the time. For example, the US National Institute for Health has recently formed a collaboration with Google to generate powerful cloud-based computational pipelines for vast datasets such as the GTex gene expression database. Computational approaches also allow the analysis of high dimensionality data; computational models can hold information on millions of relationships between hundreds of thousands of molecules, all multiplied by the number of possible relationship types. 
If our challenge is to develop methodologies not only capable of discovering unknown causes of disease, but do so as rapidly as possible, then it is clear that computational modelling will play a key role. 
[bookmark: _Toc527800518][bookmark: _Toc3211307]Small Data
Large scale and high dimensionality, however, comes with its own statistical burden. Conventional computational approaches built to identify mechanisms of disease are generally reliant on large input datasets. Statistical power - the likelihood a model represents a true positive - is a concept which underpins many aspects of computational modelling 8–11 For example, in genetic association studies, the enormity of the human genome has led to the necessary recruitment of thousands of participants to retain statistical power 12–14. Statistical power is also affected by the rarity and effect size of a polymorphism, sometimes requiring millions of participants to pass power analysis 15. Increasing efforts are also being made to generate large transcriptomic cohorts, with a number of RNA-Seq projects accumulating samples in the hundreds or thousands, and some single cell sequencing experiments reaching into the millions 16–19. 
Big data - the popular term referring to data collection on a large scale - is attractive because it is powerful, however, big data is not always attainable. Recruitment of individuals takes vast amounts of time, money, and organisational power that often crosses national borders. Those capable of producing such data are generally large pharmaceutical companies or a collaborative effort across many academic institutions. For both, these organisations are far less likely to provide their data as open access due to its value. Subsequently, we are left with a conundrum – statistical models require the power of large datasets, but large datasets are sparsely available. What we do have, however, are very large numbers of much smaller datasets. Thousands of transcriptomic datasets are housed in databases such as the Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo) or ArrayExpress (https://www.ebi.ac.uk/arrayexpress), and are generally quite small; the average number of samples in a GEO dataset is just 25 20. In fact, when we analysed the sample numbers for the 4348 datasets curated in GEO’s curated GenomeBrowser database (www.ncbi.nlm.nih.gov/sites/GDSbrowser), the median sample size was 12 (Figure 1).

[image: ]
[bookmark: _Toc3225997]Figure 1: A histogram of sample size for datasets housed in the GEO database GenomeBrowser. X-axis indicates bins of 5 for total number of samples. Y-axis indicates frequency of datasets containing the number of samples indicated by the bin.



Small datasets are plentiful because most laboratories are working to tight budgets and have significant publication pressures. Small datasets, though, are unreliable and are feeding the trend of sweeping statements of significant discovery that are fundamentally unfounded. As we cannot expect large, well-powered datasets to be available publicly, we must explore and develop methodologies which are capable of extracting statistically robust results from underpowered datasets. Few methodologies exist to provide such analyses, leading to a lack of discovery in conditions whose causes are unknown, and for whom data is desperately rare. By designing more methodological pipelines which can produce meaningful biological discoveries from underpowered datasets, this would allow us to utilise the valuable information these precious samples hold. 
[bookmark: _Toc527800519][bookmark: _Toc3211308]Finding the Intersection
It is clear, therefore, that to remove the roadblock to disease mechanism discovery, we must develop methodologies that not only successfully isolate these causal mechanisms, but do so rapidly, cheaply, and with the capability to handle datasets of limited size. One of the core problems for developing successful treatments is navigating the combination of genetic and environmental factors which result in a highly variable population. Take for example, amyotrophic lateral sclerosis (ALS); a neurodegenerative condition affecting the motor neurons of the central nervous system. According to the Amyotrophic Lateral Sclerosis online Database (ALSoD, http://alsod.iop.kcl.ac.uk/), as many as 126 genes can contribute to ALS development. Alongside genetics, environmental risk factors include gender, geographical location, smoking, serving in the military, careers in sport, exposure to pesticides, and suffering from head trauma 21. Each patient will have a unique combination of a number of these factors, as well as those we have not discovered yet. 
Heterogeneous genetic and environmental backgrounds lead to high degrees of variability within the population, which is likely why many medications experience less-than-perfect efficacy 22,23. We propose that this variability can be used to our advantage. Where groups of similar individuals within a population may be uniquely complex in their own right, this complexity is wildly reduced when we query what each sub-population has in common. If we imagine this comparison as a Venn diagram, the strength in this approach is that once the non-overlapping portions of each circle (representing population-specific processes) are cut away, the common overlap is revealed. Such an overlap can be conducted with many more populations, resulting in a greatly purified signal. We believe that through computational comparison of diverse populations, we can identify the molecular mechanisms which reside at the point of convergence. Our view is that these mechanisms may not only represent the dysfunction of the phenotype of interest, but may also contain the common drivers - and possible therapeutic targets (genes or gene products whose activity can be altered via addition of drug compound) - of this dysfunction. Since we know that these drivers may not be the same for all members of the disease population, the final product of this approach could represent a concentrated pool of possible targets, whose selection for therapeutic intervention will be based on the individual patient profile. 
[bookmark: _Toc527800520][bookmark: _Toc3211309] The Value of Signatures
The centre of the Venn diagram - what we believe may represent the driver of a common phenotype – is one example of a “signature”. Signatures are models, or representations of a particular feature. A molecular signature is a group of biological entities (e.g. genes, RNA, proteins) whose activity is representative of a phenotype. For example, predictive signatures are molecules whose activity can predict the presence, absence or severity of a phenotype. Signatures can be constructed from many different types of data; a signature can be a list of genes, proteins, genetic loci, or even a network of molecules sharing tight functional relationships. Common disease signatures have been constructed in a great number of medical fields, including neurological and psychiatric disorders 24–26, blood disorders 27, autoimmune conditions 28,29, aging 30,31, and cancer 32. The great value in in silico-generated signatures is that they have the potential to be the “shortcut” we know is desperately needed; instead of decades of expensive exploratory lab work, computationally-generated signatures could provide meaningful predictions in a fraction of the time. With computation times decreasing, storage space increasing, and new methodologies published every day, the contributions in silico approaches are making are ever increasing. 
However, if our methodological approach is to be one in which we generate in silico signatures, we must be cognisant of their weaknesses, and formulate solutions. Here, we will discuss a number of ways in which in silico signatures are flawed, alongside suggested actions by which they can be remedied.
[bookmark: _Toc527800521][bookmark: _Toc3211310] Signatures are Imperfect
Despite their appeal, signatures are notoriously difficult to replicate 33–36. There are a number of reasons why this occurs, but predominantly the issue is that signatures are unstable; Patil et al. demonstrated that the ability for a prognostic signature to predict cancer in an individual changed depending on the other patients selected to develop that signature 37. Signature-generation methodologies are often guilty of insubstantial experimental design, which has inevitably blocked progress in this field. This section will review and discuss the complications associated with signature generation, and our proposed solutions to these issues.
[bookmark: _Toc527800522][bookmark: _Toc3211311]Bias
Bias is noise that we introduce into our experiments and can occur at any stage of development. For example, the individual running an RNA-Seq protocol may decide to run cancerous samples on one day and non-cancerous samples the next, when any number of environmental fluctuations, protocol mishaps, or equipment changes could cause perceived “differences” in a case-control experiment. Even if these mishaps were avoided, it is well documented that data collection technologies are extremely variable, often producing considerable inconsistencies 38. Even the original source of data itself - the person, the mouse, or the cell - brings its own bias. It could well be that the only real difference between your patient and control group is that one was given a cup of tea and a biscuit before their blood draw, whereas the other was not. 
We also introduce bias to our signature when we decide which datasets to include, to exclude, and how much data to include. Signatures exist in a world populated only by the samples you have placed within it, therefore if your samples are misrepresentative, so is your signature. A small world of data leaves a signature vulnerable to overfitting and sampling bias. Overfitting occurs when your model is trained upon data in such a way that it becomes biased towards its input. In other words, it is not successful when applied to other datasets or to real-world applications. Overfitting is commonly caused by a training dataset that is too small, rendering the experiment underpowered. Another common reason why signatures don’t replicate is that the data on which they are built are so tightly controlled (e.g. same tissues, same platforms) that it introduces sampling bias 39. For example, without statistical manipulation, a lung cancer signature generated from tumour tissue which has been analysed on a microarray platform is unlikely to replicate reliably in blood analysed on an RNA-Seq platform. To avoid overfitting, a number of steps can be taken 40. Underpowered experiments can increase their power with more samples, which ideally should be considered at the point of data collection. Tissue sampling bias can be controlled by ensuring that all tissues a signature is supposed to represent are present within the model building process. Similarly, platform effects can be reduced with application of normalisation or rank-based methodologies 41,42. Following these steps will contribute to higher likelihood of successful replication on external datasets, and therefore a more reliable signature. 
Bias is also introduced as we go through the process of analysing our data, whether by the software packages we use (technical bias), or the experimental design decisions we must make (experimenter bias). Technical biases can, to some extent, be lessened by employing good experimental design and selecting software that has been rigorously tested and accepted by the bioinformatics community 43. Experimenter bias is sometimes unavoidable, such as when a threshold must be chosen, or when sample is removed during quality control. We can, however, attempt to reduce experimenter bias by giving the experimenter as little input into the analysis as possible. We can also analyse data to detect if experimenter bias has had an effect on results – by identifying batch effects not explained by platform, or by evidencing exploration of the effect of those chosen thresholds, or the removal of those chosen samples. Data-driven methodologies are becoming increasingly popular, and are inherently powerful 44–48. Machine learning is an example of data-driven research, allowing patterns to be identified by an algorithm, rather than a person (bearing in mind the algorithm itself was built by someone). 
[bookmark: _Toc527800523][bookmark: _Toc3211312]Inadequate Controls
For any signature, a certain proportion will represent signal that is not specific to the phenotype being modelled. There are two particularly strong sources - tissue non-specific signals, and population-generic signals. Tissue non-specific signal refers to the part of your signature which may replicate in other tissues which do not present with your phenotype of interest. For example, if aspects of your neurodegenerative signature replicate in liver tissue, that represents tissue non-specific signal that must be removed. Population-generic signals are relevant when building a signature from a subset of a disease population; you want to maintain the aspects of your signal unique to your subpopulation, whilst removing those which are generic to the whole population. For example, if you are only interested in building a signature specific to viral infection response, you may want to use samples of bacterial or fungal infection to remove common signal. Some attempt is made to recreate results in an unrelated tissue to support specificity to the phenotype of interest, however this is not an industry standard and is rarely applied 49. 
[bookmark: _Toc527800524][bookmark: _Toc3211313]Inconsistent Signals
The aim of building any common signature is to generate a signature which is consistent across all populations of interest. Many studies do not find a unanimous signal, instead identifying signals that are consistent across only a subset of datasets 24,26,28,29,50. Of those that do find a consistent signature, datasets are often combined pre-analysis, or selected from similar platforms - increasing likelihood of finding a common signature, but reducing the replicability of that signature across alternative platforms 25,27,30–32. 
A common issue leading to inconsistent signatures is the constraint of statistical methods. For example, in a study investigating pathways shared by age-related diseases, common gene overlap translated to just three genes 31. The authors explain that stringent statistical cut-offs may be the reason why a more substantial signal is not possible; conventional statistical cut-offs such as multiple comparison adjusted P-values are not built to be compared in meta-analyses. An alternative approach is to combine P-value statistics, however there are a number of possible methodologies, each producing variable results depending on the presence of very small or very large P-values 51. What we do know is that replication of results in multiple weaker-powered studies produces lower error rates than a single well-powered study 52,53. If statistical thresholds are throttling the discovery of common signatures, it is very likely that alternative approaches to gene selection independent of conventional statistic methodologies may be more successful.
[bookmark: _Toc527800525][bookmark: _Toc3211314]Lack of Validation
Signatures must be developed using tightly controlled parameters to avoid bias, though this alone is not sufficient to validate its success. To establish if your signature is truly representative of the phenotype it is built to represent, appropriate validation steps must be taken. Unfortunately, a vast quantity of published signature studies do not attempt sufficient validations. There are a number of ways that a biological signature can be validated. These fit in to two broad categories; in silico validation, and in vitro/vivo validation. 
In silico validation represents those tests that can be performed computationally. Replication on an external dataset is one example we have already covered, and indicates that your signature is not overfitted to the test environment in which it was built. Another in silico test is to demonstrate that your signature is statistically robust against a randomly generated signature distribution. By showing that your signature is more correlated, more functionally enriched, or more interconnected than you would expect by chance, you are showing that its relationship to the phenotype is powerful. In silico validation alone, however, has its own limitations. In 2011, a group based at the Université Libre de Bruxelles conducted a study in which 47 statistically significant signatures for breast cancer outcome were compared against randomly generated gene sets. Sixty-percent of the published signatures did not perform significantly better than random, and 10% actually performed worse than the median random signature 54. When random signatures were a length of 100 genes or more, they achieved over a 90% rate of success for significant correlation with breast cancer outcome. Here a weakness of statistical validation is revealed; you may be able to achieve statistical significance, however that does not guarantee biological significance. Statistical adjustments can be made in response to this issue; a methodology called SAPS (Significance Analysis of Prognostic Signatures) was later developed by the same group to counteract this issue of inconsistent significance 55. SAPS applies three separate significance tests; a test indicating no significant difference between patient groups if they are split in two, a test indicating the candidate gene set significantly outperforms a random gene set, and finally a test to show the candidate gene set enriches for prognostic genes. By submitting signatures to more rigorous statistical testing, we will be increasingly successful in rooting out the true positives.
In vitro/vivo validation refers to laboratory testing of a signature in a living organism, be it a cell model, a mouse, or even a human. When a signature is generated, its role becomes to further our understanding of the phenotype it represents. Some signatures are built to isolate correlates of a phenotype that represent potential biomarkers 56–58, whereas others are built to identify upstream drivers of a phenotype that may become therapeutic targets59–61. Unfortunately, many studies which employ signature generation methods for these purposes do not attempt to validate their signature in the lab. There are a number of reasons why in vitro/vivo validation is waived. Firstly, validation by laboratory experiment requires collaboration and expertise; though one individual can create a signature for many conditions, many laboratory groups are then required to validate. Secondly, this process is expensive; there are costs for reagents and person-hours to consider, which may not be within the budget of every project. Thirdly, laboratory experiments take time; the process of growing cells or rearing mice can take weeks or months, in addition to the time taken for experimentation, and the final data collection. Individuals may be pressed for time, and often the pressure to publish is more threatening than the possibility of a more robust validation. What we are left with, however, are biological discoveries that can only exist within the confines of a computer chip. 
The computational modelling of disease phenotypes is certainly streamlining disease discovery, however without proper experimental design and validation it can very quickly become the scenic route, or at the very worst, a dead end. To be successful, a properly designed signature must possess the following; it must be driven by a well-considered research question, it must be built from appropriate data of the highest possible quality, it must be built alongside minimal experimental bias, it must be rigorously tested at every development stage, and finally it must only be considered successful if its association with the phenotype is sufficiently, and reliably demonstrated in a living organism.


[bookmark: _Toc3211315]Building a Multi-Omic Signature
Many studies utilise a mono-omic approach to signature building; a list of differentially expressed genes, or a list of genes associated with GWA SNPs. The use of single ‘omes in signature building is yet another reason why these signatures are rarely replicable. By inferring mechanisms of disease from genomic or transcriptomic data alone, experimenters are making significant extrapolations; in the space between a genetic sequence and the presentation of a phenotype, there are a huge number of intermediate steps that are unimaginably complex and constantly changing. The nature of such a system, therefore, requires an analytical approach that is able to accommodate more of this complexity. By combining data from multiple ‘omic levels, one can more accurately understand the interactions and mechanisms contributing to disease. Signatures can be built from a huge variety of data sources, and the more types of data incorporated into a signature, the more successful it is likely to be 62–64. Here we will describe a number of data sources and analyses that can be included in the signature building process.
[bookmark: _Toc527800527][bookmark: _Toc3211316]Gene-Level Analyses
Signature building often begins with generation of a list of significantly differentially expressed genes (DEGs). Differential expression represents a clear, easily quantifiable signal that sets the disease phenotype apart from healthy controls. Differential expression is calculated on expression data collected from either microarray or RNA-Seq technologies. Microarray chips contain tens of thousands of microscopic probes - short sequences of nucleotides corresponding to a particular RNA transcript. After hybridisation, the fluorescence of tags applied to the sequences are detected and quantified, giving a continuous variable that is relative to the probe intensity under a control condition. Conversely, RNA-Seq involves generation of sequencing libraries that are aligned to the accepted version of the species’ genome. The number of reads, or counts, of a transcript are calculated, giving indication of the abundance of that particular transcript. It is clear that unlike microarray, RNA-Seq provides absolute quantification of transcript expression allowing for more sensitivity, however it is a more expensive technology and the resultant data files are large and complex to process.
Differential expression analysis tools vary depending on the input type (whether microarray or RNA-Seq), but the underlying mathematics is concordant. A normalisation step is implemented to rescale measurements of the expression of each gene so that all samples are comparable. A statistical test is then applied to evaluate whether the distribution of expression values for each gene is significantly different between patients and controls. Finally, a correction for multiple testing is conducted to provide an adjusted measure of significance. A number of additional features are implemented depending on the software package used, including the type of distribution (e.g. Poisson, negative binomial) and the measurement of significance (e.g. P-value, FDR). As microarray data is continuous, and RNA-Seq data non-negative integers, different packages have been tailored to each, for example LIMMA for microarray and DESeq2 or EdgeR for RNA-Seq 65–67. 
Gene expression analysis is not the only way to generate a gene list. Some approaches instead use the results of genome wide association studies (GWAS). In these studies, thousands of participants are recruited and relevant tissue samples extracted. Genome sequencing is applied to these samples en masse to identify single nucleotide polymorphisms (SNPs) in each individual. The rates of these SNPs are then calculated, and a significant overrepresentation of any individual SNP in the disease population is considered associated with the phenotype. A major flaw of GWAS is that SNPs are not identified specifically in the context of genes - this relationship can only be inferred, leading to biased annotations. Nonetheless, gene-SNP relationships are frequently used in bioinformatics analyses, and are commonly reported in publications or housed in databases such as the GWAS Catalog (www.ebi.ac.uk/gwas/home). Lists of genes which have been predicted to associate with GWA SNPs can be used much in the same way as gene expression, however they do not themselves possess information on the downstream effects of their dysfunction. A differentially expressed gene can be upregulated or downregulated, whereas a mutation either exists or it does not. A mutation in a particular place in the genome can provide some information, for example if it is in a promotor region, close to the start codon, or in a sequence coding for a binding site in the resultant protein.
Gene lists, whether gene expression or GWA, face a very similar problem; Subramanian and colleagues critiqued the use of single gene analyses - in this case differential gene expression analysis - suggesting that the constituent genes rarely have any biological relevance to one another 68. The issue of functional association has also been raised for GWASs, as the variants implicated in this methodology are not regularly validated in relation to the disease condition. It is important, therefore, that the results we generate from gene expression analysis are not taken at face value, but are supported by other sources of information.
[bookmark: _Toc527800528][bookmark: _Toc3211317]Pathway-Level Analyses
The value of gene-based analyses is only viable when genes are assessed within their functional context. After criticising expression-only approaches, Subramanian et al. demonstrated their newly developed tool - Gene Set Enrichment Analysis (GSEA). The effect of GSEA was to draw attention to the importance of functional relationships between genes, rather than their importance in isolation. A pathway represents a group of molecular interactions which lead to a particular event, such as the activation of another pathway or the generation of a specific molecule. The members of such groups could be genes, proteins, or RNAs, and the event could be production of a chemical, or a physical change to the cell. Some studies perform enrichment tests to establish if the overlap of the DEG list and a pathway gene list is significant. A test such as this may help identify what processes the experimental gene list is involved in. Enrichment tests are usually based on either a modified Kolmogorov-Smirnov or Fisher’s Exact test. A number of tools, both programmable and web-based, are capable of implementing these tests, including but not limited to GSEA, DAVID, WebGestalt, and EnrichR 68–71. 
There are a number of pathway databases available with which to conduct enrichment analysis. Such databases are constructed in broadly two ways; categorical and hierarchical. Categorical pathway databases are networks of discrete gene sets each representing a unique biological process. Pathways can be categorised into groups of similar processes, and these pathways may overlap, but importantly they do not represent subsets of one another. Categorical pathway databases include the Kyoto Encyclopedia of Genes and Genomes (KEGG, www.genome.jp/kegg), and Wikipathways (www.wikipathways.org/index.php/WikiPathways) 72,73. Hierarchical pathway databases are structured so that parent gene sets can be divided into subsets representing more specific biological processes. One example of a hierarchical pathway database is Reactome (https://reactome.org/) 74. The pathways in Reactome are split into families, or “pathway bursts” which contain a parent pathway split into multiple levels of child sub-pathways. The Gene Ontology (GO) Consortium created a database of terms which also has a graphical structure, however any child pathway may have multiple parents. GO divides biological concepts into three hierarchies - Biological Processes, Molecular Functions, and Cellular Components (http://www.geneontology.org/) 75,76. 
Individual pathway databases do have their biases, however. The annotation of a pathway is heavily dependent on the annotator - which may not be human. For example, over 95% of GO terms have been computationally derived, and have not been curated manually 77. Additionally, some pathways housed within pathway databases are not strictly pathways; GO Cellular Components refer to the localisation of a gene’s expression, and KEGG disease ‘pathways’, such as “Alzheimer’s Disease” or “Pancreatic Cancer” consist of genes implicated in in a disease state. In summary, pathway curation is heavily dependent on the methodology by which it is curated; boundaries must be set between lists of genes, and we do not always agree where those boundaries should lie. 
As well as enrichment, pathway analysis can also include more advanced and intricate methodologies. In the R package Pathprint, pathways can undergo their own version of differential expression analysis, summing over the genes within a pathway to generate a differential activity statistic, producing a list of differentially activated pathways 78. As well as gene or protein membership, pathway analysis can take into account the relationships between those genes or proteins. Gene expression or regulatory data can be overlaid onto an existing pathway, allowing the user to investigate both the effect of alterations on the pathway itself, and the resulting effect on other pathways. Such an approach aids in identifying core regulators or influencers on a given pathway, and therefore represent targets of interest for chemical intervention.
[bookmark: _Toc3211318]Mapping Interactions across Networks
Pathway databases such as KEGG and Wikipathways often represent pathways as networks, illustrating the complementarity of pathway and network analysis. Network analysis encapsulates the study of relationships between objects. In medicine, these objects are generally molecular - genes, proteins, RNAs, compounds, and so forth. In reality, objects in a network - called nodes - can represent anything; social networks nodes are people, and the nodes of the internet are computers. The relationships connecting nodes, called edges, can represent any type of relationship, providing infinite dimensionality to a network. The value in building a signature using networks is that by including the functional relationships of the members we are providing additional layers of information that are impossible to represent in a simple list. In direct comparisons between single gene and network-based methodologies, the latter have been shown to be more stable, improved accuracy and replicability, and are even able to identify novel disease-gene associations that the former cannot 79–82. Such an improvement is likely due to the fact networks have the potential to be more representative of true biology – genes and proteins do not function in isolation, they bind, and phosphorylate, and promote and degrade one another, and networks have the ability to include this information. Subsequently, networks are a good candidate for signature building.
When building biological networks, two decisions must be made; the type of relationship to be modelled, and the source of that information. Popular edges used in bioinformatics are coexpression (correlation between the expression of two genes), and protein-protein interaction (PPI) - the presence of a physical binding event between two proteins. The benefits of coexpression are that a statistical value can be assigned to ensure its validity, that the correlation value can be derived locally from the experimental data itself, and that it can be easily analysed between two conditions e.g. patient and control. The weakness of coexpression is, however, that it represents expression state specific correlation relationships; without laboratory experiments it is hard to prove if relationship is direct or indirect, or in which direction causation travels. Protein-protein interaction on the other hand is a combination of predicted relationships (derived computationally) and those derived from laboratory experiments. There is of course always room for error - non-specific binding, for example, leading to false positives. The second decision is which source of information should be used to derive the network edges; local or canonical. Gene coexpression can be generated easily from any gene expression dataset, however there are also public databases such as COXPRESdb (http://coxpresdb.jp/), or GeneMANIA (https://genemania.org/) 83,84. Protein-protein interaction is extremely difficult to produce on a case-by-case basis, and therefore is most commonly sourced from a canonical database, a few of which are mentioned in the next section. 
There are a number of ways biological networks can be generated; either by generating one network from a common source (e.g. Jha et al, 2016), or generating several networks and looking for overlap (e.g. Gandal et al, 2018). Networks built by meta-analysis often merge datasets before the network is built. Tools that allow the merging of datasets include NetworkAnalyst (https://www.networkanalyst.ca/), which utilises the dataset-merging algorithm INMEX 85. After merging, the meta-dataset can then be used to generate networks of protein-protein interactions, transcription factor-gene interactions, miRNA-gene interactions, protein-drug interactions and protein-chemical interactions. 
Networks can also be broken down into groups, known as modules. Modules can be created in a number of ways, depending on the type of relationship. For example, many methodologies exist for generation of coexpression modules. Popular approaches are clustering, decomposition, biclustering, direct network inference, and iterative network influence. A recent extensive review of 42 module detection methods concluded that decomposition methods most successfully recreated known functional modules 86. Despite the success of decomposition, the most widely-used module generation method is arguably Weighted Gene Coexpression Network Analysis (WGCNA), a hierarchical clustering methodology developed by the Horvarth Lab, UCLA 87. These approaches use the information stored within an edge to decide how the network is divided, however other approaches use the structure of the network instead. The structure of a network is called its topology. Topological network decomposition methods may define a module based around features such as the number of connections a node has (degree centrality), how many edges lie between it and other nodes (closeness centrality) or the number of shortest paths going through that node (betweenness centrality). Ultimately, there is no one way of building or decomposing a network, and the approach selected is heavily defined by the type of data upon which the network is built.
[bookmark: _Toc527800530][bookmark: _Toc3211319]Target Prioritisation
Once a signature is generated, its ability to represent a phenotype can only be truly validated through wet lab investigation in a living organism. Generally, the members of a signature cannot be all be tested, consequently the most promising targets must be chosen. The approach by which these targets are assessed is called “target prioritisation”. In target prioritisation, the candidates are assessed computationally, usually by some kind of scoring system, to indicate their probability of being successful. Target prioritisation has become a hot topic in the pharmaceutical industry, partly because it has proven extremely difficult to master, but mainly due to its role in risk reduction: it has the potential to save billions of dollars in drug discovery. In the decade between 2002 and 2012, there was a 99.6% failure rate for Alzheimer’s disease drug trials. As the Tufts Center for the Study of Drug Development prices the average clinical trial at $2.6 billion, it is clear that the pharmaceutical industry simply cannot afford to keep approaching drug discovery with a ‘trail and error’ approach 88. 
As with signature generation, target prioritisation works most effectively when a large number of data sources are used in conjunction with one another 89. Important sources of information include the candidates’ expression changes, possession of genetic perturbations, participation in pathways already associated with the disease, or whether they are known regulators of other genes, e.g. a transcription factor. There are a number of software tools that have been developed for target prioritisation. The web tool Endeavour (https://endeavour.esat.kuleuven.be/) incorporates information from 6 species and 75 databases to prioritise candidate gene lists, with addition of a training gene list of known disease-associated genes to train the algorithm. Other tools employ a network-based analysis to identify genes which are likely to be upstream regulators of the signature. Ingenuity Pathway Analysis by Qiagen (https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis/) looks for enrichment of transcription factor targets within the submitted gene set. It can also incorporate expression data to predict the likely effect, whether excitation or inhibition, that the transcription factor has on each gene. An evolution of this approach was developed by GeneXplain (http://genexplain.com/). GeneXplain’s tool Upstream Analysis identifies transcription factors through modelling of promoters in the input gene set. Pathways associated with these transcription factors are analysed for member overlap, and the molecules sitting within these overlaps are named ‘master regulators’. Both these methods practice the logic that elements which regulate a gene set are likely to represent more successful therapeutic targets than members within, although these two concepts can overlap.
Packaged methods for target prioritisation are improving constantly, however there are shortfalls. Like with any standardised method, it is less flexible to the specific research question of each experiment. Many factors may change the outcome of tests such as these; disease being studied, tissue type, genetic background of patients, and so on. Subsequently bespoke target prioritisation approaches may be more successful than pre-packaged approaches alone. 
[bookmark: _Toc3211320]Summary
We have identified a crucial need in biomedical research to increase the speed and accuracy of disease discovery. Additionally, we have highlighted how complex diseases have fallen behind in the push to develop effective therapeutics, due to the variability and complexity of these conditions. We have discussed the significant potential that computational modelling of complex disease phenotypes represents, and proposed that the development of molecular signatures may be the shortcut to identification of disease drivers. The strengths and weaknesses of signatures has been reviewed, and a number of strategies have been identified to avoid common pitfalls. Finally, we have presented and evaluated a number of approaches and contributors to signature building, to ensure the final product is accurate, reliable, robust and most importantly, reproducible.

[bookmark: _Toc3211321]Current Common Signature Methods
A number of studies have made already made attempts to generate common signatures from disparate datasets. Here we will present nine of these studies, representing a wide variety of conditions and approaches, and provide a discussion on areas for improvement that we may be able to address in our own methodology. A summary of the methodologies used by each study can be found in Table 1.

As previously discussed, many signature generations studies generally begin their analysis with either differential expression analysis or genes associated with GWAS SNPs. In the first two columns of Table 1 we see that 6/9 studies implemented DE analysis at some stage in their signature generation approach, 2 of which also employed analysis of genomic data. The remaining 3 studies used only genomic data. A variety of methods can be applied to meta-analyse differential expression across multiple datasets; in some, such as Glaab et al., datasets are analysed individually for differential expression, after which P-Values are combined using a weighted P-Value combination approach (e.g. moderated effect size combination 90, unweighted Fisher method) whilst others such as Gandal et al. combine datasets before differential expression analysis, correcting for batch effects using approaches such as distance weighted discrimination, mean-centring, surrogate variable analysis, and empirical Bayes. Both combination of datasets before and after differential expression are common approaches for the field, however they are optimised to data analysed on platforms which are as similar as possible. Only two of our nine studies attempted to create a common signature across more than one platform. One of these two studies, Gandal et al., combined only microarray data, but from a variety of chip manufacturers. The other study, by Magalhães et al., is the only study to attempt to combine data from significantly different platforms – still all microarray, though a mix of human, mouse and rat arrays. What none of the nine studies have attempted is to combine results from both microarray and RNA-Seq data. A study published in 2017 made attempts to combine results from microarray and RNA-Seq by calculating the effect sizes and significance for the inverse variance meta-analysis using a random effects model (REM) 91. Z-values were then used to calculate P-values, which were subsequently corrected for multiple testing, and converted into q-values. A q-value threshold was applied to define common genes. Although this study makes efforts to combine microarray and RNA-Seq data for meta-analysis, there is an argument to be made against the methodology they have chosen. Combining any value derived from RNA-Seq and microarray data is risky, as these two technologies produce data with very different structures 92. The idea of passing datasets through similar pre-processing and analysis, and comparing a common value after the fact, however, is possibly a way in which we could find commonalities between disparate platforms.
 
After gene-based analyses, it is clear that there is a consensus for some form of pathway analysis to follow. There are a number of pathway analysis approaches – some studies, such as Shang et al. Jha et al., look for enrichment of genes in curated pathway databases. Other approaches such as the one employed by Glaab & Schneider use a more sophisticated approach, applying random walk algorithms to pathway networks to identify significant topological relationships between experimental genes and canonical pathway genes. The benefit of overrepresentation or enrichment analysis is its ease and simplicity; calculations can be made in seconds, with a number of easily available online and local applications. It is, however, susceptible to the weaknesses of ever-changing, ever-disputed pathway definitions. Pathway algorithms claim their superiority over enrichment analyses due to the more in-depth, technical observation of the relationships between test genes and canonical pathway genes, but are more complex to apply and difficult to interpret. Either one of these applications is a viable option in the development of a meta-analysis pipeline.

5 of the 9 studies performed some kind of network analysis. Variations include topological analysis of protein interaction networks (e.g. Glaab & Schneider) or popular gene expression approaches such as WGCNA (e.g. Gandal et al.). It is somewhat concerning that only just over half of the studies include some form of network analysis considering the application of this type of analysis has shown to increase stability and predictability of signatures 93. The benefits of network analysis, therefore, support its use in our own methodological pipeline.

The problem of poor replicability is a pressing issue for biological signatures. There are many reasons why many signatures are unable to be reproduced, but it is likely to include over-fitting to test data (as discussed previously). In our nine datasets we can see a number of areas for improvement. Firstly, although genomic and transcriptomic data are readily analysed, proteomic data was rarely included. For studies aiming to produce translatable work, existing in a two-dimensional space is an insufficient representation of the real inner workings of a diseased cell. Ideally we should include as many data types as possible (e.g. protein, methylation, regulation), but the inclusion of even one of these other data types is a good starting point for an improvement in the realistic representation of cell biology. As well as multiple data types and platforms, replicability of signatures can be improved through use of multiple tissues (where the phenotype is expressed across multiple tissues) 94. Again, it was only Magalhães et al. who attempted to generate signatures across multiple tissues. The importance of cross-tissue analysis is to generate reliable signatures from all tissues expressing the phenotype of interest, not one particular subtype. Cross-tissue analysis also aids in the removal of tissue-specific signatures which may be residing within the signature being generated. A lack of signature reliability is reflected by the fact that 4 studies were unable to replicate the signature in all datasets analysed. Some studies, such as Parkes et al., attempted only to look at overlaps between pairs or subsets of input datasets. Subsequently, these studies are not developing concordant signatures across populations which they claim possess a shared phenotype. 

The final, and possibly most important, deficit in the area of signature generation is the lack of application. Many of these studies, including 5 of the studies reviewed here, do not attempt to propose meaningful, validatable targets from their shared signatures. It is all too easy to generate a list of genes, SNPs or proteins which look interesting to the reader, what is difficult – and most valuable – is to choose reasonable candidates and validate their relationship with the phenotype. For a biomarker study this could be to apply the biomarker to a novel dataset, proving its ability to be predictive. For drug discovery this could be to prioritise targets and test in a living organism. Overall, what is severely lacking in this field is a methodology which includes not only signature generation, but validation and translation also.

Each study reviewed here has made attempts to produce reliable signatures, however none have managed to completely fulfil the criteria we believe are fundamental to this process. Signature generation is not standardised, and as of yet we do not believe sufficient attempts have been made to produce a reliable, replicable, and generalisable signature generation methodology. If we are able to produce such a methodology, it would ensure a level of consistency and reliability which we believe is currently lacking. 
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[bookmark: _Toc3225915]Table 1: Table of common signature studies. Nine studies were reviewed on their experimental design for common signature meta-analyses. None of the nine studies included all nine criteria on which they were assessed. Just under half of studies did not even produce a consistent signature across all input datasets.


[bookmark: _Toc527800531]

[bookmark: _Toc3211322]Aims and Objectives
Our aim was to develop a signature-generation pipeline which can produce accurate, reliable signatures capable of identifying laboratory-validated upstream drivers of a disease phenotype shared between distinct disease populations. We have presented a number of ways in which signature building methodologies can be built, and the components which they may include. Our aim was to satisfy the criteria set out in section 1.6 in which many previous studies have failed – to produce a methodology capable of identifying common signatures in an array of phenotypes, be it molecular or clinical, and to be generalisable across medical fields. To assess applicability to molecular phenotype we chose to build the methodology around TDP-43 dysfunction; a neurodegenerative cellular phenotype which is easy to assess in vitro due to the presence of aggregations and physical mislocalisation. To assess applicability to clinical phenotypes our second application was to LRRK2 and sporadic Parkinson’s diseases – two populations which share an extremely similar clinical phenotype as compared to other PD populatins. Finally to show generalisability outside of neurodegeneration, we chose autoimmune arthritis as our third application. An overview of the predicted experimental design structure is presented in Figure 2. 

Our objectives were the following: first, this pipeline would be able to successfully incorporate datasets that are small, as this represents the vast majority of publicly available datasets from complex diseases. Second, the pipeline would be able to processes data generated from variable technical platforms, to reduce overfitting to a platform type, improve replicability, and increase availability of data. Third, the pipeline would be rigorously tested at each development stage, both statistically, and through benchmarking of known entities associated with the phenotype. Finally, the pipeline should be validated through prioritisation and selection of predicted upstream drivers, which would subsequently be tested in vitro or in vivo. 
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[bookmark: _Toc3225998][bookmark: _Toc528263174]Figure 2: An overview of the predicted experimental design structure. In the first step (red), data is collected according to specified criteria, and undergoes quality control.
Next, a list of differentially expressed genes is generated (orange). This gene list is expanded to a larger, functionally connected network of molecules (yellow), which is then subdivided into tightly functionally intra-related network modules (green). Within this network will be a key module, identified through some biological and/or statistical relationship with the phenotype (blue). Once the key module is identified, its members can be prioritised based on both relationship to the phenotype, as well as likeliness to be an upstream driver of the phenotype (purple). Finally, the top predictions undergo validation in an in vitro/vivo model of the phenotype (violet). At various stages, assessments are made regarding the relationship of the result to the phenotype (e.g. pathway enrichment analysis), as well as the statistical likelihood of obtaining that result. 

[bookmark: _Toc3211323]Chapter 2: Pipeline Development: An Application to TDP-43 Dysfunction
[bookmark: _Toc3211324]Introduction
[bookmark: _22wzl67474i2][bookmark: _Toc3211325]Overview
The aim of this PhD project was to develop a methodology capable of extracting novel common drivers of well-defined phenotypes shared between multiple disease populations. The development process involved the incorporation of multiple data types into a single, multi-omic signature, which could be queried for these novel drivers. To begin development, however, required a test phenotype. The test phenotype selected was TDP-43 dysfunction; a protein mislocalisation and aggregation phenotype shared by over a dozen different neurodegenerative conditions. 
[bookmark: _4pplsdz76y37][bookmark: _Toc3211326] Case Study: TDP-43 Dysfunction
[bookmark: _7lzaer5tcybi][bookmark: _Toc3211327] TDP-43 Structure and Function
Transactive response DNA-binding Protein (TDP-43) is a highly conserved, ubiquitously expressed protein, named for its molecular weight of 43-kDa. Located on Chromosome 1, the gene encoding TDP-43, TARDBP, can be alternatively spliced into 11 different mRNAs. Western blotting experiments have demonstrated that TDP-43 is the only protein product translated from a TARDBP mRNA 95. TDP-43 itself has three protein isoforms; two 43-kDa proteins (of which one is lacking 6 nucleotides), and one 28 kDa isoform missing exon 3 and a large section of exon 6. The roles of the two non-full length isoforms are currently unknown 96. Due to its structure, TDP-43 is considered a member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family, which are known to engage in mRNA biogenesis and gene expression regulation 97. As an hnRNP, TDP-43 is characterised by its ability to bind single-stranded RNA and DNA using binding domains known as RNA recognition motifs (RRM). TDP-43 possesses two such binding domains, RRM1 and RRM2. RRM1 is particularly affinitive to UG/TG dinucleotide repeats of six or more, and has been shown to be necessary for nucleotide binding 98. The RRMs of TDP-43 are flanked by an amino-terminal (N-terminal) domain and a glycine-rich carboxy-terminal (C-terminal) domain. The N-terminal domain has been shown to be required for formation of TDP-43 homodimers and for regulation of TDP-43’s splicing activity 99. Alternatively, the C-terminal domain of TDP-43 has been implicated in the mediation of protein-protein interactions 100. TDP-43 has the ability to use its RRM1 and C-terminal binding domains to auto-regulate its own expression via a negative feedback loop; an ability often held by proteins whose overexpression is toxic 101.

TDP-43 has a variety of known roles within the cell. Its role as a transcriptional regulator was the first to be documented. In a study investigating proteins that bind to the TAR DNA region of human immunodeficiency virus type 1 (HIV-1), expression of TDP-43 was found to cause the repression of HIV-1 transcription by interfering with assembly of transcription complexes 102. TDP-43 has also been shown to repress expression of the mouse gene SP-10, by preventing enhancer-promoter interactions 103. TDP-43 has been implicated in the regulation of mRNA splicing; whilst searching for splice modulators for exon 9 of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, Buratti and colleagues succeeded in isolating the C-terminal domain of TDP-43 100. Through individual nucleotide-resolution ultraviolet cross-linking and immunoprecipitation (iCLIP), TDP-43 was later shown to have splicing interactions with mRNAs possessing important functions in the brain, including MEF2D, CFTR, hNFL and FUS 104. In addition, mRNAs associated with TDP-43’s own regulation were shown to contain splice sites, giving further explanation for TDP-43’s ability to self-regulate. 

Due to its importance in various pre-translational processes, it is unsurprising that TDP-43 is predominantly localised to the nucleus (with exception of the nucleolus). Low levels of TDP-43 can be detected in the cytoplasm, partially explained by TDP-43’s relationship with the mRNA for human low molecular weight neurofilament (hNFL). Neurofilament proteins help form the internal cytoskeleton of neurons. TDP-43 has been proposed to stabilise hNFL mRNA whilst it is shuttled along the axon 96,105. As well as mRNAs, hnRNPs such as TDP-43 eventually became implicated in the processing of microRNAs (miRNAs). Initial investigation of TDP-43 uncovered interactions with the miRNAs let-7b, miR-663, miR-574-5p and miR-558, however further investigation revealed a more significant role within Drosha and Dicer complexes for miRNA biogenesis. The role of the Drosha complex is to crop miRNA precursors, called pri-miRNAs, into an intermediary molecule called a pre-miRNA. The proposed role of TDP-43 is recruitment of pri-mRNAs into the Drosha complex. Once formed, the resultant pre-miRNAs are then exported out of the nucleus into the cytoplasm where the Dicer complex initiates their conversion into mature miRNAs. TDP-43 has also been shown to bind to pre-miRNAs during this maturation, suggesting a role within the Dicer complex process also 106,107. As Dicer processing of pre-miRNAs occurs in the cytoplasm, this further explains TDP-43’s presence outside of the nucleus.
The downstream effects of TDP-43 activity have been illustrated in several cellular processes. TDP-43 has been shown to regulate protein quality control during cellular stress by disinhibition of the transcription factor FOXO, allowing clearance of misfolded proteins 108. As is suggested by its high concentration in brain tissue, TDP-43 also has neuron-specific roles, including regulation of axon growth and neuronal plasticity 109,110. 

[bookmark: _z28vv9zli4t][bookmark: _Toc3211328] TDP-43 and Neurodegeneration
During the investigation of the contents of inclusions in post-mortem brain cells of frontotemporal lobar degeneration (FTLD) patients, two unknown proteins of 24kDa and 26kDa were identified 111. These proteins were revealed to be truncated portions of TDP-43’s C-terminus. In addition, anti-TDP-43 antibodies identified a 45kDa protein, which was later shown to be hyperphosphorylated full-length protein. TDP-43 pathology has been identified in the post-mortem tissue of over a dozen neurodegenerative conditions, which will be briefly introduced here. Table 2 indicates percentages of these populations exhibiting TDP-43 pathology.
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[bookmark: _Toc3225916]Table 2: A summary of prevalence rates of TDP-43 pathology in various neurodegenerative conditions.


[bookmark: _wu5wou7z2ezq][bookmark: _Toc3211329]Amyotrophic Lateral Sclerosis
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterised by the atrophy of both upper and lower motor neurons. Symptoms of ALS include muscle weakness, paralysis, and wastage. Those suffering from ALS have a life expectancy of 2-5 years post-diagnosis, and as of yet there is only one treatment option, Riluzole, which achieves a modest 2 month average increase in survival 112.

ALS can be subdivided into two groups; sporadic (sALS) or familial (fALS). Those with sALS have no family history of the disease, and constitute 95% of ALS cases 113. The remaining 5% are patients with fALS, who tend to acquire disease through inheritance of a mutated autosomal dominant gene. These genes include C9orf72, SOD1, FUS, CHMP2B, as well as TARDBP itself. It is believed that approximately 97% of all ALS cases present with TDP-43 proteinopathy, with the exception of two groups; those with mutations in the superoxide dismutase 1 (SOD1) gene, or in the fused in sarcoma (FUS) gene. For this subset of ALS patients, their pathology is classified by the SOD1 and FUS proteins themselves 114,115. 
[bookmark: _72e02l231miu][bookmark: _Toc3211330]Frontotemporal Dementia
FTLD is characterised by atrophy of the frontal and temporal lobes, resulting in symptoms such as antisocial behaviour, aphasia, and dementia. There are three subtypes of FTLD, of which TDP-43 pathology is observed in one – ubiquitin-positive, tau-negative FTLD (FTLD-U). Like ALS, FTLD-U can also be familial or sporadic, and approximately 50% of all FTLD patients exhibit TDP-43 pathology. Mutated genes associated with TDP-43 pathology in FTLD-U include C9orf72, PGRN, TARDBP and VCP. Interestingly, CHMP2B mutations do not cause TDP-43 pathology in FTLD, but do in ALS 116.   
[bookmark: _4nplnmyd1qgu][bookmark: _Toc3211331]Multisystem Proteinopathy
Multisystem proteinopathy (MSP), previously known as Inclusion Body Myopathy with Paget’s disease and Frontotemporal Dementia (IBMPFD), is characterised by progressive muscle weakness of both proximal and distal muscles, Paget’s disease of bone, and frontotemporal dementia. Six mutations in VCP, or valosin-containing protein, have been associated with the disease, and account for nearly 50% of affected families 117. Forty-five percent of MSP patients, however, have no family history of the disease 118. TDP-43 pathology has so far been identified in all investigated cases of MSP as both intranuclear and cytoplasmic inclusions, and unlike other neurodegenerative diseases, is present in muscle tissue 119.
[bookmark: _d7u48ldluu7u][bookmark: _Toc3211332]Alexander’s Disease
Alexander’s disease (AxD) is a rare neurodegenerative disease that predominantly affects the white matter of the brain. Onset can occur at any point in life, with the infantile form being most prevalent. Symptoms include delayed motor and intellectual development, macrocephaly, and seizures. In 2001, Brenner and colleagues discovered 95% of AxD patients had a mutation in the gene encoding glial fibrillary acidic protein (GFAP), a protein previously identified in astrocytic inclusions known as Rosenthal fibres 120. Recently, investigation of other proteins aggregated in AxD revealed the presence of TDP-43 protein 121. Interestingly, the TDP-43 pathology was not present in the neurons, but was in fact present within the astrocytes, suggesting that TDP-43 aggregation may affect many cell types in the central nervous system.
[bookmark: _yeql6l51ky4i][bookmark: _Toc3211333]Alzheimer’s Disease
Alzheimer’s disease (AD) is the most common cause of dementia, and its neuropathology is defined by global cerebral atrophy as well as degeneration of some midbrain areas. Other than memory loss, symptoms can include personality changes, aggression and delusions. Only a very small proportion of AD cases can be attributed to genetics, despite a number of genetic loci being associated with the disease 122. Histologically, cells from patients with AD show two distinct proteinopathies; amyloid plaques and neurofibrillary tangles (NFT). In approximately one third of AD cases, TDP-43 pathology has been shown to localize within the NFTs, predominantly in the amygdala, hippocampus and dentate gyrus 123. There is no indication as to which patients will develop TDP-43 pathology.
[bookmark: _nf7nbbbgvlii][bookmark: _Toc3211334]Parkinson’s Disease
Parkinson’s disease (PD) is a condition characterised by the loss of dopaminergic neurons in the substantia nigra; a region of the basal ganglia. The loss of dopaminergic function exhibits a symptomology of muscle tremors, rigidity, and slow movement. Neuropathology of PD is predominantly comprised of aggregations of the protein α-synuclein, however 7-19% of patients will also demonstrate TDP-43 pathology 124. Interestingly, the prevalence of TDP-43 pathology increased if patients exhibited dementia symptoms.
[bookmark: _v55896qx39mp][bookmark: _Toc3211335]Lewy Body Dementia
Lewy body dementia (LBD) is sometimes considered a hybrid of Alzheimer’s and Parkinson’s diseases, due to the presence etof AD psychological symptomology and Lewy bodies. Lewy bodies are aggregations of proteins alpha-synuclein and ubiquitin, and in 45% of cases, TDP-43 123. As in AD, inclusions in LBD were localized to midbrain areas but not the cortex, which contrasts with pathology identified in other TDP-43 proteinopathies, such as FTLD and ALS. 
[bookmark: _pmrurgugu019][bookmark: _Toc3211336]Parkinsonism-Dementia Complex of Guam
In 1954, a paper was published in the United States Armed Forces Medical Journal documenting a surprisingly high prevalence of Parkinsonism with dementia in the Chamorro people of Guam 125. Subsequent decades of research revealed the individuals suffered from a mixture of the physical effects of PD, paired with the cognitive deficits associated with dementia. The neuropathology of Parkinsonism-Dementia Complex (PDC) is complicated, resembling a mixture of ALS, FTLD, AD and PD pathology. Of the small numbers of PDC patients whose tissue has been analysed, aggregations positively identified are tau, ubiquitin, Aβ, α-synuclein and TDP-43, though not all necessarily co-localise 126–128. As of yet, all PDC patients exhibit some form of TDP-43 aggregation.
[bookmark: _kxjpbgt3ez6e][bookmark: _Toc3211337]Huntington’s Disease
Like PD, Huntington’s Disease (HD) is a neurodegenerative condition predominantly affecting the basal ganglia. In HD however, neurodegeneration can spread to the cortex, hippocampus, and cerebellum 129–132. Symptoms are quite varied, but include uncontrolled movements (chorea), abnormal posture and facial expression, and difficulties eating and sleeping. Cognitive decline manifests as difficulties in executive function (planning, imagination, inhibition of inappropriate behaviour), and progresses to memory deficits.

HD is caused by a CAG repeat mutation in the Huntingtin gene; non-affected individuals will contain between 7 and 35 repeats, with more than 40 invariably resulting in HD manifestation 133,134. Pathology is characterised as cytoplasmic accumulations of the Huntingtin protein, HTT. Populations studied for the co-localisation of HTT and TDP-43 are small, but unanimously demonstrate the presence of TDP-43 pathology 135.
[bookmark: _ejrhxy86ab1r][bookmark: _Toc3211338]Corticobasal Degeneration
Corticobasal degeneration (CBD) is considered another Parkinson’s and Alzheimer’s-like neurodegenerative condition due to the presence of Parkinsonism and dementia symptoms. As its name suggests, CDB predominantly affects the cortex and basal ganglia. CBD is a tauopathy, however unlike other conditions where aggregations are typically found in the neuronal axon, CBD tauopathy also presents with tau-positive plaques in glial cells of the central nervous system 136. Approximately 45% of CBD cases will show evidence of TDP-43 pathology somewhere in the brain, with highest incidence mid-brain areas 137.
[bookmark: _m9t04vyrvwyj][bookmark: _Toc3211339]Progressive Supranuclear Palsy
Clinically, CBD cases are often misidentified as progressive supranuclear palsy (PSP) due to the vast similarities in the presentation of the conditions (Parkinsonism and cognitive decline) as well as the location of neurodegeneration (basal ganglia, cortex and hippocampus). PSP is differentiated from CBD by the existence of supranuclear ophthalmoplegia caused by degeneration of brain stem areas dedicated to ocular control, presenting symptomatically as involuntary eye movements, difficulty with saccadic movement, and looking downwards. TDP-43 pathology has been identified in approximately 26% of PSP cases, where the amygdala and hippocampal dentate gyrus were the most significantly affected 138.
[bookmark: _jxtia18x3xct][bookmark: _Toc3211340]Hippocampal Sclerosis
Hippocampal sclerosis (HS) is a condition in which pyramidal neurons of the CA-1 and subiculum regions of the hippocampus degenerate. HS is often misdiagnosed as AD, as the early symptoms of dementia present and progress at a very similar rate. HS is closely associated with temporal lobe epilepsy, however it is still unclear whether the neurodegeneration is a cause or effect of the epileptic seizures experienced by these patients 139. Around 70% of HS patients assay positively for TDP-43 aggregations, with highest concentrations in the hippocampal dentate fascia and extension into the nearby entorhinal, occipitotemporal and inferior temporal cortices 140. 
[bookmark: _tlra5o26d5wy][bookmark: _Toc3211341]Spinocerebellar Ataxia Type 2
Individuals with spinocerebellar ataxia often present with uncoordinated movement of the hands, vocal apparatus, and eyes, caused by neurodegeneration in the cerebellum and spinal cord. As suggested by its name, there are a number of subtypes of spinocerebellar ataxia, of which spinocerebellar ataxia type 2 (SCA2) is one. SCA2 is caused by mutations in the gene ATXN2, and represents a more aggressive form of the disease with disease onset sometimes occurring in teen years 141. TDP-43 pathology in SCA2 has not been investigated as thoroughly as other disorders, but has been recorded in the cortex, basal ganglia and midbrain, of at least one SCA2 patient 142. Interestingly, TDP-43 aggregations were not reported in the cerebellum or spinal cord. The presence of TDP-43 pathology in SCA2 patients may be related to ATXN2, a risk gene for both PD and ALS.
[bookmark: _x6g4emcte72s][bookmark: _Toc3211342]Chronic Traumatic Encephalopathy
Many of the conditions discussed possess strong evidence of genetic causation. Chronic traumatic encephalopathy (CTE) on the other hand is a neurodegenerative condition caused by repetitive trauma to the head and recurrent concussions. CTE is prevalent in contact sports where the head and neck are vulnerable to collision, most famously in boxing and American football. Symptoms of CTE resemble those of AD, including short-term memory loss, mood swings, and increased confusion. Later on in the disease, physical symptoms such as parkinsonism can develop. TDP-43 pathology has been documented in 43-83% of CTE patients, predominantly in midbrain areas but also in some cases the spinal cord and cortex 143,144.
[bookmark: _780zzvoett6k]
[bookmark: _2sop8exc6uwv][bookmark: _Toc3211343]TDP-43 Dysfunction
The sequence of events leading to TDP-43 dysfunction is only partially understood; we know the end result for TDP-43, but not why it occurs. During episodes of cellular stress (such as disease), TDP-43 is ubiquitinated and phosphorylated at two serine sites, 409 and 410. It is then cleaved by the enzyme caspase, producing the C-terminal fragments (CTFs) 145. The caspase family are a group of endoproteases that have been shown to have significant roles in apoptosis, and have been associated with several diseases such as Alzheimer’s disease, inflammatory disease, and a variety of different cancers 146. Once cleaved, the TDP-43 fragments, as well as full-length TDP-43, are exported from the nucleus into the cytoplasm, a process recently shown to be regulated by the activity of the protein kinase AMPK 147. This process results in a significant mislocalisation of the predominantly nuclear TDP-43 protein 148.

Once in the cytoplasm, full-length TDP-43 is recruited into stress granules (SGs), whereas TDP-43 CTFs appear to aggregate separately, likely due to a lack of the RRM1 domain 149,150. SGs are protective ribonucleoprotein compartments formed to silence and protect partially translated housekeeping mRNAs during episodes of cellular stress. Other than mRNA, they often also contain proteins involved in mRNA stabilisation, a possible explanation for the presence of TDP-43. SGs are usually reversible, returning to normal once the stress has subsided. However, if this stress does not subside, SGs can form permanent aggregations, such as the inclusions seen with TDP-43. The difference between reversible and irreversible SGs has recently been attributed to the differing phase-states of RNA-binding proteins, such as TDP-43 151. Normally, such proteins undergo a reversible phase transition into liquid or hydrogel states during SG formation. It is hypothesised that in the presence of mutations, the proteins instead transition into an irreversible, fibrillar state, leading to permanent protein aggregation.

What is still not clear is whether the toxicity to cells is caused by the loss of TDP-43 protein from the nucleus, or the aggregations themselves. These two events, however, are inherently linked, and it is likely that a combination of both contributes to the neurodegenerative process 152. Identifying drivers of TDP-43 dysfunction may help prevent both mislocalisation and aggregation, and subsequent neuronal death.
[bookmark: _i9a3ug5vlmg1]
[bookmark: _30xluxd896v6][bookmark: _Toc3211344]Developing a TDP-43 Signature
There are a number of benefits to using TDP-43 dysfunction as a case study during pipeline development. Firstly, the data collected from conditions expressing TDP-43 pathology will be quite heterogeneous; clinical phenotypes range anywhere from purely cognitive to purely motor abnormalities, pathology presents in many different regions of the central nervous system, and the data collected from these patients is likely to come from different labs using their own methodologies and platforms. Secondly, many of these neurodegenerative diseases are quite rare, and there is limited availability of CNS tissue due to most samples being collected post-mortem, meaning that dataset sizes are likely to be small. Finally, TDP-43 mislocalisation and aggregation is an easily quantifiable phenotype, making laboratory validation relatively straightforward. 
The aim of the project is to develop a methodology that reliably generates signatures containing upstream drivers of shared phenotypes. In this chapter, we present the process by which we developed this methodological pipeline, resulting in the identification of novel upstream drivers for TDP-43 dysfunction. These analyses were completed using the software environment R (https://www.r-project.org/). All code used in this project can be accessed through the following GitHub URL: https://github.com/AnalytiClaire.

[bookmark: _2ii65tysar9m][bookmark: _Toc3211345]Identifying Commonly Differentially Expressed Genes
Although both transcriptomic and genomic data can be used as a starting point in our methodological pipeline, transcriptomic data was favoured for a number of reasons. Firstly, transcriptomic data is more widely available than genome sequencing data; as of March 2016, the transcriptome database GEO held 54,640 studies containing more than 1.3 million samples 153. As the conditions this methodology is aimed at may be quite rare, GWA data for these conditions is less likely to be available. Secondly, the analysis protocols for transcriptomic data are much easier to learn and implement, and are generally more established. Finally, gene expression provides a measure of direction (upregulated or downregulated) which may be of later importance in its interpretation.

To conduct differential expression, three crucial components must be considered; the selection and quality control of data, the methodology for calculating differential expression, and the assessment of the biological validity of the outcome.
[bookmark: _z8s37tevqj3][bookmark: _Toc3211346]Dataset Selection
Selection of appropriate datasets is of great importance, as these datasets form the foundation upon which the experiment is built. Consequently, a number of carefully considered search criteria were formulated. Firstly, datasets must only contain samples directly from human patients. Other species were considered too biologically divergent, and therefore comparability is weak. We also omit cell lines, for similar reasons. Secondly, samples must be extracted from a tissue directly affected by the phenotype of interest, ensuring high biological accuracy. It must be noted, however, that the only available patient-derived tissue for some conditions is post-mortem, therefore degradation and age of death must be considered when interpreting results. Thirdly, we assigned a minimum cut-off of three controls and three patients, as some software packages reject numbers lower than this. Finally, though accepted datasets could be both microarray and RNA-Seq, only platforms from Affymetrix and Illumina were considered, as these are supported within our software pipelines used for pre-processing and subsequent analyses.

Searches were performed in the Gene Expression Omnibus database (https://www.ncbi.nlm.nih.gov/geo/) using the term “TDP-43 pathology” or names of diseases known to present with this phenotype. Samples were ensured to be from the specific human tissue in which TDP-43 aggregations are found, established either by referring to the metadata, or under the assumption that in some conditions it is always present. Four microarray and two RNA-Seq datasets were selected using the above criteria, with a final unpublished dataset contributed from the Kirby Lab, SITraN. A summary of the datasets can be found in Table 3. Five datasets were established from ALS patients, including C9orf72 and sporadic genetic backgrounds, one sampled muscle tissue from Multisystem Proteinopathy, and the final dataset contained frontal cortex samples from both sporadic and GRN Frontotemporal Lobar Degeneration (FTLD) cases. 
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[bookmark: _Toc530741912][bookmark: _Toc531197134][bookmark: _Toc3225917]Table 3: The Six datasets containing TDP-43 pathology-positive patients. Tissue indicates the source of the biological material. Disease indicates the medical condition patients had been diagnosed with. Genetic Background indicates whether the dataset contains individuals with a known genetic cause, or individuals with sporadic status. Platform indicates the technical platform used to collect the expression data. Affymetrix platforms are microarray, Illumina are RNA-Seq. GEO ID is the reference provided by GEO to locate the original dataset. Publication contains the reference supplied with the data on GEO. LCM = Laser Capture Microdissected


[bookmark: _2pjlc9yifc9n][bookmark: _Toc3211347]Dataset Quality Control and Pre-processing 
Quality control was conducted on raw data using three separate methodologies. The approach was the same for both microarray and RNA-seq. The first was to conduct principle component analysis (PCA) using R package stats function prcomp. PCA plots indicate the most extreme variance within the dataset and can be used to identify how heterogeneous the patient and control samples are, and to identify outliers whose expression variation is vastly different than the rest of the dataset. Secondly, box plots were produced to visualise the spread of the data. Finally, hierarchical clustering was conducted and visualised using a combination of the packages stats and dendroextras (https://cran.r-project.org/web/packages/dendroextras/index.html) to cluster the data. Similar to PCA, this approach also indicates heterogeneity, as well as outliers. For a sample to be excluded, two of the three plots were required to show abnormal results, that could not be explained by outlier genes. 

Due to the inability to build sufficient distributions, any datasets containing 10 or fewer total samples were not submitted to outlier exclusion, as it was not possible to make informed decisions on what constituted an outlier. Of the remaining three datasets, exclusion of samples considered to be outliers was decided after completion and comparison of all three analyses (Appendix Figures 1-4). After careful consideration, results from the QC analysis implicated sample GSM329670 from the dataset GSE13162 and sample GSM1642327 from dataset GSE67196, which were subsequently removed. Although sample GSM1676855 from dataset GSE68605 appeared to fail both PCA and clustering analysis, the boxplot indicated a similar distribution except for one outlier gene expression value which was subsequently removed, and the sample retained.

[bookmark: _GoBack]As all microarray data were derived from Affymetrix platforms, each data set was normalised using the rma function in the R package affy (https://bioconductor.org/packages/release/bioc/html/affy.html). The RMA or Robust Multi-array Average method involves background correction of raw intensity values, transformation of these values by log2, and finally quantile normalisation to make samples comparable. The two RNA-Seq data sets were downloaded as FASTQ files, and normalisation was conducted using the python software package bcbio (https://bcbio-nextgen.readthedocs.io/en/latest/index.html). The output of this process was a count matrix, which was used for further investigation. Platforms were not normalised and were analysed independently, subsequently it is necessary for us to note that the use of the word “expression” from hereon refers to the expression values unique to microarray and RNA-seq platforms, i.e. when used in the context of microarray platforms, this refers to the relative intensity value produced by that technology, whereas for RNA-seq this refers to the absolute count of transcripts measured.

To see the difference between data distribution before and after normalisation, boxplots were conducted on pre-and post-normalised data (Appendix Figure 5). Here we can see that the range of variance in log2 expression within microarray and RNA-Seq technologies before normalisation is relatively consistent across datasets. RNA-Seq range is larger compared to microarray, though this is expected due to technological differences. After normalisation of data, the range of RNA-seq values is still higher, however the median value falls within a similar range (between 4 and 10) as microarray data, indicating a degree of comparability.

[bookmark: _vxwlxxvzqr4b][bookmark: _Toc3211348]Differential Expression
Differential expressed analysis was conducted using the R packages LIMMA for microarray, and DESeq2 for RNA-Seq. LIMMA is well suited to Affymetrix microarray data, and has been shown to be powerful at extracting reliable results from small datasets 154. Similarly for RNA-Seq data, DESeq2 has also been developed to handle particularly small datasets, and is considered one of the most reliable software packages for differential expression analysis 155. Though exhibiting a slightly higher false discovery rate than other methods, DESeq2 is more accurate when calculating fold change values 66. 
[bookmark: _2dzycr7a5fxf]Conventional Differential Expression
In a conventional meta-analysis, after differential expression analysis is completed, a P-value threshold - conventionally <0.05 - is set. Often accompanied is a fold change threshold of 1.5 or above. In small, underpowered datasets, however, these thresholds are less likely to produce significant DEGs.

After differential expression analysis, four out of six datasets produced DEGs at an adjusted P-value threshold of 0.05 and an absolute fold change threshold of 1.5 (Table 4). However, two of these four produced DEG lists of less than 10 genes, and in one case, only one gene. It was therefore clear that a conventional differential expression approach to meta-analyses would not produce a consensus gene list for all datasets.
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[bookmark: _Toc3225918]Table 4: Number of differentially expressed genes recorded for each TDP-43 dataset under a P-value threshold of <0.05, and a P-value threshold plus an absolute fold change threshold of 1.5.

[bookmark: _nk2610632hlo]Fold Change Consistency
When conventional differential expression fails, a common follow-up approach in meta-analyses is to either combine datasets or combine the resultant P-values. Data combination techniques are generally avoided when combining microarray and RNA-Seq data, due to the fundamental differences in their technology. Attempts are beginning to be made to achieve this kind of platform combination, however this work was unpublished at the commencement of this project, and is still in need of corroboration by the scientific community 91. Even so, the concept of P-value combination is only advantageous if the direction of expression is consistent; a gene’s significance is of less interest if its expression is wildly variable across the population. Many signature building studies employ a common DEG approach, however many do not report whether those DEGs were differentially expressed in the same direction - i.e. upregulated or downregulated - across all datasets. When the objective is to identify a common dysfunctional mechanism, we believed it was of greater importance that the nature of the dysfunction is consistent, rather than the severity of dysfunction. One of the many criticisms of statistically thresholded approaches, such as differential expression or GWAS, is that biology does not always comply with statistical doctrine. Extremely small changes in a gene’s expression have been shown to have significant downstream effects 156,157. These small changes, however, are conventionally discarded due to the statistical risk of false positives. However, if a small change can be replicated reliably, particularly across platforms, our confidence in it being a true positive increases 158. Subsequently, it was decided that common DEGs would be identified by assessing the consistency of a genes’ fold change direction. What results is a list of genes which, while not significantly differentially expressed, show uniform upregulation or downregulation in patients versus healthy controls, and whose presence in the list is entirely data-driven. 

After applying differential expression analysis on each of our six TDP-43 datasets, fold change direction was identified for each gene. Genes whose fold change sign (indicating upregulation or downregulation) was assessed for consistency across all six datasets. After applying this methodology, 328 genes were discovered to be commonly upregulated and 69 genes commonly downregulated. A likely criticism of this approach is that a gene list generated in this way represents nothing but a random set of unrelated genes. To investigate, random permutations tests were conducted to establish whether the quantity of genes we observed experimentally was higher than would be expected by chance. Random permutation tests were conducted against the human genome using the R package hgu133plus2.db to generate a background of 20,188 gene names. For each dataset, the total number of genes present were assigned a random label of “upregulated” or “downregulated”. The proportion of labels assigned to each condition was equal to that observed experimentally (Table 5). The size of ‘commonly upregulated’ and ‘commonly downregulated’ gene lists is calculated and stored. The whole process is repeated 100,000 times. Where e is the size of the experimental gene list, v is the size of the simulated gene list, x is the number of times e is larger than s, and m is the number of permutations, the following calculation was applied:



)


A P-value was produced, indicating the likelihood that the number of genes generated experimentally was more than would be expected by chance. Results indicated that on average, 127 commonly upregulated and 32 commonly downregulated genes would be expected by chance, far fewer than identified experimentally (Table 6). In fact, the experimental values did not fall within the expected distribution, meaning a P-value could not be calculated. Although we cannot say at this point that our signature is representative of TDP-43 dysfunction, possession of a common gene list larger than expected by chance indicates that these datasets share a common expression pattern far stronger than would be expected. 
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[bookmark: _Toc3225919]Table 5: Total number of genes for each TDP-43 dataset after pre-processing and numbers of these genes which are upregulated or downregulated.
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[bookmark: _Toc3225920]Table 6: Comparison of TDP-43 DEG results and those expected by random permutation. Actual Value indicates the number of DEGs observed experimentally. Expected Mean and Expected Range show the average and range of values that would be expected if upregulation and downregulation labels were randomly assigned.

[bookmark: _jpdzr4ynshuk][bookmark: _Toc3211349]Signal Purification
In the introduction, we discussed how very few signature building studies take measures to filter out noise from processes unrelated to the experimental phenotype – condition-generic and tissue non-specific signals. To purify the signal, two additional signatures were generated; a condition-generic signature, and an unaffected tissue signature. In the case of TDP-43, a condition-generic signature is that which is representative of neurodegeneration in general. Subsequently, two neuronal datasets from patients with SOD1 or FUS mutations were selected (Table 7). These individuals experience neurodegeneration but do not present with TDP-43 pathology, therefore any commonalities between the two signatures represent processes unrelated to TDP-43 dysfunction. The condition-generic signature was generated using the same methodology as the experimental signature; differential expression followed by identification of commonly upregulated or downregulated genes between the SOD1 and FUS datasets. One-hundred and twelve dysregulated genes were shown to share the same expression direction in the two signatures. These were subsequently removed from the TDP-43 signature, leaving 285 common DEGs.

The purpose of an unaffected tissue signature is to represent any tissue non-specific gene expression alterations occurring during the disease process. We selected a fibroblast dataset generated from patients with TARDBP mutations. As only one dataset was available conventional differential expression was applied, and the signature was defined by the significant DEGs (adjusted P-value <0.05). Only two genes that were significantly differentially expressed overlapped with the 285 DEGs. After removal, 283 common DEGs remained. 
 


[image: ][bookmark: _Toc530741916][bookmark: _Toc531197138][bookmark: _Toc3225921]Table 7: Datasets used to build tissue-nonspecific and condition generic signatures for TDP-43 DEG signature filtering. Tissue indicates the source of the biological material. Disease indicates the medical condition patients had been diagnosed with. Variant indicates whether the dataset contains individuals with a known genetic cause, or individuals with sporadic status. Platform indicates the technical platform used to collect the expression data. Affymetrix platforms are microarray, Illumina are RNA-Seq. GEO ID is the reference provided by GEO to locate the original dataset. Publication contains the reference supplied with the data on GEO. LCM = Laser Capture Microdissected



[bookmark: _4syqff4bul6q][bookmark: _Toc3211350]Assessment of Common DEG Biology
Although we identified a degree of statistical evidence that our signature is not random, we still require evidence of a biological relationship specific to TDP-43 dysfunction. We can partially achieve such evidence through enrichment analysis of gene lists representative of the shared phenotype. Gene lists representing a particular process can be obtained from pre-curated sources (databases such as KEGG, Wikipathways, Reactome etc) or can be curated by the individual. We decided to assess the TDP-43 signature using both.
[bookmark: _sjpk1a5fl8ld]Curated Phenotype-Specific Gene Lists
Phenotype-specific genes lists refers to individually curated lists of genes that we considered representative of the phenotype. Three sources of information were curated in order to assess the presence of TDP-43 biology at each stage of the pipeline (Table 8). These sources fall into three broad categories; disease-associated genes, pathology-tracking genes, and TDP-43 protein interaction genes. Disease-associated genes were genes which have been consistently associated with TDP-43 pathology-expressing diseases. Many are causative, and some considered contributory to the disease phenotype. One-hundred and twenty-seven genes were identified through extensive literature searches. Pathology-tracking genes were sourced from a list of 77 genes published within the Hide Laboratory whose expression significantly correlates with the severity of TDP-43 pathology 159. TDP-43 protein interaction genes refer to a list of binding partners of TDP-43 protein, generated by assessing replication of binding events in two immunoprecipitation/mass spectrometry experiments 160,161. 

Enrichment analysis was calculated using an R function hyperpathway, originally developed as part of the package Pathprint (http://www.bioconductor.org/packages/release/bioc/html/pathprint.html) 78. Hyperpathway conducts a hypergeometric test of significance for all comparisons, generating a P-value and adjusted P-value for multiple comparisons. Hypergeometric tests are commonly used for one-tailed enrichment analyses, differing very little from the other commonly used Fisher’s Exact Test. Hyperpathway was chosen as it is easy to conduct a number of experiments and adjust for multiple comparisons.

Enrichment analysis of these benchmarks revealed the presence of a number of genes already associated with neurodegeneration, the most significant being TARDBP itself (Table 8). Other members with genetic associations to neurodegeneration and TDP-43 pathology include ALS genes ERBB4, NEK1, ITPR2, and EFEMP1, spastic paraplegia gene ZFYVE26, and ALS, FTLD, and multisystem proteinopathy gene HNRNPA2B1. Three DEGs coded for proteins which interact with TDP-43 protein; DDX21, PABPC1, and HNRNPA2B1, all involved in processes related to RNA processing 162–165. 
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[bookmark: _Toc3225922]Table 8: Results of enrichment analysis for overlap between curated TDP-43-associated genes and the common DEG list.

[bookmark: _olb30nb6hg57]Canonical Pathways 
As with curated lists, the benefit of conducting pathway enrichment analysis is to evaluate the proximity of the DEG list to biological features known to associate with the phenotype. Whereas curated lists are good for making a very specific comparison to the phenotype, canonical pathway enrichment allows for a wider ranged and more generalisable analysis, i.e. where does my gene list sit in the space of currently documented biology? Our common DEG list was analysed using the webtool EnrichR (http://amp.pharm.mssm.edu/Enrichr/). EnrichR is fast, takes a simple gene list input, and queries many different pathway databases. The four databases of interest to us were KEGG, Wikipathways, Reactome, and Gene Ontology (Biological Process, Molecular Function and Cellular Component). Querying multiple databases gives more confidence in the enrichments observed and allows for consideration of any database-specific biases.

Top 10 results were collated from KEGG, Wikipathways, Reactome and the three Gene Ontology classes for both upregulated and downregulated genes (Tables 9 & 10). Perma-links for the full results can be found here: upregulated genes (http://amp.pharm.mssm.edu/Enrichr/enrich?dataset=8gl6q), downregulated genes (http://amp.pharm.mssm.edu/Enrichr/enrich?dataset=8gl6r). Pathways were defined as significantly enriched if the adjusted P-value was less than 0.05. For upregulated genes, enriched processes were predominantly associated with RNA processing, specifically mRNA splicing - processes in which TDP-43 is fundamentally involved. Alternatively, downregulated genes enriched with signalling pathways, including G protein-based, opioid, and calcium signalling. The relationship of these pathways with TDP-43 is less clear, but due to the only moderately significant P-values it is possible these are not as functionally relatable.
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[bookmark: _Toc3225923]Table 9: Top 10 enriched pathways in each of the pathway databases for TDP-43-associated upregulated DEGs. P-Values are adjusted. (ns) indicates P-values <0.1
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[bookmark: _Toc3225924]Table 10: Top 10 enriched pathways in each of the pathway databases for TDP-43-associated downregulated DEGs. P-Values are adjusted. (ns) indicates P-values <0.1

[bookmark: _5gk8vaz4l0m4][bookmark: _Toc3211351]Summary
We have established an analysis protocol for identification of common DEGs in datasets which would otherwise have produced no tangible results. By substituting a statistical threshold for a common functional overlap, we have been able to identify a list of genes that is not only significantly larger than expected, but which also enriches for biology we would associate with TDP-43 dysfunction. 

A number of challenges were highlighted at this stage. Firstly, the availability of data fitting our search criteria was less than expected. There is a noticeable lack of diversity in the conditions we have analysed as 4 of the 6 datasets were ALS patients. It is possible that this may produce bias towards ALS biology. Unfortunately, due to the nature of working with very rare diseases - particularly neurodegenerative diseases where neuronal tissue is so hard to obtain – inconsistent data representation is a possibility. With more time and resources, a larger number of appropriate datasets could be sourced to counteract this bias.

From a statistical perspective, the use of common dysregulation rather than a P-value threshold does leave this methodology vulnerable to both false positives if an unrelated gene so happens to have consistent fold change, and false negatives if a related gene is regulated differently in just one dataset and is discarded. However since the combination of RNA-Seq and Microarray data is not statistically advisable, and most trusted P-Value combination methods apply to either microarray or RNA-Seq data, our approach may be the most statistically responsible at this point in time.

Of the gene list we have generated, we as of yet have little evidence to suggest that the common DEGs form functional relationships with one another, and the functional signals we have are relatively weak. The next stage of development will need to increase our understanding of the wider functional context of these genes to sufficiently establish a relationship with TDP-43 dysfunction.
[bookmark: _ioba2idjcqk]

[bookmark: _sd3qpn514b0y][bookmark: _Toc3211352]Protein Interaction Network Generation
[bookmark: _uqw55i5z1c43][bookmark: _Toc3211353]Protein Interaction
Differentially expressed genes alone, as inferred by Subramanian et al., are isolated islands of information. To fully understand their context within the cell, we must identify their molecular friends and neighbours. The most effective way of expanding a gene’s context is to build a network of its relationships with other genes. Although coexpression and PPI data were both candidates for this process, protein interaction relationships were chosen for a number of reasons. Firstly, canonical PPI edges are generally well curated and evidenced; each edge stored in IrefIndex14 - the PPI database chosen for this experiment - is supported by 9 sources of information, including both predicted and experimental 166. Secondly, our datasets represent a wide range of conditions, platforms, and tissue types, therefore to generate a single representative network would require some form of edge combination. As the aim of this developmental step is to provide the most accurate, robust representation of the cellular context of the common DEGs, coexpression may be too easily influenced by aspects such as platform effect, technical effects, and sample effects. Finally, PPI edges represent a directly measurable event, whereas coexpression is an inferred relationship. 

A pre-processed database for Irefindex14 was provided by Dr Sandeep Amberkar, Hide Lab. The matrix of PPI relationships was subsetted to include rows where at least one member of the relationship is a DEG. As IrefIndex uses UniProt IDs, the DEG’s HGNC symbols were used to identify the UniProt IDs for their corresponding protein using the R package biomaRt (https://bioconductor.org/packages/release/bioc/html/biomaRt.html). If UniProt IDs were missing, they were sourced manually from UniProt’s online database (https://www.uniprot.org/). If a gene was not protein coding, the gene name was removed. If more than one UniProt ID was present for a single gene, one ID was used, to avoid bias towards genes with multiple proteins. Using the list of UniProt IDs for the DEGs, the IrefIndex data frame was subsetted for all rows in which one of the members of the interaction was the protein of a DEG. Rows containing blank IDs were removed. The final network was visualised using the tool Cytoscape (http://www.cytoscape.org). 
[bookmark: _sw46x0orx9x0][bookmark: _Toc3211354]Generating the Network
Of the 283 DEGS, 251 successfully seeded a PPI network of 3535 nodes and 6650 edges. Benchmark enrichment – as described in section 2.3.1.5.1 - revealed the PPI network enriched significantly for TDP-43 PPI genes (predominantly heterogeneous nuclear ribonucleoproteins and ribosomal proteins) and TDP-43 disease genes, but not TDP-43 pathology-tracking genes. Out of a possible 128 disease genes, 41 were present in the PPI network including highly neurodegeneration-associated genes C9orf72, GRN, SQSTM1, MAPT, VCP, DCTN1, HTT, and PSEN1 (Table 11). Functional enrichment analysis of this network revealed a strong enrichment of processes involved in gene expression, the immune system and the cell cycle (Table 12 & 13, http://amp.pharm.mssm.edu/Enrichr/enrich?dataset=8gl6g). 
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[bookmark: _Toc3225925]Table 11: Results of enrichment analysis for overlap between curated TDP-43-associated genes’ proteins and the PPI network proteins


[image: ]
[bookmark: _Toc3225926]Table 12: Top 10 enriched pathways in KEGG, Wikipathways, and Reactome databases for TDP-43 protein interaction network. P-Values are adjusted.
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[bookmark: _Toc3225927]Table 13: Top 10 enriched terms in GO for TDP-43 protein interaction network. P Values are adjusted


[bookmark: _v44zgoamxzvl][bookmark: _Toc3211355]Summary
Expansion of the common DEGs into a functional network could have been approached in a number of ways, however it was decided that a protein-interaction network represented the optimal tissue non-specific approach. Protein interaction has its downsides, however; a protein interaction network by its nature will only reflect the products of protein-coding genes. Non-protein coding genes such as RNA-coding genes and pseudogenes are removed at this point and may reflect a loss of regulatory features of the signal. Only a small number of common DEGs were lost at this stage, however, and the value provided by the proteome was considered greater than the loss of these genes. Another criticism of protein interaction is its reliability; many protein interaction relationships are predicted computationally, or the result of lab experiments in which both non-specific and failure of binding is possible. Subsequently, protein interaction is often criticised for producing a high rate of false positives 167,168. Despite this criticism, IrefIndex uses nine sources of information to support the existence of each protein interaction edge, providing a higher level of confidence than any single source.

The functional enrichments at this stage were promising, but when the size of the input gene list is considered, the significance cannot be taken at face value. The most significantly enriched pathways are quite generic (notice the enrichment of the Reactome pathway “Disease”) suggesting that pathway enrichment with an input gene list of this size is less useful at this stage. Benchmark gene list enrichment, however, is slightly more revealing as there was not consistent enrichment across the board. Overall, the most revealing enrichment analyses is likely to be later on, during the module generation stage.

[bookmark: _2ipnrgiiny4n]The size of our protein interaction network - over three-and-a-half thousand proteins – was larger than expected and raises questions about its specificity to the phenotype. However, according to proteomic databases such as UniProt and The Human Proteome Map, the number of reported proteins in the human body is likely to be somewhere between 30,000 and 44,000 proteins, leaving our network representative of somewhere between 8-11% of the whole human proteome. Despite the size of the protein interaction network and considering our intention to isolate a sub-module of this network, we concluded it was acceptable to cast a wide net at this particular stage in development, to allow for significant reduction later on.

[bookmark: _r2va6wt5ruyy][bookmark: _Toc3211356]Common Coexpression Module Generation
The combination of multiple data-types has already been discussed as an effective method to increase the biological validity of a network. The role of protein interaction was to provide a canonical framework, however it cannot truly represent the disease as it does not possess disease-specific data. Although coexpression was inappropriate for expanding the functional space, now that such a space has already been defined, coexpression represents a powerful means to represent our signature in the context of patient data. 
[bookmark: _krugfdpngacn][bookmark: _Toc3211357]Selection of a Module Generation Methodology
The goal of this pipeline is to isolate a single, tightly inter-related, functionally coherent network module that can be assessed for potential upstream targets of TDP-43 dysfunction. A number of module-generation methodologies have been discussed in the Introduction. These methods, however, were not considered appropriate for this methodological pipeline, for three reasons. Firstly, many module generation methodologies require the user to decide the number of modules desired in the output, introducing experimenter bias, and impacting on this approach as a data-driven methodology. Secondly, most algorithms for module generation have been built upon the assumption of a minimum number of samples. For WGCNA, for example, this is fifteen. As three of the six TDP-43 datasets are below this number, a WGCNA approach would be severely underpowered. Finally, most module generation methodologies are also built under the assumption that a single dataset will be analysed. Many do not have the capability of conducting a meta-analysis of multiple datasets in search for a conserved coexpression module, and certainly not for datasets from different platforms. 

Instead, through collaboration with the Pinzón Velasco Lab (Universidad Nacional de Colombia), we employed an approach adapted from their methodology, Common Connectivity Patterns (CCP) 169. CCP permits the identification of conserved network edges shared between different populations. Such an approach allows for the comparison of small datasets (within the boundaries of coexpression statistics), as well as datasets from a multitude of different platforms and data types. 


[bookmark: _zd0gn1f6cfze][bookmark: _Toc3211358]Identification of a Common Coexpression Module
Our adaptation of this methodology was conducted thus; the proteins of the PPI network are collected into a list of corresponding HGNC symbols. The list of gene symbols is then used to subset each individual dataset expression matrix. A number of genes were lost at this stage, as multiple platforms have been used meaning annotations were inconsistent. To ensure every coexpression matrix is constructed from the same genes, only genes which are common to all datasets are used. The final number of genes used as input for coexpression analysis was 2572. Spearman’s correlation was applied to every gene pair in every dataset, using the R function cor.test in R’s basic stats package. Spearman’s correlation method was selected over the more commonly used Pearson correlation as it has been shown to be more effective in identifying gene correlation 170. After correlation values were calculated for each gene pair, the distribution of correlation values was assessed. Of the 6 datasets used in this analysis, the Kirby sALS dataset was removed due to a non-normal distribution of correlation values (Figure 4). To show expected distribution, a histogram of a random gene set of the same size was generated in GSE68605 (Figure 5).

To produce a common coexpression module, a number of criteria were applied; firstly, conserved edges had to be present across all datasets, and direction of correlation (either positive or negative) must be consistent. This criterion was applied for the same reason as for differential expression; we desired biology which replicated in every dataset. Secondly, a soft threshold was applied to ensure the strength of correlation was appropriate. It was decided that the minimum correlation coefficient value would be set at 0.25, but could be increased to any value. For this application, 0.55 was chosen as it generated a network of a size we predicted to be large enough to retain biological signal, but small enough for subsequent stages of analysis; somewhere between 200 and 400 genes. After filtering, 374 nodes and 667 edges were conserved. The largest and most interconnected module was isolated, as this is likely to represent the strongest functional signal. The largest connected component (LCC) was selected, consisting of a subnetwork module of 236 nodes and 587 edges. 
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[bookmark: _Toc3225999]Figure 3: Histograms of Spearman’s Rho values for the correlation networks produced in each TDP-43 dataset. The Kirby sALS dataset (B) exhibited a non-normal distribution and so was removed from further analysis.
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[bookmark: _Toc3226000]Figure 4: Histogram of a random selection of genes. Conducted in GSE68605. Indicates a similar distribution of coexpression rho values to the experimental set.

To ensure the network was representative of dysfunctional relationships only, we attempted to generate the same subnetwork from the control samples. The 236 genes of the network module were used to subset expression matrices for the controls, and a coexpression matrix was generated for each. After applying the same edge overlap filters, thirteen edges overlapped between patient and control networks, and after removal, 2 nodes were removed also. To ensure the network was representative of TDP-43-associated dysfunction only, we also sought to remove edges common to a network generated from the SOD1 and FUS ALS datasets. After removal of 45 shared edges and 1 node, the final common coexpression module consisted of 232 nodes and 529 edges (Figure 6, Table 14). Due to the small sample numbers, correlation could not be calculated for the TDP-43 fibroblast datasets.
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[bookmark: _Toc3226001]Figure 5: The common coexpression network for TDP-43 dysfunction. Red edges indicate positive correlation, blue edges indicate negative correlation

[bookmark: _Toc530741926][bookmark: _Toc531197148][bookmark: _Toc3225928]Table 14: A list of members of the TDP-43 dysfunction common coexpression network module
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[bookmark: _p0yf0k1ku2xu][bookmark: _Toc3211359]Functional Assessment of the Common Coexpression Module
Benchmark analysis indicated significant enrichment of TDP-43 disease genes and TDP-43 PPI genes, but no overlap with pathology-tracking genes (Table 15). A number of well-known neurodegenerative genes are in the network, including ALS genes (TBK1, ITPR2, GARS, TUBA4A, ELP3), Alzheimer’s Disease genes (APP, DNM1L, MAP2, STMN2), and Parkinson’s Disease genes (VPS35, APP, HSPA9, MAP2). Functional enrichment of the subnetwork module revealed significant roles in processes related to the immune system and protein degradation (Tables 16 & 17, http://amp.pharm.mssm.edu/Enrichr/enrich?dataset=8gl6w). There are a number of proteasomal proteins in the network, as well as tubulins, reflecting the roles of both the proteasome and the cytoskeleton in TDP-43 accumulation and cell death.
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[bookmark: _Toc3225929]Table 15: Results of enrichment analysis for overlap between curated TDP-43-associated genes’ proteins and the common coexpression module. 
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[bookmark: _Toc3225930]Table 16: Top 10 enriched pathways in KEGG, Wikipathways, and Reactome databases for TDP-43 common coexpression module. P-Values are adjusted.

[image: ]
[bookmark: _Toc3225931]Table 17: Top 10 enriched GO terms in each category for the TDP-43 common coexpression module. P-Values are adjusted.

In addition to functional and benchmark analysis, we also investigated the number of protein-protein interactions the subnetwork module members’ proteins share with the proteins of the TDP-43 disease genes. By seeding IrefIndex v14 with the combined subnetwork module gene list and our curated disease gene list, we discovered that 109 of the 234 subnetwork module members’ proteins formed at least one protein interaction with 47 TDP-43 disease gene proteins, with a total of 205 edges (Figure 7). Random permutation testing - following the same methodology as previously reported - revealed this number of interactions to be significantly higher than expected by chance, though as the actual number of edges did not lie within the distribution, a P-value could not be calculated (Table 18).
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[bookmark: _Toc3226002]Figure 6: Protein interaction network showing relationships between network module proteins (blue) and TDP-43 disease proteins (green). Orange-coloured proteins are both module and disease proteins. 
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[bookmark: _Toc3225932]Table 18: Results of random permutation test for expected number of protein interaction edges with TDP-43 Disease Genes


[bookmark: _Toc3211360]Enrichment of Disease-Associated Mutations in the Common Coexpression Module
Our aim for this methodology was to successfully isolate upstream drivers of a given phenotype. So far, we have identified a coexpression module which overlaps significantly with pathways and gene lists we consider representative of TDP-43 function and dysfunction. However, it is not clear whether this coexpression module possesses upstream drivers of TDP-43 dysfunction, or just downstream victims of its aberrancy. Defining “upstreamness” is challenging as directionality of events is hard to establish, particularly in post-mortem cases such as ours. Where we cannot perform laboratory experiments to confirm directionality in the disease state, we can instead infer “upstreamness” using proxy measures. For example, if we can identify disease-associated mutations within genes of the network, we have more reason to suspect these genes may be upstream of the phenotype. We have already seen that a number of known neurodegeneration-associated genes are present within the network, however we do not know if there is an enrichment of variants in the network.

The first step was to collect gene-disease associations from the GWAS Catalog (www.ebi.ac.uk/gwas/home). The GWAS Catalog is a database containing a central collection of published GWAS studies’ results and meta-data. We collected all genes containing SNPs associated with ALS, FTLD, AD and PD. The latter two conditions were selected over those which more reliably present with TDP-43 dysfunction as these conditions tend to be rarer, whereas AD and PD have been more extensively studied by GWAS. Due to the common occurrence of risk genes overlapping between neurodegenerative conditions, it was thought that AD and PD may provide useful insight into the genetics of TPD-43 dysfunction. The P-value threshold was left at the GWAS Catalog’s maximum value of p < 1e-5 as we are also interested in SNPs which are approaching, but have not met genome wide significance. Entries were filtered so that the trait reported is related to the disease only, and not other features such as age of onset or particular brain regions. Gene identifiers were taken from the column “Reported Genes”, referring to the gene reported by the published study. “Mapped Gene” was not used as this annotation was assigned by an automated pipeline, so was considered less reliable. In the case that a SNP was associated with more than one gene, all gene symbols were included. Results were checked to ensure duplications of the same SNPs with different gene annotations were not present. Enrichment analysis was conducted again using hyperPathway, however no significant enrichment of GWAS Catalog genes in any of the four conditions was found (Table 19). 
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[bookmark: _Toc3225933]Table 19: Enrichment results for overlap between TDP-43 common coexpression module and GWAS Catalog entries for four TDP-43-associated neurodegenerative conditions. ALS = Amyotrophic Lateral Sclerosis, FTLD = Frontotemporal Lobar Dementia, AD = Alzheimer’s Disease, PD = Parkinson’s Disease.

[bookmark: _oa62cfwx5wzz][bookmark: _Toc3211361]Summary
We have generated a common coexpression network containing known neurodegeneration risk genes, specifically enriching for genes causative of TDP-43 dysfunction and binding partners of TDP-43 itself. We also identified functional enrichment of immune and proteasomal pathways. The network, however, did not enrich for GWAS genes associated with diseases presenting with TDP-43 pathology.

The translation between data types has proven to create a number of challenges. In the process of rebuilding the protein interaction network as a coexpression network, a number of network members were lost due to inconsistencies between platform annotations. Some degree of platform discrepancy was expected, though a loss of 28% of the network is concerning. Some of this loss may be unavoidable, as platforms will simply not cover the same transcripts. Some loss however may come from annotation differences, as gene symbol assignment can vary. To improve this rate of loss, a more decided effort could be made to hand curate the lost network members in future. 

Generating coexpression matrices is a simple, but computationally intensive process. Samples were analysed using an R script run on the University of Sheffield’s high-performance computing system, as calculating coexpression values for over 2700 values took over an hour per dataset. Such a resource-heavy calculation could be problematic to those without access to high performance parallelisation of computation. Replication of this experiment would be possible on an standard computer, but the user would have to prepare for long computation times.

[bookmark: _k5dihaefqjgh]It is also at this stage in the process that significant experimenter bias has been introduced. The threshold for the coexpression value must be set by the experimenter, and there is room for exploration. As the potential for introducing bias is so high, a number of best-practice steps can be taken. Firstly, the experimenter should not analyse the contents of the network until a threshold is chosen. By analysing the presence of ‘interesting’ genes or enrichment of ‘interesting’ pathways, the experimenter may be tempted to adjust the threshold to include these elements. Instead, the user must have in mind a size of network they are aspiring to. We recommend a common coexpression network size of between 200 and 400 genes, as the network will inevitably decrease due to both the selection of the LCC, and the filtering of common edges with controls. We believe this size represents accommodation for strong biological signals, as well as being manageable for later analyses.
[bookmark: _jljvd6nlqvfy][bookmark: _Toc3211362]Target Prioritisation
Now that a common coexpression module has been identified, the next objective was to identify a handful of genes whose upstream effect on TDP-43 dysfunction can be explored in vitro/vivo. To identify viable candidates, we collected a number of sources of information to assess the likelihood that any particular gene is upstream of TDP-43 dysfunction. These sources fell into 5 categories; genetic analysis, topology, regulation, consensus, and phenotype-specific information. For each source of information used, a gene is given a score between 0 and 5. The scores are then summed for each gene and the list ranked by score. The score given is defined by the user but is generally assigned based on a quantifiable measure such as a P-value or a quantile. The scoring method used for each data source can be found in Table 20.

It is worth noting that this prioritisation approach was used as a guideline to highlight genes which might be successful candidates for validation. It has not been tested against other similar methodologies, and all results are hand curated after prioritisation to select the best candidates.
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[bookmark: _Toc3225934]Table 20: Overview of scoring method used for each data source. Source refers to the name of the information source. Source Type indicates the kind of data the source is analysing. Analysis Location indicates whether the analysis was conducted on a public platform or locally by the experimenter. Input describes the input data. Output Type describes the type of data outputted by the analysis. Scoring Methodology indicates how the module members were scored using the output of each analysis.

[bookmark: _rl504ljn68sv][bookmark: _Toc3211363]Genetic Score
Genetic analysis referred to the identification of predicted loss-of-function (LoF) mutations in patients for the network members. Genetics represents the origin for the life cycle of RNAs and proteins. As we could not identify enrichment on a genome-wide scale, we decided to source raw sequencing data to investigate the presence of LoF mutations within individual patients instead. The presence of a predicted loss-of function variant in a TDP-43 pathology-positive patient indicates a higher probability for that gene to be upstream of TDP-43 dysfunction. Predicted LoF mutations were identified using whole genome or exome sequencing from the population of interest; in this case, Project MinE UK whole genome sequencing ALS data from 1152 patients and 265 controls (https://www.projectmine.com/). Any SNPs which are also present in controls are also removed. The remaining SNPs were then passed through the annotation tool GEMINI by Dr Sarah Morgan (https://gemini.readthedocs.io/en/latest/) to identify which SNPs are predicted to have LoF effects. GEMINI was selected over other variant annotation methods due to its flexible annotation protocols, extensive annotation sources (more than 14, including ExAC, KEGG, 1000G, dbSNP, ENCODE, and ClinVar), and its established use and expertise within our group 171. GEMINI defines LoF using the tool SNPeff, which annotates variants based on their location and the predicted effect on the associated protein-coding gene 172.

SNPs were further filtered to include only those possessing a <0.01 value for both ExAC and 1000 Genomes, to remove variants which are not considered rare. Both coding and non-coding variants were included, as for many conditions, the vast majority of causal variants are non-coding 173,174. After filtering, 214 predicted LoF mutations associated with 79 module genes (Appendix Table 1). Three of these genes are established ALS or FTLD genes (TBK1, GARS, & ELP3), however the remaining are completely novel. Genes containing a predicted LoF mutation were given a maximum score of score of 5. 
[bookmark: _wqtht5wqkcyh][bookmark: _Toc3211364]Topological Score
Topological analysis is conducted by use of the lobby index 175. Lobby index is a way of assessing the centrality, or connectedness, of any given network member. Network nodes with higher centrality are more likely to be core regulators of important biological processes 176,177. A Lobby index score is generated by calculating the number of edges a node has, as well as the number of edges possessed by its neighbours. The lobby index value is the largest integer such that the node of interest has at least k neighbours with a degree of at least k. For example, a lobby index of 5 means the node of interest has 5 connections with neighbours who also have at least 5 connections, but not 6. Lobby index has been shown to be more informative, and computationally faster than other centrality measures 178.

Lobby index scores in the network ranged from 1 to 12. The most connected gene was PCMT1 with a lobby index of 12. PCMT1 is an enzyme which repairs damaged L-isoaspartyl residues in proteins, and has been found to be neuroprotective 179. Additionally, established PD gene VPS35 scored highly, with an index of 11 (Appendix Table 2).
[bookmark: _n15sp7jqfw2k][bookmark: _Toc3211365]Regulatory Score
The ability for a target to be well connected is only relevant to target prioritisation if the target is also a regulator of those neighbours. Regulation was measured using two tools, GeneXplain and Ingenuity Pathway Analysis (IPA). 

GeneXplain is an online tool which identifies ‘master regulators’ of a particular gene list 180. A master regulator is identified through an analysis pipeline in which transcription factors whose targets enrich in your gene list are collected, and the pathways in which they function are analysed. Transcription factors which sit in the juncture of these pathways are considered ‘master regulators’. Master regulators can be both members of the input list, as well as other molecules. The common coexpression module members were submitted to GeneXplain’s Upstream Analysis, and master regulators were identified using GeneWays, a database of molecular pathway data 181. Twenty-eight module members were significant master regulators for the network (FDR < 0.05), and four module members were ranked in the top 10 (MTA2, SERPINI1, AMPH, YBX1). Non-significant network members were given a score of zero, and the entire list of master regulators - including non-network members - were scored in quintiles from 1-5 (Appendix Table 3).   

IPA is a database of experimentally derived relationships between molecules. There are a number of possible edges, representing different types of regulation, including activation, inhibition, modification, localisation, ubiquitination and regulation of binding. IPA does have its own upstream regulatory analysis function, however this produced poor results, and so was not used. The IPA application was used to generate networks from the network member list. IPA network edge information was extracted and subsetted to identify the relationships between only module members. Undirected edges such as interactions and membership were excluded. These interactions were labelled as “influencers” so as not to be confused with IPA’s regulatory analysis. The number of regulatory effects a module member had on another module member was counted, and the quintiles of the range were scored 1-5. Members with no regulatory effects were scored zero (Appendix Tables 4 & 5).
[bookmark: _ug1jpxij2pcc][bookmark: _Toc3211366]Consensus Score
As some prioritisation tools already exist, we decided to include this pre-established consensus within our score. Consensus was generated using the web tool Endeavour (https://endeavour.esat.kuleuven.be/). As mentioned, Endeavour exploits a wide variety of data sources to predict the relationship between new targets (candidate set) and a phenotype based on a model generated by targets known to associate with that phenotype (training set). This is a useful benchmark to compare the success of the methods we are using in our target prioritisation process, and in itself a useful source of information. P-values generated by Endeavour are not generally informative, as they are quite stringent - even genes already established as causative of a phenotype do not achieve significance. Taking this into account, members were scored on their rank position within the list, taking into account both candidate and test genes. Results were divided into 6 and scored 0-6 based on rank. 

The gene list used as the training set were the disease-associated genes that have, up to this point, been used for TDP-43-related assessments. The network module members were submitted as the candidate list. All possible sources of information were used to rank the total gene list. The results can be found in Appendix Table 6. The highest ranked network member gene was AD gene APP. 
[bookmark: _v3doe6gotkof][bookmark: _Toc3211367]Phenotype-Specific Score
Finally, phenotype-specific information was included. This information represents genes with established connection to the phenotype, and often need to be manually curated. Example of phenotype-specific information is whether a gene is one of the original common DEGs, or whether it forms a protein-protein interaction relationship with a phenotype-associated protein. If a gene qualifies on these categories, it was given a score of 5. 
[bookmark: _noy9lsnmti3h][bookmark: _Toc3211368]Prioritisation Results
After compilation of these results, all genes within the module were ranked from highest to lowest scoring. The top 10 candidates can be seen in Table 21. 
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[bookmark: _Toc3225935]Table 21: Top 10 prioritisation scoring results for the TDP-43 common coexpression module. LOF = loss-of-function. IPA = Ingenuity Pathway Analysis. DEG = Differentially Expressed Gene. PPI = Protein-protein interaction.


From the prioritisation results, the top 5 genes were selected for further assessment. The top scoring gene, by a number of points, was YBX1 (Y-Box Binding Protein 1). YBX1 codes for a protein which possesses a large variety of roles in transcription and translation regulation, just like TDP-43, in particular mRNA splicing and miRNA transportation 182. YBX1 was found to contain two predicted LoF mutations in Project MinE patients, one of which was a predicted stop-gain mutation. YBX1 also scored highly for GeneXplain and Endeavour ranks, and is a known binding partner of TDP-43 protein. 

With the joint second highest score were the genes DDX1 and TBK1. DDX1 (DEAD-Box Helicase 1) is an ATP-dependent RNA helicase, involved in a number of transcriptional processes including within the Drosha complex alongside TDP-43 183. DDX1 contained a splice acceptor LoF mutation but scored highly in Endeavour, is well-connected within the network, and possesses a known protein-protein interaction with TDP-43. TBK1 (TANK Binding Kinase 1) is an established ALS and Frontotemporal Dementia gene and aids in the inflammatory response to foreign agents 184,185. In our analysis, TBK1 was found to carry a predicted LoF frameshift mutation as well as being highly ranked by both GeneXplain and Endeavour analysis. 

Scoring 16 were RANBP2 and HSPA9. RANBP2 (RAN Binding Protein 2) is a nucleoporin, meaning that it forms part of the nuclear pore complex (NPC). The nuclear pore complex has an integral role on the transport of components between the nucleus and the cytoplasm 186. Our analysis revealed a number of predicted stop-gain mutations within RANBP2 in Project MinE patients, and a moderately high score from GeneXplain. RANBP2 was not particularly highly connected within the network, but ranked highly for Endeavour consensus score. Although we have no evidence that RANBP2 directly interacts with TDP-43, it is possible to hypothesise that due to its role in the NPC, RANBP2 may contribute to aberrant export of TDP-43 protein from the nucleus into the cytoplasm. Heat Shock Protein Family A (Hsp70) Member 9 (HSPA9), codes for a mainly mitochondria-associated chaperone protein (also known as Mortalin). Mortalin has been linked to a number of neurodegeneration-associated genes, including APP and APOE in Alzheimer’s Disease, and Parkin and DJ-1 in Parkinson’s disease 187. Its contribution to neurodegeneration is hypothesised to be an inability to respond properly to accumulation of reactive oxygen species 187.

To see if the 5 TDP-43 disease genes within the module (TBK1, TUBA4A, ELP3, ITPR2, & GARS) score, on average, significantly higher than a random set of 5 genes. For 100,000 permutations, 5 random scores from the prioritisation list were selected, the average was calculated, and the value stored in a vector. A P-value was calculated using the frequency of permutations in which the mean random scores matched or exceeded the mean score of the 5 disease genes. Results indicated that the mean score of the 5 disease genes (10.8) was significantly higher than expected by chance (expected mean = 6.262, expected range = 1.2:15.2, p = 0.0075), suggesting that the prioritisation scoring system is accurately promoting true positives to higher scoring positions.

[bookmark: _buce63cxramk][bookmark: _Toc3211369]Summary
[bookmark: _stb7r0d0sp0l]The aim of this section was to provide a set of structured guidelines to support the target selection process. Prioritisation is a notoriously challenging process. The steps that have been laid out in this section have not been empirically tested against other prioritisation methodologies, and do not aim to represent a new methodology, but have been shown to successfully rank true positives in highly-ranked positions. In depth assessment of the top 5 ranking genes revealed these top-scoring genes represent good candidates for in vitro validation, either due to presence of LoF mutations, prediction of regulatory roles in the network, or direct interactions with TDP-43.   



[bookmark: _Toc3211370]Target Validation in vitro
[bookmark: _Toc3211371]Introduction
The results and images in this section have been shared through collaboration. All cell work and imaging was completed by Dr Kuchuan Chen under the supervision of Professor Clifford Woolf, Boston Children’s Hospital and Harvard Medical School, Boston, USA. 

One of the most important objectives in this project was to not only develop a methodological pipeline to identify upstream targets, but to validate those discoveries in vitro or in vivo. Through a collaboration with the Woolf Lab at Boston’s Children Hospital, the targets we selected via target prioritisation were assessed in a neuronal iPSC model. 

Four genes were selected for testing in vitro to establish their relationship to TDP-43 pathology; two as controls, and two as experimental. TBK1 was selected as a positive control, as this gene has already been associated with risk for ALS, therefore we expect to see some degree of neurodegenerative phenotype. The purpose of the second control was to identify a gene with a predicted genetic association with ALS, but little documentation to suggest a relationship with TDP-43, and to establish the importance of contextual as well as genetic information in the selection of in vitro candidates. Subsequently, we selected the gene EPS15 (Epidermal Growth Factor Receptor Pathway Substrate 15). EPS15 functions as a member of the EGFR pathway, and is therefore closely involved in cell cycle processes such as cell proliferation, survival, growth and development. As of yet, EPS15 has not been associated with TDP-43 mislocalisation or aggregation, subsequently we predict EPS15 knockdown will not produce a neurodegenerative phenotype.  

Our two experimental genes were the two top scoring novel genes; YBX1 and DDX1. RANBP2 and HSPA9 were both also considered, but due to limitations of resources were retained for later validation experiments. Both YBX1 and DDX1 code for proteins which have been shown to directly bind to TDP-43, contain predicted LoF mutations in ALS patients, and were scored relatively highly by Endeavour. Additionally, YBX1 was ranked 9th most likely master regulator of the network by GeneXplain, out of a total of 145 molecules. As these genes’ relationships with TDP-43 dysfunction are completely novel, we have no way of predicting the likely effect of their knockdown. Measures we are interested in are rate of cell death (to represent neurodegeneration), localisation of TDP-43 protein (to indicate loss of nuclear/gain of cytoplasmic TDP-43), and staining for TDP-43 aggregations. 
[bookmark: _b3b9n2j862cs][bookmark: _Toc3211372]Methods
[bookmark: _y8g08e51vsbd][bookmark: _Toc3211373]Stem cell culture
SAH iPSC line (gift from Mustafa Sahin) were maintained on Matrigel (BD Biosciences) with StemFlex™ Medium (Thermo Fisher Scientific) and passaged by accutase (Innovative Cell Technologies). All cell cultures were maintained at 37°C, 5% CO2.
[bookmark: _xjwwds6c8mke][bookmark: _Toc3211374]Motor neuron differentiation
Human spinal motor neurons were differentiated from SAH iPSC using dual-smad small compounds protocol as previously described 188. Briefly, iPSC colonies were dissociated to single cells with accutase and 1.5 million cells were plated into the matrigel coated dish with StemFlex™ Medium and 10 μM ROCK inhibitor (Sigma) for 48 hrs. Cells were then cultured with neural induction medium 235 ml DMEM/F12 (Life Technologies), 235 ml Neurobasal A (Life Technologies), 5 ml MEM Non-Essential Amino Acids Solution (Thermo Fisher Scientific), 5 ml Penicilin/Streptomycin (Life Technologies), 5 ml GlutaMAX (Thermo Fisher Scientific), 5 ml N-2 Supplement (Thermo Fisher Scientific), 10 ml B27 (Life Technologies) on days 1–28. Cells were treated with small molecules as follows: on days 1-6, Ascorbic Acid (0.1 mM, Sigma), CHIR99021 (3 µM, Sigma), DMH-1 (20 µM, Tocris), and SB431542 (20 µM, cayman chemical); on days 7-12, Ascorbic Acid (0.1 mM), Purmorphamine (0.5 µM, Sigma), CHIR99021 (1 µM), DMH-1 (20µM), SB431542 (20 µM), retinoic acid (0.1 µM, Sigma); on days 13-18, Ascorbic Acid (0.1 mM), retinoic acid (0.5 µM), Purmorphamine (0.1 µM), on days 19-28, Ascorbic Acid (0.1 mM), retinoic acid (0.5 µM), Purmorphamine (0.1 µM), Compound E (0.1 µM, EMD Millipore). In every stage the cells were split by accutase in 1:6 ratio and replated into matrigel coated dish. After differentiation, motor neurons were plated into wells coated with Poly-D-Lysine/laminin and cultured with motor neuron medium (Sciencell) with cAMP (200 µM, Sigma), hNT-3 (10 ng/ml, Thermo Fisher Scientific), hBDNF (10 ng/ml, Life Technologies), hGDNF (10 ng/ml, Thermo Fisher Scientific), hCNTF (10 ng/ml, Thermo Fisher Scientific).
[bookmark: _pq3tqeomgqkt][bookmark: _Toc3211375]shRNA Knockdown
TBK1 (TRCN0000314842), YBX1 (TRCN0000315309), DDX1 (TRCN0000050500), EPS15 (TRCN0000007976) validated shRNAs were ordered from Sigma MISSION® shRNA Library. Lentivirus of shRNA were generated by the Boston Children’s Hospital Viral Core. After differentiation, human motor neurons were infected by lentiviruses and viruses were removed on the next day.
[bookmark: _vr0h29oiwiqz][bookmark: _Toc3211376]Immunostaining
Motor neurons were fixed by 4% paraformaldehyde for 20 mins, and then neurons were blocked and permeabilized by 10% donkey/goat serum in PBS-T (Triton 0.3%) for 1 hour. Cells were then incubated with primary antibodies overnight and in secondary antibodies for 1 hr after several washes in between. DNA was visualized by a Hoechst stain. The following antibodies were used: Primary antibodies used in this study are Chicken anti-MAP2 (1:2000, Abcam AB5392), Rabbit anti-TDP-43 (1:500, Protein tech, 10782-2-AP), Chicken anti-GFP (1:1000, 1:500, Life Technologies). Secondary antibodies used (488 and 568) were AlexaFluor (1:1000, Life Technologies) and DyLight (1:500, Jackson ImmunoResearch Laboratories).


[bookmark: _gbdf12mc5dfp][bookmark: _Toc3211377]Results
[bookmark: _vjwcdkbwhqk4][bookmark: _Toc3211378]No TDP-43 phenotype exhibited at Day 14
After knockdown of each of the four selected hits, immunofluorescent imaging revealed no obvious TDP-43 phenotype at Day 14 (Figure 8). MAP2 staining (green) indicates axon structure is maintained and TDP-43 staining (red) indicates TDP-43 protein remains enclosed within the nuclei of the neurons. DDX1 and YBX1 knockdown seemed visually to result in a reduced population and less elaborate neurite extensions, however neurons looked healthy with appropriate distribution of TDP-43 protein. 

[image: ]
[bookmark: _Toc3226003]Figure 7: Immunofluorescence imaging of transfected motor neurons at Day 14. Neuronal projections are revealed by fluorescent staining of MAP2 (green) and TDP-43 (red). TDP-43 localises predominantly to the nucleus in all conditions. 


[bookmark: _wovtvho0o9in][bookmark: _Toc3211379]TBK1 and DDX1 knockdown affects neuron health at Day 20
At 20 days post-transfection, TBK1 knockdown neurons exhibited drastically shortened neurites, though this is yet to be quantified fully (Figure 9). Knockdown of DDX1 on the other hand caused marked neuronal death, which again will need to be quantified. Knockdown of EPS15 produced no visible effect on the health of the neuronal cells.

[bookmark: _Toc3211380]YBX1 knockdown leads to diffusion of TDP-43 protein into cytoplasm at Day 20
YBX1 knockdown was largely indistinguishable from the no virus phenotype at Day 14, however by Day 20 there was a clear mislocalisation of TDP-43 protein from the nucleus into the cytoplasm (Figure 10). The presence of TDP-43 protein in the cytoplasm is depicted by the yellow colouring caused by the combined fluorescence of green-stained TDP-43 and red-stained MAP2. Diffusion did not appear to extend into the neurites of the cell, and was predominantly localised to the neuronal cell body. 
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[bookmark: _Toc3226004]Figure 8: Immunofluorescence imaging of TBK1, DDX1, and EPS15 knockdown neurons at Day 20. Axons indicated by red MAP2 staining and TDP-43 protein is stained green. TBK1 knockdown neurons show drastically shortened neurites, and DDX1 knockdown induces marked neuronal death.
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[bookmark: _Toc3226005][bookmark: _nid3bh5kdiss][bookmark: _e05zxtd4s6rf]Figure 9: Immunofluorescence imaging of YBX1 knockdown neurons at Day 20. Axons indicated by red MAP2 staining and TDP-43 protein is stained green. YBX1 knockdown results in diffusion of TDP-43 proteins from the nucleus into the cytoplasm of the cell body.

[bookmark: _Toc3211381]Summary
In collaboration with the Woolf Lab, we performed in vitro investigations into the effect of four candidates genes from our TDP-43 common coexpression module. TBK1, a gene already associated with ALS, caused the shortening of neurites, a phenotype reported in both TARDBP, SOD1, and FUS models of ALS, suggesting it is a likely downstream effect of neurodegenerative risk genes, but not specific to risk genes causing TDP-43 dysfunction 189–191. Knockdown of our genetic control EPS15 produced no visible change in phenotype, as expected. Consequently, our use of many other sources of information in our prioritisation process - rather than genetic perturbation alone - is supported. From our analysis, the gene DDX1 caused visible cell death, not reported in any of the other experiments. Without replication and further analysis, we cannot know whether this neuronal death is akin to neurodegeneration or whether the absence of DDX1 is lethal. It is promising that some cells survive to 20 days, however this cannot necessarily be compared with neurodegeneration in patients, whose onset is generally in later life. As DDX1 is involved in transcription processes, it is unsurprising that its reduced expression could have lethal repercussions for a cell. These experiments will need to be replicated and characterised to confirm the result and further investigate its mechanisms. 

The most significant result was that of YBX1. By Day 20, TDP-43 protein had become increasingly apparent in the cytoplasm of the neuronal cell bodies. Mislocalisation of TDP-43 from the nucleus into the cytoplasm is a key event contributing to TDP-43 dysfunction. Like TDP-43, YBX1 protein has been shown to localise to stress granules during episodes of cellular stress 192. In a study using a human osteosarcoma cell model, inactivation of YBX1 significantly reduced the formation of stress granules 193. Reduced stress granule formation is also an effect of inactivated TDP-43 194. Further analyses would require quantification of TDP-43 protein levels to see if the additional presence of TDP-43 in the cytoplasm is accompanied by a loss of cytoplasmic protein. Subject to replication, YBX1 could plausibly represent a key driver of TDP-43 cytoplasmic gain, and possibly nuclear loss as well. 


[bookmark: _akj8vul3i2xq][bookmark: _Toc3211382]Discussion
The objective of this study was to develop a methodology that could successfully isolate upstream drivers of TDP-43 dysfunction from the relatively sparse data available. Through combination of transcriptomic, proteomic, and genetic data, we have identified a tightly coexpressed, functionally coherent network module generated from a variety of conditions, platforms, and genetic backgrounds. 

The coexpression module revealed significant enrichment for immune and proteasomal pathways. The immune response and neurodegeneration have been linked frequently in the last two decades, and is becoming a prevailing theory for the propensity to develop a neurodegenerative condition 195. More relevant to this investigation, early immune response has been linked to a number of neurodegenerative pathologies including TDP-43 aggregates 196. The specific relationship between these aggregations and an immune response is unclear, however one hypothesis suggests the immune response could be activated as the result of removal of cellular detritus, such as misfolded proteins 197. The presence of enrichment for proteasomal pathways is unsurprising, also due to its well-documented role in the degradation of TDP-43 protein aggregation 198. Overall, at a functional level the common coexpression network module reflected biology core to the processes we know are related to TDP-43 dysfunction.

Although the module did not contain any reported GWAS variants associated by proxy with TDP-43 dysfunction, it did enrich for genes already documented to cause TDP-43 dysfunction in neurodegeneration. Confident that our network contained known risk genes, and therefore may contain novel upstream drivers, we applied a prioritisation protocol to identify the most likely candidates. Through collaboration, we conducted in vitro analysis of our top 3 candidate genes in a neuronal iPSC model, eventually implicating the gene YBX1 – a significant potential upstream driver of TDP-43 nuclear exportation. Subject to characterisation, we have also identified another gene, DDX1, which caused marked cell death. Although both genes have been associated with TDP-43 through their shared activity, no investigation has – until now – considered either of these genes to be upstream drivers of TDP-43’s dysregulation or subsequent neuronal death.

A number of challenges were met during the development process, and these have been summarised in each section. In the first stage of development, commonly differentially expressed genes were identified using an unconventional expression-direction approach. Despite the marked relaxation of statistical thresholds, we believe this approach was able to identify a biologically relevant expression signal that would otherwise have been lost. As the strength of this signal was relatively weak, protein-interaction data was used to identify the wider functional space of the common DEGs’ interactome. Enrichment for TDP-43-associated genes increased significantly, and the network enriched for a number of RNA processing pathways. The size of the protein interaction network however highlighted the vulnerability of large input sets for functional enrichment; the likelihood of enrichment in any pathway will increase as the length of the input gene or protein list increases. Subsequently, reducing the size of the network was necessary, and posed a good opportunity to identify a tightly coexpressed functional module. Re-building the protein interaction network as a coexpression network resulted in the loss of a significant proportion of genes/proteins, however the causal platform annotation differences could not be avoided. Common edge detection resulted in identification of a coexpression module common to five of the six expression datasets, which was ‘pruned’ to exclude commonalities with non-TDP-43-neurodegeneration, as well as controls. The network contained a number of previously identified neurodegeneration-risk genes, and enriched significantly for immune processes and proteasomal degradation. Immunity and neurodegeneration have long been associated, and TDP-43 dysfunction has specifically been associated with NF-kappaB initiation, microglial activation, and has been shown to result from inflammatory mechanisms 199–201. Proteasomal degradation is inherently linked to TDP-43 dysfunction, as the role of the proteasome is to degrade abnormal proteins 198,202–204. There was a constant lack of enrichment for pathology-tracking genes, however we cannot be sure if this represents an issue with the signature, or the benchmarking list itself. Overall, this highlights the vulnerabilities of experimenter-selected gene lists, and the potential inconsistencies with the input data. Subsequently, gene lists chosen for a benchmarking role must possess significant confidence before they are used to assess the results of experiments such as these.

Finding genetic associations between the network module and diseases associated with TDP-43 dysfunction would have provided strong evidence of that the TDP-43 signature module represents a source of upstream regulators. Unfortunately, enrichment analysis did not yield any significant enrichment of GWAS genes for conditions associated with TDP-43 dysfunction. Such a result may have two possible explanations; firstly, the signature simply does not possess a particularly strong genetic association; this does not mean that it cannot represent upstream drivers of a phenotype, just that the form of influence we are detecting is not a genetic one. Another explanation could relate to the GWAS data itself; as the four conditions we selected are particularly rare, there are understandably fewer large-scale studies than more common conditions. As the signature itself contains two known genetic risk genes for ALS, we cannot rule out that there may be more which we have not been able to identify. As we could not find any association with GWAS genes, we attempted to utilise whole genome sequencing data to identify these potential novel genetic associations. Although we identified a number of potential LoF mutations in a subset of our signature genes, our approach alone is not reliable enough to implicate a genetic association with ALS, hence its used in the prioritisation process in tandem with many other sources of supporting information. With further work and input from those more experienced with this type of data, we could potentially identify such associations, however this was not possible within the scope of this project. 

Finally, since association with TDP-43 in the literature is not sufficient to validate this methodology, we engaged in a collaboration with the Woolf Lab at Boston Children’s Hospital, USA. Our collaboration ultimately revealed two genes, YBX1 and DDX1, that we believe have the strong potential to be novel upstream drivers of TDP-43 dysfunction and neuronal death, respectively. It is important to note these results are preliminary, and confirmation is subject to replication experiments whose timelines were not within the scope of this report.

Aside from in vitro replication analyses, there are a number of steps required to be taken from this point forward. Despite the success of our TDP-43 signature, it is possible that the method we have developed is overfitted to the datasets upon which it was built. To ensure our methodological pipeline is not ‘TDP-43-specific’, we will need to replicate this methodology on at least two further phenotypes, ideally from quite disparate conditions. If these secondary and tertiary applications of the pipeline produce equally successful results, we can be confident that our pipeline can be reliably applied to any number of phenotypes. To be able to apply the methodology to other cases, we have produced a sequence of steps which can be followed regardless of the test phenotype (Figure 11);
1. Data is collected according to the following criteria: datasets must only contain samples directly from human patients, samples must be extracted from a tissue directly affected by the phenotype of interest, the datasets must contain a minimum number of three controls and three patients, accepted datasets could be both microarray and RNA-Seq, but must be from Affymetrix and Illumina platforms.
2. Data is submitted to quality control to assure data quality and remove outliers.
3. Case-control gene expression analysis is conducted using LIMMA (microarray) or DESeq2 (RNA-Seq) on each individual dataset. Genes are selected based on consensus direction of expression. Overlap with condition-generic signatures and unaffected tissue signatures are removed.
4. Genes are used to seed a protein-protein interaction network generated from Irefindex 14 data. Included proteins must share at least one interaction with a DEG’s protein.
5. The PPI network members are used to build a coexpression matrix in each dataset. These datasets are analysed for appropriate distribution. Those included are compared to identify conserved edges that share the same correlation direction above a certain threshold. 
6. The largest connected component is selected, and coexpression edge overlap with condition-generic signatures and unaffected tissue signatures is removed.
7. The members of the network undergo prioritisation to identify likely candidates for in vitro/vivo validation, calling upon genetic, topological, regulatory, consensus and phenotype-specific sources of information. 
8. The selected targets’ effect on the common phenotype is assessed in vitro/vivo.
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[bookmark: _Toc528263176][bookmark: _Toc3226006]Figure 10: A flow diagram indicating the steps to be completed within our signature building methodology, and the ‘omes in which these steps are conducted. Dotted arrows indicate the steps in which either statistical assessment, or assessment of relationship to the phenotype (via enrichment) is to be conducted. 


[bookmark: _Toc3211383]Chapter 3: Application to Sporadic and LRRK2 Parkinson’s Disease
[bookmark: _mxpz4vfys49e][bookmark: _Toc3211384]Introduction
To establish that our methodological pipeline is not overfitted and is translatable to other diseases and phenotypes, we have chosen a second phenotype to assess. This phenotype is also associated with a neurodegenerative condition, Parkinson’s disease, however the common phenotype is not a pathological phenotype like protein aggregation, but a alternatively a commonality in presentation – the common clinical phenotype of sporadic and LRRK2 Parkinson’s disease. Though similar in nature to our TDP-43 application due to the location of the disease and the shared mechanism of neurodegeneration, this application pushes the methodology further into the realms of phenotypes that are much harder to quantify. The benefits of TDP-43 dysfunction as an application was that it was easily quantifiable, and its association with certain genes easier to identify. In this application, the physical representations of the disease are much harder – clinical phenotypes may be measured in an organism such as a cell or a mouse, but do not possess distinct genetic associations that could be used for benchmarking during the study. Subsequently, analysis of such a complex phenotype allows us to push the boundaries of what this methodological pipeline is capable of. 
[bookmark: _5g818u8pwns0][bookmark: _Toc3211385]Parkinson’s Disease Overview
Parkinson’s Disease (PD) is a progressive neurodegenerative disease affecting both motor and cognitive abilities. It is named for English doctor James Parkinson who described the condition in his 1817 publication entitled “An Essay on the Shaking Palsy” 205. After Alzheimer’s Disease, PD is the most common neurodegenerative condition in the UK, affecting nearly 150,000 individuals in 2018 206. Common symptoms of PD include akinesia, bradykinesia, resting tremor and postural instability. Other symptoms may include loss of sense of smell (anosmia), nerve pain, difficulties swallowing (dysphagia) and insomnia. In some cases, PD patients also develop dementia. The neuronal degeneration experienced in PD is not in itself fatal, however its effect on motor and cognition leave patients vulnerable to secondary events such as pneumonia, bronchitis and heart disease. Patients are also at a much higher risk of falls, which can themselves be fatal. Treatment options for PD include physical, pharmaceutical, and surgical interventions. Physical therapy, such as yoga, pilates and tai chi, have been shown to improve balance and flexibility 207–210. Drugs available for PD patients function through increasing dopamine levels in the brain, either as dopamine agonists which replace dopamine, or monoamine oxidase B (MAO-B) inhibitors which prevent the breakdown of dopamine. In the most extreme cases, where other treatments have failed, PD patients may have an electrode implanted into the subthalamic nucleus of the brain, to regulate motor outputs causing dyskinesias 211,212. A curative treatment for PD does not yet exist.
[bookmark: _d452bq8ia0f7][bookmark: _Toc3211386]Pathophysiology
PD is predominantly characterised by the death of dopaminergic neurons in the ventral tier of the substantia nigra pars compacta (SNpc) 213. Reviews on SNpc degeneration suggest that by the time of symptom onset, 50-60% of a patient’s neurons will already be lost 214. The ventral tier generates dopaminergic signals which are directed at the putamen, whose function is to modulate motor skills, hence the motor deficits experienced in PD 213. To a lesser extent, neuronal death also occurs in the ventral tegmental area, locus coeruleus, vagal nuclei, and nucleus basalis of Meynert 215–219. Astrocytes, a type of glial cell with multiple important supporting roles for protecting the healthy function of neurons, become dysfunctional as the result of PD mutations 220,221. Conversely microglia - another glial cell involved in the brain's immune and inflammatory response - become activated in PD, and may actually contribute to neuronal death 222. It is speculated that dysfunction of these glial cells is linked to an overactive immune response to neuronal death 223.
[bookmark: _90t2jv6gk6sx][bookmark: _Toc3211387]The Ubiquitin-Proteasome System and Autophagy
As well as neurodegeneration, PD is marked by the presence of intracytoplasmic aggregations of misfolded ubiquitin and alpha-synuclein proteins; also known as Lewy Bodies (LB) 224. In disease, alpha-synuclein is phosphorylated, ubiquitinated, and also nitrated, before accumulating in Lewy bodies 225–227. Such misfolding is tightly linked to impairment of the Ubiquitin-Proteasome System (UPS) and the Autophagy-Lysosome Pathway (ALP) in PD. The UPS and ALP pathways are responsible for clearance of misfolded proteins 228. The UPS functions by tagging proteins with ubiquitin, after which only unfolded proteins can pass through the proteasome protein complex to be degraded 229. Many familial mutations have been linked to UPS dysfunction; PRKN, PINK1 and DJ-1 have been shown to function as a ligase complex for the attachment of ubiquitin to unfolded proteins 230. Mutations in these genes are predicted to disrupt this process, leaving potentially toxic proteins such as alpha-synuclein unchecked.

When cell components are too large to pass through the proteasome protein complex, they are processed by the ALP. The ALP constitutes three main autophagy pathways; macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA) 231. Macroautophagy is often referred to simply as “autophagy” and involves the engulfment of unwanted proteins and organelles into the membrane of a vesicle called an autophagosome. The autophagosome then fuses with the lysosomal membrane, dispensing its contents. Microautophagy occurs when contents are encapsulated by the lysosomal membrane itself. CMA occurs when a protein contains an hsc70-recognisable domain. Hsc70 then binds to the protein at this site and transports it to a membrane-bound protein which recognises the CMA complex, allowing it to pass through the lysosomal membrane. As well as the UPS, alpha-synuclein is also regulated by autophagy 232. Wild-type alpha-synuclein is processed via CMA, however mutations in the SNCA gene have been shown to bind and block the membrane-bound lysosomal receptors, inhibiting the degradation of many proteins, including its own 233. Mutations in ATP13A2 have been shown to cause autophagy dysregulation and accumulation of alpha-synuclein 234,235.

Without these two systems, toxic aggregations of misfolded proteins can form, as seen in many neurodegenerative conditions 236. It is still unclear, however, what contribution alpha-synuclein aggregations themselves make to the neuronal death observed in PD. It has been claimed that alpha-synuclein aggregations themselves bind to the proteasome, inhibiting protein degradation 237. Other theories suggest that the aggregations are merely the result of protective mechanisms sequestering the misfolded protein after the failure of the UPS and ALP systems. Whether alpha-synuclein’s toxicity lies in its aggregated state or not, it is no surprise that alpha-synuclein has become a significant focus of PD treatment 238,239. 
[bookmark: _nx5pw5pnoah0][bookmark: _Toc3211388]Mitochondrial Dysfunction
In the years surrounding 1980, a number of young individuals in the US were being admitted for Parkinsonian symptoms after abuse of a drug containing the compound MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) 240. It was later discovered that MPTP is able to cross the blood-brain barrier, where it is oxidised into the neurotoxic MPP+ 241. MPP+ localises to the mitochondria, where it interferes with complex I of the electron transport chain 242. A dysfunction of complex I results in reduced ATP production, and increased reactive oxygen and nitrogen reactive species, ultimately leading to neuronal death 243–245. The involvement of mitochondrial dysfunction in PD has since been confirmed in a number of studies, which revealed mitochondrial complex I deficiencies and abnormal mitochondrial morphology 246–248. As genetic contributors to PD such as PINK1, PRKN, DJ-1, and SNCA were identified, characterisation experiments revealed consistent relationships between genetic lesions and mitochondrial dysfunction 249–256. Rescuing mitochondrial function has subsequently become a significant focus of PD treatment development 257–259. 
[bookmark: _4dpkznsc6hst][bookmark: _Toc3211389]Genetics
For many decades, the genetics of PD was not well understood, mainly because consanguineous PD families are so rare. The application of linkage analysis to such families throughout the late 20th Century and early 21st Century allowed for the discovery of twenty-three regions of the genome (named PARK1-23) found to exhibit significant risk for PD. Only ~10% of PD cases, however, show mendelian inheritance patterns. Some genes are autosomal dominant (e.g. SNCA, LRRK2, and VPS35), whereas others are autosomal recessive (e.g. PRKN, DJ-1, PINK1, and DNAJC6). Here we will briefly introduce 7 of the major genes associated with PD.
[bookmark: _11h4roo9vavu][bookmark: _Toc3211390]SNCA (PARK1/PARK4)
The gene encoding alpha-synuclein (SNCA) was the first to be identified as a causal gene in PD patients. A pathogenic missense mutation (p.Ala53Thr) was detected in a large Italian family studied over 11 generations 260. In subsequent years, more autosomal dominant mutations in SCNA have been identified 261–264. As well as missense mutations, structural abnormalities such as duplications and triplications have also been associated with the disease 265–267. The incidence of SNCA-affected families is rare, however SNCA has been regularly implicated in GWAS studies of PD patients 268,269. The role of SNCA in the cell is currently not well understood. In healthy cells, alpha-synuclein protein localises to presynaptic terminals, and has been observed to affect the size of presynaptic vesicle pools 270. In PD, alpha-synuclein aggregates into cytoplasmic Lewy Bodies, and is a pathological hallmark of the disease.
[bookmark: _vgbo3jeux15c][bookmark: _Toc3211391]PRKN (PARK2)
PRKN mutations are some of the more common in PD, affecting ~15% of familial and ~4% of sporadic cases, though rates have been reported as high as 50% and 15%, respectively 271,272. PRKN was first identified after studying a Japanese family with an apparent autosomal recessive case of PD 273,274. PRKN mutations are more commonly nonsense, frameshift, and missense, though a number of exon deletions and duplications have been observed 275,276. Over 100 PRKN variants have now been observed. Parkin is a ubiquitin ligase and plays an important role in ubiquitin tagging of proteins destined for proteasomal or lysosomal degradation. Parkin also has a specific role in the degradation of mitochondria by mitophagy 277. Though clinically very similar to other PD populations, PD patients with PRKN mutations do not present with Lewy Body pathology 278.
[bookmark: _9k6l1f82a5uw][bookmark: _Toc3211392]UCHL1 (PARK5)
Ubiquitin C-Terminal Hydrolase L1 (UCHL1) is an enzyme whose role is to recycle chains of ubiquitin back to its monomeric form 279. Considering that UCHL1 is widely expressed in neurons, and its protein has been shown to recruit to Lewy Bodies, its genetic association with PD was unsurprising. This genetic relationship, however, has been widely debated 280,281. In 1998, a missense mutation was identified in two German siblings with PD 282. A number of follow-up studies revealed mixed results, but through meta-analysis a significant relationship between the S18Y mutation in UCHL1 and PD was discovered 280. Questioning the validity of these results, a later study was conducted on over 3000 individuals with PD, and found no significant association 281. It was postulated that perhaps UCHL1’s association with PD could be through linkage disequilibrium with a genuine causative gene. Knockdown mouse models for UCHL1, however, have been shown to produce a neurodegenerative phenotype 283. So, while UCHL1 shows many signs of being a causative PD gene, it is yet to be confirmed.
[bookmark: _wvjo027emygb][bookmark: _Toc3211393]PINK1 (PARK6)
PTEN-induced putative kinase 1 (PINK1) is a serine/threonine protein kinase which protects mitochondria during cellular stress by phosphorylating mitochondrial proteins 284. If mitochondria do become damaged, it also aids in the mitophagy process, alongside Parkin 285,286. PINK1 was confirmed as a PD gene in 2004, after characterisation of the associated locus PARK6 in two Italian and one Spanish family 287. It is predicted that PINK1 mutations represent around 8.4% of familial cases, and 3.7% of PD cases overall 271. 
[bookmark: _yaexnkupqncd][bookmark: _Toc3211394]DJ-1 (PARK7)
The relationship between DJ-1 and PD was first discovered in a Dutch family after homozygosity mapping 288,289. Mutations in DJ-1 are generally missense but can also be deletion or duplication CNVs 290. DJ-1 is known to play a role in protecting neurons against oxidative stress, as well as implicated roles in mitochondrial function and the proteasome, alongside PRKN and PINK1 230,291. Oxidised DJ-1 has also been identified in the brains of sporadic PD patients 292.
[bookmark: _c4xpldguhiad][bookmark: _Toc3211395]LRRK2 (PARK8)
Leucine-rich repeat kinase 2 (LRRK2) was the second gene to be associated with PD after SNCA. Through recombination mapping and candidate gene sequencing in forty-six families, locus PARK8 was shown to be associated to PD through a number of autosomal dominant LRRK2 mutations 293–295. LRRK2 mutations affect approximately 4% of patients with familial PD and 1% of sporadic PD patients 296. LRRK2 is typically a cytoplasmic protein, however it has been observed to bind to mitochondrial membranes 297. Due to the number of different domains encoded in LRRK2’s protein Dardarin, it is a member of multiple enzyme families, including ROC-COR (ROCO), mixed-lineage kinase (MLK), and receptor-interacting protein kinase (RIPK). Other members of the ROCO family have been shown to contribute to cell motility and adhesion, cell death processes, and inflammatory response 298–301. MLKs are also mediators of neuronal cell death 302, and RIPK members are also involved in immune signalling pathways 303. LRRK2’s own involvement in immunity pathways is validated by its interactions with NOD proteins and NF-kB 304,305. In PD models, LRRK2 has been implicated in dysfunction in autophagy and lysosomal processes 306,307. Interestingly, LRRK2 mutations have been identified in healthy individuals without PD, referred to as non-manifesting LRRK2 carriers 308.
[bookmark: _k98dpif757ra][bookmark: _Toc3211396]ATP13A2 (PARK9)
ATPase Cation Transporting 13A2 (ATP13A2) was first associated with PD after it was found to be causative of the condition Kufor-Rakeb syndrome, a form of juvenile-onset PD. The name Kufor-Rakeb refers to the Jordanian community in which genetic linkage studies implicated locus PARK9 309. ATP13A2 itself was later associated with Kufor-Rakeb/PD through study of a Chilean family with the same condition 310. Mutations identified have been both missense and frameshift, each with varying severity of disease progression 311. ATP13A2 has been associated with both mitochondrial and lysosomal function and dysfunction, and has been shown to regulate alpha-synuclein metabolism 234,312,313. 
[bookmark: _o00ld5udczez][bookmark: _Toc3211397]VPS35 (PARK17)
Vacuolar Protein Sorting-Associated Protein 35 (VPS35) represents one of the most recent genes to be associated with PD. Its association was identified by two separate groups through whole exome sequencing of Austrian and Swiss families exhibiting autosomal dominant inheritance 314,315. VPS35 is a member of the retromer, a complex that mediates transport of endosomes to the trans-Golgi network 316. Models of PD have shown VPS35 mutations induce lysosomal degradation and dopaminergic neurodegeneration 317,318.

[bookmark: _46k8rrk5013a][bookmark: _Toc3211398]Similarities between LRRK2 and Sporadic PD 
Genes associated with PD are known to present with quite variable phenotypes; for example, mutations in ATP13A2 or DJ-1 are associated with early-onset disease, defined as symptom onset before the age of 40 years-old. In fact, a frameshift mutation in ATP13A2 has been reported in a juvenile-onset PD patient as young as five years-old 319. Other genes are associated with a later onset of disease symptoms, including VPS35, and LRRK2 314,320. Some genes, such as SCNA, PINK1 and PRKN, can present with either early or late onset, depending on the nature of the mutation 321–323. The speed of disease progression is also variable; most SCNA and ATP13A2 patients exhibit rapid disease progression, whereas patients with PRKN, DJ-1 or PINK1 mutations generally experience much slower deterioration 311,324. Symptomatic differences include the cognitive impairments (e.g. dementia) only observed in SNCA and PINK1 PD. Hallucinations are even more unique, occurring in SNCA patients only 324. 

Such variability has catalysed discussion on whether PD is actually a family of similar yet distinct conditions, rather than a single clinical group. Such sub-populations may not follow definitions made by genetic background. One such sub-population that has been consistently reported is the clinical similarity between sporadic and LRRK2 PD populations. We have already discussed the nature of LRRK2 mutations and their familial inheritance patterns, whereas sporadic disease represents individuals who have no previous family history of PD. The similarities between LRRK2 and sporadic PD were first identified in a Norwegian study conducted not long after LRRK2’s discovery 325. Of the 435 patients analysed, 9 were found to possess mutations in LRRK2. These individuals were then compared against the remaining 426 sporadic patients. Age of onset, rate of disease progression, and clinical presentations of resting tremor, bradykinesia, muscular rigidity, and positive levodopa response (a dopamine substitute used to treat PD) were all indistinguishable between LRRK2 and sporadic patients. This observation has been replicated in a number of subsequent studies 296,326,327. Similarities between LRRK2 and sporadic PD are not only symptomatic; four months after the later, a PET scan study demonstrated that the pattern of dopaminergic activity in LRRK2 and sporadic PD patient’s brains showed remarkable similarities 328. Considering sporadic patients make up ~90% of the PD population, and LRRK2 mutations constitute the largest proportion of familial patients (~4%), understanding the mechanisms shared by sporadic and LRRK2 patients could have implications for a huge proportion of the PD population. 

[bookmark: _Toc3211399]Developing a LRRK2/Sporadic PD Signature
Sporadic and LRRK2 presentation of PD is classically late-onset and slow-progressive, so common mechanisms shared by these populations may point towards ways of postponing or slowing the progression of disease. Additionally, due to the unknown entity of genetic contributions to sporadic PD, and the incomplete penetrance of LRRK2, identification of novel genetic risk factors within the common signature may unlock key information about how the disease manifests. We predict that the signature building approach we have developed will again be able to isolate a common dysfunctional coexpression module that is enriched for PD biology, genetic variants, and contains promising novel targets.


[bookmark: _29zv99hzqbd3][bookmark: _Toc3211400]Materials and Methods
Data were collected, processed and analysed as described in Chapter 2. Here we will describe any alterations made for the current analysis, also depicted in Figure 11. 
[bookmark: _ih6d0qihh61a][bookmark: _Toc3211401]Data Selection, Pre-processing, and Quality Control
Many studies did not specify explicitly whether they were sporadic or familial PD patients, therefore an assumption was made that these datasets were sporadic, as familial patients are extremely rare and usually well reported. For sporadic PD, 9 microarray and 1 RNA-Seq datasets were identified from a variety of brain regions (Table 24). Two datasets, one frontal cortex and one substantia nigra, were obtained from the same series (GSE8397), meaning there is an overlap in patients, but the tissue is sampled from different brain regions. Two LRRK2 microarray datasets were sourced, one sampled from the putamen, and another from the locus coeruleus - a region also shown to degenerate in PD. The five ALS datasets used in the TDP-43 investigation (including C9orf72, SOD1, FUS and Sporadic populations) were used as controls for generic neurodegeneration signals (Table 22). Datasets representing familial patients with non-LRRK2 mutations were available only as peripheral blood samples, as no neuronal datasets met the data selection criteria (Table 23). Blood was considered acceptable as it is known to possess a certain degree of information on neuronal expression. Neuronal expression datasets for non-LRRK2 familial patients could not be identified in public databases, therefore peripheral blood datasets were used. One unpublished LRRK2 fibroblast dataset was generously provided from Dr Robin Highly and Dr Heather Mortiboys within SITraN. Peripheral blood from sporadic PD patients was also used to represent unaffected disease tissue, though it is accepted that this could contain disease signatures from neuronal expression.

As previously, the one RNA-Seq dataset (GSE68719) was pre-processed using bcbio. However, protocol was adapted to use Salmon counts instead of HT-Seq counts. The Salmon approach to expression quantification was published in the time between experiments, and its alignment-free methodology has proved to outperform many other quantification tools 329–331. Alignment-free, or ‘pseudoaligners’ do not directly align reads to the reference genome, instead breaking up reads into k-mers and assigning them to transcripts. This approach has been shown to drastically reduce computation time without significantly impacting performance 330,331.  
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[bookmark: _Toc3225936]Table 22: Datasets used to build a PD population-generic signature. Tissue indicates the source of the biological material. Disease indicates the medical condition patients had been diagnosed with. Variant indicates whether the dataset contains individuals with a known genetic cause, or individuals with sporadic status. Platform indicates the technical platform used to collect the expression data. Affymetrix platforms are microarray, Illumina are RNA-Seq. GEO ID is the reference provided by GEO to locate the original dataset. Publication contains the reference supplied with the data on GEO. LCM = Laser Capture Microdissected
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[bookmark: _Toc3225937]Table 23: Datasets used to build a PD tissue-nonspecific signature. Tissue indicates the source of the biological material. Disease indicates the medical condition patients had been diagnosed with. Variant indicates whether the dataset contains individuals with a known genetic cause, or individuals with sporadic status. Platform indicates the technical platform used to collect the expression data. Affymetrix platforms are microarray, Illumina are RNA-Seq. GEO ID is the reference provided by GEO to locate the original dataset. Publication contains the reference supplied with the data on GEO. LCM = Laser Capture Microdissected.
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[bookmark: _Toc3225938]Table 24: Datasets from sporadic or LRRK2 PD patients. Tissue indicates the source of the biological material. Disease indicates the medical condition patients had been diagnosed with. Variant indicates whether the dataset contains individuals with a known genetic cause, or individuals with sporadic status. Platform indicates the technical platform used to collect the expression data. Affymetrix platforms are microarray, Illumina are RNA-Seq. GEO ID is the reference provided by GEO to locate the original dataset. Publication contains the reference supplied with the data on GEO. LCM = Laser Capture Microdissected

[bookmark: _at5ns9gqvy2z][bookmark: _Toc3211402]Curation of Parkinson’s-associated gene lists
Benchmark gene lists were generated from three sources of information; PD-associated genes, PD GWAS hits, and genes whose proteins interact with LRRK2 (Table 23). PD-associated genes were extracted from the “Parkinson’s Disease, Late-Onset” page on the website Malacards (http://www.malacards.org/card/parkinson_disease_late_onset). For late onset PD, 151 genes have been curated in this list as risk factors. PD GWAS genes were extracted from the PD entry in the GWAS Catalog (https://www.ebi.ac.uk/gwas/efotraits/EFO_0002508), and filtered to only include the trait “Parkinson’s disease”, “age at onset, Parkinson’s disease”, and “Lewy body measurement, Parkinson’s disease”, resulting in a list of 170 genes. As variants do not always map to one gene, all genes were included but overlap in rs numbers was checked. LRRK2 PPI genes were sourced from a curation study on the interactome of LRRK2, which identified 207 interaction partners as reported by BioGRID and IntAct data 332. 
[bookmark: _37rzrpozowbs][bookmark: _Toc3211403]Prioritisation
All sources of information remained as previously used. LoF mutations were identified using the Parkinson’s Progression Markers Initiative (PPMI) whole exome sequencing (WES) data obtained from the PPMI database (http://www.ppmi-info.org/). PPMI – a public-private partnership – is funded by the Michael J. Fox Foundation for Parkinson’s Research and funding partners, including Abbvie, Allergan, Avid Radiopharmaceuticals, Biogen, Biolegend, Bristol-Myers Squibb, Denali, GE Healthcare, Genentech, GSK, Lilly, Lundbeck, Merck, MSD, Pfizer, Piramal, Roche, Sanofi Genzyme, Servier, Takeda, Teva, UCB, and Golub Capital. WES data was analysed using Gemini (gemini.readthedocs.io/en/latest/). LoF mutations were defined as variants flagged by Gemini as LoF and scored <0.01 on both ExAC and 1000 Genomes frequency. The variants are then checked to ensure they occur in patients only, and not in patients flagged as testing positive for mutations in a known PD gene (e.g. SNCA, LRRK2 etc). LRRK2 PPI genes were extracted from the benchmark gene list which was used throughout the study. For Endeavour, only LRRK2 was used as a training gene as this is the only gene we know to result in the phenotype we are interested in.


[bookmark: _ych6gmsm5tz7][image: ]
[bookmark: _Toc3226007]Figure 11: Workflow for Sporadic/LRRK2 PD analysis. Changes to the methodology are indicated by the text boxes. All other methods remained as previous.

[bookmark: _Toc3211404]Results
[bookmark: _rywmk6irqwfz][bookmark: _Toc3211405]Quality control of datasets
Quality control analysis identified 2 samples which were considered outliers; sample GSM1678685 and GSM1679693 from GSE68719 (Appendix Figures 6-13).

Boxplots of pre-and post-normalised data show relatively consistent log2 expression variance within microarray and RNA-Seq technologies before normalisation across datasets (Appendix Figure 14). Again, RNA-Seq range is larger compared to microarray, however after normalisation the medians of all datasets are quite similar.

[bookmark: _45si21sucwpx][bookmark: _Toc3211406]Identification of common DEGs
Common differential expression analysis revealed 175 genes to be commonly overexpressed and 189 genes commonly underexpressed. Random permutation tests confirmed the number of DEGs was more than expected by chance (Tables 25 & 26). As the amount detected experimentally did not lie within the distribution, a P-value could not be calculated. Random assignment of log fold change direction predicted overlaps of between 0 and 19 genes, with an average of 5.58 genes.

Three signatures were produced to filter out tissue nonspecific and population-generic genes. One signature was produced from the 6 ALS datasets used in the TDP-43 pathology analysis to represent a generic neurodegenerative signature. Gene overlap of this signature led to the removal of 15 genes. The familial blood signature overlapped with the common DEG list by 102 genes, which were removed. The fibroblast signature was created from the significantly differentially expressed genes of this dataset (adjusted P-Value < 0.05). The sporadic blood signature overlapped by 4 genes. Removal of these genes left a common DEG signature of 243 genes, 104 commonly upregulated, and 139 commonly downregulated.
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[bookmark: _Toc3225939]Table 25: Total numbers of genes passing quality control in each PD dataset, along with numbers of up and downregulated genes.

[image: ]
[bookmark: _Toc3225940]Table 26: Comparison of PD common DEG results (Actual Value) and those expected by chance according to random permutation testing (Expected Mean and Expected Range)


[bookmark: _k85zoimqlo0a][bookmark: _Toc3211407]Functional and benchmark enrichment of differentially expressed genes
Benchmark enrichment analysis shows significant enrichment of all three lists, though some overlap is present (Table 27). Within this list is SNCA and UCHL1, two causative genes of PD (though UCHL1’s association is still debated). SPR is located in the - as of yet - unassigned PARK3 locus associated with PD, but is not currently considered a causative PD gene 333. MSX1, ALDH1A1, and CYCS have each been implicated in the downstream mechanisms of PD-related dopaminergic neurodegeneration 334–336. PD GWAS gene overlap again contained SNCA. SYT11 is a synaptotagmin, regulating calcium dependent trafficking of synaptic vesicles, and has recently been discovered to be a mediator of PRKN-linked neurotoxicity 337. LRRK2 PPI genes contained SNCA and STY11, but also contained MAP1B, whose light chain portion has been shown to rescue LRRK2-mutant toxicity 338. RAB7A has been shown to be regulated by LRRK2 for membrane trafficking 339. There was also presence of 4 genes associated with mitochondrial complex I deficiency (NDUFS1, NDUFS3, NDUFV2, TMEM126B) a condition which, like PD, is associated with mitochondrial dysfunction, and can lead to development of some forms of PD.

For upregulated genes, enriched processes were predominantly associated with apoptosis and cell cycle signalling pathways, such as TGF-beta, Ras and PI3K-AKT (Table 28, http://amp.pharm.mssm.edu/Enrichr/enrich?dataset=8gl6z). Alternatively, downregulated genes showed strong enrichment for Parkinson’s Disease pathways, the mitochondrion, and autophagosome processes (Table 29, http://amp.pharm.mssm.edu/Enrichr/enrich?dataset=8gl71)
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[bookmark: _Toc3225941]Table 27: Results of enrichment analysis for overlap between curated PD-associated genes and common DEG list
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[bookmark: _Toc3225942]Table 28: Top 10 enriched pathways in each of the pathway databases for PD upregulated DEGs. P-Values are adjusted.
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[bookmark: _Toc3225943]Table 29: Top 10 enriched pathways in each of the pathway databases for PD downregulated DEGs. P-Values are adjusted. 

[bookmark: _ekud5jxl5m7l][bookmark: _Toc3211408]Generation of protein-protein interaction network 
Two-hundred and forty one of the 243 common DEGs successfully seeded a PPI network of 2797 nodes and 4637 edges. The remaining 2 transcripts were non-protein coding RNAs. Benchmark enrichment revealed the PPI network also enriched for PD disease genes and LRRK2 PPI genes, but not for PD GWAS genes (Table 30). A number of important PD proteins are members of the PPI network; SNCA, LRRK2 (Dardarin), DJ-1 (PARK7), PINK1, and UCHL1. Additionally, proteins important to other neurodegenerative conditions are present; APP in Alzheimer’s disease, HTT in Huntington’s disease, and SQSTM1 in ALS. Functional enrichment analysis of this network revealed a strong representation of processes involved in transcription and translation, and immune system pathways (Tables 31 & 32, http://amp.pharm.mssm.edu/Enrichr/enrich?dataset=8gl75). These pathways are very similar to those identified in the TDP-43 analysis and is possibly a reflection of the vulnerabilities of pathway enrichment for large gene sets. 
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[bookmark: _Toc3225944]Table 30: Enrichment of PD-associated gene lists in PD PPI network
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[bookmark: _Toc3225945]Table 31: Top 10 enriched pathways in KEGG, Wikipathways and Reactome for PD protein interaction network. P-Values are adjusted.
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[bookmark: _Toc3225946]Table 32: Top 10 enriched GO terms in each category for the PD protein interaction network. P-Values are adjusted. 

[bookmark: _v9o3i9rghieb][bookmark: _Toc3211409]Generation of a common coexpression module 
Coexpression matrices for the PPI network nodes were generated from 8 of the 12 datasets. The two LRRK2 datasets had patient numbers lower than 4 samples, rendering coexpression analysis too underpowered. Two datasets (GSE8397 & GSE19587) were removed as histograms of their correlation values revealed non-normal distributions (Figure 12). After filtering for common edges, 267 nodes and 753 edges were conserved. The largest connected component of this network consisted of a subnetwork module of 233 nodes and 731 edges. 

In controls, 172 edges between 103 nodes could be recreated, and all were in the same direction as patients. Subsequently these edges were removed, as well as 6 nodes whose connections to the coexpression module were lost, leaving a coexpression module of 227 genes and 559 edges (Table 33). The network was also recreated in the ATP13A2, PRKN and PINK1 blood samples. Seventy-four edges and 7 nodes were removed, leaving 220 nodes and 485 edges. The LRRK2 fibroblast dataset was not used to recreate the network due to too few samples. Four ALS datasets had 4 or more samples (GSE68605, Kirby, GSE67196, GSE76220), however recreation of the network produced no common edges. Similarly, no edges were recreated in sporadic blood. Eight genes formed dyads separate from the LCC, and so were removed also. The final common coexpression module constituted 212 nodes with 481 edges (Table 34, Figure 13)
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[bookmark: _Toc3226008]Figure 12: Histograms of Spearman’s Rho values for each PD dataset. Datasets GSE8397 and GSE19687 demonstrated non-normal distributions
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[bookmark: _Toc3225947]Table 33: Numbers of nodes and edges overlapping between the filter datasets and the PD common coexpression module
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[bookmark: _Toc3225948]Table 34: Members of the PD common coexpression module
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[bookmark: _Toc3226009]Figure 13: The PD common coexpression network. Positively correlated edges are red, negatively correlated edges are blue.

In benchmark enrichment, LRRK2 PPI genes are enriched, but PD disease genes and PD GWAS genes are not significantly enriched (Table 35). Functional enrichment of the subnetwork module implicated processes related to mitochondria and the citrate cycle, and the proteasome (Table 36 & 37, http://amp.pharm.mssm.edu/Enrichr/enrich?dataset=8gl7a). The KEGG pathway “Parkinson’s Disease” is highly enriched, reflected by the presence of 19 members of this pathway in the coexpression module, including DJ-1(PARK7), UCHL1, and CYCS. 
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[bookmark: _Toc3225949]Table 35: Enrichment of PD-associated genes in the common coexpression module
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[bookmark: _Toc3225950]Table 36: Top 10 enriched pathways in KEGG, Wikipathways, and Reactome databases for the PD common coexpression module. P-Values are adjusted.
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[bookmark: _Toc3225951]Table 37: Top 10 enriched GO terms in each category for the PD common coexpression module. P-Values are adjusted.

[bookmark: _j8p5xwjb7oir]Direct protein-protein interactions between the subnetwork module and the members of the Parkinson’s Disease Malacards gene list revealed 117 protein interactions between 76 module members and 38 PD-associated proteins (two of which, PARK7 and UCHL1 belonging to both lists) (Figure 14). Random permutation testing sampled against the human genome revealed this number of interactions to be greatly more than expected by chance, with a mean number of expected edges of 35.37, and a range of 13:61. As 117 does not lie within this range, a P-value could not be computed.
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[bookmark: _Toc3226010]Figure 14: Protein-protein interaction network showing relationships between coexpression module proteins (blue) and PD Malacards proteins (green). Orange-coloured proteins are both.

[bookmark: _1wcz7tr53adi][bookmark: _Toc3211410]Prioritisation of in vitro candidates
Seven sources of information were used to prioritise the 212 genes of the subnetwork. Scoring was conducted as described in the previous chapter. The top 9 scoring genes can be found in Table 45.

Seventeen LoF mutations were identified in 13 genes (Table 38). Seven of these mutations were predicted to result in either the gain of a stop, or loss of a start or stop codon. Two mutations were found to be homozygous in the patient; a start lost mutation in the gene MAGED1, and a stop lost in the gene STRAP. Lobby index identified two genes, UBE2N and TERF2IP, to have a particularly high lobby index score of 13 (Appendix Table 7). Seventeen genes were found to be significant GeneXplain master regulators, with 7 in the Top 20 (Appendix Table 8). Only 4 genes were found to regulate another network module member, as suggested by IPA (Appendix Table 9 & 10). Forty-eight genes - nearly 23% of the network - were also commonly differentially expressed. Seven genes coded for proteins which have been found to bind directly to LRRK2. Using LRRK2 as a training gene, Endeavour ranked PD-associated genes PARK7 and UCHL1 as top ranked (Appendix Table 11).

Random permutation testing of the mean scores of known PD-associated genes, PARK7, UCHL1, and CYCS indicated that these genes achieved a significantly higher score of 12 than expected by chance (mean expected score = 6.045, mean expected range = 1:15.7, p = 0.0051).


[image: ]
[bookmark: _Toc3225952]Table 38: Thirteen genes contained predicted LoF mutations in PD patients. Gene Symbol lists the associated gene with each SNP according to Gemini annotation. Chromosome and Location indicate the location of each SNP. Ref and Alt indicate the reference and alternative base. RS ID lists the reference SNP ID number if the SNP has been identified before. Mutation Type lists the type of mutation observed. Hom/Het indicates if the mutation is homo- or heterozygous. 


[bookmark: _pz77vohphgyn][bookmark: _Toc3211411]Top Candidate Analysis
The top 9 genes – scoring 14 points or more – are discussed below (Table 45).
[image: ]
[bookmark: _Toc3225953]Table 39: Top 9 scoring PD network module genes

UCHL1, as previously discussed, is a gene that has already been associated with PD, but whose genetic relationship with the condition has been heavily disputed. Although the genetics of UCHL1 are not clear, the biological relationship with PD is compelling. Its strong neuronal expression and recruitment to Lewy Bodies, alongside its neurodegenerative phenotype when knocked down in mice suggests that abandoning UCHL1 in the development of PD treatments may be unwise 283. Our own data corroborates these findings, as we found UCHL1 to be consistently downregulated across all 12 input datasets. Although we too have not found any genetic association between PD patients and UCHL1, its presence within our network may suggest it still has a driving role in the progression of the disease. 

COPS5 codes for a protein which forms part of the COP9 signalosome, a protein complex involved in the third and final ligation step in the ubiquitin-proteasome pathway. COPS5, though not explicitly containing a LoF mutation, has been ranked highly as a regulator of the network, and has demonstrated consistent downregulation across our input datasets. No direct link has, as of yet, been made between COPS5 and PD, however its core role within the UPS places it as a promising candidate. 

MLLT11 also known as AF1Q, has predominantly been associated with leukemia, hence its name Mixed-Lineage Leukemia; Translocated To, 11. The role of MLLT11 is still being unravelled but has been found to include promotion of T-Cell development over that of B-Cells in the immune system 340. More specific to the central nervous system, MLLT11 has been shown to be differentially expressed in maturing neurons 341. More recently, a study employing coexpression network analysis via WGCNA on three sporadic Parkinson’s brain regions (of which two were used in our own analysis - GSE8397) identified MLLT11 as a hub gene 342. MLLT11 was then found to undergo neurodegeneration-associated histone modifications and found to be regulated by a number of PD-specific miRNAs. Our analysis has revealed a predicted start-loss mutation in a sporadic PD patient, as well as being highly connected within the network, and commonly downregulated across all 10 datasets – as was found in the aforementioned network analysis.

Though no LoF mutation was identified in UBE2N, it scored highly on a number of our other measures. Ubiquitin Conjugating Enzyme E2 N plays an important role in the ubiquitin-proteasome system as one of a number of enzymes whose role it is to link the activation of ubiquitin by E1 with the targeting of proteins destined for degradation. As we know the UPS is intrinsically linked to PD, it is unsurprising that UBE2N has been associated with a number of known PD genes; UBE2N has been shown to interact with Parkin, to mediate degradation of DJ-1 via autophagy, and its knockdown revealed a vital role in Parkin-mediated mitophagy 343–345.

YWHAZ codes for an anti-apoptotic protein, and alongside LAPTM4B has been linked to particularly aggressive breast cancers 346. YWHAZ has been shown to bind directly to LRRK2, and scored relatively highly on both GeneXplain and Endeavour measures. In a manganese-exposure model of PD, YWHAZ was found to be both hypermethylated and downregulated, suggesting environment-induced methylation of YWHAZ could be associated with onset of PD 347.

LAPTM4B, or lysosomal protein transmembrane 4 beta, encodes a lysosomal surface protein. LAPTM4B has predominantly been associated with cancer, due to its role in cell proliferation, migration, and death 348. According to the PPMI data, a number of patients possessed a predicted LoF mutation in LAPTM4B, resulting in splice donor variants (Table 43). It was also found to be commonly underexpressed across all input datasets and ranked in the top 20% for Endeavour predictions. LAPTM4B has, as of yet, not been reliably associated with PD. 

Mitogen-Activated Protein Kinase Kinase 1 (MAP2K1) is predominantly involved in the MAPK/ERK pathway, and so is involved in core signalling processes. In our analysis, MAP2K1 scored highly for lobby index, IPA regulatory relationships, and Endeavour rank. Within the network, IPA analysis indicated that MAP2K1 activates and phosphorylates both EIF4EBP1 and MAP2K4 (Appendix Table 10). MAP2K1 has not been associated with PD, but other MAP kinases such as MAP3K14, MAPK1, and MAPK14 have been, and MAP2K1 has been associated with Alzheimer’s disease 349.

MAPK9, or Mitogen-Activated Protein Kinase 9, like many MAP kinases is involves in a number of key cellular processes such as cell proliferation and differentiation, and transcription regulation. Our analysis indicates MAPK9 to be predicted highly as a regulator of the network by both GeneXplain and Endeavour, and is downregulated across all input datasets. As a number of MAP kinases have already been associated with PD, MAPK9 is a promising candidate.

Although we were unable to test any of the above genes for their association with a sporadic PD/LRRK2 phenotype in vitro, we are able discuss the likely candidates for this process. Our data-driven identification of UCHL1, combined consistent expression changes across both our datasets and within the literature may warrant further investigation, despite its contentious association with PD in the literature. COPS5 obtained one of the highest scores yet has had no previous association with PD, suggesting it may be a risky choice but has the potential for a more novel discovery. As the only gene whose protein binds directly to LRRK2 combined with its high scores from GeneXplain and Endeavour, YWHAZ has real potential to have a direct effect on LRRK2 activity, and in turn the sporadic/LRRK2 PD phenotype.


[bookmark: _5vm0u4pmvkfx][bookmark: _Toc3211412]Discussion
In this second application of our methodology, we decided to investigate whether a common signature could be identified for sporadic and LRRK2 PD. These sub-populations of PD have been shown to be clinically indistinguishable, suggesting a common disease mechanism. We collected 12 datasets representing both sporadic and LRRK2 populations from a variety of brain tissues. From these datasets we identified 243 commonly differentially expressed genes, significantly more than expected by chance, and enriching for PD disease genes, and protein interactors of LRRK2. The DEG gene set also enriched for both mitochondrial, autophagy and ubiquitin-proteasome pathways, all three core to PD dysfunction. These genes seeded a protein interaction network, which also enriched for PD disease genes, LRRK2 PPI partners, and PD-associated pathways. Coexpression edges were produced from 8 of the 12 datasets, filtered, and a common coexpression module extracted. Despite the absence of the LRRK2 datasets, this network module enriched for LRRK2 PPI genes, and approached significant enrichment for PD Disease genes. Pathway enrichment revealed significant overlap with the KEGG pathway “Parkinson’s Disease”, alongside a number of mitochondrial and UPS pathways. Using whole exome sequencing data from the Parkinson’s Progression Marker Initiative, we identified 17 LoF mutations in 13 network module members. Prioritisation ranked already PD-associated gene UCHL1 as the highest ranked gene, and the following seven genes were assessed for their relationship to PD. Had time permitted, a sub-section of these seven candidates would have been chosen for in vitro/vivo assessment in a PD model, where measures such as phenotype onset and mortality could be assessed. 

The lack of proper benchmarks, less-than-appropriate filter datasets, and the inability to use the LRRK2 datasets in the coexpression analysis has possibly left our results vulnerable to a more generic PD signature. However, it is worth noting that the prioritisation process ranked PARK7 in 92nd place; as discussed in the Introduction, PARK7 is known for its early-onset phenotype, suggesting the prioritisation process is able to promote late-onset rather than early-onset associated genes. Nonetheless, without proper laboratory validation it cannot be confirmed that this signature is or is not representative of LRRK2 and sporadic PD, though enrichment of PD-associated genes and pathways suggest these results have promise. 

[bookmark: _qy7yyzjyfu2k][bookmark: _gixy61yobish][bookmark: _Toc3211413]Chapter 4: Application to Autoimmune Arthritis
[bookmark: _egwvwea4ravg][bookmark: _Toc3211414]Introduction
As a third and final application of the pipeline, we decided to approach a condition that was not neurodegenerative or specifically affecting neuronal cells. By achieving identification of a common coexpression module containing novel targets for a different disease system, we again are showing our pipeline is not overfitted to any particular condition or tissue-type. The phenotype chosen to be analysed is joint inflammation and degradation as the result of an autoimmune condition; otherwise known as autoimmune arthritis.
[bookmark: _kqkff6erl1py][bookmark: _Toc3211415]Arthritis Overview
Arthritis is a condition which affects joints of the body, with patients experiencing symptoms such as stiffness, swelling, and pain. Arthritis causes great discomfort and disability in its sufferers, and is the single most common cause of disability in the United States, costing approximately $200 billion per year 350. In western countries, approximately 23% of adults currently suffer from some form of arthritis, and this is likely to increase to 26% by 2040 351. Arthritis is often hard to diagnose, requiring a combination of blood tests, such as rheumatoid factor, anti-cyclic citrullinated peptide antibodies (anti-CCP) and C-reactive protein, and imaging techniques such as X-ray, MRI, and ultrasound. 
[bookmark: _gtrv3hxvp13f][bookmark: _Toc3211416]Mechanisms of Arthritis
There are over 100 different conditions which present with arthritis symptomology. One way to group these populations is whether the arthritis is linked to autoimmune condition or not. Examples of non-autoimmune arthritis include osteoarthritis (often considered “wear and tear” arthritis), and septic arthritis; arthritis caused by infection of a joint. Many autoimmune conditions present with arthritis, the most recognised being rheumatoid arthritis. Autoimmune conditions are those in which the body’s immune system is triggered to start attacking its own cells, and in the case of arthritis, this includes tissues within joints such as the hands, knees, spine and feet. 

Although both groups present with joint inflammation, the molecular mechanisms initiated during autoimmune and non-autoimmune arthritis appear to be quite distinct, reflected by the treatment options for each group. OA has long been attributed to the “wear and tear” experienced by prolonged use of the joint, either by age, profession, or weight bearing. OA is triggered when the healthy balance between generation and degradation of extracellular matrix components in cartilage is lost, and the cartilage breaks down. Subsequently, OA treatments are more mechanical; patients are encouraged to lose weight (to reduce pressure on joints), engage in physical therapy, and medications are targeted towards pain management (e.g. paracetamol). More drastic treatments may include steroid injections into the joint, and joint replacement surgery. Low-grade inflammation is beginning to be revealed as a key component in OA, however RA treatments have proven ineffective for OA symptoms 352,353. 

Autoimmune arthritis treatment on the other hand is heavily drug-based, with the administration of medications such as DMARDS (disease-modifying anti-rheumatic drugs), NSAIDS (non-steroidal anti-inflammatory drugs), TNF-alpha inhibitors, corticosteroids, and other immunosuppressants. These treatment strategies are designed to target the overactive immune system. The most common autoimmune arthritis is rheumatoid arthritis. Unlike OA, RA is a systemic condition in which other symptoms such as fatigue, high temperature, appetite and weight loss symptoms may be experienced. RA patients may also suffer from inflammation of other tissues, such as the skin, heart, lungs and eyes. RA is considered to have three phases; initiation, amplification, and chronic inflammation. Initiation of RA is likely to manifest through a combination of environmental and genetic triggers 354–356. As smoking is one of the highest risk activities associated with RA, is believed that toxins can initiate activation of macrophage, dendritic cell, neutrophil, and toll-like receptor activity in mucosal membranes 357,358. 

Once this immune response is activated, anti–citrullinated protein antibodies (ACPAs) circulate through the lymphatic system, possibly for years before symptom onset 359,360. Genetic contributions to RA have been well studied as RA is strongly heritable, with immediate family members of an RA patient being three times more likely to develop the disease than those who do not have family history of the condition 361. The major histocompatibility complex gene HLA-DRB1 has long been associated with RA risk, though a number of other genes involved in immune response pathways have been implicated through GWAS 362. It is likely that these genes, as well as those not yet identified, represent a genetic susceptibility to overactive immune responses. In the amplification phase, ACPAs as well as rheumatoid factors are localised to the synovial membrane of joints. It is not clear why joints are predominantly affected, though it is hypothesised that the nature of a calcium-rich, osteoclast dense location is attractive to ACPAs 363,364. When arthritis activates in the joint, both innate immunity cells (neutrophils) and adaptive immunity cells (B-Cells and T-Cells) are mobilised, resulting in acute synovitis 365,366. Eventually, inflammation becomes chronic. At this stage, the synovial membrane has thickened, and cartilage and bone begins to disintegrate 367,368. Immune cells are attracted to the site due to the release of chemokines and cytokines (e.g. TNF-alpha, interleukins, and interferons), promoting osteoclast formation and subsequent bone degradation 369,370.

[bookmark: _4l6gw7m318ek][bookmark: _Toc3211417]Autoimmune Conditions with Arthritis
Rheumatoid arthritis is not the only autoimmune disease to present with arthritis. Autoimmune conditions are often said to “hunt in packs”, due to the fact that presence of one autoimmune condition in a family often predisposes other family members to alternative autoimmune conditions 371–373. So, despite the fact these conditions are considered clinically distinct, it seems that the upstream genetic drivers of autoimmunity are likely to be shared, as well as some of the downstream phenotypes. Here we will discuss a number of autoimmune conditions which present with arthritis symptomology. Conditions not mentioned due to lower prevalence of arthritis include Sjogren’s syndrome, inflammatory bowel diseases such as Crohn’s disease and ulcerative colitis, and Behçet’s syndrome. 
[bookmark: _xlrt4s1lk5qj][bookmark: _Toc3211418]Rheumatoid Arthritis
Rheumatoid arthritis is the most common autoimmune arthritis, affected approximately 1% of the adult population 374. RA is twice as prevalent in women than men, and the average age of an RA patient is approximately 67 years old. The symptoms and mechanisms of RA have already been discussed. Heritability of RA is approximately 65%, and over 250 genome-wide significant loci have been associated with RA risk, though a significant amount of heritability is still unaccounted for 375.
[bookmark: _q5d7s7f5i4d3][bookmark: _Toc3211419]Psoriatic Arthritis
Psoriasis is an autoimmune condition affecting approximately 0.1% of the population, in which the turnover of skin cells is markedly increased; in a healthy individual turnover is approximately one month, whereas in psoriasis this occurs every 3-5 days 376. The premature maturation of skin cells is caused by the presence of dendritic cells, T-Cells and macrophages in the dermis, resulting in the release of inflammatory cytokines which promote proliferation 377. In some psoriasis cases, arthritis also develops, known as psoriatic arthritis (PA). PA presents similarly to RA, with chronic joint inflammation, heightened presence of immune cells in the synovium, synovial membrane thickening, and bone and cartilage degradation 378–381. Treatments for both conditions are the same, with the administration of NSAIDS, DMARDS, corticosteroids, and TNF-alpha inhibitors. Risk genes for psoriatic arthritis are still being uncovered, however a number of loci have been identified in HLA and interleukin genes.   
[bookmark: _r4ryzsc5q0eh][bookmark: _Toc3211420]Ankylosing Spondylitis
Unlike RA or PA, ankylosing spondylitis (AS) is an autoimmune condition in which the spine is predominantly affected, though in some cases shoulder and hip joints are also affected 382. Peak onset of AS is between 20 and 30 years of age, when the individual will experience a stiff, aching lower back 383. AS can, however occur in any part of the spine 382. Pathogenesis of AS contains classic markers of arthritis; influx of white blood cells into the synovium, TNF-alpha response, and increased osteoclast activity 382,384,385. In AS there is a strong association with the antigen HLA-B27, which is shared to a lesser extent with psoriatic arthritis, inflammatory bowel disease, and reactive arthritis 382. Over 90% of AS patients are HLA-B27 positive 386. AS associates with other risk variants, including those in interleukin and TNF genes 387.
[bookmark: _c87a5oi2seqh][bookmark: _Toc3211421]Juvenile Idiopathic Arthritis
Juvenile idiopathic arthritis (JIA) is reminiscent of rheumatoid arthritis in its presentation, but is isolated to children and young adults under the age of 16. Symptom onset tends to be between 1 and 6 years of age, with the child presenting with limping, high temperature, and joint swelling 388. Affected joints include hands, wrists, knees, spine, shoulders, hips and jaw. JIA patients may also present with anterior uveitis - inflammation of the anterior chamber and iris of the eye 389,390. JIA affects as many as 4 in 1000 children, with higher risk in females 391. There are 3 main subtypes of JIA - oligoarticular, polyarticular, and systemic - however they all share classic arthritis pathophysiology 388. Interestingly, oligoarticular and polyarticular JIA are driven by adaptive immunity, whereas systemic JIA is driven by innate immunity 388,392. JIA is treated with the same four drug-types we have previously discussed for arthritis conditions. The genetics of JIA resembles those we have already seen, with associations with HLA genes as well as PTPN22, TNFA, MIF, WISP3, SLC11A1 393. 
[bookmark: _xue5daiz1ebz][bookmark: _Toc3211422]Adult-Onset Still’s Disease
Adult-onset Still’s Disease (AOSD) presents in a classic triad of symptoms; joint inflammation, a raised salmon-coloured rash, and spiking fevers. Onset usually occurs at a relatively young age, with median onset around 36 years of age 394. Arthritis is not present in every case of AOSD, but is experienced by the vast majority of cases (approximately 95%) 394. The risk factors for AOSD are still unclear. The lack of a pattern of familial heritability and the rarity of patients has made both linkage and GWAS analysis of AOSD extremely difficult. Targeted gene panels have revealed polymorphisms in the interleukin gene IL-18, and a recently published study in Japanese AOSD patients has implicated a link with the gene HLA-DQB1 395,396. 
[bookmark: _ph4p7pyyhr3z][bookmark: _Toc3211423]Systemic Lupus Erythematosus
In the conditions we have covered so far, arthritis is the predominant symptom experienced by patients. In the following conditions, many other tissue types are attacked by the immune system. Aside from joint inflammation, systemic lupus erythematosus (SLE) patients may present with maladies of the skin, blood, heart, lungs, and kidneys, as well as psychiatric conditions including headaches, mood disorders, seizures, anxiety and depression 397,398. SLE affects between 40 and 100 individuals per 100,000 with higher levels reported in Hispanic and Chinese populations 399–401. First-degree relatives of an SLE patient are 20-times more likely to develop the condition, indicating a significant genetic component 402. A number of genes have been associated with risk for SLE, including STAT4, IRF5, TLR7, and PTPN22 403. Treatments for SLE arthritis are similar to those already discussed, however TNF-alpha treatments have been less successful in SLE. Fortunately, biological agents inhibiting B-cell activation have proven effective at mediating SLE symptomology 404.
[bookmark: _812cj2dx6j9j][bookmark: _Toc3211424]Building an Autoimmune Arthritis Signature
Despite variations in population demographics, genetics, and co-occurring symptoms, it is apparent that the arthritis experienced by these conditions is the result of a shared inflammatory mechanism. The pain and disability associated with joint inflammation is not only debilitating to patients but is also expensive to treat. Additionally, the drugs used to treat autoimmune arthritis have a number of unpleasant and sometimes dangerous side effects. Chronic NSAID use puts patients at significant risk of gastrointestinal problems such as heartburn and stomach ulcers 405–407. DMARDs use for long periods of time are also dangerous; chronic methotrexate use can cause liver disease and cirrhosis, and very rarely interstitial pneumonitis, which can be fatal 408–410. Biologics such as anti-TNF therapies are extremely expensive, and can leave patients at risk of infections, cancer, blood disorders, neuropathy, heart failure, and even development of autoimmune conditions 411. 

We predict that application of the methodological pipeline developed in this PhD project will lead to identification of upstream drivers of arthritis, and may reveal novel targets for arthritis treatment. Through better understanding of the mechanisms leading to arthritis, it may eventually become possible to ameliorate the symptoms experienced by patients, identify better therapeutics with less severe side effects, or even abate progression of arthritis before it the joint degenerates. 


[bookmark: _e8ks57yy9b4v][bookmark: _Toc3211425]Materials and Methods
[bookmark: _1uykf2t2ampt]Data were collected, processed and analysed as described in Chapter 2. Here we will describe any alterations made for the current analysis, also depicted in Figure 15. 
[bookmark: _Toc3211426]Data Selection, Pre-processing, and Quality Control
GEO terms used to find autoimmune cases suffering from arthritis included the term “arthritis” as well as the names of any of the aforementioned autoimmune conditions which present with symptoms of arthritic joints. Accepted tissues were limited to the synovial membrane and synovial fluid, as this is the site of the arthritic phenotype. 

Four RA and one PA datasets were sourced, each containing samples from either the synovial membrane or synovial fluid in the case of PA (Table 40). Cases of other arthritis conditions such as JIA, gout, and ankylosing spondylitis were searched for, however datasets were extremely rare, and none met our criteria. For filtering, two groups of datasets were identified. Two population-generic signatures were generated, one from three osteoarthritis datasets, and another from one tendinopathy dataset (Tables 41 & 42). These datasets represent non-autoimmune-induced inflammation within the joint (OA) and outside the joint (tendinopathy). Due to a lack of appropriate datasets to create an unaffected tissue signature, blood samples from one RA dataset (GSE55457) and blood samples from PA patients in the same dataset as synovial samples were used (Table 43). As discussed in the previous chapter, blood may carry a small arthritic gene expression signature, however it is considered divergent enough to carry out this role.


[image: ]
[bookmark: _Toc3225954]Table 40: Autoimmune arthritis datasets. Tissue indicates the source of the biological material. Disease indicates the medical condition patients had been diagnosed with. Variant indicates whether the dataset contains individuals with a known genetic cause, or individuals with sporadic status. Platform indicates the technical platform used to collect the expression data. Affymetrix platforms are microarray, Illumina are RNA-Seq. GEO ID is the reference provided by GEO to locate the original dataset. Publication contains the reference supplied with the data on GEO. 
[image: ]
[bookmark: _Toc3225955]Table 41: Osteoarthritis datasets representing a population-generic signature. Tissue indicates the source of the biological material. Disease indicates the medical condition patients had been diagnosed with. Platform indicates the technical platform used to collect the expression data. Affymetrix platforms are microarray, Illumina are RNA-Seq. GEO ID is the reference provided by GEO to locate the original dataset. Publication contains the reference supplied with the data on GEO. 



[image: ]
[bookmark: _Toc3225956]Table 42: Tendinopathy dataset representing a population-generic signature. Tissue indicates the source of the biological material. Disease indicates the medical condition patients had been diagnosed with. Platform indicates the technical platform used to collect the expression data. Affymetrix platforms are microarray, Illumina are RNA-Seq. GEO ID is the reference provided by GEO to locate the original dataset. Publication contains the reference supplied with the data on GEO.

[image: ]
[bookmark: _Toc3225957]Table 43: Rheumatoid and Psoriatic arthritis datasets representing a tissue non-specific signature. Tissue indicates the source of the biological material. Disease indicates the medical condition patients had been diagnosed with. Platform indicates the technical platform used to collect the expression data. Affymetrix platforms are microarray, Illumina are RNA-Seq. GEO ID is the reference provided by GEO to locate the original dataset. Publication contains the reference supplied with the data on GEO.
  


[bookmark: _Toc3211427]Curation of Arthritis benchmark gene lists
Benchmark gene lists were generated from rheumatoid and psoriatic-associated genes, as well as GWAS hits obtained from the GWAS Catalog. One-hundred and fourteen RA-associated genes were extracted from the “Rheumatoid Arthritis” page on the website Malacards (https://www.malacards.org/card/rheumatoid_arthritis), and 33 PA-associated genes were extracted from the “Psoriatic Arthritis” page (https://www.malacards.org/card/psoriatic_arthritis). The GWAS Catalog was queried for variants associated with five conditions - rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, juvenile idiopathic arthritis, and systemic lupus erythematosus, though only RA and PA were used for benchmarking during the development of the autoimmune arthritis signature as these were the conditions represented by the input data. 
[bookmark: _Toc3211428]Prioritisation
[bookmark: _gyngbusx3ruc]Instead of identifying LoF mutations in sequencing data, genes associated with SNPS from the GWAS Catalog (P-value threshold P < 1e-5) were scored for genetic risk in arthritis. Genes associated with only one condition scored 4, whereas genes associated with two or more genes scored 5. Random permutation analysis was conducted as in previous chapters, however the true positives used were the GWAS hit genes. Subsequently, GWAS scores were not included in the total score. As no particular gene or protein is predominantly associated with this phenotype, a protein-interaction measure was not included. 
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[bookmark: _Toc3226011]Figure 15: Workflow for autoimmune arthritis analysis. Changes to the methodology are indicated by the text boxes. All other methods remained as previous.
[bookmark: _fukgouxsxt8f]

[bookmark: _Toc3211429]Results
[bookmark: _9lggbev4jww2][bookmark: _Toc3211430]Quality control of datasets
Quality control analysis identified 2 samples to be removed from GSE89408; GSM2371180 and GSM2370971. (Appendix Figures 15-18) 

Boxplots of data pre-and post-normalisation show a relative consistency in log2 expression variance within each technology before normalisation across datasets (Appendix Figure 19). Again, RNA-Seq range is larger compared to microarray pre-normalisation, however after normalisation the difference in median is greatly reduced. 

[bookmark: _t62xaxr0pbrn][bookmark: _Toc3211431]Identification of commonly differentially expressed genes
After differential expression analysis and filtering for common fold change direction, 1062 genes were found to be commonly upregulated and 824 genes commonly downregulated for the five datasets. Random permutation testing indicated that again, the numbers of upregulated, downregulated, and total gene numbers were markedly higher than expected by chance (Table 44 & 45). A P-value could not be calculated for any of the three experiments, as the observed value did not lie within the expected distribution.

A consistent fold change signature was generated for the osteoarthritis datasets, and overlapped with the arthritis signature by 1030 genes, leaving 381 upregulated genes and 475 downregulated genes. Next, the tendinopathy signature was found to overlap by 219 genes, and once the overlap was removed, 280 upregulated and 357 downregulated genes remained. For unaffected tissue, a consistent fold signature was generated from rheumatoid and PA blood. The signature overlapped by 213 genes, leaving a common arthritic joint signature of 198 upregulated genes and 226 downregulated genes (424 overall).

Benchmark enrichment revealed significant enrichment of both RA-related genes from Malacards, and RA risk variants from the GWAS Catalog, though again, P-values were moderate (Table 46). Genes within this overlap include CRP, the gene coding for C-Reactive Protein, a key indicator of raised inflammatory response whose protein level is widely used to diagnose presence of infections and immune response. Interestingly, CRP is downregulated across our datasets, which is perhaps counterintuitive considering its raised levels usually indicating immune response. On the other hand, autoimmune arthritis does not follow the same mechanistic pathway as infection, and CRP is not a reliable test for rheumatological conditions; possibly because CRP is very sensitive to environmental factors such as obesity, pregnancy, the contraceptive pill, and hormone replacement therapy 412–415. Many other inflammation-related molecules are present in the DEG list, including interferons, and receptors for interleukins, chemokines, and transferrins, most of which are upregulated, as we would expect in arthritis.

Pathway enrichment analysis showed moderate enrichment for inflammation and immune signalling pathways in upregulated genes likely due to the number of chemokine and MAPK-related genes in the gene list. (Table 47, http://amp.pharm.mssm.edu/Enrichr/enrich?dataset=8gl7c). There was little significant enrichment in downregulated genes (Table 48, http://amp.pharm.mssm.edu/Enrichr/enrich?dataset=8gl7f). 
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[bookmark: _Toc3225958]Table 44: Total number of genes in each AA dataset and numbers of upregulated and downregulated genes used for each autoimmune arthritis dataset in random permutation testing
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[bookmark: _Toc3225959]Table 45: Results of random permutation tests indicating observed and expected numbers of common genes for autoimmune arthritis
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[bookmark: _Toc3225960]Table 46: Enrichment of RA and PA Malacards and GWAS catalog entries in DEGs
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[bookmark: _Toc3225961]Table 47: Pathway enrichment of common autoimmune arthritis upregulated DEGs. P-Values are adjusted. (ns) indicates p < 0.1
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[bookmark: _Toc3225962]Table 48: Pathway enrichment of common autoimmune arthritis downregulated DEGs. P-Values are adjusted. (ns) indicates p < 0.1


[bookmark: _46bww531d5u][bookmark: _Toc3211432]Generation of a protein-protein interaction network
Of the 424 DEGs, 418 seeded a network of 3716 proteins and 6358 protein-protein interaction edges. Benchmark enrichment revealed highly significant enrichment of RA and PA Malacards identified genes, as well as RA, JIA, and SLE GWAS genes (Table 49). Proteins of particular note include TNF, PTPN22, HLA-B, STAT4, CRP, and HLA-DQA1. Pathway enrichment revealed strong enrichments again for the immune system, and signalling pathways (Tables 50 & 51, http://amp.pharm.mssm.edu/Enrichr/enrich?dataset=8gl7i). 
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[bookmark: _Toc3225963]Table 49: Enrichment of RA and PA Malacards and GWAS catalog entries in PPI network
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[bookmark: _Toc3225964]Table 50: Top 10 enriched pathways in KEGG, Wikipathways and Reactome for the autoimmune arthritis PPI network. P-Values are adjusted.
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[bookmark: _Toc3225965]Table 51: Top 10 enriched GO terms in each category for the autoimmune arthritis protein interaction network. P-Values are adjusted.


[bookmark: _tqv70t8ic0jh][bookmark: _Toc3211433]Generation of a common coexpression module
Of the 3716 proteins in the PPI network, 2974 could be mapped to gene symbols in all five arthritis datasets. Coexpression matrices were calculated from these genes in each dataset. Analysis of the distribution of correlation values in each dataset revealed a non-normal distribution for the psoriatic arthritis dataset (Figure 16). To prevent loss of the only non-RA dataset, we then analysed the distribution of just the values above 0.5. Here we saw that the psoriatic arthritis dataset resembled normal distribution at these extremes, except for an abnormally high level of negative correlation values of -0.8 and lower (Figure 17). The dataset was retained for the following steps, followed by further assessment.

The coexpression value threshold was set at 0.55 to generate an appropriately sized network. After threshold and coexpression direction filtering, a network was generated of 590 genes and 744 edges. The largest connected component of this network was a module of 318 genes and 520 edges. The common coexpression module was first created in controls, followed by OA synovial membrane samples, and blood samples from RA and PA. It was decided that the network would not be recreated in the tendinopathy samples, as the presence of only one dataset would generate a large number of less reliable edges. Under the same thresholds, no edges could be replicated in controls. In OA samples, 36 edges were shared with OA samples. Thirty-two edges between 49 nodes from RA and PA blood samples passed the selection criteria and overlapped with the arthritis network. Removal of overlap left a common coexpression module of 271 nodes and 426 edges (Table 53 & Figure 18). 

Despite the large number of negative correlation values in the psoriatic arthritis dataset, the overall number of negatively correlated edges was a small proportion of the entire network (approximately 6%) (Figure17). Consequently, the psoriatic dataset was retained.
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[bookmark: _Toc3226012]Figure 16: Histograms of the Spearman’s Rho values in each autoimmune arthritis dataset
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[bookmark: _Toc3226013]Figure 17: Histograms of each autoimmune arthritis dataset for correlation above an absolute value of 0.55

[image: ][bookmark: _Toc530741974][bookmark: _Toc531197197][bookmark: _Toc3225966]Table 53: Members of the autoimmune arthritis common coexpression network
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[bookmark: _Toc3226014]Figure 18: The common coexpression module for autoimmune arthritis. Red edges denote positive correlations, blue edges negative correlations.
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[bookmark: _Toc3226015]Figure 19: Histogram of mean Spearman’s Rho values for autoimmune arthritis common coexpression module indicating a particularly low level of edges 


Enrichment of arthritis benchmarks revealed significant enrichment of both RA and PA Malacards gene list, indicating key genes for these conditions are present (Table 53). Enrichment analysis was conducted on RA, PA, AS, JIA and SLE GWAS Catalogs. The common coexpression module enriched highly for genes associated with SNPs in all five autoimmune arthritis conditions tested (Table 54). Genes of note include three HLA genes (HLA-B, HLA-C, and HLA-F). HLA-B in particular has been strongly associated with a number of autoimmune conditions 416–418. Disease-associated mutations in STAT4 have been observed in RA, PA, AS, JIA, and SLE, as well as Sjögren’s syndrome and asthma 419–422. CTLA4 is important for the inhibition of T-Cell activation, and has been identified to possess a strong genetic association with rheumatoid arthritis 423–426. TNF-alpha gene TNFRSF1B is also present within the network, and is biologically, genetically, and therapeutically linked to autoimmune arthritis 427–430. 
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[bookmark: _Toc3225967]Table 53: Enrichment of rheumatoid and psoriatic arthritis Malacards genes in the autoimmune arthritis common coexpression network
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[bookmark: _Toc3225968]Table 54: Enrichment of GWAS hits for five autoimmune arthritis conditions. RA = rheumatoid arthritis, PA = psoriatic arthritis, JIA = juvenile idiopathic arthritis, SLE = systemic lupus erythematosus, AS = ankylosing spondylitis.
Functional enrichment of the coexpression module revealed strong representation of signalling pathways expected for inflammatory arthritis, such as NF-kappaB, chemokine, toll-like, T-Cell, and TNF (Tables 55 & 56). Additionally, the network enriched highly for arthritis-specific KEGG pathways such as “Rheumatoid Arthritis” and “Osteoclast differentiation” (http://amp.pharm.mssm.edu/Enrichr/enrich?dataset=8gl6c). Interestingly, for the enriched pathways shared between the common coexpression module and the common DEG list, the common coexpression module enriches markedly higher. For example, in the DEG list, the KEGG pathway NF-kappa B signaling pathway has a P-value of 5.45e-6, whereas for the common coexpression module this same pathway enriched with a P-value of 3.7e-19, despite being approximately 40% smaller than the DEG list, suggesting the protein interaction and coexpression steps are successfully adding related and removing unrelated genes.
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[bookmark: _Toc3225969]Table 55: Top 10 enriched pathways in KEGG, Wikipathways, and Reactome databases for the autoimmune arthritis common coexpression module. P-Values are adjusted.
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[bookmark: _Toc3225970]Table 56: Top 10 enriched GO terms in each category for the autoimmune arthritis common coexpression module. P-Values are adjusted.


[bookmark: _a3q8bp32mw1l][bookmark: _Toc3211434]Prioritisation of in vitro candidates
Six sources of information were used to prioritise the 271 genes of the autoimmune arthritis subnetwork. As the module enriched for GWAS hits in various autoimmune conditions, genetic scoring was conducting using this information rather than identifying predicted LoF mutations from whole genome or exome sequencing data. Scoring was conducted as described in Chapter 2. 

Thirty-two genes in the network were identified as GWA genes for at least one of five autoimmune arthritis-related conditions. Random permutation testing indicated that the mean score for these genes after removal of the score for being a GWA gene (10.03) was significantly higher than expected by chance (expected mean score = 6.1, expected mean range = 3.66 : 8.97), indicating the prioritisation methodology is ranking known arthritis-associated genes significantly higher than expected by chance. The actual mean score did not lie within the distribution, so a P-value could not be calculated.

The most interconnected gene in the network was STAT4, with a lobby index of 8, and therefore the only gene to be assigned the highest score of 5 (Appendix Table 12). Fifty genes were found to be significant GeneXplain master regulators, 3 of which were in the Top 10 (Appendix Table 13). According to IPA, 44 genes were found to be regulators of another module member, the top scorers being IRF1 and STAT4 which each regulate 20 and 17 other module members, respectively (Appendix Tables 14 & 15). Three genes already associated with autoimmune conditions, HLA-B, HLA-C, and FCGR2A, were ranked within the top 10 in Endeavour score (Appendix Table 16). Forty-eight genes were commonly differentially expressed. 




[bookmark: _Toc3211435]Top Candidate Analysis
The top 8 ranked genes, which achieved a score of 19 or above, were evaluated for their relationship to autoimmune arthritis (Table 57). 
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[bookmark: _Toc3225971]Table 57: Prioritisation results for autoimmune arthritis network members scoring 19 or more


With a score of 23, TRAF1 and CD40 were the top scoring genes in the network. CD40 codes for a receptor which sits on the surface of antigen-detecting cells, such as T- and B-Cells, and regulates a number of immune and inflammation pathways. CD40 was shown to contain GWA hits for both RA and SLE (Table 58), scored highly for both GeneXplain and Endeavour predictions, and was also commonly upregulated in all 5 input datasets, as would be expected in a tissue which is actively inflamed. Increased expression of CD40 on T-Cells has been shown to be reliable indicator of active rheumatoid arthritis 431. TRAF1, or TNF Receptor Associated Factor 1, is a signalling adaptor known to regulate TNF, NF-kappaB and JNK pathways, as well as T-Cell apoptosis 432–435. GWA studies have found a significant association between TRAF1 and rheumatoid arthritis 436,437 (Table 59). Our analysis indicates TRAF1 has a relatively high connectivity within the module, and ranks very highly in GeneXplain and Endeavour analysis, and is also commonly upregulated across input datasets. Interestingly, TRAF1 has been shown to regulate CD40-induced NF-kappaB activation, perhaps explaining why these two genes are commonly upregulated 438.

CTLA4, IRF4 and IRF1 each obtained a score of 21. The role of cytotoxic T-lymphocyte associated protein 4 (CTLA4) is to downregulate immune responses. CTLA4 achieves this through binding to CD80 or CD86 proteins, effectively ‘switching off’ their ability to activate T-Cell responses 439. CTLA4 is commonly upregulated across datasets and may represent a regulatory reaction of the arthritic tissues to suppress the overactive immune response. CTLA4 is moderately connected within the network and is scored highly by GeneXplain and Endeavour. According to the GWAS Catalog, CTLA4 has been associated with a number of RA variants (Table 60). Abatacept is a biological therapeutic used to treat a number of autoimmune diseases, including rheumatoid, psoriatic, and juvenile idiopathic arthritis, and functions by mimicking the action of CTLA4 to competitively bind to CD80 or CD86, thereby reducing T-Cell activation 440. IRF4 and IRF1 are both interferon regulatory factors (IRFs). IRFs regulate interferon immune response, with IRF4 having a specific role in negatively regulating toll-receptor signalling 441. Both IRF1 and IRF4 have been linked to at least one RA-associated SNP (Table 61). Upregulation of IRF4 in our datasets suggests another inhibitory response to the upregulation of immune and inflammation pathways. IRF1 on the other hand, has a much wider range of roles. It is a transcription factor with a large number of targets, including interferons 442. It has been demonstrated to contribute to apoptosis, DNA damage, and tumour suppression 443,444. As such a prolific transcription factor, it is unsurprising that IRF1 has been predicted to be upstream by GeneXplain, and with a large number of known regulatory relationships in IPA. It is not, however, itself commonly differentially expressed in our input datasets. 

Scoring 20 was STAT4, a gene which codes for a member of the signal transducer and activator of transcription (STAT) family. As a result of cytokine activity, STATs are triggered as transcription activators. STATs have been consistently associated with rheumatoid arthritis, but are also linked to a number of other autoimmune arthritides, reflected by the presence of a large number of STAT4 GWAS variants in 3 out of the 5 conditions we have associated with autoimmune arthritis (Table 62) 445,446. These genes scored highly on a number of our upstream measures, also reflected by the fact that variants in STAT4 have been associated with the efficacy of rheumatological drugs etanercept and ustekinumab 447,448.

Finally, with a score of 19, was the gene PTPRC, otherwise known as Protein Tyrosine Phosphatase, Receptor Type C. PTPRC is an essential regulator of T- and B-Cell activity, and has been associated with response to anti-TNF therapy 449,450. Another protein tyrosine phosphatase, PTPN22, has been significantly associated with both SLE and JIA 393,403,416. In the GWAS Catalog database, mutations in PTPRC have been associated with both RA and SLE (Table 63). In our prioritisation analysis, PTPRC scored consistently mid-to-high on many of our regulatory measures, though it was not itself commonly differentially expressed. 
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[bookmark: _Toc3225972]Table 58: GWAS Catalog entries for SNPs associated with CD40
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[bookmark: _Toc3225973]Table 59: GWAS Catalog entries for SNPs associated with TRAF1
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[bookmark: _Toc3225974]Table 60: GWAS Catalog entries for SNPs associated with CTLA4
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[bookmark: _Toc3225975]Table 61: GWAS Catalog entries for SNPs associated with IRF1 and IRF4


[image: ]
[bookmark: _Toc3225976]Table 62: GWAS Catalog entries for SNPs associated with STAT4
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[bookmark: _Toc3225977]Table 63: GWAS Catalog entries for SNPs associated with PTPRC


Although in vitro analysis could not be completed within the timeline of this project, we can speculate about the candidates which would be most promising. Due to its strong genetic association with three autoimmune arthritides and its reported ability to affect the efficacy of known rheumatological drugs, STAT4 is a very good candidate. Additionally, manipulation of its expression has already been shown to rescue a systemic sclerosis phenotype in mice 451. TRAF1 is also a promising candidate, showing consistent upregulation in our datasets and is a known to function upstream of co-top scoring gene CD40. Since their function is so closely related, it would be particularly interesting to investigate these two genes in combination.



[bookmark: _ph5al3c3rzmh][bookmark: _Toc3211436]Discussion
We identified a common theme across both the genetics and the physical presentation of rheumatological conditions presenting with arthritis. Our hypothesis was that these conditions shared a common mechanism of joint arthritis that is specific to autoimmune conditions, rather than non-autoimmune causes of arthritis such as osteoarthritis. Subsequently, we believed our methodological pipeline was perfectly placed to extract those autoimmune-specific upstream drivers. Using transcription data from rheumatoid and psoriatic arthritis synovial tissue, we identified a common DEG list of 424 genes filtered to exclude those common to osteoarthritis, tendinopathy, and RA and PA blood. This common gene list enriched for RA GWAS and Malacards gene list, and showed a significant upregulation of immune and inflammation pathways. After expanding the gene list to include first degree protein interaction partners, we rebuilt the network using strongly coexpressed edges which were common across input datasets. These were again filtered to remove commonalities between controls, osteoarthritis, tendinopathy, and RA and PA blood. The largest connected component of this network was a tightly coexpressed module of 271 nodes and 426 edges. This module enriched for GWAS hits associated with five autoimmune arthritis conditions, including three not included in the original input data. The common coexpression module also enriched highly for immune and inflammation pathways, in some cases more significantly than the original DEG list, despite being smaller in size, indicating the addition of network analysis produced a more concentrated and biologically relevant gene list than simple common differential expression. After applying prioritisation scoring, the top 8 candidates were assessed for their viability as upstream drivers of autoimmune arthritis. A number of these genes have been documented to associate with autoimmune arthritis GWA variants, as well as being associated with pre-existing drugs for autoimmune arthritis conditions. Overall, we were able to show that our methodology isolated a coexpression network module which enriches highly for known upstream candidates for autoimmune arthritides, as well as a number of promising candidates.

Unfortunately, in vitro/vivo validation of this application was not possible during the time frame of this project. However, the in silico enrichment of GWA candidates indicates that there are a significant number of genetic associations within the network module, and therefore subsequent investigation of upstream drivers of autoimmune arthritis is promising. Unlike the previous two applications, which were predominantly neuron-based, in silico work would require a cellular model of quite a complex number of cells to replicate the environment of an arthritic joint. An alternative validation could be to investigate the effectiveness of our arthritis signature at predicating drug candidates; a number of tools are in development which are able to take a signature member list and make predictions of potential drugs 452–454. Neurodegenerative diseases do not typically possess known or effective medications. Arthritis, on the other hand, has a wide range of medications which are known to be effective at controlling immune/inflammation processes. This provides an opportunity to further validate our signature using signature-based drug prediction methodologies. Such a methodology is currently being built within our lab, therefore future work on will include assessment of our signature at drug-prediction based upon this system.



[bookmark: _Toc3211437]Chapter 5: Review of Pipeline
[bookmark: _Toc3211438]Introduction
For any novel methodology, we must establish how successful the method is at achieving its goal, as well as any potential weaknesses it has demonstrated through testing. The aim of this chapter is to address some questions which were raised after application to the three test cases. Namely, these questions were:
1. If other individuals wish to apply this methodological pipeline to their own problem and data, what is the range of possible datasets one can input?

2. In general, how differentially expressed are the DEGs which are identified in the early stages of the pipeline?

3. How similar or different are the output gene or protein lists for the three experiments? Could you be picking up a general “disease” signal?
[bookmark: _Toc3211439]Number of Input Datasets
If the pipeline we have developed is to be used by other parties in their own analysis, it is of benefit to conduct a more detailed investigation into the range of dataset numbers that are possible. From the experience we have gained in our own work, the pipeline is successful with between 5 and 12 input datasets, however we are unaware as to whether the pipeline is viable at dataset numbers lower or higher than this range. With fewer datasets, identification of DEGS and common edges is more likely, however if some of these datasets do not pass quality control at the coexpression stage, you are left with very few datasets to represent the phenotype. At the higher end, you are likely to lose a number of false positives due to the nature of overlapping results. At some number of datasets, it is likely that all commonality is lost. Subsequently, is beneficial to set out guidelines indicating the optimum number of datasets, so that there is room for loss of datasets, but also not too many that signal is lost.

To investigate this question, we utilised the datasets from our Parkinson’s disease application. We applied the pipeline to a subset of three, six, and the full twelve datasets to build a crude distribution of the pipeline outputs, as well as to assess the effect on changing dataset numbers on the practicality of running the pipeline. By building a distribution from these dataset numbers, we aimed to extrapolate the trends of these outputs, and potentially identify an approximate number of datasets at which the pipeline is likely to lose viability.
[bookmark: _Toc3211440]Dataset Subset Selection
To ensure the subsets of data were sufficiently representative of the full analysis, the fold change values for all genes in both patients and control samples for each of the 12 datasets were visualised using both heatmaps and cluster dendrograms. These visualisations were used to ensure any datasets which appear as outliers (for reasons other than platform) are not included in the analysis.

On visualising gene expression via heatmap, there was little indication that any datasets were clear outliers, except for GSE69719, the single RNA-Seq dataset (Figure 20). The separation of RNA-Seq was expected as it is known that RNA-Seq has a more dynamic range of fold-change values than microarray 92. Subsequently, we reanalysed the clustering based on a binary “upregulated” or “downregulated” assignment for each gene, the function colour_clusters from the package dendroextras was applied to a matrix of values where a positive value of 1 was given if the gene was upregulated compared to controls, and a negative value of -1 if downregulated. By applying this data transformation, we expected to see the effect of the RNA-Seq platform reduced, as the specific fold change values were not being analysed, instead only their relationship to the control data. As expected, clustering on the binary data revealed few differences between the datasets, whether due to platform, tissue or disease group (Figure 21). One dataset, GSE7621, clustered somewhat separately, despite being sporadic patients analysed on a microarray platform. 

After review of these results, the dataset selections were as depicted in Table 64. These were chosen as we wanted to take a wide variety of datasets to ensure we were not biasing our results towards similar structured datasets.
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[bookmark: _Toc3226016]Figure 20: A clustered heatmap for all PD datasets. Datasets were clustered based on columns (i.e. by datasets). Greyscale row indicates tissue source (SN, FC or other midbrain area). Magenta row indicates the platform. Salmon row indicates whether the datasets contained sporadic or LRRK2 datasets. Clustering indicated a separation of the dataset GSE69719. Blue values are downregulated, cream values are upregulated.
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[bookmark: _Toc3226017]Figure 21: Dendrogram of datasets clustered based on up- or down-regulation of genes. Greyscale row indicates tissue source (SN, FC or other midbrain area). Magenta row indicates the platform. Salmon row indicates whether the datasets contained sporadic or LRRK2 datasets. Clustering indicated a separation of the dataset GSE7621.
[image: ]
[bookmark: _Toc3225978]Table 64: Dataset selection for 3, 6, and 12 dataset analysis. Highlighted datasets indicate the progression from three to six to twelve datasets. Tissue, Platform, and Disease Group indicate the mix of backgrounds used for each analysis.

[bookmark: _Toc3211441]Results
The pipeline was applied to the 3-dataset and 6-dataset combinations exactly as described in Chapter 3. Results can be found in Table 65. Results indicate that as the numbers of input datasets doubles, the rate in which DEGs, PPI nodes and common coexpression nodes are generate also decreases exponentially. For example, increasing from 3 to 6 datasets resulted in a reduction of approximately 50% of DEGs, whereas from 6 to 12 datasets resulted in a reduction of approximately 86% of genes. Graphs of these values alongside a predictive linear model suggest that due to values for DEGs and coexpression modules, a maximum input of less than 13 datasets is recommended (Figure 22). It is also worth noting that although 3 dataset analysis is possible, it significantly increases computation time and power and may pose problems from a resource availability perspective.
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[bookmark: _Toc3225979]Table 65: Results of application of pipeline to 3, 6, and 12 input datasets: Results indicate a clear pattern of reduction in number of DEGs, PPI nodes and common coexpression nodes as the number of input datasets is doubled. 
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[bookmark: _Toc3226018]Figure 22: Plots indicating minimum and maximum numbers of input datasets: Plot A represents numbers of common DEGs, and indicates a maximum input dataset value of 12 datasets. Plot B represents the PPI network, and indicates a slightly higher value of less than 16 datasets. Plot C represents common coexpression module, and also indicates a value of less than 13 datasets. Red lines indicate linear models of the 3 reported values for each plot.

[bookmark: _Toc3211442]Differential Expression of Genes
As our definition of gene differential expression is unconventional, we decided to investigate the variability of expression for these genes in each application. The log2 fold change values of each gene across the input datasets were plotted as boxplots (Figure 23). From these plots we can see that the consistency in gene expression can be quite variable, most probably due to the small size of input datasets. There are some clear outliers, such as in the Parkinson’s datasets (Figure 23B). What is clear is that these genes do not conform to the standard practice of fold change thresholds, however this is not necessarily an issue; arbitrarily assigned thresholds such as fold change and P-value have been criticised, as it allows a degree of subjectivity to be introduced into the assignment of a gene’s value 455. Not only this, the use of thresholds leads to promotion of the importance of gene expression variability, rather than consistency. Subsequently, we are still confident that our prioritisation of defining differential expression by consistency rather than scale is appropriate for our pipeline. 
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[bookmark: _Toc3226019]Figure 23: Boxplots of Log2 Fold Change for common DEGs across datasets. A indicates log2 fold change distributions for common DEGs across the six TDP-43 datasets. B indicates log2 fold change distributions for common DEGs across the twelve PD datasets. C indicates log2 fold change distributions for common DEGs across the twelve autoimmune arthritis datasets. The red line indicates the position of 0 log2 fold change. Genes are ordered by median log2 fold change value. Values have been re-centered around zero.

[bookmark: _Toc3211443]Overlap Between Signatures
Though not necessarily irrelevant to each condition, these pathways highlight a possible weakness in the pipeline – how much common signal is being picked up across different diseases? It was mentioned above that the size of the network is quite large, and the presence of common pathways suggests we could be accumulating some “generic disease” signal. To investigate, we conducted a simple protein name overlap, visualised in Figure 24. Here we can see approximately a third of each protein interaction network is shared by each condition. Overlap of these expansive, generic core processes could well be reflecting a bias of the protein interaction methodology towards more ubiquitous, housekeeping proteins. As a result, it would be of benefit in future to develop a more rigorous selection process for expanding the protein network, one that perhaps gives less weight to proteins which are generally more promiscuous. 

The overlap, however, is less of an issue once the common coexpression networks are defined. Figure 25 shows an equivalent diagram for the common coexpression modules of each application. Here we can see that 16 genes are shared between the common coexpression modules in each of the three applications – substantially less than a third of each network (Table 66). Of these 16, none are particularly related to the application phenotypes, and none are ranked highly in the prioritisation process. Also, the presence of shared signal it is not necessarily a fault in the pipeline, as the relationship between inflammation and neurodegeneration has been well documented, and more recently that a relationship exists between the development neurodegeneration and arthritis specifically195,456–458. We see further support in the higher number of module members shared between the two neurodegenerative conditions versus autoimmune arthritis. Subsequently, a further application on a condition much further removed from these conditions would hopefully give a better indication of the ability of this pipeline to isolate only phenotype-specific signals. 
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[bookmark: _Toc3226020]Figure 24: A Venn diagram depicting the overlap between protein-protein interaction networks in each application
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[bookmark: _Toc3226021]Figure 25: A Venn diagram depicting the overlap between common coexpression module members in each application
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[bookmark: _Toc3225980]Table 66: Results indicating the percentage of each protein interaction network and common coexpression module which is shared across all three applications



[bookmark: _Toc3211444]Chapter 6: Conclusion and Future Work
[bookmark: _Toc3211445]Summary
The overall aim of this project was to develop a methodological pipeline capable of producing signatures shared across populations that contain laboratory-validated upstream drivers. Our objectives were that the pipeline would be able to successfully incorporate small datasets from variable technical platforms, to incorporate genomic, transcriptomic, and proteomic data, to survive rigorous testing at each development stage, and be validated through prioritisation and selection of predicted upstream drivers, which will subsequently be tested in vitro or in vivo.
[bookmark: _Toc3211446]Pipeline Development and TDP-43
The first step was to build a methodological pipeline that would form the basis of our signature development and which conformed to the objectives laid out above. To do so required a case phenotype on which to conduct the analysis, and TDP-43 dysfunction was chosen for this role. Datasets pertaining to this phenotype were sourced and quality controlled. These datasets then underwent differential expression analysis, and the methodology by which differentially expressed genes were identified was defined as genes whose direction of dysregulation was consistent across all input datasets. We produced a gene list significantly larger than expected by chance, and significantly enriched with pathways and gene lists representative of TDP-43 dysfunction. To gain functional context for the DEG list, the DEGs were used to seed a protein-protein interaction network, the members of which continued to enrich for TDP-43-associated biology. The nodes of this network were then used to build coexpression networks in each input dataset, and edges were filtered to include only those who existed in all input datasets, whose coexpression direction was conserved, and whose strength of coexpression was above a certain value. The largest connected component of this network, 232 nodes and 529 edges, was selected to represent the phenotype-associated signature. The network module contained two known ALS genes, TBK1 and GARS, enriched for TDP-43-causative and TDP-43 protein interaction genes, and formed a significant number of protein-protein interaction relationships with know TDP-43-causative genes. Prioritisation was conducted using a number of information sources, and successfully ranked known TDP-43-assocaited genes highly. Analysis of the top 5 ranked genes indicated a number of promising candidates for in vitro validation, of which 3 were chosen, alongside a control. Knockdown of known ALS gene TBK1 produced shortened neurite length, an established neurodegenerative phenotype, but no TDP-43 specific dysfunction. Knockdown of DDX1 caused marked neuronal cell death, however this result is as of yet unconfirmed as neurodegenerative. Finally, knockdown of YBX1 resulted in the same aberrant presence of TDP-43 protein in the cytoplasm, as happens in disease.

[bookmark: _Toc3211447]Further Applications
As our pipeline was developed in tandem with experimentation on TDP-43 dysfunction, we needed to establish the applicability of this pipeline to other phenotypes. Consequently, we performed two further applications of the methodology to identify signatures shared between sporadic and LRRK2 Parkinson’s disease, and between autoimmune arthritides. The signature developed for PD enriched for LRRK2 PPI genes, and enriched for a number of mitochondrial and UPS pathways. Prioritisation ranked already PD-associated gene UCHL1 as the highest ranked gene, with those in the top 9 showing clear association with PD in the literature. Although an in vitro validation of these candidates was not possible in the timeframe of this project, a further application could be conducted on another phenotype – autoimmune arthritis. Using data from rheumatoid and psoriatic arthritis, a signature was created which not only enriched with GWAS genes from these conditions, but also genes from three other autoimmune arthritides which were not included in the analysis. The module also enriched highly for immune and inflammation pathways, in some cases more significantly than the original DEG list, despite being smaller in size. The top ranked candidates not only have key documented roles in immune and inflammatory pathways, but some are also associated with known drugs used to treat autoimmune arthritis conditions. Again, due to time restraints, in vitro analysis was not possible, however there are a number of very promising candidates.

[bookmark: _Toc3211448]Pipeline Strengths
In the Introduction we identified a number of areas which we believed were contributing to the lack of reliable signatures. We identified issues with bias, the influence of poor controls and signature inconsistency, and conducted a brief review of nine studies whose attempts at signature generation revealed the inadequacies of current methodologies. We believe the pipeline we have developed successfully meets each of these criteria. It can produce meaningful results from particularly small datasets, with the sole caveat that the datasets must contain enough samples for calculating correlation. From our observations, this is possible with at least 4 samples, but understandably the results from such underpowered data are less reliable. Subsequently, it is important to assess the quality of correlation analysis results, and also assure there are enough larger datasets to corroborate the results. The pipeline is also capable of incorporating datasets from not only different platforms within a technology, but across both microarray and RNA-seq. As expected, there were issues with variable annotation causing a potential loss of true positive signal, however the processes of expanding a simple DEG list into network analysis allowed recuperation of some of that signal. 

As well as multiple platforms, we were also able to incorporate a number of data types. Multi-omic analyses are now being pushed further to the forefront of bioinformatics, with the understanding that evidence which resonates across many data types has a higher reliability than evidence from a single source. We must, however, be wary of each of those data sources. Transcriptomic data is highly variable, and subject to issues of replication 157. Proteomic data is particularly vulnerable to false records of protein interaction events (whether by non-specific binding in experiments or by insufficiently controlled computational predictions) and is generally less well studied than other ‘omic areas 459. Genomic data is highly complicated in each of acquisition, processing, and interpretation 460. For the vast majority of medical conditions, we are still quite ignorant of both the individual and collaborative contributions genetic variants make. Furthermore, each of these contributions possesses a heterogeneric profile depending on the individual. Consequently, the role of multi-omic analysis is integral to the provision of reliable scientific discovery.

We can also make sure that our discoveries are supported by a scaffold of robust statistical testing. When Venet and colleagues identified that even a statistically significant cancer signature is not necessarily a reliable result, it made clear that single statistical tests are an insufficient measure of success 54. We supported this conclusion, and so ensured that a number of statistical tests were made at each level of analysis. We established that our DEG sets were significantly larger than expected by chance, that each gene or protein list enriched for gene lists and pathways associated with the phenotype, and that our prioritisation approach was successfully assigning high scores to genes we would expect to rank highly. As well as statistical support, for our first application in TDP-43 dysfunction we were also able to provide in vitro validation for novel upstream drivers, satisfying the final objective of this project.

When considered in reference to the nine studies reviewed in the Introduction, our methodology has been able to fulfil each of the nine criteria assessed. Our pipeline is multi-omic, cross-tissue, and cross-platform, makes use of sophisticated network analysis, and produces consistent, validatable signatures – something which, as of yet, has not been achieved before.
[bookmark: _Toc3211449]Assessment and Future work
[bookmark: _Toc3211450]Further validations
In the time scale of this project, we have managed to achieve the vast majority of the aims and objectives we set out at the start. A few, however, were not able to be completed in this time, predominantly the in vitro validations. We do, however, have a number of plans in place for further in vitro work. The TDP-43 discoveries in iPSC neurons are already undergoing replication to establish our findings are reliable, and the results will hopefully contribute to a publication demonstrating the identification of a new upstream driver of TDP-43 dysfunction. Additionally, we are reaching out to a number of possible PD collaborators to test some of the top ranked Parkinson’s disease candidates, again hopefully resulting in publication. As previously mentioned, for autoimmune arthritis we are interested in conducting some in silico validations within the Hide Lab using a drug repositioning framework currently under development. This will hopefully show our autoimmune arthritis signature is able to successfully predict known drug candidates for these conditions, as well as potentially identify repositionable drugs, saving huge amounts of time and money in drug discovery.

A further validation of value for each dataset would also be to attempt replication in external datasets. Unfortunately, we could not attempt this for any of the three applications due to the lack of availability of data for these conditions. A direct consequence on working with data from rare conditions, with very specific criteria for acceptance is a very small pool of acceptable datasets. We chose to use this data for building the signatures, with the hope that over time new datasets would emerge to satisfy the conditions we set out in this project. 

[bookmark: _Toc3211451]Further applications
As well as validating our existing applications, we already have plans for further applications. For example, there is a great deal of publicly available data on inflammatory bowel disease, which - like arthritis – has a number of known drugs associated with it, allowing for more drug repositioning work. In fact, the possible applications of this pipeline are numerous, as it only requires a handful of small datasets and a quantifiable phenotype. Before it is applied to other conditions, however, there are a number of improvements that should be made to the pipeline protocol. 

[bookmark: _Toc3211452]Pipeline Improvements 
[bookmark: _Toc3211453]Gene expression analysis
For gene expression analysis, the expression direction approach is one not generally employed for meta-analyses, unlike, for example, P-value combination. We achieved successful results with this approach and showed that the number of DEGs identified was significantly more than expected by chance, indicating a stronger relationship between the datasets than one would expect. Despite our success, we admit this approach is vulnerable to some biases. The number of input data sets changes the number of DEGs, due to the fact each additional dataset will remove a certain proportion of this gene list. This process is good for removing the noise of each individual dataset, however it is also likely to remove true positives; all it takes is one dataset to show opposite direction of dysregulation to the other datasets, and that gene is removed. A good investigation to undertake would be to analyse the effect of setting a threshold – for example, is 90% concordance acceptable? How does this change the results? Genes are also lost through the process of filtering, using the tissue non-specific or condition-generic datasets. Although this process helped us identify possible unspecific signals, it was often not possible to identify the most appropriate data for the role. At times we had to use blood in both roles, which, if we designed the experiment wholly ourselves including data generation, we would not ideally have chosen. Unfortunately, the availability of data is limited to what is available publicly, unless an experimenter has resources to generate their own data. For example, if this experiment were to be designed with the necessary funding, tissue non-specific data would have been collected from the same patients, from an appropriate control tissue. As we did not possess the required time nor funding, we sourced the best data we could find publicly.

[bookmark: _Toc3211454]Protein interaction analysis 
The use of protein interaction at this next stage could be criticised, due to the likelihood of false positives stemming from protein interaction data. An alternative suggestion would be canonical coexpression, however this poses its own problems - Which canonical database to use? How do you decide which edges are “valid” and which are not? Can it be tissue specific? What if your expression data is sourced from multiple tissue types? Do the edges need to be consistent across those tissues? What if data doesn’t exist for that tissue? Despite the issues with false positives in protein interaction data, we still believe this is the preferable data source for the edges in this stage of network expansion. As this network provides a framework rather than the final result, we have the capability later on to remove those false positives. Within our use of protein interaction, a few improvements could admittedly be made. During the timeline of this project, IrefIndex released IrefIndex 15.0, which could replace our current use of IrefIndex 14.0. Additionally, a more careful analysis could be conducted to reduce the amount of protein loss due to annotation differences, a challenge experienced often when working within the proteome. Though not isolated to the proteome by any means, the size of the network at this stage leaves us vulnerable when interpreting the results of any sort of enrichment. Enrichment analysis is fundamentally tied to the size of the input list, subsequently we see very similar enrichment in very broad categories across all three applications, including pathways such as “Disease”, “Gene Expression”, “Immune system”, as well as a number of proteasomal proteins. 

[bookmark: _Toc3211455]Common coexpression analysis
At the common coexpression network stage, one of the main vulnerabilities – as we have seen with a number of stages – is the number of input datasets. Too few datasets and the experiment is vulnerable to dataset-loss during quality control (particularly datasets with the smallest sample numbers), and edges are less reliable. Too many datasets and correlation thresholds need to be dropped drastically to retain any edges. As with differential expression, an investigation into the optimal protocols at this point would be beneficial to any future users. It would be helpful to know the optimal number of datasets, and if a subset needs to be selected, which are the best candidates considering sample numbers, platform, and tissues/diseases to be represented? Further investigation also need to be made into the methodology for selecting the correlation threshold. Currently, the threshold is selected based on the number of output genes it generates. This logic in of itself is not necessarily an issue, despite the biases of the experimenter defining a network size, however its application could be designed more formally. For example, an algorithm could be designed which tests each threshold value and compares “success” using a particular benchmark. That benchmark could be enrichment of a gene list relating to the phenotype (under the understanding this benchmark could not be used for validation by enrichment at later stages), or a topological benchmark relating to the optimal connectivity of the network. 

[bookmark: _Toc3211456]Upstream analysis
In terms of upstream analysis and relating the signatures to genetic data, this area requires a great deal of further work. As the network modules themselves contain no information on directionality or whether the members are upstream or downstream of the phenotype, it is up to ourselves as the experimenters to derive this information from alternate sources. GWAS enrichment was only successful in autoimmune analysis, which could be the result of the commonality of arthritis in comparison to neurodegenerative conditions, but also could reflect inconsistency in our signature’s ability to isolate upstream genetic factors. As a result of a lack of GWAS enrichment, we looked to raw genetic sequencing data to provide information on LoF mutations in the network members. Although Gemini accumulates a large number of resources to predict LoF mutations, these are hard to assess in terms of their validity. Subsequently, this information was not used solely for validation work, but in tandem with a number of other information sources for prioritisation. Subsequently, if a gene contained a false-positive LoF mutation, its ability to be highly ranked is offset by curated information from a number of other sources. The aim of our pipeline is not specifically to identify genetic causes of the phenotype (though this is possible), but drivers in general, which may or may not exhibit genetic variance in patients. With the appropriate expertise, however, we may in future be able to refine this process.  

[bookmark: _Toc3211457]Target prioritisation
Although the prioritisation approach we presented in this project are not intrinsic to the pipeline – any preferred prioritisation method could be used – our approach achieved a certain degree of success. Subsequently, with further improvement, this particular prioritisation approach could be very effective, as it considers genes specific to the phenotype of interest and their expression in the input data. Due to the fact many of the genes in the network achieve similar scores, it is likely that more data sources should be included. Something which is currently missing is some sort of literature-based score to assess association with the phenotype. One possible source to satisfy this problem is the web tool VarElect (ve.genecards.org). Through input of a gene list alongside important terms related to the phenotype, VarElect ranks genes on their association with these terms based on a number of databases, as well as literature links. From a mathematical perspective, our prioritisation approach could include a system of weighting more and less important data sources. This could provide a more accurate score, e.g. protein interaction with a causative gene might be more important than a high rank in Endeavour. 

[bookmark: _Toc3211458]Impact
Any new methodology must be built with the understanding that it provides a novel approach that is otherwise lacking in the field. In the introduction, we identified a significant bottleneck in traditional biological discovery, ultimately leading to lengthy interims between first observation and first successful treatment. The significance of this bottleneck to treatment was also lengthened in correlation with the rarity of conditions, due to small populations and subsequent small datasets. In response, we have developed a computational, data-driven methodology that not only reliably identifies upstream drivers of a phenotype, but does so through the use of small datasets, and in a much-reduced period of time. The impact of this methodology is highly significant; many of our most untreatable conditions are also our rarest and have so far been highly elusive when it comes to understanding their mechanisms and treatments. Rare conditions are by nature small populations, making large-scale analyses such as GWA inordinately more expensive and time-consuming, or for the extremely rare, impossible. Through our approach we have the ability to develop custom-made panels from our signatures, drastically reducing the number of participants required for well-powered population-based analyses, allowing these types of studies to be conducted on rare conditions with much smaller populations. Additionally, unlike conventional GWAS, the candidates in these panels will already possess a functional relationship with the phenotype, combating a common pitfall in which variants identified by GWA struggle to be characterised in relation to the condition they are associated with 15. Subsequently, not only can our approach derive meaningful results from small datasets, its legacy may well lead to a reduction in the sample sizes required for future genomic discovery. 

As well as utilising small data, we proposed that new methodologies are needed which generate novel biological discoveries rapidly, potentially saving both significant amounts of time and money. We believe the approach reported in this thesis is capable of representing this shortcut. For example, TDP-43 pathology was first identified in 2006. It took 9 years for the gene TBK1 to be associated with the phenotype, the result of exome sequencing in nearly ten thousand ALS patients and controls 111,461. Such a lengthy timeline of discovery very likely resulted in the accumulation of substantial financial costs. Alternatively, with just over a hundred samples and a pipeline application time of approximately 2-3 weeks, we have made the very same discovery in a fraction of the time, at a fraction of the cost. Not only this, we have also been able to replicate discovery of established upstream drivers of two subsequent phenotypes, and identify two potential novel upstream drivers of TDP-43 pathology in vitro.

If, as we believe, these candidates represent upstream drivers of phenotypes, they may also have the potential to be prognostic. Testing prognostic ability would require data which we do not currently have access to, however considering the failure rates of current prognostic signatures, this could be an exciting application of the output of our pipeline. Another predictive application of our signatures would be the prediction of drug target candidates. A number of methodologies are beginning to be revealed which use signatures to predict drug candidates. Some, like the L1000CDS2 platform developed by the National Institute of Health (NIH) can take a gene expression signature to predict drug targets 452. A platform developed within the Hide Lab has been built to achieve a similar outcome, with a heavier focus on dysregulation at the pathway level 462. If we are able to demonstrate our signatures’ abilities to predict known drugs –as could be possible in arthritis – we may also be able to identify novel drugs which score highly in these predictions.

In summary, not only has our approach achieved the majority of aims and objectives set out at its inception, we have subsequently found it to possess more than one string to its bow; as well as deciphering the core contributors to elusive phenotypes, we have identified a number of opportunities for its application in population genetics, in drug discovery, and possibly also in prognosis. In the Introduction we described many obstacles facing successful treatment of complex diseases, however with methodologies such as the one developed here at our disposal, these treatments may not be as far away as once thought.
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[bookmark: _Toc3226022]Appendix Figure 1: Quality control results for GSE68605. A shows a PCA plot of all samples. B shows a boxplot of the log2 expression of the genes in each sample. C shows an unsupervised clustering dendrogram of all samples. All expression is non-normalised. Orange indicates patients, turquoise indicates controls.
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[bookmark: _Toc3226023]Appendix Figure 2: Quality control for GSE13162. A shows a PCA plot of all samples. B shows a boxplot of the log2 expression of the genes in each sample. C shows an unsupervised clustering dendrogram of all samples. All expression is non-normalised. Orange indicates patients, turquoise indicates controls. Box indicates removed sample.
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[bookmark: _Toc3226024]Appendix Figure 3: Quality control results for GSE67196. A shows a PCA plot of all samples. B shows a boxplot of the log2 expression of the genes in each sample. C shows an unsupervised clustering dendrogram of all samples. All expression is non-normalised. Orange indicates patients, turquoise indicates controls. Box indicates removed sample.
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[bookmark: _Toc3226025]Appendix Figure 4: Quality control results for GSE6220. A shows a PCA plot of all samples. B shows a boxplot of the log2 expression of the genes in each sample. C shows an unsupervised clustering dendrogram of all samples. All expression is non-normalised. Orange indicates patients, turquoise indicates controls
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[bookmark: _Toc3226026]Appendix Figure 5: Variance of each TDP-43 dataset before and after normalisation. Plots indicate a consistent range of variance in log2 expression between microarray (A-D) and RNA-Seq (E-F) conditions. RNA-Seq range is larger compared to microarray, though this is expected due to technological differences
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[bookmark: _Toc3225981]Appendix Table 1: LoF results for TDP-43 common coexpression genes. Gene Symbol indicates the reported associated HGNC symbol. Hom/Het indicates if the mutation was homozygous or heterozygous in the patient it was discovered in.
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[bookmark: _Toc3225982]Appendix Table 2: Lobby index values for TDP-43 common coexpression module members and resulting prioritisation score from 1-5.
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[bookmark: _Toc3225983]Appendix Table 3: GeneXplain rank for TDP-43 common coexpression module members. Ranks sum is the score given by GeneXplain on which genes are ranked. Prioritisation is scored 1-5.
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[bookmark: _Toc3225984]Appendix Table 4: IPA regulatory relationships between TDP-43 common coexpression module members.
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[bookmark: _Toc3225985]Appendix Table 5: IPA scores for TDP-43 common coexpression module members. Number of targets refers to the number of molecules each From Molecule influences. Scores are from 1-5 based on this value
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[bookmark: _Toc3225986]Appendix Table 6: Endeavour Scores for TDP-43 common coexpression module members. Endeavour rank is the position after ranking by p-value. Score is from 0-5.
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[bookmark: _Toc3226027]Appendix Figure 6: Quality control results for GSE49036. A shows a PCA plot of all samples. B shows a boxplot of the log2 expression of the genes in each sample. C shows an unsupervised clustering dendrogram of all samples. All expression is non-normalised. Orange indicates patients, turquoise indicates controls
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[bookmark: _Toc3226028]Appendix Figure 7: Quality control results for GSE7621. A shows a PCA plot of all samples. B shows a boxplot of the log2 expression of the genes in each sample. C shows an unsupervised clustering dendrogram of all samples. All expression is non-normalised. Orange indicates patients, turquoise indicates controls
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[bookmark: _Toc3226029]Appendix Figure 8: Quality control results for GSE8397 (substantia nigra). A shows a PCA plot of all samples. B shows a boxplot of the log2 expression of the genes in each sample. C shows an unsupervised clustering dendrogram of all samples. All expression is non-normalised. Orange indicates patients, turquoise indicates controls
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[bookmark: _Toc3226030]Appendix Figure 9: Quality control results for GSE20141. A shows a PCA plot of all samples. B shows a boxplot of the log2 expression of the genes in each sample. C shows an unsupervised clustering dendrogram of all samples. All expression is non-normalised. Orange indicates patients, turquoise indicates controls
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[bookmark: _Toc3226031]Appendix Figure 10: Quality control results for GSE20292. A shows a PCA plot of all samples. B shows a boxplot of the log2 expression of the genes in each sample. C shows an unsupervised clustering dendrogram of all samples. All expression is non-normalised. Orange indicates patients, turquoise indicates controls
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[bookmark: _Toc3226032]Appendix Figure 11: Quality control results for GSE68719. A shows a PCA plot of all samples. B shows a boxplot of the log2 expression of the genes in each sample. C shows an unsupervised clustering dendrogram of all samples. All expression is non-normalised. Orange indicates patients, turquoise indicates controls

[image: ][image: ]C
A
B

[image: ]

[bookmark: _Toc3226033]Appendix Figure 12: Quality control results for GSE20168. A shows a PCA plot of all samples. B shows a boxplot of the log2 expression of the genes in each sample. C shows an unsupervised clustering dendrogram of all samples. All expression is non-normalised. Orange indicates patients, turquoise indicates controls
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[bookmark: _Toc3226034]Appendix Figure 13: Quality control results for GSE20291. A shows a PCA plot of all samples. B shows a boxplot of the log2 expression of the genes in each sample. C shows an unsupervised clustering dendrogram of all samples. All expression is non-normalised. Orange indicates patients, turquoise indicates controls
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[bookmark: _Toc3226035]Appendix Figure 14: Variance of each Parkinson’s disease dataset before and after normalisation. Plots indicate a consistent range of variance in log2 expression between microarray (A-E, G-L) and RNA-Seq (F) conditions. RNA-Seq range is slightly larger compared to microarray, and GSE23290 shows a small range pre-normalisation, which is rectified post-normalisation.
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[bookmark: _Toc3225987]Appendix Table 7: Lobby index values for PD common coexpression module members and resulting prioritisation score from 1-5.
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[bookmark: _Toc3225988]Appendix Table 8: GeneXplain rank for PD common coexpression module members. Ranks sum is the score given by GeneXplain on which genes are ranked. Prioritisation is scored 1-5.
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[bookmark: _Toc3225989]Appendix Table 9: IPA regulatory relationships for PD common coexpression module members
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[bookmark: _Toc3225990]Appendix Table 10: IPA scores for PD common coexpression module members. Number of targets refers to the number of molecules each From Molecule influences. Scores are from 1-5 based on this value.
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[bookmark: _Toc3225991]Appendix Table 11: Endeavour Scores for PD common coexpression module members. Endeavour rank is the position after ranking by p-value. Score is from 0-5.
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[bookmark: _Toc3226036]Appendix Figure 15: Quality control results for GSE55457. A shows a PCA plot of all samples. B shows a boxplot of the log2 expression of the genes in each sample. C shows an unsupervised clustering dendrogram of all samples. All expression is non-normalised. Orange indicates patients, turquoise indicates controls
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[bookmark: _Toc3226037]Appendix Figure 16: Quality control results for GSE55235. A shows a PCA plot of all samples. B shows a boxplot of the log2 expression of the genes in each sample. C shows an unsupervised clustering dendrogram of all samples. All expression is non-normalised. Orange indicates patients, turquoise indicates controls
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[bookmark: _Toc3226038]Appendix Figure 17: Quality control results for GSE89408. A shows a PCA plot of all samples. B shows a boxplot of the log2 expression of the genes in each sample. C shows an unsupervised clustering dendrogram of all samples. All expression is non-normalised. Orange indicates patients, turquoise indicates controls
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[bookmark: _Toc3226039]Appendix Figure 18: Quality control results for GSE77298. A shows a PCA plot of all samples. B shows a boxplot of the log2 expression of the genes in each sample. C shows an unsupervised clustering dendrogram of all samples. All expression is non-normalised. Orange indicates patients, turquoise indicates controls
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[bookmark: _Toc3226040]Appendix Figure 19: Variance of each autoimmune arthritis dataset before and after normalisation. Plots indicate a consistent range of variance in log2 expression between microarray (A, B, D, & E) and RNA-Seq (C) conditions. RNA-Seq range is slightly larger compared to microarray but similar to ranges expected from this platform.
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[bookmark: _Toc3225992]Appendix Table 12: Lobby index values for autoimmune arthritis common coexpression module members and resulting prioritisation score from 1-5.
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[bookmark: _Toc3225993]Appendix Table 13: GeneXplain rank for autoimmune arthritis common coexpression module members. Ranks sum is the score given by GeneXplain on which genes are ranked. Prioritisation is scored 1-5.
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[bookmark: _Toc3225994]Appendix Table 14: IPA regulatory relationships between autoimmune arthritis common coexpression module members
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[bookmark: _Toc3225995]Appendix Table 15: IPA scores for autoimmune arthritis common coexpression module members. Number of targets refers to the number of molecules each From Molecule influences. Scores are from 1-5 based on this value.
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[bookmark: _Toc3225996]Appendix Table 16: Endeavour Scores for autoimmune arthritis common coexpression module members. Endeavour rank is the position after ranking by p-value. Score is from 0-5.
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Integrated Pancreatic 
Cancer Pathway (0.022) ~ Regulation of  apoptotic 



process (ns) ~ ~



4 Rap1 signaling pathway 
(0.022)



Apoptosis (Mouse) 
(0.026) ~ ~ ~ ~



5
Signaling pathways 
regulating pluripotency 
of  stem cells (0.022)



Apoptosis (Human) 
(0.028) ~ ~ ~ ~



6 HIF-1 signaling pathway 
(0.042)



Apoptosis Modulation 
and Signaling (0.032) ~ ~ ~ ~



7 Focal adhesion (ns)



MFAP5-mediated 
ovarian cancer cell 
motility and invasiveness 
(0.033)



~ ~ ~ ~



8 Apoptosis (ns)
Imatinib Resistance in 
Chronic Myeloid 
Leukemia (0.038)



~ ~ ~ ~



9 ~



XPodNet - protein-
protein interactions in the 
podocyte expanded by 
STRING (0.039)



~ ~ ~ ~



10 ~ Focal Adhesion (0.039) ~ ~ ~ ~
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Rank KEGG Wikipathways Reactome GO BP GO MF GO CP



1 Parkinson's disease 
(0.001)



TCA Cycle and 
PDHc (0.024)



Respiratory electron 
transport (0.0012)



Macroautophagy 
(0.0011)



Ubiquitin-like protein 
ligase binding (2.64e-6)



Mitochondrion 
(1.794e-9)



2 Oxidative 
phosphorylation (0.003)



Amino acid 
metabolism (0.026)



Respiratory electron 
transport, ATP synthesis by 
chemiosmotic coupling, and 
heat production by 
uncoupling proteins (0.0026)



Autophagosome 
assembly (0.0017)



Ubiquitin protein 
ligase binding (2.64e-6)



Mitochondrial inner 
membrane (0.00028)



3
Non-alcoholic fatty 
liver disease 
(NAFLD) (0.0045)



Electron Transport 
Chain (Human) 
(0.026)



COPI-independent Golgi-
to-ER retrograde traffic 
(0.0072)



Negative regulation of  
exocytosis (0.0078)



NADH dehydrogenase 
activity (ns)



Cytoplasmic dynein 
complex (0.012)



4 Metabolic pathways 
(0.0048)



Parkinson’s Disease 
Pathway (0.026)



The citric acid (TCA) cycle 
and respiratory electron 
transport (0.0096)



Mitochondrial ATP 
synthesis coupled 
electron transport 
(0.0078)



Intramolecular 
transferase activity, 
phosphotransferases 
(ns)



Intrinsic component of  
mitochondrial outer 
membrane (0.012)



5 Alzheimer's disease 
(0.0052)



mRNA processing 
(ns) Macroautophagy (0.0096) Autophagosome 



organization (0.0078)
Aminoacyl-tRNA 
ligase activity (ns)



Mitochondrial 
respiratory chain 
complex I (0.012)



6 Phagosome (0.018) Calcium regulation in 
the cardiac cell (ns) Metabolism (0.021)



Respiratory electron 
transport 
chain (0.0078)



NADH dehydrogenase 
(ubiquinone) 
activity (ns)



Extrinsic component 
of  endosome 
membrane (0.023)



7 Citrate cycle (TCA 
cycle) (0.025)



Electron Transport 
Chain (Mouse) (ns) Complex I biogenesis 



(0.024)
Cellular respiration 
(0.0078) RNA binding (ns) Endosomal part 



(0.023)



8 Huntington's disease 
(0.04)



Wnt signaling 
pathway and 
pluripotency (Mouse) 
(ns)



Mitophagy (0.024) Cellular response to 
nitrogen levels (0.013)



NADH dehydrogenase 
(quinone) activity (ns)



Endoplasmic reticulum 
subcompartment (ns)



9 Regulation of  
autophagy (0.04)



Wnt signaling 
pathway and 
pluripotency 
(Human) (ns)



Pink/Parkin Mediated 
Mitophagy (0.024)



Cellular response to 
nitrogen starvation 
(0.013)



Tubulin binding (ns) Late endosome 
membrane (ns)



10
Glycine, serine and 
threonine metabolism 
(0.04)



Oxidative 
phosphorylation (ns) ~ Endosome 



organization (0.013) ~
Mitochondrial 
intermembrane 
space (ns)
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Benchmark List Adjusted P value Overlapping Genes



PD Disease Genes 2.43e-07



AKT1, ALDH1A1, APP, ATXN3, CASP3, CASP9, CDK5, 
CHM, CYCS, DRD2, GFRA1, GRIN2B, GRM1, HSPA8, 
HSPA9, HTR2A, HTT, LMX1B, LRRK2, MAP2, MAPK14, 
MAPK8, MSX1, NAT2, NDUFS4, PARK7, PINK1, SIAH1, 
SLC6A3, SNCA, SNCAIP, SPR, SQSTM1, STUB1, TBP, 
TOR1A, UCHL1



PD GWAS genes 0.8
ALAS1, ATP6V0A1, BAG3, BAP1, BCKDK, BMP4, CEL, 
DCUN1D1, HTR2A, LMNB1, LRRK2, LSM7, MCCC1, 
NSF, PBX1, PDLIM2, PHF7, PKP2, PSMC3IP, SATB1, 
SNCA, STAB1, SYT11, SYT4, UNC13B, WWOX



LRRK2 PPI Genes 1.71e-14



ABL1, ACTA2, ACTB, ACTG1, AGO2, AKT1, AKT2, 
ARFGAP1, BAG3, BAG5, BAP1, CALM1, CASP8, 
CD2BP2, CDC25A, CDC37, CDC42, CEP72, CHGB, 
CLTC, CSE1L, DAPK1, DAPP1, DCUN1D1, DNAJA1, 
DNM1L, DVL2, DYNC1H1, EEF1A1, EPRS, ETV5, FADD, 
GNAI2, HSP90AA1, HSP90AB1, HSPA4, HSPA8, HSPA9, 
IQGAP1, IRS1, ITCH, L3MBTL3, LRP6, MAP1B, 
MAP2K7, MCCC1, MKNK2, MYO1C, NFATC2, NUP133, 
PDLIM2, PHF7, PPP2R1A, PRKDC, PSMD11, RAB11A, 
RAB11B, RAB5A, RAB5B, RAB7A, RAC1, RBBP8, RHOA, 
RIPK1, RPS20, RPS8, SCFD1, SNCA, SP100, SQSTM1, 
SRPK1, STAB1, STUB1, SYT11, SYT4, TK1, TOR1AIP2, 
TP53, TRADD, TTK, TUBA1A, TUBA1C, TUBB, VIM, 
YWHAB, YWHAE, YWHAG, YWHAQ, YWHAZ
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Rank KEGG Wikipathways Reactome



1 Epstein-Barr virus infection
(7.64e-50)



XPodNet - protein-protein interactions in the 
podocyte expanded by STRING
(8.60e-71)



Immune System
(1.14e-81)



2 Pathways in cancer
(9.47e-43)



TNF-alpha NF-kB Signaling Pathway
(6.57e-48)



Gene Expression
(1.46e-67)



3 Viral carcinogenesis
(3.96e-40)



PluriNetWork
(2.66e-44)



Disease
(3.18e-65)



4 Hepatitis B
(8.84e-37)



Integrated Pancreatic Cancer Pathway
(3.38e-40)



Cytokine Signaling in Immune system
(2.90e-62)



5 TNF signaling pathway
(1.88e-32)



EGFR1 Signaling Pathway
(3.66e-40)



Cell Cycle
(3.13e-60)



6 Apoptosis
(3.60e-32)



EGF/EGFR Signaling Pathway
(6.12e-40)



Innate Immune System
(1.57e-59)



7 MAPK signaling pathway
(1.20e-30)



MAPK Signaling Pathway (Human)
(2.05e-38)



Fc epsilon receptor (FCERI) signaling
(7.88e-57)



8 Neurotrophin signaling pathway
(4.19e-30)



TGF-beta Signaling Pathway
(7.94e-38)



Infectious disease
(6.71e-55)



9 Prostate cancer
(3.39e-29)



B Cell Receptor Signaling Pathway
(8.00e-36)



Signaling by Insulin receptor
(4.48e-54)



10 Chronic myeloid leukemia
(3.70e-27)



MAPK Signaling Pathway (Mouse)
(4.34e-35) Signalling by NGF



(6.48e-54)
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Rank GO BP GO MF GO BP



1 Regulation of  apoptotic process
(6.19e-60)



RNA binding
(3.88e-64)



RNA polymerase II transcription factor 
complex
(9.21e-30)



2 Protein modification by small protein removal
(5.35e-53)



Ubiquitin protein ligase binding
(9.20e-47)



Nuclear body
(1.51e-29)



3 Protein deubiquitination
(5.89e-49)



Ubiquitin-like protein ligase binding
(2.817e-46)



Nuclear chromosome part
(7.32e-20)



4 Cellular protein modification process
(4.24e-48)



Protein kinase binding
(4.51e-43)



Focal adhesion
(7.32e-20)



5
Regulation of  transcription from RNA 
polymerase II promoter
(2.89e-47)



Protein kinase activity
(4.51e-41)



Centrosome
(1.44e-18)



6
Positive regulation of  transcription, DNA-
templated
(3.40e-47)



Kinase binding
(2.73e-29)



Chromatin
(2.70e-17)



7 Ubiquitin-dependent protein catabolic process
(1.37e-42)



Protein serine/threonine kinase activity
(9.05e-29)



Microtubule organizing center
(3.69e-17)



8
Positive regulation of  transcription from RNA 
polymerase II promoter
(1.93e-42)



Kinase activity
(5.18e-25)



Nucleoplasm part
(9.85e-17)



9 Protein ubiquitination
(1.13e-41)



Cadherin binding
(5.95e-25)



Nuclear chromatin
(2.28e-16)



10 Protein phosphorylation
(5.02e-41)



Transcription regulatory region DNA 
binding
(4.91e-23)



Ficolin-1-rich granule lumen
(1.67e-15)
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Gene List Node Overlap Edge Overlap Nodes Remaining Edges Remaining



Original ~ ~ 233 731



ALS neuronal 
tissue 6 172 227 559



LRRK2 Fibroblasts 0 0 227 559



Non-LRRK2 
familial blood 7 74 220 485



Sporadic blood 0 0 220 485



Unconnected 
components 8 4 212 481
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ACTR3B CCT6A DYNC1H1 IBTK MRFAP1L1 PIN1 RABAC1 STXBP1 TXNDC9



ACTR6 CCT7 DYNLT3 IDH3G MRPL13 PNMA1 RAN SUCLA2 TXNL1



ADRA2C CD37 EAPP IL3RA MRPL15 PNMA2 RANBP6 SUMO1 TXNL4A



ADSS CHGB EEF1A2 IMMT NDFIP1 POLE3 RASA1 SYN1 UBA3



ALDOC CHUK EIF1B ISCU NDUFA10 PPIA RBX1 TAF7 UBE2B



AP2M1 CNTNAP1 EIF4EBP1 ITGA5 NDUFA5 PPP2CA RCAN2 TBCE UBE2D2



AREL1 COPS3 EIF4H KHSRP NDUFA8 PPP2R1A RCN2 TBPL1 UBE2K



ATP1A1 COPS4 EIF6 LAMTOR3 NDUFB6 PRR13 REEP5 TCEA2 UBE2N



ATP5F1 COPS5 ENO2 LAPTM4B NDUFS1 PSMA5 RGS4 TERF2IP UBE2V2



ATP6V1A COPS7A F10 LDHA NDUFS2 PSMB5 RNF11 TFAP4 UBE4A



ATP6V1B2 COPS8 FOSL1 LDHB NDUFS3 PSMB6 RTCA THAP10 UCHL1



ATP6V1E1 COX5A FOXJ1 LDOC1 NDUFS6 PSMB7 RTN3 THY1 UQCRC1



ATP6V1G1 CSE1L GABARAPL2 LRPPRC NHP2 PSMC1 RTN4 TMEM126B UQCRC2



ATP6V1G2 CXorf40A GARS LRRC47 NIPSNAP1 PSMC4 RUNDC3A TMEM246 UQCRFS1



ATP6V1H CYCS GLO1 LYL1 NPTN PSMC6 SAMM50 TMEM30A USP11



ATR DCAF6 GNAI1 LZTFL1 OLA1 PSMD14 SARS TOLLIP VDAC2



BCAM DCTN6 GNAO1 MAGED1 OXCT1 PSMD6 SCFD1 TRIM37 WAS



BCAP31 DDA1 GOT1 MAP2K1 PARK7 PSMD8 SDHA TSN XPOT



BCAS2 DDX1 GOT2 MAP2K4 PCMT1 PTDSS1 SEC13 TSPAN7 YARS



BMP4 DHPS GPS1 MAPK10 PDHA1 PUF60 SKP1 TUBA1B YWHAZ



BPGM DLD HDAC1 MAPK9 PDHB RAB11A SLC25A46 TUBA4A



BTBD1 DNM1 HIGD1A MDH1 PFDN4 RAB1A SNAP25 TUBB2A



C10orf88 DNM1L HLTF MLLT11 PGAM1 RAB22A SNAP91 TUBB3



C1QBP DOK5 HMG20A MMADHC PGRMC1 RAB2A STK25 TUFM



CCT4 DRG1 HPRT1 MMS19 PIK3CB RAB6B STRAP TUSC2
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Benchmark List Adjusted P value Overlapping Genes



PD Disease Genes 0.051 CYCS, PARK7, UCHL1



PD GWAS genes ~ ~



LRRK2 PPI Genes 0.00021 DYNC1H1, EEF1A2, LDHB, MAP2K4, 
PPP2R1A, SCFD1, STK25, TUBB2A, TUBB3
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Rank KEGG Wikipathways Reactome



1 Oxidative Phosphorylation 
(2.50e-15) Electron Transport Chain (Mouse) (1.17e-10) The citric acid (TCA) cycle and 



respiratory electron transport (6.52e-20)



2 Parkinson's disease (7.83e-14) Proteasome Degradation (Mouse) (1.17e-10) Respiratory electron transport (3.30e-13)



3 Non-alcoholic fatty liver disease 
(3.30e-11) Proteasome Degradation (Human) (1.31e-10)



Respiratory electron transport, ATP 
synthesis by chemiosmotic coupling, and 
heat production by uncoupling proteins 
(4.00e-13)



4 Huntington's disease (1.30e-10) Glycolysis and Gluconeogenesis (Mouse) 
(1.31e-10) Signaling by Insulin receptor (5.75e-13)



5 Proteasome (1.10e-9) Glycolysis and Gluconeogenesis (Human) 
(1.43e-10) Metabolism (9.44e-12)



6 Alzheimer's disease (1.13e-8) Electron Transport Chain (Human) (1.66e-10) Antigen processing: Ubiquitination & 
Proteasome degradation (6.27e-11)



7 Synaptic vesicle cycle (3.26e-8) Parkin-Ubiquitin Proteasomal System Pathway 
(1.10e-7)



NIK-->noncanonical NF-kB signaling 
(7.59e-11)



8 Metabolic pathways (5.72e-8) Oxidative Phosphorylation (Mouse) (1.18e-7) Dectin-1 mediated noncanonical NF-kB 
signaling (1.12e-10)



9
Epithelial cell signaling in 
Helicobacter pylori infection 
(5.72e-8)



Oxidative Phosphorylation (Human) (3.28e-7) Class I MHC mediated antigen 
processing & presentation (1.12e-10)



10 Carbon metabolism (5.72e-8) TCA Cycle (Mouse) (5.10e-8) TCR signaling (1.25e-10)
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Rank GO BP GO MF GO BP



1 Post-translational protein 
modification (1.73e-11) Ubiquitin protein ligase binding (5.81e-8) Mitochondrion (6.03e-12)



2 Mitochondrial ATP synthesis coupled 
electron transport (2.58e-10)



Ubiquitin-like protein ligase binding
(6.18e-8)



Mitochondrial respiratory chain 
complex I (3.32e-7)



3
Interleukin-1-mediated signaling 
pathway
(6.21e-10)



NADH dehydrogenase (ubiquinone)
(1.17e-6)



Mitochondrial inner membrane
(9.68e-6)



4 Respiratory electron transport chain 
(6.21e-10) NADH dehydrogenase (quinone) (1.17e-6) Microtubule cytoskeleton (1.75e-4)



5



Regulation of  transcription from RNA 
polymerase II promoter in response to 
hypoxia
(6.38e-10)



Nucleoside-triphosphatase activity (1.54e-6) Polymeric cytoskeletal fiber (1.75e-4)



6 NIK/NF-kappaB signaling (7.43e-10) RNA binding (6.32e-5) Lysosomal membrane (4.40e-4)



7 Fc receptor signaling pathway (2.36e-9) GTP binding (9.59e-4) Microtubule (4.40e-4)



8 Fc-epsilon receptor signaling pathway 
(2.36e-9) GTPase activity (9.59e-4) Mitochondrial matrix (6.46e-4)



9
Regulation of  transcription from RNA 
polymerase II promoter in response to 
stress (3.38e-9)



Proteasome-activating ATPase 
activity (1.10e-3) Lytic vacuole membrane (8.86e-3)



10 T cell receptor signaling pathway 
(3.38e-9) Ubiquitin protein ligase activity (1.10e-3) Nuclear proteasome complex 



(1.77e-3)
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Gene 
Symbol Chromosome Location Ref Alt RS ID Mutation Type Hom/Het



ATP5F1 1 111998738 CTT C ~ Frameshift variant Het



C10orf88 10 124697429 G A ~ Stop gained Het



CNTNAP1 17 40845354 T A rs768488018 Stop gained Het



CNTNAP1 17 40849679 C T rs775153843 Stop gained Het



IMMT 2 86386744 CCT C ~ Frameshift variant Het



LAPTM4B 8 98828408 GGTACGTGGA G rs780024689 Splice donor variant Het



LAPTM4B 8 98828408 G GCCTCCTAATTTTC
CCTACA ~ Splice donor variant Het



LAPTM4B 8 98828408 G GCCTCCTAATTTTC
CCTACAGAGAT ~ Splice donor variant Het



LAPTM4B 8 98828417 G GCCTCCTAATTTTC
CCTACAGAGATGAT ~ Splice donor variant Het



LDHA 11 18418096 T C rs370097085 Start lost Het



MAGED1 X 51637402 T G ~ Start lost Hom



MLLT11 1 151039973 A C ~ Start lost Het



MRPL15 8 55049161 CT C rs534881146 Frameshift variant Het



NDUFA8 9 124906649 CT C rs774965907 Frameshift variant Het



PRR13 12 53837462 G C rs200402787 Splice acceptor 
variant Het



STRAP 12 16055910 T C ~ Stop lost Hom



SUCLA2 13 48523111 CAAGT C ~ Frameshift variant Het
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Gene LOF 
Mutation



Lobby 
Index GeneXplain IPA DEG LRRK2 



PPI Endeavour Score



UCHL1 0 3 4 0 5 0 5 17



COPS5 0 2 5 0 5 0 3 15



MLLT11 5 4 0 0 5 0 1 15



UBE2N 0 5 5 1 0 0 4 15



YWHAZ 0 1 4 0 0 5 5 15



ATP6V1B2 0 4 0 0 5 0 5 14



LAPTM4B 4 2 0 0 5 0 3 14



MAP2K1 0 4 0 5 0 0 5 14



MAPK9 0 1 4 0 5 0 4 14
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Tissue Disease Variant Patients Controls Platform GEO ID Publication



Synovial 
Membrane



Rheumatoid 
Arthritis Unknown 13 10 Affymetrix HG-



U133A Array GSE55457 Woetzel et al. 
(2014)



Synovial 
Membrane



Rheumatoid 
Arthritis Unknown 10 10 Affymetrix HG-



U133A Array GSE55235 Woetzel et al. 
(2014)



Synovial 
Membrane



Rheumatoid 
Arthritis Unknown 152 28 Illumina HiSeq 



2000 GSE89408 Walsh et al. 
(2017)



Synovial 
Membrane



Rheumatoid 
Arthritis Unknown 16 7



Affymetrix HG-
U133 Plus 2.0 
Array



GSE77298 Broeren et al. 
(2016)



Synovial 
Fluid



Psoriatic 
Arthritis Unknown 5 5



Affymetrix HG-
U133A 2.0 
Array



E-MTAB-
3201 Unknown
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Tissue Disease Patients Controls Platform GEO ID Publication



Synovial 
Membrane Osteoarthritis 10 10 Affymetrix HG-



U133A Array GSE55457 Woetzel et al. (2014)



Synovial 
Membrane Osteoarthritis 10 10 Affymetrix HG-



U133A Array GSE55235 Woetzel et al. (2014)



Synovial 
Membrane Osteoarthritis 22 28 Illumina HiSeq 2000 GSE89408 Walsh et al. (2017)
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Tissue Disease Patients Controls Platform GEO ID Publication



Brachialis 
Tendon Tendinopathy 23 23 Affymetrix HG-U133 



Plus 2.0 Array GSE26051 Jelinsky et al. 
(2011)
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Tissue Type Disease Patients Controls Platform GEO ID Publication



Peripheral 
Blood



Rheumatoid 
Arthritis 231 43 Affymetrix HG-U133 Plus 



2.0 Array GSE55457 Woetzel et al. (2014)



Peripheral 
Blood



Psoriatic 
Arthritis 5 5 Affymetrix HG-U133A 2.0 



Array GSE55235 Woetzel et al. (2014)
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Number of conditions 
in which GWAS hits 
are enriched used 
instead of loss-of-



function data



Autoimmune Arthritis 
criteria used for data 



collection
Data collection 



and quality 
control



Identify genes 
with common 



differential 
expression 
direction



Filter out 
signatures non-



specific to 
phenotype



Identify 
common 



coexpression 
edges



Identify first-
degree protein 



interaction 
relationships



Select largest 
connected 
component



Prioritisation



Rebuild as 
coexpression 
networks from 
patient data



Filter out edges 
non-specific to 



phenotype



Autoimmune Arthritis 
specific filters



Spearman’s Rho 
threshold of 0.55 
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Dataset Total Genes Upregulated Downregulated



GSE55457 13433 6422 7011



GSE55235 13433 6702 6731



GSE89408 23344 10258 13086



GSE77298 27607 14468 13139



E-MTAB-3201 13433 6723 6710
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Actual Value Expected Mean Expected Range



Upregulated Genes 1062 316.2364 249:396



Downregulated 
Genes



824 400.9557 320:487



Combined 1886 717.1921 607:827
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Benchmark List Adjusted P value Overlapping Genes



RA Disease Genes 0.017 IFNG, CTLA4, CRP, TFRC, ANGPT1, TRAF1



PA Disease Genes 0.19 CRP



RA GWAS Catalog 0.017
CDH18, TRAF1, IL2RA, FNBP1, CTLA4, 
CD40, CCR1, BATF, IRF4, P2RY10, NFKBIE, 
APOM, TNPO3



PA GWAS Catalog ~ ~
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Rank KEGG Wikipathways Reactome GO BP GO MF GO CP



1 NF-kappa B signaling 
pathway (5.45e-6)



Allograft Rejection 
(0.00022)



Chemokine receptors bind 
chemokines (0.00072)



Cytokine-mediated 
signaling pathway 
(0.00054)



Chemokine activity 
(0.012) ~



2 Chemokine signaling 
pathway (3.57e-5)



Chemokine signaling 
pathway (0.00063)



Interferon Signaling 
(0.00091)



Type I interferon signaling 
pathway (0.002)



DNA-dependent ATPase 
activity (0.012) ~



3 Epstein-Barr virus 
infection (0.00036)



Type II interferon 
signaling (IFNG) (Human) 
(0.0021)



Interferon alpha/beta 
signaling (0.00091)



Lymphocyte 
chemotaxis (0.002)



Chemokine receptor 
binding (0.012) ~



4
Cytokine-cytokine 
receptor interaction 
(0.00066)



Toll-like receptor signaling 
pathway (0.0037) Immune System (0.0077) Cellular response to type I 



interferon (0.002)



G-protein coupled 
chemoattractant receptor 
activity (0.032)



~



5 T cell receptor signaling 
pathway (0.0027)



Type II interferon 
signaling (IFNG) (Mouse) 
(0.011)



DNA Double-Strand 
Break Repair (0.0094)



Chemokine-mediated 
signaling pathway (0.0042)



CCR chemokine receptor 
binding (0.032) ~



6 Toll-like receptor signaling 
pathway (0.0027)



Type II interferon 
signaling (IFNG) (0.018)



Antigen Presentation: 
Folding, assembly and 
peptide loading of  class I 
MHC (0.0094)



Cellular response to 
interferon-gamma (0.035)



Chemokine receptor 
activity (ns) ~



7 Herpes simplex infection 
(0.0027) Apoptosis (0.034) Cytokine Signaling in 



Immune system (0.038)



Antigen processing and 
presentation of  peptide 
antigen via MHC class I 
(0.035)



Nucleoside-triphosphatase 
activity (ns) ~



8 Measles (0.01) PluriNetWork (0.042) Peptide ligand-binding 
receptors (0.049)



Negative regulation of  
viral genome (0.035)



Protein kinase B 
binding (ns) ~



9 RIG-I-like receptor 
signaling pathway (0.014)



RANKL/RANK 
signaling pathway (0.042)



Class A/1 (Rhodopsin-like 
receptors) (ns)



Positive regulation of  
gene(0.035) expression



Double-stranded RNA 
binding (ns) ~



10 Phagosome (0.017) Apoptosis (0.042) GPCR ligand binding (ns) Calcium ion 
homeostasis (0.035)



Ubiquitin-like protein 
ligase binding (ns) ~
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Rank KEGG Wikipathways Reactome GO BP GO MF GO CP



1 Thyroid hormone signaling 
pathway (0.001592)



Focal Adhesion-PI3K-Akt-
mTOR-signaling pathway (ns) ~ Regulation of  Wnt 



signaling pathway (ns) ~ Integral component of  
plasma membrane (0.042)



2 Melanoma (0.01131) IL-6 signaling pathway (ns) ~ Regulation of  signal 
transduction (ns) ~ ~



3 Regulation of  actin cytoskeleton 
(0.01131)



Rac1/Pak1/p38/MMP-2 
pathway (ns) ~ ~ ~ ~



4 Thyroid cancer (0.01525) Regulation of  Actin 
Cytoskeleton (Human) (ns) ~ ~ ~ ~



5 Vascular smooth muscle 
contraction (0.01748)



Regulation of  Actin 
Cytoskeleton (Mouse) (ns) ~ ~ ~ ~



6 Pathways in cancer (ns) IL-9 Signaling Pathway (ns) ~ ~ ~ ~



7 Oxytocin signaling pathway (ns) ESC Pluripotency Pathways (ns) ~ ~ ~ ~



8 MAPK signaling pathway (ns) IL-7 Signaling Pathway (ns) ~ ~ ~ ~



9 Rap1 signaling pathway (ns) IL-9 Signaling Pathway (ns) ~ ~ ~ ~



10 cGMP-PKG signaling pathway 
(ns) EPO Receptor Signaling (ns) ~ ~ ~ ~
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Benchmark List Adjusted P value Overlapping Genes



RA Disease Genes 5.42e-09



PTPN22, CCL2, TNF, STAT4, MMP3, TNFSF11, TNFRSF1B, 
MMP1, IFNG, SERPINH1, TNFRSF11A, IL15, CTLA4, MMP13, 
ICAM1, MIF, VCAM1, ACP5, IRF5, CCL5, CCL3, TLR4, TLR2, 
JUN, CRP, HMGB1, FOS, ITGB2, CD86, TFRC, CD80, CD40LG, 
COMP, IL6ST, HSPA5, ANGPT1, ANXA1, IL2, TEK, HLA-DQA1, 
TNFRSF1A, CCR2, TRAF1, NR4A2, HLA-B, C5orf30, TNIP1, 
CAT



PA Disease Genes 2.92e-05
TNF, TNFRSF1B, HLA-B, CRP, TNIP1, HLA-C, TNFRSF1A, 
TNFSF11, PTPN22, MMP3, COMP, CD58, ANGPT2, MMP1, 
TRAF3IP2, LCE3C



RA GWAS Catalog 3.71e-08



CNTNAP4, CDH18, IL2RB, SH2B3, LSM8, TGIF1, LMO4, RIN3, 
CDK6, PRKCQ, PTPRC, RCAN1, PTPN2, GATA3, TNFRSF14, 
SRGAP1, ETS1, IL2, CDK4, STAT4, TNFAIP3, GRM5, TRAF1, 
TNIP1, ACTN1, CD247, EIF3H, WWOX, IL2RA, IFNGR2, 
EFNB2, RCHY1, IKZF3, TNFRSF6B, MAP3K7, FNBP1, NR2F2, 
CDH6, ATXN2L, CTLA4, DDX6, FCGR2A, RBPJ, TYK2, IRF5, 
TRAF6, HDAC9, CD40, CCR1, KIF5A, ATG5, BATF, IRF4, JAK2, 
RBMX, RAD51B, RUNX1, C5orf30, CCL21, NFKBIE, CARD9, 
CDK2, MED1, TPD52, PTPN22, RPP14, ARID5B, DPP4, ATM, 
CD40LG, ZFP36L1, SFTPD, ADCY7, UBE2L3, LTBR, HUNK, 
CEP57, CASP8, TNFRSF9, C1QBP, IRF1, APOM, LRRK2, 
ATG16L1, SMAD3, TLE3, IL6ST, IRAK1, ANXA3, CDK5RAP2, 
TNPO3, CXCR4, CCL19, CXCR5, OLIG3



PA GWAS Catalog 0.27 HLA-C, TRAF3IP2, JAK2, TNIP1, TYK2
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Rank KEGG Wikipathways Reactome



1 Pathways in cancer 
(5e-57)



XPodNet - protein-protein interactions in 
the podocyte expanded by STRING 
(2.65e-83)



Disease 
(2.32e-82)



2 Epstein-Barr virus infection 
(2.34e-49)



TNF-alpha NF-kB Signaling Pathway 
(1.52e-59)



Immune System 
(1.05e-78)



3 Viral carcinogenesis 
(8.6e-44)



PluriNetWork 
(3.43e-44)



Gene Expression
(3.49e-72)



4 Hepatitis B
(4.8e-39)



EGFR1 Signaling Pathway 
(2.04e-43)



Innate Immune System 
(1.89e-67)



5 HTLV-I infection 
(1.1e-35)



Integrated Pancreatic Cancer Pathway 
(3.08e-41)



Infectious disease 
(2.69e-66)



6 NF-kappa B signaling pathway 
(3.64e-33)



MAPK Signaling Pathway 
(6.42e-41)



Developmental Biology 
(1.89e-65)



7 MAPK signaling pathway 
(5.38e-33)



EGF/EGFR Signaling Pathway 
(4.1e-39)



Cytokine Signaling in Immune system 
(1.12e-58)



8 Neurotrophin signaling pathway 
(2.8e-31)



TGF-beta Signaling Pathway 
(4.33e-37)



Signal Transduction 
(3.65e-57)



9 Chronic myeloid leukemia 
(1.76e-30)



MAPK signaling pathway 
(1.28e-36)



Cell Cycle 
(7.69e-57)



10 Herpes simplex infection 
(1.76e-30)



BDNF signaling pathway 
(2.93e-34)



Signalling by NGF 
(8.42e-52)
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Rank GO BP GO MF GO BP



1
Regulation of  transcription from RNA 
polymerase II promoter
(3.7e-72)



RNA binding 
(1.54e-58)



Focal adhesion 
(4.6e-50)



2
Positive regulation of  transcription, DNA-
templated
(1.68e-71)



Protein kinase binding 
(6.71e-44)



Nuclear chromosome part
(1.42e-34)



3 Regulation of  apoptotic process
(5.64e-67)



Ubiquitin-like protein ligase binding
(7.13e-44)



Nuclear body 
(8.35e-31)



4 Positive regulation of  gene expression
(6.13e-62)



Ubiquitin protein ligase binding
(1.11e-43)



RNA polymerase II transcription factor 
complex 
(1.34e-30)



5 Cytokine-mediated signaling pathway
(3.52e-54)



DNA binding 
(2.62e-37)



Cytosolic part 
(1e-27)



6
Positive regulation of  transcription from 
RNA polymerase II promoter
(1.61e-51)



Kinase binding 
(2.742e-35)



Nucleoplasm part 
(6.5e-25)



7 Regulation of  transcription, DNA-templated 
(5.01e-48)



Transcription coactivator activity
(1.250e-33)



Chromatin 
(3.56e-23)



8
Negative regulation of  transcription, DNA-
templated 
(5.26e-46)



Protein kinase activity 
(1.25e-33)



Nuclear chromatin 
(9.5e-23)



9 Viral process 
(1.6e-45)



RNA polymerase II regulatory region 
sequence-specific DNA binding
(8.4e-32)



Cytosolic ribosome 
(3e-22)



10 Cellular macromolecule biosynthetic process 
(3.94e-43)



Protein serine/threonine kinase activity 
(5.38e-26)



Nucleolus 
(5.08e-20)
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ACAP1 C1S COPS5 FAM49B ICAM1 LYN NPL PSMB9 SELL SYK UBE2L6



ACSL5 CAB39 CSF2RA FAM96B IFI35 MAP2K7 NRBF2 PSMC4 SF3B5 TAP1 UBE2O



AGTR1 CANX CTBS FCGR2A IL15 MAP3K7 NUP62 PSMC5 SFXN1 TAX1BP1 UXT



AKAP17A CAPZA1 CTDP1 FKBP2 IL2RB MAPKBP1 PARP1 PSMD2 SGK1 TBCA VAMP8



AP2S1 CASP8 CTDSPL FKBP3 ILF2 MAPRE1 PASK PSMD8 SH2D1A TCF7L1 VAV1



APOBEC3G CCL19 CTLA4 FTL IRAK1 MAX PBX1 PTPN2 SIL1 TLR2 VDR



APOL1 CCL2 CTR9 GAS1 IRF1 MCTS1 PCMT1 PTPN7 SIRT3 TMED10 VIPR1



ARPC2 CCL8 CXCL11 GATA3 IRF2 MDM2 PCNA PTPRC SLC25A5 TMED9 VKORC1



ASF1A CCR1 CXCL13 GBP1 IRF4 MPDZ PCSK2 PYCARD SMARCC2 TMSB10 VPS35



ATG3 CCR5 DBF4 GDI2 IRS2 MPHOSPH6 PDHB RAB1A SNRPD1 TNFAIP3 VRK1



ATG5 CCT5 DBI GMPPA ITK MPP1 PFDN1 RAB8A SNRPG TNFAIP8 VSIG4



ATP1B3 CCT7 DDOST GPX1 KCTD9 MREG PIR RAB9A SNX2 TNFRSF14 WARS



ATP6V1A CD14 DEF6 GRB2 LAMTOR3 MRPL40 PLEK RAP1B SPATS2 TNFRSF17 WIPF1



ATP6V1E1 CD247 DERL1 GRN LAMTOR5 MS4A1 PLS3 RELB SPCS3 TNFRSF1B XBP1



ATP8A1 CD38 DIP2C GTF2B LAP3 MYD88 PLSCR4 RNF11 SPIB TNS3 XRCC5



BARD1 CD40 DNM1 GTF2F2 LAT MYH10 POLR2K RNF13 SRP19 TOX YARS



BATF CD86 DNM1L HADHB LAX1 MYL12A PPIB RPA3 SSNA1 TPD52 YBX1



BCAS2 CFB DOCK2 HAT1 LCK NANS PPP1R16B RPLP0 SSR3 TPST2 YIPF1



BCL2A1 CHCHD3 DOK3 HCK LEF1 NARS PRDX4 RPN1 SSR4 TRADD ZBED2



BID CHFR DRAP1 HLA-B LMAN2 NCF1 PRKCB RPN2 STAT1 TRAF1 ZBTB32



BIRC3 CIB1 DRG1 HLA-C LPXN NECAP2 PSAP RPS6KA1 STAT4 TRAF3 ZPR1



BTK CLIC1 EIF6 HLA-F LSM3 NEDD8 PSMA7 RUNX1T1 STK4 TRIM21



C1QA CNBP EPS8 HOXA5 LSM7 NME1 PSMB10 S100A9 SUCLG1 TSG101



C1QBP COPG1 ETV6 HPRT1 LTB NMI PSMB5 SDF2L1 SUMO1 TUBA4A



C1R COPS3 EXOSC4 HSPA13 LYL1 NNT PSMB8 SEC24A SUMO3 UBAC1
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Benchmark List Adjusted P value Overlapping Genes



RA Malacards 7.9e-07
CCL2, STAT4, TNFRSF1B, IL15, 
CTLA4, ICAM1, TLR2, CD86, 
TRAF1, HLA-B



PA Malacards 9.5e-04 TNFRSF1B, HLA-B, HLA-C
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Benchmark List Adjusted P value Overlapping Genes



RA GWAS Catalog 1.5e-13



ATG5, BATF, C1QBP, CASP8, CCL19, CD247, 
CD40, CTLA4, FCGR2A, GATA3, HLA-B, 
IL2RB, IRAK1, IRF4, PTPN2, PTPRC, STAT4, 
TNFAIP3, TNFRSF14, TPD52, TRAF1



PA GWAS Catalog 0.0049 HLA-B, HLA-C



JIA GWAS Catalog 0.0019 CCR1, IL2RB, IRF1, PTPN2, STAT4



SLE GWAS Catalog 1.64e-06
ATG5, CD40, CD86, DEF6, FCGR2A, GATA3, 
GRB2, HLA-B, HLA-C, IRAK1, LEF1, LYN, 
PDHB, PTPRC, STAT4, TNFAIP3, TRAF3



AS GWAS Catalog 0.025 FCGR2A, HLA-B
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Rank KEGG Wikipathways Reactome



1 NF-kappa B signaling pathway (3.7e-19) Proteasome Degradation (2.1e-11) Immune System (9.86e-30)



2 Epstein-Barr virus infection (5.8e-13) Proteasome Degradation (2.55e-8) Innate Immune System (2.62e-24)



3 Chemokine signaling pathway (5.3e-8) B Cell Receptor Signaling Pathway 
(4.18e-8)



Cytokine Signaling in Immune system 
(1.7e-20)



4 TNF signaling pathway (1.7e-7) Allograft Rejection (4.18e-8) Adaptive Immune System (1.258e-14)



5 Proteasome (2.7e-7) Regulation of  toll-like receptor signaling 
pathway (4.38e-8) HIV Infection (7.3e-13)



6 Toll-like receptor signaling pathway (7.6e-7) Type II interferon signaling (5.1e-8) TNFR2 non-canonical NF-kB pathway 
(5.3e-12)



7 Herpes simplex infection (1.1e-6) IL-5 Signaling Pathway (6.49e-8) Disease (2.15e-11)



8 Fc gamma R-mediated phagocytosis 
(1.4e-6) TNF alpha Signaling Pathway (1.32e-7) Infectious disease (2.99e-11)



9 Phagosome (4.4e-6) Chemokine signaling pathway (2.16e-7) Host Interactions of  HIV factors (1.77e-10)



10 Natural killer cell mediated cytotoxicity 
(6.8e-6) Apoptosis (2.35e-7) ER-Phagosome pathway (2.81e-10)
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Rank GO BP GO MF GO BP



1 Cytokine-mediated signaling pathway
(2.283e-26)



Ubiquitin-like protein ligase 
binding (0.00048) Phagocytic vesicle (0.00004345)



2 Cellular response to tumor necrosis 
factor (2.283e-26)



Non-membrane spanning protein 
tyrosine kinase activity (0.00048) Precatalytic spliceosome(0.0006156)



3 Tumor necrosis factor-mediated signaling 
pathway (3.845e-12)



RNA polymerase II regulatory region 
sequence-specific DNA 
binding (0.00048)



Phagocytic vesicle membrane (0.0009406)



4
Antigen processing and presentation of  
exogenous peptide antigen via MHC class I, 
TAP-dependent (4.619e-11)



Kinase binding (0.00048) U12-type spliceosomal complex (0.001802)



5
Antigen processing and presentation of  
exogenous peptide antigen via MHC class I
(6.764e-11)



Ubiquitin protein ligase 
binding (0.00063)



COPII-coated ER to Golgi transport 
vesicle (0.003287)



6 NIK/NF-kappaB signaling (1.633e-8) RNA polymerase II regulatory region 
DNA binding (0.0013) Spliceosomal snRNP complex (0.005332)



7 Fc receptor signaling pathway (1.633e-8) Tumor necrosis factor receptor 
superfamily binding (0.0014) Spliceosomal complex (0.005332)



8 Fc-epsilon receptor signaling 
pathway (1.633e-8)



Phosphotyrosine residue 
binding (0.0022) Cytosolic proteasome complex (0.006573)



9 Antigen receptor-mediated signaling 
pathway (1.633e-8) RNA binding (0.0025) Azurophil granule (0.006573)



10 T cell receptor signaling pathway (2.012e-8) Protein phosphorylated amino acid 
binding (0.0037) Cytoplasmic vesicle lumen (0.008311)
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Gene GWAS Hit Lobby Index GeneXplain IPA DEG Endeavour Score



TRAF1 4 4 5 1 5 4 23



CD40 5 3 4 1 5 5 23



IRF1 4 2 5 5 0 5 21



IRF4 4 1 5 1 5 5 21



CTLA4 4 3 4 0 5 5 21



STAT4 5 5 4 1 0 5 20



PTPRC 5 3 3 3 0 5 19
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Disease Chromosome 
Position Variant Type GWAS P Value rs Number Study Ancestries Study PMID



Rheumatoid 
Arthritis 20:46120612 Intron variant 4.00E-18 rs6032662 European and East 



Asian 24390342



Rheumatoid 
Arthritis 20:46120612 Intron variant 1.00E-16 rs3087243 European and East 



Asian 24390342



Rheumatoid 
Arthritis 20:46118343 5 prime UTR variant 2.00E-13 rs231735 European and Korean 24532676



Rheumatoid 
Arthritis 20:46119308 Intron variant 9.00E-11 rs11571302 European 23143596



Rheumatoid 
Arthritis 20:46105671 Intergenic variant 1.00E-09 rs1980422 European 23143596



Rheumatoid 
Arthritis 20:46119308 Intron variant 3.00E-09 rs72717009 European 20453842



Rheumatoid 
Arthritis 20:46119308 Intron variant 8.00E-09 rs10494360 European 18794853



Systemic Lupus 
Erythematosus 20:46119308 Intron variant 1.00E-08 rs4810485 European, African 



American, Hispanic 28714469



Systemic Lupus 
Erythematosus 20:46108744 Regulatory region 



variant 1.00E-07 rs6131014 European, African 
American, Hispanic 28714469
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Disease Chromosome 
Position Variant Type GWAS P Value rs Number Study Ancestries Study PMID



Rheumatoid 
Arthritis 9:120900340 Intergenic variant 4.00E-12 rs6920220 European and Korean 24532676



Rheumatoid 
Arthritis 9:120878222 Intron variant 4.00E-11 rs7752903 European 21383967



Rheumatoid 
Arthritis 9:120889023 Intron variant 3.00E-09 rs6920220 Han Chinese 24782177



Rheumatoid 
Arthritis 9:120921291 Intron variant 2.00E-08 rs3890745 European 23143596



Rheumatoid 
Arthritis 9:120921291 Intron variant 4.00E-07 rs998731 European 23143596



Rheumatoid 
Arthritis 9:120933004 Intergenic variant 2.00E-06 rs2269060 European 23143596
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Disease Chromosome 
Position Variant Type GWAS P Value rs Number Study Ancestries Study PMID



Rheumatoid 
Arthritis 2:203874196 Intergenic variant 3.00E-25 rs3824660 European and East 



Asian 24390342



Rheumatoid 
Arthritis 2:203874196 Intergenic variant 4.00E-22 rs2275806 European and East 



Asian 24390342



Rheumatoid 
Arthritis 2:203874196 Intergenic variant 9.00E-15 rs3802604 European and Korean 24532676



Rheumatoid 
Arthritis 2:203874196 Intergenic variant 4.00E-11 rs2284033 European 23143596



Rheumatoid 
Arthritis 2:203874196 Intergenic variant 7.00E-11 rs3218251 European 23143596



Rheumatoid 
Arthritis 2:203829153 Intergenic variant 6.00E-09 rs13397 European 19503088



Rheumatoid 
Arthritis 2:203874196 Intergenic variant 1.00E-08 rs5987194 European 20453842



Rheumatoid 
Arthritis 2:203878211 Regulatory region 



variant 4.00E-08 rs6894249 European 23143596



Rheumatoid 
Arthritis 2:203878211 Regulatory region 



variant 5.00E-07 rs9378815 European 23143596



Rheumatoid 
Arthritis 2:203745673 Intergenic variant 5.00E-06 rs284511 European 23143596
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Gene Disease Chromosome 
Position Variant Type GWAS P 



Value rs Number Study Ancestries Study PMID



IRF1 Rheumatoid 
Arthritis 5:132461855 Noncoding transcript 



exon variant 1.00E-09 rs58721818 European 23603761



IRF4 Rheumatoid 
Arthritis 6:426155 Intergenic variant 2.00E-10 rs3890745 European and East 



Asian 24390342



IRF4 Rheumatoid 
Arthritis 6:426155 Intergenic variant 1.00E-07 rs998731 European and East 



Asian 24390342
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Disease Chromosome 
Position Variant Type GWAS 



P-Value rs Number Study Ancestries Study PMID



Rheumatoid arthritis 2:191079016 Intron variant 4.00E-19 rs3087243 European and East 
Asian 24390342



Rheumatoid arthritis 2:191068528 3 prime UTR variant 4.00E-17 rs3087243 European and 
Korean 24532676



Rheumatoid arthritis 2:191099907 Intron variant 4.00E-14 rs3087243 European 23053960



Rheumatoid arthritis 2:191108308 Intron variant 1.00E-13 rs3087243 European 23603761



Rheumatoid arthritis 2:191105153 Intron variant 2.00E-13 rs3087243 European 23143596



Rheumatoid arthritis 2:191079016 Intron variant 1.00E-12 rs11571302 European and East 
Asian 24390342



Rheumatoid arthritis 2:191057148 Intron variant 2.00E-11 rs72717009 European 23143596



Rheumatoid arthritis 2:191099907 Intron variant 4.00E-10 rs3824660 European 21383967



Rheumatoid arthritis 2:191068528 3 prime UTR variant 7.00E-10 rs2275806 European 23143596



Rheumatoid arthritis 2:191068528 3 prime UTR variant 8.00E-09 rs3218251 European 23143596



Rheumatoid arthritis 2:191079016 Intron variant 2.00E-08 rs3218251 European and East 
Asian 24390342



Rheumatoid arthritis 2:191009521 Intron variant 7.00E-08 rs3218251 European 23603761



Rheumatoid arthritis 2:191099907 Intron variant 3.00E-07 rs13397 European 20453842



Rheumatoid arthritis 2:191099907 Intron variant 2.00E-06 rs5987194 Japanese 20453841



Systemic lupus erythematosus 2:191079016 Intron variant 6.00E-122 rs11889341 European 26502338



Systemic lupus erythematosus 2:191101726 Intron variant 1.00E-77 rs7568275 European, African 
American, Hispanic 28714469



Systemic lupus erythematosus 2:191079016 Intron variant 2.00E-76 rs11889341 European 26502338



Systemic lupus erythematosus 2:191105394 Intron variant 4.00E-69 rs7582694 European, African 
American, Hispanic 28714469



Systemic lupus erythematosus 2:191079016 Intron variant 1.00E-65 rs11889341 European and 
Chinese 27399966



Systemic lupus erythematosus 2:191099907 Intron variant 5.00E-42 rs7574865 Han Chinese 19838193



Systemic lupus erythematosus 2:191099907 Intron variant 1.00E-41 rs7574865 European 19838195



Systemic lupus erythematosus 2:191079016 Intron variant 4.00E-22 rs11889341 European and 
Chinese 27399966



Systemic lupus erythematosus 2:191099907 Intron variant 1.00E-21 rs7574865 Han Chinese 23273568



Systemic lupus erythematosus 2:191099907 Intron variant 2.00E-20 rs7574865 European 21408207



Systemic lupus erythematosus 2:191089272 Intron variant 2.00E-19 rs12612769 Korean 26663301



Systemic lupus erythematosus 2:191081596 Intron variant 9.00E-17 rs6736175 European 26502338



Systemic lupus erythematosus 2:191079016 Intron variant 6.00E-16 rs11889341 European, African 
American, Hispanic 28714469



Systemic lupus erythematosus 2:191099907 Intron variant 4.00E-14 rs7574865 European 23053960



Systemic lupus erythematosus 2:191079016 Intron variant 7.00E-13 rs11889341 Native American 26606652



Systemic lupus erythematosus 2:191038032 Intron variant 8.00E-11 rs3821236 European 19165918



Systemic lupus erythematosus 2:191099907 Intron variant 5.00E-09 rs7574865 European 24871463



Systemic lupus erythematosus 2:191105394 Intron variant 4.00E-07 rs7582694 European 26316170



Juvenile idiopathic arthritis 2:191108308 Intron variant 1.00E-13 rs10174238 European 23603761



Juvenile idiopathic arthritis 2:191009521 Intron variant 7.00E-08 rs45539732 European 23603761
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Disease Chromosome 
Position Variant Type GWAS 



P Value rs Number Study 
Ancestries Study PMID



Rheumatoid arthritis 1:198757491 Intergenic variant 4.00E-06 rs4810485 European and 
Korean 24532676



Systemic lupus 
erythematosus



1:198625639 Intergenic variant 2.00E-12 rs34889541 European and 
Chinese



27399966
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Dataset Tissue Platform Disease 
Group



GSE7621 Substantia  Nigra Microarray Sporadic



GSE68719 Frontal Cortex RNA-Seq Sporadic



GSE20291 Putamen Microarray Sporadic



GSE20292 Substantia Nigra Microarray Sporadic



GSE20168 Frontal Cortex Microarray Sporadic



GSE49036 Substantia Nigra Microarray Sporadic



GSE8397 Frontal Cortex Microarray Sporadic



GSE20141 Substantia Nigra Microarray Sporadic



GSE8397 Frontal Cortex Microarray Sporadic



GSE19587 Medulla Microarray Sporadic



GSE34516 Locus Coeruleus Microarray LRRK2



GSE23290 Putamen Microarray LRRK2
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3 Dataset 6 Dataset 12 Dataset



Total Number of  DEGs 3457 1744 243



Number of  Nodes in PPI 
Network 10913 8860 2797



Total Number of  
Common Coexpression 
Nodes



5517 1788 212
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RGS4 RBM3 UBE2V2 SARS ACLY RAB7A BPGM WDR77 AIFM1 TRIM5 CD48 FOXJ1 STX2 TAZ PGF
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Application Percentage of  PPI network shared Percentage of  common 
coexpression module shared



TDP-43 Dysfunction 28.86% 6.90%



Parkinson’s Disease 36.47% 7.55%



Autoimmune Arthritis 27.46% 5.90%
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Gene Symbol Chromosome Location Ref Alt rs ID Mutation Type Hom/Het
AAAS 12 53708082 G A rs758057774 Stop gained Het
AAAS 12 53702758 T TA rs387906326 Frameshift variant Het
ABCA5 17 67273901 A ATT Frameshift variant Het
ABCA5 17 67249984 C A rs747651434 Stop gained Het
ABCA5 17 67285375 A C Stop gained Het
ABCA5 17 67298998 CAT C rs756778939 Frameshift variant Het
ADAMTSL4 1 150526224 CCAGAGCCCAGGCCTCTGGCA C rs587691401,rs199473693 Frameshift variant Het
ADAMTSL4 1 150526224 CCAGAGCCCAGGCCTCTGGCA C rs587691401,rs199473693 Frameshift variant Het
ADAMTSL4 1 150526224 CCAGAGCCCAGGCCTCTGGCA C rs587691401,rs199473693 Frameshift variant Het
ANK2 4 114038550 G T Stop gained Het
ANK2 4 114294590 AC A Frameshift variant Het
ANXA7 10 75157033 T C Splice acceptor variant Het
ARL1 12 101801054 C A Splice donor variant Het
ATP6V1B2 8 20067922 C T rs748641098 Stop gained Het
CCNH 5 86697573 ACT A rs747018976 Frameshift variant Het
CCNH 5 86700659 C A rs749082499 Splice donor variant Het
CDC123 10 12280453 A G Splice acceptor variant Het
CUL3 2 225368363 CTTACCT C rs199469657 Splice donor variant Het
CUL3 2 225368366 A AC rs199469659 Splice donor variant Het
DDX1 2 15746272 G C Splice acceptor variant Het
DOT1L 19 2227901 G GC Frameshift variant Het
DOT1L 19 2227922 G GC Frameshift variant Het
DZIP3 3 108407749 C A Stop gained Het
EFEMP2 11 65635427 A AGCGG rs193302865 Frameshift variant Het
EFEMP2 11 65637620 TG T rs193302870 Frameshift variant Het
EFEMP2 11 65641003 A G Splice donor variant Het
ELP3 8 27947372 G A Splice donor variant Het
EPS15 1 51912629 A G Splice donor variant Het
FH 1 241661210 CCTTT C rs398123165 Frameshift variant Het
FH 1 241663832 CT C rs398123163 Frameshift variant Het
FH 1 241665777 CA C rs398123162 Frameshift variant Het
FH 1 241667530 TGACAAAA T rs794727836 Frameshift variant Het
FH 1 241669304 G GT Frameshift variant Het
FH 1 241671902 CT C rs727503928 Frameshift variant Het
FH 1 241680470 ATGCCACTTAC A Splice donor variant Het
GARS 7 30656894 G A rs868796615 Splice donor variant Het
GDI1 X 153670765 TGA T rs398122814 Frameshift variant Het
GGH 8 63951325 A C Start lost Het
GLMN 1 92732143 G A rs765951626 Stop gained Het
GOLIM4 3 167728073 G A rs746214902 Stop gained Het
GOLIM4 3 167728142 G A rs141565580 Stop gained Het
GORASP2 2 171793138 A G rs79698371 Start lost Het
GORASP2 2 171793138 A G rs79698371 Start lost Het
GORASP2 2 171793138 A G rs79698371 Start lost Het
GORASP2 2 171793138 A G rs79698371 Start lost Het
GORASP2 2 171793225 C T rs186951339 Stop gained Het
GOT1 10 101165529 TC T Frameshift variant Het
GOT1 10 101165530 CT C Frameshift variant Het
GOT1 10 101189977 C G rs779080282 Splice donor variant Het
GOT1 10 101189977 C G rs779080282 Splice donor variant Het
GOT1 10 101189977 C G rs779080282 Splice donor variant Het
HEYL 1 40105294 CA TC Start lost Het
HEYL 1 40105295 A C rs764641613 Start lost Het
HK1 10 71158443 C A Stop gained Het
HK1 10 71124593 AGG A Frameshift variant Het
HPRT1 X 133609281 A AG rs786200980 Frameshift variant Het
HPRT1 X 133632658 AC A Frameshift variant Het
HPRT1 X 133634055 ATA TTT rs672601245 Splice acceptor variant Het
HSPA9 5 137902402 CCT C rs772570880 Frameshift variant Het
HSPA9 5 137902402 CCT C rs772570880 Frameshift variant Het
HSPA9 5 137902402 CCT C rs772570880 Frameshift variant Het
IMMT 2 86371887 TA T Frameshift variant Het
KIAA0368 9 114247024 T C rs147379933 Start lost Het
LEF1 4 108969898 G A rs143787350 Stop gained Het
MAPRE2 18 32558478 GGAAT G rs534772399 Frameshift variant Het
MDH2 7 75686812 T C Splice donor variant Het
MIA3 1 222802036 G A rs375824764 Splice donor variant Het
MIA3 1 222803040 C T rs766694970 Stop gained Het
MIA3 1 222825567 A G rs775427677 Splice acceptor variant Het
MUTYH 1 45797092 TC T Frameshift variant Het
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Gene Symbol Chromosome Location Ref Alt rs ID Mutation Type Hom/Het
MUTYH 1 45797185 T TCC rs587780078 Frameshift variant Het
MUTYH 1 45797370 AG A rs587778536 Frameshift variant Het
MUTYH 1 45800127 GC G rs587781704 Frameshift variant Het
MYH10 17 8396204 CA C Frameshift variant Het
NDUFS2 1 161171935 G C rs190773825 Splice acceptor variant Het
NLK 17 26374985 A T Stop gained Het
NNT 5 43602855 G T rs143181189 Splice donor variant Hom
NNT 5 43602855 G T rs143181189 Splice donor variant Het
NNT 5 43602855 G T rs143181189 Splice donor variant Het
NNT 5 43602855 G T rs143181189 Splice donor variant Het
NUAK1 12 106480630 T C Start lost Het
OAT 10 126089535 GT G rs386833594 Frameshift variant Het
OAT 10 126090355 TC T rs386833620 Frameshift variant Het
OAT 10 126094114 TACCCC T rs386833612 Frameshift variant Het
OAT 10 126097200 CCACTCCTAT C rs774803264,rs386833609 Splice acceptor variant Het
OAT 10 126097351 T TA rs386833607 Frameshift variant Het
OAT 10 126100546 CCT C rs386833600 Frameshift variant Het
OAT 10 126100580 TG T rs386833599 Frameshift variant Het
OXCT1 5 41862783 AGCTTC A Frameshift variant Het
OXCT1 5 41801120 T TA Splice donor variant Het
PAFAH1B1 17 2569323 TAA T rs587784252 Frameshift variant Het
PAFAH1B1 17 2569339 CT C rs587784253 Frameshift variant Het
PAFAH1B1 17 2569345 G GA rs749454052,rs113994199 Frameshift variant Het
PAFAH1B1 17 2569345 GA G rs771311400,rs113994198 Frameshift variant Het
PAFAH1B1 17 2570396 T TA rs587784259 Stop gained Het
PAFAH1B1 17 2573508 ACT A rs587784268 Frameshift variant Het
PAFAH1B1 17 2573577 TTAAAC T rs587784270 Frameshift variant Het
PAFAH1B1 17 2573589 AT A rs587784271 Frameshift variant Het
PAFAH1B1 17 2576016 GATAAAACT G rs587784274 Frameshift variant Het
PAFAH1B1 17 2576023 CTA C rs587784275 Frameshift variant Het
PAFAH1B1 17 2576034 TG T rs587784277 Frameshift variant Het
PAFAH1B1 17 2577396 A AT rs587784284 Frameshift variant Het
PAFAH1B1 17 2579800 TA T rs587784292 Frameshift variant Het
PAFAH1B1 17 2583477 ACGTGGAGT A rs587784237 Frameshift variant Het
PAFAH1B1 17 2583498 T TG rs797045856,rs113994201 Frameshift variant Het
PAFAH1B1 17 2583498 TG T rs113994200 Frameshift variant Het
PAFAH1B1 17 2583516 GA G rs587784238 Frameshift variant Het
PAFAH1B1 17 2583553 TA T rs587784240 Frameshift variant Het
PAM 5 102364645 C G rs369667890 Stop gained Het
PAM 5 102360832 A G Splice acceptor variant Het
PFKM 12 48525176 G A rs202143236 Splice donor variant Het
PFKP 10 3111578 C A Stop gained Het
PFKP 10 3167321 C T rs554425449 Stop gained Het
PFKP 10 3149484 CTG C Frameshift variant Het
PFKP 10 3167442 T A rs187884123 Splice donor variant Het
PHGDH 1 120277984 AG A rs730882181 Frameshift variant Het
PHGDH 1 120279828 TG T Frameshift variant Het
PHYH 10 13337606 C G Splice acceptor variant Het
PHYH 10 13342040 A G Start lost Het
PHYH 10 13337575 CA C rs730882058 Frameshift variant Het
PHYH 10 13337607 T C rs201578674 Splice acceptor variant Het
PLS3 X 114827944 G C rs189407165 Splice donor variant Hom
PRKCZ 1 2076950 G C rs868518935 Splice donor variant Het
PSMD7 16 74335550 G A Splice donor variant Het
RANBP2 2 109363199 G T Stop gained Het
RANBP2 2 109363234 T A Stop gained Het
RANBP2 2 109363251 C A Stop gained Het
RANBP2 2 109363254 G T Splice donor variant Het
RANBP2 2 109368017 T G Stop gained Het
RANBP2 2 109368106 A T Stop gained Het
RANBP2 2 109368122 G A Stop gained Het
RANBP2 2 109381881 T A Stop gained Het
RANBP2 2 109383460 A T Stop gained Het
RANBP2 2 109383508 G T Stop gained Het
RANBP2 2 109383520 G T Stop gained Het
RANBP2 2 109363238 C T Stop gained Het
RANBP2 2 109383520 G T Stop gained Het
RANBP2 2 109384324 G T Stop gained Het
RANBP2 2 109384327 A T Stop gained Het
RANBP2 2 109363188 T G Stop gained Het
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Gene Symbol Chromosome Location Ref Alt rs ID Mutation Type Hom/Het
RANBP2 2 109383505 G T Stop gained Het
RANBP2 2 109383520 G T Stop gained Het
RASA1 5 86669963 A AT rs776953200 Splice acceptor variant Het
RASA1 5 86669963 A AT rs776953200 Splice acceptor variant Het
RCN2 15 77224214 G GCTGCT Frameshift variant Het
RCN2 15 77233975 A G rs202241868 Splice acceptor variant Het
RCN2 15 77233975 A G rs202241868 Splice acceptor variant Het
RCN2 15 77233975 A G rs202241868 Splice acceptor variant Het
RHOC 1 113244300 G A rs138756182 Stop gained Het
RPA3 7 7726959 C G Splice acceptor variant Het
RPA3 7 7726856 AC A Splice donor variant Het
RPH3A 12 113012869 T G Splice donor variant Het
RPH3A 12 113012869 T G Splice donor variant Het
RPH3A 12 113088677 C T Splice donor variant Het
SDHA 5 223623 C T rs142441643 Stop gained Het
SDHA 5 228342 TG T rs779126007,rs587782077 Frameshift variant Het
SERINC1 6 122772898 C CCTACAAAA Splice acceptor variant Het



SERINC1 6 122772900 TAC AAAAAAAAAAAA
A Splice acceptor variant Het



SERINC1 6 122772898 C CCAAAAAA Splice acceptor variant Het
SERINC1 6 122772894 G GAAAAAAA Frameshift variant Het
SERINC1 6 122772895 A ATTCCT Frameshift variant Het
SERINC1 6 122772900 TAC AAAAAAAAAA Splice acceptor variant Het
SKP1 5 133494302 GT G rs745539137 Frameshift variant Het
SNAP91 6 84417644 ATCT A rs759340047 Frameshift variant Het
SNAP91 6 84417644 ATCT A rs759340047 Frameshift variant Het
SOX10 22 38369823 GTC G rs397515367 Frameshift variant Het
SOX10 22 38369986 GC G rs397515372 Frameshift variant Het
SOX10 22 38370104 GC G rs397515371 Frameshift variant Het
SOX10 22 38370157 GCT G rs397515386 Frameshift variant Het
SOX10 22 38374063 CG C rs397515369 Frameshift variant Het
SOX10 22 38379515 CACGGG C rs483353057 Frameshift variant Het
SOX10 22 38379677 GC G rs397515387 Frameshift variant Het
SOX9 17 70119767 G GC Frameshift variant Het
SPAG1 8 101232656 CAG C rs749637114 Frameshift variant Het
SPI1 11 47380297 CG C Frameshift variant Het
SSX2IP 1 85135420 CTG C Frameshift variant Het
STAU1 20 47775011 AT A rs533415498 Frameshift variant Het
STAU1 20 47795781 CT C Splice acceptor variant Het
STAU1 20 47775467 TCCTTTA ATAATCTTTTAC Splice donor variant Het
STXBP1 9 130428532 CTA C rs587784454 Frameshift variant Het
TBK1 12 64875699 G GT Frameshift variant Het
TMOD1 9 100317978 T C Start lost Het
TRIM38 6 25966963 C T rs557556364 Stop gained Het
TUBA1A 12 49580326 G GC Frameshift variant Het
TUBB2A 6 3154343 G T Stop gained Het
TUBB2A 6 3154403 C T Stop gained Het
TUBB2A 6 3154461 C A Stop gained Het
TUBB2A 6 3155043 G A Stop gained Het
TUBB2A 6 3156275 A C Splice donor variant Het
TUBB2A 6 3156293 G C Stop gained Het
TUBB2A 6 3155047 A T Stop gained Het
TUBB2A 6 3156316 G A Stop gained Het
TUBB2A 6 3154343 G T Stop gained Het
TUBB2A 6 3155061 C A Stop gained Het
TUBB2A 6 3156275 A C Splice donor variant Het
TUBB2A 6 3156275 A G Splice donor variant Het
UBE2V2 8 48955700 CACTT C rs755762484 Frameshift variant Het
VDAC2 10 76970474 G T Splice donor variant Het
WARS 14 100831912 CCT C Splice acceptor variant Het
WARS 14 100831913 CT C Splice acceptor variant Het
WARS 14 100835596 T G Splice acceptor variant Het
WARS 14 100831912 CCT C Splice acceptor variant Het
WARS 14 100831913 CT C Splice acceptor variant Het
WARS 14 100831913 CT C Splice acceptor variant Het
WBP4 13 41639423 G GAAA Splice donor variant Het
WBP4 13 41639424 T A Splice donor variant Het
WBP4 13 41639423 G GAAA Splice donor variant Het
WBP4 13 41639424 T A Splice donor variant Het
WWP1 8 87460450 T TA Frameshift variant Het
YBX1 1 43148965 C T rs754767249 Stop gained Het
YBX1 1 43148272 G GC rs748379540 Frameshift variant Het
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Gene Lobby 
Score



Prioritisation 
Score



PCMT1 12 5
BCAS2 11 5
VPS35 11 5
ZC3H15 11 5
CDC42 10 5
KIF3A 10 5
PAFAH1B1 10 5
SARAF 10 5
SNAP25 10 5
ARMC1 9 4
DYNLT3 9 4
PSMC6 9 4
TMEM30A 9 4
ABCA5 8 4
ARL1 8 4
HPRT1 8 4
PFN2 8 4
RAN 8 4
RANBP6 8 4
STXBP1 8 4
ATP6V1E1 7 3
DNM1L 7 3
NARS 7 3
OAT 7 3
PAPSS1 7 3
PJA2 7 3
RCAN2 7 3
SKIV2L2 7 3
SOX10 7 3
STK39 7 3
TAX1BP1 7 3
YWHAQ 7 3
ACAT2 6 3
ATP6V1A 6 3
CCDC6 6 3
CUL1 6 3
DDX1 6 3
ENO2 6 3
GGH 6 3
GNAI2 6 3
HK1 6 3
IMMT 6 3
LAMTOR3 6 3
MAGED1 6 3
MAP2K4 6 3
MORF4L1 6 3
NECAP1 6 3
NLK 6 3
PDHB 6 3
PSMC2 6 3
UQCRC2 6 3
VDAC3 6 3
WASF1 6 3
WBP4 6 3
ANK2 5 2
ANKMY2 5 2
BPGM 5 2
COPS2 5 2
EPS15 5 2
NDFIP1 5 2
PGAM1 5 2
PPP2CA 5 2
PSMD1 5 2
RASA1 5 2
RELA 5 2
RNF41 5 2
SNAP91 5 2
SSX2IP 5 2
TXNL1 5 2



Gene Lobby 
Score



Prioritisation 
Score



ADAMTSL4 4 2
AGTPBP1 4 2
CDC123 4 2
COPS3 4 2
DDB1 4 2
DYNC1LI1 4 2
DZIP3 4 2
FBXO11 4 2
GLMN 4 2
GORASP2 4 2
GOT1 4 2
HSPA4 4 2
KIAA0368 4 2
MYH9 4 2
NUAK1 4 2
PFKM 4 2
PSMA3 4 2
PSMD6 4 2
RNF11 4 2
RNF14 4 2
RTN4 4 2
SDHA 4 2
SERINC1 4 2
SERPINI1 4 2
SULT4A1 4 2
TUBA1B 4 2
U2AF2 4 2
VDAC2 4 2
ZDHHC17 4 2
ATP6V1B2 3 1
FH 3 1
GARS 3 1
GNG3 3 1
GOT2 3 1
GPN1 3 1
HINT1 3 1
HLTF 3 1
MAPRE2 3 1
MRPL9 3 1
NDEL1 3 1
NELL1 3 1
OXCT1 3 1
PHGDH 3 1
PPME1 3 1
PSMC4 3 1
PSMD2 3 1
RANBP2 3 1
SARS 3 1
SEC24B 3 1
SEPHS2 3 1
SH3GL2 3 1
TRIM38 3 1
TUBA4A 3 1
UBE2D2 3 1
USP14 3 1
VAPA 3 1
AKAP12 2 1
AMPH 2 1
ARL6IP1 2 1
ARL6IP5 2 1
BCL2 2 1
BST2 2 1
C1QBP 2 1
CCNH 2 1
CHCHD2 2 1
CHCHD3 2 1
CMTM6 2 1
COPS5 2 1
DDX24 2 1



Gene Lobby 
Score



Prioritisation 
Score



DPP8 2 1
EFEMP2 2 1
GOLIM4 2 1
HSP90AB1 2 1
HSPA9 2 1
ITPR2 2 1
KCMF1 2 1
MDH2 2 1
MEAF6 2 1
MIA3 2 1
NDUFS2 2 1
NUP155 2 1
PAK1 2 1
PAM 2 1
PHYH 2 1
PPIA 2 1
PRKCI 2 1
PSMB6 2 1
PSMD7 2 1
RAB14 2 1
RCN2 2 1
RPA3 2 1
SKP1 2 1
SUMO1 2 1
TERF2IP 2 1
TUBA1A 2 1
TUBB 2 1
TUBB2A 2 1
WARS 2 1
WASL 2 1
YWHAB 2 1
AAAS 1 1
ACTR2 1 1
ALAS1 1 1
ANXA7 1 1
APP 1 1
CACYBP 1 1
CD22 1 1
CD82 1 1
CDK19 1 1
CDK8 1 1
CFLAR 1 1
COPG1 1 1
COPS7A 1 1
CS 1 1
CUL3 1 1
CYFIP2 1 1
DCUN1D1 1 1
DHX29 1 1
DNAJA1 1 1
DOT1L 1 1
DSTN 1 1
ELP3 1 1
FTSJ1 1 1
GABARAPL2 1 1
GDI1 1 1
HEYL 1 1
HNRNPK 1 1
KCND2 1 1
LEF1 1 1
LYL1 1 1
MAP2 1 1
MAP2K1 1 1
MRFAP1L1 1 1
MTA2 1 1
MUTYH 1 1



Gene Lobby 
Score



Prioritisation 
Score



MYH10 1 1
NNT 1 1
PEBP1 1 1
PFKP 1 1
PLS3 1 1
PPP3CA 1 1
PRKCZ 1 1
PRPF4 1 1
PSMC1 1 1
RHOC 1 1
RPH3A 1 1
SOX9 1 1
SPAG1 1 1
SPI1 1 1
STAU1 1 1
STMN2 1 1
STX2 1 1
SUPT16H 1 1
TBK1 1 1
TGFBR2 1 1
TMOD1 1 1
TPI1 1 1
TUBB4B 1 1
UBE2V2 1 1
USP25 1 1
WWP1 1 1
YBX1 1 1
YES1 1 1
YWHAH 1 1
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GeneXplain 
Rank Master Molecule Name GeneXplain 



Ranks Sum
Prioritisation Score



2 MTA2 53 5



4 SERPINI1 55 5



5 AMPH 57 5



9 YBX1 63 5



12 CUL1 66 5



21 HSPA9 85 5



23 DDB1 87 5



27 AKAP12 90 5



28 TBK1 91 5



32 UBE2D2 96 4



33 SNAP91 99 4



36 RANBP2 106 4



41 LEF1 116 4



48 PFN2 126 4



58 AGTPBP1 135 4



62 CCNH 138 3



66 STMN2 141 3



67 SUMO1 141 3



75 HSPA4 147 3



78 CUL3 148 3



85 VDAC2 151 3



92 NLK 156 2



108 DNAJA1 176 2



121 PRKCZ 191 1



134 PAK1 219 1



137 GOT2 228 1



139 NOTCH3 238 1



143 PPP3CA 255 1
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Abbreviation Term
ACPA Anti–Citrullinated Protein Antibody
AD Alzheimer's Disease
ALDH1A1 Aldehyde Dehydrogenase 1 Family Member A1



ALK ALK (Anaplastic Lymphoma Kinase) Receptor 
Tyrosine Kinase



ALP Autophagy-Lysosome Pathway
ALS Amyotrophic Lateral Sclerosis



ALSoD Amyotrophic Lateral Sclerosis Online genetics 
Database



AMPH Amphiphysin
AOSD Adult-onset Still’s Disease
APOE Apolipoprotein E
APP Amyloid Beta Precursor Protein
ATP13A2 ATPase Cation Transporting 13A2
ATXN2 Ataxin 2
AxD Alexander's Disease
BP Biological Processes
C9orf72 Chromosome 8 open reading frame 72
CBD Corticobasal Degeneration
CC Cellular Component
CCP Common Connectivity Patterns
CHMP2B Charged Multivesicular Body Protein 2B
CMA Chaperone-Mediated Autophagy
COPS5 COP9 Signalosome Subunit 5
CRP C-Reactive Protein
CTE Chronic Traumatic Encephalopathy
CTF C-terminal Fragment
CTLA4 Cytotoxic T-Lymphocyte Associated Protein 4
CYCS Cytochrome C, Somatic
DCTN1 Dynactin Subunit 1
DDX1 DEAD-Box Helicase 1
DDX21 DExD-Box Helicase 21
DEGs Differently Expressed Genes
DJ-1 Parkinsonism Associated Deglycase 
DMARDS Disease-Modifying Anti-Rheumatic Drugs



DNAJC6 DnaJ Heat Shock Protein Family (Hsp40) 
Member C6



DNM1L Dynamin 1 Like



EFEMP1 EGF Containing Fibulin Extracellular Matrix 
Protein 1



ELP3 Elongator Acetyltransferase Complex Subunit 3



EPS15 Epidermal Growth Factor Receptor Pathway 
Substrate 15



ERBB4 Erb-B2 Receptor Tyrosine Kinase 4
fALS Familial Amyotrophic Lateral Sclerosis
FDR False Discovery Rate
FTLD Frontotemporal Lobar Degeneration
FUS Fused in Sarcoma
GARS Glycyl-TRNA Synthetase
GEO Gene Expression Omnibus
GO Gene Ontology
GRN Granulin Precursor
GSEA Gene Set Enrichment Analysis
GWAS Genome Wide Association Study
HD Huntington's Disease
HER2 Human Epidermal Growth Factor Receptor 2



Abbreviation Term
HGNC HUGO Gene Nomenclature Committee
HLA-B27 Human leukocyte antigen B27



HLA-DQB1 Major Histocompatibility Complex, Class II, DQ 
Beta 1



HLA-DRB1 Major Histocompatibility Complex, Class II, DR 
Beta 1



hnRNP Heterogeneous Nuclear Ribonucleoprotein
HNRNPA2B1 Heterogeneous Nuclear Ribonucleoprotein A2/B1



HS Hippocampal Sclerosis



HSPA9 Heat Shock Protein Family A (Hsp70) Member 9
HTT Huntingtin



IBMPFD Inclusion Body Myopathy with Paget's Disease and 
Frontotemporal Dementia



IL-18 Interleukin 18



iLINCS integrative Library of Integrated Network-based 
Cellular Signatures



IPA Ingenuity Pathway Analysis
IRF1 Interferon Regulatory Factor 1
IRF4 Interferon Regulatory Factor 4
IRF5 Interferon Regulatory Factor 5
ITPR2 Inositol 1,4,5-Trisphosphate Receptor Type 2
JIA Juvenile Idiopathic Arthritis
KEGG Kyoto Encyclopedia of Genes and Genomes
LAPTM4B Lysosomal Protein Transmembrane 4 Beta
LB Lewy Body
LBD Lewy Body Dementia
LCC Largest Connected Component
LIMMA Linear Models for Microarray Data
LoF Loss-of-Function
LRRK2 Leucine Rich Repeat Kinase 2
MAGED1 MAGE Family Member D1
MAO-B Monoamine Oxidase B
MAP1B Microtubule Associated Protein 1
MAP2 Microtubule Associated Protein 2
MAP2K1 Mitogen-Activated Protein Kinase Kinase 1 
MAPK9 Mitogen-Activated Protein Kinase 9



MAPT Microtubule Associated Protein Tau



MF Molecular Function



MIF Macrophage Migration Inhibitory Factor



MLK Mixed-Lineage Kinase 



MLLT11 Myeloid/Lymphoid Or Mixed-Lineage Leukemia; 
Translocated To, 11



MPTP 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine
MSX1 Msh Homeobox 1
MTA2 Metastasis Associated 1 Family Member 2
NDUFS1 NADH:Ubiquinone Oxidoreductase Core Subunit S1
NDUFS3 NADH:Ubiquinone Oxidoreductase Core Subunit S3



NDUFV2 NADH:Ubiquinone Oxidoreductase Core Subunit 
V2



NEK1 NIMA Related Kinase 
NFT Neurofibrillary Tangles
NPC Nuclear Pore Complex
NSAIDS Non-Steroidal Anti-Inflammatory Drugs
OA Osteoarthritis
PA Psoriatic Arthritis
PABPC1 Poly(A) Binding Protein Cytoplasmic 1
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From Molecule Relationship Type To Molecule 



CDK8 activation CCNH



CDK8 phosphorylation CCNH



NLK activation LEF1



NLK phosphorylation LEF1



PJA2 ubiquitination RTN4



RANBP2 activation RAN



RELA transcription SOX9



RELA transcription SPI1



RNF41 activation TBK1



RNF41 ubiquitination TBK1



SPI1 transcription RELA



TBK1 activation RELA



TBK1 phosphorylation RELA



UBE2D2 ubiquitination KCMF1



APP activation MAP2K4



CDC42 activation MAP2K4



CDC42 activation PAK1



CDC42 activation PRKCZ



CDC42 activation WASL



CDC42 phosphorylation MAP2K4



CDC42 phosphorylation PAK1



CDC42 phosphorylation WASL



MAP2K1 activation MAP2K4



MAP2K1 phosphorylation MAP2K4



PAK1 activation CDC42



PAK1 activation MAP2K1



PAK1 activation PGAM1



PAK1 inhibition BCL2



PAK1 phosphorylation BCL2



PAK1 phosphorylation MAP2K1



PAK1 phosphorylation PGAM1



PPP2CA inhibition BCL2



PPP2CA phosphorylation BCL2



PRKCZ activation CDC42



PRKCZ activation MAP2K1
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From Molecule Number Of  Targets Score



CDC42 7 5



PAK1 7 5



CDK8 2 1



MAP2K1 2 1



NLK 2 1



PPP2CA 2 1



PRKCZ 2 1



RELA 2 1



RNF41 2 1



TBK1 2 1



APP 1 1



PJA2 1 1



RANBP2 1 1



SPI1 1 1



UBE2D2 1 1
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Gene Endeavour 
Rank



Prioritisation 
Score



APP 16 5
PRKCI 31 5
HNRNPK 35 5
GARS 37 5
ITPR2 43 5
PAFAH1B1 50 5
RELA 51 5
ANK2 53 5
MYH10 54 5
RANBP2 55 5
HSPA9 57 5
TUBB 59 5
TUBB 60 5
NOTCH3 62 4
TUBB 64 4
PPP3CA 67 4
TUBB 69 4
PSMD1 71 4
MAPRE2 72 4
TBK1 74 4
SNAP25 77 4
PSMA3 79 4
DDX1 80 4
MAP2K1 81 4
TUBA1B 82 4
YBX1 83 4
ELP3 86 4
HPRT1 89 4
TUBB 92 4
TUBB 93 4
TUBB 94 4
KIF3A 95 4
FBXO11 98 4
HSPA4 99 4
C1QBP 101 4
BCL2 102 4
VDAC2 103 4
PSMC6 104 4
RTN4 106 4
GDI1 107 4
PAPSS1 109 4
U2AF2 111 4
RAN 113 4
PFKM 116 4
TUBA4A 117 4
MAP2 118 4
SKP1 119 4
SNAP91 121 4
SH3GL2 122 4
VAPA 123 3
STMN2 124 3
PHGDH 126 3
STXBP1 127 3
SUPT16H 129 3
GABARAPL2 130 3
PCMT1 131 3
TUBA1A 132 3
PAK1 134 3
PJA2 136 3
YES1 137 3
MAP2K4 140 3
ENO2 141 3
YWHAB 142 3
NARS 144 3
IMMT 145 3
TUBB 149 3
TUBB4B 151 3
MYH9 152 3
PPP2CA 153 3



Gene Endeavour 
Rank



Prioritisation 
Score



TPI1 154 3
RASA1 156 3
PFKP 158 3
ACTR2 159 3
PEBP1 160 3
WWP1 163 3
WASF1 164 3
MORF4L1 165 3
YWHAH 167 3
CUL3 168 3
PFN2 170 3
TAX1BP1 172 3
NDEL1 173 3
OXCT1 174 3
WASL 178 3
CCNH 179 3
TUBB2A 180 3
PDHB 181 3
DYNC1LI1 182 3
CUL1 183 3
UQCRC2 185 2
ZDHHC17 186 2
ATP6V1B2 188 2
PAM 189 2
GOT2 190 2
PRKCZ 191 2
PSMD7 193 2
PSMC4 194 2
STAU1 195 2
PSMC1 196 2
TGFBR2 198 2
TERF2IP 199 2
MUTYH 200 2
PSMD2 201 2
SOX9 202 2
OAT 203 2
MDH2 205 2
SSX2IP 206 2
YWHAQ 208 2
PPIA 209 2
HLTF 210 2
ATP6V1A 211 2
RNF14 212 2
CCDC6 213 2
CDK8 214 2
NDUFS2 215 2
CYFIP2 216 2
MAGED1 217 2
DNM1L 218 2
GOT1 220 2
COPS5 221 2
DDB1 222 2
PSMC2 223 2
CDC42 225 2
HK1 226 2
RNF11 227 2
EFEMP2 228 2
SDHA 229 2
ARL1 230 2
HINT1 231 2
NELL1 232 2
WBP4 233 2
CFLAR 234 2
DSTN 235 2
NLK 236 2
RNF41 237 2
SEC24B 238 2
DOT1L 239 2
COPS2 240 2



Gene Endeavour 
Rank



Prioritisation 
Score



VPS35 241 2
NUP155 243 2
USP14 244 2
LEF1 245 1
EPS15 246 1
ARMC1 247 1
SOX10 248 1
RCN2 249 1
ACAT2 250 1
TXNL1 251 1
UBE2V2 252 1
GORASP2 253 1
CDC123 254 1
DDX24 255 1
KIAA0368 257 1
PHYH 258 1
PSMB6 259 1
DHX29 261 1
PGAM1 262 1
HSP90AB1 265 1
NUAK1 266 1
PLS3 267 1
COPS7A 268 1
MEAF6 269 1
MTA2 270 1
ANXA7 271 1
AGTPBP1 272 1
GNAI2 273 1
PSMD6 274 1
HEYL 275 1
STK39 277 1
RCAN2 278 1
COPS3 279 1
DNAJA1 280 1
DCUN1D1 281 1
WARS 282 1
SKIV2L2 285 1
GGH 287 1
CACYBP 288 1
FH 289 1
ZC3H15 290 1
LAMTOR3 291 1
COPG1 292 1
CHCHD3 293 1
ATP6V1E1 295 1
AMPH 296 1
SUMO1 297 1
NNT 298 1
VDAC3 299 1
BCAS2 300 1
USP25 304 1
NECAP1 305 1
ARL6IP5 306 0
GPN1 307 0
AKAP12 308 0
RAB14 309 0
KCND2 310 0
SULT4A1 311 0
CS 313 0
RHOC 314 0
NDFIP1 315 0
GLMN 316 0
PRPF4 317 0
SERINC1 318 0
UBE2D2 319 0
ADAMTSL4 320 0
SERPINI1 321 0
AAAS 322 0
ABCA5 324 0



Gene Endeavour 
Rank



Prioritisation 
Score



PPME1 325 0
ALAS1 326 0
SPI1 328 0
DYNLT3 330 0
RPH3A 332 0
MIA3 333 0
SARS 334 0
ANKMY2 337 0
MDH2 338 0
MRPL9 339 0
CDK19 340 0
GNAI2 341 0
RANBP6 342 0
STX2 343 0
RPA3 344 0
TMEM30A 345 0
ARL6IP1 346 0
TMOD1 347 0
CD22 348 0
FTSJ1 350 0
DZIP3 351 0
DPP8 352 0
CHCHD2 354 0
KCMF1 355 0
GOLIM4 356 0
GNG3 357 0
CMTM6 358 0
SEPHS2 359 0
BST2 360 0
BPGM 361 0
TRIM38 362 0
SPAG1 363 0
LYL1 364 0
CD82 365 0
MRFAP1L1 366 0
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Gene Lobby Score Prioritisation 
Score



TERF2IP 13 5
UBE2N 13 5
PNMA2 12 4
TRIM37 12 4
ATP6V1B2 11 4
NPTN 11 4
UBE2V2 11 4
ATP6V1H 10 4
MAP2K1 10 4
MLLT11 10 4
RAB22A 10 4
SUCLA2 10 4
CYCS 9 3
DLD 9 3
GLO1 9 3
NDUFA5 9 3
NDUFB6 9 3
PNMA1 9 3
PPP2CA 9 3
RANBP6 9 3
STRAP 9 3
STXBP1 9 3
EIF1B 8 3
GABARAPL2 8 3
MAPK10 8 3
MDH1 8 3
PSMD6 8 3
RTCA 8 3
UBE2K 8 3
UQCRC2 8 3
ACTR3B 7 3
ATP5F1 7 3
DDX1 7 3
DNM1L 7 3
DYNLT3 7 3
GOT1 7 3
HPRT1 7 3
ISCU 7 3
MAP2K4 7 3
MMADHC 7 3
MRFAP1L1 7 3
PPIA 7 3
PSMC6 7 3
SNAP91 7 3
UCHL1 7 3
COPS3 6 2
DNM1 6 2
DYNC1H1 6 2
ENO2 6 2
LAMTOR3 6 2
LRPPRC 6 2
NDUFS3 6 2
OXCT1 6 2
PCMT1 6 2
PIK3CB 6 2
RUNDC3A 6 2
TMEM126B 6 2
TXNL1 6 2
ATP6V1E1 5 2
COPS4 5 2
COPS5 5 2
EAPP 5 2
EIF4H 5 2
HIGD1A 5 2
LAPTM4B 5 2
LRRC47 5 2
PGAM1 5 2
PGRMC1 5 2
PSMA5 5 2
PSMB5 5 2
PSMB7 5 2



Gene Lobby Score Prioritisation 
Score



RCAN2 5 2
THY1 5 2
UBE4A 5 2
VDAC2 5 2
AP2M1 4 2
ATP6V1G1 4 2
ATP6V1G2 4 2
BCAS2 4 2
BPGM 4 2
CCT7 4 2
COPS7A 4 2
CXorf40A 4 2
EEF1A2 4 2
FOSL1 4 2
NDFIP1 4 2
NDUFS2 4 2
OLA1 4 2
PSMC1 4 2
PSMD14 4 2
RAB1A 4 2
RGS4 4 2
RNF11 4 2
RTN3 4 2
TBPL1 4 2
TCEA2 4 2
TMEM30A 4 2
TUBA1B 4 2
TUBB2A 4 2
BCAM 3 1
BCAP31 3 1
CHGB 3 1
COX5A 3 1
DOK5 3 1
DRG1 3 1
LDHA 3 1
MAPK9 3 1
NDUFA8 3 1
PPP2R1A 3 1
PSMB6 3 1
PSMC4 3 1
RAN 3 1
RTN4 3 1
SARS 3 1
SUMO1 3 1
SYN1 3 1
TBCE 3 1
TMEM246 3 1
UBA3 3 1
UQCRFS1 3 1
USP11 3 1
ACTR6 2 1
ADSS 2 1
AREL1 2 1
ATP1A1 2 1
ATP6V1A 2 1
BTBD1 2 1
C1QBP 2 1
DCAF6 2 1
DCTN6 2 1
DDA1 2 1
EIF4EBP1 2 1
FOXJ1 2 1
HLTF 2 1
IBTK 2 1
IMMT 2 1
LYL1 2 1
MAGED1 2 1
MRPL15 2 1
NDUFS6 2 1
NIPSNAP1 2 1
PARK7 2 1



Gene Lobby Score Prioritisation 
Score



PDHA1 2 1
PSMD8 2 1
RASA1 2 1
RBX1 2 1
REEP5 2 1
SAMM50 2 1
SCFD1 2 1
STK25 2 1
TUBA4A 2 1
TUFM 2 1
UBE2B 2 1
UBE2D2 2 1
UQCRC1 2 1
WAS 2 1
YWHAZ 2 1
ADRA2C 1 1
ALDOC 1 1
ATR 1 1
BMP4 1 1
C10orf88 1 1
CCT4 1 1
CCT6A 1 1
CD37 1 1
CHUK 1 1
CNTNAP1 1 1
COPS8 1 1
DHPS 1 1
EIF6 1 1
F10 1 1
GARS 1 1
GNAI1 1 1
GOT2 1 1
GPS1 1 1
IDH3G 1 1
IL3RA 1 1
ITGA5 1 1
KHSRP 1 1
LDHB 1 1
LDOC1 1 1
LZTFL1 1 1
MMS19 1 1
MRPL13 1 1
NDUFA10 1 1
NDUFS1 1 1
NHP2 1 1
PDHB 1 1
PFDN4 1 1
PIN1 1 1
PRR13 1 1
PTDSS1 1 1
PUF60 1 1
RAB11A 1 1
RAB2A 1 1
RAB6B 1 1
RABAC1 1 1
RCN2 1 1
SDHA 1 1
SEC13 1 1
SLC25A46 1 1
SNAP25 1 1
TAF7 1 1
THAP10 1 1
TOLLIP 1 1
TSN 1 1
TSPAN7 1 1
TUBB3 1 1
TUSC2 1 1
TXNL4A 1 1
XPOT 1 1
YARS 1 1
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GeneXplain 
Rank Master Molecule Name GeneXplain 



Ranks Sum Prioritisation Score



3 MAPK10 33 5



4 COPS8 34 5



9 FOSL1 42 5
11 COPS5 46 5



14 RBX1 59 5
15 UBE2N 60 5



19 MAPK9 62 4



21 UCHL1 62 4
24 UBE2D2 68 4



26 GPS1 73 4
27 YWHAZ 73 4



34 WAS 78 4



37 MAGED1 81 3
56 AP2M1 99 2



74 GOT2 113 1
76 RABAC1 116 1



83 UBE2B 125 1
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From Molecule Relationship Type To Molecule 



MAP2K1 activation EIF4EBP1



MAP2K1 activation MAP2K4



MAP2K1 phosphorylation EIF4EBP1



MAP2K1 phosphorylation MAP2K4



RGS4 activation GNAI1



STK25 activation YWHAZ



STK25 phosphorylation YWHAZ



UBE2N activation MAP2K1
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Molecule Number of  Targets Score



MAP2K1 4 5



STK25 2 2



RGS4 1 1



UBE2N 1 1
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Gene Endeavour 
Rank



Prioritisation 
Score



PARK7 2 5



UCHL1 3 5



MAP2K1 4 5



VDAC2 5 5



TUBB3 6 5



DNM1L 7 5



DLD 8 5



DYNC1H1 9 5



PPP2R1A 10 5



LDHA 11 5



ISCU 12 5



MAP2K4 13 5



CYCS 14 5



C1QBP 15 5



UQCRC2 16 5



PPP2CA 17 5



MAPK10 18 5



TUBB2A 19 5



TUBA1B 20 5



ATP6V1B2 21 5



LRRC47 22 5



YWHAZ 23 5



PTDSS1 24 5



HLTF 25 5



MDH1 26 5



ATP5F1 27 5



UQCRC1 28 5



RAN 29 5



ENO2 30 5



NDUFS1 31 5



PDHB 32 5



NDUFS2 33 5



GOT1 34 5



ATP1A1 35 5



WAS 36 5



DNM1 37 4



PSMC1 38 4



LDHB 39 4



PIK3CB 40 4



STXBP1 41 4



CHUK 42 4



ATP6V1A 43 4



SYN1 44 4



MAPK9 45 4



YARS 46 4



CCT6A 47 4



PNMA1 48 4



NDUFA5 49 4



DHPS 50 4



GNAI1 51 4



TUBA4A 52 4



ACTR6 53 4



NDUFA10 54 4



UBE2N 55 4



EIF4EBP1 56 4



PDHA1 57 4



CNTNAP1 58 4



PSMC6 59 4



CCT4 60 4



SDHA 61 4



BPGM 62 4



RAB11A 63 4



TUFM 64 4



PFDN4 65 4



C10orf88 66 4



BCAP31 67 4



PSMB5 68 4



SUCLA2 69 4



PSMB7 70 4



UQCRFS1 71 4



SLC25A46 72 3



Gene Endeavour 
Rank



Prioritisation 
Score



BMP4 73 3



CCT7 74 3



COPS5 75 3



ADSS 76 3



GOT2 77 3



STK25 78 3



ATP6V1G1 79 3



RAB6B 80 3



RASA1 81 3



FOSL1 82 3



NDUFB6 83 3



UBA3 84 3



OLA1 85 3



ITGA5 86 3



NDUFS3 87 3



GARS 88 3



HPRT1 89 3



LZTFL1 90 3



STRAP 91 3



REEP5 92 3



ACTR3B 93 3



ALDOC 94 3



LAPTM4B 95 3



EEF1A2 96 3



PIN1 97 3



KHSRP 98 3



RANBP6 99 3



GABARAPL2 100 3



PSMD6 101 3



GLO1 102 3



TBCE 103 3



SUMO1 104 3



PGRMC1 105 3



PSMC4 106 3



DRG1 107 2



IBTK 108 2



UBE4A 109 2



TMEM246 110 2



IMMT 111 2



UBE2V2 112 2



RTN4 113 2



IDH3G 114 2



TXNL4A 115 2



THY1 116 2



TRIM37 117 2



BTBD1 118 2



PSMD8 119 2



DDX1 120 2



SCFD1 121 2



PUF60 122 2



TAF7 123 2



PSMA5 124 2



UBE2B 125 2



PSMD14 126 2



PGAM1 127 2



EIF4H 128 2



SEC13 129 2



NHP2 130 2



PPIA 131 2



TSN 132 2



RTN3 133 2



NPTN 134 2



LRPPRC 135 2



MRPL15 136 2



ATP6V1H 137 2



SNAP25 138 2



TXNL1 139 2



ATR 140 2



COX5A 141 1



COPS4 142 1



HIGD1A 143 1



Gene Endeavour 
Rank



Prioritisation 
Score



F10 144 1



RGS4 145 1



RTCA 146 1



TCEA2 147 1



NDUFS6 148 1



RCN2 149 1



NDUFA8 150 1



SARS 151 1



TERF2IP 152 1



ADRA2C 153 1



XPOT 154 1



RUNDC3A 155 1



MLLT11 156 1



CD37 157 1



TBPL1 158 1



PSMB6 159 1



RAB1A 160 1



TMEM30A 161 1



EIF6 162 1



COPS3 163 1



UBE2K 164 1



RAB2A 165 1



AP2M1 166 1



BCAM 167 1



EAPP 168 1



BCAS2 169 1



RNF11 170 1



DCAF6 171 1



NIPSNAP1 172 1



NDFIP1 173 1



TOLLIP 174 0



UBE2D2 175 0



ATP6V1G2 176 0



COPS8 177 0



SNAP91 178 0



ATP6V1E1 179 0



OXCT1 180 0



RABAC1 181 0



SAMM50 182 0



PCMT1 183 0



LAMTOR3 184 0



RBX1 185 0



DCTN6 186 0



TMEM126B 187 0



RAB22A 188 0



MMS19 189 0



CHGB 190 0



MAGED1 191 0



GPS1 192 0



DDA1 193 0



MMADHC 194 0



PNMA2 195 0



RCAN2 196 0



DYNLT3 197 0



IL3RA 198 0



USP11 199 0



MRPL13 200 0



TSPAN7 201 0



EIF1B 202 0



COPS7A 203 0



DOK5 204 0



MRFAP1L1 205 0



LDOC1 206 0



FOXJ1 207 0



TUSC2 208 0



LYL1 209 0



PRR13 210 0



CXorf40A 211 0



THAP10 212 0



AREL1 213 0











image187.emf



−4e+05 −2e+05 0e+00 2e+05 4e+05



−
3e



+
05



−
2e



+
05



−
1e



+
05



0e
+



00
1e



+
05



2e
+



05
JEN.RA



PC1



P
C



2



Disease
Control



C_GSM1337304



C_GSM1337305



C_GSM1337306C_GSM1337307



C_GSM1337308



C_GSM1337309



C_GSM1337310



C_GSM1337311



C_GSM1337312



C_GSM1337313



P_GSM1337314



P_GSM1337315



P_GSM1337316



P_GSM1337317



P_GSM1337318



P_GSM1337319



P_GSM1337320



P_GSM1337321



P_GSM1337322P_GSM1337323



P_GSM1337324



P_GSM1337325



P_GSM1337326










−4e+05 −2e+05 0e+00 2e+05 4e+05

−

3

e

+

0

5

−

2

e

+

0

5

−

1

e

+

0

5

0

e

+

0

0

1

e

+

0

5

2

e

+

0

5

JEN.RA

PC1

P

C

2

Disease

Control

C_GSM1337304

C_GSM1337305

C_GSM1337306

C_GSM1337307

C_GSM1337308

C_GSM1337309

C_GSM1337310

C_GSM1337311

C_GSM1337312

C_GSM1337313

P_GSM1337314

P_GSM1337315

P_GSM1337316

P_GSM1337317

P_GSM1337318

P_GSM1337319

P_GSM1337320

P_GSM1337321

P_GSM1337322

P_GSM1337323

P_GSM1337324

P_GSM1337325

P_GSM1337326


image188.jpeg
10 o
8

uoissaidxg 2607

92ELEEINSD d
S2ELEEINSD d
Y2ELEEINSD d
£26L68INSD d
226168 INSD d
126LEEINSD d
02€L68IWSD d
BIELEEINSD d
BIELEEINSD d
LIELEEINSD d
9IELEEINSD d
SIELEEINSD d
PIELEEINSD d
SIELEEINSD O
2IELEEINSD O
LIELEEINSD O
OIELEEINSD O
60ELEELNSD O
80ELEEHNSD O
LOELEEINSD O
90ELEELNSD O
SOELEEHNSD O

YOELEEINSD O




image189.emf



0e
+



00
2e



+
05



4e
+



05
6e



+
05



8e
+



05
1e



+
06



C
_G



S
M



13
37



30
5



C
_G



S
M



13
37



30
4



C
_G



S
M



13
37



30
6



C
_G



S
M



13
37



30
7



C
_G



S
M



13
37



30
8



C
_G



S
M



13
37



31
1



P
_G



S
M



13
37



32
6



C
_G



S
M



13
37



31
2



C
_G



S
M



13
37



30
9



C
_G



S
M



13
37



31
0



C
_G



S
M



13
37



31
3



P
_G



S
M



13
37



32
2



P
_G



S
M



13
37



32
0



P
_G



S
M



13
37



31
9



P
_G



S
M



13
37



32
1



P
_G



S
M



13
37



32
3



P
_G



S
M



13
37



32
5



P
_G



S
M



13
37



31
4



P
_G



S
M



13
37



31
6



P
_G



S
M



13
37



31
7



P
_G



S
M



13
37



31
8



P
_G



S
M



13
37



31
5



P
_G



S
M



13
37



32
4










0

e

+

0

0

2

e

+

0

5

4

e

+

0

5

6

e

+

0

5

8

e

+

0

5

1

e

+

0

6

C

_

G

S

M

1

3

3

7

3

0

5

C

_

G

S

M

1

3

3

7

3

0

4

C

_

G

S

M

1

3

3

7

3

0

6

C

_

G

S

M

1

3

3

7

3

0

7

C

_

G

S

M

1

3

3

7

3

0

8

C

_

G

S

M

1

3

3

7

3

1

1

P

_

G

S

M

1

3

3

7

3

2

6

C

_

G

S

M

1

3

3

7

3

1

2

C

_

G

S

M

1

3

3

7

3

0

9

C

_

G

S

M

1

3

3

7

3

1

0

C

_

G

S

M

1

3

3

7

3

1

3

P

_

G

S

M

1

3

3

7

3

2

2

P

_

G

S

M

1

3

3

7

3

2

0

P

_

G

S

M

1

3

3

7

3

1

9

P

_

G

S

M

1

3

3

7

3

2

1

P

_

G

S

M

1

3

3

7

3

2

3

P

_

G

S

M

1

3

3

7

3

2

5

P

_

G

S

M

1

3

3

7

3

1

4

P

_

G

S

M

1

3

3

7

3

1

6

P

_

G

S

M

1

3

3

7

3

1

7

P

_

G

S

M

1

3

3

7

3

1

8

P

_

G

S

M

1

3

3

7

3

1

5

P

_

G

S

M

1

3

3

7

3

2

4


image190.emf



−6e+05 −4e+05 −2e+05 0e+00 2e+05 4e+05 6e+05



−
2e



+
05



0e
+



00
2e



+
05



4e
+



05
BER.RA



PC1



P
C



2



Disease
Control



C_GSM1332201



C_GSM1332202



C_GSM1332203
C_GSM1332204



C_GSM1332205



C_GSM1332206



C_GSM1332207



C_GSM1332208



C_GSM1332209



C_GSM1332210



P_GSM1332221
P_GSM1332222P_GSM1332223



P_GSM1332224



P_GSM1332225



P_GSM1332226



P_GSM1332227



P_GSM1332228P_GSM1332229
P_GSM1332230










−6e+05 −4e+05 −2e+05 0e+00 2e+05 4e+05 6e+05

−

2

e

+

0

5

0

e

+

0

0

2

e

+

0

5

4

e

+

0

5

BER.RA

PC1

P

C

2

Disease

Control

C_GSM1332201

C_GSM1332202

C_GSM1332203

C_GSM1332204

C_GSM1332205

C_GSM1332206

C_GSM1332207

C_GSM1332208

C_GSM1332209

C_GSM1332210

P_GSM1332221

P_GSM1332222

P_GSM1332223

P_GSM1332224

P_GSM1332225

P_GSM1332226

P_GSM1332227

P_GSM1332228 P_GSM1332229

P_GSM1332230


image191.jpeg
I 0£22eeINSD d
b ezzeeeiNso d
- szzeeeNsD d
[ lzezeensed
I 922288 INSD d
| seeeeeinsod
b vezeeeinso d
[ e222eeNsD d
[ 2zzeeeNsDd
- 1222eeNsD d
b oizeeeinso 0
- 60zzee NS9O
- 802288 L1NSD O
| 20z2881NS9 ™0
I g0zzeensD 0
[ sozzeenso O
[ v022881NSD O
| e0z2ee NS9O
| 2ozzeeNs9 O

b 1ozzeeinso 0

16 -

12 o
10 4

uorssaudx3 2607




image192.emf



0
50



00
00



10
00



00
0



15
00



00
0



C
_G



S
M



13
32



20
3



C
_G



S
M



13
32



20
4



C
_G



S
M



13
32



20
1



C
_G



S
M



13
32



20
2



P
_G



S
M



13
32



22
2



P
_G



S
M



13
32



22
3



P
_G



S
M



13
32



22
1



P
_G



S
M



13
32



22
4



C
_G



S
M



13
32



20
6



C
_G



S
M



13
32



20
8



C
_G



S
M



13
32



20
7



C
_G



S
M



13
32



21
0



C
_G



S
M



13
32



20
5



C
_G



S
M



13
32



20
9



P
_G



S
M



13
32



22
9



P
_G



S
M



13
32



22
6



P
_G



S
M



13
32



22
8



P
_G



S
M



13
32



22
7



P
_G



S
M



13
32



22
5



P
_G



S
M



13
32



23
0










0

5

0

0

0

0

0

1

0

0

0

0

0

0

1

5

0

0

0

0

0

C

_

G

S

M

1

3

3

2

2

0

3

C

_

G

S

M

1

3

3

2

2

0

4

C

_

G

S

M

1

3

3

2

2

0

1

C

_

G

S

M

1

3

3

2

2

0

2

P

_

G

S

M

1

3

3

2

2

2

2

P

_

G

S

M

1

3

3

2

2

2

3

P

_

G

S

M

1

3

3

2

2

2

1

P

_

G

S

M

1

3

3

2

2

2

4

C

_

G

S

M

1

3

3

2

2

0

6

C

_

G

S

M

1

3

3

2

2

0

8

C

_

G

S

M

1

3

3

2

2

0

7

C

_

G

S

M

1

3

3

2

2

1

0

C

_

G

S

M

1

3

3

2

2

0

5

C

_

G

S

M

1

3

3

2

2

0

9

P

_

G

S

M

1

3

3

2

2

2

9

P

_

G

S

M

1

3

3

2

2

2

6

P

_

G

S

M

1

3

3

2

2

2

8

P

_

G

S

M

1

3

3

2

2

2

7

P

_

G

S

M

1

3

3

2

2

2

5

P

_

G

S

M

1

3

3

2

2

3

0


image193.emf



−5e+06 0e+00 5e+06



−
1e



+
07



−
5e



+
06



0e
+



00
WAL.RA



PC1



P
C



2



Disease
Control



C_GSM2370970



C_GSM2370971



C_GSM2370972
C_GSM2370973



C_GSM2370974
C_GSM2370975C_GSM2370976C_GSM2370977



C_GSM2370978



C_GSM2370979



C_GSM2370980



C_GSM2370981
C_GSM2370982



C_GSM2370983
C_GSM2370984



C_GSM2370985
C_GSM2370986C_GSM2370987



C_GSM2370988
C_GSM2370989C_GSM2370990



C_GSM2370991
C_GSM2370992



C_GSM2370993



C_GSM2370994



C_GSM2370995C_GSM2370996
C_GSM2370997



P_GSM2371036



P_GSM2371037
P_GSM2371038



P_GSM2371039
P_GSM2371040



P_GSM2371041



P_GSM2371042



P_GSM2371043P_GSM2371044P_GSM2371045P_GSM2371046P_GSM2371047P_GSM2371048P_GSM2371049P_GSM2371050



P_GSM2371051



P_GSM2371052P_GSM2371053P_GSM2371054P_GSM2371055P_GSM2371056



P_GSM2371057P_GSM2371058



P_GSM2371059P_GSM2371060P_GSM2371061



P_GSM2371062



P_GSM2371063
P_GSM2371064



P_GSM2371065



P_GSM2371066
P_GSM2371067



P_GSM2371068



P_GSM2371069P_GSM2371070
P_GSM2371071



P_GSM2371072



P_GSM2371073



P_GSM2371074P_GSM2371075
P_GSM2371076P_GSM2371077



P_GSM2371078



P_GSM2371079



P_GSM2371080P_GSM2371081



P_GSM2371082
P_GSM2371083



P_GSM2371084



P_GSM2371085



P_GSM2371086



P_GSM2371088



P_GSM2371089P_GSM2371090
P_GSM2371091



P_GSM2371092



P_GSM2371093P_GSM2371094
P_GSM2371095



P_GSM2371096P_GSM2371097P_GSM2371098



P_GSM2371099



P_GSM2371100



P_GSM2371101



P_GSM2371102



P_GSM2371103



P_GSM2371104



P_GSM2371105



P_GSM2371106



P_GSM2371107



P_GSM2371108
P_GSM2371109



P_GSM2371110
P_GSM2371111



P_GSM2371112



P_GSM2371113
P_GSM2371114



P_GSM2371115P_GSM2371116P_GSM2371117
P_GSM2371118



P_GSM2371119



P_GSM2371120
P_GSM2371121



P_GSM2371122P_GSM2371123
P_GSM2371124



P_GSM2371125



P_GSM2371126
P_GSM2371127



P_GSM2371129



P_GSM2371130
P_GSM2371131P_GSM2371133



P_GSM2371135



P_GSM2371136



P_GSM2371137



P_GSM2371138
P_GSM2371139



P_GSM2371140P_GSM2371141
P_GSM2371142P_GSM2371143



P_GSM2371144
P_GSM2371145



P_GSM2371146P_GSM2371147P_GSM2371148



P_GSM2371149P_GSM2371150P_GSM2371151P_GSM2371152



P_GSM2371153



P_GSM2371154
P_GSM2371155



P_GSM2371156P_GSM2371157
P_GSM2371158P_GSM2371159



P_GSM2371160
P_GSM2371161



P_GSM2371162



P_GSM2371163



P_GSM2371165
P_GSM2371166



P_GSM2371167
P_GSM2371168P_GSM2371169P_GSM2371170P_GSM2371171



P_GSM2371172



P_GSM2371173



P_GSM2371174P_GSM2371175P_GSM2371176
P_GSM2371177



P_GSM2371178



P_GSM2371179



P_GSM2371180



P_GSM2371181
P_GSM2371182



P_GSM2371183P_GSM2371184



P_GSM2371185P_GSM2371186P_GSM2371187










−5e+06 0e+00 5e+06

−

1

e

+

0

7

−

5

e

+

0

6

0

e

+

0

0

WAL.RA

PC1

P

C

2

Disease

Control

C_GSM2370970

C_GSM2370971

C_GSM2370972

C_GSM2370973

C_GSM2370974

C_GSM2370975

C_GSM2370976

C_GSM2370977

C_GSM2370978

C_GSM2370979

C_GSM2370980

C_GSM2370981

C_GSM2370982

C_GSM2370983

C_GSM2370984

C_GSM2370985

C_GSM2370986

C_GSM2370987

C_GSM2370988

C_GSM2370989

C_GSM2370990

C_GSM2370991

C_GSM2370992

C_GSM2370993

C_GSM2370994

C_GSM2370995

C_GSM2370996

C_GSM2370997

P_GSM2371036

P_GSM2371037

P_GSM2371038

P_GSM2371039

P_GSM2371040

P_GSM2371041

P_GSM2371042

P_GSM2371043 P_GSM2371044

P_GSM2371045

P_GSM2371046

P_GSM2371047

P_GSM2371048

P_GSM2371049

P_GSM2371050

P_GSM2371051

P_GSM2371052

P_GSM2371053

P_GSM2371054

P_GSM2371055

P_GSM2371056

P_GSM2371057

P_GSM2371058

P_GSM2371059

P_GSM2371060

P_GSM2371061

P_GSM2371062

P_GSM2371063

P_GSM2371064

P_GSM2371065

P_GSM2371066

P_GSM2371067

P_GSM2371068

P_GSM2371069

P_GSM2371070

P_GSM2371071

P_GSM2371072

P_GSM2371073

P_GSM2371074

P_GSM2371075

P_GSM2371076 P_GSM2371077

P_GSM2371078

P_GSM2371079

P_GSM2371080

P_GSM2371081

P_GSM2371082

P_GSM2371083

P_GSM2371084

P_GSM2371085

P_GSM2371086

P_GSM2371088

P_GSM2371089

P_GSM2371090

P_GSM2371091

P_GSM2371092

P_GSM2371093

P_GSM2371094

P_GSM2371095

P_GSM2371096

P_GSM2371097

P_GSM2371098

P_GSM2371099

P_GSM2371100

P_GSM2371101

P_GSM2371102

P_GSM2371103

P_GSM2371104

P_GSM2371105

P_GSM2371106

P_GSM2371107

P_GSM2371108

P_GSM2371109

P_GSM2371110

P_GSM2371111

P_GSM2371112

P_GSM2371113

P_GSM2371114

P_GSM2371115

P_GSM2371116

P_GSM2371117

P_GSM2371118

P_GSM2371119

P_GSM2371120

P_GSM2371121

P_GSM2371122

P_GSM2371123

P_GSM2371124

P_GSM2371125

P_GSM2371126

P_GSM2371127

P_GSM2371129

P_GSM2371130

P_GSM2371131

P_GSM2371133

P_GSM2371135

P_GSM2371136

P_GSM2371137

P_GSM2371138

P_GSM2371139

P_GSM2371140

P_GSM2371141

P_GSM2371142

P_GSM2371143

P_GSM2371144

P_GSM2371145

P_GSM2371146

P_GSM2371147

P_GSM2371148

P_GSM2371149 P_GSM2371150 P_GSM2371151

P_GSM2371152

P_GSM2371153

P_GSM2371154

P_GSM2371155

P_GSM2371156

P_GSM2371157

P_GSM2371158

P_GSM2371159

P_GSM2371160

P_GSM2371161

P_GSM2371162

P_GSM2371163

P_GSM2371165

P_GSM2371166

P_GSM2371167

P_GSM2371168

P_GSM2371169

P_GSM2371170

P_GSM2371171

P_GSM2371172

P_GSM2371173

P_GSM2371174

P_GSM2371175

P_GSM2371176

P_GSM2371177

P_GSM2371178

P_GSM2371179

P_GSM2371180

P_GSM2371181

P_GSM2371182

P_GSM2371183

P_GSM2371184

P_GSM2371185

P_GSM2371186

P_GSM2371187


image194.jpeg
Log2 Expression





image195.emf



0.
0e



+
00



5.
0e



+
06



1.
0e



+
07



1.
5e



+
07



C
_G



S
M



23
70



97
1



P
_G



S
M



23
71



18
0



P
_G



S
M



23
71



17
3



P
_G



S
M



23
71



16
3



P
_G



S
M



23
71



07
9



P
_G



S
M



23
71



11
9



P
_G



S
M



23
71



13
7



C
_G



S
M



23
70



97
9



C
_G



S
M



23
70



99
4



C
_G



S
M



23
70



97
0



C
_G



S
M



23
70



98
0



C
_G



S
M



23
70



99
2



C
_G



S
M



23
70



99
3



P
_G



S
M



23
71



08
4



P
_G



S
M



23
71



11
3



P
_G



S
M



23
71



12
1



P
_G



S
M



23
71



08
1



P
_G



S
M



23
71



15
3



P
_G



S
M



23
71



14
8



P
_G



S
M



23
71



16
6



P
_G



S
M



23
71



16
5



P
_G



S
M



23
71



09
4



P
_G



S
M



23
71



13
9



P
_G



S
M



23
71



04
2



P
_G



S
M



23
71



09
3



P
_G



S
M



23
71



08
6



P
_G



S
M



23
71



10
4



P
_G



S
M



23
71



06
5



P
_G



S
M



23
71



10
7



P
_G



S
M



23
71



12
9



P
_G



S
M



23
71



12
5



P
_G



S
M



23
71



07
3



P
_G



S
M



23
71



09
5



P
_G



S
M



23
71



10
0



P
_G



S
M



23
71



11
4



P
_G



S
M



23
71



12
0



P
_G



S
M



23
71



15
6



C
_G



S
M



23
70



99
7



P
_G



S
M



23
71



03
8



C
_G



S
M



23
70



98
3



C
_G



S
M



23
70



97
6



C
_G



S
M



23
70



98
8



C
_G



S
M



23
70



97
3



C
_G



S
M



23
70



97
7



P
_G



S
M



23
71



18
5



P
_G



S
M



23
71



11
5



P
_G



S
M



23
71



16
7



P
_G



S
M



23
71



15
8



P
_G



S
M



23
71



17
8



P
_G



S
M



23
71



04
5



P
_G



S
M



23
71



05
0



P
_G



S
M



23
71



10
3



P
_G



S
M



23
71



12
3



P
_G



S
M



23
71



17
5



P
_G



S
M



23
71



04
4



P
_G



S
M



23
71



16
1



P
_G



S
M



23
71



18
2



P
_G



S
M



23
71



10
5



P
_G



S
M



23
71



05
4



P
_G



S
M



23
71



16
0



P
_G



S
M



23
71



03
7



P
_G



S
M



23
71



07
2



P
_G



S
M



23
71



10
1



P
_G



S
M



23
71



06
8



P
_G



S
M



23
71



05
2



P
_G



S
M



23
71



18
1



P
_G



S
M



23
71



04
8



P
_G



S
M



23
71



11
2



P
_G



S
M



23
71



05
5



P
_G



S
M



23
71



16
9



P
_G



S
M



23
71



18
6



P
_G



S
M



23
71



15
2



P
_G



S
M



23
71



17
4



P
_G



S
M



23
71



07
4



P
_G



S
M



23
71



11
1



P
_G



S
M



23
71



13
0



P
_G



S
M



23
71



14
1



P
_G



S
M



23
71



15
0



P
_G



S
M



23
71



14
9



P
_G



S
M



23
71



04
3



P
_G



S
M



23
71



09
6



P
_G



S
M



23
71



15
5



P
_G



S
M



23
71



03
9



P
_G



S
M



23
71



08
5



P
_G



S
M



23
71



11
8



P
_G



S
M



23
71



10
9



P
_G



S
M



23
71



08
3



P
_G



S
M



23
71



14
4



P
_G



S
M



23
71



05
9



P
_G



S
M



23
71



06
0



P
_G



S
M



23
71



09
7



P
_G



S
M



23
71



09
0



P
_G



S
M



23
71



14
5



P
_G



S
M



23
71



08
2



P
_G



S
M



23
71



09
8



P
_G



S
M



23
71



08
9



P
_G



S
M



23
71



06
6



P
_G



S
M



23
71



12
2



P
_G



S
M



23
71



13
5



P
_G



S
M



23
71



17
2



P
_G



S
M



23
71



18
7



P
_G



S
M



23
71



04
1



P
_G



S
M



23
71



04
9



P
_G



S
M



23
71



06
1



P
_G



S
M



23
71



11
7



P
_G



S
M



23
71



05
6



P
_G



S
M



23
71



07
8



P
_G



S
M



23
71



06
3



P
_G



S
M



23
71



07
1



P
_G



S
M



23
71



09
2



P
_G



S
M



23
71



11
6



C
_G



S
M



23
70



98
4



P
_G



S
M



23
71



05
3



C
_G



S
M



23
70



99
5



P
_G



S
M



23
71



15
7



P
_G



S
M



23
71



04
6



C
_G



S
M



23
70



97
2



P
_G



S
M



23
71



04
7



C
_G



S
M



23
70



97
5



C
_G



S
M



23
70



99
6



P
_G



S
M



23
71



04
0



C
_G



S
M



23
70



97
8



C
_G



S
M



23
70



98
7



C
_G



S
M



23
70



98
2



C
_G



S
M



23
70



97
4



C
_G



S
M



23
70



98
1



C
_G



S
M



23
70



98
6



C
_G



S
M



23
70



99
0



C
_G



S
M



23
70



99
1



C
_G



S
M



23
70



98
5



C
_G



S
M



23
70



98
9



P
_G



S
M



23
71



05
7



P
_G



S
M



23
71



07
7



P
_G



S
M



23
71



08
8



P
_G



S
M



23
71



08
0



P
_G



S
M



23
71



14
7



P
_G



S
M



23
71



12
7



P
_G



S
M



23
71



14
0



P
_G



S
M



23
71



10
6



P
_G



S
M



23
71



13
3



P
_G



S
M



23
71



14
6



P
_G



S
M



23
71



16
2



P
_G



S
M



23
71



18
4



P
_G



S
M



23
71



09
1



P
_G



S
M



23
71



13
6



P
_G



S
M



23
71



10
8



P
_G



S
M



23
71



05
1



P
_G



S
M



23
71



12
4



P
_G



S
M



23
71



06
7



P
_G



S
M



23
71



07
5



P
_G



S
M



23
71



15
1



P
_G



S
M



23
71



15
9



P
_G



S
M



23
71



17
6



P
_G



S
M



23
71



14
3



P
_G



S
M



23
71



17
1



P
_G



S
M



23
71



18
3



P
_G



S
M



23
71



10
2



P
_G



S
M



23
71



12
6



P
_G



S
M



23
71



14
2



P
_G



S
M



23
71



16
8



P
_G



S
M



23
71



06
4



P
_G



S
M



23
71



17
0



P
_G



S
M



23
71



06
9



P
_G



S
M



23
71



07
6



P
_G



S
M



23
71



06
2



P
_G



S
M



23
71



15
4



P
_G



S
M



23
71



11
0



P
_G



S
M



23
71



13
1



P
_G



S
M



23
71



03
6



P
_G



S
M



23
71



17
7



P
_G



S
M



23
71



07
0



P
_G



S
M



23
71



13
8



P
_G



S
M



23
71



17
9



P
_G



S
M



23
71



05
8



P
_G



S
M



23
71



09
9










0

.

0

e

+

0

0

5

.

0

e

+

0

6

1

.

0

e

+

0

7

1

.

5

e

+

0

7

C

_

G

S

M

2

3

7

0

9

7

1

P

_

G

S

M

2

3

7

1

1

8

0

P

_

G

S

M

2

3

7

1

1

7

3

P

_

G

S

M

2

3

7

1

1

6

3

P

_

G

S

M

2

3

7

1

0

7

9

P

_

G

S

M

2

3

7

1

1

1

9

P

_

G

S

M

2

3

7

1

1

3

7

C

_

G

S

M

2

3

7

0

9

7

9

C

_

G

S

M

2

3

7

0

9

9

4

C

_

G

S

M

2

3

7

0

9

7

0

C

_

G

S

M

2

3

7

0

9

8

0

C

_

G

S

M

2

3

7

0

9

9

2

C

_

G

S

M

2

3

7

0

9

9

3

P

_

G

S

M

2

3

7

1

0

8

4

P

_

G

S

M

2

3

7

1

1

1

3

P

_

G

S

M

2

3

7

1

1

2

1

P

_

G

S

M

2

3

7

1

0

8

1

P

_

G

S

M

2

3

7

1

1

5

3

P

_

G

S

M

2

3

7

1

1

4

8

P

_

G

S

M

2

3

7

1

1

6

6

P

_

G

S

M

2

3

7

1

1

6

5

P

_

G

S

M

2

3

7

1

0

9

4

P

_

G

S

M

2

3

7

1

1

3

9

P

_

G

S

M

2

3

7

1

0

4

2

P

_

G

S

M

2

3

7

1

0

9

3

P

_

G

S

M

2

3

7

1

0

8

6

P

_

G

S

M

2

3

7

1

1

0

4

P

_

G

S

M

2

3

7

1

0

6

5

P

_

G

S

M

2

3

7

1

1

0

7

P

_

G

S

M

2

3

7

1

1

2

9

P

_

G

S

M

2

3

7

1

1

2

5

P

_

G

S

M

2

3

7

1

0

7

3

P

_

G

S

M

2

3

7

1

0

9

5

P

_

G

S

M

2

3

7

1

1

0

0

P

_

G

S

M

2

3

7

1

1

1

4

P

_

G

S

M

2

3

7

1

1

2

0

P

_

G

S

M

2

3

7

1

1

5

6

C

_

G

S

M

2

3

7

0

9

9

7

P

_

G

S

M

2

3

7

1

0

3

8

C

_

G

S

M

2

3

7

0

9

8

3

C

_

G

S

M

2

3

7

0

9

7

6

C

_

G

S

M

2

3

7

0

9

8

8

C

_

G

S

M

2

3

7

0

9

7

3

C

_

G

S

M

2

3

7

0

9

7

7

P

_

G

S

M

2

3

7

1

1

8

5

P

_

G

S

M

2

3

7

1

1

1

5

P

_

G

S

M

2

3

7

1

1

6

7

P

_

G

S

M

2

3

7

1

1

5

8

P

_

G

S

M

2

3

7

1

1

7

8

P

_

G

S

M

2

3

7

1

0

4

5

P

_

G

S

M

2

3

7

1

0

5

0

P

_

G

S

M

2

3

7

1

1

0

3

P

_

G

S

M

2

3

7

1

1

2

3

P

_

G

S

M

2

3

7

1

1

7

5

P

_

G

S

M

2

3

7

1

0

4

4

P

_

G

S

M

2

3

7

1

1

6

1

P

_

G

S

M

2

3

7

1

1

8

2

P

_

G

S

M

2

3

7

1

1

0

5

P

_

G

S

M

2

3

7

1

0

5

4

P

_

G

S

M

2

3

7

1

1

6

0

P

_

G

S

M

2

3

7

1

0

3

7

P

_

G

S

M

2

3

7

1

0

7

2

P

_

G

S

M

2

3

7

1

1

0

1

P

_

G

S

M

2

3

7

1

0

6

8

P

_

G

S

M

2

3

7

1

0

5

2

P

_

G

S

M

2

3

7

1

1

8

1

P

_

G

S

M

2

3

7

1

0

4

8

P

_

G

S

M

2

3

7

1

1

1

2

P

_

G

S

M

2

3

7

1

0

5

5

P

_

G

S

M

2

3

7

1

1

6

9

P

_

G

S

M

2

3

7

1

1

8

6

P

_

G

S

M

2

3

7

1

1

5

2

P

_

G

S

M

2

3

7

1

1

7

4

P

_

G

S

M

2

3

7

1

0

7

4

P

_

G

S

M

2

3

7

1

1

1

1

P

_

G

S

M

2

3

7

1

1

3

0

P

_

G

S

M

2

3

7

1

1

4

1

P

_

G

S

M

2

3

7

1

1

5

0

P

_

G

S

M

2

3

7

1

1

4

9

P

_

G

S

M

2

3

7

1

0

4

3

P

_

G

S

M

2

3

7

1

0

9

6

P

_

G

S

M

2

3

7

1

1

5

5

P

_

G

S

M

2

3

7

1

0

3

9

P

_

G

S

M

2

3

7

1

0

8

5

P

_

G

S

M

2

3

7

1

1

1

8

P

_

G

S

M

2

3

7

1

1

0

9

P

_

G

S

M

2

3

7

1

0

8

3

P

_

G

S

M

2

3

7

1

1

4

4

P

_

G

S

M

2

3

7

1

0

5

9

P

_

G

S

M

2

3

7

1

0

6

0

P

_

G

S

M

2

3

7

1

0

9

7

P

_

G

S

M

2

3

7

1

0

9

0

P

_

G

S

M

2

3

7

1

1

4

5

P

_

G

S

M

2

3

7

1

0

8

2

P

_

G

S

M

2

3

7

1

0

9

8

P

_

G

S

M

2

3

7

1

0

8

9

P

_

G

S

M

2

3

7

1

0

6

6

P

_

G

S

M

2

3

7

1

1

2

2

P

_

G

S

M

2

3

7

1

1

3

5

P

_

G

S

M

2

3

7

1

1

7

2

P

_

G

S

M

2

3

7

1

1

8

7

P

_

G

S

M

2

3

7

1

0

4

1

P

_

G

S

M

2

3

7

1

0

4

9

P

_

G

S

M

2

3

7

1

0

6

1

P

_

G

S

M

2

3

7

1

1

1

7

P

_

G

S

M

2

3

7

1

0

5

6

P

_

G

S

M

2

3

7

1

0

7

8

P

_

G

S

M

2

3

7

1

0

6

3

P

_

G

S

M

2

3

7

1

0

7

1

P

_

G

S

M

2

3

7

1

0

9

2

P

_

G

S

M

2

3

7

1

1

1

6

C

_

G

S

M

2

3

7

0

9

8

4

P

_

G

S

M

2

3

7

1

0

5

3

C

_

G

S

M

2

3

7

0

9

9

5

P

_

G

S

M

2

3

7

1

1

5

7

P

_

G

S

M

2

3

7

1

0

4

6

C

_

G

S

M

2

3

7

0

9

7

2

P

_

G

S

M

2

3

7

1

0

4

7

C

_

G

S

M

2

3

7

0

9

7

5

C

_

G

S

M

2

3

7

0

9

9

6

P

_

G

S

M

2

3

7

1

0

4

0

C

_

G

S

M

2

3

7

0

9

7

8

C

_

G

S

M

2

3

7

0

9

8

7

C

_

G

S

M

2

3

7

0

9

8

2

C

_

G

S

M

2

3

7

0

9

7

4

C

_

G

S

M

2

3

7

0

9

8

1

C

_

G

S

M

2

3

7

0

9

8

6

C

_

G

S

M

2

3

7

0

9

9

0

C

_

G

S

M

2

3

7

0

9

9

1

C

_

G

S

M

2

3

7

0

9

8

5

C

_

G

S

M

2

3

7

0

9

8

9

P

_

G

S

M

2

3

7

1

0

5

7

P

_

G

S

M

2

3

7

1

0

7

7

P

_

G

S

M

2

3

7

1

0

8

8

P

_

G

S

M

2

3

7

1

0

8

0

P

_

G

S

M

2

3

7

1

1

4

7

P

_

G

S

M

2

3

7

1

1

2

7

P

_

G

S

M

2

3

7

1

1

4

0

P

_

G

S

M

2

3

7

1

1

0

6

P

_

G

S

M

2

3

7

1

1

3

3

P

_

G

S

M

2

3

7

1

1

4

6

P

_

G

S

M

2

3

7

1

1

6

2

P

_

G

S

M

2

3

7

1

1

8

4

P

_

G

S

M

2

3

7

1

0

9

1

P

_

G

S

M

2

3

7

1

1

3

6

P

_

G

S

M

2

3

7

1

1

0

8

P

_

G

S

M

2

3

7

1

0

5

1

P

_

G

S

M

2

3

7

1

1

2

4

P

_

G

S

M

2

3

7

1

0

6

7

P

_

G

S

M

2

3

7

1

0

7

5

P

_

G

S

M

2

3

7

1

1

5

1

P

_

G

S

M

2

3

7

1

1

5

9

P

_

G

S

M

2

3

7

1

1

7

6

P

_

G

S

M

2

3

7

1

1

4

3

P

_

G

S

M

2

3

7

1

1

7

1

P

_

G

S

M

2

3

7

1

1

8

3

P

_

G

S

M

2

3

7

1

1

0

2

P

_

G

S

M

2

3

7

1

1

2

6

P

_

G

S

M

2

3

7

1

1

4

2

P

_

G

S

M

2

3

7

1

1

6

8

P

_

G

S

M

2

3

7

1

0

6

4

P

_

G

S

M

2

3

7

1

1

7

0

P

_

G

S

M

2

3

7

1

0

6

9

P

_

G

S

M

2

3

7

1

0

7

6

P

_

G

S

M

2

3

7

1

0

6

2

P

_

G

S

M

2

3

7

1

1

5

4

P

_

G

S

M

2

3

7

1

1

1

0

P

_

G

S

M

2

3

7

1

1

3

1

P

_

G

S

M

2

3

7

1

0

3

6

P

_

G

S

M

2

3

7

1

1

7

7

P

_

G

S

M

2

3

7

1

0

7

0

P

_

G

S

M

2

3

7

1

1

3

8

P

_

G

S

M

2

3

7

1

1

7

9

P

_

G

S

M

2

3

7

1

0

5

8

P

_

G

S

M

2

3

7

1

0

9

9


image196.emf



−1500000 −1000000 −500000 0 500000 1000000 1500000 2000000



−
5e



+
05



0e
+



00
5e



+
05



1e
+



06
BRO



PC1



P
C



2



Disease
Control



C_GSM2048265



C_GSM2048266



C_GSM2048267



C_GSM2048268



C_GSM2048269



C_GSM2048270



C_GSM2048271



P_GSM2048272



P_GSM2048273



P_GSM2048274



P_GSM2048275



P_GSM2048276



P_GSM2048277



P_GSM2048278



P_GSM2048279



P_GSM2048280



P_GSM2048281



P_GSM2048282



P_GSM2048283
P_GSM2048284



P_GSM2048285



P_GSM2048286



P_GSM2048287










−1500000 −1000000 −500000 0 500000 1000000 1500000 2000000

−

5

e

+

0

5

0

e

+

0

0

5

e

+

0

5

1

e

+

0

6

BRO

PC1

P

C

2

Disease

Control

C_GSM2048265

C_GSM2048266

C_GSM2048267

C_GSM2048268

C_GSM2048269

C_GSM2048270

C_GSM2048271

P_GSM2048272

P_GSM2048273

P_GSM2048274

P_GSM2048275

P_GSM2048276

P_GSM2048277

P_GSM2048278

P_GSM2048279

P_GSM2048280

P_GSM2048281

P_GSM2048282

P_GSM2048283

P_GSM2048284

P_GSM2048285

P_GSM2048286

P_GSM2048287


image197.jpeg
16

14

10

uoissaidx3 2607

2828Y02NSD d
9828Y0ZNSD d
S828Y0ZNSD d
Y828Y0ZNSD d
£828Y02NSD d
2828Y02NSD d
1828Y02NSD d
0828Y02NSD d
6.28502NSD d
8/28Y02NSD d
1428502NS9d
9/28Y02NSDd
SL28Y02NSD d
$L28Y0ZNSD d
£428Y02NSD d
2£28Y02NSD d
1228Y02NSD O
0/28702NSD O
6928Y02NSD O
8928Y0ZNSD O
1928Y02NSD O
9928Y02NSD O

S928Y0ZNSD O




image198.emf



0e
+



00
1e



+
06



2e
+



06
3e



+
06



P
_G



S
M



20
48



28
4



P
_G



S
M



20
48



27
3



P
_G



S
M



20
48



27
6



P
_G



S
M



20
48



27
9



P
_G



S
M



20
48



27
4



P
_G



S
M



20
48



28
2



C
_G



S
M



20
48



26
9



C
_G



S
M



20
48



26
7



C
_G



S
M



20
48



26
8



P
_G



S
M



20
48



27
2



P
_G



S
M



20
48



28
7



P
_G



S
M



20
48



27
5



P
_G



S
M



20
48



28
1



P
_G



S
M



20
48



27
7



C
_G



S
M



20
48



27
1



P
_G



S
M



20
48



27
8



C
_G



S
M



20
48



26
5



C
_G



S
M



20
48



27
0



P
_G



S
M



20
48



28
0



P
_G



S
M



20
48



28
3



P
_G



S
M



20
48



28
5



C
_G



S
M



20
48



26
6



P
_G



S
M



20
48



28
6










0

e

+

0

0

1

e

+

0

6

2

e

+

0

6

3

e

+

0

6

P

_

G

S

M

2

0

4

8

2

8

4

P

_

G

S

M

2

0

4

8

2

7

3

P

_

G

S

M

2

0

4

8

2

7

6

P

_

G

S

M

2

0

4

8

2

7

9

P

_

G

S

M

2

0

4

8

2

7

4

P

_

G

S

M

2

0

4

8

2

8

2

C

_

G

S

M

2

0

4

8

2

6

9

C

_

G

S

M

2

0

4

8

2

6

7

C

_

G

S

M

2

0

4

8

2

6

8

P

_

G

S

M

2

0

4

8

2

7

2

P

_

G

S

M

2

0

4

8

2

8

7

P

_

G

S

M

2

0

4

8

2

7

5

P

_

G

S

M

2

0

4

8

2

8

1

P

_

G

S

M

2

0

4

8

2

7

7

C

_

G

S

M

2

0

4

8

2

7

1

P

_

G

S

M

2

0

4

8

2

7

8

C

_

G

S

M

2

0

4

8

2

6

5

C

_

G

S

M

2

0

4

8

2

7

0

P

_

G

S

M

2

0

4

8

2

8

0

P

_

G

S

M

2

0

4

8

2

8

3

P

_

G

S

M

2

0

4

8

2

8

5

C

_

G

S

M

2

0

4

8

2

6

6

P

_

G

S

M

2

0

4

8

2

8

6


image199.emf



C
_G



S
M



13
32



20
1



C
_G



S
M



13
32



20
2



C
_G



S
M



13
32



20
3



C
_G



S
M



13
32



20
4



C
_G



S
M



13
32



20
5



C
_G



S
M



13
32



20
6



C
_G



S
M



13
32



20
7



C
_G



S
M



13
32



20
8



C
_G



S
M



13
32



20
9



C
_G



S
M



13
32



21
0



P
_G



S
M



13
32



22
1



P
_G



S
M



13
32



22
2



P
_G



S
M



13
32



22
3



P
_G



S
M



13
32



22
4



P
_G



S
M



13
32



22
5



P
_G



S
M



13
32



22
6



P
_G



S
M



13
32



22
7



P
_G



S
M



13
32



22
8



P
_G



S
M



13
32



22
9



P
_G



S
M



13
32



23
0



6



8



10



12



14



Lo
g2



 E
xp



re
ss



io
n










C

_

G

S

M

1

3

3

2

2

0

1

C

_

G

S

M

1

3

3

2

2

0

2

C

_

G

S

M

1

3

3

2

2

0

3

C

_

G

S

M

1

3

3

2

2

0

4

C

_

G

S

M

1

3

3

2

2

0

5

C

_

G

S

M

1

3

3

2

2

0

6

C

_

G

S

M

1

3

3

2

2

0

7

C

_

G

S

M

1

3

3

2

2

0

8

C

_

G

S

M

1

3

3

2

2

0

9

C

_

G

S

M

1

3

3

2

2

1

0

P

_

G

S

M

1

3

3

2

2

2

1

P

_

G

S

M

1

3

3

2

2

2

2

P

_

G

S

M

1

3

3

2

2

2

3

P

_

G

S

M

1

3

3

2

2

2

4

P

_

G

S

M

1

3

3

2

2

2

5

P

_

G

S

M

1

3

3

2

2

2

6

P

_

G

S

M

1

3

3

2

2

2

7

P

_

G

S

M

1

3

3

2

2

2

8

P

_

G

S

M

1

3

3

2

2

2

9

P

_

G

S

M

1

3

3

2

2

3

0

6

8

10

12

14

L

o

g

2

 

E

x

p

r

e

s

s

i

o

n


image200.jpeg
seeueingod
seeueingsd
eesEinsod
ezsteemsod
@ssensod
]
ozueeinsod
seumingod
sieswingod
seseinsod
cuEingsd
SicuEingod
nesEinsod
sieteeinss D
aeeinssd
nieteoinsoD
oreseEingo D
soeuewingod
oeuceingo D
oesceingo D
euceingo D
socteeinso D

roeupEINgoD

i.
3
H




image4.emf



Abbreviation Term
PCA Principle Component Analysis



PCMT1 Protein-L-Isoaspartate (D-Aspartate) O-
Methyltransferase



PD Parkinson's Disease



PDC Parkinsonism-Dementia Complex



PGRN Progranulin
PINK1 PTEN Induced Putative Kinase 1



PPI Protein Protein Interaction



PPMI Parkinson’s Progression Markers Initiative
PRKN Parkin
PSEN1 Presenilin 1
PSP Progressive Supranuclear Palsy



PTPN22 Protein Tyrosine Phosphatase, Non-Receptor 
Type 22



PTPRC Protein Tyrosine Phosphatase, Receptor Type C
RA Rheumatoid Arthritis
RANBP2 RAN Binding Protein 2
RIPK Receptor-Interacting Protein Kinase
RMA Robust Multi-array Average
ROCO ROC-COR 
RRM RNA Recognition Motif
sALS Sporadic Amyotrophic Lateral Sclerosis
SAPS Significance Analysis of Prognostic Signatures
SCA2 Spinocerebellar Ataxia Type 2
SERPINI1 Serpin Family I Member 1
SG Stress Granule
SLC11A1 Solute Carrier Family 11 Member 1
SLE Systemic Lupus Erythematosus
SNCA Synuclein Alpha
SNP Single Nucleotide Polymorphism
SNpc Substantia Nigra pars Compacta 
SOD1 Superoxide Dismutase 1
SPR Sepiapterin Reductase
SQSTM1 Sequestosome 1



STAT4 Signal Transducer And Activator Of 
Transcription 4



STMN2 Stathmin 2



STRAP Serine/Threonine Kinase Receptor Associated 
Protein



SYT11 Synaptotagmin 11



TBK1 TANK Binding Kinase 1



TDP-43/TARDBP Transactive Response DNA-Binding Protein 43



TERF2IP TERF2 Interacting Protein
TLR7 Toll Like Receptor 7
TMEM126B Transmembrane Protein 126B
TNFA Tumor Necrosis Factor
TRAF1 TNF Receptor Associated Factor 1
TUBA4A Tubulin Alpha 4a
UBE2N Ubiquitin Conjugating Enzyme E2 N
UCHL1 Ubiquitin C-Terminal Hydrolase L1
UPS Ubiquitin-Proteasome System
VCP Valosin-Containing Protein
VPS35 VPS35, Retromer Complex Component
WES Whole Exome Sequencing



Abbreviation Term
WGCNA Weighted Gene Coexpression Network Analysis
WISP3 WNT1 Inducible Signaling Pathway Protein 3
YBX1 Y-Box Binding Protein 1



YWHAZ Tyrosine 3-Monooxygenase/Tryptophan 5-
Monooxygenase Activation Protein Zeta



ZFYVE26 Zinc Finger FYVE-Type Containing 26
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Gene Lobby 
Score



Prioritisation 
Score



STAT4 8 5



CCL19 7 4



CD247 7 4



GATA3 7 4



LAT 7 4



LTB 7 4



MS4A1 7 4



PASK 7 4



PSMB9 7 4



PTPN7 7 4



TOX 7 4



BIRC3 6 4



CFB 6 4



GBP1 6 4



LAP3 6 4



LCK 6 4



PARP1 6 4



TAP1 6 4



TNFAIP8 6 4



TRAF1 6 4



UBE2L6 6 4



APOL1 5 3



BCAS2 5 3



CTDSPL 5 3



FKBP3 5 3



IFI35 5 3



IL2RB 5 3



ITK 5 3



LEF1 5 3



PSMB8 5 3



STAT1 5 3



ZBED2 5 3



ACSL5 4 3



APOBEC3G 4 3



ATG3 4 3



ATP1B3 4 3



BATF 4 3



C1QA 4 3



CAB39 4 3



CD40 4 3



CLIC1 4 3



CTLA4 4 3



DEF6 4 3



GRB2 4 3



HCK 4 3



LAMTOR5 4 3



LAX1 4 3



MAPRE1 4 3



NANS 4 3



NECAP2 4 3



PLEK 4 3



PPIB 4 3



PTPRC 4 3



RPN1 4 3



SDF2L1 4 3



SRP19 4 3



SSR3 4 3



SYK 4 3



TUBA4A 4 3



WARS 4 3



BCL2A1 3 2



BID 3 2



CCL8 3 2



CCR1 3 2



CD14 3 2



CSF2RA 3 2



CXCL13 3 2



DIP2C 3 2



EXOSC4 3 2



FCGR2A 3 2



HADHB 3 2



Gene Lobby 
Score



Prioritisation 
Score



HAT1 3 2



HLA-F 3 2



IL15 3 2



IRF1 3 2



LMAN2 3 2



LPXN 3 2



LSM3 3 2



LSM7 3 2



LYN 3 2



MYD88 3 2



NARS 3 2



NEDD8 3 2



NME1 3 2



NMI 3 2



NRBF2 3 2



PPP1R16B 3 2



PRKCB 3 2



PSMA7 3 2



PSMB10 3 2



PSMC4 3 2



PSMD8 3 2



PTPN2 3 2



PYCARD 3 2



SELL 3 2



SLC25A5 3 2



SNRPG 3 2



SPIB 3 2



SSR4 3 2



STK4 3 2



TNFRSF1B 3 2



TPD52 3 2



TPST2 3 2



VAV1 3 2



XBP1 3 2



YIPF1 3 2



AGTR1 2 2



AKAP17A 2 2



AP2S1 2 2



ARPC2 2 2



ASF1A 2 2



ATG5 2 2



ATP6V1E1 2 2



C1QBP 2 2



C1R 2 2



CANX 2 2



CCR5 2 2



CCT5 2 2



CCT7 2 2



CD38 2 2



CD86 2 2



COPS3 2 2



COPS5 2 2



CTBS 2 2



CXCL11 2 2



DBF4 2 2



DBI 2 2



DDOST 2 2



DNM1 2 2



DOK3 2 2



DRAP1 2 2



DRG1 2 2



EPS8 2 2



FAM96B 2 2



FTL 2 2



GPX1 2 2



GRN 2 2



GTF2F2 2 2



HSPA13 2 2



ICAM1 2 2



ILF2 2 2



IRAK1 2 2



Gene Lobby 
Score



Prioritisation 
Score



IRF2 2 2



KCTD9 2 2



LAMTOR3 2 2



MAP2K7 2 2



MAP3K7 2 2



MPDZ 2 2



MPHOSPH6 2 2



MPP1 2 2



MRPL40 2 2



MYH10 2 2



NUP62 2 2



POLR2K 2 2



PSMD2 2 2



RAB1A 2 2



RAP1B 2 2



RNF13 2 2



RPN2 2 2



RPS6KA1 2 2



RUNX1T1 2 2



S100A9 2 2



SEC24A 2 2



SF3B5 2 2



SH2D1A 2 2



SNRPD1 2 2



SUMO1 2 2



SUMO3 2 2



TLR2 2 2



TMED10 2 2



TMSB10 2 2



TNFRSF17 2 2



TNS3 2 2



TRADD 2 2



TRAF3 2 2



TSG101 2 2



UBAC1 2 2



UXT 2 2



VAMP8 2 2



VRK1 2 2



VSIG4 2 2



XRCC5 2 2



YARS 2 2



ZBTB32 2 2



ZPR1 2 2



ACAP1 1 1



ATP6V1A 1 1



ATP8A1 1 1



BARD1 1 1



BTK 1 1



C1S 1 1



CAPZA1 1 1



CASP8 1 1



CCL2 1 1



CHCHD3 1 1



CHFR 1 1



CIB1 1 1



CNBP 1 1



COPG1 1 1



CTDP1 1 1



CTR9 1 1



DERL1 1 1



DNM1L 1 1



DOCK2 1 1



EIF6 1 1



ETV6 1 1



FAM49B 1 1



FKBP2 1 1



GAS1 1 1



GDI2 1 1



GMPPA 1 1



GTF2B 1 1



HLA-B 1 1



Gene Lobby 
Score



Prioritisation 
Score



HLA-C 1 1



HOXA5 1 1



HPRT1 1 1



IRF4 1 1



IRS2 1 1



LYL1 1 1



MAPKBP1 1 1



MAX 1 1



MCTS1 1 1



MDM2 1 1



MREG 1 1



MYL12A 1 1



NCF1 1 1



NNT 1 1



NPL 1 1



PBX1 1 1



PCMT1 1 1



PCNA 1 1



PCSK2 1 1



PDHB 1 1



PFDN1 1 1



PIR 1 1



PLS3 1 1



PLSCR4 1 1



PRDX4 1 1



PSAP 1 1



PSMB5 1 1



PSMC5 1 1



RAB8A 1 1



RAB9A 1 1



RELB 1 1



RNF11 1 1



RPA3 1 1



RPLP0 1 1



SFXN1 1 1



SGK1 1 1



SIL1 1 1



SIRT3 1 1



SMARCC2 1 1



SNX2 1 1



SPATS2 1 1



SPCS3 1 1



SSNA1 1 1



SUCLG1 1 1



TAX1BP1 1 1



TBCA 1 1



TCF7L1 1 1



TMED9 1 1



TNFAIP3 1 1



TNFRSF14 1 1



TRIM21 1 1



UBE2O 1 1



VDR 1 1



VIPR1 1 1



VKORC1 1 1



VPS35 1 1



WIPF1 1 1



YBX1 1 1
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GeneXplain Rank Master Molecule Name GeneXplain 
Ranks Sum Prioritisation Score



2 TNFRSF1B 97 5
5 MYD88 105 5
8 ZBTB32 119 5



22 TRAF3 153 5
23 CD86 153 5
24 TRAF1 169 5
31 TRADD 179 5
36 LAT 188 5
37 IRF1 190 5
41 TNFRSF14 193 5
45 BTK 198 5
46 IRF4 199 5
52 CD14 206 5
58 RELB 210 5
62 SPIB 211 4
67 IRF2 217 4
71 CD40 231 4
79 CTLA4 239 4
81 STAT4 239 4
90 VAV1 250 4



103 TAX1BP1 262 4
104 LCK 264 4
108 CCL8 269 4
112 IL15 275 4
117 PLEK 277 4
123 ITK 284 3
124 CD38 284 3
127 CXCL11 287 3
130 SYK 288 3
133 NCF1 290 3
138 STAT1 293 3
143 HLA-B 297 3
152 CASP8 303 3
160 TLR2 306 3
163 PTPRC 307 3
165 PARP1 310 3
172 AGTR1 315 3
176 ICAM1 316 3
178 IRAK1 316 3
197 HOXA5 327 2
198 ILF2 327 2
215 CCR5 347 2
217 PIR 348 2
227 CCR1 356 2
228 SELL 356 2
229 C1QA 358 2
247 XBP1 377 1
258 DOK3 401 1
278 WIPF1 430 1
298 RPN1 567 1
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From 
Molecule Relationship To 



Molecule
HOXA5 expression MDM2



C1R activation C1S
CHFR ubiquitination PARP1
GATA3 expression BATF
GATA3 expression CCR1
GATA3 expression LTB
GATA3 expression PCNA
GATA3 expression SPIB
LEF1 expression GATA3



PARP1 activation GATA3
PARP1 activation PCNA
PARP1 expression ICAM1
PCNA activation PARP1
SPIB expression CCR5
SPIB expression XBP1
SPIB transcription XBP1
XBP1 expression DDOST
XBP1 expression DERL1
XBP1 expression ICAM1
XBP1 expression RPN2
XBP1 expression SPCS3
XBP1 expression SRP19
XBP1 expression SSR3
BIRC3 activation CASP8
BIRC3 ubiquitination TRAF1
BTK activation PRKCB
CD38 activation LCK
CD40 activation IRF1
CD40 activation MAP2K7
CD86 activation VAV1
CD86 phosphorylation VAV1



FCGR2A activation SYK
GRB2 phosphorylation VAV1
HCK activation BTK
HCK activation LAT
HCK activation MS4A1
HCK phosphorylation BTK
HCK phosphorylation LAT
HCK phosphorylation MS4A1
IL2RB activation LCK
IL2RB activation SYK
IRAK1 activation MAP3K7
IRF1 activation CASP8
IRF1 activation STAT1
IRF1 expression CASP8
IRF1 expression CD40
IRF1 expression IFI35
IRF1 expression IL15
IRF1 expression IRF2
IRF1 expression IRF4
IRF1 expression PSMB9
IRF1 expression SELL
IRF1 expression STAT1
IRF1 expression TAP1
IRF1 expression TRIM21
IRF1 transcription CASP8
IRF1 transcription IL15
IRF1 transcription IRF2
IRF1 transcription PSMB10
IRF1 transcription PSMB9
IRF1 transcription SELL
IRF1 transcription TAP1



From 
Molecule Relationship To 



Molecule
IRF2 expression IFI35
IRF2 expression IRF1
IRF2 expression TRIM21
IRF2 inhibition IRF1
IRF2 transcription GBP1
IRF4 expression GRB2
IRF4 expression IRF1
IRF4 expression STAT1
IRF4 transcription GBP1
IRS2 activation GRB2
IRS2 phosphorylation GRB2
ITK activation LAT
ITK phosphorylation BTK
ITK phosphorylation LAT
LAT activation ITK
LAT activation LCK
LAT phosphorylation ITK
LAT phosphorylation LCK
LCK activation CD247
LCK activation CTLA4
LCK activation IL2RB
LCK activation ITK
LCK activation LAT
LCK activation LAX1
LCK activation PTPRC
LCK activation VAV1
LCK phosphorylation CD247
LCK phosphorylation CTLA4
LCK phosphorylation IL2RB
LCK phosphorylation ITK
LCK phosphorylation LAX1
LCK phosphorylation PTPRC
LCK phosphorylation VAV1
LYN activation BTK
LYN activation IRS2
LYN activation LAT
LYN activation LPXN
LYN activation MS4A1
LYN activation PRKCB
LYN activation SYK
LYN phosphorylation BTK
LYN phosphorylation IRS2
LYN phosphorylation LAT
LYN phosphorylation LPXN
LYN phosphorylation MS4A1
LYN phosphorylation SYK



MS4A1 activation LYN
MYD88 activation IRAK1
MYD88 activation MAP3K7
PRKCB activation BTK
PRKCB activation NCF1
PRKCB activation VDR
PRKCB expression CD40
PRKCB expression CD86
PRKCB expression IRS2
PRKCB expression RELB
PRKCB inhibition BTK
PRKCB phosphorylation BTK
PRKCB phosphorylation NCF1
PRKCB phosphorylation VDR
PSMC5 expression LYN
PTPN2 inhibition STAT1



From 
Molecule Relationship To 



Molecule
PTPN2 phosphorylation STAT1
PTPRC activation CD247
PTPRC activation HCK
PTPRC activation LCK
PTPRC activation LYN
PTPRC activation VAV1
PTPRC inhibition HCK
PTPRC inhibition LYN
PTPRC phosphorylation CD247
PTPRC phosphorylation HCK
PTPRC phosphorylation LCK
PTPRC phosphorylation LYN
PTPRC phosphorylation VAV1
RELB expression BIRC3
RELB expression CD40
RELB expression STAT4
RELB expression TRAF3
RELB transcription IRF4



SH2D1A activation LCK
STAT1 expression CASP8
STAT1 expression CD14
STAT1 expression CD40
STAT1 expression CD86
STAT1 expression GBP1
STAT1 expression IFI35
STAT1 expression IL15
STAT1 expression IRF1
STAT1 expression IRF2
STAT1 expression PSMB10
STAT1 expression PSMB8
STAT1 expression PSMB9
STAT1 expression TAP1
STAT1 expression TRIM21
STAT1 transcription IRF1
STAT1 transcription PSMB9
STAT1 transcription TAP1
STAT4 expression STAT1
STAT4 transcription IRF1
SYK activation BTK
SYK activation CD247
SYK activation IL2RB
SYK activation LAT
SYK activation LYN
SYK activation MYD88
SYK activation VAV1
SYK phosphorylation BTK
SYK phosphorylation CD247
SYK phosphorylation LAT
SYK phosphorylation LYN
SYK phosphorylation MYD88
SYK phosphorylation VAV1



TLR2 activation IRAK1
TLR2 activation MYD88



TRADD activation CASP8
TRADD activation MAP3K7
TRAF1 activation CASP8
TRAF3 activation MAP3K7
VAV1 activation BTK
VAV1 activation ITK
VDR expression CD14
VDR expression RELB
VDR expression STAT4
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Molecule Number of  Targets Score



IRF1 20 5
STAT1 17 5
LCK 15 4
LYN 13 4
SYK 13 4
PTPRC 12 3
PRKCB 11 3
XBP1 7 2
HCK 6 2
GATA3 5 2
IRF2 5 2
RELB 5 2
IRF4 4 1
LAT 4 1
ITK 3 1
PARP1 3 1
SPIB 3 1
VDR 3 1
BIRC3 2 1
CD40 2 1
CD86 2 1
IL2RB 2 1
IRS2 2 1
MYD88 2 1
PTPN2 2 1
STAT4 2 1
TLR2 2 1
TRADD 2 1
VAV1 2 1
BTK 1 1
C1R 1 1
CD38 1 1
CHFR 1 1
FCGR2A 1 1
GRB2 1 1
HOXA5 1 1
IRAK1 1 1
LEF1 1 1
MS4A1 1 1
PCNA 1 1
PSMC5 1 1
SH2D1A 1 1
TRAF1 1 1
TRAF3 1 1
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Gene Endeavour 
Rank



Prioritisation 
Score



HLA-B 2 5



HLA-C 6 5



FCGR2A 8 5



STAT4 10 5



PTPRC 12 5



STAT1 13 5



IL2RB 15 5



LCK 16 5



ICAM1 18 5



HLA-F 19 5



CTLA4 20 5



TNFRSF1B 21 5



CD40 24 5



SYK 25 5



HCK 26 5



IRF1 28 5



BTK 29 5



SELL 30 5



LAT 31 5



IL15 32 5



LYN 34 5



GRB2 35 5



ITK 36 5



CASP8 37 5



VAV1 38 5



PTPN2 40 5



IRS2 41 5



IRF4 42 5



CD86 43 5



PRKCB 44 5



TNFAIP3 45 5



MYD88 46 5



VDR 47 5



TRAF1 48 4



PSMB5 49 4



CD247 50 4



MS4A1 51 4



PSMB8 52 4



SH2D1A 53 4



CSF2RA 54 4



MYH10 55 4



TLR2 56 4



CCR5 57 4



PCNA 58 4



GRN 59 4



PSMB9 60 4



MDM2 61 4



MAP3K7 62 4



PLEK 63 4



IRF2 64 4



RELB 65 4



RPS6KA1 66 4



ARPC2 67 4



C1R 68 4



CLIC1 69 4



TRAF3 71 4



C1QA 72 4



MAP2K7 73 4



NCF1 74 4



PSAP 75 4



ATP8A1 76 4



TUBA4A 77 4



TAP1 78 4



C1QBP 79 4



PSMD2 80 4



ATG5 81 4



BIRC3 82 4



RNF13 83 4



LPXN 84 4



PDHB 85 4



NEDD8 86 4



Gene Endeavour 
Rank



Prioritisation 
Score



UBE2L6 87 4



GPX1 88 4



PSMC5 89 4



CHFR 90 4



PARP1 91 4



PCMT1 92 4



PSMA7 93 4



GTF2B 94 4



FKBP2 95 3



AGTR1 96 3



PTPN7 97 3



ATP1B3 98 3



DDOST 99 3



GATA3 100 3



YBX1 101 3



CD38 102 3



PLS3 103 3



XRCC5 104 3



NMI 105 3



RAP1B 106 3



PBX1 107 3



TRADD 108 3



RPN1 109 3



TAX1BP1 110 3



COPG1 111 3



SSR3 112 3



ATP6V1A 113 3



DOCK2 114 3



HPRT1 115 3



LEF1 116 3



WIPF1 117 3



SGK1 118 3



RPLP0 119 3



TMED10 120 3



CCR1 121 3



SFXN1 122 3



TRIM21 123 3



IRAK1 124 3



STK4 125 3



COPS5 126 3



GDI2 127 3



DIP2C 128 3



CD14 129 3



FKBP3 130 3



BARD1 131 3



PRDX4 132 3



CANX 133 3



RAB1A 134 3



RNF11 135 3



PLSCR4 136 3



S100A9 137 3



CNBP 138 3



GBP1 139 3



SPCS3 140 3



TCF7L1 141 3



CAPZA1 142 2



PYCARD 143 2



PPIB 144 2



HADHB 145 2



CCL2 146 2



XBP1 147 2



PSMD8 148 2



DNM1 149 2



MAPRE1 150 2



TNFRSF14 151 2



APOBEC3G 152 2



MAX 153 2



PSMB10 154 2



PSMC4 155 2



TSG101 156 2



GAS1 157 2



Gene Endeavour 
Rank



Prioritisation 
Score



EXOSC4 158 2



CCT5 159 2



EPS8 160 2



BID 161 2



AP2S1 162 2



SUMO1 163 2



TNS3 164 2



PASK 165 2



IFI35 166 2



TNFRSF17 167 2



TMED9 168 2



MPDZ 169 2



C1S 170 2



CCT7 171 2



MCTS1 172 2



DNM1L 173 2



ATG3 174 2



ILF2 175 2



TBCA 176 2



RUNX1T1 177 2



PCSK2 178 2



RAB8A 179 2



ATP6V1E1 180 2



MPHOSPH6 181 2



DERL1 182 2



NME1 183 2



MPP1 184 2



SMARCC2 185 2



VPS35 186 2



YARS 187 2



GTF2F2 188 2



WARS 189 1



CTDP1 190 1



ACSL5 191 1



SLC25A5 192 1



CIB1 193 1



DRG1 194 1



RPA3 195 1



LAX1 196 1



DEF6 197 1



VIPR1 198 1



SUMO3 199 1



HAT1 200 1



ACAP1 201 1



RPN2 202 1



SSR4 203 1



CFB 204 1



MYL12A 205 1



LMAN2 206 1



SIRT3 207 1



LTB 208 1



SUCLG1 209 1



VRK1 210 1



LAMTOR3 211 1



PIR 212 1



NECAP2 213 1



NUP62 214 1



SPIB 215 1



ETV6 216 1



NARS 217 1



CAB39 218 1



CTR9 219 1



UBAC1 220 1



DBF4 221 1



BCAS2 222 1



SNX2 223 1



DOK3 224 1



SDF2L1 225 1



NNT 226 1



BATF 227 1



VAMP8 228 1



Gene Endeavour 
Rank



Prioritisation 
Score



CXCL11 229 1



EIF6 230 1



SNRPD1 231 1



TMSB10 232 1



HSPA13 233 1



SEC24A 234 1



CHCHD3 235 1



POLR2K 236 0



ZBTB32 237 0



CCL19 238 0



FAM49B 239 0



DRAP1 240 0



VSIG4 241 0



CTDSPL 242 0



COPS3 243 0



SSNA1 244 0



TPD52 245 0



ASF1A 246 0



TNFAIP8 247 0



SNRPG 248 0



CXCL13 249 0



UBE2O 250 0



TPST2 251 0



APOL1 252 0



GMPPA 253 0



YIPF1 254 0



AKAP17A 255 0



FTL 256 0



LYL1 257 0



SIL1 258 0



UXT 259 0



BCL2A1 260 0



LAP3 261 0



HOXA5 262 0



VKORC1 263 0



MREG 264 0



CTBS 265 0



MAPKBP1 266 0



NANS 267 0



LSM3 268 0



NRBF2 269 0



MRPL40 270 0



PPP1R16B 271 0



RAB9A 272 0



LSM7 273 0



TOX 274 0



DBI 275 0



SRP19 276 0



FAM96B 277 0



CCL8 278 0



PFDN1 279 0



KCTD9 280 0



NPL 281 0



ZBED2 282 0



SF3B5 283 0



SPATS2 284 0



LAMTOR5 285 0



ZPR1 286 0
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Histogram of x$Number.of.Samples
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Study Populations Studied Differential 
Expression



Genomic
data



Proteomic 
Data



Pathway 
Analysis



Network 
Analysis Cross tissue Cross 



platform
Consistent 
signature



Proposes 
new targets



Shang et al., 2015
Amyotrophic Lateral Sclerosis
Alzheimer's Disease
Parkinson's Disease



NO YES NO YES NO NO NO NO NO



Glaab & Schneider, 2015 Aging
Parkinson's Disease YES YES NO YES YES NO NO YES YES



Gandal et al., 2018



Austism
Schizophrenia
Bipolar Disorder
Depression
Alcoholism



YES YES YES YES YES NO YES NO NO



Jha et al., 2016
Polycythemia vera
Essential thrombocythemia
Primary myelofibrosis



YES NO NO YES YES NO NO YES YES



Parkes et al., 2013



Ankylosing Spondylitis
Coeliac Disease
Inflammatory Bowel Disease
Psoriasis
Rheumatoid Arthrtitis
Type 1 Diabetes



NO YES NO YES NO NO NO NO NO



Tuller et al., 2012



Multiple Sclerosis
Systemic Lupus Erthematosus
Juvenile Rheumatoid Arthritis
Crohn's Dsiease
Ulcerative Colitis
Type 1 Diabetes



YES NO YES YES YES NO NO NO YES



Magalhães et al., 2009 27 Aging Experiments 
(12 Mice, 11 Rats, 4 Human) YES NO NO YES NO YES YES YES NO



Johnson et al., 2015 39 Age-Related Disorders NO YES NO YES NO NO NO YES NO



Moccia et al., 2017 Breast Cancer
Renal Cell Carcinoma YES NO NO YES YES NO NO YES YES
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Disease % of  Population 
with Pathology



Identifying Factor of  Pathology 
Population Source



Amyotrophic Lateral Sclerosis 97% All patients except SOD1 or FUS
mutations Mackenzie et al. (2007)



Frontotemporal Dementia 50% Pathology positive for VCP, PGRN, 
Chromosome 9p and sporadic cases Cairns et al. (2007)



Multisystem Proteinopathy 100% ~ Weihl et al. (2008)



Alexander’s Disease 100% ~ Walker et al. (2014)



Alzheimer’s Disease ~33% Unknown Higashi et al. (2007)



Parkinson’s Disease 7-19% Unknown Nakashima-Yasuda et al. (2007)



Lewy Body Dementia 45% Unknown Higashi et al. (2007)



Parkinsonism-Dementia Complex of  
Guam 100% ~ Geser et al. (2007) 



Miklossy et al. (2008)



Huntington’s Disease 100% ~ Schwab et al. (2008)



Corticobasal Degeneration 45% Unknown Koga et al. (2018)



Progressive Supranuclear Palsy 26% Unknown Yokota et al. (2010)



Hippocampal Sclerosis 70% Unknown Amador-Ortiz et al. (2007)



Spinocerebellar Ataxia Type 2 Observed in 1 patient Unknown Toyoshima et al. (2011)



Chronic Traumatic Encephalopathy 43-83% Unknown McKee et al. (2013)
Barnes et al. (2016)
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Tissue Disease Genetic 
Background Patients Controls Platform GEO ID Publication



LCM Spinal 
Motor Neurons



Amyotrophic Lateral 
Sclerosis C9orf72 8 3 Affymetrix HG-



U133 Plus 2.0 Array GSE68605 Cooper-Knock et al (2015)



LCM Spinal 
Motor Neurons



Amyotrophic Lateral 
Sclerosis Sporadic 7 3 Affymetrix HG-



U133 Plus 2.0 Array Unpublished Unpublished, donated by 
Kirby Lab, SITraN



Homogenised 
Frontal Cortex



Frontotemporal Lobar 
Degeneration



GRN & 
Sporadic



6 GRN
10 Sporadic 8 Affymetrix HG-



U133A 2.0 Array GSE13162 Chen-Plotkin et al (2008)



Muscle Biopsy 
from Vastus 
Medialis



Multisystem 
Proteinopathy VCP 7 3 Affymetrix HG-



U133 Plus 2.0 Array GSE30806 Nalbandian et al (2012)



Homogenised 
Frontal Cortex



Amyotrophic Lateral 
Sclerosis



C9orf72 & 
Sporadic



8 C9orf72
10 Sporadic 9 Illumina HiSeq 2000 GSE67196 Prudencio et al (2015)



LCM Spinal 
Motor Neurons



Amyotrophic Lateral 
Sclerosis Sporadic 13 9 Illumina Genome 



Analyzer II GSE76220 Batra et al (2016)
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Dataset Number of  DEGs 
(P-value threshold only)



Number of  DEGs 
(P-value and fold change threshold)



GSE68605 1 1



Kirby 0 0



GSE13162 331 237



GSE30806 0 0



GSE67196 6 3



GSE76220 1376 1279
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Dataset Total Genes Upregulated Downregulated



GSE68605 8030 3788 4242



Unpublished 10373 5905 4468



GSE13162 9475 4941 4534



GSE30806 11881 8011 3870



GSE67196 16856 9259 7597



GSE76220 14534 8028 6506
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Actual Value Expected Mean Expected Range



Upregulated Genes 328 127.0225 85:179



Downregulated Genes 69 31.74036 11:59



Combined 397 158.7629 107:214
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Tissue Disease Variant Patients Controls Platform GEO ID Publication



LCM Spinal 
Motor 
Neurons



Amyotrophic Lateral Sclerosis SOD1 3 7 Affymetrix HG-U133 
Plus 2.0 Array GSE20589 Kirby et al (2011)



LCM Spinal 
Motor 
Neurons



Amyotrophic Lateral Sclerosis FUS 3 3 Affymetrix HG-U133 
Plus 2.0 Array Unpublished Unpublished



Fibroblasts 
from Skin 
Punch



Amyotrophic Lateral Sclerosis TARDBP 6 4 Illumina HiSeq 2000 Unpublished Unpublished
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Benchmark List Adjusted P Value Gene Overlap



Disease Genes 0.00136 ITPR2, EFEMP1, TARDBP, 
ERBB4, HNRNPA2B1, NEK1



Pathology-Tracking Genes 0.09378 TMX1, FLNC



TDP-43 PPI Genes 0.03168 DDX21, PABPC1, 
HNRNPA2B1











image15.emf



Rank KEGG Wikipathways Reactome GO BP GO MF GO CP



1



mRNA 
surveillance 
pathway 
(ns)



mRNA 
processing 
Mus musculus 
(0.00016)



~ mRNA splicing, via 
spliceosome (5.6e-5) miRNA binding (0.031) Nuclear body (3.9e-5)



2 ~
mRNA 
Processing 
(0.0016)



~ mRNA processing (5.6e-5) RNA binding (0.031) Nuclear speck (0.0039)



3 ~
EGF/EGFR 
Signaling 
Pathway (0.0074)



~



RNA splicing, via 
transesterification reactions 
with bulged adenosine as 
nucleophile (6.1e-5)



Kinase activity (0.043) Nucleoplasm part (0.013)



4 ~
PluriNetWork 
Mus musculus 
(ns)



~ Regulation of  transcription, 
DNA-templated (0.0024)



Nuclear hormone 
receptor binding (0.043) Focal adhesion (0.013)



5 ~ ~ ~ RNA processing (0.0054) Protein kinase activity 
(ns)



Secretory granule lumen 
(0.044)



6 ~ ~ ~ Protein 
phosphorylation (0.0095)



Protein serine/threonine 
kinase activity (ns) Chromosomal region (ns)



7 ~ ~ ~ Regulation of  
angiogenesis (0.01) ~



Cytoplasmic 
ribonucleoprotein 
granule (ns)



8 ~ ~ ~
Positive regulation of  
transcription, DNA-
templated (0.02)



~ Cytoplasmic vesicle lumen 
(ns)



9 ~ ~ ~ Regulation of  interleukin-2 
production (0.02) ~ ~



10 ~ ~ ~
DNA damage induced 
protein phosphorylation 
(0.021)



~ ~
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Rank KEGG Wikipathways Reactome GO BP GO MF GO CP



1 ~ G Protein Signaling 
Pathways (Mouse) (ns) Opioid Signalling (0.01022) ~ Voltage-gated anion 



channel activity (ns) ~



2 ~ G Protein Signaling 
Pathways (Human) (ns) Ca2+ pathway (0.04391) ~ Phosphatidylinositol 



phosphate binding (ns) ~



3 ~ Endothelin Pathways (ns) G beta:gamma signalling through 
PLC beta (0.04391) ~ Phosphatidylinositol 



bisphosphate binding (ns) ~



4 ~ ~ Presynaptic function of  Kainate 
receptors (0.04391) ~ ~ ~



5 ~ ~ Metabolism (0.04391) ~ ~ ~



6 ~ ~ DARPP-32 events (0.04784) ~ ~ ~



7 ~ ~ Activation of  Kainate Receptors 
upon glutamate binding (ns) ~ ~ ~



8 ~ ~ ~ ~ ~ ~



9 ~ ~ ~ ~ ~ ~



10 ~ ~ ~ ~ ~ ~
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Benchmark List Adjusted P Value Gene Overlap



Disease Genes 2.45e-07



TBK1, NEK1, TARDBP, VCP, HNRNPA1, GRN, 
HNRNPA2B1, SQSTM1, C9orf72, MATR3, PFN1, 
TUBA4A, ELP3, DCTN1, EWSR1, APEX1, CNTF, 
ALAD, DYNC1H1, CHGB, ITPR2, DISC1, 
ZNF746, RNF19A, SMN1, SNCG, DOC2B, 
PSEN1, SOD2, SPG7, VDR, CDH22, GARS, 
HEXA, MAPT, NAIP, EFEMP1, ZNF512B, BCL6, 
PCP4, TRPM7, SYNE1, ERBB4, LMNB1, GFAP, 
HTT



Pathology-Tracking Genes 0.48
CSF1R, DDR2, FCER1G, FCGR2A, FLNC, HCK, 
PGM2, PHYHD1, RBBP6, RNF213, TMX1, 
TRPV4, YWHAZ



TDP-43 PPI Genes 1.64e-20



DDX1, DDX21, DDX3X, DDX5, DHX9, 
HNRNPA0, HNRNPA1, HNRNPA2B1, HNRNPC, 
HNRNPH1, HNRNPK, HNRNPL, HNRNPM, 
HNRNPU, HNRNPUL1, HNRNPUL2, ATXN2L, 
FBL, ILF2, ILF3, LARP1, MATR3, MOV10, NCL, 
NONO, NOP56, PABPC1, PABPC4, PCBP2, 
PRPF19, SYNCRIP, UPF1, YBX1, RPL11, RPS14, 
RPS16, RPS17, RPS18, RPS19, RPS20, RPS25, 
RPS3, RPS3A, RPS4X, RPS7, RPSA, EFTUD2, 
SNRNP200, SFPQ
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Rank KEGG Wikipathways Reactome



1 Pathways in cancer 
(1.40e-40)



XPodNet – protein-protein interactions in the 
podocyte expanded by STRING 
(3.80e-74)



Gene expression 
(1.70e-74)



2 Epstein-Barr virus infection 
(8.60e-34)



TNF-alpha NF-kB signaling pathway 
(7.90e-51)



Disease 
(8.20e-63)



3 Viral carcinogenesis 
(4.60e-30)



EGFR1 signaling pathway 
(3.30e-44)



Cell cycle 
(3.00e-60)



4 Chronic myeloid leukemia 
(1.50e-28)



Integrated pancreatic cancer pathway 
(1.30e-38)



Immune system 
(5.00e-58)



5 Hepatitis B
(9.30e-28)



EGF/EGFR signaling pathway 
(7.10e-38)



Cell cycle, mitotic 
(1.60e-51)



6 ErbB signaling pathway 
(4.80e-25)



TGF-beta signaling pathway 
(1.80e-37)



Developmental biology 
(7.80e-48)



7 Apoptosis 
(9.60e-25)



PluriNetwork
(4.30e-33)



Infectious disease 
(6.30e-46)



8 HTLV-I infection 
(3.40e-23)



mRNA processing
(1.30e-32)



Innate immune system 
(4.50e-45)



9 NF-kappa B signaling pathway
(8.60e-23)



TNF alpha signaling pathway 
(1.40e-32)



Adaptive immune system 
(6.00e-37)



10 Proteoglycans in cancer 
(1.20e-22)



IL-6 signaling pathway 
(2.40e-32)



Diseases of  signal transduction 
(1.20e-36)
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Rank GO BP GO MF GO BP



1 Regulation of  apoptotic process
(2.83e-44)



RNA binding
(4.72e-81)



Focal adhesion
(2.73e-58)



2
Positive regulation of  transcription, DNA-
templated
(1.00e-40)



Ubiquitin-like protein ligase binding
(1.22e-43)



Nuclear body
(2.90e-39)



3
Negative regulation of  transcription, DNA-
templated
(1.14e-39)



Ubiquitin protein ligase binding
(2.22e-43)



Nuclear chromosome part
(1.52e-33)



4 Negative regulation of  gene expression
(1.44e-39)



Cadherin binding
(2.35e-39)



Chromatin
(6.07e-30)



5 Positive regulation of  gene expression
(1.89e-39)



Kinase binding
(2.30e-38)



Cytoskeleton
(1.43e-25)



6 Cellular macromolecule biosynthetic process
(9.40e-39)



Protein kinase binding
(2.62e-35)



Nucleolus
(9.51e-25)



7
Negative regulation of  cellular macromolecule 
biosynthetic process
(1.14e-38)



Protein serine/threonine kinase activity
(5.30e-24)



Nuclear chromatin
(4.96e-24)



8 Protein modification by small protein removal
(2.02e-38)



Protein kinase activity
(1.65e-23)



Cytosolic part
(6.55e-22)



9
Regulation of  transcription from RNA 
polymerase II promote
(3.53e-38)



DNA binding
(1.07e-21)



Nuclear speck
(1.84e-21)



10 Cellular protein modification process
(6.67e-38)



RNA polymerase II transcription factor 
binding
(1.50e-18)



Nucleoplasm part
(8.11e-20)
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AAAS BCAS2 COPS3 EFEMP2 HINT1 MAP2K4 NUAK1 PPME1 RANBP6 SKP1 TMEM30A VPS35



ABCA5 BCL2 COPS5 ELP3 HK1 MAPRE2 NUP155 PPP2CA RASA1 SNAP25 TMOD1 WARS



ACAT2 BPGM COPS7A ENO2 HLTF MDH2 OAT PPP3CA RCAN2 SNAP91 TPI1 WASF1



ACTR2 BST2 CS EPS15 HNRNPK MEAF6 OXCT1 PRKCI RCN2 SOX10 TRIM38 WASL



ADAMTSL4 C1QBP CUL1 FBXO11 HPRT1 MIA3 PAFAH1B1 PRKCZ RELA SOX9 TUBA1A WBP4



AGTPBP1 CACYBP CUL3 FH HSP90AB1 MORF4L1 PAK1 PRPF4 RHOC SPAG1 TUBA1B WWP1



AKAP12 CCDC6 CYFIP2 FTSJ1 HSPA4 MRFAP1L1 PAM PSMA3 RNF11 SPI1 TUBA4A YBX1



ALAS1 CCNH DCUN1D1 GABARAPL2 HSPA9 MRPL9 PAPSS1 PSMB6 RNF14 SSX2IP TUBB YES1



AMPH CD22 DDB1 GARS IMMT MTA2 PCMT1 PSMC1 RNF41 STAU1 TUBB2A YWHAB



ANK2 CD82 DDX1 GDI1 ITPR2 MUTYH PDHB PSMC2 RPA3 STK39 TUBB4B YWHAH



ANKMY2 CDC123 DDX24 GGH KCMF1 MYH10 PEBP1 PSMC4 RPH3A STMN2 TXNL1 YWHAQ



ANXA7 CDC42 DHX29 GLMN KCND2 MYH9 PFKM PSMC6 RTN4 STX2 U2AF2 ZC3H15



APP CDK19 DNAJA1 GNAI2 KIAA0368 NARS PFKP PSMD1 SARAF STXBP1 UBE2D2 ZDHHC17



ARL1 CDK8 DNM1L GNG3 KIF3A NDEL1 PFN2 PSMD2 SARS SULT4A1 UBE2V2



ARL6IP1 CFLAR DOT1L GOLIM4 LAMTOR3 NDFIP1 PGAM1 PSMD6 SDHA SUMO1 UQCRC2



ARL6IP5 CHCHD2 DPP8 GORASP2 LEF1 NDUFS2 PHGDH PSMD7 SEC24B SUPT16H USP14



ARMC1 CHCHD3 DSTN GOT1 LYL1 NECAP1 PHYH RAB14 SEPHS2 TAX1BP1 USP25



ATP6V1A CMTM6 DYNC1LI1 GOT2 MAGED1 NELL1 PJA2 RAN SERINC1 TBK1 VAPA



ATP6V1B2 COPG1 DYNLT3 GPN1 MAP2 NLK PLS3 RANBP2 SERPINI1 TERF2IP VDAC2



ATP6V1E1 COPS2 DZIP3 HEYL MAP2K1 NNT PPIA SKIV2L2 SH3GL2 TGFBR2 VDAC3
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Benchmark List Adjusted P Value Gene Overlap



Disease Genes 0.011 TBK1, TUBA4A, ELP3, ITPR2, 
GARS



Pathology-Tracking Genes ~ ~



TDP-43 PPI Genes 0.017 DDX1, HNRNPK, YBX1
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Rank KEGG Wikipathways Reactome



1 Carbon metabolism (8.70e-10) Parkin-ubiquitin proteasomal system pathway 
(7.98e-16) Immune system (4.80e-12)



2 Proteasome (6.99e-9) TNF-alpha NF-kB signaling pathway 
(4.15e-10) G2/M transition (4.80e-12)



3 Epstein-Barr virus infection 
(1.70e-8) Proteasome degradation (Mouse) (3.12e-9) Mitotic G2-G2/M phases (4.80e-12)



4 Pathogenic Escherichia coli 
infection (7.10e-7) Proteasome degradation (Human) (7.50e-9) CLEC7A (Dectin-1) signalling 



(6.48e-12)



5 Biosynthesis of  amino acids 
(8.15e-6)



Glycolysis and gluconeogenesis (Mouse) 
(7.92e-9) C-type lectin receptors (1.17e-11)



6 Gap junction (3.00e-5) Glycolysis and gluconeogenesis (Human) 
(8.21e-9) Cell cycle (1.84e-11)



7 Glycolysis / Gluconeogenesis 
(3.20e-5) Pathogenic escherichia coli infection (4.54e-7) Dectin-1 mediated noncanonical 



NF-kB signaling (2.34e-11)



8 Adherens junction (6.10e-5) XPodNet - protein-protein interactions in the 
podocyte expanded by STRING (2.26e-6)



Degradation of  beta-catenin by the 
destruction complex (5.47e-11)



9 Salmonella infection (0.00017) TGF-beta signaling pathway (8.95e-5) Activation of  NF-kappaB in B cells 
(5.47e-11)



10 Oocyte meiosis (0.00025) EGFR1 signaling pathway (0.00012) Innate Immune System (6.631e-11)
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Rank GO BP GO MF GO CP



1 Regulation of  G2/M transition of  
mitotic cell cycle (3.79e-9) Ubiquitin protein ligase binding (3.871e-7) Cytosolic proteasome 



complex (9.044e-8)



2
Negative regulation of  G2/M 
transition of  mitotic cell cycle
(4.49e-9)



Ubiquitin-like protein ligase 
binding (4.061e-7) Cytoskeleton (4.78e-6)



3 Regulation of  mitotic cell cycle 
phase transition (4.49e-9)



Nucleoside-triphosphatase activity
(3.44e-6) Mitochondrion (2.43e-5)



4 NIK/NF-kappaB signaling (4.49e-9) Purine ribonucleoside triphosphate 
binding (3.54e-6)



Nuclear proteasome complex 
(0.0001)



5 Stimulatory C-type lectin receptor 
signaling pathway (4.76e-9) Purine ribonucleoside binding (3.54e-6) Ficolin-1-rich granule lumen 



(0.00057)



6 Protein polyubiquitination (5.40e-9) Guanyl ribonucleotide binding (6.46e-6) Polymeric cytoskeletal fiber
(0.0018)



7
Innate immune response activating 
cell surface receptor signaling 
pathway (5.40e-9)



ATPase activity, coupled (7.47e-6) Ficolin-1-rich granule (0.0018)



8 Negative regulation of  cell cycle 
G2/M phase transition (6.39e-9) GTP binding (7.47e-6) Azurophil granule (0.0021)



9 Fc receptor signaling 
pathway (9.37e-9)



Proteasome-activating ATPase 
activity (2.38e-5) Secretory granule lumen (0.0021)



10
SCF-dependent proteasomal 
ubiquitin-dependent protein 
catabolic process (9.37e-9)



Ubiquitin protein ligase 
activity (0.0001017)



Cytoplasmic vesicle 
lumen (0.0028)
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Actual Number of  
Edges



Mean Expected 
Number of  Edges



Expected Mean 
Edge Range



Module Gene -
Disease Gene Edges



205 27.04 7:53
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Benchmark List Adjusted P Value Gene Overlap



ALS GWAS 0.55 ITPR2, PFKP, TBK1



FTLD GWAS 1.00 ~



AD GWAS 0.10 SEC24B



PD GWAS 0.65 ALAS1, ANK2, DCUN1D1, SH3GL2, 
STK39, USP25
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Source Source Type Analysis 
Location Input Output Type Scoring Methodology



Loss-of-
Function 
Mutations



Genetic Public
Case/control whole 
exome or genome 
sequencing data



Presence of  a loss-
of-function 
mutation as scored 
by Gemini



If  contains LoF mutation, score 5. 
Otherwise score 0.



Lobby Index Topological Local The common network 
module edge table Lobby index value Genes are ranked by index score, split 



into 5 equal groups, and scored 1-5.



GeneXplain Regulation Public
A list of  the common 
network module 
members



FDR score
Output is ranked by FDR, split into 5 
equal groups, and scored 1-5. 
Members not in output score 0.



IPA Regulation Public
A list of  the common 
network module 
members



Relationship type



The number of  upstream effects each 
gene had on another gene was counted 
(not including any relationships with 
itself). Genes were ranked most to least, 
split into quintiles, and scored 1-5. 
Those with no influence scored 0.



Endeavour Consensus Public



Common network 
module members and 
known phenotype-
associated genes



Total gene list 
ranked by P-value



Entire output is ranked by P-value, split 
into 6, and scored 0-5



DEGs Phenotype-
Specific Local



A list of  the common 
network module 
members



Gene overlap with 
DEG list Genes which are also DEGs score 5



TDP-43 PPI Phenotype-
Specific Local



A list of  the common 
network module 
members



Protein overlap 
with TDP-43 PPI 
list



Genes which code for proteins which 
bind TDP-43 score 5
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Gene LOF 
Mutation



Lobby 
Index GeneXplain IPA DEG TDP-43



PPI Endeavour Score



YBX1 5 1 5 0 0 5 4 20



DDX1 5 3 0 0 0 5 4 17



TBK1 5 1 5 1 0 0 5 17



RANBP2 5 1 4 1 0 0 5 16



HSPA9 5 1 5 0 0 0 5 16



PAFAH1B1 5 5 0 0 0 0 5 15



GDI1 5 1 0 0 5 0 4 15



OAT 5 3 0 0 5 0 2 15



SNAP91 5 2 4 0 0 0 4 15



RCAN2 5 3 0 0 5 0 1 14
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Assess relationship to 
phenotype



Assess statistical 
robustness



Data collection 
and quality 



control



Identify genes 
with common 



differential 
expression 
direction



Filter out 
signatures 



non-specific to 
phenotype



Identify 
common 



coexpression 
edges



Identify first-
degree protein 
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Tissue Disease Variant Patients Controls Platform GEO ID Publication



LCM Spinal 
Motor Neurons



Amyotrophic 
Lateral Sclerosis C9orf72 8 3



Affymetrix HG-
U133 Plus 2.0 
Array



GSE68605 Cooper-Knock et al 
(2015)



LCM Spinal 
Motor Neurons



Amyotrophic 
Lateral Sclerosis Sporadic 7 3



Affymetrix HG-
U133 Plus 2.0 
Array



Unpublished Unpublished



Homogenised 
Frontal Cortex



Amyotrophic 
Lateral Sclerosis



C9orf72 & 
Sporadic



8 C9orf72
10 Sporadic 9 Illumina HiSeq



2000 GSE67196 Prudencio et al 
(2015)



LCM Spinal 
Motor Neurons



Amyotrophic 
Lateral Sclerosis Sporadic 13 9



Illumina 
Genome 
Analyzer II



GSE76220 Batra et al (2016)



LCM Spinal 
Motor Neurons



Amyotrophic 
Lateral Sclerosis SOD1 3 7



Affymetrix HG-
U133 Plus 2.0 
Array



GSE20589 Kirby et al (2011)



LCM Spinal 
Motor Neurons



Amyotrophic 
Lateral Sclerosis FUS 3 3



Affymetrix HG-
U133 Plus 2.0 
Array



Unpublished Unpublished
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Tissue Variant Patients Controls Platform GEO ID Publication



Blood



Sporadic, 
PRKN, 
PINK1, 
ATP13A2



169 Sporadic, 
13 PRKN, 
12 PINK1, 
5 ATP13A2



183 Affymetrix HG-U133 
Plus 2.0 Array GSE99039 Shamir et al. 2017



Blood Sporadic 16 9 Affymetrix HG-
U133A 2.0 Array GSE72267 Calligaris et al. 2015



Fibroblast LRRK2 3 3 Affymetrix Human 
Exon 1.0 ST Array Unpublished Unpublished
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Tissue Variant Patients Controls Platform GEO ID Publication
Homogenised 
Substantia Nigra Sporadic 15 8 Affymetrix HG-U133 Plus 2.0 Array GSE49036 Dijkstra et al. 2015



Homogenised 
Substantia Nigra Sporadic 16 9 Affymetrix HG-U133 Plus 2.0 Array GSE7621 Lesnick et al. 2007



Homogenised
Substantia Nigra Sporadic 24 15 Affymetrix HG-U133A Array GSE8397 Duke et al. 2007



LCM Substantia 
Nigra neurons Sporadic 10 8 Affymetrix HG-U133 Plus 2.0 Array GSE20141 Zheng et al. 2010



Homogenised 
Substantia Nigra Sporadic 11 18 Affymetrix HG-U133A Array GSE20292 Zhang et al. 2005



Homogenised 
Frontal Cortex Sporadic 29 44 Illumina HiSeq 2000 GSE68719 Dumitriu et al. 2016



Homogenised 
Frontal Cortex Sporadic 5 3 Affymetrix HG-U133A Array GSE8397 Duke et al. 2007



Homogenised 
Medulla Sporadic 6 5 Affymetrix HG-U133A Array GSE19587 Lewandowski et al. 2010



Homogenised 
Prefrontal Cortex Sporadic 14 15 Affymetrix HG-U133A Array GSE20168 Zhang et al. 2005



Homogenised 
Putamen Sporadic 15 20 Affymetrix HG-U133A Array GSE20291 Zhang et al. 2005



Homogenised 
Locus Coeruleus LRRK2 2 4 Affymetrix Human Exon 1.0 ST Array GSE34516 Botta-Orfila et al. 2012



Homogenised 
Putamen LRRK2 3 5 Affymetrix Human Exon 1.0 ST Array GSE23290 Botta-Orfila et al. 2012
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Dataset Total Genes Upregulated Downregulated



GSE49036 23345 9728 13617



GSE7621 13433 6582 6851



GSE8397 13433 7944 5489



GSE20141 13433 6489 6944



GSE20292 13433 7529 5904



GSE68719 20490 7854 12636



GSE8397 13433 7829 5604



GSE19587 13433 7664 5769



GSE20168 13433 8331 5102



GSE20291 13433 7174 6259



GSE34516 28262 15045 13217



GSE23290 28262 15592 12670











